

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCESYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DES OME = = = CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL.
 detector. ADSR repeat, sample and hold and special circutry with precision components to ensure tuningrator and an ADS

 synthesizer comparable in performance and qusity with ready built units selling for between E 500 and f 700 !

 As featured in Electronics Today International

 As featured in Electronics Today International}

400W rms continuous - 800W peak!
 0.03 \% THD at FULL power!
 PLUS all the following features too!

* Each channel totally independent with its own stabilised power supply driven by custom designed TOROIDAL transformers!
* Inherent reliability - monster heat sinks for cool running at the hottest venues - electronic open and short circuit protection!
* Ultra low feedback (an incredible low 14 dB overall), super high slewing rate ($20 \mathrm{~V} / \mu \mathrm{s}$). 200 W rms continuous to 4 ohm from EACH channel, input sensitivity 0.775 V (0 dB).
- Professional quality components, sturdy 19 rack mounting chassis complete with sleeve and feet for free standing work too
* Easy to build - plenty of working space with ready access to all components, minimal wiring extensive instruction suitable for both experience constructors and newcomers to electronics
Value for money - quality and performance comparable with ready-built amplifiers costing over
£ 600 l
PSI 4001 SLAVE MODEL

PSI 4002 STUDIO WODEL

PSI 4001
COMPLETE KIT ONLY £187.50 + VAT
PSI 4002
COMPLETE KIT ONLY $£ 196.90$ + VAT

PRICE STABILITY: Order with confidence irrespective of any price changes
we will honour all prices in this advertisement untip Novemer
we will honour all prices in this advertisement until November 30th i 978 fET
Octojer 1978 issue is mentioned with your order Errors and VAT rate charges
excluded. EXPORT ORDERS: No VAT, Postage charged at actual cost plus 50ahernt ieg and documentation
 charge is marte for carriage. or at current rate if changed
SECURICOR DELIVERY. For this optonal servce il
E2.50 (VAT inclusive) per kit
SALES COUNTER: If you prefet to collect wour k,

electronics toda
 NOVEMBER 1978 VOL 7 NO 11
 INTERNATIONAL

FEATURES

what a display p. 16

sine of the times p. 71

[^0][^1]
AUDIO KITS OF DISTINCTION FROM
 POWFERTRAM

DE LUXE EASY TO BUILD LINSLEY-HOOD 75W AMPLIFIER £99.30 + VAT

This easy to build version ol our wortd-wide acclaimed 75 W iamplifier kit based upon circuit boards interconnected with gold plated contacts resulting lin minimal wiring and construction delightfully straightorward. The design was published in HiFi News and Record Review and monitoring whilst distartion is less than 0.01%. monitoring whilst distortion is less than 0.01%

WIRELESS WORLD FM TUNER $£ 70.20$ + VAT

A pre-aligned fromitind module mitres this Wireless Whiod pubtshed oesign very smple to construct and adjust writhout special instruments Features iniciude à: exceitent is mivection. push-button station selection as weil as infinitely variecie furing and a onte locted loop stereo decoder incorporating acive bilters for "birdy" suiporesseon

LINSLEY-HOOD CASSETTE DECK £79.60 + VAT
Thas desige pubished in Wireless World, although siraightionward and relatively low cost provides a very hugh srandard of performance. There are separate rederd and replay amplifiers and swise toble equatisation ogether with a choice of bias levels are also provided. The mechansin s the Goldring-LenpodCRV. with electronic speed control.

T20 + 20 AMPLIFIER £33.10 + VAT

This kit, based upon a design published in Practical Wireless, uses a single printed circuit quality amplifiers at very low cost, ease of 30 , $30+30$) is also avalable fer

WWII TUNER £47.70 + VAT

This cost reduced model of our highly successful Wireless.Worid FM Tuner kit was designed to complement the $T 20+20$ and $T 30-30$ amplitiers and the cabinet size front panel format and olectrical characteristics make this tuner companble with either. Facilities included are pre aligned frent end module switchable atc. adjustable swithable muting. LED tuning indication and boih continuous and push-button chansel selection (adjustable by controls on the fromt ponell.

POWERTRAN SFMT TUNER £ 35.90 + VAT

This is a simple low cost, design which can be construcsed easily wathout special alignment equipment but which still gives a first class output suitabie for feed ng any of our very popular amplifiers or any other high quality audio equipment. A phase-locked-loop is used for stereo decoding and controls include swichable atc. swrtchable muting artd push-button channel selection (adjustable by controls on the front panell. This umin matchss whell with the T20 $4-20$ and $\mathrm{T} 30+30$ amplifiers.

[^2]All of the kits shown on this page are available as separate packs (except the Powertran SFMT Tuner) for those customers who wish to spread their purchase or perhaps make their own
cabinets or metalwork. Prices are given in our FREE CATALOGUE
PhICE STABILITY: Order with contídence! irrespective of any price"changes We will honour all prices in this adventisement until November 30 th, 1978 . If ETI October, 1978 issue is mentipned with your order. Errors and VAT rate Changes excluded
EXPORT ORDERS: No VAT. Postage charged at actual cost plus 50 p handling and documentation.
U.K. ORDERS: Subject to $\$ 2 \%$ surcharge for VAT' (i.e. add $1 / e$ to the price). No charge is made for carriage or al current rate it changed
SECURICOR DELIVERY. For this optional service (U.K. mainland only) add E2.50 (VAT Inclusivel per kit
SALES COUNTER: If
SALES COUNTER: If you prefer to collect your kit from the factory, call at Sales Counter (at rear of factory). Open $9 \mathrm{a} \cdot \mathrm{m}-430 \mathrm{p} \mathrm{m}$ Monday-Thursday

our catalogue is FREE! write or phone NOW! POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE ANDOVER HANTS SP 10 3NM

news digest

dmm(digital midget meter?)

Guinness take note - the world's smallest DMM it seems. Made by Heuer Time Ltd it measures just 4 ' x 1.6 " x 0.5 ($100 \times 40 \times 20 \mathrm{~mm}$ to you Euro-people) with a probe which is $4^{\prime \prime} \times 0.8^{\prime \prime} \times 0.5^{\prime \prime}$ (you mm lot can work that out yourselves). Volts Ohms and Amps either DC or AC can be accommodated between $2 \mathrm{~V}-1 \mathrm{kV}, 2 \mathrm{~mA}-2 \mathrm{~A}$ and $2 \mathrm{k}-20 \mathrm{M}$ although not necessarily in that order. AC measurement is true RMS. Display is $31 / 2$ digit LCD. Input $710 \mathrm{M}+$ Price around £240. Address: Heuer Ltd, Argyle House, 29/31 Euston Road, London.

the dalek connection

This lot looks like it could give Dr Who a few sleepless nights does it not? It's easy to imagine it lumbering across a smoke-circled hill and intoning "Take me to your leader.

Perhaps fortunately for the human race it is simply a noteworthy new connection system from Pressac Ltd. The PCB mounting plugs and sockets can be got at from either direction, and cable and chassis mounting assemblies are also available. Spacing can be either 2.5 mm or 5.0 mm and up to 40 ways are possible.

Pressac Ltd, Acton Grove, Long Easton, Nottingham NG10 1 FW.

eye of the tornado?

Britain and NATO's new aircraft the MRCA Tornado is to be fitted - in its inceptor role - with a Visual Augmentation System developed by Marconi. The system presents the crew with a television picture of what lies ahead of their machine using a newly-developed low-light TV camera system.

Based on an existing Marconi design for a low light camera, the equipment produces an image at ranges far in excess of what the unaided eye can manage, and in light conditions anywhere from daylight to starlight.

Every little helps.

on the face of it

It had to come. Someone somewhere had to go produce an ANALOGUE digital watch. And here we have it. Must confess it looks very nice too. Texas get the credit/blame or whatever.
The display is beautiful. 120 segments are used to produce the illusion of the dial. On normal LCD's up to half the area is used for contacts to the segments, which would mean that with 121 contacts to provide the display would have to be pretty big - a clock yes, but no watch. Texas have gotten this by multiplexing the drive to the segments, which allows 90% of the area to be freed for usage.

The chip is JL. - and this is unusual. IN2L is not normally employed in LCD units because of the problem of driving the highly capacitive elements. Bipolar drivers are used to avoid this; and are designed to drive the large capacitance with a (relatively) large $150 \mu \mathrm{~A}$ initial current for about $100 \mu \mathrm{~S}$ and to provide the 100 nA 'sustan' current thereafter.

Another interesting point is that the material used for the display, a low voltage ester material would not usually be employed in watches because of its negative temp. Coeff. - higher the temp. the lower the drive required - which can lead to 'ghosting' and confusion of the display. The I:L however can compensate for this.
Naturally, since this is the first of its kind, the price of all this invention will be high initially - but the watch will function as a chronograph too and the Jones's will NEVER be able to keep up with this.

In the shops soon we hear.

watt batteries

Here is an amp to really annoy the neighbours with. If they complain about the hi-fi again, pack up the battery cassette recorder, speakers and this PAC 250 MB , drive around the back of the house and when they're least expecting it give 'em 250W a channel straight in the back door. An outflanking move to warm Napoleon's heart.
The PAC 250 you see will run quite happily from 24 V DC or 250 V AC. Very handy for PA as well as neighbour baiting.

Details from: Millbank Electronics Ltd, Uckfield, Sussex TB22 1PS.

Sound of safety?

A car alarm which operates on the ultrasonic area protection principle usually employed in houses is now being imported from the land of pasta and pinched bottoms.

Called the 'Break' it uses four sensors to cover the interior of any vehicle, and has adjustable sensitivity so that spurious triggering can be avoided. Once activated you have 40 secs to clear out before it goes off - so don't get stuck in the seat belt - and coming back in 10 secs to swtich it off.

Once the alarm is in mid sing-song, the removal of the felon will lead to a shutdown 15 secs later. If he persists so will the alarm. Price around $£ 50-$ not including ear plugs - from:
Sofare Ltd, Stoke Heath, Market Drayton, Shropshire.

Mand

ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDERS DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH /CHEQUE/
P.O.s OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL P.O. 8 OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL
INSTITUTIONS' OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INQUIRY WELCOME. P\&P ADD 30p TO ALLL ORDERS UNDER £10.00. OVERSEAS ORDERS
POSTAGEAT COST. AIR /SURFACE.

VAT
We etock thouamione more items. In pisya to vinit un. We me elruatnd bahind Werford Foothat Giound Noernist Underpround/ 8
Purking apece evailable.

 POLYESTER RADIAL LEAD NaIUES: $\mu \mathrm{F}) 250 \mathrm{~V}$: 13p; 0-47 15p; 0-68 19p; 1.0 24p; $1-5$ 27p; 2.2 31p

Abstract

65p:
TAN
$35 \mathrm{~V}:$
10 O
20 V

$20 \mathrm{~V}: 1.5$ 16V: $10 \mu \mathrm{~F} 13 \mathrm{p}$ each 22 25p.
$47 \mu \mathrm{~F}$ 100 40 p.
$10 \mathrm{~V}: 22 \mu \mathrm{~F}, 33,47 \mathrm{kV}: 47$
MVLAR FILM CAPACITORS

$$
\begin{aligned}
& \text { 1000, } 1800 \quad 20002200 \text { 20p each } \\
& \text { POLYSTYRENE CAPAGITORS: } \\
& \text { 10pF to 1nF 8p: 1.5nF to 47nF 10p } \\
& \text { CERAMIC TRIMMMER CAPACITORS }
\end{aligned}
$$

2.7pF $4-15 \mathrm{pF}: 6-25 \mathrm{pF}$. 8-30pF

 $256 \mathrm{pF}: 3-10 \mathrm{pF}$ 10-40pF$5-25 \mathrm{pF} 5-45 \mathrm{pF} 60 \mathrm{pF}$ 88pF:
COMPRESSIONT TRIMMERS
$\begin{array}{ll}\text { COMPRESSION TRIMMERAS } & \\ 3.40 \mathrm{pF} 10-80 \mathrm{pF} 25-190 \mathrm{pF} & 25 \mathrm{p} \\ 100-500 \mathrm{pF}, 1250 \mathrm{pF} & \mathbf{4 5 p}\end{array}$
SACKSONS YARIABLE CAPACITORS

VROVIRINGF Plus Spool 325p

FERRIC CHLORIDE

COPPER CLAD BOARDS

$8 \mathrm{pm} 10 \mathrm{p}: 14$ pir $12 p: 16$ pin 13p; 18 pp
$20 p: 20 \mathrm{p}+27 \mathrm{p}: 22 \mathrm{pin} 30 \mathrm{p}: 24$ ppit 30 p
.
SOLDERCON PINS*

 Act $\underset{A}{A C H}$ A
 1,

| |
| :---: | ASY

A

\qquad ACY:
ACr
ACr

ISTORS

[^3]

Introducing DM900 - The DIGITAL MULTIMETER with "Hidden Capacity" - It measures Capacitance too!
(as published in E T.t August 1978) Away with analogue meters for with some of these circuit measurements inse a crystal ball to make - not a ball but the $31 / 205$ LIOUID CRYSTAL DISPLAY - on our amazingly accurate DMM incorporating
5 AC \& DC Voltage ranges: 6 resistance ranges
5 AC \& DC Current ranges: 4 Capacitance ranges
The prototype accuracy is better than 1%
This is a unique design using the latest MOS ICs and due to the min
wered by only one PP3 battery There is also a battery check facility The DM900 is an attractive hand-held, light weight device, built into carrying handle and has been ingeniously designed to simplify assembly nit
nit
Special introduclory offer $£ 54.50$ ($\mathrm{p} \& \mathrm{p}$ insured add 80 p)
Calibration service charge for working Units $£ \mathbf{5 . 7 5}$. Readybuilt Units available by special order at $£ 78.50 \star$ (p \&p add $80 p$)
(Optional extras, Probes $£ 1.50 \star$; Carrying Case $£ 1.50$ \#)
(Demonstration on at our 5 hiop)

all change

This is the month when the BBC plays hide and seek with the four stations. They are gonna move 'em - you've gotta find 'em again. Fun eh? Radio One goes to 275 m and 285 m ; Radio 2 goes to 433 m and 330 m : Radio 3 goes to 247 m ; and Radio 4 vanishes onto long wave at 1500 m . VHF is unchaged thank God.
The Beebs purpose in shuffling dials is to reduce interfërence from overseas stations. New transmitters are being fitted in some areas, so how it behaves now is no indication of how well you'll get the station once they change it around. Radio 2 will now be better in the day, but worse at night, with Radio 3 generally better.
The movement is to fit in with new European agreements which will allow more stations with better coverage to use the MW and LW bands, so we shouldn't complain
Oh yes there is one more thing. Up to the switch November 23 will dawn with the new frequencies operating - unscheduled breaks in transmission will occur in MW and LW programmes lasting between a blink and several minutes. Don't smash your set it's the BBC's fault. They're working on the transmitters and aerials now to ready them for the big switch over, and well you never know who might drop a spanner or two.

Details will be plastered all over radio, TV and Radio Times between now and then so don't worry about not hearing what's going on. It's most unlikely

short stuff

- GI has released an appliance timer - the AY-3-1251-MPU-based it is, and can be used in such things as cookers to replace nasty mechanical things like clocks Two versions are available and facilities include key board entry, direct display drive, four outputs et al.
- A new digital logic family called FAST (Fairchild Advanced Schottky TTL) is to be released soon. Power consumption is much lower than normal types - about 25% in fact. Typical delays are about 3 nS - hence the name. 66 circuits will be released by the year's end. Price? Competitive apparently, whatever that means
Prom programming overnight is offered by Memec Ltd of Thame Park Industrial Estate, Thame, Oxon. A 24 hr turnaround is quoted and all types of PROM can be handled
- RCA have a new chip out which a smoke detector unto itself. It requires only an ionisation chamber and horn alarm to begin detecting and alarming. The number is T-A 10451 and it will operate on either battery or line. - Britain has produced a new design of terminal to operate with the European OTS test sattelite. The idea is a joint venture between Marconi, the Post Office and the Department of Industry
- Compe 78 will be held at Olympic this year to allow for more exhibitors. The exhibition deals with small systems minis and micros, software and hardware and Uncle Tom Cobley and all.
- Supervisor is a remote controlled helicopter for use on the modern battlefield. It has been developed by Marconi and Westland. The machine stands about as high as a man and contains cameras and other surveillance equipment It has just passed its first flight tests successfully and could be of great use to NATO when in service
- Two books from GI to full up the bookshelves usefully are the 600 p Catalogue and the 300 p Applications Handbook. Both will be of great use indeed to both engineers and serious home dabblers. They cost $£ 3.00$ and $£ 1.80$ respectively from any GI distributors
- Toshiba and Rank have completed an agreement to produce TV sets and audio equipment in Plymouth and Cornwall.
- Texas Instruments new 64 K RAM is at last released. Automation in production means that by 1980 each unit will require only 5 man MINUTES to produce from start to finish, and that a mere 1000 staff will be able to service entire world demand!

NON-SUBSCRIBERS START HERE

GIVE UP, GO HOME
-..AND TAKE OUT A
POSTAL SUBSCRIPTION

It can be a nuisance can't it, going from newsagent to newsagent? "Sorry squire, don't have it - next one should be out soon."

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 7.00$ ($£ 8.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service Electronics Today International 25-27 Oxford Street, London W1 R 1 RF

TANTALUM CAPACITORS. 1 uf $35 \mathrm{v} . \mathrm{w}$. . $47 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$.. 9 uf $35 \mathrm{v} . \mathrm{w}, 22 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$. $3.3 u f 16 \mathrm{v} . \mathrm{w} .4$. $4 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$., $6.8 \mathrm{uf} 25 \mathrm{v} . \mathrm{w} ., 6.8 \mathrm{uf} 35 \mathrm{v}$.w., 10 uf 25 v .w., $20 \mathrm{uf} 6 \mathrm{v} . \mathrm{w} ., 22 \mathrm{uf}$ $6 \mathrm{v} w, 33 \mathrm{uf} 25 \mathrm{v} w, 47 \mathrm{uf} 6 \mathrm{v}$ w All at 9 p each
CLOCK P.C. BOARDS with Buzzer, Mercury Switch, Transistors, Only I.C and Display missing @ £1
O1uf 125v.w. + 10\% CAPACITORS @ 10p each
JACKSON C801 VARIABLE CAPACITORS 5pf or 10 pf. Both 75 p eah
00 mW UNMCROPHONE INSERT WITH FET PRE-AMP @ E1.85 33 v . 36 volt All as 10 for 40 p
X BAND GUNN DIODES with data @ $£ 1.65$
X BAND TUNING VARACTOR DIODES 1 To 2pf or 3 To 4 pf Both $E 165$ each
10 AMP S.C.R's 100 PIV@ 25p, 400 PIV @ 50p. 800 PIV@ 60p
MULLARD PRE-AMP I.C. TAA 435 with data @ 40p.
3 PIN PLUG ANB SOCKET llieR E European
3 PIN PLUG AND SOCKET like R.S. European type with 2 Metres of Cable of 75p pair 20 PHOTO TRANSISTORS, DARLINGTONS Assorted Untested @ E1. T.V. S.A.W. FILTERS Untested 3 for 35 p .

100 MULLARD C280 CAPACITORS 57 S Assorted @ 60p
00 MULLARD C280 CAPACITORS © 57p. Assorted
MULLARD ELECTROLYTICS 2240uf 40vw @ 40p. 4500uf 25vw @40p. 5000uf
10v.w.@15p.6400uf 25v.w.@25p.
O VARI-CAP DIODES LIKE BA TO2 UnIOsted 57 (ऐ E
502 WATT ZENERS Uniested Assorted for 570 .
ELECTROLYTICS 2200uf 100vw. @ 80p. 3300uf 64v.w @ 50p
SUB-MINIATURE 4.7uf 10v.w. TANTALUMS @ 6 for $25 p$.
MOS PRE-AMPLIFIER I.C. TAA 320 with dats@ 35p.
MEMUROO 8 PIN PLUGS @ 20p. A PIN SOCKETS @ 20p, COVERS @ 15p
2 GHz NPN STRIPLINE TRANSISTORS @ E1 each.
20 WATT ZENER DIODES BZY 93 Types $6.8 \mathrm{v}, 7.5 \mathrm{v}, 8.2 \mathrm{v}, 9.1 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 15 \mathrm{v}, 16 \mathrm{v}$. $18 v, 20 v, 22 v, 27 v, 30 v$. Ala $\ddagger 45 p$ each.
DUAL GATE MOS FET LIKE 40673 @ 33p, 4 for $£ 110$
ERIE RED CAP O1 OT 100 METERS 500 ohm, $1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 100 \mathrm{~K}$ All at E 1.50 each
OD 1874 AMP NPN PIASTIC POWER TRANSISTORS
BD 1874 ANP NPN PLASTIC POWERTRANSISTORS @ $25 p, 5$ for E1 BAW 62 HIGH SPEED DIODES 12 for 35 p
OCTAL BASE CATHODEON CRYSTAL OVEN 6 or 12 volt, with Two HC6U HOLDERS and octal Base@ @1.25
RANSFORMERS 240 Vot inpul TYpe 1.24 volt Tapped at 14 volt 1 smp. é e1.30 ap 25p), Type 2, 22-0-22volt 500mA © £1.60 (P\&P 25p). Type 3. 50volt 10 mp (@ (50 (9\&P 95p), Type 4. 20voli 2 Amp Twice, 1 Ovolt 1 Amp Twice (© £4.50 (P\&P 95p) ype 5. 45 volt 2 amp . 4 Svoli 500 mA @ $\mathbf{E 3} .50$ (P\&P 85p)
IGHT WIDE BAND AMPLIFIEA I.C's 10 TO 150 MHz Untested with data 5 for $57 p$. LIGHT EMITTING DIODES . 2 Dia, Red or Green $15 p$ esch.
CMOS I.Cs CD 4001 (6) $15 p$. CD 4011 @ 15p. CD 4020 @ 60p. CD 4029 @ 60p. CD 4043 @ 60p.
TT $241 A$ CRYSTALS 285 KHz at 20p each
MYLAR MINIATURE CAPACITORS 50 v w., 01 uf or 1 uf Both 20p doz
MINIATURE ROTARY SWITCHES 2 Pole 4 way@ 20p. 1 Pole 10 way 2 Bank @ 40p
Please add 20p for post and packing unless otherwise stated, on U K orders under $\mathbb{E} 2$
Overseas orders at cost

J. BIRKETT

Radio Component Suppliers, 13 The Strait, Lincoln.

GREAT AUTUMN SALE

High Ripple Current Electrolytics . . . YOU CAN'T MISS THESE

Sprague Powerlytic (Screwed Conns) $\mathbf{3 3 , 0 0 0 \mu}$ F 40vdc $\mathbf{£ 2 . 0 0} \mathbf{i n c}$ Sprague Powerlytic (Screwed Conns) 3000μ F 100 vdc Plessey Relialytic (Screwed Conns) 15,000 F F 63vdc £ 1.20 inc E1. 80 inc Filmcap (Screwed Conns) 15,000 F 40 vdc E 1.50 inc Tag-ilectrolytics
$4.700 / 40 v 60 p 100 / 150 v 40 p .33 / 450 \vee \& 15 / 450 v 40 p$ HIGH VOLTAGE POLYESTERS*
O $1 \mu \mathrm{~F} / 1000 \mathrm{vdc}$
5 for $£ 1.00$
$0.047 \mu \mathrm{~F} / 1000 \mathrm{vdc}$
5 for 60p
$0.1 \mu \mathrm{~F} / 600 \mathrm{vdc}$
$0.047 / 25 v$ disc Ceramics
5 for 50p
1μ F/400vdc Polyester Blocks Radial Lead
Resistors:"
10K $1 / 2$ watt by ITT
10 for 60p

390R $21 / 2$ watt
2.00 for $\varepsilon .1 .00$

Tantalum Beads* $1 \mu \mathrm{~F} / 35 \mathrm{v}$ for $₹ 1.00$
$1 \mu \mathrm{~F} / 50 \mathrm{v}$
10 for 75p
Semiconductors ${ }^{\circ}$
$10 \mathrm{a} / 50 \mathrm{v}$ Bridges
$18 a / 50 v$ Diodes Type 1 N 1191
Opto Isolators Type OPT601 6 pin D.I.L Meters'
Sangamo Weston 60 mm sq. $60-0-60 \mathrm{~mA}$
Taylar $1 / 25 \times 3 \quad 500 \mu$ A calibrated in Degrees Tilt $\ldots \ldots \mathbf{~} 3.50$
The following Items are not in the Sale The following Items are not in the Sale
Apollo
Apollo Logic Tester
SR B Miniature Soldering Iron $16 / 18$ w
219.60 inc VAT and P\&P

Please include 35p P\&P on orders for goods where P\&P is not included All prices include V.A. T

R.F. EQUIPMENT SPARES LTD.

3 Lacy Close, Wimborne, Dorset BH21 1PY
Please note that our stores at Poole Road Works are open to personal shoppers on Friday afternoons and all day Saturday

foiled again

These structures made of chrome-nickel and copper represent an integrated passive circuit with capacitors, coils and resistors, the carrier being a plastic foil. The rectangular, spiral and meandrous shapes largely deter mine the capacitances, inductances and resistances Using the name "Sicufol" (Siemens copper foil) Siemens is now offering modules for television sets as the first wares in this new technology.

Resistances up to 300R can be fabricated directly, capacitance to $150 \mathrm{pf} / \mathrm{cm}^{\prime}$ and inductances up to $10 \mu \mathrm{H}$. By meandering the track back and forth, an increase of up to 3800 per given area is possible.

The carrier foil is a kind of Teflon so you shouldn't be stuck for ideas

eat your heart out colgate

One might question the wisdom of a picture like this, bristling as it is with cunning. At least it's an excuse to brush up on DIL switches. These are made by ERG Components and can switch at up to 10 VA. Fitting a normal DIL format they are numbered in a standard BCD format, and can be very useful in any digital circuitry. Home constructors never seem to make much use of these components for reasons best known to themselves. ERG Components, Luton Road, Dunstable, Bedfordshire:

ooops

Please note that the prices shown on the Gould Advance Ad on Page 14 of the October issue were incorrect. The correct prices are shown on page 14 of this issue. We apologise to Gould Advance and our readers for any inconvenience caused.

On October 13 th a brand new magazine is launched in the electronics field. It is written and produced by ETI staff and aimed at the newcomer to electronics - not necessarily young people.

We did think of doing an ad which would tell you about the contents in minute detail but instead we have decided to appeal to your curiosity. We don't ask you to buy it; it may be of no interest to you but we hope that some ETI readers at least will pick up a copy and thumb through it. Please put it back neatly if you don't want to buy: the next person may be more interested.

No. 1 will carry a cover date of November and will be available at newsagents on October 13 th 40p.

C. N. STEVENSON (E2) 236 High Street. Bromley, Kent BR1 1PG. Te: 01-464 2951/5770

AUDIO AND TEST EQUIPMENT MICROCOMPUTERS LEVEL I AND II TRS80 IN STOCK CENTRE

ALL PRICES include vat
Only regular stocks listed - other makes and models available. Telephone your order with Access and Barclaycards

CALL IN AND SEE FOR YOURSELF

301 EDGWARE RD. LONDON W2 1BN 01-724-3564. OPEN 9-6, MON-SAT.

FREE сатаосоие SEND STR:4AMPED ADDRESSED ENVELOPE for your copy now

WANTED
 Editorial Assistant for ETI and Hobby Electronics

If YOU have a genuine interest in electronics and project building and an above-average ability to express yourself in writing, you could be the person we're looking for. We are being serious.
We are looking for someone to join the editorial team and reckon that an enthusiastic reader is likely to be the type to join us. Not an uncritical reader - we want to continue to improve. The work will entail dealing with articles and news - licking them into shape - and making them better than anyone else's articles and news. The applicant will work on both ETI and our new sister publication Hobby Electronics. Readers employed in journalism at the moment will be considered but we are not primarily looking for someone with magazine experience.

We are flexible about age and experience but imagine that the person who gets the job will be between 21 and 28 .

Salary will depend upon age and experience but will be in the range $£ 3.700$ to $£ 4,100$, possibly more for someone with exceptional qualifications.
Experience has told us that people who read ads like this think a) that it doesn't apply to them b) that their own knowledge is far too limited or c) that ads of this type are only put in because we have to fill half a page. None of these is true.

> Apply in writing to:
> Halvor Moorshead,
> Editor,
> Electronics Today Intemational,
> 25-27 Oxford Street,
> London WIR IRF.

> Applications should reach us as soon as possible with C.V Prospective applicants may telephone the Editor for further details but this must be followed by written application.

Gould Advance InstrumentsProfessional quality ata realistic price.

Alpha III Digital Multimeter

Only £99

(excluding VAT)

OS245A Oscilloscope

Fault-finding, circuit testing or servicing - an oscilloscope is indispensable. It saves time, prevents costly mistakes, and enables you to tackle bigger, better projects.

Now, Gould Advance offer you this professional-quality, dual trace instrument, at a price which brings it within reach of the amateur enthusiast.

Just look at these great Gould Advance features - then compare the OS245A for value!
*DC-10M Hz bandwidth
*Dual trace

* Clear controls, simple operation
*Fully guaranteed for 2 years
* $5 \mathrm{mV} /$ div. sensitivity
* Time-baserspeeds to
$100 \mathrm{~ns} /$ div.
*4" CRT with 8×10 div.
Gould Instruments Division
Roebuck Road, Hainault, Essex IG6 3UE.
Telephone: 0i-500 1000 Telex: 263785 Registered Number 263834 England.

Alpha III Digital Multimeter

With a choice of 25 ranges and basic accuracy of $=0.2 \%$, the Alpha III is a professional's multimeter, yet it is versatile enough to cover every amateur application.

And although it is offered at such a modest price, it shares the advanced design features of the more expensive Gould Advance instruments - in particular, the purpose-built chip, incorporating all analogue and digital circuitry. *2,000 scale length (100 mV resolution)
*Tough, attractive moulded case
*Bright red LED display

* 25 ranges
* Fully guaranteed for 2 years

ETIPRINTS

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects. ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172).

HOW IT WORKS

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit', on the sheet to correct any breaks!

BUYLINES

ORDER TODAY

Send a cheque or P.O (payable to ETI Magazine) to -

ETI PRINT

ETI MAGAZINE,
25/27 OXFORD STREET, LONDON W1R1RF.

ONE BOARD HOME COMPUTER

ETI, Transam and Mike Hughes, who designed the system, present the Triton - a one board computer that includes all the features expected in a machine providing the basis of a really powerful home system.

ADD A STANDARD domestic TV set and a cassette recorder to the TRITON and you have a complete home computing system that is equal to, indeed in some areas superior to, many of the commercial ready built systems now on the market.

The TRITON has been designed on a single board, which means that construction should not pose any problems providing an adequate standard of soldering is maintained throughout. The case, designed specifically for the TRITON, means that the finished unit can safely and attractively be housed. In use, with the TV set on top of the case, the TRITON will be easy and convenient to operate.

The TRITON is based on the 8080

MPU, a device which has proven itself over a number of years. This MPU has a vast amount of software available for it and the TRITON's 1 K monitor system allows for easy entry and subsequent modification of such material.

The 2 K TINY BASIC that is also resident in the TRITON, allows this popular, easy to learn, language to be used in conjunction with the TRITON's versatile graphic character set and unique VDU function to develop everything from games to education programs quickly and easily.

The TRITON has space for 3 K of user RAM on board but the machine has been designed in order to make expansion a simple matter. All the

The single board that carries all of the Triton's circuitry with the areas concerned with various parts of the system indicated.
signals necessary to add further memory, I/O devices etc. are brought out to an edge connector at the back of the board.

It is essential to use a top quality double sided plated through board for the project. Unlike many projects the PCB is likely to be the most expensive single item you have to invest in but it is this component which brings the whole project into scope for the average constructor with no significant theoretical knowledge.

The board has been designed to keep all the most intricate wiring on the top side - in particular the connections that run between IC pins. The latter are the most vulnerable to a heavy hand on the soldering iron but this is not saying that you can afford any carelessness underneath! Use the smallest soldering iron you can lay your hands on and the bit must, certainly, be no greater than 3/32in diameter. As stated, all soldering operations should be carried out on the underside of the board; the through hole plating will route all necessary connections to the topside.

Wherever possible it is worth trying to re-inforce the through hole plating by getting molten solder to creep through the hole by capilliary action, therefore hold the soldering iron in place long enough for the heat to flow through the hole and take the solder with it. A couple of seconds longer than your usual soldering time should suffice. You will notice that on the underside of the board there are hundreds of IC pin lands that do not appear to be connected to anything. These lands must be soldered in all positions because nearly all of them go somewhere on the top side!
See John Coll's
comments on the Triton
in Computing Today

Construction Commences

Take your time with the soldering - even at a slow pace you can complete this project in a couple of days - because it is very easy to miss a connection or produce a dry joint. We recommend that you insert one component at a time and solder it in completely before moving on to the next; a visual check of each joint is essential and if you have any doubt don't be afraid to use a magnifying glass. A few seconds wasted doing this can save hours - if not days trying to find a single missed connection!

All the holes on the board have been pre-drilled to the correct diameters but in the event of you having a device which will not quite go through the hole do not UNDER GNY CIRCUMSTANCES attempt to crill out to size - you will ruin the anrough hole plating! The ONLY noles you may drill out are the fixing holes for the board and the mounting -oles for the extender socket. If you have a stubbern component try scraping down the diameter of its ead with a sharp knife or use a -eedle file to reduce its dimensions झightly. Probably the only offender ou will find in this respect is the modulator which has rather large fixing lugs that sport a taper These
might vary a little from device to device.

We recommend the use of sockets for all the integrated circuits as it is virtually impossible to remove ICs from a double sided THP board.

Start construction by soldering in all the DIL sockets while the board is flat - it makes life much easier and then insert all resistors and diodes Next insert the nine board pins which connect to the transformer arid IC1 (the off board voltage regulator). Proceed to solder in the in line strip sockets and the extender socket. When the latter is firmly soldered you should carefully drili out the board mounting holes with a drill using the connector's holes as a guide and then boit it firmly into place

Switched On System

Insert the three transistors for the tape I/O. Procede then to the capacitors and LEDs Leave the three large smoothing capacitors till last and be very careful that you insert the LEDs the right way round You will have to look very careful at the solid tantalum capacitors to find their polarity, You should then insert, and solder in the three preset potentiometers.

Before progressing further check
the polarity of all the diodes and electrolytic capacitors you have inserted.

You can now insert, and solder in the three crystals making sure you have them in the correct positions. The crystals have their frequencies stamped on them (usually in kilohertz).

Continue with construction by putting in the modulator and the two on board regulators. Make sure you have the regulators in the right position. Ensure that you insert them the right way round. The metal fin should be on the face of them furthest away from the main smoothing capacitors

Temporarily mount IC1 on its heatsink and run flying leads to the three pins allocated to it.

The great moment is close at hand but before inserting any integrated circuits give the power supply a dry run Connect up the remaining six board pins to their corresponding terminals of the transformer and apply power, Use a voltmeter to see that you have the correct voltage rails present. You should get +5 V and +12 V at the output pins of ICs 1 and 2 respectively and -12 V at the output of IC3. You should read -5 V

HOW IT WORKS

The heart of the system is the microprocessor (MPU) itself - the faithful old 8080A This MPU has a very simple to understand for those who which is remarkably versatile or those who like to dabble in work a of experience lhere is because or its years software freely available to use with it. In addition it is one of the cheapest MPUs on the market.

The MPU will sequence through a list of

These eight lines are decoded to activate any nhe Before moving on
Before nloving on from the heart of the single lines depicted on the some of the When the computer is initially switched on it is necessary to give it the right instruction to start with so that it can sequence on from there to complete the program in a sane manner. For this reason It is usual to have the
operation on the VDU screen and to do a re-initialisation without clearing all the memory (which would otherwise happen if one pressed the reset button). There are five remaining lines one of which is brought out a spare push button on the front panel and the rest are piped down the multiway socket lines have to be encoded and formupt request an eight bit data encoded and formatted into interrupt encoder tells ihe CPU is done the
decoding the least significant eight bits of the address bus) through the Port Select logic from issues a $\overline{/ O R}$ control signal will dat busbar. Working in the opposite direction the Output Port driving a bank of eight on board LEDs is a set of eight latches which catch and hold whatever data is on the busbar when they receive a coincident pair of signals from the port selector and the I/OW line of the control bus. These onboard LEDs
 in opelb of ench insithelton will carry out "II operation which ranges from getting another byte of data from somewhere else in memory to carrying out simple logical or not within the scope of this article to cover the inner workings of the MPU itself or, for that matter, to explain every operation that the 8080 can offer.
As it operates sequentially the MPU needs clock. In this case the master frequency is MPU every 25 us . Thided down to clock the of a microcycle and it takes from 4 to 11 microcycles for the MPU to complete an instruction.
The MPU itself has quite a large number of lines leading to it. The 8 data lines are in the form of a bi-directional busbar (i.e. can carry data to or from the MPU). To cut down on the number of wires coming from the MPU the data busbar serves a secondary purpose. It carries what is called "STATUS" information at a certain point in time within an instruc tion cycle. This status information is in the form of an 8 bit byte and is decoded by the Systeme Controler. Wines with a locigal " 0 " byte feeds one of 5 lines with a locigal of instruction the MPU is executing during that cycle. These lines are grouped together to form the CONTROL BUSBAR and are designated INTA (meaning that the computer has just been interrupted by an external "Interrupt Request"). MEMR (reading data from a memory location), MEMW (writing or storing - data into an internal memory location), 770 R (inputting data from an ex ternal source - such as a keyboard or a tape system) and I/OW (outputting-data to an external destination such as a VDU or a tape system).
The 16 lines which carry a 2 byte WORD which is used to ADDRESS a specific byte of memory form the uni-directional ADDRESS BUSBAR. Using 16 binary lines one can therefore address up to 65,536 (decimal) memory locations. We have 8 K of memory capacity of the TRITON to 8 K of memory the data and control busses) are buffered and can be fed to the outside world through a multiway connector thus allowing easy ex pansion to maximum capacity with add on boards.
The address bus also serves a duplicity of roles depending on whether the instruction cycle is a memory addressing or an I/O addressing cycle. As already stated all six teen lines are used to address memory locations but during an I/O read or write cycle the CPU is limited to providing address data
 con resel the MPl by depressing a push RESET.
HOLD that want to can use the line marked HOLD for applications involving DMA
(Direct Memory Access). Basically this means that by making this line go to logic " 1 "" one can isolate the internal CPU from all three busbars (using the tristate facility of the buffers) and allow an external device to do what it will with the internal memory. We have strapped this line to " O " with a remov-
able link so the facility is there for those who want it. RDYIN is used if any memory of peripheral is incapable of responding as fast as the computer desires. "O"" frteryan period of can (usually set by a monostable) and when this happens the MPU goes into a WAIT state and it does just that It simply stops operating as long as this line is low and when the RDYIN signal is removed it carries on as if nothing had happened. The only thing it does do during this time is issue a signal to the outside world called WAIT. You can see the WAIT line designated as one of the unbuffered outputs. In addition by connecting RDYIN via a push button switch to ground one can halt the computer momentarily in the middle of any operation. Facility for bringing this out to a push button is not made on the board but it is a simple matter to pick up the right point one the side and see the circuit diagram of this section.
The RESET output goes high momentarily when the rest button is pressed and can be used to carry a synchronous reset on external equipment; the HDLA output tells the outside world that the computer has gone into a HOLD (or DMA) state - if anyone takes the HOLD Line high; the INTE Line tells the outside world that the computer is permitting itself to be interrupted (the mnemonic stands for Interrupt Enabled) and the DBIN line indicates which way the computer expects data to be flowing on the bi-directional data bus. It goes high when the CPU is expecting data to flow INTO it.
We are using the STSTRB (STATUS STROBE) signal - to synchronise the memory mapping of the VDU - more is said about this in the relevant section.
As already implied the 8080 will allow itself to be interrupted in mid program provided that the progran sets the Interrupt Enable flag. There is facility for eight possible interrupts but only seven can really be used on this machine (Interrupt 0 is redundant as it into the machine on a single interrupt request line. Of the seven usable lines we are using two within the machine to do a clearing

Sifnal that ant intritupt has bern recelved
When the CPU is ready to be interrupted it ssues an Interrupt Acknowledge signa INTA which is used to place the encoded byte on to the data bus. This byte enters the MPU and directs the computer to operate the desired subroutine. At the end of the routine the computer reverts to the main program continuing at the point where it was inter rupted.

The memory of TRITON is split into three types on the main board. There are locations Or up to 4K of Read Only Memory (ROM) which is spli betw ouress locations OOOOH to OFFFH The standard TRITON uses the first 1 K to hold Monitor and Utility routines necessary to initialise the machine and re-vector interrupts. The next 2 K holds a BASIC INTERPRETER and the fourth lK block is left spare for future expansion.
There is 1 K of Random Access Memory dedicated to the VDU. This start mmediately above the ROM area starting in synchronism with the VDU line scan by the VDU over addressing under program control (in effect interrupting the VDU). The VDU RAM can only be written into by the computer. The rest of memory is made up of 'RAM which is both read and write. This area used to hold the stacks INTERPRETER (512 bytes) and the main work area starts at 1600 H for a further $2^{1 / 2} \mathrm{~K}$ ending at 1 FFFH This represents the full capacity of the on board memory. There is no reason, however, why further read write menory should not be added externally starting from location 2000 H

The ROM and VDU RAM areas are blocked into units of 1 K - to fall into line with the types of integrated circuits used. However, the stack and work area RAMs are laid out in blocks of 256 bytes.
The high order lines of the address busbar are used to decode which block is being addressed - this is done by the Chip Select decoder. Note that the ROM chip selects are gated with the MEMR signal from the ConMEMW Wo because the 2111 Random Access Memory ICs used have internal chip select gating and output enables.
With the exception of the VDU which is "hybrid" the rest of the system is made up from a variety of $1 / O$ stages. The most important of the latter is the Keyboard Input. The keyboard data and strobe lines are fed on to the data busbar via tri-state buffers which form the keyboard input port. Only when the computer's software addresses this port (by
versatile and can be used for test purposes or in specialised development applications. The LEDS themselves could be discarded and the eight lines brought to the outside world as a spare general purpose output port.
By making use of a couple of spare latches on the board it was possible to provide two line on the port which also feeds the tape recorder power control relay
The UART (Universal Asynchronous Receiver/Transmitter) is the device which converts the eight bit wide parallel data on the busbar to a specially formatted serial stream to feed the tape recorder modulator. It also carries out the complementary func tion of converting a received serial stream into parallel data bytes. The device operates as if it were two input ports and one output port. One of each sort of port would be obvious for a device which receives and transmits but the requirement for a second innput port may not be so main computer (it has its own clock operating at 300 baud) it is necessary to make the computer wait from time to time to allow the slower operating UART to complete a transmission cycle. This is indicated by the UART activating a flag which is regularly monitored by the second input port.

The VDU portion of the computer is based on the Thomson-CFS Control chip and operates in a unique manner for this integrated circuit. Not only can one output to the VDU through an output port (in similar manner to using a teletype) but one can use VDU's memory at extremely high speeds.
a further extension is the way the control chip has been used to handle Graphics. Instead of the usual six bit wide RAM seven bits are used in this VDU application. This way enables the use of the complete set of ASCII codes. 64 extra character codes are therefore available by using those normally associated with lower case "alpha" characters and all the control codes. Within the overal context of the computer some of the control codes serve dual purposes and the VDU control ROM inhibits printing a graphic when a control code is issued for genuine control purposes
The graphic select logic looks at the two most significant bits of the ASCII code determines whether or not the symbol is graphic or alpha-numeric, then proceeds to select the standard alpha-numeric ROM or he specially programmed graphics ROM with this operatiot of extra logic associated Map/lo changeover but we shall reserve comment on this to the section describing the circuit in detail.

HOW IT WORKS

The circuit diagram of this section has been abbreviated as most of the memory circuitry is a repeat of the same theme. You can clearly see the difference between the ROMs and the Read/Write RAMS. There are four of the former - all 2708s but in the standard The 2708 is an ultra violet immediately. which contains 1,024 (decimal) memory each being 8 bits wide. To access a memory each being 8 bits wide. To access a address and A0 through A9 are used for this purpose. The eight output pins are tri-state which are enabled by a " 0 " on pin 20 (the chip select input). The respective outputs from each of the ROMs can therefore be commoned together on the data bus. The "Programming Enable" pin (18) is only used when the devices are being programmed and therefore is left disconnected within the system. We use the block select signal gated Wor the ROMS (this is the Chip Select strobe The Monitor program is located wit IC21 which starts at address location 0000 H so that the computer will always on through a firmware initialisation routine when switched on. The Power On Reset ensures that the first instruction the CPU reads will be the one located at 000 H BASIC is located within ICS 22 and 23
The RAM area of memory comprises TMS 2111-2 chips. These each contain 256 locations that are four bits wide. As we need to store eight bit bytes of data two chips are required for each 256 byte block of memory. correspond to the low order nibble of the byte while the respective even numbers (IC26 to IC48) correspond to the high order. Only required to uniquely select a byte within this organisation of a chip pair but we need to specify which pair by means of the Chip Select lines (these have been decoded elsewhere in the system).
The 2Ills have internal chip select and Read Write gating so we are able to drive the MEMR and NEMW inputs direct from the control busbar.

at the junction between R1 and the zener diode．If all is well here systematically check that you have the correct voltages at the sockets of every integrated circuit．Use the schematic diagrams to help you identify the pin numbers．

Finally check that you have

inserted the single wire link to the

 right of the extender socket．Insert all the integrated circuits making absolutely sure that you have them orientated correctly and have them in the correct locations． Use the dot on the UART to locate pin 1 （the notch can be misleading）． Note that the orientation of ICs varies a lot on the board and you must check each one individually．Insert the 2708 EROM chip that is marked MONITOR V4． 1 into the socket for IC21；the one marked BASIC L4． 1 ＂A＂into the socket for IC22 and BASIC L4 A_{1}＂B＂into IC 23．Insert eight TMS 2111－2 devices in IC locations 25 to 32 inclusive．The only gaps you should have on the board are the IC24 and ICs 33 to 48

Do not bother with a keyboard at the moment but simply make up a coaxial lead to go from the modulator to the aerial socket of a standard 625 line television set．Switch the TV on and allow it to warm up checking that a raster is just visible and tune it to approximately channel 36

Set the three on board
$\xrightarrow{\sim}$ potentiometers to their mid way

The table shows the decimal and hex codes associated with the Triton graphics and， where applicable，the key on the keyboard． The symbols may be used within a BASic routine．
positions and apply power to the TRITON．You should see some change on the television screen even though you may not be spot on tune Try adjusting the tuning over the whole range until a strong signal is locked in．You should see the welcome message：

TRITON READY FUNCTION：PGIOLWT

It may respond with INVALID as the keyboard is not fitted－do not worry this is still an indication that everything is working

Hopefully this will be the case and you can rest assured that your computer is working！Switch the computer off；wait a few seconds and switch it on again．For a fraction of a second you will see a load of rubbish on the screen which will rapidly clear and the previous message will be repeated．

Switch off and make up an umbilical cord of wires to go from the keyboard socket on the board to the keyboard and associated push switches．Use colour coded wire and ensure that you make no mistake when connecting the relevant leads to the keyboard Cinch connector．It is double sided and you must make sure to hold it with the correct
 N CONT CONT B CONT CONTE
CONT F CONTF
CONTG

CONT N

 CONTO CONT P CONT Q CONT R CONT SCONT T CONTT
CONT U CONT V CONT V
CONT W CONT W
CONT X CONT X
CONT Y CONTZ


```
a
G+んN
```

 $\begin{array}{r}7 \\ \hline \quad 09 \\ \hline\end{array}$

PARTS LIST

orientation or you may have disastrous consequences with the power lines．Different types of keyboards have different connections．We refer you to the connection details supplied with your keyboard．The only comment we should make is that the specified keyboard，and some others，give you an option for bit 6 of the data．One option gives you upper case characters only while the other gives both upper and lower case．This application needs the latter．The strobe －is the static strobe which goes
to＂1＂as long as a key is depressêd

Procedure

The specified keyboard does not have any built in direct function keys and these have to be provided by separate push buttons．These have to be mounted on the front panel and are used to provide RESET，INT1 （Clear Screen），INT2（Reset without clearing memory），INT3（Spare）and TAPE MANUAL OVERIDE－ganged with PAUSE（see descriptions elsewhere）．The first four push switches all have a common ground and are＂push to make with a spring return．Use the Common lead and the respective signal leads to go to each of these switches．The fifth switch must be double pole＂push to make－push to break＂．One pair of contacts should take the special
＇PAUSE＇＂line to ground when it is on．This line does not exist in the umbilical cord coming from the board socket but must be soldered to the end of R3 going to pin 3 of IC4． The other pair of contacts is connected across the tape power control pins of the respective DIN socket．

You can make up all the above on flying leads to test the unit fully before putting it into its cabinet．

Power up again and get the initialisation message．Try pressing any key on the keyboard EXCEPT PGIOLW or T and the computer should respond by saying INVALID Press CONTROL C and the screen should clear and re－initialise．Press RESET．When the bution is released the same should happen．Try INT2 and the machine should，again． reinitialise．When you try INT1 the screen should clear without the message appearing．To get something back on the screen press any keyboard key except those in the ＂key character＂message
（P．G．I．O．L．W．T）．You should，once more，get INVALID．Depress
CONTROL C once more and your computer is re－initialised and ready for test．

Program

We must assume at this stage that you do not know anything about programming so simply follow the instructions and check that you get what is described．

Depress P on the keyboard．You will get：

P
PROG START＝
（The computer is asking you to tell it the address of part of memory you wish to inspect）
Type in 0000 followed by carriage return．
The display will now show

P
PROG START $=0000$
000031 （31 is the data in location 0000）

Depress carriage return repeatedly and you will get the following as you step through the Monitor program instructions

P
PROG START $=0000$
000031
000180
000214
0003 FB
etc
Reinitialise with CONTROL C and then type L. The computer will again ask you for a start address but this time will list out the contents of 15 adjacent locations starting from that address. We can use this to test that our memory is there and working in the RAM area

Answer the computer with the address 1600 and a carriage return (if you make a mistake before you press CR you can backspace with CONTROL H and change an entry but you must then type through the rest of the tine on the screen). The computer will list the contents against the memory addresses and then stop and ask for "MORE?". If all is well you should see 00 in all locations. To continue type Y and keep doing this checking all the locations up to the highest order RAM on the board. Above that address the computer will read FF which indicates that there is no memory there. If you see any data above address 15 FF that is anything other than 00 or FF you can be sure you have a bad connection to the RAM IC which contains the data in question. This test only holds true immediately after first initialisation and cannot be used if you have attempted to write programs.

To get out of LIST type any character other than Y and the computer will reinitialise. Carry out this or any of the other reset procedures already described and procede to check the G function. This is to facilitate running a machine code program. The computer will acknowledge

G
RUN
PROG START $=$
(this means it is ready to run but wants you to tell it from where in memory it should get its first instruction). Give it this information by typing 02B9 followed by CR, You will actually be running a re-initialisation program in the Monitor which should just acknowledge with

The Triton's board mounted in its case. Note that the extender socket is available on the right hand side of the case and that the output of the modulator is brought out to a UHF socket on the back panel. The back panel also carries the DIN sockets and the
mains fuse. mains fuse.

FUNCTION? PGIOLWT

You are now back where you started so you can try typing W which turns the computer into nothing more than a video display typewriter. You can type away to your heart's content festing out all the alpha numeric and graphics characters using the keys in unshifted, shifted, and control mode Do this while inspecting the coding tables shown in the section describing the VDU and get used to the cursor move commands. Type a full line of characters and adjust RV1 for best line length. To get out of this mode of operation use CONTROL C or any of the other methods of resetting.

The next test sees BASIC L4 1 in action; depress T. The computer acknowledges with

T

BASIC L4. 1
OK

Type in NEW followed by CR to make sure the memory is cleared and the computer re-acknowledges with the BASIC header. Very carefully
type in the following message line by line with a CR at the end of each line. Remember you can correct by backspacing with CONTROL H before you hit CR.
>10 FOR A $=1$ TO 10
>20 PRINT 'HELLO"
>30 NEXT A
$>$ RUN
You should not re-type the "greater than" prompt signs - the computer is prompting YOU with these. When you press CR after typing RUN we hope you will be surprised - you have just written your first program!

You can now be pretty well assured that your computer is working correctly and it only remains to test and adjust the Tape $1 / 0$ circuits. This must be done in stages

First check the Tape Output software. Connect an audio monitor (simple amplifier or crystal earpiece) between the "Tape Out" socket on the board and ground. You should hear a continuous tone. Call up BASIC by typing T and enter the above program again. Once you have done this get back to the Monitor without erasing your BASIC program
(use CONTROL C). Now press O to call up the Tape Output routine.

The computer will ask you for a TAPE HEADER which can be anything you like written in alpha-numerics. Preferably do not use a title longer than 20 characters as you might run out of input buffer space! We suggest you type in TEST ROUTINE. Follow this with CR while listening to the tone on the ear piece. Nothing will happen on the VDU but after a pause of between 5 and 6 seconds (longer if you are using a master clock crystal lower than the 720 MHz as specified) you will hear about 1 second of regular high speed pulses followed by a few seconds of what can best be described as 'burble" (this is your program going out). The burble will stop and you will hear just the continuous tone you heard at the beginning. After a further 5 or 6 seconds the VDU will confirm that the file has finished by displaying END followed by the re-initialisation heading.

On A Plate

Repeat this excercise but this time connect a continuity meter across the :ape power control sockets on the board. (The manual overide switch must be open circuit). While you type in the tape header code the meter should show that the relay is open circuit but as soon as you depress the CR to start the operation the relay closes and stays closed until the VDU types END. It is obvious that the 5-6 second delay at each end of the -outine is to allow a portion of blank tape to go by to reduce the chance of you overlapping files or missing the start of the active tape at the beginning of a new cassette

You must now set the Baud rate Eor your system. The simplest way is to use a frequency meter connected tio sin 3 of IC81. Adjust RV2 until the meter reads exactly 4800 Hz . A better way, and probably more viable for most constructors, is to use a standard test tape It is better because different tape recorders might operate at different speeds which would influence the play back beud rate of your system. This does not matter if you are only recording a -laying back your own programs but .ou wish to use those from other ssources your overall system MUST aperate at 300 baud. Using a standard test tape calibrates your ...erall system to 300 baud ased from the outside world

Monitor Manipulation

To carry out this test properly you must have a master clock crystal having a frequency greater than 4.5 MHz otherwise the VDU may not print out as fast as the data is coming in from the tape. You must also enter and run a special machine code program to facilitate the test. We will not explain how the program operates in this article except say that it accepts any data on the tape and displays it, verbatim, on the VDU. If garbarge is received and decoded garbarge will be printed. The test tape contains the alphabet followed by CR and Line Feed repeated many times over a period of a few minutes. All you have to do when the program is running is set RV3 to its midway position and adjust RV2 until you get the alphabet reliably repeated on the screen. If, at the best setting of RV2 you still get the occasional bit of rubbish try altering RV3 for best sensitivity You should, of course, be using the phono output from your tape recorder but if you do not have this use the extension speaker socket with the volume set about 2.0% up from minimum.

TRITON Trials

Carry out the following instructions TO THE LETTER!

Initialise the computer with RESET; type in P and enter the start address for the program as 1600 . For zero always use 0 and not o. Press CR and location 1600 will be shown to contain 00 . Now use the memory change facility to start writing your program. Simply type in the following list of hexadecimal instructions - each pair of digits should be followed by CR. You will end up with a column showing address locations to the right of which is a column showing what was in that location (should have been 00 in all cases) and to the right of that the new data you have just typed in When you have typed in the complete list of instructions use CONTROL C to re-initialise then type L and list from location 1600 (as previously described) Check that the codes in each location correspond exactly with those in the published program. Use CONTROL C to re-initialise and then type G. Enter 1600 without pressing CR at this stage. Make sure your tape recorder
is properly connected to the board and switch on the recorder in PLAY mode. Press CR and procede to adjust RV2 as previously described. You should see:

ABCDEFGHIJKLMNOPQRSTUVW. XYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOP etc
until the recording ends or you switch off the tape recorder. While this is happening your computer is locked within a program loop and you will not be able to get out of this with CONTROL C. You will have to use INT2 to re-initialise.

Here is the program you must type in: Address location Data you must enter

1600	$C D$
1601	27
1602	03
1603	$C D$
1604	$1 D$
1605	03
1606	$C D$
1607	13
1608	00
1609	$C 3$
$160 A$	03
$160 B$	16

Your computer is now completely set up and ready for use. You have already been shown how to enter and run simple programs in BASIC and Machine Code Why not now read the further articles in the Supplement which will show you how to make more full use of the TRITON. You have made an extremely powerful computer whose applications are only limited by your own imagination and the development of more sophisticated software - coupled with extender boards to give you extra I/O functions (Floppy Disks, Line Printers, extra Tape Recorders, more Memory etc). Keep reading ETI for further exciting applications and developments

> The following pages contain the circuit diagrams and descriptions for the complete Triton design. 'How It Works' sections refer to the diagram they accompany.

> Computing Today carries an article on using the Triton's BASIC and a review of the machine by John Coll.

> A fuller description of the Triton's monitor will follow in next month's Computing Today.

HOW
 WORKS

1. 1: The misser fock oscilator which contains divider circuits to provide the two phase clock ($\phi 1$ and $\phi 2$) for the 8080. You can use different frequency crystals for X but ideal value is 7.20 MHz and this value should not be exceeded. Lower will operate propor are filly slower if you put in a higher frequency crystal not only will you run into frequency crystaino memplens but the system will be operating at a rate faster than the VDU can handle. The Monitor program has provided the maximum permissable print out rate for a clock frequency of 7.20 MHz .
A TTL compatible output of $\phi 2$ is available but not used on the main board; this is fed to the extender socket. The chip also contains gating circuits to synchronise the externally generated RDYIN command before feeding this to the CPU. An internal Schmitt Trigger on the reset input line (RESIN) allows a very omple charge up cer on reset Manual reset is carried out by momentarily taking $\overline{\text { RESTN }}$ to 0 volts via a push button. The clock receives a feedback signal (SYNC) from the CPU which is gated with $\phi]$ to give a STATUS STROBE pulse at the precise moment the data busbars are carrying the status byte. The pulse (STSTB) is fed to the System Control chip (IC6) to latch the status byte and is also used by the VDU 10 enable Memory Mapping changeover
C19 discourages the crystals from harmonic operation. This shifts the operating frequency by about 10 Hz , but this is of no real significance.
A description of the inner workings of the CPU (IC5) is beyond the scope of this article. It's general operations will however beNote that certain outputs (namely HDLA, DBIN, INTE and WAIT) are laken to the extender socket directly from the CPU. These are unbuffered and account should be taken of this if you expand the system. Each line will adequately drive a single TTL load and maybe a handful if you use low power devices.
The HOLD line going to pin 13 of the 8080 is not used within the main board and is used to carry a DMA request which, via the HDLA signal puts all the busbar buffers into a high over of the complete memory of this system over of the complete memory of this system by a peripheral device or, possibly, another logic level "O" so we have hard wired it thus with a board link. This link MUST be removed, or a switch substituted, if use is made of this line!

RDYIN is normally held at level " 1 ". If taken to " 0 it causes the CPU to stop operating. Nothing happens as long as the signal is low and the contents of all interna registers within the MPU are maintained When the signal returns to " 1 the MPU carries on operating as if nothing had hap pened. By taking pin 3 of IC4 via a push switch to, ground we have a ready made "PAUSE control which will enable the TRIGA fo stop in mided VDU middle of long high nspect the screen
The chances are very high that you will no need RDYIN for external systems so the should be made that it is bad practice to hav a push switch hard wired to ground on this ine if at any time in the future you derive the RDYIN signal from a gate. Press the button and bang goes the output stage of on innocent gate.
IC6 is an 8228 N 8080 System Controller which gates out the five main control busba signals from the status byte at the time o STSTB and holds these on latches. The chip also comprises a set of bi-directional buffers buffers is controlled by DBIN and thei outputs are disabled on the receipt of a DMA request by the HDLA signai. We were no happy that this buffer alone would be capable of supporting a fully extended system hence a further buffering stage in the shape of IC9 (74LS245). Like the System Controller th latter chip is supervised by the HDLA and DBIN signals. Integrity of any DMA reques is maintained on the data bus
ICs 7 and 8 are uni-directional tri-state buffers which should allow the address bus bar to feed a fully extended system. Note that we have inverted A15 prior to putting it on the bus. By doing this we have been able to elsewhere in the main board system. This
should present no problems to anyone working with extender

Remen must disable the push Remember, you must disable the push switch in this mode, that is why we have shown it dotted in and why Transam have not built this facility into their PCB in an obvious way. Why not use common sense and make use of his extred is 20 cms of wire! You do not even need another push switch because you can use a spare pair of contacts on the Tape Control Manual Overide. It does not normally matter if you press this button provided the cassette precorder is switched off with its own control. IC11 is the Interupt Encoder which has eight lines going in to it. These are normally held high by pull up resistors R4 to R11. The encoded three-bit nibble is output at pins 6,7 and 9. If all the inputs are high all the outputs are high and a " 0 " is placed on the Enable Output line at pin 15 (the latter is used to generate the INT signal - Interupt Request - to the CPU,.I any singlits or logic an vequivalent code to describe that line number is output as the Interupt Data Nibble and pin 15 goes high telling the MPU that an interupt has been requested. The MPU will carry on operating until it reaches a perissable point in it's cycle to service the interupt. When this point is reached the MPU outputs an Interupt Acknowledge signal (INTA) through the status byte which is decoded and latched by the System Controller. This signal is used to activate the Output Enable of IC12 (an eight wide tri-state inverting buffer) which formats the ID nibble to make an eight bit Interupt Data byte which is
then accepted by the CPU as a RESTART then accepted by the CPU as a RESTART one of eight fixed locations in memory - the location is defined by the ID byte - while the STACK preserves all current register data
and status information. The MPU then operates on the interupt routine and returns instruction. intruction.
is available on the PCB. It simply duplicates the manual reset operation but would create problems if used with the TRITON's Monitor program. INTI is dedicated by the Monitor to provide a Clear Screen and Reset Cursor acllity which can be carried out at any time. NT2 is also a dedicated function. The Mon: or includes memory test facilites as part of the power up routine and use of the rese button will clear all memory. To by-pass this problem we are using INT2 as a non destructive reset which, as far as any programs that are running are concerned, is just lhe reset and will not be cleared ALWAYS use INT2 for reset unless one of your pro grams has corrupted the Monitors stack! Only then should you press manual reset or carry out a Power On Reset by swit switching the machine off and on

Photo of the underside of section of the Triton's PCB Note although it app ears that there are no connectigns to some IC pins - ALL pins ered as these pins are used on the board.

HOW IT WORKS

IC61，the Thomson CFS VDU control inte－ grated circuit，has a built in clock which generates standard TV synchronisation pulses（line and field sync）on pin 26．Random interlace is used and a simplified field sync train is generated as opposed to the full CCIR specification

The chip，synchronously with this train of pulses，generates addresses for the VDU RAM so that the correct code of the cha－ racter is selected as the resport rion screen An external＂Picture Point Oscillator＂（IC55c and d）in conjunction with a divider chain（IC63）sets the horizontal width of a character and steps the address of the control chip，output from pin 12（IC63）to pin 9 （IC61）．The inverted sutput of IC63 pin 15 is used to latch the data being addressed by the controller into IC68（a seven wide latch），latch the picture point pattern generated by the character generator ROM into the serialiser（IC72）and reset the picture point divider chain（IC63）at the end of each character width．

The picture point width（hence the cha－ reter width and number of characters per line）is set by the frequency of the oscillator control RV1
FULL ASCII code bit wide RAM to hold the capacity for graphics weed this to provide latches feed both the standard alpha－numeric character generator（IC69）and a specially programmed ROM（IC70）which contains picture point data for the 64 graphic symbols． We use the EXCLUSIVE OR function （IC62d）on bits 6 and 7 of the ASCII code to select either the graphics or alpha－numeric ROM．The select signals go through further gating（ICs67a and d）to ensure that the
integrity of the cursor generating pulse（pin 15 of IC61）is not corrupted．

Three further address lines from the VDU controller（pins 11,12 and 13）address the picture point data ROWS in both ICs 69 and operation of IC61 chip the row address code 000 is output for the top row and the bottom four rows of the character cell．Normally rows $0,8,9,10$ and 11 are used to provide inter line gaps for alpha－numeric displays while rows 1 to 7 carry alpha－numeric picture point data．We have had to take this into account when designing the font of graphics symbols－some of which cannot fill the complete character cell rectangle on the screen．Look at the table of graphics cha－ racters and you can see how we have ad－ justed the graphics to suit this restriction．
Further complications caused by this on the topmost line of the television screen if． that graphic contains picture points in its top row．IC61 requires there to be zeros present here in order to derive field blanking． This problem could be overcome with extra gating but this would have been at the expense of simplicity．

A similar problem（involving line blanking） is resolved by gating the video output with the INI function（pin 26 of IC61）in IC71b． Without this any graphics symbol having a picture point in its most left hand column would have caused a＂wrap around＂while a line sync pulse．The only problem that line sync pulse．The only problem that pet a single＂extra＂picture point showing to the right of the 64th character down a line if you use a graphic in the most left hand position of a line．This does not happen with all graphics－only those that have picture points in their most left hand column．
The five outputs from the alpha－numeric ROM are wire ORED with five of the eight
utputs from the graphics ROM and held high via pull up resistors R22－26．They are then fed to the correct positions in the serialiser shift register IC72．Note that the remaining three outputs from the graphics ROM have to be ANDED with a signal de－ fining whether or not the character is a graphic（done by ICs71a，c and d ）．This is to ensure that if alpha－numerics are printed here is a correct inter－character gap．
So far we have avoided talking about how the VDU RAM is addressed by the control chip．Let＇s deal with that now．
We VDU RAM To do this we havery map allow the MPU to take over addressing control of the VDU RAM．This is done by taking all the address lines from IC61 and their equivalents from the system＇s busbar to a set of data selectors（ICs64， 65 and 66）．If the MPU addresses the VDU memory loca tion（any address between 1000 H and 13 FFH the block select line（MAP VDU）is activated This of course，could happen if ever the address busbar went into a high impedance state（during HOLD etc）so to prevent any spurious pulses affect gate the V DU block sen valid address infor mation is on the busbar We do the gating in D type latch so that during the complete cycle of a VDU memory map the data selec tors are set to allow the computer addres bus to be transmitted to the inputs of the VDU RAM．At the end of that cycle and at all other times the data selectors hand over address control to IC61
A similar transfer of responsibility takes place between the normal input data to the VDU（which gets to it via an output port）and the main system data bus．In this case the data is selected by ICso9 and 60 ．These also recelve the les Note have to do a changeover between the inter nally generated memory write command（pin 17 of IC61）and the MPU＇s MEMW strobe This is done within IC60
It only remains to describe the gates on the VDUs internal data lines and IC54．Th former are used to force the ASCII code for ＂Space＂on to the data lines when pin 13 （IC61）is at＂O＂in coincidence with a writing
pulse to the VDU memory．This is to allow for he very useful internal function provided by the IC61 to clear the screen and reset the cursor in one operation．
The VDU controller carries out a number of non writing functions as well as entering and addressing data within its memory：By using some of the ASCII codes as control it is possible to do such things as move the cursor in steps to any position on the screen，rese the cursor，carry out a line feed or do carriage return clearing only the unuse part of the line．There are also a couple of control codes that 4 H －respectively these are NUL（or no operation）and EOT（end of text）flags．Recognition of all these special codes is carried out by the VDU CONTROL ROM（IC54）．This has had to be specially programmed for the TRITON
To get best use from the TRITON and its VDU you need to know hexadecimal and decimal values of all the ASCII codes that are used to generate alpha－numerics，graphics， and control characters．You also need to know which of the keyboard keys corres pond to each graphic character．To help you we show all the graphics with their respec tive codes and key names in Fig．00．Alpha numeric codes are shown control codes in Fig． 00
Normally you may output a character to
the VDU for printing in I 0 mode every 8.3 mS ．The standard TRITON monitor errs on the safe side and has a built in delay which outputs a character roughly every 9 mS ．If ever you write your own software you must take this speed limitation into account．Fur thermore there are two $1 / 0$ operations which take a considerably longer time：these are ＂Clear Screen and Home Cursor＂and＂Home Cursor＂．These instructions must be followed by a delay of at least 132 mS ．Again the TRITON＇s monitor makes allowance for this but you can get direct access to these CON TROL＂or＂VDU＂commands which exist in BASIC L41．If you use these in BASIC you MUST follow them with a delay loop having a time constant greater than 132 mS ．（In practice we found that a 200 step＂FOR－ NEXT＇instruction was quite safe．）
 memory select.

HOW IT WORKS

During an INPUT or OUTPUT instruction cycle the MPU will generate the address of the $1 / O$ port required on the least 8 significant bits of the address busbar. This signal which will activate the port. It is not sufficient to provide this address on its own because there is no way that the port can because there is no way that the port can
tell whether the select signal has come from a genuine port select instruction or whether it is the low order byte of a memory read/write cycle. Furthermore there are times within the machine cycle when the address busbar can be in a transient, or high impedance state which could cause indeterminate address information to be decoded by the port select circuits.
To prevent these problems and also to differentiate between input and output ports the decoded port line is gated with either the these lines eos to "O". ane or other of select address has been placed on the busbar and terminates BEFORE the address data changes. This pulse is of the correct duration to strobe the I/O data on the data bus into or out of the port in question. Take, for example, the control of the Keyboard INPUT port. The port itself is simply an eight wide set of non-inverting tri-state buffers permanently connected to the data bus.
Pins 1 and 19 enable the output of the port when they go to level "O". Normally these pins are at " 1 " and held there by the output of ICl3b and keyboard data cannot affect the 16 lines to be uniquely decoded from address bits 0 to 7 . We only use 8 ports on the main board so part of this facility is redundant hence not all the outputs from ICl5 are used. ICl8b is a 2 to 4 line decoder operating as a 3 input NAND gate. The reason for this is that the device was one left over in a half used package and its use avoided having to put in an extra IC just for the sake of one 3 -input gate. When address OOH is present on the bus pin l of ICl5 goes low which points to Port 0 (the Keyboard). This signal is ORED with I/OR by ICl3c, d and b so when there is coincidence 19 . 49 receives on pins 1 and 19. Whatever is dransmitted on to then accepted by the CPU as genuine input data. The reason for using three NAND gates
to provide the OR function is again to use spare capacity in partly used ICs.
While on the subject of the keyboard port some might question the use of only ONE port for the keyboard instead of having a
second one to check the status. We get second one to check the status. We get Keyboard Input) sub routine of the monitor Interconnections with the keyboard put the 7 bits of ASCII on bits 1 to 7 and instead of parity we are using bit 8 to carry the key board strobe. Output port 3 works in similar fashion. ICl5 decodes its address on pin 4 and ICl4a ORs it with, in this case, I/OW. The resultant pulse is used as a clock to the D type latches within IC50. The data is entered nto the latches on the rising (trailing) edge of the pulse. Using the trailing edge does no matter here. There is just sufficient current sinking capacity in a 74LS374 (IC50) to drive a small LED direct through a $1 \mathrm{k0}$ limiting resistor. The byte of data is therefore transdisplayed in binary fashion on the LED Note that the LEDs are illuminated when " 0 " is output.
The VDU, when operating in I/O mode, is situated at PORT 5. This works in much the same way as the LED port but we are using a NOR gate to give a positive going port enable pulse. Bits 1 to 7 carry ASCII data and bit 8 the VDU strobe which is formatted to have the correct timing characteristics by the OUTCH (VDU Output) sub-routine of the Monitor program.
A further output port was required to switch the relay of the tape recorder power sopping of the tape) Theoretically a single bit port was all that was required but as things turned out in the design this would have required a new integrated circuit (there were no spare latches left over anywhere else!). Because of this it was felt sensible to use a 74LS75 (IC52) which contains four atches connected as two pairs. This way we were able to provide a tape control signal to the relay at pin 11 (the Q output of one latch) by using data bit - and this left a spare line on that port (bit 7) which can be used by the experimenter as an output line. The port to che other pair fouches in IC52 sare used as OUTPUT PORT 6 which comprises bits 7 and
8. These are also spare.

As we've moved on to the subject of tape control take note that there is a push button switch connected across the relay contacts This is to allow manual override so that the cassette recorder can be rewound etc. unde manual control without having to unplug th formoredetails about the serialiser I/ sector and MODEM for the tape recorder and Me memory of TRITON Corder
blocks of ROM, one 1 K block of VDU R 1 M and twelve 256 byte blocks of Read/ Write RAM. The high order addresses are used to decode individual lines which enable each block while low order addresses point to specific location within the previously de coded block.

IC16 is a 3 to 8 line decoder but we are able to use it to decode, uniquely. eight individual blocks of 1 K from the six most significan address lines. This is made possible by usin A15 in inverted form and the internal gated Select inputs of the 74LSI38. The four lowes order selected lines correspond to memory blocks which start at $0000 \mathrm{H}, 0400 \mathrm{H}, 0800 \mathrm{H}$ MONITOR BASIC "A" and BASIC "B" the only memories. The block starting at 0 C 00 H is a spare block reserved for ROM expansion The line decoded at pin 11 of ICl6 addresses the block of VDU RAM and the remaining three lines are fed to three 2 to 4 line decoders ICs 17 and 18a along with address bits A8 and A9.

The latter three decoders break down the remaining 1 K blocks into 12 blocks - each containing 256 bytes. Each of these 12 lines goes to a specific pair of random access memory integrated circuits that form the main work area of the computer.
Except for the ROMs, gating with MEMR and MEMW is carried out within the memories themselves. The 2708 read only memories only boast a chip select input and it is necessary to gate the MEMR control signal with each of the chip select lines prior to making connection with the appropriate pin. This gating is carried out by the quad 2 input
OR gates contained within ICI9.

DATA \& STROBE STROBE

INVERT

The tape 1/0 section of the Triton system.

HOW IT WORKS

The AY-5-1013 Universal Asynchronous Receiver transmitter features tri-state out puts for received data and all status bits. Note out terminals of the chip are commoned oogether before joining the TRITON's data bus. The Status bits of the UART are similarly commoned with the DAV (Data Available) bit tied to bit 1 on the bus: PE (Parity Error) to bit 2; FE (Framing Error) to bit 3; OR (Over Run Error) to bil 4 and TBMT (Transmitter Buffer empty) to bit 5. Note however that TRITON's standard Monitor only samples DAV and TBMT.
The DAV and TBMT flags are used to te! the system when the UART has received and has ready a coniplete byte of new data or when the UART has finished a current serialising cycle and is ready to accept a new byte for transmission. In actual fact the GART will accept a second byte while it is bufferfers mature of th trannatiter halfer
should be set on a irequency meter.
in order to transmitt data the TRITON Monitor first checks to see whether the UART Transmitter buffer is empty by activating the STATUS WORD ENABLE which is, in effect. PORT 1. This places the checks to see whether bit 5 (TBMT) "I". If so it indicates that the UART is ready and the Monitor then outputs its data on to the busbar while activating the DATA STROBE (PORT2). DATA STROBE starts the transmission serialising cycle and the serial data is output to the MODEM (IC82) at pin 25. If the TBMT flag was at " 0 " the Monitor goes into a loop and waits until the UART is ready.
In order to receive data the MPU asks for status information. again through input port I but this time checks bit I (the Data Available flag). This goes high as soon as a cominatued into paralliol form in the UART's
byte of data is received. Clearly the software cycle, which carries out this operation eriod have a shorter loop period than the next otherwise over received byle and
The Motorela single Chip MODEM seemed highly attractive from the word go as it is extremely economical on external components and needs no adjusiment

The MC14412VL is such a versatile chip hat it was again difficult to decide which mode it should be used in. Eventually, in give best reliability with most tape recorders and to allow the MODEM to receive at up to 600 baud (not that this is used at present) we opted to go for the USA standard "originate" mode in which the transmitted frequency pair is:

MARK ("1") $=1,270 \mathrm{~Hz}$
SPACE ("0") $=1,070 \mathrm{~Hz}$
Clearly we need to be able to demodulate
e same pair of frequencies so have to

The MODEM interfaces directly with the UART and only needs a crystal and resisto to lock it to the correct frequency pairs. It is most important that a crystal of exactiy 1.0000 MHz is used here otherwise you will not be able to use pre-recorded tapes! The ransmitted carrier or the MODEM is an eigh level digitally synthesised sine wave of about 300 mV rms which is buffered by TRI befor being fed via C27 to the tape recorder phono input.
To carry out a demodulation satisfactorily the MODEM IC requires a very precise unity on the mark/space ratio has to be better than $\pm 4 \%$. If the carrier being played back from the recorder carries any harmonic distortion this will result in an asymmetric sinusoid which will be difficult to convert to a square wave of the above specification. To further purify the sine wave it is amplified and iltered by Q3. To some extent the input sensitivity can be adjusted by RV3 but under

 300 hand wet by the clocle comprising IC8I (an NL. 553). Batid rate is adjustable by about ± 50 purcent by means of RV2 and, of course, It is important that this is accurately set if apes from ont lormat) are to be played back. To The a rate of 300 baud the oscillator must. onn at precisely 4800 Hz and ideally this

 Data linable" strobe to the UART. This enables the outputs of the receiver buffer system busbar. To prevent the system reacting a second time to the same DAV flag the pulse from port 4 is also used to reset DAV which then stays low until a completely new
 presistors within the chip do away with the need for external pull uns hanging on these pins! Pin 2 actually is the "Self Test" contro nout which makes the MODEM's receive demod thate the same frequency pair that is being transmitted. Keeping this active pre originating" or "answering"
nommal circumstances (within the range of
input voltages mentioned above) (his should always be set in its mid-point position. The high purity slnewave at the collector of Q 3 is fed to IC83 which is a zero crossing comparator which will sense the zero crossing of a sine wave to within about 3 mv . With a good input signal this results in a square wave that specifican adequately meets the input specification of the MODEM

PSU

The power supply section of the Triton is based on three ter minal regulators.

A close-up photograph of the PSU. Note the orientation of the IC regulators.

HOW IT WORKS

THE POWER supply has been kept as simple as possible, utilising three iC regulators to provide the main rail supplies which are +3 but do not rely on there being any to spare if you are thinking of hanging any other bits and pieces on this line!) +12 V at 0.5 A and -12 V at 0.5 A . A few milliamps are needed by the ROMs and the 8080 at -5 V and this is catered for by a simple zener shunt off the -12 V rail
The $\pm 12 \mathrm{~V}$ rails are straightforward. Dis sipation by the regulators is low and no heat
sinks are necessary. The 470 n capacitors on the outputs of the regulators are to prevent any parasitic oscillations. Note that the +5 y rail has a dozen 47 n capacitors (C3 to C14) shunted across it. These are anti-spiking places on the board
To avoid excessive dissipation in the main +5 V regulator (ICI) we decided on specially wound mains transformer, hence the rather obscure specification for an 8.25 winding.

BARREL TYPE X－Y PLOTTER ASSEMBLY

BARREL TYPE X－Y

PLOTTER ASSEMBLY

120 V Stepping Motor Provision Pen（Per nat supplied）AS PICTURE 555 ea With alternative motor for non reversible requirements Micorder printer anpliearions of E．4． Ca．With Pon and Papar guldos 878 ． With Pen，Sprocket and Paper quides ${ }_{P \& P}$ Pall units $\in 250$

X－Y PLOTTER ASSEMBLY

Cunsisting of frame with X \＆Y
assemblies（Na pen bui provision） Bed size $12^{\prime} \times 9$ Moior options 120 V only $\mathbf{£ 4 3 . 4 5}$ es．i 20 V lcan be anued to $12,24 \mathrm{~V}$ dints supplies 51.15 อa． $12 / 24 \mathrm{~V} € 70.40$ ตョ． \＆ P alliversions $\mathrm{E}^{2} \mathrm{~b} 0$

X－Y PLOTTER ASSEMBLY

NEW ITEMS

ALMA Min．PUSH BUTTON REED SWITCHES．High rellability $18 \times 27 \times 18 \mathrm{~mm}$ ．Ideal for KEYBOARD 50p ea P\＆P

MOTOROLA MC 4028 60p ea
MOTOROLA MC 7441 40p ea C 7402 12D ea HONEYWELL HUMIDITY CONTROLLERS 25p ea P\＆P SPRAGUE $100 \mathrm{mfd}+500 \mathrm{mfd} 210 \mathrm{VDC}$ working Brand new 5 or 50p．P\＆ P 50
REED SWITCHES．Sub－min Size 20mm 10p e日
SMITHS encapsulated 1 ransistorised AUDIBLE WARNING Attractive GRILLS Can be driven from TiL $50 n$ ea．Pspeaket 25p 4×7（Size may vary slightly）．Plastic 20p ea Metal 35p ea $P \& P$ extra

BURROUGHS 9 digit PANAPLEX nument display． 7 segmen

 O． 25 diallt with red bees Whith dora $£ 1.95$ eal Pal $P 30$ p MiNIARE NIXIE TUBE THD ITH 2870 ST Digit Si20 0 hre ended 50p each Pisp 20p 4 for E 1.75 P\＆P 35p OVA 50p ea Pap 50 P AC indwt．Secondary 30 V and 2.6 V TOVA 50p ea P\＆P 50p21－WAY SELECTOR SWITCH．Single pole with resel coll 40 V AC coids Additional switch contacts tor auto resel els As ABOVE Witl add
 NAIL BLOWER HOV AC 500
Dovelopments Ouet and AC 500 MA Brand new by Airlow OTTER \＆BRUMFIEL very guod lonking $£ 2.50$ 日a P\＆ P ह Duly Plug－in type with base 50 p os P\＆ 250 MINIATURE KEYBOARD．Push COntects
and 3 user defingble keys．© 1.75 ea P PP 35p
MULLARD CORE LA4 245 at $15 p$ ea P\＆P 10p
CLARE REED RELAYS 24 V DC COH Single pole make Si $11 / 4 \times 7$ I $6 \times 7 / 16^{\circ}$ at $25 p$ ea P\＆PA0p
ROTRON CENTAUR FANS：SIZE 4.5 ．
5－blade $£ 4$ ea $P \& P 75 p$
Min．PLUG－IN type RELAYS．Plastic covers 2 －pole c／o 24 V CROUZET／MUR
CROUZET／MURTEN SCHWEIZ MOTORS． 110 V 50 HZ
 FRAMCO MOTORS． 115 V 50 HZ －Input single priase $1 / 12$ th PYE OYNAMICS THICK FILM WMHZ supply Size $19 \times 25 \times 6 \mathrm{~mm}$ ．Drives one Til load． 72 p ea．$P \& P$ 150
COMPRESSOR UNIT．Compact． 115 V 50 Hz single phase £18 ea P\＆P E
MAGNETIC DEVICES．Plug－in RELAYS 240V AC 3－pole Heavy duty 10 amp Complete with base Exjbrand new equpenen NOT USED． 3 on sub assembly E2．50．P\＆P E1 ar E1．25 eis．P\＆P 45 p
SMALL MAINS THANSFORMER 240V P 7 ）TRVIOOMA $60 \times 40 \times 42 \mathrm{~mm}$ 50p ea Psp75p
G．I．BRIDGE RECTIFIER IYDe WO
GAIACHILD FNDIO 7 segment（ideal for above）17p ea． FAIRCHILD FND10 7 segment display 0.15 Red．Common MULLARD TUNER MODULES
P1171
P1179 FM front 1045 MHZ tuning $10.7 \mathrm{MHZ} \mid \mathrm{F} \mathbf{£ 3 . 5 0}$ ea．P\＆ P 50 p ． The Pair €5．75 P\＆＇P 75
POWER UNIT MODULE containing 2 small， 3 med．\＆ 1 large powered diodes． 9 transistors， 3 min fuse holders，elc．$£ 1.50$ ea P\＆PEi 25 GENERAL ELECTRIC OPTO－ISOLATORS type H15VX504 6p ea P\＆P 5 Sp 10 for E5．P\＆P
ROTARY SWITCHES． $250 \mathrm{~V} 10 A 10$ ea P 10 P 15p
ROTARY SWITCHES．250V 10A 10p ea．P\＆P 15
LEDEX ROTARY SOLENOIDS 115 V DC．No switch assembly 25p ea P\＆P 25 p
POTTER \＆BRUMFIELD TIMER RELAYS． $24 / 48 \mathrm{~V}$ Heavy dufv 2 －pole r o with 5 secs delay at 48 V increasing with voltag capactance 50p ea P\＆P 25 p
BROOKE CROMPTON \＆PARKINSON extractor fan assem bly 115 k
£3 25
－

25

POWERFUL MINIATURE GERMAN 12V REVERSIBLE MOTOR．No load current 70MA excessive oad 400 MA Snaft
40 p

A MILLION MUST GO

DUAL IN LINE 16 －PIN CERAMIC 12 V RaI devices Full data $2 \mathbf{p}$ ea
MIXED PACKAGE－£1 P\＆P 25p

LARGE QUALITY OF TEST GEAR ON VIEW AT LOW COST－CALLERS WELCOME

DON＇T FORGET YOUR MANUALS S．A．E WITH REQUIREMENTS

Minimum Mail Order £2．Excess postage refunded．Unless stated－please add $\mathbf{£ 3 . 2 5}$ carriage to all units VALUE ADDED TAX not included in prices－Goods marked with $121 / 2 \%$ VAT，otherwise 8% Official Orders Welcomed．Gov．／Educational Depts．，Authorities，etc．，otherwise Cash with Order

7／9 ARTHUR ROAD，READING，BERKS（rear Technical College，King＇s Road）．Tel：Reading 582605

－ETI BOOK

BEGINNERS

Beginners Guide to Electronics sulre E 265 Beginners Guide to Transistors Reddihough £2 65 Electronic Measurement Simplified（ HAllmark $£ 220$ Electronics Self Taught ance E4．40 Beginners Guide to Integrated Circuits＞nclar £3 15 Principles of Transistor Circuits s suma $\mathbf{E 4} 75$
Understanding Electronic Circuits sinclay $£ 410$
Understanding Electronic Components sinclar £4 10
Beginners Guide to Radio kme E3． 15
Beginners Guide to Audio wnclar $£ 310$
Beginners Guide to Audio：k hinelall E3 20

COOKBOOKS

TV Typewriters Cookbook E 740
CMOS Cookbook $£ 8: 00$
TTL Cookbook £7．55
Active Filters E 1100
IC Timer Cookbook $£ 750$
IC Op－Amp Cookbook £9 40

APPLICATIONS

Advanced Applications for Pocket Calculators ；cultre E4 20
Build Your Own Working Robot D Helseman $£ 355$
Electronics and Photography R Brown £2 30
Fire and Theft Security Systems B weln $£ 200$
How To Build Proximity Detectors and Metal Locators ．حhulcle £ 3 35
How To Build Electronics Kits（upei £2 10
Linear Integrated Circuit Applications © Clayton £540
Function Circuits Design \＆Applications Burr hrown $£ 1595$
110 Electronic Alarm Projects R ： M Maroun $£ 345$
110 Semiconductor Projects for the Home Constructor r m Marston $\mathbb{\$ 3} 25$
110 Integrated Circuit Projects for the Home Constructor R и Mirunn £3．25
110 Thyristor Projects Using SCRs R W1 Martom £2 95
Handbook of IC Circuit Projects Anhe E2 30
Practical Electronic Project Building Anvicanl しいまい！$£ 245$

TV AND HI－FI

Audio Handbook（．kime $£ 650$
Cassette Tape Recorders｜Lull 525
Solid State Colour TV Circuits if F Widing E6 35
Hi－Fi Loudspeakers and Enclosures t ihen E8 20
How To Build Speaker Enclosures Hadmaill £3 10
Master Hi－Fi Installation $\mathrm{k}^{\prime \prime n k} \mathrm{E} 280$

LOGIC

Logic Design Projects Using Standard ICs＇＂merv £5 10 Practical Digital Design Using ICs arwat， 11250 Designing With TTL Intergrated Circuits Tev．．．｜ampongh $£ 9.05$ How To Use IC Circuit Logic Elements 7 Istrine
110 COSMOS Digital IC Projects for the Home Constructor \％融 the
 Digital Electranic Circuits and Systems ik when $£ 3.50$ MOS DIGITAL ICs © f1nn £4． 60

COMPUTING

Microprocessors and Microcomputers 14 smak $k £ 1800$
Microprocessors 1）CMiccienn £8．40
introduction to Microprocessors Anpmin $\mathbb{1} 90$
Modern Guide to Digital Logic（Processors，Memories and Interfaces）£4．30

OP－AMPS

Applications of Operational Amplifiers（iriennic（Rurr Hrown）$£ 8.30$
Designing With Operational Amplifiers Burr Arown $£ 13.75$
Experiments With Operational Amplifiers clinton $£ 340$
110 Operational Amplifier Projects for the Home Constructor r \mathbf{M} Marwn $\mathbf{E 2} 95$ Operational Amplifiers Design and Applications 6THBers（Burr Bu，Mn） $\mathfrak{Y} 740$ Oo－Amp Circuit Design \＆Applications（ ）arr £ 400

TEST INSTRUMENTS

The Oscilloscope In Use sinclare $£ 310$
Test instruments for Electronics M curford $£ 240$
Working With the Oscilloscope a saunders $£ 1.95$
Servicing With the Oscilloscope c Kine $£ 5.60$
Radio Television and Audio Test Instruments kınk £5 90

SERVICING
Electronic Fault Diagnosis sink kur $£ 320$
Rapid Servicing of Transistor Equipment（，king £2 95
Tape Recorder servicing Manual（iardner Vol 1：1968－70 £8 50 Vol 2：1971－74 £850
FM Radio Servicing Handbook kin！£480
Basic Electronic Test Procedures I M Gothes $£ 245$

COMMUNICATIONS

Communication Systems Intro To Signals \＆Noise e carlum \mathbb{E} ． 50 Digital Signal Processing Theory \＆Applications I R Rabiner $E 23.80$ Electronic Communication Systems w kenneds $£ 850$
Frequency Synthesis．Theory \＆Design Mannatsewitsch $£ 2040$ Principles of Communication Systems मi Iaub $£ 810$

THEORY

Introduction to Digital Filtering B．xencre E9－40
Transistor Circuit Design Texas Instrumence 9.35
Essential Formulae for Electrical and Electronic Engineers＊м M Morri $£ 165$ Modern Electronic Maths culfurd $£ 670$
Semiconductor Circuit Elements i D Iuwer £6．40
Foundations of Wireless Electronics m © Scromese £4 45
Colour Television Theory Iludwn £6． 20

REFERENC E

Transistor Tabelle（Includes physical dimensions）e4－10 Electronic Engineers Reference Book（Ed 4）L w Turncr E27．70
Solid State Circuit Guide Book e Ward $£ 225$
Electronic Components is A Colwell £245
Electronic Diagrams 甘 A colwell £245
Indexed Guide to Modern Electronic Circuits Gundman $£ 2: 30$
International Transistor Selector r D Towers $\mathbf{C 5} 25$
International FET Selector I 1 P 「owerc $£ 435$
Popular Valve／Transistor Substitution Guide E2 25
Radio Valve and Semiconductor Data A м B $\because f 2.60$
Master Transistor／Integrated Circuit Substitution Handbook $\mathbf{E} 5.60$
World Radio TV Handbook 1978 （Station Directory） 8800
Radio，TV and Audio Technical Reference Amus E24 85
TV Technicians Bench Manual（New Ed）wilding £5． 10

MISCELLANEOUS

Integrated Electronics tivimun £7．70
Microelectronics Hu：＇murh $£ 3.90$
Practical Solid State DC Supplies－o hnc．$£ 6.20$
Practical Triac SCR Projects for the Experimenter R tin 1225

Fallen behind recent advances？
Just starting out？
Need a decent reference book？
ETI Book Service provides an easy
way of getting your hands
on the right title．

How to order：Make cheques etc payable to ETI Book Service．Payment in sterling only please．Orders should be sent to：ETI Book Service，PO Box 79，Maidenhead，Berks．All prices include P\＆P．

3
 Wilmslow Audio

THE firm for speakers!

Send 15 p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list

> ATC AUDAX BAKER BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS HELME IM F ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE MONITOR AUDIO PEERLESS RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE, SKS 1HF
Discount HiFi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 29599 FOR-SPEAKERS WILMSLOW 26213 FOR HIFI

TARGET ELECTRONICS
16 Cherry formerly "THE RADIO SHO Bristol BS1 3NG Telephone: 0272-421196
Official orders welcomed. Gvt / Educational Depts etc

	Size $60 \mathrm{~mm} \times 45 \mathrm{~mm} \times 40 \mathrm{~mm}$			
(kid	T21	$0-50 \mu$ a	T30	0-1Amp
	T22	$0.100 \mu \mathrm{~A}$	T33	$0-50 \mathrm{vaC}$
	T23	$0-500 \mu \mathrm{~A}$	T34	$0-300 \mathrm{chC}$
Winpruatmes	T24	0-1mA	T35	${ }^{2} \mathrm{~S}$ " Meter
	T25	$0-5 \mathrm{~mA}$	T36	Vu Meler
	T26	0-10ma	T40	50-0-50 A
	T27	0-50mA	T41	100-0-100 \quad A
	T28	0-100mA	T42	500-0-500 $\mu \mathrm{A}$
	T29	0-50mA	T43	0-30v DC
ANEL	Price £4.65			

with ILLUMINATION WIRING
Dials are clearly figured on bright white tor easy reading 25% F S D accuracy Zero adjustment at front Cushioned pointer stops Complete with mounting nuts and
washers
Prewired and have lamp terminals instalied on rear
Snap off front c
opp extra) 65p
Two 6 3V bulbs for press-in fitteng onto pre-wired connector blocks which require
126 V external power through the rear terminals already fitted
TRANSFORMERS

PRI	ES 2		
TR1	6-0-6	100MA	80p
TR2	9-0-9	75 MA	83p
TR3	12-0-12	50MA	90p
TR4	12-0-12	100MA	£1.10
TR1A	6-0-6	100MA	92p
		Int screen	
TR2A	9-0-9	75 MA	£1.00
TR3A	12-0-12	Int screen 50 MA	¢1.10

- MOT Output Transformer $\begin{aligned} & \text { Int screen } \\ & 1\end{aligned} 2 \mathrm{~K}-8 \mathrm{ohm}$ 200MW Teletype - spare PIO for: TV or Monitor - cassette, dump Potential: High Level Language Mini Floppy Disk Excell VISA Z80 evaluation kit. $\mathbf{£ 1 9 7 . 5 0}+\mathrm{VAT}$. P\&P $£ 250$
Please add $121 / 2 \%$ VAT. Remainder 8% VAT
Large selection of aluminium boxes \& Instrument Cases
Phone in your Access or Barclaycard order Catalogue 25 p post paid

BONA FIDE UK TRADERS ONLY!

 A Fast and Easy Profit Message from Lektrokit
 For hobbyists and home project constructors,

Lektrokit have put together the most comprehensive range of breadboarding and testing devices on earth. For you, Lektrokit have display racks, window stickers and catalogues to help you sell the entire range-faster and easier. For you, too, Lektrokit will be advertising to hobbyists and home project construct ors continuously - telling them about the Lek trokit products that you supply If, of course, you have the stocks. And that's up to you.
Launch dates for Lek trokit's exciting new range are November 21-25-at BREADBOARD 1978 - but you can get in on it NOW! Just use the coupon.
LEKTROKIT completes the circuit
Reading, Berks RG6 1 AZ . Telephone 0734669116 - I am a bona ficie UK trader. Please send full information about faster and easier profit by Lektrokit Address

VENUS PROBE

Abstract

Venus, the shrouded planet of Edgar Rîce Burroughs and Ray Bradbury, has fascinated men and telescopes for many decades. It was the favourite choice to house monsters and the scientists' choice for life of a more mundane type. Conditions are not that favourable, however, but are still interesting enough to warrant the launch of the Multiprobe which should tidy up some of the mysteries remaining.

Fig. 1. The Pioneer Venus Multiprobe spacecraft; a thermal test model is shown.

THE TWO Pioneer spacecraft should reach Venus around the end of this year, being sceduled to rach orbit on the 4th December. One of these probes, known as the 'Orbiter', will circle the plant for at least one Venusian year. It will collect data on the upper atmosphere of the planet (including field strengths and the types of particle present) and will also record events occuring on a global scale on or around the planet over a fairly long period of time.

The other spacecraft will consist of a transporting vehicle, known as a 'Bus', which will convey one large probe and three small probes to Venus. All five parts of this spacecraft will enter the Venusian atmosphere at widely separated points and will transmist data back to earth. The four probes will fall to the surface of the planet and should provide much information about the lower atmosphere at four widely separated points.

Although Venus is our closest planetary neighbour, it is always covered in very thick cloud; our knowledge of this planet is therefore very limited, especially as regards its lower atmosphere. The early probes have shown that Venus has a high surface temperature and an atmospheric pressure nearly one hundred times that of the earth, but a great deal of work remains to be carried out It is expected that the two Pioneer spacecraft will increase our knowledge of this planet by a factor of about ten. They will also greatly increase our knowledige of the solar system and are expected to provide much information which will add to our theories about the origin of the earth.

Pioneering Spirit

The Pioneer missions were cơnceived as long ago as - 970 as a result of recommendations made by the Space Science Board of the US National Academy of

Sciences who decided that there is a need for relatively low cost orbiter and probe landing systems for Venus investigations. Overall responsibility and control of the mission has been given to the National Aeronatuic and Space Administration (NASA) Research Centre at Moffett Field, California.

The Hughes Aircraft Company gained a contract to manufacture both space vehicles for the Pioneer mission in February 1974 after a series of competitions which started in 1972. The scientific instrument payloads were selected in June 1974, thirty instruments being included on the list. The spacecraft will be launched on top of Atals SLV-3D Centaur D-1AR rockets from Cape Canaveral, Florida. The vehicle tracking, command signal transmission and data reception will be carried out by the established US Deep Space Network stations in Çalifornia, Spain and Australia

The Multiprobe Mission

The Bus, the large probe and each of the small probes include payloads of scientific instruments. The Bus will be destroyed by burn-up in the Venusian atmosphere after its two instruments have transmitted data back to earth. It is, perhaps, somewhat surprising that work on the atmosphere and weather on Venus is expected to teach us more about the weather on earth.

The multiprobe vehicle is a circular, spin-stabilised craft with an array of solar cells around its exterior. The large probe will examine the atmosphere surrounding the planet, measuring the clouds, the atmospheric composition, etc. The three identical small probes will separate and enter the atmosphere some 7,000 miles apart two of them on the dark (night) side. They will collect information on the general circulation of the lower atmosphere

Structure

The structure of the multiprobe unit is shown in the exploded view of Fig. 2. The cylidrical solar panel is 2.54 m (100 inches) in diameter and 1.22 m in length. The equipment shelf if 2.47 m in diamter, the electronic units and the scientific instruments being mounted on this shelf.

The large probe is at the centre of the spacecraft on an inverted conical structure, whilst the three small probes are symetrically placed around the main probe. Each probe is fixed by spring loaded clamps which can be released (pyrotechnically) about 20 days before the craft arrives at Venus so that the five sections move independently.

The probe weight, including the interfacing connection with the launching vehicle, is designed to be 920 kg . Great care has been taken in the thermal design of the craft to ensure that the temperature is kept between isuitable limits; heaters and thermal blankets are in cluded and appropriate materials with suitable thermal properties are used.

The control system employs a sun sensor and a solid state sensor which can detect the radiation from 24 stars. The vehicle contains two tanks which will be filled with 32 kg of liquid hydrazine propellant. When this liquid is allowed to pass into a chamber containing a suitable catalyst, it decomposes into nitrogen and provides a thrust of about 0.5 kg as a jet for controlling the spacecraft's trajectory, attitude and spin rate:

The power for the spacecraft is obtained from the cylindrical array of solar cells which has an area of just over 6 square metres. This provides 228 W when the
spacecraft is near the earth, but extra power can be obtained for a limited time from two 7.5A-hr nickelcadmium batteries. The solar cells and batteries provide a 28 V supply; overload protection and undervoltage detection circuits are included in the power supply system

Command signals are transmitted from the Deep Space Network ground stations to the Bus at 4 bits/ second using pulse code modulation or frequency shift keying. The electronic on-board equipment can store command instructions for execution at some later time. Six command output modules on the equipment shelf can distribute 384 pulse commands and 12 quantitative (or analogue) commands to scientific instruments and to the spacefraft units. Commands from the earth stations modulated onto a 2115 MHz carrier wave are received by the spacecraft transponders.

Data for transmission to the ground is convolutionally encoded, assembled into 8 bit words in a 64 -word frame and modulated into a data stream. Eight data input modules on the equipment shelf can receive the signals and establish up to 253 data channels with the telemetry processor for transmission to earth.

The data is transmitted on a 2300 MHz beam at a power of 10 or 20 W using one of three antennas and a data rate of between 8 and 2048 bits/second. The antennas comprise two omnidirectional types (forward and aft) to provide spherical coverage at both the transmit and receive frequencies together with a medium gain horn antenna at the aft end of the craft.

Fig. 4. An exploded view of the Orbiter spacecraft

Fig. 5. Trajectory of the Muliprobe unit on its flight to Venus.

To Boldly Go ...

The launching vehicle will place the multiprobe spacecraft into an earth parking orbit about 167 km above the earth where it will remain for 18 to 23 minutes before adopting the interplanetary trajectory shown. The spacecraft will initially be spinning at 5 RPM, but it is expected that contact with the ground station at Canberra will occur within four hours from launch and the rate of revolution will then be increased to 15 RPN by a command from the ground.

During the passage of the spacecraft towards Venus; the forward antenna will be employed to communicate with the 26 metre diameter dish aerials of the Deep Space Nwtwork. A velocity correctin of up to $12 \mathrm{~m} / \mathrm{s}$ can be made five days after launch and further corrections at 20 days after launch, etc. Command signals for these corrections will be transmitted from one of the huge 64 metre diameter earth station aerials.

The large probe will be separated from the Bus about 24 days befora arrival at Venus. The spacecraft axis will then be precessed so that the medium gain horn can be used for earth communication. A velocity correction of $5.1 \mathrm{~m} / \mathrm{s}$ will be made to achieve the required small probe trajectory and the three small probes will be released about 20 days before reaching Venus. The spin rate will have been previously increased to 48.5 RPM so as to provide a suitable tangential velocity at separation for the small probes to acquire the desired trajectory

The velocity of the Bus will be corrected 18 days before its arrival at Venus to achieve the desired arrival point and to delay its arrival by 90 minutes so that all of the probes will have impacted on the surface of the planet by the time the Bus arrives in the upper atmosphere. Burn-up will occur at some 120 km above the planet.

All five vehicles will enter the atmosphere in a two hour period and all will'be transmitting simultaneously. so the time of entry will be arranged to be one at which two of the Deep Space Network stations can simultaneously receive signals to avoid possible loss of data.

Large Probe Mission

The large probe is to be aimed at a point on the daylight side of Venus, decelerations of up to 400 g being possible at times during entry. The large probe parachute opens at a height of 67 km and for the next 18 minutes the probe descends under the stabilising influence of the parachute to a height of 46 km at which point the parachute is jettisoned. The probe then falls to the surface of the planet over a period of some 38 minutes.

The probe is not required to survive impact with the surface of the planet, but will withstand the pressure and temperature at the surface. This requirement together with the requirement that the probe can withstand the fierce acceleration presents many design problems unique to this mission.

Fig. 6. The interior of the large probe

The large probe and its deceleration module have a total weight of some 316.6 kg . The deceleration module provides thermal protection during atmospheric entry; it consists of a pointed nose cone of 45 angle with a diameter of 1.42 m . The base of the probe is thermally protected by a coated fibreglass aft cover

The dacron main parachute has a diameter of nearly 5 m and is deployed by a much smaller pilot chute 0.76 m in diameter ejected by a mortar. The pull of the parachute extracts the pressure vessel module from the deceleration module.

Pressure Vessel

This vessel contains nitrogen at a pressure of between about 0.5 and 2 earth atmospheres, but can withstand an external pressure of about 100 atmospheres. The 73 cm diameter titanium pressure vessel is constructed in three pieces and is about 6 mm in thickness. There are 15 apertures and 7.6 m of sealing are required to prevent gas leaks at the high temperature of the Venusian surface. The thermal insulation ensures that the electronics and instruments inside this vessel remain at a temperature not greater than 50 C even when the external temperature reaches $480^{\circ} \mathrm{C}$.

A 19 cell 40 A-hí silver-zinc băttery supplies power to the pressure vessel assembly. A total of 15 magnetic latching relays provide on / off control, whilst parallel fuses provide overload protection. Four solid state amplifiers, each rated at 10 W , feed a cross dipole antenna mounted on the rear of the pressure vessel which sends the data back to earth. A data rate of 128 or 256 bits $/ \mathrm{sec}$ in a convolutionally encoded format is used, the system being capable of providing 72 data channels and 2 minor frame formats in an 8-bit word, 64 word frame. A 3072 bit memory provides storage facilities during the entry communications blackout; this blackout will have a duration of about 10 seconds.

The entire sequence of 128 commands is predetermined and programmed prior to the multiprobe launch. A timer with a 24.27 day capacity and a stability of ± 32 seconds turns on the system prior to entry.

Fig. 7. The interior of a small probe

The seven scientific instruments in the large probe weigh a total of 35 kg and require 106 W for their operation. Three of these instruments require inlets for sampling the atmosphere and four require windows for viewing the atmosphere. All of the windows except one are made of sapphire, the exception being the window for the infra-red instruments which is a 13 carat diamond nearly 2 cm in diameter: diamond is the only material able to transmit infra-red in the 10 micron region and to withstand the temperature and pressure at the Venusian surface.

The Small Probes

The three identical small probes are designed to measure the characteristics of the Venusian atmosphere simultaneously at three widely different locations. They are designed to withstand the high temperature and pressure at the surface of the planet, but need not necessarily withstand the impact with the surface. During entry into the atmosphere at a speed of about $11.6 \mathrm{~km} / \mathrm{s}$, a deceleration as great as 5652 may be encountered. The time of descent to the aurface will be about 59 minutes.

Each small probe contains a pressure vessel and a deceleration module. The total weight is some 97 kg . Unlike the large probe, there is no parachute with each small probe and the deceleration module is not detached during descent. The cone of the deceleration module has a diameter of some 76 cm .

The small probe pressure vessels which contain the electronics and the instruments are designed to operate with an internal atmosphere of xenon at between 0.25 and 2 earth atmospheres pressure. These vessels consist of a two piece titanium shell of about 46 cm diameter.

The small probes are each powered by a battery containing 20 silver-zinc cells with an 11 A-hr rating. Each probe employs a single, solid state power amplifier rated at 10 W RF output; this amplifier feeds a crossed dipole antenna mounted on the rear of the pressure shell. A stable oscillator maintains the S-band downlink frequency to 1 part in 10^{9}. The data rate used from the small probe to earth is 16 or 64 bits / second, whilst a

Fig. 8. A small probe

3072 bit memory is used for storage during entry =ackout and when the bit rate is being changed. A $2-27$ day timer turns on the system prior to entry into the Venusian atmosphere.

The 64 bit/second data rate is used initially, but at an zotrude of some 30 km above the surface the data rate is educed to 16 bit/second to allow for the attenuation of tie radio frequency signal as it passes through the denser parts of the Venusian atmosphere
The Orbiter craft. Note the long magnetic probe to measure the mingetic field well away from any interfering field from the craft.

The Orbiter Mission

The main aim of the Orbiter mission is to put 12 scientific instruments in orbit around Venus and to receive informaiton from these instruments. It can be seen that the Orbiter spacecraft has much in common with the multiprobe vehicle, including a rather similar structure. Some of the most noticeable differences are the replacement of the probe structure by a high gain aerial system which can provide communication with the earth at distances of up to $250,000,000 \mathrm{~km}$. A 4.5 m long magnetometer boom is also used in the Orbiter craft.

The size of the Orbiter spacecraft is similar to that of the multiprobe craft The diameter of the cylinder of solar cells is the same 2.54 m , but the surface area of the cells is greater, being almost $7.2 \mathrm{~m}^{2}$. The Orbiter is lighter than the multiprobe unit, being just under 600 kg and only 372 kg in orbit

The slightly large solar cell area of the Orbiter provides a little more power than in the case of the Multiprobe Bus, this power being about 325 W in Venus orbit. Two 7.5 A-hr nickel cadmium batteris are also incorporated in the Orbiter spacecraft.

A bearing and power transfer assembly (BAPTA) serves an electrical and mechanical interface between the spinning part of the spacecraft and the despun aerial which must always point towards the earth. As in the case of the multiprobe Bus, 32 kg of liquid Hydrazine propellant is carried in two tanks and can drive seven jets, each with a thrust of about 0.5 kg , for the control of the trajectory, attitude and spin rate.

A solid propellant rocket motor the Thiokol TEM. 604 , is to be used to place the Orbiter in Venus orbit. It has a velocity change capability of $1060.6 \mathrm{~m} / \mathrm{s}$ for the maximum design weight

Conclusion on Cost

A special feature of the Pioneer missions is the relatively low cost for such an ambitious programme. In order to reduce the cost, no experimental prototype craft have been built - only the one multiprobe and the one orbiter will be made, tested and orbited Economies have also been made by using the same type of components (such as the RF amplifiers) in the Bus, Orbiter and in the probes. Identical command and data handling circuits are used in all of the probes, whilst about 78\% of the Bus and Orbiter parts are identical. The cost of developing the probes themselves has been relatively high, since they involve new techniques, whilst special facilities have had to be developed to simulate the hostile Venus atmosphere.

It seems likely that craft similar to the Pioneer type will be useful for relatively economical missions to Mars and for flying through the tails of comets.

42

Prices are each, net \& excludeV.A.T.

Experimentor Series
EXP300 ($6 \times 2 \times 1 \mathrm{in}$., 5×94 terminals \& 2 bus strips)
£5:75
EXP350 (3.5×2.1 in, 5×46 terminals $\times 2$ bus strips)
EXP600 (6×2.4 in. 5×94 terminals $\times 2$ bus strips)
EXP650 (3.6×2.4 in., 5×46 terminals $\times 2$ bus strips
$£ 3.60$
EXP4B (6×4 in, 2 bus strips only) $£ 2.30$
Quick Test Series
QT.59S (6.5×6.2 in., 118 terminals) $£ 720$ QT-47S ($5.3 \times 5 \mathrm{in} ., 94$ terminals) $£ 5.75$ QT-35S ($4.1 \times 3.8 \mathrm{in} ., 70$ terminals) $£ 490$ QT-18S ($2.4 \times 21 \mathrm{in}$., 36 terminals) $£ 2.75$ QT-12S ($18 \times 1.5 \mathrm{in}, 24$ terminals) OT-8S ($1.4 \times 1.1 \mathrm{in} ., 16$ terminals) QT-7S ($1.3 \times 1 \mathrm{in}$., 14 terminals) QT-59B ($65 \times 6.2 \mathrm{in}$., 20 terminals) AT-47B ($5.3 \times 5 \mathrm{in}_{\mathrm{z}}, 16$ terminals) QT-35B ($4.1 \times 3.8 \mathrm{in}, 12$ terminals)

Protoboard Series

PB-6 (630 tie points, 4 binding posts, 4×14 DIL capacity) $£ 9.20$
PB-100 (760 tie points, 2 binding posts, 10×14 DIL capacity) $\quad £ 11.80$
PB-101 (940 tie points, 1 binding post, 10×14 DIL capacity) $£ 17.20$
PB-102 (1240 tie points, 1 binding post, 12×14 DIL capacity)
£22.95
PB-103 (2250 tie points, 4 binding posts, 24×14 DIL capacity) £34 45
PB-104 (3060 tie points, 4 binding posts, 32×14 DIL capacity) £45 95 PB. 203 (2250 tie points, 4 binding posts, 24×14 DIL capacity built-in regulated 5 V dc power unit)
$£ 55.15$
PB-203AlAs PB-203 with 5 V and 15 V d.c. power supply)

笣 7.70
Design Mate Instruments
DM-1 £45.95 DM-2 £57.45 DM-3 £57.45
DM-4 $£ 74.70$

IC Test Clips

PC-14 (14-pin) £2.60 PC-16(16-pin) £2 75 PC-24 (24-pin) £4 $90 \quad$ PC-40 $(40-$ pin $) £ 7.90$

Logic Probes

Hand held logic probes
TTL/DTL/CMOS compatible.
from
£18 to $£ 4900$
Logic Monitors for
CMOS, HTL, DTL, TTL \& RTL
LM-1 Self-power clip on logic monitor
£28 70
LM-2 As LM-1, with fully isolated
power supply
£68.95
Postage, Packing and Insurance per
shipment $£ 1.25$
Please add 8\% VAT to overall total
Export orders: credit cards or internatior \equiv money orders, bank drafts and cheques drawn in $£$ sterling. Please add 10% (Eurc=: or $12 \frac{1}{2} \%$ (all other countries) to total pric₹

Now, from the breadboard specialistseven better boards!

Since the appearance of the first breadboards back in the ' 40 's, we've really been going places. (The U.K., for one.)
So we now have an exceptional range of prototyping products which are outstanding in their simplicity, versatility and reliability. Just see. (And for prices and specs., eyes left!)
 Experimentor Series. Low-cost, interlocking, solderless breadboard the world's first for 0.3 in . and 0.6 in. pitch DIPs.

The Protoboard Series.
Solderless breadboards with built-in 10\% regulated 5 V d.c. 1 A power supply; 2,250 solderless tie points; and capacity for DIPs of 14 to 40 pins.

Take a look at our low, low prices and quality specs., and get aboard! (Or if its data you're after, pick up the phone or drop us a line.)
For the best, from the specialists in breadboards.

2
Quick Test Series.
Low-cost, snap-locking solderless circuit boards for fast design with discrete components.

Cantinental Specialties Corporation (U.K.) Ltd., Unit 1, Shire Hill Industrial Estate, Dept. 9H Saffron Walden, Essex. CBII 3AO Telephone (0799) 21682 Telex 817477 Reg. in London: 1303780. \#AT No: 2248074 71. *Trade Mark applied for © CSC (UK) Ltd. 1977 Dealer enquiries welcome.

Please supply
M. Access/American Express/Barclaycard no. is All I want is data, please \square enclosed

TELEVISION

Last month we described the operation of the Tolinka chess recorder - this month we deal with construction.

LAST MONTH WE described the overall principles of the Tolinka Chess Recorder and in this final part of the project we shall describe the circuit from the hardware viewpoint and go on to give constructional details.
First inspect the board on both sides to see if any of the holes have been blocked by tinning. The easy way to clear such holes is to melt the solder and apply the sharp point of a pencil. Wipe the iron frequently on a damp sponge or cloth to avoid solder splashes

A Small Step

The first step in construction is to make the through board links support the board 4 mm approximately away from the bench surface by putting bolts in the corner holes. The side without the IC pads should be uppermost Each of the small round pads which has a counterpart on the opposite side of the board is a pin-through whereby connection must be made through the board. A piece of wire must be inserted into each of these holes and soldered on both sides of the board

The board should now be cleaned of flux with a cleaning agent and inspected against a strong light. Look for missed pin-throughs, solder bridges and lifted tracks checking with a continuity meter any suspected opens or shorts. Spend a lot of time at this stage because this is where faults are most likely to exist-it is possible for another observer to find obvious faults on a board which has passed a lengthy examination.

The ICs are inspected next

Socket It To Me

Use the socket strip provided for any IC with more than 16 pins The best way of socketing an IC is to push the pins into the socket strip and then trim off the surplus strip. Do not break off the pin carrier part of the strip until you are ready to switch on the power. This will keep the IC pins shorted together during the soldering
and assembly process. If desired socket strip or sockets may be used for the other ICs-and this is a wise precaution.

It is recommended that components be installed in the following sequence-first all discrete parts like resistors, capacitors and diodes; next integrated circuits and last the larger power supply capacitors and voltage regulators. Switches need not be installed until preliminary tests are completed and installation of the PCB behind the front panel has been carried out The panel then forms a template which aligns the switches correctly

Remember that the space above the board is limited and solder any bulky components beneath the board: this is certainly necessary for the power supply electrolytics. Leave the output pins of the voltage regulators unsoldered so that supplies may be checked without damage to the circuitry. Note that the power supply components are soldered directly to the tracks on the top of the board and only the wires of the electrolytics pass upwards from the underside of the board through holes. All voltage regulators are 'face down', the main 5 volt supply regulator being bolted to an area of circuit board which acts as a heat sink.

Testing Time

Turn on the mains and test power supply voltages before soldering the regulator output pins down to the supply rails Remove all ICs from their sockets and break off the pin carriers. Test voltages on supply rails again with the rails connected-do not of course fail to switch off the mains between tests If all is well then instal the ICs and check the rails again.

Tune the TV set to receive a picture. There will be more than one picture available in the tuning range
and the best one should be found If the picture has chessmen set up for the start of a game and move status information is correct then the printed circuit board may be installed beneath the lid of the box with the nuts, bolts and spacers provided and the keyboard switches soldered in place. If the device now functions correctly then attention may be turned to the cassette interface.

In an ideal world you could buy audio equipment which had standard sockets using standard signal levels at a standard impedence. This you could connect together with standard leads. The manufacturers of our world do not see things that way, however, and they make equipment with sockets, signal levels and impedances which are different from those of their rivals.

It will therefore be up to you, to decide upon these things as far as your own tape recorder is concerned. You might become involved in designing an attenuator to get things working properly. If you do not know how to do this and do not feel confident after reading the general remarks which follow, perhaps you really ought to be playing at something else.

The Ins and Outs

Outputs vary from millivolt level for a 5 pin DIN socket, but could be only available on a microphone input and earphone output. If inserting a plug into the socket cuts out the internal speaker the cutout switch should be disabled-try bridging it with a 33 ohm resistor. It is essential to hear the data and commentary. (Input/ Output can be the same pin)

It may be that volume and tone .controls have an effect on the output signal but this is not usual

Inputs vary from millivolt level for a dynamic mike to a high level-sometimes marked AUX The high level input should be used if

CHESS PART 2

available．The signal must be attenuated for a low level input to avoid overloading．Most recorders have Automatic Volume Control and this helps．The output from Tolinka is bursts of 3.9 khz at the data rate， which is 300 baud－or 150 Hz maximum，Every high bit generates 12 cycles aapproximately of the carrier The main source of interference may be regarded as being the data rate itself and some sort of high pass filter is needed at the input and output to remove it． Attenutation may also be required to match the recorder＇s input characteristics．A series capacitor followed by a shunt resistor will perform both these functions and in some cases even the shunt resistor is not required－it depends upon the recorder＇s input impedance．

If an oscilloscope is available the recorder＇s output may be observed and should consist of clean bursts of 39 kHz separated by level blank intervals．If the signal swings up and down with the data the recorder is receiving too much signal and the shunt resistor should be reduced until this effect disappears This process should not be carried to the point where the output level is reduced．

If in doubt use the following rules of thumb：
a）Put a 10 K pot between the output and ground，taking the signal from te slider．Reduce the input level until the sound loses volume on Diayback
a）Take the output from the earphone or headphone socket．This will a most certainly cut out the ＇Ecorder＇s internal speaker，but the switch should be easy to find and erdge with a 33 ohm resistor as zescribed earlier．Adjust volume on こうyback to obtain satisfactory ₹ $\equiv C A L L$ function Note setting of zoth controls and check this setting シージ time

Photograph of the circuit board taken during construction．The switches are not fitted until the board is ready to be mounted in the case－Initial testing being done without them in position．

One of the exclamations often heard at a Chess Congress is ＇J＇Adoube＇which is not a Russian four－ietter－word but a polite way of informing one＇s opponent that a piece is not situated in the centre of the square it is supposed to be occupying：－and this fact is bugging the exclaimer who intends to adjust it but does not wish to be committed to moving it subsequently according to the rules of the game

Tolinka has provision for moving
the pieces into the exact centre of their squares the＇J＇ADOUBE capacitor．This component（C5） loads one of the outputs of a binary counter introducing a propagation delay which is passed down the divider chain．The value mentioned in the parts list is satisfactory for all but the most neurotic．In order that centralization may be optimized provision has also been made to fit a resistor for fine adjustment which will explain two of those redundant holes

Fig. 1 Main circuit diagram of the Tolinka.

IC2 is National Semiconductor's SC/MP II. Its Program memory is stored in a 2708 type EPROM (1024 bytes). The character generator PROM (IC22) is a $74 \mathrm{~S} 471,256 \times 8$ in structure. The RAM chips are 2111 s , two (IC10 and 11) for game memory and one (IC14) for on-screen information. (There are 8 bits in game memory but only 4 in screen memory.) Top locations in game RAM are used as temporary stores for other informa. tion and this restricts the number of moves per player to 62 instead of 64 (four bytes are required to store a move).
Screen RAM is normally acidressed by the VDU divider chain's outputs but the MPU must be able to address the screen as well to move the pieces around and change the status information. The address lines are multiplexed through a pair of CMOS And/Or gates (IC 12 and 13). The vertical blanking signal is wired to a sense line of the MPU so that the MPU does not access the screen during the VIDEO INTERVAL which would produce annoying flicker.

The three lowest address lines of the MPU are connected to inverter gates (ICXX) which matrix the keyswitches in a three by four arrangement. Pressing any switch connects an inverted address line signal to one of four inputs of a tri-state buffer normally held high by a resistor (R18-21) to Vcc. When the buffer is selected the inverted address line may be read as data and the switch identified with a unique code by a process already described in the Software: How it Works.

Generation of a Video Signal

All frequencies used are derived from a single MASTER CLOCK which is the MPU's own on-chip oscillator. An L/C combination sets the frequency to 1.92 MHz which defines the shortest horizontal change interval on screen at about half a microsecond. The MASTER CLOCK is divided by ten (IC4a) to give the FILE interval. Eight FILES form the visible board but the FILE interval is divided by twelve in a four-stage binary counter. The A, $B \& C$ outputs of this counter are the LETTER addresses, the D output being the LINE BLANKING interval. Thus two-thirds of linescan are the chessboard.

During LINE BLANKING a R/C monostable (C18, R14) supplies the LINE SYNC pulse. Further division of the line interval by 32 gives the RANK interval which is taken from the \bar{t} th stage of a binary ripple counter (IC5): the 2nd, 3rd, 4 th \& 5 th outputs of this counter being the address lines to the character generator PROM. This PROM supplies the horizontal piece information as eight outputs in paraltel and changes this information every other line. The 6th, 7th \& 8th outputs of the ripple counter are the FIGURE addresses. The 9th output is the FIELD BLANKING pulse which is 'Anded' with the 7 th stage to reset the counter after 320 counts. 256 counts, or lines, are visible as the chessboard. During FIELD BLANKING monostable (C7, R13) supplies the FIELD SYNC pulse.

LINE BLANKING is also connected to the character generator PROM to select Status Figures presentation instead of chess pieces The same LINE BLANKING signal also permits the 4th output of the Board RAM, whice contains the COLOUR BIT during the Chessboard interval, to address the charactes generator PROM instead of the 2nd output of the vertical binary ripple counter. (The COLOUR BIT is normally 'Exclusive-Or' with the pieces during the Chess boarg interval to control their colour.) This is because the larger character set of Status Figures symbols are required thas Chesspieces - and loss of vertical resolutiog (cut by half) is the price which must be paid

The eight parallel outputs of the charactegenerator PROM are converted to a SE-: data stream in the Video Shift Regis: (IC21), driven by the MASTER CLOCK loaded by the FILE signal.

SQUARE COLOUR is derived from RAN: and FILE by Exclusive-Or function. SQUA= COLOUR, LINE BLANKING and COLOT BIT are aligned with SERIAL VIDEO by type Flip Flop clocked by FILE.

LINE SYNC and FIELD SYNC are as: passed through an Exclusive OR gate to fo:MIXED SYNC.

SERIAL VIDEO is combined with COI OUR BIT, LINE BLANKING, FIELD BL. KING, etc. to form two mutually exclus. signals WHITING and BLACKING.

Fig. 2 The Tolinka's power supply is a straightforward design based on three monolithic regulators.

The photograph right shows how the power supply capacitors are mounted beneath the board and the wire link. Note that this photo was taken before the board was complete and not all components are in position.

BUYLINES

A complete kit of parts for this project will be available only from Videotime Products, 56 Queens Road, Basingstoke, Hants, RG21 1REA for the all inclusive price of $£ 109.50$.

Individual parts are also to be made available but Videotime will offer help, advice and a repair service only to readers who purchase the complete kit. Note also that software, piece design PCB pattern, etc, are subject to copyright.

HOW IT WORKS

The video signal is formed by combining SENC. SQUARE COLOUR, WHITING and 3LACKING at a summing point. SYNC is erenected to Q 2 which clamps the summing कुष्टा (junction of R10, 12 and 15) to ground 르ำย SYNC is high. BLACKING is a wergetive going signal connected to the sumFI二g point through diode D4: when 3EACKING is low the summing point is camped a diode drop above ground. - IIIING pulls the summing point up wards the positive rail through resistor ITI SQUARE COLOUR is connected to the ming point through a higher value resisIZ R1 and supplies two shades of grey when 3 other signal is present.
The signal is attenuated and passed trogh an emitter-follower to form a low - edance standard form video signal of nornamately $!$ volt peak to peak. This Hen is used to drive a UHF modulator
T-A reason that the SERIAL VIDEO outpar of IC21 is passed through a couple of E-c inverter gates is to equalize propagazelavs. Otherwise the black pieces have - hirite edges.

Cxsette Interface

FTIE E-ited bandwidth available in audio -serte recording equipment does not perzerial data to be recorded directly. Some Fmon of modulation is required.

In Tolinka data is recorded as bursts of a single frequency. On playback other frequencies can be filtered out and the demodulation process performed with a diode.

Three CMOS gates are used as the Modem in the final design. Any CMOS inverter will operate as a linear amplifier if a resistor is used between input and output. In this condition it may be regarded as an Op-Amp which has its non-inverting input connected to ground. A limited voltage gain of about 60 is available. The output data comes from the serial output port of the MPU and is combined with a signal of 3.9 KHz from the VDU divider in an AND gate. This supplies bursts of 3.9 KHz at data rate which can be recorded on tape.

The recovered signal is filtered by a CMOS inverter configured as a high pass filter. This rejects low frequencies at data rate and in the speech band. The output of this inverter, which consists of high amplitude bursts of 3.9 KHz , is connected to the cathode of D5. The anode of D5 is taken to the input of another inverter and a low pass filter, consisting of a resistor (R26) to the positive rail and a capacitor (C12) to ground: Gates in the same package have similar transistion points - so when there is no input the output remains at ground level. If 3.9 KHz oscillations are present at the input the output is high. The demodulated transmission is fed to the MPU's serial input.

Power-on Reset

The MPU has a Reset input which clears all internal registers and restarts operations with the first instruction after it has been brought low for a specific interval of time. This function occurs when Tolinka is first switched-on and is not required again by the user.

At first sight this circuit seems to be overdesigned. In fact correct initiation of proceedings is vital and reliability suffers if any of the components are omitted. The diode connected across the charging resistor ensures that the capacitor will discharge if the power is interrupted only briefly.

ROM Select Diodes

The ROM occupies the first kilobyte of addressing space and it would seem logical to connect its Chip Select input directly to A 10 because no write instructions will be made in this area. Conflict would still take place because the MPU outputs data on the bus at the start of the instruction fetch operation this data consists of flags and upper address bits and none of it is used by Tolinka. The conflict would be harmless but for the fact that a Video Signal is being produced and processed at the same clock rate as the MPU which produces a faint pattern on screen if the Chip Select diodes are omitted.

PARTS LIST

RESISTORS	
R1, 11, 13, 14	22k
R2, 8, 9, 18, 19	
20, 21, 22, 23	10k
R3, 4, 5, 10, 15	6k8
R6, 7, 16, 17	1 kO
R25	220k
R26	100k
R12, 14	3k3
CAPACITORS	
C1, 18, 19	3 tant
C.	polysty

C3	680p polystyrene
C4, 6, 9	47u 6V3 tantalum
C5	470p polystyrene
C7, 11, 12 13,	1510 n ceramic
C8	220p polystyrene
C10	1000u 16 V elec-
trolytic	
C14	In0 ceramic
C16	330 u 16 V electrolytic
C17	220 u 16 V electrolytic
SEMICONDUCTO	ORS
IC1	MM2708
IC2	INS8060
IC3	74LS08

IC4	CD4520
IC5	CD4040
IC6	CD4081
IC7	CD4001
IC8	CD4042
IC9	CD4049
IC10, 11, 14	MM2111
IC12,13	CD4019
IC15	CD4070
IC16,19	CD4011
IC17	CD4066
IC18	CD4503
IC20	CD4025
IC21	$74 C 165$
IC22	$74 S 471$
IC23	LM341-P5

IC24	78 L 12
IC25	$79 \mathrm{LO5}$
Q1,2	ZTX300
D1-5	1N914
D6-10	1N4001
INDUCTOR	
L1	250 u

MISCELLANEOUS
PCB, transformer $(0-8 ; 0.8$ at 500 mA$)$. UHF modulator, switches (Schoeller- 12) off), case to suit, sockes, (Schoeller-12 bolts etc.

‘TOLINKA’ CHESS REPORTER -FULL KIT OF PARTS

‘ATARI’ VIDEO COMPUTER

- READY BUILT

CARTRIDGE SYSTEM (ROM)
The original unit used in conjunction with the World Chess Championship at Manilla, August ' 78 , by both Chess Champion Viktor Korchnoi and BBC TV news.

Records every game step, auto en passant. queening and castling. Entire games may be recorded on most domestic cassette recorders. Based on 8060 Mk II Scamp. Full kit including all components - No extras required -£109.50*

Designed and built by Atari (part of Warner Comms) in the USA this unit is the most
advanced centre available advanced centre available
Just look at a few of the cartridges (up to 50 games each) avaliable in full glorious
mult-colour and very realistic on TV Sounds

Examples of some of the many cartridges available Combat. Air Sea Batles. Space War Outlaw Video Otympics, Surkiund. Black Jack, Breakout, Bosk Math

The Video Computer (based on Signetics 2650) comes camplete with 27 Game Combot Cartridge hanks, bi-planes, bormbers, jatsj 2 ;oysticks 2 rolational controllers mains adaptor and aerial switching unil Fully guarantefd for 12 months. $\$ 169.95$ * Additional Cartridges (over 21'due by early '79) mostly priced at £14.95*

Full Colour Brochure available on request

BARGAIN TV GAMES KITS AND COMPONENTS

Stand Alone Kits

Kits - full instructions, all PCB components Mini-kits - instructions, chip,
skt, coil. PCB

B\&W Tank Battle (AY-3-8710)
B\&W Stunt Rider (AY-3-8765)
B\&W Road Race (AY-3-8603)
B\&W 10 Game B/B (AY. 3.8610)
NEW B\&W Submarine (AY-3-8605) B\&W Wipeout (AY-3-8606)
kits minikits $£ 15.90 \quad £ 9.75$ $£ 15.90 \quad £ 9.75$
$£ 15.90$ £ 9.95 $\begin{array}{ll}£ 15.90 & £ 9.95 \\ £ 14.90 & £ 8.50\end{array}$ $\begin{array}{ll}£ 14.90 & £ 8.50 \\ £ 13.90 & £ 8.50\end{array}$ TBA TBA £14.90 £8.50

Astec Modulators \& Encoders

UM1 1263 Sound Osc
UM1111 E36 UHF Mod

UM 1233 UHF (high quality)
UM1168 Pal Encoder
8.95
84.95

UM1163 Pal Enc+UHF Mod
$\varepsilon 4.95$
$£ 2.50$
European Equivalents available
£4.95

Presentation boxes not included. Please add 65p

« Prices include VAT, packing \& delivery charges and money back guarantee Send cheque or P.O to
(Trade \& Export Enquiries welcome)

Accessories

AE Joystuck controls 200k.ilin
Crystal 441.95
Crystal $4.4 \mathrm{Mhz} \quad £ 1.00$ Oscillar $3.57 \mathrm{Mhz} \quad \mathbf{E 1 . 2 5}$ Mains adaptor 150 E 0.45

[^4]

SWITCH IN LINE SAVES NONE?

Stan Curtis of Mission Electronics, author of our series on super-fi amp design is back with us again to explain the faults inherent in many widely used comparative hi-fi tests. In particular he has a few things to say about switching methods

A SIGNIFICANT RE-APPRAISAL of amplifier design has been seen in the past few years. The revival of serious listening tests (so called "subjective" testing) has shown that laboratory measurements alone are not sufficient to indicate the performance of the amplifier when it is connected to real loudspeakers and pick-up cartridges and fed with a music signal. But it is crucially important that these listening tests be set up with great care. When different amplifiers are compared their gains should be equalised so that their outputs are within 0.1 dB of each other and preferably within 0.05 dB

Such level changes could be incorrectly interpreted as differences in amplifier performance. The design of the passive attenuators is important to prevent any significant loading of the circuitry or any imbalancing of impedances which could upset passive filter roll-offs and so alter the frequency response of the system. Even the choice of test signal is important when setting levels Traditionally a sine wave of 1 Hz or 400 Hz has been used. However, the author prefers to use a noise source fed via a bandwidth limiting filter (to prevent any error by the different frequency responses of the amplifiers) as this more realistically simulates the dynamic conditions

Care should also be taken in the interconnection of the different amplifiers. All connections should be as, short as possible using very high quality and identical (in length and quality) cables. Wherever connections have to be made (other than at the amplifier or loudspeaker) high-quality gold-plated instrumentation connectors should be used in preference, to the rather suspect RCA Fhono and DIN Connectors

Switch Your Contacts

The next problem area is that of switching. Switching the outputs of the different amplifiers to a loudspeaker tan be done using high-current, high-conductivity lever of knife switches. Relays can cause problems unless they meve very strong springs; good contact design; highcurent capability; and are new. The subject of switch contacts is quite complex but can be summed up as lollows. A metal to metal contact is rarely a true "short eircuit,

An almost invisible layer of oxidation or contaminasingn forms on the contacts This oxidation increases the antiact resistance but more importantly forms a non--aarlunction that can in some ways be considered to be a soltage dependent diode-rectifier. The effect on the

Above: equivalent circuit of a mechanical switch. As you can see it is far from simple! Left: a good linear contact involves breaking the metal surface.
music signal at low levels can be imagined and - more importantly - heard! Even "pure" gold contacts and "self-cleaning" contacts suffer from this problem. A good contact can only be achieved when one contact breaks the surface of, and penetrates, the other contact metal. However, only a limited number of switching actions can occur before the contact material is sufficiently worn or damaged for inconsistent performance. Although this problem is discussed here in relation to testing it has as much significance in the design of the switches used in the amplifier

When it comes to switching the output of the cartridges the imperfections of the switches have so much effect upon the audible quality of the signal that the listening test ceases to have any real validity.

Test point

The test itself needs further thought. The listening panel should be experienced listeners and yet not be part of a "clique" where views are remarkable for the way they follow the "party line." Testing should be conducted over two or more sessions. Short sessions to perceive the performance of the amplifiers before aural fatigue sets in: and longer sessions with each individual amplifier to judge whether such fatigue is caused by the amplifier and to judge whether the apparent improvement it offered was a "flash in the pan.

STRAIGHT LINE TEST
Fig. 2. The straight wire test. First popularised by Peter Walker of Acoustical Manufacturing (or Ouady this testimethod has gained wider acceptance of late. It has its faults however.

During the initial sessions a number of "check" changes should be made to detect cheating (deliberate or involuntary) i.e. running amplifier No. 3 a second time as amplifier No. 7. Between each piece of music the reference numbers should be changed to minimise the effects of pre-conception. For example; if amplifier No. 3 is disliked for its reproduction of a bass drum, it may then be subconciously disliked on other pieces of music. Of course the tests should as far as possible, be conducted blind.

A popular "subjective" test in use is the "Straight Wire Test." In this test the amplifier under evaluation is fitted with an attenuator at the output and substituted for a straight wire. The resulting signal is fed to a
"reference" amplifier and loudspeakers of known performance. Such a test is of help in evaluating the dependence of the amplifier on the loading made by different loudspeakers. But otherwise this test must be considered suspect. The "reference" amplifier may be far from perfect and it may well mask subtle changes. The dynamic interactions of two units in series can be quite complex and very difficult to predict in advance.

The foregoing (brief and incomplete) discussion of subjective testing serves only to indicate the difficulties that can be encountered. The reader should only consider seriously those comparative reviews where considerable effort has been expended to eliminate errors due to equipment and human beings.

ET

£2.50 + 25p P\&P
 DQGAM...

£1.00 + 25p P\&P

ght warning. LM380 droulis, temperature afarm, aertal matcher, UHF TV preamp, metal locator, four -Inpu mixer. IC power supply, rumble fifter ic tester, figition timing light, 50 W steren amp. plus many more. - Tincludes was so popular that it is now-sold mut

4-Includes
expet tixteen stereo amp, waa-waa, audio level meter reminder dual-eracking, car theft alarm, headligh meter temperature meter intruder alarm, touch switch push-button dimmer, exposure meter, photo timer electronic dice, high-power beacon, electronic one-armed bandit!
5-Twenty-twa complete projects, including
5 sere amp. stage mixer, disco mixer touch organ. acidio limiter. infra.red intruder alarm model tratin reinkroller, reaction tester headphone radio. STD Limer double dice gen. purpose power supply. logic tester power meter, difital volimetes, universal timer. break down beacon, heart rate monstor. IB metal locator Emperature minet
6-just miotsince meluge
Graphic equaliser. $50-100 \mathrm{~W}$ amp. modules, active alarm pink noise generator aweep oscillator mark generator audio-visual metronime LED dice, sket gan generator audio-visual metronime, LED dice, skeet game
lie detector, disco light show....

computing today Nor

November 78
more on TRITON

THE NEW MAGAZINE FOR SMALL SYSTEMS WITH BIG IDEAS

To
rally Agc
"Minim "in $_{3}^{3}$

III

Hop on a Nasbus to 32K of memory now

The Nascom - 1 is designed with expansion in mind. This is made possible by using the best products available. The Z 80 microprocessor incorporated in the basic system is so powerful it can support 64 K bytes of memory and 256 ports. To utilize this capability, we have designed the buffered 77 - way Nasbus.
With this arrangement, the way is clear for considerable expansion, starting with our new memory expansion board. It has 16 memory sockets and two EPROM sockets. Therefore, you can fill it with 4 K dynamic RAM up to a maximum 8 K or with 16 K dynamic RAM up to a maximum of 32 K . A 2 K Tiny BASIC in EPROM has been developed for the board.
To go with the board, we have produced a very flexible I.O board with three PIOs each giving two, 8bit ports, plus a UART for serial interface.

As you start building up your Nascom system you will need a convenient means of storing boards. Our new, custom-designed, Vero frame

UK National Distributors

Camera Centre,
Barrow-in-Furness, Cumbria
Crystal Electronics,
Torquay, Devon
Electrovalue,
Egham \& Manchester
Eley Electronics,
Glenfield, Leicester
Henry's Radio,
London W2

Lock Distribution,
Oldham, Lancs
Lynx Electronics, Chesham, Bucks

Microdigital,

Liverpool L2

Teleplay,

New Barnet, Herts

Please send me

....................... tickets to your seminar at $£ 4.50$ each and further details on Nascom-1 expansion products/Nascom-1 Kit/Int. Nascom Microcomputer Club.*
*delete as applicable

Nascom Microcomputers
92 Broad Street, Chesham, Bucks.
Tel: (02405) 75151
will allow for a Nascom - 1 to link through a buffer board to a 77 -way Motherboard. There is then the option of eight or more expansion boards. To power this capability there is a new 8.5 amp power supply especially designed for the frame.

No other system offers so much at such a low cost. And it all starts with the basic Nascom 1 kit which for just $£ 197.50$ offers an intelligently usable system with video and cassette interface, a full alpha-numeric keyboard and a mighty CPU chip. So if you want the best - make it a Nascom system.

Nascom-1 Kit still only £197.50 +VAT

Stop press...

Microcomputer Seminar
Nascom Microcomputer's highly successful seminar is coming to Bristol. The programme will be similar to London and Manchester, both of which were sold out. The day includes five lectures, demonstrations and an open forum. Venue is the Dragonara Hotel, Bristol, Saturday, October 14th, 09.50 to 17.30

Admission: $£ 4.50$ (inc. VAT). Lunch will be available at $£ 4.00$ (inc. VAT) per head if there is sufficient demand.

Name
Address

Tel. No

Cut out coupon and post to Nascom Microcomputers. Cheques and PO's should be made payable to Nascom Microcomputers.

computing today

NO 1 november 1978

NASCOM 1 REVIEW BASIC EXPLAINED CUTS CARD
TRITON IMPRESSIONS
EAST COAST REPORT
TRITON BASIC MICROFILE
5 Nice one NASCOM
9 Say no more
15 CUTS above the rest 19 Colling all TRITON users 21 Important show for US 23 Try it on Triton
30 Gary Evans in training

All products brand new with full industrial specification
EDITORIAL ADVERTISING PRODUCTION

Halvon W. Moorshead Ron Harris B.Sc Gary Evans Jim Perry
Phil Cohen B.Sc, William King John Koblanski Steve Ramsahadeo Paul Edwards Margaret Hewitt Andrew Scott Kim Hamlin, Bren Goodwin Tim Salmon, Val Tregidgo Mark Strathern (Manager), Tom Moloney

INTRODUCTION

The first issue of any magazine is an exciting time certainly for the people working on the project and, hopefully, for the readers. Computing Today, although presented free with ETI, is just such a new magazine, which will have a style and identity of its own.

Computing Today will cover the fields of computing, from the home, education, and small business viewpoints. Computing to us will mean everything from the complete small business system, floppies and all, to a single bit micro in a control application.
The growth of small systems over the past few :ears has been astounding the reasons for this growth are many and varied - we won't go into them here - and it is our hope that the next few years will see this expansion maintained.
One of the reasons for launching Computing Today was the fact that it was no longer possible to devote remough space within ETI to cover this important area © small systems without sacrificing other features of ETI that are equally important to many of our zaders. ETI plus CT will allow us to keep everybody tappy.
Although this first issue of CT is only 32 pages, if T-e growth we mentioned is maintained, rest assured تat CT will grow to keep pace.
This first issue of CT is published to coincide with -te launch of the TRITON, an exciting new system for the hobbyist/education areas. CT has similar, equally exeting projects in the pipeline and if you don't want 0 miss out on important news and developments in Computing be sure to read us every month.

The new low cost VDU - Tangerine 1648 (See page $16, \mathrm{ETI}, \mathrm{Oct} \cdot 78$ for feature details)

ORDERING INFORMATION

The normal KIT price is $£ 139.86$, which includes postage, packing and insurance and VAT@8\%.HOWEVER, as an introductory gesture we are discounting this price by £10, for all orders received postmarked BEFORE $\mathbf{1 2 t h}$ December, 1978.
If you require further information, send an A4 sized self-addressed envelope. If you wish to purchase a kit please send a cheque or money order made payable to:

TANGERINE COMPUTER SYSTEMS LIMITED

RIVERMILL LODGE, LONDON ROAD, ST. IVES, CAMBS. PE17 4BR
Tel. St. Ives (0480) 65666

B-BUIG

SUPER SMART NEW MONITOR FOR NASCOM OWNERS

FEATURES INCLUDE:-FULLY COMPATIBLE with existing hardware/software; NEW TAPE I/O 4 TIMES FASTER with extensive error checking (see cassettes below); INTELLIGENT COPY command for program relocation; ARITHMETIC for address and offset calculation; HEX KEYBOARD function - throw away your ASCII tables!; SUPERSHIFT allows all displayable characters to be entered from the keyboard; FLAG DISPLAY shows the flags set $-\mathrm{C}, \mathrm{Z}$ etc. when using the EXTENDED REGISTER DISPLAY which shows the IX, IY etc. registers as well; SUBROUTINES include:-PSEUDO RANDOM NUMBER GENERATOR; ASCII to PACKED BCD and vice-versa; VARIABLE INTERRUPTABLE DELAY; CHARACTER STRING OUTPUT; TABLE SEARCH; STRING OUTPUT; CURSOR MOVEMENT; AUTO-RUN facility allows a high-speed tape to be loaded and program executed with no operator intervention.
B.BUG is supplied in 2×2708 EPROMS which plug into your existing sockets. NO MODIFICATIONS NEEDED. Demand will be high and orders will be handled in strict rotation. Delivery currently ex-stock so ORDER NOW AND BE A 'B.B.'!

B-BUG in 2×2708 's only $£ 23.40$ including documentation.
 C10 DATA CASSETTES . . . 35 pence each (Nascom, Pet, TRS80, Apple, etc.)

Please add 30p p\&p for orders under £10. VAT inclusive. E\&O.E. Dealer enquiries welcome.

> VIEWFAX LTD.
> KING EDWARD BUILDING, CORPORATION STREET, BIRMINGHAM B4 6SE.

We take a look at one of the most advanced CPUs evaluation kits

The Nascom 1 Reviewed

THE NASCOM 1 Microcomputer kit was launched by Lynx Electronics at the Wembley Conference in November 1977. At that time, a sales figure of 500 kits was anticipated but it has been so popular that orders in excess of 10000 kits have now been received. A look at the main features of Nascom 1 will explain this success.

For £197.50, you get:
A Z-80 CPU,
an uncommitted PIO,
2 K of static RAM,
a powerful 1 K monitor (in a 2708 EPROM),
a TV modulator,
a full keyboard (assembled),
cassette or RS 232 interface (but not both at the same time),
an IM6402 UART,
a double-sided PCB with plated-through holes,
all other active and passive components, wire, solder and complete documentation.

The system is easily expandable through a 43 -way edge connector but there is no on-board buffering (due to cost) although Nascom's plans for future expansion include a buffer board. In order to have a working microcomputer, only a power supply and a domestic TV need be supplied, plus an ordinary portable cassette machine for program storage.

Construction

Constructing the kit is an easy task for the experienced constructor and even the first-timer should have no difficulty, providing the detailed and comprehensive instructions are followed carefully. It is, if anything, a little tedious - there are over 50 ICs, sockets are provided for all of them.

The PCB is worth special mention for its superb quality - a really professional job. All component and wiring positions are clearly marked on the board in a totally unambiguous fashion and since the instructions include a detailed section on component identification, there should be no location problems. The PCB has wire links to be made, each selecting a possible user option. Two deal with I/O port and memory selection, three with the UART and one with the on-board crystal clock. The instructions show standard connections for these links and explain the variations. They could also be replaced by miniature :oggle switches to allow experimentation.

The keyboard is supplied pre-assembled and needs only the addition of the RESET switch to complete it. Again due to cost considerations, it is not ASCII coded, but is scanned by hardware under software control. Early keyboards had no engraving on the key tops for shifted characters but this has been corrected in a new version, which also has a more positive key action. However, both suffer from the amazing lack of a left-hand shift key!

Another minor criticism is the method of connection between the PCB and the keyboard. A multicore cable with a 16 pin DIL header plug is used at each end, which means that any strain on the cable is taken by the soldered joints. A proper ribbon cable with crimped connections to header plugs would be a much more satisfactory solution.

Power supply

The power supply requirements are:

> +12V@150mA,
+5V@2A.
-5V@90mA
and - 12V @ 12mA (for RS232 only).
Lynx supply a PSU kit as an extra but it does rather let down an otherwise excellent product. The kindest thing I could say about the design is that it is unusual. It allows for further PSU kits to be 'parallelled off' for expansion. Early PCBs also has the + and - rail markings reversed - one of the IC regulators' connections are incorrect, although the outline is right. There is no provision for diodes to protect against

Fig. 1. Circuit to overcome 'snow' on multiple VDU RAM access.

Fig. 2. System memory
voltage crossover (although diodes are supplied in the kit).

Now for the good news - the PSU is being completely re-designed and the parallel expansion approach dropped. Instead there will be an 8 amp kit for larger systems.

Memory and vDU

Before moving on to the operation of the kit, there are a couple of other hardware points to be mentioned. Firstly, the arrangement for resetting the CPU (by means of the RESET switch) would have to be altered for use with dynamic RAM expansion. CPU operation is suspended for as long as the RESET button is held down, so dynamic RAMs (assuming they are refreshed by the Z-80) would soon forget what they were doing. The buffer board will contain circuitry to correct this.

Secondly, the modulator seems to produce a very noisy signal. Picture quality is, to a large extent, dependant on the ability of a domestic TV to reject noise. Fortunately, commercial modulators are very cheap to buy and easy to fit to the NASCOM 1, as there is a $1 V$ video signal output from the board.

NASCOM 1 uses a memory-mapped VDU, which means that the video RAM is shared with the CPU, the latter having priority. The instructions say that the video is blanked during VDU RAM access by the CPU but this is only partially true. In fact, the blanking signal (VDUSEL) is not long enough, so that a noise signal which shows as 'snow', especially on multiple VDU RAM access, appears on the screen.

This can be simply corrected by using the circuit in Fig. 1 Pin 5 of IC 11 should be bent out from the socket and the connection made with an insulated 'sodercon' socket. Increase the potentiometer value until the snow just disappears.

Display Format

The format of the display is 48 characters wide by 16 lines deep, which produces a very readable picture on a domestic TV. The remaining 256 bytes ($1024-$ (48 x $16)=256$) of the 1 K video RAM block are in the margin of the display, since the video RAM address counter is not disabled during the undisplayed portions of the video signal. In addition, the bottom 15 lines of the display (plus margins) are scrolled by the monitor, making the unused RAM locations useless.

The fact that only 15 lines are scrolled leaves the top line for header text or data. This is a very useful feature, since almost all programs can make use of a fixed display line. Figure 4 gives details of the VDU addressing and scrolling.

Operating System

The operating system is held in a $2708(1 \mathrm{~K} \times 8)$ EPROM, which goes by the name of NASBUG. Since July, kits have been supplied containing NASBUG MK2 as the original version contained an error in the serial input routine and a couple of errors in the keyboard look-up table. However, these facts should not detract from the excellent software which is crammed into the 1 K of NASBUG.

To call a command, only a single letter need be entered, followed by a number of arguments in HEX. Leading zeroes may always be omitted on input.
The commands are as follows:

modify: M aaaa

The monitor responds by printing address aaaa followed by the contents of that memory location, followed by a prompt and the cursor. If only examination of the memory location is required, pressing NEWLINE will step through the memory sequentially, printing information in the same format. The command is aborted by fullstop newline. Memory may be modified by entering new data after the prompt.

tabulate: T aaaabbbb

Prints on the screen the contents of memory between addresses aaaa and bbbb.
copy: C aaaa bbbb ccec
Copies a block of memory, length cccc, from address aaaa to bbbb. Care must be taken that either bbbb is greater than aaaa plus cccc or that bbbb is less than aaaa, otherwise the data block will be corrupted.

execute: E aaaa

Executes a program starting at address aaaa. There are two occasions when no argument is required. Firstly, if a program is aborted by the RESET button, E NEWLINE will cause execution to start at the same place as the previous E command. Secondly, at a breakpoint. E with no argument will cause execution to resume from the breakpoint.

break: B aaaa

Will insert a special code at address aaaa in a user program. When this code is encountered during execution it will cause the program to stop, display

Fig. 4. VDU diagram
the registers and transfer control to the monitor. This means that any of the monitor commands may then be used. The BREAK command together with the STEP command provide very powerful debugging tools.

step: S aaaa

Will cause single step execution from address aaaa, with the registers displayed as in break at each step. Once single stepping is started, only NEWLINE need be pressed for the next stop and as with the execute command, the address will be assumed at a breakpoint.

dump: D aaaa bbbb

Dumps the contents of memory locations aaaa to bbbb to the serial output. Data is sent in blocks of 8 bytes, each with an address and checksum.

load: L

The opposite of dump. Loads data from the serial input (usually from cassette). The input format is the same as the dump output format (which is useful!).

Reflective Addressing

The monitor is made even more powerful by the use of 'reflective addressing' in the RAM. Some of the major routine addresses and data are found by the monitor by looking in certain RAM locations. The locations are set up at RESET but they can be changed manually (or during the course of a program).

The following data are found reflectively:
NMI routine address (used in single step and breakpoint exit),
command table address,
CRT address which controls cursor and scrolling, keyboard scanning routine address,
address of the keyboard lookup table and its length
and the stack pointer address for user programs (i.e. end of RAM).

The use of reflection and a scanning keyboard gives NASCOM. 1 the advantage that the meaning of the

keys may be changed with ease and various combinations of simultaneous key pressing can easily be detected and acted upon. An example of the use of this feature is a program called SUPERSHIFT, by Richard Beal. The @ key is utilised as a sort of control key, enabling the complete character set of the MCM 6576 character generator to be used via the keyboard.

Summary

Overall, the NASCOM 1 is an excellent unit. It is easy to level criticism at any product, especially one which has been designed down to a price. rather than up to a specification, but I think that the compromise has been very successful in this case. There have been delays in the delivery, mainly caused by underestimation of demand, which in turn has caused delays in the development and despatch of the advertised add-on goodies (up to and including mini-floppy). Hurry up, Lynx.

To finish on a personal note, I've been using my NASCOM 1 for about 5 months (it worked first time) and I am very happy indeed with it. I can hardly wait for 16 K and an assembler (MENTAL NOTE: Must send Christmas card to bank manager), although I am continually surprised at what can be squeezed into the 944 bytes available. The monitor is easy to use and fairly comprehensive, bearing in mind that it is only 1 K . Debugging is a doddle with breakpoint and single step. NASCOM 1 is a real microcomputer at a relatively low cost and should be easily expandable to a really powerful system.

CTI

THE TOTAL SOLUTION FROM ALMARC

OF COURSE!

Now Almarc \& Vector Grephic offer the complete solution to your computing needs for $£ 2300,00^{\circ}$ The Vector MZ needs only the addition of a V.D.U. and it's ready to go. Completely assembled and fully tested, the Vector MZ offers the following features as standard -

- S-100 bus
- 4 MHz Z80A processor
- 158 instructions
- Two quad density Micropolis floppies - over 630k bytes on line Serial port
- Two parallel ports
- 32 K static ram
- 12 K prom / ram board with extended monitor

Simply connect your peripherals (Elbit V.D.Us \& Centronics printers are available from Almarc) and you're up and running and, because the MZ uses the $\mathrm{S}-100$ bus, you can plug in a massive range of add-on units.
Ring or write for a demonstration to -

ALMARC DATA SYSTEMS LTD.

29 Chesterfield Drive
Burton Joyce, Nottingham
Tel: 0602248565
'Discount terms available

SPECIAL PURCHASE-MITE

BRAND NEW SURPLUS ONLY f 75
$+£ 3.50$ P \&P + 8\% VAT
(Mail order total £84.78) 123P Alphanumeric printer mechanisms
Solenoid-operated page printer using standard reversible typewriter ribbon. Prints standard 64-ASCII character set on $81 / 2^{\prime \prime}$ paper (80 characters per line, 6 lines to the inch). Maximum speed 11 cps. Power requirements 115VDC Compact, light-weight unit $93 / 4 \mathrm{lbs}$ $12^{\prime \prime} \times 9^{\prime \prime} \times 23 / 4^{\prime \prime}$. Supplied complete with full technical manual.

We also specialise in: DEC minis - PDP8 and PDP11 processors, add-on memory, peripherals and spares Hard copy terminals - ASR 33 and KSR 33 Teletypes, Data Dynamics 390 , Texas Silent 700 Send for complete lists.

ELECTRONIC BROKERS LTD.

49-53 Pancras Road, London NW1 20B Tel: 01-837 7781. Telex: 298694.

Model H-1200: Specification as for $\mathrm{H}-1000$ except 24 lines of 80 characters displayed. Price $\mathbf{£ 4 2 5 . 0 0}+$ carriage + VAT.
Model H-2000: Buffered/Editing model with direct cursor addressing, dual intensity video, and detachable keyboard with separate numeric and edit clusters. 27 lines of 74 characters Price $£ 495.00$ + carriage + VAT

This month we feature the first part of a software teaching series

Beginning BASIC

PART 1 Agoriulus and lix tux ciats

IT IS, UNFORTUNATELY, VERY EASY when watching a computer in action to subconsciously endow the machine with intelligence - under no circumstances is this the case.

Regardless of whether you are programming in the simplest of machine codes or the most sophisticated of high level languages, there is no way that the computer can do anything other than what it has been programmed to do, and the signs of intelligence that we seem to detect are present only because of the skill of the programmer. In fact, programming today is becoming quite a major business area, simply because of the amount of skill involved. As with every other trade, however, there are various tools which are at the disposal of the programer to help in in his work - one of the most important of these being the flow chart.

It does not matter what language we program in, be it machine code or BASIC, the technique of drawing and using flow charts is always the same.

We start with a problem, find an algorithm (finding an algorithm for a problem means finding a method of giving a complete and correct solution to the problem in a finite number of steps) to solve the problem, draw the flow chart and then write the program from the flow chart. In order that one programer can understand another's work, certain conventions are adopted when drawing flow charts (see Fig 1).

As a first example of algorithm and flow chart drawing, we will take the case of a young person applying for membership of a Social Club, wishing to discover what fees are payable as an annual subscription.

Consider the following -
The annual subscription for a man is $£ 10$, unless he is under the age of 25 , when the subscription shall be halved. The annual subscription for a woman shall be $\$$. unless she is under 25 , when the subscription shall te halved. Married women applying for membership stall be charged half the amount payable by a single - oman over 25 ."

In this instance, it is unnecessary to find an \#gorithm to solve the problem as we are only going at use the flow chart as a means of simplifying the wealth of information given above (see Fig 2).

So for example, if you are a married female, it takes anly a moment's glance at Fig 2 to answer the -uestions "Are you a man?" (no) and "are you merried?" (yes) to arrive at the knowledge that your E-rual subscription shall be $£ 4$.

Wou can see from this example how the flow chart - 0 os to clarify and simplify an otherwise apparently omplicated problem.

We will now go on to consider the generation of an algorithm, and to see how a flow chart can be drawn -riee an algorithm has been obtained. As an example,

Fig. 1. Flowcharting symbols
we will look at how it might be possible to get a computer to generate a representation of, and randomly shuffle, a pack of cards.

The first thing we need to do is to decide what would be an acceptable representation of the pack. We could reasonably consider the problem solved if the computer could be made to generate a list of the numbers 1 to 52 in a random order, so that each number from 1 to 52 would represent a different card.

The first method that springs to mind is to get the computer to open a set of 52 storage locations. The first random number between 1 and 52 can then be generated and placed in storage location number 1 (the method used to generate the random numbers is

Fig. 2. Fee fie foe or fum?
unimportant as far as the flow chart is concerned). A second random number is then generated and placed in storage location number 2, a third number in storage location 3, and so on until all 52 storage locations have been filled.

Fig 3 shows a flow chart to describe this algorithm That appeared quite simple, didn't it? But if we give the problem some further consideration, you will see it is possible, since the numbers we are generating are random, to have generated two numbers which are the same. Indeed, this is most likely. This would mean that we would have at least two cards the same within one pack, and so our algorithm must be considered incomplete (though on the right track). To make the algorithm work correctly, we will have to include some form of check to ensure that when a number is generated which has already been used, it is not included in the list (see Fig 4 for a flow chart which takes this point into account). If you look through Fig 4, you will see that a number is generated and then a check is made through all the storage locations that have already been filled to see if the number we have just generated has occurred before. If it has, then the number is ignored and a new random number is generated and checked; if it has not, then it is inserted into the next empty storage location. We then jump back and generate another random number and the process continues until all 52 storage locations have been filled.
This algorithm and subsequent flow chart would appear to be quite sufficient to solve the problem. But

Fig. 3. Take a card, any card . . .
let us now consider this flow chart converted into a program and being run on a computer. Remember. every operation the computer executes takes some finite time to perform, albeit small, so that the more operations that need to be performed, the longer the program will take to run. This may appear to have been an obvious statement, but let us take a look now at our algorithm, bearing this point in mind. When we start off, with all storage locations empty, the first number we generate can be guaranteed not to have occurred before (though looking at the flow chart you will see that the computer does not know this) and can therefore be inserted straight into the first storage location. As the program proceeds, however, and more storage locations filled, it becomes more and more likely that the generated random number will, after some considerable checking, have to be abandoned and re-generated, until, when there are

Fig. 4. The new routine.
only two or three locations left to fill, we may have to generate and extensively check many tens of numbers to find one of the few remaining acceptable numbers. If the computer was made to print out each number as it was generated, we would notice a longer and longer time interval elapsing between the generation of consecutive numbers. Problems like this occur frequently when converting algorithms, where a solution which initially appeared to be satisfactory turns out to have some practical diffizulties associated with it on closer inspection.
Fig 5 shows the flow chart of an algorithm designed - overcome the previous problem.

It starts by putting 1 in storage locations 1;2 in ocation 2; 3 in location 3; and so on until all 52 ocations are filled, which in effect lays the cards out in sequence through the pack. It then takes the first ication and exchanges its contents with the contents f another randomly chosen location, then the conents of location 2 are exchanged with the contents of a second randomly chosen location; the contents of ocation 3 are then exchanged with the contents of a $=$ d randomly chosen location, and so on until the zontents of all 52 storage locations have been ranzemly exchanged in this manner. You may be a little sceptical as to whether the pack of cards thus zenerated was truly random. Experiments have, nowever, convinced us that it is. As you can see, there IF never any need to generate more than 52 random In-mbers, because whatever the number generated

Fig. 5. The British Shuffle?
turns out to be, we are always guaranteed to use it, as̄ it does not matter whether it has been generated before or not. Converting both of these flow charts into programs and running them on a computer, we discovered that this latter algorithm ran approximately ten times as fast, on average, as the first algorithm, so that there is a great saving in computer time used.
Looking through the algorithms and flow charts, you should begin to see that every operation a computer performs has to be very carefully planned and mapped out if a worthwhile program is to result. Although able to operate at extremely high speeds, the computer is merely manipulating pulses of electrical current according to a set of rules which the programmer lays down which, by careful manipulation and interpretation, can be made to have meaning.

Next month we will go on to consider the high-level programing language, BASIC, but do not forget the above routines, for when we have learnt sufficient BASIC, we will be returning to look at them again and see how they can be implemented

From Science of Cambridge: the new MK 14.

(optional)

MK 14 including optional RAMI/O and Extra RAM.

Edge connector for external keyboard with up to 32 keys

MK 14 - a complete computer for

 £39.95 (+8\% VAT)The MK 14 is a complete microcomputer with a keyboard, a display, 8×512-byte prc programmed PROMs, and a 256 -byte RAM programmable through the keyboard

As such the MK 14 can handle dozens of userwritten programs through the hexadecimal keyboard. (20 sample programs are provided in the Manual - which al so contains comprehensive building instructions, and instructions on program-w riting

Yet in kit form (which can be assembled by any fairly experienced kit-builder, the MK 14 costs only $£ 39.95(+\{, 320$ VAT, and $\& \& p$)

But that's only the start

The memory capacity of the basic kit is surprisingly powerful-but every computer owner, from a schoolboy to a multi-rnational corporation, soon feels the need for more memory

With the MK14, it's yours!

Optional extras include an additional 256-byte RAM, and a 16-line external input/ output device (allowed for on the PCB which give a further 128 bytes of RAM

And the next step?

The next step is to add your own peripherals! The first could be a low-cost module which provides an interface with a standard cassette-recorder. This means tou can use ordinary tape-cassettes for the storage of data and programs

To get the best from this configuration, you could uprate your system with a revised monitor-consisting of 2 replacement PROMs, pre-programmed with sub-routines for the interface, offset calculation and single step, and single-operation data entr:

The second peripheral could be your own PROM programmer and blank PROMs to set up your own pre-programmed dedicated applications (Fusible-link device guarantees program safety.)

All are available now to owners of MK 14 and remember Science of Cambridge keep you up to date automatically with advances in the MK 14 range. A TV interface device is already in the pipeline!

A valuable tool - and a training aid

As a computer, it handles operations of all types -from complex games to digital alarm clock functioning, from basic maths to a pulse delay chain Programs are in the Manual, together with instructions for creating your own genuinely valuable programs

And, of course, it's a superb education and training aid-providing an ideal introduction to computer technology

SPECIFICATIONS

MK 14

* Hexadecimal keyboard
* 8-digit, 7 -segment LED display
* 8×512 PROM, containing monitor program and interface instructions
* 256 bytes of RAM
* 4 MHz crystal
* 5 V regulator
* Single 8 V power supply
* Space available for extra 256-byte RAM and 16 port I/O
Edge connector access to all data lines and I/O ports

Optional Extras

* Extra RAM - 256 bytes
* RAM I/O device

* Cassette interface module
* Revised monitor
- PROM programmer
- Blank PROMS

Free Manual

Ever: MK 14 Microcomputer kit includes a Uanual which deals with procedures from wdering techniques, through programming II-d use of RAM I/O to interfacing with complex exernal equipment. It contains operational rsiructions and examples for training x-itications, and numerous programs including Iris routines (square root, etc), digital alarm चkk single-step, music box, mastermind and menn landing games, self-replication, general -Tose sequencing, etc.

Designed for fast, easy assembly

Exis 31-piece kit includes everything you need un =ake a full-scale working microprocessor, itre 85 chips, a 4-part keyboard, display
 aniticinings
Ta=MK 14 can be assembled by anyone with - Ir $=-\Delta \mathrm{E}$ soldering iron and a few hours' spare Ine, esing the illustrated step-by-step ms=-_tions provided

How to get your MK 14
Getting your MK 14 kit is easy Just fill in the coupon below, and post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee If for any reason, you're not completely satisfied with your . 1 K 14. return it to us within i4 davs for a full cash refund

Science of Cambridge

Science of Cambridge Lid,
6 Kings Parade. Cambridge, Cambs., CB2 1SN. Telephone: Cambridge (0223) 311488

To: Science of Cambridge Lid, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Please send me the following. plus detaths of other feripherals
\square MK $1+$ Standard Nicrocomputer Kir , 4355 inc 40 p p\&p,
\square ExtraRAM" E3 $^{2} 88$ ince\&f.
\square RAMI/Odevice" $£ 8.42$ incp\&p
I enclose cheque/money order/PO for \mathcal{L} \qquad (indicate total amount.)

Name

Address' (please print)

The exciting new
 Triton computer
 from

TRANDAM

Building a better computer wasn't easy but we did it.

TRANDAM
HAS A FULL RANGE OF MICROS AND SUPPORT, PLUS SOFTWARE

BRINGS YOU "MEMDRY BANK" A FULL MEMORY SERVICE

TRANDAM
TRANSAM COMPONENTS LTO.
12 CHAPEL STREET
LONDON NW1. TEL: 4028137
NEXT TO EDGWARE ROAD TUBE STATION MET LINE
TRITON COMPUTER IS THE TRADE MAKEOE TRITON COMPUTER IS THE TRADE MAKE OF
THANSAM COMPONENTS LTD

Complete kit available immediately for only £286 + var

The first
British-designed home computer kit with basic IN ROM and graphics. The single-board design makes the computer easy to construct, and when complete. a very compact and powerful tool for home. educational and industrial use.

All components can be bought separately and a fully comprehensive Triton manual is available for $£ 5$ or send $30 p+$ SAE for our latest catalogue and price list.

This unit allows you to program your microprocessor from a prerecorded cassette or to record your own program for later use. Design by Trevor Marshall.

CUTS Cassette Interface

 11

REPEATEDLY TYPING IN programs is not what hobby computing is about. Although most systems start life without any form of offline mass storage, as more memory is added so more programs are written and the need for some form 65 storage becomes more press--g. The ideal device for this job is zrobably the floppy disk, but this is (a) expensive and (b) usually dedirated to one processor or bus struczate. Many hobbyists are running scieral small systems, and a device Fhich is less convenient but more suited to their needs (and pockets) is the humble cassette recorder.

This interface is designed to conmert the digital signals from your ::mputer to audio tones and back jain, using a standard system cal\because CUTS (Computer Users' Tape Esstem), which is also referred to as $-=$ Kansas City or Byte format. T-is records data at 300 baud, with a IE ' 1 ' recorded as eight cycles of $\therefore-\mathrm{Hz}$ and a ' 0 ' as four cycles of - Hz . A byte of data is recorded as a start bit of logic ' 0 ', followed by jat: bits of data and two stop bits me gic ' 1 ', and this is taken care of In the UART in your computer.

Although the standard is 300 baud, the monitor programs in some kits aliow only 110 baud operation. and this interface will work at 110 baud. It can also be run faster (up to 1200 baud) to allow faster program loading

We have not described a case, as most constructors will wish to mount the board either on the back panel of their computer or in the VDU. Also switching between VDU and cassette will depend upon the user's computer - the ideal situation is to have two UARTs for both VDU and cassette. but many systems (or rather their monitors) do not permit this.

Construction

This is simply assembling the PC board. Take care when handling the ICs as most are CMOS. As the unit will probably be built into a system we have not given any mechanical assembly details. The record/play switch can be mounted remotely if desired.

Alignment

The only adjustments on the unit are the record frequency and the
monostable period. Switch the unit to record and monitor the frequency at any of the baud rate outputs and adjust RV2 to give the correct frequency. Now inject a 1200 Hz tone into the audio input (take of from the baud rate outputs when in the record mode) and adjust RV1 to give a 300 us wide pulse at pin 3 of IC4. If an oscilliscope is not available, setting RV1 to mid position should be close enough.

Recording

For best results recording should be done at a relatively low level. We found that about -7 VU gave the best results.

Unfortunately the use with a recorder with an automatic level control did not prove satisfactory. This is because the level control logic is designed for music where the peak level is about 10 dB or more higher than the average. This cannot cope with a continuous tone without it being recorded at too high a level.

One method which has been suggested to us is to record a high level high frquency tone (about 18 kHz) as well as the signal. Theory
 deleted.

How It Works

This unit records digital information on tape in serial form using two tones, 2400 Hz for a " 1 " " and 1200 Hz for the " 0 ". The siandard transmission rate is 300 baud but it will work equally well at 600 baud. The designer has operated his unit at 1200 baud with success but with only one cycle of 1200 Hz per bit it is more prone to dropout, etc.

Decoder

We will start the explanation of how it works by assuming you have a prerecorded tape. The output of the tape recorder (alternate cones of 1200 and 2400 Hz) is "squared up" by ICl which is connected as a schmitt trigger with R3 and R4 providing the necessary positive feedback.

The gates IC2/1. IC2/2 and IC2/3 are used to generate a positive pulse about $3 \mu s$ wide on both the leading and trailing edges of the output of ICl . This gives a series of pulses at either 2400 Hz or $4800 \mathrm{~Hz}(417 \mu \mathrm{~s}$ or 208μ s period).

The pulse chain triggers the monostable IC 4 which is 300μ s wide. If a second trigger pulse occurs before the $300 \mu s$ period (as it will if the input is 4800 Hz) the second pulse is simply ignored. The input pulse chain is gated with the monostable output in IC3/3, the resultant output being pulses at 2400 Hz
whether the input frequency is 2400 or 4800 Hz .
These pulses are used for the reference for the phase locked loop (PLL) IC7. This IC contains a phase detector and a voltage controlled oscillator. The output of the oscillator is divided by 2^{8} in 1 C 8 . After dividing by 2^{4} (16) IC5/2, IC5/3 and IC5/4 are used to generate 3 ,s wide pulses on both leading and trailing edges and this output is the second input to the phase detector in IC7. The output of the phase detector (pin 13) is used to control the oscillator (input is pin 9) and the two pulse chains are equalised in frequency and phase. Using this technique the tape speed can be varied by up to $+20 \%$ and the PLL will track it. The outputs of IC8 can be used to control the UART in the computer. If the UARTs own clock is used the allowable tape speed variation is $\mp 5 \%$

To decode the pulse chain into "i 11^{14} and " 0 " and to ensure correct phasing, $1 C 2 / 4$ IC3/4. IC5/1 and IC6 are used. The monostable IC4 is triggered at 2400 Hz , and its output clocks the D input of IC6/2 into the output. IC6/1 is used as an R-S flip flop being "set" if a pulse from 1C2/3 occurs during the "mono" period (if the input is high frequency) it is reset every $417 \mu s$ by IC5/2. However, the information is clocked
into IC6/2 before the reset pulse occurs. If the input is only a 1200 Hz tone the set pulse does not occur and a " 0 " is strobed into IC6/2. An examination of the timing diagram in fig. 1 will help clarify the sequence

Encoder

The encoder is a littie more complex than needed for 300 baud, but it allows operation at 600 or 1200 baud if needed. The output of IC9, which is a non-symmetrical 2400 Hz triggers a $3 \mu \mathrm{~s}$ monostable IC10/4 which then toggles IC11/2 giving a 1200 Hz square wave output. However, if the "data input" is a " 1 ", $\mathrm{IC} 11 / 1$ is toggled to give a " 1 " at pin 1 which enables IC10/2. This then triggers the monostable IC10/4 midway between the pulses due to IC9. This then toggles ICll/2 at twice the rate to give 2400 Hz output. The clocking of the data input into IC11/1 is about 100μ s out of phase with the rest of the timing to give time for the UART to settle, eliminating any errors due to propagation delays

The phase locked loop IC is used only as an oscillator in the transmit mode and the VCO input is switched to a preset voltage giving the correct frequency

Fig. 2. The sequence of events in the decoder when receiving a $\mathbf{~} 0,1,0,1$ ' input.

Fig. 3. The encoder waveforms when transmitting a ' $0,1,0,1$.'
is that this tone will adjust the automatic level control while being too high to be reproduced. However it can beat with the bias oscillator causing more problems than it
solves.
We therefore recommend that the unit be used only with a recorder with a manual recording control.

Fig. 4. The component overlay. When using a 5 V supply leave out IC1 2 and add a link between the two outside holes. C15 can also be deleted.

TRITON
 LIVERPOOL'S COMPUTER SHOP

John Coll, PCW consultant and well

known to the computer hobbyist

gives his impressions of the TRITON

I've had an early production model of the Triton for some time and I've been most impressed with it and with ETI's approach to the project.

On the hardware side it's clear that the designer Mike Hughes is a professional. The PCB is cleanly designed and good provision has been made for expansion at a future date. The addition of extra memory and of peripherals like printers and floppy disks will be a straight forward process. Whilst economy has been very much borne in mind. There has been no skimping, everything you need is provided to make a simple useful computer using a normal TV set as a display. The fact that where tracks have to go near IC pins, the tracks have been put on the upper side of the board - away from the constructors soldering iron - is typical of the attention to detail which is evident throughout the design:

On the software front the 2 K basic interpreter is Li Chen Wang's Palo Alto tiny BASIC which has been around for some time and is therefore pretty much bug free, ie it works.

The monitor on the other hand is very much a version one - it works but could be improved considerably. However, this does not worry me in the slightest because all the software is in EPROM and therefore can be easily and cheaply altered. It is difficult to explain just how important that is - it means that users will be able to return the monitors to Transam and get them reprogrammed with the latest software for a very reasonable sum. It also means that if you want to use the computer for something else you can remove the BASIC and use the whole 4 K of EPROM for your special application. This makes the machine potentially important in the process control field.

The documentation is good, however it seems only fair to say that the TOTAL novice would probably find it difficult to diagnose and repair any obscure fault. However, Transam's 'Get it going' service should deal with that in a satisfactory way. The availability of full source listings for both the monitor and BASIC will be useful in specialists applications as well as for the enthusiastic beginner.

It is clear that ETI are determined to 'Get this one right' and to support it in the future with further software and hardware.

I have no hesitation in recommending this kit to you.

Quality C15 cassettes for your PET, Apple, TRS80, NASCOM 1, etc.
10 cassettes for $£ 4.75$ including P. \& P., V.A.T., labels and library cases

Science of Cambridge MK14. Socket Set. 5 $\times 14$ pin, 7×16 pin, $£ 3.84$ including P. \& P. and V.A.T. Power Supply. $£ 4.86$ including P. \& P. and V A.T

Barclaycard and Access accepted

MICRODIGITAL LTD.
25 BRUNSWICK STREET
LIVERPOOL L2 OBJ
Tel: 051-236 0707

N NEWBEAR COMPUTING
 \square

Announcing the SYM-1:-from Synertek
(formally VIM-1)

$£ \mathbf{1 9 9 . 0 0}$ plus 8% VAT $£ 100$ postage and packing

For further details Visit Newbear Computing Store, 2 Gatley Road Cheadle, Cheshire, 061-491 2290 Or visit, or write to Newbear Computing Store, 7 Bone Lane, Newbury, Berks. 063549223. Send for Catalogues of Hardware Components, Literature and Software.

From the representatives in Europe ... for America's leading Micro-computer magazines and books, for the hobbyist, educationist and professional alike, we bring you a little light browsing!

Reading maketh a full man . . . Francis Bacon (1561-1626)
Tick or indicate quantity ordered.
From Adam Osborne Associates
INTRODUCTION TO MICROCOMPUTERS
Volume 0: The Beginners Book
Volume 1: Basic Concepts
$£ 5.95$
Volume 2: Some Real Products (Revised Late 1977)
£11.95
6800 Programming for Logic Design $£ 5.95$ 8080 Programming for Logic Design Z80 Programming for Logic Design
8080A/8085 Assembly Language Programming
B800 Assemblei Language Programming
Some Common BASIC Programs
$£ 5.95$
BUSINESS PROGRAMS IN BASIC
Payroll With Cost Accounting nts Receivabl able
General Ledger (Available from late summer 78)
From Scelbl Computer Consulting Inc,
6800 Software Gourmet Guide \& Cookbook
8080 Software Gourmet Guide \& Cookbook
8080 Programmers Pocket Guide
8080 Hex Code Card
8080 Octal Code Card
8080 Guide and One 8080 Code Card
8080 Guide and Both Code Cards
Understanding Microcomputers \& Small Computer Systems
8080 St B TE Prmer
8080 Standard Assembler (In Block Format)
8080 Standard Editor (In Book Format)
8080 Standard Monitor (In Book Format)
$£ 6.95$
$\mathbf{£ 6 . 9 5}$
$£ 6.95$
$£ 5.95$
$£ 9.95$
From P'coples Computer Company
Reference Books of Personal \& Home Computing
What io Do Afier You Hit Return
E7. 00
Dr. Dobbs Journal Volume 1
£10.00
*From Kilobaud/73 Magazine Inc
Hobby Computers Are Here $£ 3.95$
New Hobby Computers
£3.95
From Dymax Inc.
Instant BASIC by Jerald R. Brown
Your Home Computer by James White $£ 4.95$
My Computer Like Me... When I Speak £4.95
BASIC By Bob Albrecht
Games With A Pocket Calculator by
Thiagarajan \& Stilovitch
£1 65
Games, Tricks and Puzzles For a Hand
Calculator by W. Judd
*From BYTE Publications Inc.
Paperbytes:
Tiny Assembler for 6800 Systems
Bar Code Loader for 6800, 8080, Z80 \& 6502 Micros £575
Best of Byte Volume I

HOW TO ORDER

Please note our prices include postage and packing, but not insurance, if wanted add 12 p for every $£ 10$ of books ordered. Make cheques, PO's etc payable to
L.P. Enterprises
L.P. Enterprises
CREDIT CARDS accepted

BARCLAYCARD VISA/ACCESS
DINERS CLUB/AMERICAN EXPRESS
Phone 01-553 1001 for Credit Card orders (24 hour service)

Due to fluctuations of the dollar, prices are subject to change
rick or indict (156at
Tick or indicate quantity ordered Price Price
${ }^{*}$ From Creative Computing Press
Best of Creative Computing Volume
Best of Creative Computing Volume 2
BASIC Computer Games
(A revised 101 BASIC Games)
The Colossal Computer Cartoon Book
Computer-Rage (A new Board Game)
Artist and Computer
${ }^{*}$ Artist and Everyone Else
Magazine storage boxes (hold 12 minimum)
Sybex: Microprocessors from Chips to Systems by R. Zacs
Sybex: Microprocessors Interfacing Techniques by R. Zacs
Dilithium: Home Computers
Volume 1: Hardware
Dilithium: Home Computers
Volume 2: Software
Getting Involved With Your Own Computer
The Z80 Microcomputer Handbook
TV Typewriter Cookbook by Don Lancaster TTL Cookbook
CMOS Cookboak
IC Timer Caokbook
IC OP-AMP Cookbook
RTL Cookbook
Computer Programs that Work (in BASIC)

* From Basic Software Library
(from Scientific Research Instruments)
Vol 1: 'Business and Personal Booking Programs
Vol 2: Maths and EngineerIng Programs
Vol 3: Advanced Business Programs
Vol 4; General Purpose Programs
Vol 5: Experimenters Programs (General
Purpose)
Vol 6: General Ledger Program
Vol 7: Professional Programs
Magazines: Back Issues
Personal Computing
Interface Age
Dr. Dobbs Journal
Computer Music Journa
Peoples Computers
"BYTE
Creative Computing
Calculators \& Computers
ROM
Kilobaud
73
MAGAZINES: Subscriptions
Personal Computing (Twelve Issues Yearly) Interface Age (Twelve Issues Yearly) Dr. Dobbs Journal (Teń Issues Yearly)
Computer Music Journal (Four Issues Yearly)
Peoples Computers (Six Issues Yearly)
Kilobaud (Twelve Issues Yearly)
BYIE (Twelve issues Yearly) via USA
BYTE (Twelve Issues Yearly) via UK
Creative Computing (Six Issues Yearly)
Creative Computing (Twelve Issues Yearly)
Calculators \& Computers (Seven Issues Yearly)
73 (Twelve Issues Yearly)

Send to address above for the attn of David. Dept ETI/
Indicate Payment Method:
My cheque, $\mathrm{PO}_{\boxed{ }}$ I MO is enclosed in Sterling on UK Bank
Charge to Barclaycard Visa/Access Diners American Express

Name
Address

Signature

All Orders must be Prepaid
Total Enclosed E

All publications are published in U.S.A and shipped air-freight by L.P. Enterprises. In unusual cases, processing may exceed 30 day

East Coast Report
 Proclaimed as the largest show ever,

Personal Computing ' 78 was held in the Philadelphia Civic Centre, from the 24th to 27th of August. Computing Today roving reporter Jim Perry was there with his box brownie.

With more than 300 stands and over 100 exhibitors the PC ' 78 show certainly was large by any standards! To celebrate its third birthday the show had moved to the Philadelphia Civic Centre from its birthplace in Atlantic City. The move of venue was brought about by the tremendous growth in attendance -- Atlantic City was just too small for this year's show!

The promoters of the event claim that just over 20 per cent of the American Personal Computer Market is within 2 hours drive of Phildelphia, this is probably because New York is just 2 hours away.

Amongst the many exhibitors there were surprisingly few new products - well, new to the American market at least - most of the products would be new in the UK if available here. With companies such as Heathkit, Radio Shack (Tandy) and Southwest Technical Products in attendance, it was Commodore that was conspicious - by its absence.

General view of the main exhibition area, early on the first day.

Software for the TRS 80 was available from many suppliers. This stand is demonstrating a chess recorder program.

To complement the exhibition the organisers had arranged more than 80 hours of seminars, on everything from business systems to computer games. A good point was that all the daytime events were included in the exhibition admission fee. Other activities included a show of computer generated art, a computer music evening and traditional Saturday night banquet (read booze up).

Not quite what you expect at a Personal Computer Show, but a lot of people. were looking for complete systems for small businesses.

The RCA stand was dedicated to their COSMAC VIP, the two small boards plugged into the back are the new music synthesiser and drum machine attachments.

Computer music was the theme on the SOL stand. The interface, between man, machine and music is one of the exciting growth areas.

Is it a bird? Is it a plane? No, it's a Micro Mouse! The second trials for the IEEE/Spectrum Micro Mouse Maze competition were held during the exhibition - this MPUed mouse made it through the maze in 4 minutes 45 seconds.

The message centre used SWTP equipment to keep everybody up to date via several monitors.

Part of the British contingent, Chris Carey and Jim Wood from Comp Computer Components were scouting for new products to unfeash on the UK market.

The Bit Pad is a rather nice (but expensive) device for turning freehand into computer input.

Computalker Consultants did a roaring trade with their versatile speech synthesis units.

The Radio Shack (Tandy) area was equipped with 12 TRS 80 systems, the complete range of peripherals (printers, floppies etc) was also on continuous demonstration.

Exidy were demonstrating the $\mathbf{Z 8 0}$ based Sorcerer Computer - a nice feature of this machine is the plug in BASIC, which can be replaced with various other languages virtually instantly.

The TRITON software has some interesting facilities - we take a look at the whole package.

TRITON Software BASIC

The TRITON BASIC Interpreter was designed to run on small $8080 / \mathrm{Z} 80$ micro processor systems. It contains many of the common BASIC commands and most small BASIC programmes will be easily converted to run on the Triton.

Variables

All variables and numbers are stored as 16 bit integers and therefore must lie in the range - 32767 to 32767 . There are 26 variables each denoted by a single letter A to Z. There is 1 array denoted by $@$, this array is automatically dimensioned to make use of any memory space left unused by your BASIC Programme. The number of bytes of memory space in this array can be obtained at RUN time using the SIZE function.

Functions

There are three functions available.
$\operatorname{ABS}(\mathrm{X})$ which gives the absolute value of the variable X .
$\operatorname{RND}(\mathrm{Y})$ which gives a random number between 1 and Y inclusive.
SIZE which gives the number of bytes left unused by your programme.
Hence the maximum index for the array @ () is SIZE/2.

Arithmetic Operators

+ Add
- Subract
* Multipy

Divide
,,$+-{ }^{*}$ and / operations must result in a value in che range -32767 to 32767 and as they are also integer, any division is rounded down. E.G. $5 / 2$ gives 2. $2 / 3$ will give 0 .

Compare Operators

$>$ greater than
$<$ less than
= equal to
$=$ not equal to
$>=$ greater than or equal to
$<=$ less than or equal to
The compare operators are usually used with the IF 50mmand but can also be used in expressions. The essult of any comparison is 1 if true and 0 if not true (E)lse).

Expressions

Expressions are formed from number, variables and functions.
EG. 10 LET $A=10$
A is set to 10
B is set to contents of A ie 10
Arithmetic operators are used in expressions and \equiv Eevaluated from left to right, except that * and / zealways evaluated first.

Spaces between numbers, variables and functions $i=-\mathrm{e}$ ignored. Spaces inbedded in command words are but allowed.

Parentheses can be used to change the order of sualuation.

Parentheses can be nested, the maximum depth being limited by the size of the stack.

Conditional operators are usually found with the IF command
$10 \mathrm{IF} A=1 \mathrm{~B}=\mathrm{B}+1$
In this statement when A is equal to 1 the expression $B=B+1$ is executed and one is added to the contents of B.

Conditional expressions can be combined to form multiple conditions and can also be used in arithmetic expressions.

Statements

A BASIC statement consists of a statement number between 1 and 32767 followed by one or more commands. If a statement contains more than one command, each command is separated by semi colon ; The statement is ended by a carriage return.

10 LET A $=10$
20 LET B $=\mathrm{A}$
30 LET C $=\mathrm{A}+\mathrm{B}$
This can be written
10 LET A $=10$; LET $\mathrm{B}=\mathrm{A} ;$ LET $\mathrm{C}=\mathrm{A}+\mathrm{B}$
It should be noted that the latter method will be harder to change or correct.

The commands GOTO, STOP and RETURN must be the last command in any statement.

Commands

The following commands are available in the TRITON BASIC L4.1

LET

LET is used to set a variable to the result of an expression.

10 LET $A=10$ 20 LET $B=(A-1)$.	The variable A is set to 10 $* 2$
The variable B is set to the result of the expression $(A-1) * 2$ i.e. 18	

30 LET @(3)
$=\mathrm{B} / 3$
The fourth element of the array @ is set to 6 (The first element is @(0))
The expression need not be an arithmetic expression.
10 LET $\mathrm{C}=\mathrm{A} \neq \mathrm{B}$ If A equals B, C will be set to zero If A is not equal to B, C will be set to one
The LET command can be used to set several variables

10 LET $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3$
each part being separated by a comma,
We can therefore rewrite an earlier example.
10 LET $\mathrm{A}=10, \mathrm{~B}=\mathrm{A}, \mathrm{C}=\mathrm{A}+\mathrm{B}$

Rem

The REM (Remark) Command allows the programmer to comment his programme. The interpreter will ignore the rest of the line.

100 REM THIS IS THE START OF THE SUBROUTINE $\mathrm{Y}=\mathrm{A}^{*} \mathrm{~A}+\mathrm{B}$

Print
The PRINT command is used to print numbers variables, expressions, and text

10 PRINT A will print the contents of variable A
10 PRINT A*2 prints twice the contents of variable A
10 PRINT 'THIS IS A TITLE' prints THIS IS A TITLE
Several variables, etc. can be printed at once. Each item to be printed is separated by a comma.

10 PRINT \bar{A}, \bar{B}, C will print the contents of \bar{A} followed by B and C on the same line.
Text can be used to qualify printout.
10 PRINT 'THE RESULT IS', A
Text can be contained by either single or double quotes, this allows the other type of quote to be printed.

10 PRINT 'ABC"CBA', " 123 ' 321 " will print ABC"CBA123'321
Numerical values are printed with leading spaces (Right Justified) in a field of width 8 characters. The field width can be altered using a \# sign followed by the new width (i.e. $\# 3$ gives a width of 3)
The field width will then remain effective until another \#or the end of the current PRINT statement.
is greater than 9
The field width can also be an expression
PRINT \ddagger I, A will print A in a field width equal to the contents of variable I

The maximum field width is 63 .
Note that negative numbers require an extra character in the field width for the minus sign.
Extra spaces can be generated by repeated commas.

PRINT $\# 3, A,,, B$ will print a 3 character $A, 2$ spaces and a 3 character B
Several PRINT statements can be made to print on the same line by ending the statement with a comma.

Graphic characters can be printed using the PRINT statement. The description of the graphics font lists those Graphics which can be contained in quotes and will result in graphics being printed.

The PRINT statement can also be used to issue cursor control characters

10 PRINT $\dagger \mathrm{H}$
10 PRINT $\dagger \mathrm{I}$
10 PRINT \dagger J
10 PRINT $\dagger \mathrm{K}$
10 PRINT $\dagger \mathrm{L}$

10 PRINT A, $\# 3, \mathrm{~B}, \# 1, \mathrm{C}$
will print A in a width of 8 characters. B in a width of 3 and C in a width of 1 .
\#1 will result in C being printed Left Justified and any following printout will be shifted to the right if C
will issue a control H which will backspace the cursor
will issue a control I which will forward space the cursor moves cursor down moves cursor up will clear the whole screen and reset the cursor. Note that this command must be followed by a delay before the next command (FOR I = 1 TO 250; NEXT I) will reset the cursor to the start
of the line.

Input

The input command is used to read an expression

ANNOUNCING THE $m / 1 / c / R / o / s$

* Includes CPU, ROM, RAM, TV and Audio cassette interface, UHF modulator, ASCII keyboard, power supplies and cabinet.
* Connect to domestic TV or video monitor to complete the system.
* 48×16 character video matrix
* Hard copy on teletype
* Also available in kit form $£ 470$, or 5 kitpacks at $£ 95$ each
* Designed for educational establishments, personal computing and small business users
* Load and dump programmes on unmodified cassette recorder
* 57 key contactless ASCII keyboard
* British designed and built

4. Credit terms available

THE MICRONICS COMPANY

1, STATION ROAD TWICKENHAM MIDDLESEX

PART OF THE MICRO REVOLUTION
Prices exclusive of VAT and carriage
from the Keyboard. Normally the keyboard input is just an integer value between - 32767 and 32767. 10 INPUT A When this statement is executed, the BASIC will first print A followed by a space and then wait for keyboard input. The input is terminated by carriage return. The input is then stored in variable A
10 INPUT A,B will print A,space,then wait for input, it will then print B, space, and wait for input again.
Instead of just allowing the machine to prompt you with the variable, it is much better to ask a specific question. This is done by enclosing the text of the question in quotes.

10 INPUT 'HOW MANY EGGS HAVE YOU LEFT?' I

The machine will print HOW MANY EGGS HAVE YOU LEFT? and then wait of a number to be typed in.

If during RUN time, the typed input is not a valid expression, the prompt will be repeated and then the machine will wait again.

It is also possible to reprint only part of the prompt, 10 INPUT 'WHAT IS', 'A + B?'C, 'A-B?'D
The first time the printout will be WHAT IS A + B? and after an invalid input it will just print $A+B$?

The BASIC interpreter uses its expression evaluation routine to decode the input and therefore the programmer or user can enter an expression using variables already set up.

10 LET A $=3, \mathrm{~B}=2$
20 INPUT C
30 PRINT C
an expression such as $A+B$, the expression will then be evaluated by the interpreter and the result 5 stored in the variable C. The machine will then print 5.

It is also possible to enter single characters as a reply by making use of the expression input.

10 LET $\mathrm{Y}=\mathrm{O}, \mathrm{N}=1$
20 INPUT 'DO YOU WANT TO CONTINUE? Y OR $\mathrm{N}^{\prime} \mathrm{A}$

30 IF A $=1$ STOP
If the user replies Y, A will be set to the contents of Y i.e. zero. If the user replies N -A will be set to 1 and the programme will STOP.
If
The IF command is used to compare expressions, using the compare operators. If the result of this comparison is true (non zero) the rest of the statement is executed. If the result of the comparison is false (zero), the rest of the statement is skipped and execution resumes on the next statement.

10 IF A = O PRINT 'A IS ZERO'
The machine will print A IS ZERO only when A is zero.

Note that unlike other BASIC interpreters and scompilers, the word THEN is not used.

Either side of the compare can be an expression.
10 IF $\mathrm{A}=\mathrm{B}^{*} 2$ PRINT 'A IS TWICE B'
20 IF A* $3=$ B $^{*} 2$ PRINT ' $A=B^{*} 2 / 3$ '
A compare operator need not be used in the IF statement but this practice should be avoided where possible as it can make the programme very hard to follow.

10 IF A - 1 PRINT 'A IS NOT ONE'

A more interesting way to learn

the PRINT command is only skipped when the result of the expression in the IF command is zero.

Several commands can follow the IF command
10 IF A $=0$ PRINT 'A IS ZERO'; GOTO 50
When A is zero, the machine will print A IS ZERO and then jump statement 50 .

GOTO

You will probably be fairly familiar with the GOTO command already as it has appeared in several of the examples for the other commands.
The GOTO command is used to break the sequential processing of the BASIC interpreter and cause the interpreter to jump either forward or backwards to the specified statement number.

50 GOTO 10
When the interpreter executes this statement it will Jump back up the program to statement 10 and continue its processing from statement 10.

Again, the statement number following the GOTO can be an expression.

20 GOTO A*2
Will jump to the statement number calculated from the expression $A^{*} 2$. If the expression gives a non existent statement number the BASIC will give an error report.

Using a simple expression for a GOTO is useful where different routines may be required as a result of an input.

Another method of using a computed GOTO is to use the array variable and index it.

10 LET $@(1)=100, \varrho(2)=200, @(3)=100$, $@(4)=25$
20 INPUT I
30 GOTO @(I)
If the input for I is 1 the interpreter will jump to statement 100
for $I=2$ it will jump to 200
for $I=3$ to 100 again
for $I=4$ to 25
It is advisable when using the computed GOTO to check the variable for valid values, ie in the above example it would be advisable to insert

25 IF I <1 GOTO 20
27 IF I >4 GOTO 20
This will only allow an input of 1 to 4 , any other input will result in a repeat request for input.

Gosub and return

The GOSUB command although similar to the GOTO command, is used to exit from a statement and jump to a routine starting at the specified statement number. Execution continues from the specified statement number until a RETURN command where upon the BASIC returns to the command following the original GOSUB.

10 PRINT 'LETS EXECUTE ROUTINE 100'
20 GOSUB 100 ; PRINT 'WE HAVE NOW RETURNED'
30 STOP
100 PRINT 'THIS IS ROUTINE 100 ’
120 PRINT 'I WILL RETURN WHEN I HAVE FINISHED

130 RETURN
This will result in the following printout
LETS EXECUTE ROUTINE 100
THIS IS ROUTINE 100
I WILL RETURN WHEN I HAVE FINISHED
WE HAVE NOW RETURNED
The GOSUB 100 command causes the BASIC to jump to statement 100 but also to remember where it is in statement 20. It now executes from statement 100 until it reaches the RETURN command. It then
returns to statement 20 and continues processing it.

For and next commands

The FOR command is a very powerful command. It is used to make the BASIC interpreter loop 'FOR' a specified number of times, the end of the loop being defined by the NEXT command.

10 FOR I = 2 TO 10 STEP 2
20 PRINT I
30 NEXT I
I is set to 2 when the FOR statement is first encountered. It will then remain at 2 until the NEXT command is encountered. On reaching the NEXT command 2 is added to I and the BASIC returns to the command following the FOR command. This is repeated until. I becomes greater than 10 where upon execution continues with the command following the NEXT command.

Hence, the machine will print
2
4
6
8
10
On exit from the loop I remains at its next value ie 12 .
If statement 10 had been
10 FOR I = 2 TO 11 STEP 2
I will be left at its first value greater than 11 ie 12.
Negative indexing is allowed as long as the first value is greater than or equal to the second and the step is negative.

10 FOR I = 10 TO 1 STEP - 1
50 NEXT I
I will start at 10 and step down to 1 in increments of 1.

If STEP is omitted, a step of 1 is assumed.
10 FOR I = 1 TO 100
I will start at 1 and step up to 100 in increments of 1.
Once more, expressions can be used in all three positions instead of numbers. The expressions are evaluated when the FOR command is executed and any following changes to the variables used will not effect the loop.

10 LET $\mathrm{I}=10$
20 FOR I = I TO I + 5
50 NEXT I
The initial value of I is evaluated as 10 , the final value is 15 . Within the loop, I will index from 10 to 15 in steps of 1

FOR and NEXT commands can be 'nested' within each other, the limit being that of the size of the stack.

10 FOR I = 1 TO 10
20 FOR J = 1 TO 5
30 PRINT I*J
40 NEXT J
50 NEXT I
This will result in the machine printing I ${ }^{*} \mathrm{~J}$ when
$\mathrm{I}=1$ and $\mathrm{J}=12345$ then
for $I=2$ and $J=1$ to 5
etc. etc.
until $\mathrm{I}=10$
When a NEXT command is executed, the BASIC interpreter checks that the variable specified is the same as that used by the most recent FOR. If they are not the same, the FOR is terminated and the previous FOR examined. This continues until a match is found.

10 FOR I = 1 TO 10
20 FOR J = 1 TO 10
30 IF J = 5 GOTO 50
40 NEXZ J
50 NEXT I
Each time J gets to 5, the BASIC jumps to statement
50. This cancels the J FOR loop leaving \mathbf{J} at 5 and continues with the I for loop.
If within a FOR loop, another FOR loop using the same variable is encountered, the first FOR loop is terminated.

Stop

The stop commands stops the execution of the programme when it is executed. Any number of STOP commands can be included within a programme.

10 GOSUB 100
20 GOSUB 200
30 GOSUB 300
40 STOP

VDU

The VDU command allows the programmer direct access to the VDU control chip and its memory hence allowing a wide range of graphics applications.

The VDU command has two parameters, the first being the VDU memory address, the second being the desired graphic symbol specified as a decimal number.

10 VDU 5, 126
This will result, in the graphic $\rightarrow>$ being placed in the fifth byte of the VDU memory.

The VDU memory is arranged as 16 rows each containing 64 bytes therefore addresses 1 to 64 are on the first row, 65 to 128 on the second etc.

Due to the function of the VDU control chip, care should be taken when using the first row and the first column as certain graphics characters will produce strange effects.

To allow the programmer to use all the VDU control commands, address zero has been allocated. 10 VDU 0,12
This does not use memory location zero, instead the value 12 is output to the VDU controller.

12 is the command to clear the screen and reset the cursor.
Note that commands 12 and 28 require an extra delay while the command is executed. A FOR loop should be used (FOR I=1 TO 150; NEXT I before the next PRINT, VDU or INPUT command.

Other useful VDU commands are as follows:
8 Backspace cursor one character
9 Forward space cursor one character
10 Line Feed (Move cursor down on line)
11 Move cursor up one line
12 Reset cursor to top and clear screen
13 Carriage Return - Reset cursor to start of line clearing rest of line
27 Line Feed
28 Reset cursor to top without screen clear
29 Reset cursor to start of line without rest of line clear.

When using the memory mapping option, care -ust be taken to make sure that the memory address is between 1 and 1024 inclusive. If you exceed 1024 it is possible to overwrite the stack and your pro-三amme.

It is possible to make your BASIC programme = odify itself using VDU but this is fairly difficult and
not really worth the trouble it can cause.
Before using memory mapping it is advisable to use either command 12 or 28 to reset the cursor. If the screen has been scrolling, row 1 will not be at the top of the scan unless this is done.

The graphic symbol specified in the second parameter is a decimal number between 0 and 255 inclusive. If a larger number is specified, only the least significant byte is used.

The graphics and character code are given elsewhere in ETI but some of the more useful are listed below.

0 to 31	see Graphic Font
32 Space	$!" \neq \$ \% \&{ }^{\prime}()^{*}+,-$.
$33-47$	0 to 9
$48-57$	$: ;<=>$? @
$58-64$	A to Z
$65-90$	$[$ See Graphics Font
$91-95$	Is a repeat of 0 to 127 (The high
$96-127$	order bit is ignored)
$128-225$	

To print a variable between 0 and 9 using VDU just add 48.

VDU $0, I+48$
This will print the value of I if it lies between 0 and 9.

To produce moving graphics, it is necessary to use FOR loops to index the memory mapping.

Direct commands

The following are direct commands to the BASIC Interpreter. They are obeyed as soon as they are entered.

RUN will start the execution of the programme at the lowest statement number.

LIST will print out all statement in ascending numerical order.

LIST 100 will print out all the statements starting at statement 100.

LIST 50, 10 will print 10 lines starting at statement 10.

NEW will delete all programme statements ready for a new programme.

Control C will return you (at any time) to the Monitor.

Any BASIC command can be entered as a Direct Command by leaving off the statement number. The statement is then executed immediately and not stored as part of the programme.

This feature is very useful when your programme stops due to an error report. (see Error Reports)

Abbreviations

All the commands can be abbreviated as follows.
It is advisable only to abbreviate when you are tight on memory as the abbreviated programme can be extremely difficult to follow.

Functions

A.	$=$ ABS
R.	$=$ RND
S.	SIZE
Commands	
Implied	LET ie A = B $+\mathrm{C}, \mathrm{D}=\mathrm{E}+\mathrm{F}$ etc

BASIC

REM.	= REMARK
$\begin{aligned} & \mathrm{P} . \\ & \mathrm{IN} \end{aligned}$	$=\text { PRINT }$
I.	$=\mathrm{IF}$
G.	= GOTO
GOS.	= GOSUB
R.	= RETURN
F.	= FOR
TO.	= TO
S	= STEP
N.	= NEXT
S.	= STOP
V.	= VDU
Direct	mands
L.	= LIST
R.	$=$ RUN
N.	= NEW

Error Reports

It is quite probable that you can have already seen some of the error reports generated by the BASIC Interpreter.

Although there are only three different error messages (WHAT? HOW? and SORRY) the BASIC will insert a question mark at the point where the error occurred.
WHAT? This means the interpreter has come across a command or expression that it can't interpret.
WHAT?
300 I? PUT A - INPUT is spelt wrongly. WHAT?
$40 \mathrm{~A}=300 /(\mathrm{B}+\mathrm{C}$? - The close parenthesis is missing
HOW?
This means the interpreter can not execute the command.
HOW?
$60 \mathrm{~A}=300^{*} 500$? - The result is greater than 32767
$10 \mathrm{~A}=5, \mathrm{~B}=0$
$20 \mathrm{C}=\mathrm{A} / \mathrm{B}$?
HOW? - You can't divide by zero
40 GOTO 37?
HOW? - Statement 37 is missing
SORRY This means that there is not enough memory. This can occur during typing in a programme or during the execution when the array is used - @(). It is worth checking the variable or expression if the array is involved to make sure that it is a sensible value.

$210 \mathrm{~A}=@\left(\mathrm{I}^{*} \mathrm{~J}+\mathrm{K}\right)$
 SORRY

If this occurred during typing in of the programme then there is not enough memory.
If this occurred during execution (RUN)
then either there is not enough memory for $@$ or the expression I*J +K may be incorrect.
To check this type
PRINT I, J, K, I*J + K
and the values of I J K and $\mathrm{I}^{*} \mathrm{~J}+\mathrm{K}$ will be printed. You can now check if the result is correct.
This shows how useful the direct command option is. If the result of the PRINT is OK then another check is
PRINT SIZE
This will give how much memory space (in bytes) is left.

NASCOM I
 MICRO-COMPUTER for the HOBBYIST

As reviewed in this issue

THE ONLY COMPLETE MICRO-COMPUTER AVAILABLE TO THE HOME CONSTRUCTOR

FEATURES

- Supplied in kit torm for self-assembly
* Full documentation supplled

Fully screened double-sided plared through hole printed circuit board
Full 48 key keyboard included

- $2 \mathrm{~K} \times 8$ Ram
- Powerful Most prograim in Eprom
16×48 Mostek Z80 CPU
TV display memory mapintertace to std un-modified T.V.
- On board expansion mapped for high speed access
- On board expansion to $2 \mathrm{~K} \times 8$ Eprom
- Memory may be expanded to tull 60 K (plus 4 K existing on board)

SOFTWARE FEATURES

- $1 \mathrm{~K} \times 8$ monitor program providing
* 8 operating commands supporing Mem examine/modify, tabulate, copy
break, single step execule tape, load tape dump.
* Rellective monisor addressing lor llexible monitor expansion through user
- Monitor sub
screen, scroll up, string print, cursor shift and many others to hex conversion, clr

EXPANSION

- Expansion butfer board
* Mernory beard, with decoders anid all hardware except memory ics
-9K dynamic memory ICS
* 16 K dynamic memory ICS
* 32 K dynamic memory ICS

170 board with decoders and all hardware except ICS

NEW B-BUG" extended monitor in 2 K of EPROM. Fully soltware rompatible with NASBUG. Supporling additional leatures -
and Write commands (fast tape load and dutpl cursor movement routines. Read ASClI code directly into lape load and dump). H and N commands (tor inserting jumps), Generate command (for automatic progranmend (for calculating relative
Intelligent copy (for non-destructive folocation at Data)
handling. ASCII to BCD and BCD 10 ASCII routines of DATA). Random. Hock 2 EPROMS + fufl documentation $-£ 24.50$.

* S.a.e. for full expansion details

OTHER HARDWARE

- 2.2A power supply for up to 4 K expansion
* 8A power supply for larger than 4 K expansion
- Expansion card frame

Programming manual

- Hardware \& software manuals (supplied in kit)

Trade, Governmant and Educational Enquiries Invited
Add VAT at $\mathbf{8 \%}$ on all items exeept manuals
Demonstrations Continuous at our Store

Construction
Manuals Separately £2.95

Complete Kits NOW IN STOCK

Sole Appointed London Stockists
$£ 197.50$
+VAT 8% POST PAID

$\left\{\begin{array}{l}\text { ADVANCED COMPUTER } \\ \text { PRODUCTS }\end{array}\right.$
 $\left\{\begin{array}{l}\text { ADVANCED COMPUTER } \\ \text { PRODUCTS }\end{array}\right.$
 $\left\{\begin{array}{l}\text { ADVANCED COMPUTER } \\ \text { PRODUCTS }\end{array}\right.$

 AT FAIR PRICES NOW LOWERS PRICES EVEN FURTHER!1. Proven Pualty factory tested products only, no re-tests or fallouts. Guaranteed money back. We stand belinind our products.
2. Same Day Shiphnent All prepaid orders with cashiers check, money order or charge card will be shipped same day as received.
SUPPORT DEvICES MCAOPROCESSORS STATIC RAM MEADQUARTEAS

LOGOS I BK STATIC RAM

S-100 32K STATIC RAM

* Address $32 \mathrm{~K} \mathrm{Boundary}$,
* Power 40 ns 28 amps:
* No wait stales on 2 MHz
* No wait states
* Fully
Bufteres
* Phantom can be added
$\mathbf{\$} 2114$ TMS 4045 or 9135 ASSEMBLED 8 TESTED
 Bare PC Board w/Data
SPECAL OFFER:
Kit without Memory only $\$ 9995$

PARATRONICS LOGIC

 ANALYZER KITMODEL 100A
(analyzes any type of digital system)

DC HAYES DATA COMMUNICATIONS ADAPTER

6800

deshaner boaros

 MOOULES P4OTO BOARDS- AFP10roia Compo EKK 6800 MPU MO 5e91 15 stol Mother 日d O502 16 star Cata Cape $\$ 653$ a stot Maliner Bd potes S,stem Prower Suppy St 10 Protiolype Board -15 4KEDrom Module
 50 510 Etfender Cand Fat veculusie Tuner Prog OS5 \& pon Dunioz Asian
 20es EVK 200 Kis

23500
49500
17500

z-80/2-80A CPU BOARD * On board 2708 * 2708 included (450ns	
Assembled and lesled	
Bare Por Board	

MICRODESIGN MR-16 2716 EPROM BOARD

SPECIAL SPECIAL SPECIAL

2708-E Eprom 416 16K Ram Fer Connector Se	

BYTE USER BK EPROM BOARD

Bare FC Board
Special Offer: Buy 4 kits only $\$ 59.2195$ each

TARBELL FLOPPY INTERFACE

РЕТ TO S-100 ADAPTER

popular S-100

$\$ 189.95$
$\$ 26995$

DISKETTES

VK Kluge Board
VK 16 K Byie Ram Board
EVK 16 K Byle Ram Boa
VVK 6 Sot Motherboard
EVK Extender Board
VKK Solid Frame Chassis
AM Connectors
AM16800 Micro Assembler
6800 Tiny Basic Paper Tap
800 Tiny Basic Eprom
Hi PLOT LOW COST

RS. 232 Plot'Size
 Pot'Size ?

Digilizer Axal

SPECIAL KEYBOARD BUY
WHILE THEY LAST
P. O. BOX 17329 Irvine, California 92713 New Phone (744) 558-8813 TwX: 910.595-1565

Retail Store Open Mon, - Sat Loested at 1310 " $\mathrm{B}^{\circ} \mathrm{E}$ Santa Ans CA 92705

microfile

Gary Evans has found himself a new home this month and reports on a way to save money and the latest in train controlers amongst other things.

OVER THE PAST FEW months the advertising pages of ETI have seen the inclusion of a number of American firms offering a wide range of components aimed in the main at the DIY computer hobbyist. The prices of many of the goods available, when converted into pounds, make very attractive reading. The snag - ahd there must be one - is just how do we go about getting the things over from the States

The procedure is not as harrowing as one might suspect. The first thing to do is to identify exactly what it is you want to buy and the exact cost in dollars of the goods plus packing. Go along to your bank with the advert and tell them exactly what you want to buy and the cost in dollars. They will prepare a dollar draft, a document which, in conjunction with a sister bank in the States, will be as good as cash to the firm supplying the components. Note that your bank account will be debited at this stage.

Now its just a matter of sending off the draft plus your order - the things should arrive in the post within the next few days.

If the firm in the States 'does a bunk' with your hard-earned greenbacks, however, geiting anything back will prove very difficult if not impossible. We would let you know of any companies that we know are not honouring their orders but it would be best to place a small order to try out a firm's credibility before parting with a large amount of money.
I might mention that an advert in last month's ETI, not even I've seen this month's ad pages, from an American firm is advertising a TR5-80 16 K conversion kit with information about which jumpers to change for a good bit under $£ 100$. When you compare this to the $£ 200$ plus Tandy want in addition to the fact that with the DIY way you keep your original 4 K , you can see that shopping in the States can be very profitable.

Club Together

I've had a few, not a lot, but a few replies to my 'Club Call' a couple of months ago

In the Midlands, a group of the ACC has been having successful bi-monthly meetings for about a year contact John Diamond at 27 Loweswater Road, Binely, Coventry. Also in the midlands is the West Midlands Computer Club which has just held its first meeting in Brierly Hill. Contact 'Tony Bridgewood on 021-557
6709 6709

Now a plea for those interested in starting a branch of the ACC in Bristol, those interested contact Rex Godby at 16 Williamson Road, Ashley Down, Bristol

Finally the Cambridge University Processor Group (they've got very nice notepaper) which despite the name is open to everyone and holds regular meetings during term time (that's about four months out of twelve from what I hear). Tim Hopkins is the man to contact at Magdaline College, Cambridge.

In all the above cases please enclose an SAE with any letter

News of another firm generating games - initially for

Z8ou quessed it PET - the firm plan to expand into $Z 80$ machine code programs - NASCOM. MICROS RM 3802 with possibly games for KIM-1

Mini micro are at 47 Queens Road, London, N11 2QP. Their catalogue is available - again send an SAE

Shocking Story

It was my pleasure to build up one of the Triton prototypes. Enough has been said about the machine elsewhere in this issue, I'll just add my congratulations to the designer Mike Hughes for producing a really excellent project.

Before leaving the subject you might be interested to hear of an experiment I performed with the machine. It was designed to test the Triton under extreme conditions, namely applying high voltage AC the selected components via a high resistance. Needless to say I was the high resistance and the fact that I'm telling the tale show I'm OK, the Triton hardly twitched which could not be said for me

House Trained

Details are scarce, but the model train exhibition at the end of August saw the preview of an MPU controlled train system.

Designed by Hornby, who have designated it the Zero-1, the controller will enable up to 16 trains to be controlled on a layout, each being called up by a key pad. The trains will have programmable levels of inertia.

This is not a section system, control being, presumably, by a pulse code system. The conversion of the train is simple, a small circuit block being inserted in the motor's power lines.

Due for launch late next year the Zero- 1 should make Christmas ' 79 something to remember, as at a price of about $£ 30 / £ 40$ it must be a must, to coin a phrase.

[^5]

MICROCOMPUTER BARGAINS

We have a stock of untested microcomputer PCB's which are surplus to our requirement. Each board contains an Intel 4040 (CPU), 4201 (Clock), 4289 (Standard Memory Interface), 5 MHz crystal, zero crossover detector cct, power on reset cct, skts for $6 \times 1702 \mathrm{~A}$ PROM and on board power supply containing transformer, rectifier, regulator, heatsink and reservoir capacitor. These PCB's are sold with data on all chips and cct diagram, as untested units at the bargain price of

$£ 19.00$ ea

Also available
1702 A memory, used but erased
$£ 6.00$
1702 A memory programmed to your requirement£7.50
6265 gen purpose $i / p-o / p$ device
Cheque / Postal Order to

VERDURE LTD.

54/64 Morfa Road Strand, Swansea
Mail Order Supplies Only
Tel: (0729) 41241 /462684

COMPUTING AD INDEX

Advanced Computer Products p29
Airamco p^{3}
Almarc p8
Comp Computer Components p32
Electronic Brokers p8
Henrys p28
Lotus Scund p31
L.P. Enterprises p20

Microdigital p19
Micronics p24
NASCO p2
New Bear plo plo
Science of Cambridge . p12,13
Strathandp4
Tangerine p4
Technical Book Service ... p25
Tramsam p14
Verdure p31
Viewiax p4

WEMORIES

2112 (256 x 4 Static RAM)
21102 (450ns) £1.07
($1 \mathrm{~K} \times 1$ Static RAM)
21 LO 2 (250ns)
2114 ($1 \mathrm{Kx} \times 4$ Statis RAM)
$£ 1.60$
$£ 7.70$
4027 (300 ns, equiv 2104) $£ 2.02$
($4 \mathrm{~K} \times 1,16$ pin, Dynamic RAM)
5208 (equiv 2107) £3.21
($4 \mathrm{~K} \times 1,22 \mathrm{pin}$, Dynamic RAM)
4116
$£ 18.00$
(15K x 1, Dynenic FAM)
2708 (1K x 8 UVEPROM)
8080A (CPU) £7.45
81 LS95 (Buffer TriS) 75p
81 LS 96 (Buffer TriS) 75p
All VAT inclusive
35 p for $p \& p$ orders under $£ 5$
Please write for discounts over 100 pieces
ALL FULL SPEC AND UNUSED
(Mal Order only)
PET CORNER
Lotus now carry an exciting range of
products for your CBM PET

25K Memory Expansion

\star Mounts inside PET

* Runs from PET's own power supply
* Takes 10 minutes to fit
\star Includes memory test program
* 6 month warranty

£ 399 inc. VAT \& P\&P

MUSIC BOX

Turns your PET into a programmable musical instrument You can record and play up to 90 pages, 16 notes per page, change tempo, key etc
£ 37.50 inc. VAT \& P\&P
T.I.S. WORKBOOKS

A set of 5 workbooks to give you a full understanding of all the ins and outs of your PET more fully than any pre vious manuals
£15.95 per set inc. P \& P
Dustcover $£ 17.95$ inc. VAT $\&$ P\&P
Lots of software and other goodies.
Send large SAE.

INTERESTED IN HOME COMPUTING?

Start now and don't get left behind THE NASCOM 1 is here
Ex-stock with full technical services

Nascom Microcomputers BLANK C12 Racal Quality CASSETTES £4.90 for 10

Plus the opportunity to join the fastest moving club of personal computer users enabling you to get the most our of your computer. You can OBTAIN and EXCHANGE programs and other software - many now available
The Powerful 280
Microprocessor
Professional Keyboard
1 Kbyte Monitor in EPROM 2 Kbyte RAM (expandable) Audio Cassette interface Plugs into your domestic Easy construction from straightforward instructions no drilling or special tools

- Just neat soldering required.

Only $£ 197.50+8 \%$ VAT (includes $p \& p+$ insurance) Manuals seperately
3.50 Monitor quality improved Z80 programming Manual Z80 Technical Manual 3.40 TV Modulator 2.50 PIO Technical Manual 3.40 (All prices add 8\% VAT) Super Modulator (10 MHz) NASCOM 19.90
Available from COMP now. ${ }^{*} 4 \mathrm{~K}$ and 16 K RAM expansion boards for NASCOM 1 with sockets on board for MINIBASIC EPROMS Trade, government and educational enquiries invited. Can be supplied ready built tested and guaranteed.

KEY BOARD

Brand new professional ASCII keyboards (USA)
Full technical details included.
Only $£ 49.90$
$+8 \%$ VAT
Ready built, tested
and guaranteed.

Introducing the personal computer you've waited for. THE EXIDY SORCERER.

SORCERER

COMPUTER SYSTEM
The Sorserer' Comouter is a completoly Sssemted snd rexped compury system Standard contiguation includer 63 .ky
 $1 / 0$ with remiore compurer contiol nit 300 arta 1200 baut cata rates, मS332 seriel tio for communicmiom, paraliel porif fot: difrect Censsonia printer jitachmenk. 4 K ROM Onvruth ind wstem 8 K Fiom Microsoit BASIC in Rom PacTM, cartridge,
composite video of 64 char/line 30 . screen, 128 upper /lower case ASCII set
 operation manual: BASIC' broderamming manust nnd cassefte/videe cables, connect ion for $5+100$ bus expanzion.
only $£ 950$ \qquad
8\% VAT

AS SEEN ON OUR STAND AT PCW SHOW

LOOK!
32k RAM (16 K available
RS232 interface - 8 K BASIC ROM CUTS interface 4K MONITOR - Sser define ity interface : S 100 bUS

VIDEO GAMES \& Components
 UHF Vision modulator Standard channel 36

UHF Vision modulator 10 MHZ bandwidth high quality 5.90

VHF Vision modulator channel 3
Sound modulator compatible with above
AY-3-8500 6 Games $\quad 4.90 \quad$ PCB 1.90 AY-3-8550 6 Games $\quad 3.90$ PCB 1.90 AY-3-8610 10 Games 5.90 PCB 1.90 AY-3-8760 Motor-bike 6.90 PCB 1.90 AY-3.8710 Tank-battle 6.90 PCB 1.90 PCB 1.90

ETI Tank Battle kit - just add controls $£ 14.90$ reduced from £19.90. JOYSTICKS - $£ 1.90$ each Dual 200 K lin

COMPUTER COMPONENTS

A selection of our Computer components

CPU AND SUPPORT DEVICES			MEMORIES			
280	cpu 14.90		2102		1.20	
Z80A	cpu 20.50		21 L02		1.40	
280	PIO 9.90		2101	1K	1.40	
280	CTC 9.90		2111	1K	3.95	
8080A	cpu 7.95		2112	1 K	2.95	
	8 Bit I/O Port	3.50	2114	4K	9.95	
8214 8216	Priority Interrupt Control	9.00	4116	16 K	19.90	
8224	Clock Generator \& Driver (2 MH	3.75 3.50	1702A 2708	256B	5.00	
8224-4	Clock Generator \& Driver ($4 \mathrm{MHz}_{\mathbf{z}}$)	3.95 9.95	2708	(NASBUG)	$\begin{aligned} & 10.90 \\ & 13.90 \end{aligned}$	
8226	Inverting Bi-Directional Bus Driver	3.95	2716	($5 \mathrm{~V}, \mathrm{INTEL}$)	29.00	
8228	System Controller \& Bus Driver	7.95				
8238	System Controller \& Bus Driver	7.50	OTHER			
8253	Programmable Interval Timer	18.95	USEFUL DEVICES			
8255	Programmable Peripheral Int	18.95				
8257	Prog. Direct Mem Access Cont	17.95	6576 char gen 6402 UART 1771 Floppy disk controller		$\begin{array}{r} 10.90 \\ 9.90 \end{array}$	
8259	Programmable Interrupt Cont	17.95				
6800	cpu	11.90				
$\begin{aligned} & 6810 \mathrm{P} \\ & 68 \mathrm{~B} 10 \mathrm{P} \end{aligned}$	128×8 Static Ram (450 ns)	4.95			49.00	
	128×8 Static Ram (250ns)	6.00				
6820 P	Peripheral Interface Adaptor	7.50				
6821 P	Peripheral Interface Adaptor	7.50				
6828 P	Priority Interrupt Controller	11.25	Full selection of US and British Magazines and books for the Computer Hobbyist.			
6834 P	512×8 Bit Erasable Prom 500	16.95				
6850P	Asynchronous Comm, Adaptor	9.75				
6825 P	Synchronous Serial Data Adaptor	11.75				
6860 P	0-600 RPS Modem	10.00				
6862P	2400 RPSS Modulator	14.50	Prices always changing (usually downwards) Phone with your requirements			
6871 P	Clock	28.00				
6875P	Clock	8.75				
6880P	MPU Bidir. Bus Ext.	2.50				

All prices include VAT except where shown. Orders over $£ 5$ post and packing free otherwise add 20 p Barciarcand Please make cheques and postal orders payable to COMP, or phone your order quoting CR1

ET1 8080
 COMPONENTS IN STOCK

ETI 8080
ONE BOARD COMPUTER

NEW-

 AVAILABLE NOWShugart floppy drives
£290 each
Floppy drive controller
direct from USA
£190 each

SEND SAE FOR
PRICE LIST OF
PARTS AND KIT. BARCLAYCARD or ACCESS number. For technical information and advice ring JIM WOOD, BSc(Eng), ACGI, MIEEE - Consultant to COMP.

COMPCOMPONENTS

ETI MARKET PLACE

Digital Alarm
 Pronem

Size: 105 mm wide 115 mm deep $\times 55 \mathrm{~mm}$ high

THIS IS THE THIRD digital alarm clock that we are offering (we regret the earlier versions are no longer available) We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price

The Hanimex HC-1100 is designed for mains operation only ($240 \mathrm{~V} / 50 \mathrm{~Hz}$) with a 12 hour display. AM / PM and Alarm Sei indicators incorporated in the large display A switch on the top controls a Dim / Bright display function

Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's no problem about knocking these accidentally as a 'locking switch is provided under the clock. A 9 -minute 'snooze' switch is located at the top

ع8-95

(Inclusive of VAT and Postage)
An example of this clock can be seen and examined in our reception at our Oxford Street offices.

To:
Hanimex Alarm Offer
ETI Magazine
25-27 Oxford Street
London W1R IRF
Please find enclosed my cheque PO for £8.95 (payable to ETI Magazine) Ior a Hanimex Digital Alarm Clock.

Name
Adress

LCD Watch

The enormous numbers involved in ETI offers has enabled us to arrange a real bargain - a full spec LCD watch with adjustable metal bracelet for under half the going rate.

This watch gives continuous display of hours and minutes press the button once and you Il get the date (American siyle). After a couple of seconds the display automatically reverts to time but if you press again you'll get a continuous seconds display

Press another button and you get a back light enabling you to see the display in the dark Setting, or resetting is simplicity itself and a hold facility allows you to set the watch spot on. The accuracy is magnificent, as with all the current range of digital watches and battery life is well in excess of a year

(Inclusive of VAT and Postage)
An example of this watch can be seen and examined in our reception at our Oxford Street offices.

To:
LCD Watch Offer
ETI Magazine
25-27 Oxford Street London WIR 1RF

Please find enclosed my cheque/PO for £B. 95 (made payable to ETI Magazine) for my LCD Digital Watch.

Name
Address

Please allow 14 days for delivery

AUTOCHORD PART ONE

WHILE NÖT QUITE an instrument in its own right the auto chord is certainly more versatile than the common or garden rhythm generator

The instrument is designed to be added to the lower two octaves of an organ and will provide a variety of accompaniment controlled by the mode selected

The specification shows that the eights rhythms provided cover most requirements and gives some idea of the extra facilities offered by the auto chord

The instrument will offer chords major or minor third, fifth or diminished fifth and sixth of seventh It will also provide a walking or alternate bass as well as arpeggios.

They say a picture is worth a thousand words, and at this moment we feel that at some time someone must have said much the same about sound. It's difficult to convey all the facilities offered by the auto chord on paper, so if you cannot visit Maplin's shop, where a unit will be on demonstration, you will just have to take our word that the auto chord provides everything that the solo musician could want

The auto chord is designed to be incorporated within existing organs and is easiest to interface with a DC keyed organ although it is possible to use the auto chord with a direct keyed instrument.

Full constructional details plus a description of the auto chord in use will be presented next month.

SPECIFICATION

8 selectable rhythms Covering waltz, rock to Latin. Latin American rhythms can be combined. Non-Latin American rhythms can be combined.
Bass. Snare drum. Low bongo. Claves. Cymbals.

CHORD ACCOMPANIMENT (with keyboard)

Three mode selection

1

3

1. AUTO

Playing one note produces a chord structured around this note, and will play continuously. SEMI-AUTO
Individual notes or chords played are remembered and played continuously. MANUAL
Notes or chords played only continue whilst the keys are held operated.

AUTO RESET

Variable bass. Delay-auto-stop and over-ride in all 3 modes. On/off. Walking or alternating in modes 2 and 3. A minimum of three notes. Must be played for bass accompaniment.

Auto: On/off.

Chord accompaniment: On/off.
Two octaves progressive in modes 2 and 3. Selectable maj/min 3rd/7th.
Variable tempo
Harmonic attack
Arpeggio
Five tones added in short bursts
Three selectable pitches
Chord accompaniment volume
Rhythm volume

FRONT PANEL CONTROLS

PARTS LIST

R107, 112, 119.	
R196, 213, 228	2M2
R108	4M7
1/4W	
R141	39R
R110	100R
R146, 147	180R
R144	330R
R142, 145	820R
R148	1 k 5
R194	43k
POTENTIOMETERS	
R111	1 kO
R61, 247	47k
R164, 190, 202	100k
R109	470k
R68, 84, 97	1 MO
CAPACITORS	
C68, 72, 79, 86, 93,	
94, 95, 101, 103.	
110	10 n polyester
C100, 111, 85	22 n polyester
C21, 22, 23, 107	33 n polyester
C5, 11, 17, 25, 3	
35, 70, 99, 105,	$10847 n$ polvester
C10, 40, 71	68 n polyester
C1, 12, 20, 28, 30 ,	
47, 69, 76, 104,	109 100n polyester
C75	150 n polyester
C9	220 n polyester
C13-16	27 n polycarbonate
C24	47n polycarbonate
C6, 7, 8	82 n polycarbonate
C2, 66, 97, 106	1 u 0 polycarbonate
С3	1 no ceramic
C19, 27, 29, 33.	
38, 43	10 n ceramic
C4	22p ceramic
C78. 80	220 n mylar
C49, 52, 55	100p polystyrene.
C44, 74, 88, 96	330 p polystyrene
C73, 89	470p polystyrene
C91,92	680p polystyrene
C39,90	1 no polystyrene
C32	1n5 polystyrene
C45, 87	2 n 2 polystyrene
C18, 26, 36, 41, 2 ,	
67, 82, 83, 84	3 n 3 polystyrene
C102, 77, 81	4 n 7 polystyrene
C34	6 n 8 polystyrene
C98	lu5 63 V electrolytic

C48, 50, 51, 53,54,
56. 59, 60, 64, 6510 u 25 V electrolytic C37.42 22 u 10 V electrolytic C58,63 100u 25 V electrolytic C61,62 220u 16 V electrolytic
C57 470 u 25 V electrolytic

C46 1000 uV 16 V electrolytic
SEMICONDUCTORS

IC1	M254
IC2-5	4011
IC6	M251
IC7	M087
IC8	4069
IC9-11	741
IC12	4016
IC13	4013
Q1-4, 7, 8, 10, 11,	
$12,13,15,16$	BC548
Q9, 14	BC177
Q5	BFY51
Q6	BFX87
D1-86,94, 105	1N4148
D87-90	1N4002
D91	$12 V 400 \mathrm{~mW}$
D92	$5 V 6400 \mathrm{~mW}$
D93	12 V 400 mW
LED1	TIL209

SWITCHES

SW1
SW2
SW3 to 10
SW1 $1 \quad 2$ pole latchswit
SW12 2 pole latchswitch
SW13 2 pole latchswitch
SW14 2 pole latchswitch
SW16 2 pole latchswitch
SW1 72 pole c/over latchswitch
SW1 $8 \quad 4 p$ 3W rotary
SW19 2 pole latchswitch
SW20 Push (break) Sw
SW21 3p 4W rotary

MISCELLANEOUS
PCBs. 15-0-15 250mA transformer, fuse plus holder, sockets, clip on heat sinks, cable, etc

Production problems have meant that the circuit diagrams feor this project are without the usual component annotations.

Circuit diagrams of the generator and coder

HOW IT WORKS

PRE AMPLIFIER

The chord and rhythm outputs are amplified and filtered in ICs 9 and 11 respectively. The outputs from these devices are fed, via level control potentiometers to the input of IC10. This mixes the two signals and provides the final output of the instrument at a level suitable for feeding to a power amplifier.

POWER SUPPLY

The various ICs used in the auto chord require supplies of $+12 \mathrm{~V},+11 \mathrm{~V},-5 \mathrm{~V}$ and -11 V. The +12 V line is derived from the rectified AC output of T1 by the series pass element Q5. The voltage at the emitter of Q5 is determined by D91, a zener diode. The +11 V supply is a simple shunt from the 12 V line. The -5 V line is again a series pass circuit, this time the output voltage being set by D92.

The - 11 V rail is simply stabilised by zener diode D93 as the current demanded from this rail is not enough to warrant the use of another series pass transistor.

The LED supply is taken from the negative voltage rail and is current limited by R148.

GENERATOR AND CODER

The rhythm generator section of the instrument is centered on IC1. This is the M254, a device that contains a ROM that will drive the sound generators with a selection of eight rhythms. To select a desired rhythm, the appropriate input must be taken to ground, via SW3-10, will the other inputs are held high by resistors R1-R9.

The M254 requires a clock signal to operate and this is generated by the CMOS oscillator formed by IC2. The frequency of this oscillator, and ultimately, the tempo of the rhythm, is controlled by R13.

The arpeggio, chord and bass accompaniment are generated by IC6, the M251.
The IC is fed with 12 input frequencies from the tone generator, IC7. This is clocked bs the output of the CMOS astable based on 1C5c and d.

The M251 is used in conjunction with the 1254 which is responsible for the selection of the various notes in the arpeggio/chord/bass 3ccompaniment.
The M251 features a number of different modes of operation, in the automatic mode, sinen a number of keys in the two available cctaves are played, the lowest note will be -iken as a reference and memorised.

The memorized key, by means of an inter--al multiplexer, selects the corresponding zonic and all other notes programmed for Epeggio, chord and bass accompaniment.

In the semi-automatic mode, the M251 will -emorise the lowest four keys played agether with the top note played. The circuit -11 then provide accompaniment until the -ode is cancelled by selecting automatic -. de briefly and returning to semizuromatic while no keys are played.

The semi-automatic mode can also be riected without memorization of keys.
Due to the pin out restrictions of the 40 pin Eaciage a system of multiplexing has had to - adopted, this explains some of the comElexity in this area of the circuit.

Circuit diagram of the preamplifier

Circuit diagram of the power supply

Circuit diagram of the voice generator

HOW IT WORKS

VOICE GENERATOR

THE bass drum, tom-tom and low bongo sounds are generated by the damped sinu:soidal oscillators based upon the six invertors of IC8. Each of the oscillators are the same apart from the values of the timing capacitors which set the characteristic frequency of oscillation.

In each oscillator the variable resistor (R68, R84 and R97) will control the rate at which any oscillations will delay once triggered by the M254 rhythm generator.

The square wave output of the M254 is held low by a resistor, necessary because the M254's outputs are open drain, and fed via a differentiating network to the damped oscillator, A pulse from the output of the M254 will trigger the characteristic Instrument sound.
In addition to the output of the damped oscillator based on IC8c and d the tom tom to give it a more realistic sound, contains a white noise component.
The white noise is produced by the reverse biased zener effect of Q4 and after filtering and buffering, by Q1, with further filtering by Q2, is mixed with the oscillators output to provide a realistic tom-tom sound.
The brush sound conslsts of filtered white noise, the white noise again being generated by Q 4 - the filtering this time being per formed by Q3 and associated components.
The clave output is generated by the resonant circuit centered around LI and C 30
The outputs from the various voice generating circuits are summed and fed to the instruments pre-amplifier

BUYLINES

Maplin Electronics will be supplying a Contact Maplin for details of price. complete kit of parts for the auto chord, including screened boards.

Full constructional details for the auto chord will follow next month.

Next month - full constructional details plus the auto stop board.

The Sinclair PDM35. A personal digital multimeter for only $£ 29.95$

 Technical specification

 Technical specification}

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM135 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anvwhere.

The Sinclair PDM35 gives you til the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at $£ 29.95$ -8% VAT, it costs less than you'd expect to pay for an analogue meter!

The Sinclair lPIMM35 is tailormade for anvone who needs to make -apid measurements. Development Engineers, field service engineers, Iab technicians, computer specialists, -dio and electronic hobbyists will and it ideal.

With its rugged construction and battery operation, the PDM35 is aeffectly suited for hand work in the Seld, while its angled display and optional AC power facility make it iustas useful on the bench

What you get with a PDM35

3k. Jigit resolution
-Tarp, bright, easily read LEI) aroplay, reading to ± 1.999.
Automatic polarity selection Ressolution of 1 mV and 0.1 nA 0) 3001 Ad

Direct reading of semiconductor Reard voltages at 5 different currents. Fusistance measured up to 20 Ms . of reading accuracy

Operation from replaceable battery or AC adaptor.
Industry standard 10 Mr input impedance.

Compare it with an analogue meter!

The PDM 35 's 1% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average

The PDM35 will resolve 1 mV against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PDM35's DC input impedance of 10 Mr is 50 times higher than a $20 \mathrm{kr} /$ /volt analogue meter on the 10 V range.

The PIDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors There's no need to reverse leads for negative readings. There's no delicate meter movement to damage And you can resolve current as lowtas $0.1 \mathrm{n} . \mathrm{t}$ and measure transistor and diode junctions over 5 decades of current.

DC Volts (4 ranges)
Range: 1 mV to 1000 Y
Accuracy of reading $10 \% \pm 1$ count Note: 10 M 1 input impedance.
AC Volts ($40 \mathrm{~Hz}-5 \mathrm{kHz}$)
Range: 1 V to 500 V
Accuracy of reading: $1.0 \% \pm 2$ counts
DC Current (6 ranges)
Range: 1 n A to 200 mA
Accuracy of reading: $1.0 \% \pm 1$ count
Note: Max resolution 0.1 nA

Resistance (5 ranges)

Range: 1 s to 20 Ma
Accuracy of reading: $1.5 \% \pm 1$ count.
Also provides 5 junction-test ranges.
Dimensions: 6 in $\times 3$ in $\times 1 / 2$ in.
Weight: $61 / 202$
Power supply: 9 V battery or
Sinclair AC adaptor.
Sockets: Standard 4 mm for
resilient plugs.
Options: AC adaptor for 240 V
50 Hz power. De-luxe padded
carrying wallet. 30 kV probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniarure TVs The PDM35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.

Tried, tested, ready to go!

Ihe Sinclair PIDM35 comes to you fully built, tested, calibrated and guaranteed It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon, enclose a cheque/ P() for the correct amount usual 10-day money-back undertaking, of course , and send it to us.

Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ, England. Regd No: 699483

SEIKO 20\% 0FF!
Analogue and digital from stock or to order

FB 011 ALARM/ CHRONOGRAPH FH 003 CALCULATOR WATCH

£104

CITIZEN largereductions
On most quartz analogue and digital models
FAIRCHILD TIMEBAND
C6110 Mains digitial elarm clock

TILL THE BEST! Large LED display 24 -hou alarm 9 minute snooze concealed controls
$31 / 4 \times 51 / 6 \times 31 / \mathrm{ins}$.

Black or white
£10.95
FROM CASIO - OF COURSE

BEDSIDE
TRAVEL
ALARM

Okay, genius, so you KNEW Casio would bring one out soon! Pou were right to wat. Provisonal spec. LARGE 6 digit LCD display Night light Alarm, Alarm/Timer, Stopwatch
$£ 19.95$
AQ-1000 CALCULATING ALARM CLOCK PLUS 3-WAY STOPWATCH
Hours, minuies, seconds, am/pm, 24 hour Alarm with sigh, Stopwatch: Net times, lap tumes. isi\& 2nd place times from $1 / 10$ sac. to 10 hrs with ST \& LAP signs. Calculator: 4 key memory. \%, $\sqrt{ } 1$ Year batteries, $\pm 20 \mathrm{secs} /$ month.
$1 / 4 \times 2 \frac{2 / 6}{} \times 45 / 6 \mathrm{~m}^{2}$
RRP E26 95
Our Price £21.95
CQ-b1 CALCULATING ALARM CLOCK. Plus 2 Alarm / Timers. 24 hour alarm and alarm/timers. 6 digit LCD clock One year battery life. $15 / 6 \times 23 / 4 \times 5$ inches (RRP €22 95)
£17.95
FX.8000. 41 sc funct $1 / 100$ sec slopwatch 2×5 Alarm/Timers (€35 95)

$£ 29.95$

INI CARD CALCULATORS $1 / 6 \times 31 / 2 \times 21 / 6$ ins LC-78 E16.95 T-24 Card Time. 24 hour stopwatch for cleckis Alarm/Timers, Calc. as LC-78 E19.95
ALL Casio scientifics. Lowest prices E19.95

ST-1. Four way stopwatch
$£ 24.95$

CARTRIDGE T/V GAMES

OPTIM Coronet 600
 Cartidges from $\in 995$

£48.50
FAIRCHILD TIMEBAND Grandstand
E119.95
ATARI Video Computer System
The very best available to date!
Cartridges from $£ 14.95$

* SPECIAL INTRODUCTORY OFFER

FREE exira cartridge worth $£ 1495$ with Atari

SAVE E££S WITH THE MONITEL

Telephone call charge, calculator and clock UK mode £28.15, International E3B.50. State colour
WATCH BATTERIES 65p each D.I.Y. KIT 35p (with battery ordar).

THIS MONTH'S STAR BUY

TODAY'S MOST ADVANCED ELECTRONIC WATCH
Hours, minutes, seconds
Perpetual calendar
Chronograph timing
12 hours
Dual Time
Mineral glass face

Stainless steel case, bracelet
10 micron gold plated

SOLAR powered watches - so callod. Misrepresentation? We WON'T sell them.
LED display watches - we don't sell them. Send us a
PH-ALARM and ALARM CHRONO
ALARM (Lefi)
Hours, mins, day, am/pri Day, date, month. year
£28.95 CHRONO Functions as above
plus

Chrono. Measuring net, lap and 1st \& 2nd place times from 1/100 second to 1 hour, with rollover
All stainless steel, mineral glass
CBM, 6 DIGIT and ALARM WATCHES

ANALOGUE

16×3 (Left)
6 digits, 6 functions
$\mathbf{5 1 3 . 9 5}$
ALARM
18×3 (Right)
6 digits
6 functions +
alarm sett ing
5 minute snooze
$\mathbf{8 2 7 . 5 0}$

BICO 700. Cushion shape, Day, Mineral glass face. Wate esistant to 100ft.
LADIES' LCD WATCHES
5 functions, Backlight. Gold or silver finish Drese Watch

PH.L2

Matching
Milanese
bracelet
£14.95
Cocktail
Internal
bracele
(4 other
models)
£18.95

CASIO LADIES' LCD WATCHES

$7+2$ functions
27CL-15B Round (Left) $£ 29.95$

27CL-17B Stopwatch
£39.95 Send $25 p$ for our illustrated catalogue. Price include VAT and
P\&P. Send your cheque, PO or phone your credit card no.

CASIO QUALITY

All CASIO watches have a calendar display, night illumina tion. mineral glass and stainless steel cases, water resistant to 100 ft (except sports watches -66
SPORTS WATCHES
F-100

Up to 25 functions. Net, lap and first and second place times to $1 / 100$ th sec. F-100. Resin case, strap $52 \mathrm{OS}-14 \mathrm{~B}$.

4 DIGIT WATCHES (except Wợd Time). Hours, minutes ten seconds, seconds by flesh, am/ pm. Day, date, month, Stopwatch. Dual time (except $310 \mathrm{R}-20 \mathrm{~B}$)

310R-20
£26.95
510R-19B. 6 digit
(E35.95)
$£ 29.95$
6 DIGIT WATCHES (excepl Sports and Alarm). Hours, minutes, secords, day OR Hours minutes, date day ten seconds, seconds by flash, Day date, month, year. Select able 12 hour (with am /pm) or 24 hour clock

CHRONOGRAPH. 6 digits as above, with stopwatch measuring net, lap and 1st \& 2nd place times from 1/100 sec to 6 hrs Dual time facility.

WORLD TIME WATCH. The Itrie in ten capitals plus optional time Instani summentime correction capitals plus one sers, sers by flash summentme correction. Hrs, mins, 10 secs, secs by flash. Perpetual calendar. day. date, month

ALARM WATCHES

Hours, mins, seconds (or hrs, mins, date) day, am/pm Day date, month, year. 24 hr . alarm, on/off indicator.

Not illustrated 53CS-19B, 4 digit, barrel shaped, E54.95 49CS-24B, 6 digit ($£ 74.95$) £59.95. 53CGS-17L. Gow

Amptrulimstota
 international

What to look for in the December issue: On sale Nov 3rd

ETI LIGHT SHOW

HANDS UP all those who've never been to a
disco. None? Good - that means you've all seen sound-to-light - that means you'ro al it's more than likely it was a normal three channel affair. Usually boring, äre they not?
Well ETI plans to change that next month ours has five frequency channels, with in dividual level controls on each channel Control of the lights is comprehensive to say the least. You can run the unit as a straight sound to light, or have it strobe all lights. At a
speed dependent upon music level (not volume - the unit is Independent of that!) or hand over control to an internal digital circuit which produces some superb random effects. If you fancy a five colour manually controlled strobe unit it can do that as welli
Each channel handles up to 500 W of lighting, and a complete kit of parts will be available from Powertran, who designed this project especially for ETI

Electronics in Model Railways
 An essential part of the education of any young

 man is his electric train (checking with ETI technical staff shows all eight had one - and five still have). Most of us however remember the controls as crude; today things are changing sophisticated electronic controls are perfectly suited to model railways and the manufacturers are about to announce some dramatic advances. We take a look at what's happening.
CURVE TRACER

Elsining the shape of Voltage-Current charac Dernas is usually dull as it normally involvear Dernss is usually dull as it normally involves a ense plot of static, experimental data
A more elegant solution is a vailable to anyone Wha DC coupled scope capable of taking an cold X.input. Next month we carry a project Tin the additonal circuitry necessary to do this

Car Anti-theft System

- sumble project to build but sophisticated in its 7.- -thon, It is a comprehensive system that - Tonties several features of large and expens-- commercial systems and using state-of-art $\therefore \quad . \quad$ - of the whole project.

How It Works

In the November issue we begin a new type o article The idea came to us when discussions with experts in one area of electronics admitted to almose total knorance of other areas - especially commercial circuitry. Mass-produced electronics use techniques which are not widely understood elsewhere - we hope to put that right. In the first of thls occasional series we have asked Gordon King to discect a Thorn Monochrome TV; we shall show the complete circuit and explain the function of each stage. It's not done as a beginners series but to give those outside this field the true "Inside

A complete listing of all we've carried in ETI since pur last Index which was carried in Aprit 1977) anc went back to the first ever ETI). As our research shows that 96% of readers never throw away their copies it should bé useful to most of you.

computing today No. 2

Win a TRITON

Computer

Want to get your hands on a Triton Computer Kit but can't afford it (yet)? In No. 2 of our new supplement Computing Today, we have a free-entry competition for one to be won. If you've read this far you'll probably know what it's worth - but in case you don't it's about £300.

Microprocessors
 by Experiment

Learn about microprocessors - not from some abstract description of a make believe MPU but by hands on expenence with an MPU system. The series, based on the MKla development kit, will take you through the operation of the SC/MPMPU and show you how to use it to do everything from control your hesting system to land on the moon.

1/0 for 6800

The microprocessor user rapidly arrives at the need to'understand and apply inputioutput circuitry to interface peripheral equipment to the computer system. A standard choice, when using a 6800 microprocessor, is to employ a Peripheral Interface Adapter (PIA). Many engineers now buy readybuilt systems then wish to utilise the PIA as straightforward outputs and inputs, When data sheets are consulted they are found to give concise yet complete hardware and software information. The user of a ready-built system needs help in simply getting the PIA to act as outputs and inputs without becoming involved in the intricate details needed by designers of microcomputer boards. This article aims to give this help.

Fealures mentilned here are in an advanced state of preparation as we go to press but circumscances may affect the final contents of the riext kowe

ETCH RESIST TRANSFER KIT SIZE 1:1
Complete kit 13 sheets 6 in $\times 4 \frac{1}{2}$ in $\mathbf{£ 2 . 5 0}$ with all symbols for direct application to PC board Individual sheets 25 p each. (1) Mixed Symbols (2) Lines 005 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90 and 130 (8) 8-10-12 TO 5 Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 002 (13) Quad in Line
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording Ove 250 symbols, signs and words. Also available in reverse for perspex, etc Choice of colours, red, blue, black, o white, Size of sheet 12 in $\times 9$ in. Price $\mathbf{£ 1}$.
GRAPHIC TRANSFERS
WITH SPACER
ACCESSORIES
Available also in reverse lettering, colours red, blue, black or white Each sheet $12 \mathrm{in} \times 9$ in contains capitals, lower case and numerals $1 / 1 \mathrm{in}$ kit or $1 / 4 \mathrm{in}$ kit. $£ 1$ complete State size

AH orders dispatched promptly. All post and VAT paid
Ex $\cup K$ add $50 p$ for air mail Shop and Trade enquiries welcome Special Transfers made to order

E. R. NICHOLLS

P.C.B. TRANSFERS DEPT. ETI/9 46 LOWFIELD ROAD STOCKPORT, CHES.061-480 2179

SUPER SAVERS ALL FULL SPEC.

$7490 N-10 p, ~ £ 8-100,7460 N-10 p, ~ £ 8-100$
$74190 N-15 p, ~ £ 12-100,74155-35 p, 741$ 17p. Min order 10 of one type $100+$ POA. P/P 20p. SLIDER POTS PIHER $4 I K$ LOG TRACK 70 mm OVERALL 85 mm . SINGLES 20p. £15-100, DO UBLES 50p, E40-100 MIN ORDER $10 \quad 100+$ POA.

SUPERB STEREO CASSETTE DECKS, BRAND NEW. PIANO KEYS, $6 V$ MOTOR, END OF TAPE STOP DIGITAL COUNTER, HEADS, PULLEYS, ETC, A VERY HIGH QUALITY E8.75p + E2P/P
VERO EDGE CONNECTORS 22×22 TYPE 2245 $2.743140 \mathrm{p}, 42 \times 42 \mathrm{ww}$ KEY AT 7 TYPE $1360 / 2$ £1 P/P 20
TRIM POTS 50Ω TO5 20p, 100Ω CERMET 20p, TOON PAINTON PCB 20p, 200Ω DITTO 20p, 250 N,
DITTO 20p, 500 DITTO 20p, IK DITTO $20 \mathrm{p}, 2 \mathrm{~K}$ DITTO 20p, 500 O DITTO 20p, IK DITTO 20p, 2 K
OITTO 20p, 2 K HELITRIM 20p, 5 K PCB 20p, 1 MEG SKELETON MIN VERT 12 PIP
CANNON "D" TYPE PLUGS/ SKTS. 15p-50p. SKT -50p, 25p-60p, SKT 60p, 25 RIBEON PLUGS
90 p . SKTS $90 \mathrm{p}, 37$ PLUG $80 \mathrm{p}, 50$ SKT £1.20 90p. SKTS 90p, 37 PLUG 80p,
50-W WRAP COVERS SKFS $£ 1.30$.
COVERS WITH RETAINERS, 15 WAY 60p, 25 WAY $80 \mathrm{p}, 37$ WAY £1, 25 WAY PLASTIC (3M), 50 p . ALL ABOVE LIMITED P/P $20 p$

goods

Now distr butor for Mutek Products including Ides Micro
Systems in stock, Video Interface board, 16 line, 64 characters data and control inputs, video output Idea for Micro Processor use With full documentation, $£ 81$

POCKET PAGER

Miniature crystal controlled FM RX Single Superhet around 30 MHZ 450 KHZ IF contains various tone Control OR 28 MHZ Amateur Band Complete, without $25 \vee D E A C+$ crrcuit of similar type, €3.95. P/P $25 p$.
L. B. ELECTRONICS 43 WESTACOTT, HAYES MIDDLESEX UB4 8AH

SEMICONDUCTOR OFFERS ALL FULL SPEC.

 Mosters 50 p M203 Dual Matched Pairs Mostets Single Gare per CMOS 50 p 7418 -pin D ILL 230 p 500 V 600 mA Bridge Fecs (ex

 85 Nixies ITT GN $/ 9 \mathrm{~A} 13 \times 8 \mathrm{~mm} 65 \mathrm{p}$
 Alpha-numerical Displays with data E2 75 ORP61 Mullard MICROPHONES EM506 Condenser Mikes Uni-directional FET Amp Dual imped. $50 \mathrm{~K} / 600 \mathrm{ohms}$, $30-18 \mathrm{KHz}$ on $/ \mathrm{off}$
swith E11 00 Miniarure Tie Pin Condenser mike 1 K omni-directional, uses hearing aid haitery (supplied) 495 Grundgg Electrel Inserts with bullt-In FET Preamp $\varepsilon_{1} 50$ Crystal
Mike Inseris 37 mm 45 Electret Condenser Mikes std Jack Plug $£ 285$ Cassette Condenser Mikes with 25 and 35 Jack Plugs E 285 Standard Cassette Mikes 200 ohm Imped with MORSE KEYS - Hi-speed Type all melal E2 25 Plastic Morse Keys. 95p Belling Lee L4305 Masthead Amplifiers and 240 VAC CRYSTALS. 300 KHz HC6U 40p $0{ }^{9}$ Edge Connectors, 64 way RELAYS. Min 220 v AC Sealed Relay 2 pole C/O 45 p 240 v AC Sealed Relay 3 pole C/O 5 amp Contacts 11 -pin base Bop 12 vol
4 pole NO Reed Relay 20 p Min 24 VC Sealed 2 -pole C/O relays 3 -amp contacis New 55 p $12 v$ DC 4 pc o open lype new

MOTORS 15 to $6 v D C$ Model 20p $115 v$ AC min 3 A PM with Gearbox 30p 240 v AC Synch Motor $1 / 5$ th R P M 65p 240 V AC
Synch Motor $1 / 24$ th R PM 65 p Crouzel 115 V AC 4 R PM BOXES. Black A B S Plastic with brass inserts and lid 75×56 $35 \mathrm{~mm} 40 \mathrm{p} 95 \times 71 \times 35 \mathrm{~mm} 49 \mathrm{p} .115 \times 95 \times 16 \mathrm{~mm} 57 \mathrm{p} 225 \times$
$130 \times 84 \mathrm{~mm} \mathrm{E} 195$

TOOLS. Radio plers 5in insulated handles $£ 140$ Diagonal side
MAINS TRANSFORMERS, all 240 v AC primary Postage shown in brackets per transformer
$6-0.6100 \mathrm{~mA} \quad 9-975 \mathrm{~mA}, 12-0-12 \quad 50 \mathrm{~mA} \quad 75 \mathrm{p}$ each (15 p) 0-4-6-9 150 mA , no mounting brackel 65 p (20p) $12-0-12$
$100 \mathrm{~mA}, 95 \mathrm{p}$ (15 p) $12 v 500 \mathrm{~mA} 95 \mathrm{p}$ (22p) $12 v 2 \mathrm{Amp}$ E2 25

SWIT CHES - Min Toggle SPST $8 \times 5 \times 7 \mathrm{~mm} 4$ 5p DPDT $8 \times 7 \times$ 7 mm 60 p OPDT Centre Off $12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$ DPDT C/O
Siders 20 p RS Singie Pole C $/ O$ Push Buttons 45 p . Sliders 20p R S Singie Pole C/O Push Buttons 45 p . Foller Micro
Switches 15 p Min Micro Switches $13 \times 10 \times 4 \mathrm{~mm} 20 \mathrm{p}$ Min Push to make or push to break Switches $16 \times 6 \mathrm{~mm} 15 \mathrm{p}$
SOLDER SUCKER. Plunger type eve protection replaceable
nozzle, high suction. E4 95 Heed swiches 28 mm norm open, 6 p nozzle, high suction,
each
TAPE HEADS - Cassette Stereo E3 00 BSA MN $13301 / 2$ Track Dual Impedance Rec/Playback SDp BSR SRP90 1/4 Track Stereo
Rec/Playback $£ 195$ TD 10 Assemblies two heads, $1 / 4$ Track Hec, Playback Staggered Srereo with built-in erase per head §120 Tape Head Demag 240v AC E1 95
BUZZERS-GPO Type 6. 12 V 20 p Min Solid Slate Buzzer voits high tone 25 p
UHFTV Transistorised Push Bution Tuners (not Varicap) new
MURATA MA401L. 40kHz Transducers rec/send E3 25 pair
METERS-Grundig Bati Level Meter $1 \mathrm{~mA} 40 \times 40 \mathrm{~mm}$ €1 10
Min Level Meler 200μ a $25 \times 15 \mathrm{~mm} 75 \mathrm{p}$ Ferranti 600 v AC Meter
EDGE METER - Large scale $0-100$ new E2 75
POT CORE UNIT Has 6-pot cores including 1 FX $2243(45 \mathrm{~mm}$
and $2 \mathrm{FX} 2242(35 \mathrm{~mm}) 320 \mathrm{~mm}$ Panel Fuseholders 3 TO3 sI , Power Transistors on heat sink, panel with various transistors and LA1230 adj core 15 mm dia $14 \mathrm{mH}-18 \mathrm{mH}$, HIQ Q 10 peach

8 TRACK 12 volt motors new, E 125
CASSETTE MOTORS 6 volt new 25125

SOLENOIDS-240v AC 45 p 12v DC H Duty 75p 240v 25 =
12-WAY MOTORISED CAM UNITS. 50 V AC low rev me:eAC use Ex equip E. $95+35 p$ P\&P

B WAY RIBBON-CABLE, min solid core, $15 p$ metre
POSTAGE 30p UNLESS OTHERWISE SHOWN (EXC
POSTAGE REFUNDED WITH ORDER) OVERSEAS POS COST VAT INCLUDED IN ALL PRICES

PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2 051-2360982

GAIN CONTROL

PART 2

Abstract

To conclude his survey of electronic gain control methods, Tim Orr presents us with more circuits which vary from a light bulb compressor to a markspace modulated universal filter unit, and a noise gate/expander.

Basic Limiter Circuit

Most professional limiter circuits use a FET as the variable gain element. Relatively low distortion with a reasonable signal to noise rati - can be obtained. A basic limiter circuit is shown this being no c:fferent to previous circuits except for the variable gain element.

When a relatively small voltage (20 mV) is applied to the drain source of a FET, it acts like a fairly linear resistor. As the gate source voltage is varied, this resistor (RDS) also varies.

In fact the channel resistance RDS is inversely proportional to gate source voltage $V_{\text {os }}$. When $V_{p s}$ is $o V$, then RDS is at its generally minimum resistance ($R_{\text {on }}$) which can be as low as $5 R$, but it is generally more like 100 R . When $V_{\text {gs }}$ exceeds the pinch off voltage (Vp or $\mathrm{V}_{\text {os }}$ off) the channel resistance goes up to several hundred Megohms. So a junction FET can be used as a voltage controlled resistor, except that $R_{\text {on }}$ and $V_{G S}$ (OFF) tend to vary widely from device to device. However with a bit of perseverance suitable devices can be selected and made to work.

One circuit trick that greatly reduces distortion is shown here. Half of the audio signal at the drain of the FET is presented to the gate. This is superimposed on top of the control voltage and produces a distortion cancelling effect. Distortion levels below 0.1% can be achieved using this technique.

OUTPUT 4

Transistor VCA

A circuit similar in operation to a CA3080 can be constructed with a matched pair of transistors and an op amp. Transistors $\mathrm{Q1}_{1}$ 2 form a differential transistor pair which is used to steer whatever current is available between the two collectors, just as in the CA3080. the difference between the collector currents is equal to the product of the input voltage times the current $I_{\text {E }}$ times a constant. This difference is extracted by the differential amplifier IC1. The current I_{EE} is controlled by $\mathbf{Q e}$. As the control voltage goes positive, Qe robs most of the current flowing down the 39 k resistor, and hence $I_{E E}$ and the output of IC1 decrease.

Two Channel Low Level Expander/Noise Gate

It is often required that a rather noisy signal be cleaned up à bit. This is not possible to do continuosuly, but it is possible to clean up noise in what was initially the gaps. The results of this cleaning up process can quite often be heard when telephone conversations from "foreign correspondents" are broadcast.

By turning down the signal level in the gaps, (by performing a low level expansion) the perceived sound quality improves dramatically.

The circuit performs just such an expansion. The inputs signal passes through the variable gain cell and then appears at the op amp output. The gain of the gain cell is controlled by the signal coming from IC1. This is a high gain amplifier with diode clamping, so that the output swing is limited to about 1 VO ptp Therefore for input signals of 10 mV pp to 10 V pp, the output of IC 1 remains at about 1 VO ptp to 1 V 2 ptp .

So, for this range of input voltages the gain of the gain cell remains roughtly static. Now when the input level drops below 10 mV , the output of IC1 will start to fall and so will the gain of the gain cell. This produces a $2: 1$ downwards expansion curve, which means that the output then gets quieter at a rate faster than the input. To accentuate this effect, a bleed resistor can be placed in parallal with C.

The resistor robs some of the current that would have otherwise gone to the gain cell and causes the input output curve to roll off much more rapdily at low signal levels. Also, by varying the resistor ratio of RZ/RB, the expansion threshold level can be altered.

Incredibly Simple Compressor

Not all gain control systems need be complicated or indeed active. One product which I saw advertised was a compressor to help prevent loudspeakeroverloads. All it was was a lightbulb in series with the loudspeaker. When the power exceeds a certalevel, the lamp will turn on, glow, its resistance increases dramatically and hence a bigger percentage of the power outper is dissipated in the lamp. A nice, simple solution, but I think it would require some experimentation to find the right sort of car headlamp bulb!

Switched Frequency Low Pass Filter

In this example the effective resistance is switched by using 4016 gates. The filter is a lowpass Butterworth and by turning gates A or B ON or OFF the cut off frequency can be altered. This allows the filter control to be physically remote or even to be computer controlled. Mark Space modulation of A and B would enable continuous control over the cut off frequency.

Four Quadrant Multiplication

3

(B)

- Esing a few circuit tricks, the CA3080 can be made to Fiorm 4 quadrant multiplication. In fact the CA3080 performs Redrant multiplication and the trick is to move the axis on the - iplying graph. If we ignore the RA resistor chain then we - a 2 quadrant multiplier circuit similar to that shown miously. Imagine that V_{x} is a 1 kHz sine wave. 1 Vptp and V_{y} is 2 EV. The output of IC2 is a sine wave of fixed amplitude. Now i we connect RA, and adjust the balance control, it will be - He to cancel out the output, because the signal coming - IC1 is out of phase with that from the RA resistor chain. So - V, set at 0 V there is no output for IC2. If V_{y} goes $+v e$, the _ of IC1 will become greater than the current via the RA and the output if IC2 will grow.
F $Y_{\text {, }}$ goes-ve the current through the RA chain will exceed from IC1 and the output of IC2 will grow, the phase being mosite to that when V_{y} was a sinewave from an oscillator, then thas circuit could be used to generate ring modulation effects.

When V_{z} is set up OV there may be some V_{y} breakthrough and siat be minimised by adjusting the V_{y} rejection preset.

"No. I thought you were supposed to bring the key!"

"Forget about RAMS, ROMS AND PROMS, darling . . . we've got to talk about PRAMS!'"

Markspace Modulated Universal Filter

It is possible to change the gain of an amplifier by effectively altering the input resistor. This can be done by markspace modulating a voltage controlled switch in series with the resistor.

When the markspace ratio is low, the switch is OFF most of the time and the effective resistance is large. When the markspace ratio is high the switch is ON most of the time and the effective resistance approaches that of the series resistor.

Having generated a markspace control waveform, it is possible to gang up together literally hundreds of voltage controlled switches. This enables large numbers of variables to be simultaneously changed.

The circuit is a markspace modulated universal filter (IC-6) and the markspace generator itself (IC-11).

IC7-10 forms a triangle square wave oscillator. IC7 is an integrator whose outout ramps up and down between $O V$ and a +3 V reference. IC8-10 are all fast comparators. IC8 detects
when the integrator outputs of IC8 \& 9 are used to flip over a schmitt trigger IC10, which then drives the integrator. Thus the integrator output ramps up and down between OV and +3 V at a rate of 20 kHz .

It is important that the frequency of the markspace oscillator be relatively high. As a rule of thumb it should be $21 / 2$ times the highest frequency components of the signals that you hope to process. The triangle output is fed into IC11's inverting inpurt the control voltage into the non inverting input. The output of IC11 is the markspace modulation which is used to drive the switches IC5,6. The filter resonant frequency is directly proportional to the mark space ratio that drives these switches.

The number of IC's used is a quad package, and so is the 4016 and so can be the op amps (use RC4136). Thus the whole circuit can be realised with only 4 IC's. Also the mark space oscillartor canbe used to drive other independent comparators.

15-240 Watts!

1 The HY5 is a mono hybrid amplifier ideally suited for all applications All common input functions
 Preamplifier (mag Cartidge, suner elc); are catered for internaliy. the desired function is achieved either by a multi-way swirction direct connection to the appropriate pins The internal volume and tone circuits merely tequire connectinq!'to external potentiometers (not included) The HY5 is compatible with all I. LP power amplifiers and power supplies To ease construction and mounting a PC connector is FEATURES: Complete pre-amplifier in single pack - Multı-func
 APPLICATIONS: HI-Fi -- Mixers -- Disco -- Guitar and Organ -- Publici address
 APPLICATIONS: SPECIFICATIONS:
 INPUTS Magnetic Pick-up, 3 mV Ceramic Pick-up 30 mV Tuner 100 mV Microphone 10 mV Auxiliary $3-100 \mathrm{mV}$; input impedance 47 ks) at 1 kHz
 OUTPUTS Tape 100 mV : Main output 500 mV R M S
 ACTIVE TONE CONTROLS Treble $\pm 1 \overline{2} \mathrm{~dB}$ at 10 kHz Bass \pm at 900 Hz
 DISTORTION 0 1% at 1 kHz , Signal/NoIse Ratio 68dB OVEALOAD: 38 dB on Maanetic Pick-ud. SUPPLY VOLTAGE $=1650 \mathrm{~V}$
 Price $£ 6.27+78 p$ VAT. PR1P free.

HY5 mounting board B1 48p + 6p VAT P\&P free
he HY30 is an exciting New kit from I LP it features a virtually indestructible \& C with short circuit and thermal protection The kit consists of IC heatsink PC board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available FEATURES: Complete kit - Low Distortion - Short Open and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment - Guitar practice amplifier -- Test amplifier -- Audio oscilator
SPECIFICATIONS
OUTPUT POWER 15 W R M S Into 80 DISTORTION 01% at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}$
3 dB
SUPPLY VOLTAGE $=18 \mathrm{~V}$
Price £6.27 + 78p VAT. P\& P free
HY50
25 Watts into 8Ω
The HY50 leads I LP s total integration approach to power amplifier design The amplifier features an integral heatsink together with the simplicity of no external components During the past three years
the amplifier has been refined to the extent that it must be one of the most reliable and robust High the amplifier has been refined to the extent that it must be one of the most reliable and robust High FEATURES: Low Distortion
EATURES: Low Distortion - Integral Heatsink - Only five connections - 7 Amp output transistors APPLICATIONS: Medium Power Hi-Fi systems -- Low power disco -- Guitar amplifier SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 25W RMS in 8! LOAD IMPEDANCE $4-16!$ DISTORTION 004% at 25 W at
SIGNAL/ NOISE RATIO 75dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPIY VOLTAGE $\therefore 25 \mathrm{~V}$ SIZE 1055025 mm

Price £8. 18 + £1.02 VAT. PEP free.

HY120

60 Watts into 8Ω requirements including load line and thermal protection, this amplifier sets a new standard in modular

FEATURES: Very low distortion -- Integral Heatsink -- Load line protection -- Thermal protection -APPLICATIONS: Hi-F - High quality disco - Public address -- Monitor amplifier -- Guitar and SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 8! LOAD IMPEDANCE A-16』 DISTORTION 004% at 60 W at
SIGNAL/NOISE RATIO 90 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SÜPPLY VOLTAGE $\stackrel{ \pm}{\text { Size }} 114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 19.01+£ 1.52$ VAT. PRP free.
HY200
The HY200 now improved to give an output of 120 Watts has been desrgred to sitnd the miost rugged conditions, such as disco or group while stall retaining lrue Hi Fi performinnee:
FEATURES: Thermal shytiown - Very low distorthon - Laadfane protection - finiegral Heatisirily
120 Watts into 8Ω
APPLICATIONS: Hi-tI -- Uisco -- Monitor - Power Slave - indisis al - Public address SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS into 8 I? LOAD IMPEDANCE -16.2 STORTION 005% at 100 W at 1 kHz SIGNAL/NOISE RATIO 96 dB FREQUENCY RESPONSE $10 \mathrm{H}_{\mathrm{z}}-45 \mathrm{KHz}$ _-3dB SUPPLY VOLTAGE
-45 V SIZE $114 \times 100 \times 85 \mathrm{~mm}$
HY400
240 Watts into 4Ω

The HY400 is I, LP P s "Bia Daddy" bf the ranae proaucina 240W into 49! It has been designed for figh power disco or public address applications it the amolitier is 10 be used at continuous figh power leves a cooling fan is recommended The amplifier includes al! the qualities of the rest of the family to lead the market as a true high power hi-fidelity onwer mandile
FEATURES: Thermal shutdown - Very low distortion - Load line protection - No external
APPLICATIONS: Public address - Disco -- Power slave - Industrial
SPECIFICATIONS:
OUTPUT POWER 240W RMS into 4 ? LOAD IMPEDANCE $4-16$ DISTORTION 01% at 240 W at
1 kHz SIGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3 dB SUPPLY VOLTAGE $\pm 45 \mathrm{~V}$ SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price £ $38.61+£ 3.09$ VAT. PR1P
POWER
PSU 36 suitable for two HY $\mathbf{3 0}$'s $\mathbf{£ 6 . 4 4 + 8 1 p \text { VAT }}$
PSU50 suitable for twe HY 50 's $\mathbf{£ 8 . 1 8}+\mathbb{E} 102$ VAT
PSU70 suitable for two HY120's £14.58 + £1.17 VAT
PSU 90 suitable for one HY200 £15.19 + E1 21 VAT
PSU 180 suitable for two HY2000's or one HY400 £25.42 + f. 203 VAT

TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd. Crossland House Nackington, Canterbury Kent CT4 7AD

Tel. (0227) 64723

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

ELECTRONIC COMPONENT CENTRE 58-60 GROVE ROAD, WINDSOR, BERKS SL4 1 HS (TRADE AND EXPORT WELCOME) ELECTRONICS LTD. WINDSOR 54525															
	Din Praps. All 19 p					аur	$8^{8 p}{ }^{\text {* }}$	7.475	${ }_{48}{ }^{\text {a }}$						
		CIOEO $44400 \mathrm{SCR} 55 \mathrm{~F}^{2}$				7401		7476	$35 p^{\prime \prime}$						
	Disco Strate Tube	Th6 $1 / 400$ lamp 55p*. $1 /$		zhing 20p*. ls SK	Kit 10p*	7402				4002				555	27p*
MICRO POWER SUP.	CEES. AII E5 each		${ }_{\text {AC }} \mathbf{4} 127$	17p* 8 8F50	$16 p$ *	2403	10p*	7481						$6^{\circ} \mathrm{C}$ Full	
	SEI 1: 250×50 wohl C	Swicher min Sps $55 \mathrm{p}^{*}$	AC176	10p* BFF51							${ }_{922^{*}}$				
PORT All luti spece Gradi 1 dizpliyy	$5 \% 10$ oach			20p ${ }^{\text {coxa }}$		7405		748							
Di704 CC or DL707 Ca 0.3^{3}	from 2204 $100.141{ }^{\text {c5 }}$	Stide Swilch 25p				406	${ }^{288}{ }^{\circ}$	7485		4010		407		TLI 70 Hall elthe	69p*
	SET 2. Tantutum 10010	Pusi ' $0 \mathrm{n}^{\prime \prime}$ ' 35 p	AF239	$42 p^{\circ}$ M. 45340		407	${ }^{28 p^{\prime \prime}}$	74890	35p*				E1.29*	Li.071 Lo neite 741	
	200ut 20010353 yoth Pota	FULL SPEC PAKS ALL EI		${ }_{8 p}{ }^{\text {P }}$ MJL2955		${ }_{7409}$	$12{ }^{\circ}$	7491	75	4012	18	4077	40p*	TLO91 FET Bp. 7	
	£5	Pak A: $12 \times \operatorname{Red} 1205 \mathrm{E} 1^{\circ}$	-c109		5800	1918	109*	7492					21p*	1.1083 f	£1.49*
	SET 3: Bectranmic 25 rah	7158		9p. mpu131		741	$22{ }^{2}$	7493	${ }_{35 \%}$		${ }^{93 p^{\circ}}{ }^{\circ}$			TL080 fet 748	£1.15*
	10 each (B0y 1/2/5/10)			$15 p^{\circ}$ DAP12		7412	22p*	7494	75						
	100/220/1000 E5	Pak C: 4×2 M13055. 103	8 C 147	$12 \mathrm{p}^{*}$ T1P4/A		7913	${ }_{289}{ }^{\circ}$	7495	755°					14. SUPER	
	m			12p 11P42A		7415		7496	${ }_{85}{ }^{\text {P }}$			4093		30	
	K.E. 10 oceth 10 amm 10.10	Pak 0: $12 \times \mathrm{BCleg}$ E1*	$8 \mathrm{BC149}$	124 Tipr995		117	${ }^{28 p}{ }^{\text {* }}$	75100	E1.1	4021			55p ${ }^{\text {c }}$	555 Deer (155555]	
LEDS. Bright lull qpec	mackes im 1 Big	Pake: $13 \times$ BCI 182		15 p TPP3055											
	SET 5: Zeners 400 mw 5	Pake		15 p			25	71121	27	41323				723 Alepulator	
	ench 20 veiras 3 voll to	Pak H: $7 \times$ 213319 etas	${ }_{8 C 167}$	15p 2428005		7425								7.15148 Pin Oll OPA	
	33 ral (Teas 100\| 55		${ }_{8 C 168}$			7439	${ }^{269}{ }^{\text {10p* }}$	74141 7143		4025	19p.		¢2.65*	741 C TO98 or DIL 14	
	SET 6:-100 Preats 55	New Pak 1: $10 \times$ Meta		12 p 212053	16p*	7432			${ }^{8} 5$			4515	E1.28*	${ }^{7488} \mathrm{Cop}$ Amp	
$0.2^{\text {" }}$ or $0.125^{\prime \prime}$ " Dis. A1 20 p * I2 voll Fliorrescenit Light	SET 7: Hatuioks. 10 ofl.	Yrimm, Knob what dis dymo		${ }_{18 \mathrm{p}}{ }^{\text {a }}$ 2133055	45 p	7440		74147	${ }^{85}$		90 p .	. 518	¢1.05 ${ }^{\text {¢ }}$	3900 Ound Op Amp	55p**
	Each TO18. TOS, TV4	theriser stc.1 E1*	${ }_{8 C 178}$	$16 p^{\circ} 243614$	¢1*	7441	$79{ }^{\text {7 }}$ -	74152		\%			E1.10 ${ }^{\circ}$	78051 Amp 5 voll	
	[TOST and mmull TO^{3}	Pak J: 5×2313053 ह1**	[BC:79	$18 p^{*} 2133702$		7442	${ }^{87} \mathrm{p}^{\text {² }}$	${ }_{74154}$				1521	£2.68*	7800 crit	
		Pak E : $50 \mathrm{X} \times \mathrm{N} 4148 \mathrm{Et}$		$10 \mathrm{p} 22 \times 3704$			69p*	74155		4032		4522		7808 of 7812	E1,2
Trimmer 0.8 or 5 io dopt 25p		Pak L: $50 \times 33 \mathrm{wl} 10$ vull		10 p 213706	\%	Thus	$88 p^{+}$	74156	${ }^{80 p^{*}}$			453	99p*	781515 vall plas	
		detcropric ε^{1}	${ }_{8 C 184}$	10p 243819E	18p	1447	82pa ${ }^{\circ}$	74157			1.20 ${ }^{\circ}$	45		7900 megralve Series	
Coll former ${ }^{\text {s Stup }} 0$	Pressis Typa Pa vert 100	Pak M: \& Pairs Pasalla	8 C 212	$12 \mathrm{p} 2 \times 3820$	38p		\&1*	7154	\&1\%		\% ${ }^{\circ}$	451	E3.60		
	Typo 45 pota log 8 Un 25p	Power 2 mmp 60 voll.	$8{ }^{8213}$	12 p 2 H 3900	15p	7450	159 ${ }^{\circ}$	74174	El^{1}			454	E1.50	8038 Slig Generntor	
Raliay mimel 3 foice 12 weil	capacrior	2 ypa	BC214	12 p 2133906			15p ${ }^{\text {P }}$	74176					E.1.	Ca	${ }_{94}^{1.35}$
	Coramic 50v 5\% Hit Stal 22 pl		BCY71	20p ${ }^{244347}$	50p*	7453	15p*	77190	¢ ${ }^{\text {² }}$		${ }^{819}{ }^{\text {P/ }}$	455	£4.4		
	$100.1418 .22 / 47 \quad 5 \mathrm{p}$			37p* 2\%5457	32 p		15p*	74192	¢2 ${ }^{\text {a }}$	4043		4556	78	IM381	p
Oivio PCE Fon 2 atas $70 \mathrm{p}^{\circ}$	Tzatamm Cipe	Pak P: 20 a Plazit 10 Of	8 B 132	$37 p^{*} 2 \times 577$	44 p "	7460	${ }^{15}$	77193	E2*				¢1.17		
	Eiectmatyics 25 voff	E1	80895	690* 7123							1,30*	4565	E1.59*	Lun	
	1/10/47/1000t all 10 p	Pak Q: $50 \times 22 \overline{0} \mathbf{u l} 6.3 \mathrm{v}$	80696	69p= 11.63	11*	7472	26p*	74196		4047		456	E3.59	Limssec cuad Opa	5p*
	\|50 vort 200] 2220 or 4700 t	Yoil Electraiutic El				7473		74197			52p*		ع1.10*	MC1310 Decod	
סx4" Myton/Copgot Baurd	30p	Pak R: $14 \times 8 \mathrm{BC} 107$		$\text { Ese } 8 \text { Brisge }$								4585		мCli460. 146181469	
	volt $\quad 35 \mathrm{p}$	Puks: $16 \times 8 \mathrm{CCl} 108$ हो												MCH0S 14433. A/0	
Vmo Stocker 11110% of (3x"y51"01"	KNOBS. I" tia 8 trim 15 g HEAT SINKS. TOS \& 10	Pak T: Top seting If x in mistc prower 60 voth 2 amp BD日雷 Typ				OIL SOCxETS								ME535 PET OPA	E4:
														MEES5S Timer	27p*
$56 \mathrm{p}^{*}$				1450\%						50p	40 Pin		c1.50	Me5s66 Duas 555	
	TV4 $25 p^{*}$. 103 small $25 p^{*}$			7 $7 p^{*}$. $/ 44007$						$15 p$				TBA810 7w AF	E1

AUDIO OSCIILATOR

 WITH LCD DFM OPTION

 WITH LCD DFM OPTION}

Abstract

An audio oscillator combines with a new design in frequency meters that provides accuracy and fast reading rates.

Front view of the audio oscillator. Note that this is an early prototype and the 3 V range has been deleted.

THE WEIN BRIDGE oscillator published in our June issue did not provide a performance of adequate standard for many test
applications-one would not have expected so from such a simplified design. Since then we have had many requests to provide a high performance oscillator

This oscillator started life as another wein bridge, started to evolve as a voltage controlled sweep oscillator but when it became too complex reverted to a simple wein bridge.

One major problem with all home made oscillators is that of scaling the frequency dial. This is not just a problem of positioning the knob but since normally available potentiometers have a tolerance of $\pm 20 \%$, the scale length will also vary. In commercial units the use of an expensive wire wound potentiometer solves most of the problems giving reasonably accurate scaling.

We then decided to build in a frequency meter and the high power consumption and the poor resolution, especially at low frequencies, of previous designs led us to develop a completely new design.

This uses what is literally an analogue computer to convert a period measurement into frequency with some digital electronics controlling it and displaying the results. We based this on the Intersil ICL 7106 IC which, due to its liquid crystal display drive circuitry, allows a low power consumption design. Due to the method of conversion from period to frequency the range is limited from about 50 to 1999 counts and therefore automatic range selection is used. As the oscillator itself has less range than this, this limitation is no problem.

To simpllfy wiring we initially used CMOS analogue switches to select the range changing capacitors in the oscillator but this unfortunately increased the second harmonic

Fig. 1. The circuit diagram of the frequency meter section

HOW IT WORKS

This section works by generating a voltage proportional to the period of one cycle and using this as the reference voltage for the Intersil voltmeter IC with a fixed voltage on he normal input. This gives the inverse function of normal operation and the display
and IC5/2 will turn on. This discharges C3 to zero volts. After a short delay to allow C3 to discharge IC5/4 is turned on transferring that voltage level onto C5. After a total or two cycles the process recommences. The

-

C: D_{1} dithon is as follows Imitally C3 is
discharg and for one cycle of the input signal IC5/1 turns on. As the IC7 provides a stable voltage between pin 1 and pin 32 of about 2.8 V the output of IC6 will fall linearly with time and as IC5/1 is on for exactly one cycle the voltage change will be proportiona to that period
After IC5/1 turns off the output of IC6 will stay fixed. IC5/3 is then turned on and C4 will change to that voltage. After half a cycle IC5 $/ 3$ will turn off leaving C4 at that voltage

5 are derived from IC1/1 and IC4

A reference voltage less than half the input voltage will result in the ICL7106 counting past 2000 (over ranging). The two inputs must also lie within the supply rails (less .5 V). This limits the range of the instrument from 5 Hz to 200 Hz For the higher frequency ranges, three decade drivers are provided and the necessary output selected by IC3. The correct decimal point is also selected by the other half of this IC.

PARTS LIST

Fig. 2. The circuit diagram of the oscillator section.

PARTS LIST

RESISTORS all $1 / 2$ W 5%	
R1, 2, 5	4k7
R3, 4, 15, 16	47k
R6	680R
R7, 12, 14	10 k
R8	220R
R9, 10	68R
R11	1 k
R13	100 k
1117	10018
1111	1111
11911:	15

HOW IT WORKS

The oscillator is of the conventional Wein brige type with a differential amplifier made up by Q1-Q5. Gain stabilization is provided oscillates at the frequency where of circuit oscillates at the frequency where the impedance of the capacitors equals the resistors in
the Wein bridge arms. With this feedback network bridge arms. With this feedback greatly like that of a twin tee but the vary
hift does. The result is a sine wave oscillator with low distortion
For frequency variation a two gang potenometer is used to give a $20 / 1$ continuous variation with switched capacitors giving The sine wave output is converted to quare wave by ICI with the amplitud stabilized by D3-D6

POIENTIOMETERS

$\begin{array}{ll}\text { 'RV1 } & 100 \mathrm{k} \text { dual rotary } \\ \text { RV2 } & 10 \mathrm{k} \text { lin rotary }\end{array}$
Ok lin rotary
10 k lin rotary
-RV1 - the preferred curve giving best resolu
tion is antilog If reverse rotation is acceptable
log is as good. Otherwise use a linear curve

BUYLINES

The components for this project should be readily available from most suppliers - the LCD display and DVM chip being stock items with many firms by now.

SPECIFICATION

Oscillator Section

 RangesOutputs available Output level

Output impedance

Sine wave distortion
Square wave risetime
Frequency Meter Section Number of digits
Display
Reading rate
Resolution
Mode
General
Power consumption
$10.0-100.0 \mathrm{~Hz}$
$100-1000 \mathrm{~Hz}$
$1.00-10.00 \mathrm{kHz}$
$10.0-100.0 \mathrm{kHz}$
sine or square
1 V maximum
continuously variable plus
10 dB steps down to 1 mV nominally 600 ohms
$<0.1 \%$
200ns

$31 / 2$

LCD
5 per second
0.1 Hz on lowest range Period measurement computed to read frequency

26mA@12VDC
distortion when the supply voltage dropped below 12 volts. This is due to the non-linearity of the "on resistance when the input voltage changes We therefore reverted to the good old mechanical switch!

Construction

Assemble the frequency counter board first, following the overlay provided. As this board is mounted very close to the front panel (only the height of the LCD) the capacitors should have leads long enough to allow them to be laid, on their side on top of the resistors, etc. Also the CA3130 and the transistor will have to be mounted close to the board While it is not essential that a socket be used (we didn't) for the LCD, one is recommended Be very careful
with the display as it is glass and therefore fairly fragile

The oscillator board can now be assembled following its overlay diagram. The thermistor should be tied down using a loop of tinned copper wire and pins should be used on all external wire terminating points Cut all leads short on the back of the PCBs as the two are mounted back-back with only 6 mm spacing

We built the units into a large box with all the components mounted on the front panel. The PCBs are secured by four 6BA c/s screws through the aluminium but hidden by the front panel The frequency meter board is spaced using 6BA nuts to give just enough clearance for the display and is held in place using 6.4 mm long tapped spacers. Check that the spacers do not touch any track on
the PCB and if so add pieces of insulation material under them.

The switches and potentiometers can now be mounted on the front panel and the wiring from the frequency counter board to the range switch done. Add wires from the two power connections and the input for later connections to the oscillator board.

The oscillator board can now be mounted onto the back of the frequency meter board ensuring that no leads short between the two boards. Also check that the spacers do not touch any tracks on the oscillator board. The wiring of the front panel can now be completed

Checking and Adjustment

Switch on the check that the frequency meter and oscillator are

working Monitor the output of the oscillator with an accurate frequency counter and adjust the oscillator to the top end of one range The frequency meter can now be calibrated by means of the 10 turn potentiometer on that board

Check that the display range changes correctly and that the decimal point also moves. Each range while nominally having a $10-100$ variation will be adjustable from about 7 to 150 . Check the attenuator has 10 dB between steps.

A．Marshall（London）Ltd．，Depl．ETI．Head Office mail order；Kingsgate House Kingsgate Place NW6 4TA．Tel．01－624 0805 Retail Sales London： $40-42$ G2 200 Tel 041．332 4133．Bristol： 1 Straits Parade Fishponds Road London： 325 Edgware Road．W2．Tel．01－723 4242．Glasgow： 85 West Regent Street

		TORS																${ }^{\text {ac337 }}$	0.20	802			3		30				
${ }_{7}^{2} \mathbf{2} 468$	0.38 0.31	212218	${ }^{0.35}$						0.78	2401\％	－ 0.57	${ }^{\text {acc }}$	Q 0.15	${ }_{\text {IL }}$	0.028	${ }_{86}^{86}$	0.17	dL：33	0.23	в02	59		5		30	med	15	\＃pala	54
	0.49		0.38		0.19				0.97		${ }_{0}^{0.55}$								13				． 37				16		58
	－		0.39	23	0.19		．	35	0.37	2336	145		Q，17	$\mathrm{BCl}_{\text {cha }}$	${ }_{0} .25$	${ }_{6 c 21316}$	0.17	${ }_{\text {BC5 }}^{1}$	0.13	${ }_{802}^{802}$	0.55	8F1	${ }_{0}^{0.2}$		${ }_{0}^{0.34}$		0．11		${ }_{0}^{0.182}$
							0.20	2 m	0.38	20038	0.82	${ }^{\text {clicec }}$	0.18	8 c 128	0.12	вc21	0.17	日C548	0.13		0.62	bF1	0.2		0.30		0.11		76
			0.25		0.75		i．35		0.4	50409	0.12	Ril140	0.30	1c182a	0.12	BCO_{2148}	0.17		0.14		0.65								
			${ }^{0.25}$				265	2 M 52	0.4	20410	0.32	${ }^{86141}$	0.32	8 E 1															S6
	O		0.25	2304																									08
217	．	2123	0.27																										π
	0.4	212	0.27				0.18		0.4	tocta	0.80		0．13		${ }_{0}^{0.15}$		0.1	${ }_{8}^{\text {日cc5 }}$	0.1	${ }^{102245}$	0．69		0.4		1.3	m， 2340	0.6	T1P	． 59
			0.35	2 m 310	－14	zu12	0.18	3	0.16	${ }^{30659}$	1.30	$3 C 148$	0.13	вciam	0.12	${ }_{1023}$	01	BCY7	0.2	802	0.72	${ }_{8}$	0.3		0.2	MJE	0.6	${ }_{\text {Tis42 }}$	0.50
	0.3	2123817	1.55	2иファロ					0.15	4126			2.15	${ }^{3} 18$		нicza			0.2		0.93								47
			${ }^{3}$	2733	0．14							${ }^{8}$	d． 1			8		вCY											0.22
	0.15		0.31	${ }_{2 \times 3}$	D． 14	zmiz	0.22		0.35	415！	0.43	${ }_{80}$	Q．15	8¢Ligl	a， 1	${ }^{812}$	0． 0.17	80	${ }^{0.565}$		${ }_{0}^{0.46}$		${ }_{0}^{0.18}$		${ }_{0}^{0.55}$		1.05		
zin2s	0.37		0.31	21370	0.12	284	． 22	2 MS	0.32	ACL152	0.54	BC1588	0.15	вгısad	0.15	str	0.18		0.75		0.46		0.1		0.3		0.33	T1593	
	03								0．35			${ }^{\text {BCl } 159}$	0.17		0.15						0.5		0.19		0		0.4	2T330	0.17
20	${ }_{0}^{0.95}$				2．15		2.65		0． 0.30	${ }^{*}$		${ }_{\text {Ecise }}^{8 \text { 8ctise }}$	${ }^{0.17}$														0.044		
	0.30		0．25	20373	3.15		0．65		0.40	${ }^{\text {cic }}$	0.54	cictic	0.38		0.13						0.55		0.38		1.5	MPS	－2		
211	0.30	2 Z	0.17		${ }_{8}$		$0 \cdot 8$	210419	0.64				${ }_{0}^{0.13}$										0.4		li．188		${ }_{0}^{0.27}$		
3118				2 m	0.96	2	Q，${ }^{\text {a }}$		0.05	161	0.34	${ }^{\text {act }} 1688$	0.13	вcisicic	a， 15	вc3a7	0.1				0.74						0.33		
2 z	${ }^{0.50}$	2n2925	0.17		${ }_{0}^{0.28}$		0.075							${ }_{\text {日c2 }}$		${ }_{8}^{803}$	0.16	${ }^{\text {polipe }}$	${ }_{2}^{2.20}$	${ }^{\text {an5 } 39}$			－0．35		270				
212	0.50		025		0.20		115		45	a0162	100	BC1	ロ13		015		－16						－0．35		2.2	${ }_{\text {R20058 }}$			
	0.5				0.18		30		0．55		0.60		0.13		0.18		0.16				1.32						2.15		
				2 n 3905			0.30		0.55		0.52		0.22				1.16		0.44	80才	1.90	в	0.49	MEQ44	0.7		0.48		
W12	0.40		0.50						0.49		0.16		022		0.18 0.15				0.44				0.30	MEE4412	0．22		${ }_{0}^{0.55}$		
7R21954	0.4	2 23	045	2 H	0.65	2 S	065	246122	044	вC1078	0.16		0.22		0.15		0.2					$\begin{aligned} & \text { Bras } \\ & \text { HFF24 } \end{aligned}$							
32217	． 55		1																										

LINEAR CIRCUITS

LINEAR CIRCUITS							
00018	0.75	Lm3799	4.25	LM7815k	1.75	TAA530	2.35
23018A	1.10	เмзвоия	0.96	Lm7 ${ }^{\text {a }}$ 2K	1.75	TBA5300	2.45
53120	2.20	Lmbancla	1.08	Lm7ekoscz	0.30	тва540	2.60
3232004	2.50	Lm30日ar	2.70	Lm781／2Ci	0.30	tras 400	2.70
230284	0.90	Lemaili	1.69		0.30	TGA550	3.60
502938	1.25	LM3R2M	1.32	MM5314	4.60	TBA5500	3.80
23830	1.50	Lim348	1.55	${ }_{\text {mm5315 }}$	4.60	тBA56000	3.00
333344	220		0.88	NE555	0.33	teA570	2.10
± 1238	2.90	tM397\％	1.10	HE556	0.65	tas5700	2.20
－ 303384	4.10		1.00	ME 559 M	1.98	taa7000	2.20
23045	1.55	LTMB9\％	1.01	Me560	4.50	tha720ad	2.06
33046	0.77	LM702C	0.61	ME561	4.50	tBA750	236
2304	2.45	Lm709	0.71	WE562	4.50	tba7500	2.45
23052	1.78	Lm7098	0.50	HE565	1.39	taabod	1.30
23000	0.05	1 M 70914	0.49	ME566	1.75	tbabios	1.30
\％30004	2.10 0.50	LM710	0.67	ME567	1.90	танаго	0.80
O）S	050	LM71014	0.64	ME571／	4.95	тва920	2.99
5	1.87 290	LM711CM	0.72	SAS550	2.70	icaligac	2.35
10098	2.90	LM723C	0.75	SAS570	2.70	TCA 1608	2.55
383090	4.40	Lm723614	0.45	SAllio	2.10	тсаг70	2.99
23130	106	LM726	580	S041P	1.35	тса730	4.50
23140	104	LM741C	0.70	S042P	1.35	tCa740	4.50
토I	030	Lm741CB	0.30	SHTLOHIN	1.30	tCA750	3.00
포꾜	0.50	LM741614	1.30	SH76003	2.38	tcal ${ }^{\text {co }}$	2.00
480	0.95	LM747CH	0.99	SM76013	1.50	tcal0s	1.49
\cdots	1.95	LM7488	0.50	S476023	1.50	тса440	1.65
Hex	3.35	LM74814	0.90	SH760331	2.35	TDA1022	7.50
速相	2.45	LMI303N	1.15	тanz33	1.35	T0A1024	1.24
crais	2.15	Lm 1304 N	1.52	taa300	3.70	ToA1034	4.75
T0． 12	215	LM1305N	1.52	тадзгоа	1.15	toazozad	4.50
－	215	LMI307N	1.22	tah350A	3.00	linal70	2.15
cent ${ }^{4}$	215	LIMI310N	210	taks2｜	1.10	vaalad	2.15
56is	1.15	LM351N	130	тAA5？	2.10	тlobacp	1.25
catil	1.15	LM1458	0.45		0.48	TLD91CP	0.90
1×45	1.15	LIM1496\％	0.97	TA5Ld	210	тL082CP	1.10
15 can 4	115	LmIBDB	210	тиа570	2.20	тLовзс	1.40
－ $\mathrm{coz}^{\text {a }}$	6.95	LM1812N	6.20	таАз70a	5.45	गLOB4CN	1.45
	0.60	LM1820	1.16	таАбзо	2.40	［F355N	0.80
Eemb	0.68	LM 1 828	1.90	taA960	3.90	［F356	0.80
Tatis	0.88	Lm1830N	1.90	tah970	4.20	［F3574	0.80
［5］${ }^{124}$	0.88	Lmibsin	1.90	т	2.50	［1332011	3.00
Hesp	0.80	Lm 1845 H	1.50	taf621	2.50	LF｜3331\％	3.00
Hepl2	0.80	LM18484	1.98	dab5ia	1.65	［F｜3741H	0.80
necieis	0.80	Lm1850M	1.90	тай6t8	1.45	（F1374）	0.55
Isund	0.80	LIIP89M	4.90	\％MiTo	4.50		
En	0.95	Lm33014	0.50	IM 9330 m	1.45		
5	0，60	LM3302\％	0.55	таяз3＇0	1.45	MANY M	
E테	3.00	Lm34014	0.55	tadiod	2.00		
Emin	330	Lm3900H	0.68	тваıг	0.80	stacke	
E．	2.35	LM3905 ${ }^{\text {a }}$	1.15	tbasoo	224	SEMD FOR	
Ext	6.45	LIm9909	0.78	taas000	234	catalo	
EET	3，35	LM3971\％	1.10	tam510	235		
［5］	3.36	LM7805 5K	1.75	teasion	2.48		
E	1.80	LM7812K	1.75	т8a520	260		
EET	240	Lm324	0.75	тв 5200	2.70		

EXPAND AND

D
KIM
Notatit

america＇s fastest selling most popular 6502 BASED SYSTEM－EASILY EXPANOED

TTL \＆CMOS

BUILD-IT-YOURSELF TEST GEAR KIT
 BASIC SERVICING INSTRUMENTS WITH
 EASY STAGE BY STAGE BUILDING INSTRUCTIONS - IDEAL FOR THE AMATEUR MULTI RANGE TEST METER A general purpose meter covering all usual ranges of A.C. and D.C. volts current and resistance measurements

AUDIO SIGNAL GENERATOR

New design covering 10 Hz to 10 KHz and variable output. Distortion less than 0.01% Ideal for HIFI Testing.

OSCILLOSCOPE

A basic $3^{\prime \prime}$ general purpose cathode ray oscilloscope for simple testing and servicing work. Sensitivity 0.3 volts $/ \mathrm{cm}$

THIS MONTH'S SPECIAL OFFER "Motorola Audio Amplifier 1watt I.C."	
1 watt plus into $8-16 \Omega, 9-16 \mathrm{~V}, 10-400 \mathrm{MV}$ sensitivity Short circuit proof no heatsink	
Sentinat Smoke and Gia Detecior. This beautifully made unit uses quality com. ponents on fibreglass board. encased in heavy duly, domed diecast box. $31 / 2$ diam $\times 11 / 2$ high. LED. Indicator TGS 105 plugg in sensor. 2 Av , or 12 v by altering 3 resistors. will drive relay of lamp. Ideal for cafavans, boats, kitchens, efc,. etc. E6 45 with circuit and data. Miniature Vemitron' FM4 $\mathbf{1 0 . 7} \mathbf{M H z}$ cer-	Don't let your environment dehydrate You, BUY OUR ''HONEYWELL 'HUMIDITY CONTROLLER'. Membrane actuated, adjustable by $1 / 4$ shaff Ideal for greenhouses offices, centrally heated homes etc 3.75 A contacts at 250 V Build Humidifiers or dehydration alarms with this novel gadget at 8 fraclion of original cost. E1 each, 3 for $\varepsilon 250$.
amic fíters 50p each, 3 for $£ 1$ Crystal earpieces with lead 40p each, 3 for E 1 Magnetic earpieces with lead and plug 25p eath B'tof Et	Semiconductor Bergains New Super Bargain Drode Pack. Includes zener, power, bridge, varicap, silicon, geranium, marked. unmarked, etc, etc. Excellent value 300 tor ह. 295
Ulirasonic transducare ransmitter and receiver 14 mm diam 40 hcs.	New Improved Transistor Packs: 100 New and marked transistors including BC
4 alumintum boxes $128 \times 44 \times 38 \mathrm{~mm}$ E4 25 pair	148 BC 154, BF 274. BC 212L. BF 200
for signal injectors etc 100 minature E 100	200 transiators as above and including
burglar alarms, model railways. eic E3.30	£9.95. ACly
6.6 -pole 12 volf read relays on board F? 45	ITT 25 kV ctw eht triplers for Decca Brac tord. chassis brand new E2 50, ETor $\geqslant 10$
mign quahty computer panela smotnered in	B0131 3 for £t.00
top-grade components	SN7E1:5N (equivalent MC 1310) 50-
5ibs \quad ¢475	TEA 120a
TOlbs EQ 95	10 assoried convargance pots el
New U.H.F. tranmietor TV tunors. Rotary	12 Quil . law protile 14 pirl c. sockets
and leads E2.50	
Aluminium TV coax plus . . . - 10 for £1	
MIniature odgewise panel mounting level meters 200~ D F.S.D. $90 p$	$\mathrm{BC} 154 \quad 12-£ 1$ Varicap diodes on lar E ?俭. B trpes]
300 muxed resistors $1 / 2$ \& $1 / 8$ wat! E1 50	Deluxe Fibro Glasa Printe
300 modorn muxed caps most types E3 30	Clrcuit Etching Kito
100 mixed electrolytics E2 20 300 mixed printed circuit components \qquad	includes 150 sa ins copper ctad 1 g bcere
300 mixed prinsed circun mestors Ei 50	abrasive cleaner 2 migy drill bits onco tay
300 mixed printed circunt resistors E: 00 100 high-wattage resistors W , eic	and instructions Orily 150 50
$\text { £2 } 20$	150 sq ins fibre glass board Dalo pen
25 assorted VDRs and thermistors El 20	1 tb lerric chloride to mil spec E1
20 assorited pots and preasets etc $£ 1.20$	5 tbs ferisc chloride to mil spec ES 60
470μ F 25 v radial, modern type 10 fo	Instruction sheet 200
150 mixed 1 - and 2 -walt resistors ¢ 1	30n P\&P ON ALL ABOVE TEMS SENE
100k varicap pots, can be banked side by	CHEQUE OR POSTAL OROEA
side, very compact ${ }^{\text {a }}$ a . . . 10 for ct	ORDEF FOSEITINEL SUPP Y DET
Mains Neons, long leads ... 15 for E1	ETI. 149A BHOOKMILI ROES
100 mixed modern miniature ceramic and	LONDON
plate caps £ 20	Catters by eppointmemt onty

INSIDE ULTRASONICS

Ultrasonic sound at very high frequencies is being used increasingly for medical diagnosis. Dr P. N. T. Wells of Bristol General Hospital reports.

THE IMPORTANCE OF ultrasonic diagnostic methods les in the fundamental differences between them and other techniques such as radiology and radioisotope scanning. The symptoms of some diseases, and of natural conditions such as pregnancy, are best invessigated by ultrasound. It maps out anatomical crosssections, measures the performance of the heart and the flow of blood, and identifies many kinds of abnormality including several types of cancer, all without en croaching into the body in any way

Twenty-five years ago, doctors seeking to investigate the structures of the body had no alternative to X-rays and this often involved injections of substances to give better contrast to obtain information about soft tissues. Nowadays, ultrasonic methods have replaced radiology in helping to solve a number of clinical problems doctors depend on ultrasonic diagnosis, and patients semand this kind of investigation. The procedures are apid and painless and nothing enters the body other han ultrasound waves. Unlike ionizing radiations, irasound at diagnostic exposure levels seems to be hàrmless

Basic Principles

Most diagnostic applications of ultrasound depend on - = reflection of ultrasonic waves at surfaces between -ssue structures which differ in their so-called characTEristic impedance. The characteristic impedance of a -aterial is equal to the product of its density and the - $=$ locity of ultrasound within it. The densities of soft issues, about $10^{3} \mathrm{~kg}^{-3}$ (kilograms per cubic metre). and the velocities of ultrasound within them, about $1500 \mathrm{~m} \mathrm{~s}^{-1}$ (metres per second), are similar to those for water. When an ultrasonic wave strikes the boundary Setween tissues that differ in characteristic impedance, a seoportion of the energy in the wave is reflected in much $t \leq$ same way that light is reflected when it meets a thange in reflectivity at a surface.

The characteristic impedances of soft tissues are s lar, so the echoes from their boundaries are very small. For example, only about 0.5 per cent of the

Fig. 1. Basic arrangement of the A-scope system, in use in this instance to show the mid-line structures of the brain in their relative position halfway between the sides of the skull, as indicated by symmetry of the deflections of the cathode-ray tube trace. Asymmetrical spacing of the deflections may mean that disease has brought about a physical change such as a tumour on one side of the brain. The swept-gain generator gradually increases the receiver amplification over each sweep of the time base to compensate for the attentuation of the deeper echoes by
intervening tissues.
energy striking the boundary between kidney and fat is reflected. However, such echoes are large enough to be detected by a sensitive receiver, but almost all the energy crosses the boundary and is available for reflection by deeper structures.

Much larger reflections occur at boundaries between soft tissues and either bone or gas, because of large differences in characteristic impedance. These large reflections restrict the use of ultrasound in medical diagnosis. Moreover, it is necessary to exclude air from between the probe and the patient. This may be done either by examining through a water bath or through a film of oil smeared on the patient's skin.

Resolution

Ultrasonic echo-ranging techniques depend on the measurement of the time interval between the transmission of a brief pulse of energy and the reception of its echo, just as in radar. In any imaging system, whether using light, ultrasound or any other kind of radiation, the resolution is limited by the wavelength of the radiation. It is for this reason that ultrasound, as opposed to sound, is used in medical diagnosis. We need to visualise structures of only a few millimetres in size, so that wavelength has to be around a millimetre or less In soft tissues, it is about 1.5 mm at a frequency of 1 MHz and proportionately less at higher frequencies. The highest audible frequency, about 20 kHz , has a wavelength of 75 mm . In principle, the performance might appear likely to improve as the frequency is increased, but ultrasound is attenuated as it travels through tissues and the rate of attenuation also increases with the frequency, so we have to compromise between better resolution and reduced penetration.

Pulse-Echo Techniques

In an ultrasonic instrument for diagnosis, a probe containing a piezoelectric transducer converts electrical signal into ultrasound waves for transmission into the patient. It does the opposite for the echoes

The simplest type of ultrasonic pulse-echo diagnostic system is called the A-scope. (See Fig. 1). The clock triggers the transmitter, which feeds a brief pulse with a large amplitude to the transducer Echoes return to the probe from those reflecting surfaces inside the patient that lie along the ultrasonic beam. Electrical signals from the echoes are amplified by the receiver and applied to the vertical deflection plates of the cathode-ray tube; the time-base generator, which is triggered into operation by the clock at the instant the ultrasonic pulse is transmitted by the probe, is connected to the horizontal deflection plates to drive the spot on the display at a constant speed from left to right. In this way the beam sweeping across the display is deflected vertically at intervals along the horizontal axis, corresponding in distance from the start of the sweep, to echo-producing surfaces at various distances along the ultrasonic beam A special circuit in the receiver increases the amplification of the deeper echoes to compensate for theit attentuation by intervening tissues. The clock operates at a repetitin rate fast enough to give a flicker-free trace on the display.

The A-scope has clinical applications in neurology, ophthalmology and internal medicine. It allows the

Fig. 2. Time-position recording system based on the B-scope display, shown in use for echocardiography. The fibre-optic face plate of the cathode-ray tube collects enough light to produce a self-developing trace on ultra-violet recording paper.

Fig. 3. Two-dimensional scanner and B-scope display system studying a foetus. The time-base generators are driven by electrical outputs from a series of resolvers that measure the position of the ultrasonic beam as it moves across the patient. Horizontal and vertical time-bases combine to deflect the spot in such a way that its movement across the display corresponds to the movement of the beam. Echoes received as the probe moves over the patient produce a cross-sectional image in a plane corresponding to that of the scan. In this example, the image is built-up on the screen of an electronic storage tube for direct viewing.
depths of echo-producing surfaces to be measured, and the characteristics of echoes from within structures to be studied

Echoes from moving structures, such as the valves of the heart, oscillate in position along the horizontal axis, or time base, of the display. In cardiology particularly patterns of movement can give diagnostic information They can be studied by making recordings with the aid of a B-scope display (see Fig. 2).

In the B-scope, the time-base sweep is normally visible, but it is brightened by returning echoes to

Fig. 4. A iwo-dimensíonal scan reveals twins at about 25 weeks of pregnancy. The placenta on the anterior wall of the uterus is clearly defined while the abdomens of the twins, identified in the explanatory diagram, appear in section.
produce spots of light on the display in places where, on an A-scope, there would be deflections of the beam. The positions of the spots of light correspond to echoproducing structures in the patient, and the pattern of their movement can be permanently recorded

Cross-Sectional Images

The B-scope forms the basis of another display method the two-dimensional ultrasonic scanner (see Fig. 3). The ultrasonic probe, instead of being held in the hand, is mounted on a scanner. It can be moved to any position in a two-dimensional plane. In this way it is possible to arrange for the beam to pass through structures lying in玉chosen plane within the patient, while the position of
the probe and the direction of the beam are measured continuously by 'resolvers' mounted in the scanner. The electrical signals from the resolvers control two timebase generators, driving the vertical and horizontal beam deflection plates of a cathode-ray tube. The direction and position of the ultrasonic beam across the patient controls the position of the cathode-ray beam showing up on the display, related to the positions of the echo-producing surface.

A cross-sectional image of the surfaces can be built up photographically by a camera with an open shutter that records the bright spots on the display while the patient is being scanned. The echo information can also be stored electronically

Two-dimensional scanners in which the probe is moved in contact with the patient produce individual images in scanning times of about 10 seconds, images can be produced at a much faster rate by moving the probe mechanically. Images in rapid succession allow physiological movements to be studied; their main importance is in cardiological diagnosis. But although these rapid mechanical scanners produce so-called real-time images, they lack flexibility. This difficulty can be overcome by using ultrasonic probes containing many separate transducer elements, operated separately or in groups, which can produce ultrasonic scans made up of parallel lines or or lines arranged in a fan shape, at frame rates of tens per second.

As well as making it possible to study rapidly moving structures, real-time scanners can also be used to explore large volumes of anatomy in a short time. A doctor using one can examine a patient in about a quarter of the time it takes with a 'conventional' twodimensional scanner

Doppler Effect

The frequency of an ultrasonic wave reflected from a stationary structure is equal to that of the incident wave. If the beam is reflected by a surface which is moving

Fy. 5. The Doppler effect occurs when a wave is reflected from a moving surface, giving an upward or downward 'shift' in fequency as in (b) and (c).

Fig. 6. One use of the Doppler 'shift' is to monitor the foetal heart. The echoes usually fall in the range of audible frequencies.

FEATURE : Ultrasonics

towards the ultrasonic source, the reflected wave is compressed into a shorter space. This means that the wavelength is reduced. It shows as an upward 'shift' in its frequency. Reflection by a surface moving away from the source gives a downward shift. This phenomenon the well-known Doppler effect, conveniently gives shift frequencies that fall in the audible range when uttrasound is reflected by moving structures in the body such as heart valves or flowing blood. A simple instrument based on this makes it possible to detect the movement of the foetal heart. Simliar instruments to measure blood Hlow allow peripheral arterial disease to be assessed.

Because Doppler shifted signals are received only from structures that move, two-dimensional maps of them can be built up by using a Doppler probe to scan the patient. In this way the distribution vessels close to the surface can be studied. Such information may obviate the need for X-ray angiography. which is a dangerous and expensive procedure

It can also be combined with other information about structure position obtained by the pulse-echo method, making it possible to map out blood vessels within the body and measure the rate of blood flow at the same time.

The clinical value of ultrasonic techniques has already been proved, but their spread into general, everyday service will depend on the development of instruments that are simple to use. These, paradoxically, may be more complicated than the ones we already have. It will also mean training doctors and technicians to obtain and interpret results. But it is clear that ultrasonic diagnosis is, in many instances, the best and most economical way of getting the information essential to proper care of the patient.

ETI

SWANLEY ELECTRONICS
Mail order only Plesse ado 30 p to the totai cost at ordar for postage. Prices include VAT Ove

Securicor delivery available - Add $£ 4.00$.

Buy it with Access

Please make cheques and postal orders payable to DISCOUNT COMPUTING, or phone your order quoting BARCLAYCARD or ACCESS number.

THE WORLD'S MOST ADVANCED MICROPROCESSOR VIDEO GAME DIRECT FROM THE USA THE 'ATARI' VIDEO COMPUTER SYSTEM
 - READY BUILT CARTRIDGE SYSTEM EX-STOCK

Just look at a few of the numerous games available to you in multi-colour lon colour TV's) with realistic sound effects.

This Video Computer System (based on Signetics 2550) is available complete with the 27 game Combat Cartridge, multi-function joysticks, mains adaptor and aerial switching 12 months. guaranteed for $\quad £ 169.95 \quad £ 149.00$ 12 months. (inc. VAT)

${ }^{\mathrm{M}}$At present there are 9 cartridges available - a total of 192 games - plus many more on the way. Price per cartridge)
£14.95 £13.95
Full colour brochure avaliable on request

14 STATION ROAD . NEW BARNET . HERTS. TEL: 01.441 2922/01.449 6596 CLOSE TO NEW BARNET BR STATION - MOORGATE LINE
OPEN - 10 a.m. to 7 p.m. - Monday to Saturday
EASY BUILD SPEAKER DIY KITS Specially designed by RT．VC for cost consclous hillienthusiasis．these kits incorporate two teak－simulate enclosures two EMI 13＂$\times 8^{\prime \prime}($ approx ）woofers，two tweeters and a pair of matching crosisovers upplied complete with an easy to tollow 28^{00} circuit diagram．and crossover components STEREO PAIR Input 15 watts ims． 30 watls peak，each Unin p \＆p 15.50 Cabinet size $20^{\prime \prime} \times 11^{\prime \prime} \times 9 \frac{1_{3}^{\prime \prime}}{\prime \prime}$（approx．） SPEAKERS AVAILABLE WITHOUT CABINETS It＇s the units which we supply with the enclosures illustrate
 Power handling 15 watts rms， 30 watts peak stereo patir

BUILT AND READY TO PLAY

SPEAKERS Two models－Duo llb，teak veneer． 12 watts rms． 24 watts peak． $18 \mathrm{t}^{\prime \prime} \times 13 \mathrm{y}^{\prime \prime} \times 7 \mathrm{t}^{\prime}$（appron） Ouo III， 20 walts ［ms． 40 walts poak， $27^{\circ} \times 13^{\prime \prime} \times 11 t^{\circ}$ PDD

 with speaxers
 Co
 PLAYER Complaing teed asembiod niscoe amp module Gertrel KIT sburet wort Outpu＇I wath sul chennel．f19．95 Ins luding 2 SPHERICA：HIES Beater
pdo 14.05

am／FM STEREO TUNER AMPLIFIER CHASSIS COMPLETE Ready built Designedin a silm lorm lor compact modern nssallation hoary Conirols Vol On／OII Bass Treble Baiance
 Push Bumens lor Gram，Tape VHF MW LW and 5 bution Iolary
 omer Supply Selenum Bridge－35V OC trom 210250 V AC 5 Hz npul
 trad lor FM aeria
 Power Ouyut 5 walls per channel Sine at 2% THD into 150 hm walts speech and music
 epo Sensinivit Playback $400 \mathrm{mV} / 30 \mathrm{~K}$ DHM for max oulpul Aecord $200 \mathrm{mV} / 50 \mathrm{~K}$ oulpul available from 25 KHz （ $150 \mathrm{mV} / 100 \mathrm{~K}$ ）devaration FM signal Froquoncy Aange（Audio） 50 Hz 1017 KHz wilhn $\pm 10 \mathrm{BB}$

VALUE FOR PERSONAL SHOPPERS
 co 16 volt mains trawsformer， $21 / 2 \mathrm{emp}$ ¢250
 SSR 月ecord auto deck on
 meo cartridge reedy wired．
 205 Tunction men＇s digitial watc
 COD 5 tunciion men＇s
 tanless slien men＇s digital walch
 CD 8 Function CHROMOGRAPH men＇s digital arch．slainless sleel finish
 f11．95
 5s
 War Power Amp Modila
 £13．95
 Mams power supply for above unt IETEK Monitor loudspaker cabine £3．50
 30K Mux
 £24．95
 OSSC CEITRE CABIMET with hmggd smoke
 $£ 1.00$
 Eneric trap，linished in nalural leak vene ers，
 f5．95
 OULARO Bull power suply
 Eeca oc 1000 Sterro Cassotil PC B
 $£ 1.50$
 -1 mex
 £2．95
 teca 20\％Stureo spaaker kol comprising
 25 aparax bass unils +23 h＂appox
 meeoma cter supar Sore TV Game
 －
 nCEE MASTER Door Tunes
 zt imert intes：
 Vice zassmit lape recorder
 - TLPE TRANS
 £20．00
 $£ 14.95$
 £12．95
 £13．95
 metal Clock radio mains operad f8．95 ava MF 6 watts oulput Bentary malins operation $\mathrm{f75} 0$ －TABLE RADID／CASSETTE RECOROER AM／FM with CIOL 14 UW．VHF mains／battery operation $£ 41.95$

Mullard AUDIOMODULESIN BARGAIN PACKS CURRENT CATALOGUE

管 25PER PACK SEEOUR PRICES

ACCESSORIES
Suitable power supply parts including Re commended set of rotary stereo controls prising BASS，TREBLE VOLUME and BALANCE
mains transformer，rectifier，smooming $p+p 50 p 951$

3PACK $31 \times$ LP1179／2 FM Tuning headwith AM gang． $1 \times L P 1165$ AM／FM IF module， $2 \times$ LP $1173 / 10 \mathrm{w}$ RMS output power audio amp modules +1 LP1182／2 Stereo pre amp for cerami
and auxiliary input
$\underset{p+p โ 1.00}{\text { DURPRICE }} \mathbf{f 9 . 9 5}$
TRADE ENQUIRIES INVITED

323 EDGWARE ROAD．LONDON W2 21 EIGH STREET，ACTON W3 GNG
ALL PRICES IHCLUBE VAT AT $121 / 2 \%$
All items subject to availability．Price correct al 1.10 .78 and subject to change without notice．

（先

20×20 WATT STEREO AMPLIFIER Viscount IV unit in teak－finished cabinet Silver fascia with aluminium rotary controls and pushbuttons，red
$£ 29.90$ mains indicator and stereo jack socket Function
p\＆p E 25
switch for mic magnetic and crystal pick－ups，lape，tuner，and auxilian Rear panel lealures two mains oullels $\mathrm{D} \mid \mathbb{N}$ speaker and input sockets， plus fuse $20+20$ watts rms $40+40$ watts peak
30×30 WATT AMPLIFIER KIT
For the experienced constructor conplete in every detail
$£ 29.00$
Similar lacilities as Viscount IV amplifier $60+60$ peak
p\＆p 52.50 \star SPECIAL OFFER：PACKAGE PRICE WITH 30×30 KIT
Mk II version operates into 4 to 15 ohms speakers Specially designed by RT VC lor the experienced constructor，complete in every detail Same facilities as Viscount IV amplifier $60+60$ peak，supplied with $2 \mathbf{G 0 0 0}$－ MANS COMPACT 12＂Bass woufers with cropped sides 14,000 Gaus magnet． 30 watts rms handling $+3 / 4$＂approx tweeters and crossovers．

NOW AVAILABLE fully built and tested Output
$30+30$ watts rms． $60+60$ peak．
p\＆p $£ 2.50 \mathbf{£} 39.00$
ADD－DN STEREO CASSETTE TAPE DECK KIT Designed for the experienced 0．I Y．man．This kut comprises of a lape transport mech ready built and tested record：replay electronics with Iwin VU meters and Ievel control for mating with mecha Specificelions：Sensitivity－Mic
 BOS 95 TYPE Belt drive chas sis turntable
less cartridge f255p\＆p $\mathbf{£ 2 4 . 9 5}$ BSR MPGO TYPE Single play record player less cartridge． $\mathbf{£ 1 5 . 9 5}$ ARTAIDGES to suit above
enorel magretic tareo．
q4．95 OSR antomattc record play日r deck cueing device and stereo ceramic head． f 2.55 p cerame cartidge．Size $12^{\prime \prime} \times 81 z^{\prime \prime}$ approx．［2．00 p \＆p f 7.95 PERSOMAL SHOPPEAS
GAPMARD 86SB Deck $\mathbf{£ 2 4 . 9 5}$ garparo SP25 MKIV Deck GAFMARD35sB Deck $£ 24.95$ with Shure $\mathbf{£ 2 6 . 9 5}$
50 WATT MON £29．95 P\＆P 1250
Size approx
50 watts rms 100 watts peak output Big features include two dise inputs，both for ceramic cartridges，tape inpul and microphone input Level mixing controls fitted with integral push－pull switches Independeni bass and treble controls and master volume
SPECLAL DFFER The above 50 watt amp plus 4 Goodmans Type BP 8^{\prime} speakers Package price $[4500+1400 \mathrm{P} \mathrm{\& P}$

708100 WAT

MONO OI
Size aporos
$14^{-} \times 4^{-} \times 10 \frac{1}{2}$
Biushed aturnienum
five vertical thde cratiols master volume
lape leval mic level deck level PLUS INTER OECK A ADER for perlect gradualed thange trom record deck No 1 to No 2．or vice versa Pie fadelevel control 70 walt $[57$ （ PFL ）lels YOU hear next disc before lading 40 wall II in．YU meter mantiors output level． Output 100 watts RMS 200 watls peak． 100 watt E65 magretic taatec

AOK OHMS Outpul－300mV RMS per channal， 1 KHz rom 2 K OHMS source．Cross Talk－30db ：Tape Counler－ 3 Digit Resettable：Frequency Response $-40 \mathrm{~Hz}-8 K H z \pm 6 \mathrm{db}$ Deck Molor－ 9 Voli DC with electronic speed regulations
Key Functions－Record．Rewind．
$\mathbf{Y} 95$ ast Forward．Play．Stop \＆Elect Opt．extras：Mains transformer to suite $\mathbf{£ 2 . 5 0}+$ E1 p \＆p．

PORTABLE DISCO CONSOLE Here＇s the big－valua poriable disco console trom RT－VC！It features a pair．al BSA MP 60 ypa auto－reurn，single play prolessio
 cka Plus alit the controis and fiatures with you need 10 giva trovious disco pertormences beih－in smple comocts into your sonting rieve or 194.00

[^6]B. BAMBERELECTRONICS

CASH WITH DRDEF. (MINIMUM ORDER £2.00]
PLEASE ADD VAT AS SHOWN POST PAID (UK ONLY). SAE WITH ENQUIRIES Tel. ELY (0353) 860185 (Tues. to Sat)

approx 2 dia. $11 / 2$ deep. with $1 / 6$ spindie. 60 p each
or 2 for 1 祭
$11 / 2$ V DC MOTORS (ideal for model makers quile
powerful). 50 p each

SUB-MINIATURE ROTÁRY SWITCHEAS, 4×5-way spindle: 50 p ach
30pf BEEMIVE TAIMMERS. Brand new. 4 tor 50 p
Min. 5 PI AIR SPACE TRIMMERS. Min. 5 pt A1R Sp
square, 3 for 50 p
$\min _{5 / 16} 5$ PF COMPRESSION TRIMMERS
large electrólvtic packs.
large electrolytic capactsors. low and hagh voltage types.
over 40 piecei 63,00 prer pack $1+12 \% \%$ VAT)
FULL RANGE DF BERHARDS BABINI ELECTRONICS
BOOK IN STOCK SAE FOR UST

ANEW RANGE OF QUALITY BOXES Aluminium Boxes with Lids

$$
\begin{aligned}
& \begin{array}{l}
10 x=1 / 433 \\
6 x 4=3
\end{array}
\end{aligned}
$$

Vinyi Coated Instrumant Casos bive Topy whe plain Lower Smation
Very amart finish

ALL BELOW - ADD 8\% VAT
\qquad of hemn 82.00 per pack while stocks tant IC AUDI $£ 2.00$ per pack white stocks tasp
 Eneaing f. With inte
 supply 60 V oc butput itrough pot on peb, for
chstging Nicads ete fideal lor chang chatging Nicads etc fideal for charging portable
Eatteries 1 from mobile supply) Oniy nieeds oni
BeY (BFY50,51 52 or und wat vorssimor which can be stat fype healsink (hot supplitad ry 200 eact with TME NEW EAGLE TNTERNATIONAL CATALOGUE IS AVAILABLE ON REEUUEST COHRQMIGGIAUdIO.

when pret kenaros, press

 ohms Swich enntacis go from $0 / \mathrm{C}$ so approx 3 Wihlarge squaise touch plates 0 - $8+$ Clear. A, ${ }^{x}$
THANSISTORS

BFY51 Transistors 4 for 60 p
BCY 72 Transibror 4 for 50 p
BSX20. NMF ost / mult I, 3 tor 50 p
$8 c 107$ (melal cenc) 4 for 50,
acloz (metol cen) 4 lor 50 p
PBC 108 \{plastic BC 108) 5 for 30 p :
BF 152 (UMF
 BCYA8 NPN SIUCON. \& Yar 50
BC:58 PNP SILICON. 4 lor 50 BAY 31 Srgnal Diodes 10 for 35 s
 Warts Filican pack type 2 for 0850
GERMANIUMDDIOOES appror 30 fol $\$ 0 \mathrm{p}$ GERMANIUM DIOOES appror 30 tol 30 p
INATAB (IN914) dodes 10 , for 250 Valves
\qquad 68 H 6 (ex. equipmenil). 2 for 50 and no guaranlee of percentage of emission is in teaters
and Sorry, no returns
ULLARD- $85 A 2$ B S STABILISER VALVES (brand

Buy direct from the importers and get more scope for your money KRAMER \& CO
4* Oscilloscope for under $£ 100$
(as recommended by ETI)

ELECTRICAL DATA

VERTICAL AXIS M). Deflection Sensitime
 MORIZONTAI Axis oy tiput Vollayo - Masi-600V P.P 1Hz 350KHf Gain Control - Continuous when ume bases in EXT position Inputimpean 3.dB points Inpur Voltava - Man - $600 \mathrm{~V} P \mathrm{P}$
TRME BASE

 negativo

CNT DATA - $4 n$ - Flat
division blue flior graticule
PHYSICAI
PHYSICAL DATA Dimensions $-15 \mathrm{~cm}(\mathrm{~h}) \times 205 \mathrm{~cm}(\mathrm{w}) \times 28 \mathrm{~cm}$ (d) Weight -43 Kg (approx) Stand
2 position flat and inclined Case - Steel, epoxy enamelled Front Pang
Cash with order \qquad

£99

(
London NWM 1EJ
Tel: 01.2032473 Telex 88894

LISTEN TO THE SECRET WORLD OF PLANTS

FIRST TIME IN THE U.K. IN KIT FORM, THE REVOLUTIONARY CONCEPT OF A BIOLOGICAL AMPLIFIER AND SOUND SYNTHESISER IN ONE UNIT, THE AMAZING

Bio Activity

 Translator* Experience the unique musical for of plants
* Hear the beautiful patterns of sound - created by their natural response * Compare house plants reactions to people - with the distinct tunes of those outside
* Easy to operate, internal speaker and batteries

The naturally generated bio electrica potential across a plant leaf is picked un potential across a plant leaf is picked up
by 2 carbon foam electrodes. When by 2 carbon foam electrodes. When
ampliffed and filtered. a VCO, VCA and other ingenious synthesiser circuits are programmed by the control voltage from the plant to produce tracking sequences of notes. These follow in pitch, rhthym and volume the ever changing signal from the plant
The Kit includes 6 I.C.s. 2 transistors, all high quality components, tinned and riffed ibreglass p cb, loudspeaker and comprehensive assembly instruc ions Also included is a free case, ready punched, with wooden end cheeks $41 / 2$-volt batteries (not supplied)

SPECIAE INTRODUCTORY OFFER INCLUDES FREE CASE K:T E19.S0 ASSEMBLED AND TESTED 827.50 pricapentin

[^7]
audiophile

A woeful tale of the pre－amp to make you red in the face this month．Crimsons CPR1 considered by Ron Harris who recovered enough to visit Sony＇s launching of sixty new models！

MEANWHILE back at the Crimson pre－amp，i shall begin this month by finishing what I began last，and furnishing details of the CPR1 module．To begin with，quoting specs would be largely superfluous in this context，but as I know there are some of you out there high on numbers． try these for size：

$$
\begin{array}{ll}
\text { SENSITIVITY. } & 3.4 \mathrm{mVRMS}(1 \mathrm{kHz})-\mathrm{mag} \\
& 70 \mathrm{mVRMS} 1 \mathrm{kHz} \text { all others }
\end{array}
$$

for 770 mV RMS output
SIGNAL／NOISE：-70 dB unweighted 10 kHz bandwidth mag -86 dB unweighted 10 kHz bandwidth others

CROSSTALK：
－80dB $20 \mathrm{~Hz}-20 \mathrm{kHz}$
008\％any level below clipping

There are pages of figures in the leaflets Crimson ssue for free，so if you＇ve at all interested get after one of tose．The nice thing about these specs is their com－ leteness－nothing hidden away here in shrouds of －iviality．All the parameters are given as test results －－der very precise conditions．I could find no reason to Ergue with any of them and as I＇m usually mean and －asty about such things Crimson should take that as zraise indeed．

Euilding Up To It

＝ower requirements are simply 15－0－15 at under 000 mA ，and mine measured in the region of 40 mA per ＝annel while in full flow．Crimson naturally produce a ESJ for this，and it is termed not unreasonably REG1

The pre－amp arrives as an assembled PCB with set of zeciication notes，and as such cannot be considered a kit I．any but the most stretched imagination．Not for the tecinner this，as a fair bit of experience comes in most tendy－although the notes are very good（but poorly mrauced）and if you＇re feeling brave by all means get suck in－I shan＇t say＇I told you＇－not too loud minay

Hter a few minutes fussing around with pen and Tracer I decided to house pre－amp and PSU in separate meses－with appropriate nod in direction of Meridian－ fier eason of neatness and hum foiling．Let me say now En：these circuits are good enough to merit such amention
－s there are no tone controls，metalwork is simplified －glad to say，and for a basic system should be very HEs．indeed

Crimson make out a very good case in their design notes for doing things their way，but nonetheless there are a few things I would like to disagree with

Firstly they feed straight into the volume control with auxiliary inputs via the selector switch．This presents the equipment driving into the amp with a varying load，and I would personally prefer to see a high impedence buffer in there，with a lower sensitivity；than the 70 mV now prevailing，and a higher input impedance．A small point perhaps，but under music conditions a constant load is to be preferred I feel

Secondly the magnetic input is＇fairly＇standard although better than most．I would differ from Crimson philosophy enough to prefer the idea of buffering the cartridge input at a constant value，say $47 \mathrm{k} / / 200 \mathrm{p}$ with unity gain in the first stage，picking up equalisation over two further stages both run at lower gain than usual This configuration results in a cleaner sound with better transient performance providing the capacitance of each stage is carefully designed for

I＇m offering up these ideas for perusal，not criticising Crimson in particular，its just that the Crimson approach encourages you to drag out your personal theories and give＇em a good airing．I＇d be very interested to hear from any of you out there with your ideas on how audio design should be done－we＇ll print the best we get．

Back To Wires

Anyway to return to the point the CPR1 auditioned very well indeed Mind you our first sample gave me a hard time for a while．It kept doing things it couldn＇t do and doing them when I least expected it After a few bottles of Vallium and several hair pulling sessions with Crimson we discovered I＇d been given a non－production board．A quick GPO job and we＇re back in business Sanity is saved．

I still don＇t know what the odd sample was up to－ and don＇t intend to to find out any further that way lies madness．I suspect Crimson save that board to assassinate reviewers in the most fiendish way possible． Who＇d believe it was murder？

The production model has never given the slightest problem and has behaved impeccably throughout．I compliment Crimson on the attentive way they panicked along with me over the rogue PCB，several poor unsus－ pecting boards now on soak test because of my nervous breakdown．

Inputting Pickups

To use this input，you add a passive network to the input to optimise loading for the particular device in use Crimson themselves recommend adding several net works and switches to increase flexibility I don＇t Switches at this signal level are a menace－if you don t believe me，see Stan Curtis＇s article elsewhere in this
issue. Leave out the switches and hardware for your choice of pickup - how often do you change anyway?

With the switches added a thickening of detail occurs, and transients don't transient nearly as well

Other inputs are straightforward, although perhaps a little low on input impedance. Noise and hum were commendably low on all inputs, and the separate boxes earn their worth on first power-up. The ten second switch-on blank period to eliminate 'clunks' is a great idea, although on both my samples the delay was so long I almost had time to go make a cup of tea before power came through.

It can be most detrimental to confidence to be left standing there, soldering iron still smoking, poised over the completed unit hand on power switch counting off seconds wondering why the b. . . y hell it hasn't come on yet. Smiles fade rapidly like that.

Listen In

On magnetic input the Crimson CPR1 produced a very nice sound indeed, of very high quality with good detail and fair extension into the bass registers. On a quick A-B with a very highly priced integrated amp the CPR1 surprised me by showing itself clearly superior! OK wiseguy - wheel out the heavies.

Now my personal idol amongst pre-amps is the Lecson AC1 which I feel has never been approached for quality of reproduction, at any price. As such it makes an excellent reference against which to judge lesser machines. However not everyone agrees, and a champion of the Naim offered up his favourite to give the Crimson a run.

You can see from the opposition how seriously the CPR1 managed to get itself taken. Against the Lecson it was frankly outclassed. The AC1 had better depth, and better bass control. Treble came out smoother from the Lecson showing up the Crimson as slightly hard in this register. Mind you the Lecson costs nearly ten times as much and the Crimson gave a very good account of itself.

Comparing it with the Naim unit nearly lost me a friend. I preferred the CPR1! There was not much in it mind you, and Crimson can be justly proud to have produced a home build design capable of this level of performance.

grumbles

A few niggles. The balance control is very limited in operation. More so than is even trendy, never mind useful, and a little extra swing would do no harm. I'm not at all happy about those auxiliary inputs really, but they seemed to cause no problems so l'll shut up about them.

In order to obtain the level of performance the design can offer very careful construction is required. All cables screened. All as short as possible. Good soldering. Good earthing. Isolated PSU and sound routing of cables carrying HT - away from anywhere at signal level. Leave the on-off switch on the PSU box so that mains need not even enter the case

Also the subjective quality, although of a very high quality, is a little hard, and judged against the best designs around slightly lacking in detail. Still none of this detracts from the fact that here we have a DIY amplifier that can compete with the very best commercial units, and make mincemeat of many far higher priced designs. Highly recommended.

Outlook: Warm and Sony

Sony have gone berserk. Only gone and scrapped practically their entire hi-fi range they have and launched no less than 60 new models if you please. Its enough to give leaflet collectors a heart attack. There is some very clever gadgetry in amongst the flock, and scattered here before you are some of the gems.

The TA-E88 looks very, very interesting indeed representing as it does the state-of-the-art for Japanese pre-amp design. I' m at present still on my knees to Sony (and my trousers are wearing out fast) to get a closer look so hopefully more details on that one later (Please Mr Sony? . . Sir?).

The G1 and G7 speakers came as a surprise too, they're better than any oriental offering previously to assail my ear drums, and are capable of giving any competitor a good run for its cones.

They have divided up the dealers too, creating a new super-fi franchise. This basically means that only the best dealers can sell the best of the range, although the division looks to be a bit unsure in places.

ETI

And here we have the TC K8B the new $£ 469$ cassette deck released as part of the super-fi Sony range. It incorporates that magnificent LCD display (details on the right) and on the short listen so far gave an excellent audio account of itself.

Below: the G1 speakers. Very good indeed for the price (circa £190 the pair) and deserving of none of the usual anti-Japanese speaker bias. Give them a listen if you get the chance.

LCD Peak Programme Meter

Above: the LCD level meter as used in the TCK8B in close-up. This uses 64 segments to indicate signal level, and has red settable stops to hold peak values. The colours are nice too!

Not that 1'm obsessed with cassette decks or anything, lart here's another one. The TC K6B this time. It's main Ette gimmick is the MPU program selector. That little LED explay in the centre can be stepped to read the number of the track you wish to hear. The machine will promptly go and find it and play it for you. Again LCD level meters, dthough not as good as the TC K8Bs obviously less mogments. Below: The incredible TAE8B. The unit has two COMPLETELY separate channels inside its box. Selectable phono load on one input, and one straight in for people who don't like switches in line (Like me) at this low level. Moving coil pre-pre amp is standard of course. Price $£ 699$ (What did you expect?)

KEY：
1：The bit of chocolate you thought you＇d leave for later．

2：Coffee stains（instant）．
3：A useful－sized bit of stiff paper to stop the window from rattling．

4 Rough calculations for your new combined egg timer／laser cannon project．
₹ ETI makes a fair soldering iron stand．
6．The dog insisted on carrying your copy to you along with your slippers．

WHAT A BIND！

Half our orders for binders are repeats：we think that says a lot for their quality．At $£ 3.00$ all inc．you ger a great deal of peace of mind too！

[^8]THE SINTEL SIX DIGIT MAINS CLOCK KIT
ith BLEEP ALARM and TOUCH SWITCH SNOOZE
－high brightness display
－autdmatic intensity control
－deep red display filtea
－SLIM White CaSe $205 \mathrm{~mm} \times 40 \mathrm{~mm} \times 140 \mathrm{~mm}$
－battery backup

－CAystal control foh imphoved accuracy

Order as ACK＋BBK＋XTK
The ACK is also available without battery backup and crystal control Order as ACK
E34 50
$\mathbf{E 2 8} 80$

DATABOOKS
BEST OF BYTE Volume 1 3B0 pages
intel Mermory Design Handbock
Intel 8080 Microcomputer Systems User \＆Manual
Intel 8085 Microcomputer Systems User s Manual
Motorola Booklet From the Computer to he Microprocesso
Motorola MCMOS Databook Nol 5 Serles B
Motorola M6800 Microprocessor Applications Manual
Motorola M6800 Programming Marual
National SC／MP Introkit User＇s Manual
National SC／MP Technical Description
RCA CMOS and Linear IC Dalabook

Vlews of 7400 ICs plus many others（T i Meruories Op－Amps elc
$Z 80$ Assembly Lanouage Programming Manual
Z80 Assembly Language Programm
Zilog 280 －CPU Technical Manual
Zlog Z80 CTC Product Specifications
Zilog Z80－P10 Technical Manual
DATASHEETS at 75 peach on $1 M 6100$ 6800 SC．MP CDP 18022050 TMS5501 TMS
$\bar{Z}^{2 \mathrm{BO}} \bar{\mu}_{\mu} \overline{\mathrm{P}}$ inter $\overline{8} 085$ Also free data on some components

Some Popular Memories available from SINTEL	
（See ETI DATA SHEET SPECIAL July 1978）	
2102450 nsec 1 K STATIC HAM	$\mathrm{Ef}_{1} 85$
2102650 nsec STATIC RAM	E1．85
$27081 \mathrm{~K} \times 8$ bit UV ERASABLE ROM	¢8．80
6508600 nsec 1 K STATIC RAM	¢8．05

ASSEMBLED LATCHED COUNTER MODULES
 MOS and TL ICs and will save you considerable design purchasing building and de－hugging time both module uses a set of red LED displays and features a singie in－ine plug and sockel Instructions are provided

	Parl No	Buill	Part No	Kı1	Parino	Butis	Parl No	KıI
2 20m	$461-4$	213.22	526－412	E10．52	983 5th	［13，02	548－470	£10．42
5 dill	715－484	123．38	657－412	£17．98	512－565	［22．63	869－470	E18．11
6 digl｜	293－484	E32．75	721－412	¢25，66	393－568	［32．31	191－470	£25．85

NEW PRICES AND SOME NEW CMOS ADDITIONS If you need your CMOS by retum－buy it from stMTEL									
CD4000	015	CD 4027	044	CD405 1	0.82	CD40日6	0.64	CD40182	1.40
C04001	017	CD4028	0.77	CD4052	0.82	CD4089	1.39	CD40192	140
CD4002	0.17	CD4029	103	CD4053	0.82	CD4093	0.80	CD40193	1.40
C04006	1.04	CD4030	0.50	CD4054	1.04	CD4094	169	CD40194	1.19
CD4007	018	CD403 1	200	C04055	1.18	CD4095	0.94	C040257	148
CD4008	087	CD4032	0.89	CD4056	1.18	CD4096	0.94	CD4502	0.81
CD4009	0.50	CD4033	1.25	CD 4059	4.29	CD4097	335	CD4510	1.01
CO4010	050	CD4034	171	CD4060	100	CD4098	098	CD4511	1.25
CD4011	018	CD4035	1.06	CD4063	0.98	CD4099	165	CD4514	2.47
C04012	020	CD4036	286	CD4066	055	CD40100	250	CD4515	282
CD4013	043	CD4037	085	CD4067	335	CD40101	161	CD4516	1.01
CD4014	083	CD4038	0.96	CD4068	020	CD40102	213	CD4518	0.97
CD4015	0.83	CD4039	278	CD4069	020	CD40103	2.13	CD4520	104
CD4016	0.48	CD4040	097	CD4070	0.46	CD40104	110	CD4527	143
CD4017	0.79	CD404 1	075	CD4071	0.20	C040105	1.06	CD4532	121
CD401日	0.83	CD4042	0.69	CD4072	0.20	CD40106	0.62	CD4555	078
CD4019	0.50	CD4043	0.88	CD 4073	020	CD40107	069	CD4556	078
CD4020	111	CD4044	0.84	CD 4075	020	CD40108	536	MC1452日	0.93
CD402 1	090	CD4045	126	CD4076	117	CD40109	103	MC14553	4.43
CD4022	082	CD4046	120	CD407	039	CD40160	139	IM6508	8.05
C04023	0.18	CD4047	089	CD4078	0.20	CD40161	179		
CD4024	0.70	CD4048	050	CD4081	020	CD40162	119		
CD4025	0.20	CD4049	050	CD4082	0.20	CD40163	1，19		
CD4026	155	CD4050	0.43	CD4085	0.64	CD40181	340		

[^9]OFFICIAL ORDERS ARE WELCOME ITOm Companies Govi Depts Natn Inds UnIVs Polys

ORDERS TO：SINTEL，PO BOX 75A，OXFORD Tel： 086549791
FAST SERVICE We guarantee that Tolephone Ordern for
 despens by parcel past）and our stocking io good priver
iternstomers ahoudd telephone ind maty by customern ahould to
Barclayenrd nuribe
Barclayenrd number，with a
SINTEL

ERTOMASOMTC electronics

56 FORTIS GFEEN ROAD, MUSWELL HILL, N10 3HN TELEPHONE: 01-883 3705

OUR LATEST CATALOGUE CONTAINS FREE 45 pence WORTH OF VOUCHERS

CONTAINS MICROPROCESSORS + BOARDS, MEMORIES, TTL, CMOS, ICs, PASSIVES, ETC., ETC.

SUPERSAVERS

ALL FULL SPEC DEVICES

TEXAS	TIMER	RED LED
$\mathbf{7 4 1}$	555	TIL209
5 for	4 for	10 for
f1.00	E1.00	E1.00
VAT INCLUSIVE PRICE $+25 p$ P. \& P.		

A4 IC BOOKLET

SUPPLIED FREE WITH ORDERS OF ANY ICs WORTH £5.00 OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA ($35 p$ + SAE IF SOLD ALONE).

> ALL PRICES INCLUDE VAT

TELETEXT DECODERS

(ETI project 139 - October'78)

Most components in stock including
12.7mm toroid -F14@16p,F25@ 28p. PCB £1.00.

2 METER POWER AMP

This is a simple-to-build, easily-aligned Class C PA suitable for CW and FM amplification at 2 metres from a nominal 13.5 V (-ve earth) supply (7 amps at full power), T / R switching is performed by diodes and $1 / 4$ wave lines. A power input of 10 watts is required for the nominal 40 watts output powe Complete with cabinet -£19.50 + 65p p\&p

LOW COST V.D.U.

(ETI project 560 - Aug/Sept/Oct '76)

All components available for this popular low cost V.D U project Complete kit at Special Price £64.00 + E1 00 p\&p
PCB set $£ 7.20$ - $2112-2, £ 4.50 ; 2513, £ 8.50 ; 555,47 \mathrm{p}$
All prices INCLUDE VAT but please add minimum of 34p for post and
packing. Send SAE for FREE PRICE LIST or 45p + large (A4) $181 / 2 p$ SAE for copy
of our Data-Catalogue.
CAMIONICS LTD. (Dept. 851), COMMUNICATIONS HOUSE, 2O VALLINGTON SOUARE, WALLINGTON SURREY SM6 8RG
Telephone: 01-669 6700
Open 9 am to 6 pm Mon.-Fri., 9 am to 1 pm Sat. Closed for lunch 12.45 to 1.45 pm

Guitar Sustain Unit

S D. Maistre

03 are 2N3819
Q3,4,5 are BC109C
ICT is MC3340

The sustain to be described here holds the output at a constant level over a wide range of input levels. It was designed for use with electric guitars and has a maximum effect with the guitar pick-up volume full $u p$.

The principle employed is that of an AGC, whereby the circuit output is monitored by a DC voltage folbwer which controls the gain of the CA through which the signal Easses. The advantages of this ercuit are that, unlike many such Eevices, it does not use optocoupling which draws too much arrent for battery powered equipment: it produces no audible distormon components are easily obtained - and cost is low.

Construction method is not critic

Ths unit provides push-bike speed -easurement between zero and 00 km hr or 100 mph ! The circuit s sased on the Sintel MOS counter Bock which counts the pulses from ohoto transistor Q1
T-ese pulses are provided by rg 18 aluminium 'barriers' to the wheels Q1 was an unmarked type in the z-ototype, in a TO 18 package -he mounts in an old felt-tip pen

Digital Bike Speed

B. Lemming

case opposite the lamp so that the barriers interrupt the beam in operation. The counter operates whilst PB1 is pressed, but latches after a time determined by RV1 or RV2 IC1 and associated components. IC1 forms a square-wave oscillator with
variable mark-space ratio. The time for which pin 3 is taken low is determined by RV1 / RV2 - this enables the counter

The speedo accuracy is cetermined by the accuracy of setn-g of controls RV1 and or R: 2

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline - \& 4 \& \& \& \& \& \& \& \& \\
\hline \& \& NATIVE
\[
A B L E B Y
\] \& \[
1 \mathrm{MA}
\] \& \[
\begin{aligned}
\& \text { Y } 220 \\
\& \text { VAAR }
\end{aligned}
\] \& \(240 \quad 50\) VOLTA aral \& \[
E A N
\] \& RRENT CTION \& \& \\
\hline Type \& Vollay \& Currmil \& E \& \(p / \mathrm{p}\) \& 「ypz \& Vallige \& Current \& £ \& \\
\hline 60FE12 \& \(12+2\) \& 3n EaCH \& 3.50 \& 75p \& 12 FE06 \& \({ }^{6+6}\) \& 1A EACH \& 2.0 \& \\
\hline 60ftis \& \(15+15\) \& 2 AECCH \& 3.68 \& 75p \& 12 FO \& \(9+9\) \& 0.75A EACH \& 2.0 \& 60p \\
\hline 60 F20 \& \(20+20\) \& 15 EACH \& 3.50 \& 75p \& 12 F 10 \& \(10+10\) \& 0 6A EACH \& 2.0 \& \(\mathrm{copp}^{60}\) \\
\hline 60 FF28 \& \(28+28\) \& 1.14 EACH \& 3.60 \& 75p \& 12FE12
12 FE 15 \& \(12+12\)
\(15+15\) \& 0.5 EACCH \& 2.0 \& 60p \\
\hline 60¢F30 \& \(3 \mathrm{n}+30\) \& If ELCH \& 3.69 \& 75p \& I2FE15
\(12 F E 20\) \& \(15+15\)
\(20+20\) \& \& 2.0 \& \({ }_{\text {60p }}^{60}\) \\
\hline 50 FE12 \& \(12+12\) \& 2 EACH \& 3.10 \& 70p \& D8FE06 \& \& \& \& \\
\hline 50F15 \& \(15+15\) \& 1.6A EACH \& 110 \& 7 p \& -88f09 \& \(6+6\)
\(9+9\) \& \begin{tabular}{l}
\(\square .6 A E A C H\) \\
\(05 A\) \\
\hline EACH
\end{tabular} \& 1.80
180 \& 50p \\
\hline 50FE20 \& \(20+20\) \& 1.2 ABACH \& 310 \& 70p \& 08FE10 \& \(10+10\) \& O5A EACH
04 ARACH \& 1.80
1.80 \& 50p
50p \\
\hline 50FE28 \& \(28+28\) \& - 9AEACH \& 310 \& 70p \& \(08 \mathrm{CFE12}\) \& \(12+12\) \& 1.3A EACH \& 180 \& 50p \\
\hline 50 FE 30 \& \(30+30\) \& 0.81 EACH \& 310 \& 70p \& O8FE15 \& 15+15 \& 025 AEACH \& 1.80 \& 50p \\
\hline '20FE06 \& 6+6 \& 1 ¢ ¢ ELCH \& 2.60 \& \& O6FE06
O6FEIO \& \({ }_{5+6}^{6+6}\) \& 058 EACH \& 1.50 \& 50p \\
\hline zofels \& \(9+9\) \& t.0A EACH \& 2.60 \& 65p
65 p \& 06FE10
06512 \& \(10+10\)
\(12+12\) \& 0.35A EACH \& 1.50 \& 50p \\
\hline 20FE 12 \& 12+12 \& 0.8A EACH \& 2.50 \& 655 \& \(06 \mathrm{FFE15}\) \& \(12+12\)
\(15+15\) \& \(025 A\)
0 20ACH

EACH \& 1.50
1.50 \& 50p

\hline 20FE15 \& $15+15$ \& 0. A A EACH $^{\text {a }}$ \& 2.50 \& 65p \& \& $15+15$ \& O 20A EACH \& 1.50 \& 54p

\hline 20FE20 \& $20+20$ \& О 5 A EACH \& 2615 \& 65p \& 30 F 30 \& $$
\begin{aligned}
& 0.12 \cdot 15 \\
& 20.24 .30
\end{aligned}
$$ \& 18 \& 2.95 \& 1.00

\hline bofes? \& 260.28 \& 1 AERCH \& ${ }^{368}$ \& 75p \& 60FE30 \& 0.12 .15
20.2430 \& 2 \& 470 \& 1,00

\hline 60FEES \& 30.0 .30 \& 18. EACH \& 3.60 \& 75p \& 100FE30 \& (e.12.15. \& \& \&

\hline ${ }^{80 F 552}$ \& $26.0-26$ \& 15 AEACH \& \$,50 \& 75p \& - \& 28-24.30 \& 3h \& 5.60 \& 1.00

\hline 80 F60 \& 30-0.30 \& 1.5 A EACH \& 4.50 \& 75p \& 100FF60 \& 35.0.30 \& 2 \& 5.10 \& 1.00

\hline IDOFE28 \& $28-0.28$ \& 2.0 AECH \& 4.50 \& 75p \& IOOFE26 \& 250.26 \& 2 \& 4.80 \& 1.00

\hline \& \& \& \& \& \& \& \& \&

\hline \multicolumn{3}{|l|}{\multirow[t]{4}{*}{fladar electric P.O BOX 19 WESTCLIFF-ON-SEA ESSEX 0702-613314}} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{trade enquiries WELCOME}} \& \multicolumn{4}{|c|}{\multirow[t]{4}{*}{| PAYMENT TERMS: |
| :--- |
| C.W.O Cheques |
| Postal Orders |
| Please Add 6% VAT |
| After post \& packing. |}}

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{pLEASE ENQuIRE FOR OTHER TYPES NOT SHOWN}} \& \& \& \&

\hline \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

CMOS Gate Identifier
C. Ching

This circuit can be used to distinguish four types of dual input gates - AND, OR, NAND, NOR - it is also a quick method of checking IC function. If an AND gate is inserted into the socket, an A appears on the LED. An O denotes an OR gate. The decimal point is used to denote inverted function, i.e. A is an NAND gate

Electronic Ignition Switch

K. A. Last

-

= is BFY50
=2.4are BC108
s=2are BC108C
SL二 5 50V, 34
$=\mathrm{EH}$ is TLL209

- La- is 10V,50R COIL WITH 2 p/CO CONTACTS

When used with a calculator type keyboard, this circuit provides a 'combination lock' ignition switch which only activates if the correct sequence of three numbers is keyed in. The keyboard has 14 keys numbered 1 to 12 , 'START' and 'FINISH' To start the car, the 'start' key is pressed and the start LED will light. The correct sequence of 3 numbers is
then keyed in. If the sequence is wrong, the cars horn will be sounded. If the right sequence is entered, the 'START' LED will extinguish and the ignition will be energised. The correct sequence will be PB1, PB2, PB3, but these can be arranged amongst the other keys in the keyboard, and given any numbers.

BAD NEWS for knob twiddlers A 300W Lightdimmer with NO knob Dimming and on / off functions are controlled by touch Features include * No mains rewiring - Switches on to preset brightness * Can he switched and dimmed from many locations using TDE/K kit making 2 -way switching easy 由 $\begin{gathered}\text { PRICE } \\ \text { E8.99 TDE/K }\end{gathered}$ $E 1.00$	8
LIGHTING CONTROL:KITS (300W) TSD300K TOUCHSWITCH \& DIMMER combined One touch-plate for on /off Small knob controls brightness $\quad \mathbf{£ 5 . 5 0}$ TS300K TOUCHSWITCH Two touchplates ON /OFF £4.00 TSA300K AUTOMATIC One touchplate Preset time delay off £4.00 LD300K LIGHTDIMMER $£ 2.80$	
DIMTAL YOLTMETER THERMDMETER KRT	AY-5-1224 $\mathbf{£ 3 . 2 5}$ AY-5.1230 $\mathbf{£ 4 . 8 5}$ ZN1034E $\mathbf{£ 1 . 8 0}$ ICL.7106 DVM IC \ldots.
Based on the 7106 single IC $31 / 2$ digit DVM the kit contains a PCB, resistors, capacitors, presets, IC and 05 liquid crystal display Components are also included to enable the basic DVM kit to be modified to a Digital Thermometer using a single transistor as the sensor ONLY £21.99	1N4001 $6 p^{\prime}$ 1N4148 \mathbf{p}^{\prime} BC182L $10 p^{\prime}$ 2N3819 $20 p$
	MINL MANS TRANSFORMERS
	Standard 240 V mains primary 100 mA secondary $6-0.6 \mathrm{~V}$ 85 p $9.0-9 \mathrm{~V}$ 90 p $12-0-12 \mathrm{~V}$ 95 p
24 AR. CLOCK/APPLANCETMMERKIT	
Switches any appliance of up to 1 KW on and off at preset times once a day KIT contains Ā̄-5-1230 Clock/Āppliance Timer IC 05 LED display, mains supply display drivers. switches, LEDs, triac, complete with PCBs and full instructions $£ 13.75$ White box $(56 \times 131 \times 71 \mathrm{~mm})$-drilled £2.50 undrilles £2.50	
PLEASE ADD 8% V A T ($121 / 2 \%$) TO ABOVE PRICES QUANTITY DISCOUNTS ONREOUEST. ADD 25p POSTAGE \& PACKING. MAIL ORDER ONLYTO: T. K. ELECTRONICS, $10 \overline{0}$ Studley Grange Road, London W7 2LX	

IN4148 Diodes by ITT/Texas. 100 for $\mathbf{£ 1 . 5 0 .}$. These are full spec. devices.			
Unencoded Hexadecimal 19 keyboard $1-10$ ABCDEF. 2 optional keys. Shift key. £12.50.			
MM2102 AN-4L 1024×1 Bit. 450 nano sec Static Ram. $£ 1.00$ each.			
FND500 Seven Segment Common Cathode Display $£ 1.30$ each. $4 / £ 5.00$.			
AY5-1013 UART / T E6.00.			
$\begin{aligned} & \text { Red Leds } 01.125 \text { or } 0.2,10 \text { for } £ 1.2 \overline{0} \text {. } \\ & 100 / £ 9.00 \text {. } \end{aligned}$			
$\begin{aligned} & 2112256 \times 4 \text { Bit Static Ram } 450 \text { nanosec. } \\ & \mathbf{£ 2 . 9 5} \text { each. } 4 / \mathbf{1 1} .60 .8 / £ 22.60 \text {. } \end{aligned}$			
Murata Ultrasonic Transducer $£ 2.50$ each £4.00 pair.			
741 Op Amp 25p each. 10/£2.00.			
555 Timer 28p each 10/£2.50.			
4001 4007	14 p 16 p	4029 4047	$110 p$ $100 p$
4011	14 p	4049	$100 p$ $40 p$
4012	14p	4060	120p
4013	50 p	4066	55 p
4015 4106	90 p 40 p	4069	20 p
4106 4017	40p 90 p	4071 4072	16 p
4020	100p	4081	16p
4022	90 p	4082	16 p
4023	16p	4510	120p
4024	$65 p$	4511	150p
4025	$16 p$	'4516	110p
4026	160 p	4518	130p
4027 4028	50p	4528	100 p
4028	90p		
Prices include Post and VAT			
T. POWELL 306 ST. PAUL'S ROAD, HİGHBURY CORNER, LONDON N.1. Tel. 01-226 1489 Callers welcome 24 hr . Ansaphone order service with ACCESS or BARCLAYCARD No			

As supplied to Posi Office, Indusiry and Goveramenl Depls.
SINGLE UNITS (1D)
$(5 \mathrm{in} \times 21 / 4 \mathrm{in} \times 21 / 4 \mathrm{in}$) $\mathbf{E 3 . 5 0}$ DOZEN DOUBLE UNITS (2D)
(5 in $\times 41 / 2$ in $\times 21 / 4$ in $) £ 5.50$ DOZEN TREBLE (3D) $£ 5.50$ for 8
DOUBLE TREBLE 2 drawers, in one outer case (6D2)
EXTRA LARGE SIZE (6D1) £6.90 for 8 PLUS QUANTITY OISCOUNTS Orders over $£ 20$, less 5%. Orders over E60 less $71 / 2 \%$
PACKING POTS
 Pleasz add B\% V.A.T. to total remittance

Modern shum line power paneì counless uses in home office
taciory showromis Perfecily sale unbeatable Can be mounted factory showrooms Perfecily sale unbeatable can be mounted
on wall of trailed anywhers in room. Near rubbar baes Smar PVC outer cover Black $£ 3.10$. White $£ 3.30$. P\&P 60 p each
Slate cable length reaured 20 . FLAIRTIN SUP PI
FLAIRLINE SUPPLIES (Dept. Ev20) 124 Cricklowood Broadway, London N.W. 2 124 Cricklephone 014504844

BLOB BOARD BUILDS BETTER BROJECTS BHEAPER, BASTER \& BEAUTIFULLY BLOB-BOARD

Blob-Board is now available in many different layouts and sizes to allow the home constructor to build any project from the most simple to the most complicated without the need of layout drawings or having to work out complex component patterns.
Blob-Boards are normally much cheaper than existing matrix boards and do not need any cutting or breaking of contact rails.
The roller tinned tracks and letter number identification of holes make soldering so much easier than nontinned copper boards and make transferring from circuit diagram to BlobBoard virtually error free.
Components can be re-used and resoldered making circuit project modifications and amendments fast and cheap. All Blob-Board packs contain step-by step instructions of how to build projects and a project booklet. The "IC'" range has a 20 project booklet with easy to follow circuit diagrams and the " D ' range has a 9 project booklet including Radio Receiver, Radio Microphone, Light Operation Switch etc.

Bred circuit board BCB4 with project

CODE	SIZE mm	PRICE
ZB5D	92×61	$\mathbf{£ 0 . 4 4}$
ZB6D	61×186	$\mathbf{£ 0 . 8 5}$
ZB7D	125×186	$\mathbf{£ 1 . 6 7}$
ZB8D	165×241	$\mathbf{£ 2 . 8 8}$
ZB1 IC	114×76	$\mathbf{£ 0 . 6 6}$
ZB2 IC	115×78	$\mathbf{£ 0 . 7 1}$
ZB4 IC	127×203	$\mathbf{£ 1 . 9 0}$
ZB8 IC	254×203	$\mathbf{£ 3 . 6 9}$
BCB 1	120×150	$\mathbf{£ 1 . 0 3}$
BCB 2	175×65	$\mathbf{£ 0 . 6 3}$
BCB 3	125×75	$\mathbf{£ 0 . 5 4}$
BCB 4	125×50	$\mathbf{£ 0 . 4 9}$
ZB4V	229×165	$\mathbf{£ 2 . 5 5}$
ZB4V5	229×165	$\mathbf{£ 2 . 5 5}$

PB Electronics (Scotland) Ltd

9 Radwinter Road
Saffron Walden, Essex CB11 3HU

All prices include VAT
Please add 35 p p \& p minimum order $£ 3.00$ Available from all good component stockists

OTS now from ambit internutianal

counter attractions:

Now this month from Intersil, the ICM 7216. This is procatow merme mpmicere man and operates on inputs of up to 10 MHz minimum The sumpe af man a
 The IC cost is $£ 19.82$, and the 10 MHz HC18U Xtal $£ 2.50$ for Inmelle the

 with $10.7-455 \mathrm{kHz}$ balanced mixer, onboard oscillator Snve man Sum

Please note that OSTS prices exclude VAT at 8% ambit items are at $121 / 2 \%$ except those marked Beaxe ref anter ranno although a single combined payment, and 250 perap - -

ti
 T04000 cmos

楞

From the World's leading radio innouation saurce:
sump form the MC3357, mentioned alongside, Ambit has the first easy-to-use low noise ism cost UHF dual gate MOSFET - the BF960 from Siemens. With a gain of 18dB, and see what we mean. At 200 MHz , the 3 arm is 23 dB , and NF only 1.6 dB . Combine these figures with the famous ease of use of

Moving Coil Meters

Ambit offers a very wide range of low cost
meters, together with the unique 'Meter
Made' scale system for professional grade seade customizing.

so

$900 \quad 14 \times 31 \mathrm{~mm}$ Internal 12 v 250p $30 \times 50 \mathrm{~mm}$ frombehind 2750 $93036 \times 63 \mathrm{~mm}$ internal 12 v . 375 p 940 twin $35 \times 45 \mathrm{~mm}$ from behind 350 p Stock movement $200 \mathrm{u} A / 750 \Omega$. The 930 series and many oifigers availabte in quantiv for OEN: Radio;Âudio;Comms ICs:

Only the very best quality - and only types
 TDA1083/ULN2204 am/Im/audio in one IC
 HA1197 LF/30MHz am receiver sy stern
CA3123E/UA720 LF/30MHz linear system TBA651 LF/30MHz linear svste
SD6000 DMOS RF/Mixer pair

IF amplifiers
KA1137W/K 4420 as $3089+$ deviation
CA3189E update with deviation mute CA3189E update with deviation mu
TBA1 20a/SN76660N FM if and detector
TBA120S
MC1350
agc if amp
and
MC1330P synch AM demodulator MC1496P popular double balanced
Communitations citcuits
 $\begin{array}{ll}\text { KB4417 } & 3 \mathrm{mV} \text { mic processor preamp } \\ \text { KBute } \\ 255 \\ \text { K }\end{array}$ Audin preamps. $\begin{array}{lll}\text { LM1303 } & \text { stereo audio optimized OA } & 099 \\ \text { TDA1054 } & \text { high quality with alc option } & 195\end{array}$ KB4417 see above
Audio Power amos
TBAB10AS JW RMS overled protect $\begin{array}{ll}\text { TBAB10AS } \\ \text { TDA2002 } & 8 W / 2 \Omega \text { in pentawatt package }\end{array}$ $\begin{array}{lll}\text { TCA940 } & \text { 15W RMS hifi power dc coupled } & 29 \\ \text { ULN2283 } & \text { 10W higher voltage } 810 & 1.80 \\ \text { UW } 25 \text { to } 12 \mathrm{v} \text { supply capability } & 1.00\end{array}$ ULN2283
LM380NB 1 W power

$\frac{\text { Stereo Decoder Deviees }}{\text { MC1310/KB4400 original pll decoder }}$

CA3090AQ RCA's pill decoder
LM1307/4A707 non pll type
HA1196 advanced adj sep pil low thd
HA11223 newpilot cancel low thd $/ 1$ ind

Digerete semiconductórs \qquad
Some of the biggest stocks of speci
FET transistors for radio in the UK

Most types for most RF arcuitry, inc new
UHF T package typas etc. See price list
Hitachi VMOS 100 W power davicest.
Hitachi 2SK134/2SJ48 100W comp
VMOS. Data and circuit info $£ 1$, and the
devices themselves for $£ 14.00$ a pair

DISCAETE LEDY from Yelofunhen, square
sided and round, AMBIT hat the best vadue

Switch. Systems: Check our combinations
wide selection of 801 H Rlps SU
the miniature Dialistat units, Available in DIY
systems for maximum flexibility and low cost.

And Finally

Further details of these, and many more of the wonders of the world of wireless in the new Ambit catalogue
Phone (0277) 216029/227050 9am.7pm

Coils \& Filters by TOKO
After a period of relative price stability please note that some prices are increased stronger trading currencies. (Mainly Yen)
\& 10 mm IFTs for AM/FM - 1000 s ee
 10.7 MHz

Short Wave Coils sets
TV video and sound IFs/detectors
Anothes new ringe in 10 mm
GBHz cersmic IF sound tive
Ultra stable coils for $30-200 \mathrm{MHz}$ from 20 p
Chokes - biggest range/biggest stocks
$\begin{array}{ll}\text { Most Ele values ex stock, any } \\ 78 A \text { series } & 1 u \mathrm{H} \text { to } 1 \mathrm{mH} \\ \text { BRB series } & 100 \mathrm{HH} \text { to } 33 \mathrm{mH}\end{array}$ \qquad
FMIF FILTERS ceramic and linear phase
FM IF FILTERS ceramic and linear phas
CFSE/SFE10 7 stereo ceramic IF 107 MHz

BBR3125N 4 pole linear pahe 10.7 MHz	150 p	
BBR3132A	6pole linear phase 10.7 MHz	250 p

MFL series 2.4 kHz ssb $/ 455 \mathrm{kHz}$ carrier 1195 p MFK series $7 / 9 \mathrm{kHz}$ BW on 455 kHz LFY455D 12 kHz 4 ele ladder on 45
CFM2455 6 kHz micro mechanical
 CFLGTOC 5kHzion 470 kHz
Ratio Detectors for-FM/NBFW Ratio Détectors for-FM/NBFM

1A551/7 455 kHz ratio det $\begin{array}{lll}\text { 1A } 551 / 7 & 455 \mathrm{kHz} \text { ratio det } & 135 \\ \text { KAN150日/9 } & 10.7 \mathrm{MHz} \text { ratio detector } & 66 \mathrm{p}\end{array}$ $94 \mathrm{ACS} 15106 / 710.7 \mathrm{MHz}$ ratio detector 66p | Quadrature detectors for CA3089E etc | |
| :--- | :--- |
| KACSKS88HMA | |
| KACS3434 | |
| Hingle. | |
| double | 330 | KACS34342/3 double 2A2057T 2×2660 F AM Cr222172 2×3350 AM

Cr23217PX	$2 \times 335 \mathrm{pF}$ AM $3 \times 20 p$ F FM $(21$ iniminers $)$

Tuner Modules

From the biggest and best range..

EF5803	6 cet , 3 MOSFETs, amp. osc.	1975				
EF5801	6 cct , 2 MOSFETs, ose op	1745				
EF56		1495	$\begin{array}{lll}\text { EF5801 } & 6 \mathrm{cct}, 2 \text { MOSFETs, ose op } & 1745 \\ \text { EF5600 } & 5 \mathrm{cct} \text { MOSFET RF, by TOKO } & 1495 \\ \text { EF5400 } & \text { 4ct balanced mixer/pin age } & 975\end{array}$ EC3302 3cct FET input miniaturg UNE RETS by LAASHOLT head $+1 F$	$\mathbf{7 2 5 2}$	Dual MOS head/low dist IF	2650
:---	:---	:---				
7253	FET head, mpx decoder inc	$\mathbf{2 6 . 5 0}$				

7130	2 mos preamps, 3 lpfilters	16.25	
NBFM1	$455 / 470 \mathrm{kIIz}$	NB FM module	9.95

$\begin{array}{ll}92310 & 1310 \text { based system } \\ 93090 & 3090 \text { Aa based system }\end{array}$ 93090 3090 AO based system B.85 $\begin{array}{ll}91196 & \text { HA1196 based + birdy filter } \\ 91196 B & \text { HA1196 based + birdy filter + }\end{array}$ 911223 HA11223 based system \qquad The original MW/LW varicap The uniband tuner module $\begin{array}{r}11.85 \\ \hline\end{array}$

71083 Using TDA10B3, provides a complete MW/LW/FM portable radio chassis, | | $\begin{array}{l}\text { for clock radio otc } \\ \text { Drive/dial } \\ \text { system for } 71083\end{array}$ | $\begin{array}{l}12,95 \\ 1.75\end{array}$ |
| :--- | :--- | :--- | 40-200MHz to special order The EF5803 and EF5400 are available to cover bands in the region described. The costs

depend on quantity and actual mods required to coverr the desirad band. Max coverage approx
20% of centre frequency selected. Also, pleass cover the desired band. Max eoverage approx
20% of centre frequency solected, Also, please
allow $3-5$ weeks delivery for these items.

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK We Now offer the widest range of sound products STEREO PRE-AMPLIFIERS

MC 1

CPR 1

CPR 1-THE ADVANCED PRE-AMPLIFIER

MC 1 PRE-PRE-AMPLIFIER

 REG 1 - POWER SUPPLY

POWER AMPLIFIERS

POWER SUPPLIES

CRIMSON ELEKTRIK

Understanding Digital Electronics New teach-yourself courses

Design of digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arlthmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers complementary systems; binary multiplication and division.
Book 2 OR and AND functions. logic gates: NOT, exlusive OR NAND, NOR and exclusive-NOR functions; multiple input gates; truth rables: De Morgans Laws; canonical forms; logic conventions Karnaugh mapping; three-state and wired iogic
Book 3 Half adders and tull adders: subtractors; serial and paralle adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters, randorn access memories (RAMs) and read only memories (ROMs)
Book 5 Structure of calculators; keyboard encoding; decoding display data: register systems; control unit; program ROM; address decoding mstruction sets; instruction decoding. control program structure 8ook 6 Central processing unit (CPU); memory organisation sharacter representation; program storage, address modes: input/ ouiput systems; program interrupts; interrupt priorities; programming: assemblers; computers; executive programs; operating systems and time sharing

Digitat Computer Logic and Electronics is designed for the beginner. to mathematical knowfedge other than simple arithmetic is assumed, hough the student should have an aptitude for logical thought. It consists 3ll four volumes - each A4 size - and serves as an introduction to the swoct of digitail electronics. Everyone can learn from it - designer ergcutive, scientist, student, engineer

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND zates and inverters; Boolean algebra and truth tables; De Morgans aws: design of logic circuits using NOR gates; R-S and J-K flip flops; snary counters, shift registers and half adders

equRIDGE LEARNING ENTERPRISES, UNIT 12, RIVERMILL SITE,

Fi IBPOST^{2} ST. IVES, HUNTINGDON, CAMBS. PE 17 4BR, ENGLAND
TELEPHONE: ST. IVES (D480) 67446
PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE RIVERMILI
LODGE, ST. IVES
REGD. IN ENGLAND No. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches àre already commonplace. Tomorrow a digital display could show your vehicle speed and petrol consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding

After completing these courses you will have broadened your caree prospects and increased your fundamental understanding of the rapidly changing technological world around you.
The six volumes of Design of Digital Systems cost only:

And the four volumes of Digital Computer Logic and Electronics cost only:

But if you buy both courses, the total cost is only:

Price includes surface mail anywhere in the world - Airmail extra

Flow Charts \& Algorithms

HELP YOU PRESENT

safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions

THE ALGORITHM WRITER S GUIDE explains how to define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought Size: A5, 130 pages. This book is a MUST for those with things to say
22-95 $\quad+45 p$ post \& packing by surface mail anywhere in the world. Airmail extra.

GUARANTEE

If you are not entirely satisfied your money will be refunded
Cambridge Learning Enterprises, Unit 12, Rivermill Site.
Freepost, St Ives, Huntingdon, Cambs PE 17 4BR England
Please send me the following books
sets Digital Computer Logic \& Electronics @ £5 50.p \& p included
sets Design of Digital Systems @ £9 00, p. \& p included
Combined sets@ £13.00, p \& p included
The Algorithm Writer's guide @ £3.40, p \& p included
Name
Address

I enclose a *cheque/PO payable to Cambridge Learning Enterprises for $£$
Please charge my Access/Barclaycard/Visa/Eurocard 'Mastercharge/İnterbank account number
Signature
*deleted as appropriate
Telephone orders from credit card holders accepted on 0482 67446 (ansafone). Overseas customers should send a bank traft in sterling drawn on a London Bank.

c-inENVVELE
 443 Milionook Poad Southermptort SD1 OHX Tel: (OTOE) 772501

All prices quoted include VAT. Add 25p UK/BFPO Postage. Most order despatched on day of receipt. SAE with enquiries please. MINIMUM ORDER VALUE E1. Official orders accepted from schools, etc. (Minimum invoice charge E5). Export/Wholesale enquiries welcome. Wholes
bona-fide tradera. Surpluz components always wanted.

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

- SAVE ON TIME-No delavs in waiting for parts to come or shops to open
SAVE ON MONEY - Bulk buring means lowest prices - just compare with others
HAVE THE RIGHT PART - NO guesswork or substitution necessary!
ALL PACKS CONTAIN FULL SPEC BRAND NEW. MARKED DEVICES - SENT BY RETURN
PRICES
K00150V ceramic plate capacitors. 5\% 10 of each value 22 pF to 1000 pF Total 210 E3. 35
K002 Exten
K003 Polyester capacitors, 10 each of thes values $001,0015,0022,0033,0047$ 110 altogether for $£ 4.75$
K004 Mylar capacitors. min 100V type 10 each all values from 1000 pF to $10,000 \mathrm{p}$ K009 30 for $£ 3.75$
K009. Extended mylar pack Contains a values from 1000 pF to $047 \mu \mathrm{~F}$. Total 29 capacitors to $£ 11.25$
K005 Polystyrene capacitors, 10 each valu rom 10 pF to $10,000 \mathrm{pF}, \mathrm{E}$
160 V Total 370 for $£ 12.30$
K006 Tantalum bead capacitor
0.15 . 10 each ors the following $0,1,0.95,0.22,033,047$ $100 / 3$ Total 170 tants for $£ 14.20$
$K 007$ Electrolytic capacitors 25 V workin small physical size 10 each of these popula Total 70 for $£ 3.50$
K008 Extended range, as above, als including 220, 470 and $1000 \mu \mathrm{~F}$. Total 10 for $£ 5.90$
K021 Miniature carbon film 5\% resistors CR25 or similar 10 of each value from 10 R f 6.00
K022 Extended range, total 850 resistor from 1R to 10 M £8. 30
K041 Zener diodes. $400 \mathrm{~mW} 5 \% 82 Y 88$ etc 10 of each value from 2
K042 As above but 5 of each value $£ 8.70$

STEREO AMPLIFIER

 CHASSIS £5.50 Conple and ready buit Controis Bass circuit gives 2 watts perchannel output Just needs transformer and speakers for low cost seeres sutable metal cabinet (W374) 2200- of buy the amp, case and trans former for £10.00 and get DIN speaker
AMPLIFIER KIT £1.75

 vol /on-off controls Utilizes sim circuitry to above amp Output 2 W into 8 ohms inpu matched for crystal cartridge 4 transistocircuit Simple to build on PCB provided Can be either battery or mains operated (For mains powered version add $£ 2.20$ fo suitable transtormer) Blue vinyl cover
aluminium case to suil (W372) $\mathbf{E 1 . 3 0}$. BC182B OFFER pecial Offer for quantity users. $0 k+$ approx $80 k$ available

PC ETCHING KIT MK III board, 11b Ferric Chloride, DALO etch-resist bits. etching dish and instructions $£ 4.25$.

EDGE CONNECTORS

ouble-sided gold-plated connectors

 ables us to offer thern at less than one-thir 18 way 41 p 21 priceway 90p.

THE NEW 1978-9 GREENWELD CATALOGUE

features include

50p Discount Vouchers

- Bargain List Supplement
* Reply Pard Envelope
- Priority Order Form
- VAT inclusive prices

HEAT SINK OFFER
$\mathbf{4 0 p}: 100$ for $£ 3$: 1000 for $£ 25$
74 SERIES PACK series ics 20 for $\mathbf{\varepsilon} 1$. 50 f £2.20: 100 for $£ 4$. 20 for $£ 1$; 50 for

TMS4030 RAM

4096 bit dynarmic RAM with 300 ns acces me: 47 Ons cycle time, single low capaci e: power dissiparion Supplied with data $£ 2.75$.

MISCELLANEOUS ICS

 quad comp. 120p; 710 diff comp (T099)保 150:dio $£ 2.8$; TDA 640 audio $£ 2.92$ BA810S audio 70p; SN75110 dual lin driver 70p; MC8500 CRCC gen POA

EXPERIMENTERS

CALCULATOR

ased on the C500 chip, this pack of part

 nables the more experienced constructor to ake an 8 digit 4 function calculator Th size layout of PCB requred types of suitable display and keyboard that can be used etc Components included in the pack are C500 calculator chup driver IC all components for verter clock circuits, Rs Cs etc All for only E3.50.
RELAYS

W 847 Low profile PC mntg $10 \times$
6 V coll. SPCO 3 A contacts 93 p .
6 V coll. SPCO 3A contacts 93 p .
032 Sub min type $10 \times 19 \times 10 \mathrm{~mm} 12 \mathrm{~V}$
W701 GV SPCO
ntacts 20×30
25 mm Only 56p.
out works well ping in relay; rated 24 V AC c/o rated 10A 95p.
W819 12V 1250 R DPCO 1 A contacts
 W839 504 ac 124 V DC) coll 11 rint ype 3pole edo 10A contacis Only 85p. V846 Open construction mainsirelay. 3 sets OAE/O Comptete \&1.20 Send SAE for our relay list - 84 types listed and illustrated
LOW COST PLASTIC BOXES
Made in high impact ABS The lids are retained by 4 screws into brass inserts in terior of box has PCB guide slots (except
$210 \quad 30 \times 62 \times 40 \mathrm{~mm}$ biack
$213 \quad 100 \times 75 \times 40 \mathrm{~mm}$ black
$216 \quad 120 \times 100 \times 45 \mathrm{~mm}$ black
58p
72p

SPECIAL SUMMER OFFERS Audio ICs
$6003 \mathrm{~N} \quad £ 1.40 \quad 76013 \mathrm{~N} \quad £ 1.00$ $6023 \mathrm{~N} \quad £ 1.00 \quad 76033 \mathrm{~N} \quad £ 1.40$

	Linear ICs etc.		
741 (BDIL)	$\mathbf{1 8 p}$	BD 131	$\mathbf{2 4 p}$
555	$\mathbf{2 5 p}$	BD 132	$\mathbf{2 8 p}$

DIODE SCOOPH!

We have been komurate to obtain a large quantity, of untested mostly unmarked giass silcon diucdes Tiesting a sample batch venal diodes 70% usoable devicas signal diodes, high voltage rels and zeners at the incredibly low prese are berng offered - or a bag of 2500 for $£ 2.25$. 10000 £8. Box of 25,000 £ 17 50. Box $100,000 £ 60$.

\section*{ECTROVALUE
 BuyingSetion 5
 pou have bought from us before. you will knaw juat how large \#varied our stocks are. For those who have vot to know, we apublishing o series of five advertisements month by month to up-ro-date information and prices on these advertisements will appesr in stepped erion in five joumala - E.T.I., Eloktor, Practicsl Wireloss,
 Practical Electronics and Everyday Electronics, so that the complete eeries will be available ench month. In this way, no mbttor which joumals you read, BY DETACHING AND SAVING PREHENSIVE MONEY SAVING CATALOGUE. Next month -

Section One.}

SWITCHES

ERG Oual in Line Two-SDC2, 78p 3-SDC3, £1.0 On Off 2 pop SDC2 42p 4 pol SDS4 75 pp SDS6 1 108 SDS8, £1.32.
Multiple - $1 \mathrm{p} / 8$ way DS 16 A1- 8 99p 2p/4WDS 16A2-4£1.08 ROTARY MAINS
NAVECHANGE
Lorlin CK series. MBB contacts
$\begin{array}{rrr}12 W & 37 p & 1 p \\ 6 W & 37 p & \text { 2p } \\ 4 W & 37 p & 3 p\end{array}$
$\begin{array}{lll}3 W & 37 p & 2 p \\ 3 W & 37 p & 3 p\end{array}$
ROTARY SWWITCH KIT Type RA
6 wafers 5crubrise 6 crosusfe 60
RA Wafers MBB
RA Wafers BBM
1P $12 W$ 2P6W
$3 p$ 4W, 4P 3W
$3 p 4 W, 4 P 3 W$.
$6 P 2 W$
RA Shorting wafer, MBB
Rotating open-circuit $\quad 66$ p

PUSH BUTTONS

Standard Size
SSP10. 250V 3A a
push on, push off
panel hole 05^{\prime}
SSP1 1, as SSP10
SSP11, as SSP
59p
push to make
Sub-Miniature 250V 0 5A a 8531 push to make
8533 push to break (Panel hole $025^{\prime \prime}$)

CASTELCO RANGE 250V 1 A
${ }_{0}$ a $375^{\prime \prime}$ hole with long white fixing ring unless otherwise ordered No 2644 SP make No 2648 SP break No. 3248 DP break No. 2634 SP on/off No 3234 DF on/off $\quad 17 \mathrm{34p}$ No 4434 as 3234 but switch sections reversed 30 p No 4444 as 3244 but switch sections reversed green, blue white or red, yellow.

TOGGLE 250V 1 5A a c

Chrome finish	
1011C SPST	
1016C SPDT	56p
1019C SPDT	
centre-off	$\mathbf{6 1 p}$
409 DPDT	
Sip	

Sub-Miniature 250V 2 A ac
Panel hole 0.25
S7101 SPDT
63p
84p
S7201 DPDT
S7203 DPDT
centre-off 84p
S7205 DPDT biased
each side
E1.20 S7207 DPDT biased
one side .
S7301 3PDT
£1.510
$\begin{array}{lr}\text { S7401 4PDT } & \mathbf{£ 1 . 4 2} \\ \text { S7 } & \mathbf{£ 1 . 8 0}\end{array}$
MICROSWITCHES SPDT
SSU01 button, lever or roller 85p TIME SWITCHES (Smith's) For electrical use, 13 A rating IMERSET for wired-in situations, 2 on \& 2 off actions per AUTOSET 13A socket outlet
Otherwise as Imerset
E10.95N

Finme POST FREE U.K

- Hink DISCOUNTS on

*V.A.T. - 8% to value of order.
\&FOR ACCESS OR BARCLAY CARD orders, just phene or write your nurnter.

No discounts allowable on prices marked Net or N

EAR OUT AND TAKE GOOD CARE OF THIS PAGE AND
REMEMBER TO LOOK OUT FOR NEXT MONTH S ADVERTISEMENT TO ADD TO IT

OUR COMPUTER-AIDED SERVICE TAKES GOOD CARE OF YOUR ORDER NO MATTER HOW LARGE OR SMALL

ELEGTRODALDE LTD
28, ST. JUDES ROAD, ENGLEFIELD GREEN. EGHAM, SURREY TW2O OHB Telephone Egham 3603 Telex 264475
Northern Branch - 680. BURNAGE LANE,
BURNAGE, MANCHESTER M19 1NA(061)432 4945

©3 WIRE WRAPPING CENTRE

AC26.75 BE31.95CE2.82DE744
OIP/IC EXTRACTOR DIP/IC INSERTION R

BREAD BOARD '78 21st-25th November. Seymour Hall, London
Stand Nos. A5-A6
 RIBBON CABLE ASSEMBLY

Are oftered in ten
contigurations Accoot all components with ieaas up to.032" - Reauire no special patch Includes integral non shorting
backing.

OK Machíne\&ToolU.K. Limited
48a The Avenue Southampton SO1 2SY

DISTRIBUTORS WANTED***

SAME AS ETI OFFER 5 Function led Hours. mins. secs. month, date, auto calendar, anck-itght. quality metai bracelet. melai tracelet.		QUARTZ LCD ALARM Snooze + backlight Batteries last 1 year approx Includes batteries and travel pouch Excellent value $£ 17.65$	THOUSANDS SOLD 11 FUNCTION SLIM CHRONO 6 digit 11 Iunctions * Hours. mins, secs. * Day. dale. day of week. $=1 / 100,1 / 10$. secs. $10 x$ sacs. mins * Back light lap modes - Dnly 8 mm thick. This same walch is heing sold lor $£ 2200$ in nawspapar and magazine special ofler ads. Metac Price £12.65
SEIKO The Seiko Quartz Collection encompasses a wide and exciting range of quartz watches for men and women. Day/Date quartz. Ultra-thin quartz. Digital quartz watches with liquid crystal display for continuous readout. Even a digital quartz alarm chronograph. It's what you'd expect of Seiko. The first quartz watch ever sold was a Seiko. And Seiko's expertise in every phase of the watchmaking process makes it possible for Seiko to make any part of any Seiko watch, and to exercise a unique quality control system through every step from design to completion. Whichever Seiko Quartz model you select, you get more than just a technologically advanced timepiece.			
HANIMEX Electronic LED Alarm Clock		LADIES LCD Only $25 \times 20 \mathrm{~mm}$ and 6 mina lhick 5 function: hours, mins, socs, day, date. + back light and auto cal Elegant metal hracalel in silver or gold. State prelerance $£ 10.95$	ALARM LCD 5 Eigi 7 mection hours. dis. sects, dy. date. day rata alarn Back light + Dita calewher Unly E24.95
Puerra and Specification - Zour minute display - -esplar llashing lor power loss indication- - Eepealable 9 minute snooze E $15 \times 393 \times 236 \quad(131 \mathrm{~mm} \times 100 \mathrm{~mm} \times 60 \mathrm{~mm})$	THE METAC DIGITAL CLOCKS * COMPLETE KIT * - Pleasant green display-12/24 Hour readoul Suan Spactronaut Aceuracy - Fully alectronic Pulsaling coicn - Push-bution selting Bulidiay lime I Hr - Atructive acrylic casse Easy Io-loliow Instruttions - $81 z e 10.5 \times 5.7 \times \mathrm{B} \mathrm{cm}$ PRICE $£ 6.65$ \square 15:2 Mistral	MIGRO CASSETTE RECORDER Hand-bold ofly $21 / 2 \times 5 \times$ $1 / 2$ ineh Idenlical to well known models bring sold at E35 OUR PRICE £24	SINCLAIR SCIENTIFIC PROGRAMMABLE + free program library worth $£ 4.00$ onıı £ 12.95 from metag
All products carry full 12 month guarantee Please add 30 p P\&P with all orders. All prices include UAT. Shops open 930 to 6.00 daily Trade enquiries welcome	COMPONENTS 2N3055 transistors 50p 2 inch LED s, red $12 p$ green 15ρ yellow 15ρ orange $15 p$ DL 704 displays $80 p$ DL 707 displays $80 p$ Watch batteries $70 p$ (state type) Mercury tilt switches 50p Crystal mic inserts 50p Also useful for sonic applications and sound transmitters (buzzers etc)	metac EXCLUSIVE calculator WATCH + STOP-WATCH SEIKO STYLE Calculalor: X . Tims: hours. mins, secs. tor date, duy of weet PRICE £49	TV GAMES Black \& white $£ 9.95$ Colour $£ 12.95$ 4 games. 2 ball speeds, 2 ball-angles 2 bat sizes
Electronics \& Time Centre 67 HIGH STREET 327 EDGWNARE ROAD DAVENTRY, NORTHANTS Tel. (032 72) 76545 LONDON W2 Barclay \& Access welcome Tel. (01) 7234753 Phone or Serd Card Number with order			

WIIN-ADS \& classirizd

Safety fast! Shows: 1, If all wires correct, 2, Live wire faulty, 3, Live and Neutral wires reversed, 4, Earth faulty, 5, Neutral faulty. Shows exact fault instantly British made $\mathbf{£ 3 . 9 5}$ post free Save time. Be sure. Be safe.

PERSONAL SAFETY CO. Dept. ETI, P.O. Box 1 LLANRWST
Gwynedd, North Wales

HAPPY MEMORIES

21 L02 RAM (450ns)
1-15@95p,16-63@92p,64up@89p 2114 EMM RAM (300ns)
1-3@ @625.4up@ £6
2708 EPROM (450ns)
1-3@£7.25,4up@£7
16 PIN DIL SOCKETS
Gold 22p, 100 up 21p
Tin 12p, 100 up 11p
RAMS LIKE A SPARE BIT - 1.2 mm bits for Antex CX17 and CCN soldering irons $45 p$
Cheque or PO to G J. Greaves
5 Cranbury Terrace Southampton Hants SO2 OLH
C.OD available at cost

All prices include V A T Add 20p postage

AT LOW COST

BUTTON CELLS

	Dis.	Hgt.	Price/CetI
225 mAh	25.0	75	0.65
600 mAh	345	10.0	1.15

VENTED CELLS

045 Ah	175	280	0.95
05 Ah	HP7 or	Size "AA	1.10
12 Ah	225	490	1.45
1.8 Ah	HP11 or	Size "C"	1.95
4.0 Ah	HP2 or	Size "D'	2.75
10.0 Ah	41.5	90.0	6.00
6.0V Pac	+1.2 Ah		7.50

Tags available at extra $10 p$ per celt for 0.5Ah, 1.2 Ah and 1.8 Ah nicads only.

Charger - Suitable for any of the above vented nicads charges up to twelve similar cells in a series at a 50 mA or
$\mathbf{£ 9 . 9 5}$

Sizes approx:'în mm
Sizes app
Mail orde
only

MICROCOMPUTER VIM-1

Use the VIM by itself with its on board
28 double function keypad and 6 character LED display
Then expan
II comes to you assembled and tested
Just connect your + SV D1 5A power supply and
VIM-1 is operational in minutes
Three manuals provided enable you to
MASTER MICROPROCESSOR TECH NOLOGY
Plus features include

- Hi speed cassette interface 185 bytes $/ \mathrm{sec}$
- Sockets for 20 K ROM expansion
- ASII alpha / numerics direct to an oscilloscope
- 4 K SUPERMON MONITOR includes
- Single step with variable trace speed
- Register modify/inspect whilst in program
- Hex displacement calculator
£199 plus 8\% VAT $=$ £15.92 TOTAL $=£ 214.92$

11 The Precinct, Romiley, Stockport SK6 4AE
Tel: (061) 430-4770

E.T.I. P.C.B.s

Epoxy glass laminate - drilled and tinned
Complex Sound Gen
R F Power Meter
Power Bulge
Bell Extender
STAC Timer
Wheel of Fortune
Cross Hatch Gen
ETIWET
Metal Loc
Metronome
House Alarm A \& B
Hammer Throw (3 of
Clock A \& B
3 ch Tone Con
Dig Thermometer
Graphic Equal
1.38
$-\quad 1.25$

Many more available including this month's circuits
S A E for full list Prices include VAT Please add 20p post and packing Orders over £5 pos

PC B s from your own artwork - write for
quote
T.S.I. (St. Ives) Ltd. 37 Telegraph Street
Cottenham, Cambridge, CB4 4QU
Tel. (0954) 51177

TELERADIO for INSTRUMENTS AMPLIFIERS RADIO CONTROL COMPONENTS SEMI CONDUCTORS

Send S.A E for lists required

Illustration shows low distortion Audio Oscillator type A0146
Distortion 0015% Range 100 hz to 100 khz . Output 1 v Sine \& Square
Price $£ 35$ (or in kit form $£ 30$) Tax extra 8% P.P $£ 1.50$

> TELERADIO ELECTRONICS
> 325 FORE STREET, EDMONTON, LONDON, N9 OPE 01-807 3719
> Closed on Thursdays

DIGITAC DIGITAL REV. COUNTER

The Digitac is a voltage impulse digital tachometer, which is suitable for all negative earth ignition systems. It has a 2 digit 7 segment display housed in a black case. Please specify no. of cylinders and if 6 or 12 volt system.

Ready built $£ 19.78$ Kit form £14.96
Prices are fully inclusive (Quantity discounts)

ELECTRONEQUIP

36 Merton Avenue, Portchester Hants PO16 9NE. 0701873455

Linsley-Hood 75 watt Power Amp modules, built and tested, from $£ 12.50$. Complete module kit E10 50 inclusive. Unsley-Hood 75 watt amplifiers constructed and repaired, comprehensive range of spares in stock. Details and list free. I. G. Bowman Dept. ETI), 59 Fowey Avenue, Torquay, S Devon

PRECISION POLYCARBONATE CAPACITORS

All high stability - extremely low leakage

LuOV AC RANGE ($\pm 10 \%$) 63V DC RANGE (£) each ${ }_{2}^{5} \quad \mathrm{~L}(\mathrm{~mm}) \mathrm{D}$ Eeach $\mu \mathrm{F}$ (Tol $\pm 1 \% \pm 2 \% \pm 5 \%$ \begin{tabular}{lllllllll}
5 \& 27 \& 12.7 \& 1.34 \& $0.01-02$ \& 1.80 \& 1 \& 22 \& 0.88

\hline 22 \& 33 \& 16 \& 166 \& $0.22-047$ \& 182 \& 124 \& 0.90

 $\begin{array}{lllllllll}2 & 32 & 16 & 166 & 022-047 & 182 & 1.24 & 0.90 \\ -25 & 33 & 16 & 178 & 10 & 2 & 26 & 1.52 & 108\end{array}$

47 \& 33 \& 19 \& 208 \& 22 \& 280 \& 1.94 \& 1.42

-5 \& 33 \& 19 \& 224 \& 47 \& 400 \& 2 \& 72

\hline

 $\begin{array}{llllllll}-68 & 33 & 19 & 224 & 47 & 400 & 272 & 2.24 \\ -608 & 19 & 248 & 68 & 488 & 3.36 & 266\end{array}$

-9 \& 508 \& 19 \& 264 \& 100 \& 698 \& 4.36 \& 2.66

\hline
\end{tabular} $\begin{array}{lllllll}20 & 50.8 & 25.4 & 3.74 & 220 & 1332 & 998\end{array}$ adodition

TLANSISTORS, DIODES, I.C.s, Bridge Rectifiers ILANSISTOAS, DIODES, I.C.s, Bridge Rectifiers,
Emoacitors, Plugs + Sockets, Vero. Fuses, etc. - a momplete range is carried, please send for our free merailed price list which will be sent by return of mail

- AESTSTORS High stability, low noise earbon film $+-5 \%$ tol $1 / 2 \mathrm{~W}$ @ $40 \mathrm{C} 1 / 3 \mathrm{~W}$ (0) 10 C E12
series only - from 2.2 ohm to 47 M All $2 \mathrm{p}^{\circ}$ each: - $5 p^{\prime ;} 10$ of any one value: $95 p^{\circ} / 100$ of any one -- 000 (may be mixed in 100 s)

SPECIAL DEVELOPMENT PACK: 10 of each ve ve 22 ohm to 2 M (730 resistors) - E6.50 sach,

Pesess: 01 W submin skeleton presets - vertical or Mrerontal 100 ohm to $1 \mathrm{M}, 7 p^{\prime}$ each. $£ 3^{\circ} / 50, £ 5^{\circ}$, rimec
=펴 DIODES $3.3-200 \mathrm{~V}$
\qquad $1+10+50+100+$ Nalue $18 \mathrm{p} 17 \frac{1}{2}$ p $161 / 215$ p mixed

TATALUM BEAD CAPACITORS: $\mu F / V_{-}$ I $=220330470681 \mu \mathrm{~F}$ all at 35V @ $10 \mathrm{p}^{*}$ $= \pm 22.25+11 p^{\circ} 22 / 35 @ 12 p^{\circ} 47 / 35 @$ - E 8/35@17p 10/25@17p*10/35@21p. E 2 22:15 33/10, 47/63@21p68/3@ -100.3@ 21 p (deduct $1 p$ each for qty of $10+$ untues may be mixed
TEITH2 - UK/Export add cost air/sea mail Add 8\%正 those marked add $121 / 2 \%$ Wholesale price $=30 \mathrm{om}$ Mon - Fri

MARCO TRADING (Dept. T10)
The Old School, Edstaston, WEM, Shropshire
Tel. WHIXALL 464 (STD: 094872) (Props.: Minicost Trading Ltd.)

BARGAINS FOR THE ELECTRONIC HANDYMAN BRANDED LED DIGITAL ALARM CLOCKS

Capacitors. Tantalum Bead (ITT Union Carbide, NCC) $50 \mathrm{v} .33 \mathrm{uf}, .68,35 \mathrm{v}, 223347$ $1-01-54.7,6.816 \mathrm{v} 2.24 .7=10 \mathrm{p} 10 \mathrm{v}$ 22uf $3368=18 p 63 v 100 u f=20 p 10 v$ 100uf $=30 \mathrm{p}$. Electrolytic 250v 10uf CEIO 08 P 1000 uf 63 v erie $50 \mathrm{p} 50 \mathrm{v}, 4 \mathrm{7uf}$ CEW 80.06p, 10 uf CRO4W 07p, 35v 33uf ITT . 0747 uf CEO\&W $.0830 \mathrm{v}, 4700$ uf Plessy 50, 25v 100 uf Mullard 09, 470 uf Mullard 17 p 10v 1000 f CEO4W 15 Price breaks 50-199 less 10\% 199-500 less 15%. 500 + less 20\% Same type components obtained to order. Min order £2.00, .35p P\&P all orders below $£ 10.00$. Larkswood Electronics, 25 Larkswood Road, Chingford London E4 9DS. 01-529 8255

THE ROYAL FREE HOSPITAL HAMPSTEAD MEDICAL PHYSICS TECHNICIAN IV [ELECTRONICS]

An Electronics Technician is required for the Electronics Workshop of this major teaching hospital to assist with the development and maintenance of electronic circuits and equipment.
Applicants should hold the City and Guilds Final Certificate in appropriate subjects or an equivalent qualification. Some practical experience in the use of analogue and digital circuit techniques is desirable Salary on scale: £3,423-£4,488 per annum, including all allowances The starting point depending on qualifications and experience and the successful cancicate will be encouraged to study for a higher qualification, by means of Day Release
Application Form (to be returned by 3rd November, 1978) and Job Description from the Personnel Department, The Royal Free Hospital, Pond Street, Hampstead, London NW3 20C. Tel: 01-794 0500. Please quote ref: 0761.
Camden and Islington Area HEelth Authority (T)
L.C.D. CHRONOGRAPHS, of cigit oispiay stopwatch to 100 th seconds Lap timer, P M indicator. S: S bracelet display backlight £1696 LCD Solar watch £1695 Ladies LC.D watch S/S or gilt bracelet $£ 13.95$ LC.D watch/stopwatch to seconds $£ 1395$ Prices fully inclusive Cheques, P Os to RAM ELECTRONICS, 49 Avondale Road, Fleet Hampshire

ETI
 ADVERTISEMENT INDEX

Ace 90
Ambit 97
Astra-Pak 98
Audio Electronics 13
Bamber 84
Baydis 53
Bi-Pak 4 \& 5
Birkett 10
B.N.R.S 78
Bull 53
Cambridge Learning 99
Catronics 90
Chittmead 34
Chromasonics 90
Crimson Elektrik 98
C.S.C. 42 \& 43
Dalston Electronics 92
Delta Tech. \& Co 94
Discount Computing 82
Doram 49. 53
E D. A 100
Electrovalve 101
Fladar 92
Flairline 96
Gould Advance 14
Greenbank 88
Greenweld 100
H.B. Electronics 92
Henry's $78,88,92$
Ibek Systems 42
ILP. 69
Integrated Circuits 95
Jeremy Lord 84
Kramer $42,84,96$
L.B Electronics 64
Lektrakıt 36, 70
Maplin 108
Marshalls 77
Metac 103
Minikits 42
Mountiandene 64
Nicholls 64
Nic Models 92
OK Machine 102
P B Electronics 96
Powell 96
Powertran 2. 6
Progressive Radio 64
R.F. Equipment 10
Roger Squires 78
R.TVC 83
Sentinel Supply 78
Sintel 89
Stevenson 12
Sinclair Radionics 61
Swanley 82
Tamtronik 102
Target 36
Technomatic 11
Teleplay 107
Tempus 62
Trampus 70
T.K. 94
Trident 52
Vero 94
Videotime 50
Watford 8, 9
Wilmslow Audio 36

PRINTED CIRCUITS HARDWARE

Comprehensive range Constructors' Hardware and accessories

Selected range of popular components Full range of ETI printed circuit boards. normatly ex-stock, same day despatch at competitive prices.
P.C. Boards to individual designs.

Resist-coated epoxy glass laminate for the d.i.y. man with full processing instructions (no unusual chemicals required)
Alfac range of etch resist transfers, and other drawing materials for p.c. boards.
Send 15p for catalogue.
ramar constructor SERVICES MASONS ROAD STRATFORD-ON-AVON
WARWICKS. Tel. 4879

COMPUTER HOBBIST, components at lowest prices. Write for free price list, stating your specific interests. PACS, 12 Alma Road, Monkstown, Co. Dublin, Eire

PLEASE MENTION ETI WHEN REPLYING TO ADVERTS

COLOUR MODULATOR
 Kit FOR ALL TV GAMES!

£6.95 bactsonne coums
WILLIAM STUART SYSTEMS
Billericay Foad, Herongate, Brentwood, Essex CM 13 3SD

MOTOROLA 6800 COMPUTERS

Single board 6800.17 command 1 K Mikbug compatible Monitor, 1 K user RAM, 1 K Crystal Controlled VDU, CUTS fully buffered, room for extra 3×2708 PROMS £175.00
Single board 2 Similar to above but with QWERTY keyboard $£ 205.00$ NEW Mini 6800 Two p.c b kit, 1 K monitor, 1 K VDU, RAM, CUTS, QWERTY keyboard $£ 145.00$ VDU kit 1 K Crystal controlled, memory mapped, parallel input video output Should suit most processors \& $\mathbf{£ 6 0 . 0 0}$

All prices include VAT and post Please send SAE for leaflets Mail Order only

HEWART MICROELECTRONICS

95 Blakelow Road
Macclesfield, Cheshire
LED PPM Single chip Peak Programme Meter (SN16880N) drives 5 LED's directly, easily cascaded to increase range / resolution £3-50 ea inclusive Applications sheets alone 18p. Peter Francis, 34 Ashley Dr., Twickenham TW2 6HW

DIGITAL WATCHES. See my range of high quality L.C.D. watches and clocks all with 12 month guarantee from as little as £9 50 Send S A E. for colour brochure D HULLAH (Watches), 14 Willow Grove, Harrogate, N/Yorks.

Videograph II links to the aerial socket of your tv and provides a full colour oscilloscope display! A must for hi-fi, home entertainment, discos, organs etc.
New - signal invert control, integral square wave generator. Plus - full details for testing your audio system for transient distortion, crosstalk etc Complete f19.95 Luxury cabinet and Kit only G/J'S controls. E9-95 K. POST, PACKING, VAT READY BUILT VIDEOGRAFH 55995 WILLIAM Dower Houso: Bllei caly Road STUART $\begin{gathered}\text { Herongate. Bentw } \\ \text { Essex CMil } 3 \text { 3So }\end{gathered}$
SYSTEMS LEd Telaphons greriwood (0277) 8102

Abstract

A GENUINE BARGAIN OFFER. LCD Twenty Function Square Slim Chronograph. CONSTANT DISPLAY: Hours, Minutes, Seconds. A.M., P.M., Month, Date, Day, Roll-over, Backlight. CHRONOGRAPH:Minutes, Seconds, 10th., 100th Lap Time. Lap Indicator, Total Time, Return Ordinary Time, Freeze Time, Memory, Stainless Steel Locking Bracelet. 12 Month Guarantee. Money Back Guarantee ONLY £18.50. Without Chronograph £14.50. To J. RAMINGER, 1 St. Laurence Way. Stanwick Northants, NN 96 .

Rapitupe 糔 HI PANEL

or at least your projects. If there is one thing which is impossible to do at home is lettering front panels to professional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers sheet, which has been carefully designed to allow you to do exactly that.
The transfers are easily rubbed down, and the two sheet set contains a mass of lettering and -uniquely-control scales for both rotary-and slider puts.
Each sheet measures 180 mm X 240 mm and comes packed flat in a stiff cardboard envelope for protection. There should be enough for dozens of projects here - and the longer you wait the worse they'll look!

> Send 51.75 fincludes VAT and postage] for the twosheet set to:
> Panel Markings
> ETI Magazine,
> 25-27 Oxford Street. London Win IRF.

Teleplay

 presents the $A G A M E$ date the Teleplay way. You white TV. mes, for out of date. rtridge,
pR

 Additional cartridges NOW
$£ 14.90+£ 1.14$ VAT $\begin{gathered}\text { Fuly } \\ \text { assembled }\end{gathered}$
 Adailable include: Cartridges and Hand $£ 18.90+£$ with basic kit $+£ 1.03$ Vat. carreidges come complert follow Cartridges cond easy to
printed case and ans.
assembly instructions. Cartridge

Cheques and Postal Orders to be made payable to TELEPLAY; send your order (No Stamp Needed) to Teleplay, Freepost, Barnet, EN5 2BR or telephone your order quoting your Barclaycard or Access number Queries and Technical Advice offered either by phone or by calling at our shop.

exnclaycard
 -

everything for the modern D.I.Y. electronics enthusiast and more.

\star Come and see all our projects ${ }_{\star}^{\star}$ \star on display at the Electronics \star \star hobby show 'Breadboard' at \star Seymour Hall, London W1 \star_{\star}^{\star} stands E7-E9. OUR 1979-80 CATALOGUE PRICE 75p

Please rush me a copy of your 216 -page catalogue I enclose 75 p, but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 75 p refunded immediately

[^0]: Electronics Today International is normally published on the first Friday of the month prior to the cover date

[^1]: COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a corŕection will be published as soon as possible afterwards.

[^2]: COMPLETE KITS: Our complete kits really are complete. All of the projects shown on this page are supplied with fully finished metalwork, ready assembied high quality teak veneer cabinet, cables, nuts, bolts, etc.. and full instructions - in fact everything ${ }^{1}$

[^3]: No

[^4]: VIDEDTHME PRODUCTS 56 Queens Road, Basingstoke, Hants RG21 1REA

[^5]: "Any truth in the rumour we're about to be replaced by an MPU boss."

[^6]: mand Shoppers EDGWARE ROAD LONDON W2 Tel：01－723 8432．9．30am－5．30pm．Half day Thursiay．ACTON：Mail Order only．No callers GOODS NOT DESPATCHED OUTSIDE UK

[^7]: JEREMY LORD SYNTHESISERS (DEPT. ETI)

[^8]: Ell Binders
 25－27 Oxford Street
 iandon W1R 1 RF．

[^9]: Our Offices are at 209 Cowtey Road Oxford but please do nor use this as

