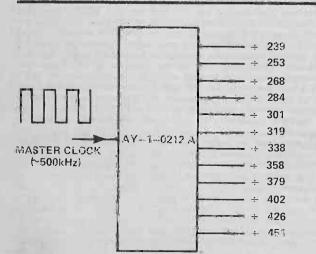
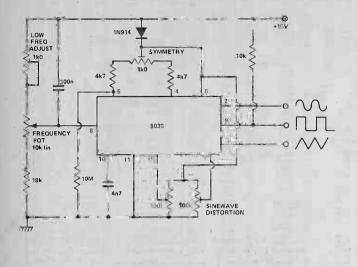


R-2R Staircase Generator


Waveforms can be constructed by building them up out of separate elements. In this case a linear ramp waveform is generated out of 128 steps. The CD4024 is a seven stage binary counter. It is being driven from a CMOS clock oscillator similar to that already described. 2,4,8,16,32,64 and 128 respectively and the divided outputs are then fed into an R,2R ladder network. This is in fact a Digital to Analogue Converter (DAC) and as the counter is merely counting up, then the converter will generate a linearly rising waveform made out of 128 steps. When the counter overflows, the ramp waveform resets and the process repeats itself.

The Q1 to 7 outputs divide this clock frequency by

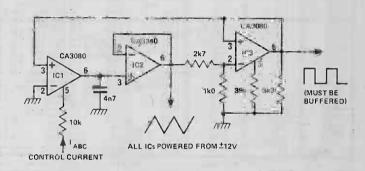
R-2R Triangle Generator


This circuit is similar to the previous except an up down counter is included. A clock signal is applied to the 4029 counter. When it has counted 16 clocks a Carry signal is generated. This clocks a D type flip-flop (4013), which changes state and reverses the up

down mode of the 4029. Thus the circuit counts up, down, up, etc. The counting is converted via an R,2R ladder into an analogue output, a triangle waveform made up out of several steps.

Master Tone Generator

If you have ever made an electric organ, piano or string machine you would have had to produce the top twelve notes for the top octave by some means or other. More expensive organs might use 12 master oscillators which would be tuned to the top twelve semitones on the keyboard. This gives a nice free phase quality to the sound. The notes in the octaves below are made by using binary dividers and filtering. Very expensive organs would use an oscillator per note. This allows every note to be individually tuned and produces a very good sound quality. However, there is an easy way of producing the semitones and this is with a master tone generator chip. This is a pre-programmed divider having one input and twelve or thirteen outputs. A high frequency master clock is put into the chip which is divided by numbers ranging from 239 to 451. These divisions produce the semitone outputs. Thus, by using one master oscillator and one master tone generator a lot of the work of making an organ is removed. It is possible to produce more accurate intervals using 12 oscillators, but the speed and efficiency of the chip usually wins in the lower price end of the market.

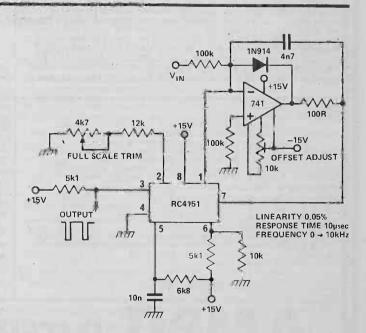


8038 Function Generator

There are several ICs available which perform some sort of oscillator function. One such is the Intersil 8038 which is a VCO with sine, triangle and squarewave outputs. The basic oscillator is a triangle squarewave device with a function generator to produce the sinewave. The frequency is voltage controllable but is not a linear function. The triangle symmetry and hence sinewave distortion are adjustable with a preset but change when the frequency is altered. Operation up to 1MHz is possible.

Triangle Squarewave ICO Using CA3080's

This circuit is very similar to that of the simple triangle/square oscillator, except that the operating frequency is controlled by a current IABC. (ICO stands for current controlled oscillator, as opposed to VCO, voltage controlled oscillator). Using this circuit, a sweep range of 10,000 to 1 is possible (for IABC 500 μ A to 50nA). The CA3080 is a two quadrant multiplier and the CA3140 is a MOS FET op-amp. IC1 is used as an integrator. IC2 is a high input impedance voltafe follower and IC3 is a Schmitt trigger. The CA3080 has a current output which in the case of IC1 is used to charge up a capacitor. The voltage on this capacitor is buffered by the CA3140 and fed into the Schmitt IC3. The CA3080 (IC3) forms a very fast Schmitt trigger but as it has a current output, it cannot be loaded in any way without effecting the operating frequency. The output of the Schmitt is used to make the entegrator inverting or non-inverting. Thus the operation is as follows. The integrator ramps upward until the positive hysteresis level is reached. The Schmitt flips over, the integrator then ramps downwards until the negative hysteresis level is reached. The Schmitt flips back and the process is



repeated. The ramp rate is determined by the size of the current IABC is linearly proportional to the oscillation frequency. At very low currents the triangle waveform may become very asymmetrical. This is due to current mirror mismatches inside IC1 and this device may have to be specially selected for continuous symmetry.

Precision Voltage Controlled Oscillator

The RC 4151 is a precision voltage to frequency converter. It generates a pulse train output which is linearly proportional to the input voltage. The linearity for the circuit shown is 0.05%. The IC compares the input voltage with an internally generated one. It dumps controlled pulses of charge into a Parallel RC network and compares this generated voltage with the input. If the input is greater it puts more pulses of charge into the RC network until the two are balanced. To get a larger sustained voltage in the RC network the frequency of the pulses must be increased. Thus the frequency of the pulses generated is made to be proportional to the input voltage.

The output is a pulse waveform and is intended to drive some sort of counting system, the chip being used as simple analogue to digital converter. It can also be used as a frequency to voltage converter. A maximum frequency of 10kHz has to be observed.

E19

PROJECT

TEMPERATURE METER eti 589

A simple yet accurate temperature meter based on the LCD panel meter published in our March issue.

THE RELIABILITY of electronic circuits in the days of valves was, to say the least, poor by today's standards. The introduction of transistors and integrated circuits increased reliability dramatically. One of the main reasons for this is the reduction of power dissipation and the resultant lowering of temperature. Devices and circuits are now designed to minimise power dissipation as this allows a higher component density while increasing reliability. However, some circuits by their nature must dissipate high power and the semiconductor devices used must be kept within their temperature limits.

This temperature meter will allow transistor temperatures to be measured and the appropriate heatsink chosen. It is just as useful outside the electronic scene measuring liquid or gas temperature especially where the readout needs to be physically separate from the sensor.

Use and Accuracy

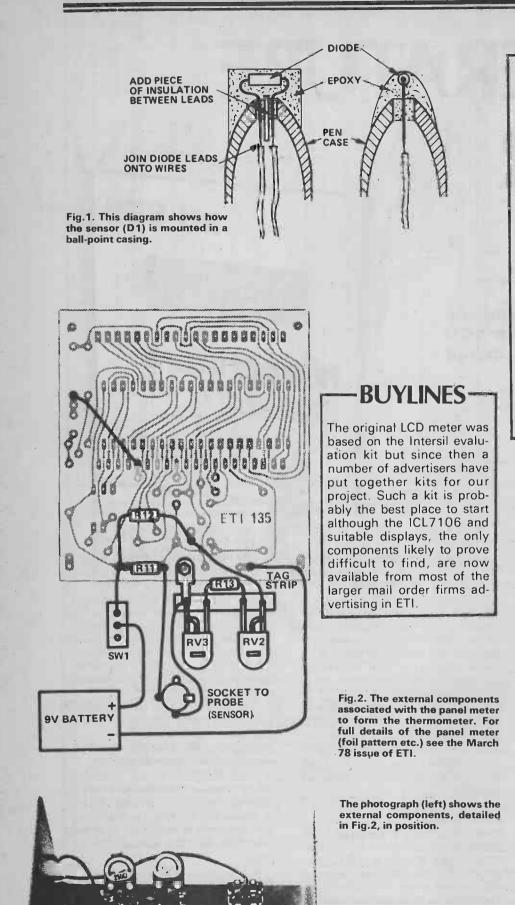
The accuracy of the unit depends on , the calibration; provided it has been calibrated around the temperature at which it will be used, accuracy of 0.1 degree should be possible. We could not accurately check linearity but it appeared to be within 1° from 0° to 100°C.

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

However, other errors will affect this reading. If measuring the surface strip as shown in the photo. While temperature i.e. a heatsink temperature, there will be a temperature gradient between the surface and the junction of the diode. Silicon grease should be used to minimise the surface-to-surface temperature difference. Also when measuring small objects, e.g. a TO-18 transistor, the probe will actually cool the device slightly. At high temperatures these effects could give an error of up to 5% (the reading is always less than the true value). If the probe is in a fluid (eg water) or air this problem does not occur.

Construction

Assemble the panel meter as previously described but omitting the zener diodes and R6 and R7. The value of R1 has also been changed. The decimal point drive should be connected to the righthan'd decimal point. The additional components can be assembled on a tag strip as shown.


We mounted our unit on a tag we have not given any details, knocking up a case should be no problem. For a power supply we used eight penlight Nicad cells giving a 10 V supply. If dry batteries are used six penlight cells are recommended although a 216-type 9 V transistor battery will give about 300 hours of operation.

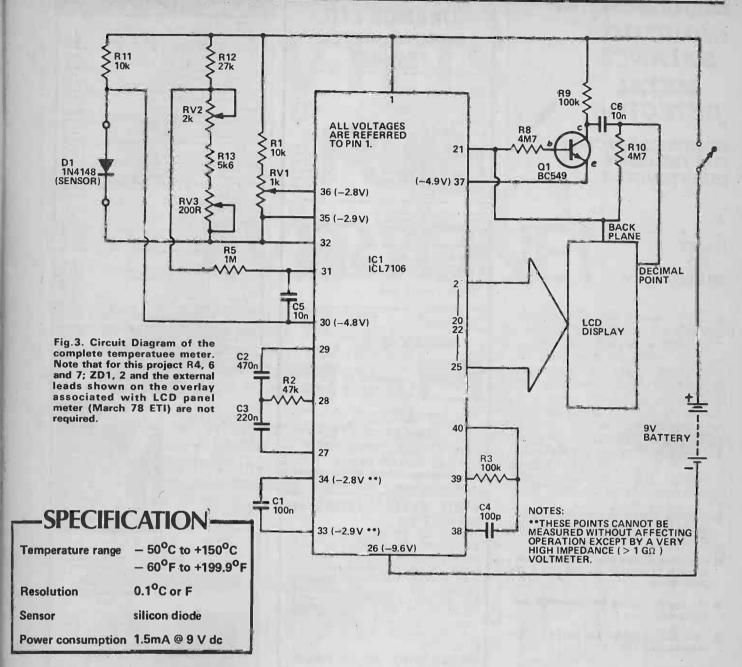
The sensor should be mounted in a probe as shown in Fig. 1 if other than air temperature will be measured. This provides the electrical insulation needed for working in liquids etc. It should be noted however that the quick dry epoxies are not normally good near or above 100°C and if higher temperatures than this are expected one of the slow dry epoxies should be used.

Calibration

Temperature

To calibrate this unit two accurately known temperatures are required, one of which is preferably zero degrees and the second in the area

HOW IT WORKS


While the voltage across a silicon diode is nominally about 600 mV it is dependent upon the ambient temperature and current in the device. The temperature coefficient is negative, i.e. the voltage falls with increasing temperature but fortunately is linear in the region of interest. The actual value varies with current and from device to device, but is typically $-2.2 \text{ mV}/^{\circ}$ at 250μ A.

By measuring the voltage across the diode with a suitable offset voltage to balance the voltage at zero degrees an accurate temperature meter results. The digital panel meter described in October has a stable reference voltage avaliable (between pins 1 and 32) of about 2.9 V; with the 10k resistor R11 this provides a constant current for D1 (the sensor). The offset voltage is also derived from this reference voltage by R12, RV2 and RV3. The panel meter is used as a differential voltmeter and measures the potential dif-ference between the offset voltage and the diode. We have used two trimpots in series in the offset adjustment to give better resolution. If desired a 10-turn trimpot can be used tion. If desired a 10-turn trimpot can be used ($2k_2$). Adjustment of the three poten-tiometers allows the meter to be calibrated in either °C or °F with the upper limit of 199.9°F due to the panel meter over-ranging. The power supply is simply a 9 V battery, and so the zener diodes and dropping resis-tore described in the panel meter outper dial

tors described in the panel meter article should be omitted.

1	PAR	TS LIST
	RESISTORS R1, 11 R2 R3, 9 R4 R5 R6, 7 R8, 10 R12 R13	10k 47k 100k not used 1M not used 4M7 27k 5k6
	POTENTIOME RV1 RV2 RV3	TERS 1k 10 turn trim 2k preset 200R preset
	CAPACITORS C1 C2 C3 C4 C5, 6	100n polyester 470n polyester 220n polyester 100p ceramic 10n polyester
	SEMICONDUC IC1 Q1 D1	TORS ICL7106 BC549 1N914
	ETI), tag strip,	US nel Meter (March 78 LCD display, socket for witch and 9 V battery.

PROJECT : Temperature Meter

where the meter will normally be used and highest accuracy is required. For a general-purpose unit 100° C is suitable. The easiest way of obtaining these references is by heating or cooling a container of distilled water. However temperature gradients can cause problems, especially at zero degrees.

One method of obtaining water at exactly zero degrees is to use a test tube of distilled water in a flask of iced water and allowing it to cool to near zero. Now by adding salt to the iced water its temperature can be lowered to below zero. If you are very careful, the test tube water will also drop below zero without freezing (you should be able to get to about -2° C). However, the slightest disturbance at this temperature will instantly cause some of the water to freeze and the remaining water to rise to exactly zero, providing an ideal reference.

For a hot reference the boiling point of distilled water is very close to 100°C especially if the container has a solid base and is evenly heated e.g. on an electric hotplate.

The actual calibration is done as follows:

1. In the 0° C reference adjust RV2 and RV3 until the unit reads zero.

 In the hot reference adjust RV1 to give the correct reading.

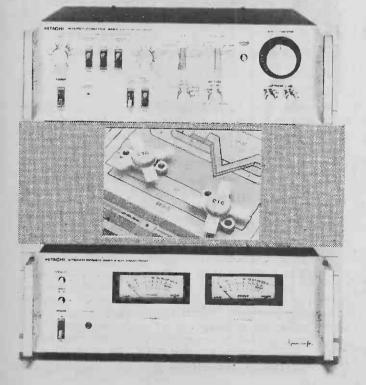
This should be all the adjustment required.

If zero degrees is not available, e.g. if setting up for °F, the following method can be used:

1. In the cold reference use RV2 and RV3 to adjust reading to zero.

2. In the hot reference use RV1 to adjust the reading to indicate the temperature difference between the two standards. If freezing and boiling points are used, this will be 180° F.

3. Now, back in the cold bath, adjust RV2 and RV3 to give the correct reading.


No further adjustment should be required.

V-FETS FOR EVERYONE!

This article, by Wally Parsons, first appeared in our Canadian edition. We think that V-FETs represent a large step forward in power amplifier technology and so we have reprinted it, starting this month.

The first part of 'V-FETs for Everyone' covers the theory behind V-FETs and what their specifications mean. Next month, part two will describe how V-FETs are used at present and how to design V-FET circuitry. SINCE THE SEMI-CONDUCTOR is precisely that, a battery across the ends of a p-type or an n-type bar will cause current to flow through the material, just as it does through a vacuum tube. If a p-type material is joined to the surface of an n-type bar, located between the battery terminals, a pn junction is formed, and if this junction is reverse biased, a space charge or field is produced of opposite polarity which will inhibit current flow, just as the control grid inhibits current flow in vacuum tube. Changing this reverse voltage causes a large current change, and therefore amplification results.

A simple FET (J-FET) is shown in Fig. 1. With a given drain — source voltage, maximum current flows under zero gate voltage conditions and at some reverse levels, no current will flow. Also, as in the vacuum tube, load characteristics are not reflected to the input circuit, because current is not controlled by carrier injection as in bipolars, but by voltage levels.

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

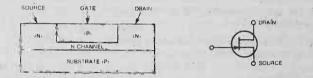


Fig 1: N-channel JFET construction and symbol

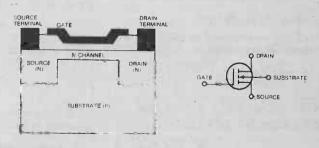


Fig 2: N-channel depletion horizontal MOSFET construction and symbol

A variation is the Metal Oxide Semi-conductor Field Effect Transistor. (MOSFET) (Fig. 2) a far more versatile device whose technology is virtually the cornerstone of modern computer technology, although it has had less use to date in linear applications such as audio amplification.

MOSFETS come in two basic types. In both types the gate consists of a metal electrode separated from the channel by a thin oxide layer. In the depletion type current flow is controlled by the electrostatic field of the gate when biased. Voltage relationships are the same as for the J-FET, except that when the J-FET is forward biased current will flow through the junction (after all, it is a pn junction). This does not contribute to amplification, and may even destroy the device. When a depletion MOSFET is so biased it may result in increased current flow and, provided current, dissipation, and breakdown ratings are suitable, the device may be driven on both sides of the zero volts point as with vacuum tubes. Unlike vacuum tubes under these conditions, the gate draws no cirrent and therefore does not require the driver to deliver power.

The enhancement type MOSFET shown in Fig. 3, is more widely used. The source and drain are separated by a substrate of opposite material, and under zero gate volts no current flows. However, when sufficient forward bias is applied to the gate the region under the gate changes to its opposite type (e.g. p-type becomes n-type) and provides a conductive channel between drain and source. Carrier level and conduction are controlled by the magnitude of gate voltage. Although J-FETS, and especially MOSFETS, have certainly delivered on their original promise, in one area they are particularly conspicuous by their absence, and that is in the area of power. Unfortunately, the channel depth available for conduction is limited. by the practical limits on gate voltage. The lower current density has been the primary limitation due to the horizontal current flow.

VMOS

Recent years have seen the introduction and commercial use of Vertical Channel J-FETS, notably by Sony and Yamaha (Fig. 4). The vertical channel permits a very high width-length ratio, permitting a decreased inherent channel resistance and high current density. Unfortunately it exhibits the same disadvantages as the small signal J-FET, plus, in available devices, a very high input capacitance, ranging from 700pf to around 3000pf, limiting high frequency response. In addition, since they must be biased into the off condition, bias must be applied before supply voltage and removed after the supply if it is to be operated anywhere near its maximum ratings. This problem doesn't exist with vacuum tubes because of heater warm-up time, although some "instant-on" circuits impose heavy turn-on surges.

This necessitates a complex power supply, and indeed Yamaha, for example, uses more devices in the supply than it does in its amplifier circuits. However, the construction does make possible the design of complementary types and Nippon Electric and Sony both have high power devices available. Unfortunately, neither company seems anxious to make detailed information available, so there is little to disclose here beyond the fact that they are said to have characteristics similar to those of triode tubes.

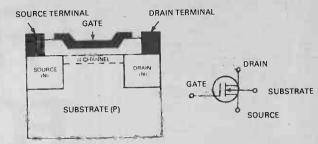


Fig 3: N-channel enhancement horizontal MOSFET construction and symbol

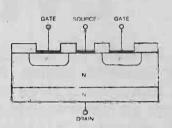


Fig 4: Vertical junction FET construction

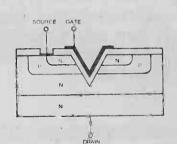


Fig 5: Vertical MOSFET construction (Siliconix)

However, the Vertical MOSFETS by Siliconix are readily available, at reasonable prices, and the manufacturer most generous in providing data. The following information is extracted from their application note AN76-3, Design Aid DA 76-1, plus device data sheets.

The Device

Notice in Fig. 5 that the substrate and body are opposite type materials separated by an epi layer (similar to high speed bi-polars). The purpose of this structure is to absorb the depletion region from the drain-body junction thus increasing the drain-source breakdown voltage. An alternative would have involved an unacceptable trade-off between increasing the substrate-body depth to increase breakdown voltage but increasing current path resistance and lengthening the channel. In addition, feedback capacitance is reduced by having the gate overlap n-epi material instead of n +.

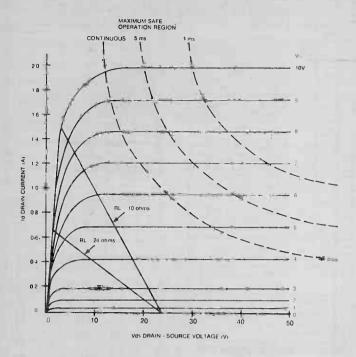


Fig 6: Output characteristics VMP1

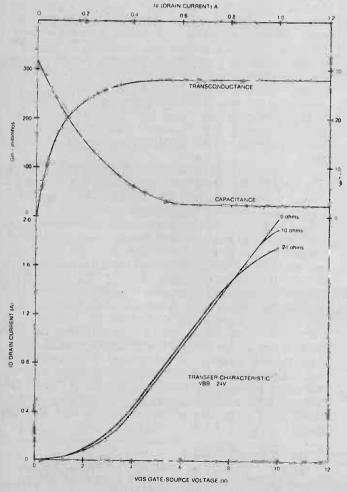


Fig 7: Other VMP1 characteristics

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

In manufacture, the substrate-drain and epi layer are grown, then the p-body and n + source diffused into the epi layer, in a similar manner as the base and emitter of a diffusion type transistor. A V groove is etched through the device and into the epi layer, an oxide layer grown, then etched away to provide for the source contact and an aluminium gate deposited. It is apparent that this type of device allows current flow in one direction only; this is not always so with a similar type of horizontal FET, where source and drain may be identical in structure and of the same material. Therefore, no reverse current flows (we hope!) when used in switching applications, as was also the case with vacuum tubes.

In-circuit operation is refreshingly simple: Supply voltage is applied between source and drain, with the drain positive with respect to the source, under which conditions no current flows, and the device is off. This is an enhancement type device and is turned on by taking the gate positive with respect to the source and body. The electric field induces an n channel on both surfaces of the body facing the gate, and allows electrons to flow from the negative source through the induced channel and epi and through the substrate drain. The magnitude of current flow is controlled almost entirely by the gate voltage, as seen in the family of curves (Fig. 6 and 7) with no change, resulting from supply voltage changes above 10V.

Advantages

The vertical structure results in several advantages over horizontal MOSFETS.

1) Since diffusion depths are controllable to close tolerances, channel length, which is determined by diffusion depth, is precisely controlled. Thus, width/ length ratio of the channel, which determines current density, can be made quite large. For example, the VMP1 channel length is about 1.5 us, as against a minimum of 5 us in horizontal MOSFETS, due to the lower degree of control of the shadow masking and etching techniques used in such devices.

2) In effect, two parallel devices are formed, with a channel on either side of the V groove, thus doubling current density.

3) Drain metal runs are not required when the substrate forms the drain contact, resulting in reduced chip area, and thus reduced saturation resistance.

4) High current density results in low chip capacitance. Also, unlike horizontal MOSFETS, there is no need to provide extra drain gate overlap to allow for shadow mask inaccuracies, so feedback capacitance is minimized.

In comparison with bi-polars, especially power devices, the advantages are even more impressive.

1) Input impedance is very high, comparable to vacuum tubes, since it is a voltage controlled device, with no base circuit drawing current from the driver stage. A 7 V swing at the gate, at virtually O A, represents almost O W of power, but can produce a swing of 1.8 A in output current. This represents considerable power gain and will interface directly with high impedance voltage drivers.

2) No minority carrier storage time, no injection, extraction, recombination of carriers, resulting in very fast switching and no switching transient in

FEATURE : V·FETS

2.0

1.6

1.2

0.0

10

80 #5, 1% DUTY CYCLE PULSE TEST

10 20 30 40 50 VDS - DRAIN-TO-SOURCE VOLTAGE (VOLTS)

5

D.(

VGS = 10V

9V

8∖ .7v

6V

5V 4\ -3V 2V 1V

100 500

Regior

				1	VMP 1	1		VMP 1		VMP 12			Unit	Test Conditions	
		C	Characteristics	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Onit		
1	BVDSS Drain-Source Breakdown		35			60			90			v	$V_{GS} = 0; I_{D} = 100 \ \mu A$		
2	s	VGS(th)	Gate Threshold Voltage	0.8		2.0	0.8		2.0	0.8		2.0	V	$V_{GS} = V_{DS}; I_D = 1 mA$	
3	T	GSS	Gate-Body Leakage			0.5			0.5			0.5		V _{GS} = 15 V; V _{DS} = 0	
4	T	D(off)	Drain Cutoff Current			0.5	T		0.5			0.5	μA	V _{GS} = 0; V _{DS} = 24 V	
5	ċ	D(on)	Drain ON Current*	1	2.0		1	2.0		1	2.0			V _{DS} = 24 V; V _{GS} = 10	
6		D(on)	Drain ON Current*	0.5			0.5			0.3			A	VDS = 24 V: VGS = 5 V	
7	S		1	2.0	2.5		3.0	3.5		3.7	4.5		V _{GS} = 5 V; I _D = 0.1 A		
8	Ŵ		Drain-Source ON		2.4	3.0		3.3	4.0		4.6	5.5	Ω	VGS = 5 V; ID = 0.3 A	
9	Ť	03(00)	Resistance*		1.2	1.5		1.9	2.5		2.6	3.2	1 22	VGS = 10 V: ID = 0.5 /	
10	С Н			-	1.4	1.8		2.2	3.0		3.4	4.0		V _{GS} = 10 V; I _D = 1 A	
11		9m	Forward Transconductance*	200	270		200	270		170			mʊ	VDS = 24 V; 1D = 0.5	
12	D	CISS	Input Capacitance		48			48			48				
13	Y	Crss	Reverse Transfer Capacitance		7			7			7		pF	V _{GS} = 0: V _{DS} = 24 V	
14	AM		Common Source Output Capacitance		33			33		-	33	-		f = 1 MHż	
15	c	ION .	Turn ON Time**		4	10		4	10		4	10	ns	See Switching Time	
16	5	1OFF	Turn OFF Time**		4	10		4	10]	4	10		Test Circuit	
			**Sample Test e Width = 80 μsec, Duty Cycle =	1%										VMC	

Figs 8, 9 & 10: Electrical characteristics of the VMP devices from Silconix, a freely available VFET.

laximum Safe Operating 0.1 100 1 10 10 V_{DS} – DRAIN TO SOURCE VOLTAGE (VOLTS)

class B and AB amplifiers. Switching time for a VMP1 is 4 ns for 1 A, easily 10-200 times faster than bipolars, and even rivalling many vacuum tubes.

3) No secondary breakdown, and no thermal runaway. VMOS devices exhibit a negative temperature coefficient with respect to current, since there is no carrier recombination activity to be speeded up with temperature. Thus, as current increases so does temperature, but the temperature rise reduces current flow. It is still possible to destroy the device by exceeding its maximum ratings, but a brief nearoverload does not result in an uncontrollable runaway condition. Usually, simple fusing and/or thermistor protection is sufficient for maximum safety, and even this may be unnecessary with conservative design. Absence of secondary breakdown means that full dissipation can be realized even at higher supply voltages. In this respect they resemble vacuum tubes.

Available Devices

Seven devices representing three families are available. Types VMP-1, VMP-11, and VMP-12 are 2 A, 25 W dissipation devices intended for switching and amplifier use and differ only in voltage rating (60 V, 35 V, 90 V, respectively). Types VMP-2, VMP-21, VMP-22, are 1.5 A, 4 W devices rated at 60 V, 35 V, 90 V respectively, and are intended mainly for high speed switching, but would also be useful for low power amplifiers and as linear drivers for bi-polars, where the latter offer advantages. And finally, type VMP-4, 1.6 A, 35 W, specifically intended for VHF amplifier use. All except VMP-4 devices feature gate protection to withstand static discharges and overvoltages, and all are currently available except the VMP-4. All are n-channel. One hesitates to pass premature judgement, but if the millenium hasn't arrived yet, at least it might just be on the way.

Conditions

V-MOS Power FETs like signal MOSFETS, may be used in a variety of circuit arrangements to perform many different functions. However, no matter what the circuit, certain conditions, common to all applications, must be provided. These are supply power, loading, drive signal, and establishment of appropriate operating points. These are conditions necessary for amplification and since all active devices function as amplifiers, no matter what the total circuit function, the in-circuit performance of any device depends on the establishment of these conditions

The electrical characteristics of the VMP1, VMP11, and VMP12, are shown in Fig. 8, and Fig. 9 and 10 shows them in graphic form. Since these are unidirectional devices, the source and drain are not interchangeable, and as they are n-channel devices conduction can occur only if the drain is positive with respect to the source, and high enough to ensure operation in the linear region, as with a vacuum tube, bi-polar transistor, or signal FET.

Like the vacuum tube, the absence of secondary breakdown allows realization of the full dissipation at any voltage supply up to maximum voltage and current ratings. Thus, where two different designs require the same dissipation but different voltage/ load current, no derating is required. This is shown in the "safe operating area" curves. The only bi-polar transistor possessing this characteristic is the singlediffused type, which is also the least suitable for any application requiring wide bandwidth and/or high speed.

TO BE CONTINUED PRACTICAL MONTH SOME NEXT CIRCUITS, AND HOW TO DESIGN YOUR OWN

PROJECI

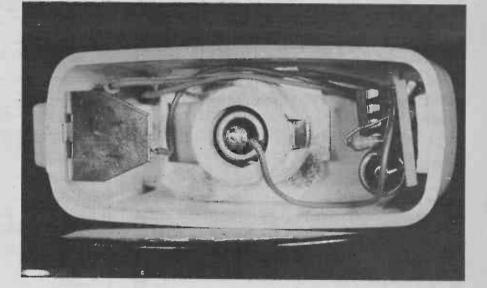
TORCH FINDER

A simple circuit which will help you find your torch in an emergency.

HAVE YOU EVER groped for the light of your life in the dark? Bow before you get any ideas about the type of project this is let's say that the light we refer to is your torch and in the dark this worthy can indeed save life and limb

However, when the lights go out suddenly, it's often impossible to locate the torch because it's dark but you wouldn't be looking for the torch if it weren't dark . . . If this seems like a vicious circle it's here that ETI can help with our torch finder

The torch finder is designed to flash a LED that should be fitted within the body of the torch. The circuit consumes a minute amount of power and so can be left operational at all times. Using a high efficiency green LED means that inspite of the low power demanded by the circuit, the light output is guite adequate to locate the torch, quickly, in the dark.


Construction

Our photographs show how our circuit was fitted to the 'flat' torch we chose for the project.

With so few components construction of the PCB is straightforward, pay attention to the orientation of C1 and IC1.

Tuck the circuit out of the way within the torch, drill a hole to accommodate the LED and epoxy the device in place.

Insert the batteries and start hoping for a power cut so that the device can be put to the test.

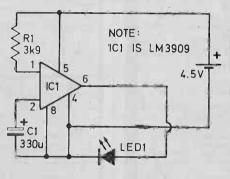


Fig. 1. Circuit diagram of the Torch Finder.

PARTS LIST

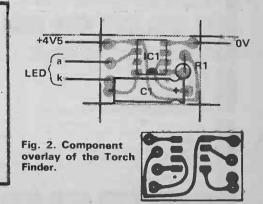
RESISTOR (1/4w 5%) R1 3k9

- CAPACITOR 330u 4 V Electrolytic

SEMICONDUCTORS LM3909 IC1 LED1 Minature green type

MISCELLANEOUS PCB as pattern, torch to suit

HOW IT WORKS


With only four components it's obvious that most of the action takes place within IC1. This is an LM 3909, a device specifically designed to flash LEDs.

In operation the IC will supply current to. the LED, via an internal 12R current limit resistor, for only 1% of the time. For the rest of the time the LM3909 draws only about $50\mu A$ while the capacitor C1

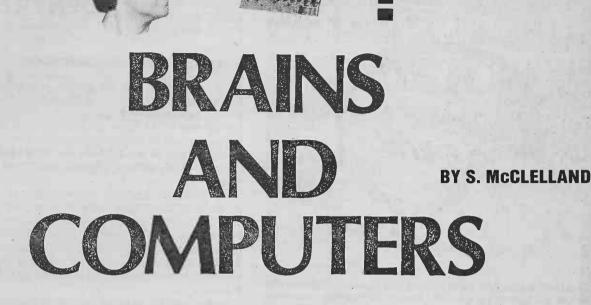
charges up via an internal network of resistors

When the voltage on C1 reaches a preset level (this point can be modified by a resistor between pin 1 and supply), the LM3909 will supply a high current pulse to the LED; C1 is discharged.

For further details of the LM3909 consult the National Semiconductors data sheet on the device or the ETI data sheet in the September 76 issue.

BUYLINES

The most important aspect of this project is the torch. We used a flat type but any torch providing the 4.5 volts required by the torch finder could be used.


The rest of the components should be available from many local shops.

	FEA	TURE	S
	DESIGNING OSCILLATORS	15	How to make sines
TRANSCENDENT 2000 MILLIN	VFETS FOR EVERYONE	25	Insight into new technology
	BRAINS AND COMPUTERS	33	How's your CPU?
	MICROFILE	59	News for MPUs
Makemusic p.38		69	Atomic development
	TECH-TIPS	81	Readers' own ideas
and the second s			
	DD		re
	PRO	DJEC.	13
	TEMPERATURE METER	21	LCD module employed
	TORCH FINDER	31	A flash in the dark?
	MUSIC SYNTHESIZER	38	A revolutionary concept!
A	UFO DETECTOR	63	Magnetic principle uniț
	N	EWS	
		EVVO	
	NEWS DIGEST	7	What's on where
1 - 1/1 a	DATA SHEET	51	Memories are made of this!
	ETI SEMINAR REPORT	73	If you missed it
Change I			
and the second se	ELECTRONICS TOMORROW	77	Where do we go now?
Strike a light p.3	INFO	RMAT	FION
	SUBSCRIPTIONS	10	Trouble and strike avoided
	SPECIALS	13	Details of our other publications
	ETI MARKET PLACE	36	Unbelievable amplifier offer!!
		49	· · · · · · · · · · · · · · · · · · ·
And the second second	ETI AUGUST PREVIEWED		And for our next issue
	PANEL TRANSFERS	55	Finishing
	ETI BOOK SERVICE	57	Read this fine print
Get in key p.55	ETI PRINTS	79	Why do it any other way?
p.o.			
			CHENT OFFICE
INTERNATIONAL EDITIONS	EDITORIAL AND A 25-27 Oxford Street, London W1R 1RF,		
AUSTRALIA Collyn Rivers	Halvor W. M		
Publisher Les Bell		arris B.S. ary Evans	
Acting Editor	Steve Ran		
· · · · · · · · · · · · · · · · · · ·		Koblansk	al
HOLLAND Anton Kriegsman Editor-in-chief		Jim Perr	
	Phil Cohen B.Sc, Wil	liam Kin	g Editorial Assistants
CANADA Steve Braidwood		Edward	
Editor Graham Wideman		et Hewit	
Assistant Editor		rew Scot	
GERMANY Udo Wittig	Kim Hamlin, Anne	ette Mair	Reader Services
Editor	Tim Salmon, Brenda	Goodwin	
	Mark Strathern (Manager), Tom	Moloney	Advertising
	PUBLISHED BY	Modmage	Ltd., 25-27 Oxford Street, London W1R 1RF
ABC	DISTRIBUTED BY	Argus Dis	tribution Ltd. (British Isles)
The second second	DOUNTED ON	Gordon &	Gotch Ltd. (Overseas)
	PRINTED BY	UB Limite	d, Colchester

Electronics Today International is normally published on the first Friday of the month prior to the cover date

COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

Man is just a machine, or is he? Is his brain the ultimate mechanism or could it be improved by bio-engineering techniques? How can we develop artificial intelligence to match the abilities of our own brains and what do we have to learn from it?

EVEN IF THE HUMAN BRAIN is regarded as being a digital computer it must be considered to be far more complex than anything man can devise — or is likely to devise in the foreseeable future. In a volume of tissue far less than that of a football it packs some 10¹⁰ (that's 10 000 000 000) active elements, the nerve cells. In computer terms, its capacity to store information must run onto the 10 thousand megabit range *at least*.

Its organisation matches its abilities — on average in a normal human being it's been estimated that 1 nerve cell dies every 10 seconds throughout our lives. It is never replaced, for brain cells alone in the body cannot reproduce, and yet we never notice the loss since the brain is so well organised that many of its circuits are redundant and can be replaced by alternative channels should they fail — this has been the case even after serious injuries have been inflicted on the brain.

How much power does all this require? It's enough to make an engineer cringe — a meagre few watts!

What about the brain's higher capabilities — such as its capacity for inventiveness or 'original' thought? What was special about Mozart's brain circuits that enabled him to start composing music before he was 5 years old, or in Leonardo da Vinci's case, to design flying machines 500 years ahead of his time?

Sadly as yet we have no idea since so little is known about the brain!

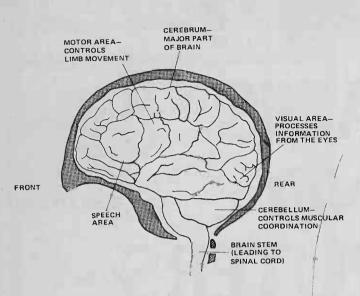
Inputs and Outputs

All this uncertainty has not stopped a growing number of systems engineers and scientists from looking at the brain's organisation and operation (possibly with the idea of wanting to copy techniques in future systems!).

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

We can certainly find some aspects of central nervous system operation in common with computers. Both systems have of course what might be loosely termed 'input' and 'ouput' peripherals, for example. In the case of the brain the inputs are from the senses of the body, not only the primary ones of sight, hearing, smell and taste but also from many thousand of receptors near the surface of the body for various parameters such as temperatures and pressure.

Its outputs go to activate all the muscles in the body. This flow of information demands an enormous number of nerve fibres to convey it — up to a million nerve fibres are estimated to be associated with each major limb alone.


All of this of course prompts the question: "How does this information transfer take place?" To understand this we have to look at the most basic component of the whole system — the nerve cell itself.

Neurons

If we could remove a typical nerve cell from our bodies and look at it under a high power microscope, it would look something like Fig 1. Remember, this cell is probably only a few micrometres in diameter so what we're about to describe is a microscopic system-withina-system.

The cell picks up signals from the other cells in its vicinity and these are fed down to the main part of the cell (containing the nucleus) and propogated along the long transmitter branch (axon) to the next cell.

It's along the inside of these long membranous

This is what your CPU looks like with the cover off. Note the I/O bus at the bottom (not S-100). The power supply connections have been omitted for clarity. The case is of a sturdy polymeric material and the main PCB fits it nicely.

branches that the electric impulses (or action potentials) are transmitted by the nerve.

The axon is no mere passive wire, however. If it was, the signals would soon be drastically attenuated by the leakage of the membrane to the outside after a very short travel. The cell membrance instead acts as its own signal booster to maintain the impulse at constant amplitude (about 100 mV) at any point on the axon. The action potential is either there or it isn't - there is no inbetween state. A digital system? Perhaps. In fact, it's the frequency at which the action potentials are signalled that carries the information. We can now see why so many nerve fibres are needed to carry information. Each cell — and probably many others for the sake of re-dundancy — carries one 'bit' of information. The importance of this information depends on the frequency it is being signalled and it is likely that a high frequency signal establishes a higher priority than a lower frequency signal in a particular context - rather like signalling an 'interrupt' in a computer system.

Simple as it is, a frequency-dependent system carries its own problems. The sense organs must make amplitude-to-frequency code conversions for transmission down the fibre and at the other end, the brain must find a way of coping with a frequency-dependent signal.

A secondary point is that all the nerve cells concerned with a particular function or sub-function work in parallel. The advantages of parallel processing are fairly evident. It's faster than serial and has a higher signalto-noise ratio (even if it does need more channels).

So we can visualise action potentials — small spikes of voltage — being flicked up and down all the nerve fibres in the body at varying frequency, but not nearly as fast as electrical impulses through cables. However, even in this, nature squeezes all the performance it can out of the human nervous system. Each nerve cell is wrapped in several layers of fatty tissue with 'nicks'

or 'breaks' in the fat at intervals along the axon. The effect of these 'breaks' or 'nodes of Ranvier' as they are known is to increase the speed of transmission of the action potentials down the nerve axon to about 100 metres per second.

Delaying Tactics and Logic Gates

If neurons propagate the action potentials, then its the junctions between neurons (synapses) that route them. It's the synapses which work out if the incoming signals are of the right type and frequency to trigger the following cell to produce an action potential. From the point of view of the system, the synapses are the delay lines, one-way valves, triggers and gates all rolled into one.

It takes an electron microscope to even see the synapse regions and even then they don't look very special — they're merely bulbous terminations where nerve cells meet each other. Except that they don't meet each other — they're always separated by the absolutely microscopic distance of about 200 Å — so the action potential never gets across even the gap, let alone down the other side.

What actually crosses the gap is not the electric signal itself but very small quantities of hormones which are released from the transmitter bulb. The hormone crosses to the receptor membrane where (by a process that's not fully understood) it causes the generation of another action potential. Even across so small a gap the chemical transmission takes a finite time and is susceptible to interference by foreign chemicals (drug addicts please note — your synapse may be switched off!).

Some synapses, instead of generating an action potential in the receptor membrane actually inhibit it from doing so — so we've found the on-off switches for the nervous system. Can we identify Boolean logic gating arrangements in the nervous system? It's possible to speculate in those terms and certainly the basic mechanisms seem to be there, but unfortunately not enough is known about even simple neuron groups to permit an answer to this question.

Don't Believe Your Eyes!

The nervous system can do some very sophisticated things to the input signals it receives by way of data processing. It can, for example, selectivity inhibit the triggering of neurons that carry no useful information in favour of ones that do.

This so-called 'lateral inhibition' not only cleans up potentially noisy channels by making them more 'contrasty' but in some animals is known to help the eye resolve very efficiently the boundaries between dark and light edges in an image. It probably occurs in the human nervous system as well where it is thought to give rise to some of the more common optical illusions as a byproduct.

So much processing sophistication backing up the senses means that the brain can work on far less sensory information than it usually gets. For example, the brain really only requires a few per cent of the data it receives from the eyes in order to form a valid judgement as to the nature of the image. The same applies to the ear speech has to be very badly distorted before the brain cannot recognise it. There is obviously a very close and

complex interaction between the senses and the memory, which is continually generating possible 'bestfit' models to match the latest information received. Each model is discarded until the brain is satisfied with the result.

Our senses show a fantastic sensitivity to the world around us — we *can* hear a pin drop in a quiet room. More staggering still, the vibration amplitude of the ear drum which the minimum audible sound creates is less than *the diameter of one hydrogen atom* . . .!

Down Memory Lane

Digital computers have clearly-defined memory locations which are usually addressed under the control of a clocked pointer in the system. The human brain on the other hand seems to have no all-powerful organ of memory — attempts to find one have so far proved inconclusive. Rather, memory is a property of the system as a whole.

Secondly, data storage on a computer tape or disc is permanent until deliberately erased but information flow through the brain is far more dynamic and its retention more selective. Information floods into our brains from our senses at every living moment. Seen in this light it is neither desirable nor even possible to store it all. 'Store only the information that is important' the brain says to itself — but what is counted as being important?

Basically, we pick out the information about the changes in our environment, because it's the changes in it which may be threatening our immediate survival.

On a motivated level, we can store items deliberately. We remember by repetition (e.g. a telephone number). Most importantly we store information which is associated with something which has caused us great pain or pleasure in the past. How do we recall information once stored? It's clear that association plays a critical role. After all, we store not isolated events but connected ones — 'trains of thought' if you like. The memories are recalled when the right key of stimulus is provided. This stimulus may well be a piece of information associated with the group. For example, the question 'What do you remember

For example, the question "What do you remember about November 22nd 1963?" would probably elicit a blank rely from most people until (as various commentators have pointed out) that they are told its the day when the President John F. Kennedy was assassinated. Many people can recall where they were or what they were doing — it's a memory that persists over 14 years because it is associated with such a traumatic incident.

In this way we can visualise the human memory almost as 'conglomerates' of memories — pieces of information tied together in some fashion only requiring the right input trigger to push it all out.

Some very intriguing hypothesis about how the memory operates have been suggested. One exciting and topical suggestion is that it records information as a hologram records 3-D images in laser light. A particular part of the image is not localised to a particular part of the hologram — in fact even a fragment of the hologram can theoretically recreate the entire image, a property which makes it very similar to the brain.

We must wait for more basic information on the brain to confirm or disprove this.

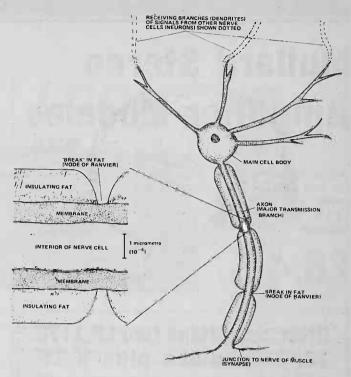


Figure 1: What a nerve! A typical nerve cell examined.

Tuning into Brain Waves

We can get some idea of what all this electrical activity is like by strapping electrodes — connected to a sensitive amplifier and chart recorder — to the skull.

We will obtain a rather confusing output of signals referred to as an *electroencephalogram* or EEG. The EEG is usually a very weak signal — a few tens of uV amplitude at a range of frequencies mostly under 30 Hz, although higher frequency components are present.

The most well-known component of the EEG is the α -wave. Present in about 90% of all individuals, this signal (with a frequency between 8 Hz and 13 Hz) is at its most active when the subject is relaxed and his eyes closed. It disappears as soon as the subject opens his eyes or starts to concentrate on something like mental arithmetic.

What does it mean? Basically, we don't know. Nor do we know where or how it's generated, although its source (there may be more than one) *seems* to be located to the upper rear of the brain. Correspondingly little is known about the other EEG components.

Although the EEG doesn't give a great deal of information about the working of the brain (indeed we'll probably have to wait until further studies of the brain explain the EEG!), it has found great use in diagnosis of brain disorders such as epilepsy. But could the EEG have a more fundamental significance than that? My own pure piece of speculation — for what it's worth — is that it's the brain's clock, although it's too low in frequency to cope with many of the fast muscular actions of the body. Even so the 'ticking' of a brain might have a biological significance similar to a digital system's 'clock frequency'!

FURTHER READING: For those who would like to read more fully about the brain, Professor Steven Rose's book "The Conscious Brain" (Penguin paperback edition $\pounds 1.25$) offers a very readable account.

THE SYSTEM BLOCK DIAGRAM is show in Fig 1. The system is prepatched, but is capable of generating a vast variety of different effects by virtue of its 9 switch functions, 22 pots and 6 input jacks.

The VCO is the primary sound source. It produces either a ramp or a square waveform. A ramp waveform has both odd and even harmonics, the square wave has only the odd ones.

However, the VCO has a shape modulation circuit which can turn the ramp into a triangle or the square wave into a thin pulse. Thus, a wide range of harmonic structures is available. Also, this shape modulation can be controlled by a sine wave produced by the slow oscillator. By dynamically modulating the shape of this waveform, it is possible to greatly enrich the sound quality of the VCO. (For instance, if the mark space ratio of the squarewave is modulated at about 1HZ, the output can sound like, two VCO's.)

Pitch It Well

The pitch of the VCO can be controlled by several sources. A 'pitchbend' pot enables notes to be bent up or down by about ½ an octave. A dead band in the centre of the motion enables the turning to be restored. An external input socket with a sensivitivy of 1V/ octave allows a sequencer to be connected.

A manual tuning pot, (screwdriver adjustment), is provided so that the synthesiser may be tuned to the pitch of other instruments. Vibrato may be added, the speed being that of the slow oscillator. The squarewave also from this oscillator can be used to produce 'two tone' effects.

The VCO pitch can be controlled by the ADSR envelope or by random pitches generated by the noise sample and hold circuit. All these controls can produce a wide variety of interesting sounds but the machine really comes alive when it is controlled by the keyboard. This keyboard is a 3 octave, (37 note), C to C device.

It is monophonic, that is it only plays one note at a time, this being the highest note selected. It generates two outputs, a pitch signal and a gate voltage. The gate controls the AD and ADSR sections, the pitch, the VCO and the VCF.

The pitch voltage is a transitional piece of information which has to be remembered in an analogue memory, a sample and hold device. The droop rate of this S & H is about 15 minutes per semitone. This is quite good.

MUSIC SYNTHESIZER

Designed for ETI by Tim Orr, late of EMS and father of some of their range, our new Transcendent 2000 is a new concept in DIY synthesizers — a single board design! Apart from the PSU all the circuitry is contained on one easily assembled PCB. Ideal as on-stage machine, the 2000 has plenty to offer the experimenter as well.

Gliding In

A portamento circuit has also been included into the sample and hold so that glides, as opposed to abrupt changes, between notes can be produced. A transponse switch, ± 2 octaves operates on the VCO. This gives an effective keyboard control range on the VCO of 7 octaves. The keyboard S & H can be controlled by either the keyboard gate or by a pulse from the slow oscillator. This latter mode of operation makes the VCO pitch move in a series of exponentially decreasing steps between the notes played on the keyboard.

Noisy Output

The output of the VCO is mixed with a noise signal and an external audio signal and fed into the VCF. This is a voltage controlled state variable filter, with both bandpass and lowpass outputs. The resonance is manually controllable from a Ω of 1 to infinity, (self oscillation).

The resonant frequency may be controlled by either a manual pot, a sweep voltage from the slow oscillator, an external footpedal control, the keyboard voltage or a random voltage or an attack decay envelope.

PROJECT

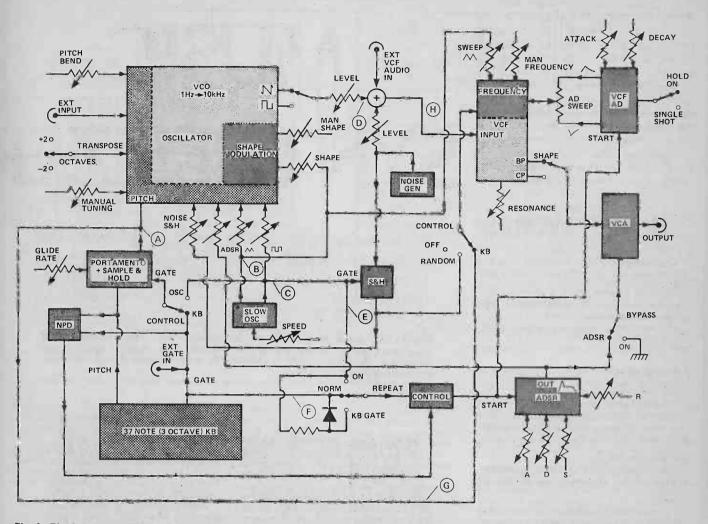


Fig 1. Block diagram for the Transcendent 2000 synthesiser. Each of the separate circuit blocks is described in detail in the appropriate section. The letters in circles correspond to the points where we broke up the circuit to make it easier to

There are very few musical instruments that have any sort of dynamic filtering. The Attack/Decay envelope can be used to produce a rising or falling frequency sweep in the VCF, and by varying the AD time constants, a wide variety of sounds may be generated.

The output of the VCF passes through a voltage controlled amplifier to the output socket. This can be on all the time, or it can be controlled by an ADSR envelope. This in turn amplitude modulates the VCF signal so that the output has the envelope of the ADSR voltage.

Sustaining Interest

The ADSR is a waveform generator, and is initiated by the arrival of a gate voltage. When this arrives it generates a rising RC exponential waveform with a time constant determined by the Attack pot. When it reaches a predetermined level it then begins a RC decay towards a sustain voltage. The 'decay' rate is controlled by the 'Decay' pot and the sustain level is set by the 'Sustain' pot.

It sits there until the gate voltage is removed, (when the keyboard is released), whereupon it decays towards ground with a release time constant, this being determined by the 'Release' pot.

If at any time the gate is removed the ADSR goes into its release mode. Time constants of 5 mS to 2 S and sustain levels of full on to completely off are obtainable.

On Key

The ADSR can be started by the keyboard, or it can be continuously repeated by the slow oscillator, or it can be repeated by the slow oscillator gated by the keyboard, as can the

understand. These references are also given on each of the block circuits where appropriate. So if you wish to stick the whole thing together you can do so. All the components which make up this block diagram are assembled on a single PCB.

Attack Decay, (AD), circuit.

This has two modes of operation: single shot, whereby it attacks to a predetermined level and then decays on its own to ground, or HOLD ON, whereby it only decays upon the removal of the gate signal. Sometimes when playing pieces, it may be necessary to release a key before a new note can be generated. If the piece is particularly fast then errors, in the form of missing notes can occur. However, a device called the New Pitch Detector (NPD), can help eliminate this. When a new pitch is detected, it generates an additional gate signal which is used to reset both the AD and the ADSR.

Repeating?

Both the AD and ADSR circuits can be controlled by the REPEAT function. This is a single piece of electronics to enable repeating envelopes to be

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

FS1 0.5A

LP1

000000000

SW1:

240V AC

T1 246V - 15-0-15, 2A

> C1 100n

3

000000

R1 4k7

The voltage regulator is a μ A723. This has an internal voltage reference with a low temperature coefficient of \pm 50ppm/°C, a differential amplifier and an output transistor plus current limiting facility. The circuit operation is as follows.

The secondary voltage is full wave rectified and smoothed by C3 and C4. This provides positive and negative unregulated rails.

ICl is the voltage regulator. A reference voltage of about +7V5 is fed into the noninverting terminal, pin 5. An external power transistor Q1 is used

An external power transistor Q1 is used to regulate the positive supply rail so that IC1 remains cool. Short circuit current limiting at 200 mA is provided by R4. Either or both output rails may be shorted out without damage.

Negative feedback to the inverting terminal pin 4, IC1 sets the output voltage. C5 reduces noise on the supply, C7 reduces the impedence at high frequencies. RV1 sets the output voltage and this should be set to + 12V000! (or as near as you can measure) VR1 is a cermet preset, which has a low temperature coefficient.

generated. The outputs from this circuit then drive the AD and ADSR. With the repeat switch in the ON position, the slow oscillator square wave output continuously gates the AD and ADSR.

In the NORM position, the Keyboard gate is the control. In the KB GATE position, the slow oscillator is only allowed through when the keyboard is pressed. Using the REPEAT function it is possible to simulate a fast plucking 'banjo' effect.

A DeeEssAhh?

The ADSR is similar in operation to the AD circuit except that it has two more parameters to play with.

Upon receipt of the keyboard gate the waveform attacks until it reaches a predetermined level. Then it decays to a level known as the sustain level, which is manually controllable. When the keyboard gate is removed, the release mode occurs. The A, D, R are all time constants, the S is a level. Whenever the keyboard gate is removed the device goes into its release mode.

pretensions to quality at all.

appear on the main overlay.

The negative rail tracks the positive rail.

The power is handled by Q3, the current

limiting by Q2 and the feedback by IC2. Resistors R2, 8 determine the negative rail

voltage. As they are both 10k, 0.5% tolerance, the negative rail should be the

same magnitude as the positive rail to

the oscillator pitch. Also, if the machine gets hot inside, the oscillator will drift in

A very stable power supply is needed for a synthesiser. A small power supply voltage variance can produce alarming effects on

within 0.5%

This type of envelope is particularly useful and versatile. With the sustain level at 10, there is no DECAY phase and so an ATTACK, HOLD ON, RELEASE envelope is generated. When the sustain is set at 4, there is an attack and a decay to the sustain level, which is held as long as the keyboard is held down and then a release. Using this setting it is possible to simulate a piano sound, by using a fast attack moderately slow decay and a faster release.

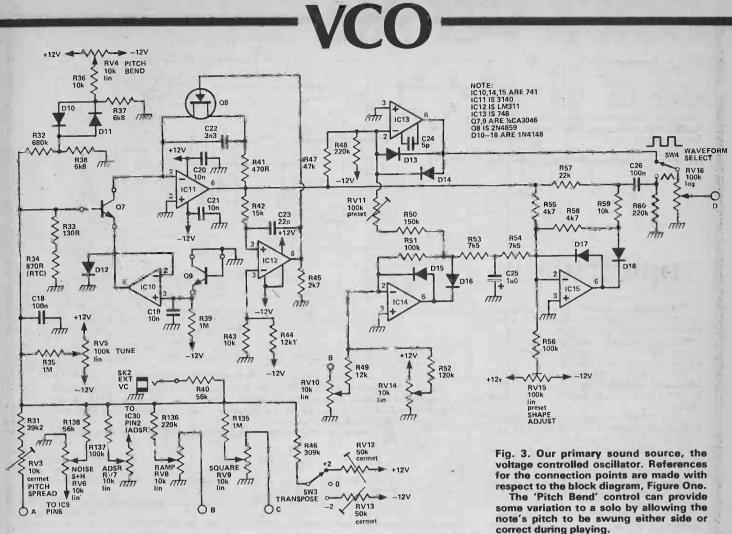
The faster release simulates the damping of the strings as the piano keyboard is released. When the sustain level is set at 0, then the unit becomes an attack decay envelope which can be used to produce short sharp plucked sounds. To get a new pitch. The current drain per rail is only 80 mA and the heat dissipated by Q1 and Q2 is 0.9 watt each. This will not cause any heating problems.

On load the unregulated rail is 23 V (at 250 VAC input), and so the mains can drop to about 190 VAC before PSU drop out occurs. The unregulated ripple is 500mVpp and so the output will be less than 0.5mVpp.

When there is no load on the power supply, a small high frequency sawtooth can be seen on the -12 V output, but this goes away completely when loaded.

envelope it is necessary to get a new keyboard gate signal. This either means lifting your finger off of one note before pressing the next, or a new gate can be automatically generated by switching to the NPD mode.

Moving On


The pre-patched nature of the design is intended to suit stage and other performance applications. The resulting sound from the synthesiser can be quickly and easily modified once the function of the controls aand their effect has been mastered. Take a look at the diagram on page 44 for starters.

Another helpful aid to using a synthesiser is a 'program sheet'—simply a way of recording clearly but instantly a particular set of control settings to allow you to reproduce that sound again at a later date. Such sheets will be available for the Transcendent 2000—details next month.

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

The components for this are made up onto their own PCB, and will not

HOW IT WORKS

The VCO is a logarithmic relaxation oscillator generating a ramp waveform. This waveform is then modified to give a square wave or a triangle wave output. The oscillator section is IC10, Q9, IC11, IC12 and Q8.

The voltage coming out of IC11 pin 6 is fed into IC12. This is an LM311, a fast voltage comparator. A voltage of +5V43 is set up on its inverting input, (pin 3) and the ramp from IC11 is fed into its non-inverting input, (pin 2). When the ramp voltage exceeds +5V43, the comparator's output, (which was at -12 V) leaps up to 0 V.

This voltage turns on the FET switch Q8 which shorts out C22 and discharges it to almost 0 V. Q8 has a very low ON resistance and hence the discharge time is relatively short, about 800 nS.

However, once the discharging has started, you would expect the comparator output to drop back to -12 V. Well it would do if it wasn't for the monostable built around it, (C23, R42). This monostable makes Q8 turn on for a fixed period of time, sufficient for the discharge process to be completed.

Note that the power supply to IC11 is locally decoupled to help protect the VCO from pitch jitter caused by fluctuating power supplies. The reset period causes the VCO to go flat at high frequencies.

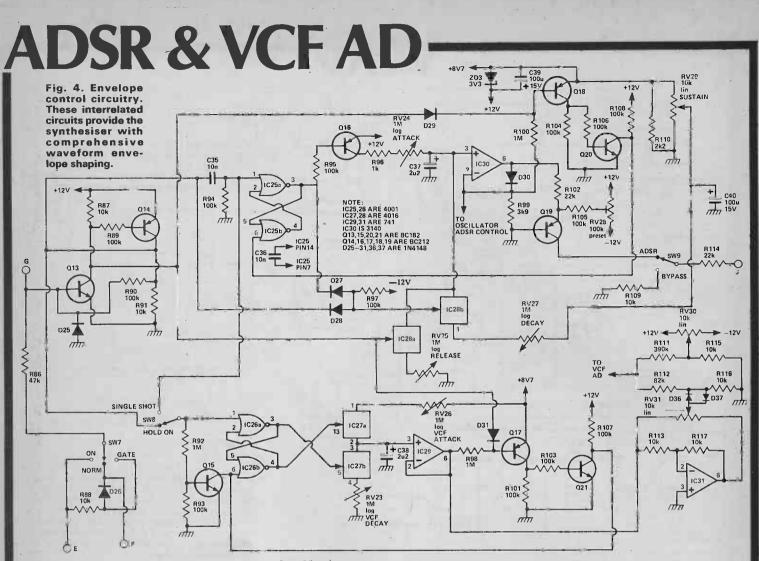
As the frequency of the VCO increases then so does the C22 charging current. But this current has to flow through R41. This makes the voltage of the ramp, (IC11 pin 6) increase in size as the ramp speed is increased. This in turn means that the ramp is reset prematurely and so the pitch of the VCO will tend to go sharp at high frequencies.

If we get the size of this tendency to sharpness correct, then it can be used to cancel out the reset tendency to flatness. The overall effect will be to maintain the tuning of the keyboard up to a frequency which it could not do without R41.

The current that drives the VCO is sunk by the transistor Q7. This is used to produce the logarithmic law necessary to convert be into musical intervals from the keyboard into musical intervals which are logarithmically spaced. A V_{be} increase of about 18 mV will cause the collector current to double, (the VCO goes up an octave), so therefore the voltage per semitone is about IV5. This is a very small voltage indeed.

IC10 is a voltage follower and merely buffers the bias voltage to the emitter of Q7. Should IC10 go berserk, during the power up say, it might try to reverse bias the emitter of Q7 and cause it to zener. This process would corrupt the logarithmic characteristic of the transistor and so destroy its ability to produce musical intervals. D12 prevents this zenering. Q7 has to be run at relatively low currents for two reasons.

Firstly, the log law goes flat at high currents, (1 mA). This is due to the effect of the intrinsic emitter bulk resistor in the transistor. The effective voltage drop across this bulk resistor is subtracted from


the V_{be} voltage and so the net effect is less collector current than was expected. Therefore to get a good musical performance, the collector current must be kept as low as possible.

Secondly, large currents will cause selfheating, which will make the VCO pitch drift, although in this circuit the collector voltage is a virtual earth and so the power dissipation is relatively small anyway.

Even though the second transistor compensates for the temperature change V_{be} problems there is another temperature effect to be dealt with. The pitch spread, that is the number of millivolts per octave, is temperature dependent. To compensate for this effect, the resistor pair R33, 34 must have a temperature coefficient, (TC) of + 3400ppm/°C. There is no element with this coefficient, although an alloy could be concocted to produce it.

However, it just so happens that copper has a TC of +3900ppm/°C. Therefore a 870R copper wire wound resistor in series with a 130R metal oxide resistor looks like a 1k resistor with a +3400ppm/°C TC. There is an American company, (Tel Labs) that makes a Q81 resistor, 1k 1% made just for the job and this could be used instead of R33, 34, that is if you can obtain them.

This resistor with the special TC is mounted close to the transistor pair so as to be at the same temperature. Some manufacturers actually glue the resistor to the transistor for best thermal contact.

AD generator:

The AD waveform is made up out of two The AD waveform is made up out of two simple CR charge and discharge curves, Q15, Q17, Q21, and IC26, 27, 29, 31 form the generator circuit. The AD is started by the arrival of a positive voltage at IC26 pin 1. This is a SET, RESET flip flop made out of two 2 input NOR gates. A high at pin 1 sets pin 3 low and pin 4 high. These two outputs drive two conclosure transmission gates drive two analogue transmission gates, IC27. A high at the control input (13 and 5) iC27. A high at the control input (13 and 3) will open the gate, a low will close it. Only one gate is ON at any one time. The event sequence is as follows: IC26 pin 1 goes high, IC26 pin 4 goes high, IC26 pin 3 goes low. C38 is charged up via IC27 pin 1, 2, 13 and RV26 towards a positive (+8V7) reference voltage. RV26 determines the charging up time (ATTACK).

The voltage on C38 is buffered by IC29, a voltage follower. Assuming that the AD generator is in its HOLD ON mode then the capacitor C38 will be charged up towards +8V7 until the gate input is removed.

When this happens the flip flop will change state and the capacitor C38 will be discharged towards 0 V via the other analogue gate and RV23

The setting of RV23 will determine the discharge time (DECAY). The purpose of Q15 is to generate the HOLD ON by disab-ling the SINGLE SHOT circuitry, Q17, Q21. Imagine the voltage on C38 is +2 V and Imagine the voltage on C38 is +2 V and charging up. Q17 and Q21 will be turned ON. When the voltage on C38 reaches +8V1, Q17 and Q21 will start to turn OFF.

HOW IT WORKS

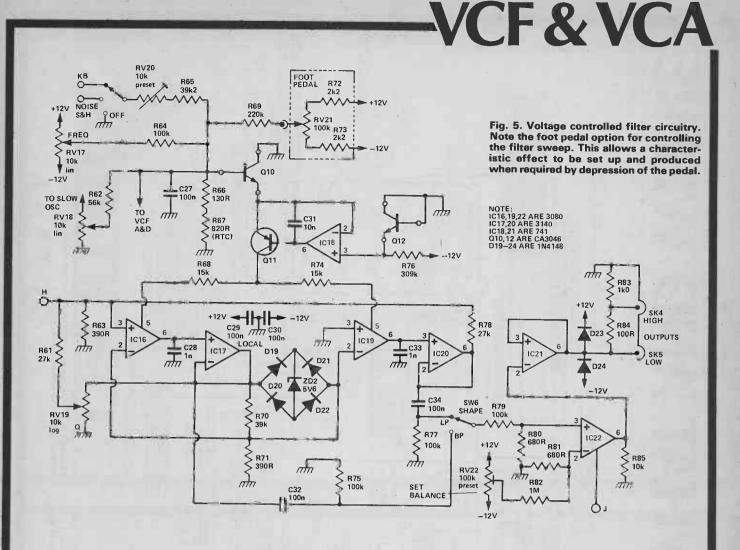
The voltage at Q21 collector, which is the RESET control of the flip flop, will try to rise positively (previously it was at 0 V), but it is prevented from doing so by Q15. Only when the gate input is removed can the flip flop be reset and the decay occur.

When the single shot mode is selected only a positive going pulse is delivered to IC26 pin 1, and so Q15 cannot disable the 10.26 pin 1, and so Q15 cannot disable the reset. The waveform charges up to +8 V, resets the flip flop and then discharges. If however the keyboard gate is removed before the attack phase has been com-pleted, the circuit is kicked into its decay mode by diode D31 which resets the flip flop. This means that no matter what mode the circuit is in, it always reverts to its decay mode when the keyboard is released (also true for the ADSR).

(also true for the ADSK). The AD waveform is inverted by IC31 and these complementary signals are fed to the AD sweep pot RV30. This waveform is only used to sweep the VCF and does not control anything else. Fast ATTACKS and DECAYS are of the order of 4 mS time constant and slow settings are constant and slow settings are approximately 2 S.

ADSR:

The circuit is very similar to that of the AD generator. IC25 is a SET RESET flip flop. IC28 and Q16 control the ATTACK, DE-CAY, RELEASE time constants by enabling the three control pots. A keyboard gate voltage generates a positive going pulse


IC25 pin 1, causing IC25 pin 3 to go low. This then turns on Q16 and thus C37 is charged up via RV24, the attack pot. IC30 is

charged up via RV24, the attack pot. IC301s a high input impedance voltage follower, which controls the output VCA but which is also linked to Q18 via R100. When C37 has charged up to 8 V, Q18 begins to turn off and in doing so, turns off Q20. The collector goes high and RESETS the flip flop. Q16 is thus turned off and the analogue transmission gate IC28 pin 1, 2, 13 is turned on via D27 is turned on via D27

Now C37 is connected via the decay pot to the sustain voltage, the wiper of RV29 and so it will discharge to that voltage and remain there until the keyboard gate is removed. When this happens the IC28 pin 1, 2, 13 transmission gate is turned off via D28, and IC28 pin 3, 4, 5 is turned on. Now C37 is discharged towards 0 V via the release pot.

discharged towards 0 V via the release pot. Also, when the keyboard gate is removed, a RESET is generated by the diode D29, so that the flip flop is ready for another cycle. The ADSR voltage is used to control the VCO pitch and the signal level at the synthesizer's output. The ADSR is con-verted into a current by Q19, D30, R102, R99 and is used to drive a CA3080 acting as and is used to drive a CA3080 acting as VCA. The OFF level of this circuit is adjusted using RV28.

The attack, decay, release time constants are variable over a range of 5 mS to 2 S. The sustain QUIET position should provide at least 40 dB attenuation.

HOW IT WORKS

Voltage Controlled Filter

The VCF is a voltage controlled state variable filter. This particular design generates both low pass and bandpass outputs. It has the same voltage response as the VCO, i.e. it is logarithmic, as opposed to linear. A CA3046 transistor array converts the control voltage into a log current using very similar circuitry to that which was employed in the VCO to minimise temperature effects.

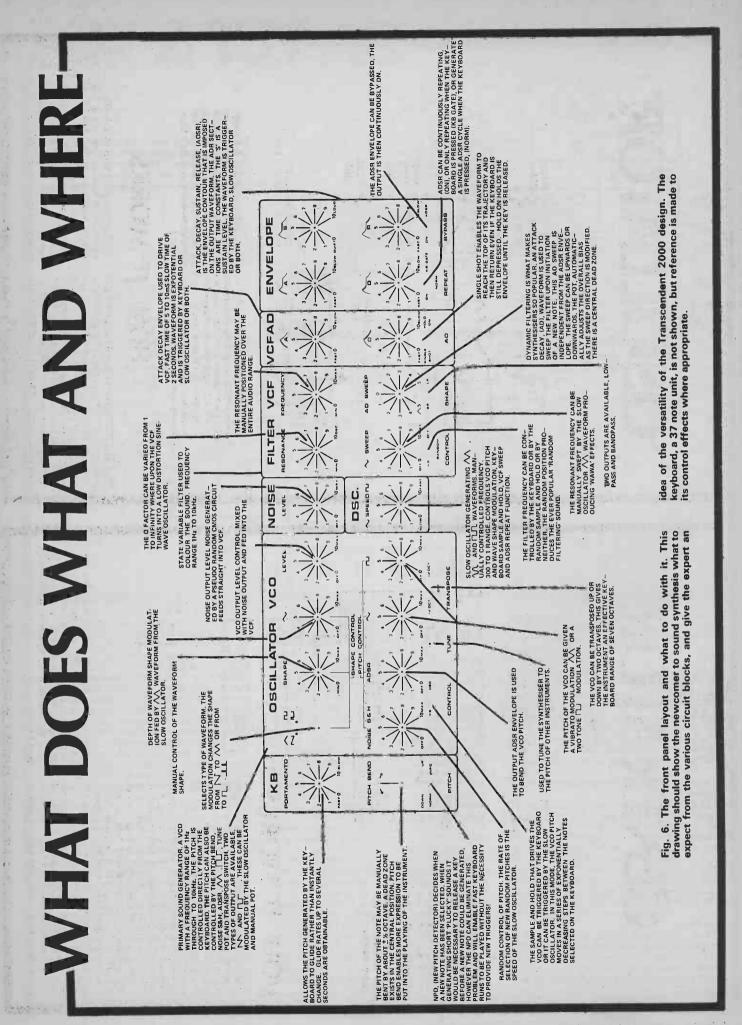
The control current needs to be sourced to the VCF, in fact to pin 5 of IC16 and IC19 which are both at about -11V4. This is accomplished with Q11 and IC18. The current that comes out of the logging transistor flows into the emitter of Q11 and about 99% of it comes out of the collector, the other 1% flows out of base. As long as the h_{fe} doesn't vary too drastically as a function of the collector current, then this source of error will not be greatly significant.

The tracking accuracy of the VCF is much less of a problem than for the VCO. VCF tracking errors will only result in a slight change in tone, not pitch.

IC18 maintains Q12 at a fixed bias vol-

tage of approximately -0V62. The control current that comes out if Q11 collector splits equally down R68, 74 and into IC16, 19 respectively. These devices are CA3080's, a two quadrant multiplier which is used as a variable gain cell to tune the filter resonance.

In fact they are gain controlled integrators, where C28, 33 are the timing capacitors. The outputs are current outputs and are therefore high impedance. IC17, 20 are very high input impedance voltage followers and they unload the outputs of the integrators. IC16, 17, 19, 20, 23 is in fact an analogue model of a second order differential equation, (i.e. a tuned circuit or a mechanical resonator).


The loop gain, which is controlled by IC16, 19, is linearly proportional to the resonant frequency, therefore by varying the current into IC16, IC19 the resonant frequency of the model is controlled. Note that there is both negative and positive feedback around IC16, IC19. The negative feedback is fixed but the positive feedback is variable via the resonance pot RV19.

As more positive feedback is applied the model becomes more resonant, the Q factor increases. Too much feedback and the circuit will oscillate. In fact stable, low distortion sinewave oscillations can be produced by turning the resonance pot fully clockwise. The diode bridge amplitude limits the signal excursions and will thus stabilise the signal level when the VCF is in its oscillator mode.

The VCF can therefore be used as a low distortion oscillator or as a filter. However, the signal level in the oscillator mode is much louder, (about 10 dB) than in the filter mode.

VÇA

The CA3080 is used as a two quadrant multiplier. That is the gain of the device is controlled by the current flowing into pin 5 As this current has the same contour as that of the ADSR, then any signal flowing through the VCA will have its amplitude modulated with the ADSR contour. The output is buffered by a voltage follower providing a high level output (typically OdBm) and a low level output (typically OdBm). By putting a fixed DC current in, a constant output level is produced (BY-PASS ON), unaffected by the ADSR.

news digest.

at the third stroke

The cost will be . . . wouldn't it be nice if the telephone told you how much money you were spending. Devoted readers will remember the ETI STD timer published in Nov 76, well a firm called Monitel has latched onto a similar idea — and produced a neat unit to sit under the phone and provide the call cost, at a glance. Heart of the unit is a Rockwell MPU from their PPS4/1 range, the standard UK model uses a MM75 which has 600 bytes of ROM and 48 bits of RAM. The international model uses a MM77 with 1 300 bytes of ROM and 96 bits of RAM.

In use the unit calculates the cost, accounting for day of the week, time of day, how far you're calling and the current VAT rate. Any variations in the PO charges are fed into RAM via a punched card supplied by the manufacturers, for a nominal sum. The international model can cope with the overseas tariffs, or UK if you feed it a different card. To operate the unit you first touch the appropriate tariff switch (local, medium or long distance on the standard model), then as soon as you are connected touch the start/stop — when finished touch it again. Cost of call is displayed continuously as you talk, can be quite frightening seeing all that money disappear!

When not in use as a charge calculator it is a digital clock, power from any 13A socket is all that is needed — no extra PO fees are incurred as it is totally isolated from the PO system. Seven colours are available to match all PO standard units. Price for the standard model is about £29, the international model will be about £39. Both should be available from most large chain stores W. H. Smith, Rymans etc. Monitel Limited, Berechurch Road, Colchester, Essex.

triplets from hp

instantes Same

Hewlett-Packard have just an-nounced a new set of cheap (well relatively) scientific but-ton boxes. The HP-31E is the baby of the litter, and is the baby of the litter, and is the lowest priced to ever have emerged from HP at £39 inclus-ive. As with all their calculators it uses Reverse Polish Notation, so called because it was thought to be as easy as Polish to learn — only backwards? Seriously though RPN is a very easy way to use calculators easy way to use calculators when performing scientific calwhen performing scientific cal-culations, once you learn it you like it. Anyway RPN commer-cial over, the 31E is aimed at the budding scientific student and features include — 4 addres-sable registers, rectangular to polar co-ordinates, inches to millimetres, pounds to kilo-grams, degrees and radians plus all the usual math and trig all the usual math and trig functions

The 32E has all the features of

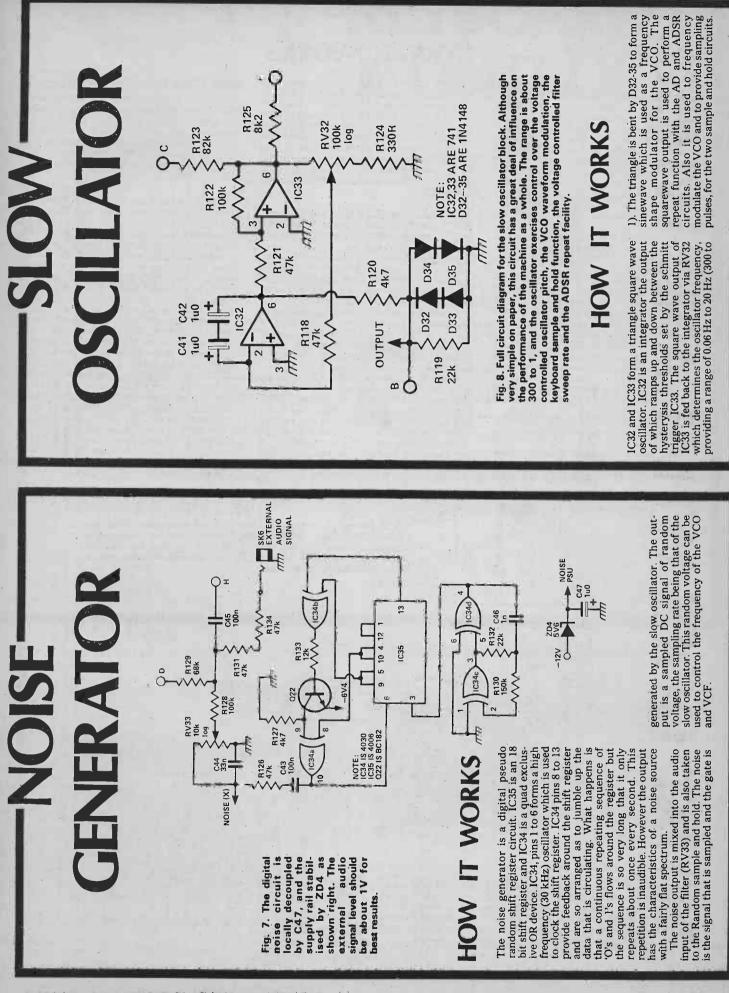
problem solved

Lasers were once called the solution without a problem. Now they have lots of problems, the latest one to suffer from the fate of laser solution is that of aerial mapping. The US Geological Survey is using pulsed lasers and silicon photodiodes, with extremely accurate interval timers and delay/ discrimination electronics, to produce a ground profile as an aircraft flies over it. A gallium arsenide laser, with a pulse the 31E, plus an extra 11 reg-isters. Other features include hyperbolic functions, hours to hours — minutes and seconds, US gallons to litres and a whole bunch of statistical functions such as linear regression and x, y estimates. All this for £53 inclusive.

A 49 line fully-merged keystroke memory programmable completes the trio, it goes by the name 33E. Keycodes are displayed and 3 levels of sub-routine are allowed, it also has maths, trig, log and statistical functions (of course, you say, it's HP after all!). Price for this beauty is £67. All of them come with detailed manuals, and the 33E has an applications book as well.

Further details from Hewlett-Packard Limited, King Street Lane, Winnersh, Street Lane, Winnersh, Wokinghain, Berkshire RG11 5AR

whoops


In the CCD Phaser R31 and R32 were transposed on the overlay diagram. The ICs were missed out of the Stars and Dots parts list - they are on the circuit diagram, also in this project the gremlins got at the IC labels on the overlay — IC5 should be marked IC1, and add 1 to the marked number of the other ICs ie IC2 becomes IC3 etc.

Lastly in the Chipmonk the

pot values were missed off the parts list RV1 is a 100 k log type, RV2 a 10k preset and RV3 a 120k preset.

In case you missed our previous announcement we have a recorded message service for errors and other information on 01-434 1781. This service is available outside normal office hours only.

duration of 10 nanoseconds, is bounced off the ground and detected when it gets back to the aircraft. As long as the aircraft flies on a level path the distance to ground can be mea-sured. With accurate position fixing and several runs, a 3 dimensional map can be produced. The technique is suited to computer analysis, unlike aerial photography or manual surveying.

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

The keyboard generates two outputs. A pitch output and a gate voltage. This is then fed via R14, C12 (reduces contact bounce), to a schmitt trigger IC4. When a key is pressed the output of IC4 goes high, when it is released it goes low. This gate voltage is used to operate the keyboard sample and hold and the AD and ADSR units.

The keyboard voltage is generated by passing a constant current through a precision resistor chain. Thus a series of precise voltages is set up along the chain which can be picked off by the keyboard contacts. The constant current is generated by IC3, R9. R9 puts 2.526 mA into the node at IC3 pin 2. This then adjusts its output so that almost exactly 2.526 mA flows down the resistor chain.

When a key is pressed, a voltage appears which tells the synthesiser which key has been pressed. If more than one key is pressed, then the voltage is $(2.526x27.4 \times N)$ mV where N is the number of resistors between the top note pressed and IC3 pin 2.

Thus the keyboard always generates the voltage of the highest note selected, and this is fed via R13, RV2, Q4 to C13 where it is stored. Q4 is a FET switch which has an on resistance of a few hundred ohms and a Pinch off resistance of a few hundred megohms.

It is turned on and off by the keyboard gate voltage. The sequence of operation is as follows.

The keyboard is pressed. A pitch voltage is selected. A gate voltage is produced. Q4 is turned on and C13 is charged up to that

HOW IT WORKS

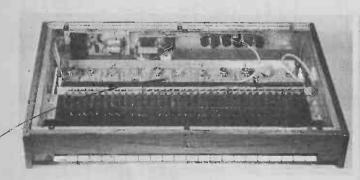
voltage via R13 RV2. The keyboard is released, the gate voltage dies, Q4 is turned off, and the voltage on C13 remains where it is. IC6 is a very high input impedance (1000 M), voltage follower, and so buffers the voltage on C13 to the rest of the electronics.

A PCB guard ring surrounds C13 so that surface leakage droop rate was about 0.1 mV/S which means that it would take 6922 seconds to drift one semitone or 8305 seconds for an octave.

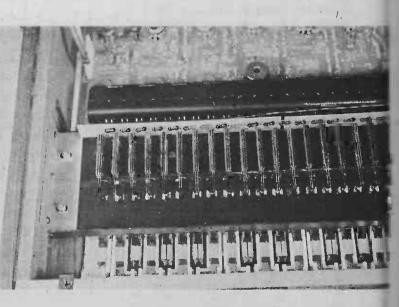
The measured droop rate was about 0.1 mV/S which means that it would take 692 seconds to drift one semitone or 8305 seconds for an octave.

Portamento effects are obtained by varying RV2, anticlockwise the charging time of C13 is about 0.2 mS, when clockwise this becomes 330 mS, and the effect is to produce a slewing between notes.

If the keyboard contacts are badly out of alignment, a pitch change at the start of notes can be produced. If the first contact to close is the gate pair then this might cause a problem. The sequence of events is as follows:


The gate contacts close. An envelope with the VCO at the previous pitch is produced. Then 10 or 20 mS. later the pitch contact is made and the sample and hold, and hence the VCO jumps to the correct pitch. The result is a pitch 'hiccup' at the start of some notes. If this is noticeable on any notes then the gate contact should be carefully bent so that it doesn't make contact before the pitch contact.

New Pitch Detector Circuit


This circuit decides whether or not a new higher note has been played, even though the gate output signal (IC4 pin 6), has remained high all the time. IC5 is a high gain amplifier which looks at the voltage on the pitch contacts. If the pitch changes, the AC component of this change will be amplified by IC5.

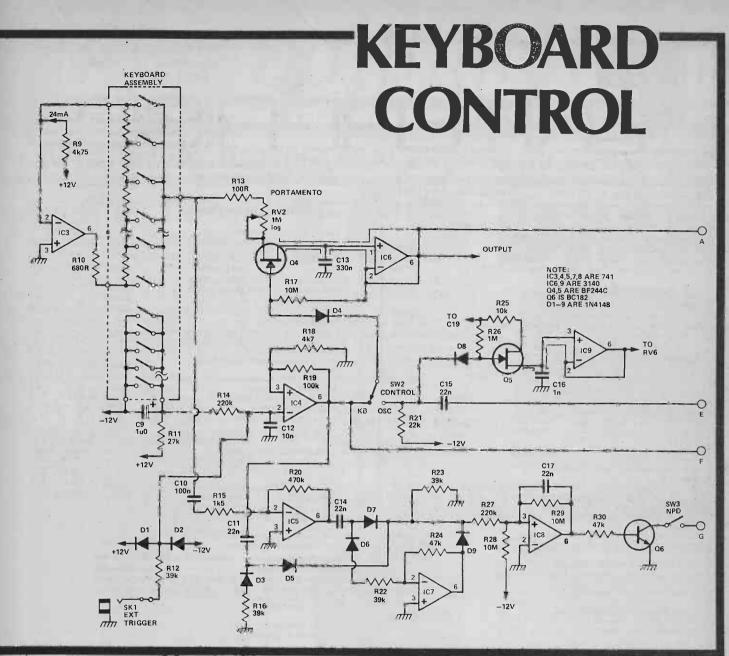

If the output goes positive, a pulse is produced which passes through Cl4, D7 and ends up across R23. If the output of IC5 goes negative, the pulse goes through Cl4, D6, is inverted by IC7 and passes through D9 into R23, again as a positive pulse. This pulse then drives IC8 which is a schmitt trigger. Its output is normally low, and the arrival of the pulse makes it go high for a short while and then returns to its low state. Thus an ascending or descending scale of notes will cause a series of short pulses (at IC8, pin 6) to be generated, one per new note. When the last note held down is removed there is no pulse produced. When the same note is repressed, the pitch not actually being any different, a pulse is generated (this is what is wanted) via C11 from IC4 pin 6. This route only generates pulses on +ve edges, that is the start of a new gate voltage. The pulse output from IC8 is used to turn Q6 on and off. This in turn is used to momentarily turn off the AD and ADSR circuits. Thus the NPD can be used to provide a retrigger of the AD and ADSR circuits.

Fig. 9. On the right is shown the circuitry associated with the keyboard functions. Note the resistor chain for the keyboard is mounted remotely to the main PCB and fits into the contact block mounting board. The Ext Trigger input allows a sequencer to be wired to the synthesiser.

Above and right: a denuded synthesiser. Next month we go on to give full construction details of the design, but as you can see from the photos, it really couldn't be easier. The photo on the right shows the keyboard contact block mountings in close-up. This is perhaps the trickiest part of any synthesiser to build yourself, but as you can see ours is very straightforward.

BUYLINES

A complete set of parts for this project, including all woodwork, metalwork, nuts and bolts, PCBs and components will be available from Powertran Electronics.

The machine used to illustrate this article was assembled using this kit, and constructional details will be based upon it. Kits will **only** be available from Powertran, as will the PCB. Because the design is based upon a single board construction, we cannot offer advice to people wishing to modify the synthesiser to a 'modular' form.

The price of the complete kit, including keyboard will be £186.50 + VAT. However if you're quick and put in your order before July 30th you can take advantage of anintroductory offer at an even lower price of £172 + VAT.

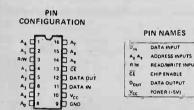
Powertran Electronics, Portway Industrial Estate, Andover, Hants, Above: the lid removed to show the main PCB. It is worth noticing that all the controls and switches mount directly onto this, drastically reducing the interwiring necessary

Next month we conclude the article with all the constructional details of the Transcendent 2000 synthesiser, including keyboard fixing and alignment procedures.

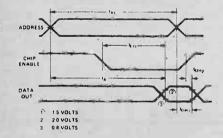
THE ELECTRONICS PRESS is full of articles high-lighting the latest advances in memory technology, and we must plead guilty to this ourselves; it's quite fascinating. But we discovered that a lot of hobbyists who are using memories don't have access to good information on the devices available, and are consequently running into

problems while trying to get their systems up and running.

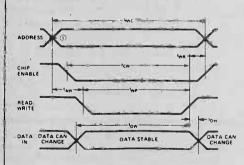
Here we attempt to give some real nitty-gritty down-to-earth useful information on memories. The data sheets are not complete by any means, but we hope they contain the most important information.


Bear in mind that distributors

deal (in the main) with commercial organisations, and cannot possibly afford to supply hobbyists with heaps of expensive books, brochures and data sheets. If you request information from a manufacturer or distributor, please make life easy for them by enclosing a large stamped addressed envelope and payment, if any is required.


NATIONAL

2102 STATIC RAM


The 2102 is, without doubt, the commonest RAM in use today. It is a static 1024-bit (1K x 1) memory and is exceptionally easy to use, as many hobbyists will testify.

WRITE CYCLE

A. C. Characteristics $T_A = 0^{\circ}C$ to 70°C, $V_{CC} = 5V \pm 5\%$ unless otherwise specified

Symbol	Parameter	.1	, 2102AL-2 nits (ns) Max.		210ŽAL its (ns) Max.		2102AL-4 ts (ns) Max.
tRC	Read Cycle	250		350		450	
tA	Access Time		250		350		450
tco	Chip Enable to Output Time	-	130		180		230
t _{OH1}	Previous Read Data Valid with Respect to Address	40.		40		40	
t _{OH2}	Previous Read Data Valid with Respect to Chip Enable	0		0		0	-*-#1919

WRITE CYCLE

	OTOLL			
twc	Write Cycle	250	350	450
tAW	Address to Write Setup Time	20	20	20
twp	Write Pulse Width	180	250	300
twR	Write Recovery Time	0	0	0
tow	Data Setup Time	180	250	300
t _{DH}	Data Hold Time	0	0	0
t _{CW}	Chip Enable to Write Setup Time	180	250	300

D. C. and Operating Characteristics

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 5\%$ unless otherwise specified.

Symbol	Parameter	1	102A, 210 D2AL, 210 Limits Typ. [1]	2AL-4	2102 Min.	2A-2, 2102 Limits Typ. ^[1]	AL-2 Max
l _{LJ}	Input Load Current		1	10		1	10
LOH	Output Leakage Current		1	5		1	5
LOL	Output Leakage Current		-1	-10		-1	-10
lcc	Power Supply Current		33	Note 2		45	65
VIL	Input Low Voltage	-0.5		0.8	-0.5		0.8
VIH	Input High Voltage	2.0		Vcc	2.0		Vcc
VOL	Output Low Voltage			0.4			0.4
VOH	Output High Voltage	2.4			2.4		

Notes: 1. Typical values are for T_A = 25°C and nominal supply voltage 2. The maximum I_{CC} value is 55mA for the 2102A and 2102A-4, and 33mA for the 2102AL and 2102AL4.

2112 RAM

The 2112 is a 256 x 4 bit TTLcompatible static RAM which is very popular in small systems where two 2112s will provide 256 bytes of memory. Memory expansion in 256 byte increments is easy until you reach 1 K, where 8 2102s could have done the job slightly more easily. The 2112 is made by Intel, National Semiconductor and many other semiconductor manufacturers.

ABSOLUTE MAXIMUM RATINGS

Ambient Temperature Under Bias -10°C to 80°C Voltage On Any Pin

With Respect to Ground -0.5V to +7V

Test

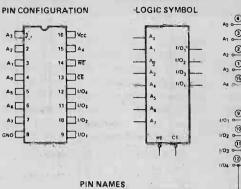
(All Input Pins) VIN = 0V

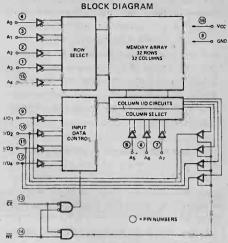
I/O Capacitance V_{I/O} = 0V

1. Typical values are for $T_A = 25^{\circ}$ C and nominal supply voltage.

Input Capacitance

= 25°C, f = 1 MHz


Limits (pF)


Typ.[1] Max.

15

4 8

10

D.C. AND OPERATING CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$. $V_{CC} = 5V \pm 5\%$ unless otherwise specified.

A0-A7 ADDRESS INPUTS

CE

Vec

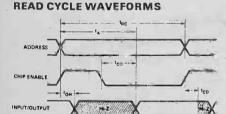
WRITE ENABLE

1/01-1/0 DATA INPUT/OUTPUT

POWER (+5V)

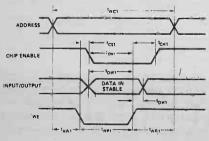
CHIP ENABLE INPUT

Symbol	Parame	ter	Min.	Тур.[1]	Max.	Unit	Test Conditions
ILI -	Input Current			1	10	μA	V _{1N} = 0 to 5.25V
LOH	1/O Leakage Cur	rent		1	10	μA	Output Disabled, VI/O=4.0V
LOL	I/O Leakage Cur	rent		-1	-10	μA	Output Disabled, VI/O=0.45V
Icc1	Power Supply	2112A, 2112A-4		35	55	mA	VIN = 5.25V, II/O = 0mA
	Current 2112A-2		45	65		$T_A = 25^{\circ}C$	
ICC2	Power Supply	2112A, 2112A-4	•		60	mA	VIN. = 5.25V, I/O = 0mA
	Current	2112A-2			70	1	$T_A = 0^{\circ}C$
ν. VIL	Input "Low" Vo	oltage	-0.5		0.8	v	
VIH	Input "High" Vo	oltage	2.0		Vcc	v	
VOL	Output "Low" \	Voltaĝe			+0.45	v	I _{OL} = 2.0 mA
VOH	Output "High"	2112A, 2112A-2	2.4			V	I _{OH} = -200µА
	Voltage	2112A-4	2.4			V	Іон = -150µА


CAPACITANCE

Symbol

CIN


CI/O

NOTES:

WRITE CYCLE WAVEFORMS

NOTE: 1. Typical values are for TA = 25°C and nominal supply voltage.

A.C. CHARACTERISTICS FOR 2112A **READ CYCLE** $T_{A} = 0^{\circ}C$ to $70^{\circ}C$. $V_{CC} = 5V \pm 5\%$ unless otherwise specified.

Symbol	Parameter	Min.	Typ.[1]	Max.	Unit	Test Conditions
tRC	Read.Cycte	350			ns	$t_r, t_f = 20ns$
tA	Access Time			350	ns	Input Levels = 0.8V or 2.01
tco	Chip Enable To Output Time			240	ns	Timing Reference = 1.5V
tCD	Chip Enable To Output Disable Time	0		200	ns	Load = 1 TTL Gate
tон	Previous Read Data Valid After Change of Address	40			ns	and $C_L = 100 pF$.

WRITE CYCLE #1 TA = 0°C to 70°C, VCC = 5V ±5%

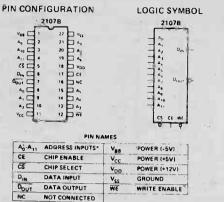
Symbol	Parameter	Min.	Typ.[1]	Max,	Unit	Test Conditions
twc1	Write Cycle	270			ns	t _r , t _f = 20ns
t _{AW1}	Address To Write Setup Time	20			ns	Input Levels = 0.8V or 2. Timing Reference = 1.5V
t _{DW1}	Write Setup Time	250			ns	
twP1	Write Pulse Width	250			ns	Load = 1 TTL Gate
t _{CS1}	Chip Enable Setup Time	0			ns	and $C_1 = 100 \text{pF}$.
tCH1	Chip Enable Hold Time	0			ns	
twR1	Write Recovery Time	0			ns	
t _{DH1}	Data Hold Time	0			ns	
tówi	Chip Enable to Write Setup Time	250		_	ns	

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

INTEL

2107 DYNAMIC RAM

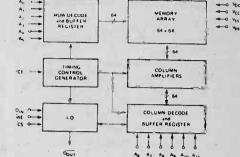
WHEREAS STATIC RAMS basically consist of flip-flops and will retain data for as long as power is applied, with dynamic RAMs, life wasn't meant to be easy. The basic storage element in a dynamic RAM is a capacitor which is subject to leakage and requires data to be read from a cell, amplified and written back again in order to avoid total decay of the data.

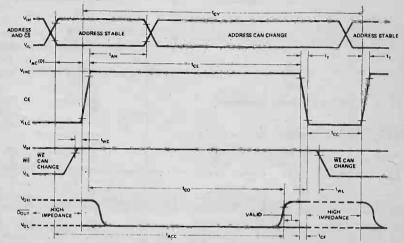

Because the memory cell in a dynamic RAM is one transistor and a cpacitor as against the six transistors of the static type, the density of dynamic RAMs is around four times higher. Thus, we now have 16 K dynamics, and 64 K types are rumoured to exist in research labs around the world!

The innards of dynamic RAMs, like statics, are organised into rows and columns, 64 rows x 64 columns for a 4 K RAM, to be precise. All the cells in a single row are refreshed at the same time, and so to fully refresh a 4 K RAM, one need only cycle through all combinations of the low-order six address bits within 2 ms.

The first problem with these chips is that they are not fully TTL-compatible as is the 2102, for example. The chip enable input of the 2107B requires a high-level signal of at least 11 V to operate, but this can easily be got from a special driver chip, the Intel 3245, which also provides some selection logic.

Given a 3245 and a handful of external logic, it looks as though the 2107B would be a good choice for hobbyists using the Z-80. The 2107 does not require address strobing, and consequently could run directly off the data bus, with the Z-80 supplying the refresh logic (the Z-80 has an internal refresh counter which is output while the processor decodes instructions).


If you are designing your own memory system, and your processor is not a Z-80, you will have to decide on one of three refresh schemes: Asynchronous, which insists on refresh occurring, even if this interrupts the processor; Synchronous, which runs 'in phase' with the processor, supplying refresh at times when the processor is not accessing memory; and Semisynchronous, which is a combination of these schemes. Your decision will be dependent upon the circuit complexity, processor speed and overhead, and a number of other considerations.


lefresh Address Ag-As.

NEWS:Data Sheet

Read and Refresh Cycle [1]

D.C. and Operating Characteristics

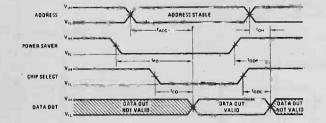
 $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = +12V \pm 5\%$, $V_{CC} = +5V \pm 10\%$, $V_{BB}^{[1]} = -5V \pm 5\%$, $V_{SS} = 0V$, unless otherwise noted.

Symbol	Parameter		Limits				
	rarameter	Min.	Typ.[2]	Мах.	Unit	Conditions	
VIL	Input Low Voltage	- 1:0		0.6	V	tT = 2005, VILC 1 0V	
VIH	Input High Voltage	2.4		Vcc+1	v	t += 20ns	
VILC	CE Input Low Voltage	-1.0		+1.0	V		
VINC	CE Input High Voltage	V _{DD} -1		V _{DD} +1	V		
VOL	Output Low Voltage	0.0		0.45	V	IOL = 2.0mA	
VOH	Output High Voltage	2.4		Vcc	V	I _{OH} = -2.0mA	

Absolute Maximum Ratings*

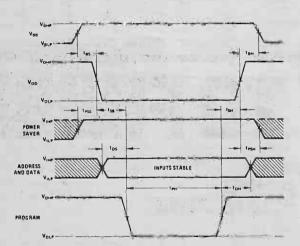
Temperature Under Bias	0°C to 70°C
S.orage Temperature	-65° C to +150° C
All Input or Output Voltages with Respect to the most Negative Supply Voltage	• V _{BB} +25∨ to −0 3∨
Supply Voltages Voo. Vcc. and Vss with Respect to VBB	+20V to -0 3V
Power Dissipation	1.25W

The second problem you will face in using dynamic RAMs is getting your memory system to work. It is a good idea to have some static RAM in the system so that the processor can be checked out without having to worry too much about the memory. Once this is done, attention can be turned to the dynamic memories. In general, dynamic memory is a good choice for expanding your memory size, but not for starting a system.


5204 ERASABLE PROM

absolute maximum ratings

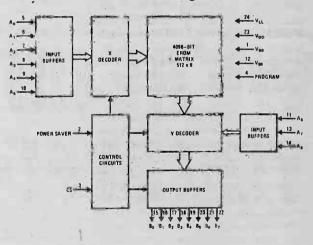
All Input or Output Voltages with Respect to V_{BB} Except During Programming Power Dissipation Operating Temperature Range


+0.3V to -20V 750 mW

 0° C to +70 $^{\circ}$ C

Note: All times measured with respect to 1.5V level with $t_{\rm B}$ and $t_{\rm F} \geq 20$ ns.

FIGURE 1. Read Operation


FIGURE 2. Write Operation

The MM5204 is a 4096-bit static Read Only Memory which is electrically programmable and uses silicon gate technology to achieve bipolar compatibility. The device is a non-volatile memory organised as 512 words by 8 bits per word. Programming of the memory is accomplished by storing a charge in a cell location by applying a -50 V pulse. A logic input, "Power Saver," is provided which gives a 5:1 decrease in power when the memory is not being accessed.

Erasing

The MM5204Q (The Q suffix indicates the chip has a quartz window and is UV erasable. The other 5204s are not erasable.) may be erased by exposure to short-wave ultraviolet light of 254 nm wavelength. The recommended dosage of ultraviolet light exposure is 6 W sec/cm², but there is no absolute rule for erasing time or distance from the source. When erasing a worst case time required should be found and any chips then erased for three times this period.

block and connection diagrams

electrical characteristics T_A within operating temperature range, $V_{LL} = 0V$, $V_{BB} = PROGRAM = V_{SS}$, MM4204: $V_{SS} = 5.0V \pm 10\%$, $V_{DD} = -12V \pm 10\%$, MM5204: $V_{SS} = 5.0V \pm 5\%$, $V_{DD} = -12V \pm 5\%$, unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	MAX	UNITS	
VIL	Input Low Voltage		V _{SS} -14	V _{SS} -4.2	-V	
$V_{\rm IH}$	Input High Voltage		V _{ss} -1.5	V _{SS} +0.3	v	
ILI	Input Current	V _{IN} = 0V		1.0	μΑ	
VOL	Output Low Voltage	I _{OL} = 1.6 mA	VLL	0.4	V	
V _{OH}	Output High Voltage	і _{он} = ~0.8 mA	2.4	Vss	v	
ILO	Output Leakage Current	$V_{OUT} = 0V, \overline{CS} = V_{IH}$		1.0	μΑ	
	Access Time	MM5204 $T_A = 0^{\circ}C, \overline{CS} = V_{1H}, Power Saver = V_{1L}$	0.75	1.0	μs	

NEWS:Data Sheet

MOD MAGS 1977 10 1

LUSE FUSE FUSE

NATIONAL

24 VLL 23 VD0 POWER SAVER 22 87 CHIP SELECT 21 Ba PROGRAM 20 Ba 19 B.4 18 8. 17 87 16 8, 15 Bo 14 13 A.

Programming.

The MM5204 is normally supplied in the unprogrammed state. All 4096-bits at logic "0" state. In the program mode the device effectively becomes a RAM with the 512 word locations selected by address inputs A0-A8. Data inputs are B0-B7 and the write operation is controlled by pulsing the program input to -50 V. Since the EROM is initially supplied with all "0s" a $V_{\mu\mu}$ on any of the data input lines will leave the stored "0s" undisturbed and a $V_{\mu\mu}$ on any on any date input B0-B7 will write a logic "1" into that location. The program cycle should be repeated until the data reads true, then over programmed five times that number of cycles (denoted X + 5X programming)

	PARAMETER	CONDITIONS	MIN	MAX	UNITS
ILD	Data Input Load Current	V _{IN} = -18V		-10	mA
IALD	Address Input Load Current	V _{IN} = -50V		-10	mA
ILP	Program Load Current	V _{IN} = -50V		-10	mA
LBB	V _{BB} Load Current			50	mA
ILDD	V _{DD} Load Current	V _{DD} = PROGRAM = -50V		-200	mA
VIHP	Address Data and Power Saver Input High Voltage		-2.0	,0.3	v
VILP	Address Input Low Voltage		-50	-11	V.
	Data Input Low Voltage		-18	-11	v
VDHP	VDD and Program High Voltage		-2.0	0.5	v
VDLP	V _{DD} and Program Low Voltage		-50	-48	v
VBLP	VBB Low Voltage		0	0.4	v
VBHP	V _{BB} High Voltage		ť1.4	12.6	v
VDD.	Pulse Duty Cycle			25	%
t _{PW}	Program Pulse Width		0.5	5.0	ms
t _{DS}	Data and Address Set-Up Time		40	1	μs
t _{DH} . *	Data and Address Hold Time		0		μs
t _{ss}	Pulsed V _{DD} Set-Up Time		40	100	μs
tsн	Pulsed VDD Hold Time		1.0	- 5	μs
BS	Pulsed VBB Set-Up Time		1.0		μs
вн	Pulsed V _{BB} Hold Time		1.0		μs
PSS	Power Saver Set-Up Time		1.0		μs
PSH	Power Saver Hold Time		1.0	-	μs
ŀR,t⊧`	V _{DD} , Program, Address and Data Rise and Fall Time		1	1.0	μs

programming electrical characteristics

GOOD AND PROPER!

. or at least your projects. If there is one thing which is impossible to do at home is lettering front panels to pro-fessional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers sheet, which has been carefully designed to allow you to do ex-actly that.

The transfers are easily rubbed down; and the two sheet set contains a mass of lettering and -uniquely-control scales for both rotary and slider puts.

Each sheet measures 180mm X 240mm and comes packed flat in a stiff cardboard envelope for protection. There should be enough for dozens of projects here - and the longer you wait the worse they'll look!

Send £1.75 (includes VAT and postage) for the two-sheet set to: Panel Markings ETI Magazine, 25-27 Oxford Street. London W1R 1RF.

Rapitype

ei

microfile.....

Gary Evans, fresh from a lesson in petting, reports on the world of micros and personal computers.

A HECTIC MONTH this, as the words you are now reading were penned in between the frantic, on my part anyway, preparations for our Petting for Beginners Seminar. A report on the event appears elsewhere in this issue but I think the two days can be summed up in a very few words — a good and informative time was had by all.

Informative not only in terms of the days lectures but because delegates talked to each other — very un-English — and found much in common. I was impressed with the high level of knowledge of most delegates and even those who knew very little of personal computing in the morning, could hold their own in discussions before the end of the day.

Petting For Softies

It was at the Saturday event that I talked to Julian Allason of William Hamilton and Allen. The company have in the past specialised in introducing advanced electronic consumer products into this country. They were one of the first to market car stereo systems and VCR equipment. They see Personal Computers as such as product but recognise that the potential is far greater than those products they have dealt with before.

The company have set up a new division which they have named PETSOFT. This section of the group will concern itself with the market that is beginning to appear as more and more people want support for their home computers.

It is interesting to note that the current efforts of the firm are directed toward building a base of good, well tried software.

At present their range includes alien attack which is — guess what — a space war game and Dr. Sinister's Personality Test.

The latter package will ask the user some fifty questions and provide a readout of personality in terms of introvert/extrovert, stable/unstable, aggression, intelligence, attractiveness (micro, micro on the wall, who's the fairest of them all). This package sounds like fun and I'm not going to tell you what the machine said about me.

The range of programs will be extended to cover small business applications in the near future — VAT, stock control, etc.

If you have any programs which you feel would find a ready market, and/or ideas for programs PETSOFT would like to hear from you — they would publish any suitable material on a royalty basis. As with their own programs, all submitted programs would be subjected to an extensive debugging operation.

At present all material is designed to run on the PET computer and will be sold in the form of cassettes recorded to the PET standard. Future plans include programs for the TRS-80 and, presumably, any other system that finds a mass market.

The cassettes will sell for between £2.50 (for small programs) to £10 (for the larger packages). This price reflects the high volume, low cost approach to software marketing that, I think, is the only effective way to circumvent software pirating.

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

Talking of pirating, the firm will have no objection to a few friends copying programs for each other but will pursue, in an alien attack mode, anybody selling their material.

A SAE to the firm at the address below will bring you a catalogue with details of all their programs. **PETSOFT**

318 Fulham Road, SW10

Texas Soon

At present the number of personal computer systems on the mass market is not that large — all that will change.

General Instruments are to market a board with CPU, RAM, BASIC in ROM, etc. very soon. Texas are also to enter the market. Details are scarce but we hear of a US launch in June with the system being based on the 9940. This is a 40 pin package version of their (Texas) 16 bit MPU, with, we hear, a 7K (16 bit 7K remember) resident BASIC. The machine will be interesting to see. ITT are to market the Apple system under their own name. The machines will be built here and, while initially exactly as Apple, ITT may improve things.

News now of a price reduction in a system that I have mentioned in Microfile before. The MICROS machine from Micronics is now to sell for £399 assembled and £360 in kit form (it was £550 — quite a drop).

A quick recap of the system (pictured) might be in order. Z80 based, the machine provides a 1K monitor, 2K of RAM, a 47 key keyboard, serial I/O, two parallel output parts and an output — at UHF, to allow a domestic TV set to display the machines output.

If to you that sounds like a description of the NASCOM 1 you're right. The main outward difference between the systems seems to be that the MICROS is cased and includes a PSU. The only way to make a detailed comparison of the two machines is to get them side by side and take a close look at them. My editor, God, the companies involved (in that order) willing, I shall try to do just that.

Full details of the Micros and of an impact printer for about $\pounds150$ that the company hope to launch can be obtained, SAE please from

The Micronics Company 1 Station Road Twickenham Middlesex

s = f?

There have been quite a few comments over the past few weeks about the comparatively, high cost of many computer systems that are appearing on the British market. The general rule for American imports seems to be to take the American price and swop the dollar sign for a pound symbol, saves printing costs maybe.

It has been pointed out that on the higher priced of systems it would be possible to fly over to the states, nice one Fred, buy a system from one of the American computer stores and return to this country for the same price as purchasing the system here. You get a day or so in New York as a bonus. Sounds good doesn't it. But think again!

Many systems are not the most robust of creatures and after your, and their, travels may require attention. What happens when your machine breaks down the UK organization is not likely to be too interested in servicing a machine brought over from the States. After all it costs a fair amount of money to set up a marketing organization together with service centres and it is this, in some part, that accounts for the higher UK price.

There is no doubt that many people are making a profit which may, politely, be called excessive: not offering much support or help to their customers and are in the personal computer business for a quick profit. Others, however are here to stay and have invested in setting up an organization that will not leave owners to fend for themselves when the going gets tough.

So, by all means compare US prices with the UK going rate but also look at the backup offered by the UK distributor/agent.

Let the buyer beware especially if he buys from the States.

CSF VDU

It probably will not be news to most of you that Thompson CSF have introduced a CRT controller chip into this country (details from Marshall's of Edgware Rd.). This chip will take care of a lot of the timing and control signals required by any VDU. Just hang a crystal, 2513, RAM and about five TTL chips around the device and you have a VDU.

I've been playing around with the thing for the past few weeks and found it to be very easy to use and capable of producing a very good display. I mention the device because you may be interested, not a lot maybe, but maybe a little, in my prototyping method.

Being brought up as I was on a diet of that product that refreshes the bits and veroboard, I find it difficult to come to terms with the new prototype methods, wire wrap—wiring pen etc. However with ICs of forty and even sixty-four legs things can get difficult. I've found a way that combines the old and new which has speeded up my design work. I use DIP vero board to mount the components but to wire the devices together, which take most of the time (cutting wires to length, stripping etc) I use prestripped, standard length wire wrap wire.

Don't bother to cut wires to length—this is where the time is saved. The final result does not look too good, but you've cut the time taken to set up and running in half.

Kit Bits

I am interested in gathering information on the problems, or potential problems involved in building and testing the various kits that are on the market at the moment. If you have built up a kit please send me your reports, good or bad, so that I can put together a review of these various products.

140 140 74107 360 4000 21p 0.00000000000000000000000000000000000	TTLs by	TEYAS		-			OP. AMPS	-	NECONI							-		_		-		
Table Table <th< th=""><th></th><th></th><th>74107</th><th>- 360</th><th></th><th></th><th>OP. AMPS</th><th></th><th>NE531V</th><th>140p</th><th></th><th></th><th>DOM</th><th></th><th>MJ2501</th><th>250p</th><th>2N2646</th><th>52p</th><th>DIODES</th><th></th><th>BRIDGE</th><th></th></th<>			74107	- 360			OP. AMPS		NE531V	140p			DOM		MJ2501	250p	2N2646	52p	DIODES		BRIDGE	
1202 156 2110 733 156 2107 NAM 2007				60n		210											2N2904/					
TACCO TACK TACK <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2N2905/</td><td>A 220</td><td></td><td></td><td></td><td></td></t<>																	2N2905/	A 220				
16 2110 Feed 2000 750 720 <th< td=""><td></td><td>25p</td><td></td><td>750</td><td></td><td>127p</td><td></td><td></td><td>741</td><td>25p</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		25p		750		127p			741	25p												
1200 350 24110 250 1000 1200 27000 2700 2700	7403			96p	4007						2114	RA	M	£15			2N2926F	B 9p				
245 2410 256 2410 257 2410 257 2410 257 2410 257 24100 2410 2410		20p															2N29260	G 11p		90		0V 45n
7400 350 74120 130 6011 310 Ar. 51013 Color Mississ 320 Mississ 320 Mississ 320 Miss		25p		160p													2N3053					JV 55p
7400 225 74123 326 6012 225 74123 326 6012 225 74123 326 74		430																				.)V 70p
7400 320 74122 520 64013 550 Art (0.212 550 N15655 1650 N2000 110 N2000 <td></td> <td>220</td> <td></td> <td>320</td> <td></td> <td>230</td> <td>THEADLC</td> <td>100 C</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>40p</td> <td></td> <td></td> <td></td> <td>10p</td> <td></td> <td></td>		220		320		230	THEADLC	100 C								40p				10p		
7410 116 74123 776 116 775 <t< td=""><td></td><td>220</td><td></td><td></td><td>4013</td><td>55p</td><td></td><td>650n</td><td>NE565</td><td></td><td></td><td></td><td></td><td></td><td></td><td>/2p</td><td>2N3643</td><td></td><td></td><td></td><td></td><td>0V 96p</td></t<>		220			4013	55p		650n	NE565							/2p	2N3643					0V 96p
7/12 250 7/12 550 CA3046 150 CA3057 150 1200007 77 1500007 1500007 15000		18p					CA3019	75p			MC6810			432p		90n						
7413 850 7413 850 <td></td> <td>.26p</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>180p</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>980</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>OV 108p</td>		.26p								180p						980						OV 108p
7416 85p 7412 85p 7416 100 CA3303 725 5175023h 2770 7446 100 1112 100 1112 100 1112 100 1112 100 1112 100 10		25p		65p																		
7416 40p 7418 80 7416 80 7416 80 7416 80 7416 80 7416 80 7416 80 7416 80 7416 80 7416 80 7416 80 7416 80 7416 80 7416 80 7416 80 7416 80 7416 80 7416 80 7416		850									Contract of the local division of the local	THE OWNER		650p						4p		
7410 40p 74414 855 4020 150 4025 150 4025 150 4025 150 4025 170 1100 1100 1100								/5p			TRANSISTO					35p						
7420 150 74420 350 74427 750 7450 750 <td< td=""><td></td><td>40p</td><td></td><td></td><td>4020</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2250</td><td></td><td></td><td>·</td><td>20p</td><td>414110</td><td>400</td></td<>		40p			4020											2250			·	20p	414110	400
7423 359 7445 359 4023 329 7445 359 7445 759 7445 759 7445 759 7445 759 7445 759 7445 759 7445 759 7445 759 7445 759 7445 759 7445 759 7445 759 7445 759 7446 759 7446 759 7446 759 7446 759 7446 759 7446 759 7446 759 7446 759 <td></td> <td>18p</td> <td></td> <td>300p</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>225p</td> <td>TIP294</td> <td>223p</td> <td></td> <td></td> <td></td> <td></td> <td>TRIACC</td> <td></td>		18p		300p										225p	TIP294	223p					TRIACC	
7428 356 74180 150 4024 252 1100 226 350 74180 750 74180 750 74180 750 <th< td=""><td></td><td>43p</td><td></td><td>95p</td><td></td><td></td><td>FX209</td><td></td><td></td><td></td><td></td><td></td><td></td><td>240</td><td>TIP29C</td><td>620</td><td></td><td></td><td>2.7V-33V</td><td>i.</td><td></td><td></td></th<>		43p		95p			FX209							240	TIP29C	620			2.7V-33V	i.		
7426 335 74150 130 7425 436 74151 130 74157 130 74157 130 74151 130 74151 130 74157 130 74157 130 74157 130 74157 130 74157 130 74157 130 74157 130 74157 130 74157 130 74157 130 74141 130 74141 130 74141 130 74141 130 74141 130 74141 130 74141 130 74141 130 74141 130 74141 130 74141 130 74141 130 74141 130 74141		260		205p										250	TIP30A	60p						750
7427 406 74154 1402 140 140 500 14 500 16 14 500 16 14 500 16 14 500 16 14 500 16 14 500 16 14 500 16 14 500 16 16 100 16 100 16 100 16 100 16 100 16 100 16 100 16 100 16 100 16 100 16 100 16 100 16 100 16 100 16 100 16 100 16 16 100 16 <td< td=""><td></td><td>330</td><td></td><td>160p</td><td></td><td>82p</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25p</td><td></td><td>72p</td><td></td><td></td><td></td><td>-</td><td></td><td>90p</td></td<>		330		160p		82p								25p		72p				-		90p
7427 400 74153 810 4027 640 1126 <				81n							AD162	480		27p	TIP31A	56p						
7430 156 179 4029 120 10359N 160 1635 1635 1712 400 BF180/1 356 1112/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1412/6 226 1400/7 1400 1400/7 1400/7 1400/7 1400/7 1400/7 1400/7 1400/7 1400/7 1400/7 126 1400/7					4027						AF114/5	30p		30p	TIP31C	68p	2N4058		1A 50V			90p
1422 370 14157 324 120 1.0399 N 1800 F TA430 1126 A7133 437 130 120 1.04167.5 220 166.4000 2205 4000 2205 4000 2205 1000 13				140p							AF116/7	30p		35p	TIP32C	85n						100p
$ \begin{array}{c} 7437 & 37p \\ 7438 & 37p \\ 7448 & 75p \\ 7446 & 106p \\ 7448 & 36p \\ 7448$													BF184/5	240	TIP33A							1400
$ \begin{array}{c} 7437 & 37p \\ 7438 & 37p \\ 7448 & 75p \\ 7446 & 106p \\ 7448 & 36p \\ 7448$						67p					AF239			130	TIP33C	1200			16A 600V			
7438 37p 74160 106p 4043 100p 1013 1012 1013											BC107/B	100		11p				970				
7440 18p 74161 108p 4046 1500 1023360p 1800 182360c 18237 108p 140 1783C 2000 1800 1100 1000 <td></td> <td></td> <td></td> <td>1080</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>BC108/B</td> <td>10p</td> <td></td> <td></td> <td></td> <td>160p</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>130p</td>				1080							BC108/B	10p				160p						130p
7443 2200 74165 1000 1300 XR2218C 7560 300 214242 1100 2150 214244 1400 2250 214242 1100 2150 </td <td></td> <td></td> <td>74161</td> <td>108p</td> <td>4046</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>19p</td> <td></td> <td>243p</td> <td>2N5245</td> <td>40p</td> <td></td> <td></td> <td>500V</td> <td>150p</td>			74161	108p	4046									19p		243p	2N5245	40p			500V	150p
7444 740 74163 108 74163 108 74164 109 101 109 101 109 101 109 101 109 101 109 101 109 100														40p		297p	2N5296					
Tate Tate <th< td=""><td></td><td></td><td></td><td>108p</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>60n</td><td></td><td>360p</td><td></td><td></td><td></td><td></td><td>I EDe</td><td></td></th<>				108p										60n		360p					I EDe	
7447 75p 74170 260p 4060 130p Volume Record and and and and and and and and and an	7444									145p				34p		70p			2N5064			led 14a
7447 75p 74170 260p 4060 130p Volume Record and and and and and and and and and an		108p		160p								110	BF258	39p		84p	2115459					
7447 75p 74170 260p 4060 130p 71132 1130p 7120 78112 48p 78115 48p 74173 130p 40071 30p 60 30p 60 7805 100p 100mA 78115 48p 78115 48p 74175 78p 4072 30p 807 7805 100p 100mA 7805 100p 100mA 7805 800p 200p	7446			3200	4056					2160	BC158/9	13p		48p		76p						20p
7480 38p 74177 100p 4078 30p 150 74170 30p 74181 322p 74181 324p 74181 324p 74181 100p 12V 79115 80p BER29 BER29 BER29 200p 74181 102p 31141 102p 312p 313p 312p			74170	2600	4060	130p								32p		96p					TIL32 In	
7480 38p 74177 100p 4078 30p 150 74170 30p 74181 322p 74181 324p 74181 324p 74181 100p 12V 79115 80p BER29 BER29 BER29 200p 74181 102p 31141 102p 312p 313p 312p				750p		30p		an on dis					BFR39	340		600						81p
7480 38p 74177 100p 4078 30p 150 74170 30p 74181 322p 74181 324p 74181 324p 74181 100p 12V 79115 80p BER29 BER29 BER29 200p 74181 102p 31141 102p 312p 313p 312p						30p		100p	104 70210	, aob			BFR79	340		40p		140p				
7480 38p 74177 100p 4078 30p 150 74170 30p 74181 322p 74181 324p 74181 324p 74181 100p 12V 79115 80p BER29 BER29 BER29 200p 74181 102p 31141 102p 312p 313p 312p						30p			100mA -ve	TO92			BFR80/1	340		25p		10p	2N5777	48p	0.2 0	200
7480 38p 74177 100p 4078 30p 150 74170 30p 74181 322p 74181 324p 74181 324p 74181 100p 12V 79115 80p BER29 BER29 BER29 200p 74181 102p 31141 102p 312p 313p 312p	7454	18p		1300		450			5V 79L05	5 80p		12p	BFR88	37p		43p			SPECIAL			
1472 326 1478 326 1478 326 1478 326 1478 326 1478 326 1478 1				100p		30p			101/ 20145	-				90p		22p	3N141	108p	OTECHNE	OFFER:		
7473 356 74181 3254 4082 309 7824 10000 1000				160p	4081	30p								30p		190						211.00
7473 37p 74183 250p 4510 140p 140p 74184 250p 4510 140p 74184 160p 5411 140p 74185 190p 4510 140p 5700 74185 190p 4510 140p 5700 74185 190p 4511 140p 5700 74185 190p 4516 130p 4518 110p 127 7912 130p 120 7912 130p 1411 325p 22p 21111 14333 1414 120 7912 130p 1411 325p 4009/10 75p 40380 40p 4009/10 75p 40531 100p 40p 4009/10 75p 40531 100p 100p 110p 14533 540p 1414 122p 7805 120p 78057 100p 120p 780577 120p 22p 22n 21110p 14533 540p 1414 122p									104 19115	oop				300	2N1131/	2 250			NEW VOL	TAGE R	EGULAT	OR I
7481 108p 74192 110p 14433 542 742 7805K 130p 130p 120p 42102 40585 120p 40595 120p 40573 90p 14 pin 132p 40pin		300		150p					LM309K TO3	1500				300	2N1304/	5 75p		95p	78Ho5K 57	Amp 5V	TO-3	£7.00
7481 108p 74192 110p 14433 542 742 7805K 130p 130p 120p 42102 40585 120p 40595 120p 40573 90p 14 pin 132p 40pin	74C74						1 Amp -ve				BC461	40p		30p	2N1306/	7 75p		430/		-		
7481 108p 74192 110p 14433 542 742 7805K 130p 130p 120p 42102 40585 120p 40595 120p 40573 90p 14 pin 132p 40pin	7475	430							LM327N DIL	275p	BC478	32p		.22p		220			Please send	s.a.e. to	r our Catal	ogue.
7481 108p 74192 110p 14433 542 742 7805K 130p 130p 120p 42102 40585 120p 40595 120p 40573 90p 14 pin 132p 40pin	7476	37p							MC1468 00	200-				220		320			LOW PROF	ILE DU		
7482 900 74182 7100 74433 540 74184 100 74433 540 74184 100 74184 1600 14533 5400 801 120 200 20160 1200 2009 200436 1400 801 120 2001 14533 5400 14533 5400 14533 5400 1400 14533 5400 1400 14533 5400 1400 14533 5400 1400 14533 5400 1400 1402 200 2002 200 2002 200 2002 200 2002 200 2002 200 2002 200 2002 200 2002	7480													22p								
7484 108p 74195 170p 74195 170p 74195 170p 74195 170p 180p 180p 130p 40pin 60p 180p 180p 130p 40pin 60p 180p 180p 130p 40pin 60p 130p 130p 160p 130p 160p 130p 160p 130p 160p 130p 160p 130p 160p 160p	7482											16p		480		1200						260
7485 120p 74185 130p 9301 1160p 723 0ll 445p 175p 2012 of 9 18p 32p 10p 33p 10p 10p<											BC557/B		BSX19/20	20p		22p				130	24 oin	
7486 120p 74196 130p 9301 160p 723 901 429 175p 19209 40871 85p 18 pin 30p 40 pin 60p 7486 340p 74198 130p 9301 160p 100mA +ve T092 100mA +ve T092 100mA +ve T092 20p MJ481 175p 19209 302 30p 40pin 60p 7490 35p 75107 175p 9310 275p 52 7805 62.27 7805 749p 100mA +ve T092 74p 24p MAU431 175p 14020 30p 40pin 60p 33p 20pin 30p 40pin 60p 33p 20pin 33p 20pin 33p 20pin 33p 20pin 33p 20pin 30p 40pin						Toop	suitable for	10220			BC559/C	20				22p				14p	28 pin	
7489 3490 74197 1300 9302 1759 100mA + ve T092 7600 fee 100mA + ve T092 7600 fee 76			74196	130p	9301					450	BCY70	20p			202369	150	40871	85p		30p		
7490 36p 74198 270p 9305 325p 5v 7800 44198 270p 74191 70220 245p 70p 70p 7107 778p 9311 275p 6.2V 78162 449p 17430 7092 70p 70p 7311 7312 400p 9314 175p 9314 175p 9314 175p 9316 250p				130p			100mA +ve	T092	VOIVIOTZC DIL	140b	BCY71	240	MJ491	216p	2112404	340	40872	97p	20 pin	33p -		
7431 90p 75107 175p 9311 275p 0.27 7802 48p 11430 1092 70p							5V 78L05	48p	LM317 T0220	245p		V	AT incl	usive	e prices	5 - 2	dd 25	P&	P = no c	other	ovtra	c
7492 580 75182 2500 9312 1600 DISPLAYS 7493 360 75324 4000 9314 1759 3015 Minitron 2000 DRIVERS 7495 750 9601 1759 9312 1600 DL704/DL707 Red 1500 7549 960 9312 1600 DL704/DL707 Red 1500 7549 960 DL704/DL707 Red 1500 7549 930 2500 9318 2750 DL704/DL707 Red 1500 75492 960 DL704/DL707 Red 1500 7549 9308 2000 DL704/DL707 Red 1200 9308 2000 DL704/DL707<	7491	90p				2750	6.2V 78L62	48p	TL430 T092											Guildi	Unita	~
7493 36p 75324 400p 9314 175p 3015F Minitron 200p DRUCERS 7494 90p 75325 400p 9316 250p 916 250p 916 250p 916 250p 916 250p 9100//507 Red 130p 75491 94p 950 REV TECHNOMATIC LTD. 7496 900 175p 9318 275p DL704/DL707 Red 130p 75491 94p 9402 175p 9321 160p DL704/PL707 Red/Green 250p 9388 200p 9402 175p 9321 160p DL704/PL707 Red/Green 120p 9309 200p 7490 9200 1175p 9321 160p DL704/PL707 Red/Green 120p 9309 200p 7490 9200 11312/21313 Red/Green 120p 9300 200p 200p 54 Sandhurst Road, London NW9 Tel: 01-204 4333	7492	58p			9312		DISPLAYS				MAIL	Ge	JVI., C	uneg	es etc	Urde	rs Acc	eptec				
7495 750 9601 1750 9318 2755 DL704/DL707 Red 1509 75492 960 ONLY 9802 1756 9321 1600 DL7047 Red/Green 2500 9368 2000 ONLY 54 Sandhurst Road, London NW9 Tel: 01-204 4333		36p	75324	400p		175p			200p DRIVI			-							A 1 '			
7495 90p 9602 175p 9321 160p 0L747 Red/Green 250p 9368 200p 0HL 1 7497 280p 9322 150p TIL312/313 Red 120p 9370 200p 54 Sandhurst Road, London NW9 Tel: 01-204 4333				4000			FN0500/507						EL				14					
7497 2800 502 1799 322 1500 TII312/313 Red 1209 9300 2000 54 Sandhurst Road, London NW9 Tel: 01-204 4333		900		175p							ONLY	-									Contraction of the	
	7497	290p	3002	1790								54	Sand	hure	Road	Lon	don MI	8/0	Tel: 0	1-20	4 4 3 3	3
	74100	140p	1-1-21	-				Red					Junit		- noau,	LOU	uon ini					

WATFORD ELECTRONICS (continued from opposite page)

ETI GAS MONITOR All parts available.

Gas Sensors TGS109, 308, 812 & 813 415p* Sockets for above 25p*

DIGITAL PANEL METER

Intersil Evaluation Kit £21.52* plus 30p p&p. All parts as per ETI £23.85* plus 30p p&p. ICL7106 £9.75 LCD3901 31/2 digit £9.95*

TANK BATTLE Build this fantastic T.V. Game with realistic battle sounds generated from your T.V. speaker, steerable tanks, controllable shell trajectory and minefields to avoid. A really exciting and skillful game simply constructed with our easy to follow instructions. Order now - avoid

instructions. Order now — avoid disappointments. Basic Kit (just add controls) only £19.50 inc. VAT. Complete Kit including controls &

Mains Power Supply. No extras required. Only £26.25 inc. VAT IC AY-3-8710 £10.50 inc. VAT.

********** 000

RHYTHM GENERATOR

Build this PE (Jan. '78) Easibuild Low Cost Rhythm Generator. We are the sole suppliers of the complete Kit including the case, pre-drilled printed front panel and the Printed Circuit Boards send sae for leaflet. Complete Kit price incl.

VAT £49.95 only Plus P&P £1

For ready built Units add £15.00.

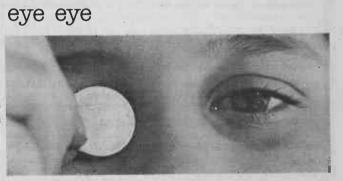
(Demonstration on at our shop)

ETI PROJECTS: Parts available for the ETI PROJECTS: Parts available for the following ETI Projects. Multi-option Clock. House Alarm, Ham-mer Throw, Race Track, Accentuated Beat Metronome, Porch Light, IB Metal Locator Mk. 2. Shutter Speed Timer, Ultrasonic Switch, True RMS Volt-meter, LCD Panel Meter, Gas Monitor. PHASER, Star Trek Radio, Tank Battle.

(Demonstration			Please send SAE plus 5p per list.							
chrome b 2.5mm 12p 3.5mm 15p 1 MONO 23p	stic open ody meta 8p 8p 10p 8p 15p 13p	with break contacts 20p	in line couplers 11p 12p 18p	SWITCHE TOGGLE. 2 SPST DPST DPDT 4 pole on/o SUB-MIN	A. 250V. 28p 34p 38p 54p	SLIDE 250V: 1A DPDT 14; 1A OPDT c/over 15; ½A DPDT 13; 4 pole 2-way 24; PUSH BUTTON Spring loaded SPST on/off 60;				
STEREO 31p	Bp 15p PLUGS	24p SOCKETS	22p In Line	SPST on of the second s						
2 PIN Loudspeaker	13p		20p							
3, 4, 5 Audio	13p	8p 14p	14p	OPOT Biased 115p Push Break						
PHONO assorted colours Metal screened	9p 12p	5p single 8p double 10p 3-way	15p 	Adjustable Stop Shafting Assembly, Accom- modate up to 6 Walers 69p Mains Switch DPST to fit 34p Break Before Make Walers, 1 pole/12 way.						
BANANA 4mm 2mm 1mm WANDER 3 mm DC Type AC 2-pin American	10p 10p 8p 8p 15p 15p	12p 10p 8p 8p 20p 15p	11	2p/6 way. 3p/4 way. 4p/3 way. 6p/2 way Spacer and Screen 5p ROTARY: (Adjustable Stop) 1 pole/2 to 12 way. 2p/2 to 6 way. 3 pole/2 to 4 way. 4 pole/2 to 3 way 41p ROTARY: Mains 250/VA C. 4 Ame 45p						
VOLTAGE★ REGULATORS TO3 Can Type P 1A + ve 5V, 12V, 15V, 18V 145 LM309K 135 LM309K 135 LM323K 625 MVR5 or 12 180 1A - ve 5V, 12V 220	6-0-6V 100 9-0-9V 75m 12-0-12V 1 0-12 0-12V 0-6 0-6V 28 0-15 0-15V 0-4.5 0-4.5 12-0 12V 0 0-12 0-12 0	A 95p 00mA 98p 150mA 140p 80mA 160p 0.2A 260p+ V 0.6A 260p+ 5A 280p+ 0.5A 280p+	s Prim. 22 5-0 15V 1 8-0 18V 1 0-0-30V 1 0-0-20 2A -0-6V 1.5 -18 0-18V -0-9V 2A 2-0 12V 2 30-25-20-0 5-30 2A -6 0-6V 6V -12 0-12A	0.240V) A 275p+ A 295p+ A 340p+ A 345p+ (1.5A 379p+ 315p+ A 345p+ (1.5A 379p+ 315p+ A 320p+)-20. 497p+ VA 240p	ALUN BOXE WITH LI 3×2×1 2½x5½x 4x2½x1½ 4x2½x1½ 4x2½x1½ 4x2½x2½ 5x4x2″	A. S D' 45 11/2" 68 68 68 68 68 68 68 68 68 68	PANEL METERS* FSD 60x46x 35mm 0-50µA 0-100µA 0-100µA 0-5mA 0-1mA 0-5mA 0-10mA 0-5mA			
Plastic (TO92) +ve 0.1A 5V, 6V, 8V, 12V, 15V 30 +ve 1A (TO220) 5V, 12V, 15V, 15V, 18V, 24V 99 -ve 0.5A 5V, 6V, 8V, 12V, 15V 95 -ve 1A 5V, 12V 175 -ve 0.1A (TO92) 5V, 12V, 15V 60 LM320.12 165 LM320.15 165	24-0 24V 0 9-0 9V 1A 12-0-12V 1 30-24-20-1 Multi tappin 30-24-20-1 2A multi tap (Please add +, a LAMP H LES HO	1.5A 260p+ (260p+ (260p+ (1.1A 295p+ (5.12-0 1A 15.12-0 1A 15.12-0 p 445p+ d 48p p&p char above our norma COLDERS AND LDER Dome sha	0-15 0-15V -20 0-20V T44 T700 Mi .2K. Sec. AOT Min .2K. Sec. ge to all postal ch LAMPS+	/ 6VA 240p / 6VA 240p 42p a. Ο / Ρ Pri, 3.2 Ω 42p i, Ο / Ρ Pri, 8Ω 38p rices marked arge).	7x5x2½' 8x6x3" 10x7x3" 10x4/4x3 12x5x3" 12x8x3" SPEAK 80.0.3W 2".2¼" 2.5 3" 40.0.2.5"	114 148 172 165 210 ERS 93 58 65	0-100mA 0-500mA 0-1A 0-2A 0-25V 0-50V AC 0-300V AC 0-300V AC 			
LM320-15 105 LM320-17 100 LM317H 100 LM317K 350 LM325N 240 LM326N 240 LM723 45	LES BUI MES H Amber, J LES OR MES BU NEONS Red, Am	hite and Yellow BS 6v and 12v OLDERS Chro lewelled top MES Batten Ho ILBS 3.5V, 6V, Mains 240V So ber & Green ne. 95V AC	Iders 12V.	50p 10p 11p Resistor. 24p	64 0 2.5' 8 0 5W 7" x 4" 80 3W 6" x 4" 1EAT SINK 1092 8p 105 9p 1018 8p	190 160 S Sili 5m	4 ¹ / ₄ x3 ¹ / ₂ x1 ¹ / ₂ " O-50μ A O-100μ A O-500μ A 530p each con Grease J. Tub 48p ml. Syringe			
EARPHONES. Magnetic 2.5mm 18p 3.5mm 18p Crystal 330 Crystal MicROPHONE INSERT 46p ULTRASONIC TRANS- DUCENS Receiver and Transmitter 40KHz 480p per pair	K1 Bia K1a Wh K2 Slir K3 Sat K4 Bia Indicator K4a Asi K5 Bia rated 0-9 K6 As K7 Bia skirt. Call K7a Asi K8 Bia K12 Alu 22mm di K19 Sol	to fit '4'' shaft ck Pointer type n Silvered Alum in Black Ribbed ck Serrated M 35mm diam. K4 but 25mm d S5mm diam. K5 but vith point ck Fluted. meta , 37mm diam. K5 but vith point ck for Silvered for above but point ck or Silvered for iminised plastic am. d Aluminum A ator, skinted 221	22mm dia etal top v am. I top & ski hter on skirt er on skirt r Slider Po with line i mplifler Kr	90 11p 12p 11p 12p 12p 12p 12p 12p	1010 ep 22p 10220 Insulation Kit lor 103 22p 10220 T020 3p Kit We stock many more items, Aerials, Battery Holders, Boxes, Cables, Digital Clocks, Fuses, Headphones, Microphones, Stands, Multimeters, Power Supplies, Relays, Solder, Soldering Irons, Test Probes, Tools etc, etc. It pays to visit us. We are situated behind Watford Football Ground,					

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

news... digest



AN 'electronic notebook' is now available on the UK market. Made by Toshiba, it is claimed to be the first alphanumeric pocket calculator available.

Called the LC836MN, it has 30 independent, large-capacity memories each able to hold a 6-digit alphabetic and 8-digit numeric input. Use of an extra memory can expand retention to 6 alpha plus 15 numeric.

Alpha-numeric entries are

made by depressing the LET-TER key, followed by the appropriate letter keys, which are also number/function keys; depressing a further master key allows entry of figures. Automatic review of the 30 memories is provided. Accidental erasure is virtually impossible; and memory is retained for the duration of battery life, some 9000 (12 months) continuous operational hours. Suggested retail price is £59.95 plus VAT.

What have we here? National Panasonic's new lithium cell is about the size of a 5p piece, but has enough power to run an electronic watch for between 5 and 10 years. It weighs just over 3 grams, and is only 2.5 mm thin, National Panasonic say that it will operate at temperatures as low as -20° C. Its name is the BR2325 and because it is lithium has a voltage of 2V8, so less of them are needed to power most things (most cells have a 1V5 to 1V3 range). Some lithium cells are prone to emitting nasty gas and sulphur compounds, but this one is said to be completely stable. Natio-nal Panasonic, Bath Road, Slough, Berks.

UFO DETECTOR

Making no claims as to the efficacy of the device, we present a circuit that will provide an indication of the magnetic disturbances which much UFO literature associates with UFO activity.

EVERY YEAR MANY thousands of people see objects in the sky which they cannot explain in terms of their previous experience. In this sense the existence of unidentified flying objects (UFOs) is not a matter for debate — people see flying things they cannot identify, thus, by definition, these things are unidentified flying objects.

The vast majority of sightings are caused by various objects or phenomena perceived in an unusual manner - cloud formations, meteors, satellites, planets, an unusually bright star, temperature inversions, etc. There are also a substantial number of hoax devices. Most people are satisfied if presented with a rational explanation for what they have seen, but a minority are not - they are 'conspiracy theorists' who deny totally the principle of occam's razor. Faced with 99 probable explanations for an unusual happening - and just one explanation which complies with a previously accepted set of concepts - they will inevitably choose the odd one out.

Klass Encounters

No explanation or proof will convince the dedicated conspiracy theorist to think otherwise — a classic example of this is the often repeated story that the results of the USA Department of Air Force UFO investigation 'project blue book' have been suppressed. This is not really true. The blue book project files were declassified in 1970, and the USA department of Air Force Office of Information state that the files are available to all bona-fide researchers and media representatives. The conspiracy theory was well summed up by Salvador Freixedo at the UFO conference in Acapulco (April 1977). "The basic appeal of Ufology (for the masses) is that it is a belief system rather than a field of scientific investigation". A further large number of classic cases quoted by Ufologists has been well and truly debunked by Philip Klass (a technical journalist working with Aviation Week and Space Technology magazine).

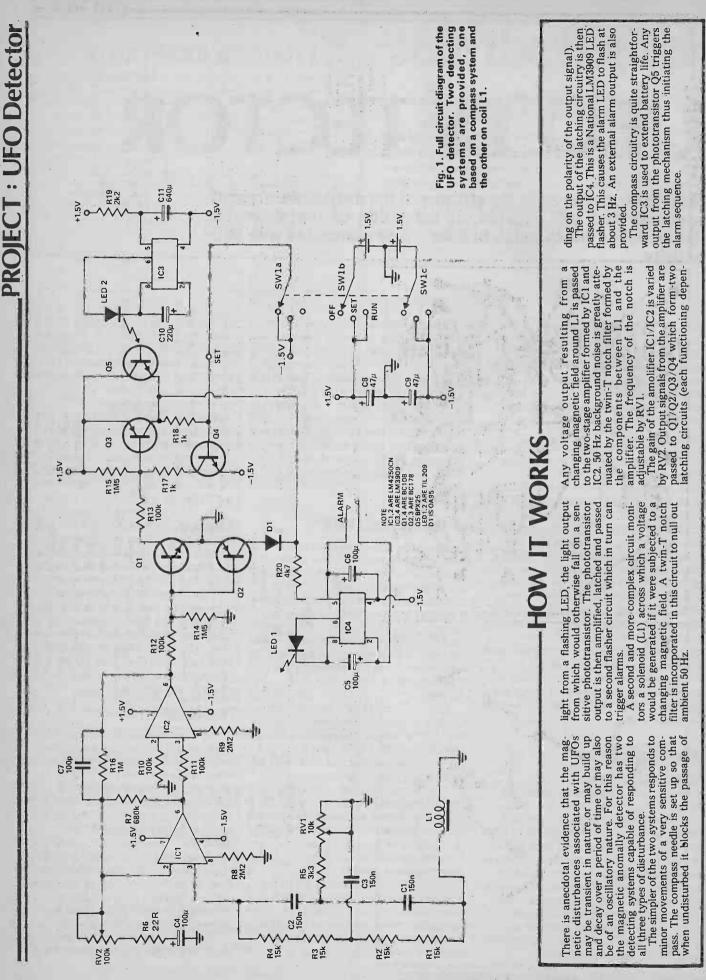
Of The Financial Kind

Klass's book (UFOs explained') thoroughly demolishes the most classic cases and provides evidence which casts major doubt on those few remaining. Consider for example the often quoted 'UFO landing' in Socorro, New Mexico in 1964. It now turns out that the 'landing' was set up as a publicity stunt by the local mayor, who just happened to own that bit of land where the UFO 'landed'.

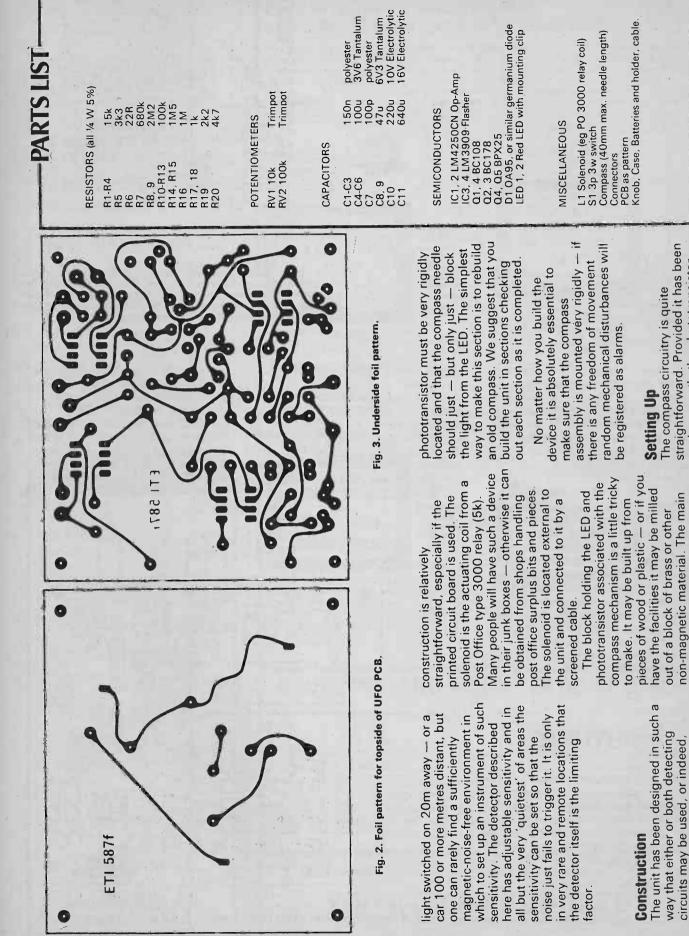
It is perhaps significant that no serious challenger has ever taken up the USA's National Equirer's offer to pay one million US dollars for proof that UFOs are unnatural phenomena emanating from outer space.

A small minority of ufologists should however be taken more seriously. These are dedicated people who investigate reported sightings as thoroughly as they are able. Unfortunately most of their investigations tend to be 'unscientific' in the sense that they lack the rigorous discipline which truly scientific investigation demands. Nevertheless, it is to the movement's great credit that they realise their investigational limitations and are currently doing their best to check out as thoroughly as they can a number of previously accepted classic sightings. In fact magazines such as the authoritative US official publication 'UFO' currently feature exposes of previously 'proven' situations. In the light of this recent background, ETI was extremely interested to learn of a UFO magnetic anomaly detector recently developed by one of our contributors.

The basis of this device is that many UFO sightings are claimed to have coincided with major magnetic disturbances. In many reported situations, electrical equipment is claimed to have ceased to operate whilst the UFO was in the vicinity.


Thus, claim some ufologists, it may well be possible to sense the approach of a UFO by detecting abnormal perturbations of the earth's magnetic field. The unit described here has been designed by Mr F C Gillespie who has considerable expertise in this field.

Flux Be With You

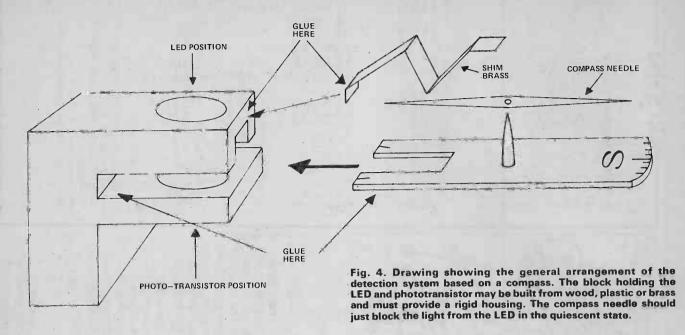

UFO literature indicates that magnetic disturbances associated with some UFO activity are of such a magnitude that they should be detectable by relatively simple equipment. Naturally the more sensitive the equipment the further away a disturbance could be detected — however, an upper practical limit for sensitivity is set in most areas by the generally high level of background noise associated with civilisation — and which, ironically, is often postulated as attracting UFOs to this planet.

It is not at all difficult to detect the magnetic disturbance caused by a

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

ELECTRONICS TODAY INTERNATIONAL — JULY 1978


65

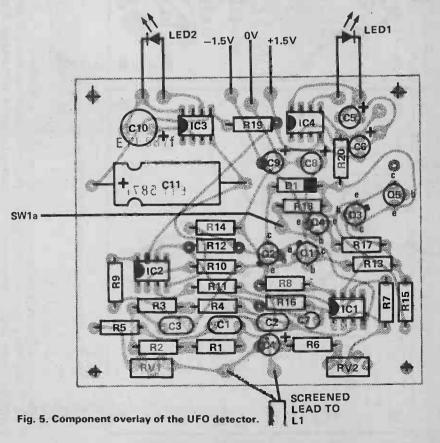
duplicated if required. Circuit

made correctly the phototransistor

requirements are that the LED and

PROJECT : UFO Detector

should be blocked by the compass needle when the complete detector assembly has been aligned precisely along the magnetic north/south line. Bringing a magnet or iron bar near the assembly should cause the needle to move slightly, thus allowing light to pass from the LED to the phototransistor, triggering Q3 and Q4, actuating the alarm.


The solenoid circuit is slightly more complex in that the twin-T rejection filter must be adjusted to optimise 50 Hz rejection. This may be done by observing the output from IC2 on a 'scope while adjusting RV1 for maximum rejection. If a 'scope is not available, then RV1 must be adjusted so that the circuit is not triggered by 50 Hz — increasing circuit gain via RV2 until the optimum setting is obtained. There is no need to inject 50 Hz into the circuit whilst setting up — in most

BUYLINES

The electronic parts should not be too difficult to obtain, indeed a number of our advertisers now offer complete kits of parts for our projects.

If you incorporate the compass based detection system, the pieces for this may prove more illusive, but a raid through your junk box or a sur= plus component store should produce the goods. places there's more around than you'll need.

Once the initial adjustments are made there will be little need to change anything except the sensitivîty (gain) control RV2. This should be adjusted so that the unit is just short of triggering under normal conditions. Local thunderstorms may occasionally trigger the unit but this is inevitable unless you use the unit on low sensitivities. Well, there it is — the device will detect magnetic anomalies. Whether it will consistently detect UFO's is another matter — we were unable to obtain a DIN standard UFO for calibration purposes. Until we do, we refrain from making any claims as to the efficacy of this device.

THE BOMB

The sweeping advice and and the practical use of radioactive elements came a time of our advice the practical use of radioactive elements came a

IN MARCH 1939, Hitler's troops were marching in to Prague and occupying the "protectorate of Bohemia and Moravia." It was not unnoticed that Czechoslovakia was the major source of pitchblende in Europe. This was the same ore from which Pierre and Marie Curie had extracted uranium and radium many years earlier. On September 1 Hitler's troops entered Poland, and World War II had begun.

During that first *Blitzkreig* a group of eminent physicists met at the Kaiser Wilhelm Institute of Physics. Present were Hahn, Geiger, Bothe, Heisenberg, von Weiszaker. They met to consider the practical applications of atomic energy. However, a substantial number of others such as Lise Meitner, Otto Frisch, Enrico Fermi and Albert Einstein had fled the Nazi Axis and were now serving the "other side."

The German war ministry was alarmed by the news from America. Leading physicists were said to have been working with the armed forces for months, preparing for the military use of atomic energy.

Meanwhile in the USA, less was being done than the Germans imagined, but this changed and one of the greatest avalanches of research the world had seen was soon underway.

When Niels Bohr had reported the news from Europe, Enrico Fermi, by then a professor of Columbia University, began lobbying for increased nuclear research, and an attack on the problems of developing the atomic bomb. His campaign against the fatal dangers of delay was unheeded till he gained the support of Albert Einstein.

Relatively supported

In July, Bohr and Einstein eventually reached the President, warning that war was imminent (the USA was still then a non-combatant) and that *''the Nazis will construct an atom bomb and will not hesitate to use it.''* Bohr and Einstein thus became the driving forces in atomic research. President Roosevelt realised what was at stake, and he appointed an advisory commission of physicists and forces representatives. Their momentous decision was to make an atomic bomb. The first grant in 1940 was a mere \$6,000 but by November a further \$40,000 had been advanced, the sums increased like a landslide until by 1945 the sum of two billion dollars had been spent. Adjusted to present-day values this represents about ten billion dollars.

The problem facing both the Germans and the Americans was the same, natural uranium will not make a bomb. The isotope uranium-235 undergoes nuclear fission, while the major isotope, uranium-238, is a hindrance.

Uranium-235 is only 0.7% of natural uranium, and it must be separated out and concentrated. This is extremely difficult, and expensive, since it must be done: using physical means, as the two isotopes have identical chemical properties. However, it is a direct method of making a bomb. When sufficient pure uranium-235 has been separated out, a bomb can be made. Two subcritical masses of uranium-235 are brought together extremely rapidly, and an uncontrolled chain-reaction results in explosion.

No detonator was required, as once a "critical mass" is reached, the material goes off spontaneously, to release the energy equivalent of 20,000 tonnes of TNT.

Meanwhile back at the fiord

Meanwhile the Germans had occupied Norway, thus ensuring themselves a supply of heavy water from the Norsk hydro-plant at Rjukan in the mountains, where hydro-electric power was plentiful and cheap. With the ready supply of pitchblende from Czechoslovakia and heavy water from Norway everything was in favour of German success in constructing a nuclear reactor.

While German scientists did have some success in building a reactor, which could have led to development of nuclear weapons, they appeared to *avoid* the acquisition of the technology to do this.

On June 6, 1942, a group of scientists met in the great hall of Harnack House in Berlin, also present were the men behind the German war machine, including their chief, Albert Speer.

They reported some progress towards harnessing nuclear energy in an atomic pile, but did not give a positive report on the possibilities of developing nuclear weapons as initial efforts to separate out uranium-235 had failed, and it would take an enormous expenditure to find a way to do it. In addition, they did not have any expertise in particle accelerators, and were therefore not able to research many of the fundamental processes of nuclear physics.

Since the economy was already hard-pressed by the war, the decision was taken to scrap ideas of producing an atomic bomb.

United we explode

On the other side of the Atlantic, the American research project developed quickly. At the commencement of the war some twelve particle accelerators of varying power were either in operation or in various stages of construction. These were the experimental tools that enabled the scientists to understand the mechanisms of transmutations and nuclear reactions. Using such as the Berkeley cyclotron, American scientists MacMillan and Seaborg bombarded ordinary uranium with high energy deuterons and succeeded in producing new elements. Among these were minute quantities of neptunium and plutonium.

The discovery of plutonium-239 in 1941 added a new dimension. Like uranium-235 it is fissile. That is, it will undergo nuclear fission, can take part in a chain reaction, and if purified can be used in an atomic bomb. instead of uranium.

Of particular importance is the fact that it is produced in significant amounts in a nuclear reactor, or atomic pile, using natural uranium (often enriched in uranium-235). The plutonium then can be separated from the uranium fuel using chemical methods, since plutonium has different chemical properties from uranium. (This separation is much easier than concentrating uranium-235 out of natural uranium.)

There were then three ways of releasing atomic energy. The direct way is to separate uranium-235 from natural uranium, and use it in a bomb. Second, natural uranium, possibly enriched in fissile materials, is used in an atomic pile in controlled energy release, and simultaneous production of plutonium. Third, the plutonium from the reactor fuel can be separated and used in a bomb. The Americans pushed ahead with all three aspects. They were co-ordinated under the name "Manhattan Project."

The direct method needed uranium-235. Ernest Lawrence, inventor of the cyclotron, had an idea. In a mass spectrograph, charged atoms (ions) were separated according to their mass. This was done by sending them through a magnetic field. The atoms were deflected variably according to their weight by the field.

Lawrence of Berkeley

Lawrence had at his disposal the then most powerful magnetic fields on earth, generated by the 940mm electromagnet of the Berkeley cyclotron.

His research group converted the cyclotron using the giant magnet as the basic component into a kind of gargantuan mass spectrograph. They called the new apparatus the ''calutron'' (California University Cyclotron).

By the end of 1941 this machine was capable of separating one microgram of U235 per hour. Whilst this was nowhere near the many kilograms that were required it was not a futile enterprise. It provided the basis of future technology for separating uranium-235 on a larger scale.

The indirect method, of manufacturing a bomb with plutonium produced in an atomic pile, also had enormous problems. There was then no operating pile, and a chemical plant had to be built to separate the fissile material from the uranium fuel by the time the atomic piles were ready to deliver it.

To make a chemical plant, the chemistry of plutonium would have to be known. At this time it had not yet been produced in observable quantities. A measurable quantity was needed urgently.

Accelerating matters

Every available accelerator was brought into service and hundreds of kilograms of uranium were bombarded with neutrons for months until about a milligram of plutonium was made and separated. On this tiny amount, chemists used ultra-micro techniques to study its chemistry and design a method for separating it from uranium. By the time the atomic reactors were able to deliver large quantities of uranium fuel containing plutonium, a huge chemical plant was ready to extract it.

Meanwhile, Fermi and Allison had continued their constructions of experimental piles in Chicago. On the ninth attempt a multiplication factor of 1.0007 was achieved, signifying a self-sustaining chain reaction.

Fermi now concentrated on manufacturing a pile in which a chain reaction could be sustained and control-

led. To prevent the system going out of control, a series of cadmium rodswereinserted into the graphite/uranium pellet structure. The purpose of the rods was to absorb as many neutrons as possible, thus inhibiting their action when necessary. A sustained reaction was achieved in December 1942. Power was kept to a mere half watt whilst measurements were taken. This was increased to 200 watts ten days later. Outputs of one megawatt were being produced two years later.

The bomb could be made.

Development of the bomb was placed at Los Alamos some 50 km from Santa Fe, the state capital of New Mexico. To this place came physicists from all over the United States and other Allied countries, assembled by the eminent physicist Robert Oppen heimer.

Put to use

The first atomic bomb was exploded from a tower at Alamagordo in the New Mexican desert at 5.30am on July 16, 1945, at the height of a thunderstorm, and its successful result presented US President Truman with a very difficult decision, whether to defeat Japan by orthodox means — with estimated Allied casualties of 300,000 or whether to use the atomic bomb against Japan's civilian population and by such overwhelming evidence of power force Japan to surrender.

Three weeks after the first test, the city of Hiroshima was destroyed with a uranium-235 atomic bomb.

1 AM IN THE ENVIOUS position of knowing someone who knows someone who knows a director of a company which is going to have a viewdata terminal (notice the lower case v as the Post Office now want us to call their viewdata service 'PRESTEL'). As an example of the average electronic engineer who is interested in viewdata and Teletext I am somewhat overjoyed to be in this position as there is now a very slight chance that one day I might be able to talk to someone who has used viewdata and thus knows something about it. I avidly read every scrap of information which is published on viewdata and at present I think I could sum up this as follows. Viewdata has the following characteristics —

1. Output is to a 40 x 24 VDU based on a commercial television set using the Teletext display format, control characters and graphics capabilities.

2. User input is designed to operate from a simple keyboard and thus all user entries are to be in the form of a choice number to a set of options displayed on the screen.

3. Communication is to be via Post Office telephone links using a PO approved MODEM (rentable from the PO at ridiculous rates).

4. Communication is to a large computer installation which is hidden away in a remote part of the country on an exchange which is a local charge call to only a very small number of people — many of whom will have not yet heard of viewdata.

5. Use of the service is for information exchange in a format which is presumably similar in format to a magazine with articles, information and advertisers all available at the push (or a dozen or so pushes) of a button.

I think that accurately summarises my knowledge of viewdata and I would think that it is possibly more than a lot of electronic engineers know—let alone the majority of the public. Let us look at the potential of a system such as a good telephone network and a few microprocessors can provide.

MPUs Make Connection

Automatic dialling is very simple to achieve for even a complete beginner. Dialling a number is achieved by picking up the receiver and then using the dial to activate a circuit breaker a preset number of times by twisting the dial to a required position and then releasing it. These two actions are handled by simple contact switches

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

which in a simple example could be replaced by relays and could thus be driven by electronic counters or microprocessors. A simple SC/MP circuit such as SCRUMPI 2 or the MK14 could handle automatic dialling of about 200 subscriber numbers with only 768 bytes of RAM and could also be persuaded to decode the tones for ringing, engaged, unavailable or the more usual '??????' lack of tone altogether and thus redial or take other appropriate action. Total cost of building your own device would be about £80, in commercial quantities the device could cost under £10.

With an automatic dialler we could program our viewdata terminal to search several viewdata libraries on different telephone numbers to find the first available service. At this stage we will also let our microprocessor handle the required keyboard entries, for example, assume you know that the latest information on the price of bananas at the supermarket is available by dialling each of your local supermarket's viewdata systems and then answering 6 questions in the following form:

FREDS CORNER DELI

DO YOU REQUIRE?-

PRICES1AVAILABILITY2DELIVERY3PERSONAL SERVICE9REPLY?1

FRED'S CORNER DELI PRICES OF?

GROCERIES	1
VEGETABLES	2
FRUITS	3
MEATS	4
BAKERIES	5
REPLY? 3	

FRED'S CORNER DELI

FRUIT PRICES?

PER KILO	1
PER BUNCH	2
PER BAG	3
PER BOX	4
PER JAR / BOTTLE	5
REPLY? 2	

FRED'S CORNER D'ELI

FRUITS	
APPLES APRICOTS	1 2
BANANAS	3
BREADFRUIT	4
MORE	5
REPLY? 3	

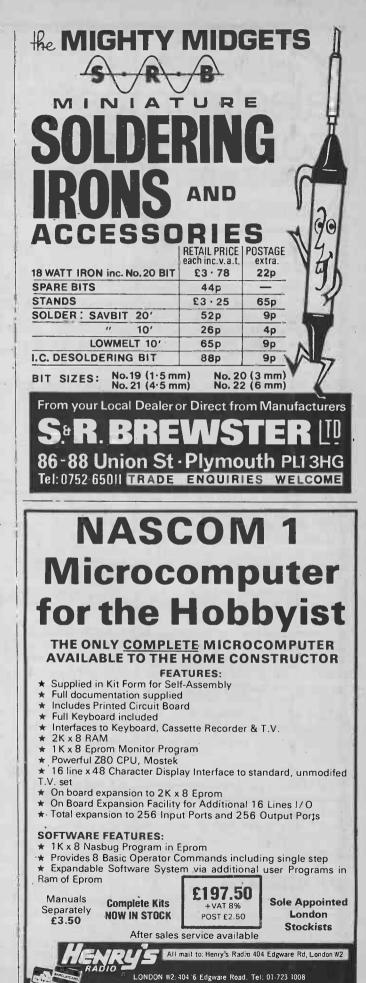
NEWS

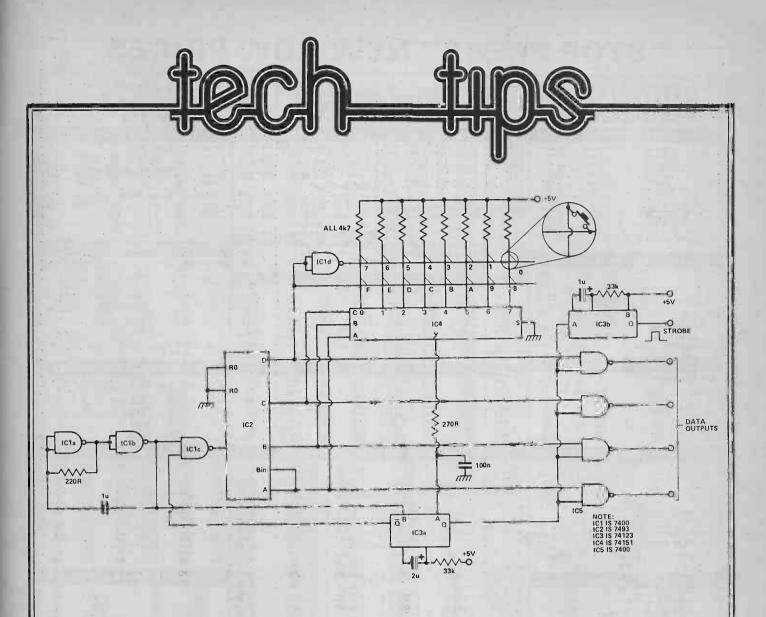
FRED'S CORNER DELI

PRICES OF BUNCHES OF BANANAS:

£00.47 THANK YOU FOR YOUR ENQUIRY, WOULD YOU LIKE TO ORDER? YES 1 NO 2

Thus by dialling the local supermarket or delicatessen and then **always** entering the keyboard entries for 1, 3, 2, 3 and you will be presented with the required price on line 4 of the display (ie immediately after the third carriage return/line feed). So now we have a unit with a commercial price of about £25 which can order groceries on the basis of price/availability/delivery.


We have assumed that the unit can read the data on the screen which is no great technical feat but does not seem to be included as a viewdata feature. Can the output be other than a Teletext compatible unit (printer, RAM, Floppy) or is viewdata limited to the 40 x 24 VDU format?


We have also assumed that "Fred's Corner Deli" has its own viewdata computer which appears to be a feature of viewdata but also appears to require large and expensive equipment. Surely any MPU system capable of handling Fred's bought and sales, invoicing, stock control and ordering (about £5,000 worth) would also be capable of communicating with something as simple as a viewdata terminal. In fact, why can't your home computer system control viewdata enquiries in and out?. Let your computer answer your phone after four or five rings and test for a viewdata or vocal caller (a viewdata caller would be recognisable with a tone). The computer can then either take a taped message for a vocal caller or start interrogating a viewdata caller and give out appropriate messages to friends (who know your password codes) or strangers. There is thus even the facility for Fred's Corner Deli to call your computer and leave a viewdata format message as your invoice, statement or this week's special offers.

All the above is a perfectly feasible proposition with today's technology, the amateur constructor could build a viewdata computer for under £500. Note that the word used is 'could', because you are in theory not allowed to-BY LAW. It is illegal to 'Permanently' connect unauthorised equipment to the Post Office Telephone or Telecommunications circuits, it is also illegal to 'steal' electricity by making unauthorised or unrecorded use of Post Office electricity. It would also be very difficult to build a viewdata computer because of the lack of specifications published. There are ways round the problem of interfacing 'Permanently' to the telephone line, one is the use of a PO MODEM at about £300 per year rental (plus installation), another is well the magazine would not be allowed to publish circuits but ask yourself whether the plug and socket system offered by the PO (Plan 4A?) means that the telephone unit is Permanently' connected or not?

I don't like to get politics into a column such as this but how can our internal telecommunications industry and services grow to fruition if the cost and complexity of installation of a system such as viewdata is left in the hands of a monopoly protected by the law of the land?

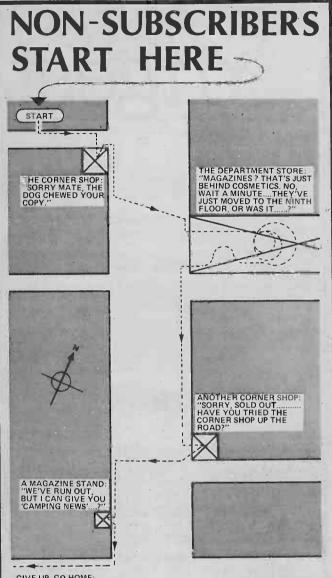
ET

Hexadecimal Keyboard

C. N. Harrison

Programming a microprocessor can be a time consuming business if instructions are entered in binary using rows of toggle switches. A far more convenient method is to enter the code in hexadecimal notation using an appropriate keyboard. A suitable keyboard should be fully debounced, provide a strobe whenever a key is struck and use standard power supplies. The following circuit provides all these features.

The eight by two matrix of keys are scanned sequentially by the 74151 data selector, IC3 and the D output of the 7493 four bit counter, IC2. If no keys are pressed the Y output of IC3 is always logic 1 since all eight inputs are pulled high by the 4k7 resistors. When a key is pressed the Y output remains high until the counter reaches the inverse of the required 4 bit data. The appropriate input of IC3 is then pulled low and the Y output changes to logic 0. This triggers The data would be available at the Q monostable IC4a which disables the outputs of the latch.


clock input to the counter, enables the data outputs via IC5 and triggers IC4b to provide a data strobe. While the key is closed IC4a is retriggered by the clock so that the data remains stable on the output lines until the key is released.

If latched data outputs are required IC5 can be replaced by a 7475 quad latch clocked from the output of IC4b.

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items. ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-TIPS, Electronics Today International, 25-27 Oxford St., London W1R 1RF.

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

81

GIVE UP, GO HOME:AND TAKE OUT A POSTAL SUBSCRIPTION TO ETI.

It can be a nuisance can't it, going from newsagent to newsagent? "Sorry squire, don't have it — next one should be out soon."

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue — but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember — we'll do it for you.

For a subscription, send us $\pounds 7.00$ (£8.00 overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

> ETI Subscription Service, Electronics Today International, 25-27 Oxford Street, London W1R 1RF.

.. news

have bench, will travel



Nice idea from Home Radio is this portable workbench, instead of running riot on the kitchen table you can pack up and move your work bench when finished. Rather than try and make something with everything, they have just given it a 0-20V at 1A power supply plus a loudspeaker and mains outlet — so you can customise it to your own particular needs (built in cigar lighter etc).

Tools and soldering iron can be kept in the sides or lockable compartment and the whole thing comes for £45 (unwired) or £54 (Wired) plus 8% VAT and £2.50 carriage. A vice is also available for £5.50 plus 8%. Full details from Home Radio, London Road, Mitcham, Surrev.

silent sound

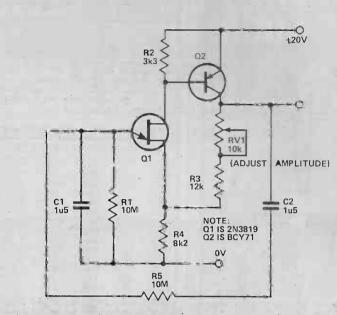
Impectron Limited are now stocking Matsushita (try saying that after a liquid lunch) Ultrasonic Transducers. Three versions are available, the FR CRO1 range operates at 40 kHz (with a bandwidth of 3¹/₂ kHz) and is available in different sizes and with alternative mounting methods. Next is the FR CRO2 which has a bandwidth of at least 11 kHz, and is designed for multi-channel remote control applications. A totally sealed model completes the line-up, with a bandwidth of only 2 kHz, called logically en-ough the FR CRO3. Further information from Impectron Limited, 23-31 King Street, London W3 9LH.

Readers' Circuits

VLF Sine Generator

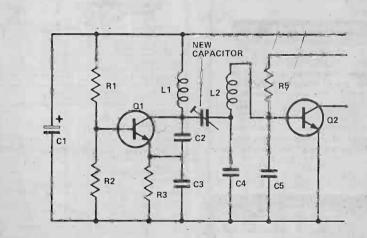
G. Loveday

Generating very low frequency sine waves (i.e. less than 0.1 Hz) presents several problems. Timing capacitors usually have to be large valve electrolytics, any amplifier used must be D.C. coupled, and the amplifier's input impedance must be very high. One standard method is to first generate low frequency square waves, and then to shape these into an approximation of a sine wave by the use of several non linear devices, such as diodes. The circuit shown in Fig. 1 is a relatively simple approach based on the familiar wien bridge. An n-channel FET and a pnp transistor are arranged in a DC coupled circuit and the voltage gain is determined by the negative feedback R3 and R4. The gain need only be about three, thus if the bias required by the FET is 3V the output level will be approximately half the supply voltage.


Balance Circuit For ETI Metal Locator

C. Bray

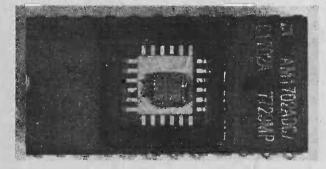
This modification is an im-improvement to the ETI IB metal locator Mark 2, as published in the February 1978 issue of ETI. The first two stages of the circuit showing have been redrawn showing the modifications, the additional trimmer capacitor is a Wingrove and Rogers type S60 multiturn tubular 2-25p, although any similar type giving smooth control between 1 and 8p will do. The function of the trimmer is to balance out coupling between the search head coils L1, L2.


In practice, the trimmer is set to mum meter reading, with gain control approximately 3pf and the search RV1 set as high as possible. This substantially, and should not move, head coils adjusted as in the original should be done in free air, but if it is the degree of imbalance that occurs article

trimmer should be acjusted for mini- effect can also be trimmed out.

istor the value of the capacitor is only 1u5 for sine wave outputs of 0.01 Hz. This capacitor is available in polycarbonate. The amplitude of the output can be adjusted by RV1 to give

Since R1 can be a high value res- low harmonic distortion and to be about 10V peak to peak. As expected, with this wien bridge circuit, frequency stability is good with changes in both supply voltage and temperature.



found that lowering the head to the over quite short periods of time is Before a search is started, the ground produces a slight change, this surprisingly high and makes the fit-

Even if the coils are mounted very ting of this device well worthwhile.

digest.

wanted, probably dead

Advanced Micro Devices have been circulating this photo-graph of 'counterfeit' 1702A EPROMs. Some sharp operator has been emptying their dustbins and re-marking rejects naturally he then sells them as genuine Al devices ("Just a bit cheap 'cos the lorry was moving when they fell off guv"). AMD have nicknamed the duff devices 'IIGOs' (information in, garbage out). If the 7 has a slightly curved down-stroke then it's an IIGO, and if you bought it then you're an IIGiOt.

thanx

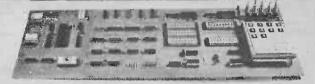
WHEN we included a reader survey in ETI we expected a good response, but the response was in fact amazing, more than 3 000 of you replied. From the analysis it seems that if you are a 27.9 year old male with an income of £4 375 and let .93 people read your copy of ETI then you are Mr Average ETI. Most of you think ETI is also better than a year ago, thank better than a year ago, thank you. Sorry we could not reward everybody but 60 people have been sent an ETI T-shirt and car stickers — thanks again to all who replied.

deaf teletext

The IBA and BBC are independently helping research into the possibilities of using Teletext for subtitles for the deaf. The BBC is working with Leicester Polytechnic on the possibilities of using a computer to process the output from a Palantype shorthand machine (used a lot in courtrooms) speed is ex-pected to be up to 200 words per minute.

The IBA and ITCA (Independent Television Companies Association) are supporting Southampton University in a 3 year project, expected to cost £50 000. The aims are of a more general nature than those at Leicester, and are to establish the optimum forms of subtitling with a full study of the human factors involved.

gossip gossip


Quite a lot of the time we overhear snippets that fall into the plain old fashioned gossip category, some is too good not to publish. Some of the very large semiconductor users are not as ethical as they would have people believe. When a company develops a super-dooper new IC, after lots of research and investment, they usually give a few potential volume users samples to evaluate. Well it seems that some of the potential users were ship-ping the samples to the Far East, where some firms will slice any IC apart and use electron microscopes to produce a set of masks for the IC. They charge about £25 000 and have a turn-round time of 10 days, very cheap compared to pos-sibly a year and a million pounds to design and develop from scratch.

So now the manufacturers that have had imitations flattering their product (sometimes even before it was on the market) are giving out samples on a sale or return (intact of course) basis — oh yes the sale price is usually about £300 000. Now that Commodore and

Tandy have dived into the personal computer lake, we keep hearing that amongst others I*M and T* are in the late stages of putting together their own personal systems — not to mention N^*C and various others from the land of the rising sun. Going to be a lot of swimmers in the next year!

SC/MP MICROCOMPUTER SYSTEM £99.50 +VAT

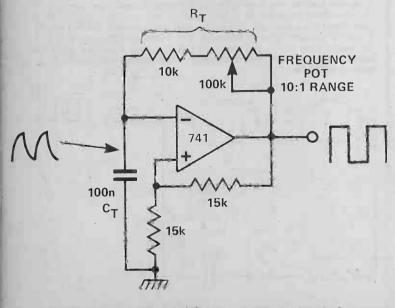
FACILITIES

- 7 segment display for every register (32 digits!) 20 key keypad
- 1/4K RAM, expands to 64K
- Buffered system bus interfaces with cassette/TV/TTY peripherals etc. via plug-in motherboard. (LCDS/ETI bus compatible)
- Single step, slow step facility
- Operating system allows easy modification of registers and memory, move and copy data blocks and much more
- Set breakpoint register will allow traps on any location, including data and ROM

Complementary to IDES and most other systems is a rapidly increasing range of peripherals including: TV and Cassette interfaces, Add on memory, EPROM programmer and 4K Basic on Prom. Most cards are available with either 64 way (LCDS) or 31 way (ETI BUS) connectors.

FOR full details send for Brochure and Price List to:

11


FEATURE

DESIGNING OSCILLATORS

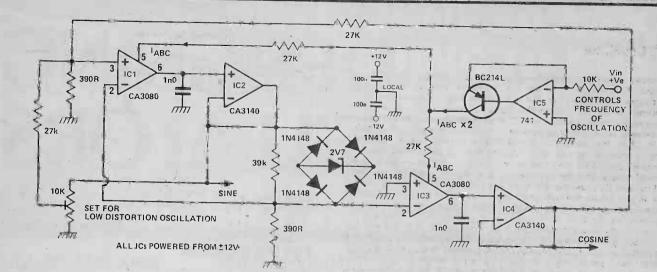
One of the problems in electronics is stopping amplifiers from oscillating, another problem is getting oscillators to oscillate . . . Tim Orr explains.

AN OSCILLATOR IS BASICALLY an amplifier with positive feedback applied around it. The feedback must be AC coupled otherwise a DC latch up condition would occur. Having got some sort of oscillation, one of two things can happen. The oscillation can build up inamplitude until clipping occurs due to the power supply voltage levels. At this point a stable, but truncated waveform will be generated. Alternatively if the gain of the amplifier is too low the oscillation will die away. To produce a pure sinusoidal oscillation thelevel of the signal in the system must be accurately controlled. There must be some amplitude limiting or automatic gain control such that when the peak signal level tries to exceed a reference voltage, the amplifiers gain is reduced. This is in fact what limiting does. To maintain stable oscilation, the overall gain of the system must be exactly unity. Any less and the oscillations will never start. If the gain is more than unity, the oscillations will occur, but amplitude limiting will cause gross distortion.

A very common method for stabilising the oscillations, which is often used in Wein bridge oscillators, is to employ a very sensitive thermistor as an AGC. However, the thermal time constant of this component often produces an annoying amplitude bounce which occurs

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

when changing to a new frequency.


Other methods are diode limiters (which tend to cuase large amounts of distortion) and FET AGC circuits. The latter method can be used to generate super low distortion sinusoids by allowing the system gain to stabilise over tens of seconds.

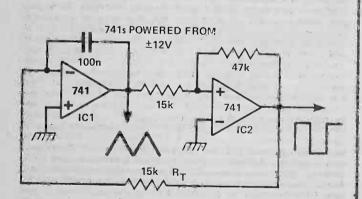
The oscillation frequency is mainly determined by the feedback around the amplifier. By making the feedback a reactive network, the phase of the feedback will vary as a function of frequency. Oscillations can only occur when the feedback is positive and thus the phase response of the feedback will determine the frequency of oscillation, assuming that the overall gain at this frequency is at least unity. By varying the phase response of the feedback, the oscillation frequency may be altered.

An oscillator should be thought of as being a circuit which continuously generates a waveform, no matter what the shape of the waveform. There are very many circuit techniques for generating these signals which range from relaxation oscillators to piece wise approximations using square waves. Some of these methods will now be illustrated.

Manually Controlled Oscillator

In this circuit there are two feedback paths around an op-amp. One is positive DC feedback which forms a Schmitt trigger, the other is a CR timing network. Imagine that the output voltage is $\pm 10V$. The voltage at the non-inverting terminal is $\pm 15V$. The voltage at the inverting terminal is a rising voltage with a time constant of $C_{\rm T} R_{\rm T}$. When this voltage exceeds $\pm 5V$, the op amp's output will go low and the Schmitt trigger action will make it snap into its negative state. Now the output is -10V and the voltage at the inverting terminal falls with the same time constant as before. By changing this time constant with a variable resistor a variable frequency oscillation may be produced.

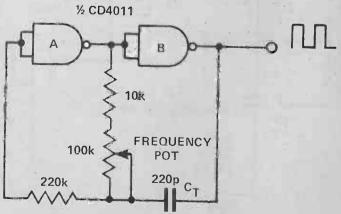
Dual Integrator Quadrature VCO


This is a sinusoidal oscillator which uses frequency dependent feedback and zener diode amplitude limiting. IC1,2,3&4 form a dual integrator circuit which is an analogue model of a second order differential equation! There is some positive feedback around IC1,2 which is analogous to having a zero damping factor in the equation. This means that the oscillations will build up. The positive feedback is controlled by the 10k preset. IC1,3 are integrators and IC2 and IC4 are voltage followers with high input impedance. The phase shift produced by an integrator is 90° so there is no overall feedback around the lop (IC1 is non-inverting, IC2 inverts). Thus we have all the conditions for oscillation, and in fact oscillations will occur when the preset is adjusted to give the correct phase shift around the IC1,2 stage. Amplitude limiting is produced by the 2V7 zener inside the diode bridge. By placing it inside the bridge the same diode is used for both positive and negative signals and the limiting is symmetrical. The integrators are two quadrant multipliers (CA3080s), so the gain of the loop can be controlled by the current l_{ABC} . In the solution of this second order differential equation, the gain

of the loop is proportional to the resonant frequency. Thus, by varying $I_{\rm ABC}$ or rather by varying $V_{\rm IN}$, the frequency of oscillation may be altered.

As the integrators produce a 90° phase shift, the two sinusoid outputs are in phase quadrature, i.e. one is a sinewave, the other a cosine wave. The cosine output is lower in distortion than the sinewave, because the amplitude limiting (and hence the distortion) is produced at the IC1,2 stage.

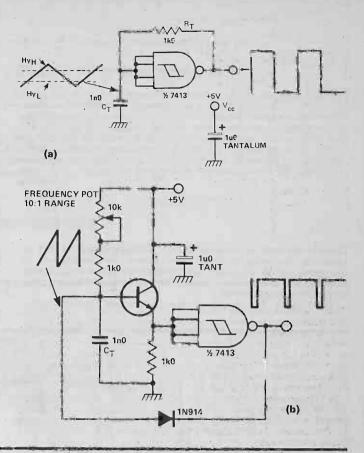
The second stage (IC3,4), acts as a filter and hence produces a purer sinusoid. Using this circuit a 1000 to 1 continuous frequency sweep can be obtained. However, the inaccuracies in the CA3080's will cause some amplitude variations and it may be necessary to set the positive feedback a bit high (and hence attract more distortion), to maintain stable amplitude limiting over the sweep range. This circuit is an oscillating filter and if you turn down the positive feedback and inject a small signal through a 100k resistor into IC1 pin 3, a bandpass and low pass response is obtained from the sine and cosine outputs respectively.

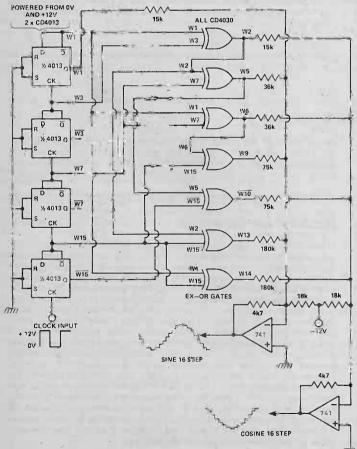

Simple Triangle Square Wave Oscillator

This circuit generates simultaneously a triangle and a square waveform. The triangle could be 'bent' by a diode function generator to produce a sinewave. The circuit is always self starting and has no latch up problems. IC1 is an integator with a slew rate determined by C_{τ} and R_{τ} and IC2 is a Schmitt trigger. The output of IC1 ramps up and down between the hsteresis levels of the Schmitt, the output of which drives the integrator. By making R_{τ} variable it is possible to alter the operating frequency over a 100 to 1 range. Three resistors, one capacitor and a dual op amp is all that is needed to make a versatile triangle squarewave oscillator with a possible frequency range of 0.1Hz to 100kHz.

CMOS Oscillator

Two CMOS gates can be used to produce a simple oscillator. Imagine that output B is high. Then the input to A is also high due to it being coupled via the capacitor C_{τ} to output B. Thus output A is low, input B is low and output B is high, which is as we would expect. However, capacitor C_{τ} is being discharged via the 100k pot and 10k resistor to a logic 0. When this voltage reaches the crossover point for A, output A goes high, and thus output B goes low. Now the capacitor is charged up to a logic 1. Thus the process repeats itself. Varying the 100k pot changes the discharge rate of C_{τ} and hence the frequency. A square wave output is generated. The maximum frequency using CMOS is limited to 2MHz.




FEATURE : Oscillators

TTL Oscillator

A simple relaxation oscillator can be made using a TTL Schmitt trigger. The circuit 'a' is the most simple version that can be produced. Imagine that the output is high. Capacitor C_{τ} is charged up via RT. when the upper hysteresis level (Hyh) is reached, the output goes low. CT is now discharged until the low hysteresis level (Hyl) is reached whereupon the output goes high. Thus the oscillator generates a square wave, with an uneven mark to space ratio, due to the input current require-ments of the 7413. The frequency can be set at any value up to several megahertz by varying C_{τ} and R_{τ} . C_{τ} can be an electrolytic but R_{τ} must not be more than about 1k5 or it will not be able to pull down the Schmitt trigger inputs. (If you use a CMOS Schmitt this does not apply). The output is a nice fast squarewave capable of directly driving several TTL loads. One problem to be encountered is frequency jitter. While the input is very near to a hysteresis level, noise in the system may cause the oscillator to prematurely trigger, thus making that period slightly shorter and producing a noise induced frequency jitter. Also using two Schmitt triggers from the same IC is sure to cause interaction and thus jitter. To reduce power supply noise effects the IC should be decoupled with a 1uF tantulum capacitor actually at the V_{cc} and GND pins of the package. Diagram 'b' shows the same oscillator, but with a 10 to 1

Diagram 'b' shows the same oscillator, but with a 10 to 1 manual control of frequency. The timing capacitor is charged up by the 10k pot and the 1k resistor. This voltage is then buffered by the emitter follower and fed to the Schmitt trigger. When the upper hysteresis level is reached the output of the Schmitt goes low and the capacitor is rapidly discharged via the diode until the lower level is reached. The process then repeats itself. As the discharge period is so fast, it can be as short as a few hundred nano seconds, the period can be thought of as being determined by the charging time, which is controlled by the 10k pot.

Walsh Function Generator

The mathematician, Fourier, said that any repeating waveform could be made up out of harmonic components. These components are sinusoids which are integrally related to the fundamental period of the waveform in question. This is a convenient conceptual approach, but as a way of practically synthesising waveforms it is not on. You would have to generate a whole series of harmonically related sinewaves which might prove a little difficult. However, a man called Walsh said that you could do the same thing as Fourier, but with square waves. So, instead of using sinusoidal Fourier sets, we can use square wave Walsh functions to synthesise waveforms. There are various techniques for calculating the Walsh function co-efficients for generating particular waveforms but these are beyond the scope of an article such as this. The diagram shows the circuit for generating a sine and cosine waveforms using 16 steps. Walsh functions are orthogonal functions, just as sine and cosine are orthogonal, and so the generation of these two waveforms is relatively simple using this technique. The 4013 dividers and the exclusive OR gates generate the Walsh functions, which in turn are converted into analogue waveforms by use of the correctly weighted resistor networks. Note that you only need 4 resistors to generate a 16 step sinewave approximation.

The resultant outputs can be easily filtered by fixed or tracking filters to produce pure sinusoids. The output frequency is 1/16th of the input clock frequency. The clock can be stopped and the outputs will remain fixed, try that with analogue techniques!

17