Popular Electronics

 MDI PMBAVUMeter with No Moving Parts Shortwave Newstasts in English
Builda Miniromputer, Partll
"Tug of War"
Eleatronics Bame
TESTREDALB:
Marantz 4270 Reaciver
Garrard Zaro IOOSB Turntable
OrtofonVWB-20E Phono Cartridige
Lefeyette Bom-Phone 28 EB Transediver
Data Technology Models 20:2|DMMs

Yoursure-fire smokedetector ishere...the MallorySDA3 Alarm.

Automatically, 'round the clock, when hazardous smoke fumes threaten, it sounds a life-saving intermittent blast-soloud it can break through the deepest sleep
The Mallory Smoke Detector Alarm is completely self-contained, battery-powered. It installs easily on ceilings-in hallways, bedrooms, wherever warning for escape from lethal combustion products (visible or invisible) is needed.
And the 12.6-volt Mallory battery is specially designed for added security. It changes characteristics after a life of approximately one year and the Alarm then emits a burst of sound at one-minute intervals, signaling that a fresh battery is needed.
All for a price so affordable, every home, apartment, trailer, office can have sure-fire smokealarm protection.
For details, see your N allory cistributor.

MALLORY DISTRIBUTOR PRODUCTS COMPANY

a division of P.F. MALLORY \& CO. INC.
Box 1284, Indianapolis, Indiana 48208; Telephone: 3x7-856-3731
Batteries - Capacitors • Controls • Security Products - DURATAPE* - Resistors . Semiconducturs - SONALERT* - Switches - Timiag Devices and Motors
DURACELL", DURATAPE* and SONALERT ${ }^{\text {* }}$ are registered Irademarks if P. R. Nailory \& Co. Inc
＊DISPLAYS UP TO 16 LINES（of 32 Characters）AT ONE TIME．
＊1，024 Character－Two Page Memory Capacity－STANDARD．
＊Plug－In Circuits to adapt the terminal to any requirement at lowest possible cost．
＊Requires +5 Volts DC＠ 2.5 Amps，-5 and -12 Volts＠ 20 Ma ．

At last we can tell you about the most versatile，video－ display terminal kit available anywhere；the Southwest Technical CT－1024．Our terminal is designed around a basic mother board and a 6,144 bit memory that will display two pages of data on any standard television set，or moni－ tor．The two pages consist of 16 lines with 32 characters on each line．Input may be any source of parallel ASCII code； keyboard，computer，etc．If the system is to be used for a display，teaching aid，deaf communicator，or other similar purpose；this is all you will need．

Other applications of a terminal system such as remote time share，RTTY，etc require an interface having a serial output． For these applications you add our \＃CT－S plug－in UART card to the mother board．This allows you to transmit and receive ACSCII coded data in serial form at a rate of 110 baud．（ 300 and 600 baud options are available）．The standard RS－232 type interface connects directly to your transmitter FSK modulator，modem system，or what have you．

If you are going to use the CT－1024 directly with a com－ puter $1 / O$ port that requires a parallel ACSCII input，then you will want our parallel interface card，\＃CT－P which
allows either the keyboard，or the computer to access the terminals memory and display data on the screen．

For those applications where it is useful，we also have an ＂off line edit＂，or＂screen read＂plug－in circuit \＃CT－E． This allows you to compose a program，or message on the terminals display screen and transmit it out a line at a time when you are finished and satisfied that everything is cor－ rect．

If you would like the convenience of complete cursor con－ trol，we have our \＃CT－CM plug－in board．This gives you Move Right，Move Left，Move Up，Move Down，Home Up， Erase to end of line and Erase to end of frame functions． These are operated by keyswitches，or any other type switches you may wish to use，giving you complete manual control of the cursor．

If the terminal is to be part of a computer system，you might prefer our automatic cursor control circuit \＃CT－CA． This plug－in not only allows you to control the cursor and to perform the functions listed above，but makes possible computer control of these same functions through the machines software．

$$
\begin{aligned}
& \text { \# CT-1024 Terminal System Kit with } 1024 \text { Memory Card-less cabinet or power supply } \$ 175.00 \mathrm{PPd} \\
& \text { \# CT-E Screen Read Plug-in Card Kit. } 17.50 \text { PPd } \\
& \text { \# CT-M Manual Cursor Control Plug-in Card Kit . } 11.50 \mathrm{PPd} \\
& \text { \# CT-P Power Supply for CT-1024-1 } 15-230 \text { Voli Primaries. } 15.50 \mathrm{PPd} \\
& \text { \# KBD-2 Keyboard Kit }-53 \text { Keys . } 39.95 \mathrm{PPd}
\end{aligned}
$$

FREE－1975 Catalog－Circle our number on the＂Bingo＂card．

Nowtherestaci raitio with roo much thalispower

Put punch in your voice, from a block away to the fringes of your range. New Dyna-Mike gain contı ol puts out absolute modulation. So much talk power you'll have to turn it down.

An important feature, but only one that makes this fantastically lowpriced CB radio the best CB value on today's market.
The Cobra 21 with crystal filter, dual conversion receiver; transmits and receives on all 23 AM channels. Features 60 dB adjacent channel rejection that completely eliminates bleedover.

Extra large Power S Meter let's you monitor ycur set's performance easily even when it's tucked under' the dashboard.
And you get switchable automatic noise limiter, P.A./external speaker jack, large built-in speaker and detachable mike.
It's all wrapped up in a beautiful, compact cabinet only $6^{\prime \prime}$ wide $\times 21 / 2^{\prime \prime}$ wide $\times 71_{2}^{\prime \prime}$ deep. Meets FCC requirements.
Ask your CB Dealer for the Cobra 21 The radio with too much talk power for not much money.

COBRA 21
WITH EXCLUSIVE DYNA-MIKE

Product of DYNASCAN CORPORATION • 1801 W. Belle Plaine • Chicago, Illinois 60613
FEATURE ARTICLES
HOW PHASE-LOCKED LOOPS WORK Herb Cohen 32
Theory and applications of a circuit revitalized by IC technology SHORTWAVE NEWSCASTS IN ENGLISH Richard E. Wood 35
KEYING AND VCA CIRCUITS FOR ELECTRONIC MUSIC INSTRUMENTS, PART II Don Lancaster 37
POWER SURGES AND SEMICONDUCTORS Leslie Solomon 42
ALTAIR 8800 MINI COMPUTER, PART 2 H. Edward Roberts \& William Yates 56
Practical use of the computer, including programming.
CONSTRUCTION ARTICLES
BUILD CYCLOPS Terry Walker, Harry Garland \& Roger Melen 27
First all solid-state TV camera for experimenters
A VU METER WITH NO MOVING PARTS Terry L. Mayhugh 40
New bar-graph device provides signal-strength readouts, accurate peak signals.
TUG-OF-WAR Robert C. Frostholm \& Roger Lundegard 43
An electronic game project to challenge your reflexes.
BUILD A "UNIVERSAL" DIGITAL PROBE
Tests virtually any digital logic family at speeds to 10 MHz .
UPDATE YOUR DIGITAL CLOCK WITH ADD-ONS Jeffrey Glick, Jerry McElwee \& Wilbur Marky 50
ERO-TO-30V EXPERIMENTER'S SUPPLY Thomas McGahee 70
COLUMNS
HOBBY SCENE Editorial Staff 17
STEREO SCENE Ralph Hodges 22
Tape-head alignment.
SOLID STATE Lou Garner 76
Using thermoelectric devices.
CB SCENE Len Buckwalter 80
Taking the bark out of spark.
ART'S TV SHOP Art Margolis86
Mystery of the pocket power supply.
TEST EQUIPMENT SCENE Leslie Solomon 88
Learning to live with digital.
PRODUCT TEST REPORTS
MARANTZ MODEL 4270 AM/FM STEREO 2-QUADRADIAL 4 RECEIVER 59
GARRARD ZERO 100SB TURNTABLE 61
ORTOFON MODEL VMS-20E PHONO CARTRIDGE 66
LAFAYETTE COM-PHONE 23 MOBILE CB TRANSCEIVER 67
DATA TECHNOLOGY MODEL 20 BENCH-TYPE AND
MODEL 21 PORTABLE DIGITAL MULTIMETERS 68
DEPARTMENTS
EDITORIAL Art Salsberg 4
It's a Tough World Out There.
LETTERS 6
NEW PRODUCTS 12
NEW LITERATURE 16
25
ELECTRONICS LIBRARY 89

Editorial contributions must be accompanied by return postage and will be handled with reasonable care however publisher assumes no responsibility for return or satety of art work, photographs, models, or manuscripts.

EDGAR W. HOPPER Publisher
ARTHUR P. SALSBERG Editorial Dirprtor
LESLIE SOLOMON Technical Editor
JOHN R. RIGGS Manaping Editor
EDWARD I. BUXBAUM Art Director
ALEXANDER W. BURAWA Associate Editor
JOHN McVEIGH Assistant Editor
ANDRE DUZANT Technical Ilhestrator
HERBERT S. BRIER LEN BUCKWALTER LOU GARNER GLENN HAUSER JULIAN D. HIRSCH RALPH HODGES WALTER G. JUNG ART MARGOLIS Contributing Editors
JOSEPH E. HALLORAN Advertising Director
JOHN J. CORTON Adcertising Sales
LINDA BLUM Advertising Service Manager
PEGI McENEANEY Executite Assistant
STANLEY NEUFELD Associate Publisher
FURMAN H. HEBB Gromp IP. Electronics \& Photo

EDGAR W. HOPPER
Publisher

ZIFF-DAVIS PUBLISHING COMPANY Popular Electronics Editorial and Executive Offices One Park Avenue New York. New York 10016 212-725-3500
Hershel B. Sarbin. President
Furman Hebb. Executive Vice President and Treasurer Phillip T. Heffernan. Senior Vice President. Marketing Edward D. Muhlfeld, Senior VicePresident. SportsDivision Philip Sine, Senior Vice President Frank Pomerantz, Vice President, Creative Services Arthur W. Butzow, Vice President, Production Lawrence Sporn, Vice President. Circulation George Morrissey. Vice President Sydney H. Rogers, Vice President Sidney Holtz. Vice President Charles B. Seton. Secretary
Edgar W. Hopper, Vice President. Electronics Div.
William Ziff. Chairman
W. Bradford Briggs. Vice Chairman

Midwestern Office

The Pattis Group. 4761 West Touhy Ave.. Lincolnwood, Illinois 60644, 312 679.1100 GERALD E. WOLFE, GEORGE B. MANNION DAVID ALLEN Western Office
9025 Wilshire Boulevard, Beverly Hills. CA 90211 213 273-8050: BRadshaw 2-1161 Western Advertising Manager, BUD DEAN

Japan: James Yagi
Oji Palace Aoyama; 6-25. Minami Aoyama 6 Chome, Minato-Ku. Tokyo 407-1930/6821. 582-2851

The publisher has no knowledge of any proprietary ights which will be violated by the making or using of any items disclosed in this issue.

IT'S A TOUGH WORLD OUT THERE

An electronics editor sometimes gets spoiled. Parts are almost always available, delivery is generally speedy, etc. However, to corroborate some reader reports that it isn't as easy as it once was to be an electronics hobbyist, I set out to build some projects without my protective cloak. Here are some of my experiences.

Failing to find a particular $\$ 3$ component locally-retail electronics stores didn't stock it and industrial distributors wouldn't sell me just one-I found an industrial mail-order supplier that carried it. However, since I didn't meet a minimum purchase requirement, I had to pay a 50% premium ($\$ 1.50$ handling charge) on the part, plus postage. I also used mail order for a single 750 k -ohm, $5 \%, 1 / 2$-watt resistor because it wasn't available at local outlets. And I purchased a 556 dual timer that turned out to be defective (which I learned after troubleshooting an inoperative module). After quickly wiring in a replacement without referring to an application note, I discovered that the second device had a different pin configuration.

Running out of solder, I hurried to a local electronics retailer and asked for a pound. The clerk's eyes widened as he advised me that tin prices had gone sky-high and a pound would cost $\$ 9.85$, plus tax. Nine-eighty-five indeed, I thought! So I tried another electronics store, where I was able to buy a pound of name-brand, rosin-core solder for only $\$ 4.95$. Happily, I took my bargain home, only to discover that the solder required more time than usual to melt. Furthermore, spread was poor, the liquified alloy looked slurry and the solidified joint was dull and crusty rather than bright and shiny. Distressed, I examined the spool. It was $40 / 60$. What I wanted, naturally, was 60/40, which has a lower melting point ($370^{\circ} \mathrm{F}$ vs. $460^{\circ} \mathrm{F}$).
I could go on, but the idea is clear. It is more difficult today than it used to be to gather parts at the right price-for a variety of reasons. But in many ways, our lot today is better than it ever was. We have many more devices available, with numerous circuit application possibilities. Prices on many devices are low and getting lower (an anomaly in today's inflationary market). Using pc boards and multi-function chips, it is easier to assemble a complicated circuit today than it was to put together a simple one years ago. The result is more satisfactory also.

Facing up to the fact that no single outlet carries all parts and that some suppliers are not interested in small-quantity orders, how can one ease the parts procurement problem? One sensible way is to write to all companies that sell components and have catalogs available. Many of them advertise in this magazine. Be sure, also, to check mail-order suppliers at the back of the magazine. Arm yourself with cross-reference and replacement guides, too. This may sound basic, but we recently received a host of letters asking where one could get 200-PIV diodes for a solder-iron heat reducer hint we published, when practically every electronic parts catalog lists them!
Also, there's nothing wrong with using higher-rated components (a 2 -watt resistor if a 1 -watt isn't available); totem-poling zeners; paralleling capacitors; etc. Yankee ingenuity can often provide a helpful assist.

Get the news before it's news... with a "behind-the-scenes" Scanner Radio from
 Realistic ${ }^{(8)}$ scanners seek and lock-in on exciting police, fire and emergency calls, even continuous weathercasts*. There's one to cover the "action" in your area - 10 models in all.

PRO-6 - VHF-Hi and VHF-Low Continuously, automatically scans up to 4 crystal-controlled channels on 148-174 or $30-50 \mathrm{MHz}$. It stops on each active channel until the conversation ends, then resumes scanning. You don't miss a thing - it's like 4 radios in one! Lighted channel indicators, switches for bypassing any channels. scan/manual switch, variable volume and squelch, built-in speaker and antenna, earphone jack. With 4 "AA" cells. Requires up to 4 crystals. \#20-171.

PRO-5 - UHF "Metro" Band
Same as the PRO-6, but covers 450-470 MHz now used in many larger cities. Requires up to 4 crystals. \#20-169.
Accessories Available. Plug-in antenna, 12VDC adapter or AC adapter/battery charger, nickel cadmium batteries

Pocket Size, Both Models

ㄷR를 New 1975 Radio Shack Catalog

OVER 2000 PRODUCTS EXCLUSIVES ON EVERY PAGE BEAUTIFUL FULL COLOR
Stereo • Quadraphonic • Phonographs
TV Antennas •Radios • Citizens Band Kits - Recorders - Tape - Tools Auto Tune-Up • Electronic Parts Test Instruments • More!

164 pages of the finest in home and hobby electronics Respected brand names like Realistic. Micronta. Archer Science Fair - and theyre avallable only at Radio Shack stores and dealers nationwide! See what s really new in electronics by getting this catalog now

SEND FOR YOURS TODAY! FILL OUT COUPON BELOW

```
1975 Mail to Radio Shack. P. O. Box }1052
\(\qquad\)
``` Apt. No


Scans up to 16 crystal-controlled channels, in any combination, on \(30-50\) and \(148-174 \mathrm{MHz}\) VHF and \(450-470 \mathrm{MHz}\) UHF. Like 16 radios in one! Lockout buttons and indicator lights for each channel, manual selector, squelch, variable scan rate, scan-delay in/out button. 12 VDC/120 VAC operation, mobile mounting bracket. Requires up to 16 crystals. U.L. listed. \#20-165

Master Charge or Bank Americard at participating stores

A TANDY CORPORATION COMPANY
OVER 3000 STORES • 50 STATES • 7 COUNTRIES
Retail prices may vary at individual stores

> Discover your Alpha Brainwaves with this professional Biofeedback System.

\section*{Lowest Cost Brainwave Monitor}

EICO introduces a price breakthrough in the fantastic new field of brainwave biofeedback ... a completely safe, battery operated, biofeedback system that offers features and sensitivity comparable to professional models costing much more.

\section*{You Will Be Amazed At What You Hear}

The BW-300 will detect your alpha brainwaves (which occur when you are totally relaxed) and produce a tone varying in frequency according to your mental state.

\section*{\(100 \%\) Solid State Circuitry} Reliable All Solid State IC Circuit Design features an active filter that isolates alpha brainwaves and a high-gain low-noise amplifier providing 5 -microvolt sensitivity for easy alpha recognition. The BW-300 is supplied with stethescopic earphones, electrodes headband, contact cream and instructions.

\author{
KIT \(34^{95}\)
}

WIRED 59.95

\section*{FREE EICO CATALOG}

For latest EICO Catalog on Test Instruments, Automotive and Hobby Electronics, Eicocraft Project kits, Burglar-Fire Alarm Systems and name of nearest EICO Distributor, check reader service caid or send \(50 \notin\) for fast first class mail service.
EICO-283 Malta Street, Brooklyn, N.Y. 11207
Leadership in
creative electronics \(5 \square \square\)
Gircle no. 14 on reader service card

\section*{FEEDBACK ON SALT METER}

The data on sodium chloride content of baby foods and other hypothetical intake cited in the Popular Electronics article ("An Electronic Salt Meter For Family Health,' October 1974) are not unreasonable, but they do not give an accurate or complete picture of the salt intake of infants.
About 20 years ago, one of our physical chemists designed and built conductance meters for controlling salt addition in our production operations. Although these meters represented an advance at the time, their use has been abandoned because conductance is influenced by too many food factors other than salt. Salt addition is carefully controlled by weighing or accurate metering devices. The sodium levels in Gerber Foods are determined by atomic absorption or electron emission methods and have been published periodically for more than 20 years.

Robert A. Stewart, Ph.D. Director of Research
Gerber Products Company Fremont, Mich.

\section*{PRO'S AND CON'S OF TECH REPPING}

I enjoyed your article about tech reps ("Career Opportunities for the Tech Rep," November 1974). I feel it was a straightforward and honest account of the profession. Let me encourage anyone contemplating such a career-the future looks good. I would suggest an associate degree in electronics or computer science for the first-rate positions, as this would be a distinct advantage over either military or trade school training, with the added plus of having college hours should further education be desired. With "sheep-skin" in hand, you can literally write your own ticket.

Michael P. Towers
Field Engineer
Singer Aerospace \& Marine Systems Binghamton, N.Y.

I have just finished reading "Career Opportunities for the Tech Rep," and as a former tech rep, my message to all is to stay out of the business. Tech repping is a job whose duration is only as long as the contract you are on lasts. Your job experience will not be recognized when you look for employment back in the U.S. - no matter what your title was as a tech rep. The pay
offered for tech reps is not all that hot either.

Bernhardt Sandler Gardena, Calif.

\section*{AND NOW A WORD FROM AN SWL}

I am happy to see that the "Shortwave Broadcasts to North America" schedules are again being published quarterly in popular Electronics. However, there is one criticism I feel I must make. The experienced DX'er knows that stations periodically change their schedules of operating frequencies-often without previous notice. To help correct this fault, a simple note should be prominently placed on the page to inform the reader that frequencies might be changed without notice.
I also question the use of a Collins receiver in preparing this listing. After all, how many newcomers to SWL'ing have an expensive Collins? With the receivers neophytes do have, they are lucky they can receive HCJB with good quality.

Kenneth Zichi, WDX8KWT Bay City, Mich.

Your recommendation about a word of caution on frequency changes is hereby adoped. Thanks. With regard to the use of a Collins receiver, the information is supplied simply as a frame of reference. Unless one is seeking out a \(5-k W\) station, less costly gear should display similar reception quality. The antenna is only a simple end-fed Hertz type. If one can't receive HCJB, which boasts one of the strongest and cleanest signals, he must have a defective receiver and/or antenna.

\section*{ERRATUM}

A drafting error seems to have stipped into Fig. 2 of my "Photo Tachometer" story (August 1974). For transistor Q2 (in Fig. 2), the \(S\) and \(G\) legends were shown transposed. Most people who build this project will correctly place the leads of Q2 in the proper holes (they conform to the transistor's lead basing configuration), but we should clear up this confusion for anyone who may have doubts.
A.A. Mangieri

New Kensington, Pa.

\section*{WHEN DOES \(\$ 10\) EQUAL \(\$ 100\) ?}

I have built the ' 'Large-Port Speaker System" described in the August 1974 issue and have only words of praise. This is not only the most unique speaker system that I know of, but it is also the best sounding system I have heard next to \(\$ 100\) and \(\$ 200\) systems with which I compared it. Considering that my Large-Port Speaker System cost only \(\$ 10\) to build, the results are remarkable.

Scott E. Persson
Omaha, Neb.

\section*{"ELECTRONICS AUSTRALIA" SCOOPS PE}

In "Build a Laser TV System" (November 1974), it was claimed that POPULAR ELECTRONICS published details of the world's first hobbyist/experimenter's laser in December 1969. I beg to differ! We published construction details for such a project in our August 1969 issue and gave details of the modifications necessary to use it for light-beam communications in our October 1969 issue.
J. Rowe Editor
Electronics Australia Sydney, Australia

We were surprised to learn that we were scooped on another continent back in 1969. Congratulations EA

\section*{SETTING UP CB SERVICE SHOP}

I enjoyed "How to Set Up a Home TV Service Shop" (August 1974). Now, I would like to see you publish an article on how to set up a home CB service shop.

BOB J. LATHIM Dwight, III.

\section*{discrete is betier than integrated}

In Don Lancaster's article on selecting an electronic music synthesizer (October 1974), our company was omitted from the list of manufacturers.

There is one portion of the article to which we would take exception. That is his statement that present-day IC's will provide economies in future synthesizers. Our engineering staff has yet to find an integrated circuit currently on the market (except for the 741 op amp) that will perform as well in EM circuits as do our discrete designs. We have been told by almost all our competitors that they have found the same thing in their research.
O. D. Williams General Manager Steiner-Parker Salt Lake City, Utah

\section*{4f \\ Out of Tune}

In "Measure Low Millivolts with a Multimeter" (November 1974), capacitor C1 is listed correctly as 3 pF in the Parts List, but is shown incorrectly as 33 pF in the schematic. Resistor R10 is a 100,000 -ohm fixed resistor, not a potentiometer.
- POWER FOR THE PROFESSIONAL - ECONOMY KITS FOR THE HOBBYIST A A MODEL AND A PRICE FOR EVERYONE
 1 AMP Regulated Power Supply included! A total ready-to-use power breadboard prototest device with a built-in regulated, short-proof power supply. Just plug-in and start building! 2 extra floating 5 -way binding posts for external signals. Selfcontained with power switch indicator lamp and power fuse. \(24-14\) pin DIP capacity. Attractive two-tone quality case. All metal construction. 933/4" L \(61 / 2\) "W \(\times 2 \frac{3}{4}\) "H. 5 lbs . Order today!
Add \(\$ 2.50\) shipping/handling

A modestly priced kit for the economy minded experimenter...

\section*{PROTO BOARD 100}

A low cost, big 10 IC capacity breadboard kit with all the quality of OT sockets and the best of the Proto Board series . . complete down to the last nut, boit and screw. Includes 2 QT-35S Scckets; 1 OT-35B Bus Strip; 2
5 -way binding posts; 4 rubber feet;
screws, nuts, bolts; and easy assembly iristructions.

Add \(\$ 1.50\) shipping/handilng.

PROTO-CLIP
for Power-On, Hands-Off Signa! Tracing. No more shorting leads. Costs less than

Bring IC leads from pe board for fast signal tracing and troubleshooting. Inject signals. Wire enused circuits into boards. Scope probes and test leads lock onto Dynagrip inset (see circle) for hands-off testing. Plastic construction eliminates springs, pivots. Non-corrosive nickel/silver contacts for simultaneous low resistance connections. PC-14, 14 -pin Proto Clip, \(\$ 4.50\) ea. PC-16, 16 -pin Proto Clip, \(\$ 4.75\) ea. Add 75¢̧ shipping/handling.
Order today off-the-shelf from CSC
or local distributor. Charge: BAC,
MC, AX. Write for free catalog. Free
English/Metric Slide Rule with each order. Dealer inquiries invited. Foreign orders add \(15 \%\).

Patents Pending Made in USA Prices subject to change
 Continental Specialties Corp.
W. Coast Off.: Box 7809, S. Francisco, CA 94119 • 415/383.4207 Canada: Available thru Len Finkler Ltd., Ontario

\section*{You get the same 25"hobby-kit color TV from three different schools.}

No other home-study school gives you a TV like the one you build with NRI's Master Course in Color TV/Audio servicing. Some schools give you three or four plug-in sub-assemblies off the production line to put together a commercial set. Others give you a hobby-kit bought from outside sources. And because neither type was originally designed to train people for TV servicing, lessons and experiments must be "retro-fitted" to the set as it comes.

That's why we went to the trouble to engineer our own, exclusive solid-state TV. It's the only way a student can (1) get the feel of typical commercial circuitry, (2) learn bench techniques while building a complete set from the "ground" up, (3) perform over 25 "in-set" experiments during construction, and (4) end up with a \(25^{\prime \prime}\) diagonal solid-state color TV with console cabinet and all the modern features you'll find on sets you'll service. Nobody else can give you this combination of advantages because nobody else invested the time and money to design a set with learning in mind.

\section*{More know-how perdollar -}

That's what it all boils down to, the quality of training you get for the money you spend. In our 60-year history, more than a million students have come to NRI and we're fully approved for career study under the G.I. Bill. We must be teaching something right.

Some of those "right" things are bite-size lessons to ease understanding and speed learning . . . personal grading of all tests, with comments or explanations where needed . . . a full-time staff of engineer/instructors to help if you need it . . . plenty of "real-life" kits and experiments to give you hands-on training . . . and fully professional programs oriented to full- or part-time career needs.

\section*{NRI passes the savings on toyou}

You don't pay a big premium to get this unique TV as part of your training, because NRI engineering eliminates the cost of buying from an outside source. And we pay no saleman's commission. We enroll students by mail only. We pass the savings along to you in the form of low tuition fees, extras like a cabinet for the TV, a solid-state radio you learn on as you build, and actual instrument kits for servicing TVs . . . triggered sweep oscilloscope, integrated circuit TV pattern generator, and \(31 / 2\) digit digital multimeter. You can pay hundreds of dollars more for a similar course and not get a nickel's worth more in training and equipment.

\section*{Widest choice of career opportunities}

NRI offers not one, but five excellent TV/Audio servicing courses so you can tailor your training to your budget. Or, you can study other opportunity fields like Computer Electronics, Communications, Aircraft or Marine Electronics, Mobile Radio, and more. Free catalog describes them all, showing lesson plans, equipment and kits, and career opportunities. There's no obligation and no salesman will ever call, so send for your copy today. See for yourself why NRI experience, selection, and exclusives give you something no other school can.

If card is missing, write to:

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue,
Washington, D.C. 20016

CIRCLE NO. 7 ON READER SERVICE CARD

\section*{Now the most enjoyable, do-it-yourself project of your \\ lite- a Schober Electronic Organ!}

You'll never reap greater reward, more fun and proud accomplishment, more benefit for the whole family, than by assembling your own Schober Electronic Organ.
You need no knowledge of electronics, woedwork or music. Schober's complete kits and crystal-clear instructions show you whoever you are, whatever your skill (or lack of it) - how to turn the hundreds of quality parts into one of the world's most beautiful, most musical organs, worth up to twice the cost of the kit.

Five superb models, with kit prices from \(\$ 575\) to around \(\$ 2,300\), each an authentic musical instrument actually superior to most you see in stores.
Join the thousands of Schober Organ builder-owners who live in every state of the Union. Often starting without technical or music skills, they have the time of their lives -first assembling, then learning to play the modern King of Instruments through our superlative instructions and playing courses. Get the full story FREE by mailing the coupon TODAY for the big Schober color calalog, with all the fascinating details!
The Schofer Organ Corp., Dept. PE-58
43 West 618t Street, New York, N. Y. 10023
\(\square\)
\(\square\)
\(\square\) Please send me Schober Organ Catalog. Enclosed please find \(\$ 1.00\) for 12 -inch L.P. record of Schober Organ music.
NAME
- ADDRESS

ICITY \(\qquad\) STATE ZIP.
- \(-\square \square \square\) CIRCLE NO. 31 on reader service card 12

\section*{New Products}

Additional information on new products covered in this section is avallable from the manufacturers. Either circle the item's code number on the Reader Service Card inside the back cover or write to the manufacturer at the address given.

\section*{PEARCE-SIMPSON COUGAR 23B TRANSCEIVER}

This mobile CB transceiver by PearceSimpson features 23-channel capability, built-in SWR bridge, r-f noise blanker with manual override and a multi-purpose meter that indicates \(r\)-f output and acts as a receive/transmit indicator, S-meter, modulation monitor, and forward/reflected

power meter. Other features are a high-Q ceramic filter, PA capability, squelch, receiver offset tuning, and noise limiter. Specifications include 5 watts input powe and a rated sensitivity of \(0.5 \mu \mathrm{~V}\) for 10 dB \(\mathrm{S}+\mathrm{N} / \mathrm{N}\). A noise-cancelling dynamic microphone is included with the rig. It measures \(67 / \mathrm{g}^{\prime \prime} \times 2^{3 / 16^{\prime \prime}} \times 9^{1 / 4^{\prime \prime}}(17.3 \mathrm{~cm} \times 5.5 \mathrm{~cm}\) \(\times 23.2 \mathrm{~cm}\)) and operates from a \(13.8-\mathrm{V}\) positive or negative ground source.
CIRCLE NO. 70 ON READER SERVICE CARD

\section*{blonder-tongue fm antennas}

Two new antennas for the FM broadcast band have been introduced by BlonderTongue. Both the eight-dipole Stereo-8 and the five-dipole Stereo-5 are logperiodic designs whose dipole elements operate in the half-wave mode. This design is said to provide good gain and directivity and an impedance that is essentially uniform across the band. The Stereo-5 has a claimed average gain of 4 dB across the band, \(16-\mathrm{dB}\) front-to-back ratio, and \(70^{\circ}\) horizontal beamwidth. The respective figures for the Stereo-8 are \(6.5 \mathrm{~dB}, 26 \mathrm{~dB}\), and \(60^{\circ}\). For rotor-equipped installations, the turning radii are \(52 \mathrm{in} .(1.32 \mathrm{~m})\) for the Stereo-5 and 65 in . (1.65 m) for the Stereo-8. The respective retail prices are \(\$ 27.28\) and \(\$ 40.29\).
CIRCLE NO. 71 ON READER SERVICE CARD

\section*{DYNASCAN RF SIGNAL GENERATOR}

Dynascan announces introduction of the B \& K Model 2050 RF Signal Generator. The unit is totally solid-state, and provides

three outputs-r-f, \(400-\mathrm{Hz}\) modulated \(r-\mathrm{f}\), and externally modulated \(r\)-f. Accuracy is said to be \(1.5 \%\) of dial setting. A combination high-low switch, plus continuously variable r-f output control provides up to \(20-\mathrm{dB}\) change in output level. Features include zener-regulated power supply, FET oscillators, \(41 / 2\)-in. dial with anti-backlash drive, and shielded leads terminated with a banana plug and insulated clip. Measures \(71 / 2^{\prime \prime} \times 61 / \mathrm{s}^{\prime \prime} \times 93 / 彳^{\prime \prime}(19.1 \times 15.6 \times 24.8 \mathrm{~cm})\). Price is \(\$ 107.00\)
Circle no. 72 on reader service card

\section*{heathkit exhaust gas analyzer}

With the new Heathkit \(\mathrm{Cl}-1080\), persons can check exhaust emissions of their own cars, and adjust engine tuning for minimum pollution levels and maximum operating efficiency. The Exhaust Gas Analyzer indicates air-fuel ratio, percentage of carbon monoxide present, and relative combstion efficiency of four-cycle automotive engines. Color-coded battery clips attach to any 6-or 12-volt auto battery. A flexible stainless steel tubing directs exhaust gas from the tailpipe to the sensor. The kit is mail-order priced at \(\$ 59.95\). circle no. 5 ON reader service card

\section*{CASTLE MASTER TUNER SUBBER}

The Master Subber Mark V is the latest addition to Castle's line of instruments for TV service technicians. It is a signalsubstitution type of analyzer that can be used to test all signal stages of color and monochrome TV receivers. Substitution signals allow tests of: vhf tuner, uhf tuner, video i-f amplifiers, video detectors, video amplifier, \(4.5-\mathrm{MHz}\) sound i-f amplifier, sound limiter, sound detector, audio amplifier. A loudspeaker, video-carrier level meter, and telescoping antenna are included with the subber. The unit can be operated from the 117 -volt ac line or from its internal 9 -volt alkaline battery supply. CIRCLE NO. 73 ON READER SERVICE CARD

\section*{buRwen noise filter}

The Burwen Model DNF 1200 is a dynamic noise filter that is compatible with any program source. Thus, it does not require encoded program sources. Employing a fil-
ter whose bandwidth is varied according to the spectral content of the program material, the filter attenuates the highfrequency content when the program level is low - when the noise is most noticeable. At other times, the spectral configuration of the program material is not disturbed since the level of the signal is sufficient to mask the noise. The threshold at which dynamic filtering is engaged is determined by a sensitivity control. Switches are provided for program source selection, switching the filter in and out of the signal path, and for power. A slide control is used for setting the filter's threshold. Two LED's monitor the activity of the filter: dynamic filtering (suppression) and unaltered spectral balance (Wide Band). The noise filter is claimed to produce only 0.2 percent harmonic distortion.
circle no. 74 on reader service card

\section*{SOUNDCRAFTSMEN TAPE RECORD/PLAYBACK EQUALIZER}

The Model RP 2212 stereo 10-octave equalizer allows the owner of a hi-fi system to introduce flexible audio response without loss of tape-monitoring facilities when

only one set of jacks is available for patching purposes. In addition to extra outputs for tape recording and playback, the equalizer features LED indicators for
input/output balance adjustments, frontpanel pushbutton selectors, separate equalized zero-gain controls with a range of +6 to -12 dB and \(\pm 12-\mathrm{dB}\) response adjustments for each octave. The RP2212 is packaged in a walnut-grained vinyl case. Price is \(\$ 349.50\).
circle no. 75 on reader service card

\section*{ASCOM MULTITESTER FOR VHF}

Ascom Electronic Products has introduced a new multitester for use with vhf communications systems. The Model AMSR100 tester is useful for monitoring transmitter and antenna operation over a frequency range of 144 to 174 MHz (contains vhf marine band, land mobile channels, and 2 -meter amateur band). The instrument functions as a wattmeter, fieldstrength meter, and VSWR indicator. It has \(0-25\) - and 0-50-watt power ranges. Transmitter output power is read directly on either scale with a claimed \(\pm 8\)-percent accuracy. VSWR is measured, with meter calibration from 1:1 to \(3: 1\). Using this function, antenna adjustments and matching network operations can be checked. To monitor overall system operation and antenna directivity characteristics, the fieldstrength meter is used. Price is \(\$ 69.95\). circle no. 76 on reader seryice card

\section*{KENWOOD DOLBYIZED CASSETTE DECKS}

Kenwood has introduced two new highperformance cassette decks with Dolby noise reduction. The decks, KX-910 and KX-710, boast a number of special features, including a high-torque motor, belt-driven large (90 mm) flywheel, and precisionmachined capstan. Flutter and wow is

\section*{Straight tolk about a stylus}

You can still hear some audiophiles refer to the record stylus as . . . "the needle." The fact is that the stylus of today bears no more resemblance to a needle than it does to a ten-penny nail. In fact, a Shure stylus is probably the most skillfully assembled, critically important and carefully tested component in any high fidelity system. It must maintain flawless contact with the undulating walls of the record groove - at the whisperweight tracking forces required to preserve the fidelity of your records. We put everything we know into Shure Stereo Dynetic Stylus Assemblies - and we tell all about it in an informative booklet. For your copy, write:

Shure Brothers Inc.
222 Hartrey Ave., Evanston, III. 60204
In Canada: A. C. Simmonds \& Sons Limited

SAVE! MONEY - TIME - FREIGHT QUALITY STEREO EQIIIPMENT AT LOWEST PRICES.
YOUR REQUEST FOR QUOTA tion returned same day
FACTORY SEALED CARTONSCUARANTEEC AND INSURED
犬
SAVE ON NAME BRANDS LIKE:
\begin{tabular}{ll}
A.D.C. & KLH \\
A.R. & SHURE \\
DYNACO & KOSS \\
SONY & FISHER
\end{tabular}
AND MORE THAN 50 OTHERS
BUY THE MODERN WAY BY MAIL-FROM

\author{
Department 2175
} 12 East Delaware Chicago, Illinois 60611 312-664-0020

CIRCLE NO. 17 ON READER SERVICE CARD

\section*{SCHOOLING of EXCELLENCE in ELECTRONICS ENGINEERING}

If you have adequate schooling and experience at the technician level you may be able to qualify to enter our college-level Home Study Program in Electronics Engineering. The CIEE Program is OUTSTANDING, and up-to-date in every respect. CIEE is a forward-looking school, and Engineer. ing is taught on the basis of application and understanding rather than on the basis of memorization. All lesson material and texts are thorough and easy-io-understand. Through this tronics Engineering you Study Program in Electronics Engineering you can raise your status classes required for those who qualify, if you are an electronics technician with above-average ambition, and not willing to settle for anything less than the best home study Engineering Schooling available anywhere, then you should write TO. DAY for our free revealing descriptive literature. There is no obligation, and no salesman will call on you.

\section*{COOK'S INSTITUTE \\ of Electronics Engineering \\ Raymond Road \\ P. O. Box 10634 \\ Jackson. Miss. 39209 \\ Established 1945 \\ Formerly Cook's School of Electronics}

specified as \(0.1 \%\). Use of a special ferrite head extends high-frequency response to 16 kHz . Automatic tape selector and Auto Memory, an Automatic Level Control, and LED peak-level indicators add to operating flexibility and performance.
CIRCLE NO. 77 on reader service caro

\section*{GLENBURN RECORD CHANGER}

A new record changer, the Model 351, has been introduced by the Glenburn Corp. A wide umbrella spindle has been incorporated into the unit to correct double record drop, record hang-ups and unbalancedrecord slanting tendencies. Other features

include bi-directional viscous-damped cueing, slide-in cartridge adapter, dual anti-skating scales, gravity stylus pressure adjustment, and a four-pole synchronous motor. The unit is equipped with a Shure M91E elliptical stylus. Price is \(\$ 160\).
CIRCLE NO. 78 ON READER SERVICE CARD

\section*{ADD-ON FOAM SPEAKER GRILLES}

Do-it-yourself speaker grille kits with sculptured-foam speaker material are offered by Republic Systems. This flexible urethane foam can be sprayed with latex paint if the standard black color is not suitable to the user's decor, and cut with scissors for a custom fit. Foam is available in \(8^{\prime \prime}\) \(\times 15^{\prime \prime}(20.3 \times 38.1 \mathrm{~cm})\) and \(14^{\prime \prime} \times 24^{\prime \prime}(35.6 \times\) 61 cm) sizes. Each kit contains sculptured foam grille, self-sticking attachment material, and instructions. Address: Republic Systems Corp., 9160 Green St., Chicago, IL. 60620.

\section*{MIDLAND 23-CHANNEL HAND-HELD CB RIG}

Midland Electronics' Model 13-796 is a 23-channel, hand-held transceiver with 5 watts input power. The dual-conversion superhet receiver includes agc and a
three-way meter for indicating signal strength, output power and battery condition. Includes a jack for use with an optional external microphone/speaker. The transmitter can be run at full legal power input or in a "battery saver" 2.5 -watt input mode. It operates on \(12-\mathrm{V}\) dc penlight cells (dry-cells or nickle-cadmium), ac adapter, or auto cable. \(\$ 190.95\)
CIrcle no. 79 on reader service card

\section*{FLUKE MULTI-FUNCTION FREQUENCY COUNTER}

The John Fluke Co.'s new Model 1900A frequency counter has an upper limit of 80 MHz , and contains autoranging and autoreset functions. Autoreset controls all functions and gate times, and autoranging is available in both the frequency and period measurement modes. The 1900A

uses advanced LSI/MOS circuitry, has four over-riding gate times for manual selection of resolution down to 0.1 Hz . The frequency counter can also be used to totalize, with event counting up to \(10^{6}\) events. Results are displayed on six LED digits with leading zero suppression, automatic annunciation and overflow. A switchable 1-MHz low-pass filter and attenuator are included. Sensitivity is 25 mV , and dynamic range is 5 Hz to 80 MHz . An optional rechargeable internal battery pack is available. \(\$ 349\).
CIRCLE NO. bo on reader service card

\section*{SOLDERING IRON TIP CLEANER}

The RE-TIP (No. 9482) from GC Electronics is designed to instantly clean any contam-

inants or excess solder from iron and penciltips. It accommodates tips up to \(1 / 4\)-inch diameter. The tip cleaner has a selfadhesive bottom for workbench installation. A refill cartridge, catalog No. 9484, is also available.
CIRCLE NO. 81 ON READER SERVICE CARD

\section*{If you've been wonderin's what next great step in CB will be...}

\section*{you're off the fiock.}

Messenger 130 ... so radically new in design and performance that citizens band radio will never be the same again. Inside this prestigious "radiotelephone" package is a unique ail solid-state chassis that provides unparalleled operating advantages. From handset reception clarity. . . to automatic speaker silencing for private listening . . . this is truly an innovation in CB mobile radio performance. An innovation that's available only from your E. F. Johnson dealer.

\section*{Messenger 130}

The ONLY Nationally Distributed Full-line Catalog with a Major Showing of the Newest NAME-BRAND electronics products for 1975.

FREE SEND TODAY

SAVE on exclusive Lafayette Products plus MAJOR BRANDS
- Stereo and 4-Channel Systems - Tape Equipment. Car Stereo. CB and Ham Gear - Police/Public Service Receivers E Antennas - Cameras • TV • PA and Test Equipment - Musical Instruments and Amplifiers - Books Electronic Calcula. tors : Security systems • PLUS PARTS,
TUBES, BATTERIES, HAROWARE, MORE!
Lafayette
Listen to us, you can't go wrong.

Lafayette Radio Electronics
111 Jericho Tpke., Syosset, L.I., N.Y. 11791
Send me your FREE 1975 Catalog

Street
City \(\qquad\)
Zip
Send a 1975 Catalog to my friend
Name Apt.
Street
City State \(\qquad\)

New Literature

\section*{EDSYN SOLDERING TRAINING MANUAL}

A new training manual for soldering techniques has been prepared by the Edsyn Company, a manufacturer of soldering tools. Using the Fanovision \({ }^{\text {tm }}\) method (flipping the pages creates a nickelodeon effect), correct soldering practices are illustrated, supplemented by text. Also included in the 144-page publication are Color codes for resistors, Ohm's law, Series and Parallel Resistance tables, and inch/millimeter conversion tables. Available at participating dealers for \(\$ 7.95\), or free with a \(\$ 7.95\) or more purchase.

\section*{NATIONAL LED DRIVER SELECTION GUIDE}

National Semiconductor offers a shortform device summary to designers in selecting LED drivers. The LED Driver Selection Guide lists 23 National driver types. Organized as a four-unit matrix, the guide has rows for common anode and common cathode configurations, and columns for segment and digit drivers. Thus the user can tell at a glance exactly which LED driver is needed. Available from Marketing Services, National Semiconductor Corp., 2900 Semiconductor Drive, Santa Clara, CA 95051.

\section*{PACE COMMUNICATIONS CATALOG}

A new four-color, full-line catalog from Pace Communications, displays its equipment for CB, Marine, Scanning Monitor, and Business/Industry Communications. Each unit is illustrated, described, and specifications and available accessories are listed. Available from Pace Communications, 24049 S. Frampton Avenue, Harbor City, CA 90710.

\section*{FORDHAM SERVICEmAN/TECHNICIAN CATALOG}

A new 48-page, illustrated discount mailorder catalog is available from the Fordham Radio Supply Company. This catalog has been designed as a quick reference ordering guide for Radio/TV Servicemen, Electronic Technicians, and Hobbyists. Included are tools, repair kits, tubes, test equipment, phono cartridges, speakers and mikes, antennas, and components. Available from Fordham Radio Supply, 558 Morris Avenue, Bronx, N.Y. 10451.

\section*{EICO TEST EQUIPMENT CATALOG}

A 6-page condensed catalog featuring a broad line of electronic test and measuring
devices is now available from Eico. The publication includes a large selection of oscilloscopes, VTVM's, FET VOM's, signal tracers, signal injectors, bridges, grid dip meters, automotive engine analyzers, and battery eliminators/inverters. Accessories such as test probes, and carrying cases are also listed. In all, more than 100 electronic kits and factory-assembled units are described. Address: Eico Electronic Instrument Co., Inc., 283 Malta St., Brooklyn, NY 11207.

\section*{EDMUND SCIENTIFIC CATALOG}

The latest in items that conserve energy, save money, plus things that are unusual or just plain fun are crammed into Edmund Scientific's Catalog No. 751. Over 300 new products and a total of 4500 items are included in the 164 -page publication. Products include devices for reclaiming chimney heat, brain-wave monitoring, metal detection and Kirlian photography, as well as Edmund's well-known line of telescopes. Address: Edmund Scientific Co., 555 Edscorp. Bldg., Barrington, NJ 08007.

\section*{SPRAGUE INTEGRATED CIRCUIT GUIDE}

Sprague Electronic's Semiconductor Division has published a guide to its line of "ion-implanted" integrated circuits, desinged for application in the audio, radio, and TV fields. IC's are offered to implement many functions - from chroma demodulators and oscillators, TV sound systems, to stereo decoders for FM receivers and audio amplifiers and preamplifiers. Includes "quick selector" and crossreference tables. Address: Sprague Electric Co., 115 Northeast Cutoff, Worcester, MA 01606.

\section*{switcheraft short-form catalog}

Switchcraft, Inc. announces the publication of its 1974/75 Short-Form Catalog. Contains more than 4000 product listings, with a special alphabetical/numerical index. The 42 -page booklet provides product data and prices of major Switchcraft product lines, including telephone jacks, plugs, switches, connectors, molded cable assemblies, and audio accessories. Available from Switch craft, Inc., 5555 No. Elston Ave., Chicago, II. 60630.

\section*{HEATH/SCHLUMBERGER INSTRUMENTS CATALOG}

Test instruments for the advanced electronics experimenter, engineer, and scientist are listed and fully described in the latest Heath/Schlumberger catalog. Featured are such instruments as frequency/events counters, oscilloscopes, multimeters (both digital and analog), signal generators, substitution boxes, etc. For the engineering and science labs, there are chart recorders and accessories, an analog/digital designer breadboarding system, plug-in circuit cards, and pH meters. Address: Heath/Schlumberger Instruments, Benton Harbor, MI 49022.

\title{
Mipgigi in Hobby Scene
}

\section*{BEAT OSCILLATOR FOR CODE}
Q. I have an excellent AM-FMShortwave receiver that I would like to use to help me learn Morse code. How could I arrange a low-cost beat oscillator to use with my set?

A. The circuit shown here can be added to your receiver either at the antenna, the i-f strip, or the detector. Adjust the 10,000-ohm potentiometer for maximum output amplitude and
the 20,000 -ohm potentiometer for the desired level. The coil shown is for a \(455-\mathrm{kHz}\) i-f.

\section*{CDI INTERFERENCE}
Q. I have installed a CDI system in my 1967 VW Bug and have the typical problem of ignition interference with my AM radio (Sapphire V). I've shielded all CDI leads, the ignition coil, and installed "Mag Wire." The noise is the distinct sound of the unit's multivibrator, which varies with engine speed, and seems to come through the speaker even when the radio is off. Any suggestions?-R. Schweder, La Habra, Cal.
A. CDI systems do not use variablefrequency multivibrators, but run at a fixed frequency set by an RC combination. You must be hearing something else. More likely the voltage regulator, the generator, or the ignition coil is the trouble source. Add \(0.5-\mu \mathrm{F}\) feedthrough (coaxial) capacitors to the armature and battery connectors on
the regulator, and attach the leads to them. Connect a 5 -ohm, 1-watt resistor and a \(0.002-\mu \mathrm{F}\) capacitor in series from the regulator's field terminal to ground. Generator leads to the regulator should be well shielded. If interlerence is still a problem, install a \(0.5-\mu \mathrm{F}\) bypass capacitor from the battery terminal of the ignition coil to ground, and/or a 0.1- \(\mu \mathrm{F}\) coaxial feedthrough capacitor to the coil's battery terminal, attaching the battery lead to the capacitor's top post. That should take care of any interference problems. It is not unusual for a solid-state radio to produce audible interference at the speaker when power is off, because a transistor junction can rectify an r-f signal even when not supplied with operating voltage.

\section*{ULTRASONIC INSECT REPELLER}
Q. I live in an area where the mosquitoes are ferocious. Could you show me a simple circuit for an ultrasonic insect repeller. I have seen them advertised and would like to construct one. P.S. Where can I get a 1N3716 tunnel diode?-M. Rehorst, Cudahy, Wis.
A. See "Electronic Pest Control," a construction project in Popular Electronics July 1972. The tunnel diode is listed in the Newark Electronics catalog. Nearest branch is at 3695 No. 126th Street, Brookfield, Wis., 53005. (414) 781-2450. However, a \(\$ 25\) minimum order must be sent.

Square waves from sine waves
Q. I have a decent solid-state sinewave generator that l use quite often. Is there a simple circuit that I can use with the generator to get clean square waves? The circuit should be small enough to mount within the present case.
A. There are several approaches to this problem. You can use a low-cost TTL flip-flop (with a +5 -volt supply)
driven from the sine-wave source. Although the square waves will be clean, they will be at half the dial frequency. (The flip-flop divides by two.) You can also use a TTL Schmitt trigger; or, you can use the simple circuit shown here. Any decent silicon switching transistors can be used. Set the potentiometer for the desired symmetry. Once adjusted, this potentiometer should not have to be reset. The circuit will cover the audio range from about 10 Hz to

100 kHz . It requires a drive of about 2 volts.
Another reader asked the same question, but he was also concerned with the loading of the square-wave converter on his audio generator. The second circuit shows a high-inputimpedance Schmitt trigger using a MOS front end. Because of the high input impedance, the circuit should not load the generator. The trip point is between 3 and 3.5 volts.

\begin{abstract}
A Government FCC License can help you qualify for an exciting, rewarding career in ELECTRONICS, the Science of the Seventies. Read how you can prepare for the license exam at home in your spare time - with a passing grade assured or your money back.
\end{abstract}

IF you're out to bag a better job in Electronics, you'd better have a Government FCC License. It will help you track down the choicest, best-paying jobs in the growing field of Electronics.

Demand for people with technical skills is growing twice as fast as any other group, while jobs for the untrained are rapidly disappearing. Right now there are thousands of new openings every year for electronics specialists. And you don't need a college education to qualify!

But you do need knowledge, knowledge of electronics fundamentals. And there is unly one nationally accepted method of measuring this knowledge . . . the licensing program of the FCC (Federal Communications Commission).

\section*{Why a license is important}

An FCC License is a legal requirement if you want to become a Broadcast Engineer, or get into servicing any other kind of transmitting equipment -- twoway mobile radios, microwave relay links, radar, etc. And even when it's not legally required, a license proves to the world that you understand the principles involved in any electronic device. Thus, an FCC "ticket" can open the doors to thousands of exciting, high-paying jobs in communications, radio and TV broadcasting, the aerospace program, industrial automation, and many other areas.

So why doesn't everyone who wants a good job in Electronics get an FCC License?

It's not that simple. You must pass a Government licensing exam. A good way to prepare for your FCC exam is to take a licensing course from Cleveland Institute of Electronics.

Our training is so effective that, in a recent survey of 787 CIE graduates, better than 9 out of 10 ClE grads passed the Government FCC License exam. That's why we can offer this famous Money-Back Warranty: when you complete any CIE licensing course, you'll be able to pass your FCC exam or be entitled to a full refund of all tuition paid. This warranty is valid during the completion time allowed for your course. You get your FCC License - or your money back!

And with CIE, you learn at home in your spare time. With AUTO-PROGRAMMED \({ }^{\text {® }}\) Lessons, you'll pick up the facts, figures and electronics theories you

\section*{CIE HAS CAREER COURSES TO FIT YOUR BACKGROUND}

ELECTRONICS TECHNOLOGY with LABORATORY . . . teaches you the fundamentals. With a 161-piece laboratory you apply the principles you learn by analyzing and trouble-shooting electronics equipment.
ELECTRONICS ENGINEERING ... A college-level course for men already working in Electronics. Covers steady-state and transient network theory, solid-state physics and circuitry, pulse techniques, computer logic and mathematics through calculus.
may have considered "complicated". . . even if you've had trouble studying in the past.

\section*{CIE Grads get licenses . . . better jobs}

The value of CIE training has been demonstrated time and again by the achievements of our thousands of successful students and graduates.

An outstanding example is Ed Dulaney of Scottsbluff, Nebraska. He passed his 1st Class FCC License exam soon after completing his CIE course. Today, he owns two companies . . one to manufacture and distribute two-way radio equipment, the other to maintain and repair such equipment along with home radio, TV and stereo sets. He says: "In the last three years we sold more than \(\$ 1,500,000\) worth of equipment through dealers in every state plus Canada, South America and Europe."

Richard Kihn, Anahuac, Texas, worked in the engine room of a tugboat when he started his CIE training. He reports, "Before finishing, I got my FCC License and landed a job as broadcast engineer at KFDM-TV in Beaumont, Texas. I was able to work, complete my CIE course and get two raises . . . all in the first year of my new career in broadcasting."

\section*{Send for FREE books}

If you'd like a chance to succeed like these men, send for our FREE book, "How To Get A Commercial FCC License." It tells you all about the FCC License . . . requirements for getting one . . . types of licenses available... how the examis are organized and what kind of questions are asked ... where and when the exams are held, and more.

With it, you will also receive a second FREE book, "Succeed in Electronics." For your convenience, we will try to have a representative call. Send for both books today.

APPROVED UNDER G. I. BILL All CIE career courses are approved for educational benefits under the G.I. Bill. If you are a Veteran or in service now, check box for G.I. Bill information.

1776 East 17th Street, Cleveland, Ohio 44114 Accredited Member National Home Study Council

\section*{TAPE HEAD ALIGNMENT}

wHEN it comes to aligning tape recorders, I favor the support-your-factory-serviceman approach. A practiced technician with a bench equipped for alignment can make short work of even a complicated machine; but an untrained amateur taking his first crack at the job is almost certain to find it tedious and outrageously time consuming. So there's no disgrace, as I see it, in saving the alignment (and other routine chores of maintenance) for a periodic factory return, where your machine can be fussed over by capable and sympathetic hands.

But how do you know when your recorder needs such care? And worse, once it's given, how do you know it was administered properly, or that it survived the trip back to your local freight depot, the ride home in the trunk of the car, or the fall from the coffee table that took place several days later?

Many experts suggest that, as a check on the day-to-day health of your recorder, you make and save a reference recording (a dubbing of a phonograph record, for example), and assure yourself periodically that the machine is still capable of recording the same disc with equal fidelity. This is actually a fairly sensitive test. But some people are reluctant to trust their ears that far, and others will have long since updated their phono cartridges or other components in the
system, changing the reference point. Finally, the reference-recording test is not at all diagnostic; you may hear that something is wrong, but you won't necessarily know what. Clearly it would be good to have some additional techniques for isolating specific problems.

The alignment of a tape recorder refers to both electrical and mechanical adjustments, and these affect its frequency response (particularly high-frequency response), signal-tonoise ratio, distortion, and drop-out rate (drop-outs are brief signal losses caused by imperfect tape-to-head contact): Many of the adjustments are interdependent. Therefore, if you ever feel ambitious enough to make one, you may find yourself forced to make all the rest.

This is precisely what you're trying to avoid. So the idea behind recorder check-ups at home is to find out as much as possible about what's right and wrong with the machine without disturbing any of its adjustments too much. This is not easy, I assure you, but there are ways.

Mechanical Alignment. This refers to the orientation of the tape heads relative to the tape passing over their faces. Not only should each head be positioned properly, but, since most serious recordists' tape recorders have at least three interdependent heads (erase, record, and playback),
they should all be positioned properly relative to one another. The azimuth adjustment-getting the record and playback head gaps precisely perpendicular to the edge of the passing tape-has been well publicized because it is critical for extended highfrequency response. However, there are other alignment factors (Fig. 1) that can affect audible performance much more. The height adjustment, for example, which determines how accurately the playback and erase heads line up with the tracks the record head lays down, is vital for a good signal-to-noise ratio, and can even affect the drop-out rate. The same is true of the tilt adjustment.

As a preliminary check on alignment, put a reet of tape on the machine and record a \(1,000-\mathrm{Hz}\) tone from your audio generator on both channels, watching the recorder's output on a scope. Use a fresh reel of good tape for this, since any deformation of the tape edges will grossly influence results. It's also a good idea, in this and subsequent tests, to run through the reel at least once beforehand at normal playing speed, so that the machine has had a chance to wind the tape the way it normally does on the take-up reel. Do not use a fast-wound tape for this test and watch out for any rubbing of the tape on the reel flanges.

Set the scope for a slow sweep so that you can observe the envelope of the signal rather than individual cycles. As you switch the scope from one channel to the other, small differences in level will be readily apparent, and you'll also see drop-outs as momentary gashes in the envelope. The ideal is for both channels to be equal in level and drop-out severity-an achievable goal for a half-track machine, but not always for a quarter-track recorder, which may have a consistently poorer left channel.

The level difference between the two channels should be well within one decibel. Otherwise, some electri-

Fig. 1. An azimuth error, as indicated at (A) is a common cause of losses at the extreme high frequencies. A height error is shown at \((B)\), with the head gaps missing the tracks somewhat. At (C) is a tilt error. All illustrations are exaggerated for clarity.

Fig. 2. A tilt error produces a trapezoidal wear pattern on the head. Correct pattern is at left.
cal portions of the machine-meters, or recording or playback electronics -are miscalibrated, or there is a tilt problem with one of the heads. If, on a quarter-track machine, the right channel is lower in level (and all other possible causes have been eliminated), the trouble is very likely tilt, which causes the top edge of the tape to press closer to a head than the bottom. A tilt error should also produce more drop-outs on the weaker channel.

A height misalignment is less likely to show up as a level difference between channels. What can happen, however, is a high drop-out rate on the left channel of a quarter-track machine, usually caused by a reccrd or playback head that is too low (and therefore recording or playing right on the upper edge of the tape, which is the most irregular part).

The Magic Marker Test. To get an idea of the tilt situation, as well as a general picture of tape-to-head contact, try gently painting the head faces with dark-color ink from a felt-tip pen and running a few seconds worth of tape over them. Once the tape has worn away some of the ink, you'll be able to see a contact patch, which should be perfectly rectangular in shape and well centered on the head face (Fig. 2). If the patch is trapezoidal (i.e., wider at the top or bottom of the head), there is a tilt misalignment, although it may not be obvious which head is misaligned. Any head of the three can give the tape a little skew that will show up in the contact patterns of the other two. But probably

A
the responsible head will have a patch that is larger in area. (As a general rule, you can expect patches of equal size on the record and playback heads of a properly aligned machine.)

On a brand new recorder, or an especially old one, the contact patches may be roughly rectangular, but irregular in shape or even streaky. In the new machine's case, this is caused by a slight roughness of the head faces that will disappear after a few reels of tape have polished them down. With an older machine, it may indicate severe and uneven head wear.

A tilt misalignment may be responsible for an error in height, since the tilt can bow the tape away from its proper path, or even cause it to "ride up" on the angled head surface. Conversely, if the machine was originally aligned with a tilted head, correcting the condition may cause a height error to appear. You can readily appreciate from this how head alignment tends to be an "all or nothing" task.

After you've completed the magic marker test, clean the heads according to the manufacturer's recommendations and, since it's probably not a good idea to reuse it, snip off and discard the length of tape used to develop the contact patch.

Looking at the Recording. When you suspect a height problem, the first questions is: which head is responsible, the record or playback head? About the only way you can determine this (short of buying an expensive test tape and fiddling with playback-head alignment) is to invest in the Soundcraft Magna-See kit, which costs about \(\$ 7\) and is not always easy to find. The main ingredient of the kit is a can of volatile (but not flammable) solvent in which is suspended a gray ironoxide powder. Swirl a bit of recorded tape around in this fluid, let it dry, and Shazam! the recorded tracks appear in a dusty pattern on the tape surface. An alternative to the Magna-See, less messy and easier to obtain (through mail order) but more expensive, is

3M's Plastiform Magnetic Viewer Type \(\mathrm{BX}-1022\). With this device, the fluid is contained in a thin-wall plastic case that is placed directly on the tape surface. One drawback, according to a 3 M spokesman, is that the case's seal, critically thin to ensure adequate sensitivity, must be maintained by storage in a moist environment (such as a sponge in the viewer's box). Order from 3M Industrial Electrical Products Div., P.O. Box 33365, 3M Center, St. Paul, MN 55101. Price is \(\$ 24.95\) plus 75 cents for postage.

For a half-track machine with both channels of the tape recorded, a height misalignment of the record head exists if the guard band between tracks is not perfectly centered on the tape (Fig. 3). A quarter-track tape, which should be recorded on both channels in both directions, shows a record-head height error when all three guard bands are not of the same width. A too-wide center guard band means the head is too low, which may actually give acceptable performance as long as the tracks don't touch or overlap. A too-narrow center band indicates a high head, which risks drop-outs of the tracks near the edge of the tape. (If your recorder is a four-channel machine, you'll find this test easier to interpret if you record only the two front channels, in both directions.)

So much for the record head. If it passes this test and you still suspect a height problem, you'll have to start thinking of the playback head, or possibly some misalignment of the tape guides.

Some Simple Adjustments. The only way you can learn much more about the alignment condition of your machine is to start fiddling with the head adjusting screws. This can be a tempting idea, particularly if you believe that only one head is at fault, and that fixing it might cause everything else to snap into place. Well, it doesn't always work that way. It may be, for example, that at one time the other heads were aligned to the incorrectly

\section*{}

\section*{
 C}

Fig. 3. A height error of the record head on a half-track machine creates an off-center guard band (A). Diagrams (B) and (C) show results of a quarter-track record head positioned too ligh and too low, respectively.

Fig. 4. Azimuth errors between record and playback heads produce high-freguency losses (A). Misalignment of both heads (\(B\)) causes no losses for tapes made on that machine.
positioned head, in which case a change in any one of them is likely to degrade the performance of the rest. Also, there's the problem of making sure that when you change one alignment factor-height, for example -you don't also change tilt or azimuth. (As far as I know there is no way to be sure of this, except by going back and checking tilt and azimuth after you've made the adjustment.) Finally, depending on the way the manufacturer has set up the machine, a readjustment of equalization or bias may be necessary.

Looking at the brighter side, however, it is true that you usually have the option of returning to the original adjustment if your attempted improvements do more harm than good -provided you have marked the original screw positions carefully! When you take off the cover to expose the heads, you'll probably find some or all of the alignment screws (protruding through the little platform on which each head is mounted) sealed with lacquer or whatever. If not, you can apply your own at this point, since the broken edges of the disturbed seal are a much better guide for returning to the starting point than a pencil mark.
Next, it's a great comfort to have on hand the recorder's service manual (frequently an expensive item), or at least some specific instructions from the manufacturer on head alignment. Sometimes the screws are readily identifiable as to their precise function, but there may be some sequence in setting them that will greatly simplify the whole business.
And now to proceed. With the simple checks described above and a few others, you're in a position to do a respectable alignment job on every parameter except the azimuth of the playback head. Playback azimuth must be set with a reproducer alignment test tape if it is to conform to tapes made on other, properly adjusted machines. If this is not a re-
quirement, you can get by with a reasonable error in playback-head azimuth as long as the record head has exactly the same error (Fig. 4). But where possible, it's best to avoid touching the playback head at all, on the assumption that whatever its actual azimuth alignment, it is more accurate than you could achieve without a test tape.

In making height and tilt adjustments on the record head, you'll have to resort to the magic marker test on both the record and playback heads to make sure that what you're doing isn't adversely affecting either one. If one contact patch changes appreciably in size relative to the other, it means that one head is beginning to lose contact with the tape. Shifting the entire record head closer to or farther away from the tape will usually serve to equalize things again.

You'll also have to keep constant tabs on the playback head, making sure that what you do to the record head does not diminish its output (indicating that the tracks laid down by the record head are beginning to miss the playback-head gaps). To do this you must have tape running through the machine virtually at all times, and being recorded with a steady \(1000-\mathrm{Hz}\) tone. Monitoring the playback-head output on a scope or meter will alert you to any loss of level (an increase in level is a good sign, provided it takes place in both channels). There will be a short delay before any adjustment you make on the record head shows up in the playback-head output, and you'll simply have to get used to that. On the other hand, if the playbackhead gaps are significantly longer than the width of the recorded tracks, you may be able to make minor height adjustments on the record head without observing any changes in playback level.

Assuming you can get the height and tilt of the record head squared away without introducing further
problems, you can go on to matchịing the record head's azimuth to the playback head. For a test signal, I just use the audio generator to drive the record head, running it up in frequency until the playback-head output begins to drop. Then I tweak the record-head alignment to see if \(\mid\) can raise the output level at that point. (Note that the results may well be different for the two channels, necessitating an intermediate setting.) Usually I use the \(71 / 2-i p s\) tape speed, although the other speeds should work as well on most machines. (The one exception I can think of had its response electronically rolled off above 20 kHz . Since the heads were presumably capable of going beyond that at \(71 / 2 \mathrm{ips}\), I probably would have chosen a slower tape speed to make sure I was seeing the effects of head alignment and not electronic filtering.) However, be sure to keep the recording level for the test tone down to -20 dB or lower. Otherwise, high-frequency tape losses are likely to occur at most speeds.

I've saved the erase head for last because it's easy. Azimuth doesn't really matter, and tilt can be handled through the magic marker test. The height adjustment is best accomplished by running a previously recorded tape with the machine in the record mode (record-level controls at minimum and no input signal being fed to the machine) and going for minimum playback output.
The Last Word. So it is possible to perform a good deal of recorder alignment with a minimum of specialized equipment. This is not to say, however, that all these tests will give you nice, neat, unambiguous results, or that you'll find satisfaction in devoting to them the time they require. Those seeking the last word in tape performance regularly go to greater lengths, and are often rewarded by audibly improved performance. For others, these tests can serve as indicators of something wrong.

\section*{FCC CB \& Experimenter Proposals}

In response to a ruling by the Supreme Court, the agency has proposed a reduction in station license fees for CB operations from the present \(\$ 20\) to \(\$ 6\). The-new amount is based on recovery of the cost associated with application processing. In another move, the Commission has proposed the establishment of a license-free, 5 -channel band adjacent to the 6 -meter (\(50-54 \mathrm{MHz}\)) amateur band. Transmitters would operate on 49.91, \(49.93,49.97 \mathrm{and} /\) or 49.99 MHz . AM, SSB, and FM emissions would be allowed, when confined within a \(20-\mathrm{kHz}\) channel centered on each of the above frequencies. Total input power would be limited to 100 mW and the antenna (single element, one meter or less in length) would have to be permanently attached to the transmitter or transceiver enclosure.

\section*{Plug-In P-ROM Calculator}

Using a P-ROM (Programmable-Read Only Memory) system, Sharp Electronics introduced icalculator that can be designed to a user's specialized interest. The first "customer-designed" calculator, Model PC-1002, is a fifteen-function scientific unit with four extra-function keys and a receptacle for accommodating a P-ROM plug-in module. The program of the P-ROM, which is tailored to the user's application, is controlled by the

extra-function keys. While the "design-your-own" calculators can be programmed for a wide range of specialized scientific, engineering, and business uses, standard chips are now available for four basic applications: statistics, mathematics, metric conversion, and surveying. Additional programs are currently being readied, covering the structural and electrical engineering, and financial fields, among others.

\section*{Information Bank}

Individuals can now retrieve general information from the Information Bank of the New York Times. The computerized on-line, time-shared system provides the user
with an abstract of a wide range of material published every day in the newspaper and in a number of other magazines and periodicals. The abstract includes the date of publication and page number so that the user may obtain the complete article. One taps into the computer, a System 370/145, via a video display terminal. The abstract appears on the display screen, but a hardprint copy is also available. The entire process of locating a desired abstract is said to take about a minute. The user can begin his search with a broad category and narrow the field down until the specific subject is reached. The number of subject terms is about 11,000 , not including names of people, places and organizations.

\section*{CMOS Prices Drop 20 to 51\%}

Two major manufacturers of CMOS logic, RCA and National Semiconductor, are reducing the prices on gates to a point where they are competitive with TTL on a piece-by-piece basis. RCA has reduced gate prices more than \(30 \%\) and MSI prices more than \(20 \%\) for standard CD4000 series devices in quantities of 100 to 999 units. National has reduced prices on two product lines, the MM7CXXN series and Series-4000 equivalent MM56XXAN, from 25 to \(51 \%\). Price reductions affect every Series 74C molded, commercial-grade and Series-4000-equivalent devices. Price cuts are attributed to increased efficiency in high-volume production.

\section*{NYC Doubling Voice Communication Boxes}

The City of New York is adding 3000 two-way voice communication boxes to its emergency reporting system. This brings to about 6000 the number of Norelco voice communications devices ordered since 1971. The city plans to replace all of its 15,000 older fire adarm boxes with such two-way voice boxes over the next few years. The audio boxes allow the user in the street to speak directly with fire or police officers simply by depressing a button on the call box. The system also provides a printed record (time, operator and box number) of all incoming calls. Each box can be tested automatically from the central station.

\section*{An Electronic Weed Killer}

Zapper III, a device which kills weeds by electronic rather than chemical means, has been developed by the Oceanography International Corporation. The editorial board of Industrial Research, which includes rocket pioneer Werner Von Braun and inventor William Lear, has selected the weed killer as one of the 100 most significant new technical products of the year. The Zapper III is a 13 -ton, self-propelled machine with a \(155-\mathrm{kW}\) diesel generator and two Klystron microwave sources which produce 60 kW of microwave energy. Microwaves cause the molecules of an organism to rotate very rapidly. This causes fatal internal structural damage to the organism. The effects on plants, seeds, and fungi are said to be immediate and lasting.

\section*{A COMPUTER CONCEPT BECOMES AN EXCITING REALITY.}

Not too long ago, the thought of an honest, full-blown computer that sells for less than \(\$ 500\) would have been considered a mere pipe dream.
Everyone knows that computers are monstrous, box-shaped machines that sell for \(10^{\prime} \mathrm{s}\) and \(100^{\prime} \mathrm{s}\) of thousands of dollars.
Pipe dream or not, MITS, the quality engineering oriented company that pioneered the calculator market, has made the Altair 8800 a reality. It is the realization of that day when computers are accessible to almost anyone who wants one.

The heart (and the secret) of the MITS Altair 8800 is the Intell 8080 processor chip. Thanks to rapid advances in integrated circuit technology, this one IC chip can now do what once took thousands of electronic components (including 100's of IC's) and miles of wire.
Make no mistake about it. The MITS Altair 8800 is a lot of brain power. Its parallel, 8 -bit processor uses a 16 -bit address. It has 78 basic machine instructions with variances up to 200 instructions. That's more than enough to program all the street lights in a major city.
And the MITS Altair 8800 Computer is fast. Very fast. It's basic instruction cycle time is 2 microseconds.

Combine this speed and power with the Altair's flexibility (it can directly address 256 input and 256 output devices) and you have a computer that's competitive with most mini's on the market today. And sells for a fraction of their cost.

The Altair 8800 has been designed to fullfill a wide variety of computer needs. It is ideal for the hobbyist who wants to get involved with computers. Yet, it has the power and versatility for the most advanced data processing requirements.

It's basic memory of 256 words of static RAM memory can be expanded to 65,000 words of directly addressable memory. Static OR dynamic memory. OR PROM or ROM memory. OR a floppy disc system. All supplied by MITS.
Using standard MITS interface cards, the Altair 8800 can be connected to MITS peripherals (computer terminals, line printers, audio-cassette interface) to form

\title{
Popular Electronics \\ \\ 解
} \\ \\ 解
}

sOLID-STATE image sensors, which were discussed in detail last month, may one day supplant vidicon tubes in TV cameras. They promise small size and easy camera construction, have a low power requirement and operate in a wide range of light conditions. Cost, however, has been prohibitive-until now!

Presented here is "Cyclops," the first all-solid-state TV camera project using a special MOS photoelement array as the image sensor-and, it can be built by electronics experimenters at an affordable price. (A complete kit of semiconductors, including the MOS device, is available for \(\$ 55\), for example.)

Any image that can be picked up by a conventional TV (or movie) camera
can be picked up by Cyclops. Unlike conventional cameras, however, Cyclop:s is sensitive to infrafed radiation
and is thus able to "see" in the dark when an infrared light is used to illuminate the scene.

\section*{PARTS LIST}
\(\mathrm{C} 1, \mathrm{C} 2-0.001-\mu \mathrm{F}\) disc capacitor
C3, C4, C5 \(-0.1-\mu \mathrm{F}\) dise capacitor
C6-330-pF dise capacitor
\(\mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9-0.01 \mu \mathrm{~F}\) disc capacitor
D1 to D4-1N914 diode
D5-1 N5242 12 -volt zener diode
IC1-1024-element image sensor
IC2, IC9-7402 TTL quadruple 2 -input NOR gale
IC3, IC5, IC6, IC7-7493 TTL 4-bit binary counter
IC4-7404 TTL hex inverter
IC8-7400 TTL quadruple 2 -input NAND gate
IC10-MC7805CP 5-volt regulator
I1, 12-\#47 pilot light
J1 to J4-Banana jacks
Q1, Q2, Q3-2N3640 transistor
Q4, Q5-2N3904 transistor
R1-100-ohm, \(1 / 2\)-watt miniature potentiometer
R2- 100 -ohm, \(1 / 2\)-watt resistor
R3-560-ohm, \(1 / 4\)-watt resistor
R4 to R18 and R52- \(1000-\mathrm{ohm}\), 1/4-watt resistor
R19- 15,000 -ohm, \(1 / 4\)-watt resistor
R20 to R31-20,000-ohm, \(1 / 4\)-watt \(5 \%\) resis.
R32 to R39- 10.000 -ohm, \(1 / 4\)-watt \(5 \%\) resis.
R40 to R44- 100 -ohm, \(1 / 4\)-watt resistor
R45, R46-68,000-ohm, \(1 / 4\)-watt resistor
R47, R48-5600-ohm, \(1 / 4\)-watt resistor
R49- \(1800-\mathrm{ohm}, 1 / 4\)-watt resistor
R50- 18,000 ohm, \(1 / 4\)-watt resistor
R51-2200-ohm, \(1 / 4\)-watt resistor
Misc.-IC socket (9), \(3 / 4^{\prime \prime}\) variable-length
spacers, lens (see text), suitable chas-
sis, mounting hardware, line cord, etc.
Note-The following are available from
H. Garland and R. Melen, 26655 Laurel Lane, Los Altos, C.A 94022 : kit of all IC's (including image sensor), diodes, and transistors at \(\$ 55\); pc board at \(\$ 5\); all postpaid. California residents, please add sufficient sales tax.

Fig. 2. Complese schematic of the camera. Letters between sections are merely for showing interconnections. Letters in circles are terminals for use with optional circuits.

Fig. 3. Actual-size foil pattern (top) and component placement. Note that most resistors are mounted on end to conserve space.

The MOS array has 1024 separate photosensitive elements fabricated on a single chip and mounted in a conventional 16-pin DIP case with a transparent cover. Although similar sensing devices have cost up to several hundred dollars in the past, new techniques and volume production have made it possible to reduce prices. With just 1024 elements (in a 32 by 32 array), Cyclops can't be expected to match the resolution of a vidicon camera; but it is quite useful for many applications. The circuit described here is for using Cyclops with a conventional oscilloscope, but it could be altered for a display on a TV tube. (Among other things, a sync generator would be needed.)

A little imagination will enable the experimenter to come up with a number of novel uses for Cyclops. For example, if a fiber-optic light pipe is used with the sensor, it could pick up conventional printed material for transmission or to excite a type of factile device for use by the blind. Consider also the possibility of using Cyclops in conjunction with the

Altair 8800 Minicomputer (Popular Electronics, January 1975). The combination could be used to build a security system that would operate on the basis of a person's appearance. This approach also opens up a brand new and exciting area for the advanced experimenter-a digital computer that has "vision." For example, the Cyclops/Altair combination, with 256 independent inputs/outputs could be the basis for a robot that could be programmed to do a number of things, while also being able to "see" its environment and make any necessary corrections in its actions.

Circuit Operation. The Cyclops logic diagram is shown in Fig. 1. A part of \(/ \mathrm{C} 2\) is used as a \(1-\mathrm{MHz}\) timing oscillator. One output of the oscillator drives the vertical scan counter, which drives the horizontal scan counter. The binary outputs of the scan couriters are used to address the rows and columns of the MOS array.
As each of the 1024 elements is addressed, two events occur within a period of less than two microseconds.

First, the outputs of the vertical and horizontal scan counters are processed by a ladder-type digital-toanalog (\(D / A\)) converter, then amplified by Q4 and Q5, respectively, to produce the scope vertical and horizontal sweep. This creates the raster on the CRT. The second event occurs when the video information on the image sensor is read out, amplified and used to vary the brightness of each of the 1024 dots that make up the raster and produce the intensity-modulated image on the CRT. Since both sweeps (H and V) and the video (brightness) information are "in step" at all times, each of the 1024 elements on the sensor has a corresponding point on the raster, and the charge on each element determines the brightness of its raster dot.

A novel coding scheme is used for the video information. Thirty completely new frames are displayed on the scope each second, with each frame made up of 16 separate and complete scans of the image sensor The first of these 16 scans is used to reset the 1024 photoelements, with

PARTS LIST

Fig. 4. Power supply for camera can be wired point-to-point and mounted anywhere in chassis.
the reset pulses generated by \(/ C 7, I C 8\), and IC9. On subsequent scans, the video information is read out.

When a particular photoelement is illuminated by a bright light (from the image being sensed), a video output pulse is developed each time that element is addressed. The video output pulses are amplified by Q1 and, after gating, by Q2 and Q3 to produce the scope intensity \((Z)\) axis signal. If there is no light on a particular element, no video pulse is generated when that element is addressed. For grey portions of the picture, the number of video pulses generated for each frame is determined by the intensity of the grey in the original image.

Several inputs and outputs are provided on the pc board as shown in Fig. 2. These are for possible use in advanced projects. For normal operation, no connection is necessary at these points. Point " \(T\) " provides a TTL-level signal to facilitate interfacing with external digital circuits. By connecting point " \(E\) " to ground, the \(1-\mathrm{MHz}\) oscillator is disabled and an external oscillator can be applied to point "C". An external reset pulse can be applied through point " \(R\) " to reset the scan counters at any point in the scan cycle. Since both position and intensity information are available in digital form, Cyclops can very easily be interfaced with a digital computer

Photo shows chassis with the printed circuit board pulled out.

The external oscillator input can be used to synchronize Cyclops with the computer or with a TV display.

Construction. The logic circuits of Cyclops are on a single pc board (Fig. 3). Use sockets for all of the IC's except lC10 which is soldered in place. Be sure to observe the correct polarities on all IC's, diodes, and transistors.

For the pilot lamps (I1 and \(/ 2\)), drill holes in the board just large enough to accommodate the metal portions of the lamps so that, when they are inserted from the nonfoil side, the glass portion just touches the board. The metal portions of the lamps are then soldered to the pads, and small lengths of wire are soldered to the center connectors on the lamps and the appropriate pads.

Miniature potentiometer R1 is mounted on the foil side of the board so that the two lamps can be adjusted when the pc board is mounted in place. The purpose of 11 and \(I 2\) is to bias the image sensor with a dim, uniform background light. Although this is not absolutely necessary, the bias light improves the low-light-level sensitivity and provides better picture contrast
Note that many resistors are mounted on-end to conserve space on the board
The power supply circuit is shown in Fig. 4. This supply is wired point-topoint (using a terminal strip) and can be mounted anywhere within the selected chassis
The pc board is mounted on \(3 / 4^{\prime \prime}\) adjustable standoffs behind the front of the chassis. Mount the board temporarily and mark a spot on the front panel that is directly in line with the center of the image sensor (IC1). Remove the board and drill (or cut) a hole just large enough to accommodate the selected lens. Before mounting the board permanently, make sure that the distance between it and the lens can be adjusted slightly to permit focussing

Connect the ground, +8 -volt and - 17 -volt lines from the power supply to the board. Connect the four leads from the board (ground, vertical, horizontal, and intensity) to their respective color-coded jacks on the rear panel. The power switch (S1) is also mounted on the rear panel, and the line cord goes through a grommeted hole in the same panel.
Either one of two image sensors

Jacks for scope connections and onloff switch are on chassis rear.
may be supplied for use in Cyclops The two are identical except for the way pins 14 and 15 are connected to the circuit. Note that, on the pc board, IC1 pin 15 goes to pad J, and pin 14 goes to pad K. If your image sensor is marked "Type A," connect pad J to pin 8 of IC4 and pad K to pin 10 of IC4. If the image sensor is marked "Type B," connect pad J to pin 9 of /C4 and pad K to pin 11 of /C4.

Lens Selection. Almost any movie camera lens will work with Cyclops. The two important factors to consider in choosing a lens are focal length and
\(f\)-number. The focal length determines the viewing angle of the camera, while the \(f\)-number determines haw much light can be collected.

The lens used with Cyclops should have a variable aperture so that the \(f\)-number can be adjusted to suit the lighting conditions. The minimum \(f\)-number, when the aperture is wide open, determines the lowest light level at which Cyclops will operate. An \(f-2.8\) lens should be adequate for most applications, though some additional lighting may be required for indoor operation. (We purchased an un-der-\$10 used \(f-2.8\) normal motion-
picture-camera lens with variable stops for this project.)

Both new and used movie camera lenses are available from photography stores and mail-order houses. A \(12.5-\mathrm{mm}, f-27\) lens is available from Edmund Scientific (300 Edscorp Bldg., Barrington, NJ 08007) for less than \(\$ 10\) (stock No. 41,146).

Setup and Operation. Connect Cyclops to an oscilloscope (set to external horizontal) as follows: \(J 1\) to horizontal input, \(J 2\) to vertical input, \(\sqrt{ } 3\) to ground, and \(\sqrt{ } 4\) to intensity input. If your scope does not have provision for an intensity input, modify it according to Fig. 5.

With power applied to both Cyclops and the scope, adjust the scope's horizontal and vertical gain until a 32-by-32 pattern of dots forms a square array on the screen. Cover the lens of Cyclops and then turn the scope's intensity control down until the dots just disappear. Now, expose the lens to a lamp. The dots on the CRT will illuminate.

To adjust the focus between the image sensor and lens, turn the bias lamps down (R1 at maximum resistance) and expose the lens to a simple, illuminated test pattern such as a black cross on a white background. If the lens can be focussed, adjust it for the distance between the lens and the test pattern. Set the lens to its widest opening (smallest \(f\)-number). Use a 50-watt lamp to illuminate the test pattern and position the lamp until an image appears on the screen. Adjust the distance between the image sensor and the lens by varying the spacers until the test pattern is in the sharpest focus. Then secure the pc board in place.

To adjust the bias lamps, darken the room so that no ambient light reaches the image sensor. Make sure that R1 is at maximum resistance (lamps out). Adjust the scope's brightness coritrol until the dot pattern can just be seen, and then increase the brightness of the bias lamps until the scope pattern just starts to get brighter. This is the correct setting of R1. Place the cover on the chassis so that no ambient light reaches the image sensor.

Cyclops is now ready for use. Although the resolution may seem to be on the low side for observing fine details, you will note that the apparent resolution seems to increase when viewing a "live" scene-especialiy one with motion.

PHASE-LOCKED Ioop circuitry has been popularized by its current use in high-quality \(F M\) stereo tuners and by publicity accompanying the Dorren Quadraplex system of discrete 4-channel FM (a quadraphonic FM broadcasting contender).
Though the advantages of PLL in FM reception have been used for many years in sophisticated military and space applications, integrated-circuit versions weren't introduced until 1970. Lowered costs have spurred applications in many consumer-electronics areas.
The phase-locked loop is anaiogous to a servo system-in the FM range. Its behavior as a servo permits it to find and lock on signals, tracking them 6 dB under the noise level. As an electronic filter, it can present a \(1 \%\) passband to any frequency from 0.1 Hz to the r -f region with excellent stability. Using programmable dividers in its oscillator loop, the PLL becomes a frequency synthesizer that can reproduce practically any frequency from only one crystal. This throws the door open to digital tuning of receivers and transmitters.

These are only a few of the areas where PLL is useful. There are, in addition: frequency shift keying for RTTY, motor control, FM generators, touchtone telephone, and stereo and fourchannel decoding. Now that the price of PLL IC's has dropped below \(\$ 5.00\). the hobbyist and experimenter can add the PLL to their store of basic building blocks.

PLL Basics. The PLL is a feedback system comprised of four basic elements (Fig. 1): a phase detector or comparator; an external low-pass filter; an error correction amplifier; and a voltage controlled oscillator (vco).

The vco is a free-running form of multivibrator whose center frequency is determined by an external timing capacitor and resistor. The vco output is presented to the phase comparator, where it is compared to the incoming signal. The result is an error correction voltage whose magnitude is a function of the phase and frequericy differences of the two signals.
This signal is then filtered in an external low-pass filter and amplified in the error correction amplifier. The output of the latter is fed back to the voltage-control input of the vco to complete the loop and cause the oscillator frequency to approach more closely the frequency of the input.

Once the vco starts to change fre-

\title{
HOW PHASE-ICCKED LCOPS WIORK
}

\section*{Theory and applications of an old circuit, revitalized and refined by IC technology.}
quency, it is in the "capture" state; and it continues to change frequency until its output is exactly the same frequency as the input. The circuit is then "locked" so that the loop frequency varies exactly with the input frequency.

Thus, the loop has three states: free-running, capture, and locked or tracking. The capture state is highly complex. Interestingly, the capture range (frequency band above and below the vco center frequency) is not as wide as the locking range.

A closer look at the capture state will provide an explanation. Figure 2 shows the waveform of the voltage at the output of the error-correction amplifier. As capture starts, a small sine wave appears. This is the "beat" between the vco and the input signal. Note that the negative half of the waveform is slightly larger than the positive half. This is the dc component of the beat, which drives the vco toward lock. Each successive cycle causes the vco to move closer to the input signal.

There are two results of this action which help the vco to lock. First, the closer the vco approaches the input signal, the lower the beat frequency. This allows the low-pass filter to pass more of the beat frequency to the vco with a correspondingly larger portion of the dc component. The vco is now skipping two steps toward lock and one step back. At the same time, the closer the vco nears lock, the longer it wants to stay there, and the more reluctant it is to move away. This extends the negative half of the cycle, reduces the positive half, and increases the dc component to speed up the process. The vco finally locks and the beat frequency is zero.

The low-pass filter is an important factor in controlling the capture range. If the vco is too far away from the signal, the beat frequency will be too high to pass through the filter and the signal is out of the capture band.

Once lock has been achieved, the filter no longer restricts the PLL. It can track a signal well past the capture band, being restricted only by the output range of the phase comparator. However, the filter does limit the speed at which the PLL can track. If the signal frequency changes too rapidly, the PLL can become "unlocked.'

The low-pass filter is an engineering trade-off. On one hand, it restricts the capture band and reduces tracking speed; but, without it, the PLL would have great difficulty locking. The filter supplies the PLL with a short-term "memory" of where it was with respect to the signal, providing a sort of fly-wheel effect. It also "memorizes" the rate-of-change of the signal frequency. Even if the signal should drop into a noise level for several cycles, the filter will continue to shift the vco at the same rate until it picks up the signal again. This produces a high noise immunity and locking stability.

The 560 Family. The most popular family of PLL IC's is the Signetics 560 series. The table lists the important specifications for various units in the series. The first three are highfrequency devices, with typical vco operation of 15 MHz and a maximum of 30 MHz . Above 15 MHz , its opera-

Fig. 1. Four basic elements of a phase-locked loop.

POPULAR ELECTRONICS

Fig. 2. Upper trace shows beat between vco and input. Lower trace is the lock range.
tion becomes critical, and great care is needed to get them to perform properly. Its input sensitivity is very good-the device can lock on to signals of 100 to 200 microvolts. The 561 is a duplicate of the 560 , but it has an added product detector for synchronous demodulation. The 565 has an exceptional lock range (typically \(\pm 60 \%\)); however, its input sensitivity is only fair (1 millivolt for lock). The 565 has one added advantage over the high-frequency units: its vco is tuned with an RC network, and frequency is directly proportional to the change in the resistance. This permits tuning over a 10-to-1 frequency range using a potentiometer.

The 567 is primarily a narrow-band filter. Its interesting feature is a built-in synchronous switch which turns on when the unit goes into lock. The switch is able to handle up to 100 mA and can be used to turn on an SCR, a relay, or a lamp for indication of the lock condition. Another feature of the 567 is its low power-supply voltage (4 volts minimum), making it ideal for battery operation. However, it is less input-sensitive than the others in the series.

Working with the 565. The 565 PLL is the only member of its family that is not internally stabilized with a zener diode. Therefore, a wellregulated supply or a zener diode should be used to keep the power stable.

Suppose you want to use a 565 as an SCA background music decoder. A suggested circuit is shown in Fig. 3.

The SCA signal is \(14-\mathrm{kHz} \mathrm{FM}\) on a \(67-\mathrm{kHz}\) subcarrier. Note that a singleended power supply is used and the resistor network made up of R3 through R6 is used to bias the inputs at 3.2 volts. Thus only one comparator input (pin 2) is used for the signal.

The two input capacitors (C2 and C3) and resistor R2 act as a high-pass filter to remove the lower-frequency stereo subcarrier from the SCA input. Capacitor C1 and resistor R1 determine the operating frequency of the internal vco by the expression 1.2/(4R1C1). Since we know that the vco should operate at the SCA frequency of 67 kHz , and we would like R1 to be about 5000 ohms, we can

The demodulated output (pin 7) is passed through a three-stage lowpass filter (C5 to C7 and R7 to R9) to provide the necessary de-emphasis and attenuate the high-frequency noise that often accompanies the SCA transmission. The demodulated output signal is approximately 50 mV and the frequency response extends to 7 kHz .

The locking range is determined from \(\pm 8 \mathrm{~F}_{1,} N_{\text {cl }}\) which comes out (\(\pm 8 \mathrm{X}\) \(67) / 10\) or \(\pm 53.6 \mathrm{kHz}\). Since the bandwidth of the SCA subcarrier is only 14 kHz , there is more than enough locking range available. This expression applies only when the input signal is high enough to saturate the com-

Fig. 3. Typical phase-locked circuit for decoding SCA background music on FM broadcast.
calculate the value of C1 needed. This works out to be 0.000895 or \(0.001 \mu \mathrm{~F}\).

Tuning resistor R1 is made up from a 1000 -ohm fixed resistor in series with a 10,000-ohm potentiometer. (Remember that we assumed a value of 5000 ohms for R1.) Using this larger potentiometer will enable tuning over a wide range around the center frequency (in case the tolerance of C1 is very broad), while the 1000 -ohm fixed resistor will act as a current limiter if the potentiometer resistance is reduced to zero.

\section*{PLL SPECIFICATIONS}
\begin{tabular}{cccccc}
Type & \begin{tabular}{c}
Min. Input \\
For Lock
\end{tabular} & \begin{tabular}{c}
VCO Freq. \\
\((\mathbf{M H z})\)
\end{tabular} & Lock Range & \multicolumn{2}{c}{ V cc \(^{\text {Min. }}\)}
\end{tabular} Max.
parator. If the input signal decreases, the correction voltage also decreases, thereby reducing the locking and capture ranges.

The curve in Fig. 4 shows the locking range versus the input signal level. Since the SCA decoder requires a 20\% locking range, the curve shows that a \(10-\mathrm{mV}\) input will be enough to drive the phase lock.
The 565 provides a method of limiting the locking range. A tap on an internal voltage divider is used as a reference output (pin 6). This voltage is the same as the output voltage (pin 7) when \(F_{\text {" }}\) is equal to the incoming signal. Connecting a resistor between pins 6 and 7 differentially loads the output without changing the dc level or shifting the vco. A resistance change from 25,000 ohms to zero between these points will shift the locking range from \(\pm 60 \%\) to \(\pm 20 \%\). Since the output is loaded, one can expect a corresponding decrease in the level of the output signal.

Fig. 4. Lock range versus input signal level for the 565 phase-locked loop.

\section*{HISTORY OF PHASE-LOCKED LOOPS}

In 1932, a group of British physicists was working on a new method of radio reception to compete with the superheterodyne system. This new approach would require only one tuned circuit and would have greater fidelity and selectivity than the superhet circuit.

The theory was deceptively simple. When an r-f oscillator and an incoming signal are mixed at the same phase and frequency, the output product will be a perfect audio reproduction of the transmitted modulation. An adjacent carrier, 20 kHz away, will be demodulated as a \(20-\mathrm{kHz}\) signal and could easily be filtered out of the desired audio.
The system was constructed using a simple urituned r-f amplifier to feed the mixer. The results were as-lonishing-perfect reception with no adjacent-channel interference. The only problem was that the local oscillator would slowly drift off frequency, producing a beat note which made reception intolerable.
One member of the group then theorized that if the oscillator frequency could be compared to the signal frequency in a phase-detector circuit, a correction voltage could be produced to return the oscillator. This could be done by having the correction voltage drive a Miller-effect (electronic variable capacitance) amplifier connected across the tuning circuit of the oscillator. The same feedback idea had worked in servo systems. So, why not an electronic servo?
The new oscillator circuit was built and connected to the receiver system. It not only stayed in frequency with the incoming signal, it locked itself in. When the tuning was changed to a new
signal, the oscillator would hold onto the old until the new one got too strong and then it would switch to the new signal. When the system was tuned between carriers, it hunted for the stronger one and locked on to it.

The receiving system, which originally had been named the homodyne circuit, was renamed the syncrodyne circuit.

The circuit, though superior to the superhet in many ways, could not compete where cost was concerned. The oscillator locking circuitry was too expensive. Though the syncrodyne receiver circuit was never used in AM receivers, it attracted the attention of FM receiver designers who were looking for a method of stabilizing the mixer/oscillator at 100 MHz . The FM receiver already had a form of phase discriminator to demodulate the i-f signal. By connecting the dc component of the discriminator output to a Miller-effect tube across the local oscillator, the latter could be forced to lock in 10.7 MHz above the incoming signal to produce an exact \(10.7-\mathrm{MHz} \mathrm{i-f}\). called automatic frequency control.
The budding TV-receiver industry, looking for a way of locking the horizontal oscillator, developed several phaselocked circuits-notably the "SyncroGuide" and "Syncro-Lock.'
By the mid 1940's, phase-lock was being used in military microwave and radar receivers. When NASA fired the first space capsule, its 10 -milliwatt. \(108-\mathrm{MHz}\) transmitter signals were received by a phase-locked receiver, whose ability to follow a signal below the noise level was considered phenomenal.

The differential output (pins 6 and 7) is useful in frequency-shift keying. This is a method of reproducing digital pulses by shifting the frequency of the input signal, generally 1 kHz for a zero state and 2 kHz for a one state. By connecting a voltage comparator across pins 6 and 7, the output pulses are cleaned and shaped. They can then be interfaced with the following digital circuitry.

The 565 has two outputs that can be useful in some applications. A triangle waveform is available at pin 9 with an output of 2.4 V and \(0.5 \%\) linearity. Because even light loading at the output will distort the triangle wave, a highimpedance buffer is recommended when using it.

Note that there is a short between pins 4 and 5 . Pin 5 is the output of the vco while pin 4 is the input to the comparator. In the SCA adapter, these two pins are not used. The output at pin 5 is a square wave with an impedance of 5000 ohms and a fevel of 5.4 V p-p.

As shown in Fig. 5, pins 4 and 5 provide a convenient way to insert a programmable frequency divider for frequency synthesis. If the input, \(F_{\text {ref, }}\) is a

Fig. 5. Adding a divider permits frequency synthesis.
\(10-\mathrm{kHz}\) crystal-controlled source, and the divider is programmable from 1 to 10 , the vco output, \(F_{\text {out }}\), is 10 to 100 kHz in steps of 10 kHz , all having the same stability as the crystal. If a divider is programmed from 100 to 110 , the vco becomes programmable from 1 MHz to 1.1 MHz in \(10-\mathrm{kHz}\) steps. Unfortunately, the 565 can only operate to 1 MHz , so this discussion serves only to illustrate how you can use a phaselocked loop and a programmable counter to synthesize almost any desired frequency.

This, in essence, is how frequencysynthesized CB and FM devices work. If you have a synthesized local oscillator, you can receive almost any channel on any band, provided they are evenly spaced.

\section*{SHORTWAVE NEWSCASTS IN ENGLISH}

\author{
BY RICHARD E. WOOD
}

ASHORTWAVE receiver is a passport to a world of information. On the shortwave bands, headline news stories can be heard as they happen. Try listening to some of the broadcasts listed here. Though frequencies are subject to change without notice, this list includes most of the major newscasts (in English) copyable in North America. These broadcasts are not necessarily beamed here and recep-
tion will depend on many factorsyour receiver and antenna, ionospheric conditions at any given moment, and your location.

In addition to the stations listed, the Voice of America, the AFRTS (Armed Forces Radio and Television Service), and the CBC Northern Service provide many newscasts, throughout the day, on a number of frequencies.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Time (GMT) 0000} & \multirow[t]{2}{*}{Station} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Frequency (MHz)}} & R. Bangladesh & 15.520, 11.650 \\
\hline & & & & R. Berlin Int. & 9.730 \\
\hline & BBC & 15.260*, 11.750, 9.740†, 9.580, & & R. Moscow & See 0200 listings \\
\hline & & 9.510*, 9.410 & & R. Beirut & 9.675 (may be changed) \\
\hline & & 7.325, \(6.175 \dagger, 5.975\) & & R. Cairo & 9.475 \\
\hline & R. Japan & 15.105 & & UN Radio & 21.630, 17.850, 15.365 \\
\hline & R. Norway & 11.860, 9.645 (Mon) & 0240 & R. Australia & See 0230 listings (weekdays) \\
\hline & R. Moscow & 9.665, 7.440, 7.355, 7.205, & & (Australian Newsreel) & \\
\hline & & \(7.185,7.150,7.105,5.940\) & 0250 & Voice of Chile & 15.150, 9.590, 9.560, 6.190 \\
\hline & R. Peking & \[
\begin{aligned}
& 15.520,15.060,11.945,11.685, \\
& 8.300,6.810
\end{aligned}
\] & 0300 & BBC & \[
\begin{aligned}
& 15.260^{*}, 9.580,9.510^{*}, 7.325 \\
& 6.175 *, 5.975
\end{aligned}
\] \\
\hline & R. Tirana & 9.755, 7.065 & & R. Japan & 15.105 \\
\hline & R. Sofia & 9.700 & & R. RSA & 9.525, 7.270, 5.980, 3.995 \\
\hline \multirow[t]{6}{*}{0030} & R. Sweden & \(6-\mathrm{MHz}\) band (subject to change) & & R. Finland & 9.720 (Subject to change) \\
\hline & V. of Chile & 15.150, 9.590, 9.560, 6.190 & & R. Moscow & 9.700†t, 7.440, 7.355, 7.205, \\
\hline & HCJB, Quito & 11.915, 9.560, 5.970 (weekdays) & & & 7.185, 7.150 \\
\hline & R. Kiev & \[
\begin{aligned}
& 9.655,9.530,9.520,7.150 \text {, } \\
& 5.940 \text { (Tu, Fri, Sat) }
\end{aligned}
\] & & R. Kiev & 9.610, 9.520, 7.205 (may be changed) (Tu, Fri, Sat) \\
\hline & R. Prague & 9.540 & & R. Peking & 15.095, 15.060, 12.055, 11.650, \\
\hline & R. Vilnius & 9.685, 7.105 (Sun, Mon) & & & 11.445, 9.780**, 7.120** \\
\hline \multirow[t]{15}{*}{0100} & Vatican R. & 9.605, 6.165, 5.995 & & RAE, Argentina & 9.690 \\
\hline & Deutsche Welle & 9.690, 9.545, 6.040, 6.010 & & R. Budapest & \(9.833,7.220,6.165\) \\
\hline & R. Japan & 15.105 & & R. Portugal & 11.840 \\
\hline & R. Canada & 9.755, 6.085 & & R. Prague & 11.990, 9.630, 9.540, 7.345, \\
\hline & RAI, Rome & 9.575,6.010 & & & 5.930 \\
\hline & R. Berlin Int. & 9.730 & & R. Bucharest & 11.940, 9.570, 6.190, 5.990 \\
\hline & R. Havana & 11.930, 11.725 & & Spanish Nat. R. & 11.925, 6.065 \\
\hline & R. Moscow & See 0000 listings. & & Deutsche Welle & 9.545, 6.185, 6.075, 6.040 \\
\hline & R. Peking & \[
\begin{aligned}
& 17.855,17.715,15.060,11.945 \\
& 11.445,9.780^{* *}, 9.390,7.120^{* *}
\end{aligned}
\] & 0320 & R. Erevan & 17.900, 17.720, 15.180 (via Soviet Far East) (Mon, Wed, \\
\hline & Spanish Nat. R. & 11.925, 6.065 & & & Fri, Sun) \\
\hline & R. Budapest & \(9.833,7.220,6.165\) & 0330 & R. Berlin Int. & 11.970, 11.840 \\
\hline & R. Television & & & R. Havana & 11.930, 11.760, 11.725 \\
\hline & Dominicana & 9.505 (weekdays, irregular) & & R. Moscow & See 0300 listings, plus 17.775, \\
\hline & Trans-World R. & & & & 15.180, 15.140, 11.860, 11.690, \\
\hline & R. Prague & \[
\begin{aligned}
& 11.990,9.630,9.540,7.345, \\
& 5.930
\end{aligned}
\] & & & \[
9.785,9.735,9.700+\dagger .9 .610
\]
\[
9.580 .9 .540
\] \\
\hline \multirow[t]{8}{*}{0130} & R. Japan & 17.825, 17.725, 15.235, 15.195 & & R. Austria & 9.770,6.155 \\
\hline & R. Australia & 17.795, 15.320, 11.970 & & R. Tirana & 7.300, 6.200 \\
\hline & \multirow[t]{2}{*}{R. Moscow} & See 0100 listings, with & 0345 & R. Portugal & 11.935, 6.025 (not Mon) \\
\hline & & \(9.700 \uparrow \dagger\) & 0400 & BBC & 11.750, 9.580, 9.510*, 5.975 \\
\hline & R. Austria & 9.770,6.155 & & R. Japan & 9.505 \\
\hline & R. Bucharest & 11.940, 9.570, 6.190,5.990 & & R. Canada & 9.655, 6.135 \\
\hline & \multirow[t]{2}{*}{R. Tirana} & 7.300, 7.070, 6.200 17.300 & & R. Sofia & 9.700 \\
\hline & & may vary to 7.290 , all times) & & R. Norway & \(9.645,6.180\) (Mon) \\
\hline 0145 & Swiss BC & 11.715, 9.535, 6.120,5.970 & & R. Portugal & 11.935, 6.025 (Mon) \\
\hline \multirow[t]{13}{*}{0200} & BBC & \[
\begin{aligned}
& 15.260 *, 11.750,9.580,9.510^{*}, \\
& 7.325,6.175 *, 5.975
\end{aligned}
\] & & R. Moscow & See 0330 listings but delete 9.700 , add \(9.655,5.940\) \\
\hline & R. Japan & 15.105 & & New Zealand BC & 15.110 \\
\hline & R. Portugal & 11.935, 6.025 & & R. Peking & \(15.385,15.060,11.650,9.640\) \\
\hline & R. Grenada & 11.975 (weekdays) & 0415 & R. Budapest & \[
9.833,7.220,6.000
\] \\
\hline & HCJB & 11.915, 9.560, 5.970 (weekdays) & & RAI, Rome & 7.265, 5.990 \\
\hline & R. Moscow & 9.785, 9.700†t, 9.665, 9.610. & 0430 & R. Tirana & 7.300, 5.945 \\
\hline & & 7.440, 7.355, 7.205, 7.185, & & R. Bucharest & 11.940, 9.570,6.190, 5.990 \\
\hline & \multirow{3}{*}{R. Peking} & 7.150 , \(17.060 .12 .055 \quad 11.945\) & & Swiss BC & 11.715,9.725 \\
\hline & & 17.715, 15.060, 12.055, 11.945. & & R. Moscow & See 0400 listings \\
\hline & & 11.445 & 0445 & Deutsche Welle & \(9.545,6.185,6.075\) \\
\hline & Spenish Nat. R. & \[
11.925,6.025
\] & 0500 & BBC & \[
11.750,9.580,9.510^{*}, 6.050
\] \\
\hline & R. Nederland & 6.165*** (weekdays) & & & \[
5.975
\] \\
\hline & R. Norway & \(9.645,6.180\) (Mon.) & & Israel BA & 12.000, 9.495, 9.009, 7.395 \\
\hline 0230 & R. Australia & \(17.795,15.320,11.970\) & & R. Japan & 9.505 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{8}{*}{Time (GMTT)} & \multicolumn{3}{|l|}{Station Frequency (MHz)} & R. Japan & 9.505 \\
\hline & R. Korea, Seoul & 9.640 & & R. Sweden & 17.710 \\
\hline & R. Canada & \(9.655,6.135\) & & R. Finland & 15.185 \\
\hline & HCJB & 11.915, 9.560, 5.970 (Tu, Th, Sat) & & R. Tashkent & 15.460, 15.115, 11.925, 11.730 \\
\hline & R. Nederland & 9.715***, 6.165*** (weekdays) & 1415 & Trans-World Radio & 15.255*** (Sun) \\
\hline & R. Moscow & 17.775, 15.180, 15.140, & 1450 & Vatican Radio & 11.825 \\
\hline & & \[
11.860,11.690,9.785
\] & 1500 & BBC & 21.710, 17.840*, 17.790, 15.260, \\
\hline & & \[
\begin{aligned}
& 9.735,9.610,9.580,9.540, \\
& 7.26071707150,985
\end{aligned}
\] & & R. Japan & 15.070 (Radio Newsreel) \\
\hline \multirow[t]{4}{*}{0515} & \multirow[t]{2}{*}{HCJB} & 11.915, 9.560, 5.970 (Wen & & HCJB & 17.880, 15.115, 11.740 (weekdays) \\
\hline & & Fri) & & R. Bucharest & 15.250, 11.940 \\
\hline & \multirow[t]{2}{*}{ORTF, Paris} & 11.735, 11.710, 9.710, 9.680, & 1530 & R. Belgrade & 15.240, 11.735 \\
\hline & & 7.135 , & & R. Hanoi & 7.038 \\
\hline \multirow[t]{4}{*}{0530} & R. Kuwait & 15.345 & 1600 & BBC & 17.840*, 17.790, 15.070, 12.095 \\
\hline & \multirow[t]{2}{*}{R. Moscow} & See 0500 listings, but delete & & R. Japan & 9.505 \\
\hline & & \(17.775,15.140,11.860,11.690\) & & R. RSA & 15.155, 11.900 \\
\hline & ETLF, Addis Abeba & 11.890, 9.730 (\({ }^{\text {a }}\) & & R. Norway & 17.825, 15.175 (Sun) \\
\hline \multirow[t]{3}{*}{0535} & \multirow[t]{2}{*}{Deutsche Welle} & 9.765, 9.605t, 9.545, 6.145, & 1700 & BBC & 15.070, 12.095, 9.410 \\
\hline & & \(6.085+\), 6.075 & & R. Japan & 9.505 \\
\hline & \(V\). of Nigiria & 15.185, 11.900, 7.255 & & R. Tahiti & 15.170, 11.825 (except Sun) \\
\hline \multirow[t]{8}{*}{0600} & \multirow[t]{2}{*}{BBC} & 15.400* , 15.070, 11.750, 9.640, & 1720 & Vatican Radio & 17.900, 15.210, 11.705 \\
\hline & & 9.600*, 9.580,6.005** \({ }^{\text {* }}\) & 1730 & R. Kuwait & 15.415 \\
\hline & R. Japan & 9.505 & 1800 & BBC & 15.070, 12.095, 9.410 \\
\hline & R. Norway & 11.860 (Mon) & & R. Canada & \(15.325,11.865,9.480,5.930\) \\
\hline & \multirow[t]{2}{*}{R. Moscow} & See 0530 listings, add & & R. Japan & 9.505 \\
\hline & & 11.690, 7.300 & & R. Finland & 15.185 \\
\hline & New Zealand BC & 11.780, 9.540 (BBC News) & & UN Radio & 21.670, 18.275, 15.410 (weekdays) \\
\hline & RAE, Argentina & 9.690 & & \(\checkmark\). of Nigeria & 15.210, 11.770 \\
\hline 0615 & R. RSA & 17.780, 15.220.11.900 & 1810 & Vatican Radio & 17.900, 15.210, 11.705 \\
\hline \multirow[t]{5}{*}{0630} & R. Havana & 9.525 , & 1830 & R. Belgrade & 9.620 \\
\hline & R. Nederland & 11.730*** (weekdays) & 1900 & R. Japan & 9.505 \\
\hline & R. Moscow & See 0600 listings & & R. Algiers & 17.745, 15.420 (both variable) \\
\hline & V. of Malaysia & 15.295, 11.900 & 1930 & R. Baghdad & 9.745 \\
\hline & UN Radio & 9.530, 6.055 (Tu-Sat) & 2000 & BBC & 15.400*, 15.260*, 15.195, \\
\hline \multirow[t]{3}{*}{0700} & \multirow[t]{2}{*}{BBC} & 15.400*, 15.070, 11.750, 9.640, & & R. Japan & \[
\begin{aligned}
& 15.070,11.750,9.410 \\
& 9.505
\end{aligned}
\] \\
\hline & & \({ }^{9.600 *}{ }^{\text {9.505 }}\), 9.580, \(6.005^{*}\) & & R. Nederland & \(11.730+t+\) (weekdays) \\
\hline & R. Moscow & See 0600 listings & & R. Belgrade & 9.620 \\
\hline 0707 & UN Radio & 9.520,6.055 (Tu-Sat) & & R. Ghana & 11.850 \\
\hline 0715 & R. Australia & 9.570, 7.280 & & \(V\). of Iran & 15.084, 6.022 \\
\hline 0745 & UN Radio & 9.520, 6.055 (Tu-Sat) & & Israel BA & 17.690, 15.490, 15.100, 12.025, \\
\hline \multirow[t]{4}{*}{0800} & BBC & 15.070, 11.955, 11.860* . 9.640 . & 2010 & R. Havana & 9.815, 9.495; 9.009, 7.395 \\
\hline & R. Japan & \({ }_{9.600}{ }^{\text {9.505, }} 7.150\) & 2030 & R. Grenada & 15.105 (weekdays) \\
\hline & R. Nederland & 9.715** (week & 2035 & Vatican Radio & 15.260, 11.740, 9.625 \\
\hline & New Zealand BC & 11.780, 9.540 & 2045 & ELWA, Monrovia & 11.940 (\\
\hline 0815 & R. Australia & 9.570, 7.280 & 2050 & R. Havana & 17.705, 11.970 \\
\hline 0830 & V. of Malaysia & 15.295, 11.900 & 2100 & R. Japan & 9.505 \\
\hline 0845 & UN Radio & 9.565, 5.955, (Tu-Sat) & & R. Canada & 9.480, 5.930 \\
\hline \multirow[t]{5}{*}{0900} & \multirow[t]{2}{*}{BBC} & 15.400*, 15.070, 11.955, 9.640, & & R. RSA & 15.155, 11.900 \\
\hline & & 7.150 , 7.070 & & Swiss BC & 15.430, 15.305, 11.870, 11.720 \\
\hline & R. Canada & 9.625, 5.970 & & All India Radio & 11.620, 9.912, 9.525 \\
\hline & R. Japan & 9.505 & 2130 & R. Nederland & 9.715, 5.965 (weekdays) \\
\hline & R. Korea, Seoul & 15.335, 9.640 & 2200 & BBC & 15.260*, 15.195, 11.780, 11.750, \\
\hline \multirow[t]{4}{*}{1000} & R. Japan & 9.505 & & & 9.580, 9.410, 5.975 \\
\hline & R. Pyongyang & 12.075, 9.895, 7.405 & & R. Japan & 15.105 \\
\hline & R. Hanoi & 15.012 & & R. Norway & 15.175 (Şun) \\
\hline & UN Radio & 9.650, 6.145 & & R. Moscow & 7.390 \\
\hline 1040 & V. of Chile & 15.150, 9.590, 9.560, 6.190 & & R. Belgrade & 9.620, 7.240, 6.100 \\
\hline \multirow[t]{7}{*}{1100} & BBC & 15.070, 12.095, 11.905 & & R. Cairo & 9.805 \\
\hline & R. Japan & 9,505 & & All India Radio & 11.620, 9.912, 9.525 \\
\hline & Vatican Radio & 21.485, 17.840 (weekdays) & & R. Canada & 11.990, 9.480, 5.930 \\
\hline & R. RSA & \(21.535,15.220,11.900\) & & RAI, Rome & 11.905, 9.710, 5.990 \\
\hline & R. Korea & 15.335, 9.640 & & \(V\). of Turkey & 11.880 \\
\hline & R. Tirana & 11.985, 9.500 & 2210 & \(V\), of Chile & 15.150, 9.590, 9.560 \\
\hline & V. of Indonesia & 11.715 (varies) & 2230 & R. RSA & \(15.155,11.900,9.695,9.525\) \\
\hline 1115 & R. Canada & 11.825, 9.655, 5.970 & & R. Vilnius & 11.980, 9.655, 9.530, 7.105 \\
\hline 1130 & Israel BA & \[
\begin{aligned}
& 17.690,15.130,15,100,12.025 \\
& 9.009
\end{aligned}
\] & 2300 & BBC & (may be changed) (Sat, Sun) \(15.260^{*}, 11.780,11.750\), \\
\hline 1145 & Vatican Radio & \(21.485,17.840\) (weekdays) & & & 9.740t, 9.580, 9.510*, \\
\hline \multirow[t]{3}{*}{1200} & R. Japan & 9.505 (\({ }^{\text {2 }}\) & & & \(7.325,6.175 \dagger, 5.975\) \\
\hline & R. Tashkent & 15.460, 15.115, 11.925, 11.730 & & R. Japan & 15.105 \\
\hline & R. Peking & 11.685, 9.480, 8.260, 5.250, 4.130 & & R. Moscow & 9.665, 7.440, 7.400, 7.355, \\
\hline 1205 & Trans-World Radio & 11.815*** (Sat, Sun) & & & 7.205, 7.185, 7.150, 7.105, \\
\hline 1220 & R. Ulan Bator & 17.780 (variable), 15.440, 8.990 & & & 5.940 \\
\hline 1230 & R. Australia & 9.580 & 2330 & R. Moscow & See 2300 listings \\
\hline 1245 & Vatican Radiọ & \(21.485,17.840\) (weekdays) & 2345 & R. Japan & 15.445, 15.270 \\
\hline \multirow[t]{6}{*}{1300} & BBC & 21.710, 17.790, 15.070 & & & \\
\hline & R. Japan & 9.505 & & & \\
\hline & R. Pyongyang & 9.515 & * Via A & cension & \\
\hline & R. RSA & 21.535, 15.220, 11.900 & **Via & Tirana & \\
\hline & R. Hanoi & 10.040 , & ***Via & Bonaire & \\
\hline & Trans-World Radio & 15.255***, 11.815*** (Sat) & \(t \mathrm{Via}\) & ckville & \\
\hline 1315 & Swiss BC & 21.520, 15.140 & t+Via & ofia & \\
\hline 1400 & BBC & \[
\begin{aligned}
& 21.710,17.840^{*}, 17.790,15.070 \\
& \text { (Sat) }
\end{aligned}
\] & \begin{tabular}{l}
\(\dagger \dagger+\) Via \\
*Via G
\end{tabular} & Madagascar eenville & \\
\hline
\end{tabular}

Gain-block IC, JFET, MOSFET, CMOS and digital keyers

\author{
By DON LANCASTER
}

LAST MONTH, Part I discussed what a keyer does and several different types of keyers and vca's used in electronic musical instruments. We continue here with descriptions of other types of keyers, including the digital variety.

A Special Gain Block. The CA3080 is a special, inexpensive gain-block IC made by RCA. It can serve either as a voltage-controlled amplifier (vca) or as a two-quadrant multiplier, making it almost ideal for use in electronic musical instruments.

A typical circuit in which the CA3080 is used is shown in Fig. 1. While the IC looks like an ordinary operational amplifier (the connections are about the same as for the 741 op amp, in fact), there are some important differences.

First, the output is a bilateral current coming from a very high impedance source. Second, the internal current gain is linearly variable from zero up
by controlling the current fed into pin 5 of the IC. Zero current provides zero gain, while \(+100 \mu \mathrm{~A}\) provides a maximum useful gain.

Fig. 1. The CA3080 gain-block IC used as a vca. Cost of unit in targe quantities is about 50 cents.

There are two inputs to the IC, inverting (-) and noninverting (+). The IC amplifies the difference voltage on these inputs and converts it to an output current. When an output load resistor is put into the circuit as shown, the output current is converted to an output voltage. Therefore, the overall voltage gain is set by the load resistor and the control current fed into pin 5.

There are three important things to remember when using the CA3080: (1) always keep input signal levels below 100 mV to prevent distortion and clip-
more and more negative, the equivalent resistance increases until the cutoff voltage is reached, at which point the JFET acts as an open circuit.

A JFET must be used in a shunt mode (Fig. 2A), or the signal into the virtual ground of an operational amplifier in the series mode (Fig. 2B) must be summed to keep the control or envelope voltage from appearing at the output.

The input impedance on the control line is very high because a reversebiased diode is being driven as an

ping; (2) always current-limit the input to pin 5 with not less than 100,000 ohms; (3) the voltage gain obtained depends on the output load resistor.

The JFET. The junction field effect transistor (JFET) can serve as a small-signal, electrically variable resistor. JFET's are low in cost. Texas Instruments' 2 N 3819 is a typical example of such devices. Also, there is a wide variety of custom JFET's for variable-resistance applications, with Siliconix offering several devices and some good application notes.

The ac input signal to a JFET must be kept very low in amplitude, preferably less than 10 mV peak-to-peak. Grounding the gate input of an n-channel JFET causes the device to conduct heavily. As the gate is made
input. One problem is that the cutoff voltage varies quite a bit from one JFET to another. Thus, it may be necessary to adjust the envelope amplitude and off level to suit the particular JFET in use.

The MOSFET. Enhancement-mode MOS (metal-oxide silicon) FET's with insulated gates can also be used as variable resistors. MOSFET's cost a bit more than conventional JFET's, but they have a number of distinct advantages.

Shown in Fig. 3 are typical circuits in which the 2N4351 MOSFET is used in the shunt \((A)\) and series (B) modes. If the substrate lead is permitted to float and the two-resistor feedback network is used exactly as shown, the circuits can be operated with up to 10 volts of peak-to-peak audio signal.

A voltage must be applied to the gate of a MOSFET to drive the device (unlike the depletion-mode JFET that requires that a voltage be removed from the gate to turn it off). This permits the use of positive envelope and control voltages.

The MOSFET remains cut off until the envelope input signal reaches +4 volts or so. Between +4 and +8 volts, control of gain and resistance is more or less linear. Any potential beyond +8 volts or so does not significantly change the resistance.

The input impedance to the MOSFET is essentially infinite on the envelope line. However, the feedback resistors reduce the impedance to about 6 megohms, a value low enough to permit the use of small capacitors in the envelope shaping circuitry. At \(\$ 2\)

or so per device, the MOSFET technique can be economically used on smaller polyphonic instruments.

The CMOS Technique. There are many games you can play with the CMOS digital-logic family of devices, especially the industry standard CD4000 series. One obvious thing to do is to bias a hex inverter to obtain six n-channel MOSFET's, yielding six keyers in a \(\$ 1\) or \(\$ 2\) package. The resultant unit keyer cost will then be 15c to 30c, which is the pricing you must aim for when considering a fully polyphonic keying system on a large but reasonably priced instrument.

The only catch to the above is that ordinary CMOS hex inverters contain input-protection diodes that make this essentially impossible. But the new RCA CD4049 or Motorola MC14049 IC's eliminate the problem. The circuit for using these new IC's is shown in Fig. 4. It is simply the circuit shown in Fig. 3 repeated 12 times for a full octave's worth of keying (12 notes), accomplished with three low-cost integrated circuits.

The signals must be limited to very low levels at the note inputs, preferably to between 50 and 100 mV rms from a 400 -ohm source. Thanks to the operational amplifier, the output impedance from the system is low. The output signal level is 2 volts peak-topeak. The resistors provide a linearizing effect. Depending on your system, however, you may be able to eliminate the resistors. It all depends on the dis-
tortion permissible at this point in your system. Since each keyer works on only one note, distortion changes the harmonic structure of only the one note and does not intermodulate.

The most important advantages of the CMOS keying approach include very simple circuit design, low parts cost and, electronically, very high impedance on the envelope input lines. (A fully custom version of the Fig. 4 circuit technique is used by one major electronic organ manufacturer.)

While you are looking at CMOS devices, check out the quadrature analog gate CD4016 IC. It cannot be used in a variable-gain mode, but it is great for on/off control of electronic music signals. Even in single-quantity prices, it costs only about \(25 \not \subset\) per channel.

Going Digital. So far, only analog keying and control techniques have been described. Digital techniques can also be used in electronic music. You will be seeing more EM digital circuitry in the future. Let us take a brief look at some of the possibilities:
In Fig. 5A, eight stages of CD4016 CMOS IC switching are used to set the gain of an operational amplifier to one part in 256 . The gain can be set to any of 256 discrete values that are close enough that they appear to continuously change in amplitude.
The tone signal is fed to the input of the operational amplifier, and envelope information is derived from a mask or a digital memory. The mem-
ory can be in the form of a permanent store, program card, or programmable information store. One benefit of this approach is the ability to generate any envelope you want, including waveshapes that would be physically impossible with conventional acoustical instruments. Precision resistors are required for this particular circuit.

In Fig. 5B, all switching is accomplished inside the Motorola MC1408P-8 IC. An analog input current and a digital word are applied to the inputs. The output current is a ratio of the input current from zero to full value in one of 256 discrete steps. This circuit is also useful for changing a digital to an analog envelope waveform, or for converting digital timbre information into an equivalent analog waveshape. One limitation of the device is that the input current must be single-directional with respect to ground; so, an MC1408P-8 cannot be used directly for keying operations.

In Fig. 5C is a 5 -bit by 5 -bit (\(5 \times 5\)) digital multiplier that provides a digital word as the product of an input envelope word and an input tone word. The five bits are derived from a pair of 4X4 multipliers and an exclusive-OR gate to take care of the sign bits. Though we would like to see more bits than this, the cost rises considerably if you shoot for greater accuracy.

There you have the keying and vca techniques commonly used in electronic musical instruments. Good luck in applying these to your own instrument designs.

solid state
yu METER

\section*{CONSTRUCTION}

New bar-graph device provides signal-strength readouts, accurate peak signals

BY TERRY L. MAYMUGH

VU METERS cannot accurately read out momentary peaks due to meter-movement inertia. For example, the ballistics of a professional VU meter is standardized so that about 0.30 second is required before a steady-state reading is reached. Obviously, this is too slow to register the fast peaks that occur in music. A peak-responding LED is sometimes used to indicate the presence of such transients.

Here is a "VU" meter that combines the features of a standard VU and the peak indicator. It is a meter with no moving elements. The all-solid-state circuit is designed around a new incandescent bar indicator that instantaneously shows relative signal strength, including sharp peaks, over
a wide dynamic range.
The readout element resembles a conventional DIP IC (in shape) and displays up to ten discrete signal levels on parallel filaments. In this case, it has a dynamic range of 30 dB , with each sequential filament illuminating fully at 3 dB over the preceding one. The tenth filament (the final 3 dB) is the peak signal indicator.

Circuit Operation. As shown in Fig. 1, potentiometer R1 sets the level of the audio input to a precision fullwave rectifier that uses both halves of IC1. The rectified output is coupled to 10 paraliel voltage comparators inı/C2, IC3, and IC4.

Each of the 10 filaments in the display operates at 5 volts and 10 mA . The
first nine are driven directly by the comparators. The tenth is controlled by a one-shot multivibrator (IC5) to indicate the peaks.

Two other comparators in IC2 are used as voltage regulators to supply a reference voltage. A third regulator made up of D3 and Q1 supplies the higher current required for the display filaments.

The resistor network made up of \(R 24\) through R42 is arranged as an \(R-2 R\) ladder that allows a precision voltage divider to be constructed using orlly two different values of precision resistors. The consecutive reference voltages for the noninverting inputs of the comparators are selected to increase in \(3-\mathrm{dB}\) steps from the low end to the high end of the range. As the rectified audio voltage to each comparator's inverting (-) input reaches that of the associated noninverting (+) input, the comparator switches to turn on its associated display filament. Thus, the number of filaments turned on (illuminated) at any instant is determined by the level of the audio input.

Construction. The circuit can be assembled on a pc board or a perforated board. All of the components except for the power supply and the display can be on the board. Sockets should be used for the IC's.

When laying out the board, be sure that wires carrying the comparator outputs and inputs are not too close to each other to avoid oscillation. Since the output pins of the comparators are at one end of the package, there should be no problem in getting a satisfactory layout. The \(+V_{c c}\) pin of each IC should be bypassed to ground by a \(0.1-\mu \mathrm{F}\) disc capacitor mounted as close to the pin as possible.

Output indicator DIS1 and its socket are cemented in a suitable rectangular cutout on the front panel. Since the incandescent filaments emit a white light, a filter of almost any co! or can be used in front of the display. In the prototype, a green filter was used.

Any power supply delivering 12 volts at 200 mA can be used.

Diode D3 must be selected by trial and error. First, tack-solder a standard 1N914 into the circuit. Apply an input audic signal of about 1 or 2 volts rms to J1 and adjust R1 until all 10 segments are lit. All 10 segments should be bright, but there is a possibility that the first nine may not have equal brightness due to different currentsinking capabilities of the com-

Fig. 1. The audio signal is rectified and applied to sequential comparators, which turn on filaments in display.

\section*{PARTS LIST}
(Two of each needed for stereo) C1- \(-7-\mu \mathrm{F}\) tantalum capacitor \(\mathrm{C} 2-6.8-\mu \mathrm{F}\) tantalum capacitor \(\mathrm{C}, \mathrm{C} 4-22-\mu \mathrm{F}\) tantalum capacitor \(\mathrm{C} 5-0.05-\mu \mathrm{F}\) ceramic capacitor C6- \(0.1-\mu \mathrm{F}\) ceramic capacitor C \(7-1-\mu \mathrm{F}\) tantalum capacitor D1,D2-IN914 diode
D3-See text
DISI-Bar indicator light (see note)
ICI- 558 dual op amp
IC2,IC3,IC4-LM339 quadruple comparator (National)
IC5-555 timer
J1-Phono connector
Q1-2N2222 transistor (or similar)
R1- 10,000 -ohm potentiometer
R2,R4,R5,R9,R12,R26,R28,R3C,R32.

R35,R37,R39,R41,R42-10000-ohm \(1 \%\) resistor
R3,R7,R8,R11,R25,R27,R29,R31,R34,
R36,R38.R40-2000-ohm, \(1 \%\) resistor
R6-20,000-ohm, \(5 \%\) resistor
R10- 1000 -ohm, \(5 \%\) resistor
R13- 470 -ohm, \(5 \%\) resistor
R14 to R23- 100 -ohm, \(5 \%\) resistor
R33- \(\mathbf{2 0} 20 \mathrm{ohm}, 1 \%\) resistor
R43-510-ohm, \(5 \%\) resistor
R44 4700 -ohm, \(5 \%\) resistor
R45- 150,000 -ohm, \(5 \%\) resistor
Misc.-IC sockets (6), transparent filter, cement, mounting hardware, power supply.
Note-Bar indicator (3015 S) is a vailable from Readouts, Inc., Box 149. Del Mar, CA 92014, for \(\$ 4.25\), plus pestage.
parators. If there is a noticeable difference in segment brightness, use two diodes in series for D3. Recheck the brightness. At least one diode must be used for D3; but as many as three (connected in series) may be used to get the desired brightness.

Use. Since the meter has a relatively high input impedance, it can be connected directly across the speaker terminals of any audio amplifier. In fact, two meters can be used for stereo balance tests.

Adjust potentiometer R1 so that the last segment flickers on the required audic peaks.

\author{
BY LESLIE SOLOMON \\ Technical Editor
}

MOST repair problems on electronic equipment can be traced ta failures of parts due to simple things like overheating, vibration, or even sheer carelessness-as when a screwdriver gets stuck in the wrong place. These faults are relatively easy to locate and correct; but sometimes (particularly when semiconductors are involved) we hit a real "puzzlement. " These problems can't be solved even with the aid of the most sophisticated test gear.

In such cases, the problem is: though semiconductors have no known wear-out mechanism when operated within specified limits, how can they suddenly fail catastrophically?' How can a piece of equipment containing all the correct components, with a well-regulated power supply and proper voltages, suddenly drop dead? It can happen anywhere, even in mobile equipment located far from an ac power line.

Line Surges. The answers to some of these questions were provided in a recent paper written by engineers at General Electric. Their findings are worth bearing in mind.

In monitoring the power lines of about 400 locations in 20 cities, these engineers found some astoundingly high voltage surges. A few were as high as 2500 or even 5600 volts and in six locations, there were surges over 1200 volts more than once a day. These were not prolonged peaks, of course, but extremely short transients that suddenly appeared on the power line.

What causes these sudden surges? In some cases, they have been traced to the operation of an oil burner, a fluorescent lamp bank, a pump motor, a refrigerator, etc. In other cases, no amount of deliberate load switching could produce the transients. Some surges were traced to local lightning storms. (Film recordings, made on oscilloscopes, showed distinct oscillatory characteristics of approximately 300 kHz . This suggests shock oscillation of the home power system.)

The question of the amount of
energy involved in the surge is related to the impedance of the system, which usually falls in the range of 100 to 300 ohms for a branch circuit. This means that, in a typical home, the impedance at the common service entrance could be about 5 to 10 ohms. However, this low value exists only for a small fraction of a microsecond of pulse travel time. Connected loads have a lower impedance than a branch circuit and will be dependent on frequency where inductive components are present. These loads will absorb part of the energy, thus lowering the peaks. Electric motors and transformers have substantial insulation, which may account for their rare failures. Defective wiring practices may cause flashover, without the \(60-\mathrm{Hz}\) power follow.

Other Types of Surges. High-voltage surges also spring from otherthan power-line sources. For example, take the simple case of an on-off switch in the primary circuit of a transformer. If the transformer is suddenly energized, or de-energized, at the peak of the input power waveform, a transient of approximately twice the normal peak voltage of the secondary can occur. If there is any contact bouncing when energizing the transformer, much higher transients may occur. These transient voltages are due to the interruption of the magnetizing current. Transients in excess of 10 times the normal voltage have been observed across rectifiers if there is no load on the system. Unless a low-impedance path is provided, this can be generated across the load. If the rectifiers have insufficient PRV ratings, they can be destroyed.

If there is any inductance in a power-supply circuit (such as a choke), interrupting the power line can produce transients as the magnetic field collapses. It is also possible to get large transient voltages on the dc side of the rectifier as opening the dc load circuit can produce an amount of energy proportional to the stored energy of the ac line and transformer. This is greatest when the dc circuit is opened with a high current flowing.

The stored energy in the ac circuit is the source of the destructive energy as the dc stored energy is dissipated through the forward path of the rectifiers. If high-current rectifiers are used, a higher dc current will flow in the load circuit; and if this is suddenly interrupted, large transients can be generated.
Keep in mind that these sudden transients may be many times larger than the maximum peak voltages of the various semiconductor junctions. Also keep in mind that semiconductors are not like vacuum tubes that can tolerate some overvoltage without sustaining permanent damage. A fast peak, that may occur only once, may be enough to blast a semiconductor junction out of existence, yet not damage any other parts. That is why, in some inoperable circuits, all components except the semiconductors, are in good condition. This is also one reason diode protection is found in some signal circuits. The diodes allow up to 0.5 V to pass, yet look like shorts when the voltage exceeds this value.

Mobile Equipment. Consider a whip antenna mounted on a fast-moving vehicle in dry air. Think of the amount of static voltage being built up on the antenna. Couple this with the possibility of lightning-produced charges in the air. Or consider what happens if the car passes under a high-tension line just as a large transient goes down the line. To protect mobile equipment, a neon lamp can be connected between the antenna and ground to act as a "short" when the static voltage exceeds a certain value. An r-f choke can also be connected between the antenna and ground to act as a short to the static voltage, yet present a high impedance to received signals.
As for power-line transients in the home or shop, it is pretty difficult to turn a power supply on or off exactly at the zero crossing. One solution is to use one of the transient suppressors now being offered by a number of manufacturers. These can be found in the pages of most of the larger electronics catalogs. lenge. the spirit of friendly competition, and tinkering in electronco build. here is a new electronic game." to build.
It's called "Tug-Of-War." is pressed.
When the START Dutton
the \(m\) the light in a chain of nine
LED's lights up. At approximately on for a mor pushbutton which he operater has a
"pull the side. This is ac the first one to Pus atter the GO light comes on by being there is a catch. If a player before the \(G O\) light, the

ROBERTC. FROSTHOLM AND ROGER LUNDEGARD
Signetics而

When one player succeeds in advancing the lit LED all the way to his end. the WINNER is over. A new game can be started by pushing the START button.
you can also add a circuit and speaker to give an audible signal indicircuit operation. The project uses a total of 10 timing circults (bul up-down three dual and some logic gates.
counter, ack as shown in Fig. 1, oscillator that generive seconds. The timing is determined by period of time C1. During the

Fig. 1. Clock oscillator IC1A drives IC2A and IC2B to generate two successive gate intervals. Output of IC1B is \(4.3-s\) pulse, inverted to a \(0.7-s\) pulse by IC7A. Up/down counter (IC5) and BCD-to-decimal circuit (IC 4) drive LED's.

Fig. 2. Timing diagram shows relationship between pulses at X,Y, and Z. If a player operates switch before LED1 is lit (during t1), he is penalized.

\section*{PARTS LIST}
\(\mathrm{Cl}, \mathrm{C} 5-10-\mu \mathrm{F}\) electrolytic capacitor
\(\mathrm{C} 2, \mathrm{C} 6, \mathrm{C} 17, \mathrm{C} 19\) to \(\mathrm{C} 23-0.01-\mu \mathrm{F}\) capacitor
C3, C4, C8, C11-1- \(\mu \mathrm{F}\) electrolytic capacitor
\(\mathrm{C} 7, \mathrm{C} 10, \mathrm{C} 13, \mathrm{C} 14, \mathrm{C} 15, \mathrm{C} 16, \mathrm{C} 27, \mathrm{C} 28-\) \(0.1-\mu \mathrm{F}\) capacitor
\(\mathrm{C} 9, \mathrm{Cl} 2-0.001-\mu \mathrm{F}\) capacitor
C18-Not used.
C24,C25,C26-47- \(\mu \mathrm{F}\), 15-volt electrolytic capacitor
C29-2.2- \(\mu \mathrm{F}\) electrolytic capacitor
C30-500-1000 \(\mu \mathrm{F}\), 15 -volt electrolytic capacitor
D1 to D8-1N914 diode
D9 to D12-1N2071 diode
IC1, IC8, 1C9-556A dual timer (Signetics)
1C2-553B quadruple timer (Signetics)
1C3,1C7-7400 quadruple NAND
IC4-8251B BCD-to-decimal (Signetics)
IC5-74192 up/down counter
IC6-8241A quadruple exclusive OR (Signetics)
1C10-LM309DB 5 -volt regulator (Signetics)
LED1,LED11-Green MV5253 (Monsanto)
LED2 to LEDI0—Red MV5053 (Monsanto)
R1-20,000-ohm, \(1 / 4\)-watt \(10 \%\) resistor
R2-680,000-ohm, \(1 / 4\)-watt \(10 \%\) resistor
R3-430-ohm, \(1 / 4\)-watt, \(10 \%\) resistor
R4,R6-200,000-ohm, \(1 / 4\)-watt \(10 \%\) resistor
R5,R7,R10,R11,R22,R23,R27,R32,R342200 -ohm, \(1 / 4\)-watt \(10 \%\) resistor
R8- 390,000 -ohm, \(1 / 4\)-watt \(10 \%\) resistor
R9,R25,R30-22,000-ohm, \(1 / 4\)-watt \(10 \%\) resistor
R12 to R21- 620 -ohm, \(1 / 4\)-watt \(10 \%\) resistor
R24,R29-2700-ohm, \(1 / 4\)-watt \(10 \%\) resistor
R26,R31,R38,R40-2000-ohm, 1/4-watt \(10 \%\) resistor
R28,R33-510-ohm, 1/4-watt \(10 \%\) resistor
R35,R36-130,000-ohm, \(1 / 4\)-watt \(10 \%\) resistor
R37-75,000-ohm, \(1 / 4\)-watt \(10 \%\) resistor
R39-120,000-ohm, \(1 / 4\)-watt \(10 \%\) resistor
S1,S2,S3-Spst temporary-contact pushbutton switch
Spkr-8-ohm speaker
T1-6.3-volt filament transformer (Triad F-14X or similar)
Misc.-Suitable Cabinet, line cord, rubber grommets (11), press-type, mounting hardware, IC sockets (9), clip-on heat sink for IC10, solder, wire, etc.
Note-The following are available from Four Seasons Mfg. Corp., 1071 Peninsular, Los Altos, CA 94022: IC package containing ICl through 1 Cl 10 for \(\$ 24\); etched and drilled pc board (TW202) for \(\$ 6.95\); wood case with metal top plate screened and drilled (TW206) for \(\$ 9.95\). California residents add sales tax. All prices include shipping in U.S. only.
that this oscillator "sinks" current, LEDI is turned on. The pulse also triggers IC2A and IC1B. The former is a one-shot multivibrator whose "on" time is determined by R4 and C3. Since this timer is edge-triggered and the state of the trigger has no effect on the output pulse, IC2A can be coupled to IC2B to provide a second pulse of equal duration (determined by \(R 6\) and C4). The outputs at points \(X\) and \(Y\) are sequential pulses of equal duration.

When IC1B is triggered, it produces a one-shot output pulse of about 4.3 seconds, determined by R8 and C5. This pulse is inverted by IC7A to produce a pulse of about 0.7 second duration just prior to each clock pulse. The pulse at point \(Z\) is used to penalize the player who attempts to anticipate the clock and jumps the gun. The timing diagram in Fig. 2 shows the sequence of events.

The circuitry for the players is shown in Fig. 3. The two circuits are identical except that their outputs are reversed to enable one to drive an up/down counter (IC5 in Fig. 1) in one direction and vice versa. The players' positions are keyed around one-shots (IC2C and IC2D).

To see how the circuits work, assume player B does not touch his button when the Go light comes on or that player \(A\) is very fast and is able to press his button during time period t2 (Fig. 2). Then the pulse generated by IC2C is applied to an AND gate with the pulse from point \(Y\). Two exclusive or gates (IC6A and IC6B) act as a frequency doubler and provide two pulses at point A, which are applied to pin 4 of IC5. This causes IC5 to count down two steps. The BCD-to-decimal decoder (IC4) takes the output of IC5 and causes the lit LED to move two positions toward the \(A\) end.

If player \(A\) is not quite as fast and pushes his button during period t3, the output of IC2C and the pulse at

Fig. 5. Power supply delivers two different voltages for the project.

Fig. 3. Player circuits are identical. Outputs of one-shot circuits are compared with timing pulses on \(X, Y\) and \(Z\).

Fig. 4. Optional sound-output circuit is two gated tone-burst generators, each having a different frequency to create separate sounds for players.

Fig. 6. Foil patterns for the double-sided pc board are shown at right and below.

point \(X\) are applied to AND gate \(I C 3 B\). Then only one pulse appears at point A, and the lit LED advances only one position toward \(A\).

When player A tries to anticipate the Go light and presses his button too
soon, the pulses from /C2C and point \(Z\) are applied to AND gate \(/ C 7 B\) and the output at point B causes the counter to go in the other direction.
The circuit for player B operates in the same way as that for player A. If
both players press their buttons at the same time, the signals cancel each other. After playing the game for some time, the players' reflexes will appear to have improved to the point where the game becomes a standoff. In this event, reduce the values of \(R 4\) and \(R 6\) to shortent2 and t3. Resistors R26 and R31 should be reduced by the same percentage as \(R 4\) and \(R 6\) to reduce the possibility of confusion in the AND gates, since the pulses at \(X\) and \(Y\) will be much shorter.
When one player has moved the lit LED to his end, LED11 is lit and diodes D1 and D2 prevent any further action until the START button is operated
The game can be made more exciting by adding a circuit to provide an audible indication of which player has won. The circuit is shown in Fig. 4 Tone bursts are generated by IC8 and 1C9. Each half of/C8 acts as a one-shot which determines how long the associated half of IC9 is activated. The two halves of IC9 are oscillators with outputs of different frequencies. When a player wins a game, the signal at \(A\) or \(B\) causes the appropriate circuit to provide a sound through the loudspeaker
The simple power supply shown in Fig. 5 can be used for the Tug-of-War.

Photograph of interior of the Tug-Of-War shows mounting of printed circuit board uith poner supply transformer and optional speaker for sound at right.

Fig. 7. Components must be mounted carefully since the top of the pe board is primarily a ground plane. Some connections, however, are made to the top side of board (asterisk).

Construction. A double-sided pc board such as that shown in Fig. 6 can be used for the Tug-of-War. Don't use sockets for the IC's. Since the top of the pc board is primarily a ground plane, it is important to remember that components must be carefully mounted so that their leads do not touch the ground, though some components and IC pins are soldered on the top side of the board to provide a ground. These points are indicated in Fig. 7 with an asterisk.

Since the board does not have plated-through holes, coincident pads (A-Q) on both sides should be interconnected by small lengths of wire through the holes and soldered on both sides. Use a clip-on heat sink for integrated circuit /C10.
The LED's and switches are mounted on the top cover as shown in the photograph. All use \(1 / 4^{\prime \prime}\) holes with grommets for the LED's. Short lengths of insulated wire are used to connect the LED's and switches to the board.

Mount the LED's so that proper positioning and polarity are observed -with \(L E D 6\) at the center of the line, LED2 toward player A end, and LED10 at the other end. Green LED's are used for the WINNER and GO indicators, while the others are red.

Tests virtually any digital logic family at speeds to 10 MHz .

\author{
BY JAMES P. TIERNEY
}

MANY different designs for digital logic test probes have appeared in the past few years. Most tend to favor a specific logic family, with TTL getting the most attention. Few, if any, are capable of checking ECL and MOS devices and circuits. The logic probe described here is designed for testing virtually all the logic families currently in use, including RTL, DTL, TTL, ECL, and MOS devices and circuits.
The universal logic probe, while larger than "ordinary" testers, is also completely self-contained. It has its own built-in battery power supply to simplify test hookups. (Most popular test probes derive their power from the circuit under test.)

An important factor to be consid-
ered in logic probe design is frequency response. Most testers will not respond to high frequencies. Thus extremely short duration pulses are lost and, in some cases, cause signal degradation in the circuit being tested. The universal probe solves this problem by being able to respond to frequencies in excess of 10 MHz . Furthermore, it will check for a logic 1 or logic 0 within 5 mV of a set value.

About the Circuit. The tester is made up of two parts: a small case containing all of the electronics (including two controls that permit you to preset the logic levels) and a probe assembly with attached cable. The probe itself contains a 7 -segment LED display. The ground lead is at-
tached to the body of the probe for easy connection to the circuit being tested.

The heart of the circuit is dual differential comparator integrated circuit IC1 in Fig. 1. The IC1B half checks for a logic 1. Its pin-8 output is held iow until the input on pin 5 from the probe is 5 mV (or greater) above the voltage applied to pin 6. The latter is determined by the setting of \(R 5\) and ranges from -1 V to +5.25 Vdc . When the input is greater than the voltage on pin 6 , the output of the comparator sends Q1 into conduction to cause a 1 to be displayed.

The 0 part of the circuit operates in the opposite manner. The input on pin 13 must be more negative than the preset voltage on pin 12, determined

\section*{PARTS LIST}

B1, B2-9-volt battery
B3,B4-1.5-volt battery (AA cell)
\(\mathrm{C} 1-10-\mathrm{pF}, 10\)-volt capacitor
\(\mathrm{C} 2, \mathrm{C} 3-0.1-\mu \mathrm{F}, 10\)-volt capacitor
D1,D2-1N751A zener diode
D3 to D6-1N34 diode (or similar)
D7-1N753A zener diode
DIS1-Seven-segment LED dispiay (Monsanto MAN-3 or similar)
IC1-72720 dual differential comparator
Q1, Q2-2N3904 transistor (or similar)
The following resistors are \(1 / 8\) watt:
R1- 1000 ohms
R2- 10 ohms
R3-40 ohms
R4- 10.800 ohms
R6.R9- 8000 ohms
R7- 18,000 ohms
R10-5000 ohms
R11-6.8 ohms
R5,R8- \(10,000 \mathrm{ohm}\) miniature potentiometer
Misc.-Length of three-conductor shielded cable, plastic felt-tipped pen, cement, needle tip, knobs (2), press-on type, battery connectors, chassis, mounting hardware, etc.
Fig. 1. Dual comparators sense the voltage at probe tip.

Fig. 2 Foil pattern (right) and component installation.
by the setting of \(R 8\). The range here is from -2 V to +3 V dc. When this section of the comparator turns on, Q1 saturates, and the 0 portion of the display is illuminated.

Diodes D3 and D4, in conjunction with capacitors C2 and C3, ensure that, once the indicator is activated, it will remain on long enough to be seen, even with reasonably high pulse repetition frequencies. Resistors R2, R3, and R11 provide current limiting for the display. Diodes D5 and D6 form a gate that allows testing the indicator before operation. Diodes D1 and D2 protect the IC inputs. Resistor R10, with \(D 7\), converts the 18 V from batteries \(B 1\) and \(B 2\) to -6 V and +12 V for the \(I C\). Batteries \(B 3\) and \(B 4\) provide the

Fig. 3 Layout of chassis as used in prototype.
higher current required for the seven-segment display.

Construction. The tester can be assembled on a printed circuit board using the actual-size etching and drilling guide shown in Fig. 2. However, if care is exercised, the circuit could be assembled on perforated board using point-to-point wiring.

Mount the board and batteries in an enclosure approximately \(11 / 2^{\prime \prime}\) by \(3^{\prime \prime}\) by \(51 / 2^{\prime \prime}\) as shown in Fig. 3. Note that part of the box is used to store the probe and cable when not in use. The two potentiometers and switch are mounted on one end of the chassis
out and wrap it around the plastic case. Feed the tip lead through the front opening on the case. Seat the display in place and cement it securely. Fabricate a needle tip and solder it to the probe tip lead. Cement this in place.

When assembly is complete, connect a voltmeter between the rotor of potentiometer R5 and ground. Rotate this potentiometer between its two extremes and mark the 1 -volt calibration points on the front panel at the rotor of \(R 5\). Do the same for R8. Don't forget to indicate the polarity. Also make sure that the rotor of \(R 8\) is always more negative than the rotor of \(R 5\).

Fig. 4. The probe can be fabricated from a plastic felt-tipped pen case.

with appropriate identifications made with press-on type.
The probe can be made from a used plastic felt-tipped pen case as shown in Fig. 5. Using a three-conductor shielded flexible cable, identify the leads as 0,1, and tip. Make the tip lead long enough to go through the end of the plastic case. Cut an opening on the side of the case slightly smaller than the LED display. Feed the 0 and 1 leads through this hole. On the display, interconnect segment leads \(\mathrm{A}, \mathrm{B}, \mathrm{F}\), and G. Solder the 0 lead to this combination. Solder the 1 lead to the E segment. Connect the display common to the coax shield. Feed the shield lead through a small hole below the read-

Operation. To check a logic circuit, determine the high and low voltages for the 1's and 0's of the circuit being tested. Set the two potentiometers accordingly. Attach the probe ground to the circuit ground. Place S1 in the test position (T). The display should indicate both a 0 and a 1 (which looks like the letter P). Place S1 in the operate position and touch the probe tip to the circuit being tested. A logic 0 or a logic 1 should be properly displayed; or, if the circuit is transitioning between 0 and 1, both sections of the display will light. If the display remains blank, the test point is operating somewhere between 1 and 0 , which means something is wrong.

\section*{UPDATE YOUR DIGITAL CLOCK WITH ADD-ONS}

\title{
AN \\ HOURLY CHIMER
}

BY JEFFREY GLICK

The proliferation of digital electronic clocks in the last few years has been phenomenal. Particularly popular was the "Low-Cost Digital Clock" project published in these pages in March 1973. Never satisfied with the status quo, electronic experimenters have come up with all kinds of add-ons for their clocks--alarms, power supplies, etc. Now.
we have a circuit that provides hourly chimes (at least, an audible tone) for your clock.
The circuit for the chimer uses the \(1-\mathrm{Hz}\) counting frequency from a digital clock, the 1-2-4-8 outputs of the ones-of-hours counter and the 10 and 20 outputs of the tens-of-hours counter. The latter must be high when the tens-of-hours readout indicates a

10 or 20 , but low otherwise. The operating power can also be taken from the digital clock.

The exclusive-OR gates (A-F) normally have low signals on their inputs but when the clock changes the hour, the signal to one of the gates changes. This produces a high output from the NAND gate (\(1 / 2 / C 7\)). The latter triggers a one-shot multivibrator (\(M, N\)) to reset the counter (IC5,IC6) to zero. Simultaneously the \(1-\mathrm{Hz}\) clock signal is gated through gates \(O\) and \(J\) to start the count on IC5 and IC6.

The \(1-\mathrm{Hz}\) clock signal also turns on a tone generator \((K, L)\) which provides a beep once per second. Audio output is through a small (\(1^{\prime \prime}\)), lowimpedance speaker.

When the counter reaches the state that disables the functioning exclusive-OR gate, the NAND gate is inhibited stopping the \(1-\mathrm{Hz}\) toggle, which stops the counter and the beep. Thus, the beep occurs once per second until it has indicated the number of hours.

BY WILBUR MARKY

\section*{AN ALARM FOR HEAVY SLEEPERS}

\author{
BY JERRY McELWEE
}

N THE December 1973 issue of Popular Electronics (\(p .61\)), a 10-minute alarm add-on for digital

(A)

(8)
clocks was described. Unfortunately, a lot of people can drift back to sleep after the alarm first goes off and completely miss the 10 minutes. To prevent this, the circuit shown here can be added to keep the alarm going beyond 10 minutes.

Circuit (A) was used in the original alarm. The 7411 IC operated off of the tens-of-hours, ones-of-hours and tens-of-minutes signals from the clock. When the signals agreed with the set time, the output of the 7411 was used to drive some type of external alarm. However, as soon as the tens-of-minutes signal stopped, the output signal stopped.

Circuit (\(B\)) shows how to extend the length of time that the alarm is on, no matter what happens on the selected input signals. It uses three OR gates (in a 7432) and a switch wired as shown. When the switch is closed, and at the selected time, the OR gates are turned on and the 7411 delivers the alarm signal. However, the output signal is fed back to the second input of the OR gates which keeps them on until the switch is opened. If the switch is located far enough from the bed, the sleeper will have to get up to turn off the alarm.

MANY electronic digital clocks have such novel accessories as snooze alarms, hour beepers, and even electronic chimes. But what about the soothing tick-tock of a grandfather's clock? Worry no more! You can make your digital clock sound like a grandfather's clock very easily with the aid of the logic circuit shown here. It can be assembled on perforated board or a pc board, and the power can be obtained from your existing clock.

If you have a clock that indicates seconds, then the \(1-\mathrm{Hz}\) timing signal can be found at the toggle input of the first decade counter. If the smallest indication you have is minutes, you will have to locate the \(1-\mathrm{Hz}\) signal in the countdown that feeds the units of minutes counter. If you have a singlechip clock, and there is no access to a \(1-\mathrm{Hz}\) signal, you can build a divide-by-6C from a couple of 7490's to produce the synchronized \(1-\mathrm{Hz}\) signal from the ac side of the transformer.

The \(1-\mathrm{Hz}\) signal (square wave) is coupled to a 7400 TTL chip arranged as a digital frequency doubler. The \(2-\mathrm{Hz}\) signal is then passed to a conventional divide-by-2 flip-flop (which can be any TTL chip having a single flipflop available). The output of this flipflop is then passed to a two-transistor sound generator, with one transistor having a simple capacitor coupling to generate the "tick," and the other having a filter to remove the highfrequency components and generate the "tock." Any type of npn switching transistor can be used. The transformer can be a standard unit for push-pull output transistors with a 2000-ohm center-tapped primary and a secondary impedance to match the speaker.

Connect the circuit as shown, install the board in the present clock case and attach the speaker to the wall of the case.

\section*{The better the}

\section*{the}

better

COMPU.-RAINER comparez
what we
oliter in wits
cospons. and lessons. compare
 TESTER

TUBE \& TRANSISTER

DIGITAL
MLLTIMETEA

As an NTS student you'll acquire the know-how that comes with first-hand training on NTS professional equipment. Equipment you'll build and keep. Our courses include equipment like the \(5^{\prime \prime}\) solid-state oscilloscope, transistor and tube-tester, vector monitor scope, 74 sq. in. B\&W TV, and solid state stereo AM-FM receiver. The unique NTS Digital GR-2000 color TV with first ever features like silent varactor diode tuning; digital channel selection, (with optional digital clock,) and big 315 sq. in. ultra rectangular screen. This is just a sampling of the kind of

HTS DIGTAL GR-z000 SOLIL STATE COLOR TV WITH 315 SQ. IN. PICTURE AND VARACTOR DIGITAL TUNING
better equipment that gets you better equipped for the electronics industry.
This electronic gear is not only designed for trairing; it's field type - like you'll meet on the job, or when you're making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.
Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.

\section*{equipment \\ }

Compare our training; compare our tuition. We employ no middlemen because we need no salesmen. We believe you have the right to make your own decisions based on the facts, and you'll find these all spelled out in our catalog mailing. Lessons, kits, and experiments are described in full color. Most liberal refund policy and cancellation privileges - it's all in writing. And cur low tuition is another big advantage. No frills, no commissions to pay. This means lower tuition for you. You receive solid training value. NTS puts more into your training, so you get more out of
it. Make your own decision. Mail the card, or write if card is missing. There's no obligation, ever, and no salesman will call.
Approved for Veteran Training. Get facts on new 2 -year extension.

\section*{NATIONAL SCHOOLS}

TECHINICAL-TRADE TRAINING SINCE 1905 Resident \& Home Study Schools 4000 South Figueroa St., Los Angeles, Calif. 90037

\title{
вuレロ ПЕ ALTAIR 8BOO MINICOMPUTER PART TWO
}

Practical use of the computer, including programming
BY H. EDWARD ROBERTS AND WILLIAM YATES

LAST MONTH, we discussed the various subassemblies used in the basic Altair 8800 computer, went into details on how it is assembled, and listed a few applications. Here, we will describe a test program to be used in checking operation and then focus on practical uses and go through a software example to familiarize you with some operating procedures.

Test Program. The following simple program is used for initial testing of the computer's operation. It also illustrates how a program is loaded and run. The selected program will add two numbers stored at address locations 128 and 129 and store the result at address location 130. The procedure is as follows:

1
Set the power switch to ON and momentarily toggle the RESET switch. (Note: Excluding the power switch, all bottom-row switches on the front panel are spring-loaded, momentaryaction types. The switches automatically return to their center-off positions when released from either of their operate positions. When instructed to operate any of the bottom row switches, momentarily throw it to the position indicated and release it.)

2
Set address switches \(A O\) through A15 all to the 0 positions (down). Operate the EXAMINE switch, which should cause address LED's AO
through A15 to extinguish to indicate that location 0 is ready. (Some of the data LED's, \(D 0\) through D7, might be illuminated, indicating the current contents at location 0.)

3Next, store the load accumulator instruction at location 0 by using the binary number for 58 (00111010). Set this binary input up by using switches DO through D7, with a 1 represented by the switch in the up position and a 0 with the switch in the down position. Hence the switch sequence for 00111010 would be: D7 down, D6 down, D5 up, D4 up, D3 up, D2 down, D1 up, D0 down. Store this number at location 0 by operating the DEPOSIT switch. The DO through D7 LED's should now match these settings, with a lighted LED indicating a 1 and a darkened LED indicating a 0 . None of the A0-A15 LED's should be on indicating location 0 . The load accumulator instruction now tells the computer that the next two entries will be an address number (16 bits). Upon program execution, the data stored at that address number will be transferred to the accumulator.

Address numbers, such as address 128, are expressed in 16-bit binary format. The least-significant bits (last eight) are stored in the first memory location following the load accumulator instruction, while the most-significant bits are stored in the
second memory location. Set DO through D7 for 10000000 (128) and operate the DEPOSIT NEXT switch. This number is now stored, in binary form, at memory location 1. (AO LED should be lit indicating location 1.) Set DO through D7 all to 0 and operate the DEPOSIT NEXT switch. The all-zero binary number is now stored at memory location 2 (A1 LED is lit) and the computer has been instructed to put the contents of address 128 into the accumulator.

5To add a second number to the current number stored in the accumulator, the computer must be instructed to transfer the current number to one of the general-purpose registers. In this example, we will use register \(B\). The instruction used is "move A to \(B\)," where \(A\) is the accumulator. The code for this instruction is 01000111, set up with switches D0 through D7. Operate the DEPOSIT NEXT switch. The instruction "move A to \(B\) " is now stored at memory location 3. (A1 and AO lit.)

6
Now, instruct the computer to load the data from address 129 into the accumulator. This procedure is identical to that outlined in steps 3 and 4 above. Set switches D0 through D7 for 00111010 and operate the DEPOSIT NEXT switch. The load accumulator instruction is now stored at memory location 4. (A2 lit.) Set D0 through D7 for

10000001 (129) and operate the DEPOSIT NEXT switch to store this number at memory location 5. (A2, AO lit) Then set \(D 0\) through \(D 7\) all to 0 and operate the dEpOSIT NEXT switch to store the all-zero number at memory location 6 (A2, A1 lit).

7Store the add instruction at memory location 7 by setting DO through D7 for 10000000 (128) and operating the deposit next switch. When executed, this instruction adds the number in the accumulator to the number stored in register \(B\) and places the result in the accumulator (A2, A1, A0 lit).

8To store the result at address 130 , first store the instruction at memory location 8 by setting \(D 0\) through \(D 7\) for 00110010 and operating the DEPOSIT NEXT switch (A3 lit). Set DO through D7 for 10000010 and operate the DEPOSIT NEXT switch. The least-significant eight bits of address 129 are now stored at memory location 9 (A3, AO lit) Set DO through D7 to 0 and operate the deposit next switch. The most-significant eight bits of address 129 are now stored at memory location 10 (A3, A1 lit).

9A program that adds the contents of address 128 to the contents of address 129 and stores the result in address 130 has now been loaded into the computer. With the use of a "jump" instruction, you can now create a program loop that will direct the computer back to memory location 0 and allow repeating this addition procedure continuously for as long as desired. Store the jump instruction at memory location 11 by setting DO through D7 for 11000011 and operating the DEPOSIT NEXT switch (\(\mathrm{A} 3, \mathrm{~A} 1, \mathrm{~A} 0\) lit). Set \(D 0\) through \(D 7\) to 0 and operate the DEPOSIT NEXT switch twice. The 16 -bit address 0 is now stored at memory locations 12 and 13 (A3, A2, AO lit).

Before we can run this program, we
have to load the two numbers we want added into addresses 128 and 129. For example, if we wanted to add 12 to 8 , the procedure would be as follows:

Set address switches AO through A15 for 0000000010000000 (128) and operate the EXAMINE switch (A 7 lit). Set DO through D7 for binary 12 (00001100) and operate the DEPOSIT switch (A7 still lit). Set D0 through D7 for binary 8 (00001000) and operate the DEPOSIT NEXT switch. The binary numbers for 12 and 8 are now stored at address locations 128 and 129, respectively (A7, AO lit).

Set address switches AO through

A15 to 0 and operate the EXAMINE switch (all A LED's are off). Operate the RuN switch, and the program will execute at a rate of about 30,000 times per second. Operate the stop switch. Set the address switches to address 130 (10000010) and operate the EXAMINE switch. LED's D0 through D7 will display the sum of the two numbers added, which is 20 , in binary format (00010100).

Basics of Programming. If you have rever done any programming, it may seem a little mysterious at first, but the basic ideas of programming

\section*{glossary of computer jargon}

Access time - Time interval between the instant at which information is called for storage and the instant at which delivery is complete.
Accumulator - Part of the logicalarithmetic unit of a computer used for intermediate storage, to form algebraic sums, or other intermediate operations.
Address - Label, name, or number identifying a register, location, or unit where information is stored.
Assembler - Translates input symbolic codes into machine instructions.
Bit - Abbreviation of binary digit; a single character in a binary number.
Buffer - Isolating circuit used to avoid reaction of a driven circuit upon its driving circuit.
Byte - Group of binary digits usually operated upon as a unit. Usually shorter than a word.
Clock - Time-keeping device used to synchronize the computer.
Data - Basic elements of information which can be processed or produced by a computer.
Hold - Function of retaining information in one storage device after transferring it to another device, in contrast to clear.
Instruction - Coded program step that tells the computer what to do for a single operation in a program.
Interrupt - Break in the normal flow of a system or routine such that the
flow can be resumed from that point at a later time.
Jump - Depart from the normal sequence of executing instruction in a computer (synonymous with branch).
Memory - Storage. A device that holds information that can be extracted at a later tine.
Processor - Device capable of receiving data, manipulating it, supplying results usually of an internally stored program.
Programming - Art of reducing the plan for the solution of a problem to machine-sensible instructions.
Register - Device for the temporary storage of one or more words to facilitate arithmetical, logical, or transferral operations.
Stack - Portion of a computer memory and/or registers used to temporarily hold information.
Subroutine - Set of instructions in machine code to direct the computer to carry out a well-defined mathematical or logical operation; a part of a routine.
Word-Set of characters that occupies one storage location and is treated by the computer as a unit and is transported as such. Word lengths are fixed or variable, depending on the particular computer being used.
Definitions were extracted from "Computer Dictio-
nary" by Charles J. Sippl and Charles P. Sippl, pub-
lished by Howard W. Sams \& Co.. Inc. The BobbsJished by Howard W. Sams \& Co., Inc.. The Bobbs
Merrill Co. Inc.. Number 20943. 484 pages. \(\$ 8.95\) (in Canada \(\$ 11.95\)).

> Shown at far left is the display board atop the control board, with cables that connect to other boards. The central processor unit is shown in the center, and the control board at near left. Not shown is memory boord, which holds If IC's.

\section*{MACHINE INSTRUCTIONS}
\begin{tabular}{|c|c|c|c|}
\hline Instruction & Binary Code & Octal & Comment \\
\hline & (for instruction) & & \\
\hline IN 6 & 11011011 (IN) & 333,006 & Bring data from input 6 and store in register \(A\) (accumulator). \\
\hline MOV B,A & \[
\begin{aligned}
& 01 \text { (MOVE) } \\
& 000 \text { (B) } \\
& 111 \text { (A) }
\end{aligned}
\] & 107 & Take A and move its contents to B. \\
\hline IN 30 & \[
\begin{aligned}
& 11011011 \text { (IN) } \\
& 00011110 \text { (30) }
\end{aligned}
\] & 323,036 & Bring input 30 into accumulator \\
\hline ADD B & \[
\begin{aligned}
& 10000 \text { (ADD) } \\
& 000(\mathrm{~B})
\end{aligned}
\] & 200 & Add contents of \(A\) to \(B\). Put results in A. \\
\hline OUT 128 & 11010011 (OUT) 10000000 (128) & 323,200 & Transmit contents of accumulator to output 128 \\
\hline
\end{tabular}
are really very straightforward and easy to master. The procedures that are always used consist of the following:

Defining the Problem. This is by far the hardest part of the programming. Don't worry about the computer or the computer language when doing this part of the preparation. Simply decide what is required to do the job you want to accomplish.

Establishing an Approach. The computer and computer language have nothing to do with this step, either. It involves outlining a step-bystep procedure to achieve the desired results and getting it down on paper.
Writing the Program. Once you are familiar with programming, you will find that this step is the simplest. It is merely a matter of translating step 2 into the appropriate language.
There are many books available on programming. Some of them are quite good and are particularly useful for learning techniques such as flow programming, looping, etc. However, in essence, they can all be boiled down to the three steps above.

Software Example. To get a feel for what programming the Altair 8800 is like, let's go through a sample program, which is similar to the test program that we first went through to check out the computer operation. Assume that we want to take the data available from input channel 6 and input channel 30 and add them, placing the result in output channel 128. The machine instructions are shown in the box.

The first instruction simply stores the data from channel 6 in register \(A\) (the accumulator). The next instruction moves this data from register \(A\) to register \(B\). This clears \(A\) for the next
input. The third instruction brings the data from input channel 30 into the \(A\) register. The fourth instruction adds the-contents of register \(A\) (data from channel 30) to register \(B\) (data from channel 6) and puts the results back into register \(A\). The final instruction transmits the answer from \(A\) to output channel 128. Total computer time used to perform this operation with the Altair 8800 is 18 microseconds. To put it another way, the computer could perform 56,000 of these operations in one second.

The instructions could be entered into the processor in one of three ways. The first and easiest would bewith the use of an assembler. This is essentially a piece of software that converts alphanumeric symbols to machine language (binary code). For example, the assembler would convert our first instruction (IN 6) to the correct binary code. The problem with using an assembler is that you need a computer terminal for an input device and the assembler itself requires about 6000 words of memory storage. If extensive program development is to take place, the assembler is a good tool to have.

The next easiest method of entering the instructions is with the use of

\section*{EXPANDING THE COMPUTER}

In describing the assembly of the Altair 8800 Minicomputer in last month's article, it was noted that the interior of the cabinet provides plenty of room for expansion. The room can be used to add many functions to the basic computer. For example, the present memory board in the Altair 8800 can be expanded with the addition of three 256-word memories (Kit 8802-MS available from the manufacturer, MITS at \(\$ 34\) per 256-word memory). Further additions require an expansion mother board having four connectors that can accommodate any four memory or input-output (I-O) cards. This expansion board (Kit \(8800-E B\)) is available for \(\$ 44\), while a 4 K dynamic memory card (Kit \(8840-\mathrm{MC}\)) costs \(\$ 198\). Various other kits-a vectored interrupt card and a real-time clock, among them-are also available.
the Very Low Cost Terminal featured in the December 1974 issue of Popular Electronics. With this terminal, the instructions could be entered by using the octal code. The procedure would be to write the program in assembly language and then enter the corresponding code for each instruction. This system, while not being as fast as the use of an assembler is less expensive.

The third method, using front panel entry, is of course inexpensive but time consuming.
This has been only a brief summary of the programming procedures for the computer. Complete programming information is provided with the Intel 8080 integrated circuit and with the Altair 8800 computer kit.

\section*{ABOUT THIS MONTH'S HI-FI REPORTS}

The three components covered in this month's hi-fi equipment reports could easily form the heart of a very fine stereo or quadraphonic system. The general performance qualities of the Marantz 4270 receiver are more comparable to those of the better separate components than those of a receiver. Not only is it equally at home in a two-channel or four-channel system, it has built-in Dolby circuits for either FM decoding or tape recording and playback.

As for the Garrard Zero 100SB, this fine single-play record player combines the "zero tracking error" tonearm made famous by that company's Zero 100 record changer, with a new belt-driven turntable whose performance rivals more expensive units.

Finally, the new Ortofon VMS-20E cartridge is almost a twin of the highly regarded Ortofon M15E Super, with essentially the same performance (and sound) at a much lower price.
—Julian D. Hirsch

\section*{MARANTZ MODEL 4270 AM/FM STEREO 2QUADRADIAL 4 RECEIVER}

70 W/ch stereo, \(25 \mathrm{~W} / \mathrm{ch} 4\)-channel with built-in decoding matrix and Dolby NRS.

The Marantz Model 4270 shares many features of the other receivers in the company's "Stereo 2-Quadradial 4" line. It's a medium power quadraphonic receiver (25 W rms / channel) that preserves a user's ability to opt for one or more of the four-channel systems through plug-in matrix decoders and/or connection of an external CD-4 demodulator. In the stereo mode, the 4270 is transformed FEBRUARY 1975
into a powerful \(70 \mathrm{Wrms} / \mathrm{ch}\) annel receiver.

Furthermore, the 4270 features a host of refinements, such as Dolby noise-reduction circuitry for tapes and FM broadcasts; a built-in quadraphonic synthesizer for stereo software; and an optical remote control, among others.

The receiver is approximately \(173 / 8\) in. wide by \(53 / 8 \mathrm{in}\). high by \(143 / 8 \mathrm{in}\). deep \((44.1 \times 13.7 \times 36.5 \mathrm{~cm})\) and weighs 40.2 b. (18.2 kg). Price is \(\$ 699.95\). SQ and QS decoders (ranging from basic SQ
to full-logic SQ and SQ/QS models) are \(\$ 49.95\) to \(\$ 79.95\); CD-400 adapter, \(\$ 99.95\) (when purchased with receiver); remote control, \$39.95.

General Description. In addition to the conventional complement of controls and switches, the 4270 features separate tone controls-bass, midrange, and treble-for the front and rear channels. Further, complete Dolby noise-reduction facilities are available, controlled by a DOLBY switch.

When this switch is placed in one of the record positions, program material is encoded or decoded for input to a tape recorder, depending on the noise-reduction capabilities of the particular tape deck. When fM DOLby is selected, a decoder processes the FM signal for proper reception, with the added advantages of higher S/N ratio and dynamic range. Unusually complete Dolby system calibration facilities are incorporated into the receiver, including a level generator and calibrating meter that doubles as the signal-strength monitor.

Two sets of inputs and outputs for tape monitoring are included, selectable from the front panel. If only one set is used for a recorder, the other provides a convenient circuit interruption point for patching in a graphic equalizer or signal monitor.

A "flywheel" tuning control, protruding through the front panel selects the operating frequency of the tuner. Two meters, an AM/FM signal strength indicator and an FM zerocenter monitor make precise tuning adjustments possible. Three slidetype controls adjust balance between the front, rear, and front/rear channels.

Among the rear-panel inputs and outputs is an FM UADRADIAL output. This jack supplies the composite detector output for possible use with a discrete four-channel adapter, should an FCC-approved FM system be developed. Also included are screwdriver adjustments for FM Dolby level, muting, and a socket for an optional remote control unit for volume, loudness, and balance adjustments. The PREAMP OUT and AMPIN jacks, normally bridged by jumpers, provide another circuit-interruption point for signal processors, or for using the 4270 with a super-powered amp. A slide switch changes the normal \(75-\mu \mathrm{s}\) deemphasis characteristic to \(25 \mu \mathrm{~s}\), for proper reception of FM Dolby broadcasts. A power mode switch selects

either "strapped" stereo (\(70 \mathrm{~W} / \mathrm{ch}\) annel) or four-channel (\(25 \mathrm{~W} / \mathrm{channel}\) amplifiers. Two ac outlets, one switched, are included.

Laboratory Measurements. In virtually every respect, the Marantz 4270 met or exceeded the manufacturer's published specifications. In the fourchannel mode, the amplifiers, rated at \(25 \mathrm{~W} /\) channel, delivered 35.7 W at the clipping level with all channels driven into 8 -ohm loads at 1000 Hz . Into 4 ohms, the amplifiers clipped at 52 W/channel. The clipping level of the two-channel "bridged" mode was 100 W/channel, \(30 \mathrm{~W} / \mathrm{ch} a n n e l\) higher than the rated figure. Amplifier distortion at rated output was under \(0.03 \%\) from 20 Hz to 10 kHz , and \(0.04 \%\) at 20 kHz . At lower output the figure rose, but at no time exceeded \(0.07 \%\). THD at \(0.1 \mathrm{~W}, 1\) kHz , was \(0.1 \%\), falling to about \(0.02 \%\) between 10 and 30 W , and reaching \(0.1 \%\) at 35 W . (Below 1 W , distortion was less than figures imply, since it was masked by circuit noise.) IM distortion behaved similarly, declining from \(0.15 \%\) at 0.1 W to \(0.06 \%\) between 10 and 30 W .
Input sensitivity for a reference \(10-\mathrm{W}\) output was 80 mV at the Aux inputs, and 1.0 mV at the PHONO inputs.
\(\mathrm{S} / \mathrm{N}\) ratios were very good: 78 dB and 68 dB , respectively (at 10 W output). Phono overload occurred at 115 mV , an output rarely, if ever, reached with today's pickups. Tone controls offered a wide variety of response curves, so that almost any tonal coloration could be obtained. The HI Filter response, which had a gradual -6 dB/octave slope, was down 3 dB at 5500 Hz .

RIAA phono equalization was within \(\pm 0.5 \mathrm{~dB}\) from 30 Hz to 20 kHz . Though phono cartridge inductance affected the equalization appreciably above 15 kHz , it had little or no effect below 10 kHz .

The FM tuner section displayed an IHF usable sensitivity of \(2.2 \mu \mathrm{~V}\), with a steep limiting curve that reached 50 dB of quieting at \(3.8 \mu \mathrm{~V}\) in mono and \(43 \mu \mathrm{~V}\) in stereo. Mono FM distortion at \(1000 \mu \mathrm{~V}\) was very low, less than \(0.1 \%\), and in stereo was an excellent \(0.17 \%\) to \(0.33 \%\). The ultimate quieting of the tuner was 72 dB in mono and 70 dB in stereo. These figures are close to the residual noise level of the signal generator used.

Stereo FM frequency response was flat within \(\pm 0.5 \mathrm{~dB}\) from 30 Hz to 15 kHz . The \(19-\mathrm{kHz}\) pilot carrier leakage was 67 dB below the \(100 \%\) modulation
level. Channel separation was 35 dB from 30 Hz to 8 kHz , peaking to 55 dB in the midrange, and 30 dB at 15 kHz . Capture ratio was 1.1 dB at \(1000 \mu \mathrm{~V}\), and \(A M\) rejection was a good 60 dB . The signal threshold for muting and automatic stereo switching was \(10 \mu \mathrm{~V}\). Image rejection was 76 dB , and alter-nate-channel selectivity was measured to be a very good 78 dB . The response of the AM tuner was better than average. It was flat over most of its range, down 3 dB at 33 Hz and 6000 Hz .

User Comment. The operation of the Marantz 4270 was flawless in every respect. Its many functions may prove overwhelming to a new owner, so a careful study of the instruction manual is recommended for most enjoyable use of the receiver.

Although no measurements were made on the Dolby circuitry, we did cross-check its performance with that of an accurately adjusted Dolby unit and found it to be subjectively identical and completely compatible. The FM Dolby function worked properly with the one Dolbyized station in our area. Interestingly, we found that it is possible to leave the de-emphasis switch in the \(25-\mu \mathrm{sec}\) position at all times, obtaining correct frequency response with all FM stations. This is possible because of the relationship between the switching functions of the DOLBY and de-emphasis switches. The FM muting operated with pleasing smoothness, free of thumps and noise bursts.

Our test receiver was not fitted with one of the plug-in SQ decoders, so its four-channel performance was judged using its Vari-Matrix. This proved to be effective in supplying four-channel ambience enhancement to stereo material and matrixed records, but as expected, did not provide the inherent directional response of a

logic-assisted decoder, which is a moderately priced option.

In view of its versatility and features, not to mention its outstandingly fine performance, it is clear that the Marantz 4270 can serve as a first-class stereo receiver. Its price is not at all inconsistent with its overall quality and flexibility. It can be upgraded in stages to quasi-four-channel operation by merely adding rear speakers and to full four-channel with one or more decoders, depending on the owner's desires.
CIRCLE NO. 65 ON READER SERVICE CARD

\section*{GARRARD ZERO \(1005 B\) TURNTABLE}

Automatic single-play machine with belt drive.

Manual record players were once the popular choice of hi-fi buffs. Interest in this type of machine died out, however, when record changers were introduced to combine high-quality, single-play provisions with automatic features. Turnabout is fair play, so more recently, a new breed of record player-the automatic single-play machine-has again captured the imagination of hi-fi music listeners. The Garrard Zero 100SB is one of a host of automatic single-play entries this year.

It's supplied as a complete turntable and arm, with wood base (black with teak side panels), removable hinged dust cover and all connecting leads attached. Adding a cartridge turns it into a functioning record player. Price is \(\$ 209.95\).

General Description. The Garrard Zero 100SB utilizes a belt-drive system instead of the idler-wheel drive used in the manufacturer's older Zero 100 model. With two speeds-33 1/3 and 45 rpm -a combined speed selector and record diameter indexing control shifts the belt on a stepped synchronous motor shaft for "automatic" single-play operation. (Records of any
size can be played manually at any speed.) The 100SB employs a cast non-ferrous turntable platter that is \(111 / 2\) inches in diameter and weighs \(51 / 2\) pounds. Overall dimensions are 18 in. wide by 16 in . deep by \(71 / 2 \mathrm{in}\). high (with cover in place).

Operating controls are three levers. The auto lever starts the turntable and indexes the arm automatically while the MAN lever merely turns on the platter drive. Each has an OFF setting, which in the case of the auto lever, also returns the arm to its rest. In either mode, after a record is played, the arm returns to the rest and the motor shuts off. The third lever, cue, raises and lowers the arm with damped control in both directions. Unlike most other cuing devices, it can lift the arm by any amount up to the maximum, and hold it at that point, which can reduce the lowering time considerably.

A clear plastic tonearm pivot housing contains the magnetic repulsion system used to supply. anti-skating bias. A magnetic shield is moved between two magnets (one on the fixed section and one on the movable arm body) to vary the torque. Separate scales are provided for conical and elliptical styli.

The adjustable counterweight is elastically mounted to damp the lowfrequency arm resonance. A unique feature of the Zero 100SB arm is the automatic record play counter built into the transparent pivot support. A red pointer moves up slightly every time the arm returns to its rest after playing a record, and the index marks on the plastic correspond to various numbers of plays from 400 to 1600. A knurled knob below the scales resets the pointer to zero.

Tracking force is set by a sliding weight on the arm body, calibrated at 0.25 -gram intervals from 0 to 3 grams.

Laboratory Measurements. When the test cartridge (in this instance an Ortofon VMS-20E) was installed using the jig supplied with the Zero 100SB, tracking error was unmeasurably low (under 0.5 degree) over the entire record surface. The stylus force indications were very accurate, with less than 0.05 gram error at 1 - and 2-gram settings, and only 0.1 at 3 grams. The anti-skating calibration was correct for equal playback distortion in both channels (a very unusual occurrance among the many arms we have tested).

To obtain visible waveform clipping on the \(30 \mathrm{~cm} / \mathrm{s}\) test tones we use for setting anti-skating, it was necessary to operate the Ortofon VMS-20E cartridge at 0.5 gram, and the corresponding anti-skating setting proved to be exact. This test, incidentally, established that the Zero 100SB arm, in spite of its multiple pivots, had negligible friction. As we see it, any cartridge made today can be operated in this arm at the lowest tracking force consistent with the design of the cartridge, without encountering difficulties of excessive arm friction.

The turntable wow and flutter were \(0.06 \%\) and \(0.04 \%\) at \(331 / 3 \mathrm{rpm}\), and \(0.04 \%\) and \(0.035 \%\) at 45 rpm . The unweighted rumble was \(\pm 38 \mathrm{~dB}\); with relative audibility weighting, it was a very low \(\pm 61 \mathrm{~dB}\). Operating speeds were within \(0.2 \%\) of the correct values, and did not vary measurably over a line voltage shift from 95 to 135 volts. The operating cycle in the auto mode required 14 seconds, from the time the lever was moved until the stylus set-

\title{
The whole neighborhood wondered what Frank Mallon was up to in his workshop.
}

\begin{abstract}
Word had it he was up to something mighty peculiar. And when he didn't show up for bowling practice one Wednesday night, the Wabash Cannonballs (that was the name of his neighborhood team) began to wonder, too.

So it was that a bunch of the boys de-
\end{abstract} cided to pay their "star" a visit, and talk him out of his workshop and back into action.

It didn't happen that way, though.
Matter of fact, it was Frank Mallon who talked the Wabash Cannonballs out of their bowling night and down into his workshop. What was it... what could be exciting enough to keep a bunch of ten-pin tigers from their favorite pastime? One of the most fascinating learn-athome programs in the world, that's what!

Actually build and experiment with the new generation color TV in Bell \(\mathcal{E}\) Howell Schools' fascinating learn-athome program. It will help you develop new occupational skills as an electronics troubleshooter.

You'll set up your own electronics laboratory to learn first-hand, the technology behind such innovations as digital-display wristwatches and tiny pocket calculators.

In fact, as part of the program, you'll actually build and experiment with a \(25^{\prime \prime}\) diagonal color TV incorporating digital features.

But most important of all will be the new skills you'll develop all along the way...the kind of skills that could lead you in exciting new directions. While we cannot offer assurance of income opportunities, once you've completed the program you can use your training:
1. To seek out a job in the electronics industry.
2. To upgrade your current job.
3. As a foundation for advanced programs in electronics.

Go exploring at home, in your spare time. No traveling to class. No lectures. No one looking over your shoulder.

Bell E Howell Schools wants to introduce you to the modern way to learn. It means you'll be able to develop new skills in your own home-on whatever days and hours you choose. So you don't have to give up your present job or paycheck just because you want to learn new occupational skills.

What's more, we believe that when you're exploring a field as fascinating as electronics, reading about it is just not enough.

That's why you'll get lots of "hands on" experience with some of the most impressive electronic training tools you've ever seen.

\section*{No electronics background necessary.}

That's one of the advantages of this program. We start you off with the basics and help you work your way up, one step at a time. In fact, with your first lesson you receive a Lab Starter Kit to give you immediate working experience on equipment.

You build and perform exciting experiments with Bell \& Howell's Electro-Lab \({ }^{\circledR}\). An exclusive electronics training system.

First comes the design console. After you assemble it, you'll be able to set up and examine circuits without soldering.

Next, you'll put together a digital multimeter. This instrument measures voltage, current and resistance, and displays its findings in big, clear numbers like on a digital clock.

Then comes the solid-state "triggered sweep" oscilloscope. An instrument similar in principle to the kind used in hospital operating rooms to monitor heartbeats. You'll use it to analyzie the "heartbeats" of tiny integrated circuits. The "triggered sweep" feature locks in signals for easier observation.

You'll build and work with Bell \& Howell's new generation color TV... investigating digital features you've probably never seen before!

This 25" diagonal color TV has digital features that are likely to appear on all TV's of the future.

As you build it, you'll probe into the technology behind all-electronic tuning. And into the digital circuitry of channel numbers that appear right on the screen! You'll also build in a remarkable on-the-screen digital clock that will flash the time in hours, minutes and seconds.

And you'll program a special automatic channel selector to skip over "dead" channels and go directly to the channels of your choice.
You'll also gain a better understanding of the exceptional clarity of the Black Matrix picture tube, as well as a working knowledge of "state-ofthe-art" integrated circuitry and the \(100 \%\) solid-state chassis.

After building and experimenting with this TV, you'll be equipped with the kinds of skills that could put you ahead of the field in electronics know-how.

We try to give more personal attention than other learn-at-home programs.
1. Toll-free phone-in assistance. Should you ever run into a rough spot, we'll be there to help. While many schools make you mail in your questions, we have a toll-free line for questions that can't wait.
2. In-person "help sessions". These are held in 50 major cities at various times throughout the year, where you can talk shop with your instructors and fellow students.

So take a tip from Frank Mallon. Find out more about the first learn-at-home program that could stir up your neighborhood!

Mail this postage-paid card today for full details, free!

Taken for vocational purposes, this program is approved for Veterans' Benefits.

If card has been removed, write:
An Electronics Home Study School
DeVRY InSTITUTE OF TECHOOLOGY

tled into the lead-in groove. There was no lateral drift during descent when using the cue control. The low frequency arm/cartridge resonance was at 5 Hz (indicating a moderately high arm mass), and an amplitude of about 10 dB .

User Comment. The Garrard Zero 100SB combines a number of useful operating conveniences. It boasts high performance in its basic characteristics at a price that matches or betters other record players of comparable quality. For example, only a few of the most expensive direct-drive turntables we have tested have shown lower rumble than the Zero 100SB.

However, we were surprised to find that the arm-wiring and signal-lead capacitance was too high for optimum performance with most magnetic CD-4 cartridges, which ideally should not be more than 100 pF of total circuit capacitances. Capacitance from the output connector of the integral signal cable to the cartridge shell measured 165 pF.

Though the operation of the record player itself could not be faulted, the same cannot be said of the dust cover design. Unless it was carefully lifted by the left front corner, it showed a strong tendency to come out of its hinging slot. Equal care was required when pushing the unit's spring-load-
ed armrest-lock support out of the way before lowering it.

Minor criticisms aside, we found the Garrard Zero 100SB to be one of the smoothest, easiest-to-use record players we have seen. All its basic operating controls and their functions behaved exactly as intended, with none of the "bugs" that so often afflict mechanical systems. For example, when the cartridge is installed and the arm balanced according to instructions, the unit is actually set up correctly, without additional adjustments with a stylus gage and tracking error protractor to achieve optimum performance capability.
CIRCLE NO. 66 ON READER SERVICE CARD

ORTOFON MODEL VMS-20E PHONO CARTRIDGE
Moderately priced variable-magnetic-shunt design offers neutral sound quality.

Ortofon first introduced its variable magnetic shunt(VMS) principle a couple of years ago in its still top-of-the-line Model M-15E Super stereo cartridge. In this cartridge, a magnetic armature is moved in the field of a light ring magnet. It varies the flux distribution through the internal pole pieces and coils, while reducing the flux through the pole pieces to zero when the stylus is in its neutral position. This design is claimed to greatly reduce nonlinearities in the magnetic system, resulting in lower distortion than was previously possible in magnetic cartridges of conventional design.
Now, Ortofon has brought the M-15E Super's essential qualities within reach of the many users of good-quality automatic turntables with the introduction of the Model VSM-20E cartridge. It also uses the variable magnetic shunt principle and has an \(8-\times 18\)-micron (\(0.3-\times 0.7-\mathrm{mil}\)) user-replaceable elliptical diamond stylus.

When the M-15E Super was intro-
duced, a \(15^{\circ}\) vertical tracking angle was in general use. The standard has since been changed to \(20^{\circ}\), and the design of the VMS-20E reflects that change.

Physically, and in most of its other characteristics, the VMS-20E appears to be identical to the M-15E Super cartridge. It is a lightweight 5 grams and is rated to track at between 0.75 and 1.5 grams. (One gram is the recommended tracking force.) Ortofon specifies the loading of the cartridge at the standard 47,000 ohms and recommends a \(400-\mathrm{pF}\) shunt capacitance.

Aside from its vertical tracking angles, the VMS-20E appears to differ from the \(\mathrm{M}-15 \mathrm{E}\) Super in only three specifications: It has about \(25 \%\) greater output voltage; its tracking ability at 300 Hz is 70 microns, as opposed to 80 microns for the \(\mathrm{M}-15 \mathrm{E}\) Super; and its lateral compliance is reduced from the M-15E Super's \(50 \times\) \(10^{-6} \mathrm{~cm} /\) dyne to \(40 \times 10^{-6} \mathrm{~cm} /\) dyne.

Another very important feature is the VMS-20E's relatively inexpensive cost- \(\$ 65\). This sharply contrasts with
the \(\$ 90\) figure asked for the \(\mathrm{M}-15 \mathrm{E}\) Super cartridge.

Laboratory Measurements. We tested the VMS-20E in a Pioneer Model PL-71 record player/tonearm combination, using a 47,000 -ohm load shunted by 340 pF . The low-frequency tracking ability of the cartridge was tested with a Cook Series 60 record at a 0.75 -gram tracking force. The \(1000-\mathrm{Hz}, 30-\mathrm{cm} / \mathrm{s}\) test tones of a Fairchild 101 record revealed symmetrical clipping at 0.5 gram, with no improvement from the use of a higher force. This suggests that the amplitude limits of the stylus system rather than its dynamic tracking abilities were being exceeded in this very severe test. A 1-gram force was used throughout subsequent tests.

Ortofon's \(300-\mathrm{Hz}\) tracking specification for the VMS-20E is based on the use of a German hi-fi test record we also use in our test program. The cartridge easily tracked the 80 -micron band of this record at 1 gram. By careful adjustment of the tonearm's anti-

skating compensation, the \(100-\) micron (highest-level) band could be played without significant distortion. It should be noted that very few cartridges can even approach this performance at any tracking force.

The output of the cartridge was 3.2 mV at a \(3.54-\mathrm{cm} / \mathrm{s}\) velocity. A \(1000-\mathrm{Hz}\) square wave from the CBS STR-111 record was played with only a single small overshoot and no sign of ringing. As with the \(\mathrm{M}-15 \mathrm{E}\) Super, the VMS-20E had an exceptionally flat response, varying only \(\pm 1.5 \mathrm{~dB}\) from 500 to \(20,000 \mathrm{~Hz}\) on one channel and \(\pm 1 \mathrm{~dB}\) over the same range on the other channel when tested with the CBS STR-100 record.

The channel separation was typically 25 to 30 dB up to about 4000 Hz . It reduced smoothly to 15 dB at 10,000 Hz and 5 to 10 dB at \(20,000 \mathrm{~Hz}\). Both channels had very similar characteristics with respect to frequency re-

1000-Hz square wave.

sponse and channel separation. The low-frequency resonance when the cartridge was used in Pioneer's tonearm occurred at about 6 Hz .

User Comment. We used the Shure "Audio Obstacle Course-Era Ill'' record to evaluate the tracking ability of the VMS-20E on actual musical material. Most portions of the record were successfully tracked at 1 gram at their highest levels. A slight mistracking of the highest levels of the musical bells and sibilance tests was noted at 1 gram. Increasing the force to the rated \(1.5-\mathrm{gram}\) maximum enabled the cartridge to track the bells at maximum level, but there was still a trace of mistracking at the highest level of the sibilance material.
The VMS-20E has a totally neutral
quality, with no audio peaking or coloration in any part of the audio range. As Ortofon implies, the VMS-20E and M-15E Super cartridges have virtually identical performance in all respects. We could hear no differences between the two in side-by-side comparisons.

The major difference between the two cartridges appears to be that the M-15E Super will play anything we have seen on record without difficulty at 1 gram, while the VMS-20E might have to be operated at 1.5 grams in the most severe cases. We would still opt for 1 -gram operation, assuming the tonearm is capable of it. (The VMS20E should not be used in tonearms incapable of tracking at 1 gram.) At that force, it can still outperform most cartridges on the market.
CIRCLE NO. 67 ON READER SERVICE CARD

\section*{LAFAYETTE COM-PHONE 23 MOBILE CB TRANSCEIVER}

Handset receiver provides mounting versatility and communication privacy.

AFAYETTE's Com-Phone 23 is a 23-channel mobile AM transceiver using a telephone-type handset instead of a conventional grip mike. Adaptable to a variety of mounting positions, it can be installed horizontally above a transmission hump, mounted vertically on the wall of a van or camper, or similar to a wall phone in the home (with an ac adapter).

The use of a handset reduces interference from background noise. Additionally, the Com-Phone 23 retains "talk" flexibility with a PTT switch incorporated into the handset, and a panel-mounted switch to allow operation of a built-in speaker or a handset earphone.

Circuitry is all-solid-state, including a crystal-governed frequency synthesizer. Using only 14 crystals, the Com-phone 23 produces 23 transmitting and receiving channels. A 12-volt, negative- or positive-ground power
source can be used, and an optional ac supply allows the radiotelephone to be used as a base-station rig. Other features of the transceiver include ad: justable squelch, always-on noise limiter, "range boost" circuitry, adjustable TVI trap, and an external speaker jack for receiving or PA work. The Com-Phone 23 draws only 100 mA on receive (no signal) and 1 A on transmit (modulated).

The transceiver measures 4 in . by 5 in. by \(91 / 2 \mathrm{in}\). (\(10 \mathrm{~cm} \times 12.6 \mathrm{~cm} \times 23.8\) cm) and weighs \(3.25 \mathrm{lb}(1.47 \mathrm{~kg})\). Price is \(\$ 189.95\).

The Receiver. Dual-conversion circuitry is used, with i-f's at 10.6 MHz and 455 kHz . Two uncommon circuit configurations are employed-the r-f amplifier is a grounded-base stage, instead of the usual grounded-emitter mode, and a crystal diode is used as the second mixer, rather than a tran-
sistor. A ceramic filter in the second i-f stage affords good selectivity. The noise limiter is a series-gate type, and the squelch is agc-activated. Audio output is obtained from a class- \(B\), push-pull stage which doubles as the transmitter modulator. The frequency synthesizer employs six \(37-\mathrm{MHz}\) and four \(10-\mathrm{MHz}\) crystals for all-channel operations.

Sensitivity measured \(0.3 \mu \mathrm{~V}\) for a \(10-\mathrm{dB} S+\mathrm{N} / \mathrm{N}\) ratio, three times better than the \(1.0 \mu \mathrm{~V}\) claimed by the manufacturer! Two watts of audio output was obtained from a \(1-\mu \mathrm{V}\) input signal. Image rejection was 80 dB , i-f signal rejection measured 60 dB at the first i-f frequency and 100 dB at 455 kHz . Spurious-signal and adjacent-channel rejection were 50 dB and 40 dB , respectively. The overall a-f bandpass was \(350-2900 \mathrm{~Hz}\) at the \(6-\mathrm{dB}\) points, while threshold range for squelching action was \(0.3 \mu \mathrm{~V}\) to 30 mV .

The agc held the audio output to within 14 dB for a \(20-\mathrm{dB}\) r-f input range (1 to \(10 \mu \mathrm{~V}\)). However, input levels above \(10 \mu \mathrm{~V}\) tended to drop 4 to 6 dB , apparently due to overload somewhere before the volume control. Any distortion generated at these levels was not audibly significant. In the ab-
sence of any input signal, the receiver was exceptionally quiet. In the PA mode, 3.25 watts of output power into 8 ohms was delivered, with 10 percent distortion at 1000 Hz at the start of limiting.

The Transmitter. To enhance performance, the transmitter features a two-section matching network, an adjustable series-tuned TVI trap, and a "range boost" automatic modulation control with a-f compression. Antenna changeover is accomplished by a diode. Other switching functions are handled by a relay.

A standard \(13.8-\mathrm{V}\) power supply provided 4 watts of carrier output. Distortion at full modulation was 4 percent using a \(1000-\mathrm{Hz}\) signal. With further mic-input level increases of 6 and 10 dB , distortion rose to 9 and 14 percent, respectively.

Unlike some other compressors, Lafayette's "range boost" circuitry prevented overmodulation on both positive and negative peaks. Adja-cent-channel splatter was under 50 dB using a \(2500-\mathrm{Hz}\) tone at a level 10 dB higher than that required for full modulation. Audio response of the transmitter was 450 to 4800 Hz at the 6-dB
points, and frequency tolerance for any one channel was within 275 Hz .

General. Audio output will appear at the handset or internal or external speaker, depending on the position of the panel-mounted switch. In the SPEAKER position, both the handset and the speaker receive audio; in the handset position, the speaker is silenced when the handset is lifted from its cradle. Another switch selects \(C B\) or PA operation. When the latter mode is selected, both the internal speaker and the handset earphone are silenced, and output appears only at the external speaker jack. The connecting cables plug in at the top edge of the enclosure, which is convenient. In some mounting positions, however, special wiring may be necessary.

Summing up the attributes of the Lafayette Com-Phone 23 CB transceiver, its telephone-style design offers communications privacy, as well as mounting flexibility. Equally important, users will appreciate its good signal punch, made possible by the "Range Boost" circuit, and clean talk power without spurious products spilling over into nearby channels.
Circle no. 68 on reader service card

\section*{DATA TECHNOLOGY MODEL 20 BENCH-TYPE AND} MODEL 21 PORTABLE DIGITAL MULTIMETERS
Bench and portable units have \(3^{1 ⁄ 2} 2\) digits and can measure capacitance.

MOST digital multimeters offer a broad range of measurement and function features coupled with an easy-to-read numeric display. The most popular display is one of the various types of seven-segment character formats, usually consisting of \(3^{1 / 2}\) decades (digits).

Ever since the DMM first began to appear in the market in quantity, we have been anticipating new functions to appear as competition grew. Hence, it did not overly surprise us when Data Technology Corp. announced no less than two "extra-feature" DMM's. One is the Model 20 bench-type DMM and the other is the Model 21 battery-
powered portable DMM that is about the size of a pocket calculator. (Each one is \(\$ 269\).) Both instruments feature capacitance-measuring functions in addition to the usual ac and dc voltage and resistance functions.

The capacitance function covers a range of from \(0.002 \mu \mathrm{~F}\) to \(2 \mu \mathrm{~F}\) fullscale in four decade-step ranges. Resolution is 1 pF on the \(0.002-\mu \mathrm{F}, 10\) pF on the \(0.02-\mu \mathrm{F}, 100 \mathrm{pF}\) on the \(0.2-\mu \mathrm{F}\), and \(0.001 \mu \mathrm{~F}\) on the \(2-\mu \mathrm{F}\) ranges. Consequently, you can now measure unknown capacitances with a high degree of accuracy.

Model 20. In the Model 20, there are four dc-voltage ranges that go from 0 to \(2,20,200\), and 1000 V full-scale. Input resistance is 10 megohms, and polarity indication is automatic. The ac-voltage ranges are the same as on dc, except for the highest range, which goes to 800 volts. The input impedance is 10 megohms shunted by 40 pF , while the frequency range is 50 to 500 Hz .

Resistance can be measured in decade steps in four ranges from 2000 ohms to 2 megohms full-scale. Test currents on the ranges are \(5,0.5,0.05\), and 0.005 mA respectively from the lowest to the highest range.

Any time the measurement capability of the DMM is exceeded, the overrange condition is indicated by the display blinking on and off.

The numeric readouts in the Model 20 are \(1 / 3 \mathrm{in}\). (8.47 mm) high. They form a bright orange gas-discharge seven-segment display that is easy to read over a very wide range of viewing angles and from quite a nu mber of feet away. The plus and minus signs used to display the polarity of the dc voltage being measured are also gas-discharge devices.

Aside from the RANGE and FUNCTION control knobs and display window, the only other things on the front panel of the DMM are the power switch and four banana jacks. Two jacks, color-coded red and black, are for the ac and dc voltage inputs. The
remaining two jacks, coded white, are for the resistance and capacitance functions. A pair of banana plugs equipped with spring clips are provided with the instrument. These are convenient to use for measuring discrete, out-of-circuit resistors and capacitors. For in-circuit tests, the usual test leads can be plugged into the jacks.

Unlike most DMM's, the Model 20 can be disassembled in just a few minutes by pulling back on two plastic knobs located on the rear apron. This allows the DMM to be disassembled for access to all parts in the event service or repairs must be performed or when calibration is required. (Calibration is a snap when performed according to the instructions printed on the inside of the instrument case lid.)

We put the Model 20 through our usual tests, checking accuracy with a voltage standard and precisiontolerance resistors. It performed well within its published specifications. After a few weeks of use, we again checked accuracy and found no deviations.

Model 21. Next, we turned our attention to the Model 21 hand-held DMM.

This instrument is identical in performance to the Model 20 (including the capacitance-measuring function) except that it is battery powered, much

more compact, and uses \(6.86-\mathrm{mm}\) seven-segment LED readouts. The battery pack is rechargeable, providing more than 1000 measurements before recharging is required. (The
charger is provided with the instrument.)

Operation of the Model 21 is initiated by a fingertip switch located on the left side of the instrument case. The switch has three positions: off, momentary-on, and full-on. For momentary-on operation, the switch is depressed for as long as desired. For full-on, it is slid forward, where it locks in place until slid back to off.

The Model 21 comes with a soft carrying case, which is equipped with a belt clip. It also has a built-in pocket in which the test leads are stored when the instrument is not in use. As far as actual performance is concerned, we could find no difference between the Model 21 and the Model 20 in accuracy and flexibility, and the Model 21 is built to take the rough-and-tumble life of a tool-box/service-vehicle environment

The Model 20 bench DMM measures 9 in . by \(6 \frac{1}{4} \mathrm{in}\). by \(21 / 2 \mathrm{in}\). \((22.7 \times 15.9 \times\) 6.4 cm) and weighs slightly more than \(2 \mathrm{lb}(1 \mathrm{~kg})\). Its total power consumption is 3.5 watts. The compact Model 21 measures \(63 / 4 \mathrm{in}\). by \(31 / 4 \mathrm{in}\). by \(13 / 4 \mathrm{in}\). \((17.1 \times 8.3 \times 4.4 \mathrm{~cm})\).

CIRCLE NO. 69 ON READER SERVICE CARD

Let's face it. After 37 years, even a Phantom Ill can use a lift. That's why I put a Delta Mark Ten B Capacitive Discharge Ignition on my Phantom ...to give her a spark I'd pit against any ' 75 model car. I went to Delta because they aren't Johnny-come-latelys. Delta's been making electronic ignition systems for over a decade.
Whatever kind of car you drive, you can give it the same great Delta performance gave mine.
- Mark Ten B Capacitive Discharge Ignition Systems are manufactured by Delta Products, Inc., a company with a conscience, and with a proven record of reliability both in product and in customer relations.
- The Mark Ten E really does save money by eliminating the need for 2 out of 3 tune-ups. Figure it out for yourself. The first tune-up or two saved pays for the unit, the rest is money in your pocket. No bunk!
- Because the Mark Ten B keeps your car in better tune, you actually can save on expensive gasoline.
- With a Mark Ten B, spark plugs stay clean and last longer . . fouling is virtually eliminated.

\section*{IERD-TO-30V EXPERIMENTER'S SUPPIV}

\author{
BY THOMAS McGAHEE
}

MOST power supplies that employ the popular 723 precision voltage regulator IC do not permit the output voltage to go down to zero. By using a bias supply (/C3 in the schematic) to reference the main regulator (IC1), the power supply described here is able to use a full 7 volts for its reference supply, while maintaining the ability to go to a 0 -volt output. Top output is 30 volts.

The power supply employs a split output, providing both positive and negative output voltages referenced
to a common point. The voltage splitter circuit is composed of /C2, Q2, Q3, and R6 through R8. With the values given for R6 and R8, the positive outpu't voltage swing at BP1 can be varied from 10 to 85 percent of the total available voltage, leaving a negative voltage swing at \(B P 3\) of 15 to 90 percent.

Transistors Q2 and Q3 change their dynamic resistance to keep the output voltage properly split for loads of up to 1 ampere. Accurate tracking occurs for all output voltages where the total adds up to at least 3 volts. Below the

3-volt output level, operational amplifier IC2 does not track exactly. For single-ended outputs, BP1 is used as the positive and BP3 the negative output connector; Q2 and Q3 then draw only a few milliamperes of quiescent current.

Because of the circuit's unique design, potentiometer R3 permits a linear adjustment in the output from 0 to 30 volts. The voltage splitter circuit is also designed to perform in a linear fashion. The output current is limited by R2 to 1 ampere at all outputs up to

BP1-BP3-Color-coded binding post
\(\mathrm{Cl}-500-\mu \mathrm{F}, 50\)-volt electrolytic capacitor
C2, C10-470-pF ceramic capacitor
C3, C7, C8- \(0.1-\mu \mathrm{F}\) ceramic capacitor
C4- \(10-\mu \mathrm{F}, 15\)-volt electrolytic capacitor
C5, C6, C9-220- \(\mu \mathrm{F}\). 35-volt electrolytic capacitor
D1-D4-100-volt, 3-ampere silicon diode
DS-D8- 50 -volt, 1 -ampere silicon diode
\(1 \mathrm{Cl}, 1 \mathrm{C} 3-723\) precision voltage regulator integrated circuit

\section*{PARTS LIST}

IC2-741 operational-amplifier integrated circuit.
Q1, Q2-2N5296 transistor
Q3-2N6109 transistor
R1, R5, R8- 1000 -ohm, \(1 / 2\)-watt resistor
R2-0.68-ohm, 5 -watt resistor
R3, R7-10.000-ohm, linear-taper potentiometer.
R4-2500-ohm, linear-taper trimmer or standard potentiometer (see text)

R6- 2200 -ohm, \(1 / 2\)-watt resistor
S1-Spst power switch
T1-24-volt, 1.5 -ampere tilament transformer
T2-12-volt, \(1 / 2\)-ampere filament transformer Misc.-Suitable chassis box; three-conductor line cord; heat sinks and insulators for transistors; line-cord strain relief: pc or perforated phenolic board with solder clips; spacers for mounting board: machine hardware; hook-up wire: solder; etc.

25 volts and 800 mA between 25 and 30 volts. The entire available current is delivered between BP1 and BP3 in single-ended applications, or it can be spit as needed between the \(B P 1 / B P 2\) positive and \(P B 3 / P B 2\) negative outputs.

Voltage regulation under the worst-case conditions in the power supply measured 0.05 percent in both the single-ended and split modes. The power supply can withstand short circuits across its outputs indefinitely if the three transistor heat sinks are large and mounted on the outside of the supply's case. With the power supply delivering 1 ampere at 24 volts, the ripple measured slightly less than 10 mV . Delivering 950 mA at 28 volts, the ripple was 30 mV -its worst-case condition. (The exact values for regulation and ripple appear to be due mainly to the particular 723 IC used. With some 723 IC's, the regulation can be as bad as 0.7 percent.)

The power supply is best assembled using a printed circuit board, owing to the fact that it utilizes three IC's. However, if you prefer, you can use perforated phenolic board and push-in solder clips-in which case, use sockets for IC1 through IC3. The three transitors must be mounted on heat sinks, preferably on the outside of the case in which you build the power supply. (Note that, in the schematic, no pin numbers are given for the IC's. Each IC is available in a variety of package configurations with different pindesignation formats. Hence, pin functions are given so that you can design your pc board for the package configuration used.)

The power supply can be built into a \(57 / 8\)-in. \(\times 51 / 4\)-in. \(\times 3\)-in. (\(14.9-\mathrm{cm} \times\) \(13.3-\mathrm{cm} \times 7.6-\mathrm{cm}\)) metal utility box. The transistors, with their heat sinks, go on the rear outside wall of the box, while the front accommodates voltage control potentiometer R3, voltage split control R7, and power switch S1 Zero-set potentiometer R4 can also be mounted on the front panel, or it can be located inside the supply's case, with access provided to it through a hole in the front panel.

In use, R4 must be adjusted until the minimum output from the power supply is exactly zero. Then, potentiometer R3 controls the output over the 0to 30 -volt range. Potentiometer R7 permits the power supply to be operated in the split mode with both sides balanced or with different positive and negative voltages.

\title{
PACE...The Two-Way Radio Specíalists Others Try To Keep Pace With Move Up To The "SIDETALKS"
}

The dependables! A matched pair that will make you "BIG" in the rapidly expanded SSB mode.
- 23 channels Citizens Band AM - with full 4 watts of maximum legal output power.
- 46 channels Single Side Band SSB - with 12 watts PEP of maximum legal power output.
- Full netting clarifier.
- Highly sensitive performance on receive - more limiting circuitry in AM and blanking circuitry in 55B mode.
- Base unit features a built-in SWR/ Watt Meter with mounting bracket and 12 V DC input for mobile installations for constant check of antenna performance.

Clean and clear sound in both talking and listening. A full \(100 \%\) modulation with PACE's unique compression. And a sensitivity of 1.0 uV on AM and . 5 uV on SSB. Squelch sensitivity is .3 uV .
ABOVE ALL: MORE TALK POWER FOR YOUR DOLLAR - ONLY \(\$ 329.95\) and \(\$ 389.95\) - the price that has lasted all year (but may not last much longer).

TAKE ADVANTAGE NOW! SEE YOUR DEALER TODAY!
\[
\text { ((} \mathbf{()) \text {) PACE COMMUNICATIONS }}
\]

\title{
Who Says Audiophile Components have to be Expensive?
}

No one really says so, but most people think so. The SAE Mark XXX Stereo Preamplifier and Mark XXXIB Stereo Power Amplifier offer the highest engineering excellence and quality parts available at a moderate price.

To find out what makes these units the most sought after components, fill out the coupon and mail today

\section*{IF YOU ARE READY FOR SERIOUS CAREER}

\section*{Learn College-Level}

\section*{ADVANCEMENT NOW}

\section*{Electronics at Home}

\section*{With CREl's unique Electronic Design Laboratory Program}

There is only one way to a career in advanced electronics-through advanced training. You can get such training through a resident engineering college or you can take a CREI specialized college level electronics program at home.

Wide Choice of Programs. CREI offers you program arrangements with fourteen areas of specialization in advanced electronics. You can select exactly the area of specialization for the career you want.

CREI also offers program arrangements both for those with extensive experience in electronics and for those with only limited experience. All programs are college-level, except for a brief introductory level course, which is optional.

Unique Laboratory Program. CREI now offers a unique Electronic Design Laboratory Program to train you in the actual design of electronic circuits. You also get extensive experience in tests and measurements, breadboarding, prototype building and in other areas important to your career. The Lab Program makes it easier for you to understand the principles of advanced electronics. Only CREI offers this complete college type laboratory program.

The Lab Program includes professional equipment which becomes yours to keep. You will especially appreciate the Electronic Circuit Designer, which is available only through this program and which you will find extremely valuable throughout your professional career.

College Credit. You can actually earn college credit through CREI programs, which you can use at recognized colleges for an engineering degree. CREI maintains specific credit transfer arrangements with selected colleges in the U.S.

Industry Recognized Training. For nearly 50 years CREI programs have been recognized throughout the field of electronics. CREI students and graduates hold responsible positions in every area of electronics and are employed by mare than 1,700 leading organizations in industry and government.

Qualifications to Enroll. To qualify for enrollment, you should be employed in electronics or have previous experience or practical training in the use of electronic equipment. You must also be a high school graduate or true equivalent.

All CREI Programs are available under the G.I. Bill

Send for FREE Book. If you are qualified, send for CREI's full color catalog describing these college-level programs and your career opportunities in advanced electronics. Mail card or write for your copy of this book.

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest Washington, D. C. 20016

Accredited Member, National Home Study Council

Solid State

By Lou Garner

\section*{USING THERMOELECTRIC DEVICES}

MOST electronics buffs find great delight in demonstrating their latest hobby project to friends and neighbors, be it a newly constructed audio amplifier, a special-purpose receiver, or whatever. Now you can flabbergast your friends and astonish your acquaintances just by demonstrating the operation of a single, relatively simple solid-state device. And you won't need a bench full of extra equipment to accomplish this marvelous feat. All you'll need is a standard thermoelectric (TE) module and a suitable dc power source.
Call in the friend you wish to impress. Place an aluminum cookie sheet on the kitchen table to "protect the surface" (you don't have to mention that its real purpose is to serve as a heat sink). Produce the TE module with a suitable flourish and a few well-chosen comments. Place the module on the cookie sheet and ask your friend to hold it flat in place while you connect the power leads to a dc power supply (in some cases, an ordinary lantern battery). Then ask your friend to continue to hold the module down until it starts to "warm up."

Within seconds, the module's top surface will start to get cold (unless you goofed and placed it on the cookie sheet upside down). Chances are your friend will move his (her?) hand away from the device with some degree of astonishment. Continue watching and, within minutes, a thin film of frost will start to form on the module's top surface. At this point, you can: (a) tell your friend about the device; (b) tell him it's a subminiature air conditioner for pygmy space capsules; or (c) tell him it's a defective heater that gets cold instead of hot.

After you've had your fun demonstrating the device to all your friends, you can use it in a variety of practical applications, from cooling the output devices in a power amplifier to keeping potables at a reasonable drinking temperature. If you're a high school student, you can incorporate the TE device in any of a number of exciting Science Fair projects or, if in college, use it in scientific research work.

Interestingly, TE devices, in themselves, are not new.

Scientists have been working with these units in one form or another for over a century and a half, dating back to 1821, when a German, Thomas Seebeck, discovered that an electric current will flow in a closed circuit made up of two dissimilar metals as long as the junction between the two is maintained at different temperature levels. Named, appropriately, the Seebeck effect, this discovery has been utilized for decades in the manufacture of meter and temperature sensing thermocouples.

The next major breakthrough was made in 1834, when a French scientist, Jean Peltier, observed that heat energy could be transferred across a junction of dissimilar metals when an electric current was passed through the junction. The junction became, in effect, an electrical "heat pump." This is known as the Peltier effect.

Today, TE modules are manufactured using semiconductors and are classified as solid-state devices. The modern Peltier TE cell (Fig. 1A) consists of short sections of p-type and n-type semiconductor materials bonded together with a heavy metallic strap on one side, with electrical connections made to the free ends of the semiconductor elements. Most commercial units are multi-element modules made up by connecting a number of individual cells in series electrically, but in parallel as far as heat transfer characteristics are concerned, as shown in Fig. 1B.
In operation, a dc voltage is applied to the module (or cell), with the positive supply terminal connected to the n-type element, the negative to the p-type. Heat transfer from one side of the module to the other occurs as a result of the continuous formation of new current carriers and their migration through the semiconductor elements to the power terminals. Within limits, the greater the current flow, the greater the heat transfer, provided the transferred heat is dissipated by a suitable heat sink. Unfortunately, internal heating occurs as a result of the current flow, just as in a resistor.

At some point, therefore, the heat generated internally

Fig. 1. Thermoelectric devices: single
 junction (left) and multi-element (right).
offsets the heat transfer and the unit will no longer operate efficiently as a heat pump. In practice, then, each module, depending on its size and construction, has an optimum current rating and maximum heat transfer capability. The direction of heat transfer can be reversed simply by reversing the applied voltage polarity. Thus, a single device can serve either as a cooling or a heating element.
As the legendary two-faced god, Janus, a TE device has two facets to its operation. It can "pump" heat or it can serve as a low-power electrical generator when heat is "pumped' through it. This can be accomplished by heating one side of the module while cooling the other. This technique has been used in commercial and military applications to generate electrical power in remoter areas.

Peltier-type TE modules are available from a number of major manufacturers, with some models carried as stock items by industrial electronics distributors and the larger mail-order supply houses. Prices vary, of course, depending on type and capacity; but in general they are comparable to the prices of medium-power uhf transistors. In addition to the modules themselves, several manufacturers also offer detailed application notes and handbooks.

The Jermyn type A1357 is typical of the medium-power units. It has a maximum cooling capacity of 20 watts and a maximum current rating of 9 A at 2 Vdc . It can be powered by line-operated dc supplies provided the ac ripple does not exceed \(15 \%\) and can develop a maximum temperature gradient of \(60^{\circ} \mathrm{C}\) when the warm face is no hotter than \(+45^{\circ}\) C. The A1357 sells for \(\$ 40\) each in quantities of up to four units.

Space limitations prohibit our listing all of the firms now manufacturing thermo-electric devices, but the following offer a number of types which should be of particular interest to experimenters and hobbyists:
Borg-Warner Thermoelectrics
Wolf \& Algonquin Roads
Des Plaines, IL 60018
Cambridge Thermionic Corporation 445 Concord Avenue Cambridge, MA 02138
Jermyn
712 Montgomery Street San Francisco, CA 94111.

Reader's Circuits. Apparently, my discussion of LED's and their applications in last October's column struck a responsive chord among our readers. A number have suggested modifications of the basic circuits I discussed, several have written of their own experiences with these intriguing devices, and others have submitted original designs for new applications. The LED flasher circuit given in Fig. 2, for example, was submitted by Michael E. Lindsey (2625 Fairgreen Drive, Pittsburgh, PA 15241).

Fig. 2. Reader's flasher circuit uses a 555 tuner and a dual-element LED.

Featuring a single IC timer, a minimum of additional components, and a dual (red/green) LED, Lindsey's design alternately flashes red and green at a rate determined by the timing capacitor's (C1) value. The circuit can be used in toys, displays, and models or, if preferred, as a unique type of visual alarm for a control system or intrusion detector.

With neither layout nor lead dress critical and readily available components specified, Lindsey's design can be duplicated quite easily in the home workshop. A standard 555 is used for IC1; the resistors are \(1 / 4\) or \(1 / 2\)-watt types, C1 is a \(10 \mu \mathrm{~F}, 10\)-to- 15 -volt electrolytic capacitor, and LED1 is a MV5491 red/green dual LED. Operating power is supplied by a 9 -volt transistor battery, controlled by a spst toggle, slide or rotary switch, S1. A pair of individual LED's may be substituted for the MV5491, if preferred, provided they are connected with reverse polarity, as shown, while the circuit's flashing rate can be changed by using different values for C1.
"How simple can you get?" was my initial reaction to the circuit illustrated in Fig. 3. Submitted by reader James C. Graves, Jr. (11A Lin Drive, Eglin AFB, Valparaiso, FL 32542), this square-wave oscillator requires a hex inverter IC, a feedback capacitor, a dc power source, and . . . that's all!!! The basic design may be used as part of a function generator, in a test square-wave generator, as a tone source for electronic musical instruments, in a signal injector for radio-TV servicing, as a simple clock source for digital applications, or even as a code-practice oscillator if a hand xey is used in series with the power supply.
James suggests a 7404 for IC1 and a \(30-\mu \mathrm{F}, 6\)-to-12-volt electrolytic capacitor for C1, with the power supply furnishing 4.5 to 5.5 V dc. However, I suspect that other

Fig. 3. Square-wave generator uses only a hex inverter IC, a feedback capacitor and a dc power source.
standard hex inverters will work equally well in the basic design, although the supply voltage may have to be changed to match device specifications. When duplicating the circuit, some builders may wish to modify the original design by adding a two-pole, multi-position switch to provide a choice of feedback capacitor values and, thus, a selection of different output frequencies.

The Lit Bit. Aside from your favorite technical magazines, the best sources of up-to-date literature on semiconductor devices and their applications are the reams of material published each year by the major semiconductor manufacturers. While a good deal of this material is directed primarily toward the advanced design engineer or to specialists in specific fields, many of the publications are of general interest and can be particularly valuable to the student as well as to the serious hobbyist and experimenter:
A fair amount of the material will be found on the literature shelves of local distributors. Some is available through area manufacturer representatives, while other items must be requested directly from the manufacturer. Although much of the literature is available without charge, there may be a nominal price for larger items, such as bound handbooks. Among the recent publications which, I feel, should be of special interest to our readers (some of which have been called to your attention in PE's New Literature section) are the following:

\section*{From RCA's Solid State Division}

\section*{(Box 3200, Somerville, NJ 08876):}

Understanding CMOS, publication CPI-279. An 80-page programmed text structured as a self-teaching aid to familiarize engineers and technicians with CMOS technology. Sells for \(\$ 2.00 /\) copy.

Thyristors/Rectifiers Pocket Directory, publication TRP-440A. A 68-page pocket-size directory describing over 500 RCA devices, including SCR's, ITR's, triacs, diacs, and rectifiers.

RCA Solid State IR Emitters, Isolators, and Laser Diodes, publication OPT-113A. An interesting 6 -page brochure designed so that it can be inserted in a loose-leaf note-book or opened for use as a wall-chart, this publication provides basic information on RCA's line of subject devices.

Linear IC Wall Chart, form LIC-247A. Printed on heavy paper stock, this large wall chart features condensed technical data and functional diagrams for RCA's line of linear IC's.

\section*{From Siliconix, Inc.}
(2201 Laurelwood Road, Santa Clara, CA 95054):
Designing Junction FET Input Op Amps, application note AN74-3. This 18-page application note deals with the design criteria for FET input op amps.

\section*{From Motorola Semiconductor Products Division (Box 20912, Phoenix, AZ 85036):}

Generate Custom Waveforms Digitally, application note AN-589. Prepared by Karl Huehne, this 6-page publication discusses a method for generating custom waveforms using IC counters, a read-only memory (ROM), and a monolithic digital/analog converter, and a review of possible applications.

Battery-Powered 5-MHz Frequency Counter, application note AN-717. By Don Aldridge, this 10-page application
note describes a battery-powered \(5-\mathrm{MHz}\) frequency counter featuring McMOS logic circuitry to achieve lowpower operation. Designed for use on a 12-volt power source, the basic counter can be used with any of several readouts.

\section*{From Hamlin, Inc.}

\section*{(Lake and Grove Streets, Lake Mills, WI 53551):}

Liquid Crystal Display Application Manual—Written as an introduction to liquid crystal displays and their application, this 12 -page, \(81 / 2 \times 11\) booklet covers such topics as: "What are liquid crystal displays?" "What is liquid crystal?" "How do LCD's work?" "How many types are there?" "Applications," and "Other displays." It includes one of the best explanations we've seen on the difference between dynamic scattering and field-effect liquid crystals.

\section*{Device/Product News.}

The Amperex Electronic Corp. (230 Duffy Ave., Hicksville, NY 11802) has introduced a moderately priced solid-state product which should offer interesting possibilities in the

Amperex's low-cost solid-state doppler radar proximity and motion detector.
hands of an imaginative hobbyist-a self-contained microwave module designed for X-band doppler radarproximity and motion detector systems. Priced at only \(\$ 47.50\) F.O.B. Hicksville in single quantities, the module includes an integral antenna, Gunn oscillator transmitter and low noise Schottky diode detector. Identified as the DX-489 Microwave Module, the new Amperex device is capable of detecting a moving man at a distance of 100 feet, and is suitable for a variety of applications, including intrusion alarm systems and "back-up" safety alarms for trucks, buses and cars. The DX-489 requires a 7 -volt dc power source and consumes less than 1 watt while radiating approximately 8 mW at 10.525 GHz . Because of the lowgain antenna, extremely wide angle coverage is possible. The unit can be flush-mounted in a ceiling or wall and still effectively monitor an entire room for "intrusion alarm" applications. External deflectors can be used to shape the radiated pattern; and the vertical beam width can be reduced without reducing horizontal width.

Three new plastic encapsulated devices have been added to General Electric's (Semiconductor Products Dept., Bidg 7, MD49, Electronics Park, Syracuse, NY 13201) growing line of power Darlington transistors. Designated types D41K, D44E and D45E, the new units feature high current gains and low saturation voltages, and may be
used as drivers, regulators and amplifiers. The D41K has a current rating of 2 amperes, with a minimum beta of 10,000 at 200 mA , and is the pnp complement to the earlier D40K. Types D44E and D45E, npn and pnp units, respectively, are complementary pairs in the 10 -ampere range, and have minimum betas of 1,000 at 5 amperes. Each type is colorcoded for easy pnp-npn identification.

GE's new series of complementary power Darlingtons have high current gains.

As a complement to the MPC1000 positive voltage regulator, Motorola's Semiconductor Products Division (P.O. Box 20294, Phoenix, AZ 85036) has introduced the MPC900 negative voltage regulator. Requiring a minimum of external components for operation, as illustrated in Fig. 4 , the new device has a maximum input voltage rating of

Fig. 4. Typical circuit connections for Motorola's MPC900 negative voltage regulator.
-35 V dc , and can supply an adjustable output voltage from -4 to -30 volts. Housed in a TO-3 style package, the MPC900 can deliver load currents of up to 10 A without an external current-boost transistor and has an internal power dissipation capability of 100 W . Device protection is provided by an adjustable overload circuit. The MP'C900 and the MPC1000 can be used together in applications that require complementary regulated supply voltages with a common ground.

\section*{Put more}

\section*{punch in your work.}

With a Greenlee Chassis Punch you can punch clean, true holes in seconds. Round, square, key or D. In 16-ga. metal, hard rubber, plastic or epoxy. Available at radio and electronics parts dealers. Write for catalog E-730. Greenlee Tool Co, Rockford, III. 61101.

\section*{GREENLEE TOOL CO \\ \\ CIRCLE NO. 16 ON READER SERVICE CARD}

\section*{(\%. EVERYIMING YOU WANTED TO INOW ABOUT CDIGMITION SYSTEMS BUT DIDN'T KNOW WHOM TO ISK.}

Send for FREE Tiger booklet (20 pages) which answers all your questions.

Name

\section*{Address}

City
\(\qquad\)

CLIP OU'T THIS AD AND SEND TO-

\section*{TRI-STAR CORP.}
P. O. Box 1727 Dept. E

Grand Junction, Colo. 81501
CIRCLE NO. 3B ON READER SERVICE CARD

By Len Buckwalter

\section*{TAKING THE BARK OUT OF SPARK}

ITHOUGHT I knew something about ignition noise until । met Harry Bichsel. He probably knows more about the snaps, crackles and pops that tear up our mobile rigs than any other CB'er around today. Harry's a retired electrical engineer (from Westinghouse) and he's spent 25 years tracking down the nasty noises that disable the communications of a mobile rig. As I drove up to his home, he was puttering with a huge contraption that looked like a barn door painted black and covered with plumbing pipes. I soon found out it was designed to capture energy from the sun. But I was more interested in the two vehicles parked next to Harry's infernal solar machine-a 1971 Ford LTD and a perky Mustang. They looked like ordinary cars, but something beneath their bonnets made them the most interference-free mobiles for miles around. They had shielded ignition systems.

CB manufacturers have already done their part in trying to lick mobile radio's greatest problem. Noise limiters on today's sets are a far cry from the simple diode clippers of an earlier time. The diode simply clips the sharp spike created by a noise pulse just before it passes into the receiver's audio circuits. Since the pulse is almost always stronger than the voice modulation, the desired audio goes through unaffected. Well, almost, because clippers aren't perfect and they can reduce the set's intelligibility. If you get one of the newer r-f noise-silencer circuits, chances are it does a better job by attacking noise much earlier in the receiver, before those spikes slop up the i-f circuits. But noise limiters aside, it's generally agreed that in mobile rigs it's best to suppress the noise where it begins-in the car's electrical system. Let the noise limiters in the receiver deal with noise from the other fellow's car.

Harry had tried the usual suppression measures years ago. He had installed filters, bypass capacitors and other items to short-circuit offending \(r-f\) hash to ground before it rides into the receiver through antenna or power leads. If ignition noise causes an S-meter reading of S7, he explains, that's about 42 dB , considering that each S-unit might be equivalent to 6 dB . It means an incoming signal must rise to considerable strength to override the noise. The weak ones are never heard. As he demonstrated the point, I recalled a friend of mine who runs a vending-machine route and calls his office on CB to get messages. It's a great moneysaver in his busi-
ness. But he has to stop and turn off his truck engine to hear anything! Harry found he could reduce an S7 noise reading to about S5, mostly by treating the voltage regulator and instruments (such as the gas gauge). But a whopping difference happened when he went all the way and shielded the ignition system.
The big culprit is the spark plug, and it's easy to see why. If you could somehow bring back Heinrich Hertz and show him the diagram of a car's ignition, he'd likely say, "Looks like the radio transmitter I built around 1890." There's a high-voltage generator and spark-discharge gap reminiscent of turn-of-the-century radio apparatus. A steeply peaked electrical discharge across an air gap creates a wave rich in harmonics that easily extends to 27 MHz . To make matters worse, the wires from each spark plug to the car's distributor act as a multi-element transmitting antenna. You can't bypass high-tension wires because it would warp the clean waveform needed for good ignition, and cost a fortune anyway. In a highcompression engine, spark-plug voltages occasionally reach 30 to 40 kilovolts. Thus, the practical answer is to shield the ignition wires.

At center is the distributor with a shield can clamped over it. In the technician's hand are high-tension wires encased in shield braid.

The ingnition coil is shielded where the wires connect to it. Shield braids are pulled over the primary wires going to the coil

How to Shield. Harry has some good pointers on how the job is done. The first is to draw your own diagram that shows where each spark plug and coil wire are connected in your car. Also find the indexing mark on the distributor that orients the wires with respect to the ignition timing. (If you reverse a spark plug wire, it'll mess up the firing order.) All the old spark plug wires should be removed and replaced because these leads must be in excellent condition in a shielded system. Any cracks in the insulation will surely cause an engine miss, since the spark is attracted to the easy ground afforded by the copper braid pulled over each wire. One end of the braid is soldered to a metal shield that covers the spark plug. The other end of the braid is soldered to a can fitted over the distributor cap. (That cap is plastic and radiates considerable noise.) Another metal cap is fitted over the plastic end of the ignition coil to contain noise emitted from that area. Shielded braid is also pulled over the primary wires to the coil, and a \(0.1-\mu \mathrm{F}\) bypass capacitor is fastened to a coil lead.

That's the basic routine for shielding an ignition system. Good insulation around the plugs inside the shield is important to avoid any possibility of arcing. The bypass capacitor on the ignition coil is needed to establish a good r-f short for noise currents cir-
culating in the shield braids. Since Harry does his own ignition tuneups, he overlaps some braid on one lead to the ignition coil so he can slide back the braid and attach a tach or dwell meter. He's found no difference in engine performance or distributor point life after shielding the ignition system.

Is it worth all the trouble? I'd always thought shielding an ignition system was something done only in airplanes and text books. Much too exotic for us civilians. The answer came as Harry fired up the big V-8 and turned on a \(C B\) transceiver that had a plastic case, no less. The little radio hardly protested.

Of course, some cars are quiet, while another of the same make can create the sound of hail on a tin roof. I challenged Harry to remove some of the shielding. All he did was slide back the shield braid from a coil wire and the radio made noises like Baron Frankenstein's laboratory. The receiver's S-meter, which had been idling at a gentle reading of 1 or 2 units swung to S7.

Maybe the time and trouble to shield the ignition are worth it after all. I recall only one mobile rig I operated in the past that wasn't troubled in some way by ignition interference. It was aboard a boat a couple of years ago. Boats, like cars, are prolific noise generators. But come to think of it, that boat was powered by a diesel engine. It had no spark plugs!

\section*{SAVES GAS! REDUCES MAINTENANGE!}
i The Most Advanced IGNITION SYSTEM.
Never wears out or needs any Maintenance.

Pertect Timing and Dwell never change
The Allison OPTO-ELECTRIC System eliminates the Points and Condenser, replacing them with an OPTO-ELECTRONIC TRIGGER, using a Light-Emitting Diode and Photot ransistor. Completely eliminates Point and wiper-arm "Friction" wear: The only "TRUE'" Electranic Ignition...that you can buy for under \(\$ 100\). Gives 40 -times more Timing Accuracy than AMY system Using "Mechanical" Breaker-Points! Unlimited RPM, Smoother running (No timing fluctuation as with Magnetic Units). All SOLID-STATE Components UNAFFECTED by Temperature, Moisture, or Vibration Easier "tarting under any conditionl Increased Horsepower Sparkptugs last 3 to 10 -times Longer. PERFECT TIMING INCREASES Engine Efficiency and Gas Mileage up to \(30 \%\) ! Pays for itseff! Eliminates ignition Tune-Ups forever!
- Quick and Easy Installation! \(\star\) Tested and Proven reliability.
Only 3 49.5. - satisfaction guaranted:
- Complete. - 1-YEAR FACTORY WARRANTY
(State Make, Year, Engine Size). (Calif. Res. add Tax)
- CDNVERT YOUR "C-D" UNIT TO bREAKERLESSI Opto-Electric "TRIGGER UNIT".... Only 34.95
\(\star\) Send Postcard for free brochure today.
ALLISON AUTOMOTIVE CO.
1269-P, East EDNA PL., COVINA, CAL. 91722
CIRCLE NO. 2 ON READER SERVICE CARD

CUES SAUTSE STERED COMPONENTS DISCOUNTS
ON NATIONALLY ADVERTISED turntables - CARTRIDGES

\author{
COMPACTS - RECEIVERS
}

AMPLIFIERS - TAPE RECORDERS
Wholesale Prices! Audio Warehouse Sales, One of the Capitols largest stereo whole salers will fill and deliver all your mail orders promptly in factory sealed cartons at prices that will amaze you.
Write for quote on Famous Brand, Stereo Components. We guarantee satisfaction.

\section*{AUDIO WAREHOUSE SALES} 3310 NEW YORK AVE. N.E. WASHINGTON, D.C. 20002 (202) 832-1616

\title{
15 exciting new projects for'75
}

15, 17 \& 19" (diagonal) Color TVs with On-Screen Digital Readout
Advanced Heath engineering and outstanding picture quality. All feature on-screen channel readout \& optional plug-in clock modules. In-line picture tubes with slotted shadow masks provide exceptionally bright, sharp pictures. In the GR-400 and 500, black matrix tubes improve contrast. And here's something new-static toroid yoke \& magnet assemblies never require convergence \& fixed LC filters eliminate instrument if alignment. GR-300 \& 400 come with walnut veneer cabinets; cabinets for the GR-500 start at \(\$ 39.95\).*
Kit GR-300 (15" diag.), with cabinet
. . 449.95*
Kit GR-400 (17" diag.), with cabinet . 489.95*
Kit GR-500 (19' diag.), less cabinet . 499.95*
Kit GRA-2000-1, Digital Clock Module . 29.95*

Highly Acclaimed GR-2000 Digital-Design Color TV
The set that brought TV into the digital age-and still one of the finest made. Tuning is totally digital solid-state \& the channel number appears right on the big, \(25^{\prime \prime}\) (diagonal) screen. The optional clock module also displays the time on the screen. For the ultimate in convenience, add the optional wireless remote control. Can be custom mounted; optional cabinets start at \(\$ 119.95^{*}\).
Kit GR-2000, less cabinet
.669.95*
Kit GRA-2000-1, Digital Clock Module
.29.95*

NEW Portable Digital Multimeter
Professional performance at a budget price. 26 ranges resolve voltages to \(100 \mu \mathrm{~V}\), currents to 100 nA , measures AC \& DC current up to 2 A, resistance from 100 to 1000 K ohms. Big, bright \(31 / 2\)-digit readout with automatic overrange \& polarity indications. Built-in reference standards for easy field calibration. With rechargeable batteries \& AC line cord. Kit IM-2202

NEW DC-10MHz Oscilloscope
A great scope-a great value! Perfect for TV servicing. 10 mV vertical input sensitivity, time bases from \(200 \mathrm{~ms} / \mathrm{cm}\) to \(200 \mathrm{~ns} / \mathrm{cm}\), internal or external digital triggering, two input channels. Mu-metal shielded tube with \(8 \times 10 \mathrm{~cm}\) graticule.
Kit \(10-4530\). 299.95*

NEW Code Practice Oscillator
As much fun to build as it is to use. It's battery operated for complete portability. Built-in speaker, adjustable tone \& volume, headphone jack. With key. Less battery. Kit HD-1416
. . .9.95*

NEW 40 kV Metered Probe
Ideal for high-voltage TV measurements - up to 40 kV with \(\pm 3 \%\) accuracy. On/off switch. Kit IM-5210 17.95* Assembled SM-5210 . . 24.95*

NEW
Emergency Car Strobe Light Highly visible amber flash warns otherdrivers when your carstalls or breaks down. Non-marring magnetic base, \(12^{\prime}\) cord, plug fits cigarette lighter. For 12 VDC.
Kit GD-1026

NEW Solid-State Dip Meter
Fully portable, fits in your hand. Covers 1.6 to 250 MHz in fundamentals. MOS-FET paraphrase amp, hot-carrier diodes, Q-multiplier. With case, 7 plug-in coils. Less battery.
Kit HD-1250
. \(59.95^{*}\)

NEW Windshield Wiper Delay Provides exactly the wiper speed you need for safe driving in any weather, from light mist to heavy rain. Works with most 12 VDC positive or negative ground cars. Kit CH-1068 14.95*

\title{
at traditional Heathkit sauings
}

\section*{There are 350 more in the new FREE Henthkit cutalog!}

\section*{Who can build our kits? Anybody!}

For over 27 years we've made superb electronic equipment that anyone can build-even with no prior knowledge of electronics or kit building. Famous Heathkit assembly manuals guide you step by step, showing you exactly what to do - even how to solder like a pro.
And we back every Heathkit purchase with people. Expert technical consultants at the factory and trained service personnel from coast to coast are ready to help every step of the way. Thousands of Heath customers will tell you we won't let you fail!
When you're finished, you'll own one of the finest products available - kit or assembled. But don't take our word for it, independent reviewers consistently praise their quality.
You'll enjoy the satisfaction-and savings-of building a useful product with your own hands. And for years to come, you'll enjoy its unexcelled quality and performance. Build it yourself - with a little help from Heath.

NEW Heathkit/Delta Home Security System
Everything you need for a complete home security system. Remote detectors connect to Central Processor through your home's electrical wiring. Inputs for ultrasonic intrusion detector, heat \& smoke detectors plus "panic button" \& remote on/off switch. Central Processor features built-in speaker; output for an external speaker. Sounds alarm during power failure.

AM/FM Digital Alarm Clock Radio
One of the world's most sophisticated radios. Big, bright Beckman planar gas discharge tubes display the time, automatically adjusting their brightness as room lighting changes. Standby battery power keeps the clock - and you - on time (without the display) even if the electricity is interrupted. It wakes you to your favorite station or a gentle, electronic beep with adjustable volume. The radio section uses fixed ceramic filters for AM and FM and a factory-assembled and aligned \(F M\) front-end with \(5 \mu \mathrm{~V}\) sensitivity.
Kit GR-1075, less batteries
129.95*

\section*{Send for your free 1975 Heathkit Catalog today!}

\footnotetext{
HEATHKIT ELECTRONIC CENTERS - Units of Schlumberger Products Corporation Retail prices slightly higher.
ARIZ.: Phoenix; CALIF.: Anaheim, El Cerrito, Los Angeles, Pomona, Redwood City, San Diego (La Mesa), Woodland Hills; COLO.: Denver; CONN.: Hartford (Avon); FLA.: Miami (Hialeah), Tampa; GA.: Atlanta; ILL.: Chicago, Downers Grove; IND.: Indianapolis; KANSAS: Kansas City (Mission); KY.: Louisville; LA.: New Orleans (Kenner); MD.: Baltimore, Rockville; MASS.: Boston (Wellesley); MICH.: Detroit; MINN.: Minneapolis (Hopkins); MO.: St. Louis (Bridgeton); NEB.: Omaha; N.J.: Fair Lawn; N.Y.: Buffaio (Amherst), New York City, Jericho (L.I.), Rochester, White Plains; OHIO: Cincinnati (Woodlawn), Cleveland, Columbus, Toledo; PA.: Philadelphia, Pittsburgh; R.I.: Providence (Warwick); TEXAS: Dallas, Houston; VA.: Norfolk (Va. Beach); WASH.: Seattle; WIS.: Milwaukee.
}
\begin{tabular}{|c|c|}
\hline & Heath \\
\hline Heath Company & Schlumberger \\
\hline \multicolumn{2}{|l|}{Dept. 10-02} \\
\hline \multicolumn{2}{|l|}{Benton Harbor, Michigan 49022} \\
\hline \multicolumn{2}{|l|}{Name} \\
\hline \multicolumn{2}{|l|}{Address} \\
\hline City_______ State__ & Zip \\
\hline \begin{tabular}{l}
prices a specifications subsect to change without motice. \\
- mail oroer prices; f.o.b. factory.
\end{tabular} & CL-555 \\
\hline
\end{tabular}

By Art Margolis

\section*{MYSTERY OF THE POCKET POWER SUPPLY}

AS I OPENED the door of my shop one morning, I was startled by the barking of a white toy poodle. A little old lady, obviously the tiny dog's owner, said sternly, "Quiet Killer." She then picked up Killer, put him in her large pocket book, and followed me into the store.

Strollingup to thecounter, shepulled a 4 -inch (measured diagonally) black-and-white Sony TV out of the same large pocket book. I shrugged, wrote up a service ticket and placed it in line for the bench.
I didn't get to it until late afternoon. Plugging it in and turning it on, the sound snapped on instantly. Some light struggled to appear on the screen, and finally pushed its way out. At the same time, I heard a buzz in the sound. Examining the raster, it was shrunk in on all four sides and badly bowed. The bowing then moved slowly through the picture and, as the bend reached the bottom of the screen some flopover occurred.
I slid the chassis out of the tiny cabinet and frowned at the tightly packed conglomeration of tuner, three printed boards and a CRT assembly. There were no tubes except the CRT and high-voltage quintupler. The classical symptoms. There was visible hum in the picture, audible hum in the sound and four-sided shrink. This indicated that a filter in the power supply had failed. The line voltage pulsations, if they weren't filtered, would raise the dickens in the picture and sound, while lowering B+ voltages enough to cause vertical and horizontal shrinking of the picture.
The filters in the power supply are needed to smooth out pulsations after the rectifier changes the input to pulsating output. As the rectifier conducts, the filter charges near the peak voltage of the rectifier's output. Then as the cycle approaches the zero base line, the filter discharges a bit of elec-
tron storage to keep the output near the peak. If the filter is large enough, it keeps on discharging, with little lowering of voltage until the next peak.
A glance at the schematic of the Sony showed that, while the ac input was 117 V , the power supply \(B+\) output was supposed to be way down at 10 volts. For receivers having a high B+ input (in the hundreds), a filter size like 20,50 , or \(100 \mu \mathrm{~F}\) is ample. In small transistor sets where the \(B+\) is so low, a large storage device is needed \((1,000\) \(\mu \mathrm{F}\) or higher is common).

The Sony had two \(1000-\mu \mathrm{F}\) filters at the dc output and a \(1900-\mu \mathrm{F}\) at the ac input. These were the prime suspects. I located them quickly on the power supply board and decided to test them by direct replacement.

About ten minutes later, I had them out, new ones in and then the old ones back in place. They were all good. Unhappily, the test didn't work!

A closer look at the schematic, which I fortunately had, showed that there were three transistors in the power supply for further filtering. Operating as filters and voltage regulators, they noise-cancel the ripple and keep voltage at the prescribed level. In addition, they clean out any 60 Hz or \(15,750 \mathrm{~Hz}\) from the vertical and horizontal sweep circuits that might be coupled into the supply and redistributed throughout the TV.

How They Operate. As electrons are drawn from the TV circuits to the B+ source in the supply, the electrons encounter the collectors of an active power filter system and the emitter of a filter driver, two pnp's and an npn.

The active power filters have their emitters connected to the rectifier. Electrons can thus flow easily through the collector to the emitter and on to the rectifier. Ripple, of course, pulses the electron flow.

Meanwhile, the filter driver has its collector attached to the bases of the active power filters. The base of the driver, however, is connected to a network between the +10 volt line and ground. It takes a steady sample of the rectifier ripple. The ripple enters the base of the driver and is amplified and inverted 180 degrees. Since its collector is attached directly to the bases of the active filter, the inverted ripple modulates the \(B+\) passing through the active filter. The inverted ripple, 180 degrees out of phase with the active filter's ripple, cancels all ripple.

Schematic and layout of the power supply board.

In the base circuit of the driver is a potentiometer used to adjust the size of the amplified ripple. The adjustment is a screwdriver type, accessible through a hole on the center of the power supply board. I took my miniature screwdriver and tried the pot. No effect. Symptoms were unchanged.

I then read the dc voltage at source. Instead of 10 V there was about eight. I turned the control again, noting that the eight volts did not vary. Aha! The trouble was apparently in this pocket power supply.

Turning off the TV, I began resistance readings. When I tested the resistance across the 390 -ohm resistor in the +10 volt line, the meter read almost zero. The resistor looked clean and shiny however, which meant it was probably good. The short circuit appeared to be across the resistor, but two active power filters paralleled it!

I had to unsolder them for the final test. But it was worth it! They were both shorted. Zero ohms from E to C.
In a few minutes I had new ones installed. The picture spread out both vertically and horizontally, the visible hum was gone and the buzz in the sound was eliminated. Also, flop-over disappeared and the vertical hold locked the picture tightly.

It was closing time now and I could hear Harry Harris whistling as he swept the front of the store.
I called the number on the little old lady's ticket. "Ma'am, your TV is completed," I told her. "we're closing in a few minutes.'
"Killer and I would be so pleased if we could have it for tonight. Could you deliver it?"
Since it was on my way home, and it was probably her only TV, I said yes.

I knocked on her door. She came to the window, and waved \(m e\) to the garage. When the overhead door squeaked open, Killer was there and started his high-pitched bark. Walking in, I saw a four-foot high doll house with its roof lying on the floor. On the second story was a tiny dog's bedroom and a miniscule TV table that was perfectly sized for the Sony I had in my hand.

I placed the TV on the table, as directed by the woman, plugged it in an actual electric outlet on the doll house wall and attached an antenna wire that came through the wall near the outlet. Video and sound came on, and Killer quickly snuggled down in front of it. Guess a dog's life isn't so bad nowadays.
I.C. DISCOUNTS TO 43\%!

Last month we ofleied double your money back on any defective I.C 's delvesed by DEMorsco to convince you of the fact that we oher \(\mathbf{1 0 0 \%}\) certilied parts of the mighest rellability this month we are reminding you that we also oliet disedunts of up to \(43 \%\). We oftered this discount tasi month. and this monin we still stand on our Double Your Monay Back policy. We are ine name to trust in high quality I.C.'s We ofter DEM prices because we buy in DEM volume. and in these limes of ever-rising prices we want to pass along our decreasing costs to you

An OEM Distributor Of Certified Integrated Circuits
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{TTL} & 7460 & . 33 & 74158 & 1.38 & 74.51 & . 39 & 745113 & 1.03 & \multicolumn{2}{|l|}{DTL} \\
\hline 7400 & . 29 & 7470 & 38 & 74160 & 1.89 & 74L54 & . 39 & 745114 & 1.03 & 930 & . 42 \\
\hline 7401 & . 27 & 7472 & 36 & 74161 & 1.89 & 74.55 & . 39 & \(74 \$ 140\) & 3.45 & 932 & . 42 \\
\hline 7402 & . 29 & 7473 & 49 & 74162 & 1.93 & 74.71 & . 52 & \(74 \$ 153\) & 2.00 & 935 & . 46 \\
\hline 7403 & . 29 & 7474 & 49 & 74163 & 1.99 & 74173 & . 68 & \(74 \$ 157\) & 2.90 & 936 & . 48 \\
\hline 7404 & . 31 & 7475 & . 83 & 74164 & 1.43 & 74.74 & . 68 & H SE & ES & 937 & . 46 \\
\hline 7405 & . 31 & 7476 & . 65 & 74165 & 1.43 & 74.75 & 2.90 & 74M00 & . 51 & 944 & . 39 \\
\hline 7406 & . 48 & 7480 & 66 & 74166 & 1.85 & 74178 & . 74 & 74401 & 51 & 945 & . 63 \\
\hline 7407 & . 47 & 7482 & 111 & 74170 & 4.02 & 74 L 85 & 1.80 & 74M04 & . 57 & 946 & . 39 \\
\hline 7408 & . 33 & 7483 & 1.55 & 74 & 2.99 & 74. & . 74 & 74H05 & . 57 & 948 & . 61 \\
\hline 7410 & . 28 & 7485 & 2.37 & 74174 & 2.85 & 74190 & 1.83 & 74408 & . 57 & 949 & . 41 \\
\hline 7411 & . 33 & 7486 & 48 & 74175 & 2.00 & 74.91 & 1.83 & 74410 & 48 & 958 & 1.22 \\
\hline 7413 & . 59 & 7489 & 4.29 & 74176 & 1.29 & 741.93 & 1.77 & 74H11 & 74 & 960 & 1.43 \\
\hline 7414 & 2.90 & 7430 & . 81 & 74177 & 1.29 & 74195 & 1.69 & 74H20 & 47 & 961 & . 42 \\
\hline 7416 & . 45 & 7491 & 1.39 & 74180 & 1.10 & 74.98 & 1.83 & 74H21 & 47 & 962 & . 42 \\
\hline 7417 & . 45 & 7492 & . 84 & 74181 & 2.85 & 74.164 & 1.45 & \(74 \mathrm{H22}\) & 47 & , 963 & . 45 \\
\hline 7420 & . 29 & 7433 & . 82 & 74182 & . 88 & 74.165 & 1.45 & 74430 & 47 & 1800 & . 37 \\
\hline 7423 & . 73 & 7494 & 1.19 & 74190 & 1.77 & 74L192 & 2.10 & 74M40 & 47 & 1808 & . 37 \\
\hline 7425 & . 40 & 7495 & 110 & 74191 & 1.77 & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{S SERIES}} & 74H5O & . 47 & 1812 & . 59 \\
\hline 7426 & . 37 & 7496 & 1.13 & 74192 & 1.77 & & & 74H51 & 47 & \multicolumn{2}{|l|}{LSI} \\
\hline 7427 & . 41 & & . 53 & 74193 & 1.75 & & . 49 & 74H52 & 47 & & \\
\hline 7430 & . 29 & 74109
74121 & . 85 & 74194
74195 & 1.75
1.25 & 74500
74503 & . 49 & \(74 \mathrm{H53}\)
74 H 54 & . 47 & MMS013M & 7.75
6.26 \\
\hline 7432 & . 31 & 74123 & .63
1.06 & 74196 & 1.50 & 74S04 & . 52 & 74454
74455 & 47 & MM5016N & 3.00 \\
\hline 7437 & . 65 & 74125 & . 68 & 74197 & 1.50 & 74 S05 & . 52 & \(74 \mathrm{H60}\) & 47 & MMS 017 & 6.15 \\
\hline 7438
7441 & . 65 & 74126 & . 68 & 74198 & 2.75 & 74510 & . 49 & 74461 & 47 & MMSOSSN & 4.93 \\
\hline 7441 & 1.18 & 76132 & 1.85 & 74199 & 2.75 & 74511 & 49 & 74H62 & . 47 & MM5057\% & 4.40 \\
\hline 7442 & 1.03 & 74141 & 1.37 & 74200 & 9.00 & 74515 & . 49 & 74H71 & 73 & \multicolumn{2}{|l|}{Mm5058N/} \\
\hline 7445 & 1.37 & 74145 & 1.66 & \multicolumn{2}{|l|}{L SERIES} & 74520 & . 49 & 74H72 & 73 & 2533 V & 8.25 \\
\hline 7446 & 1.09 & 74150 & 1.33 & 74600 & . 39 & 74522 & . 49 & 74473 & 1.20 & \multicolumn{2}{|l|}{MM5061N 4.25} \\
\hline 7447 & 1.09 & 74151 & 1.02 & 74.02 & . 39 & 74540 & . 49 & 74474 & 1.20 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{POWER}} \\
\hline 7448 & 1.22 & 74153 & 1.39 & 74.04 & 41 & 74 & 49 & 74H76 & 119 & & \\
\hline 7450 & . 33 & 74154 & 1.91 & 74L05 & . 40 & 74565 & 49 & 74H78 & 1.19 & DTS413 & 3.90 \\
\hline 7451 & . 33 & 74155 & 1.33 & 74.10 & . 39 & & 98 & 744103 & 1.18 & M.33001 & 2.25 \\
\hline 7453 & . 33 & 74156 & 99 & 74120 & . 39 & \({ }_{145112}\) & . 93 & 74H106 & 1.21 & MJ2501 & 2.73 \\
\hline 7454 & 33 & 74157 & 1.01 & 74142 & 1.81 & 74 S112 & 1.03 & 74H108 & 1.36 & & \\
\hline
\end{tabular}

Please inquire about DMB090 through DMBB80. F9300 series. Signelics 2500 and 8 T series. and CMOS. We at so offer burn-in and custom testing (e.g. LM308AN-0 1 mv) to DEM's DISCOUNTS: \(\$ 100-12 \%\). \(\$ 350-18 \%\) \(\$ 1000-26 \% ~ \$ 3500-36 \%\) \(\$ 10 \mathrm{~K}-43{ }^{\circ}\) 。 TERMS: Cash. chech. or your lavortie credit card. \(255^{\circ}\) on C.O.D

Morsco 2403 Charleston Road Mountain View. CA 94043 415-965-4446

\section*{ \\ Get all the newest and latest information on the new Mclntosh Sol-} id State equipment in the McIntosh catalog. In addition you will receive an FM station directory that covers all of North America.

MX 113
FM/FM STEREO - AM TUNER AND PREAMPLIFIER

If you are in a hurry for your catalog please send the coupon to Mcintosh.
For non rush service send the Reader Service Card to the magazine. CIRCLE NO. 22 ON READER SERVICE CARD

By Leslie Solomon

\section*{LEARNING TO LIVE WITH DIGITAL}

IF I had to make a guess, I would say that most electronics service technicians are afraid to tackle jobs involving digital circuits. More than likely, this fear comes from a feeling that the technician knows almost nothing about digital electronics and is preconditioned by the "science fiction" surrounding it. Yet, these same technicians think nothing of tackling a complex color-TV problem, armed with nothing more than some basic test equipment and a service manual that may or may not be correct for the particular receiver.

However, the most important tool that the service technician has —problem solving "savvy" gleaned from many years of experience-is an attribute that can make any digital circuit just as easy to service as a fivetube radio.

Let's consider a few facts. During all the years that most service technicians were ignoring digital circuits -leaving them to the computer experts and the "wild-eyed" electronics hobbyists who build strange digital projects-designers of all kinds of consumer devices were putting digital circuits to use in their products. Last year, the Heath Co. introduced a color TV receiver that uses digital logic for tuning and displaying channel number and time on the CRT. This receiver also uses quite a bit of digital logic in its remote control. Magnavox has now introducea the "Star" system in its latest color TV receivers, with heavy use of digital circuits. Soon, we will see FM tuners with \(100 \%\) digital front ends and numeric channel readout using LED's or liquid crystal displays. A digital power amplifier will soon find its way to the market; and frequency synthesizers using digital logic are already an important part of CB rigs. Lastly, we have recently been inundated by all types of digital cal-
culators, clocks, and even wrist-watches-some of which are going to need servicing one of these days.
The Altair 8800 Minicomputer introduced in this magazine last month shows promise of wide use in many areas-schools, homes, garages, shops, etc.,etc.-presenting a challenge that the service technician must accept for the sake of his future livelihood.
Furthermore, audio equipment can not be expected to remain a bastion of linear equipment for long. Digital recording of music is a reality. Using analog-to-digital and digital-to-analog techniques, tapes have been produced that rival present-day analog recorded versions.

Where to Start. How does one learn the principles of digital logic? One way is through reading the articles on the subject in this or other magazines. Another is to take a course through one of the schools advertised here. The latter approach will give you a long-term knowledge that can be applied to any digital service job you might encounter in the future.

What does the service technician do when faced with a repair job on a digital circuit? The first thing is to arm yourself with a simple digital probe. There are several commercial models available, or plans for building your own have been published in this magazine (for example: "IC Digital Logic Memory Probe," March 1974 and '"Digiviewer," March 1971). With'a probe and the timing diagram of the equipment to be serviced, the technician can use his savvy to take on most any job. Actually, a digital probe is easier to use than either a scope or a VTVM. For example, the sketch shows a typical digital waveform as seen on a MITS MitScope Model 416 (a fourchannel digital probe with memory).

Like most other digital probes, the Model 416 has a lit LED for a logic 1 and a dark LED for logic 0.
At first, the waveforms may appear confusing but they are far easier to interpret than a scope waveform. The four lines represent the logic 1's and 0 's that are present at four different points in the particular circuit. The circles within the waveforms represent the LED's in the probe display. There are only two states-on and off. If you were using a digital probe with a single LED, it would blink on and off depending on whether the probe tip was at a point that was 0 or 1 at that instant. Clean decisions are being made at all times. There are no questions of linearity, biasing, harmonic distortion, trap adjustments, etc. There are no scope sweep rates to adjust, no vertical gain to be set, no triggering point to be found, and no time-consuming alignments to be made.

When it comes to digital IC's, we have all learned by now to ignore their internal circuits and deal with them on a black-box level. Some pins are inputs, and some are outputs. All you need is some way to indicate the input and output relationships (logic states), all of which are available from the circuit schematic or the supplier of the device. Add to this a basic knowledge of some simple logic (AND, NAND, OR,NOR, etc.) and the mysterious circuit starts to yield its secrets.

All that remains is to follow the 1 's and 0's down the line (just as you would follow a signal through the circuit of a TV receiver), looking for the correct signal. When an improper logic state is found, the defective stage is pinpointed. When you consider the numerous voltages and waveforms encountered in troubleshooting a TV receiver, digital logic circuits become almost elementary.

Essentially, what we are saying is that we must learn to live with digital electronics or prepare to live with the servicing standards (and income) of the five-tube radio days.

\section*{PRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENTER}
by Richard W. Fox
There are many works with "Practical Projects" titles that are no more than compilations of schematics, with little or no explanation of circuit operation. This book is a notable exception. Starting with basic pn junction theory, the author progresses through BJT and UJT theory to three-junction devices-SCR's and Triacs. Practical projects are incorporated, utilizing the developed theory. These range from flip-flops to light organs. Also included are switching and voltage control circuits for a variety of ac and dc loads. The book is written for the technician and advanced hobbyist.
Published by Tab Books, Blue Ridge Summit, PA. 17214, 192 pages. \(\$ 7.95\) hard cover; \$4.95 paper back.

\section*{resistive and reactive circuits}

\author{
by Albert P. Malvino
}

This textbook is equally suited to formal classroom and home study As its title implies, it is presented in two parts. Part 1 deals with resistive circuits, covering both series and parallel configurations, theorems and laws, basic measurements, and time. Part 2 is devoted to reactive circuits, includingcapacitance, inductance, transients, reactance, phasor analysis, resonance, instantaneous ac analysis, switching circuits, etc. The student should have some familiarity with algebra and trigometry, although reviews of math are given where needed. Each section finishes with a series of questions related to the subject covered, and answers to oddnumbered questions are provided in the back of the book.
Published by McGraw-Hill Book Co., 1221 Avenue of the Americas, New York, NJ 10020. Hard cover. 592 pages. \(\$ 12.95\).

\section*{HANDBOOK OF MODERN}

SOLID-STATE AMPLIFIERS

> by John D. Lenk

This handbook covers the theory, proven design practices, test procedures, and troubleshooting techniques of modern solid-state amplifiers. The first chapter deals with basic amplifier theory. The next five chapters are devoted to the theory and simplified design for \(a-f, r-f, d c\), and operational amplifiers, while the final chapter details amplifier testing and trouble-
shooting procedures and techniques. The text and diagram coverage takes in both discrete-transistor and selected integrated-circuit amplifier designs. The text assumes specific design goals and conditions, then presents simple, practical approaches to designing circuits that meet the assumed requirements.
Published by Prentice-Hall, Inc., Englewood Cliffs, NJ 07632. Hard cover. 414 pages. \(\$ 15.00\).

\section*{POLICE CALL}
by Gene C. Hughes, Editor
Here is a series of handbooks which list police, fire, ambulance, paramedic, rescue squad, and government radios by frequencies and call letters and by city, county, and state.

Those who have taken up Public Safety Radio monitoring as a hobby will find these comprehensive lists a real help in identifying transmissions or in seeking stations in their immediate area.

The series, which is updated annually, covers the 48 states and the District of Columbia. The nine volumes are divided so as to provide area coverage of contiguous states. In addition to the actual listings, the handbook provides detailed instructions for using the data and a "beginner's" guide to radio monitoring. Available from Police Call, Lebanon, NJ 08833 . 88 pages. \(\$ 3.95\) each volume plus 50 cents First Class postage and 20 cents sales tax for New Jersey residents (specify geographical location).

\section*{handbook of electronic tables and FORMULAS (FOURTH EDITION)}
by D. Herrington and S. Meacham
The revised edition of the Handbook is a thorough listing of most of the commonly used formulas in the field of electronics. Basic formulas and laws, including Ohm's law, Kirchoff's laws, resistance, capacitance, and inductance relationships, are covered in Part One. Constants, and government and industry standards are included in the second section. A table of conversion factors is helpful in changing a value into another measuring system. Symbols, abbreviations, coaxial line characteristics, hardware data, filter and attenuator configurations, and mathematical tables and formulas are included in other sections.
Published by Howard W. Sams and Co., 4300 W 62nd Street, Indianapolis, Ind. 46206, 264 pages. \(\$ 6.95\), hardbound.

\section*{SOLID STATE DEVICES: \\ ANALYSIS AND APPLICATION}
by William D. Cooper
Presented in this book is a comprehensive, logically organized treatment of the major'solid-state devices used in electronics.
The text starts off with an introduction to

Your subscription to Popular Electronics is maintained on one of the world's most modern, efficient computer systems, and if you're like \(99 \%\) of our subscribers, you'fl never have any reason to complain about your subscription service.

We have found that when complaints do arise, the majority of them occur because people have written their names or addresses differently at cifferent times. For example, if your subscription were listed under "William Jones, Cedar Lane, Middletown, Arizona," "and you were to renew it as "'Bill Jones, Cedar Lane, Middletown, Arizona," our computer would think that two separate subscriptions were involved, and it would start sending you two copies of Popular Electronics each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as 100 2nd St.

So, please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine-or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly.

CIRCLE NO. 19 ON READER SERVICE CARD

\section*{1974 Edition Now Available}

A complete and detailed subject index to POPULAR ELECTRONICS Magazine containing hundreds of references to equipment, theory, components, and those special circuits that you remember seeing but can't find.

An essential companion to your POPULAR ELECTRONICS Magazine collection, and a must for the audiophile, ham, gadgeteer, and service technician.

The index covers one full year (12 issues) and was prepared in cooperation with the editors of POPULAR ELECTRONICS.

\section*{ORDER NOW!}

ONLY \(\$ 1.50\) per copy, postpaid
1972 and 1973 INDEXES still available at \(\$ 1.50\) per copy also

\section*{SPECIAL DISCOUNT OFFER}

All three INDEXES (1972, 1973 \& 1974)
ONLY \$4.00
POPULAR ELECTRONICS INDEX Box 2228, Falls Church, Va. 22042

Enclosed please find \$
for the following INDEXES, postpaid
_ Sets \((1972,1973 \& 1974\) INDEXES) \(\$ 4.00\) per set Copies 1974 INDEX, \$1.50 ea. -Copies 1973 INDEX, \$1.50 ea. _Copies 1972 INDEX, \(\$ 1.50\) ea. Print name

Address
City
State \(\qquad\) Zip
Please enclose payment with order. Make checks payable to INDEX
semiconductor electronics then proceeds to the junction diode, bipolar transistors, FET's, IC's, etc. Separate chapters are devoted to multistage amplifiers, power amplifiers, rectifiers and filters, power, supply regulators, and oscillators. The behavior of solid-state devices in practical circuit applications is covered by using both graphical and mathematical methods of circuit analysis. Frequent reference is made to actual device ratings and characteristics.
Published by Reston Publishing Co., Inc., P.O. Box 547, Reston, VA 22090. Hard cover. 453 pages. \(\$ 14.00\).

\section*{ELECTRONIC MUSIC PRODUCTIOM}

> by Alan Dourglas

In providing a practical guide to the production of electronic music, this book will appeal to anyone involved in technical research in EM or in the practical experimentation with musical forms. The book deals first with the properties of conventional instruments, then goes on to demonstrate how their limitations can be overcome by electronic means. Three principle methods of synthesizing music electronically are described. This is both a user's guide and a builder's manual. Well illustrated, it contains tables, waveform drawings, photos of equipment, and schematic diagrams (most with component values indicated) for the basic electronic circuits used in EM generation and processig.
Published by Tab Books, Blue Ridge Summit PA 17214.148 pages. \(\$ 7.95\) hard cover; \(\$ 3.95\) soft cover.

\section*{BASIC ELECTRICITY FOR ELECTRONICS}
by Richard Blitzer
Although designed as a text for technical training, this work will introduce the more casual reader to basic electrical principles. Algebra and right-triangle trigonometry are used in the presentation. Among the chapter topics are Basic Theory of Electricity, Electrical Units, Series and Parallel Resistor Circuits, Networks, Magnetism and Electromagnetism, and Capacitors and Resistors in DC and AC Circuits. Also included are Introductions to Vacuum Tubes and Semiconductors. Appendices contain trigonometric functions, logarithms and exponents, color codes, and a capsulized mathematics for electronics.
Published by John Wiley \& Sons, Inc., 605 Third Avenue, New York, NY 10016. Hard cover, 727 pages, \(\$ 14.95\).

WIRELESS TELEGRAPHY
edited by Sir Eric Eastwood
The Royal Institution in London sponsored a series of lectures for many years on subjects related to the physical sciences. In this volume, many of the discourses that stand as landmarks in the development of tele-communications are reproduced. The
earliest talks, given in the 1850's, deal with telegraphy, telephony, and the Atlantic cable. At the turn of the century, attention turned to "Signalling Through Space Without Wires," a talk by William Preece, and "Wireless Telegraphy" by Guglielmo Marconi. From 1900 to the end of the series in 1932, the expansion of electronic communications is heralded in talks by Marconi on improvements and new techniques, such as microwaves, and by Fleming's expositions on the thermionic valve. Anyone interested in the history of electronic communications should find these lectures entertaining and educational.
Published by Halsted Press, 605 Third Avenue, New York, NY 10016. 391 pages. \(\$ 32.50\) hardbound.

\section*{ESSENTIAL FORMULAE FOR ELECTRICAL ENGINEERS}
by Noel Morris
The continued growth of electrical and electronic engineering has increased the demands on students' and graduate engineers' memories to the point where it is practically impossible to memorize all the formulas they need. This \(81 / 4^{\prime \prime} \times 1112^{\prime \prime}\) page-size book contains the essential formulas in electronics, control systems, measurements, logic, telecommunications, mathematics, and fields. Also included are color codes, a list of dimensions, and a summary of mechanics.
Published by Halsted Press, 605 Third Avenue, New York, NY 10016. 26 pages. Soft cover, \$2.95.

COMING UP IN THE MARCH

\section*{Popular Electronics}

\section*{How To Choose Electronic Organs}

\section*{Build A Lady's Led Time/Date Wristwatch} Two Night-Light Projects For Cyclists

\section*{TEST REPORTS:}

\author{
Philips RH-532 Motional Feedback Speaker System Pioneer PL-71 Single-Play Turntable Regency ACT-C4H Scanning Monitor Heathkit TO-1260 Electronic Organ
}

\section*{ELECTRONICS MARKET PLACE}

NON-DISPLAY CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, \(\$ 1.80\) per word (including name and address). Minimum order \(\$ 27.00\). Payment must accompany copy except when ads are placed by accredited advertising agencies. Frequency discount; \(5 \%\) for 6 months; \(10 \%\) for 12 months paid in advance. READER RATE: For individuals with a personal item to buy or sell, \(\$ 1.10\) per word (including name and address.) No minimum! Payment must accompany copy. DISPLAY CLASSIFIED: \(1^{\prime \prime}\) by 1 column (\(2-1 / 4^{\prime \prime}\) wide), \(\$ 215.00 .2^{\prime \prime}\) by \(\uparrow\) column, \(\$ 430.00 .3^{\prime \prime}\) by 1 column, \(\$ 645.00\). Advertiser to supply cuts. For frequency rates, please inquire
GENERAL INFORMATION: First word in all ads set in bold caps at no extra charge. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitlous interception of communications. Closing Date: 1 st of the 2 nd month preceding cover date (for example, March issue closes January 1st. Send order and remittance to POPULAR ELECTRONICS. One Fark Avenue, New York, New York 10016, Attention: Hal Cymes.

\section*{FOR SALE}

FREE! Bargain Catalog-I.C.'s, LED's, readouts, fiber optics, calculators parts \& kits, semiconductors, parts Poly Paks, Box 942PE. Lynnfield, Mass. 01940.
GOVERNMENT Surplus Receivers. Transmitters, Snooperscopes, Radios, Parts, Picture Catalog 25 cents Meshna, Nahant, Mass. 01908.
LOWEST Prices Electronlc Parts. Confidential Catalog Free. KNAPP, 3174 8th Ave. S.W., Largo, Fla. 33540. ELECTRONIC PARTS, semiconductors, kits. FREE FLYER Large catalog \(\$ 1.00\) deposit. BIGELOW ELECTRONICS, Bluffton, Ohio 45817.
RADIO-T.V. Tubes- 36 cents each. Send for free catalog Cornell, 4213 Universlty, San Diego, Calif. 92105.
AMATEUR SCIENTISTS, Electronics Experimenters, Science Fair Students...Construction plans-Complete, inctuding drawings, schematics, parts list with prices and sources... Robot Man - Psychedelic shows - Lasers Emotion/Lie Detector - Touch Tone Dlal Quadraphonic Adapter - Transistorized Ignition Burglar Alarm - Sound Meter... over 60 items. Send 25 cents coin (no stamps) for complete catalog. Technical Writers Group, Box 5994, University Station, Raleigh. N.C. 27607.

METERS-Surplus, new, used, panel or portable. Send for list. Hanchett, Box 5577, Riverside, CA 92507. WE SELL CONSTRUCTION PLANS. TELEPHONE Answering Machine, Speakerphone, Carphone Phonevision, Auto Dialer, Touch Button Dialer, Central Dial System. TELEVISION: \(\$ 35.00\) Color Converter, Video Tape Recorder. \(\$ 25.00\) Camera. HOBBYIST: Electron Microscope, 96 Hour Tape Music System, Ultrasonic Dishwasher, Radar-Oven, Plans \(\$ 4.95\) each. NEW ITEM: \(\$ 75\) Electronic Pocket Calculator, \(\$ 7.50\). COURSES: Telephone Engineering \(\$ 39.50\). Detective Electronics \(\$ 22.50\) Integrated Circuit Engineering, \$49.50. NEW SUPER HOBBY CATALOG plus year's subscription to Electronic News Letter AIRMAILED \(\$ 1.00\). Don Britton Enterprises, 6200 Wilshire Blvd., Los Angeles, Calif. 90048.

MECHANICAL. ELECTRONIC devices catalog 10 cents. Greatest Values - Lowest Prices. Fertik's, 5249 " \(D\) " Philadelphia, Pa. 19120.
SOUND SYNTHESIZER KITS-Surf \$12.95, Wind \(\$ 12.95\) Wind Chimes \(\$ 17.95\), Electronic Songbird \(\$ 6.95\), Musical Accessories, many more. Catalog free. PAIA Electronics, Box J14359, Oklahoma City. OK 73114.

FREE CATALOG. Parts, circuit boards for POPULAR ELECTRONICS projects. PAIA Electronics, Box C14359. Oklahoma City, OK 73114.
YOU WILL SAVE BIG MONEYI Surplus, Clearouts, Bankruptcy, Inventory, Deals. Catalog \$1 (redeemable). ETCOA Electronics, Box 741, Montreal, H3C 2V2. U.S. Inquiries.
BURGLAR-FIRE alarm supplies and information. Free catalog. Protecto Alarm Sales, Box \(357-\mathrm{G}\), Birch Run, Michigan 48415.

TELEPHONE "BUGGED"? Countermeasures Brochure \$1.00, Negeye. Drawer 547, Pennsboro, W. VA 26415.
HEAR POLICE/FIRE Dispatchers! Catalog shews exclusive directories of "confidentlal" channels, recelvers. Send 10 cent stamp. Communications, Box 56 -PE, Commack, N.Y.
11725.

CONSTFUCTION PLANS: Laser. . . \(\$ 2.00\). Rocket Tracking Transmitter... \(\$ 2.00\). Space Monitor-Missile Tracker... \(\$ 2.00\). Fres Catalog. Electro-Research, P.O. Box 20285, Farndale, Michigan 48220.
CD IGNITIONS, VHFNHF monitors, crystals, CB radios. Southland, Box \(3591-\mathrm{B}, \mathrm{Baytown} Texas 77520.\),

INTERNATIONAL ELECTRONICS UNLIMITED

\section*{MICROPROCESSORS}

IEU is making available for the first time anywhere an extremely versatile 16 bit microprocessor kit. The basic kit ineludes all ne cessary components to build a 16 bit microprocessor.
microcomputer or minicomputer proportions.

```

\mathrm{ Available Options}

```
power shpolv component okg,
memory board \(=1\) lemplovs
memory board
 memory board \(\# 1\) lemploys 1101 rams
memory board \(=2\) (employs 1101 rams and 5203 erasible
PROMS
 Basic Data Pack age
 ariable semaratuly
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{TTL} & \multicolumn{4}{|c|}{Linear circuits} & \multicolumn{3}{|c|}{\multirow[t]{3}{*}{\begin{tabular}{l}
FEBRUARY \\
SPECIALS
\end{tabular}}} \\
\hline 7400 & 19 & 7485
788 & S1.39 & \[
\begin{array}{|l|}
301 \\
307 \\
30
\end{array}
\] & Hip perf. op amp
Op amp & molp & . 35 & & & \\
\hline 7402
7403
7 & 19 & 7489 & 2.75 & 308
309 K & Micro-pwr op am & TD & +1.10 & & & \\
\hline & 19 & 77490 & +76 & & \(\checkmark\) follr. op Amp & & 1.19 & & & \\
\hline & 22 & 74992 & & & Hi pert. V comp & & & & & \\
\hline 7406 & \({ }_{39}\) & 7493 & 79 & 319 & \multirow[t]{2}{*}{Nest regularor} & & 1.29 & \({ }^{937}\) & & \\
\hline & 39 & 7494 & & & & & & \({ }_{3} 32\) & & \\
\hline & 25 & 7495 & 89 & 324 & & \({ }_{\text {DIP }}\) & \({ }_{1}^{1.95}\) & & eg sup & \\
\hline 7409
7410 & 29
.19 & \({ }_{74105}\) & \({ }_{89}^{89}\) & \({ }_{3}^{339}\) & & \({ }^{\text {D1P }}\) & 1.69 & 779 & amp & \\
\hline & , & 74107 & 49 & & \multirow[t]{2}{*}{\(12 \mathrm{~V} .15 \mathrm{~V}, 18 \mathrm{~V}\), 24 V) AG.iF strip det} & & & & & \\
\hline & & 74121 & . 57 & 372 & & & 1.95 & & dio dri & \\
\hline & . 39 & 74123 & . 99 & & & & 59 & & driv & \\
\hline & 39 & 77125 & . 99 & & Pos & & . 69 & & Audio-UHF amp/ & \\
\hline & 9 & & & & 2w audio amp & & & & & \\
\hline & . 29 & 74141 & 1.23 & 381 & .6w audio amp & mD & & \({ }_{7404}^{5312}\) & \({ }_{\text {Hex }}\) & \\
\hline 7423
7425 & . 39 & 74150 & 1.09 & 380
555 & & Dip & 79 & \({ }_{7420}^{7410}\) & Tripie 3input NAND
Dual 4 input NAND & \\
\hline & . 29 & 74151 & & 560 & \multirow[t]{2}{*}{\({ }^{\text {Prasere }}\) Plocked loop} & \({ }_{\text {DIP }}^{\text {mo }}\) & 2.75 & 7437 & Ouaid 2 input NA & \\
\hline & \({ }_{2}\) & 774154 & 1.59 & 562 & & Dip & 2.65 & 7440 & Dual 4 -input buffer & \\
\hline & & & 1.19 & 565 & Plase locked lo & DIP & 2.65 & & & \\
\hline & 45
.49 & 74 & 1,29 & 709 & Function gen
Of amp & \({ }_{\text {molp }}^{\text {mol }}\) & \(\begin{array}{r}2.75 \\ \hline 29\end{array}\) & 7490 & Oecade counter & \\
\hline 7430
7408 & 19
19 & 7416 & 1.39 & 710 & \multirow[t]{2}{*}{Hispeed \(V\) comp
Volt res.} & \({ }^{\text {Dip }}\) & 39 & 74154
74187 & line dcar dremux & 19 \\
\hline & \% & \({ }_{74168}^{74163}\) & 1.89 & & & dip & & & Quad 2 inpui gate (1.p.) & \\
\hline & .99 & 741 & . 89 & 741 & Dual hi perfa & & 35 & 74L & Dual D flip liop (1.p.) & \\
\hline & 1.10 & & 1.65 & \({ }_{798}^{747}\) & cole & & \({ }_{39}\) & & Oepto is & \\
\hline & 1.15 & \({ }_{74175}\) & 1.89 & 1304 & \multirow[t]{2}{*}{FNM mux sid} & dr & 1.19 & & all dual-indi & \\
\hline \({ }_{7447}\) & & 744775 & & 1307 & & & & & & \\
\hline & 1.1 & & 1.99 & 1458
3900 & Five mux sidemod & \({ }_{\text {dop }}\) & 65 & & & \\
\hline & . 27 & \({ }_{741}^{741}\) & & 3905 & Oubdamp & \({ }_{\text {DP }}\) & & & 56 bit R & \\
\hline 745 & . 39 & 74182 & \({ }^{89}\) & 7524 & Core mem sense a & Dip & 1.89 & 520320 & 2048 bit eras. PRoM & \\
\hline & 19 & 7419 & & & Core mem sense amp & & & & 024 biir RaM low po & \\
\hline & . 39 & \({ }_{74193}^{7492}\) & 1.39 & 75451 & Core mem sense amp & m0 & 39 & \({ }_{8223} 8\) & mmable ROM & \\
\hline \({ }_{7472}^{7473}\) & \({ }_{.} 36\) & 74994 & 1.39 & 75452 & Dual prl d & mD & & & bit Ramtristate & \\
\hline 7774
7749 & \({ }_{4}^{43}\) & \({ }_{74196}^{7495}\) & & & Ouad seq driver & & & & & \\
\hline 7775 & 75 & 74197 & 1.15 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{75492 Hex dig, driver}} & \multicolumn{3}{|r|}{LED'S AND OPTO ISOLATORS} \\
\hline 748 & 1.47 & 74198
74199 & 2.19 & & & & & & 1 & \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{1at}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{CuLATOR \& CLOCK Chips w/lata}} & & leads & \\
\hline & & & & & & & & & 7 & \\
\hline \multicolumn{4}{|c|}{mos} & \[
\begin{aligned}
& 5001 \\
& 5002 \\
& 5005
\end{aligned}
\] & \multicolumn{2}{|l|}{12 DIG 4 funct fix dec Same as 5001 exc btry} & 7.95 & Mant & Red 7 seg. .270 & \\
\hline & S. 39 & & & & \multicolumn{2}{|l|}{} & 2.79 & MAN3A & & \\
\hline & & 74 & 2.19 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & MANA & \(\mathrm{Rec}^{7} \mathrm{seg}\). \(190{ }^{\text {a }}\) & \\
\hline & 75 & \(\xrightarrow{74 C}\) & 3.25 & MM573 & & & \({ }_{6} \mathbf{7} .95\) & MAN5 & Green 7 seg. \(270^{\prime \prime}\) & 95 \\
\hline 74CO8 & . 75 & 74 C & \({ }_{3.25}\) & MM 53 & \multicolumn{2}{|l|}{} & 8.95 & Man7 & Red 7 seg. \(270^{\circ}\) & \\
\hline & . 65 & \({ }^{74 C}\) & 3.50 & & \multicolumn{2}{|l|}{\({ }^{311} 28\) pin 8 d 6 dig mux} & \({ }_{7}^{1.955}\) & MANS6 & 60\% high dir. view & \\
\hline 784 & \({ }^{2.155}\) & \({ }_{74}\) & 3.00 & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{531640 pin alarm 6 dig}} & \%.95 & SLlo & Red 7 seg. \(3^{\prime \prime}\)
Opto is
Irasis & \\
\hline 74 & 1.15 & 80 & 1.50
1.50 & & & & 8.95 & & & \\
\hline \multicolumn{4}{|l|}{\multirow[b]{2}{*}{4000 SERIES RCA.EQUIV,}} & \multicolumn{7}{|l|}{\multirow[t]{7}{*}{\begin{tabular}{l}
ON ORDERS OVER \$25.00 DEDUCT 10\% \\
All items are new, urused surplus parts - tested functional Satisfaction is guaranteed. Shipment will be made via first class mail - postage paid - in U.S.. Canada and Mexico within three days from receip: of order. Minimum order - \$5.00. California
residents add sales tax. residents add sales tax \\
(408) 659-4773 \\
INTERNATIONAL EL ECTRONICS UNLIMITED
P.O. BOX 1708 MONTEREY CALIF 93940 USA
\end{tabular}}} \\
\hline & & & & & & & & & & \\
\hline & & CD4017 & & & & & & & & \\
\hline & & CD4019 & \({ }^{1.35}\) & & & & & & & \\
\hline C040011 & & CD4023 & 5 & & & & & & & \\
\hline C04013 & 1.20 & C00027 & 1.35 & & & & & & & \\
\hline \({ }_{\text {c }}\) & 1.25 & C04035 & \({ }_{2.85}^{1.35}\) & & & & & & & \\
\hline
\end{tabular}

FREE

\title{
- REDUCE YOUR PROJECT COSTS
}
- MONEY-BACK GUARANTEE
- 24-HOUR SHIPMENT
- ALL TESTED AND GUARANTEED

\section*{transistors (NPN):}

2N3563 TYPE RF Amp \& Osc 101 GHz (\(\mathrm{\rho} 1.2 \mathrm{2N918}\)) 2N3567 TYPE Gen. Purpose Righ Gain (TO-92/106) 2N386S TYPE RF AWr Amp 1-2 W © \(100-600 \mathrm{MH}\) 2N3903 TYPE GP Amp \& 5 w 10 100 mA ond 30 MHz 2N3904 TYPE GP Amp \& Sw to 100 mA (TO-92/106) 5 2N39 19 TYPE RF Pwr Amp 3-5 W @ 3-30 MHz 2N4274 TYPE Ultro-High Speed Swikh 12 ns MPSES IS TYPE High-Goin Amplitier \(h_{\text {FE }} 250\) Assori. NPN GP TYPES, 2N3565, 2N3641. ak. (15)
2N4 249 TYPE (PNP) Low-Noise Amp feTs:
N-CRANNEL (LOW-NOISE):
2N4091 TYPE RF Amp \& Switch (TO-18/106) 2N4416 TYPE RF Amplifier to 450 MHz (\(\mathrm{TO}-72\))
2N5 486 TYPE RF Amp 2N5 486 TYPE RF Amp to 450 MHz (Plostic 2N44 16) E 100 TYPE Low-Cost Audio Amplifier
ITE 4868 TYPE Ulitra-Low Noise Audio TIS74 TYPE High-Speed Swith Audio Assort. RF \& GP FET's, \(2 N 5163\), 2N5486, ex. (8)
P. \(3 / \$ 1.00\)
\(2 / \$ 1.00\)
\(3 / 51.00\) 2N4360 TYPE Gan. Purpose Amp a Sw (TO-106) E175 TYPE High-speed Swith \(125 \Omega\) (TO-106) \(3 / \$ 1.00\)
\(3 / 31.00\)

\section*{FEBRUARY SPECIALS:
N3644 TVPE PNP TRANSISTOR GP ALS} N3644 TYPE PNP TRANSISTOR GP Amp \& Switch \(4 / \$ 1.00\)
MPFIO2 TYPE N.CHANNEL FET RF Amp
\(3 / 31.00\) 741 freq. Compensated Op Amp
(DIP/TO-S/MINI-DIP)
INS 14 or IN4 148 TYPE GP DIODE \(100 \mathrm{v} / 10 \mathrm{~mA} 15 / 8\) MM 5316 Digital Alorm Clock-Snooze/Alorm/Time
 UNEAR 1 's:
308 Micro-Power Op Amp (TO-5/MINs-DIP) 309 K Voltoge Regulator \(5 \forall\) @ 1 A (TO-3) 324 Qood 741 Op Amp, Compensoted (DIP)
380
2 -5 Watl Audio Amplifier 34 dB (DIP)
 709 Populor Op Amp (DIP/TO-5) 723 Voltoge Regulotor \(3-30 \mathrm{~V}\) @ \(1-250 \mathrm{~mA}\) (DIP/TO. 5 739 Dual Low-Noise Audio Preamp/Op Amp (D1P) 1458 Duol \(741 \mathrm{Op}_{\mathrm{p}}\) Amp (MINI-DIP)
2556 Dual 555 Timer \(1 \mu \mathrm{sec}\) to 1 hour (DIP)
N3600 TYPE Hi-Speed Sw \(75 \mathrm{~V} / 200 \mathrm{~mA}\)
in3893 TYPE RECTIFIER Sfud Mount \(400 \mathrm{~V} / 12 \mathrm{~A}\)
IN4608 TYPE GP \& \(5 \mathrm{w} ~ 80 \mathrm{~V} / 400 \mathrm{~mA}\)
IN749 2ENER 4. 3 Voll (\(\pm 10 \%\)) 400 mW
IN753 ZENER 6.2 Voh (\(\pm 10 \%\)) 400 mW INT55 ZENER 7.5 Voll (\(\pm 10 \%\)) 400 mW IN758 ZENER 10 voll (\(\pm 10 \%\)) 400 mW IN965 EENER 15 Volf \((\pm 10 \%) 400 \mathrm{~mW}\) IN968 ZENER 20 Voll (\(\pm 10 \%\)) 400 mW O5 VARACTOR \(5-50\) W Output @ \(30-250 \mathrm{MHz}^{2}\) \(3 / 81.00\)
\(4 / 51.00\) \(4 / 51.00\)
\(2 / \$ 1.00\) \(2 / \$ 1.00\)
\(3 / \$ 1.00\)

F7 VARACTOR1-3 W Output @ 100.500 MHz , \(5-30 \mathrm{pF}\)

MAU NOWI FREE DATA SHEETS sugplied with every item from thi od FREE 739 or 749 Low-Noise Dual \(10 p\) Amp included (\(\$ 1.00\) volue) ORDER TODAY - All iems subiect to prior sde ond picas Chonge withoul notice.
WRIE FOR FREE CATALOG
listod here. Send 10 stomp.
listed here. Send loe stomp.
TERMS, All orders must be prepoid. We poy postoge. \(\$ 1.00\) hondling
chorge on orders under \(\$ 10\). Colif, residents odd \(8 \%\) soles tox.
ADVA ELECTRONICS
BOX 4181 V, WOODSIDE, CA 94062 CIRCLE (\({ }^{\text {T15 }}\)). 1 ON READER SERVICE CARD

CONVERT any television to sensitive, big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans. \$2.00. Sanders, Dept. A-33, Box 92102, Mouston, Texas 77010.
BUGGED??? New locator finds them fast. Write, Clifton, 11500-L N.W. 7th Avenue, Miami. Florida 33168.

CRYSTALS, Scanners, \(\mathbf{5 3 . 8 8}\), include make and frequency G Enterprises, P.O. Box 461 PC . Cleartield, UT 84105.

FREE CATALOG. Kits, Components, audio equipment. Electronic Supply Pacs, Box 175, Floral Park N.Y. 11001.

ALPHA/THETA BRAINWAVE biofeodback instruments. Analog Instruments from \(\$ 125\); digital processing systems from \$225. BioScan, Box 14168-E, Houston, Texas 77021. SURPRISE! Build inexpensively, the most Unusual Test Instruments, Futuristic Gadgets using Numerical Readouts! Catalogue Free! GBS, Box 100A, Green Bank, West Virginia 24944.
ELECTRONIC IGNITION: Capacitor, transistor, pointless. Auburn sparkplugs. Information 10 cents. Anderson Engineering, Epsom, N.H. 03234.
WHOLESALE Scanners, CB, Crystals, Directories SSB/AM, Catalog 25 cents. G-Enterprises, Box 461P Clearfield, Utah 84105.
CALCULATOR OWNERS: Use Your \(+-x \div\) calculator to compute square roots, trigonometric functions, logarithms and more! Quickly, Accurately, Easily! Send today for the First and Best Calculator Manual ... now in use through . First and Best Calculator Manual ... now in Use through
out the world ... still only \(\$ 2.00\) postpaid with Uncon out the world ... still only \(\$ 2.00\) Postpaid with Uncon-
ditional Money-Back Guarantee! Mallmann Optics and ditional Money-Back Guarantee! Mallmann Optics and
Electronics, Dept. 24A, 836 South 113. West Allis. Wisconsin 53214.
FREE 1975 Electronics Catalog. McCord Electronics, Box 276-N, Sylvania, Onio 43560.
AUTORANGING DMM, deluxe VOM's, logic probes and more. Lowest prices. Free catalog. Electro Industries, 4201 Irving Park, Chicago, Illinois 60641.
PYROTECHNICAL chemicals, casings, tools, supplies, fuse. Price List 50 cents. Westech, Logan, Utah 84321. BURGLAR-FIRE ALARM components, nardware. Free Catalog-Information. Silmar, 133 S. W. 57 Ave., Miami, Florida 33144.
CARBON FILM RESISTORS. Brand new as low as 2-1/4 cents. FREE samples and specifications. COMPONENTS CENTER-PE, Box 134, New York, NY 10038
7,000 SEMICONDUCTORS, 100's Electronic Circuit Kits Technical Reports, Energy Conservation, Computers. Cat 50 cents. E/S Lab, Box 738, College Park, MO 20740.
LEARN DESIGN TECHNIQUES. Electronics Monthly Newsletter. Digital, linear construction projects, design theory and procedures. Sample copy \(\$ 1,00\). Valley West. Box 2119-B, Sunnyvale, California 94087.
TELEPHONES UNLIMITED, equipment, supplies. Catalog 50 cents. Box \(1654 E\), Costa Mesap Calif. 92626.
WE SELL MONEY MAKING CONSTRUCTION MANUALS!!! - Reclaim GOLD. SILVER for EXCELLENT full or part time moneylli - PLUS, we buy scrap gold \& silver - ALSO, we sell \(99.999 \%\) pure SILVER BARS!! - Color Catalog 25 cents - Airmailed 50 cents - Creative Products, Dept PE-275, 4913 Northridge NE, Albuquerque, New Mexico 87111.

DIGITAL IC Manual-Latest Edition- 1500 types by types/diagram number \(\$ 3.95\). 32-function digital computer kit-IC, transistors, instructions, \(\$ 14.00\). IC applications manual-numerous circuits-Analog/Digital, \(\$ 3.95\). Electronetics, F.O. Box 127, Hopedale, Mass. 01747. COMPUTER countless uses. 8 bit word, powerful instruc. tion set. Complete \(\$ 225\). Brochure 10 cents. RAECO, Box 14, Readville, Mass. 02137.
ELECTRONIC COMPONENTS-all kinds, send for free catalog. Epic, Box 20152A, Minneapolis, Minn. 55420. QUALITY military and industrial surplus electronics. Send 25 cents for last 3 of our monthly picture flyers. US only Startronics, Box 17127, Portland, OR 97217
COMPUTER SCHEMATICS, 256 bits, expandable to several K. Many other schematics available. SP Electronics, Box 5E, Prospect Heights, Illinois 60070.
ELECTRONICS parts, low prices, free flyer: DARTEK ELECTRONICS, BOX 2460, Dartmouth, Nove Scotia, Canada. U.S. Inquiries.
FREE BARGAIN CATALOG. Transistors, LED's, Readouts, Micro-Miniature Parts, Unusual Electronic Components. Chaney's. Box 15431, Lakewood, Colorado 80215.

QUARTZ CRYSTALS CB-Amateur. \(\$ 1.10\) ea., catalog 10 cents. Quaker, Hunlock Cresk, PA 18621.
DIGITAL Transistor Tester, LED Display, plans \$2.50. Photoelectronics, Box 343, Geyserville, CA 95441.
PICTURE TUBE rebuilding equipment. Complete. J. Brand 2416 W. N. Front, Grand Island, Nebraska 68801. FREE TELEPHONE PRICE LIST. Flemco, 20272 37th Ave., N.E., Seattle, Wash. 98155.

AUTHENTIC, INSTRUMENTED, FLYING ROCKETS for casual or serious experimenters. Over 80 scale original, multi-stage or ready-to-fly models. Solid-propeltant engines for safe, electric launch system littoffs up to 2,500 feet. Measure altitude, temp. inversions, more. Real telemetry, electronic tracking, aerial still and movie photography with super-miniaturized equipment. New, detailed tech manual and full-color catalog. 25 cents from ESTES INOUSTRIES Dept. 18F, Penrose, Colo. 81240
FOR A New Electronic Experience, learn to control your brainwaves. Aquarius Electronics, Box 96ZE, Albion, Calif. 95410.

LIQUID CRYSTAL display price breakthrough! 3-1/2 digir. designed for digital wristwatches, miniature test instruments, etc. 30uw at 15 v . mounts directly on PC board, with diagrams. \(\$ 8.95\) postpaid. Bargain catalog 50 cents. Diamondback Engineering, P.O. Box 194, Spring Valley, Illinois 61362 .
ALPHA Biofeedback Instruments. DIGITAL: Heart Monitor, Thermometer, VOM, Frequency Counter, Logic Probe with readout, etc. Free Catalog. COSMIC ELECTRONICS, BOX 282, Lawrence, NY 11559.
LIFE-GUARD: The finest HEAT-SMOKE-GAS Alarm available, 100\& solid state. COSMIC ELECTRONICS, Box 282. Lawrence, NY 11559.
100 PRECISION RESISTORS, assorted values all \(1 \%\). Send \(1.00+25\) cents postage to P.O. Box 3081, Granada Hills, Calif. 91344.
ANTIQUE RADIO SCHEMATICS. SASE Please. Sterling. Box 202. 06878
SUSPECT ELECTRONIC SPYING???...By Officials. Detectives, Business Competitors, etc.7?...Protect Your Privacy. Details \$1.00. CAL-TRONIX, Box 1502, Santa Rosa, Calif. 95403.
ELECTRONIC ORGAN KITS, KEYBOAROS for organs and synthesizers. Independent and divider organ tone generators, diode keying. 35 cents for catalog. DEVTRONIX ORGAN PRODUCTS, Dept. C, 5872 Amapola Dr., San Jose, CA 95129.
"BASIC TELEPHONE WIRING" - Unique report gives complete details. \(\$ 3.50\) postpaid. Queens Village Telephone Supply, Box 29002-G, Queens Village, NY 11429.
I.Q. TEST Questions and Answers. Send \$2.00 to Ruden Enterprises, Box 944, Frazer, PA 19355.
OIGITAL ELECTRONICS! Highly effective course brings immediate results, \(\$ 10.00\). Satisfaction or \(\$ 11.00\) refunded! Plans, Projects, Free Literature. DYNASIGN, Box 60A7, Wayland, Mass. 01778.
COMPLETE CONSTRUCTION PLANS-TELEPHONE: Answering Device. Automatic Dialer, 'Black Boxes'", Call Diverter, Call Limiter, Conference Bridge, Central Dial Exchange. Melodic Ringing, Recorder-Actuator, Remote Control, Schematics, Speakerphone, Telelink Burglar Alarm, Voice Scrambler, \(\$ 3.00\) each. ELECTRONIC: Biofeedback Conditioner, Horticulture Stimulator, Multifrequency Encoder Network (Speeds telephone calling \(100 \%\) !). \(\$ 5.00\) each. ONE YEAR SUBSCRIPTION: Telephone-Electronics Newsline \$3.00. Super illustrated 16 page catalog of plans, many more, 50 cents. All of the construction plans above, \(\$ 19.95\). TELETRONICS COMPANY OF AMERICA, P.O. Box 3486, Hollywood, California 90028. USA.

\section*{DESCRAMBLERS}

Several models to choose
from... operates with all scanner and monitor receivers.
WRITE or CALL for Catalog Phone (501) 273.5340
KRYSTAL KIT8, BOX 445, BENTONYILLE, ARK. 72712

POLICE, FIRE Monitors, scanners, crystals. Discount Priced. Some CB. Box 19224, Denver, Colorado 80219. THE BEST Electronics Systems in the country at wholesale prices. Duke Engineering, 51 Granger Street, Dor, Mass. 02122
BUILD DIGITAL KITS, I.C. Tester \(\$ 29.95,20 \mathrm{MHZ}\) Counter \(\$ 119,95,200 \mathrm{MHZ}\) prescaler \(\mathbf{\$ 2 4 , 9 5}\), Miniature FM Transmitter \(\$ 2.00\). Free Flyer, Kits and Parts. DAVIS ELECTRONICS, 6 W. Oakwood, Buffalo, N.Y. 14214.

\section*{WANTED}

QUICKSILVER, Platinum, Silver, Gold, Ores Analyzed, Free Circular. Mercury Terminal, Norwood, Mass. 02062 .

\section*{Altaj Electronic Bargains}

PRICES SLASHED! WE WANT YOUR BUSINESS. SATISFACTION GUARANTEED ON EVERY ITEM
 CALCULATOR BASIC KIT WITH TI CHIP includes case with matching all function keyboard, and 9 digits of LED readouts plus a Texas Instruments TMS 103 NC calculator chip. (Same style chip as in TI Datamath calculator). All the basics for building your own hand held calculator Special - \(\$ 11.95\) Kit Quantity Limited.

\section*{3 DIGIT LED READOUT ARRAY}

Like Litronix DL-33. 3 MAN-3 style readouts in one package. Factory new units Designed for calculators. Special \$1.19 (3 Digits)

BURROUGHS PANAPLEXII 12 DIGIT READOUT
\#BR13251 Neon 7 segment readout. Latest design for calculators, etc. Requires 160 VDC. Right hand decimals. Brand new, factory fresh. We include mating socket FREE. Special - \(\$ 5.95\) NOTE: With purchase of above readout array we offer motorola 2N540t PNP High Voltage driver transistor for \(10 \$\) each.

\section*{LM309K}

TO-3 Case, 1 AMP 5 VDC Voltage Regulator. Brand New By National \(95 \$\)

\section*{CALCULATOR CHIP BONANZA} PRICES SLASHED!
The newest and easiest to use chips available today. Made by famous US mfg. All are 28 pin DIP. Features: direct LED segment drive, low power consumption, internal keyboard debounce, internal clock oscillator, single supply voltage, internal keyboard encoding, and floating internal keyboard encoding, and floating
decimal point. Does not require many external components as do older types like CT5001, 5002, 5005, etc. We offer the most sophisticated functions for the lowest price anywhere.
Chip \#1 - 8 Dlgit, Constant, Six Function (\(-,-, x,+, \%, v\)) - \(\$ 5.95\)
Chip \#2 - 8 Digit, Memory, Six Function \(\left(+,-, x_{1}+\sim, \pi_{1}\right)-\$ 7.95\)
Chip \#3-8 Digit, Memory, Six Function \(\left(+,-, x_{,}+, \%, 1 / x\right)-\$ 6.95\)

\section*{MOS 4 DIGIT COUNTERIC}

An ALTAJ exclusive. These are the latest, state of the art. MOS chips. By a tamous US mig. Contains a complete 4 digit counter, including 4 decade counters, latches, multiplexing circuits. display decoders, etc. Features: 5 VDC operation. 25 MW power consumption. both 7 segment and BCD outputs. Perfect for making DVM's, frequency meters, tachometers, stopwatches. or any other device requiring 4 or more digits. Complete with specs. 28 PIN DIP. QTY Limited

Special - \(\$ 12.50\)

DIGITAL ALARM CLOCK IC The newest and easiest to use alarm chip on the market today. Features:
1. Single supply voltage.
2. LED Intensity control
3. Simple time set.
4. 4 or 6 Digit LED Display
5. AM-PM Indication
6. 24 Mr . Alarm.
7. 10 minute snooze.
8. Outperforms MM5316

Order \#70250-\$6.95 (2 FOR \$12)

\section*{MM5314 NATIONAL CLOCK CHIP}

The most popular clock chip around. We made a huge special purchase of factory fresh, prime units. Lowest price in USA. 24 Pin DIP. 4 or 6 Digits. With Specs.
\(\$ 3.94 \mathrm{EACH}\) [3 For \(\$ 10\)]
CT7001 BY CAL-TEX
Digital alarm clock chip with calender feature. 4 or 6 digits. Also has timing circuitry for radio ON-OFF control factory fresh.
\(\$ 8.95\)

\section*{JUMBO LED READOUT}

Twice the size of regular readouts. . 65 inches, Like Litronix DL.747. Outperforms and easier to read than SLA-3, only 20 MA per segment. Our best readout for digital clocks.
\$2.95 ea (6 FOR \$15) Common Anode

\section*{FREE SPECIAL BONUS}

With purchase of any of our clock or calculator chips we will include a free 28 pin IC socket. A \(\$ 1\) value Free.

ELECTROLYTIC CAPACITOR SPECIAL
220 MFD at 25 WVDC. AXIAL Leads by 220 MFD at 25 WVDC. 1
GI. Brand New 8 FOR \(\$ 1\)

MINIATURE SEWITCH
Rocker style. Small size. SPDT. Perfect for use on digital clocks.

4 FOR \(\$ 1\)
\begin{tabular}{|ccc|}
\hline \multicolumn{3}{c|}{ PRIME TTL DIPIC's } \\
\(7400-16 c\) & \(7448-85 c\) & \(74157-1.19\) \\
\(7402-16 c\) & \(7473-39 c\) & \(74161-1.15\) \\
\(7404-16 c\) & \(7474-38 c\) & \(74164-1.29\) \\
\(7406-24 c\) & \(7475-69 c\) & \(74165-1.50\) \\
\(7408-16 c\) & \(7476-42 c\) & \(74174-1.75\) \\
\(7410-16 c\) & \(7483-88 c\) & \(74175-\$ 1.50\) \\
\(7413-49 c\) & \(7490-75 c\) & \(74181-\$ 2.95\) \\
\(7420-16 c\) & \(7492-85 c\) & \(74192-\$ 1.25\) \\
\(7430-16 c\) & \(7493-85 c\) & \(74193-\$ 1.25\) \\
\(7437-39 c\) & \(74121-38 c\) & \(74195-95 c\) \\
\(7438-39 c\) & \(74123-75 c\) & \(74197-\$ 1.25\) \\
\(7440-16 c\) & \(74150-70 c\) & \\
\(7442-69 c\) & \(75151-75 c\) & \\
\(7445-69 c\) & \(74153-95 c\) & \\
\(7447-85 c\) & \(74154-95 c\) & \\
& & \\
\hline
\end{tabular}

TIP-3055 BY TI
Plastic version of 2 N3055. NPN Silicon 89 \({ }^{\text {\$ }}\)

1 AMP SILICON RECTIFIERS
IN 4002 - 100 PIV - \(8 \$\)
IN \(4002-100\) PIV - \(8 \$\)
IN \(4007-1000\) PIV -174

8038 FUNCTION GENERATOR
Brand new by Intel. Voltage controlled oscillator. Has sine, square wave, and triangular outputs. \(\$ 4.50\) each.

\section*{IN4148 DIODES}

High speed switching diodes. Brand new units, however, leads are cut and bent for PC board insertion, still plenty long. 30 For \$1

POLAROID FILTERS
The real thing by Polaroid Corp. Pale green in color. \(2.3 \times 12\) inches. Use with various readouts or for optical experiments, limited Qty. 2 For \(\$ 1\).

\section*{MOTOROLA AUDIO AMP}

MFC 4000. 4 lead mini DIP. 250 MW. 9 volt operation. Hobbyist Special

\section*{opCOA SLA-1 LED READOUT}

33 In . character. Left decimal pt. Uses 7447 driver. Easier to read than MAN-1 actory prime units. Best Price in USA! .95 ea.

MINI CORE MEMORY SPECIAL
Mig. by DATARAM. Stores 180 words of 18 bits each. With sense amps and associated drive circuits. A complete memory system. Wé include 50 pages of data and schematics. Data only \(\$ 2.50\) Brand New. Special \(\$ 24.95\)

DIGITAL WRIST WATCH CRYSTAL Brand new, mig. by CTS-KNIGHT. 32.768 KHZ. Standard, most popular type. Special \$2.50 ea.

COLOR ORGAN CONTROL MODULE
Completely self-contanned. Has SCR circultry, AC line cord, etc. Frcm a close out by a mig. of color organs. New, unused.
\(\$ 3.95\) ea. (3 FOR \$9)

\section*{GEPOWER}

TRANSISTOR ASSORTMENT
Plastic power devices. Includes NPN and PNP, darlingtons, high voltage, high current, and various other types. Cases are color coded for easy sorting. Untested but includes many useable units.

SPECIAL - 20 FOR \(\$ 1\)
CALCULATOR KEYBOARD
SWITCH KIT
Kit of 16 brand new switches with tops. Each switch has a smooth, quiet. key travei. Internally the switches consist of a magnet and read switch for low Contact bounce. Kit has 0-9 CL decimal onit four functions, perfect use with our caluclator chips. COMPLETE SET - \(\$ 3.95\)

\section*{MOTOROLA POWER}

TRANSISTOR
MJ3029 - T03 Case - NPN
Silicon High Voltage - VCEO - 250V Used in horiz, and vert. TV Circuits. Regular Price \$4. Our Price 95c
ELECTROLYTIC CAPACITORS
10MFD 25WVDC -
Upright - 7c
50MFD 15WVDC -
Upright - 10c
50MFD 15WVDC -
Axial - 10 c
100MFD 15WVDC -
Upright - 14c

\section*{PLASTIC SILICON \\ TRANSISTORS}

Use for drivers in clock or calculators.
MPS2222A - NPN MPS2714 - NPN MPS3704 - NPN 2N 3904 - NPN YOUR CHOICE 2N 3904 - NPN 6 FOR \(\$ 1\) 2N 4249 - PNP

\section*{MAN-3 LED READOUTS}

Brand new, factory prime units. 12 in. character. Common cathode. Perfect for calculators. 3 FOR \(\$ 1\) Best Price Anywhere!

> SOLID STATE MEMORY ARRAY
> Brand new. MFG. by Monolithic Systems Corp. Consists of 16-1101 (256 Bit Ram) and associated drive circuits. Drive circuits include 24 assorted 7400 series devices and various transistors, diodes, etc. Array is mounted on two slacked \(6 x\) 8 in . PC boards. Original cost \(\$ 300\) ea. With schematic. These are recommended for experienced hobbyists only. Limited quantity \(\$ 29.95\) ea.
> NI-CAD BATTERY SPECIAL

Two cell battery packs. 2.75 V . capacity is 250 MA HRS. Two of these make a great power pack 1or TTL. Special 95c

REGULATED DC POWER SUPPLY Brand new by wanlass. DC output 17 to 30 V . Rated 60 WATTS out. Our tests show these units will put out 12 VDC by changing one resistor. \#OEM 60-3. Original cost \(\$ 57.50\). In original factory boxes, with specs. Special \$14.95

7805 STYLE REGULATORS
TO-220 Plastic Case 5VDC Regulator Brand New by National - 89

\section*{FACTORY NEW LED'S}

Jumbo Red-Like MV5024-8/\$1 Jumbo Green-Like MV5222-5/\$1 Jumbo Yellow-5/\$1
Mini Red-Like MV50-10/\$1

\section*{N746-400MW - 3.3 V}

N7752-400MW - 5.6 V
YOUR CHOICE
8 FOR \(\$ 1\)

\section*{TTL IC ASSORTMENT}

Various types. Most are marked. Our best selling assortment. Untested but includes many useable devices.

200 PCS FOR \(\$ 3.95\)

Our lower prices and superior quality have made ALTAJ one of the fastest growing electronic suppliers in the USA. Put your trust in our unconditional money back guarantee.

\section*{ALTAJ ELECTRONICS \\ P, ャien 38544 \\ DALEÀ'S, TEXAS 75238}

TERMS: Check or money order. No COD. Add \(10 \%\) Pstg. and Hdig. Tex Res. add \(5 \%\).

\section*{PLANS AND KITS}

ATtENTION AUDIO FREAKS!! ... Audio Processing Circuits ... designs, kits, units. Laboratory tested designs for hobbyist through professional use-limiters, compressors, equalizers, phasers, mixers and more! Send now- \(\$ 1.00\) (refundable) for complete catalog-_CIRCUIT RESEARCH LABS, 3920 E. Indian School, Phoenix, AZ 85018.
FREE CATALOG. \(200+\) unique electronic projects. Biofeedback, acupuncture, morel Cimarron Labs, 4183A Springfield St., Burton, Michigan 48509.
USE your transistor radio as a sensitive direction finder. Great for emergencies. Detailed plans. Guaranteed results. \(\$ 1.00\). RADIO COMPASS, Dept. B, Box 606, Webb City, Missouri 64870.
AMAZING ELECTRONIC PRODUCTS-Pocket Laser, See-In-The-Dark, Scramblers, Penlight Strobe, Energy Devices, TV Disruptor, Manny More, All New, Catalog \(\$ 1.00\) INFORMATION UNLTD., West St., Milford, N.H. 03055.
CONSTRUCTION PLANS. Digital tachometer, aircraft strobe, others. Send 25 cents for listing. MIKRONICS, P.O. Box 338, Dundee, III. 60118.

ELECTRONICS plans and formulas list. Deepsouth, 4641 Kawanee, Metairie, Louislana 70002.

\section*{TUBES}

RADIO \& T.V. Tubes-36 cents each. Send for free Catalog. Cornell, 4213 University, San Diego, Callf, 92105. RECEIVING \& INDUSTRIAL TUBES, TRANSISTORS. All Brands - Biggest Discounts. Technicians. Hobbyists. Experimenters - Request FREE Giant Catalog and SAVE! ZALYTRON, 469 Jericho Turnpike. Mineola, N.Y. 11501. TUBES receiving, factory boxed, low prices, free price list. Transleteronic, Inc., 1306 40th Street, Brooklyn, N.Y. 11218A, Telephone: 212-633-2800.
TUBES "Oldies", latest. Lists free. Steinmetz, 7519 Maplewood, Hammond, Indiana 46324.
TUBES \(60 \%\) OFF LIST PRICE. McCord Electronics, Box 276-T, Sylvania, Ohio 43560.
CASH PAID FOR OBSOLETE RECEIVING TUBES WE300B, WE300A, WE350B, WE252A, WE27A/B, WE284D, RCA45, RCA50, Small and large quantities, and movie theatre equipment, amplifier WE86A, WE59A. WE30A, WE91A/B, plck-up WE9A, WE10A, etc. Contact: M Takabe, 303 Fifth Ave., N.Y.C. 10016. Tel: (212) 679-1970.

Let us know 8 weeks in advance so that you won'tmiss a single issue of POPULAR ELECTRONICS.
Attach old label where indicated and print new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promptly. Write to: P.0. Box 2774, Boulder, CO 80302, giving the following information:

Add'I postage: \(\$ 2\) per year outside U.S., its poss. \& Can.

\section*{PERSONALS}

MAKE FRIENDS WORLDWIDE through international correspondence. Ifustrated brochure free. Hermes, Berlin 11, Box 110860/ZD, Germany

\section*{INSTRUCTION}

LEARN ELECTRONIC ORGAN SERVICING at home alt makes including transistor. Experimental kit-troubleshooting. Accredited NHSC, Free Booklet. NILES BRYANT SCHOOL, 3631 Stockion. Dept. A, Sacramento, Calif. 95820.

LEARN WHILE ASLEEP, Hypnotizel Strange catalog free Auto-suggestion, Box 24-ZD, Olympla, Washington 98501. DEGREE IN ELECTRONICS through correspondence. Free catalog. Grantham, 2000 Stoner Avenue, Los Angeles, California 90025.
INTENSIVE 5 week course for Broadcast Engineers. F.C.C. First Class license. Radio Engineering Incorporated, 61 N Pineapple Ave., Sarasota, Florida 33577.

SCORE high on F.C.C. Exams. . . Over 300 questions and answers. Covers 3rd, 2nd, 1st and even Radar. Third and Second Test, \(\$ 14.50\); First Class Test, \(\$ 15.00\). All tests \(\mathbf{\$ 2 6 . 5 0}\) R.E.I., Inc., Box 806, Sarasota, Fla. 33577.
FCC LICENSE through tape recorded lessons. Also Radar Endorsement. Radlo License Training, 1060D Duncan, Manhattan Beach, Calit. 90286 ,
FCC LICENSE, electronics design, satellite communications, through correspondence. Free catalog. Genn Tech, 5540 Hollywood Bv., Los Angeles, CA 90028.
FCC License, electronics design, satellite communications, through correspondence. Free catalog. Genn Tech, 5540 Hollywood Bv., Los Angeles, CA 90028.

SELF-STUDY CB RADIO REPAIR COURSE. THERE'S MONEY TO BE MADE REPAIRING CB RADIOS. This easy-to-learn course can prepare you for a career in electronics enabilng you to earn as much as \(\$ 16.00\) an hour in your spare time. For more information write: CB Radio Repair Course, Dept. PE-0275, 531 N. Ann Arbor, Oklahoma City, Okla. 73127.
LEARN to do fast mental calculations of time and trequency nanoseconds, etc, used in electronics. Newsletter \$2. GLOBE. 1304 Midland Avenue, Yonkers, N.Y. 10704. ANY Tech problems answered by experts, \$1. Globe, 1304 Midland Ave., Yonkers, N.Y. 10704.
DRAFTING-Blueprint Reading (Mechanical, Electronic Architectural). Home Courses \(\$ 25.00\). Send \(\$ 2.00\) firs lesson. Prior fnc., 23-09 168th Street, Whitestone, New York 11357.

\section*{MUSICAL INSTRUMENTS}
\(30 \%\) DISCOUNT name brand musical instruments. Free Catalog. Freeport Music, 455N, Route 110, Melville, N.Y 11746.

WHOLESALE! Protessional Guitars, PA Systems, Altec Speakers, 240W RMS Ampliflers. Free Catalog, Carvin Escondido, Calit. 92028.
\(30 \%\) + DISCOUNT. Name Brand Musical Instruments. Free Catalog. Continental Music, Dept. H, P.O. Box 3001 Garden City, New York 11530.

\section*{BUSINESS OPPORTUNITIES}

I MADE \(\$ 40,000.00\) Year by Mailorderl Helped others make money! Free Proof. Torrey, Box 318-NN, Ypsilanti, Michigan 48197.
FREE CATALOGS. Repair air conditioning, refrigeration. Tools, supplies, full instructions. Doolin, 2016 Canton Dallas, Texas 75201.
MAILORDER MILLIONAIRE helps beginners make \(\$ 500\) weekly. Free report reveals secret plan! Executive (1K2), 333 North Michigan, Chicago 60601.
\(\$ 200.00\) DAILY in Your Mailbox: Your opportunity to do what mail-order experts do. Free details. Associates, Box 136-J, Holland, Michigan 49423.
\(\$ 178.00\) WEEKLY. Work one hour daily. Free brochure. FAS, Box 13703-A, San Antonio TX, 78213.

TTL
7400* \(6 / \$ 1.007488\) 7402 6. 23 74990.
\(\begin{array}{lr}7403 \\ 7404\end{array} \quad 6 / 1.007491^{\circ} .1\)

20\% Discount for 100
Pieces Combined 7400
\(4.00 \mathrm{CD4001}\)
\(2.75 \mathrm{CD4002}\)
CMOS 2.75 CD 4002 2.75 CD 4002
1.75 CD 4007

\section*{* FEBRUARY - \$PECIAL\$}

Miniature Aluminum Electrolytic Capacitors
- AXIAL LEAD TYPE-
- RADIAL LEAD TYPE
\[
\begin{aligned}
& \begin{array}{lllll}
\text { MFD-VOLTS } 9 & 99 & 100 \mathrm{MFD} \text {-VOLTS } & 9 & 99 \\
1 & 100 \\
\text { UFD/50V } 14 \mathrm{c} 12 \mathrm{c} 11 \mathrm{c} 100 \mathrm{UFD} / 16 \mathrm{~V} & 19 \mathrm{c} 15 \mathrm{c} 14 \mathrm{c}
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \text { 33 UFD/25V 17c 12c 11c } 1000 \text { UFD/16V 49c 39c 35 } \\
& 47 \text { UFD/16V 17c } 14 \mathrm{c} 13 \mathrm{c} 2200 \mathrm{UFD} / 16 \mathrm{~V} 75 \mathrm{c} 60 \mathrm{c} 55 \mathrm{c} \\
& \text { *50 VOLT CERAMIC DISC CAPACITORS } \\
& \text { 2N918 } \\
& \begin{array}{l}
\text { 2N2219A } \\
2 N_{2} 221 A
\end{array} \\
& \begin{array}{l}
\text { 2N2222 } \\
2 \mathrm{~N}_{2} 369
\end{array} \\
& \begin{array}{l}
.25 \\
3 \text { 2N2906A } \\
\hline 1 \\
2
\end{array} \\
& \begin{array}{l}
3 / \$ 12 N 2907 \mathrm{~A} \\
4 / \$ 12 N N 303 \\
5 / \$ 1 \\
5 / \$ 12 N 324 A \\
5 \\
5
\end{array} \\
& \text { 4/\$1 } 2 \text { N39 } \\
& \begin{array}{l}
2 \mathrm{~N} 2369 \\
2 \mathrm{~N} 2369 \mathrm{~A}
\end{array} \\
& \text { 4/\$1 2N3725A } \\
& \begin{array}{l}
\text { 2/S1 PN4250 } \\
2 / \$ 12 N 4409
\end{array} \\
& \begin{array}{ll}
4 / \$ 12 N 3904 & 5 / \$ 1 \\
4 / \$ 1 & \text { 2N513 } \\
\hline
\end{array} \\
& \text { CALCULATOR \& CLOCK CHIPS w/data } \\
& 5001 \text { LSI } 40 \text { pin DIP } 4 \text { funct } \\
& 5005 \text { LS1 } 28 \text { pin DIP } 4 \text { funct w/mem } \\
& \text { MM5311 } 28 \text { pin BCD } 6 \text { dig mux } \\
& \text { MM5312 } 24 \text { pin } 1 \text { pps BCD } 4 \text { dig mux } \quad 6.95
\end{aligned}
\]
MM5314 24 pin 6 dig mux
Satisfaction Guaranteed. All Items 100\% Tested
\(\$ 5.00\) Min. Order - 1 st Class Mail - No Charge
California Residents - Add 6\% Sales Tax
Wholesale Outlets - Write for Special Discounts
Write for FREE 1975 Catalog - Data Sheets .25 deach

\section*{94mES}

\section*{wanted CITIZENS BAND \\ DEALER-DISTRIBUTORS \\ Send this Ad to: \\ PAL ELECTRONICS CO. \\ P. O. Box 778 - Westminster, Ca. 92683}

PIANO TUNING LEARNED QUICKLY AT HOME Tremendous fieldl Musical knowledge unnecessary. GI approved. Information free. Empire School, Box 450327. Miami 33145

\section*{HIGHLY \\ PROFITABLE ONE-MAN ELECTRONIC FACTORY}
investment unnecessary, knowledge not required, sales handled by professlonals. Postcard brings facts about this unusual opportunity. Write today Barta-DN, Box 248, Walnut Creek, CA 94597

SELL TO GOVERNMENT-Complete instruction package \$4. RMP. Box 33071, District Hts., MD 20028.
WANT MORE MONEY, BETTER JOB? Get valid College Degrees without studying...legally! Complete detalls for stamp. Counseling, Box 1162-PE1, Tustin, Calif. 92680. FREE BOOK '2042 unique proven enterprises." Work home! Hayling-B, Carlsbad, CA 92008
POVERTY to riches in six easy steps. Invest \(\$ 2\) for our money making booklet. P.O. Box 8071. Cranston, R.I. 02920.

FREE BOOK "999 Successful, Little-Known Businesses." Work Home! Plymouth-TFD, Box 1056, Weston, CT 06880. UNIVERSITY DEGREES BY MAIL! Free Details Counseling, Box 1162-PE2, Tustin, California 92680.

\section*{RECORDS}

OLDIES. 45rpm. Free Catalog. Corny's Record Shop, Box 166 TC, Mason. Ohio 45040.

\section*{inventions wanted}

CASH-ROYALTIES for patented, unpatented inventions. Global Marketing Service, 139-P Lake Merced Hill South, San Francisco, Callfornia 84132
INVENTORS: Protect your ideas! Free "Recommended Procedure". Washington Inventors Service, 422T Washington Building, Washington, D.C. 20005.
FREE PAMPHLET: "Tips on Safeguarding Your Invention." Write: United States Inventors Service Company, 708-T Carry Building, Washington, D.C. 20005

MR. INVENTOR: Manufacturers need inventions. For development assistance, patent searches, sales for cash or royalty, free "Proof of Invention" forms and other important information, write: Charles S. Prince, Invention Consultant, 509-E 5th Avenue, NYC 10017.

FILE your own patent appllcation. Complete information and materials. Write: Inventor's Guide, 468-R, Goodspeed Road, Virginia Beach, Virginia 23451

\section*{MAGAZINES}

ZILLIONS OF SUPER ARTICLES every issue of Pop 'Tronics. Oct '54 thru July '74, for sale, no cutouts, make offer. Jlify, 1874 Cheshire, Cheyenne, Wyo. 82001:

EINSTEIN'S THEORY OF RELATIVITY REFUTED in excerpt from the "Steel Ball" by Stan White. \$1 P.D. TachyonTM, P.O. Box 1012, Roselle, Illinois 60172.

\section*{EMPLOYMENT OPPORTUNITIES}

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUNITIES. Report on jobs now open. Details FREE. Aviation Employment Informatlon Service, Box 240, Northport, New York 11768.

\section*{TREASURE FINDERS}

FREE FACT-FILLED CATALOG! World's largest selection! Metal detectors starting at \(\mathbf{\$ 7 9 . 5 0}\). Two year guaranteel Three factories, U.S.-Canada. 1,200 dealers - Service Centers nationwide. Finest instruments at any price! Budget Terms. Dealer inquiries invited. Write: White's Electronics, Inc. Dept. PO5P, 1011 Pleasant Valley Road, Sweet Home, Oregon 97386.
TREASURE FINDER locates buried gold, silver, coins, treasures. 6 powertul models. Instant financing available. Write or call for free catalog. Phone (713) 682-2728 day or night. Dealer inquiries invited. Relco, Dept. AA20, Box 10839, Houston. Texas 77018.

\section*{REAL ESTATE}
..,BIG...FREE. . .SPRING '75 CATALOG! Over 2.500 top values in FARMS, RANCHES, ACREAGES, RECREATIONAL PROPERTIES, BUSINESSES, TOWN and COUNTRY HOMES in 40 states coast to coast! Over 4,100 PHOTOSI UNITED FARM AGENCY, 612-EP West 47th St,. Kansas City, MO 84112

We have 2 time delay relays, similar, except that one has a delay of 10 seconds, and the other has a variable delay from 3 to 10 seconds. Each relay is enclosed in a clear plastic case. with an octal base. We provide the octal socket. Relays operate from 24 to 60 volts. The relays are DPDI, Potter \& Brumfield KA series, with 10 Amp contacts. Time delay is solid state with Unijunctin circuitry, all built into the plastic case. Provision is made for adding external capacitance or resistance to change or increase the time delay Data sheet provided.
STOCK NO.P5229 Fixed delay (10 sec.) 2.95 ea. \(2 / 5.00\) STOCK NO.P5230 \(\mathbf{3 - 1 0}\) second delay 3.95 ea. \(2 / 7.00\)

\section*{STEREO AMPLIFIER}

Small 10 transistor STEREO AMP. LIFIER is complete, except for speakers and small AC transformer. Contains tone, balance and volume controls. \(6^{\prime \prime} \times 2^{\prime \prime} \times 1 \frac{11 / 4}{}\). 2 units make a quadraphonic amplifier. Makes a good basic unit for an intercom. The transformer for above is available.
STOCK NO.P5228 \$9.95 ea. \(2 / 19.00\)
STOCK NO.P9713, Transformer for above. \$1.50
HIGH POWER TRANSFORMER64 volts ct @ 8 volts, tapped @ 32 volts 8 amp, . 18 volts ct @ 8 amp. 400 volts @ 15 amp STOCK NO. P9905 wt. 10 lbs. 9.95 Ea. 11.95 ea. 2/22.00 Include sutticient postage; Excess refunded. Write for new catalog 13 , just of the press \& loaded.

CIRCLE NO. 37 ON READER SERVICE CARD

\section*{JANUARY 1975}

\section*{ADVERTISERS INDEX}
\begin{tabular}{lr}
\hline READER & \\
SERVICE MO. & PAGE \\
ADVERTISER & MUMBER \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 1 & Adva Electronics \\
\hline 2 & Allison Automotive \\
\hline 3 & Altaj Electronics \\
\hline & Ancrona Corp \\
\hline 39 & Audio Warehouse Sales \\
\hline
\end{tabular}

Bell \& Howell Schools

\(.62,63,64,65\)

CREI Capitol Radio Engineering Institute
\(.72,73,74,75\)
6 Cleveland Institute of Electronics

18, 19, 20, 21
7 Clifford's Hi-Fi Wholesalers . 12
8 Cobra Product of Dynascan Corporation 2
9 Continental Specialties Corp
Cook's Institute of Electronics
Engineering . 14
11 Delta Electronics Co . 100
12 Delta Products, Inc . 69
13 Digi-Key Corporation . 101
14 EICO . 6
15 Edmund Scientific Co . 102

16 Greenlee Tool Co . 79

5 Heath Company .82, 83, 84, 85

17 Illinois Audio . 14
18 International Electronics Unlimited 91
19 International Hifi Distributors 89

20 James Electronics . 98
33 Johnson Co., E.F. 15

21 Lafayette Radio Electronics . 16

22 Mclntosh Laboratory, Inc . 87
23 MITS, Inc . 26
24 Mallory \& Co., P.R. SECOND COVER
NRI Schools .8, 9, 10, 11
National Technical Schools 52. 53, 54, 55

25 OEMorsco . 87

26 Pace Communications . 71
27 Pickering \& Co., Inc.THIRD COVER
28 Poly Paks
.99
29 Radio Shack . 5

30 S A E, Inc . 71
31 Schober Organ Corp., The . 12
32 Shure Brothers Inc . 13
4 Solid State Sales . 96
35 Southwest Technical Products Corporation

36 Technics by PanasonicFOURTH COVER
37 Tracy Design Corp
38 Tri-Star Corp
79

91, 92, 96, 98, 100, 10

\section*{HOME ENTERTAINMENT FILMS}

ENJOY A GOOD FIGHT RIGHT AT HOMEI All-Foreman Champlonshlp-Watch the knockoutt 200' reel, \$18.85 color; \(\mathbf{s 8 . 8 5}\) B\&W; Super 8 or Standard 8. We pay the postage. Or the ' 74 Indy " 500 ," just out, 200' Super 8 color only, \(\$ 17.95\) each plus 50 cents postage. Catalog, 25 cents. SPORTLITE Elect. Dept.-2, 20 North Wacker Drive Chicago, Illinols 60606.

\section*{RUBBER STAMPS}

RUBBER address stamps. Free catalog. 45 type styles Jackson's, Box 443G, Franklin Park, III. 60131.
MADE-TO-ORDER STAMPS. Low Prices. Free Catalog. AIlegheny, Box 14A, East McKeesport, PA 15035.

\section*{BOOKS}

FREE catalog aviation/electronic/space books. Aero Publishers, 329PE Aviation Road, Fallbrook. California 92028.

FREE book prophet Elijah coming betore Christ. Wonderful bible evidence. Megiddo Mission, Dept. 64, 481 Thurston Rd., Rochester, N.Y. 14618.
BOOKS-thousands titles, bargains. Catalog Free Cassiano. 92-27 New York Blvd., Jamaica, New York 11433.

POPULAR ELECTRONICS INDEXES. Detailed and complete subject indexes now avallable to both 1972 and 1973 magazines. Hundreds of subject references to help you quickly find that special project, article, or product test. 1972 and 1973 editions \(\$ 1.00\) each. INDEX, box 2228 Falls Church, Va. 22042

\section*{PLASTICS}

CASTOLITE pours like water, hardens like glass withou heat. Crystal clear, colors. Embed flowers, seashells mementos, anything. Make fine gifts. Form flexible molds over patterns of any shape, size. Reproduce your own designs in plastics, candlewax, metal, plaster, cement Free Brochure. Or sand \(\$ 1.00\) for Illustrated Manua Catalog. Profitadle. CASTOLITE, Depi. 75B/PE Woodstock, III. 60098

\section*{REPAIRS AND SERVICES}

ELECTRONIC PROTOTYPE Models Bullt. Wire-Wrap Hand solder, P.C. Boards. Engineering consultation and drafting service avallable. ACE Technical Services, 23-13 Steinway St., Astoria, N.Y. 11105. Phone: (212) 728-8264.

\section*{HYPNOTISM}

SLEEP learning. Hypnotic method. 92\% effective. Details free. ASR Foundation. Box 23429EG. Fort Lauderdale, Florida 33307.
FREE Hypnotism. Sell-Hypnosis. Sleep Learning Catalog Drawer H400, Ruidoso. New Mexico 88345
AMAZING self-hypnosis record releases fantastic mental power. Instant results! Free trial. Write: Forum (AA2), 333 North Michigan, Chicago 60601

\section*{STAMPS}

WOW! 110 ALL DIFFERENT GERMANY 10 CENTS. COm memoratives. Airmails, High Values, Big Catalog, bargain lists. Also, tine stamps from our approval service, which you may return without purchases and cancel service at any time. Jamestown Stamp, Dept. A25EG, Jamestown. N.Y. 14701.

\section*{DO-IT-YOURSELF}

TELEPHONES UNLIMITED, equipment, supplies. Catalog 50 cents. Box 1654E, Costa Mesa, Calif. 92826 .

\section*{MISCELLANEOUS}

WINEMAKERS: Free illustrated catalog yeasts, equipment. Semplex, Box 12276P, Minneapolis, Minn. 55412. QUIT SMOKING! Multi-colored Illustrated Book Reveals How...Includes PRE-PAID Magazine Subscription Applica tion, \(\$ 1.50\). Guaranteed. Communique, Box 1988-E, Holly wood, CA 90028.

Quality
Electronic Components
spicial savings discount ow untai and duerat miterated cincuits

CIGITAL INTEGRATED CIRCUITS
7400 N . \(255.5 \mathrm{c} \quad 7437 \mathrm{~N}\). . 42.0c \(\quad 7480 \mathrm{~N}\). . 70.5c \(\quad 74154 \mathrm{~N}, 52.22\) 7401 N . \(25.5 \mathrm{c} \quad 7438 \mathrm{~N} . .42 .0 \mathrm{C} \quad 7482 \mathrm{~N}\). . \(99.0 \mathrm{C} \quad 74155 \mathrm{~N} .51 .17\) 7402 N . . 25.5c \(\quad 7440 \mathrm{~N}\). . \(25.5 \mathrm{c} \quad 7483 \mathrm{~N}\). . \(51.17-74156 \mathrm{~N} .51 .14\) \(7403 \mathrm{~N} . .25 .5 \mathrm{c} \quad 7441 \mathrm{~N} . .51 .40 \quad 7485 \mathrm{~N}\). . \(51.40 \quad 74157 \mathrm{~N} .51 .1\) \(7404 \mathrm{~N} . .3 \mathrm{C} .0 \mathrm{C} \quad 7442 \mathrm{~N} . .90 .0 \mathrm{C} \quad 7486 \mathrm{~N}\). . \(45.0 \mathrm{C} \quad 74158 \mathrm{~N} .51 .53\) \(7405 \mathrm{~N} . .30 .0 \mathrm{c} \quad 7445 \mathrm{~N} . .51 .49 \quad 7489 \mathrm{~N} . .54 .47 \quad 74160 \mathrm{~N} .51 .50\) \(7406 \mathrm{~N} . .48 .0 \mathrm{C} \quad 7446 \mathrm{~N}\). . \(\$ 1.14 \quad 7490 \mathrm{~N}\). . \(66.0 \mathrm{C} \quad 7416 \mathrm{~N} .51 .50\) 7407 N. . 4400 \(\quad 7447 \mathrm{~N}\). \(51.11 \quad 7491 \mathrm{~N} . .51 .05 \quad 74162 \mathrm{~N} .51 .50\)
7400 N . . \(22.5 \mathrm{c} \quad 7448 \mathrm{~N}\). \(51.22 \quad 7492 \mathrm{~N}\). . 66.0C \(\quad 74163 \mathrm{~N} .51 .50\)
\(7409 \mathrm{~N} . .28 .5 \mathrm{c} \quad 7450 \mathrm{~N}\). \(25.5 \mathrm{C} \quad 7493 \mathrm{~N}\). . 66.0c \(\quad 74164 \mathrm{~N}, \$ 1.5\)
7410 N . . \(25.5 \mathrm{c} \quad 7451 \mathrm{~N}\).. \(25.5 \mathrm{c} \quad 7494 \mathrm{~N}\). . \(51.10 \quad 74165 \mathrm{~N} .52 .45\)
\(7411 \mathrm{~N} . .25 .5 \mathrm{c} \quad 7453 \mathrm{~N} . .25 .5 \mathrm{c} \quad 7495 \mathrm{~N}\), \(.51 .14 \quad 74166 \mathrm{~N} . \$ 2.00\)
\(7413 \mathrm{~N} .60 .0 \mathrm{C} \quad 7454 \mathrm{~N}\). . \(25.5 \mathrm{C} \quad 749 \mathrm{NN}\). . \(51.14 \quad 74175 \mathrm{~N} . \$ 1.00\)
\begin{tabular}{llll}
7416 N. & 46.5c & \(7459 \mathrm{~N} . .28 .5 \mathrm{c}\) & 74107 N .45 .0 c \\
7417 N & 74180 N .51 .17 \\
\hline
\end{tabular}
\(\begin{array}{llll}7418 \mathrm{~N} . .31 .5 \mathrm{c} & 7470 \mathrm{~N} . .33 .0 \mathrm{c} & 74121 \mathrm{~N} .46 .5 \mathrm{c} & 74181 \mathrm{~N} .13 .4 \\ 7442 \mathrm{~N} .49 .5 \mathrm{c} & 74182 \mathrm{~N} .51 .14\end{array}\)
\(\begin{array}{llll}7420 \mathrm{~N} . .25 .5 \mathrm{c} & 7472 \mathrm{~N} . .36 .0 \mathrm{cc} & 74123 \mathrm{~N} . \$ 1.06 & 74192 \mathrm{~N} .51 .73 \\ 7421 \mathrm{~N} .25 .5 \mathrm{c} & 7473 \mathrm{~N} .43 \mathrm{c} & 7411 \mathrm{~N} . \$ 110 & 7419 \mathrm{~N} .51 .73\end{array}\)
\(\begin{array}{llll} \\ 7421 \mathrm{~N} .25 .5 \mathrm{c} & 7473 \mathrm{~N} . .43 .5 \mathrm{c} & 74141 \mathrm{~N} .51 .10 & 74193 \mathrm{~N} .51 .73 \\ 7423 \mathrm{~N} . .720 \mathrm{c} & 7474 \mathrm{~N} .43 .5 \mathrm{c} & 74150 \mathrm{~N} .51 .53 & 74198 \mathrm{~N} .52 .75\end{array}\)
\begin{tabular}{llll}
\(7423 \mathrm{~N} . .720 \mathrm{c}\) & \(7474 \mathrm{~N} . .43 .5 \mathrm{c}\) & 74150 N .51 .53 & 74198 N .52 .75 \\
7426 N .330 c & \(7475 \mathrm{~N} . .69 .0 \mathrm{c}\) & 74151 N .51 .17 & 74199 N .52 .75 \\
7430 N & & 75.5 c & 7476 N.
\end{tabular}

7430 N . . \(25 \mathrm{sc} \quad 7475 \mathrm{~N}\). . \(46.5 \mathrm{C} \quad 74153 \mathrm{~N}\). 51.17
LINEAR INTEGRATED CIRCUITS
555V MINIDIP TIMER. 82.5c 558V MINIDIP DUAL AMP S6SA DIP PLL. \(\$ 3.38\) 56TV MINIDIP DECODER. OUN MINIDIP OP AMP 36.0c 723A DIP VOLTAGE REG.
 488 MINIDIP OP AMP 42.0C LM3900 DIP QUAD AMP. . 11295 VOtT REG 51.80
LI 31 IS VOLT REG 51.80
13115 VOLT REG s1.80

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS - AXIAL LEAD TYPE -

AMP SILICON RECTIFIERS
iN4001 50 PN \(12 / 51100 / 56\) 1000/549 iN400s 600 PIV \(8 / 51100 / 591000 / 570\) IN4007 1000 PIV 6/51 \(100 / 511 \quad 1000 / 589\) SILICON SIGNAL \& SWITCHING DIODE
 MOLEX SOLDERCON IC TERMINALS

100/s1 \(\quad 500 / / 44.20 \quad 1000 / 88.20 \quad 5000 / 338.20 \quad 50,000 / 5275\) LED 7 SEGMENT DISPLAYS DATALIT-704 . . \$1.00 DATALIT-707 . . \(\$ 1.50\)
IC SOCKETS 4 AMP SLIDE SWITCHES
8 Pin DIP Soider 35c 5PST . . 12c 10/s1 DPDI. 2Sc 10/52
Pi DIP Solder 35c
4 Pin DIP Solder 45c 16 Pin DIP Solder 50c REED RELAY 24 Pin DIP Solder \(\$ 1.25 \quad 10\) amp CONTACT 5 VOLt/20MA CO

5 each of the 85 stondard \(10 \%\) values (\(2.2-22 \mathrm{M}\)) \(1 / 2\) W Resistors (425 pcs.) Sorted by value \(\$ 12 /\) set \(2-4\) are \(\$ 11 / \mathrm{set} 5-9\) are \(\$ 10 / \mathrm{set}\). 5 each of the 70 standard \(10 \%\) volues (10.5 .6 M) \(1 / 4\) W Resistors (350 pcs.) Sorted by value \(\$ 12 / 5 e t 2-4\) ore \(\$ 11 / 50 t 5-9\) ore \(\$ 10 / \mathrm{set}\). Resistora aho available individually, in other assortments or in bases of \(1000 \mu\) ct. per value. \(1 / 4\) II' are hot molded MIL-K-HF apecification types.

SILICON TRANSISTORS
\begin{tabular}{|c|}
\hline \multirow[t]{16}{*}{} \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{15}{*}{1610 10100 10-10 ta,108 10 9 TC- \% TC. 1406 T0.106 TG.105 Ta-106 TOLOS TM-105} \\
\hline \\
\hline
\end{tabular}

FIELD EFFECT TRANSISTORS

NPN DARLINGTON TRANSISTOR

Send for Free Cotalog or Mail Readers Service Card
COD ORDERS ACCEPTED FOR SAME DAY SHIPMENT CALL 278-681-6674

Orders Less then \(\$ 10.00\) add 50 c Service Charge-Others Postpoid "Unly Quality Components Sold!"
DIGI-KEY CORPORATION ค.0. Box 126

\section*{LIVE IN THE WORLD} OF TOMORROW . . . TODAY!
And our FREE 180 PAGE CATALOG is packed with exciting and unusual values in electronic, hobby and science items - plus 4,500 finds for fun, study or profit . . . for every member of the family.

\section*{A BETTER LIFE STARTS HERE}

\section*{3-CHANNEL COLOR ORGAN KIT}

Easy to build low-cost kit needs no technical knowledge. Completed unit has 3 bands of audio frequencies to modulate 3 independent strings of colored lamps. (i.e. "lows"-reds, "middles"-greens, "highs". blues. Just connect hi-fi, radio, power lamp etc. \& plug ea. lamp string into own channel (max. \(300 \mathrm{wea}\).). Kit features 3 , controls, controlled individ SCR circuits; isolation transformer; custom plastic housing; instr.
Stock No. 41,831AV
\(\$ 18.95 \mathrm{Ppd}\)

\section*{TEST YOUR DEGREE OF ESP!}

Which light comes on when you push the button-Star, Square, Triangle or Circle? If you've got ESP you or your subject will guess right, significantly. Solid state ESP Tester has guaranteed random circuit for
accuracy-you can't beat the machine by accuracy-you can t beat the machine by Probability, telepathy experiments. Portable
 EXTRA PADS TO RECORD 250 EXPERIMENTS Stock No. 72,092AV

\section*{}
"FISH" WITH A MAGNET
Go treasure hunting on the bottom! Fascinat ing fun \& sometimes profitable! Tie a line to our powerful new specially designed 150 lb . pull PVC coated Magnet-drop it overboard in bay, river, lake or ocean. Troll it along boor-your treasured haul can be out ables. Has 6 stacked ceramic magnets. Lifts No. 71.135AV (3.1/4×3-7/8' 75-LB. PULL (1 LB) W/ 3 CERAMIC MAGNETS No. 71,150AV . . (1-1 1/16x3-1/4")
 NEW! KIRLIAN PHOTOGRAPHY KIT!
Experiment in the fascinating new
field of "Kirlian electrophotography-" images obtained on film without camera or lens by direct recording of electric charge transmitted by animate \& inanimate objects. Each "aura" differs-animate aura said to change corresponding to physical changes. Kit "HIGH VOLTAGE PHOTOGRAPHY" by H.S. Dakin \(\$ 49.95 \mathrm{Ppd}\).

No. \(9129 A V\). (60-PG. PAPERBACK BOOK)
DELUXE KIRLIAN PHOTOGRAPHY SET No. 72,053AV \(\$ 399.00\) Ppd. JANUARY 1975

GET A CHARGE FROM THE SUN!
Our 12 V Solar Battery Charger allows direct conversion of light-to-electricity. Compact panel put on a boat can automatically charge its 12 V battery over entire daylight period. Use anywhere for a trickie charge. Big value,
it comprises \(301 / 2 \mathrm{~V}\) silicon solar cells in it comprises \(301 / 2 \mathrm{~V}\) silicon solar cells in series w/diode.
No. 71,971AV (AB, 30 W-HRS./WK.) \(9 \times 18^{\prime \prime}\) HI CURRENT MODEL (\(6 \mathrm{~W}, 12 \mathrm{~V}, 500 \mathrm{~mA}\)) No. 72,010AV (AB. 150 W-HRS./WK.).

.589 .95 Ppd. \(\$ 349.95 \mathrm{Ppd}\)
. \(\$ 49.95 \mathrm{Ppd}\)

\section*{MAIL COUPON FOR cham filz CATALOCB}

180 PAGES • MORE THAN 4500 UNUSUAL

. \(\$ 3.50 \mathrm{Ppd}\).

\$11.00 Ppd.

\section*{AM RADIO FITS IN/ON YOUR EAR!}

Wear it inconspicuously everywhere, listen as you work (lawn, yard, office), watch (game, beach) or wait. Instant music, news sports. No gimmick, our \(6 / 10\) 02. technological wonder has integrated circuit. 11 transistors, patented ferrite antenna/tuner/volume dial. Uses normal sibler oxide hearing aid batt. (incl) for approx. 100 hrs. playing. New batt. to slip in avail. at drug stores (about 50 v). No lengthy wires, bulky cases, or power-packs!
Stock No. 42,275AV

KNOW YOUR ALPHA FROM THETA!
For greater relaxation, concentration, listen to your Alpha-Theta brainwaves. Ulitra-sensitive liminates need for messy creams, ete Atch'd elinnales need or messy creams, elc. Aech for a Apha or Ths brava passed Monitoring autton stimulas Alpha sound audio \& visual ED. pletely safe. Comprehensive instruction booklet
No. 1635 AV (\(8 \times 3 \times \mathrm{x}^{-} ; 24\). oz.)
\(\$ 134.50 \mathrm{Ppd}\).
LOW COST "STARTER" UNIT
No. 71809 AV .
.\(\$ 55.00 \mathrm{Ppd}\).
DELUXE "ON" TIME MONITOR-Measures and records \%
No. 1652 AV \(\left(15 \times 10 \times 6^{\prime \prime}\right)\)
\(\$ 349.50 \mathrm{Ppd}\).
WHICH ARE YOUR CRITICAL DAYS?

Can Bio-rhythm tell you? We're not sure, but we're told that vast mood shifts are caused by your body's Internal Time Clock whose rhythms can be charted ahead to possibly warn you of "critical" days. Some are great, some blah. Maybe it's your physical, emotional \& Intellectual rhythms converging at with our Bio-rhythm kit and judge for your. self. Incls Chart ing kit, metal Dialgraft Calc. instrs.
Stock No. 71,949AV
1 YR. PERSONALIZED REPORT BY COMPUTER
Stock No. 19,200AV . . . (send Birthdate)
\(\$ 11.50 \mathrm{Ppd}\).
\$15.95. Ppd.

EOMUND SCIENTIFIC CO. 300 Edscord Building, Barrington, N.J. 08007

\footnotetext{
NAME
}

ADDRESS

. \(80.162 A\) V \#85,105AV \#85,107AV \#85,187AV \#85,086AV

\section*{REFLECTING TELESCOPE}

See stars, moon, planets close-up! 30 to 90 X . Famous Mt. Palomar Type. Aluminized \& overcoated \(3^{\prime \prime}\) diameter f/10 primary mirror, ventilated cell. Fork type equatorial mount. Durable PVC tube. Includes 1"F.L. \(30 x\) Ramsden. Barlow telescopes, hardwood tripod. FREE: "STAR CHART", "HOW TO USE" book

Stock No. 85,240 AV
DELUXE 3" REFLECTOR TELESCOPE 41/4" REFLECTOR (45X to 135X). 4 \(1 / 4^{\prime \prime}\) REFLECTOR W/CLOCK DRIVE \(6^{\prime \prime}\) REFLECTOR (48 X to 360 X)
.\(\$ 49.95 \mathrm{Ppd}\). \$79.95 Ppd. \(\$ 149.50\) FOB . \(\$ 189.50\) FOB . \(\$ 249.50 \mathrm{FOB}\) \(\$ 285.00\) FOB
\(\qquad\)
\(\qquad\) \(21 p\)

\title{
The right PICKERING cartridge for your equipment is the best cartridge money can buy.
}

\section*{They feature low frequency tracking and high frequency tracing ability*!}

Pickering offers you "The Best of Both Worlds" in discrete 4-channel and in stereo cartridges. These cartridges have been specifically designed and engineered not only to peak specifications and performance characteristics, but also to achieve total compatability with your music system to help you get the most out of it.

Only Pickering has developed a way for you to be absolutely certain you select the "right" cartridge for your music system. We did it first for stereo by developing our Dynamic Coupling Factor rating system-DCF for shortwhich identifies pick-up performance in terms of a quantitative measurement. The value of a DCF rating lies not only in its merit to define low frequency tracking ability but also in its measure as an index of high trequency (8 to 50 kHz) tracing ability. Pickering's DCF-rated pick-ups have exceptional high frequency tracing characteristics, vital for both stereo and discrete 4 -channel performance The Pickering cartridge exactly "right" for maximum performance with your equipment is simple to select because of this rating method

Now, Pickering is also applying application engineering techniques and DCF ratings to its discrete cartridges. They fulfill the stringent requirements necessitated by the sophisticated nature of discrete discs

So, whether stereo or discrete is your preference, choose from 'The Best of Both Worlds' the Pickering cartridge exactly right for your equipment

For further information write to Pickering \& Co., Inc. Dept.PE, 101 Sunnyside Biva., Plainview, New York 11803

\section*{*taceAbility \({ }^{\text {™ }}\)}
'for those who can hear the difference"

\section*{Introducing the SL-1300. The precision of direct drive. The convenience of automation.}

Now Technics adds convenience to perfection.
The SL-1300. The fourth and newest Technics direct-drive tumtable. And the first with convenient, fully automatic operation.
Auto-Start. Auto-
Stop. Auto-Return.
Auto-Repeat. And the kind of outstanding specifications that are normally found only in a manual turntable.
The SL-1300, like all Technics tumtables, uses our electronically controlled DC motor. But with an improvement. The platter is part of the motor. Making the drive even more direct. It also reduces parts, increases reliability and produces an ultra-thin profile.

The gimbal-suspended automatic arm is \(9 \frac{1}{16}^{\prime \prime}\), pivot to stylus. For extremely low tracking error. And its four pairs of pivot bearings increase the rotational sensitivity
while maintaining flawless balance.
Our anti-skating control requires only one scale for all types of styli. While gold-plated contacts in the head shell assure reliable contact and help
\begin{tabular}{|l|l|}
\hline WOW \& FLUTTER & \(0.03 \%\) WRMS \\
\hline RUMBLE & -50 dB (DIN A). \(-\mathbf{7 0} \mathrm{dB}\) (DIN B) \\
\hline LONG-TERM DRIFT & Less than \(0.1 \%\) (over 30 min.) \\
\hline MIN. STYLUS PRESSURE & 0.25 grams \\
\hline TRACKING ERROR & \(\pm 1.6^{\circ}\) \\
\hline
\end{tabular} prevent hum.

And we haven't forgotten the more refined details. Like Memo-Repeat. So you can play a record from one to five times.

Or indefinitely. There's also a new prism strobe. Two-speed variable pitch controls. Dust cover. Feedback-insulated legs. And low capacitance phono cables for CD-4 records.

The concept is simple. The execution is precise. The performance is outstanding. The name is Technics.
200 PARK AVE., NEW YORK, N.Y. 10017. FOR YOUR NEAREST AUTHORIZED TECHNICS DEALER, CALL TOLL FREE 800 447-4700, IN ILLINOIS, 800 322-4400.```

