

CLOCK CHIPS \& KITS
TYPE SPECIAL FEATURES
ECHIP EKIT
MM5309 $7 \mathrm{seg}+$ BCD. RESET ZERO
MM53117 seg + BCD
MM53127 seg + BCD 4 DIGIT ONLY
MM53137 seg + BCD
MM53147 seg + BASIC CLOCK
MM53157 seg + BCD RESET ZERO
MM5316 Non-mpx ALARM
MM53187seg + BCD External digit select MM5371 ALARM. 50 Hz
MM5378 CAR Clock. Crystal control. LED MM5379 CAR Clock. Crystal control Gas discharge MK5025 ALARM. SNOOZE
MK50395 UP / DOWN Counter - 6 Decade MK50396 UP/DOWN Counter - HHMMSS MK50396 UP/DOWN Counter - HHMMSS
MK50397 UP/DOWN Counter - MMSS. 99 FCM 7001 ALARM. SNZ. CALENDAR. 7 seg FCM 7002 ALARM. SNZ. CALENDAR. BCD CT7003 ALARM. SNZ. CALENDAR: Gas discharge FCM 7004 ALARM. SNZ. CALENDAR. 7 seg
AY5. 12027 seg. 4 digit
AY5. 12307 seg ON and OFF ALARM 5.25 TBA
All above cloĉk kits include clock PC board, clock chip, socket and CA3081 driver IC. MH15378 also includes crystal and trimmers. When ordering kit, please use prefix MHI, e g. MHI 5309

DISPLAYS

MHI DISPLAY KITS

MHI707/4 digit 0.3 ${ }^{\prime \prime}$	7.60	MHI707E/4	. 30
MHI707/6	11.00	MHI707E/6	5.70
MHI727/40.5"	9.70	MHI727E/4	5.30
MHI727/6	13.80	MHI727E/6	7.20
MH1747/4 O.6"	11.40	M HI747E/4	7.20
MHI747/6	17.30	MHI747E/6	

BITS \& BYTES

OLDE CLOCKS

In kit form or built these clocks are based on designs hundreds of years old Wood, stone and iron are used to reproduce authentic "olde worlde" wall clocks in full detail. The kits contain all you need including glue, screws etc., and very comprehensive instructions. Stones for weights are excluded For coloured brochure please send $15 p$ stamps

PAYMENT TERMS

Cash with order, Access. Barclaycard (simply quote your number) Credit facilities to accredited account holders. 15% handling charge on goods ordered and paid for then cancelled by customer.
All prices exclude 8% VAT PLEASE SEND 30p POST AND PACKING

CASES (with perspex screen)
VERO 1. $8^{\prime \prime} \times 512^{\prime \prime} \times 3^{\prime \prime} \ldots \mathbf{3 . 0 0}$
VERO 2. $6^{\prime \prime} \times 31 / 4^{\prime \prime} \times 2 \frac{1 / 4^{\prime \prime}}{} \cdot \mathbf{3 . 0 0}$

SOCKETS
24,28 or 40 pin 0.60 Soldercon strip skts. 50 pins $\mathbf{0 . 3 0}$

Alachonitas torte
 international

OCTOBER 1977

Vol. 6 No. 10

Features

ONE ARMED MPU!15

A look at how to handle projects using MPUs - here the ETI One Arm Bandit project
AM STEREO - FARCICAL OR FEASIBLE?
Well is it possible or just castles in the ether?
MICROFILE
Gary Evans meandering down memory lane
TECH-TIPS SPECIAL
A double helping of what you fancy!
DIGITAL ELECTRONICS BY EXPEPIMENT PART 149

Our new series to lead you into the binary world of logic
SOLDERING IRON SURVEY52

What's available - bit by bit
Projects
WATCHDOG
A faithful pet to turn things off you've left on
DIGITAL THERMOMETER
Know exactly how hot under the collar you are
SYSTEM 68-CPU CARD63

Finishing off the centre of the system
SHORT CIRCUITTS: SPIRIT LEVEL 28
THREE-CHANNEL TONE CONTROL

Data Sheet

SIGNETICS NE570/571 DUAL COMPANDER
Expand a few things here and there

News

NEWS DIGEST . 6
ELECTRONICS TOMORROW

Information

SUBSCRIPTIONS
ETI NOVEMBER PREVIEW

```
EDITORIAL AND ADVERTISEMENT OFFICE
25-27 Oxfard Street
London W1R 1 RF
Telephone 01-434 1781/2
Telex 8811896
HALVOR W. MOORSHEAD
Editor
RON HARRIS B.S.c
Assistant Editor
GARY EVANS
WILLIAM KING
Editorial Assistants
DIEGO RINCON
Art Editor
JIM PERRY
Specials
TONY ALSTON
JOHN KOBLANSKI
Project Development
PAUL EDWARDS
Technical Drawing
SANDRA ZAMMIT-MARMARA
Subscriptions
MARGARET HEWITT
Administration
DAVID LAKE (Manager)
BRENDA GOODWIN
KIM HAMLIN
Reader Services
```


For Advertising Enquiries ring MARK STRATHERN
 on 434 1781/2

INTERNATIONAL EDITIONS

AUSTRALIA:	Collyn Rivers Publisher Les Bell Assistant Editor
HOLLAND:	Anton Kriegsman Editor-in-chief
CANADA:	Mike Kenward Editor
FRANCE:	Denis Jacob Editor-it chief

Electronics Today International is normally published on the first Friday of the month prior to the cover date.

PUBLISHED BY
Modmags Ltd.
25-27 Oxford Street, WIR IRF
DISTRIBUTED BY
Argus Distribution Lid (British Isles)
Gordon \& Gotch Lid (overseas)
PRINTED BY
QB Limited, Colchester

COPVRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible fir it legally. Where errors do occur, a correction will be published as soon as possible afterwards in the magazine.

SEMICONDUCTORS - COWPONENIS

TRIACS

2 Amp	т05 Case		10 Amp.	. TO48 Case	
Volis	No	Price	volts	No	Price
100	tRiza, 100	E0.31	100	TR $110 \mathrm{~A} / 100$	$\underline{6} 0.77$
200	TR12A/200	£0.51	200	TR110A/200	¢0.92
400	TR12A1400	£0.71	400	TR110A/400	$E 1.12$
6 Amp	T066 Ca*e		10 Amp	TO220 Case	
Votis		ce		No	Price
100	TR16A/100	$\underline{60.51}$	400	TR110A/400P	E1.12
200	TR16A/200	c0.61		DIACS	
400.	TR16A/400	60.77	BR 100 E,	co.23 032	¢0.23

\section*{SUPER UNTESTED PAKS

COMPONENT PACKS

SLIDER PAKS

CERAMIC PAKS

Unsepeatabie value
Unsepeataite value
MC: $\begin{aligned} & 24 \text { minature ceramic capaciturs ; of eac } \\ & \text { value }-22 \mathrm{pt}, 27 \mathrm{pf}, 33 \mathrm{pt} .39 \mathrm{pf}, 47 \mathrm{pf}, 68 \mathrm{p}\end{aligned}$
${ }_{82 \mathrm{pt}}^{\text {value }} \mathbf{- 2 2 \mathrm { pf } , 2 7 \mathrm { pf } , 3 3 \mathrm { pt } . 3 9 \mathrm { pt } , 4 7 \mathrm { pf } , 6 8 \mathrm { pf }}$
$16160 \quad £ 0.50$

24 miniature ceramic capacitors 3 of each

16163 - $\mathbf{E 0 . 6 0}$

ORDERING

Please word your orders exactly as prinied. not forgetting to include our part number

V.A.T.

Add 12% to prices marked * Add 81/2\% to others excepting those marked \dagger these are Zark.

CARBON POTENTIOMETERS
SINGLE GANG with wire end term
shake.proft was
LINEAR TRACK

LINEAR PAKS

Manufacturer's 'Fall Outs' which include
Functional and par Functionai Unis classed as out-01-spec from the maker's ver rigid specifications, but are ideal tor liearning U721 30 ASSORTED LINEAR TYP
709.741-747.748.710.588. Etc,
OROER NO 16227 Price 'E1.50 U76SD FM STEREO DECODER EIC s 76110 Eqv to MC1310P-MA767. Oata supplied with pak
ORDER No
16229
Price $\mathbf{~} \mathbf{1} .50$ U76A AUDIO POWER OUTPUT AMPLIFIERS Data supplied with Sl403 76013. 76003. Et

74 SERIES PAKS
Manufacturer's 'Fall Outs' which include
Functional and part-Functorsal Units. These are
ansed classed as ollt-or-spec from he makersuery
specifications. but are rdeal tor learning about IC s and experimental work 74 G 100 Gates assorted $7400-01-04-10-50-60$.
eic Order No. 96224

 Order No 16225
 LINEAR TRACK

	LOG TRACK.		
Price	Value	No.	Price
- $£ 0.48$	4 K 7	1879	- $¢ 0.48$
' $£ 0.48$	10K	1880	'co. 48
'E0.48	22k	1881	- $£ 0.48$
¢0.48	47k	1882	- 0.48
' $£ 0.48$	100K	1883	- 0.48.
${ }^{5} 0.48$	220 K	1884	*E0.48
'E0.48	470K	1885	- 0.48
- $£ 0.48$	1 M	1886	-£0.48
- 50.48	2M2	. 1887	'£0.48

VEROBOARDS
DRILLED COPPER P.C.B

DRILLED PLAIN P.C.B.

VEROBOARD PAKS

ELECTROLYTIC PAKS

 mixed value minature elecirolyticsEC1 Values
 EC3 Values trom Order No. 100 mFD to $680 \mathrm{EO} \mathbf{6 0}$

C280 CAPACITOR PAK values ranging from 01 hF to
22 ZF complete with dentivation
sheet

CARBON RESISTOR PAKS

These paks contain a range of Carbon Resistors,
assoried nio me fillowing groups
R1 60 mixed $1 / \mathrm{sw}$ 1ucohms-820ohms

R1
R2

\qquad
\qquad
\qquad

VORLDSCOOPI SEMICONDUCTOR PACK Triacs. Thyristors. iC s and Zeners ALL NEW
AND ANO CODEO Approx
amateur a Pioces. OHfering the
fantastic
bargain pak and an enormous
every pak

ORDER NO $16222 \boldsymbol{£ 2 . 2 5}$

DEPT. 10, P.O. BOX 6, WARE, HERTS. SHOP 18 BALDOCK ST., WARE, HERTS AT OPEN $a+n 530$ Mon Sat

DEVELOPMENT KIT TO DEVELOP

Like all good ideas this one seemed obvious once someone else thought of it! Making up PCB's at home is usually a difficult task, and etching panels and labels an impossible one. However a firm by the huge name of Mega Electronics intend that to change.

Introduced this month is their Photolab Kit - a complete UV home PCB production lab. The photograph shows the contents of the kit, drill with 5 bits exposure unit, drafting sheets and grid, etching and developing trays. Alfac transfers. epoxy board, 8 sheets of panel/label material, and chemical developer and etchant. Full instructions are also included. At $£ 44.50$ it represents excellent value, especially to schools and the like.

We have had a quick look over the kit, and found it well thought out and excellently produced, but hope to return to it later and give it a thorough 'grilling'.

A SPORTING DISPLAY

Commodore has just introduced a new lowcost digital watch, the CBM 5004 called the 'Sports Watch', it is a five function LED model and will be retailing at around £6.96. CBM have fitted the watch with an adjustable strap which will fit even the slimmest wrist, intending it for the younger market. CBM, 446 Bath Road, Slough,
Berkshire SL1 6BB.

TO B OR NOT TO B......

A complete new range of hi-fi has been launched onto the consumer by Revox. The range is, as usual for them, very much top end of the market stuff.

A B77 is perhaps the biggest surprise, to replace the classic A77 now in it's fourth mark and going well. The new machine has superior styling and a
veritable host of new features like LED overload monitors, logic conntrol, built-in editing facilities, twin headphone outlets, switching 'thump' suppressers and coarse and fine speed control....... to name but a few nillion!

The star of the show though has to be Revox's first venture into record

GROWING YER OWN SOLDERWICK

A little old man from Honeywell has been creeping around the Arizona desert divesting cactii of their needles. The loot is then transported to the Honeywell complex in Phoenix for immediate use!

What use you may ask - we certainly did! Until we were told the truth we entertained notions of office politics with avengence - executives‘ seats transformed to pin cushions, furtive poison darts shooting down the corridors of power......

No such luck. In reality these needles have been found to be superior to steel pins for removing solder splashes across PCB tracks in micro-circuitry. Steel is neither as flexible nor as sharp. Mother Nature 1 - Technology 0.

COMPONENTS - SOMETIMES

Lack of space in this issue has meant that Part 14 of our component series, dealing with batteries, has had to be postponed.

INTERCITY AT $17 / 8$?

If you use BR at all these days (come on someone must!), then the sight of many of the inspectors apparently talking to themselves may have puzzled you.

Well fear not - hysteria has not yet overtaken the APT. Actually the intrepid ticket punchers are merely recording the details of your tickets for later analysis (Big Brother is peering over the railhead it would seem!) on pocket (cassette) dictation machines.

Statistics on who went where and when are, say the railmen, of great value in service and facility planning. So now you know!

MAKE A DATA

The new edition of the OPTOELEC. TRONICS D.A.T.A. BOOK is now available, containing 408 pages of information covering electrical, optical and physical characteristics of 7543 devices. Devices produced in countries throughout the world are reported on, including the U.S.S.R.

This manual provides the data needed to replace just about anything electronic that winks, blinks or glows in the dark, not to mention photocouplers and assorted special devices.

The OPTOELECTRONICS D.A.T.A. Book is updated and published twice yearly - and is available from: London Information (Rowse Muir) Index House, Ascot, Berkshire SL5

decks - the B790. This is a departure from the usual pivoted arm concept, and employs a quartz reference PLL for speed conrol of the direct-drive motor. A tacho is also employed for feedback information.

Speed is digitally displayed on four seven-segment LED's. The tone-arm, which is hidden away inside that gantry over the record is of very short construction, and uses magnetic support no less!

Great care has been taken to make the unit impervious to outside horrors, and fool-proof in operation. For instance the tone-arm will not lower if there's no record to lower onto!

We'll do our best to lay hands on one of these machines, and have a more detailed report for you soon.
W.O. Bauch, 49 Theobald St., Borham Wood, Herts WD6 4R7.

MARSHALL YER CASH

Due to the Grunwick postal dispute, which held up orders to Marshall's London premises, the company have decided to extend their ' 10% off' offer on all orders over $£ 50$ for transistors and IC's from the end of August to September 30th.

We've also just heard that Marshall's are opening a second London retail outlet at 325 Edgeware Road - right in the heart of London's electronics Piccadilly.

Although the store will carry the usual Marshalls range, emphasis will be on the new range of high technology devices such as MPU's.

The Memory Programming Service, recently introduced at Cricklewood Broadway, will be available at Edgware Road and the company have approached NS, TI and Mullard to make available hitherto 'trade only' devices to the hobbyist.

Opening date is not finally settled, but mid-September is what they are working towards.

SLIMLINE TV

Hitachi are about to market a mini TV set which utilises an LCD display in place of a tube. The display is 245 by 195 by 40 mm .

One interesting speculation is the promise this holds for wrist-TV's and the other extreme - wall mounted sets. These might not be as far distant as we thought.

PLAYING AN ACE

We have another mail-order component firm. Going by the name of Ace Mailtronix, it has a good pedigree behind it and offers the same day despatch on all orders.

There is always room for another good mail order service, and we wish Ace the best of luck. For an idea of their range, see their catalogue in the middle of this issue.

CAPABLE CAPACITY

A new multi-meter from Sanwa, the CX-505, has the capability to measure capacitance, amongst other things. Ranges include four resistance scales, DC voltage from .3 V to $1.2 \mathrm{kV}, \mathrm{AC}$ voltage from 6 V to 1.2 kV , and DC current from 3 mA to 300 mA , all full scale. Finally, capacitance is measured using an internal oscillator, and handles capacitors between 100p and 10 u . The fully protected movement has a sensitivity of 50 k ohms per volt.

It can be a nuisance can't it, going from newsagent to newsagent? "Sorry squire, don't have it - next one should be out soon."

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 6.00$ ($£ 7.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services. you want at the same time.

ETI Subscription Service

Electronics Today International
25-27 Oxford Street, London, W1R 1 RF

BACK NUMBERS

These cost 60p each inclusive of postage. Overseas charge: 70p each all inc., sterling only. All orders to ETI BACK NUMBERS DEPT.

We CANNOT supply the following issues: All 1972; January. February, April, May, August, October and November 1973; Januery, March, September, October, November and December 1974; January, June, July, August, September 1975; January, February, March, April, June and November 1976; May 1977.

PHOTOCOPYING SERVICE

Due to the steady pressure on our back numbers department, and the dwindling number of issues available, we have set up a photocopying service. This involves our staff in considerable time-consuming endeavour, so we hope our readers understand our decision to apply a flat charge of 50p inclusive. This covers any article, regardless of the number of pages involved, from any ONE issue of ETI.
Please state cleariy NAME of article, and from which issue the copy you require is taken.
Address envelope to 'ETI Photocopy Service'.

The MANOR SUPPLIES modular equipment incorporates the fabulous Texas TIFAX module which is designed to enable the average constructor to assemble a fully operational unit without the headaches associated with the fitting of hundreds of small I.C.s

SPECIAL FEATURES

* Plugs into aerial socket. (No internal connections to set)
- Colour.
* Choice of Teletext only, normal TV programme, or Teletext superimposed on TV programme.
* News Flash
* Keyboard control.
* Normal TV programme sound.
* Upper and lower case characters.
* Character rounding
* Allows for increase in number of data lines
* Texas Tifax XM 11 module supplied fully tested and guaranteed and ready for use.
* IF and Tuner supplied fully tested.
* Other modules either compl. ie or easy to assemble, etc., etc

DEMONSTRATION MODEL

NOW AT 172 West End Lane, London, NW6

PRICE. TOTAL
$£ 218.00+$ VAT. $12 \frac{1}{2} \% \mathrm{P} / \mathrm{P} £ 2.50$. D/L case extra $£ 13.80$ + VAT $12^{1} 1 / 2 \%$.

Units can be purchased in stages to spread out cost. Separate pack list on request.

CALLERS WELCOME AT SHOP PREMISES

MANOR SUPPLIES

172 WEST END LANE, LONDON, NW6
(Near W. Hampstead Tube Station (Bakerloo Line) Telephone: 01-794 8751

Mail Order
64 GOLDERS MANOR DRIVE, London, NW11

THE METAC DIGITAL CLOCKS

* COMPLETE KIT *

Pleasant green display - 12/24 Hour readout Silent Synchronous Accuracy • Fully electronic Pulsating colon - Push-button setting

KIT PRICE $£ 9.75$ Building time 1 Hr . - Attractive acrylic case
Easy-to-follow instructions Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$ Ready drilled PCB to accept components
A professional product for the home constructor. It has been designed by engineers using the most modern techniques and components. It will appeal both to the confirmed hobbyist and to the man who simply wants to 'have a go'. The kit contains everything except a mains lead. The only tools required are a small soldering iron, solder, screwdriver and wire cutters.
$\star \star \star$ SPECIAL OFFER

Just arrived, this 6-digit LCD Display hours, mins., secs continuously
Five functions: Hrs., mins., secs., day date.
Plus back light
4 -year automatic calendar.
$\star \star \star$
BRITAIN'S TOP SELLING DIGITAL ALARM CLOCK

* Fully Built. Tested and Guaranteed * WITH SLEEP-OVER FEATURE

Bright Orange 12 Hour Display or
24 Hour Alarm
10 Minute Repetition
Alarm Set Indicator
Accurate Silent Timekeeping
British Designed and Bui!t
5 in. across, $31 / 2 \mathrm{ins}$. deep

COMPLETE CLOCK
$£ 13.43$

+ E1.07 VAT

Metac-Electronics Time Centre

DAVENTRY	
67 HIGH STREET	
DAVENTRY	
NORTHANTS	ORDDER YOUR
TEL: (032-72) 76545	

UXBRIDGE

3 THE NEW ARCADE HIGH ST., UXBRIDGE MIDDLESEX
TEL: UXBRIDGE (0895) 56961

SHOWROOMS OPEN 9-5.30 DAILY

GIVE YOURSELF A TREAT

Why not pay us a visit and see for yourself the full range of top-quality
 watches; clocks: treasure tracers electronic ignition; TV games and battery eliminators.

SEE OUR COMPONENTS ADVERT ON PAGE 80
Buy it with Access

IN THESE DAYS of advancing (and shrinking) technology, it can't be long before we have a hi-fi system offered for sale which does everything automatically - even choose the material and listen to it for you. Naturally such a machine would turn itself off once it had finished the session.

Unfortunately the poor old relics we are forced to listen to music on nowadays do not possess this divine power of self termination and more watts are probably wasted keeping the power lights glowing through the night than actually thrilling the neighbours to Status Quo at five past midnight.

Most, if not all, of us here are guilty of this transgression ourselves, and after many months of vowing to do something about - we have. And so we present the Watchdog. It's sole
purpose in existing at all is to make sure you CANNOT leave the hi-fi or television running away with the power while you're not using it.

The Watchdog sits in between the mains supply and the equipment, and keeps a monitoring paw on the audio output of whatever is drawing mains supply from it. Once the audio signal has ceased, a (pre-set) time period is allowed to elapse, and then your hi-fi is closed down for you. A filter is included in the circuit such that 'Rover' will ignore white noise such as is generated by a closeddown television or FM station.

Canine Construction

The circuit consists physically of two boards, a relay, transformer and box with front panel components. Assembly of the boards should pose
no problems and the layout of the bits within the box is not critical. There will be mains present at many points inside, so please be careful - we don't wish to lose our readers as easily as that. The relay does not have to be bracket mounted, once you're sure the circuit works you could glue the body to the box - but heaven help you in future if it should fail!

The red neon to inform you of the fact that the Watchdog has operated, and is starving the inert system of current, is optional. If omitted it means that the system is entirely 'fail-safe' and once tripped draws no mains current at all. Somehow though the vision of a harassed enthusiast frantically tugging and probing at a piece of persistently dead hi-fi, whilst the Watchdog lurks forgotten and guilty to one side,

Above: component overlay for the watchdog circuitry. Relay and switches are all mounted off-board within the box. Foil pattern is shown full size at $83 \times 70 \mathrm{~mm}$.

PARTS LIST

RESISTORS		FUSE	
(All $1 / 4$ W 5\%	except where stated)		
R1	220 k (see text)		
R2	100k	NEONS	
R3	1 M	N1,2	
R4,8,10	10k		
R5,6,	8k2	SWITCH	
R7,9	39k	SW1 a,b,	
$R 11$	4M7		
R12	2k7		
R13	470R		
R14	see text		
R15,17	100R		
R18	27k		
R 19	47R 1/2W 5\%		
${ }_{\text {R20,21 }}^{\text {CAPACITORS }}{ }^{1 \mathrm{k} 1 / 2 \mathrm{~W} 5 \%}$			
C1,7,8	10 u 16 V electrolytic		
C2	10 n polyester		
C3	22 n polyester		
C4	100u '16V tantalum		
C5,6	$1000 \mathrm{u} / 6 \mathrm{~V}$ electrolytic		
C9,10	$30 \mathrm{n} \quad 1000 \mathrm{~V}$ mixed d	dielectric	
SEMICONDUCTIORS			
03			
04	${ }_{\text {AD16 }}^{\text {AC128 }}$ (fit with heatsink)		
	AD162		
IC1	LM348 (Quad 741)		
D1	IN4148		
BR1.2	100 V 3 Bridge rectifiers		
ZD1,2	9 V 1. 400 mW zener did	diode	
RELAY 2.			
RLA	12V 110R type (octal base)		
	with two S.P.C.O contacts with 7.5A 250vA.C rating (min)		
	Doram: 72-710-3		
	+ octal socket 67-552		
TRANSFORMER			
	240 V - two 12 V windings $0-12,0-12.500 \mathrm{~mA}$ per winding		

On the right are the power supply overlay and (full size $103 \times 46 \mathrm{~mm}$) foil pattern for the watchdog device. Q4 and Q5 are smaller than the usual power type, so even though it looks a bit odd - it isn't!
Panel fuse holder and 500 mA fuse
to suit.
240 V type one red (off)
one green (on)

Double pole on-off
(biased off) R.S.: $316-614$

SOCKET
SK1 Panel mounting phono or din socket. CASE Verocase $\quad 75-1412 k$
MISCELLANEOUS
BA Socket to suit, 3core mains flex aluminium for heat sink and relay bracket, P.C Boards as pattern, grommet, cable grip, nuts, bolts etc. screened wire, connecting wire.

号	

 （Incidentally how do you manage to change LPs so quickly？）
wost pep！nosd eq pinos indu！u＊ the loudspeakers of your system if
you＇re unable to give doggy his low you＇re unable to give doggy his low
level audio．A potential divider will be

 loudspeaker and amplifier around 20－30W，try 10 k and 1 k in series
vity is about 50 mV which proved to be more than adequate in use．As the
input filter will reject high frequency energy above about 800 Hz thereby eliminating hiss etc，the device will not shut－down on normal signal delay of about 5 mins，is more than sufficient．A value of 4 M 7 for R14 gives around this value of delay

If you want a shorter period，lower
he value of R14－it is very approx 1
 $100 \mu \mathrm{~F}$ ．Too low a value may well keeps haunting the editorial mind．
 quite high，and so Q3 which drives RLA1 must be heatsinked．No options offered．Some ventilation in the back panel would not be wasted effort either，we feel

House Training
e шон әq 人l｜ewiou l！！un uliesədo tape output socket or line output in
the case of a tape recorder．Sensiti－
 omt ayt to uo！loun！ayt woit pat

4seet 047 6u！H1＝

ol \ddagger כə！qns eq l！im dn Gu！łəas je！t！u｜ əsnfuos keul os pue＇po！sad kejep әиt o！pne әчł łoәuuo弓＇əכueן of 6орчэைем aчt pue＇L 人S of indul the mains outlet．The equipment to be dogged is plugged into the mains

 Pressing down the reset switch Gu！лq pue＇！f！！eцt as！biəuə pinous on the green neon to prove it．You now have however many minutes you allowed yourself with R14 to feed some audio down that wire the system again．

 shows clearly how to mount all the
components into the box．This Verobox we
 ayl fo syools aney hew sdoys awos Кaí ı！ albino lurking about somewhere，but it could
be an exception．

Note that on the PCB in the photo you can
see where we paralleled another resistor

BOWMAR

NEW LINES FROM OUR VAST STOCK Please add post 35p per order THESE ARE ALL SPECIAL OFFERS BELOW MANUFACTURERS PRICES ALL NEW STOCK, FULLY GUARANTEED. All prices inclusive of VAT SUPPLY PANEL containing 6 high quality $0.1 \mathrm{uF} 10 \% 1 \mathrm{KV}$ poly capacitors. $102 \times 19 \times 75 \mathrm{~mm} 35 \mathrm{p} 10$ for $£ 2.50$
ALMA push button reed switches, push to make. High reliability $18 \times 27 \times 18 \mathrm{~mm} 25 \mathrm{p} 25$ for $£ 5,100$ for $£ 20$.

Borroughs 9 digit Panaplex calculator display. 7 segment, $0.15^{\prime \prime}$ digits, neon type, with red bezel. socket \& instructions. £3.50 10-£30 Built 5 watt power amplifier Gould - Advance. $4-8$ ohms output, up to 24 V suoply, 500 mV into 2 K input. Complete with instructions $11.5 \times 6 \times 3 \mathrm{~cm} £ 3.0010$ for $£ 22.50$
Suitable power supply for above, in kit form. $£ 2.20$
Valve type $40: 1$ Output transformer $61 \times 51 \times 42 \mathrm{~mm} 75 \mathrm{p} 10$ for $£ 6$.
Output transformer for EL84 type valves $80 \times 53 \times 34 \mathrm{~mm} 95 p 10$ for $£ 8$ Clocking oscillator PYE DYNAMICS thick film 1 MHz 5 V supply $19 \times 25 \times 6 \mathrm{~mm}$ 85p 10 for $£ 7.100$ for $£ 55$.
FAIRCHILD FND10 0.15" 7 segment display 80p 10-£6.50, 100-£50. C106C Thyristor 3 amp 300 PIV

46 p .10 for $£ 4$.
C106D Thyristor $3 \mathrm{amp} 400 \mathrm{PIV}(250 \mathrm{~V}$ RMS) 66 p .10 for $£ 5.50$
7 button selector switch with built in 100 K pots. Ideal for use with varicap tuned FM sets and TVs $120 \times 64 \times 55 \mathrm{~mm}$ £2.50 10 for $£ 20$ Bowmar 9 digit calculator display with P.C. Connector 0.1 "digits. common cathode with red bezel. $£ 1.2510$ for $£ 10$
FND500 $0.5^{\prime \prime}$ common cathode 7 segment LED display. $£ 1.256$ for $£ 7$ Texas 19 gold plated 'snap' key contacts on gold plated P.C. Boardall kinds of useful applications. 65p 10 for $£ 5,100$ for $£ 40$.

Deac charger and battery eliminator, for charging up to 12 volt nickel
cadmi um batteries. SPEC|AL PRICE $£ 5$. cadmium batteries. SPECIAL PRICE £5
OSMOR change over reed relay with 12 V coil. Approx. 20 mA
Small mains transformers with 240 V pri. 12 V @ $100 \mathrm{~mA} 60 \times 10 \times 42 \mathrm{~mm}$ 95 p 10 for $£ 7.50 .24 \cdots 0-24$ reir $100 \mathrm{~mA} 68 \times 35 \times 43 \mathrm{~mm} 95 \mathrm{p}$ to 10 for $£ 7.50$
$24 \mathrm{~V} @ 60 \mathrm{~mA} .24 \mathrm{~V}$ (nin $150 \mathrm{~mA} 80 \times 45 \times 48 \mathrm{~mm} £ 4.25$
I.C. Audio Power by TOSHIBA 35 WATT module 8 ohms o $0 / \mathrm{p} 200 \mathrm{mV}$ into 47 K for full output. 0.3% distortion (max). 60 V power supply
required. $£ 8.5010$ for $£ 75$.
$\mathbf{1 0 . 7 M H z}$ crystal filters. 25 KHz band width for NBFM. $£ 710$ for $£ 60$. Texas 4+5 Digit C. Cathode Display with 16 pin DIG. Bases Pair $£ 1.85 \quad 10$ pairs $£ 17$.
$2^{14} 45$ ohms speakers. ideal for that small space. 75 p 10-£6.100-£50 3 DIGIT 7 SEGMENT DISPLAYS. C, cathode pack of 2 with data (one o more segments are missing). 60p pack 10 packs for
Mullard ZN1171 Nixie tube ONLY $£ 1.3010$ for $£ 10,100$ for $£ 90$.
Mullard ITT. 5870 L Nixie tube ONLY $£ 1.3010$ for $£ 10,100$ for $£ 90$ BECKMAN 500 KHz triggerable clocking oscillator for use with calculator chips etc. $5 V$ supply. $25 \times 10 \times 12 \mathrm{~mm} £ 110$ for $\mathfrak{\ell 8}, 100$ for $£ 65$ Re settable thermostatic switch. A push button on-off switch which automatically drops out when the ambient temperature excaeds $72^{\circ} \mathrm{C}$
$47 \times 29 \times 46 \mathrm{~mm} 75 \mathrm{p} 10$ for $£ 6.50$.
FT243 crystal packs. 10 crystals of mixed frequencies between 5800 and 85010 KHz . (Our choice of frequencies) Ideal for re-grinding. £1.50 per
Calculator chip CT5002 12 digit four function for common cathode multiplex displays. ONLY $£ 1.95$ complete with circuit.
1MHz HC6U quartz crystals. For frequency meters, clocks, frequency references etc. $17 \times 19 \times 7 \mathrm{~mm} £ 310$ for $£ 25$.
SWR and field strength meter. A must for every 'ham'. Rugged con,
Avo meter movements for a military version of the Avo 8. Precision 37.5 micro Arny 150 uA with integral shunt $!\mathrm{m}$
voltmeter circuit available on request. $£ 8.50$.

28 pin calendar/clock chip type MK50178B for use with common
Cathode LED displays /with circuit). £4.49
MK50250 Alorm clock chip for most LED displays, $£ 4.50$ with circuits 501212 digit calculator chip, 4 lunctions, with circuits \& data. $\mathbf{E 4} .15$ Pack of BC17A Transistors BC107 Plastic 75p 10packs £6, 100-£50 TEXAS AMPLIFIERS
$\begin{array}{llllllll}\text { SN76023N } & \mathbf{E 1 . 7 5} & 10 & \text { for } £ 15 & \text { TBA800 } & \mathbf{£ 1 . 2 0} & 10 \text { for } £ 10 \\ \text { SN76023ND } & \mathbf{£ 1 . 5 0} & 10 & \text { for } £ 1250 & \text { TBA810S } & \mathbf{~} 1.20 & 10 & \text { tor }\end{array}$ SN76023ND $£ 1.50 \quad 10$ for $\$.12 .50$ TBA810S $\quad \mathbf{E 1 . 2 0} 10$ for $£ 10$
 AYB-500 GAME CHI BY G.1. 7.99 TBA120S 75p for for 50 The INCOMPARABLE FERROGRAPH 208 We are able to offer a limited quantity of these superb British manufactured stereo amps. Thes order, with wooden cabinet. All units are Brand New. Send now for full specification \& data sheet. Try beating our price of $£ 49.50-£ 2.50 \mathrm{pp}$.

TAPEHEADS

Stereo Cassette R/RP Head (200 ohm) £2.25
Marriott Heads R/RP1 $\mathbf{£ 1} 150$
Marriott Record/Replay 8 Erase Head $\mathbf{8 1 . 7 5}$
Minifl/3 A9N Erase $£ 225$
R/RP1/3 Tapehead \% Track £0.65
MULLARD TUNER MODULES
LP1171 Combined AM/FM IF stion 54 'LP1179 FM front end with AM tuning gang, used with LP11 71-£4*LP1171 \& 79 pair - $£ 730$

$1 / 4$ TRACKS

 £6.75, XES11 : TRACK ERASE $£ 1.25$, BX/RP/ 63% TRACK £2 25 FREE ILLUSTRATED EQUIPMENT AND COMPONENTS LISI S.A.E. $91 / 2 \times 6 \%=121 / 2$ p stamp

TEXAN AMPLIFIER
 teatured by paActical wheless
 still the best selling amp in the UX
 BUILD IT
 yourself built
 DESIGNED BY

$£ 33.50$ £43.50
Vat $£ 4.18$ Vat $£ 5.43 \quad £ 1.35$
Build the Texan stereo amplifier, and be
entertainment unit. And the pleasure of doing it yourself. look at the Texan specification
Fully integrated stereo preamp and power amp, 6 IC's, 10 transistors, 6 rectifiers and zener diodes. Plus stabilised protected circuitry, glass fibre pcb; Gardeners low-field low-line mains transformer; all facilities and controls. Slim design, chassis $14 \frac{1}{1} \times 6^{\prime \prime} \times 2^{\prime \prime}$ overall. 20^{\prime} watts per channel RMS.

Build the matching Texan stereo tuner Features advanced varicap tuning. Phase lock loop decoder. Protessionally designed circuit. Everything you need
 Tuning range 87-102 MHz . Mains powered

SPECIAL OFFER BUILT AMPLIFIERS

6+6 WATT STEREO 24/28v 8ohm
Input $50 / 60 \mathrm{M} / \mathrm{V}$. Into 500 K
Tone Controls on P/C $£ 4.95$
4 pots $£ 3.50$ extra
Size $15.5 \times 14 \times 4.5 \mathrm{c} / \mathrm{m}$
WITH CIRCUIT
T4/RF LONG-MEDIUM \& F/M TUNER WITH MC1310 DECODER $\star 5$-BUTTON SELECTOR SWITCHES. \star INPUT SELECTORS FOR GRAM \& TAPE * Supplied complete with FRONT-END TUNER AND FERRITE AERIAL * SIMPLE INTERCONNECTIONS * Size $19 \times 13 \mathrm{~cm}$.

THIS QUALITY AMPLIFIER $£ 10.95$ WITH CIRCUIT
POWER UNIT KIT FOR ABOVE MODELS $25 / \mathbf{2 8}$ VOLTS $£ 2.95$

THIS ARTICLE LOOKS at some of the uses of these new Microprocessor (MPU) integrated circuits and associated components. "In one short article?'", you may ask, but we don't mean to go into great programming details, etc, all we intend to do is to show how you could use an MPU in your next project.

JOHN MILLER-KIRKPATRICK

Minicomputer or Box of Tricks?

The main function of a microprocessor chip is to replace a whole boxful of TTL and LSI logic gates, not just components for a specific job but a whole range of devices. One of the most logical uses for an MPU chip is in a minicomputer system especially as the cost of such a system is now within the reach of a larger number of hobbyists. The minicomputer system is usually seen as a unit for home information retrieval and/or a controller for complex household lighting, heating or cooking. The system could be programmed to keep recipes, play TV games, help with homework, do the household accounts, etc. Any job or function which is boring, repetitive or requires complex calculations and record keeping can now be done with an MPU. Yes it could do the washing-up but the I/O interface would be too complicated, using a simple keyboard and perhaps your TV as a VDU most of the jobs mentioned above would be quite feasible. As ETI is presenting System 68 for just that purpose this article is not intending to look at the minicomputer type of use for an MPU chip

"Sort out that box of Rubbish"

How many times has your wife/mother/? complained about your "general purpose electronic component storage system" otherwise known to the family as Dad's Junk Box? To help to keep the peace it is necessary to attempt to sort out all of your resistors, capacitors and ICs about 3 or 4 times per year. These
sessions can sometimes be very productive for the home constructor as you can find all sorts of 'lost' goodies which you no longer have a planned use for. When you have finished this massive re-organisation of your supplies you may find that you have an organised storage system for your TTL or other logic ICs, in other words you may now have a boxful of logic to cover most applications in most projects.

Now that peace reigns in the household for a time you may be able to build that project, basically the same as the magazine project but with a few changes dependant both on your preferences and your stock of ICs. Do you find that some times you build exactly as per the magazine article, sometimes you use some of the article and sometimes you have a brainwave?

Everybody Redesigns

Either accidentally or on purpose nearly every electronics constructor redesigns a circuit when he comes to building it. That is exactly what the main intention of this article is - were you beginning to wonder? In order to show how to use an MPU in an otherwise. TTL/CMOS project 1 have used as an example the Electronic One-Armed Bandit project which is now in ETI Top Projects Book 4 and intend to discuss how this could have been built with an MPU. As this project contained about $£ 10$ worth of ICs while an MPU design would cost a lot more, a one-armed bandit with an MPU is not an economically feasible proposal. One could argue that MPU chips are going to get cheaper or that you could add enough features to the basic bandit to make it worth the extra money, but for the present let's ignore the cost and talk about the principles involved.

The block diagram of the original bandit is shown as Fig 1, physically it was presented as four units - case, power supply, main logic PCB and display PCB. The display PCB contains a 3 digit counter, 3 decoders and 3 seven segment displays, it also has 12 LED lamps which are used as 'spinning wheel' indicators. The lamps flash apparently randomly and then stop and indicate 3 sections of the 12 lamps, some of the combinations of the 3 lamps selected are winners and others are losers.

By referring to the block diagram you can see that three oscillators cause the 3 sets of 4 lamps to flash at different rates, this gives an extra feeling ot iandomness so that you do not feel too cheated when it has all of your money! Pulling the handle feeds the oscillator outputs to the 3 divide-by-ten counters. When the handle is released the oscillators and counters stop. The states of the stopped counters are now gated into a decoder which produces a set of outputs corresponding to first prize, second, third, fourth or hard-luck! The first four of these outputs cause a number to be loaded into a pre-settable counter which then proceeds to count down to zero whilst at the same time incrementing the payout counter. The payout counter is decremented at each pull of the handle and thus the final unit is a good representation of the real thing, even if it does not have random Hold and Double or Quits features.

Leave that and that but rip the rest out

Any builders of the original unit might be interested enough to do just that and so lets have a look at what we still need in the MPU version. The case would need little or no modification, any mods being the addition of
more buttons, lamps, bells and whistles to extend the features of the basic unit. The power supply would need to be changed to give +5 V and -12 V and or -20 V depending on the devices used. MPUs do not require fancy power supplies with millivolt regulation, the 78055 V regulator and a couple of zeners will suffice.

For the present we will leave the display PCB with its associated counters but it is not indispensable! We are thus left only with the main logic PCB which is exactly where our MPU wants to go.

A microprocessor chip can be thought of as several separate units in one chip. The first unit is a decoder similar to a BCD to seven segment or decimal decoder, the data fed to the decoder is an instruction. Thus an instruction might be decoded so as to cause a clear or an increment of a counter, alternatively it might gate a flip-flop and thus cause an output to change state, Simple MPUs such as SC/MP have about 50 different instructions, the 6800 has about 80, while a $Z 80$ has 130. The range of instructions covers logical operations such as AND; OR and EXCLUSIVE-OR, counter incrementing/decrementing/loading/dumping, or the transfer of data from one part of the chip to another in parallel or serial form. If you wanted to build an MPU you would need shift-registers, counters, decoders, latches and a decoder (ROM), all of these to be interconnected so that each can control/be controlled by any other.

The instructions which we feed into our decoder
could be decoded as a transfer of data from a register to a latch which is in turn connected to the outside world. It is convenient to have only one set of information connections to the outside world and thus these connections have to serve as instruction input and as counter input/outputs, this set of lines to the outside is called a bi-directional data bus.

As we need to use this data bus for both instructions and data we need to store each separately internally, thus are born the expressions Instruction Register and Accumulator Register, really just a couple of 8 bit latches. SC/MP has an extension to the Accumulator and naturally enough this is called the Extension Register, it can swap its data with that in the Accumulator and has the additional function of being a shift-register with its serial input and output connected to the outside world. Thus our first instruction could cause the data on the data bus to be latched into the Accumulator, the second instruction swaps data with the Extension and the third and subsequent instructions clock the data in the Extension out to the MPU output pin at the same time as clocking the data on the serial input into the Extension. To build such a device with TTL would require about a dozen packages, with SC/MP it becomes a set of bit patterns input to the decoder.

The 8 bit wide instructions mentioned above have to be presented at the data bus in sequence and as they are required. If they were hard-wired in a very small

Fig. 1. Block diagram of "One Arm Bandit" using conventional TTL/CMOS logic.

Fig. 2. Block diagram showing "Bandit" based around on MPU chip.

system a 7442 type of decoder could be used to enable each set of bits at a time. The 7442 would need to know the address of the next data unit as this information is supplied by the Address Bus which is normally 16 bits wide thus giving access to 65,536 sets of data in place of the 7442's ten. The Address bus is held internally as a 16 bit parallel access counter which can exchange data with the Accumulator, Extension or Pointer Register. Thus, if we can change the value of the Address bus counter we can point the MPU back to a previous instruction address and thus cause it to enter a loop. The Address register is known as a Pointer register, in SC/MP, for example, there are 4 such registers, PR-O is used for the next instruction address and the other 3 are used to access other addresses for data 1/O. By loading a Pointer Register in a manner similar to that of loading the Extension we can either access or any of our 65,536 addressable slots or we can cause the MPU to get its next instruction from any of the slots. -

Accumulating data

The Accumulator is used for input/output and also for the results of logical ANDs, OR, and EX-ORs, it can also be used as the result and one of the operands in an ADD instruction.

Data input / output can be accomplished through the serial $1 / 0$ pins connected to the Extension or via the main data bus. It is usual to have some area of RAM connected to the data bus for storage of intermediate results, a couple of MM 2112 chips gives 256 Pigeon Holes each with 8 bits of data storage. The RAM is
accessed by a Pointer Register which selects a) the RAM physical devices and then b) one of the $\overline{2} 56$ locations within that RAM. The 16 bit pattern for location zero (the first) in a RAM based as hex location OFOO would be 0000111100000000 , it is easy to see how this bit pattern could be decoded with AND and NAND gates to give a single enable line signal (one 7420 and two 7421 s?). Similarly, if we had a couple of 7475 latches we could decode a particular address (eg OEOO) and use the enable to clock the latches and thus store the data which had been output on the data bus at the same time. These 7475 s are to be used for driving the LED lamps in our Bandit so that we need two sets of latches (OEOO and OEO1) to give us a maximum of 16 LED lamps (we need 12). We can use a similar latch but with WIRE-OR or TRI-STATE outputs (74173) to latch data into the MPU from a set of switches such as the start handle or possibly HOLD switches.

Simulation is the Answer

If you had lots of sheets of paper you could pretend to be an MPU pretending to be our bandit. Get someone else to operate you by pulling your left arm as the Start handle and then start counting very fast until they release your arm, if you can manage it count three totals at a time and thus when your arm is released you can write down these three numbers on a scrap of paper. The MPU would do the same thing by sensing the changes in the data from our switch latch, adding to pseudo-counters in RAM locations (scraps of paper) and then stopping when the switch latch changes state again.

Now you look at your scraps of paper and decide whether the numbers correspond to any on a list of winning combinations which you have previously compiled. If the combination is a winning one then your list will have a 'Win amount' figure next to the winning combination, this figure is now credited to the players bank. If the player did not win then one unit is taken from his bank. You are now ready to have your arm pulled again.

If we use the existing display PCB we have to add or subtract from the bank by pulsing the bank counters on that PCB. We could keep these counters internally and latch out the BCD data in a similar way to that with the LED lamps, via a couple of latches. These latches would then feed into the BCD to seven segment decoders and on to the displays. There is no reason at all why the BCD to seven segment conversion could not be done within the MPU and seven segment data output to the latches and then directly to the displays.

Hardware and Software

A simple definition used to be that Hardware hurts your foot if you kick it and you cannot kick software. Now that computers are not the giant metal monsters that they used to be this definition is no longer true but hardware is still the physical devices and software the program.

For our application we obviously need an MPU chip and as our application is very simple let's use a SC/MP MPU. We need somewhere to store our program and our pseudo-counters, for this we could use a 256×8 bit RAM (2 MM 2112 s), for a more permanent unit we would have to additionally use a PROM but we can use RAM in this example. We have to enter our program of sequence of bit patterns into the RAM starting at address location 0001 as this is where SC/MP goes to find its first instruction after the reset button is pressed. A simple development system such will allow programming of the RAM with simple toggle switches and the program can be checked out at a very slow speed or as single steps.

We also need a four bit input latch (74173) connected to the handle and HOLD switches and 3 four bit latches (74173 or 7475) for the LED lamp drivers. If you intend to replace the BANK counters with software pseudo-counters then another 3 four bit latches will be needed to latch out the BCD data for each digit. To make accessing of these latches easy we can ignore the top four bits of the address bus and use the next four bits as inputs to a 74421 of 10 decoder. This will now break up the addresses into 256 byte lumps, any access to 0000-00FF will enable the RAM, 0100-01 FF the switch latch, 0200-020FF and LED latch, etc. A block diagram of this is shown as Fig 2, as you can see the outputs from the 7442 are used as follows.-Output 0 address locations 000-00FF used for main RAM (program \& Data)
Output 1 address location 0010 used for switch latch, Outputs 2, 3, 4 address locations 0200, 0300, 0400 used as LED lamp drivers.
Outputs 5, 6, 7 address locations 0500, 0600, 0700 used as BCD output latches. With the exception of the RAM all of the other devices hung onto the data bus only use bits $0-3$ of the data bus, the other bits being ignored.

Conclusions

The system designed here is hopefully one of the simplest MPU circuits you have ever seen. Once you have grasped the idea of using one 8 bit data bus for most of your input/output you are well on the way to understanding MPUs. The very nice thing about MPUs is that for any given hardware configuration there are lots of software possibilities, for instance we have to have a four bit latch for the start switch so why not hang 3 HOLD buttons on it as well? By latching out seven segment data instead of BCD you could use any combination of the seven segments plus decimal point to display letters or patterns, by moving up to a 5×7 matrix display you could output even more patterns/letters. At an approximate guess the hardware shown in fig 2 would cost about $£ 25$ compared to the $£ 10$ for the original (displays not included) but for the extra money you have a much more flexible system. MPU's are not cheap but for what they can do for you they are a bargain!

TTL FROM NATIONAL, ITT, TEXAS, SIGNETICS, ETC.

CMOS
LOW POWER
SCHOTTKY
Mumbly

MICROPROCESSOR SYSTEMS

WE HAVE FOR some time been considering the constructon of an accurate electronic thermometer, and the announcement of the new National LM3911 temperature controller was enough to spur us into action and get down to building the thing.

The LM3911 is a highly accurate measurement system for use over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. It is fabricated on a single monolithic chip and includes a temperature sensor, stable reference voltage and operational amplifier on chip.

SENSING ATTRACTION

The characteristics of this device make it ideal as the basis for an accurate and easily calibrated thermometer. The chip produces an output of $10 \mathrm{mV} /$ ${ }^{\circ} \mathrm{K}$ and all that is necessary to convert the 3911 into an electronic thermometer is to connect it to a scaled voltmeter.

In its simplest form the voltmeter would consist of.a moving coil meter with as large a deflection as possible.

It soon became apparent that if we were to make use of the full measurement range available, we would need a very large meter scale. A smaller scale would mean that the temperature could not be read to within a couple of degrees. We wanted our thermometer to be more accurate than this.

Now while we are not in favour of going digital for the sake of it, in this case it seemed that the potential accuracy of a digital display was required.

We threw out our analogue measurement stage and started thinking in terms of VCOs and 7400s. This line of approach seemed very attractive until we looked at the final design.

THERMAL EXPANSION

The component count had gone up dramatically and the accuracy

The circuit for the digital thermometer may conveniently be broken down into three separate building blocks. These ate the temperature sensing block, the A to D convertor including the display and the power supply.
We shall start by considering the temperature sensor.

THE TEMPERATURE SENSOR

The LM3911 temperature controller used in this project provides an output voltage which is linearly related to the temperature at which the chip's sensing element is maintained. This output voltage is given by the relationship:

$$
V_{\text {out }}=T .10^{-2} \text { volts }
$$

Where T is the temperature in degrees Kelvin.
The Kelvin and centigrade scales are related by the following relationship:

$$
{ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273.16
$$

Thus at room temperature (about $20^{\circ} \mathrm{C}$) the output of the LM3911 will be:

$$
\begin{gathered}
\mathrm{V}_{\text {out }}=(273.16+20) \cdot 10^{-2} \text { volts } \\
\bumpeq 3 \text { volts. }
\end{gathered}
$$

For the A/D convertor to give readings in ${ }^{\circ} \mathrm{C}$, and to correctly display temperatures below zero, it is necessary to arrange so that at $0^{\circ} \mathrm{C}$ the output of the LM3911 is OV ,

The components R2, R3, R4, antd R5 together with RV1 allow for this adjustment. They enable an adjustable 'offset' voltage to be added to the output of the temperature sensor. This offset is trimmed during the calibration procedure described in the main text.

For more detailed data on the LM3911 see the Data Sheet on page 59 of our September 1977 issue.

THE A/D CONVERTOR

The A/D convertor is based on the new Intersil ICL7107 $31 / 2$ digit, single chip panel meter. It is intended to drive an LED display directly with a segment current of abbut 8 mA . In addition to a precision dual slope convertor, it contains BCD to seven segment decoders, a clock and a reference voltage.

The detailed operation of this chip is something known only to the design'team. who produced the IC's mask, so we' will have to content ourselves with a brief look at the function of the external components:

The components associated with pins 38, 39 and 40 (C4 and R9), determine the oscillator frequency, which is designed to ; run at approximately 50 kHz .

The reference voltage for the system is set up using RV2. The chip internally regulates the voltage between pins 1 and 32 at about 2.8 volts. This stable voltage is used as the systems reference.

We shall see later that we require the 7107 to have an fsd of 2.000 V . For this fsd reading we must arrange for the voltage, between pins 35 and 36 to be 1.000 V :

Adjustment of RV2 allows this to be accomplished.

The components not yet mentioned take care of auto zero, polarity, etc., and Intersil do not provide details of their exact functions.

The displays are directly connected to the appropriate pins with no interfacing required.

LINKING THE TWO

The ground referenced voltage from the junction of R4, R5 is fed, via a smoothing capacitor, C9, to R6. This connects to the analogue input of the 7107, and apart from considerations of scaling, and a power supply, the circuit should now operate, albeit inaccurately,

SCALING

First scaling. The output of the LM3911 is a voltage increasing at $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ or $1 \mathrm{mV} / 0.1^{\circ} \mathrm{C}$. If then the least significant digit of our display reads in steps of 1 mV , it could be thought of as representing $0.1^{\circ} \mathrm{C}$ temperature steps.

Similarly ${ }_{6}$ the second least significant digit represents $1^{\circ} \mathrm{C}$ steps and the third 10° steps.

The 7107 is a $31 / 2$ digit chip, and if we ignore the most significant digit and arrange an fsd of 2 volts, we will have the required scaling.

POWER SUPPLIES

The power supply section is quite straightforward. The LM3911 requires a $+15 / 0$ r -15 stabilised rail, which is provided by REG 1 . The 7107 requires $+5 / 0 /-5$ rails and these are provided by REG 2, ZD1 and associated components.

The reason for using a regulator in the 5 V rail and not the -5 V rail is explained by the fact that the 5 V rail supplies the LED current.

Interior view of our temperature probe. Pins 5, 6, 7 and 8 of the LM3911, those connected to the internal temperature sensing element, have been soldered into a jack plug from which the shaft has been removed. This provides good thermal contact between the probe tip and the sensor chip
of the unit would have been seriously degraded as many of the new components would drift with temperature and time.

Having firstly rejected the analogue approach, and now come to the con clusion that the digital approach was also out, we were beginning to worry....

It was at this point that a new chip from Intel came to our rescue. The 7107 is a single chip DVM with three and a half digit resolution. The chip needs only a few passive exteranl components to function as a DVM - unlike some single chip DVM's of the past which were little more than overpriced VCO's.

The 7107 is available fron Rapid Recall at Betterston Street, Drury Lane, London WC2H 9BS. The LM3911 should be obtainable from National Semiconductors Distributors. The voltage regulators we used we obtained from Doram.

The rest of the components should be available from good component shops or from any of the larger mail order suppliers advertising in this magazine.

A view of the interior of the thermometer. The seven segment displays are mounted in the display mounting hardware described in the text and hard wired to the PCB board. The probe is connected to the thermometer via the DIN socket shown on the rear panel.

This looked very promising. the component count would be low and the DVM chip was stable over a wide range of temperatures. In theory all we had to do was hook the temperature chip up to the DVM, add a power supply and we would have a thermometer capable of resolving temperature in $0.1^{\circ} \mathrm{C}$ steps.

All the components with the exception of IC2 should be mounted on the PCB according to the component overlay shown.

IC2 is a CMOS device and we reccomend that it be mounted in an IC socket. As a further concession to the sensitive nature of this chip it is best not to insert the IC into its socket until all other constructional work has been completed.

After finishing the PCB assembly the display should be wired to the board. The display mounting hardware we used was from Elbar (see page 23 of tha August issue).

Indication of negative temperature is by means of a LED which is mounted in the vacant position of the display mount.

The mounting arrangement for the sensor is largely a matter of choice. We mounted ours in a jack plug from which the central shaft had been removed. If the distance between the sensor and thermometer is large, then screened lead should be used for the interconnection.

There are two adjustments to be made before the thermometer will display the temperature correctly.

The first is to adjust RV1 so that, with the sensor held at $0^{\circ} \mathrm{C}$, the display will read all zeros.

The best way of ensuring that the sensor is at $0^{\circ} \mathrm{C}$ is to immerse the device into a plastic container (flower pot) that has been half-filled with crushed ice, and topped up with cold water to the three-quarter full mark. Care must be taken to ensure that no water can reach the electrical connections to the sensor.

Leave the mixture for five to ten minutes, stirring gently, and at the end of this time adjust RV1 to give an all zero display.

The second adjustment to be made is to RV2. There are two different ways of accomplishing this. The first is to hold the sensor at a second known temperature, well away from zero, and then to adjust RV2 to bring the known temperature, and the reading on the digital thermometer into agreement.

Probably the best way of meeting the above requirement, is to obtain an accurate, limited range thermometer - a clinical thermometer should be ideal.

Place the sensor and clinical thermometer in a container of cool water and slowly add warm water to bring the mixture into the temperature range covered by the clinical thermometer.

When the mixture appears to have settled at the same temperature for a few minutes, adjust RV2 accordingly.

Another source of a stable, known,
temperature is the human body. A healthy persons under arm temperature is fairly constant at $37.4^{\circ} \mathrm{C}$.

The male members of the ETI staff, for some reason the women would not take part in this test, must be a healthy lot because this method agreed very closely with the first.

The second and perhaps the most
accurate procedure, which relies not on a second temperature but upon the accurate trimming of the voltage be tween two pins on IC2.

If an accurate DVM is used to measure the voltage between pins 35 \& 36, then adjustment of RV2 to bring the voltage reading to 1.000 V will complete calibration.

Mrahnitank

 Capacitive discharge electronic ignition kits* Smoother running
* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life

Improved acceleration/top speeds Optimum fuel consumption
Sparkrite Mk. 2 is a high performance, high quality capacitive discharges electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in 15/30 mins.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dweil time of the contact breakers for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition up to 8 cy linders.
THE KIT COMPRISES EVERYTHING NEEDED Ready drilled pressed steel case coated in matt black epoxy resin, ready drilled base and heat-sink, top quality 5 year guaranteed transforme and components, cables, coil connectors, printed circuit board, nuts bolts, silicon grease, full instructions to make the kit negative or positive earth, and to page installation instructions.

OPTIONAL EXTRAS

Electronic/conventional ignition switch
Gives instant changeover from "Sparkrite" ignition to conventional ignition for performance comparisons, static timing etc., and will also switch the ignition off completely as a security device, includes switch connectors, mounting bracket and instructions. Cables excluded Also available RPM limiting control for dashboard mounting
(fitted in case on ready built unit).
CALLLERS WELCOME. For Crypton tuning and fitting service ‘phone (0922) 33008
Improve performance \&economy NOW Note Vehicles with currom impulse tachometers (Smiths code on dial R.V.1) will PRICES INCLUDE VAT, POST AND PACKING.

POST TODAY!

Quick installation No engine modiffcetion required

Electronics Design Associares, Dept. ET 10
82 Bath Street, Walsall, WS1 3DE. Phene: (0922) 33652
Name
Address

THIS MONTH'S SPECIAL OFFER

We still have some PAPERMATE pens to give away, so if you spend over E20 on any CASIO products, we will give you a brushed chrome pen worth E3.95. ALSO SEE BELOW. LOOKING FOR A WATER RESISTANT WATCH WITH STOPWATCH? Wait until you see our new range. They should knock spots off all the competition Details next month, or S.A E.

SUPERE CASIO CASIOTRON WATCHES
Constant LCD display. 8 functions with backlight All stainless steel cases, battery hatch. water resistant to 130 feet. Many with MOny have DUAL TIME ZONE facility as well One battery lasts around 15 months or more. Disolay can be easily renewed at minimal cost Rapid second correction. Rapid adjustment facilities. Easily adjusted bracelets. Presentation box R18B (left) £34.95 R.R.P E59. 95.

CASIO MQ-1. $1 / 2 \times 1+1 / 4 \times 43 / 4$ inches. 1.4 oz .

Clack. LCD display of hrs, mins.. secs. AM/PM
Calender. Day, date, month, year
Stopwetch. Normal and net times to 24 hrs.
Timer. 24 hr. clock, or countdown Calculator. Time and Date caculations wo tiny batteries last around 18 months 34.95. RRP £39.95 (left) ASIO $8 T-1$. $1 \times 2 \% \times 5 / 8,4.80 z$ Four Standard. Start/stop. Time out.
Standard. Slamulative lap times
Lep-2. Individual (Taytor Split) lap times TOTAL time button.
Calculator. Time calculations. Full access to memory. Sq. roots. Seven \% functions Bright digitron display. 17 hrs . battery (AA) (Rıght) RRP £29.95. £24.95

TIMEBAND DIGITAL ALARM CLOCK (MAINS)

WAKE UP TO TIMEBAND. Precise timekeeping. Solid state reliability and silent running
g minute snooze features. Alarm on and mains fail indicators. C500 and C590 can be synchronised to the exact second and will display last minute digit and seconds
C500 (left) H. 31/9" \times W. $33 / 4^{\prime \prime} \times$ D. $31 / 6^{\prime \prime}$. Black or White E14.35
C6110 (centre). As C500 with more sophisticated controls. White only $£ 15.90$
C590 (right) With built-in high /low intensity elevating reading lamp £23.35

ACCURIST. New slim quartz analogue (stepping motor) watches. Four basic functions, luminous. Stainless steel/gold plate on strap/bracelet. RR Prices around $£ 50$.
CITIZEN. Once the same company. Citizen and. Seiko are the two biggest watch manufacturers in the world. We now stock 22 models of these superb quartz analogue and digital watches.

NEW FROM IBICO

Swiss made quality watches, water resistant to $100 \mathrm{ft}(3 \mathrm{at})$ mineral glass faces 451 ES CHRONOGRAPH (left) 6 digit LDC display, 6 functions, backlight and stopwatch 1/100 second to 1 hour. Net and lap times. Slim, all stainless steel case and bracelet. 649.95

451 ELB (not illustrated). As above but with water resistant leather strap. £48.50 408 M8. 6 digit display. 6 functions, light. s/s back and bracelet. $£ 34.95$ 705 ALE (centre). As above but with water resistant leather strap. £33.85 electronic sound corrector, battery life around 3 years (1000 -day module) $\mathbf{£ 2 9 . 5 0}$

SPECIAL OFFER. Buy any of the watches listed below (few left only) and we will give you a PAPERMATE gold plated pen and pencil set (or two pens) worth f 11.40 a PAPERMATE gold plated pen and pencil set (or two pens) worth £11.40.
Timetend TC410 (Gold Plated) $£ 27.95$. TC412 (G.P.) £31.95. TC413 $£ 28.95$ WITHOUT PEN DEDUCT FE Netiond sion 12 (itP DAC5WS E22.90, DAC5YS E25.90 DAC5WB 524.90 DAC5YB $£ 28.50$ D $\mathrm{A} \bar{B} 5 W B$ tall stainless) $£ 32.50$ DAB5YB £25.90. DAC5WB. E24.90. DAC5VB E2.50. G.P) £36.50. Ibico 402 ELB £39.95. 402 ES £39.95. 405 ILB £33.50. 405 IS £33.50. Casio S14B (XI-Worid time. stopwatch, counter. time memory. RRP E129.95) £69.96. R19 £29.95. Decimo quartz £37.50. Inetar $21 / 2$ functions LCD gold plated and bracelet £15.50.
CASIO CALCULATORS. CO-1 $£ 29.95$ Scientific. FX-2 1 (same functions as FX-19) $£ 14.95$. FX-105 (2 sets brackets) $£ 16.95$. FX- 10 (dB calculations) $£ 17.95$.
(LCD) $£ 19.95$. FX-2000 (LCD 1000 hr . battery life $£ 24.95 \mathrm{FX}-201 \mathrm{P} £ 49.95$.
IBICO 065 LCD Slimline Executive. Full memory \% Long batery life $£ 1480$
IBICOM. Quartz car clock Red IED digits come on with ignition AA approved £19.95. Cathedral lounge/alarm clock Metal case triangular section. Green $1 / /^{\prime \prime}$ display snooze feature $23 / 4 \times 61 / 2 \times 3$ inches Gold/black or silver/black. 2 yr . guarantee. $£ 19.95$. feature, $23 / 4 \times 6 \sqrt{2 \times 3}$ inches. Gold/black or silver/black. 2 Yf . guarantee. £19.95. controls. three sound effects. Mk 1 B/W E24.50, Mk. 1 C , colour £29.95. Mk 4 Horizontol and vertical bat movement $£ 3750 \mathrm{Mk} 15 \mathrm{C}$ With gun, 6 games $£ 47.50$ Offers subjeet to availability. All items advertised are in stock or on order at copy date Prices include VAT, P\&P. Send cheque. P.O. or phone vour credit card no. to

19/21 Fitzray Street
Tel. 0223312866

STEREO BROADCASTING is generally associated with FM probably because that's the way it's been transmitted up to now.

But it's perfectly feasible to transmit a stereo programme using modified AM transmitters and receivers. In fact five American-designed systems are being evaluated right now by the USA's National AM Stereo Committee whose subsequent report will be studied by the FCC later this year.

AM stereo broadcasting has the same inherent limitations as AM mono that is a bandwidth restricted to less than 10 kHz . Thus the full audible frequency range can not be transmitted and it is for this, amongst other, reasons that FM transmission is used for high quality stereo broadcasts.

Protagonists of AM stereo accept the

Fig. 1. The Comm Associates transmitter system uses dual RF-modulator paths, one for the upper subcarrier and one for the lower. Matrixing of L and R signals is not necessary.
limitations inherent in AM broadcasting but point out that the market audience they seek is not the purist FM stereo listener but the 'man-in-the-street'. they say that paople are now so aware of stereo that mono reception is anachro-
nistic, and that if AM stereo could be introduced at sufficiently low cost it would be absurd not to do so.

The main attraction of AM stereo is low cost. In fact it's possible to modify an existing $A M$ transmitter to

Fig. 2. Motorola's receiver employs both in-phase and quadrature phase detection. In addition, a phase shift system removes cosine modulation inserted at the transm/tter.

Fig. 4a. In the Kahn transmitter, the $L-R$ signal phase modulates RF from a crystal oscillator. The Land R signals are carried by separate sidebands, and are picked up on a receiver equipped for phase detaction.

Fig. 3b. The Belar receiver has two IF paths, one to a normal AM detector, and one through limiter stages to an FM detector.

Fig. 4b. The stereo signal from the Kahn transmitter can also be picked up by two mono receivers, one tuned a little high, the other a little low.
stereo operation for well under $£ 6000$. Certainly a low power FM transmitter costs not a great deal more, but it's a different matter for the big 100 kW plus systems.

Most broadcasting studio equipment is stereo - certainly all modern recording machinery, cartridge players, record players are so made, as is the majority of programme material.

Stereo AM receiving equipment couId be inexpensive. Many potential AM stereo listeners already own a record player which could accept an input from an AM stereo decoder. And even if a complete AM stereo receiver were to be required, such could be built for very little more than the cost of it's AM mono equivalent land would of course offer a whole new market for manu-
facturers!). Let's consider the five major systems being proposed:

COMM. Associates:

This is probably the simplest proposed system. It is quite different from the other four. The system is called 'Frequency Approach Aperture'; the left channel modulates a carrier just below the main carrier ${ }_{t}$ and the right channel

Fig. 5. Block diagram shows both transmitter and receiver stages for Magnavox's AM stereo design. The formulae detail the signal properties at various stages. In common with Belar and Kahn, the system uses dual modulation.

modulates a carrier just above the main carrier. The combined signal goes to a band-pass filter which seperates out the upper sideband of the lower carrier plus the lower sideband of the upper carrier (Fig. 1). The output from the bandpass filter is the transmitted signal.

The simplest way to receive the Comm. signal is via two AM receivers one tuned to the upper sideband, one to the lower sideband! A more elegant way is to use a receiver in which the two signals are separated by filters and then passed on through two separate IF strips and demodulators.

It is important to note that this is not a matrix system. Claimed advantages are good noise characteristics, excellent fidelity and all the well known advantages of supressed carrier singlesideband transmission.

Motorola:

This system uses circuitry vaguely similar to that used in colour TV transmission. The system called ' C Quan' uses two carriers operating at the same frequency but separated by phase quadrature. Motorola say that a major part of their design is in the elimination of distortion caused when the stereo signal is being received on mono receivers, this distortion apparently caused by some interaction between modula. tion components. This problem is overcome, claim Motorola, by modulating both the in-phase and the quadrature components by the cosine of the modulation angle.

Motorola's 'C-Quan' receiver is shown in the lower part of Fig. 2. As may be seen, the IF travels along two separate paths, one to an in-phase detector, the other to a quadrature detector. Further elements then remove the cosine term (generated in the transmitter). Finally, the two channels pass through synchronous detectors which recover the left channel and right channel signals.

Belar:

Originally described and demonstrated by RCA. Belar Laboratories propose a matrix system in which an L+R signal amplitude modulates the transmitter just as in mono transmission, while the $L-R$ signal is processed so as to frequency modulate an RF carrier which in turn modulates the transmitted AM signal.

The transmitted carrier thus contains both AM and FM sidebands. The FM sidebands contain the stereo information (i.e. the L-R signal) and the AM. contains the L+R signal - the latter of course being totally receivable on any standard unmodified AM mono receiver.

Belars proposed stereo receiver is shown in Fig. 3a and b.

Kahn:

Although more complex than the Comm. Associates proposal Kahn Cómmunications' system is equally as elegant. Here the carrier is phase modulated with the $L-R$ signal and then amplitude modulated with the $L+R$ signal. Some very sophisticated circuitry is used to produce the resultant carrier which has the left channel on one sideband and the right channel on the other.

The transmitted signal can be received in various ways. A normal mono AM receiver tuned right onto the carrier will receive the normal $A M$ envelope (the $L+R$ signal). Stereo reception can be obtained either by using a receiver with phase detection for separating out the $L+R$ and $L-R$ signals - or by using two separate mono receivers (or circuits) one tuned slightly above the carrier, the other slightly below.

The Kahn system has been quite thoroughly tried and proven by stations XETRA (Mexico) and WFBR (Baltimore). Apparently the results were excellent with good freedom from interference, and excellent mono and stereo reception. Over 15 dB separation was achieved merely by using two mono receivers, and well over 35 dB using the phase detection.

Magnavox:

This system is similar in some ways to those of Kahn and Belar. Magnavox amplitude modulates the L+R signal and phase modulates the $L-R$ signal. A 5 Hz tone frequency modulates the carrier to provide a reference for a wide-band phase-locked loop which generates a phase-modulated signal. This signal is in turn modulated by the L+R signal before transmission.

The receiver consists of a single IF strip the output of which is then split and passed to an envelope detector (for the L+R signal) and to limiters and a phase-locked loop which demodulates the phase-modulated ($L-R$) signal

Wait and FCC

At present there is no clear indication from the FCC that AM stereo broadcasting will be introduced at all - let alone any particular system. But the proposals are being taken very seriously by the FCC as well as by the companies involved. And unlike the four channel fiasco in which the manufacturers of four competitive and non-compatible systems fought to establish a hold in a largely disinterested market, AM stereo will, if adopted, be backed by the FCC - who will also determine which system will be used.

keep on the straight and narrow with

SPIRIT LEVEL

AN ETI PROJECT TEAM DESIGN

IN ORDER TO DRIVE a car safely your mind must be clear, and your your mind must be clear, and your
reaction to situations as sharp as possible. Drink not only dulls the brain, but le. Drink not only dulls the brain, but
slows reaction time as well. Unfortunately it also seems to make most drivers over-confident of their ability
to drive correctly, usually with the result that they get 'bugged' by the police - and rightly so!

What we are offering here is a simple method of proving to someone, especially yourself, that those 24 pints HAVE had some effect after all! AI-

Field testing our design. Well it's a good excuse anyway isn't it? Working around the table; in the background we have the landlady of our favourite pub, to the left of her is Gary Evans Editorial Assistant, Ron Harris Assistant Editor and actually holding the evil machine Diego Rincon our new Art Editor.
though the device operates by demonstrating an increase in the time taken to react to a given stimulus, it is not meant as an accurate 'reaction timer'. and should not be treated as such.

Down In Nine

To use the Spirit Level, switch on and press the reset button. After what seems like an hour (actually about 8 seconds) the light will begin to 'move' rapidly up the column of LEDs as the circuit cycles through. When it reaches the top, it will stop there. Your task is to prevent it reaching ' 9 '. Pushing the 'Stop' button holds the LED on whatever number it was passing through at that instant.

So the more you drink, the slower you will be able to react, and the higher up the column will rise the glow (if you can't stop it at all before it reaches the top - put a pillow on the floor quick, you're about to pass out!). With component values as we have them, it takes about 0.4 seconds to cycle from 0 to 9 .

Originally we had a shorter 'wait' period before the oscillator was switched on, but this was too easy to anticipate any longer and it becomes boring. Slower cycle times are not a good idea, since there will then have to be a greater effect to make any difference to the score. Make it quicker by all means see 'How it Works' for the relevant details if you intend to meddle!

Half And Half Pint

Take a reading before you touch the ale. We found the average to be 3 or 4 (in a sober condition!). As the evening progresses and the number of pints rises, so will your score. Even one pint, if given time to be ingested, can take away that 'edge', and add one to your score. If you were averaging 3 half an hour ago, and now cant do any better

than 6 you're only half the driver you were!

Now before our readers condem us as converts to Alcoholics Anonymous, let us add this was conceived as a 'fun' project and remains so. Drinking and driving is never a good idea, and you'll get much more fun out of the game if you

Left: Our most unusual' subjectl Long John here insisted lby flapping his wings and squawking at 100dB) upon his turn. He failed. Maybe he couldn't find the button, the smell of alcohol was too much for him.
Right: Internals and all that. Layout within a box of this restricted dimensions is somewhat critical! Our PCB and a PP3 will live in harmony within the Verobox specified. The six links on the board can be clearly seen here - make sure you don't miss any of them out when wiring up

don't have to play it in earnest to avoid being breathylised.

Construction Points

The only problem to be faced in construction of our Spirit Level is that of keeping the size down sufficiently to
make it portable. Why oh why does nobody produce a decent small box to fit a PP3 and a PCB?? The vero box we employed is nearly ideal, but a few millimetres more would allow the battery to slot in sideways, and make the box much more versatile. Anyway, gripe over.... back to work. Build up

HOW IT WORKS

The LED display column is driven from the output of a 4017 CMOS decoder. This counts and outputs, in decimal form, the input pulses presented to pin 14.

These are produced by IC2 a 555 wired as an astable. Timing period for this is determined by R5 and C2 according to the formula $\mathrm{t}=1.4 \mathrm{RC}$.

IC1C and IC1d are wired as a toggle circuit,normally holding the reset pin low so that operation is inhibited. Upon switching on C1, starts to charge through R1 giving the time delay to avoid anticipation on the part of the player. After about 8 seconds

IClb's input goes high, the output goes low and the toggle action takes the 555 reset, pin 4, high so that the oscillator will run. IC3, the 4017, will count the pulses until output ' a ' is enabled. Normally the chip would recycle to nought and start again. However the connection to the inverter, ICla will reset the toggle and stop the astable by forcing the reset pin low.

Pressing the reset button PB1 takes IC3 reset to zero and sets the toggle back to inhibit. The 'Stop' facility is provided by PB2 and R4 which reset the toggle by halting IC2.

his is what our box looked like when we'd finished it It might be advantageous if the "o" LED was spaced away from the remaining column, so that it indicates a "waiting" mode rather than anything else.
the board as per the overlay, keeping components as close to the PCB as possible. Leave the ICs until last or, better still, use holders, low profile versions of which should just go in. As the chips are CMOS - watch it when handling them.

Keep all wires to the LEDs as short as you reasonably can so that when the box is closed up too much strain is not placed on the components inside due to overcrowding. Refer to the internal photograph to see how our workshop layed theirs out if you are in any doubt or trouble.

Before switching on, check the polarity of the LED column, and the orien-
tation of the chips, it can be an expen sive 'short cut' not to bother!

Getting The Bird

People's reactions to the Spirit Level can be quite hilarious, especially after a few 'jars'. We found disbelief and accusations of cheating to be the most common. For some reason our prototype possessed the property of attracting the pub parrot who insisted on his turn! -He failed misrably, so if your driving home tonight and see a car driven by a parrot heading for you - not only are you sloshed, so is he!

Our thanks go to the landlord of ETI's local, The Black Horse in Rathbone Place, for his patience and loan of his pub (and parrot!).

\longrightarrow PARTS

RESISTORS
R1
R2
R3,4
R5
R6

CAPACITORS
C1

C2
C3,4
C5
100R
470k
68k
1k

1 u 16 V
10 n polyester 4 u 7 16V

SEMICONDUCTORS
IC1
IC2
IC3
LED1. 9

ETI SPECIAL OFFER

REGULAR READERS will remember our review of this amazing little calculator in our July issue. Since then we have been itching to present it as an offer! Well here it is. Complete with program library.

Up until now, programmable calculators have been generally beyond the financial reach of many, but at this price there is no excuse any more!

For the few people unaquainted with the programmable we had better give a brief run down of what it can do. As you can see from the keyboard, all the common scientific functions are readily available to hand. What makes this machine really different however is it's 36 step programme facility.

Basically, what the program memory does is to 'remember' up to 36 'button pushes' and execute the whole lot again in a single operation' of the 'RUN' key. Just think what
time that would save on all those repetitive jobs!

You'll quickly learn to write your own programmes as we've done at ETI: our accounts section are using programmes and this calculator, not for novelty value, but to save time!

Sinclair have however written an enormous number of programmes covering electronics, maths', engineering and business, as well as games such as 'Moon Landing'.

Sinclair have prepared a special book containing nearly 300 programmes, especially, and exclusively for ETI.
All programs are given in a clear easy to follow form, with key strokes and 'check symbol' side by side.

Buy your programmable from us at $£ 16.95$ and we'll throw in one complete library FREE! (usual price £4.95). With all this computing power waiting for you AND a free library - what are you waiting for??.

[^0]

What to look for in the November issue: On Sale October 7th

Programmable Calculator
 Survey
 AS MOS techniques have become more and more refined, each LSI chip has been capable of containing ever more circuitry, and this is most evident in the field of calculators. Even a couple of years ago, all programmable calculators were ultra-
 high price, specialist luxuries. Now you can buy one for around £16. Next month we're taking a serious in-depth look at some leading examples of the intelligent button-box. Prices of the machines included wind their way up to $£ 100$ or more - but more money does not necessarily mean more machine power. Or does it? Find out next month.

Compander
 THIS IS our second venture in this field,

 and is prompted purely by the success of the first. This is a "scaled down" version using the NE571 chip but offering performance comparable to our more complex and costly design. A must for serious hi-fi fans.

Digital Clock Plus

NOT JUST ONE clock, but as many as you like! Complete construction details for a whole range of options - choice of display between LED and fluorescent, 4 -year calendar, two independent alarm times, forward and reverse time setting, battery back-up, three function "wakeup" outputs, snooze and sleep, time zone (updated) register, $12 / 24 \mathrm{hr}$ display seconds display ... instead of us filling up the page with all these features, why not read it yourself next month in ETI?

LED Pendant

BEING AN ETI reader, it is almost inevitable that you are highly attractive to beautiful women. Problem is these delicious creatures are rarely tolerant of what they regard as, a crumby, strange hobby: electronics.

Amaze your girlfriend(s), wife, mother, mistress(es), sister or granny and build them a piece of electronic jewellery (it costs far, far less than they will imagine, a quality of all good presents). Just touch the pendant and their initials flash up in sequence on a 7 -segment led and then turn off (it can't handle some initials).

LCD Calculator Offer
A REALLY NOVEL, just released, calculator from CBM at a 26% saving over regular price: the LG5K. It's not the facilities that'll bowl you over - though they inclue a 4-key memory, \% and square root facility - but the extraordinary battery life which alone could save you the cost of the calculator in just over a
year. Leave it on continually and CBM guarantee battery life of 5000 hours (that's nearly 7 months in English). It's also incredibly thin (6 mm) and no bigger than a normal diary. It's an unusual ETI offer but we're sure you'll find it exceptional value at $£ 10.95$, only from

BUGGIIMG

This bug, built into a cigarette packet, has a range of 200 metres.

DID THE British Secret Servíce bug No 10 ? Frankly we don't know but bug technology is a fascinating subject and extremely sophisticated.

Next month we take a look at bugs. bugging and how they're "swept" using high technology.
The photograph above shows one commercial bug which will fit into a cigarette packet.

The articles described here are in an advanced state of preparation but circumstances may necessitate changes in the issue that appears.

	VARIABLE VOLTAGE TRANSFORT Carriage extra INPUT 230 v. A.C	115 to ins. 110 volr. $50 \mathrm{H}_{2} .2 .8 \mathrm{amp}$. spht capactior motor Immense powe
WHY PAY MORE?! MULTI RANGE METER. A C. volts $25-500$ D.C volts 2.5 .500 (Sensativity $20001 / 1 / V D C$ \& A.C Sturdy cunipact inoving coil instrument with 21 ranges dimensions $i 20 \times 80 \times 44 \mathrm{~mm}$. Weigh 032 kg SERVICE TRADING CO. Price £5.50. incl. leads and batiery. Post 50p (Talal price inc VAT \& Posi 58.48.)	OUTPUT VARIABLE 0/260v. A.C. BRAND NEW. All types. 200W (1 Amp) fitted A/C	Length 145 mm . ex-equipment tested $\mathbf{£ 1 2 . 0 0}$. Poss ± 150 Sutable transtormer $230 / 240$ volt $\mathbf{£ 8 . 0 0}$. Pos: 750. 15 R.P.M. Type S048 15 rpm. 80 ib ins linpul $100 / 120$ voli A C Length inci
TRIAC flaytheon tag symmetrical Triac Type Tag 250/500v 10 amp 500 piv Glass passivated plastic rrac Swiss precision product for leng term retrability E1.25. P\&P $10 p$ finclusive of date and apphitation sheetl Sulable Drac 20p.		GEARED MOTOR
0 to $\mathbf{6 0}$ MINUTES CLOCKWORK TIMER. Double pole 15 amp 230 AC Contacts ino dibli) E1.50. P\&P 300		
GALVANOMETER. 50 misio mirror galvo Calbitated $50.0-50$ and 0.100 Mtg by Gritin \& George packnig E12.00. p\&p 60p		
	300 V.A. ISOLATING TRANSFORMER $115 / 230$ screened primary. two separate or 115 v tor 115 or 230 v Secondary two 115 v at $150 \vee \mathrm{~V}$. each lor 115 or 230 v oulpul. Can be used in series or paraligel connections. Fully tropicalised. Length 13.5 cm . width 11 cm welght 15 ibs Sperial price $\mathbf{C \delta} .00$, carr. © 1.00 .	
CONTACTOR MIg. by Hendrey Relays, type C2839 $220 / 250 \mathrm{AC}$ ops. Contact $4 \mathrm{C} / 0$ at 20 amp at 440 volts $A C$. price $£ 6.00$. P\&P 75p.		
	RODENE UNISET TYPE 71 TIMER $0-60 \mathrm{sec} 230 \mathrm{~V}$ AC operation. Incorporating a lapsed time indeator and repear facilities. A preciston motorised timer ideat lor process luming. photography. welding miximg etc Price 66.00 p\& 60 .	
230 VOLT AC FAN ASSEMBLY	STBDBE! STBOEE! STROBE!	CITENCO FHP Motor tupe C
21-WAY SELECTOK SWITCH with reset coil The ingenius eiectro mechanical device can be swiched up to 21 positions and can be reset trom 230 i240v A C operation Ulit is mounted on strong chassis Complete with cover Price $\mathbf{E 5} \mathbf{5 0}$. Ps. P 75y	HY-LIGHT STROBE KIT Mk. IV * tarest yype Xerion wnite light nubc. Solid slate timing and - vygerng cuccur $230 / 240$ vall A C. operation speed adustable	
	LIGHT	
VORTEX BLOWER AND VACUUM UNIT These units are ex-equipmeni but have had minmum use fully tested prior to despatch. Price $\mathbf{£ 1 2 + £ 1 . 5 0 \text { P\&P }}$ Suitable transformer for $230 / 240 \mathrm{v}$ a c $\mathrm{E} 6 \rightarrow$ E 1 P \& $\mathrm{P} P$	* FLUORESCENT TUBES F 63.50 pus PRP 40 p . Also avalabie tor 12 VDC op $£ 3.50$ op 4 pado 40 p. XENON FLASH GUN TUBES stack SAE. lor lull details.	$60 \text { cycte } 2850 \text { rpm. Fla }$
		$\text { no } 53.50$
CENTRIFUGAL BLOWER MIg by Smuths Indusiries 230240 V a Manalure Modei Serries 'p,m Fan type aderture $3^{\prime \prime} \times 2 \%^{\prime \prime}$ VBL4.L Price $£ 12$. Pusi $£ 1$ Also availatile extremely powerful blower migg by Friacmo	RE Wide range of $A C$ and $D C$ relays avalathe trom slock. Phone or write in your coquiries	BENDIX MAGNETIC CLUTCH Superts example of electro mechanics Man body "I lwo sectuons Coll secion is fixed and has he" sleeve. The dive secnon rolating on the oute, pertmeter When engages the iransmission is entremely puwerlul Diameter $11^{\prime \prime}$ Total width
NI-CAD BATTERIES		
	A C Relays Arrow. $2 \mathrm{c} / \mathrm{o} 15 \mathrm{amp} \mathrm{E1.50}$. TE.C. open type 3 c o. $10 \mathrm{amp} \mathrm{E1.10}$. Mag Devices 2 c o. 20 amp £1.50. Omoron of Keyswich 1 c/o 7 amp £ 1.00 . OC Relays Open tyee $9 / 12 \mathrm{~V} 3 \mathrm{c} / 07 \mathrm{amp} \mathbf{1 . 0 0}$. Sealed $12 \mathrm{~V} 1 \mathrm{c} / \mathrm{O}^{7}$ amp oklal base $£ 1.00$. Sealed 12 V 2 c o 7 Amp octal base. 51.25. Other rypes avalable - phone lor delans	
UNISELECTOR SWITCH 4 bank 25 wity 75 ohm cont, $36.48 v$ D.C operation. Ex new equpmuni £4.25, P\&P 75p Total proce onc VAT E5.40. MINIATURE UNISELECTOR 		
	FT3 High intensity muli lurn voltage, neon glow discharge flash tube Oesign for ignition timing. etc. £1.50 P\&P 25p 3 for $63.00 \mathrm{P} \mathrm{\& P} 50 \mathrm{p}$	
MICRO SWITCHES As illusiraled but litied with $1^{\prime \prime}$ Lever 10 for $\mathbf{£ 2 . 0 0}$. Sub-munature Burqess type V $1 \uparrow 110$ for $\mathbf{E 2} \mathbf{1} 50$. 50 tor $₹ 10.00$, pust pard Sutb-mirhature Honeywell rolter M : S Fype 3115 M 906 t 90 fur E2.50, pust pas LEVER OPERATED 20 amp cio Mig by 	RESET COUNTER $\varepsilon 1.50$	A.C. MAINS TIMER UNIT Based un an electric clock. winh 25 amp Sirite-pole switc. which can be preset for any perrod up to 12 his ahead to swich on for ariv period up to 12 his ahead to switch on tor ariv switch of All edchiment 60 rits audible immer is aiso meurporateg Ideal for Tape Recordeis Lighis Electric Blankets eic Attractive sulbi
NEW HEAVY DUTY SOLENOID Mig by Magnetic Devices 240% AC operation apprion 2016 pull at $125^{\prime \prime}$ Price Sumilar to above approx 10 be pull $\mathbf{\text { e3.50. }}$ P8060)		opper \$mish $S_{1 z e}: 35 \mathrm{~mm} \times 130 \mathrm{~mm} \approx 60$
		(\%) RMEOSTATS
230-250 VOLT A.C. SOLENOID -rie E1.00. Pnt 25 p 24 VOLT D.C. SOLENOIDS UNIT contanang 1 heavy duty solenoid approx. 25 lb . pull at 1 hoavy duty 1 mether phiay Price E3.00. Pust I 100 BARGAIM.		
240'A.C. SOLENOID OPERATED FLUIO VALVE Rated $1 \rho \leq 1$ wil hande up to $7 p$ s i Forged lolass body samiess steel curt and sping is in bsp rolet outlet Prtisiun Medd Brilish mig PRICE \&2.75. Post 50p new orignad packing		600 WATT DIMMER SWITCH Easily litted. Fully guaranteed by makers Will control up to 600w of lighting except Huorescent al mains volrage. Complete with simple instructions $\mathbf{E 3 . 9 5}$ Post 25p 1000 wall model. E5.BO. Post 2bp 2000 watl model $\mathbf{4 0 . 7 5}$. Post 40 p
ALL MAIL ORDERS. ALSO CALLERS AT 57 BRIDGMAN ROAD, CHISWICK. LONDON. W4 5BB. Phone: 01-995 1560 Closed Saturdays.	SERVICE TRADINC CO	PERSONAL CALLERS ONLY
	WROOMS NOW OPEN AMPLE PARKING	9 LITTLE NEWPORT STREET, LONDON. WC2H 7JJ. Tel.: 01.4370576

WHEN LISTENING to your favourite L.P., if your hi-fi system were perfect, if your listening room did not colour the speaker's output and if your idea of balance coincided with that of the recording engineers - there would be no need for a tone control.

The perfect world alluded to in our first paragraph does not, unfortunately, exist as anyone over 21 (inches or months) will readily testify to. This

HOW IT WORKS

The input signal is fed via SKl to the first active stage built around IC1. This is configured as a non-inverting amplifier whose gain is set by the ratio of R3 and R1. In this case the gain is set at unity. This initial stage is required to isolate the following stage from any loading effects.

The O / P from ICI is fed via three frequency shaping networks to IC2. The three networks built around RV1, RV2, RV3 are also included in the feedback path of IC2, another inverting op-amp stage.
The components associated with the three variable resistors are chosen to give the required frequency control.
means that in most cases some form of tone control is a desirable, if not essential, item in any amplifier.

Tone of Voice

A tone control will alter the relative levels of the different frequencies present in any signal passed through it. In most designs the audio spectrum of frequencies falls into two bands, bass and treble, and will either boost

or cut these with respect to the mid-frequencies. A graphic equaliser, which is after all just a tone control with lots of channels, splits the audio frequencies into ten or more bands and allows each of these to be boosted or cut.

These two examples represent the extremes of tone control designs, the two channel unit not providing enough control while the equaliser represents expensive overkill in a lot of cases.

Voice of Tone

Between these two extremes comes our three channel control. Bass and treble functions are as most tone controls while the mid, or presence, control provides a means of controlling the mid-frequencies.

These frequencies, which are not affected by the controls of two channel units, have a large effect on the 'colour' of the sound. This is because the fundamental frequencies of many instruments, and indeed the human voice, lie in the range of frequencies covered by this mid control.

Assembly Point

Mount the components on the PCB

BUY LINES

The components used in this project should be available from most component shops and are certainly available from any of the large mail order suppliers.

The integrated circuits specified are standard 741 types. However, should a lower noise version be required 741 N types could be used.

III

Microman Gary Evans takes a look at algorithms and a video display device

IN ANY CROWD of people to whom you are describing the latest trauma experienced in the construction of your microcomputer system, there is bound to be someone who will interrupt and ask: "What are you going to do with it when it's finished?"

Cling on to your thread

If your only plans for the completed item are to give yourself the chance to tell Mr Spock where to put his photon torpedo in some grand bust up with the Klingons, it is best to keep this quiet. Answers like this will relegate the status of the home computer builder to the level of lower technology hobbies, such as playing with trains.

By far the best reply to such a question, the one which we most often use, is to say "for anything that you care to think of"

This reply has the overwhelming advantage of proving a reliable conversation stopper in most cases, allowing you to resume your narrative.

It is also by and large true. True because there are not many things that a micro, complete with the necessary hardware and software, could not tackle.

The applications in theory are endless, but in practice will be limited by the problem of designing the hardware. To describe the actions required to do the washing up would not be too difficult, but the machinery involved would be frightening.

Most of us will therefore be concerned with the data processing abilities of our system.

Process your sins

Now the word process covers a multitude of sins, from summing two numbers, to trying to convince your machine that it's Bobby Spasky (or is it Borıs Starsky) manipulating pseudo chessmen within its midst.

To write the software in the former case should prove no problem but in the latter example it would be difficult to know where to begin. It is with problems like this that the algorithm helps.

An algorithm is a means of plotting the strategy of a problem, a tool to
enable people to solve problems.
Most books on algorithms in the past have either been for the specialist, wanting to know about the latest research in the field, or for the beginner. This month we have come across a book which falls between these two extremes.

It is the Algorithm Writer's Guide, published by Longman. Its subject is how to write algorithms, ranging over many different types and forms. It is written with the designer of algorithms in mind.

We found this book interesting, showing us how we should set about analysing problems. What questions to ask, in what order and how to represent these on a flow chart. From a flow chart it should prove easier to get your machine up to grand master standard.

Lowering our standards

For some time now we here at ETI have considered modifying the line and field drive circuits of an old TV set to bring them in line (sorry) with the American specifications for these circuits.

Having had a look at some circuit diagrams it seems that changing a few capacitors, and possibly resistors, should be enough to complete the conversion. This would reduce the number of lines to 525 (from 625) and increase the field oscillator frequency from 50 Hz to 60 Hz .

The reason for wanting to perform this task is to enable us to use the many chips now appearing on the American market which can do wonderful things on a TV screen.

Seeing these devices advertised at
Photograph of MP-40 printer

prices that would make them cheap even after shipping charges, bad exchange rates, etc., but not being able to use them is becoming too much to bear for some of us at ETI.

The latest in this category is RCA's CDP1861. This is a graphic generator IC which enables a 256 byte segment of memory to be displayed on a TV screen.

The chip is perhaps best thought of as a parallel to serial converter of a very superior nature, as its serial output is a 1 volt composite video/ sync signal.

The 256 byte block of memory selected is interrogated by the 1861 using DMA techniques and the data displayed as a series of dots on the TV screen. If a memory bit is one the TV will display a white square, if the bit is zero, a black square.

With an external component count of three, and these only resistors, the 1861 will turn any US TV into a VDU (how about that for initialese).

RCA tell us that they are working on a souped up version of this chip for Europe, but when it will be ready is anybody's guess. In the meantime write and tell us what Crossroads looks like in 525 lines.

Hard news -

Obtaining hard copy from a system is a problem faced by many people. With supplies of TTYs drying up, and many being difficult to interface to when obtained, there is a need for cheap hard copy devices.

News of such a device has just reached us. It is the M-40 matrix printer, made by Romca Electronics, a Dutch firm with agents in this country.

The standard MP-40 printer contains a TTL level, bit parallel, character serial interface. It converts a six bit ASCII coded character into a $5 \times$ 7 dot matrix alphanumeric set.

Also available are interfaces to allow RS232 or 20 milliamp current loop applications and another to provide direct software control of the print solenoids. This latter feature allows many special character founts to be printed.

Prices are from $£ 150$, and for further details contact Romca Electronics U.K., 7 Dordells, Basildon, Essex.

LEFMITH TECATE Ruvere Nrmupta alaik endod wow Hath min monned ste
 IIITP Pimere
 IS \cdots ?

TOP PROJECTS

No. $1+$ No. 2
A massive 180 page took contanning all the projects originally described in our hirst two Top Projects Books - originally published in October 1974 and June 1975 - which are now out of prim
Guitar Amp include Master Mixer, 100W Guitar Amp Low Power Laser. Printumer Probe Simple Amp. Nuxer Preamp. Log Probe, Simple Amp. Ni-Cad Battery Charger Loudhailer, Scope Calibrator, Electronic Indicator Canceller. Brake Light Warning LM 380 Circuits Temperature Alarm. Aeria Matcher UHF TV Pieamp, Metal Locator Four Inpur Mixer. Super Stereo, IC Powe Supply. Rumble Fitter IC Tester Ignition Timing Light. 50W Stereo Amp PLUS MANY MORE
$\mathbf{E 2 . 5 0}+\mathbf{2 5 p}$ P\&P
TOP PROJECTS No. 3
Originally gublished in Mareh 1976 Top Projects Nó 3 contains 27 construclional projects including Graphic Equaliser Stereo New Sound for your Giutar Bass Bonster Line Amplitier Loudness Contel Elecronic Ignution Tacto Timing Light Car Alarm Dual-Beam Adaptor AF Meter Impedance Meter Digital Oisplay Dtgral Voltmeter TL. Supertester Fluorescent light Dimmer Radar iniruder Alarm Light Dimmer FM Tuner Colour Organ. Drill Speed Controller plus many more.

$\mathbf{E 1 . 0 0}+\mathbf{2 5 p} \mathbf{P \& P}$

TOP PROJECTS No. 4

Published October, 1976. This includes Sweet-Sixteen Stereo Amp. Waa-Waa, Audio Level Meter. Expander-Compressor Car Anti.Theft Alarm, Headlight Reminder. Dual-Tracking Power Supply. Audio Millivaltmeter. Thermocouple Meter, ntruder Alarm, Touch Switch. Push-Button Electronic Dice. High Power Beacon. Temperature Controller Electronic One Armed Bandit, plus many more
$\mathbf{£ 1 . 0 0}+\mathbf{2 5 p} \mathbf{P \& P}$

TOP PROJECTS No. 5
Twenty-two complete projects including Wion Amp. Siage Mixer. Disco Mixer. lutruder Alarm, Model Train Controlled Reaction Tester. Meadphone Radio STD Timer, Double Dice, G.P. Power Supply Logic Tester. Power Meter. Digital Voltmeter. Unversal Timer. Breakdown Beacon. 1-2 Hour Timer. Hear Rate Monitor. IB Metal Locator and Temperature
$\mathbf{£ 1 . 0 0}+\mathbf{2 5 p}$ P\&P

ETI CIRCUITS No. 1
Contains neariy 250 circuits, largely taken from the best of our Tech-Tips. Great care has been taken 10 index each circuit for rapid selection. An additional section at the back gives plenty of reference data including transistor specs and equivalents. Sales of this publication have been excellent -- hardly surprising when the s cost less han ip each
$\mathbf{£ 1 . 5 0}+\mathbf{2 5 p} \mathbf{P \& P}$

HOW 70 ORDER

ETI 4600 SYNTHESISER

A complete reprint of our superb synthesise design, published with Maplin Electronics who also supply the parts). This reprint will also be of interest to those not specitically wanting to build the unit as the circuiry is TII
$\mathbf{£ 1 . 5 0}+\mathbf{2 5 p} \mathbf{P \& P}$

HOW TO ORDER

ETI Circuits No 1 and Top Projects No 5 are avallable at newsagents or direct from ETI. Others are avaitable only direct from
ELECTRONICS - IT'S EASY Our successful series (which finishes with this very issuel) ${ }_{5}^{1}$ is to be available in three volumes.

Volume 1 has now been ${ }^{3}$ reprinted to meet the continuing demand, and can be ordered from our offices - an can Volume 3. Regrettably Volume 2 is at present sold out.

£1.20 + 25p P\&P

Postage and packing is 25 p overseas Send remittance in sterling only

ETI Speciats,

ET1 Magazine.
25-27 Oxford Street,
London W1R1RF
Please mark the back of your cheque or PO with your name and address

Headlight Delay Unit

D. Chivers

This circuit will operate a car's headlights for a predetermined time to light up the driveway or path after the driver has left the car, thus enabling him (or her) to open the front door without knocking over the milk bottles.
SW1 is pushed and Q2 is turned on closing the relay and turning on the car's headlights. C1 begins to charge through VR1 until 01 turns on, turning Q2 off. The relay will then open switching off both the lights and the unit.
The delay is governed by the time taken for the capacitor to charge, which is about one minute.

DC Motor Speed Controller
 D. Strange

Simple controllers for DC motors as previously published have been found to be limited in their application. This new design is capable of controlling a wide range of $D C$ motors enabling high torque to be available at low speed.
In the circuit, Q1 and Q2 form a multivibrator operating at about 7 kHz . VR1 is used to alter the mark/space ratio of the square wave which is fed
via R5 and R6 to the bases of complementary transistors Q3 and Q4. The joined collectors of Q3 and Q4 are switched hard between positive fail and zero volts, turning- on and off completely the output transistors Q5 and Q6. Consequently the dissi--pation of the output transistors is very low. D3, a power germanium diode, is inserted across the motor to suppress transients which were found to reduce torque by approximately 30% in the prototype. A silicon power diode with a germanium diode such as the OA5 in parallel is equally efficient at transient suppression.

This simple but ingenious idea should help relieve the frustration of trying to fit tiny screws into awkward places.
A short length of insulation is put over the end of a small screwdriver until flush with the end.
The screw can then be slipped into the insulation until it engages with the screwdriver. where it will be held in place by the insulation.

Have you ever tried unsoldering resistors from a PCB - especially when the wire on the solder side has been bent over? One hand to hold the soldering iron, another to hold the PCB and yet another to hold the resistor with a pair of fine nosed pliers - which invariably slip off! Here is a better way to do it. First of all hold the PCB in a vice or, as in the photograph, steady it with a block of wood having a slot cut in it. Next, take an ordinary paper clip and bend it as shown in the sketch so that the ring is a com--fortable fit on the first finger of the left hand. Now hook the gadget under the wire at the end of the resistor (or capacitor), heat up the solder and when it is molten pull back with the first finger, at the same time pressing with the thumb and second finger on the PCB.

> WARNING! BEWARE! Don't
be tempted to use copper wire instead of the paper clip - copper conducts heat very well and the ring may not be easy to remove from your finger in a hurry!

Calculator Stopwatch

K. C. Phillips,

This circuit can be fitted to any calculator with an automatic constant to enable it to be used as a stop-watch The 4N26 Opto Coupler prevents any coupling problems with the ' =' key. The 555 timer is set to run at a suitable frequency and connected
to the existing calculator battery via the push-on push-off switch and the existing calculator on-off switch.
This circuit has been fitted to a Hanimex ESR master calculator, with the timer set at 0.05 sec , which is slow enough not to interfere with the debounce circuitry. By using the 'memory to display' key, it is possible to record 2 individual times, as the constant is held. after exchange.

Solid State Switch

N. C. Burkinshaw

The circuit was designed for use as a solid-state calculator on-off switch, as the mechanical equivalent was found to be unreliable.
Layout is not critical and the switch will operate with a supply from +6 V to +15 V and current consumption
in the 'OFF' state is a negligable $30 \mu \mathrm{~A}$.
A finger across the 'OFF' contacts turns Q1 off and takes the base of Q4 to the +ve rail, turning $\mathbf{Q 4}$ off. This in turn stops 05 condurting, and R6 and Q3 latch the circuit in this state.
Touching the 'ON' contacts takes R3 to ground turning Q 4 on. Q5 now contacts and again R6 and Q3 latch the circuit.

Contact Debounce

A. V. Bates.

The circuit described below can be used to provide contact debounce, or can be used as a dual retriggerable monostable.
With SW1 in the off position, pin 5 is low, and holds pin 9 high - the same as the input. When the switch closes, pin 6 goes low causing the monostable to start timing. Pin 5 goes high allowing pin 9 to go low. As the monostable is retrigger--able, any contact bounce only ex--tends the timing period.
When the timing period is complete, pin 5 remains high, due to pin 6 being held low by the switch. Re--leasing the switch allows pin 5 to go low which triggers the second monostable. Pin 9 now goes high and remains high after the timing period as pin 8 is being held low. Any bounces during this period merely retriggers the first mono-

-stable. For this reason, to ensure correct operation, the period of the second monostable must be twice that of the first.

The period of the bounce supp--ression is the timing period of the first monostable, and is given by: T (seconds) $=0.693 \times \mathrm{R} \times \mathrm{C}$.

Touch-Spin Mini Roulette

David Ian
Ten LEDs arranged in a circle form the 'wheel' for this miniature roulette.
A finger held on the 'SPIN' contacts will cause the LEDs to flash in order
round the circle, the speed slowly increasing. When the finger is removed the flashing will slow and one LED will remain lit.
The LEDs are mounted behind a red translucent perspex panel with the numbers 0 to 9 marked on a clear
sheet of celluloid mounted between the LEDs and the perspex. With a current of 20 to 30 mA through the LED the winning number is clearly illuminated. VR1 can be adjusted to change the time taken for the 'spinning' to stop.

MALLOROER FORNMCCATALOGUE

CUSTOMER NAME	(Block Caps)	Despatch Date		TOTALS	ACE USE ONLY
		dISCOUNT Orders over $£ 5$ Less 5\%	1	Front H .	
ADDRESS			2	Back H .	
			3	Total H .	
			4	Front S	
Post Code			5	Back S.	
			6	Total S.	
	$-$	Over ¢ 20	7	Total Z .	
			8	P \& P	
		Deduct Discount from Total 9	9	$3+6+7+8$	
				Discount	
			10	Total Sent	

PLEASE COMPLETE THE COMBINED CATALOGUE/ORDER FORM AS FOLLOWS:-
WRITE THE QUANTITIES REQUIRED IN COLUMN Q AGAINST THE ITEM TO BE ORDERED. MULTIPLY O BY P AND WRITE RESULT INTO COLUMN T. ON COMPLETING THE ORDER FORM ADD UP ALL THE COLUMN TOTALS TS. TH AND TZ SEPARATELY AND WRITE totals into panel at the top of form. all prices are inclusive of vat at the CURRENT RATE AND ARE SHOWN IN PENCE. P \& P IS FREE ON ORDER OF £2 AND ABOVE

ADD 20p FOR SMALL ORDERS. EXPORT ORDERS FREE OF VAT - DEDUCT 2% FROM TS AND 6\% FROM TH TOTALS FOR SURFACE MAIL. AIRMAIL PRICES AS UK (I,E. VAT CHARGE BECOMES AIRMAIL CHARGE) ALL GOODS GUARANTEED 1 YEAR IF CORRECTLY USED. ALL ORDERS DESPATCHED ON DAY INSTRUCTION RECEIVED SUBJECT TO AVAILABILITY. PRICES ARE "EACH" EXCEPT RESISTORS, CERAMICS AND WIRE.

ACE MAILTRONIX LTD Tootal St. Wakefield

 West Yorkshire WF15JR

ISSUE No. 1 VAlID UNTIL PUBLICATION OF ISSUE NO.2.
REG. OFF: 26 CASTLE RD, WAKEFIELD, W. YORKS WF2 7 LZ.
REGISTERED IN ENGLAND NO. 1318894 VAT REG. 182949422 DIRECTORS: V.A. CHABLE D. OWRAM (Secretary)

PLUGS - SOCKETS

18. Audio	0 P	TH
DINSPKRRL	10	
DIN3PINPL	14	
DIN5P 180PL	16	
DINSPKRSK	8	
DIN3PINSK	14	
DIN5P180SK	12	
1/4" J.PL INS.M	20	
1/4"J.PL SCR.M	40	
Mono $1 /$ J.SK	22	
\%" J.PL INSS	30	
$1 / 4^{\prime \prime}$ J.PL SCR-S	50	
STER 1/ J.SK	26	
$3.5 \mathrm{~mm} \mathrm{J.PL}$	14	
$3.5 \mathrm{~mm} \mathrm{J.SK}$	10	
Phono PL Red	8	
Phono PL Black	8	
Phono PL Green	10	
Phono PL Blue	8	
Phono PL Yellow	8	
Phono PL Ivory	10	
Single Phono SK	10	
Twin Phono SK	14	
Four Phono SK	18	
19. DC Power	0 P	TH
TR 2.9	19	
TR 2.5	19	
PP3 Press Stud	9	
20. COAX P/S	0 P	TH
AL. COAX PL	20	
Surface SK	23	
Flush SK	25	
21. XTAL HC6U	KT 14	
22. I.C. SKTS	0 P	TS
8 PIN DIL	21	
14 PIN DIL	24	
16 PIN DIL	27	
TO18 Transistor	12	
TO5 Transistor	12	
23. Instrument 4 mm etc.		
Push Terms	$0 \quad P$	TS
Red	18	
Black	18	
Blue	18	
Yellow	18	
White	18	
4 mm Terms		
Red	33	
Black	33	
Blue	33	
Green	33	
White	33	
Yellow	33	
4min Plugs		
Red	16	
Black	16	
Blue	16	
Green	16	
White	16	
Yellow	16	
4 mm Sockets		
Red	15	
Black	15	
Blue	15	
Green	15	
White	15	
Yellow	15	

24. Resistors $1 / 4 W$ (Packs of 3) Carbon Film 5\%

E12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
$\times 10$												
$\times 100$												
X1K												
X10K												
X100K												
XIM												
X10M			Please enter quty in packs in appropriate box									
otal Pack	ks		Opk Ppk TH									

25. Presets Min. Horiz

25. Presets Min. Horiz. Value
100Ω
220Ω
470Ω
10 K

Value
\qquad
TH

29. Pots Log. with DP.SW.		
Value	\mathbf{Q}	\mathbf{P}
TH		
4.7 K	80	
10 K	80	
100 K	80	

Value	\mathbf{Q}	\mathbf{P} TH
4.7 K	110	
10 K	110	
22 K	110	
47 K	110	
100 K	110	
220 K		110
470 K	110	
31.	Pots Tandem Lin.	
Value	\mathbf{Q}	$\mathbf{P} \quad \mathrm{TH}$
4.7 K	110	
10 K	110	
22 K	110	
47 K	110	
100 K	110	
		Total

Qpk Ppk TH
${ }_{6}$

BC
SEMICONDUCTORS
32. T
AC128
AC18
AC188
AC18
AD16
AD16
AD16
BC10
BC108
BC109
BC17
BC178
BC179

BC182L
BC183L
BC184L
BC207
BC209
BC213L
BC214L

BC 303
BCY 70
BCY 71
BD 13
BD 132
BD
BF
BF
BF
BS

2N3819

2N3904
33. Signal Diodes

Typ
AA1
OA4
OA
OA
OA
IN

PLEASE COMPLETE THE COMBINED CATALOGUE/ORDER FORM AS FOLLOWS:-
WRITE THE QUANTITIES REQUIRED IN COLUMN O AGAINST THE ITEM TO BE ORDERED. MULTIPLY O BY P AND WRITE RESULT INTO COLUMN T. ON COMPLETING THE ORDER FORM ADD UP ALL THE COLUMN TOTALS TS, TH AND TZ SEPARATELY AND WRITE TOTALS INTO PANEL AT THE TOP OF FORM. ALL PRICES ARE INCLUSIVE OF VAT AT THE CURRENT RATE AND ARE SHOWN IN PENCE. P\&P IS FREE ON ORDER OF £2 AND ABOVE \rightarrow ADD 20p FOR SMALL ORDERS. EXPORT ORDERS FREE OF VAT - DEDUCT 2\% FROM TS AND 6\% FROM TH TOTALS FOR SURFACE MAIL. AIRMAIL PRICES AS UK (I.E. VAT CHARGE BECOMES AIRMAIL CHARGE) ALL GOODS GUARANTEED 1 YEAR IF CORRECTLY USED. ALL ORDERS DESPATCHED ON DAY INSTRUCTION RECEIVED SUBJECT TO AVAIL. ABILITY. PRICES ARE "EACH" EXCEPT RESISTORS, CE RAMICS AND WIRE.

ISSUE No. 1 VALID UNTIL PUBLICATION OF ISSUE NO. 2.
REG. OFF: 26 CASTLE RD, WAKEFIELD, W. YORKS WF2 7LZ. REGISTERED IN ENGLAND NO. 1318894 VAT REG. 182949422 DIRECTORS: V.A. CHABLE D. OWRAM (Secretary)

ACE MAILTRONIX LTD TootalSt. Wakefield

West Yorkshire WF15JR

Anti-surge Voltage Regulator

A. Wey

This high gain voltage regulator with only two transistors has characteristics superior to those of the commonly used compound emitter-follower type.

The circuit was used in a 30 watt stereo amplifier which not only required a well regulated supply. but also an output voltage that would rise slowly from zero volts when the system was first turned on. This slow application (about 2 seconds) to the power amplifiers allowed the $2000 \mu \mathrm{~F}$ output capacitors to charge without causing excessive collector current in the output transistors.
Typical regulator output impedance is 0.1 ohm .

Output voltage is expressed by:

$$
V_{O}=V_{Z}-V_{B E 1}
$$

Output voltage rise time is expressed by:

$$
T=R_{B} C_{1} \ln \left(1-V_{Z} / V_{1}\right)
$$

Improved SPST Switch Flip-flop
D. J. Manford

This circuit was developed from the SPST switch flip-flop shown in last November'"Tech-Tips", and has the advantage that it can be driven by an input refered to earth- logic outputs or push-buttons.
When the input to the 4016 goes high it connects together the input to A, and C. This 'flips' the latch.

The 20 k resistor between the output of invertor B and the input of A is needed as the 4016 cannot pull the output of inverter B down directly.

Some digital systems require a preset turn on sequence for their power supplies. By setting appropriate R_{B} / C_{1} values, the circuit's output rise time can be set to provide this sequence or delay.

BCD to Analog Converter

C. 'R. Poole

This circuit will convert four-bit $B C D$ into a variable voltage from $0-9 \mathrm{~V}$ in 1 volt steps. Only two ICs are used, both are readily available.
The SN74141 is a 'Nixie' driver, and has ten open-collector outputs. These are used to earth a selected point in the divider chain, determined by the $B C D$ code at the input, and so produce a corresponding voltage at the output. The accuracy of the circuit depends on the tolerance of the resistors and also the accuracy of the reference voltage. However, presets can be used in the divider chain, with correct calibration. The 741 is used as a buffer.

Model Railway

E. A. Parr.

This simple circuit provides an interesting little branch line service for a model railway. A small country railbus starts at a station, stops, then returins to the first station again, the cycle repeating indefinitely.
The track is arranged to have two isolated station sections at each end. The power is fed to the centre long section via a changeover relay, RLA. Diodes D1 and D2 feed the staion sections and ensure that a train in station A can only move towards station B and vice versa. The diode connections are correct for conventionally wired trains.
RLA is under control of a 555 timer. This is connected as an oscillator with almost equal mark/space ratio. The period is longer than the time taken for the train to travel from one station to the other. When the train reaches the station, as the diode will be reverse biased, it will stop. When, however the relay changes over the diode will conduct, and the train can return to the first station.
The half period of the oscillator should be made equal to the journey time plus the stop required at the station. The values shown give about 12

D1 \&D2 SHOWN CORRECT FOR TRAINS WIRED THE CONVENTIONAL WAY

seconds which should be sufficient for most layouts.
The stop/start is unramped, but this is
not particularly noticeable at the speed all self respecting branch line trains travel.

Tape Recorder Controller
 D. H. E. King

Ice Warning and Lights Reminder

D. Chivers

This simple device will tell a driver if his lights should be on and will warn him if the outside temperature is nearing zero, by lighting a LED and sounding a buzzer.
The units action is self explanatory; VR1 adjusts sensitivity for temp--erature, VR2 for light. Both therm--ister and LDR should be well protect--ed. Most high gain NPN transistors will work and the experimenters junk box will almost certainly hold some.

The circuit shown enables a solenoid operated tape recorder to be left to record a programme unattended. It was originally designed to be used on a Revox A77, in conjunction with a digital clock based on the Caltex CT7001, but could be adapted for other recorders, clocks, or mechan--ical time switches. The clock is set to switch on one minute before the programme starts, and switch off as it finishes.
When the clock contacts close, RLA is operated via Q 2 and Q 3 , applying power to the receiver and recorder. At the same time C1 is discharged, and C2 applies a negative pulse to pin 2 of the timer, which triggers, discharging C4. The out--put of the timer goes high for one minute, allowing time for the recorder and receiver to warm up. As the timer output goes low, C4 charges through $\mathbf{Q 4}$ momentarily,
operating RLC which starts the recorder.
At the end of the preset time the clock contacts open, discharging C2 through Q 2 and Q 3 which delays RLA from dropping out by approx--imately 5 seconds. As the clock contacts re-open C1 charges through Q1, operating RLB opening the normally closed stop contacts for a short period, stopping the recorder. After the 5 second delay has elapsed, RLA opens, removing power from the equipment.
RLB and RLC may have light con--tacts, but RLA must be a heavy duty mains rated type. Ideally the digital clock should be crystal controlled, to eliminate short term mains frequency fluctuations. The numbers shown in brackets are the appropriate pin connections on the 10 way remote control plug of a Revox A77.

Heartheat Preamplifier

P. J. Tyrrell

This simple circuit, when connected to an audio amplifier, allows one to listen to heartbeats. The low freq--uency gain is set by R1 and R3, in conjunction with VR1 and R4. VR1 permits the gain to be varied over the range $60-80 \mathrm{~dB}$.
C1 and C2 introduce some low frequency cut, reducing 50 Hz pickup whilst C4 and C5 help prevent instability caused by the high gain of the circuit.
The output should be connected to the magnetic cartridge input of the audio amplifier, with the bass turned up high.

Battery Tester

R. N. Soar.

This circuit was designed ás a simple tester for 1.5 and 9 volt batteries.
It uses a cheap $500 \mu \mathrm{~A}$ recording level meter of the kind used in cassette recorders, costing around 80p.
The scale is as indicated in the diagram and can be interpreted as follows-

BLACK-Replace battery
RED-Weak battery
GREEN-Good battery
A new battery should give a full scale deflection.

CALCULATORS
ADVANCED APPLICATIONS FOR POCKET CALCULATORS
J．Gilbert
getiling the most out of your electronic CALCULATOR
w．Hunter
COMPUTER \＆MICROPROCESSORS
BUILD YOUR OWN WORKING ROBOT
D．Heiseman
COMPUTER CIRCUITS AHD HOW THEY WORK
B．Wells
DIGITAL ELECTRONICCIRCUITS AND SYSTEMS
N．M．Mortis
INTRODUCTION TO DIGITAL FILTERING Bogner

INTRODUCTION TO MICROCOMPUTEAS
Vol． 1 Basic Concepts
Vol． 2 Some Real Products
Adam Ozbome Ass．
MICROPROCESSOR／MICROPROGRAMMING
HANDBODK
B．Word
TRANSISTOR TABELLE
includes physical dimensions \＆their pin asignments
MICROPROCESSORS
D．C．McGlynn
INTROOUCTION TO MICREPRBCESSORS
Aspinall
modern guioe to oigital logic
Proceseors－Memories and Interfaces
LUGIC DESIGN PROJECTS USING
STAMOARO ICs
J．Wakerly
PRACTICAL DIGITAL OÉSIGN USING ICS
J．Greenfield

COMMIUNICATION
COMMUNICATHON SYSTEMS INTRO TO SIGNALS

\＆NOISE

Digital Signal processing，theory 8 APPLICATIONS
L．R．Rabiner
ELECTRONIC COMMUNIEATION SYSTEMS
G．Kennedy
FREqUENCY SYNTHESIS，THEORY \＆OESIGN Mannassewitsch
PRIHCIPLES OF COMMUNICATION SYSTEMS
H．Taub

ELECTRONICS
ACTIVE FILTER COOKBOOK
D．Lancaster
APPLICATIONS OF OPERATIONAL AMPLIFIERS
Graeme（turr Brown）
BASIC MATHS COURSES FOR ELECTRONICS
H．Jecobowitz
BUILD IT BOOK OF MINIATURE TEST
instruments
R．Heviland
desigining with til integrated circuits Texas instruments
designing with operational amplifiers Bur Brown
ELECTRONIC ENGINEERS REFEREMCE BOOK 4th Edition
L．W．Turner
SOLIO STATE CIRCUIT GUIDE BOOK
B．Ward
TRANSDUCERS IN MEASUREMENT CONTROL
P．H．Sydenham
TRANSISTOR CIRCUIT DESIGH
Texas
£4．10
£3．70
．

ELECTRONIC COMPONENTS
M．A．Colwell
ELECTIRONIC DIAGRAMS
M．A．Colwell
ELECTRONIC FAULT DIAGNOSIS

ELECTRONIC MEASUREMENT SIMPLIFIED C．Hallmark

ELECTRDNICS AND PHOTOGRAPHY
R．Brown
E3．25 ESSENTIAL FORMULAE FOR ELECTRICAL AND ELECTRICAL ENGINEERS

FIRE AND THEFT SECURITY SYSTEMS
c3．40 B．Wels
how to read electronic circuit diagrams

HOW TO BUILD PROXIMITY DETECTORS AND
E10．00 METAL LOCATORS
f 13.00 J Shields
HOW TO USE IC CIRCUIT LOGIC ELEMENTS
J．Streater

E5．05 FUNCTION CIRCUITS DESIGN \＆APPLICATIONS
Burr Brown

R．M．Martion．
110 OPERATIONAL AMPLIFIER PROJECTS FOR
THE HOME CONSTRUCTOR
R．M．Marston
IIO SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR
R．M．Marston
110 cosmos oigital ic projects for the hDME CONSTRUCTOR R．M．Marston
£7．40 I10 Integrateo circuit projects for the HOME CONSTRUCTOR
f．m．marsion
110 THYRISTOR PROJECTS USING SCRs
R．M．Marston
MICROELECTRONICS
Halimark
MODERN ELECTRONIC MATHS
Chon
mos digital ics
G．Flynn
aperational amplifiens design anc APPLICATIONS
\＆10．9n

ع8．95－R．Fox
£13．65
£2．15
£2．75
£9． 25

PRACTICAL TRIAC／SCR PROJECTS FOR THE EXPERIMENTER

PRINCIPLES OF TRANSISTOR CIRCUITS

PRINTED CIRCUIT ASSEMBLY
Hughes \＆Colver
RAPIO SERVICING OF TRANSISTOR EQUIPMENT G．King
G．Tabey（Burr Brown）
OP－AMP CIRCUIT OESIGN \＆APPLICATIONS

Practical electronic project buildjng

Practical solio state d．c．supplies
T．D．Towers
£2．15
£4．65
£2．35
£6．30
£7．45
£7．30

UNDERSTAMDING ELECTRONIC CIRCUITS
UNDERSTANDING ELECTRONIC COMPONENTS
£2．35 R．Sinclair
UNOERSTANDING CMAS INTEGRATED CIRCUITS
R．Melón
$£ 3.80$
I UMDEASTANDING SOLID STATE CIRCUITS
N．Crowhurst

INTERHATLONAL TRANSISTOR SELECTOR
£1．55 T．D．Towers
$£ 5.00$
INTERNATIONAL FET SELECTOR
T．D．Towert
$£ 4.25$
PQPULAR VALVE／TRANSISTOR SUBSTITUTION
$£ 1.85$
RADIO VALVE AND SEMICOMDUCTOR DATA
A．M．Ball
£2．50

RADID，TELEVISION AND AUDIO
AUDIO HANDBOOK
G．King
£6．40
beginners guide to audio
I．R．Sinclair
E3．10
RADIO TV－AUOIO CASSETTE TAPE RECORDERS E5． 15
J．Earl
ع4．35
M．G．Scroggie
ع6．10
Hudson
£5．50
（A complete Directory of Radio，TV Stations）
£2．85 RADIO，TV AND AUOIO TECHNICAL REFERENCE
B00k
£24．75
£2．85 SOLID STATE COLOUR TV CIRCUITS
G．R．Wilding
£6．25
£3．10 TEST EOUIPMENT \＆OSCILLOSCOPES
BASIC ELECTRONIC TEST PROCEDURES： £2．85 1．M．Gottlieb

THE OSCILLOSCOPE IN USE

PRACTICAL TEST EQUIPMENT YOU CAN BUILO －W．Grem
TEST IHSTRUMENTS FOR ELECTRONICS：
£6．60 M．Gliftord
WORKING WITH THE OSCILLOSCOPE
A．Saunder：
SERVICING WITH THE OSCILLOSCOPE
G．King
HOW TO DRDER

HOW TO ORDER

IAN SINCLAIR'S NEW SERIES IS DESIGNED TO IMPART THEORETICAL KNOWLEDGE THROUGH SIMPLE PRACTICAL EXPERIMENTS.

MANY EXPERIENCED constructors with several acres of transistor circuits behind them still fight a little shy of using digital integrated circuits. The reasons for this are not difficult to see. Most of the transistor circuits with which an experimenter learns his trade are fairly simple and show rather well how a transistor works, giving a feeling of confidence to the user.

The many excellent projects using digital integrated circuits which have been published do not give any such help to the constructor, however. They may be comparatively easy to build on a prepared PCB, they may even be reasonably easy to understand, but they do not give the constructor the experience which enables him to design confidently with ICs.

This series is intended to remedy that deficiency, so that the reader will gain a firm grasp of the principles of digital IC behaviour, how they work, and also a considerable amount of "hands-on" experience on a board designed to make experimenting with digital ICs particularly easy. We shall confine ourselves to the smaller scale ICs so that nothing as involved as a microprocessor will be used - the components however are chosen so that they give a good range of experience with some useful devices.

One and none

We can assume that any reader of ETI will already have some knowledge of what digital circuits are about, but perhaps a very brief reminder may be of some use. Digital ICs are made up from transistor circuits of very high gain, designed to run with inputs and outputs which can take up only two possible states which we call 1 and 0 . In most applications, 0 will mean a voltage very near to earth potential, and 1 near to the full supply rail.

The ICs we shall use in this course
will be from the well-known TTL series, developed by Texas, and also available from several other manufacturers. There are several reasons for this: the devices are readily available and at very low prices and advertised in ETI, they are much less easily damaged electrically than the alternative CMOS.

Going places with nothing

When an input of a TTL gate is left open-circuit it automatically reverts to a " 1 ". The reason for this is that the input to TTL gates is to one emitter of a multiple-emitter transistor whose base is connected through a limiting resistor to the +5 V line. Leaving an input o/c means that the emitter terminal will take up the same voltage as the base terminal. This cannot be done when CMOS devices are used.

For our course on digital electronics we shall need seven digital ICs and one "jumbo" display, a full inventory of semiconductors being shown in Table 1, and in addition we shall also need a few other assorted

Fig. 1. The method of attaching components to the Blob Boards. The "leg" can be simply bent to one side and then solder "blobbed" over the lead to hold it. Since the boards are tinned, and the leg ought to be, a sound joint is ususally obtained.
components as noted therein. Where a source of 5 V supply is not available, a stabiliser can be included on the board, so that the experiments can be carried out using a car battery or any dc supply in the 6 V to 12 V range. Note that the current taken will be up to 350 mA .

Heart to heart

The heart of the whole project is the circuit board on which the ICs and all other components can be mounted. This is one of the new series of "Blob Boards" - recently announced in ETI - in this case the ZB-8-IC. Blob Boards consist of wide strips of tinned copper on the usual insulating board, and their main feature is that components are mounted on the same side of the board as the strips.

This, of course, is not a new principle in digital IC construction, since this method has been used for some time where digital ICs are mounted on double-sided boards.

Housing and boarding

The ZB-8-IC as its name suggests, has mounting pads for eight ICs, including the display which we have specified. The suggested layout for the ICs is shown in Fig. 3, where we can see that the top left hand corner houses the 7414 Schmitt inverter, and the 7400 Nand gate; the top right hand corner has the two $7476 \mathrm{~J}-\mathrm{K}$ flip-flops. At the bottom left hand corner, we have a 7494 shift register and the 7490 decade counter. The bottom right hand corner contains the 7447 BCD-7 segment decoder-driver and the display. All of the ICs have conventional DIL fourteen or sixteen pin bases, but the display has a base which is an eighteen pin type with several pins omitted, so that this will just fit the pads on the board. The spacing between the lines of pins ($0.6^{\prime \prime}$) is a little on the large side compared to the other ICs, but with

OUR PRICE ONLY

£20.45Fitted with Phase Lock-loop Decoder

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 preselected stations any of which may be altered as often as you choose, by simply changing the settings of the preset controls.
Used with your existing audio equipment or with the BI-KITS STEREO 30 or the MK60 Kit etc. Alternatively the PS 12 can be used if no suitable supply is available, together with the Transformer 7538.
The S450 is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied

* FET Input Stage
\star VARI-CAP diode tuning
* Switched AFC
* Multi turn presets
* LED Stereo Indicator

Typical Specification:
Sensitivity 3μ, volts
Stereo separation 30 db
Supply required 20-30v at 90 Mas max.

STEREO PRE-AMPLIFIER

A top quality stereo preamplifier and tone control unit. The six push-button selector switch provises a choice of inputs together with two really effective filters for high and low frequencies, plus tape output.
MK. 60 AUDIO KIT: Comprising $2 \times$ ALSO's. $1 \times$ SPM8O. $1 \times$ BTMBO. $1 \times$ PA 100. 1 front panel and knobs. 1 Kit of parts to include on/off switch, neon indicator, stereo headphone sockets plus instruction booklet. COMPLETE: PRICE $£ 34.90$ plus 85 p postage. TEAK 60 AUDIO KIT:
Comprising: Teak veneered cabinet size $163 / 4^{\prime \prime} \times 111 / 2^{\prime \prime} \times 33 / 4^{\prime \prime \prime}$, other parts include aluminium chassis. heatsink and front panel bracket plus back panel and appropriate sockets edt. KIT PRICE E13.25, plus 85p postage.

ONLY £3.65

Frequency Response +1 dB 20 Hz
20 KHz . Sensitivity of inputs

1. Tape Input 100 mV into 100 K ohms Radio Tuner 100 mV into 100K ohms
2. Magnetic P.U 3 mV into
50 K .

50 K ohms
PU. Input equalises to R1AA curve with, 1 dB from 20 Hz to 20 KHz . Supply - 20.35 V at 20 mA . Dimensions $299 \mathrm{~mm} \times 89 \mathrm{~mm} \times$ 35 mm .

$11] 1121 / 2 \%$

 OUR PRICE £13.75

The AL 3OA is a high quality audio amplifier module replacing our AL 20 \& 30 . The versatility of its design makes it ideal for record players, tape recorders, stereo amps, cassette and cartridge players. A power supply is SPECIFICATION: R.m.S. ohms. - Sen sitivity outpour.

Frequency Response $60 \mathrm{~Hz} 1025 \mathrm{KHx}+2$ 2.1

1 (1) 05 Watts (RMS)

Prising a PS 12 together with a transformer
T538, also for stereo. the preamp PA 12

- Output Power 10w. Supply 22 to 32 volts.
- Dimensions $90 \times 64 \times 27 \mathrm{~mm}$

Total Harmonic Distortion Less than . 5% (Typically

- Max. Heat Sink Temp

10w R.M.S. AUDIO

AMPLIFIER MODULE

 your existing ceramic equipment using the new M.P.A. 30, a high quality preamplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only. it is provided with a standard DIN input socket for ease of connection. Full instructions supplied

POSTAGE 8 PACKING
Postage \& Packing add 25p unless otherwise shown. Add extra for airmail. Min. E1.00

The Stereo 30 comprises a complete stereo' preamplifier, power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs ie. high quality ceramic pick-up. stereo tuner, stereo tape deck etc. Simple to install. capable of producing really first class results, this unit is supplied with full instructions, black front panel knobs. main switch, fuse and fuse holder ana universal mounting brackets enabling it to be installed in a record plinth. cabinets of your own construction or the cabinet available. Ideal for the beginner or the advanced avaliablestor who requires Hi-Fi performance with constructor who requires minify performance wins a ins)

TRANSFORMER $£ 3.25$ plus $50 \rho \rho \& p$ TEAK CASE $£ 5.45$ plus $70 p$ p \& p

* Max Heat Sink temp 90C. * Frequency response 20 Hz to $100 \mathrm{KHz} \star$ Distortion better than 0.1 for 1 KHz Supply voltage $15-50 \mathrm{v} \star$ Thermal Feedback * Latest Design Improvements \star Load - 3.4,8, or 16 ohms \star Signal to noise ratio $80 \mathrm{db} \star$ Overall size 63 mm .105 mm . 13 mm .
Especially designed to a strict specification. Only the finest components have been used and the latest
solid-state circuitry incorporated in this powerful little solid-state circuitry incorporated in this powerful little
amplifier which should satisfy the most critical AF ampintier w
enthusiast

Stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size: 63 mm .105 mm .30 mm . Incorporating short circuit protection.
Transformer BMT80
$£ 5.30+86 p$ postage

Frequency Response $20 \mathrm{Hzz}_{z}-20 \mathrm{KH}$ -3adB). Bass and Treble range 12dB. Input Impedance 1 meg ohm input Sensitivity 300mV. Supply requirements 24 V .5 mA . Size 152 mm $\times 84 \mathrm{~mm} \times 33 \mathrm{~mm}$.

Fig. 2. Above: This is the track pattern for the ZB-8-IC used in this series. Note the wire links which need to be made in order more easilv facilitate application.
Fig. 3. Below: Components in place on the board. Note that unlike our usual overlays, the tracks are on the SAME side as the components.

care it can be accommodated. In the circuits which we are using we shall not normally need the decimal point on the display, but its connection may as well be made just in case.

Before any experiments are started then, it is advisable to solder all the ICs and the display on to the board, so that this does not have to be done when it becomes cluttered by other components. Since each circuit mounts on to pads which are isolated unless other connections are made, no harm is done by leaving an IC soldered on to the board.

It is for this reason, incidentally, that it is not desirable to use CMOS circuits in such a project, since the protection diodes built into CMOS ICs will operate only when the power supplies are connected.

In the prototype, the lines running round the edge of the Blob-board were used for supplies, the outer line

Fig. 4. To Right: The layout for the digital TTL series. This is looking down at the device from above. Usually, but NOT always power is applied to pin 14 and pin 7 is earthed.
Fig. 5. Bottom: Positioning the lCs onto Blob-Board pads. Make usre the legs line up.
taken as the positive 5 V line, and the inner as earth. It is quite convenient also if the shorter lines running across the board between each pair of IC pads are also used as 1 and 0 lines as well. The vertical lines at the centre of the board may also be used. If a stabilised 5 V supply is available for operating the board then little else needs to be done other than connecting the power pack to the lines at the edge of the board.

Stable lines

If a stabilised supply is not available, however, a stabiliser should be built on to these lines. A suitable circuit is shown in Fig. 7 using a BD131 and 2N697, both of which are readily obtainable.

It is extremely important that TTL circuits should not be operated at voltages above 5.25 V AT ANY TIME, since the inputs to TTL circuits are to the emitters of transistors, with the bases connected to the positive supply. If the inputs to the emitters are earthed (at OV), too much current will flow in the base-emitter junctions, though if all the inputs are earthed, over-voltage is much less likely to cause much harm.

Led about the board

Above and below each mounting pad there are several short pads usually three horizontal and two vertical, and these are very useful for mounting components such as LEDs, which are used to indicate the state, 0 or 1 , of any output. Note that on most LEDs there is a flat portion of the plastic case near the leadout wireswhich indicates which leadout wire is

The action of the circuit is as follows. The connection of the 1 k resistor between the collector and the base of the BD131 normally ensures that the BD131 remains conducting, but the 4.3 V zener diode ZD1 will set the voltage at the base of the 2 N 697 at about 4.3 volts less than the voltage at the emitter of the BD131. The 2 N 697 will start to conduct when its base voltage is approximately 0.6 V positive to its emitter voltage, that is when the emitter of the BDl3l is at about 4.9 V positive.
An increased voltage here will cause more current to flow in the 2 N 697 (each 80 mV increase of voltage at the base of a conducting transistor causes the collector current to rise tenfold), drawing current through the 1 k , resistor and therefore lowering the voltage at the base and emitter of the BD131; in this way the circuit stabilises at about $4.9-5.0 \mathrm{~V}$. The second zener diode, ZD 2 is a 5.6 V type which is a safety measure should the BDI31 ever fail to a short circuit. In the event of such failure ZD2 could absorb the extra current until the power supply fuse melted. If a battery is used as a source, a 500 mA fuse should be included.
the cathode. Since we are using the LEDs to light on a "1" state, the cathode of each LED is connected to earth, and the anode through a limiting resistor to the IC output. This resistor value is higher than we would normally use, but suits this application, as we do not want the LEDs to draw too much current from the IC outputs. When we come to use the display, we shall also use large value limiting resistors.

With all the ICs mounted in place, we are ready to start our work on Digital Electronics By Experiment series, with the first set of experiments in next month's issue.

Fig. 6. Identifying led connections has caused many a paralysed moment of doubtlook for the flat bit, if there's one present then your problems are over.

PARTS LIST

 components are listed here. For various additional suggested experiments, additional resistors and capacitors will be needed; thesevalues will be critical.

SEMICONDUCTORS

$1 \times$ SN7414N
$1 \times$ SN7400N
$2 \times$ SN7476N
$1 \times$ SN7494N
$1 \times$ SN7490N
$1 \times$ SN7447N
1×747 Display

COMPONENTS NEEDED
 FOR THE SERIES

OTHER COMPONENTS

$1 \times 0.1 \mathrm{uF}$
$1 \times 1.0 \mathrm{uF}$
$1 \times 10 \mathrm{uF}$
$1 \times 100 \mathrm{uF}$
$1 \times 680 \mathrm{uF}$
$1 \times 1000 \mathrm{uF}$
All the above 10 V working, or more. $10 \times 470 \mathrm{R}$ resistors, 0.125 W or more 6 Miniature push-button switches (Sintel)
5 metres of single-core wire

Fig. 7. Above: Circuit diagram for a suggested power supply to run the experi ments, and, Fig. 8., below, a layour to build this circuit onto the board itself.

STABIL:SER COMPONENTS
1×2 N697
$1 \times$ BD131
$1 \times 4 \mathrm{~V} 3$ Zener Diode
$1 \times 5 \mathrm{~V} 6$ Zener Diode
$1 \times 270 \mathrm{R} 0.5 \mathrm{~W}$
$1 \times 1 \mathrm{k} .0 .5 \mathrm{~W}$

BOARD

1 ZB-8-IC Blob-Board
For a few applications in later parts of this series, a silicon NPN transistor may be used as an alternative to some long stretches of wiring (to connect a reset terminal on a counter). For this application, any working small signal type is suitable.

IN THE EARLY DAYS of electronics a soldering iron was something you heated on a gas ring, happily those days are long gone (at least we hope ETI readnrs have stopped!); this was when a breadboard was really a breadboard . . . the modern equivalent bears as much resemblance as Concorde does to the Wright Brothers' first machine. There are four basic types of iron that are commonly used in electronics.

1. Continuous heat
2. Temperature controlled
3. Quick heat
4. Rechargeable

Each of these types has particular usage and characteristics, and the correct iron must be picked for the job, not much use having a 240 V iron in the middle of a field where you need a rechargeable iron (providing it's got a charge!).

Most irons consist of three basic parts, the handle, a heating element and a bit. The heating element can operate off a voltage in the range 0 V 5 to 250 V , also the heating power (measured in watts) can vary from 50 W to 300 W . The bit can come in dozens of shapes, sizes and finishes - each particular one being correct for different jobs. Obviously no manufacturer makes a $300 \mathrm{~W} 1 / 4$ inch diameter iron with a $1 / 8$ inch triangu-
lar gold plated bit, but the variety is endless. We hope that you can find the perfect iron(s) for your own use after reading this article.

Without soldering irons, the electronics industry would collapse overnight, in order to prevent this, dozens of irons are produced by a multitude of firms. Why do we need them? Simple, until some bright spark can come up with a conductive glue - that can be used and dissolved at room temperature - we have to use solder, and to use solder we need a source of high temperature. Solder used in electrical connections is an alloy of tin and lead. Tin when pure melts at $327^{\circ} \mathrm{C}$ and can be 'plastic' from $183^{\circ} \mathrm{C}$ when impure. Lead melts at $232^{\circ} \mathrm{C}$ when pure and can be 'plastic' from $183^{\circ} \mathrm{C}$ also. Any movement during the 'plastic' stage will result in a faulty joint, therefore both metals are unsuitable on their own. However, when they are mixed we get a different set of characteristics and the melting temperature is lower than for the pure metals, also the 'plastic' region changes. When the mixture is 63% tin and 37% lead the 'plastic' region disappears, and the solder changes from solid to liquid at precisely $183^{\circ} \mathrm{C}$. In practice a small 'plastic' region is desirable, so 60%
tin to 40% lead $(60 / 40)$ is used for virtually all electronic solder - this has a 'plastic' range of about $5^{\circ} \mathrm{C}$, and means that the chance of moving a joint, while in the 'plastic' state is quite small.

Flux

So armed with 60/40 solder and a soldering iron, we can join leads together . . or can we? Not quite, all metals are covered with an oxide film which prevents the solder fusing with the metal. This film is formed virtually instantaneously, on contact with atmospheric oxygen, so cleaning leads before soldering will not help. For a reliable low resistance joint, this oxide must be removed by a flux during the soldering. Electrical flux is made of wood or gum resin, with a small quantity of activator. The molten resin wets the solder and the metal, and the activator dissolves the oxide present, enabling the solder to flow freely and form a molecular bond, with the metal.

Modern solders have the correct flux in the stripes (like toothpaste); the most common type uses 5 resin cores. No additional flux is required when this type of solder is used, any excess hardens on the surface of the joint. Acidic flux must NEVER be used on electronic equipment, as it will corrode the component leads and pcb
tracks. Also the use of any solder/ flux combination other than normal, will void any component, kit or equipment guarantee.

A Bit About Bits

Virtually all bits are made from copper, to provide maximum heat transfer from element to tip. However because pure copper does not last very long, when used as a bit, various coatings are available to prolong its useful life. Nickel or chromium is used to coat the body of most bits, this stops the molten solder 'running back' over the whole bit, and helps prevent oxidation. Pure iron can also be used on the tip of bits to give a very long life.

Copper bits have the advantages of low initial cost, and give the best solder flow - but need to be filed back into shape at fairly frequent intervals. Iron coated bits must NEVER be filed, as this will destroy their coating, and should be wiped on a damp sponge when hot to remove excess solder. The actual shape of the tip is important and five types are common:

1. Single Chisel, this is the standard shape which can be used for most applications. Provides maximum accessibility and visibility, is available in most sizes.
2. Tapered Chisel, is the standard
shape on a reduced tip size, the taper provides maximum heat transfer to the tip.
3. Double Chisel, has two faces with an included angle of usually 80°. Intended to allow simultaneous contact with component lead and pcb track.
4. Tapered Double Chisel, for pcb work on small sizes, gives maximum heat transfer in confined spaces.
5. Screwdriver, is a double faced bit with small included angle, used for tags and awkward locations.

Continuous Heat Irons

The most common soldering iron is the continuous heat type, mainly because they are the easiest to make and hence the cheapest! They usually consist of an element of resistance wire, in an insulated barrel, onto which the bit either slips over or into, although some brands have a screwin bit. They are manufactured in wattages from 5 W to 250 W , but for general use the ones in the 15 W to 30W range are commonly used. These irons are left running continuously, and as a result tend to wear out bits quite rapidly, and can often provide too much heat (if not used regularly during a session).

Voltages available range from 6 V to 240C AC/DC, although most irons used in the home are 240 V , low

Photo 1: Top to bottom, Greenwood Electronics Oryx 50. Weller WP6OD and Light Soldering Developments TG50. All these irons are temperature controlled.
Photo 2: Light Soldering Developments, Conqueror iron complete with stand and spare bits.
Photo 3: Top to bottom, Adcola K2000 series, Greenwood Electronics Oryx 30 and Antex X25. These irons are all continuous heat types in the 25 W to 30 W range.
Photo 4: Top to bottom. Antex CX, S\&R Brewster Type 1, Antex C. Adamin 15 and Oryx 9. These irons are continuous heat types in the range 8 W 3 to 18 W .

Photo 5: Wahl lsotip Quick charge iron, distributed by Greenwood Electronics. Rechargeable, cordless iron for field and bench use.

Photo 6: Scope Cordless, distributed by A.G.B. Southern Cross, rechargeable gun type.
Photo 7: Solder and desoldering braid in various sizes, available from Adcola, Multicore and Light Soldering Developments.
Photo 8: Top to bottom, Ersa Sprint from Greenwood Electronics, Scope Miniscope and Superspeed both from A. G. B. Southern Cross). These three are instant heat types with built in triggers or switches.
voltage operation via a transformer has the advantage of much higher safety. Most people find the continuous heat type of iron satisfactory for general hobby work.

Temperature Controlled Irons

These irons are about twice the price (at least) of the common continuous type, but worth every penny! They are commonly used on production lines, where their advantages can save large sums in preventing component replacement - due to overheating or bad joints. Basically they maintain a set, optimum, temperature all the time they are on.

There are three basic methods employed to keep irons at a fixed temperature. Weller use the Curie effect in magnetic materials to interrupt the supply to the element. When a ferromagnetic material is heated above its Curie point it stops being magnetic, for nickel this temperature is $360^{\circ} \mathrm{C}$ and for iron it is $727^{\circ} \mathrm{C}$. On the same sort of principle as mixing tin and lead to obtain a new characteristic, a specific Curie point can be obtained by mixing ferromagnetic materials.

On the Weller iron a different bit is required for each temperature, when cold a small piece of ferromagnetic material (called the sensor by Weller) attracts a magnet. This magnet is connected via a spring to a switch in the elements supply lead. When the iron reaches operating temperature, the sensor forgets that it is magnetic and the magnet pulls away switching off the element, the sensor cools down and becomes magnetic again, attracts the magnet

The only drawback is that a different bit must be used for each specific temperature, although you do know exactly what temperature you are getting. Also because the bits are rather special they are more expensive than normal.

The second common method used in temperature controlled irons is a mechanical thermostat. This method is used by Greenwood Electronics and Light Soldering Developments in their Oryx 50 and TC50 respectively. Both operate on the expansion of a sensor which operates a switch, the big advantage over the Curie system is that the temperature can be altered easily. In fact both irons can have their temperatures altered whilst in use, the disadvantage is that without some form of measurement instrument, you can't tell the exact operating temperature.

The third and most sophisticated

solder a temperature of $315^{\circ} \mathrm{C}$ is required, $370^{\circ} \mathrm{C}$ for large connectol e op nox t! 'səsodınd isom tot ejqe of construction a temperature controlled iron is a wise investment. Quick heat irons should be used for heavy connections around the house, rechargeable irons are unique; if you need one, you need one. Rather than having to keep changing bit size, consider two irons - one 15 W with a ท!q лә6леן е ч!!M MGZ e pue !!q әu!! obtain include desolder braid or a desolder gun, a stand for your iron, spare bits in a wide selection, heatshunt to protect delicate components and last but by no means least, decent sidecutters to snip component leads -whoops nearly forgot, solder in thin and thick gauges. Remember soldering is an art, and to get artistic results you need good tools.
use in a workshop, rechargeabie irons are mainly used for field repairs (sometimes literally). The Isotip comes complete with stand/charger
unit and is available in 12 hour and 4 hour charge versions, the Scope Cordless is unusual in that it is a pistol әs!млачı s! әэиешиодад s!! - әdeys әч1 puepuets ditos, әul ol leן!u!s Weller WC 100 is available in the U.S.A. (and in the U.K. shortly).

 be expected to undergo much development in the future. In fact we wonder if the disposable iron is just
around the corner?
Choice of Iron

When soldering new components,
with $60 / 40$, a bit temperature of
$250^{\circ} \mathrm{C}$ is adequate. For melting old
nics), and low voltage' high current
(Superspeed from A.G.B. Southern Cross). The low voltage types are unusual, in that the heating current is passed through the bit itself.

Rechargeable Cordless Irons

 always was that you needed a source of power, be it mains or a car battery. With the advent of high power changed. The . first company to produce a cordless rechargeabie iron, was the Wahl Corporation - the Isotip Standard. Since then Scope and Weller have also produced irons
on the same principle. Gone are the
 can solder a hundred or so joints anywhere.
Not really intended to continuous

E. R. NICHOLLS

P.C.B. TRANSFERS

46a LOWFIELD ROAD, STOCKPORT, CHESHIRE 061-480 2179

ETCH RESIST TRANSFER KIT I:I

Complete kit 13 sheets, $6^{\prime \prime} \times 41 / 2^{\prime \prime}$.............. £2.50
With all Symbols for Direct Application to P.C. Board, Individual Sheets

25 p ea. (1) Mixed Symbols /(2) Lines 05 /(3) Pads / (4) Fish Plates and Connectors/(5) 4 Lead and 3 Lead and Pads/(6) DILs/(7) Bends 90' and 130*/(8) 8-10-12 T.O.5 Cans/(9) Edge Connectors. 15 (10) Edge Connectors . $1 /$ (II) Lines $.02 /(12)$ Bends . 02 /(13) Quad In Line.

CIRCUIT LAYOUT TRANSFERS SIZE 2:1

One Sheet $12^{\prime \prime} \times 9^{\prime \prime}$ giving all transfers as in Etch Resist from No. 3-No. 10 inclusive. Makes Circuit Layout easy, Black only. Price
£1.00

FRONT AND REAR PANEL TRANSFER SIGNS

All Standard Symbols and Wording over 250 Symbols, Signs and Words. Also available in reverse for Perspex, etc. Choice of colours, Red, Blue, Black or White. Size of Sheet $12^{\prime \prime} \times 9^{\prime \prime}$ Price
$£ 1.00$

GRAPHIC TRANSFERS WITH SPACER ACCESSORIES

Available also in reverse lettering. Colours Red, Blue, Black and White. Each Sheet $12^{\prime \prime} \times 9^{\prime \prime}$ contains capitals, lower case and numerals. $1 / 8^{\prime \prime}$ Kit or $1 / 4^{\prime \prime}$ Kit
$£ 1.00$ Complete
All Orders Dispatched promptly. All post and VAT paid Ex UK add 50 p for Air Mail Shop and trade enquiries welcome

Decon Laboratories Ltd. Freepost, Portslade, Brighton BN4 1EQ (no stamp needed)

Name:
Address

IIIT nul SAVE YOU MORE POUNDSAND BRING COLOUR TO YOUR TV GAMES with the new Telecraft COLOUR ENCODER featuring: direct interface with the AY-3-8500 choice of differently-coloured ball, bats, frame and background

* vision modulator perfect picture

管 fully built and tested, easy to install
This remarkably low-cost quality product is available ex-stock for just 56.60 . A very easy-to-build colour TV game kit is also available at $£ 16.50$: this comprises printed circuit board,

AY-3-8500 i.c., clock generator, colour encoder
modulator and associated components (kit less i.c. £11.00) Note that we do not supply switches, controls or wire.

Similar black and white kit $£ 10.40$ inc. AY-3-8500
Also: Spare AY-3-8500 i.c.'s - $£ 5.50$; AY-3-8550 i.c. $-£ 8.50$
Prices include VAT, postage and packing.
TELECRAFT
53 Warwick Road, New Barnet, Herts EN5 5EQ. Telephone: 01-440 7033
Personal Callers and Trade Enquiries welcome
Cheques and Postal Orders to be made payable to 'Telecraft'

Wilmslow Audio

THE firm for speakers!

Send 15p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list

ATC AUDAX BAKER BOWERS \& WILKINS - CASTLE - CELESTION CHARTWELL

COLES DALESFORD DECCA EMI EAGLE

- ELAC FANE GAUSS GOODMANS -

HELME I.M.F. ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE MONITOR AUDIO P PEERLESS RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE, SK9 1 HF
Discount HiFi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI

Blob-Board for Digital Electronics by Experiment

Mr. Blob says

"The Technique of inserting components on one side of a board and soldering on the other is done for reasons which are now completely out of date; Namely this technique was established originally because heavy and bulky components were used. This no longer applies and has big disadvantages, the circuit is impossible to follow unless the board is continually turned over to inspect each side, its difficult to work on both sides of the board and soldering basically needs three hands. A common fault is to mount both leadout wires on the same tract.

Blob-Boards give you the modern, low cost, easy way to build circuits. Blob-Boards are roller tinned circuit boards on which each roller tinned copper track is identified by the letter and or number system. Simply tin the end of the component, butt the component lead against the roller tinned track, apply a blob of solder and the component is blobbed into place. All construction is from one side, component location could not be simpler, soldering is much easier, sub-circuits can be tested, then assembled together, the plain side of the Blob-Board is free and so the Blob-Board can be mounted flush on case walls. And they can be re-used, simply apply a soldering iron to the Blob and remove the component."

Now start Digital Electronics by Experiment

No need to lose your way round a circuit board that needs a layout drawing - Blob-Boards make construction easy. Blob-Boards have numbered tracks that make layout drawing out of date, the tinning ensures easy soldering, and the tracks don't strip off when you unsolder components. Blobbing components on to the tracks (no holes, no drilling) makes layout easy to follow. Use the 8-IC board for 'Digital Electronics by Experiment' in this issue, but remember that we have "A Blob for every job"

All in packs of 3 only

" V " Range	$\begin{aligned} & 0.1^{\prime \prime} \\ & \text { Pitch } \end{aligned}$	$\begin{aligned} & 0.15^{\prime \prime} \\ & \text { Pitch } \end{aligned}$	Pack of 3	" D " Range	$0.1^{\prime \prime}$ Pitch	Pack of 3	"IC" Range	$\begin{aligned} & 0.1^{\prime \prime} \\ & \text { Pitch } \end{aligned}$	Pack of 3
2.5 ' \times 5"	ZB1V	ZB1V5	0.85	$3.6^{\prime \prime} \times 2.4^{\prime \prime}$	ZB5D	0.56	$4.5^{\prime \prime} \times 3^{\prime \prime}$	ZB11C	0.95
$2.5{ }^{\prime \prime} \times 3.75^{\prime \prime}$	ZB2V	ZB2V5	0.62	$2.4^{\prime \prime} \times 7.3^{\prime \prime}$	SB6D	1.10	$4.8^{\prime \prime} \times 3.2^{\prime \prime}$	SB21C	1.01
$3.75^{\prime \prime} \times 5^{\prime \prime}$	ZB3	ZB3V5	1.19	$4.9^{\prime \prime} \times 7.3^{\prime \prime}$	ZB7D	2.20	$4.75^{\prime \prime} \times 7.5^{\prime \prime}$	ZB41C	2.18
$10^{\prime \prime} \times 6^{\prime \prime}$	ZB4V	ZB4V5	3.83	$9^{\prime \prime} \times 7.5^{\prime \prime}$	ZB8D	4.10	$9.5^{\prime \prime} \times 7.5^{\prime \prime}$	ZB81C	4.31

Please add 20p Postage + VAT to all Orders
P.B. Electronics (Scotland) Ltd.,

57 High Street, Saffron Walden, Essex. CB10 1AA
Tel. Saffron Walden (0799) 22876

Own The Most Complete

ELECTRONIC STOPWATCH

with Built-in Memory Calculator
Lep 2 -
Nat Time - Times Relays \& Accumulates Itrats - Great for Team Races
OLAP!
Times any LAP segment and Final Time Purlect for Car, Boat 8 Horse Races

- TIME OUT -

Thes Game Play \& Time Outs Simultancurly..
estampard -
Tmes Dash Races
for Coaches. Trainers. Businesspeople and Sports Fans. The Remarkable CASIO ST-1 anly £24.50. complete with clip-on sun hood and wrist lanyaru.
told the Casio ST- 1 in your hand. Its pistol grip puts al positive response controls at fingertip command. dust select lhe Slopwatch Mode to clock time with anth of isecond acturacy.
Dime display hyphenates Hours \square Minutas \square Scconds \square Tenths of a Second. II doessn't matter whather you are a referee or a spectator. you ara esping tabs on time with prafassional pracision. There is a world of difference botween just watching te acilion and being i part
The large. prean lluer esceni Digitron display alfords geater battery life Casios 5 T .1 comes complete geaier battary life. Casios ST-1 comas complete dectranic technology is not affected by humidity So discironic technology is not affecied by humidity So tre unil will keep perifect. splil second time. The ST-I is more than a slopwatch. Just look at keytoard. The "TM" key is a time entry thal lets you compule time averages. delermine hourly wages. cost par job completed, and so much mort. It's a compiate 4 -key memory calculator with an add m/discount porcent key, a square root key and indapandent clear and clear all keys. Commonsense uggbraic logic lets you antar figures just as you ould write hem down on paper.
Added reatures: Snapon smoke groy plastic mejboard cover to prevent accidental key antry white stipwatch mode is operalive Security wrist per colour housiog design thathe losa har knocks. Snap-on display sunshade.

TRANSFORMERS

Panel Meters, Bridge Rectifiers, Power Supply Units Multimeters - Semi Conductors - Timers - Safebloc

YES HERE IT IS THE CROFTON EXPANDABLE V.D.U./MACRO COMPUTER THAT REALLY WORKS!! With so many features it will meet your requirements

Look at these features

* Rock Steady Pictures
* Crystal Controlled
* Expandable Number of Lines
* Telephone Interface
* Tape Programmable
* Software Available
* Ideal for Education
* Expandable Memory
* Games and Things on Tape
* Ready-Built or in Kit Form
* Video or UHF Output
* Selectable Flashing Characters
* Forward and Reverse Typing Mode
* Repeat Facility
* Tab Key
* Automatic Tape Stop/Start
 COME ALONG AND
PLAY MASTERMIND ON OUR DEMONSTRATION MODEL or S.A.E. FOR INFORMATION

CROFTON ELECTRONICS LIMITED

35 Grosvenor Road, Twickenham, Middlesex • 01-891 1923

The $570 / 571$ is a versatile low cost dual gain control circuit in which either channel may be used as a dynamic range compressor or expandor. Each channel has a full wave rectifier to detect the average value of the signal; a linearized, temperature compensated variable gain cell; and an operational amplifier.

Circuit description

The 570/571 compandor building blocks, as shown in the block diagram, are a full wave rectifier, a variable gain cell, an operational amplifier and a bias system.

The full wave rectifier rectifies the input current which flows from the rectifier input, to an internal summing node which is biased at $V_{\text {REF }}$. The rectifier current is averaged on an external filter capacitor tied to the $\mathrm{C}_{\text {RECT }}$ terminal and the average value of the input current controls the gain of the variable gain cell. The gain will thus be proportional to the average value of the input signal for capacitively coupled voltage inputs.

The speed with which gain changes to follow changes in input signal levels is determined by the rectifier filter capacitor. A small capacitor will yield rapid response but will not fully filter low frequency signals. Any ripple on the gain control signal will modulate the signal passing through the variable gain cell. In an expandor or compressor application, this would lead to third harmonic distortion, so there is a tradeoff to be made between fast attack and decay times, and distortion.

A compensation scheme built into the ΔG cell compensates for temperature, and cancels out odd harmonic distortion. The only distortion which remains is even harmonics, and they exist only because of

Features

- Complete compressor and expandor.
- Temperature compensated
- Greater than 110 dB dynamic range
- Operates down to 6 Vdc
- System levels adjustable
- Distortion may be trimmed out

Applications

- Telephone subscriber compandor
- High level limiter
- Low level expandor - noise gate
- Dynamic noise reduction systems
- Voltage controlled amplifier
- Dynamic controlled amplifier
- Dynamic filters

BLOCK DIAGRAM

internal offset voltages. The THD trim terminal provides a means for nulling the internal offsets for low distortion operation.

The operational amplifier (which is internally compensated) has the non-inverting input tied to $V_{\text {REF, }}$ and the inverting input connected to the $\Delta \mathrm{G}$ cell output as well as brought out externally. A resistor, R_{3}, is brought out from the summing node and allows compressor or

expandor gain to be determined only by internal components. The output stage is capable of $\pm 20 \mathrm{~mA}$ output current. This allows a $+13 \mathrm{dBm}(3 \mathrm{~V} 5 \mathrm{rms})$ output into a 300 ohm load which, with a series. resistor and proper transiormer, can result in +13 dBm with a 6000 hm output impedance.

Basic expandor

Figure 1 shows how the circuit would be hooked up for use as an expandor. Both the rectifier and $\Delta \mathrm{G}$ cell inputs are tied to $V_{I N}$ so that the gain is proportional to the average value of V_{iN}. Thus, when $V_{\text {IN }}$ falls 6 dB , the gain drops 6 dB and the output drops 12 dB .

The maximum input that can be handled by the circuit in Figure 1 is a peak of 3 V . The rectifier input current should be limited to $1=3 \vee / R_{1}=$ $3 \mathrm{~V} / 10 \mathrm{~K}=300 \mu \mathrm{~A}$. The $\Delta \mathrm{G}$ cell input current should be limited to $1=2 \mathrm{~V} 8 / \mathrm{R}_{2}$ $=2 \mathrm{~V} 8 / 20 \mathrm{~K}=140 \mu \mathrm{~A}$. If it is necessary to handle larger input voltages than $0-$ $\pm 2 \mathrm{~V} 8$ peak, external resistors should be placed in series with R_{1} and R_{1} to limit the input current to the preceding values.

The output of the expandor is biased
up to 3 V by the dc gain provided by R_{1} and R_{4}. The output will bias up to the values shown in the following equation. For supply voltages higher than $6 \mathrm{~V}, \mathrm{R}_{4}$ can be shunted with an external resistor to bias the output up to $1 / 2 V_{c c}$.

To obtain the largest dynamic range out of this circuit, the rectifier input should always be as large as possible (subject to the $\pm 300 \mu \mathrm{~A}$ peak current restiction).

Basic Compressor

Figure 2 shows how to use the NE570/571 as a compressor. It is just an expandor in the feedback loop of an op amp. If the input rises 6 dB , the output can rise only 3db. This is so because the 3 dB increase in output level produces a 3 dB increase in gain in the $\Delta \mathrm{G}$ cell, yielding a 6 dB increase in feedback current to the summing node.

The same restrictions as to rectifier and ΔG cell maximum input current still hold, which place a limit on the maximum compressor output. As in the expandor, the rectifier and $\Delta \mathrm{G}$ cell inputs could be made common to save a capacitor, but low level tracking accuracy would suffer Since there is no dc feedback path around the op amp through the $\Delta \mathrm{G}$ cell. one must be provided externally. The pair of resistors $R_{D C}$ and the capacitor $C_{D C}$ must be provided.

Absolute Maximum Ratings

$V_{c c} \quad 18 \mathrm{Vdc}(571)$
$\mathrm{V}_{\mathrm{cc}} \quad 24 \mathrm{Vdc}(570)$
$\mathrm{T}_{\mathrm{A}} \quad-40 \mathrm{to}+70^{\circ} \mathrm{C}$
$P_{D} \quad 400 \mathrm{~mW}$

For the largest dynamic range, the compressor output should be as large as possible so that the rectifier input is as large as possible (subject to the $\pm 300 \mu \mathrm{~A}$ peak current restriction). If the input signal is small, a large output can be produced by reducing R_{3}, with the attendant decrease in input impedance, or by increasing R_{1} or R_{2}. It would be best to increase R_{2} rather tnan R_{1} so that the rectifier input current is not reduced.

Distortion Trim

Distortion can be produced by voltage offsets in the ΔG cell. The distortion is mainly even harmonics, and drops with decreasing input signal (input signal meaning the current into the $\Delta \mathrm{G}$ cell). The THD trim terminal provides a means for trimming out the offset voltages and thus trimming out the distrotion. The circuit shown in Figure 3 is suitable, as would be any other capable of delivering $30 \mu \mathrm{~A}$ into a 100 ohm resistor tied to 1 VB

THD TRIM NETWORK

The Signetics 570 and 570 and 571 are due to be available shortly, for further details contact Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD.

SPECIAL OFFER FOR READERS

- AM / FM Radio Alarm Clock (SC 220-240V only)

24-hour Clock

- High quality white ABS Case
- Push-button Mode Selection
- Sleep delay Control
- Ituminated Clock and Radio Scale
- Alarm with Buzzer and /or Music
- A. Chrome Control Knobs
- Complies with BS4 15 (1972) Safety Requirements
- Each Unit full inspected before despatch
- Guaranteed for one year
"See our extra special offer on special offer pages. Please send cheque or postal order to:
D\&D POWER SUPPLY CO. LTD.
79 LOWFIELD STREET, DARTFORD, KENT
Please allow 10-14 days for delivery
Callers welcome Monday-Friday 9-5, Saturday 9-1

MINIATURE SOIDERIIIG IRON IDEAL for HOBBY or TRADE

SAFE: Complies with Consumer Protection Regulations BS No. 3456 2/14 The $G \rightarrow R \in B$ has a new method of bit-securing (pat. pending) and a built-in suspension hook. All parts are very easily replaced. Insulation tested at 1500 V. ac. BIT SIZES

$$
\begin{array}{ll}
19(1.5 \mathrm{~mm}) & 20(3.0 \mathrm{~mm}) \\
21(4.5 \mathrm{~mm}) & 22(6.0 \mathrm{~mm})
\end{array}
$$

PRICES: (including VAT and P and P) IRONS E3•70 each. BTIS 41p each (Bit type 20 fitted as standard).

Cheques/p.Orders to Manufacturers and Distributors : S. \& R.BREWSTER 86-88 UNION ST • PLYMOUTH Tel Jrade Enquiries Welcome

Doram's new catalogue is one of the great events of the electronic year, 64 pages of newideas in construction kits, capacitors, resistors, semiconductors, wires and cables, transformers, plugs and sockets, hardware, indicators, switches, radio equipment, tools and test equipment, audio equipment, books. All top quality and terrific value because you can depend on Doram.

DarAm

SINTEL for KITS
 ,
 Mor fri) will be despstchad on the same day by 1 ti Clase Port (come heavy items by parcel poiti) and

ANNOUNCEMENT

FURTHER INFORMATIDN ON Z*O COMPUTER SYBTEMS AVAILABLE SOON FROM We will be offering two ditferent packages. The tirst system. the RESEARCH MACHINES 3802, will be available bult and lested and also in kit form. This is a
when used in conjunction with a television and cassette recorder
The second system, the RESEARCH MACHINES 28OZ, will be available in uncased kit form, with a. low cost keyboard. The RESEARCH MACHINES $280 Z$ is designed to sel a new low in compute system pricing and it will bring a full com enthusiasts.
(These computers are designed and manulactured in Oxford by SINTEL S parent company RESEARCH MACHINES $\mathbf{3 8 0 Z}$ will have ine following specifications: BULIT-IN VDU: The $380 Z$ has a UHF output which plugs into the aerial socket of a complotely unmodified domestic tel evision The π screen will then display 24 rows of 40 characters (960 characters). The unit can display the
128 character 1507 set. including upoer and lower case ASCII. VDU GRAPHICS. The 3802 can 128 character ISO7 set. including upper and lower case ASCII. VDU GRAPHICS. The 3802 tan display graphics on the IV screen on a matix of Vary high quality, robust keyboard with ASR-33 standard layout CASETTE INTEAFACE CUTS. Kansas City standard 300 bits pe second. CPU SPEC: 280 Microprocessor. Fully buffered bus. RANDOM ACCESS MEMORY $4 K$ byles dynamic RAM minimum. The system can accommodate up to 32 K bytes without adding an
memory PCBs. Using a page select mode. the computer memory can be expande memory PCBs. Using a page select mode the computer memory can be expanded
indefinitely. FIRMWARE This means soffware suppthed and available at Switch-On. in ROM otherwise known as the MONITOR). MONITOR COMMANOS: List Memory. Modify Memory. Load From Cassette, Dump On Casseyte, Singte Step 'Trace. Go To User Programme, Breakpoint sequentral and immediate mode, Machune Language Graphics Subroutines. Games Packages sequential and immediate mode Machine Language Graphics Subroutinas. Games Packages
Resident Assembler. HARDWARE CONFIGURATIN Compuler is house in an instrument case with power supply, and a lot ot room tor expansion. Keyboard is in a separate case All connections eiween unis are made wit unplug
RESEARCH MACHINES 2802
An exciting new low cost computer us ing the 280 microprocessor. sullable for amateur use or 35 rofessional Engineer s Computer Development Kitt. RESEARCH MACHINES $280 Z$ reatures optiona
power supply. a low cost keyboard, VDU UHF output providing an ASCII alphanumeric display on domestic television, cassette interface and a reasonable amount of random access memory. This system otters excepional value for money it will cost somewhere between the price of a
Manufacturers's Deveiopment Kit using hex display and keyboard, and a fully cased computer system Earh character position on the vDU is written in to and can be read by the CPU as a memory location This means that the VOU is sotiware controlled and can be programmed to operate in any mode, including page mode scrolled. immediate mode edifing, or tulty addressable cursor. The whote VDU
can be tilled with new data in less than 10 mSecs ' Screen reffeshing does not use any of the 280 's can be filled with new data in less than 10 mSecs ' Screen refreshing doess not use any of the 280 s
time
Because of the high-speed software control the VDU can display dynamic graphics for games and simulations

A RANGE OF SINTEL INDUSTRIAL MODULE KITS

KITS FOR LATCHED COUNTER MODULES
Latched Counter modules are now available from SINTEL using both CMOS and TTL ICs. These ktts will give you a very compact unit at less than the cost of the components bought separately and went
save you considerable design, purchasing, building bnd de-hugging time Each kit has a set ot red LED displays, two PCBs and the apprapriate number of TTL or CMOS Ifs. plus brackets, etc., resistors, capacitors, single in-ine plug and sockets and insiructions
Latched Counter modules

COUNTER PGB SETS

2 dignt	915-950	E2.97	855-950	¢2.48
4 digl	246-950	44.53	482.950	E3.73
6 digit	$610-950$	E6.16	719-950	¢5.01

KIT FOR SINGLE PCE CMOS COUNTER MODULE WITH LATCH
A XTI322 or FND5
Order as 142.269
SETS OF JUMBO DISPLAYS WITH DISPLAY HOLDING PCB
These display hoiding PCAs will make your circuits neater, more atractive and save you tume Each kit consists of the appraprate number of $0.5^{\prime \prime}$ red LEO displays (either common anode
TIL321/FND507s or common cathode TII 322 ; FNO PCBs wired for multiplexing or non multiplexing. clock format or counter format

TrPE	COMMON ANODE		COMMON CATHODE	
Non-Multiplexed	Past No.	Prica	Pert No.	Price
2 digit Counter	574-822	c3.37	440-822	¢2.97
4 digit Counter	777-822	c. 0.83	128.322	¢5.83
6 digit Counter	884-822	c.9.89	271-822	¢8.69
Multiplexed				
4 digit Clock	301-822	¢6.66	262-822	
6 digit Clock	417-822	£10.15	452-822	¢8.95
8 digir Counter	119-822	£13.09	515-822	¢11.49

TIL COUNTER SET
A set of three TTL Cs consisting of 7447 decoder driver. 7475 Quad Latch and 7490 decade Orde: as $\mathbf{8 2 8 - 1 7 2}$ £1.55 TTL AND DISPLAY COUNTER BET
TTLAND DISPLAY COUNTER BET 7447.7475 and 7490 THL ICS 10 gether with a Common Anode $0.5^{\prime \prime}$ Red LED display 10 Suild a TIL Lached Counter module you only need one of our TTL Counter PCB Sers, the appropriate number of these TTL and DISPLAY sets, resistors, capacitors and a 5 V supply. TTL COUNTER circuit avalable on reques

DATABOOKS

$2 \log 280$ CTC Product Specticai
¢2.92

1		20	1.28	D4040	1.11	CD4066	0.63	CD4096	1.08				
		CD4021	1.04	CD404	0.86	C04067	3.85	CD4D	3.85				
Maunly	RCA	C04022	0.94	CD4042	0.86	C04068	0.23	C04098	1.13				
CD4000	0.17	CD4023	0.23	CD4043	1.01	CD4069	0.23	CD4099	1.90				
CO4001	0.18	CD4024	0.80	CD4044	0.96	C04070	0.51	C04502	1.24				
C04002	0.17	CO4025	0.23	CD4045	1.45	CD4071	0.23	CD45 10	1.41				
CD4006	1.20	C04026	1.78	CD4046	1.37	CD4072	0.23	CD-5511	1.72				
CD4007	0.18	CD4027	0.58	CO4047	1.04	C04073	0.23	CD4514	2.84				
CD4008	1.00	CD4028	0.92	C04048	0.58	CO4075	0.23	CD4515	3.24				
CO4009	0.58	C04029	1.18	C04049	0.58	CO4076	1.34	CO4516	1.40				
CO4010	0.58	CO4030	0.58	C04050	0.58	CD4077	0.45	CO4518	1.25				
C04011	0.20	CO403 ${ }^{\text {a }}$	2.30	CO405	0.94	CD4078	0.23	C04520	1.19				
CD401?	0.23	CD4032	1.02	CD4052	0.94	C0408	0.23	C04527	1.64				
CO4013	0.58	CD4033	1.44	C04053	0.94	C04082	0.23	CO4532	1.39				
CD4014	1.04	Co4034	1.97	C04054	1.20	C04085	0.74	C04555	0.90				
CD4015	1.04	C04035	1.22	C04055	1.36	CD4086	0.74	CO4556	0.90				
CD4016	0.58	CD4036	3.29	CD4056	1.36	CD:4089	1.60	MC14528	1.22				
CO4017	1.04	C04037	0.98	C04059	4.93	CO4093	0.92	MC14553	4.68				
CO4018	1.03	C04038	1.10	CD4060	1.5	CD4094	1.94	M6508	8.05				
C04019	0.58	CD4039	3.20	CD4063	1.13	CD4095	1.08						
COMPONENTS SEND for free catalogue													
SUNDRIES CA3130 0.94 UA741 0.40 78L12WC 0.77 2022 Cuter 0.74		$V$$\mathbf{B O A R O S}$R		CRYSTALS		Xtal timebase		SWITCHES					
		$32.768 \times \mathrm{kZ}{ }^{\text {a }}$		PCB mounting									
		BOAROS$375^{\prime \prime} \times 5^{\prime \prime}$	BASE modules		ches. ${ }^{\text {ming. }}$ D. $3^{\prime \prime}$ pin ${ }^{\text {pelween }}$								
		$103 / \mathrm{P} 16 \times 2 \mathrm{PK}$		5.12MHz 3.60		50Hz$671-50$							
		$7^{\prime \prime} \times 17.9^{\prime \prime}$	(c. 200)		$\begin{array}{ll} 100 \mathrm{~Hz} \\ \mathrm{~B} 21 \cdot 100 & 7.40 \end{array}$								
		126/P16			2.55	sock							
$\begin{array}{lr}\text { MPU8 } \\ \\ \text { MC6800 } & \mathbf{1 5 . 9 7} \\ \text { Z80 } & \mathbf{2 8 . 0 0}\end{array}$								VP-	18	CLOCK CHIPS$\text { AY } 51202 \mathbf{3 . 1 0}$		$2 /$ SPST	
						29-461	. 59						
TRAN		displays				$\begin{aligned} & \text { AY51224 } \mathbf{3 . 5 0} \\ & \text { MK50253 } 5.80 \end{aligned}$			1.09				
MEAS		TIL321	1.50	MEMORIES				$\begin{aligned} & 560-461 \\ & 8 / S P S T \end{aligned}$					
Ledirf	1.95	TIL322	1.49	$2102 \mathrm{~A} \cdot 6$	2.05 2.90	flat Cable 2OWC 'm 1.00 20WC 10m			1.85				
5 LTRF	1.95	5 LTO 1	4.90	$\begin{aligned} & 2112 \mathrm{~A}-4 \\ & 6508 \end{aligned}$	$\begin{aligned} & 2.90 \\ & 8.05 \end{aligned}$			10/SPST					
							8.50	726-46	10				
DATASHEETS (3) 75p				751410 J 3.36		SOLDERCON		1/SPDT					
IM6100 MC6800. SC/MP.				7514110	4.10	PINS		2,SPDT					
COP1B02, 2650. IMS5501. TM58080 9131 zll0G 780 Aiso				751237J 2.50		${ }_{100} 100000$		847-46)	1.10				
				$\begin{aligned} & 7512380 \quad 3.00 \\ & 751239 \mathrm{~K} \quad 3.58 \end{aligned}$		$\begin{aligned} & 1000 \\ & 3000 \end{aligned}$	$\begin{array}{r} 4.00 \\ 10.50 \end{array}$	4/59DT					
TMS8080, 9;31. ZILOG ZBO. Aiso FREE DATA on some components.						991-46		1.86					

THE SINTEL ALARM CLOCK WITH BLEEP ALARM AND TOUCH-SWITCH SNOOZE

$40 \mathrm{~mm} \times 205 \mathrm{~mm} \times 140 \mathrm{~mm}$ The completa kit will be sent to you by First-Class Raturn Poss. It includes an atiractive. slim white case
mith a deep red display fiter and leatures automatic mtensity control and a high brightness display Twelve or twenty-four hour format can be selected difing construction, or a switch can easily be added between them.t This clock has proved a popular and reatiable kit. Order as ACK $\quad \mathbf{E 2 8 . 8 0}$ This kit is also available with Batsery Backup which will maintain timekeeping during disconnection
from mains supply, and with Crystal Control to improve accuracy. ACK $+\mathbf{B E K} \times \mathbf{X K K}$. E34.55 The kit is complete less mains plug. cable and battery

AND A NEW KIT FROM SINTEL THE RED LED DESK CLOCK

This is an atractive litte clock housed in a small white case, h. $40 \mathrm{~mm} \mathbf{w . ~} 154 \mathrm{~mm}$ d 85 mm and has four bright red 0.5' displays. Order as 111.222 £15.50 Accuracy of this clock can be improved by installing a quarta crystal timebase (see XTK below). and a further addition, the battery back-up will guarantee timekeeping during disconnection from the mains supply. For kit with additional battery backup and crystal contral. Order as 111-222+8BK+XTK			
CRYSTAL TIMEEASE KIt			
Use as a 50 Hz source to improve accuracy to within a few seconds a month Size $\mathrm{h}+4 \mathrm{~mm} w 64 \mathrm{~mm}$ d. 49 mm . Order as XTK			
GCK CLOCK KIT			
Four Bright green $05^{\prime \prime}$ digitai manteplece or oftice clock White case			
Size h.40mm w 154 mm d 85 mm Complete less mans cahle, plug and battery	Order as GCK E12.95		
Also avalable with crystal control and battery backup			
Order as GCK + GBBK + XTK	£18.55		

CRYSTAL CONTROLLED 8 DIGIT CAR CLOCK WITH INDEPENDENT JOURNEY-TIMES Shows time or elapsed time in hrs. mins. secs - Runs off car 12 V supaly Nine push buttons to Siart-Siop-Reset, selecting display ra siow time br elapser ime All controis THE SIMTEL CAR CLOCK KIT
Four 0.5" red digits Neat white case Crystal control Battery backup Surtable for all 12

THE SINTEL FREE CATALOGUE
Our easy to use Free catalogue will be sent to you by return first class Post. Is contains full information on our kits and moduies and all the components listed here with pinouts. cricuit diagrams and full specifications
Requests by post or telephane to SINTEL, PO BOX 75 A .
OXFORD. Tel Oxford $(0865) 49791$ Requests by post or telephane to
OXFORD. Tel Oxford (0865) 49791

OFFICIAL ORDERS ARE WELCOME
 ORDERS: C.W.O., add VAT @ B\% + 25p p\&p. TELEPHONE Bnd CREDIT (Invoica) Orders add
 10% (Europe). 15% (Overseas) for Air Mail p\&p. For Export postage rates on heavy items contact u
tirst.

GSOO CPU CARD

Designed by John Miller-Kirkpatrick

THIS MONTH WE consider the construction of the 6800 control card for System 68 and introduce you to ETIBUG software.

Bits on Board

The PCB has been designed as, a single sided board with about 30 wire links on the top side to give lowest cost with maximum flexibility. Most of the links are marked on the component overlay with the addition of some optional links to and from the uncommitted buffers in IC13. The first step in the construction is to mount the IC sockets in the positions shown and then to connect the wire links. The points marked D0-D7 next to IC8 should be linked to the corresponding points below them. Similarly points marked F-M should be connected to their corresponding points elsewhere on the board.

With the optional links recommended the group of address lines A12-A 15 are connected to the four spare buffers in IC 13 (designated T-W on the overlay). The outputs from these buffers ($\mathrm{P}-\mathrm{S}$) are taken to the 16 pin socket connections A-D. This will make the upper address lines available at the 16 pin socket which is intended to supplement the standard 31 way connector. The signals available at these two connectors are shown in Fig. 1.

With all of the wire links connected the resistors and capacitors should be soldered in position.

Prepare a few short links of wire to act as test probes which may be inserted into the IC sockets, arm yourself with a voltmeter and you are ready to start checking out the construction so far.

It is simplest to check out the general wiring and address decoding without the main MPU and memory
in position, as these are the most expensive and delicate ICs do not insert them until you have completed the checks noted below.

31-way bus connector

The connector is as per S 68 preferred bus structure with U/C pins as follows -
Pin 2 KBD
Keyboard enable output.
Pin 3 VDU VDU enable output.
Pin 4400
External enable output for addresses $\mathrm{X}^{\prime} \times 400^{\prime}-\mathrm{X}^{\prime} \times 7 \mathrm{FF}^{\prime}$
Pin 7100
External enable output for addresses $\mathrm{X}^{\prime} \times 100^{\prime}-\mathrm{X}^{\prime} \times 1 \mathrm{FF}{ }^{\prime}$
Pin 8 VMA NAND output of VMA and $\phi 2$
Pin 9 ENBL "'Page" enable for MPU card, in basic system connect to connector pin 8 "VMA".
16-pin socket connector
Pin 1 NMI Non maskable Pin 2 IRQ Interrupt input. Pin 2 IRQ Interrupt Request input.
Pin 32 Clock phase 2 output.
Pin 4 NC
Pin 51 Clock Phase 1 output.
Pin 6 HALT
Pin 7 RESET
Pin 8 GND
Pin 9 Optional
Pin 10 Optional
Pin 11 Optional
Pin 12 Optional
Pin 13 GND
Pin 14 RESET
Pin 15 NC
Pin 16 HALT
Fig. 1. Signals available at 31-way bus connector and at 16 -pin socket.

I See Power

Apply the 5 V power supply to the PCB and check for +5 V and GND at the correct positions for each IC location. Having satisfied yourself that you are not going to damage any ICs when you insert them you can now temporarily remove the power supply and install all ICs except ICs 1, 6, 7 and 8.

At this stage by using your wire probes, some taken via a pull up resistor (1 k) to 5 V and some taken to OV, the address decoding chips may be checked. The buffered $1 / 0$ lines may be verified in a similar fashion.

Other Off-board signals

Two options are given for the control signals such as RESET and the interrupts, they are present as front panel switches and are also available at the 16 pin socket. A set of resistors pulls these signals into the RUN condition and a logic ' 0 ' applied to any signal input enables that control.

Connect the switches SW2-SW4 (and the optional SW1 if required) and check that they produce the correct signals at IC1 and the 16 pin connector.

Clock Watching

To adjust the clock first set RV1 and RV2 to their mid-points. If you have an oscilloscope available check that the waveforms produced at IC1 pins 3 and 37 are as shown last month, note that each clock is high for the same time period and low for a longer time period, thus there is no overlap in the two clock signals. Without a scope there is no test that can be done at this stage except to check for an oscillation of approximately the correct frequency.

MPU Input

The 6800 MPU chip is internally protected from damage by static and so there is no need to handle it with rubber gloves from a distance of twenty feet whilst strapping yourself
to the drainage system. However, it is an expensive 40 pin IC and as such deserves a certain amount of care in handling it, make sure that all of the pins are straight and that they all appear to be making contact with the
socket after insertion. At this stage you can also insert ICs 6,7 and 8 with the same handling precautions. Before you turn the power check the polarity of these four ICs, at a cost of about $£ 50$ it's worth a double check

IC4 A11 A10 A09 A08 ENBL Check for -

0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	x	x	0
1	0	x	x	0
1	1	0	x	0
1	1	1	x	0
x	x	x	x	1

Low at ICs 6 \& 7 pins 13 Low at X ' 100 ' enable output. Low at X '200' enable output (optional).
Low at KBD ($\mathrm{X}^{\prime} 300^{\prime}$) enable output. Low at RAM X ' 400 ' enable output. Low at VDU ($\mathrm{X}^{\prime} 800^{\prime}$) enable output. Low at IC9 pin 3 (X 'COO') Low at IC8 pin 3 (X 'EOO'). All above outputs high.

IC2

$\begin{gathered} \operatorname{pin} 10 \\ 0 \end{gathered}$	$\underset{\mathrm{x}}{\text { VMA }}$	${ }_{x}^{R / W}$	VMA. $\mathbf{2}^{2}, \overline{\mathrm{RDS}}, \overline{\mathrm{WDS}}$ all high.
x	0	x	VMA. $\mathbf{2 2}^{2}, \overline{R D S}, \overline{W D S}$, all high
1	1	0	VMA. \mathbf{Q}^{2} low, WDS low, RDS high.
1	1	1	VMA. $\Phi 2$ low, $\overline{\text { WDS }}$ high, $\overline{R D S}$ low.

Also check RDS and WDS signals are correct at G1 and G2 of ICs 10 , 11 and R/W of ICs 6, 7.

Fig. 2. Truth table for use in the verification of the memory decoding circuits.

Bus Conductors

Install the 31-way connector and check that the PCB slides into the case without fouling. If you intend to connect the 16 pin connector to the rear connector of the case then wire up a second 31 way plug to a 16 pin plug (or ignore the socket and wire straight into the PCB).

Select a location in the case and wire up a 31 way socket (or sockets) to the existing VDU and power supply sockets, the connections for the PCB connector are shown in Fig. 1, those for the additional connector are user selectable.

The Crunch

Before installing the MPU card in the case turn on the power supply to the case and VDU cards and allow your TV and VDU controller to warm-up. We will assume at this stage that you are thoroughly satisfied with the operation of the VDU and keyboard part of the system. As we have just checked the MPU portion and we assume that the Software is correct there will be few or no problems from here on. If you have not fully checked the rest of the system then you are in for a few very trying hours.

With the system warmed-up and settled turn off the power, push in the MPU card and power-up. If you can see the character string 'ETIBUG' on the screen then you are just about home and dry. If nothing happens try operating RESET and /or the carriage return key of the keyboard. If still nothing happens
then check the power supply at the 31 way connectors or look for smoke signals. If it still doesn't work then go back to checking the VDU, Keyboard and MPU card as separate entities.

Taking the MIK

We have given a lot of thought to the development of the ETIBUG software that forms the moniter program of our System 68

We finally decided to base our software on Motorola's well known MIKBUG because many 6800 users are familiar with the characteristics of this firmware package. In addition there is a lot of software around that uses the MIKBUG subroutines and any system using this software must have the same or similar subroutines available at effectively the same memory locations.

The MIKBUG firmware assumes operation with a PIA plus interface circuitry in order to cater for a TTY 1/O device

ETIBUG has been developed to allow the System 68 VDU together with an ASCII encoded keyboard to provide the system's 1/O. It has therefore been necessary to rewrite the MIKBUG I/O routines.

Apart from these changes to the 1/O sections of MIKBUG we have changed the effective PIA Addresses to $X \cdot 8300$ for the input (keyboard) port and to X ' 8800 for the VDU start address. It has also been necessary to change all internal references to the PROM subroutines from $X^{\prime} E O x x$ or $X^{\prime} E 1 x x$ to $X^{\prime} E E x x$ and $X^{\prime} E F_{x x}$. We have also changed
some of the MIKBUG instructions which dealt exlusively with TTY requirements (i.e. punch off, reader on etc).

ETIBUG contains a feature in addition to the standard MIKBUG functions in that it contains a command loop which causes it to look for PROM at $X^{\prime} E C O O$ (IC9). If PROM exists at this location ETIBUG will branch to it. This feature makes expanding the software an easy operation.

These minor changes should allow most MIKBUG orientated software to be used with System 68 with only minimal changes.

As ETI is not (yet) a software journal we unfortunately do not have enough space within our pages to provide a fully annoted software listing of ETIBUG.

We have had to limit ourselves to a brief discussion of the major difference between MIKBUG and ETIBUG, namely the I/O routines.

It is not necessary to obtain a full listing of ETIBUG as PROMS which have been programmed will be available. For those of you who want a full listing we have produced an ETI Software Sheet which details all of the differences between ETIBUG and MIKBUG. This sheet in conjunction with Motorola's Engineering Note 100 (describing the MIKBUG ROM) will provide all the necessary information.

For a copy of the ETI Software Sheet please send 20p (this may be in postage stamps) to our reader services department, mark envelope software.

Detailed flow charts of the new 1/0 routines are shown in Figs. 5 and 6. They start at the same addresses as the equivalent MIKBUG routines, GET KBD at EFAC and PUT VDU at EFD 1. They also use and save the same registers.

How to use ETIBUG

On turning on the power to your System 68 and assuming that everything else is in order the software will respond with a carriage return command and the word 'ETIBUG,' if this does not happen or if at any time you wish to enter the control software routines press the RESET switch. Whatever else the system may have been doing this switch always causes the ETIBUG software to take over.

In order to write and execute a program in System 68 you have to have a control program with facilities
to examine and, if necessary, change the data at any given area of RAM.

Modify Command (M)

The program must also be capable of starting the execution of your program from any address in RAM In ETIBUG the most used command will be ' M ' to display and modify memory, it is called up and used as follows -

Enter ' M ' and a four digit Hex address. ETIBUG' replies with the address and the data found at that address, if the data is the same as that required then CR will cause ETIBUG to address the next byte of memory in the same way.

If the data needs to be changed then a space is entered followed by the required data and finally a CR. The system will write the required data in the RAM location, check that the data has been written and continue to the next RAM location.

ETIBUG	$\underline{M} 0002$		
ETIBUG	0002	00	
ETIBUG	0003	00	
ETIBUG	0004	00	
ETIBUG	0005	00	$\underline{\text { OF }}$
ETIBUG	0006	00	$\underline{40}$
ETIBUG	0007	00	$\underline{60}$
ETIBUG	0008	80	
ETIBUG	0009	30	$\underline{\text { AO }}$
ETIBUG	$000 A$	A0	$\underline{\underline{C O}}$
ETIBUG	$000 B$	20	$\underline{\text { E0 }}$
ETIBUG	$000 C$	00	
ETIBUG	$000 D$	00	
ETIBUG	$000 E$	00	
ETIBUG	$000 F$	00	
ETIBUG	0010	FE	$\underline{00} ?$
ETIBUG			

Fig. 3. Example of the ' M ' command. User inputs are underlined.

If the area addressed is not RAM then the routine will not agree the write check and will respond with a'?:

In our example we have change. some locations in the range 0002 to 0001 but when we try to access 0010 we find that data cannot be written to this address either because it is ROM or because there is no memory at that location.

Print Command $[\mathbf{P}$)

We can now use the data we have entered at addresses 0002-0005 as these are the parameters for the ' P '
print command. Locations 0002-3 contain the sixteen bit address of the start of the area to be printed and locations 0004-5 contain the end address. Thus in the above example we have requested a start of print at 0000 to end at 000F, by entering the print command we instruct the system to print that area and then to return to control mode.
ETIBUG P
PRINT
13000000000000000 F406080 AOCOEOOOOOOOOO ETIBUG

The print produced shows the record length as byte 1 (13) (decimal 19), the start address as bytes 2 and 3 and then 16 bytes of data which are the same as when we had finished the ' M ' command.

Load Command (L)

As an alternative to using the ' M ' command we could have used the 'L' Load command which will load hexadecimal data from the input device into the area specified. As this is designed in MIKBUG to enable loading from paper tape the data requires a data length and starting address in the same format as that produced by the ' P ' command. In addition you need to tell it when you are ready to start and stop entering data in this way, ETIBUG uses the same commands as MIKBUG which are S1 for start and S9 to return to command routine. Thus we could have entered our example above as ETIBUG LS S1 13000000000000 000F406080A0C0E 000000000S9. ETIBUG

Two other cammands allow for the display of the 6800 registers and to execute the program pointed to by the program counter with the parameters set up in the registers. Various instructions cause the actual working registers to be dumped onto the stack and control to be returned to another routine. One of these is the SWI Software Interrupt which can be used as an instruction in a program under test to transfer control back to ETIBUG at that point. ETIBUG can then print the registers which have just been dumped onto the stack by use of the ' R ' Registers command.

Examine Register (\mathbf{R})

The format of the ' R ' command is as follows-
ETIBUG P 03040506070809 A042
ETIBUG

The character R is entered after the ETIBUG symbol and causes the VDU to output the contents of the MPU registers in the following sequence: Condition Code Register, B Accumulator, A Accumulator, Index Register, Program Counter and Stack Pointer.

It should be noted that the Stack Pointer is stored last, and that it takes eight memory locations to store the contents of the registers on the stack.

Thus in the example above, we have

Address	Register	Contents
A043	CCR	03
A044	ACCB	04
A045	ACCA	05
A046/A047	RREG	0607
A048/A049	PC	0809
	SP	A042

Go To User Prog (G)

If we use the ' M ' or ' L ' command to change the values held in the above registers we can direct that the ' G ' execute command goes to a routine of our choice with the registers set up with the required data. The format of the execute command is
ETIBUG G

Sample Program

Although we have outlined the use of each of the commands above the best way to understand their operation is to use them. To this end we have written a sample program. Our sample program adds the five values in locations X'AO through X'A4 using ACC. A and stores the result in location $X^{\prime} A 5$. The intermediate total is kept in ACC. A; ACC. B is used as a counter to count down the loop. The index register contains a "pointer" (i.e., X contains the address) of the next location to be added.

First we must select an area of RAM in which to put the program. The basic system has RAM in locations 0000-00FF of which locations between 0000 and 007F are used by ETIBUG as scratch pad memory. The user memory therefore begins at 0080 . We shall enter our program, using the load (L) function, beginning at this point.

ETIBUG LS 1140080 8E 00 FF 4 F C6 05 CE 00 AO AB 0008 5A 26 FA 97 A5 3F S9.

Do not worry if you make a

Addr.	Instr.	Label	Mnemonic	Description
0080	8E	STRT	LDS X'FF	Define stack in user area
0081	00			
0082	FF			
0083	4F		CLRA	Total $=0$
0084	C6		LDAB 05	Initialise counter
0085	05			
0086	CE		LDX X'AO	Point X to AO
0087	00			
0088	AO			
0089	$A B$	LOOP	ADDA O, X	Add 1 location to total
008A	00			
008B	08		INX	Point X to next loc.
008C	5A		DECB	Done all 5 locs?
008D	26		BNE LOOP	Branch if not
008E	FA			
008F	97		STAA X'A5	Save answer
0090	A5			
0091	3F		SWI	Go to ETIBUG

Fig. 4. Sample program to illustrate use of ETIBUG system commands. The program will add the data in locations $X^{\prime} A O$ to $X^{\prime} A 4$ together and store the result in X'A5.
mistake as this can be corrected using the ' M ' command. The way that the System 68 VDU works means that there is no need to enter a CR at the right hand side of the screen, the above characters can be entered as a continuous stream.

Next the data should be entered in locations $X^{\prime} A 0$ through $X^{\prime} A 4$. We shall use the ' M ' format for this task.

ETIBUG M OOAO xx 1 ETIBUG OOA1 $x x$ 2 ETIBUG OOA2 $x x$ 1 ETIBUG OOA3 $x x$ 2 ETIBUG 00A4 $x x$ 3

It is now necessary to set up the contents of the various registers with the values necessary to run our program. As the program itself takes care of setting up ACC. A, ACC. B and the index register while the conditions code register does not concern us, it is only necessary to set up the program counter.

To accomplish this use the R instruction to display the current contents of all registers.

ETIBUG R 03040506070809 A042

From this we see that the program counter at X'A048/A049 has a value of 0809.

Use the M command to alter this to $\mathrm{X}^{\prime} 0080$.

$$
\begin{aligned}
& \text { ETIBUG M A048 } 0800 \\
& \text { A049 } 0980
\end{aligned}
$$

We have now set up the necessary registers and entered the program. If you now enter

ETIBUG G

the program will run and when finished return control to ETIBUG. If the ' M ' command is now used to examine location X'A5 it should

Flow chart representation of ETIBUGS load from keyboard routine, GET KBD. This is called as a subroutine from the main program and in turn calls the put-VDU routine.
The keyboard strobe is connected as bit 7 of $K B D$ port.

contain the answer to our calculation.

ETIBUG M OOA5 09
This sample program was intended to demonstrate the various facilities of the ETIBUG monitor.
Now it's over to you - the range of possibilities with even the basic system is vast. Please let us know of any software you develop for System 68; we would hope to publish any of the more interesting software we receive.

This is the end of the Basic System 68, in future issues we intend to cover extensions to the Basic unit with RAM and prom cards, Teletype interface, CUTS Cassette interface, PROM programmer, extended software including BASIC and ASSEMBLER and many other projects.

DATA

MC 6800 MPU-THE SOFTWARE - INSTRUCTION MAP AND SET

$\begin{aligned} \text { DIR } & =\text { Direct Addressing Mode } \\ \text { EXT } & =\text { Extended Addressing Mode }\end{aligned}$
IMM = Immediate Addressing Mode

IND $=$ Index Addressing Mode
INH $=$ Inherent Addressing Mode
REL $=$ Relative Addressing Mode

$=$ Accumulator A
 $=$ Accumulator B

*Unimplemented Op Code

Special Introductory Offer'

The all-in-one Photolab kit, from Mega - a complete professional system for p.e. board, label and front panel

Just see what you get.

- U.V. exposure unit 16 sheets of drafting aids and film - 3 sheets positive resist coated epoxy glass laminate - developing and etching trays - developer and etchant - $12 \mathrm{Vd.c}$ drill- 5 twist drills -8 sheets pancl/label material, in 5 different colours - photolabel developer. pads and reversal film complete instructions. Has there ever been such value? Complete the coupon and take advantage of this incredible offer, right now. *Offer closes on Navember 30th. 1977.
 Offer includes postage, packing and V.A.T. (Allow 7 to 14 days for delivery.)

Mega Flectronics I,td. 9 Radwinter Road, Saffron Walden, Essex CB11 3HU Tel: (0799) 21918

Please send me the Mega Photolab kit. I enclose my cheque/postal order for $£ 44.50$ My Access/Barclaycard No. is

Name
Address \qquad

ALL BELOW - ADD 8% VAT

$\frac{\text { complete with vidicon base } 2650 \text { each Brand new }}{\text { FULL RANGE OF BERNAROS BABLNI ELECTRONICS }}$
BOOKINSTOCK. SAE RORLISTM BOXES
A WEW RANGE OF QUALITY BOX
a INSTRUMENT CASES
Aluminium Boxes with Lids.

PLASTIC PROJECT BOXES, with screws on lids
(In black ABS) with hrass inserts

yype NB approx. $4 / 2 \times 3$
Oiner sizes available shortiy
CHARQER PCBE for ITY Siarphone batleries 112 v) with baltery comparment Requires 28 VOC at
50 mA . Contains transistorised circuit for constant 50 mA . Contans transistorised circuit for constan
curreni limning. $£ 275$. BARGAIN PACK OF LOW VOLTAGE ELECTRO LYTIC CAPACITORS. Up to bov working
Sealronic manulacture Apprnx 100 . 150 per pack ($+12 \% \%$ VAT)
TUHED COILE. 2 section coils, around 1 MHz , with a black smart tuning knob, which moves an internal
core to vary the inductance. many uses Easily rewound. 3 for 50 p
110 HEONS. Screw-intype 4 tor 50p
OUARTL-XTAL CONTROLLED CLOCKS, 9 it 12 V depth of unit approx $2^{\prime \prime}$ Not in cases. unit only smart modern appearance, black tare with whit lettering. 12.hi with second hand and red hour and minute hands. (Cost over (40 to produce) E1.
each while storks last pested netoir despatch

ALL BELOW - ADD 8% VAT ALL BELOW - ADD 8
 ALL BELOW - ADD 8% VAT

OSMOR. REED RELAY COILS for eed relays up to ERR
 marked se- numbers. rest biacked oul. small modern numbers. rest blacked oul, small mode
appearance. size approx $81 / 2 \times 11 / 4.2$ for 350 MIXED COMPOMENT PACKS. Containning resistors. capacitors. switches. Dots. etg. All new. and
nundreds of items, E 2 OO per pack. white stociss last
PROGRAMMERS (magnatic devices) contain 9 micro-switches Isuitahie tor mans operation) with 9 rolding cams, atl ind vidually adjustabie Ideat for
switching disco lighis. displays. etc., or industrial switching disco lights. displays. etc, or industrial
machine programming ineed slow motion motor to machine programming (need slow motion motor to
drive cams. not supplied). \mathbf{S} swith version. $\{150$ PLUGS AND SOCKETS
PLUGS AND SOCKETS
BNC PLUGS lex equip) Five for I 150 .
BNC PLUGS (ex equip). Five for \& 150
N-TYPE PLUGS, 50 ohm 60 each, 3 tor 1.50
N-TYPE PLUGS, 50 ohm GOp each, 3 for t. 1.50 .
Greenper $16 E 300015$) Cnassis Lead Terminations
These are the units which boit on to the chassis. the
lead is secured by screw cap. and the inner of the lead is secured by screw cap and the inner
coan passes through the chassis). 30p each 4 for cosx
E 100
PL250 Plugs (PTFF), brand new packed with reducers.
65 p each or 5 for 63.00
$\mathbf{S O 2 3 9}$ Sockers (PT FE), brand new (4-hole fixing type) SO239 Sockens (PTFE). bran
5up each or $\mathbf{5}$ tor $\mathrm{E} 2 \mathbf{2 5}$

valves

uavos 204 (ex equipment) $\ddagger 300$
CET 22 (ex, equipment). 2 for $₹ 100$
6BH 6 (ex equipmens) 2 tor 50 p.
All the above valves are untested except for heaters
and no guarantee ol percentage of emission is given
Sorry no eturns.
MuLARD $85 A 2$
new
85 V SIABILISER VALVES thrand new). 70 p each of 2 for $\xi 120$

TRANSISTORS

PNP Audic Type Transistors. 12 for $25 p$
BFY 51 Tans ssors, 4 ler 60 p
gy 38 , 300 Stud Rectifiers. 300 V at 254 , tor for 60 p $8 C Y 72$ Transistors, 4 for 50 P
85×20 B5 $\times 20$ fVHF osc $/$ mulf.l. 3 for 50 p
BC. 108 imelat can.), for for 50 p.
 BF 152 (UHF amp/mixet). 3 for 50 p BC 148 NPN SILICON. 4 for 50 p BCI 58 PNP SILICON 4101500 BAY 31 Signal Dodes. 10 for $35 p$
$B A Y 21$ Varicap Diotes 4 for 50 n

Crequent price nises from our supphers, and cosfly trequent price ises from our supphers, and costly
postai charges. it has been found impossibfe to publish up to-date prices on these items Pirices
 max noise figure 8 St at 9 REED RELAYS. 5 in 12 V DC. 450 otim C Designed rowork directly from TTLL Logic Single Pole
Cnanggover. Contact ratings. 28 V , $1 / 4 \mathrm{~A}$, 3 W

4

 LU-SOL ALUMINIUM SOLDER (made by Mult core) solders aluminum to isself or copper, brass. steel.
nickel or timplate, 16 SWG with Multicore tlux with instructions, spprox 1 m coli. 40 p pack Large ree SOLDER SUCKERS IPlunger Typer Standard Model. 5500
Skrted Modal. 550 Skirted Modal. 1550
Spare Nouzips. 60p each
MULICORE 5CiDER
MULTICORE SCLDER
Size 5 Savant. 18 SWG
Size 5 Savbit 18 SWG. in alloy dispenser 320
YKg $1.116 .60 \cdot 4020$ SWG on plastic reet E3 OO
WELLER WGOD Mans operated temperature contro
Soldering ron $£ 1380$. Two types avalable TYPE
SPARE TPS fio WGOD . TY CC7 W600) Standard. TYPE AA 7 (W60D) Finer tip E1 1 beach
18 VOC RELAYS
will wark from $14-2+V$ change-vver idouhle cantacts quality Madre by $A E 1,40 p$ each new. boxed as 1 sole ching 2 pole make and the cantre pins as 1 pole er
4 for 50 p
Smart Min. Rertangular Push to Make Switches. black rectangular suriound with white rectangular button A RANGE OF DRAPER TOOLS FORTHE ELECTRONICS ENTHUSIAST
GOOD OUALITY FULYY GUARANTEEDI GOOD QUALITY FULIY GUARANTEED

 Ul (with wire holding Jevical. \&. 10 .

ALL BELOW - ADD 8 \% VAT
INSNIPS. $7 \cdots+225$. SLIM OPEN ENDED SPANNEA SEIS. O
$7+4.3+54+6.6+$ 日BA SIZES. L1.15
MIDGET DPEN ENDED SPANNER SETS MIDGET DPEN ENDED SPANNER SETS
$0+1.2+2.3+5.4+6.6+8 B A$ SIZES. 2.85 set
 $4+45,5+5.5 .4+6$
SIZES. 5 . 50 sei of 6
MINIATURE WATCHMAKERS SCAEWDRIVER SETS MINIATURE WATCHMAKERS SCREWDRIVER SETS \& 150 set of 5 . MINIATURE FILE SETS set of $6: 190$ Set of 10
 6.8 BA SIZES in Dies. Plug taps Taper Taps + Amervan Type tap wrench T type tap wronch. Die
Hoide 1160 UBULAR HACKSAW FRAMES (with Blade) $£ 275$ HEAVY DUTY RELAYS. 24V DC Operated Iwill work on $18 V_{1,} 3$ heavy duly make contacis laround 10 A ratingi) +4 change-over contacts +1 break confact
New. complete with mounting bracket Ideal for switching H^{\top} on Linears. Many uses for this high quality untt $£ 150$ each

ALL BELOW - ADD $121 / 2 \%$

 VATVARICAP TUNEAS. Mullard type ELC1043 05 Beand new 1440
iv Plugs imetal eype), 4 for 50 p
TV Lme connectors llack to thack skt। 4 for 50 p 3.pin Din Plugs, 4 tor 50n. in 3 -pin Line Sockets. 15 p each
Oin Speaker Skis. 2 -pin, 4 to 30 p
TWIN IF CANS. approx $1^{\prime \prime} \times 1 / h^{\prime \prime} \times 1^{\prime \prime}$ high around 35 internally screened 5 for 50p
Dubliter Electrolytics, 50 - F 450 V .2 for 50 p
Dubiliet Electrolytirs. $100-F 275 \mathrm{~V} 2$ tor 50 p Plessey Elecrolytics 400 F EV 3 tor 60 p Dubiler Electrolyutirs 5000 - FF 35 V . 50 p each Duhilier Electralytics. $5000 \sim$ F 50 V . 60 peach IT Electrolylics. $6800 . \mathrm{F} 25 \mathrm{~V}$. high grade terminals with mounting clips. 50p each

A MAMGE OF CAPACITORS AVAILABLE AT
BARGAIN PRICES. SAE FOR LIST.

Join the Digital Revolution

Understand the latest developments in calculators, computers, watches, telephories, television, automotive instrumentation .
 . . .

Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 81 / 4^{\prime \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories. counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers
Uesign of Digital Systems

plus 90p packing and surface post anywhere in the world

Quantity discounts available on request VAT zero rated

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics.
In 4 volumes

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

$£ 4.60$

plus 90p P\&P
Offer Order both courses for the bargain price £11.10 plus 90p P\&P
A saving of $£ 1.50$

Designer

Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

NEW from Cambridge Learning Enterprises:		
FLOW CHARTS \& ALGORITHMS		
use, design and layout, vital for computing,		
training, wall charts, etc.		

Guarantee. If you are not entirely satisfied your money will be refunded

CATRONICS LTD., COMMUNICATIONS HOUSE prifo 20 WALLINGTON SQUARE, WALLINGTON, SURREY, SM6 8RG Tel: 01-6696700 (9 a.m. to 6 p.m., 1 p.m. Sat.)

THERE IS A NEW LP on sale in the States, it's called something like "The Best of Software, Vol 1". It has a whole mass of games, file routines, subroutines, etc. written in BASIC and encoded in each of CUTS, TARBELL and ALTAIR cassette modes for playing directly into the cassette interface of a microprocessor. How long before Messrs K-Tel or Arcade start advertising their latest LP on television "You 100 favourite BASIC games", a fantastic two volume set for only $£ 1.99$, available from your local Woolworths, W. H. Smith, or any other good Software shop? The latest dance craze in five years' time could well be the "Payroll Routine", by Bert Twiddle and his formation Z80s.

With the current price drops taking place in the field of MPUs and support devices, the lost cost ($£ 200$) minicomputer is a viable proposition and a complex TV games player for about $£ 50$ will probably be on the market in time for Christmas (start letting the hints drop now). Although cassette or LP distribution of software is a low cost method - assuming that most people have either a cassette recorder or a record player - the problem of low cost direct-access media has yet to be solved.

Film for Thought

You can now buy a complete Mini-Floppy system in America which will interface to various buses complete with BASIC, Assembler and DOS (Disk Operating System) for under $\$ 700$. A Mini-Floppy drive on its own would cost under $\$ 400$, with DIY Hardware and Software you could have a complete add-on DOS system for under $\$ 500$. The only problem is to find a similar system which will cost under $\$ 50$.

After discussing the problem in last December's issue I received some interesting and novel ideas from readers, most of which required a magnetic film on a drum or a disk. Unfortunately the production of this magnetic film was going to be expensive for the average amateur and would be one job better suited to experts. Then, to the rescue, came E. Heath of Dorset who wrote to me recently and enclosed a sample of a magnetic paint which he has developed as a result of
the comments in the magazine. With the sample was a leaflet describing the 'Liquid Magnetic Film', a description of a suitable Polyvinyl sheeting, a card reader design, and a suitable data recording circuit.

The paint is applied (using a built-in brush) evenly over the area to be sensitised and allowed to dry. When it is dry a very fine wet \& dry paper is used to rub down the surface to give maximum sensitivity, Acetone can be used to remove unwanted film. Those of you who had great ideas for low cost direct access units can now put your ideas to the test by contacting Mr Heath at 26 Broad Street, Lyme Regis, Dorset, I am sure that he would like to discuss the problems with you.

Bubbling under from Texas

The solution to the cheap mass direct storage problem may not be by using magnetic film at all but by using magnetic bubbles. This is a new technology being developed by Texas Instruments in Dallas which can only be described as a lot of very small bubbles rushing around on a complex model train layout with sidings and passing loops. To indicate the size of these bubbles and of the train layout a 92,304 bit bubble memory device exists, built into a dual in-line package, it measures less than half a cubic inch in volume. The price of bubble memory systems is said to be competitive with the cost of Floppy storage media - 1 think they are including the cost of the Floppy drive in that comparison not the cost of the Diskette. The TBM 0103 is organised as 641×144 bits with an average access time of 4.0 ms and a data rate of $50 \mathrm{~Kb} / \mathrm{s}$, they can be easily extended in units of eight to give additional 92,000 bytes of storage.

It is expected that the cost of a single bubble chip and associated interface would be $\$ 75$ in mass volume with that figure reducing to a half within a year. Assuming that a 700,000 bit Mini-floppy system costs $\$ 700$ (0.1c per bit) and that 738,000 bits of bubble cost $\$ 600(0.09 \mathrm{c}$ per bit) the projected price per bit could have the Floppy makers worried. However, if you want to double the size of available memory the bubbles would cost another $\$ 600$ for 8 chips whereas the Mini Floppy would cost about $\$ 10$ for another diskette - it depends how you define direct-access storage.

Memory Mania

Texas Instruments are also forging ahead with other mass storage devices such as RAM, EPROM and a new 64 K CCD memory the TMS3064. This is organised as 16 addressable 4096 serial-parallel-serial loops (1 don't know what that means!). The maximum data rate is 5 Mbits per second with a maximum access time of 800 US requiring 300 mW of power and all in a 16 pin DIL package. No price indication is given and so a comparison with other memory types cannot be given.

Case for a Case

Want to make a really professional job of your System 68 VDU and keyboard? Try contacting West Hyde Developments in Northwood about their VTE 101 CRT Terminal Enclosure. It boasts - ribs and bosses for component mounting, ventillation grills (including blower opening), Plexiglass screen and all presented in high impact plastic. The price is in the area of $£ 80$ but I was round at West Hyde the other day and I saw one there, they really are quite attractive. The only question is, 'can your wife afford to buy you an £80 Christmas present?'

TV GANES CHIP

AY-3.8500 £6.95. Printed circuit and kit of extra parts black and white version £10.95, colour model $£ 24.95$. Colour generator kit - converts any black and white TV game to colour £17.95. Rifle kit £4.95. Send sae for

NEW COMPDNENT SERVICE

Rewistors 5\% carbon E 12 1 1 to 10M 1/4W $11 / 2 \mathrm{p}$. IW 3p. Proset pots subminiature 0.1 W 100 S to $4 \mathrm{M} 79 \mathrm{9p}$ 30 . 30p. Dual 95p. Polyetyrene capacitors E1263V 22 pf 8200pf $31 / 2 \mathrm{p}$. Ceramic appecitors SOV E6 22pf to 47000 pf 3 p . Polyerter capacitors 250 V E6 .01 to $.1 \mathrm{mf} 51 / 2 \mathrm{p} .15, .22 .33 \mathrm{mf} 7 \mathrm{p} .47 \mathrm{mf} 11 \mathrm{p}$. Electrolytice 50V 47, $1,2 \mathrm{mf} 5 \mathrm{p}$. 25V $5,10 \mathrm{mf} 5 \mathrm{p}$. 16v 22, 33, $47 \mathrm{mF} 8 \mathrm{p} .100 \mathrm{mf} \mathrm{7p.220,330mf} 9 \mathrm{p}$. 470 mf 11 p .1000 mf 18 p . Zener diodes 400 mW E24
3 V 3 to $33 \mathrm{~V} 81 / 2 \mathrm{p}$.

MAINS TRANSFORMERS

6-0-6V 100mA 94p. 9.0-9V $75 \mathrm{~mA} 94 \mathrm{p} .0 / 12 / 15 /$ $20 / 24 / 30 \mathrm{~V}$ 1A £3.85. 12-0-12V 50mA 94p. $0 / 12$ /15/20/24,30V 2 A £5.15.6.3V $11 / \mathrm{AA}$ £2.30. 6-0-6V $11 / 2 A$ £2.75. $9.0-9 V$ IA £2.39. 12.0. 12 V 1 A \&2.69. 15-0.15V $1 \mathrm{~A} £ 2.89$. 30-0.30V $1 \mathrm{~A} £ 3.69$.

PRINTED CIRCUIT KITS ETC*

Contains etching dish. 100 sq ins of pc board, 1 lb ferric chioride, etch resist pen, drill bit and laminate cutter £3.85. 100 sq ins pc board $\mathbf{8 0 p}$. $1 \mathrm{lb} \mathrm{FeCl} £ 1.05$. Etch resist pen 75p.

S-DECS

AND T-DECS*
S-DeC E1.94. T-DeC
£3.61. u-DeCA £3.97
u-DeCB E6.67. IC
16 carriers with sockets
16.70 . 10 TO

SINCLAIR CALCULATORS

AND POCKET TY
Sinclair pocket TV £165. Cambridge scientific programmable $£ 13.95$. Prog. library $£ 4.95$. Cambridge scientific $£ 8.45$. Oxford scientific $£ 10.60$. Mains
adaptors $£ 3.20$.

BATTERY ELIMINATOR

BARGAINS

TV GAMES POWER UNIT
Stabilized $81 / 2 \mathrm{~V} 100 \mathrm{~mA} £ 3.20$
3-WAY MODELS
With switched output and 4 -way multi-jack connector Type 1: $3 / 41 / 2 / 6 \mathrm{~V}$ at 100 mA £2.30. Type 2 $6 / 71 / 2 / 9 \vee 300 \mathrm{~mA}$ £2.80
1 OOMA RADIO MODELS
With press-stud connectors. 9 V £3.45. $6 \mathrm{~V} £ 3.45$. $9 V+9 V £ 5.15 .6 V+6 V £ 5.15 .41 / 2 V+41 / 2 V £ 5.15$. CASSETTE MAINS UNIT
$71 / 2 \vee$ with 5 pin din plug 150 mA e3.65.
FULLY STABILIZED MODEL E6.40. Switched output o 3/6/71/2/9V 400mA stabilized.
CAR CONVERTORS 12 V INPUT
Output $9 \vee 300 \mathrm{~mA} £ 1.80$. Output $71 / 2 \vee 300 \mathrm{~mA} £ 1.80$.

BATTERY ELIMINATOR KITS

Send sae for free leatlet on range. 100 mA radio type with press stud battery terminals. $41 / 2 \mathrm{~V} £ 2.10$. 6 V
 plug $£ 2.10$. Tranaistorte trebilized $81 / 2 \mathrm{~V} 100 \mathrm{~mA}$ with din plug £2.10. Transistor stabilized 8-way type for low £3.20. 1 Amp 86.40. Heavy dury 13 . 18 V . 100 mA 6/7/81/2/11/13/14/17/21/25/28/34/42v 1 Amp £4.85. 2 Amp £7.95. Car convertor 12V DC. Output $6 / 71 / 2 / 9 \mathrm{~V}$ DC 1 A transistor stabilized E1.95. Stabitized Laboratory power kit. Switched to 30 V in 0.1 V steps. 1 Amp £12.45. 2 Amp E14.95.

BI-PAK AUDIO MODULES
S450 tuner £21.95. AL60 £4.86. PA100 £14.95. MK60 audio kit £36.45. Stereo 30 £17.95. SPM80 e.75. BMTBO £4.25. Send sae for free data

SINCLAIR IC20

C20 10W +10 W stereo integrated circuit amp kit with printed circuit and data $£ 6.95$
VP20 Power supply kit for above £3.65.
Send sae for tree leaflet on the preamp kit $\mathbf{£ 8 . 9 5}$.
JC12 AND JC40 AMPLIFIERS
JC12 6W IC audio
amp with free data
and printed
circuit $£ 1.95$
Also new JC40 20W
model with pcb

£3.95. Send sae for free leaflet on both models and associated power supply and preamp kits
FERRANTI ZN414
IC radio chip E1.44. Extra parts and peb for radio £3.85. Case $£ 1$. Send sae for free data

SWANLEY ELECTRONICS
 Dept. ETI, PO Box 68, 32 Goideal Road Swanley, Kent

Post 30p. Prices include VAT. Official orders welcome Overseas customers deduct 7% on items marked "and 11% on others

WORLD'S FASTEST SKINNY CALCULATOR ONLY £19.95 TALKS, HAS NO KEYS, VERIFIES ENTRIES \& SHUTS ITSELF OFF!

Unusual Gift For Clients, Friends, Mom, Dad ... Yourself!
Deluxe Keyless Calc with Audio Entry Verification System (EVS)rm, Auto Shut-0ff, 3-Year Batteries, Memory, Brushed Aluminium \& Leather Grain Finish Case, Brushed Vinyl Wallet \& Notepads, \& Much More.

An Astonishing Calculator!
The Sharp Super Thin Man is a remarkable device of the future! It is so unbelievable that unless you hold it, touch it and use it, it almost seems like a gadget from a Buck Rogers movie ... And no wonder ... The Super Thin Man is truly astonishing! Here's why:

Audio Entry Verification!

The Sharp Super Thin Man tells you when you've entered a number or function through its exclusive Entry Verification System (EVS) ${ }^{\mathrm{TM}}$, an exclusive feature that automatically sounds a musical tone every time you touch a key. There's no need to guess whether you've entered your problem into The Super Thin Man! You can also select silent operation.

Fastest Keyboard Ever!

There's not another pocket calc made that's faster or easier to use than The Super Thin Man. That's because the keyboard is keyless. There are no keys or protruding key tops to jam or hit accidentally when you're doing rapid calculations. The Super Thin Man's keyboard is controlled by pressure-sensitive sheet keys, a revolutionary system that someday will be built into all calculators. Sharp, the pioneer in pocket calcs, brings you tomorrow today.

Automatic Shut-Off!

You can't forget to shut off The Super Thin Man! It automatically shuts itself off when you've finished your calculations and saves your batteries. In fact, you can forget about batteries for almost three years - that's how long The Super Thin Man should operate with an hour a day of continuous use.

Thinnest Calculator Ever!
Many pocket calculators are not really pocket calculators... they're too thick. The Super Thin Man is the world's slimmest. It's only .5 cm . thick. The Super Thin Man easily fits without bulging in most pockets and is always ready to solve your everyday calculations. The accompanying brushed
vinyl wallet and free notepad from Sharp take care of all your important notes, appointments and brainstorms.
Despite its miniscule size, The Super Thin Man is a workhorse. It's a full-function memory calc that performs constant, power, reciprocal and chain calculations, square roots, percentages and add-on/discounts. Its large, clear, and sharp Liquid Crystal Display is easy to read indoors or out.

A Fantastic Gift!

If you've been looking for a second calc or something special for a gift, The Super Thin Man is your answer. Its handsome aluminium case may be personalized at most jewellers by having your client's name or company name engraved. A personalized gift as nice as this could be worth five times the cost of The Super Thin Man, and your associates will think of you whenever they use it.

It's Reliable!

Your Super Thin Man is backed by Sharp's one-year manufacturer's warranty on parts and labour.

YHIN. Send me A SHARP SUPER
THIN MAN at 19.95 .
\square Yes. Send me A SHARP SUPER THIN MAN at £19.45.

Name
Address

ALL PRICES INC. VAT AND P\&P (Mail Order Only)
SAE for Brochure - Export Inquiries Invited
KRAMER \& CO.
9 October Place, Holders Hill Road
London NW4 1EJ
Telex: Kramer K7. Tel. 01-203 2473

MM5376 Clack Chips E3.50 200 of twin solid dielectric varrable caps $1 / 4^{\prime \prime}$ spindle 35p Grundig electret mike inserts with F E T preamp E1.50 PL259 plugs with reducer 55p SO239 sockets single hole or standard mtg 40p 12 volt reed relay 4 make 20p 12 volt sealed relay 3 pole n/o 1 pole n /c 1 pole c/o 2 amp contacts 130 /1 coil 65p Budgin roller micros 150 Toko 465 KHz AM I.F. panels new 30 p Toko FM turar heads $88108 \mathrm{MHz} £ 1.95$ Savbil 500 gram cored solder per reel $£ \mathbf{2} .50$ + 35 p P P Stereo preamp chassis with controls ceramic input with circ uit £3.50 $+50 \rho$ P\&P 100 v 10 amp bridge recrifiers $\mathbf{3 5 p}$ $300 \mathrm{KH}_{2}$ HC6U crystals 40p 500 mir reeis twin solid core connecting wire $14.00+85 p$ P\&P CV2184 $21^{1 / 2}$ CRT with P.D.A. E1.95 + 80n P\&P E.T.P. 100 wati solder guns $£ 3.75$ 6 MH 3 amp smoorhing chokes 30 p 6.12v DC G.P.O. buzzers 30p 6.12 vois hooters 50 p Board with 6 voll change over reed relay $\mathbf{E} 1.75$ G.P.O board with 64 BC 107 type transistors. 2 reed and 1 mercury relays diodes, etc. $2.00+$ 75ρ Newmarket power supply 240 v AC input 8 volts OC output at 25 OMA E1.05 Crystal microphane inserts $37 \mathrm{~m} / \mathrm{m}$ 60p Bridge fectifier 500 v 600 MA ex equip $10 \mathrm{~m} / \mathrm{m}$ cube 25ρ Long + medium wave aerials $1 / 6^{\prime \prime} \times 8^{\prime \prime} 40 p$ 240 V AC solenoid 4 Ep High impedance headphones 2K(1) mono $\subset 1.65$ Stereo decoder boards with SN76104 iC 12v $£ 2.00$ $100.0 .100 . \mathrm{A}$ level meters 75 p Stereo tuning metres 100 a per movement 62.75 Lever meier $20 \mathrm{~m} / \mathrm{m} \times 10 \mathrm{~m} / \mathrm{m}$ 10 MAFSS $40 p$ Veeder root 3 digit resel counter 240 v AC $\mathbf{E 1 . 9 5}$ Single digit electromech. counter $24 v \mathrm{DC}$ with count carry coniact 50p Curly leads 7 core heavy. 5 toot max $\mathbf{3 0 p}^{\mathbf{p}}$ 50 AC geared motor diving 24 way stud cuntact swich ©Sp. Connectung wire 5×5 vard lengths mult, colours 30p .A. 1/4" TAPE HEADS MN1330 :/2 wack dual imp record/playback 50 p SRP90 1/4 track sieteo record playback E1.95 TDiO dual head assemblies $1 / 4$ traik record playback staggered stereo with built ir erase, per head $\mathbf{E 1} 20$ 4SE sid. $1 / 4$ rack erase heads 30p Mono cassetie heads Jap 90p MANS TRANSFORMERS 240 V AC ormiacy $6.0 .6 v 100 \mathrm{~m} / 475 \mathrm{p}$ $90-9 v 75 \mathrm{~m} / \mathrm{A} 75 \mathrm{p}$ $12.0 .12 \mathrm{v} 50 \mathrm{~m} / \mathrm{A} 7 \mathrm{sp}$. 12v 500m/A 95p $15-0.15 v 1$ amp $£ 2.00+35 p p \& P$ $0.12-15 \cdot 20-24-30 v 2 \mathrm{amp} £ 4.95+35 p$ $25 v 2 \mathrm{amp} £ 1.75+35 \mathrm{p}$ 35 v 2 A plus $2.5 v 2 \mathrm{~A}$ toroid $\mathrm{E2.75}+35 \rho$ $0.7 .5 v$ twice $500 \mathrm{~m} / \mathrm{A} \subset 1.20+35 \mathrm{p}$ 18 rolts ? amp rectified $\mathbf{£ 1 . 9 5 + 3 5 p}$ 18 volis $15 \mathrm{amp}+12$ volis $1 \mathrm{amp} 2.20+35 p$ 20 volis 25 amps $2.20+35 p$ motors Model I 5 6v OC 20p 240 VAC 1/241h rom 65p 240c AC $1 / 5$ thip.m. 65p 3 rpm 115 VAC small motors with gearbox 30 p COMPUTER CAPACITORS 14.000 of $35 v 0 \mathrm{C}$ new 75p 30.000 ut 40 v DC new 75p 4.200 uf 100 DC new 75p 60000 uf 30 VDC new 75 p $20.000 \mathrm{u}^{6} 45 \mathrm{vDC}$ ex. equtp 40p TVELECTROLYTICS 100 MFD 350 DC 60p 200 MFD 350~ DC 60p $100+400+32$ MFD 27 bv DC 60p $100+400+16$ MFD $275 V$ DC 60p $150+150$ MFO 350 V DC 60p $150+150+75$ MFD $350 v$ DC $60 p$ $100+100+200+300$ MFD $275 v$ DC 60p $100+300+200275 v$ DC 600 $400+200+75+32$ MFD $275 \vee$ DC $60 p$ Spectal OHer 10 MFD 6 3vPC MTG E 2.50 per 100 22006 3v DC PC 5p. 4700 MFD 6 3v OC 5p each SEMICONDUCTOR OFFERS ALL FULL SPEC. C45 15p-BF181 20p-BF20020p-BFS 95 (Equiv) 20p - 2N1893 20p BC184C 12p- $27 \times 32012 \mathrm{p}$ Mptorola MRD 3051 photo transistor 35p N Channelf.ETS. sumilat to 2N3819 20p Lucas $500 \mathrm{w} 5 \operatorname{mon} \mathrm{~N} P . \mathrm{N}$ stud power tansistor Trpe 83126855p O. $\mathbf{2 "}^{\circ}$ green L.E O.s $12 p$ M203 dual matched pair mosters sintgle gate per FET 40p SL301 Dual matched pair SIL N.P N Itanstsior Fi 300 MHz 30 p MAN $3 A 3 \mathrm{~m} / \mathrm{mL}$ ED dispiays 50p Imel 1024 bit MOS rams type C1103.195p SWITCHES MIN TOGGLES SPST $12 \times 6 \times 9 \mathrm{~m} / \mathrm{m} 54 \mathrm{PDPDT} 12 \times 11 \times 4$ m.m 60p DPOT. Centre off $12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$ Dalo 33PC circurt pens 80 p 2 pole 2 way centre off shder 20p $6-6$ pole 3 way slider 30p S PS.T. Rickers 10 amp white 12p SPST Rockers with neon 10 amp 30p Plasuc project boxes ABS black with brass inserts and lid $75 \times 56 \times 35 \mathrm{~m} / \mathrm{m} 40 \mathrm{p}$ $95 \times 71 \times 35 \mathrm{~m} / \mathrm{m} 49 \mathrm{p} .115 \times 95 \times 37 \mathrm{~m} / \mathrm{m} 57 \mathrm{p}$ Pocket multimeter 1000 \&1PV ikv AC/UC 100 miA current DCO 3K, 0.150 K resistance $\mathbf{f} 5.00$ We mock tull range of components. valves, otc. utherwise shown VA T meluded in all prices ORDER ADDRESS: PROGRESSIVE RADIO, 31 CHEAPSIDE, LIVERPOOL 2

UNBEATABLE OFFER T.V. GAME
 NM

 £10-50":swe WHILE OFFERLASTS,
 USING THE AY-3-8500 CHIP

 KIT COMPRISES OF:-

 KIT COMPRISES OF:-
 P.C. Board. AY-3-8500 I.C. Components for VHF/UHF Modulator, 2 Meg Clock and Sound Amp. (No switches, cables or loudspeakers supplied)

SPARE AY-3-8500 CHIPS £5•50p each

TELECRAFT

53 Warwick Road, New Barnet. Herts EN5 5EQ. Telephone: 01-440 7033
Personal Callers and Trade Enquiries welcome
Cheques and Postal Orders to be made payable to 'Telcraft'

Rapitupe 茟 HI PANEL TRANSFERS

New from ETI

Rub-down panel markings

A really high quality system for finishing off your projects. The sheets include a mass of lettering and control scales for both rotary and linear pots.
The lettering is transferred simply by laying on to the panel and rubbing down - it's strong and permanent.

The markings are on two
sheets (a full-sized one cut in half for easy postage) and contain sufficient lettering for dozens of projects.

Send E1.75 (includes VAT and postage) for the twosheet set to:

Panel Markings,

ETI Magazine,
25-27 Oxford Street, London WIR IRF.

ELECTRONIC CALCULATORS
 SCIENTIFIC

MOUNTAINDENELTD
22 Cowper Street, London, EC2
(Near Old St: Station) Tel. 01-455 9855

Our finger is ight on the button whenit comes to
 New TEXAS 58 \& 59

SCIENTIFIC PRODUCTS at the right price

THE NEW DECIMO CLOCK RADIO - VHF/MW you need t/" LEO Oisplay Fantastically accurate. 24 hour auto wake tor alarm or music with auto shut and recall for next day
3.position display. Sleep to music with auto switch off. Snooze Bar 3.position display. Sleep to music with auto switch off. Snooze Bar
for that litie exlya sicep. Hifo Dimmer. $3^{\prime \prime}$ pm Dynamic speaker
 $41 / 2 \times 12 \% \times 61 / 4$
Our Price £38.95 Stereo Version £59.95
Add E1 00 for P\&P

2AED Genis. Hr . min sec. 2LC Gents tri.. minli. backite month. date, day $\mathbf{E 9 . 9 5}$ month day $\begin{gathered}\text { min } \\ \text { finury } \\ \text { finish } \\ \text { e14.95 }\end{gathered}$ month date day. $£ 12.95$ 3LAD Ladies' Oress, bark tinish. $\mathrm{Hr}_{\text {day }} \mathrm{min}$.. sec month date,
 All prices quoted are for stanless steel with adjustable matching
bracelets. For gold plase add $\xi 1,50$ to price.
Alt our watches have manufacturers back up service and ful
guatantee for 12 months 3 sec Gents (hr) min sec.). backlite, month, date $£ 24.95$ 4iC Gents (hn, , min.. sec)
backlite. month. date. day. backite. month. date. day.
stopwatch. $10 / 100$ th sec 5 CC Gents World time thi. min, sec., dayl. date, month.
8 time zones stopwatch,
counter
6LC Gents Chronograph thro min (sens.) or daie). date. day
ot west ot week, backlite, chronograph
sicp. slop. lap ace time. etc. G.LCL Ladies inr. min.) backlite. sec. month, date $\mathbf{5 3 0 . 5 0}$ SOLAA WATCH tht. Min.. sec.).
trackite, morth. date $\mathbf{5 9 . 9 5}$ (Functions in brackets
continually on displayi

WORLD PATHFINDER

Greenbank CMOS WITH DISCOUNTS.
10% for $25+25 \%$ for $100+331 / 2 \%$ for $1000+$
4000 Series (RCA/Motorola)

000	0.20	4027	0.60	4051	1.04	4081	24
4001	0.20	4028	1.00	4052	1.04	4082	0.24
4.002	0.20	4029	1.27	4053	1.0	4085	0.80
4006	1.31	4030	0.60	4054	1.29	4086	0.80
4007	0.20	4031	2.46	4055	1.46	4089	1.74
4008	1.07	4032	1.19	4056	1.46	4093	0.89
4009	0.60	4033	1.55	4057	29.81	4094	2.08
4010	0.60	4034	2.11	4059	6.20	4095	1.16
4011	0.20	4035	1.31	4060	1.24	4096	1.16
4012	0.20	4036	3.09	4061	25.60	4097	4.13
4013	0.60	4037	1.08	4062	10.10	4098	1.22
4014	1.12	4038	1.20	4063	1.22	4099	2.03
4015	1.12	4039	3.09	4066	0.69	40101	1.76
4016	0.60	4040	1.19	4067	4.13	40102	2.16
4017	1.12	4041	0.93	4068	0.24	40103	2.16
4018	1.12	4042	0.93	4069	0.24	40104	2.26
4019	0.60	4043	1.12	4070	0.65	4010	. 6
4020	1.24	404.	1.04	4071	0.24	40108	18
4021	1.12	4045	1.56	4072	0.24	40109	2.21
4022	1.07	4046	1.48	4073	0.24	40	4.30
4023	0.20	4047	1.01	4075	0.24	40182	73
4024	0.87	4048	0.60	4076	1.71	40194	226
4025	0.20	4049	0.60	4077	0.65	40257	26
4026	1.92	4050	0.60	4078	0.24		
14100 and 14400 Series (Motorola)							
1416	1.18	14175	1.04	14415	7.35	1445	2.67
14161	1.18	14194	1.17	14419	2.67	14451	2.67
14162	1.18	14410	5.70	14.422	4.98	14490	6.51
14163	1.18	14411	9.54	14435	7.93		
14	8	14412	17.07	14440	11.58		
14500 Series (RCA/Motorola)							
145	0.20	14518	1.39	14537	13.17	14561	0.70
14502	1.38	14519	0.57	14539	1.24	14562	5.59
14503	0.75	14520	1.39	14541	1.62	14566	1.67
14505	4.38	14521	2.77	14543	1.82	14568	3.15
14506	0.57	14522	215	14549	4.10	14569	3.72
14507	0.60	14526	2.15	14552	10.50	14572	0.27
14508	3.08	14527	1.78	14553	4.66	14580	8.35
14510	1.51	14528	1.22	14554	1.67	1458 :	4.30
14511	1.74	14529	1.72	14555	1.01	14582	1.64
14512	1.03	14530	0.95	14556	1.01	14583	0.84
14514	3.47	$1453{ }^{\circ}$	1.74	14557	4.65	14584	0.71
14515	3.47	14532	1.39	14558	1.25	14585	110
14516	1.51	14534	8.15	14559	4.10		
1451	4.02	14536	4.00	14560	2.47		
74C00 Serios (National)							
i4C00	0.26	$74 \mathrm{C86}$	0.69	$74 C 173$	1.21	74C910	7.20
74 CO 2	0.26	74C89	4.65	74 C 174	1.21	74C914	1.50
74 CO 4	0.26	74C90	0.92	74C192	1.49	$74 \mathrm{C9} 18$	2.90
$74 \mathrm{CO8}$	0.26	$74 \mathrm{C93}$	0.92	74 C 193	1.49	74C920	0.84
74 C 10	0.26	74C95	1.31	74 C 195	1.31	74C921	9.84
74 C 14	1.51	74C107	1.31	74C200	7.20	74C925	8.28
74C20	0.26	74C150	4.17	74C221	1.50	74C926	8.28
74630	0.28	74C151	2.63	14C901	0.74	$74 C 927$	8.28
74 C32	0.26	74C154	3.93	74C902	0.74	74C928	8.28
$74 \mathrm{C42}$	1.20	74C157	2.36	74C903	0.74	80C95	1.20
$74 \mathrm{C48}$	2.37	74C160	1.49	74C904	0.74	80C96	0.92
$74 \mathrm{C73}$	0.74	74C161	1.49	74C905	7.71	80С97	0.87
74 C 74	0.63	74C162	1.49	74C906	0.74	80С98	0.92
74C76	0.74	74C163	1.49	74C907	0.74	88C29	6.21
$74 \mathrm{C83}$	1.97	74C164	1.31	74C908	2.63	88 C 3	6.21
74C85	1.97	74C165	1.31	74C909	1.74		

"E" LED DISPLAYS. Class II devices. but fully guaranteed by us

SOLOERCON PINS

100
1000
3000 ($\begin{array}{r}\text { £4.00 } \\ \mathbf{E 1 0 . 5 0}\end{array}$
FNt class. commion cathode
05° LED, 7 segment

10.000 half price ($\mathbf{£ 3 0 . 0 0}$)	Also MAN se
	DIL SOCKETS B/14/16 pin
'VEROBOARD' 0 1" Pirch with copper strips	OP-AMPS
	CA 3130 (COS/MOS) ¢ 1.00
	CA 3140 (BI MOS) 959
	741 Minidip ${ }^{\text {app }}$
	TIMER IC
	NE 555
31/4' $\times 17^{\prime \prime}$ ($£ 1.98$	NE 556 99p
4 $7^{\prime \prime} \times 17.9^{\prime \prime}$ ¢2.55	LEDE (red only)
0.1 " Plain board tno strips)	01 "da 15p
	- 2" da
$31 /{ }^{\prime \prime} \times 179^{\prime \prime}$ $\mathbf{6 1 . 2 8}$ Terminal pins $\mathbf{£ 1 . 5 0 / 5 0 0}$	QUARTZ CRYSTALS$100 \mathrm{kHz}, 1 \mathrm{MHz} 2097152$
DIP breadboard $\quad \mathbf{¢ 2 . 4 4}$	$\mathrm{MHz}_{4}{ }^{3} 2768 \mathrm{MHz}$,
	4194304 MHz . All same
Spot face cutter $\quad 74 \mathrm{p}$	nrice, each 63.75.
Pin insertion tool £1.00	Molorala 32768 kHz mania Iure crystal $£ 4.50$.
SIX DECADE COUNTER MK 50395,6/7 $\quad \$ 12.10$ Quantity prices availatble.	LIQUID CAYSTA
	DISPLAYS
	$4 \times 0.5^{\prime \prime}$ digits 40 p
	¢13.95
 CLOCK CHIPS AY-5-1224AA $\mathbf{£ 3 . 5 0}$ MK 50253 $\mathbf{6 5 . 5 0}$ MK.50362/50366 $\mathbf{~} 7.25$	CMOS clocí Chip $11 / 2$ volt battery operated to sult our LCD, 40 pir DIL, 11440 £11.58.

CATALOGUE, tree on reques
Post etc UK $25 \rho(+20 \Rightarrow 27 \rho)$ per order. Export add 75 p
Polys Universities. rega. Cos., atce can (elephone their orders for
GREENBANK ELECTRONIGS [Dept. T10E) Now Clentor Road. Now Ferr
Wirral, Mersoyside 1625 AG

Yourfree start to a rewarding newhobby.
 Heathkit make the

 world's largest range of electronic kits.

Including amateur radio, test equipment, educational and general interest kits.

Every one of which comes to you absolutely complete-right down to the last nut and bolt.

You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

So, besides making an attractive, useful piece of equipment, youill also have the makings of a satisfying, rewarding hobby.

To find out more, post the coupon and we'll send you our latest catalogue. Heath (Gloucester) Ltd., Dept.ETI-107,Bristol Rd., Gloucester, GL2 6EE. Tel: Glos (0452) 29451.
 HEATHKIT
BETTER BUILT BECAUSE YOU BUILDIT YOURSELF The new Heathkit catalogue. Out now FREE

Showrooms at 233 Tottenham Court Road, London and Bristol Road, Gloucester.

TRANSFORMER

continuous ac/12v dc $£ 7.56 \mathrm{pp} 81 \mathrm{p}$ variable speed 12v de E9.50. pp $81 p$

Replacement drills, stones, burrs, etc. 40p each Circular saw blades, set of four with arbor

P\&P any quantity 25 p

alvat nclisive
$9^{\prime \prime} \times 4^{\prime \prime}$ SAE
please for leatlet
amd Order Form
PRECISION PETITE LTD
119a HIGH STREET
TEDDINGTON MIDDLESEX TW11 8HG
TEL:01-9770878

15
 240 Watts!

The HY5 is a mono hybrid amplifier ideally suited for all applications All common input functions (mag Cartridge, tuner. etc.) are catered for internally, the desired function is achieved ether by a merely require connecting to external potentiometers (not included) The HY5 is compatible with all I P power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier
FEATURES: Complete pre-amplifier in single pack -- Multi-function equalization - Low noise -- Low distortion - High overload -- two simply combined tor stereo
APPLICATIONS: Hi-Fi - Mixers - Disco - Guitar and Organ -- Public address
SPECIFICATIONS:
INPUTS Magnetic Pick up 3 mV Ceramic Pick-up 30 mV . Tuner 100 mV Microphone 10 mV Alliliary $3-100 \mathrm{mV}$ input impedance 47 k ? at 1 kHz
OIJTPUTS Tape 100 mV : Man outpur 500 mV R.M.S
OUJTPUTS Tape 100 mV : Main output 500 mV R.M.S
ACTIVE TONE CONTROLS Treble : 12 dB at 10 kHz : Bass + at 100 Hz
DISTORTION 01 m , at 1 kHz : Signal/Noise Ratio 68dB
OVERLOAD 38 dB on Maqnetic Pick-up. SUPPLY VOLTAGE * 1650 .
Price $£ 5.22+65 p$ VAT P\&P free
HY30
15 Watts into 8Ω
The HY3O is an exciting New kit from ILP it features a virtually indestructible IC with short circuit and thermal protection. The kit consists of I C, heatsink. PC board, 4 resistors, 6 capacitors
mounting kit, together with easy to follow construction and operating instructions This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available FEATURES: Complete kit - Low Distortion -- Short. Open and Thermal Protection -- Easy to Build APPLICATIONS: Updating audio equipment - Guitar practice amplifier -- Test amplifier - Audio ascillaror
SPECIFICATIONS:
OUTPUT POWER $15 W$ RM.S into 8!) DISTORTION 01% at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{HB}$
Price $£ 5.22+65 p$ VAT P\&P free,
HY50
25 Watts into 8Ω
The HY50 leads I.L.P's total integration approach to power amplifier design The amplifier features an integral heatsink together with the simplicity of no external components During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High FEATURES: Low Distortion
FEATUAES.Low Distortion -- Integral Heatsink -- Only five connections .- 7 Amp output transistors APPLICATIONS: Medium
SPECIFICATIONS. INPUT Power Hi-Fi systems -- Low power disco -- Gutar amplifier

1 kHz
SIGNAL NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPFLY VOLTAGE +25 V , SIZE 1055025 mm
Price $\mathbf{E 6 . 8 2}+\mathbf{8 5 p}$ VAT P\&P free
HY120
60 Watts into 8Ω
The HY120 is the baby of ILP s new high power range designed to meet the most exactung requirements including load line and thermal protection this amplifier sets a new standard in modular fesign : VES: Very low distortion -- Integral Heatsink -- Load line protection -- Thermal protection Five connections - No external components
APPLICATIONS: HI-F1 - High quality disco - Public address -- Montor amplifer -. Guitar and SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER GOW RMS into 8! LOAD IMPEDANCE 4-16? DISTORTION 004% at 6OW at SIGNAL/NOISE RATIO 9OdB FREQUENCY RESPONSE $10 \mathrm{~Hz}-4,5 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE +SH
+35 V

Price $£ 15.84+£ 1.27$ VAT P\& P free
HY200
120 Watts into 8Ω
The HY200 now improved to give an output of 120 Watts, has been designed to stand the most rugged condtions, such as disco or group while stith retaining true Hi-Fi, pertormance FEATURES: Thorinal shutdown -- Very low distortion - Load line protection -- Integral Heatuonk No external components
SPECIFICATIONS:
SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS into 8! LOAD IMPEDANCE 4.16 O DISTORTION 005% at 100 W at
1 kHz
SIGNAL NOISE RATIO 96 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIZE $114 \times 100 \times 85 \mathrm{~mm}$
SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 23.32+£ 1.87$ VAT P\&P free.
HY400
240 Watts into 4Ω
The HY400 is IL.P's "Big Daddy". of the range producing 240 W into 4Ω ! th has been designed fo high moner disco or putblic address applications. It the amplitier is to be used at continuous high power levels a rooling fan is recommended The amplifier inctudes all the quatities of the rest of the family to lead the market as a true high power hi-fidelity power module
FEATURES: Thermal shuddown -- Very low distortion - Load line protection - No external
APPLICATIONS: Public address - Disco -- Power slave -- Industital
SPECIFICATIONS:
OUTPLIT POWER 240W RMS into 49 LOAD IMPEDANCE 4-160 DISTORTION 01% at 240W a
1 kHz . NOISE RATIO 94 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}_{\mathrm{z}}-45 \mathrm{kHz}$ 3dB SUPPLY VOLTAGE 45 V
NPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$ Price $£ 32.17+£ 2.57$ VAT P\&P free.

POWER SUPPLIES

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address \qquad
Signature

TIME FOR WIRELESS?

The MA1012 LED digital clock module is a full 12/24 hour format clock unit, operating from $50 / 60 \mathrm{~Hz}$ mains and offering a host of features: Hours, minutes display in bright 0.5" LEDs, with optional seconds, sleep and snooze alarms, fast and slow setting, PM indicator, switched output for radio, but the most important feature is the non-multiplexed directly driven display. This means no RFI, so the MA1012 is ideal for use in any type of radio/tuner etc. The neat fitting means it can be slotted into many existing cabinets/chassis - only $1.75 \times 3.75 \times 0.7^{\prime \prime}$ total!! $\mathbf{f} 9.45$ per module - isolating mains transformer $£ 1.50$ (8% vat) Two modules and two transformers for $£ 20.00+8 \%$ VAT. AMBIT announce a new addition to the catalogne - information on TOKO's new ceramic ladder filters. 2.4 kHz SSB filters etc. HF coils, new flat faced low cost panel meters. Catalogue $45 p$.

DETECKNOWLEDGEY

Metal locator principles and practise, including some of the facts that the manufacturers of $\mathbf{£ 1 0 0 +}$ metal locators wouldn't like you to know !! $£ 1.00$ The "'onic Ferret 4000 - A little detector technology of our own. The VCO b, ied metal locator for the electronics constructor, including platsic moldings for housings of electronics and search coil, tubing etc. Can be set up using just a test meter. 'All in' price $£ 34.26$ inc PP and 8% VAT.

COMPONENTS ETC :
As usual, Ambit offers a comprehensive range of components and modules
for wireless, including over 300.000 types of signal inductors for just about for wireless, including over 300,000 types of signal inductors for just about every conceivable RF signal application from 5 kHz to 300 MHz .

S	UCTOR					Modules/tunerheads	
CA3089E	FM IF	1.94	BC413	10 noise	0.18	3 varican	0
KB4402	FMIF	1.94	40238	shad.RF	$0.25{ }^{\text {* }}$	EF5600U 5 varicap	M E12.95
HA1137W	FM IF	2.20	8F224		F0. 22	NT3302UG 3 gang FM	0
TBA120	FM IF	0.75	BF274	7 GHz	0.18	EF5800 6 varican FM	
TBA1205	FN IF	1.00	2T×212	50v/3W	0.17	EF5801 15800 tosc op)	E17.5
SN76660N	FM IF	0.75	$2 T \times 213$	30v/3W	0.16	8319 4varicap mos mix	$\times \mathrm{E} 1$
UA720	AM radio	1.40	ZI $\times 214$	30v/3W	0.17	7252 fm tunerse 1	¢ 26
CA3123E	AM radio	1.40	ZT $\times 451$	60v/1w	0.18	7253 stereo tunerse	
HA1197	AM radio	140	2TX551	60v/1w	0.18	7020 cer. filt. Im	E6
TBA65:	AM radio	1.40	BD515	45v/10W	0.27	7030 linear phase if	10.9
MC1350	agc gain	1.00	80516	45v/10w	0.30	NBFM1 kit for 455	kHz
UA753	FM gain	1.80	BD535	60v/50W	0.52	nnbtm if filcer/amp	ctar
LM1496	Bat mix	125	80536	60visow	0.53	\%or +12 v	55.
NC1310P	mpx dec.	2.20	80609	80v/90W	0.70	92310 mpx decoder	E6.95
CA3090AQ	mpx dec	4.35	BD610	80v/90W	1.20	91196 mpx decoder	1
HA1196	mpx de	4.20	BF256	1 GHz	0.34	filter	
LM380N	2w AF	1.00	E176	p ch. sw	0.38	93090 mux decde	¢8.36
LM381	st. pream	1.81	MEM614	(40822)	0.38	$97 \mathrm{mw} / \mathrm{l}$	
ta2020	15w AF	2.99	MEM616	(40673)	$0.57{ }^{\circ}$	71223 varicap am 1	
tca940e	10 w AF	1.80	MEM680	lo noise	0.75 ${ }^{\text {² }}$	MW (or LW) kit	
$1 \mathrm{ba810as}$	7w AF	1.08	BA102	vhl	0.30	810k complete	
LM301an	op amp	0.39°	BA121	\checkmark -	0.30	module kit	
CA3130	mos oa	$0.85{ }^{\text {\% }}$	B8104	dual varic	0.45		
LM3900	op amp		BB105	uni varic	0.40		
7805 uc	op amps $5 \mathrm{~V} / 1 \mathrm{~A}$	1.55.		dual am 15v/AM	1.48 1.05	circuit pro	das
tdal 412	12v/.6A	0.95*	vam125	25van	0.90	defined by the ma	tur
78 M 20 uc	$20 \mathrm{~V} / 5 \mathrm{~A}$					All our mpx decod	
78M24uc	24V/.5A						
	vartabl	0.80	AM IFts	with cap	0.30		
TAA550b	32 vrel .	0.50 .	FM	with cap.	0.33	rsion HA	
cti8038c	sig ger	4.50 '				Others: (trom gen	ce list)
NE555v	timer	0.70 *	HCS	AC	0.30	FX1115 ferrite beads	107250
NE566v	co	$2.50{ }^{\circ}$	YHCS	-	0.30	FR1 mw/lw ferrite ror	¢0.90
NE567v	tone dec.	2.50 *	YHCS	AC2	0.30	Min: forl trimmers by	au:
NE560B	ilf pll	$3.50{ }^{\text {\% }}$	KACSK ${ }^{\text {ma }}$		0.33	5/10/20pF swing 7.5	0.18
NE561B	hipll	$3.50 *$	$7 \mathrm{~mm} 1{ }^{\text {c }}$	ramic	0.33	$33 / 42 \mathrm{pF}$ swing 7.5	
NE565k MC1312	If pll quad	2.50 1.50	CLR310	ceramic	0.50 1.90	600F swing lomni dia	10.24
11 Cg 0	650 MHz	14	BR31				
2T×107	$50 \mathrm{v} / 3 \mathrm{~W}$	0.14				1000 pF feedith	
ZTX108	$30 \mathrm{v} / 3 \mathrm{~W}$	0.14				10000 uF/63v	15
ZTX109	$30 \mathrm{v} / 3 \mathrm{~W}$	0.14				Chokes 1 uH to 124 mH	OA

VAT is extra at 12.5% except where otherwise shown. Postage now 25 p per order please. Catalogue 45 p inc pp \& vat. Please send an SAE with all enquiries (a5 or larger size please) Price list free with an SAE (a5 size)

37a High Street, Brentwood, Essex. CM14 4RH Tel (0277) 216029

Complete digital clock kits

 TEAK or PERSPEX CASE

Puised Alarm tone. Automatic Brightness Control, 9 minutes Snooze. Simple
 Ready Built
Module Kit, exc Ready Built \quad £12.50
TIMER FACILITY: Stopwatch use up to 9 min 59 secs exra 50 p

NON ALARM £11.50 ALARM $£ 14.50$

Features:

4 LED digits $1 / 2^{\prime \prime}$ high, red 12-hour display with AM / FM indicaMains

- Mains frequency accuracy Easy-to-build : all components Beautiful
Weautiful real wood case or Perspex:
- Flashes to indicate power cuts

NON-ALARM

Complete Kil including case Ready Built

Ready Built
Mode Kit excluding case
E 13.50

EXCELLENT DESIGN ANODISED ALUMINIUM ALARM clocks

- Green diguts. Snooze repeater alarm. Superb value
$£ 18.36$
$£ 17.28$
- Red digits Brightness controt. Snooze

DISPLAYS: FND $5001 / 2^{\prime \prime}$ LED E1. 19 each; 6 for $\mathbf{E 6 . 4 8 \text { . NSB } 5 4 3 0 . 1 / 2 ^ { \prime \prime } \text { red LED }}$

CLOCK CHIPS: 50253 N Alarm. $12 / 24 \mathrm{hr} .4 / 6$ digit. E5.67. 50362N Catendar clock. £7.75. MM5385N 12-hr. 4 digit Alarm £4.32. 6 Decade Up/Down MICROPROCESSOR: Z80 CP

280 CTC	£1570	17024 UV Erazable PROM
Z80 P10	£1570	2102 NA IK Static RAM

RECHARGEABLE BATTERY SET SUPERVALUE E6. 10 Includes: 4 AA (1.2V) Nickel Cadmium batteries (separately $£ 4.32$. $3 / 6 / 9 \mathrm{~V}$ switched Universal Mains Adaptor with 4 -plug connector for most calculators
(separately 53.78) plus battery holder) ELECTR ONICS DOOREELI. Warbling
LIQUID CRYSTAL WATCH. 5 function. Backlight. Chrome case Black strap E17.28.

BARON
SOUTHVIEW HOUSE 6 GOWER ROAD ROYSTON, HERTS.
Phone: Royston (0763) 43695

AUDIBLY SUPERIOR AMPLIFICATION

HIGH DEFINITION - 'MUSICAL’ - POWER AMP

* T.H.D. TYPICALLY .007\%
@ 10W, 500Hz
* ZERO T.I.D. [SLEW-RATE

LIMIT 16 V/ S)
Module size:
$120 \times 80 \times 25 \mathrm{~mm} . u \operatorname{sing}$ glass fibre pch with ident and solder rasist.
Illustrated
light duty heatsink.

CRIMSON ELEKTRIK Dower amplifier modutes ere fast gaining a reputation as the best sounding. mosi musical modules avalable, Perhaps the most imporiant features of mis design are: exceptionai freedom trom crossover distorion (due to the use of oulpul tupies) and zero T.I.D The amplifier is protected against
open and shori circuit loads and yet will dive a highly reactive tower impedance load, which is more representative of a real loudspeaker. Square waves maintain thair rise times up of lull power whilst simulated electrostalic loads are eastry handled, with negligible overshool and a setuling lime of 12.5
Oher 5 . Other spers. $5 / \mathrm{N}>110 \mathrm{~dB}$; Rise time $10-\mathrm{S}$. Sensitivity $775 \mathrm{mV} ; \mathrm{DC}$ couplad: $5 \mathrm{H}_{2} .35 \mathrm{kHz}-3 \mathrm{~dB}$), THD< $015 \% 100 \mathrm{~mW}$-clipping. 500 Hz .
slimine toroidal transtorms with a 120 -240x pumary
alt hixings.
Heatsinks are attractive black anodised extrusions. 80 mm wide

POWER AMP madules

POWER AMP madules		HOME	EUROPE	GRNMON
		£16. 30	ع16.30	
		¢ 19.22	E.9.00	
CE $1008100 \mathrm{Wrms} / 8 \mathrm{obms}$ - 45 NJE		£23.22	£22.70	ELEKTRIK
POWEA SUPFLIES				
CPS 1 for $2 \times$ CEE608 or $1 \times$ PE $1004 .:$		${ }^{\text {c }} 12.85$	¢14.20	
CPS 2 for 2 xcfe 1004 or 2 or $4 \times$ CE608		E14.55	E17.90	
CPS 3 for 2xCE1008		¢15.85	c19.20	74 STATION ROAO
Meatsnuks	50 ma ? C / w			
High pawer		c1. 60	18.30	
Disco/group	${ }^{4} 150 \mathrm{ma} 1 \mathrm{I}^{\circ} \mathrm{J} \mathrm{C}^{\circ} \mathrm{C} / \mathrm{W}$	\$2.30	¢3.65	TEL: (0533) 386211

Home prices inciurle VAT and carriage Payment by cheque/PO. COD 60p \& 50 limin). Export no problem European prices int de carrage. Mrsurance and handing, payment in Sterling by bank draft, PO.
International Giro or Nu. Wey Order. Outside Europe. please write for specific quote by relurn. Send SAE or International Gro or Ni. Sey Order. Ouiside Europe. please write for specific quole by relurn. Send SAE or
two international Reply Coupons for tuilliterature. Favourable lrade quantily price ist on request. Suitable two international Rep
pre-amp circuit 20p

Half price Teletext

You can now buy Texas Tifax module Teletext decoder complete with matching cable connected keyboard, power supply, interface board and complete instructions for installation in most common television receivers for only $£ 180$ + VAT and $£ 2.50$ postage, packing and insurance.

Since the interface is connected directly to the television's video output circuitry, picture quality is excellent with pure colours - much more so than is possible from decoders which feed the aerial socket.

Due to the compact nature of the Tifax module, installation within most receiver cabinets is no problem. Facilites include seven colours, upper and lower case alphanumerics, graphics, time coded display, and newsflash and subtitle inserted in TV picture.

To enable us to supply the correct interface board and instructions, we must know your television set make and model and, if possible, chassis type.

Assets House, Elverton St London SW1P 2QR

Phone: 01-828 2731. Telex: 896953 $£ 22$ per insertion. CLASSIFIED DISPLAY: $£ 3.50$ per single column centimetre. No P.O. Box Numbers can be accepted without full address
INQUIRIES TO: Mark Strathern, Advertising Department 01-4375982), 25-27 Oxford Street, London W1R 1RF

VALVES
 VALVES

Radio -- TV
We dispate Vals to all parts of ine ransmitting post air or sea is to ali parts of the world by return of 1976. Obsolete types a sueciality in stock, 1930 to SA.E. Open to callers Monday to Saturday 930 to 5.00 Closed Wednesday 1.00 . We wish to purchase all types of new and boxed Valves
Cox Radio (Sussex) Lid., Dept. E.T.I., The Parade, East Wittering, Sussex PO20 8BN. West Wittering Esest Wittering, Sussex PO20
2023 (STD Code 024366).

STATIC RAMS TMS 4033. DIRECT EQUIV. 2102/2 (FASTER) 450 NS. 1024X1 VDUS, MPUS £2 95 EACH 6 UP $£ 2.75$ EACH INCLUDING DATA, VAT P\&P CWO. B.S.L ASSOCIATES, 2 MANOR PARK, RICHMAND, SURREY. 01-9406386.

ZARTRGNIX
 WIRE THREADING INTROKIT £6.60

PLUS Professional tools essential for successful wire threading
ORYX Temp. Cont. Sold Iron (fine tip fitted)
Safety Stand
$£ 8.10$
$£ 3.40$
P\&P for stand and iron together 54 p
Microshear Cutters (with safety clip) ... £4.50 Quality Tweezers

E1.50
MISC.: Conductive Paints Elecolit $340,3 \mathrm{gm}$
tube - PCB repair bus bars, RF Shieiding, etc.
£2.50
TERMS: Add 8% VAT to all items. Cash with
order. Min. order £2.50. P \& P 30p per order.
Mail Order only. Access available.

ZARTR $\cap N^{\prime} X \mathbf{1 1 5}$ LION LANE
ZARTRGN|XHASLEMERE, SURREY

MULLARD C280/I CAPACITORS 250 V/W. MIXED VALUE PACKS FROM O.Oluf TO I.5uf. PRICE 100/£1.50, 500/£7.00, P\&P 30p. ELECTRONIC MAILORDER, RAMSBOTTOM, BURY, LANCS.

COMPONENTS AND HARDWARE: awide range of products - all in stock for prompt despatch. Details $2 \times 7 \mathrm{p}$ stamps, MAGEN.TA, TF9, 61 Newton Leys, Burton-on-Trent, Staffs. DE 15 ODW.

TIRRO ELECTRONICS the mail order division of RITRO ELECTRONICS UK offers a wide range of components for the amateur enthusiast. Large S.A.E. or 20 p brings list. GRENFELL PLACE, MAIDENHEAD, BERKS SL6 1 HL .

PRINTED CIRCUITS and hardiware

Comprehensive range Constructors' Hardware and accessories
Sheet aluminium cut to size Aluminium lightweight sections. Selected range of popular components. Full range of ETI printed circuit boards. normally ex-stock, same day despatch at competitive prices.
P.C. Boards to individual designs

Resist-coated epoxy glass laminate for the di.y. man with full processing instructions (no unusual chemicals required)
Send 15p for catalogue.

RAMAR CONSTRUCTOR SERVICES

 MASONS ROAD STRATFORD-ON-AVON WARWICKS. Tel. 4879
SYSTEM 68

Please add 8\% VAT TO total plus 40p P\&P

We have a large 6800 computer facility and can help you write and assemble your own 6B00 programmes. We are also building up a 6800 software library. We also sell complete systems, terminals, floppy disk and tape memories. For further details send SAE to: COMPUTABITS LTD., 41 Vincent Street, Yeovil, Somerset.

NEW SPECIAL OFFER. DIL 7 WAY SWITCHES 60p, 74HOO 22p, 808GA £19.95, 2102 £ 1.85

7105 (LED Driver) 18p. 741 20p. 741 TO99 (DIL) 30p, 2.5 mm Jack Plug $+5^{\prime}$ lead 10 p . JAP ear piece 20p. MM5314 + Data £3.25. 3.3V Zeners 400MW 5p, TIL209 9p, OCP70 20p, BC108C 10p, BC183 10p BC2 13 10p BF195 10p. P/P 10p

LB ELECTRONICS, 43 Westacott, Hayes Middx. UB4 8AM

Orders	SAME-DAY DISPATCH received before $2.00 \mathrm{p} . \mathrm{m}$. are posted on same day
Vero Cases, $60 \times 108 \times 180 \mathrm{~mm}$	
Push-button Switches 20p $+2 p$ VATLED DL707 $3^{\prime \prime} \ldots . .60 \mathrm{p}+4 \mathrm{~V}$ VAT	
「uaba 5LT01 Green Clock Display$£ 4.60+36 \mathrm{p} \text { VAT }$	
Clock Chip AY1 $202 \mathrm{£2.80}+22 \mathrm{p}$ VAT	
Clock Chip DIL socket 30p + 2p VAT	
Clock Case $\ldots \mathbf{8 2 . 5 0}+{ }^{\mathbf{7 5 p}}+{ }^{60 p}$ VAT	
Clock Circuit Diagram and Assembly Details	
+ 30p P \& P par ondar ${ }_{\text {n }}$	
Barciay and Access welcome Send card number with order	
METAC-ELECTRONICS \& TIME CENTRE	
Uxbridge Daventry 3 New Arcade 67 High Street High Street Daventry Uxrridge. Middx. Northants Tel. 0895) 56961 Tel. .032 72) 76545	
Shops open 9 to 5.30 daily	

TOUCH CONTROLLED GGMTNEKMS			
These KITS replace conventional light switches and control 300W of lighting. No mains rewiring required			
Insulated Touch Plates All with easy to follow			
TSD300K - TOUCHSWITCH and DIMMER combined. ONE touchplate to switch light on or off. Brightness controlled by small knob. ONLY £4.95			
TS300K - TOUCHSWITCH. TWO touch plates ON and OFF. ONLY $£ 3.67$			
TSA300K - AUTOMATIC. One touch plate Light turns off after preset delay. ONLY £3.67			
LD300K - LIGHT DIMMER KIT - £2.45			
SPECIAL OFFERS 3 TRIACS 8A/400V. Isolatad Tab. ONLY $£ 2.25$., CMOS 4017 Couñter 2 for $£ 1.65$			
LOW PRICES!! CMOS (Motorola)			
4000 16p 4013	$51 p$	4040	97p
4001 16p 4015	91p	4049	48p
4002 16p. 4016	51 p	4077	45p
4007 16p 4017	91p	4501	20p
4011. 16p 4023	17p	4519	56p
4012 17p 4025	17p	4566	155p
AY-5-1230 Clock/Appliance Timer £4.85			
TRIACS 400V Plastic TO220 Isolated	NE5	pin	36p
	7418	in dil	24p
6.5A with trigger 80p	2N602	PUT	34p
8.5A 79p	2N305		36p
Diac 21p	C1060		
QUANTITY DISCOUNTS ON REQUEST Add 8% VAT $+25 p$ P\&P. Mail Order Only to			
T. K. ELECTRON\|CS			

VHF pocket portable receiver. Size approx. $5^{\prime \prime} \times 3^{\prime \prime} 1 \frac{1}{4}{ }^{\prime \prime}$. Tunes either 108 to 136 MHz or 125 to 160 MHz . (State preference when ordering). Very good sensitivity and selectivity. Slide rule type tuning dial. Plenty of audio volume. Fully guaranteed. $£ 17.50$ post paid from Romak Engineering Ltd., 10 Hibel Road, Macclesfield, Cheshire.

MICROPROCESSOR to cassette tape. 'THE SILENT PAPER TAPE.' A neat little CMOS IC device to interface serial data at 110 to 300 Baud to/from your audio tape recorder. Built, $£ 15$ (inc). 52 Jubilee Road, Littlebourne, Kent.

MAGNETIC MEMORIES. Liquid magnetic film. Make your own data storage discs, cards, etc. $£ 1.25$. Polyvinyl sheet $2 p$ sq. in. S.A.E for details. HEATH E\&M, 26 Broad Street, Lyme Regis, Dorset, DT 7 3QE.

TV GAMES

 IN COLOUR

- Colour modulator for AY-3-8500 TV game; blue and orange bats on grass green, ice blue or hardcourt. red backgrounds.
- Full instructions for building complete game or connecting to your existing black and white circuit.
- Kit complete with 4.43 MHZ crystal, Pal bistable, printed circuit and UHF modulator.
- Adds a new dimension to all games!

PRICE £5.50, including VAT and Post. Cheques/P.O.s payable to:
W. BRUGES, 137 BILLERICAY ROAD HERONGATE, BRENTVOOD, ESSEX CM13 3SD
Telephone: 0277810244

AUDIO MODULE KITS for your Dis-co/Hi-Fi mixer containing PCB, components and full instructions for PFL monitoring. Mag. $\mathrm{P}_{\mu} / 600 \Omega \mathrm{Mic} /$ Tape and VE Mixer $£ 3.20$ ea., inc. VAT \& Postage.
Soundbox, 30 Church Road, Newick, Sussex

POWER SUPPLY. 0-20 Volts. 0-1 Amp. Adjustable current limit. Drilled case. KIT-£17.98. BUILT-£22.98. Details $2 \times$ $7 p$ stamps. MAGENTA, TC9, 61 Newton Leys, Burton-on-Trent, Staffs. DE15 ODW.

CARBON FILM RESISTORS. 5% E' 12 Series, $1 / 8 \mathrm{~W}, 1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}$. Mixed to your choice, 100 for 90p. ELECTROLYTICS $50 / 15 \mathrm{v}, 100 / 15 \mathrm{v} 7 \mathrm{p}$. MICROPROCES SORS SC/MP £15, Introkit £77, Keyboard kit £74, MM6800 £27. P\&P 15p. Mail Order only. CANDAR, 9 Galloway Close Denbigh Hall, Bletchley.

ADVERTISEMENT INDEX

ACE pp41-44
Ambit p78
Barlcay p75
Baron p78
Baydis p55
BiPak pp 4 and 5
Brewster p61
Bywood p83
Cambridge Learning p70
Catronics p70
Chiltmead p82
Crofton p68 \& miniads
Computabits miniad
Crimson Electric p78
D\&D Power supply p60
Decon p55
Doram p61
EDA p24

Electrovalue p60
E. R. Nicholls p58

Greenbank p75
Heathkit p76
Henry's Radio p14
I.L.P. p77

Island Devices miniad
Kramer pp27, 58 \& 73
Lynx p72
Manor Supplies p9
Maplin p84
Marshalls p19
Mega p68
Metac p 9
Minikits p72
Mountaindene p74
P. B. Electronics p57

Precision Petite p76

Progressive Radio p74
Ramar miniad
R.F. Equipment p76

Tamtronic miniad
Technomatic p79
Telecraft pp 56 \& 74
Tempus p24
T.K. Electronics miniad

Service Trading p33
Sintel p62
Swanley p73
Vero p61
Videcraft p79
Watford p2
W. Bruges miniad

Wilmslow p56
Zartronix miniad

STICKIES ARE NEW high-quality IC-size self-adhesive labels printed with pin-outs for the 61 most popular 16 - and 14 -pin 7400 -series ICs. Each pin identified immediately. For design, construction and de-bugging. Also ideal for students. INTRODUCTORY OFFER. Set of 450 Stickies $£ 2.80$ inclusive. Concept Electronics (A2), 8 Bayham Road, Sevenoaks Kent.

COMPUTER LIGHT PENS FOR V.D.U./TV GAMES E1.50 (INC.). 8 BIT PAPER TAPE READER HEAD ASSY. £ 12.50 (INC.). S.A.E FOR FURTHER COMPUTER BITS \& U.S.A COMPONENTS. M.R. DEVELOPMENTS 163 RODING ROAD, LOUGHTON, ESSEX. 01-508 3355.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLESHARDING \& CO., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement.

MARCONI VALVE
VOLTMETER
TF428BE15 ea

EX-MINISTRY

GENERATOR 0-20KHZ
Sinewave output. Metered, 600 Ohms. 240 V Input. "Size $16 \times 10 \times 9^{\prime \prime}$ deep. $£ 22.50$ each

EX-MINISTRY
MARCONI 0-6WATTS
Multi Range, Multi Impedạnce POWER METERS. $£ 30$ each.

EDWARDS HIGH VACUUM PUMPS
Type 1SC30@£55 each
Type ES35@£40 each
Carriage $£ 2.75$

MARCONI TF675F WIDE

 RANGE PULSE GENERATOR $+/-$ variable outputs up to 50 V . Optional delay. Small compact unit. £18 ea.ROYAL INVERTORS manufactured USA. 28V DC Input. Output 115 V AC 400 HZ up to 24 KVA . Brand new. Crated $£ \mathbf{1 2 . 5 0}$ ea.

TRANSFORMERS - All 240V 50HZ

Type A. 170-17V 250MA: $\begin{gathered}\text { Inputs } \\ 7.5-0.7 .5 V \\ 250 M A \\ 0.20 V \\ 5\end{gathered}$ Amps. Type A. 170-17V 250MA 7.5-0-7.5V 250 MA . $0-2$
$0-4 \mathrm{~V} .5$ Amps: $0-1.1 .5 \mathrm{~V} 5$ Amps £ 2 each. P\&P $£ 1.25$.
 5 Amps £1.25 ea. P\&PEi. 25
All brand new. APT Surplus.
All brand new. APT Surplus.
*POT PACK. All Brand New Modern Single and Ganged, Our *POT PACK. All Brand New
choice. 7 for $25 p$. P\&P 48p SEMICONDUCTORS - Now all at 5p ea *. P\&P extra. Guaranteed all full spec. devices. Manufacturers markings:
BC 47 : 2 N 3707 : 2 N 4403 : $\mathrm{BC} 172 \mathrm{~B}: \mathrm{BC} 261 ; \mathrm{BC} 251 \mathrm{~B} ; \mathrm{BC} 348 \mathrm{~B}$, BC147; 2N3707; 2N4403; BC172B; BC261; BC251B; BC348B, BC171A/B.
2N5879 with 2N5881 Motorola 150 Watt Comp pair $£ 2$ pr. P\&P 2Np.
15 p .
*Linear Amp 709 25p ea P\&P 8p
High Speed Voltage Comparator 710 . $15 p$ ea P\&P extra
TUBES. All Brand New'Boxed
Electrostatic deflection.
Type GEC $924 \mathrm{~F}^{*} 3^{1 / 2^{\prime \prime}}$ dia. (Replacement for Telequipment D33 \& Solartron 1016 scopes) £25 ea. P\&P $£ 1.50$
Type GEC $924 \mathrm{E} 3^{1 / 2^{\prime \prime}}$ dia. (Replacement for Solartion 1015 scope). £ 17.50 ea. P\&P $£ 1.50$
EIBREGLASS BOARD PACK. More board - less money Larger pieces. Not less than 2.5 sq . ft. for 95 pp . P\&P 65 p .
NEW - UPGRADED CONTENTS - FOR LESS MONEY
$\star 3 \mathrm{lb}$ Electronic Goodies $£ 1.60$ post paid.
*High Value Printed Board Pack - hundreds of components transistors. etc. -- no flat to the board transistors $£ 1.65$ post paid
VERY SPECIAL PRICES
$\star 100$ f Feed thru Capacitors 10 for 30p. P\&P $15 p$
HivaC Miniature NEONS
App
Brand New. 10 off 20p. P\&P extra
GRATICULES $12^{-1} 14 \mathrm{~cm}$. high quality plastic 15p ea. P\&P 10p. *CAPACITOR Pack. 50 Brand New components only 50p. P\&P 48p.
48p. Twin 10/60pf ceramic; 2 min. strips with 4 preset 5/20pf on each, 3 air spaced preset 30/100pf on ceramic base 25p the lot. P\&P $15 p$.

* SPECIAL OFFER

Guaranteed full spec devices. Manufacturers markings
POWEK TRANSISTOR 2N3055 40p ea P\&P 8p
JUST' IN! ELLIOTT 803 MAIN PROCESSOR with Core Memory, Circuits and Software, etc., $£ 120$

Ex-Ministry OSCILLOSCOPE. CT436 Double beam DC 6MHZ £95

 SOMany ather types availableMARCONI SIGNAL GENERATORS. Freq. range 10.470 MHZ Type TF801B/3/S. £150 each.
MARCONI TF142F DISTORTION FACTOR METER giving percentage distortion on a directly calibrated dial and includes any spurious components up to $30 \mathrm{KHZ} £ 29.50$ ea
MARCONI PORTABLE FREQUENCY METER TF1026/11, 100
to 160 MHZ . Very fine condition $£ 25$.

DATA LOGGER by DYNAMCO

These are BRAND NEW not tinished - DATA LOG GERS BY DYNAMCO. They are completed
the plug-in boards.
the plug-in boards.
The case with hinged
The case. with hinged lid is quite superb and extremely adaptable. It contains as well as the mother board an equally superb Power Supply
with the following voltages +28 V . $+15 \mathrm{~V} \cdot+5 \mathrm{~V}(25 \mathrm{~A})$ - this supply with the following voltages $+28 \mathrm{~V} ;+15 \mathrm{~V}:+5 \mathrm{~V}(2.5 \mathrm{~A})-$ this supply
is crowbar protected; $-5 \mathrm{~V} ;-14 \mathrm{~V} ;-20 \mathrm{~V} ;-24 \mathrm{~V} ;-48 \mathrm{~V}$ and other is crowbar protected; $-5 \mathrm{~V} ;-14 \mathrm{~V} ;-20 \mathrm{~V} ;-24 \mathrm{~V} ;-48 \mathrm{~V}$ and other
supplies including auto 110 V . This unit supplied in its origina cardboard box complete with original manual and must be of serious interest to the professional constructor and anyone considering the
construction of a micro processor system. Unit size $7 / 2^{" \prime}$ high $\times 19^{" \prime}$ construction of a
wide $\times 23^{\prime \prime}$ deep wide x $23^{\prime \prime}$ deep.

Price $£ 45$ each. Carriage $£ 2.50$

PICK-A-PACK 50 PENCE A POUND

From Our "Pick-A-Pack" area weigh up your own components. No restrictions on what you take

EX-DYNAMCO Oscilloscopes iNVERTORS 30V input 6KV Output.
circuit $£ 10$ e
MINIATURE - OXLEY PATCH PANELS - BRAND NEW EX-DY
50 p.
ETELEPHONES. Post OHice stve 746 Black or twotone $£ 6.50$ ea Maderin style 706 . Black or two-tone grey $£ 4.50$
ea. P\&P $£ 1$ each Old black style $£ 1.50$ ea. P\&P $£ 1$.
 PRP 75 S .
TELEPHO TELEPHONE EXCHANGES
'exchange onty) from $£ 95$.
MODERN FANS. 4%
quiet 6 tuades. $£ 4.50$ ea P\&P 75,240 Volts Superbly PAPST Model 240 V avallable al $\mathbf{£ 7 . 5 0} \mathrm{ea}$ P\&P 75 p

SURPLUS - BRAND NEW - REPLACE. MENT TUBES FOR DYNAMCO 7100 SERIES OSCILLOSCOPES TYPE BRIMAR D13-51GH Mesh P.D A. 'Transistor Scan Wide Bandwidth
$60 \mathrm{MHZ}+$ Rectangular $6 \times 10 \mathrm{~cm}-1 \mathrm{KV}$ EHT \times Sensitivity $15 \mathrm{~V} / \mathrm{CM}$. Y Sensitivity 6V/CM standard heaters. Length $131 / 4$, THIS IS A MUST AS A SPARE FOR THE DYNAMCO 7100 SCOPE OR IDEAL FOR THE HIGH QUALITY TRANSISTOR SCOPE BUILDER. At $£ 65$ each. Carriage $£ 2.50$
To Tube purchasers only. Numetal Shieids at

> E2.50

ALSQ AVAILABLE TUBE TYPE BRIMAR D $10210 \mathrm{GH} / 32$ Rectangular $7 \times 5 \mathrm{~cm}$. Mesh

Carriage £2.50

Photomul

types avaiable
*POTENTION
*POTENTIOMETERS -- All 5p ea P\&P exira. Metal bodies AB Lurear PCB Mount. Brand new 10 K . 100 K
ganged, 250 K ganged. 100 K ganged, concentric shat GBEEHIVE TRIMMERS $3: 30 \mathrm{pt}$, Brand New 10 off 40 p
 LARGE RANGE OF ELECTROSTATIC VOLTMETERS. From o- $300 \mathrm{~V} 2^{\prime \prime}$ € , to 20 KV Max General guide $5 \mathrm{KV} 3 \%{ }^{\prime}$ 65. Thereater £1 per KV. P\&P 750
DON'T FORGET VOUR MANUALS. SAE with

Tequirements. E11 ea, P\&P E 1.50
E.M.I. TRANSFORMERS ZOKV 2 KV a $\mathbf{C 7 0}$ EA

240 KV SINGLE PAHSE 20KVA OHtDU $2 \times 25 \mathrm{KV}$ ©85. 240 V SINGLE PHASE 1 KVA OUlput $40 K \mathrm{KV} 25 \mathrm{MA}$ E175. Manv other EHT Transformers and EHT Capactiors avarlable A LARGE QUANITITY OF MISCELLANEOU CHASSIS UNITS, etc, on viev at LOW COST.

PICK-A-PIECE
from our
"PICK-A-PIECE" AREA

PICK-A-METER - £1 EACH

a large selection of brand NEW AND EX-EQ. METERS

BACK IN STOCK

Attractive cast alloy front panel, vertical mount. Size $161 / 2 \times 151 / 2 \times 51 / 2^{\prime \prime}$ containing 72 push buttons with manual or electrical reset (28 V) with provision for labelling with your code; 65 illuminated symbols or functions (complete with 28 V lamps) which again you can change; 16 bit front panel microswitch assembly to enable your coded cards to be read, and host of other electronic parts. NOW $\mathbf{E} 5$ each.

DESKS with Punch, Reader, Printer and Keyboard Some ASCil Various models from $£ 200$.

1/2" MAG TYPE

Approx 2.000 ft . NOW 25p each. P\&P $£^{2} t$

INTERFACING

SERIAL/PARALLEL - PARALLEL/SERIAL. TTL Buffered Ins and Outs. Inverted and Non-inverted; Pos or Neg strobe. Adjustable Baud rates (dispatched at 110): Min. 20 mA drive for all outputs
Requires +5 V . Supplied with edge connectors. $£ 38.50$ ea. P\&P $£ 1$ Requires +5 V . Supplied with edge connectors. £38.50 ea. P\&P £I
$T \mathrm{~L} / 232$ (CCITT) $\mathbf{2 3 2}$ (CCITT)/TLL. Min. TT| output 20 mA TTL/232 (CCITT) - 232 (CCITT)/TTL. Min. TT output 20 mA Requires +12 V i-12V, and $/ 5 \mathrm{~V}$ £ 19.50 ea P\&P 75 p .
DRIVER BOARD to suil Paper Tape Punches. TTL to $24 / 48 \mathrm{~V}$ fo solenoids, etc. 9 Channel. $£ 55$ ва. P\&P E2.
TELETYPE PLUG COMPATIBLE 20 mA to 0.5 amp . Drive Board with edge connector. £18.50 ea. P\&P $£ 1$. Requires external $18-0-18 \mathrm{~V}$ 1 amp transformer, 1500 mfd 50 V Cap and Power Transistor

NOTE. Demand for these items already means one month delay. Sav Money, save time, order "KITS'" at HALF PRICE - you assemble.

WE ARE BREAKING COMPUTERS
 UNIVAC/HONEYWELL/ICL 1900, etc.

Boards. Power Supplies. Core Stores are avalable

ITEMS OFTEN AVAILABLE

CORE STORES with Drivers from $£ 100$

Some small RAM Boards
Good used TWIN PACKS $£ 10$ each
Good used MULTI PACK $\mathbf{£ 2 5}$ each
SINGLE DISK 55 each
CORE PLANES (no drivers) from $\mathbf{E 5}$
HEADS for PACKS (individual) £15 each
P.C. MOTORS (Disc Drives?) £15 each
FOR THE VDU BuILDER. New stock of Large Rectangular Screen $30 \times 20 \mathrm{~cm}$ tube. Type M 38 at the ridiculous price of $\mathbf{£ 4}$ each. And also both tubes supplied.

C.D.C. DISK DRIVES TWIN E.D.S.

Single phase - ar conditioning not required Guaranteed fine condition $£ 240$ each Complete with copy of manual and 50 packs. Size approx. $2^{\prime} \times 2^{\prime} \times 3^{\prime} 6^{\prime \prime}$ high.

SUPERB PROFESSIONAL VDU CASES, size $23^{\prime \prime} \times 16^{\prime \prime} \times 15^{\prime \prime}$ on stands.

SOMETIMES AVAILABLE
 TELETYPE ASR23 at $£ 500$

KSR33 at £325.
KSR 33 non standard e g. basic ASCii-20ma loop - but small print 0 to 9 , above standard 0 to 9 , some of the symbols having been relocated $£ \mathbf{2 5 0}$ ea

WE HAVE BEEN TRYING

and are still trying. and should soon succeed in getting a few systems up and running to enable us to demonstrate the increasing number iterns that are becorning available. Most Callers will be Welcome

NO TIME WASTERS PLEASE!
P.S. No Floppy disks - no cheap memory

Minimum Mail Order £2. Excess postage refunded. Unless stated - please add $£ 2.75$ carriage to all units VALUE ADDED TAX not included in prices - Goods marked with $\star 121 / 2 \%$ VAT, otherwise 8% Official Orders Welcomed..Gov./Educational Depts., Authorities, etc., otherwise Cash with Order Open $9 \mathrm{a} . \mathrm{m}$. to 5.30 pm . Mon to Sat

7/9 ARTHUR ROAD, READING, BERKS (near Tech. College, King's Road). Tel. Reading 582605

[^0]: ITo:ETI/CAMBRIDGE PROGRAMM $\overline{\mathrm{AB}} \overline{\mathrm{A}} \overline{\mathrm{T}} \overline{\mathrm{O}} \overline{\mathrm{FF}} \overline{\mathrm{ER}}$

 ## ETI MAGAZINE 25/27 OXFORD STREET, LONDON W1R 1RF

 I Please supply \qquad Sinclair Cambridge Programmable(s) with special
 | programme library, for which I enclose \qquad (at $£ 16.95$ each inclusive). Cheques and P.O.'s made payable to ETI Magazine. N.B. To assist us to speed your order, please write your name and address on the I reverse of cheques.
 | We regret the offer onlV applies to U.K. and Northern Ireland A high level of stock of this calculator are held but please allow 28 days for delivery before becoming concerned.
 \qquad
 Address
 Date

 We are carrying al limited number of these calculators at our offices in Ox-1 ford Street. Our offices are very close | to Tottenham Court Road Underground.

 Please complete the 'edgewise' coupon | in block capitals as it will be used to des-1 patch your unit, so please write clearly.

