Popular Electronics

Compressor Guard Protects Air Conditioners A "Fuzz Box" For Electric Guitar Experiments With Programmable Logic Arrays Special Focus On Hi-Fi Speaker Systems

 MODEL-BY-MODEL COMPARISONS \& HOW-TO-AUDITION GUIDE

Tested
Shire V15 Type IV Stereo Phono Caitridge
 na I Stereo FM Tuner 125 Stereo Cassefte Deck

Introducing the mobile that can move you out of the world of the ordinary and into the world of the serious CB'er. The Cobra 138XLR Single Sideband. Sidebanding puts you in your own private world. A world where there's less congestion More privacy More time to talk

It's all possible because instead of 40 channels you get your choice of 120 channels. Both AM and SSB. And instead of 4 watts of legal power you get 12 watts of legal power. So you get almost double the range of AM .
With the 138XLR Single Sideband there's less background noise and less interference. So there's cleaner, clearer reception. Because like all Cobras, the 138XLR SSB is engineered to punch through loud and clear. Even in crowded metropolitan areas.

And like all Cobras it comes equipped with such standard features as an easy-to-read LED channel indicator. Switchable noise blanking and limiting. $\mathrm{An} \mathrm{RF} /$ signal strength meter. And Cobra'sexclusive DynaMike gain control
You'll find the 138XLR SSB wherever Cobras are sold. Which is almost everywhere. Because Cobra's got a nationwide network of dealers and Authorized Service Centers offering sales, installation, service and advice. So come on in. And move on up.

Gbra

Punches through loud and clear.

Cobra Communications Products

 DYNASCAN CORPORATION6460 W. Cortland St., Chicago, Illinois 60635
Whte for color brochure
EXPORTERS Enpire • Planvew NY • CANADA. Atlas Flectronics - Ontamo

UPWARD MOBILITY.

You can add a touch of space-age elegance as you protect your home with the world's first

TheWinners

These two items are the best selling new electronic products. Can you figure out why?

New products often surprise us. We never quite know why one product stands out and becomes a big seller.
In our recent catalog, our Security Switch and Mini Travel Alarm were in greater demand than any other item. Both are new innovations using newly developed technology, and both are being sold by the thousands. See if you can understand why:

THE MINI TRAVEL ALARM

It's small. And because it's small, it fits anywhere. In your briefcase or in your pocket.

The new JS\&A Travel Alarm measures only $3 / 8^{\prime \prime} \times 11 / 4^{\prime \prime} \times 21 / 2^{\prime \prime}$ and has a small easel support on the back. Just set the alarm, and the electronic beep will wake you up. The clock movement is totally solid-state, and a built-in night light lets you view the time in the dark.

But the JS\&A Travel Alarm does more. First, it makes a great pocket watch. The small imitation black leatherette carrying case that comes with the unit has a window so you can view the time even when the unit is in its case. Secondly, it tells accurate time-within fifteen seconds accuracy per month. And finally, it's inexpensive-only $\$ 29.95$ complete with carrying case and two readily-available hearing aid batteries. It makes a perfect gift for your secretary, business associates, best customers, and friends.

There is also a deluxe version with a built-in timer and dual time zone capability. You can now display one time while keeping the second time in memory.
The Travel Alarm can be ordered by calling our toll-free number below or sending your check for $\$ 29.95$ for the regular version or $\$ 39.95$ for the deluxe version. Please add \$2.50 postage and handling.

THE SECURITY SWITCH

It's just another very clever application of solid-state technology for the home or office.

You know those security timers that turn your lights on and off while you're away? They are supposed to deter burglars and vandals because they make your home look lived in.

But any halfway experienced burglar can see the difference between the lights you use when you're home and the lights you use when you're away.

Now a new space-age device programs your lights to respond to a pre-determined, yet random living pattern. And unlike the devices that fit into an electrical outlet, this device simply slips into your existing wall switch.

A built-in LED digital clock displays the time. When you leave, you turn the switch on. You can choose between five different programs depending on the room you're in. You tell the built-in microprocessor-based computer circuit which room you're in by entering a number. Then the lights controlled by the switch in that room turn on and off just as if the room were being used on a daily basis.

Because it's random, the unit will turn on and off at varying times on different days but always during the approximate times they would normally go on if you were at home.

To install the unit, you simply turn off the fuse for that outlet, remove your present light switch, and replace it with the new one. There's no soldering required - just twist on a few wire nuts and you're finished.

The switch can be overridden and used just like a regular light switch by pressing a button to turn on the light. One of the nice features of the system is its appearance-that of a spaceage switching system-sure to be a conver-
sation piece in any room.
The only drawback is that in a power failure, the lights go on and stay on after the power outage. But this could also be considered an advantage as it would warn your neighbors to stop by and check out your home.

The Hutec security switch costs only $\$ 39.95$ plus $\$ 2.50$ for postage and handling per order. It is well worth a test. If you like the switch, order some for your entire home. Even if they just replace your existing switches, you'll have the only home on the block with a digital watch in each one of your light switches.

DISCOVER THEM YOURSELF
Both of the above products are available with a 90-day parts and labor warranty and our 30-day guarantee of satisfaction. If you are not completely satisfied, return them within 30 days for a complete refund. Illinois residents please add 5\% sales tax. The most you pay for postage and handling is $\$ 2.50$ per order, no matter how many items are in the order.

JS\&A is America's largest single source of space-age products-further assurance that your modest investment is well protected. We personally stand behind the quality and the service of both products.

It took our catalog to help us discover two of America's hottest new products. Discover them yourself-at no obligation, today.

Dept. PE One JS\&A Plaza
Northbrook, III. 60062 (312) 564-9000 Call TOLL-FREE 800 323-6400
In IIlinois Call (312) 498-6900
(C) JS\&A Group, Inc., 1978

Do-it-yourself JBL.

Take the guts of
 what makes JBL JBL and adapt it to your own ideas of what a loudspeaker system should be.

Mix and match with forty-seven individual JBL componentshorns, lenses, dividing networks, transducers, everything.

And when you've found your perfect sound, we'll help you find somewhere to put it: The JBL Enclosure Construction Kit, with complete plans for building your own loudspeaker enclosure from scratch.

See your authorized JBL Loudspeaker Components dealer for the start of a great new team in sound: You and JBL.

Coming Next Month

\author{

- HIGH-QUALITY
 AUTOMOBILE AUDIO
}
- BUILD AN ELECTRONIC CAR VOLTAGE REGULATOR
- hear new sounds WITH AN ULTRASONIC DETECTOR

TEST REPORTS: Infinity Model Qb Speaker System Technics SL-1500MK2
Record Player
Hafler DH-101 Stereo Preamplifier

Cover Art by George Kelvin

POPULAR ELECTRONICS, June 1978. Volume 13. Number 6. Published monthly at One. Park Avenue. New York. NY 10016. One year subscrip. Avenue. New Yok. N Possesions $\$ 1200$: Canada. tion rate for U.S. and Possesions. $\$ 12.00$: Canada. \$15.00; all other countries, $\$ 17.00$ (cash orders postage paid at New York, NY and at additional postage paid at New York. NY and at additional maling ofrices. Authorized as second class mail by he Post Office Depariment, O
POPULAR ELEGTRONICS including ELECTRON-
POPQLAR ELEGTRONICS including ELECTRON-
iCS WORLD. Trade Mark Registered. Indexed in
he Reader's Guide to periodical Liesature.
COPYRIGHT, 1978 BY ZIFF-DAvis PUBLISH-
CG COMPANY. ALL RIGHTS RESERVED.
Ziff-Davis also publishes Boatme Car and Orivr, Cycle. Flying, Popular Protography, Skiing, ef, Cycle. Flying, Popular Prologyaphy, Sking, book, Tape Recording \& Buying Guide. Stereo Directory \& Buying Guide. and Communications Handbook.
Material in this putlication may not be reproduced in any form without permission. Requests or permission should be directed to Jerry Schneider, Rights and Permissions. Ziff-Davis Publishing' Co., One Park Ave., New York. NY 10016.

Editorial correspondence: POPULAR ELECTRONICS, 1 Park Ave.. New York. NY 10016. Ediorial contributions must be accompanied by reurn postage and will be handed with reasonable care: however, publisher assumes no responsibility for return or satety of manuscripts, art work. or models
Forms 3579 and all subscription correspondence: POPULAR ELECTRONICS, Circulation Dept., PO. Box 2774. Boulder. CO 80302. Please allow at least eight weeks for change of address. Include your old address, enclosing, if possible, an address label from a recent issue.

The publisher has no knowledge of any proprietary rights which will be violated by the making or using of any items disclosed in this ssue.
 of Circulations

Feature Articles

HOW NECESSARY IS SELECTABLE I-F BANDWIDTH IN AN FM TUNER? / Julian Hirsch
MICROPROCESSOR MICROCOURSE / Forrest M. Mims
Part 4: PIP-2-An ultra-simple educational microprocessor
FOCUS ON SPEAKER SYSTEMS I Ivan Berger I. UNDERSTANDING THE SPECIFICATIONS. II. UNDERSTANDING WHAT YOU HEAR

SPEAKER SPECIFICATION GUIDE

EXPERIMENTS WITH PROGRAMMABLE LOGIC ARRAYS / Karl Lunt
Useful logic circuit has many applications in digital circuits.

Construction Articles

PROTECT YOUR AIR CONDITIONER WITH A "COMPRESSOR GUARD" / Richard B. Fermoyle Prevents compressor damage due to power failures or brownouts.
ADD FUZZ TO YOUR ELECTRIC GUITAR OR BASS / James Barbarello
Solid-state fuzz box for interesting sound effects.
BUILD A LOW-COST SWR TESTER / Cass Lewart
Uses Wheatstone bridge sensing circuit and lamp indicator.

Columns

STEREO SCENE / Ralph Hodges
For the Record-II.
SOLID STATE / Lou Garner
Motor Control Circuits.
EXPERIMENTER'S CORNER / Forrest M. Mims
The Voltage Multiplier.
AMATEUR RADIO / Karl T. Thurber. Jr. Getting It Together as a Novice
COMPUTER BITS / Leslie Solomon
Computers to Aid the Handicapped.

Julian Hirsch Audio Reports

NIKKO GAMMA I STEREO FM TUNER
FISHER MODEL CR-4025 CASSETTE DECK
SHURE MODEL V15 TYPE IV STEREO PHONO CARTRIDGE

Electronic Product Test Report

TRAM MODEL D62 AM/SSB MOBILE CB TRANSCEIVER

Departments

EDITORIAL / Art Salsberg
The Perfect Speaker Quest.

LETTERS

NEW PRODUCTS
NEW LITERATURE
SOFTWARE SOURCES
ELECTRONICS LIBRARY
OPERATION ASSIST

Popular Electronics ${ }^{*}$

THE PERFECT SPEAKER QUEST

Music has an influence on high-fidelity equipment. As an example, an unsung musical revolution of World War II days that spawned much of today's musical style advanced the need for better audio systems. This then-new art form was also my initial motivation for searching out better and better speaker system-a search that has not yet ended.

The music had its start at the Minton Playhouse, nor far from New York's Apollo Theatre. Its pioneer musicians were the cream of orchestral jazz sidemen. The style was the type of progressive jazz known as "Bebop," with a tradition-shattering rhythm-section technique that extends to both jazz and rock today.

When I first heard Bop on records and radio broadcasts, I simply couldn't comprehend it. It sounded discordant, true, but so did Beethoven's music when it was introduced. Worse, though, was the high level of distressing record-surface noise I heard. It wasn't until I heard it performed "live" that its true sound was revealed.

I concluded that my speaker (those were mono days, remember) was the cause of the distressing noise I heard at home, attributing this to unsatisfactory high-frequency reproduction, among other deficiencies. Here's why:

In Bop, the drummer's role became much more important and demanding. While a "swing" drummer such as Chick Webb or Gene Krupa used the bass pedal to keep time, accompanied by cymbal crashes, Bebop drummers-Kenny Clarke, Max Roach, et al-abandoned this style. They used, as do many modern drummers, the top cymbal as their "main" instrument for both 4/4 fundamentals and tonal dynamics. Thus, a continual, shimmering cymbal sound underlined the music. This freed the drummer's left hand and both legs for adding a variety of accents: a top-hat cymbal's "cha-cha" sound, a bass drum's abrupt thump a snare's pistollike sound, a tom-tom, etc.

So, while most audiophiles of the day were terribly concerned about achieving deeper speaker bass, I also sought better treble and transient response. I needed this improvement to hear the cymbal's persistent sound, without which I couldn't assemble the musical puzzle.

This was no easy task. After all, a cymbal's frequency response extends to 16 kHz , a bass drum goes down to about 30 Hz , with some 25 watts acoustic power in real life. Add the string bass (which no longer simply followed a drum pedal accent) ranging from about 41 Hz to 8 kHz with overtones, and a piano stretching from $271 / 2 \mathrm{~Hz}$ to almost 9 MHz with overtones. Top them off with a trumpet and a saxophone, each producing powerful mid-frequency fundamentals and high-frequency harmonics extending to 10 kHz , as spearheaded by Dizzy Gillespie and Charlie Parker, and the complex music elements of a modern jazz group were not easy to reproduce.

Furthermore, to capture the essence of the music, all the instrumental nuances had to be reproduced. This meant good transient response was necessary. Aside from overcoming one-note bass and dull-treble problems, the instrument's true color was at stake. (An instrument's higher overtones, which determine timbre, die out quickly.) Interestingly, one of the reasons for the difficulty in faithfully reproducing piano music is its "attack." Play a piano softly, for example, and many overtones are subdued. But strike piano keys hard and the amplitude of a host of momentary overtones might reach 50% of the fundamentals, imparting a different sound character. If a speaker system distorts these harmonics, then the piano's true sound won't be reproduced.

My quest for better speaker systems led me to a few basic texts, mainly authored by Abraham Cohen, G.A. Briggs, Harry Olson, and James Moir. (Cohen and Briggs, both of whom made important contributions to speaker development and public education on the subject, died this year.) After extensive experimentation with different speaker designs in a variety of listening rooms for almost a dec-
(Continued on page 6)

TRI.COLOR

WIRE CUTTING AND STRIPPING DISPENSER

New Sim-Body seope probes from BRK-PREBSODN cost effective
 really rugged!

B\&K-PRECISION's new line of 10:1/ direct scope probes is designed to be compatible with most scopes available, up to 50 MHz . All are rated at 500 Vp -p. B\&K-PRECISION slimbody probes range in price from $\$ 25-\$ 35$.

Available forimmediate delivery at your local distributor. Write for a free copy of the latest B\&K-PRECISION catalog.
> B K pafelsion DYNASCAN CORPORATION

6460 West Cortland Avenue Chicago, Illinois 60635 • 312/889-9087 In Canada: Atlas Electronics, Ontario

EDITORIAL (Continued from page 4)
ade, I gathered a large audience in a small hotel ballroom to participate in speaker listening tests. The speaker systems chosen were the same models evaluated that year by Consumer Reports. Check-lists of sound attributes for grading speakers identified only by number were given to participants. The audience consisted of recording engineers, musicians, hi-fi editors, audio dealers, audiophiles and a scattering of men and women who had no special experience in high-fidelity sound. Speakers were hidden behind an acoustically transparent curtain, while a variety of program material specially prepared on master tapes by Capitol Records was alternately played on each system. The results were most interesting: (1) Preference rankings were unlike those listed by Consumer Reports. (2) Except for a few systems that exhibited distinct deficiencies, it was not possible to make a logical analysis of listeners' preferences based on their speaker listening experience, audio knowledge or occupation. It was clear then as now that each person has his or her own sense of what sounds best.

Though modern jazz is not a majority art form among listeners, it served me well over the years as an ideal program source for evaluating my audio system. Now, however, much of its complex music roots are evident on more widely favored pop and rock music. So today's sonic challenge to speaker systems and other components is more apparent. Hi-fi equipment buyers, therefore, face many of the same judgement problems I did years ago.

Loss of hearing, for example, is an important determinant in choosing a speaker system. You cannot evaluate what you don't hear! For example, the hearing of a 35 -year-old male can be expected to be down about 6 dB at only 4 kHz as compared to a male in his early 20 's. At about 60 years, the loss is typically some 30 dB! To a 20 -year-old, then, a $4-\mathrm{kHz}$ sound appears eight times as loud as it would to an older chap. A woman, in contrast, experiences less high-frequency hearing loss; perhaps half of a man's as she ages. But she does have a somewhat greater hearing loss at low frequencies. So what you will prefer in terms of extended frequency response depends in part on your sex and your age.

You can fool yourself about your hearing acuity by listening to loudly played test-frequency records or signal generator audio outputs. This will compensate up to a point for the aging effect in hearing (presbycusis). Airtight headphones will perform similarly at lower-than-earthshaking volume by eliminating ambient noise, which in a typical living room is probably about 43 dB or so. I can hear to almost 15 kHz in the foregoing situations. But at low power output levels at about 20 feet from the speaker systems, I don't go much above 13 kHz . With music playing, my HF detection abilities are less keen, of course. I proved this to myself by progressively filtering highs until a change was noticed.

Judging bass-frequency output of speakers can be tricky, too. The human ear can fill in bass that isn't there. Also, you may hear lots of output at a low-bass frequency, but it might consist largely of high-distortion energy. I used an old mono LP, "Hi-fi \& Mighty" on an RCA label, for this checkout purpose, especially its "Musetta's Waltz" track. It featured Allen Organ solos, with continual pedal music. I also played Brahms' "Symphony \#1" (Otto Klemperer on Angel) for the poundingdrum intro. The liner notes observed that violins came in over the drum beats. In my early speaker models, however, the strings were under the drums in sound level. Better speakers later proved that the writer was correct!

I discovered in books and practice years ago that room dimensions, furnishings and speaker placement have a great deal to do with speaker performance quality, too. Few of us enjoy perfect room dimensions for audio (said to be a ratio of $1 \times$ 1.27×1.62) or the ideal reverberation time (about 0.5 second for an average-size room and 0.7 second for a larger room, say, 20 feet long). And every new speaker placement sets up different sound vibration modes. A change from mid-wall to corner can add 6 dB to bass energy, for example, but aesthetics don't always permit using such a reduced angle of radiation to achieve a higher SPL

Searching out the best-sounding speaker systems for one's ears is a delightful pastime, I've always felt. More important, it's worth the effort because it can contribute more than any other audio component toward accurate reproduction of recordings and FM broadcasts. This issue's focus on speaker systems will give you a running start toward this end

WHEN YOU BUILD A SPEAKER TO SOUND GREAT ON EVERY PART OF THE MUSIC, YOU CANT CUT CORNERS ON ANYPART OFTHE SPEAKER.

A sing eHPM-150 weighs al nost $\delta 0$ pounds.
The fact it weighs more than a Large Advent speaker, Bose 901 or JBL L1CO is rrot an accident.
Our speaker frames are made of heavy cas: aluminum instead of the usLal stamped metal, so you hear only the speakers vibrating aridnever ateir frames.

Cur magnets are oversize to spare your ears needless distortion.
And our casinet is nade out of special compressed wood tha's denser ard jeavier than ordinary wood. So the sound is forsed out of the cabinet instead cf being e bsorbed by i.

Of course, not everything thet adds to the sound of an HPM-103 also adds to iss weight.
Cur supertweeter uses nothing bu= a piece o: High Po.ymer Molecular film ro produce incredibly clear and crisp higl requencies.

Cur midrange diver and tweeter have cones that are lig't erough togive sharp response, but rig d enough nor to distort.

And our 12 n=h wocfer has a long throw voice coil and unique carbon fiber blend cone (ins-ead of the typical cardboard cone. that work ts produce the kind of rea istic bass you not only hear, b \boldsymbol{x} feel.

Naturally, ve coulcigo on. About our 12-1/2 feet of dampins material. Or about the aluninum screws tha: keef cur speakers from falling out. Theyre orcinarily used to keep airplenes irom falling apart.

But we figure at this point you'd rather hear our speakers in person than hear any more abcu= them fromus.
HPM-100

The all-arou nd great speaker.

"If youre going tolearn electronics, you might as well learn it right!"

You've probably seen advertisements from other electronics schools. Maybe you think they're all the same.
They're not:
CIE is the largest independent home study school in the world that specializes exclusively in eleetronies.

Meet the Electronies Specialists.

When you pick an electronics school, you're getting ready to invest some time and money. And your whole future depends on the education you get in return.

That's why it makes so much sense to go with number one ... with the specialists . . . with CIE!

There's no such thing as bargain education.

If you talked with some of our graduates, chances are you'd find a lot of them shopped around for their training. Not for the lowest priced but for the best. They pretty much knew what was avatlable when they picked CIE as number one.

We don't promise you the moon. We do promise you a proven way to build valuable career skills. The CIE faculty and staff are dedicated to that. When you graduate, your diploma shows employers you know what you're about. Today, it's pretty hard to put a price on that.

Because we're specialists, we have to stay ahead.

At CIE, we've got a position of leadership to maintain. Here are some of the ways we hang onto it...

Our step-by-step learming includes "hands-on" training.

At CIE, we believe theory is important. And our famous Auto-Programmed ${ }^{\text {® }}$ Lessons teach you the principles in logical steps.

But professionals need more than theory. That's why some of our courses train you to use tools of the trade like a 5 MHz triggered-sweep, solid-state oscilloscope you build yourself-and use to practice troubleshooting. Or a beauty of a $19-$ inch diagonal Zenith solid-state color TV you use to perform actual service operations.

Our specialists offer you personal attention.

Sometimes, you may even have a question about a specific lesson. Fine. Write it down and mail it in. Our experts will answer you promptly in writing. You may even get the specialized knowle dge of all the CIE specialists. And the answer you get becomes a part of your permanent reference file. You may find this even better than having a classroom teacher.

Pick the pace that's right for you.

CIE understands people need to learn at their own pace. There's no pressure to keep up... no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

Enjoy the promptness of CIE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it backthe same day. You find out quickly how well you're doing!

CIE can prepare you for your FCC License.

For some electronics jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's government-certified proof of your specific knowledge and skills!

More than half of CIE's courses prepare you to pass the governmentadministered exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

For professionals only.

CIE training is not for the hobbyist. It's for people who are willing to roll up their sleeves and go to work . . . to build a career. The work can be hard, sure. But the benefits are worth it.

Send for more details and a FREE school catalog.

Mail the card today. If it's gone, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail the card or the coupon or write CIE (mentioning name and date of this magazine) at: 1776 East 17 th Street, Cleveland, Ohis 44114.

Patterns shown on TV and osculloscope screens are simulated.

How close can hi-fi get to an authentic musical experience?

Letters

POORER BUT BETTER OFF

Thanks to Popular Electronics, I am now $\$ 135$ poorer. This may sound bad, but it is really good-at least I hope so. I have all of your articles on the Cosmac Elf microcomputer built around the $1802 \mu \mathrm{P}$ chip from RCA. They have aroused my interest so much that I have gone out and bought my own Elf microcomputer kit. -Robert J. Kastelic, South Milwaukee WI

THANKS FOR "EXPERIMENTER'S CORNER'

I would like to express my appreciation for the "Experimenter's Corner." This column is always lucid and interesting. I particularly enjoyed the December 1977 and January 1978 columns on read/write memories. Thanks to them, I now understand how data is placed into and retrieved from memory. I would like for author Forrest Mims to devote more space to digital and computer circuits - Mark Jennings, Bellevue, WA

TRANSMITTER THAT NEVER WAS

As I was leafing through the February 1978 issue of Popular Electronics, I noted that the Amateur Radio column made reference to the Heathkit Model HX-1675 amateur radio transmitter. The information for this article undoubtedly originated from someone here at Heath. Unfortunately, the Model HX-1675 was discontinued at the last minute and never offered for sale. - V. Virgil Bennett, Heath Co., Benton Harbor, MI

UPDATING NBS SERVICES

We appreciate your help in keeping your readers abreast of changes in our standard time and frequency services. Here is some late information.

WWVL (which operated near 20 kHz until July 1972) no longer is in operation. WWVB (60 kHz). WWV and WWVH $(2.5,5,10$, and 15 MHz) are still on the air continuously

Details of station operation, signal formats and other information about WWV, WWVB, and WWVH are included in National Bureau of Standards Time \& Frequency Dissemination Services, a 60 c booklet available as NBS Special Publication 432 from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. (SP 432 replaces SP 236.) -Collier N Smith, NBS. Boulder, CO 80302

Out of Tune

In "Expanding the Elf II" (March 1978), transistors $Q 2$ and $Q 4$, in Fig. 3, should be types 2N5354

LOOK AT ALL YOU GET! Every type, size and style of terminal and connector you'll probably ever need! Full size ranges!

- No more "making do" with just anything you have on hand!
- No more "drugstore quality" terminals and connectors!
- No more high prices!
- No more less-than-professional repair jobs!
- No more frustrating searches for the right piece of electrical hardware!
- No more time-consuming soldering!
- No more Saturday-morning trips to the hardware or electrical supply store!
All high-quality, 99% conductivity, plated copper terminals and connectors Meet or exceed UL, CSA, and (where applicable) OEMstandards. Not inexpen sive "stamped-out-tin" hardware. No "seconds" or "rejects." All high-quality! Truly over $\$ 100$ worth of hardware alone! Check out prices yourself you'll be amazed!
Unconditional 30-Day Guarantee: If you're dissatisfied in any way or for any reason, just return your Shop(s) within 30 days for an immediate, full refund. No questions asked!
Exactly what you receive: One 25 -tray, polystyrene bir-cabinet (tray dividers form 45 bins). 1,011 terminals, connectors, and electrical accessaries 25 preprinted, color-coded I.D. labels. One FREE Specifications Chart - 1977 D.R.I Industries, Inc., Eden Prairie. MN 55344
"The Electrical Terminal \& Connector Shop" is a trademark of D.R.I. Indus.tries, Inc D.R.I. Industries, Inc., 6864 Washington Ave. So., Eden Prairie, MN 55344

To Order - 24-hour Plione Service: Send check, money order. or company purchase order for fullamount. Or charge it to anyone of 5 major credit cards (see Order Coupon). Credit card buyers can also call our 24 -hour, toll-free number: 800-331-1000 from Oklahoma, call 918-664-8300 collect)

Mail to and make remittance payable to
a Retal
D.R.I. Industries, Inc., Dept. POPEL-68

6864 Washington Avenue South, Eden Prairie, IAN 55344
Indicate \qquad Electrical Terminal \& Connector Shop(s) @ \$24.95
Order: \qquad plus $\$ 3.90$ shipping and handling each. $\xlongequal[\text { How many? }]{ }$ Stanley Crimper(s) @ $\$ 2.99$ plus 75 c shipping and How many? handling each. (Limit: one per Shop purchased.)
Check $(\checkmark) \square$ Check, money order, or company purchase order Method enclosed (MN residents add 4\% sales tax). of Payment: \qquad Charge it to: \square VISA/BankAmericard \square American Express \square Carte Blanche
\square Diners Club \square Master Charge
CARD NO.
SIGNATURE X
NAME
ADDRESS
CITY \qquad STATE \qquad ZIP

HEWLETT-PACKARD NTRODUCES ANEWGENERATION. THE PRICE OF EXCELLENCE NOW STARTS AT $\$ 60$.

THE NEW SERIES E. Introducing Series E. Five precision calculating instruments for science, engineering and business. You'll find them outstanding values.

NEW FEATURES. MORE CONVENIENCE.

Easier to read. They feature a new, larger LED display for improved readability. And so that you'll never confuse 100000 with 1000000, commas are inserted between thousands.
Checks you. Checks itself. Built-in diagnostic systems tell you:

1) when you've performed an incorrect operation; 2) why it was incorrect; and 3) if the calculator isn't working properly.
Accuracy. We engineered a new level of accuracy into Series E. So you need not be concerned that your answers are correct or complete.

The Hewlett-Packard extras are standard. Series E is "human engineered" inside and out for increased usability: low battery warning light: rechargeable batteries; positive click keys; sturdy. impact-resistant cases. Pick up any Series Ecalculator and experience the HP difference.

HEWLETT-PACKARD IS WITHOUT EQUAL.

In logic systems. Series E calculators use RPN logic exclusively. RPN - the system that displays all intermediate results for instant feedback in checking errors. RPN - the system that lets you solve lengthy problems with ease and consistency. You'll find it's the shortest possible distance between the question and the answer.
In documentation. The complete modular documentation system for Series E includes:

FOR SCIENCE AND ENGINEERING.

 The HP-31E-Scientific. $\$ 60^{*}$ Consider it the new standard scientific calculator: Trigonometric, exponential and math functions. Metric conversions. Fixed and scientific display modes with a full 10 digit display: 4 separate user memories. The HP-32E-Advanced Scientific with Statistics. \$80** Everything the HP-31E is -and more. More math and metric capabilities. 15 user memories. Hyperbolics. Plus comprehensive statistics. Engineering, scientific and fixed display modes. Decimal degree conversions The HP-33E-Programmable Scientific. \$100* A scientific, math and statistical calculator with the added clout of programmability. 49 program lines of fullymerged key codes. Editing keys, control keys and a full range of conditional keys. 8 user memories.Displays photographed separately to simulate typical appearance.

FOR BUSINESS AND FINANCE.

The HP-37E-Business Management. $\$ 75$. Your best choice for a basic business and financial calculator. Has our new "cash flow sign convention" for intuitive problem solving. Handles PV, PMT and FV simultaneously. Calculates percents, discounts and mark-ups. Figures amortization schedules. Statistics with trendline forecasting. 5 financial and 7 user memories.
The HP-38E-Advanced Financial with Programmability. \$120* Our first financial programmable calculator. Has all the power of the HP-37E plus a lot more Routine or sophisticated problem solving at the touch of just one key - no previous programming experience necessary. IRR and NPV for up to 1980 cash flow's in 20 groups. 2000-vear calendar. 5 financial and 20 user memories plus up to 99 program lines.

Introductory Booklets; Owners' Handbooks; Applications Books for mathematics. statistics, real estate, leasing, investments and more. These books give you fast, easy solutions to everyday problems.
In quality. Hewlett-Packard quality, dependability and reliability are engineered into every Series E calculator.

EXCELLENCE AT AN
 AFFORDABLE PRICE.

For details, send the attached coupon. And for a closer look at the HP-31E. HP-33E or HP38E, visit your nearest HewlettPackard dealer. (The HP-32E and HP-37E will be on his shelves in July.) For the address, CALL TOLL-FREE 800-648-4711-in Nevada, 800-992-6710. See for yourself that the price of excellence is now quite affordable.

Dept 254 F 1000 N E Circle Blvd. Corvallis. OR 97330

HEWLETT-PACKARD

Dept. 254 F
1000 N. E. Circle Blvd.
Corvallis, OR 97330
Please send details on new Series E \square Business Calculators
\square Scientific Calculators

NAME
ADDRESS

CITY
STATE
*Suggested retail price excluding applicable state and
local taxes - Continental US.A.. Alaska \& Hawaii
616-62

New Products

Additional information on new products covered in this section is alailable from the manufacturers. Either circle the item's code number on the Free Information Card or write' to the manufacturer at the address given.

Hand-Held $50-\mathrm{MHz}$ Counter

The Continental Specialties "Mini-Max" is a new hand-held automatic frequency counter that can be battery powered with a standard 9-V battery or, optionally, ac pow-

ered. It has a guaranteed minimum frequency range of from 1090 Hz to 50 MHz , with $100-\mathrm{Hz}$ resolution throughout the entire range. There are no controls, only an on-off switch. The frequency is automatically displayed directly on the counter's $0.1^{\prime \prime}$ ($2.54-\mathrm{mm}$) magnified, six-decade display, with leading zeroes blanked out. When the Mini-Max is first turned on, two decimal points (one each for kilo- and megahertz) come on in the display. It has a di-ode-protected miniature phone-jack input whose impedance is rated at 1 megohm. A built-in crystal-controlled timebase operates at 3.58 MHz and has a claimed frequency stability of $0.2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over a temperature range of from 0° to $50^{\circ} \mathrm{C}$. Dimensions are $3^{\prime \prime} \times 6^{\prime \prime} \times 11 / 2^{\prime \prime} . \$ 89.95$.

CIRCLE NO \& ON fREE INFORMATION CARD

BGW Model 410 Power Amplifier

The Model 410 stereo power amplifier from BGW uses a pair of 10 discrete LED "meter" displays in place of the traditional analog mechanical movements to indicate output power. Rated at 200 watts continuous into 8 ohms, the amplifier's frequency response rating is 3 Hz to $100,000 \mathrm{~Hz}+0 /$ -3 dB . THD and IM distortion are rated at 0.05% ard 0.01%, respectively. Residual hum and noise are rated at -110 dB . Input sensitivity is 2 volts for 200 watts output. The LED "meter" display is average responding; it has a three-position sensitivity switch ($-20,-10$, and 0 dB). A four-position speaker system selector switch with 20-ampere power-handling capability is provided. $\$ 699$

CIRCLE NO B9 ON FREE INFORMATION CARD

Vector Analog Interface Board

A multifunction Analog Interface Board for microcomputers, introduced by Vector Graphic Inc., is for use with potentiometers, joysticks, and voltage sources. An 8 bit digital port with a latch strobe can func-

tion as a keyboard input port. Tone pulse generators can also produce sounds for games or keyboard audio feedback. Additional features include four A/D inputs and MWRITE logic and a power-on jump feature for computers that lack a front panel. \$75, kit; \$115, assembled.
circle no by on free information caro

Sansui Direct-Drive Turntable

The latest direct-drive turntable from Sansui, Model SR-333, is a two-speed manual player with individual pitch-control adjustments for each speed. The motor is a $20-$ pole, 30 -slot brushless type, with wow and flutter rated by the manufacturer at less

than 0.035%. Rumble is rated at -70 dB , signal-to-noise ratio at better than 60 dB . The arm is an S-shaped, counterbalanced type. The SR-333 comes complete with base and dustcover. It measures $181^{1 / s^{\prime \prime}} \mathrm{W} \times$ $61 / 16^{\prime \prime} H \times 1411 / 16^{\prime \prime}$ D. $(46 \times 15.4 \times 37.9$ $\mathrm{cm})$, and weighs $17.2 \mathrm{lb}(7.8 \mathrm{~kg}) . \$ 200$.
circle no 91 on free information caro

Mobile Antennas for Japanese Cars

A new series of pillar-mount $A M / F M / C B$ antennas, designed specifically to replace existing AM/FM antennas on Datsun, Toyota and Honda automobiles, has been announced by Harada. Five models are available: two each for Datsuns and Hondas, and one for Toyotas. The antennas are top-loaded for CB, with specially designed cables and couplers to accommodate all three reception modes.

Circle no. 92 on free information caro

Curtis Amateur Radio Computer

A computerized Morse and Baudot code operating system for the ham is available from Curtis Electro Devices, Inc. Called the System 4000, it is designed to receive, decode, and print (via CRT) Morse or fivelevel Baudot TTY codes at rates of 10 to 100 wpm or 60 to 100 wpm . It also serves as a keyboard or paddle with CRT display of the transmitted text. The Morse keyboard provides a 500 -key buffer, eight programmable message memories, and two
(Continued on page 22)

Why you should buy a digital multimeter from the leader in digital multimeters.

If you're shopping for your first multimeter, or moving up to digital from analog, there are a few things you should know.
First, look at more than price. You'll find, for instance, that the new Fluke 8020A DMM offers features you won't find on other DMMs at any price. And it's only $\$ 169$.*

Second, quality pays. Fluke is recognized as the leading maker of multimeters (among other things) with a 30 -year heritage of quality, excellence and value that pays off for you in the 8020A.

Third, don't under-buy. You may think that a precision $31 / 2$-digit digital multimeter is too much instrument for you right now. But considering our rapidly changing technology, you're going to need digital yesterday.

If you're just beginning, go digital.

Why not analog? Because the 8020A has 0.25% dc accuracy, and that's ten
times better than most analog meters.
Also, the 8020A's digital performance means things like 26 ranges and seven functions. And the tougher your home projects get, the more you need the 8020A's full-range versatility and accuracy. The 8020A has it; analog meters don't.

If you're a pro.

You already know Fluke. And you probably own a benchtop-model multimeter.
Now consider the 8020A: smaller in size, but just as big in capability. Like 2000 -count resolution and high-low power ohms. Autozero and autopolarity. And the 8020 A has 3 -way protection against overvoltage, overcurrent and transients to 6000 V !

Nanosiemens?

Beginner or pro, you'll find the meter you now have can't measure nanosiemens. So what? With the 8020A conductance function, you can measure the equivalent of 10,000 megohms in nanosiemens. Like capacitor, circuit board and insulation leakage. And, you can check transistor gain with a simple, homemade adapter. Only with the 8020A, a $13-\mathrm{oz}$. heavyweight that goes where you go, with confidence.

What price to pay.

\$169.*
Of course, you can pay more. Or less. In fact, you could pay almost as much for equally compact but more simplistic meters, and get far less versatility. And, the 8020A gives you the 'plus' of custom CMOS LSI chip design, and a minimum number of parts (47 in all). All parts and service available at more than 100 Fluke service centers, worldwide. Guaranteed, for a full year.

Rugged. Reliable. Inexpensive to own and to operate; a simple 9 V battery assures continuous use for up to 200 hours.

Where to buy.

Call (800) 426-0361 toll free. Give us your chargecard number and we'll ship one to you the same day. Or, we'll tell you the location of the closest Fluke office or distributor for a personal hands-on feel for the best DMM value going.
*U.S. price only

Fluke 8020A DMM for Home Electronics Experts: \$169

GRGCLE NO 62 ON FREE INFORMATION GARD

NRI BRINGS "POWER-ON" TRAINING TO YOUR HOME... FOR QUICKER, EASIER LEARNNG AND FASTER EARNING

You get trouble-shooting experience from the chassis up . . . with NRI's unique training equipment.

The "firsts" described here are typical of NRI's over 63 years of leadership in electronics home training. When you enroll as an NRI student, you get the technical knowledge and the priceless contidence of "hands-on" experience sougint by employers in communications, TVaudio servicing, computers, and industrial and military electronics. NRI training is designed for your education . . from the educator-acclaimed Achievement Kit sent the day you enroll, to bite-size, well illustrated, easy-to-read lessons programmed with designed-for-learning training equipment.

NRI Firsts make learning at home fast and fascinating More than a million have come to NRI for home training. Professional TV/Audio technicians who learned their profession through home training rate NRI as first choice by far, over any other school.

SEND FOR THE FREE FULL-COLOR CATALOG . . . for full detals on NRI home training. There is no obligation . . . no salesman will call.

First and only school with designed-for-learning Quadraphonic Audio Center with four SP14 speaker systems. This solid state SQ" system is designed so that you perform meaningful experiments at every stage of assembly ...for thorough training in audio technology.

"Trademark of CBS. Inc

First with an electronics Discovery Lab'". This self-contaned advanced solid-state lab gives you fast, hands-on access to fullypowered semiconductor circuitry NRI is the only school with all these modern solid state component experiments in: bipolar and field effect transistors, Zener diodes light-emitting diodes, SCR's and phototransistors
"McGraw Hill CEC

First and only school with new Optical Transmission System engineered to allow you to analyze digital and analog signal transmission via light beam. Systems you build use LED and phototransistor technology, simulating basic principles of laser communicatıons as used in video disc home entertanment systems.

First and only school with designed-for-learning $25^{\prime \prime}$ ciagonal solid state Color TV complete with cabinet. This solid state set was designed by NRI's own engineers from the chassis up so that students can perform over 25 in -set experiments during censtruction, including valuable
"Power-Dn" trouble-shooting

First and only school with a portable CMOS digital frequency counter engineered by NRI to give you experience in the newest types of digital systems coming into expanded use in consumer electronics.

First and only training with an actual programmable digital computer to give you the only home training in machinelanguage programming . . . essential to trouble shooting digital computers. Extra Memcry Expansion Kit doubles memory size for practice in advanced programming techniques

First and only school with a solid state regulated power supply engineered by NRi to give you experience with modern power supply designs; to give you a premium power supply for your NR! Transceiver, or to use in troubleshooting mobile equipment

First and only
school with an Andions Lab engineered to give you a thorough understanding of practical communications antenna requirements. You assemble and test several different types of antennas and matching sections, measuring gain and radiation patterns.

First and only school with designed-forlearning, 400-channel, digitallysynthesized VHF Transceiver to give you the only fully-up-to-date 2-meter equipment for complete training in commercial, amateur, and CB communications. The design incorporates circuitry and componerits representative of the lates: state of the art. Circuitry is on five plug-in circuit cards to take full advantage of NRI "Power-On" training

If card is missing, write to:

NRI Schools
McGraw Hill Continuing Education Center
3939 Wisconsin Ave.
Washington, D.C. 20016
(Continued from page 16)
fixed message memories (CQ and ID). The message memories are also available in the paddle keyer mode. Code speeds are adjustable in one wpm increments from 10 to 99 wpm . The System 4000 is designed to be added to the Processor Technology SOL- $20 \mu \mathrm{C}$, but it can be adapted to any S-100 bus, 8080-based $\mu \mathrm{C}$ by adding additional I/O patches to the video driver and console keyboard. Address: Curtis Electro Devices, Inc., Box 4090, Mountain View, CA 94040.

Bearcat

Autoscan Monitor

The Electra Company's Bearcat 250 is a new automatic scanning receiver that monitors 50 channels, requires no crystals, and features auto search and recall. The synthesized scanner includes a nonvolatile memory, five custom-designed chips, and pushbutton programming for any frequency in five bands without the use of crystals. The receiver can monitor low and high vhf bands, the uhf band, the T band, and the 2 meter (146 to 148 MHz) ham band. The 50 channels are arranged in banks of 10. This is said to be the first scanner to automatically search out and activate local publicservice frequencies, store them in memory, recall them on demand, and display the active frequencies discovered and stored during the search. It also contains a digital clock that operates while the scanner is performing other functions. A priority channel is built in. $\$ 399.95$.
circle no 93 on free information caro

CCD Video Camera Kit

A charge-coupled device (CCD) video camera kit is available from Solid State Sales. The Model 202 camera can be used for both visible-light and infrared viewing,

and for character recognition with computers equipped with external circuits. It features the Fairchild 202C (100 $\times 100 \mathrm{bit}$) self-scanning CCD as the graphic pickup element. Among the advantages claimed for the camera are: all clock voltages at a fixed level to eliminate the need for adjust-
ments; higher video output signal; simplified circuitry for easy assembly; and a twolevel TTL output for easy interfacing. All components mount on two parallel boards. The output signal is for display on an $X-Y$ oscilloscope. The camera kit comes with all semiconductors, passive components, boards, data sheets and diagrams, and an 8 -mm lens. \$349.

$$
\text { CIRCLE NO } 9 \text { ON FREE INFORMATION CARO }
$$

Mobile

Entertainment Center With Clock

The Audiovox "Indasher" Model DGC-10 car stereo system contains an AM/stereo FM receiver, cassette player, and full-time clock (hours and minutes/day and date) and timer. Frequencies on $A M$ and $F M$, time, and elapsed time are indicated by a yellow 7 -segment numeric display. A pushbutton switch is provided for adjusting dis-

play intensity for daytime and nighttime driving conditions. The receiver is rated to deliver 10 watts rms and has 4 - and 8 -ohm outputs. The receiver portion features electronic AM/FM band selection, local/ distance switch, and stereo/mono selection. The cassette player has fast-forward/ eject/rewind lever and automatic eject mechanism at end of tape play. The time is continuously displayed until a station is tuned. Five seconds after a station is tuned, the display automatically switches back to the time-display mode. $\$ 299.95$.

Finco Monitor Antennas

Two new monitor antennas-one for pub-lic-service bands and one for aircraft fre-quencies-have been announced by Finco. The SMA-1 Scanner Monitor Antenna operates as a $1 / 2$-wave dipole in the $30-50$ MHz lo-vhi band, as a 3/2-wave dipole in the $148-174-\mathrm{MHz}$ hi-vhf band, and as a " J " stub in the $450-512-\mathrm{MHz}$ uhf band. It is also available as SMA-IWK, a windowmounting kit with an 18' cable. The air-craft-monitor model AMA-3 is a half-wave, omnidirectional groundplane antenna tuned for the $108-138-\mathrm{MHz}$ aircraft band, and is designed to mount on $11 / 4^{\prime \prime}$ masting or standard $1^{\prime \prime}$ threaded water pipe (not included).

Clrcle no 96 on free information card

Underwater Microphone/ Earphone

The Y^{2} Model $1 \mathrm{O}-310$ is an underwater microphone rated by its manufacturer for depths of up to 600 feet. It can also be used as an earphone. Specifications are: sensitivity, -85 dB re $1 \mathrm{~V} /$ microbar; impedance, 2000 ohms at 1 kHz ; electrical leakage resistance greater than 100 megohms; weight, $3 / 4 \mathrm{oz}(23 \mathrm{~g})$; size, $1.2^{\prime \prime}$ dia. $\times 3 / 8^{\prime \prime}$ thick $(3.0 \times 1.0 \mathrm{~cm}) . \$ 16.95$. Address: Y-Square Associates, Inc. 2001 So. Eastwood St., Unit "A", Santa Ana, CA 92705.

AM CB Base-Station Transceiver

The Robyn Model AM-500D AM CB base station transceiver is rated to deliver 4 watts of output power with a 100% modulation limit on alt 40 CB channels. It features a large LED-type numeric channel indicator, illuminated SWR and S / r - f meters, and separate transmit ($T X$) and receive ($R x$) indicators. Pushbutton switches control Pa/ CB selection, ANL (automatic noise limiter) in/out selection, and choice of internal or external speaker. Separate rotary controls are provided for adjusting volume, SQUELCH, RF GAIN, TONE, MIKE GAIN, and SWR/CAL. The dual conversion receiver is
(Continued on page 24)

Radio Shack's personal computer system? This ad just might make you a believer.

You can't beat the 4 K system at \$599

... or the step-up
 16K system at \$899

... or the Level-II 16K/printer/disk system at \$2385

... or the fast 4K/printer system at \$1198

TRS-80 "Breakthru"

- TRS-80 microcomputer
- 12" video display
- Professional keyboard
- Power supply
- Cassette tape recorder - 4K RAM, Level-I BASIC
- 232-page manual
- 2 game cassettes

TRS-80 "Sweet 16"

- Above, except includes 16 K RAM

TRS-80 "Educator"

- Above, except includes 4K RAM and screen printer

TRS-80 "Professional"

- Above, except includes 16K RAM, disk drive, expansion interface, and Level-II BASIC

So how are you gonna beat the system that does this much for this little? No way!

...The amazing new 32K/Level-II/2-disk/ line printer system at \$3874

TRS-80 "Business"

- Above, except includes 32K RAM, line printer, and two disk drives

[^0] Write Radio Shack, Division of Tandy Corporation, Dept. C-008, 1400 One Tandy Sen'er, Fort Worth. Texas 76102 . Ask for Catalog TRS-80.

(Continued from page 22)
rated at: $0.5 \mu \mathrm{~V}$ sensitivity, 60 dB minimum adjacent-channel rejection, 50 dB or more image rejection, and 3.5 watts audio output power. The transceiver can be powered from the ac power line or a 12 -volt dc source. Size is $13^{\prime \prime} \mathrm{W} \times 111 / 2^{\prime \prime} \mathrm{D} \times 5^{\prime \prime} \mathrm{H}(33$ $\times 29.2 \times 12.7 \mathrm{~cm}$) and weight is $11 \mathrm{lb}(5$ $\mathrm{kg}) . \$ 189.95$.
circle no 97 on free information capd

IET Digital Multimeter

The IET DM-45 is an auto-ranging, autopolarity $31 / 2$-digit multimeter of pocket size It measures ac and dc voltages from 1 mV to 999 V , ac and dc current from 1 mA to 2 A, and resistance from 1 to 999,000 ohms. Input impedance is 1000 megohms in the 1 -volt range and 10 megohms in other ranges. Basic accuracy is specified as $0.2 \%, \pm 1$ digit. RANGE HOLD and READING HOLD switch positions enable the user to lock into any range to store any reading on the display. Dimensions are $5.6 \times 3 \times 1.6$ in. $(14.2 \times 7.6 \times 4.1 \mathrm{~cm})$; weight is 10 oz . Includes rechargeable batteries and ac adapter/charger. \$159.

```
CIRCLE NO 98 ON fREE INORMATION CARD
```


KLH Car Speaker

The KLH Model 693DMSC is a 3-way, coaxial speaker designed for automotive use. Its woofer is $6 \times 9 \mathrm{in}$., with a $30-\mathrm{oz}$ magnet. The midrange is a dome type covering the range from 1 to 4 kHz . The tweeter is a samarium-cobalt type which, according to the manufacturer, "functions like an electrostatic unit without electrostatic limitations.

CIRCLE No is on free information card

GC Nibbling Tool

A hand-operated nibbling tool for cutting sheet metal and plastic has been introduced by GC Electronics. The tool can cut a hole of virtually any shape in steel up to 18-ga., or in copper, aluminum or plastic up to $1 / 16^{\prime \prime}(1.6 \mathrm{~mm})$ thick. A $3 / 8^{\prime \prime}$ (9.5 mm) starting hole is required for inside cuts.

CIRCLE NO 10 on free information card

New Literature

SYLVANIA SEMICONDUCTOR GUIDE

GTE Sylvania has announced availability of the 1978 ECG Semiconductor Master Replacement Guide. This catalog (\$2.95) lists over 137,000 industry part numbers crossreferenced to the Sylvania ECG semiconductor line. A wide assortment of domestic and imported replacement solid-state devices is presented for entertainment, commercial. and industrial/MRO applications. Also included in this publication are outline drawings, circuit diagrams and technical descriptions of transistors, diodes, rectifiers, SCR's, Triac's, and others. Address: GTE Marketing Services Center, 70 Empire Dr., West Seneca, NY 14224

H-P CALCULATOR BROCHURE

A new, six-page brochure from the HewlettPackard Company describes the HP-19C and the HP-29C keystroke programmable advanced scientific calculators that feature 98 fully merged program steps, continuous memory, full editing and storage functions and 30 data registers. The HP-19C has a built-in thermal printer. Included in the brochure are sections describing the advanced programming features of the two calcula-tors-including branching, subroutines, indirect control functions, and editing-a summary of keyboard features, and physical specifications. Address: Hewlett-Packard Company, 1507 Page Mill Rd., Palo Alto, CA 94304

EXACT INSTRUMENT CATALOG

Exact Electronics, Inc., has released a 66page catalog containing specifications for each frequency synthesizer and function/ waveform generator in its product line. A comparison chart simplifies instrument selection. Address: Exact Electronics Inc., Box 160. Hillsboro, OR 97123.

B\&F SURPLUS ELECTRONICS CATALOG

The 32-page "Clean-Sweep-Sale" catalog available from B\&F Enterprises features speaker kits, surplus I/O terminals, a 16-watt stereo amplifier kit, regulated $10-30 \mathrm{~V} 5 \mathrm{~A}$ power supply kit, plus surplus bargains for the hobbyist and engineer. Photos and diagrams are also included. Address: B\&F Enterprises, 119 Foster St., Peabody, MA 01960.

READY IOP BUSIIESS

We've got it all together-the cost effectiveness and reliability of our 6800 computer system with a high capacity 1.2 megabyte floppy disk system. . . PLUS-an outstanding new DOS and file management system.

1 MEGABYTE DISK SYSTEM

DMAF1 introduces a new level of capability to small computer systems. This disk system features two standard size floppy disk drives using the new double sided disk and two heads per drive. Usable storage space of over 600 kilobytes per drive, giving a total of over 1.0 megabyte of storage on line at all times. Ideal for small business applications, or for personal "super" systems.

DMA CONTROLLER

The controller occupies one main memory slot in an SS-50 bus and uses the Motorola MC-6844 DMA controller. The combination of a DMA
type controller and double sided disks give the system speed of data transfer unobtainable with smaller drives.

OPERATING SYSTEM

To compliment this outstanding hardware we are supplying equally superior software. The disk operating system and file management system is called FLEX. It is one of the most flexible and complete DOS's available for small systems, but just as important; it is easy to use. No one can match the variety of compatible peripherals offered by Southwest Technical Products for the SS-50 bus and the 6800 computer system. Now more than ever there is no reason to settle for less.

DMAF1 Disk System (assembled)
. $2,095.00$
DMAF1 Disk System (kit)
. $\mathbf{2 , 0 0 0 . 0 0}$
68/2 Computer with 40 K of memory (assembled) . $1,195.00$

JUNE 1978

Stereo Scene

By Ralph Hodges

FOR THE RECORD—II

EVERY couple of years the engineering department at Shure Brothers mounts a day-long technical seminar for interested members of the audio press. Invariably these seminars are events, not only because they generally herald the unveiling of an important new product, but especially because they bring to light research conducted by the company over the intervening period.

A word about the nature of this research is in order before we go any further. There now exists a considerable body of literature on the subject of record playing, attempting to deal with such matters as tracing distortion, record and stylus wear, mass-compliance considerations in negotiating modulations scribed on a vinyl surface, etc. As a result, the mechanics of record playing have become well enough understood to make it obvious that they are not very well understood at all. Probably what is most lacking is the solid underpinnings of empirical data to support the theoretical conclusions that have been offered. Records differ, one from another, in a surprising number of crucial ways; so do phono cartridges, given the inevitable vagaries of assembling a tiny and complex electromechanical device that can be sold at an affordable price. This raises the problem of accumulating enough experimental evidence to be statistically significant-a problem that Shure has been attacking for some years. The company does not claim to be even close to the ultimate answers, but what it has discovered from playing a great number of records a great number of times with a variety of pickups adds up to a unique body of data.

At the latest seminar, Shure engineers told a somewhat bemused audience of audio writers that: (1) electrostatic charges on record surfaces can have pernicious effects on record-player performance, not the least of them being alterations of tracking force of up to $3 / 8$ gram; (2) that mechanical damping, properly applied, is of benefit when play-
ing the (warped) records available in the real world; that cartridge vertical tracking angle is still a matter of serious concern, although the effects of minor errors (a degree or so) continue to defy objective and subjective analysis; (4) that timedomain distortions such as warp wow are gaining further recognition as major faults in record-player performance; and (5) that record and stylus wear, subjects of profound mysteriousness, can be tied down to a few more generalizations.

Getting Static. Shure finds that your typical phonograph record can accumulate a static charge (negative) of up to 30,000 volts. Above that point the breakdown potential of the surrounding air is reached and static charges are carried off. Surprisingly, the actual business of playing the record does not seem to contribute significantly to the charge. Removing the record from its protective sleeve appears to be the major culprit.
Because vinyl is an effective insulator, these static charges tend to be local, cropping up in distinct patches where (presumably) the record surface has been in intimate sliding contact with the interior of the sleeve. Therefore, although the record will exhibit a measurable and fairly constant "macrofield" from some distance away, the pickup will pass through a series of "microfields" as it negotiates each revolution of the record. The magnetic attraction these fields exert will pull the cartridge to the record, compressing the stylus assembly and giving rise to-of all things-a warp-wow effect. Shure's Roger Anderson demonstrated this by first playing a discharged record with steady test tones (fine) and then after scrubbing a small section of the record with a popular record-cleaning appliance (not so fine). A distinct warble in pitch was heard with every rotation.
The conclusion to be drawn is that the patchy occurrences of static charge on the record can have enough influence on the tonearm/cartridge combination to
significantly alter (or wobble) the tracking force. Evidently the effect is quite significant when the tracking force is as low as 1 gram. In fact, Shure's measurements of the variations are in large part based on differences in tracking ability of the cartridge when the static charge (and hence the mutual attraction of disc and pickup) is increased.
No indictment of record-cleaning devices was intended by this demonstration. In fact, Shure generally approves of them. However, discharging or neutralizing the record before it is played is obvlously advisable. Its close proximity to the turntable platter (if metallic) will obviously help somewhat, as will the use of anti-static "pistols" available from a number of manufacturers. But a better way is probably afforded by the disctracking record cleaners with conductive (and grounded) bristles.

Getting Damped. The application of mechanical damping to the typical record-playing system is likely to be beneficial, Shure has decided, as long as the damping is applied at the proper place and in the proper amount. The proper place is said to be as near the stylus as possible, and the proper amount will of course depend on the characteristics of the cartridge and the effective mass of the tonearm structure, assuming negligible bearing friction. The effects of properly applied damping (with the Shure/SME 3009 tonearm) can be seen in Fig. 1. The damping mechanism being used is an integral part of a new Shure cartridge model (of which more a bit later), and its contribution is said to be a hefty reduction of output at the infrasonic tonearm/cartridge resonance.

What does this reduction mean in a practical sense? There are several interdependent ways of looking at it. According to Shure spokesmen: (1) There is much less infrasonic energy reaching the amplifier and loudspeakers, which

Fig. 1. Curve show effects of use of dynamic stabilizer, as measured by Shure.

"The Sansui AU-717 is a superb amplifier. We like it with no ifs, ands, or buts." (Julian Hirsch) It offers "as much circuitry sophistication and control flexibility as any two-piece amplifying system."

 (Len Feldman)

Everyone says great things about the new Sansui AU-717, but the experts say it best.

The Sansui AU-717 DC integrated amplifier is "Sansui's finest It incorporates a willy direct-coupled power amplifier section whose frequency response varies less than $+0,-3 \mathrm{~dB}$ from OHz (D.C.) to 200 kHz . The amplifier's power rating is 85 watts per charinel (min, RMS) from 20 to $20,000 \mathrm{~Hz}$ into 8 -ohm loads, with less than 0.025 per cent total harmonic distortion If anv amplifier is free of Transient Intermodulation Distortion (TIM) or any other slew-rate induced distortion, it is this one The slew rate ... was the fastest we have measured on any amplifier, an impressive $60 \mathrm{~V} / \mathrm{usec}$.
"The preamplifier section of the AU-717 has very impressive specifications for frequency response, equalization accuracy, and noise levels...The AU-717 has dual power supplies, including separate power transformers, for its
 two channels. [and] exceptionally comprehensive tape-recording and monitoring facilities Good human engineering separates this unit from some otherwise fine products....
"The Sansui AU -717 is a superb amplifier. We like it with
no ifs, ands, or buts." [Reprinted in part from Julian Hirsch's test report in Stereo Review, February, 1978.]
"One clear advantage of DC design is apparent. Even at the low 20 Hz extreme, the amplifier delivers a full 92 watts - the same value obtained for midfrequency

power -
compared with its 85 watt rcting into 8 ohms....
"The
equalizatıon characteristic of the preamplifier was one of the most precise we rave ever
Leonard Feldman,Contributing Editor Radio-Electronics Measured, with the deviation from the standard RIAA playback curve never exceeding more than 0.1 dB .
"Sansui claims that this unit has reduced transient intermodulation distortion - a direct result of the DC design, and, indeed, the model AU-717 delivered sound as transparent and clean as any we have heard from an integrated amplifier....
worth serious consideration - even by those who prefer separate amplifiers and preamplifiers." [Reprinted in part from Len Feldman's test report in Radio-Electronics, January, 1978.]

Listen to the superb sound of the Sansui AU-717 at your Sansui dealer today. And be sure to ask him for a demonstration of the matching TU-717 super- tuner.

Fig. 2. Shure's studies suggest that stylus forces of 1.5 grams are best for reduced stylus wear.
means much less effort on their part in attempting to reproduce something that is musically inconsequential. (2) There is, by inference, much less stylus motion at these infrasonic frequencies, which means that the musical information on the record won't be frequency-modulated by warps and ripples in the record surface to as great a degree as heretofore. (3) There is an improvement in tracking ability at infrasonic frequencies. According to Shure, tracking ability is directly related to stylus force, and is therefore a commodity that can be used up cumulatively (just as your telephone bill reduces the resources you have to pay your gas and electric bill). Thus an improvement in tracking ability at infrasonic frequencies (present on most records, which are inevitably far from perfectly flat) means more tracking ability left over for the musical information on the disc.

Getting Worn. The perennial questions of consumers as to how long their styli or their records can be expected to last remain unanswered. However, there are some general conclusions that can be drawn at this time. (1) According to Shure, stylus wear is closely related to tracking force, no matter what the configuration of the stylus (conical, elliptical, Shibata, etc.). The bar graph in Fig. 2 illustrates this, and shows why Shure recommends a maximum of 1.5 grams on tracking force. (2) Playing the same record over and over for a given number of hours is likely to result in more stylus
wear than playing different records for a comparable length of time. The reason for this seems to be a build-up of abrasive agents in the record groove-in particular, diamond dust from the stylus which has become embedded in the groove during previous plays. (3) A certain amount of wear is inevitable on present-day records when played with present-day cartridges. Even after the first play, sophisticated instruments can detect a shallow trough gouged by the stylus upon the groove walls. To a certain extent this is beneficial; the smoothing of the groove-wall surface improves the signal-to-noise ratio. But after this burnishing of the groove has taken place, any further alteration of its shape is likely to be detrimental.

An interesting sidelight: Shure's experimental results indicate that, on records with simple sine-wave test tones, the wearing process can actually reduce the level of harmonic-distortion products by as much as 66 percent.

Getting a New Cartridge. The new top-of-line Shure phono pickup, the V15 Type IV, is of course an attempt to cope with all the newly documented phenomena discussed above. Like its predecessors it has a flip-down stylus guard that remains as functional as ever. But the stylus guard has grown a little beard of conductive carbon-fiber bristles that draw off static charges from the record surface. It is also supported by a pair of vicous-damped pivots that make it an effective damping mechanism for the arm-
cartridge resonance. And finally, the little beard is an effective record cleaner, although that is a secondary function and no substitute for a thorough cleaning of the record before any attempt to play it. (See Hirsch-Houck's test report on the new $\vee 15$, this issue.)

All in all, the conclusions drawn by Shure's research are highly provocative.

On Another Front. Stanton's remarkable stylus for playing record stampers (Fig. 3) has been fairly well publicized in recent months. It solves-or at least comes as close as possible to solv-ing-a weighty problem on the mind of every record manufacturer: How can I tell whether the molding parts (the stampers) for my record are any good before going to the expense of having them clamped into a press to produce a few test pressings? Because it is a mold, the nickel stamper has ridges instead of grooves, and anything intended to play these ridges must straddle a peak instead of plumbing a depression. The illustration explains much better than words could how the Stanton specialapplication stylus accomplishes its task, but there's another side to the story as well.

According to Stanton, the stamperplaying stylus has turned out to be a remarkably good tip for the reproduction of 78 -rpm records. No explanation has yet been given for this, other than the fact that the stylus's outer dimensions are appropriate for the wider grooves on 78 rpm records (as are, indeed, the dimensions of tips sold especially for $78-\mathrm{rpm}$ reproduction). Pending a thorough examination of exactly what is going on, Stanton may decide to offer the stylus to consumers (it fits the cartridge bodies for the 681 and 680 model series). A consumer price schedule has not yet been created, however.

Fig. 3. Special Stanton stylus plays ridges on metal stampers with a two-point configuration.

(Parametric Dqualizers by SAS)

SAE has long been involved in the field of tone equalization. From our pioneering efforts in variable turn over tone controls to our more recent advancements in graphic equalizers, we have continually searched for and developed more fexible and responsive tone networks. From these efforts comes a new powerful tool in tone equalization the Parametric Equalizer. Now you have the power of precise control.
Our 2800 Dual Four-Band and 1800 Dual Two-Band Parametrics offer you controls that not only cut and boost, but also vary the bandwidth and tune the center frequency of any segment of the audio range.

With this unique flexibility, any problem can be overcome precisely, and any effect created precisely.
With either of these equalizers, you have the power to correct any listening environment or overcome any listening problems that you are faced with. Whether you need a third octave notch filter, tailored bandwidth to resurrect a vocalist, or a tailored cut to bury an overbearing bass, the control fexibility of Parametric Equalizers can fill these needs and many more. And of course, as with all SAE products, they offer the highest in sonic performance and quality of construction.

Audio Reports

HOW NECESSARY IS SELECTABLE I-F BANDWIDTH IN AN FM TUNER?

ABOUT four years ago, the first consumer-model FM tuner with selectable i-f bandwidths (the Yamaha CT-7000) made its appearance. In a tuner selling for some $\$ 1200$, one would expect features not found on more mundane products, and the provision for wide and narrow i-f bandwidths seemed to be perfectly reasonable for a pace-setting product. Competition being what it is, other tuners have since joined the "wide/narrow" fraternity. The Nikko Gamma I, reviewed this month, is a good example, and its $\$ 300$ price brings this feature within the reach of almost every audiophile.

If it were possible to make ideally shaped i-f filters, there would be no need to offer a choice of bandwidths. It is necessary to accept a bandwidth of at least 150 kHz (and undesirable to have it wider than 200 kHz) if a tuner is to receive undistorted programs from any station in an alternate-channel relationship to any other station (a "worst case" example).

Practical filters do not have flat tops or infinitely steep rejection slopes. At least as important as the amplitude response of a filter is its phase response. Group delay distortion can cause different sideband frequencies to pass through the filter in different time relationships, resulting in severe distortion and loss of stereo separation. Generally, it is necessary to compromise filter design to obtain satisfactory phase and amplitude characteristics.
If a tuner has a single i-f bandwidth, it thus represents a compromise between selectivity and distortion (as well as stereo channel separation, to some degree). The fact that some tuners achieve very respectable performance in all categories with a single filter system is a testimonial to the care and expertise that went into their design. However, if one wishes to obtain the best of both worlds (high selectivity and low distortion) from an FM tuner, it is necessary to have two i-f bandwidths available. Sometimes, as in the case of the Yamaha CT-7000, the two are obtained from entirely different i-f amplifiers, each designed for optimum performance. It is also possible to switch filters, using most of the i-f amplifier components in common with both modes of operation.

To illustrate the advantages of a dual bandwidth system, consider some typical selectivity values (alternate channel) for single bandwidth tuners. A fairly good tuner might have an IHF selectivity rating of 60 to 70 dB , combined with a stereo harmonic distortion of perhaps 0.15 to 0.2%. These are certainly very adequate performance figures for most people, especially since they are obtainable in some rather moderatepriced tuners and receivers.

Suppose, however, that one is in the unfortunate position of living near a fairly strong station that broadcasts rock music 24 hours a day, while the nearest classical is 50 miles away and only 400 kHz from the local transmitter (rock enthusiasts can feel free to interchange the programming of the two stations!). Assuming that one's tuner front end does not overload from the local signal, which is another matter entirely, it is likely that you will need all the selectivity you can get. A more expensive tuner might improve the selectivity rating to 80 or even 90 dB without serious compromise in distortion or other factors. To get more than about 90 dB selectivity (100 dB or even more is possible), a tuner with a super-narrow i-f filter is required. The distortion and channel separation of your favorite classical station may be impaired, but probably not enough to be objectionable. The alternative might possibly be not receiving the station at all!

Now suppose your second favorite station is fairly close to your location, quite strong, and transmits very-high-quality programs. Being a purist, you may not wish to settle for "only" 25 to 30 dB of channel separation, though it might be sufficient. It is possible to "eat one's cake and have it, too" with a tuner having switchable i-f bandwidths. For the "easy" listening situation, the wide bandwidth may reduce stereo distortion to well below 0.1% and increase channel separation to 45 dB or even more. The sacrifice is in selectivity, which may be as low as 20 or 25 dB . But, if the station is in the clear, that will pose no problems. I have found no trouble when listening to most stations in the spectrally crowded New York area with a tuner having that order of selectivity.

Better stereo records are the result of better playback pick-ups

Enter the New Professional Calibration Standard,Stanton's 881 S

Mike Reese of the famous Mastering Lab in Los Angeles says: "While maintaining the Calibration Standard, the 881 S sets new levels for tracking and nigh frequency response. It's aา audible improvement. We use the 881 S exclusively for calibration and evaluation in our operation'

The recording engineer can only produce a product as goad as his ability to analyze it. Such analysis is best accomplished through the use of a playback pick-up. Hence, better records are the result of better playback pick-up. Naturally, a calibrated pick-up is essential.

There is an additional dimension to Stanton's new Professional Calibration Standard cartridges. They are designed for maximurn record protection. This requires a brand new tip shape, the Stereohedron ${ }^{\text {e }}$, which was developed for not only better sound characteristics but also the gentlest possible treatment of the record groove. This cartridge possesses a revolutionary new magnet made of an exotic rare earth compound which, because of its enormous power, is far smaller than ordinary magnets.

Stanton guarantees each 881 S to meet the specifications within exacting limits. The most meaningful warranty possible, individual calibration test results, come packed with each unit.

Whether your usage involves recording, broadcasting or home entertainment, your choice should be the choice of the professionals ... the STANTON 881S.

stanton

I have been asked if one can determine just how much selectivity is needed in any given situation so that one can decide whether or not a more selective tuner is required, or if a wider bandwidth will suffice. Unfortunately, no firm answer can be given to that question. There are too many variables involved. About all that can be said with certainty is that, if you experience interference from alternate channel stations (400 kHz spacing) in the form of a program breaking through on to another station, you need more selectivity! Whether a specific degree of selectivity is adequate for your needs is impossible to say. Sometimes the trouble can be cured without involving the tuner. If the two stations concerned are not in the same direction from your location, a good directional antenna can sometimes be used to correct the problem. Such an antenna can reduce the level of the
stronger signal by a greater amount than it reduces the level of the weaker one; this alone can sometimes eliminate the interference.
I have this situation in my own home, where one tuner suffers badly from interference by an alternate channel station, yet others (on different antennas) are completely free of the problem. Moving the offending tuner to another part of the house, on a different antenna, corrected the problem. If I were to insist on listening at the original location to those stations, a better tuner would certainly be the answer.

So. to answer the question posed by the title, a choice of i-f bandwidths is a nicety for most people, but a necessity for others. At prices over $\$ 1000$, most of us can do without it very well. But at $\$ 300$, it becomes one of the more attractive and useful features to look for when buying a tuner.

NIKKO GAMMA I STEREO FM TUNER

Features wide and narrow i-f handwidths.

HIRSCHHOUCK

In spite of its compact dimensions, the Gamma I FM tuner from Nikko has a full complement of operating features and controls. Topping the list is the tuner's selectable
i-f bandwidth that allows the user to trade capture ratio and selectivity for greater channel separation and lower distortion. Other features included are: switchable $25 / 75-\mu \mathrm{s}$ deemphasis, FM detector output, oscilloscope outputs that provide a multipath display, and
both fixed and variable level audio signal outputs.

The tuner has a $19^{\prime \prime}(48.3-\mathrm{cm})$ wide front panel, which makes it rack-mountable, although its $2^{1 / 2 \prime \prime}(6.4-\mathrm{cm})$ height does not conform with EIA standards for rack-panel heights. Depth is $9^{\prime \prime}(23 \mathrm{~cm})$.

Product Focus

The Nikko Gamma 1 is one of the small, but growing number of FM tuners that offer a choice of wide or narrow i-f bandwidths. This is done by using two separate i-f amplifiers between the mixer output and the limiter output. Both are driven simultaneously from the mixer, through FET stages that isolate them from each other. Their outputs are also joined, but through diodes that can be switched from conducting to nonconducting states by a dc control voltage, through the switch used for WIDE/NARROW bandwidth selection.

The common terminal of the output coupling diodes goes to an IC amplifier/ limiter stage that also provides signal-
strength and channel-center tuning indications on the meters on the front panel, interstation noise muting, and some of the multipath information to the jacks in the rear of the tuner, for viewing on an external oscilloscope. According to the schematic, the comprehensive i-f IC stage also includes a quadrature detector, which apparently supplies only the tuning signal to the center-channel meter. A separate IC limiter and a ratio detector are actually used to derive the audio signal, presumably because of the lower distortion resulting from a separate optimized detector circuit.

In the selective i-f system, the narrowband amplifier consists of four pairs of
ceramic filters, with gain supplied by three IC stages, in a conventional configuration. The wide-band amplifier consists of two IC stages and two fitters. One filter is a relatively large, cased unit identified as a "phase linear filter" (there are no visible clues as to its internal construction), while the other is a ceramic filter that, judging from its size, is rather more complex than the ceramic i-f filters used in most FM tuners (and in the nar-row-band amplifier of the Gamma 1). The special qualities of these filters presumably lie in their combination of wide bandwidth and linear phase shift, both of which are required for low-distortion stereo FM performance.

PERFORMANCE SPECIFICATIONS

Specification Usable sensitivity (mono)	Rated $10.3 \mathrm{dBf}, 1.8 \mu \mathrm{~V} \mid$	Measured $14 \mathrm{dBf}, 2.7 \mu \mathrm{~V}$
$50-\mathrm{dB}$ quieting sensitivity Mono Stereo	$\left\{\begin{array}{l} 14 \mathrm{dBf}, 2.7 \mu \mathrm{~V} \\ 34 \mathrm{dBf}, 28 \mu \mathrm{~V} \end{array}\right.$	$\begin{aligned} & 16.5 \mathrm{dBf}, 3.7 \mu \mathrm{~V} \\ & 38.6 \mathrm{dBf}, 47 \mu \mathrm{~V} \end{aligned}$
S / N at 65 dBf Mono Stereo	$\begin{aligned} & 78 \mathrm{~dB} \\ & 75 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 68.5 \mathrm{~dB} \\ & 67.5 \mathrm{~dB} \end{aligned}$
Hum (re: 100\% modulation)	NA	$-65 d B$
THD at 65 dBf Mono: Wide Narrow Stereo: Wide Narrow	$\begin{aligned} & 0.04 \% \\ & 0.08 \% \\ & \\ & 0.06 \% \\ & 0.2 \% \end{aligned}$	$\begin{aligned} & 0.057 \% \\ & 0.155 \% \\ & 0.044 \% \\ & 0.47 \% \end{aligned}$
Frequency response ($30-15,000 \mathrm{~Hz}$)	+0.4/-0.8 dB	$+0.9 /-0.8 \mathrm{~dB}$
Capture ratio Wide Narrow	$\begin{aligned} & 1.0 \mathrm{~dB} \\ & 1.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~dB} \\ & 2.0 \mathrm{~dB} \end{aligned}$
Alternate-channel selectivity Wide Narrow	$\left\lvert\, \begin{aligned} & 35 \mathrm{~dB} \\ & 80 \mathrm{~dB} \end{aligned}\right.$	$\begin{array}{\|l\|} 39.8 \mathrm{~dB} \\ 81 \mathrm{~dB} \end{array}$
Adjacent-channel selectivity Wide Narrow	$\begin{aligned} & \mathrm{NA} \\ & \mathrm{NA} \end{aligned}$	$\begin{aligned} & 4.9 \mathrm{~dB} \\ & 9.9 \mathrm{~dB} \end{aligned}$
Spurious-response suppression	110 dB	NA
Image-response ratio	110 dB	greater than $106 \mathrm{~dB}$
I-f response ratio	110 dB	NA
AM suppression	60 dB	70 dB
Stereo separation at 1000 Hz Wide Narrow	$\begin{aligned} & 55 \mathrm{~dB} \\ & 45 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 46.5 \mathrm{~dB} \\ & 54 \mathrm{~dB} \end{aligned}$
Stereo separation ($50-10,000 \mathrm{~Hz}$) Wide Narrow	$\begin{array}{\|l\|l\|l\|} 35 \mathrm{~dB} \\ 32 \mathrm{~dB} \end{array}$	$\begin{aligned} & 31 \mathrm{~dB} \\ & 31 \mathrm{~dB} \end{aligned}$
Subcarrier product rejection	65 dB	98 dB
Muting threshold	$10 \mathrm{dBf}, 1.7 \mu \mathrm{~V}$	$19.8 \mathrm{dBf}, 5 \mu \mathrm{~V}$
Output level at 1000 Hz (varies)	1.3 V maximum	1.45 V maximum

It weighs $12.1 \mathrm{lb}(5.5 \mathrm{~kg})$. Its nationally advertised value is $\$ 350$.

General Description. As is the case with some other tuners and receivers we have seen, the Gamma l's stereo/mono selector and muting circuit activator are combined in a single control. Hence, muting can be employed only in the automatic stereo mode. (Of course, mono signals will be heard perfectly well in this mode.) For reception of weak signals where it is necessary to disable the muting, the tuner operates in the mono mode; a stereo signal would not be listenable under these conditions.

The panel dimensions of the tuner allow only a single row of controls to be used, with the dial window occupying about half of the panel width. The calibration marks on the tuning scales are linearly distributed. Actual tuning is by a very smooth flywheel mechanism that is noteworthy considering that the internal height of the tuner does not permit the use of a large-diameter flywheel.

The two meters indicate relative signal strength and center-channel tuning.

In addition to the large tUNING and output level control knobs and a tog-gle-type POWER switch, there are three pushbutton switches on the front panel of the tuner. The buttons are for selecting WIDE or NARROW IF BAND, switching in and out the HI-BLEND circuit, and for selecting STEREO or MONO MODE of ODeration. LED's located just above each button come on when the various functions are activated. Another LED inside the dial window comes on when a stereo signal is received.

User Comment. The Gamma I can fairly be described as a no-frills "super tuner." We base this description on the fact that the Gamma I has exceptionally high interference rejection and sensitivity, distortion that is lower than the residual levels of the finest signal generators, flat frequency response, and stereo channel separation that is far greater than that of any broadcast station. In fact, only the S / N performance and residual hum (both of which were quite satisfactory but not exceptional) prevent the Gamma I from rivalling the performance of some tuners that cost several times this tuner's price. It should also be noted that although the measured sensitivity of our test tuner fell a couple of decibels short of its published ratings, it still had far more sensitivity than most people will ever need.

That such a high level of performance
is available for its stated price and in such a compact component is testimony to the state of modern technology and a tribute to Nikko's designers, who appear to have resisted the temptation to dilute their efforts with marginal or purely cosmetic features. Nothing that could contribute to the useful performance of the Gamma I has been omitted.

We preferred to use the tuner in its wide-band mode, which reduces the distortion to well below the rated capabilities of our Sound Technology signal generator. The Gamma I retained enough selectivity in this mode to let it be used without difficulty on the crowded FM band in the New York metropolitan area. Perhaps the most surprising test result was the $19-\mathrm{kHz}$ pilot carrier rejection figure of 98 dB , which was barely within the measurement capabilities of our Hewlett-Packard spectrum analyzer. In spite of this, the tuner's frequency response was almost perfectly flat to $15,000 \mathrm{~Hz}$. This indicates that it has unusually effective low-pass filters in its audio circuits or some form of pilot-carrier cancelling circuitry. (No schematic was furnished with the tuner.) In either case, there should be no problems when it is used with a tape recorder or a Dolby noise-reduction accessory.

The "feel" of the tuning mechanism and general handling ease of the Gamma I were excellent. The muting action was ideal, with no transient noises and a complete silence until the pointer was well into the center of the scale of the tuning meter. Although it was marked only at $0.5-\mathrm{MHz}$ intervals, the dial cali-

Noise and sensitivity curves for narrow (top) and wide i-f bandwidths.
bration was very accurate and left no doubt as to what station was being received. In short, the Gamma I proved to be one of the most functional and listen-
able tuners we have used, in spite of, or perhaps because of, a near-total lack of gimmickry and cosmetic devices.

CIRCLE NO 101 ON FREE INFORMATION CARD

FISHER MODEL CR-4025 CASSETTE DECK

Wireless control unit has "Pause" for remote on-off recording purposes.

The Fisher Model CR-4025 cassette deck features a wireless remote control PAUSE function that permits recording and playing back of tapes to be interrupted and resumed from a location some distance from the deck. The front-loading deck also has a single governor-controlled dc motor and two tape heads. It has built-in Dolby B noise-reduction circuitry, tape bias and equalization switching for normal (ferric-oxide) and chromium-dioxide $\left(\mathrm{CrO}_{2}\right)$ tapes, and selectable line and microphone inputs

The deck measures $151 / 8^{\prime \prime} \mathrm{W} \times 11$ $7 / 8^{\prime \prime} \mathrm{D} \times 6$ " $\mathrm{H}(38.4 \times 30.2 \times 15.2 \mathrm{~cm})$ and
weighs $13 \mathrm{lb} 10 \mathrm{oz}(6.2 \mathrm{~kg})$. Its nationally advertised value is $\$ 249.95$

General Description. The recording levels for the two channels are independently adjustable. However, the line and microphone inputs cannot be mixed. Playback level from the deck is fixed.

Illuminated VU meters permit monitoring of both the record and the playback levels over a range of -20 to +5 dB . (The standard Dolby reference mark is at the $+3-\mathrm{dB}$ point on the meter scales.) The microphone input and stereo headphone output jacks are located on the front panel of the deck. On the rear apron are the phono-jack LINE inputs and outputs and a control shaft for ad-
justing the sensitivity of the remote-control system.

The transport controls are operated by mechanical levers located below the hinged door into which the cassette is placed. The levers can be operated in any sequence without having to go through sTOP. The transport mechanism has an automatic shutoff and mechanical disengagement system at the end of the tape in the pLAY mode, but it does not operate in the fast-forward and rewind modes.

The stop/EJECT lever stops tape motion when first operated. Releasing and operating it again causes the cassette door to pop open for easy removal of the tape from the deck.

The remote-control transmitter, which is about the size of a $100-\mathrm{mm}$ cigarette package, contains an ultrasonic generator and transducer. A receiving module is located behind the front panel of the deck. When the transmitter is aimed at the deck and a button on its side is pressed, a solenoid in the deck energizes the pAUSE lever and a red LED near the receiver's input grille comes on to indicate that the transport is in the pause mode. A second operation of the transmitter's button releases the solenoid and restores normal operation.

Laboratory Measurements. Since the owner's manual makes no specific recommendations for tapes for which the deck has been matched, we initially ran a series of record/playback curves with tapes we had on hand. With the NORMAL setting of the BIAS switch, there was little difference between the curves. we obtained with most tapes, including Scotch Dynarange and Master I, Memorex MRX2, BASF Professional I, and Maxell UD-XL I. The somewhat "hotter" TDK AD tape yielded a slightly rising high-end response, which other tapes did not produce. The flattest response, by a small margin, was obtained with Maxell UD-XL I tape, which we used for our subsequent tests with the NORMAL switch setting.

We made similar measurements with Scotch Master II, Maxell UD-XL II, TDK SA, Sony CrO_{2} and BASF Professional II tapes for the CrO_{2} setting of the bias switch. (Sony CrO_{2} and BASF Professional II were the only true chromiumdioxide tapes in the group.) The three
"chrome equivalent" ferric-oxide and the Sony chrome tapes gave nearly identical response curves, but BASF Professional II was clearly the best of the group with our test deck. (Its excellent compatibility was later confirmed by Fisher.)
The frequency response at a $-20-\mathrm{dB}$ recording level, with Maxell UD-XL I tape, was within $=1.5 \mathrm{~dB}$ from 60 to $14,500 \mathrm{~Hz}$. With the chrome BASF Professional II, the response was nearly the same, except that it was noticeably flatter throughout most of the high-frequency range. At 0 dB , the saturation we observed with the UD-XL I tape was typical of most two-head tape recorders. The response curve gradually fell beyond 6000 Hz and intersected the $-20-\mathrm{dB}$ curve at $11,700 \mathrm{~Hz}$. As expected, the chrome tape was considerably better in its high-frequency saturation properties, so that the $0-\mathrm{dB}$ curve dropped off more gradually and never intersected the -20 dB curve.

The "tracking" of the Dolby circuits was measured at recording levels of $-20,-30$, and -40 dB . The net change in frequency response, with the Dolby system in and out of the circuit, was quite noticeable at the two higher levels, amounting to 3 or 4 dB at most frequencies from 2000 or 3000 Hz up to about $13,000 \mathrm{~Hz}$. (The Dolby Laboratories specifications allow a $\pm 2 \mathrm{~dB}$ variation.)

The playback equalization was measured with a TDK AC-337 test tape for NORMAL $(120-\mu \mathrm{s})$ equalization, and with the Teac 116 SP tape for $\mathrm{CrO}_{2}(70-\mu \mathrm{s})$ equalization. The normal response was within $\pm 0.6 \mathrm{~dB}$ from 40 to $12,500 \mathrm{~Hz}$, and the CrO_{2} response was within ± 1
$d B$ from 40 to $10,000 \mathrm{~Hz}$. (These were the frequency limits of the test tapes.)

For a $0-\mathrm{dB}$ recording level, a LINE input of 67 mV or a mic input of 0.13 mV was required. The MIC input overloaded at a fairly low level of 23.5 mV . The playback level from a $0-\mathrm{dB}$ recording was 0.80 volt with Maxell UD-XL I tape and 0.71 volt with BASF Professional II tape. The playback distortion (third harmonic) from $1000-\mathrm{Hz}$ recordings at 0 dB were 0.63% and 1.8%, respectively, with these tapes. The reference distortion level of 3% was reached at recording inputs of +7 dB with UD-XL \mid and +3 $d B$ with the BASF tapes. The S / N, relative to these levels, was 56.5 and 50.5 $d B$, respectively, in an unweighted measurement. With " A " weighting, they improved to 61.5 and 59.5 dB . Finally, us-

Product Focus

The most obviously novel feature of the Fisher Model CR-4025 cassette deck is its wireless remote-control PaUSE system. The hand-held transmitter is powered by a pair of AA cells and generates a 40kHz ultrasonic signal when a button on its side is pressed. This is picked up by a small ceramic microphone element behind a grille on the front panel of the cassette deck and amplified by an IC. A gain control (sensitivity adjustment) follows the $I C$, and from it, the signal goes to a transistor stage that has a $40-\mathrm{kHz}$ tuned circuit in its collector circuit. After further amplification, the ultrasonic signal is rectified. The dc output from the rectifier is amplified to the point where it can activate a solenoid that moves the pause lever to its ON position. The PAUSE lever latches into place until the next application of a control signal operates the solenoid again and turns it off. The solenoid is operated from a separate power supply rectifier. (Judging from its size, it may well consume more power than the rest of the recorder.)

The basic recorder circuits are conventional and unusually simple. Each channel employs a single IC, three transistors, and a moderate number of discrete components for most of its recording and playback gain and equalization functions. In addition, there is an IC for the Dolby noisereduction system in each channel and a few discrete components for the audio LINE outputs and metering circuits. (The meter rectifiers are driven from the headphone outputs.) The bias/erase oscillator is packaged as a separate module in a sealed metal can.

Frequency response for two types of tape at 0 and -20dB.
ing the Dolby system and CCIR/ARM weighting, the S / N was a very respectable 66 dB with either tape. The noise level increased by 18 dB through the MIC inputs at maximum gain, but the increase was correspondingly less at reduced gain.

The weighted rms wow/flutter was 0.095%, and a weighted peak measurement (DIN) gave a $\pm 0.15 \%$ reading. The speed of the tape transport was about 1% fast. In fast forward and rewind, a C60 cassette was moved from end to end in 82 and 85 seconds, respectively. The channel separation at 1000 Hz , measured with a TDK AC-352 tape, was 58 dB . The Dolby level calibrations on
the meter were accurate to within 0.5 $d B$. The meters themselves proved to be very accurate and matched standard VU-meter ballistics exactly. They indicated 100% of steady-state on 0.3second tone bursts. The headphone volume was low with 200 -ohm phones, although it might have been adequate with 8 -ohm phones.

User Comment. The deck met or surpassed its specified performance ratings, which were typical of cassette decks in its price class. The major concessions to price in its design appear to be in the absence of such niceties as an end-of-play shut-off from high speed

PERFORMANCE SPECIFICATIONS

Specification	Rated	Measured
Wow \& flutter	0.09\% W rms	0.095\% W rms
S/N ratio	$\begin{aligned} & 50 \mathrm{~dB} \\ & 56 \mathrm{~dB} \text { with Dolby } \end{aligned}$	$50.5 \mathrm{~dB}\left(\mathrm{CrO}_{2}\right)$ 66 dB with Dolby (CCIR/ARM weighting)
Erase ratio	70 dB	Not measured
Channel separation	35 dB	58 dB
Crosstalk	68 dB	Not measured
Frequency response	$\begin{aligned} & \pm 3 \mathrm{~dB}, 40-14,000 \mathrm{~Hz} \\ & \left(\mathrm{CrO}_{2} \text { tape }\right) \end{aligned}$	$\begin{aligned} & \pm 3 \mathrm{~dB}, 38-14,800 \mathrm{~Hz} \\ & \left(\mathrm{CrO}_{2}\right) \end{aligned}$
THD at 0 VU	1.8\%	1.8\% (CrO_{2})
Tape speed variation	$\pm 1.2 \%$	+ 1.0%
Rewind/FF time	100 seconds	85/82 seconds (C60)
Mic inputs	$0.2 \mathrm{mV} / 600 \mathrm{ohms}$	0.13 mV

operation, memory rewind, mixing of recording inputs, and playback level adjustment. To compensate for these omissions, it has the remote paUSE feature, which we found to be quite useful. It always worked well, with enough sensitivity to operate from anywhere in the room. As Fisher suggests, the remote

PAUSE is especially convenient for recording off the air or from records, allowing a certain degree of "editing" while recording without requiring the operator to be in two places at the same time.
Playing good recorded tapes, such as the Advent CR/70 series, the deck sounded first rate. Also, when we re-
corded interstation FM tuner hiss and compared the playback to the original, there was very little discernible difference between the two. When recording from FM broadcasts and records, the sound from the Model CR-4025 gave no hint that the playback was not from the original source.

SHURE MODEL V15 TYPE IV STEREO PHONO CARTRIDGE

Record-cleaning brush damps low-frequency tonearm/cartridge resonance.

Heading the top of Shure's phono cartridge line is the new Model V15 Type IV.
Aside from a damper and static neutralizer (see Product Focus), the basic phono transducer functions of the Type IV have been refined to a new high in performance. The stylus effective mass has been reduced from the Type III's 0.33 mg to 0.29 mg . The cartridge employs a new "hyperelliptical" stylus that is claimed to result in lower tracking distortion at high frequencies. The Type IV also offers a slightly greater output than its predecessor, the Type III. In a departure from Shure's practice for its top-of-the-line cartridges over the past few years, the Type IV is designed to deliver its flattest frequency response when loaded with 200 to 300 pF of capacitance and 47,000 ohms (in contrast, the Type III was designed to operate into a 400-to-500-pF load).

Supplied with a No. VN45HE hyperelliptical stylus, the Model V15 Type IV's nationally advertised value is $\$ 150$.

General Description. While the Type IV physically resembles the Type III cartridge, the new cartridge's mounting holes have been redesigned to simplity installation in a tonearm headshell. It incorporates a threaded nut plate that fits into the body of the cartridge and eliminates the need for separate nuts to mount the cartridge.

Like the Type III, the Type IV is designed to track at forces in the range of
0.75 to 1.25 grams. However, to compensate for the weight of the brush assembly on the cartridge's stylus guard, the tonearm's tracking force must be set 0.5 gram higher so that the force registered at the stylus itself is in the range of 1.25 to 1.75 grams.

Shure was able to effect reduced mass in the stylus cantilever by using a smaller diameter alloy tube. The tube was strengthened with the aid of a stiftening rod the pivot end. The damping material at the pivot end of the cantilever is decoupled in a graduated manner to improve trackability at high frequencies.

The frequency response of the new cartridge is rated at $\pm 1 \mathrm{~dB}$ up to 8000 Hz and $\pm 2 \mathrm{~dB}$ up to $20,000 \mathrm{~Hz}$. The trackability at a 1 -gram stylus force has been increased at all frequencies, especially between 5000 and $10,000 \mathrm{~Hz}$ and in the warp range between 8 and 15 Hz .

Laboratory Measurements. We installed the cartridge in the tonearm of a Dual Model 701 record player to perform
our lab tests. Except where noted otherwise, our tests were performed at a 1 gram tracking force.
At a 1-gram force, the cartridge easily tracked our most severe test records. It could play the $300-\mathrm{Hz}$ tones on the German Hi Fi Institute record to their 70micron level, which is good hi-fi cartridge performance, at 0.75 gram and to 80 mi crons at 1 gram. The record's maximum level of 100 microns was playable without distortion at the cartridge's maximum rated tracking force of 1.25 grams. The output of the cartridge at $3.54 \mathrm{~cm} / \mathrm{s}$ was 3.85 mV , with a channel balance of 0.5 dB (rated 4 mV and 3 dB).

The IM distortion measured with Shure's TTR102 test record was as low as we have ever measured. It was typically about 1% and reached a maximum of only 2% at the record's maximum velocity of $27 \mathrm{~cm} / \mathrm{s}$. Similarly, the high-frequency tracking test with the shaped $10,800-\mathrm{Hz}$ tone bursts on the Shure TTR-103 record revealed nearly constant repetition rate distortion between 0.7% and 0.9% over the full 15 -to- $30-$ cm / s range of the record. The fact that neither distortion measurement exhibits appreciable variation over a wide range

PERFORMANCE SPECIFICATIONS

Specification	Rated	Measured
Frequency response	$10-25,000 \mathrm{~Hz}$ $(\pm 1 \mathrm{~dB}$ to 8 kHz,$$ \pm 2 dB to 20 kHz$)$	$40-20,000 \mathrm{~Hz} \pm 0.8 \mathrm{~dB}$
Output voltage	4.0 mV at 1000 Hz, $5 \mathrm{~cm} / \mathrm{s}$	3.85 mV at 1000 Hz, $3.54 \mathrm{~cm} / \mathrm{s}$
Channel balance	2 dB	0.5 dB
Channel separation	25 dB at 1000 Hz 15 dB at $10,000 \mathrm{~Hz}$	30 dB at 1000 Hz 18 dB at $10,000 \mathrm{~Hz}$
Tracking force	0.75 to 1.25 g at stylus tip 1.25 to 1.75 g with Dynamic Stabilizer	-
Load	47 kilohms paralleled with 200 to 300 pF	47 kilohms paralleled with 240 pF

Composite respone and crosstalk using CBS STR100 test record,
of recorded velocities suggests that the measurement is the residual distortion in the records and the associated test instruments, rather than inherent distortion from the cartridge itself.

Our frequency response measurements with the CBS STR100 test record confirmed Shure's rating. The response was flat to within $\pm 0.8 \mathrm{~dB}$ from 40 to $20,000 \mathrm{~Hz}$. Channel separation is rated at a minimum of 25 dB at 1000 Hz and 15 dB at $10,000 \mathrm{~Hz}$. Our measured figures were 30 and 18 dB , respectively. The frequency response was not materially affected by rather large changes in load capacitance (150 to 375 pF).

The damper worked with impressive effectiveness. It completely eliminated the usual rise at bass resonance and, in fact, produced a slight rolloff in bass response below about 20 Hz . The difference in bass output with the damper latched up and in its normal position was about 7 dB at 9 Hz and 1 dB at 20 Hz . No measurements were made of the destaticizing properties of the brush, aside from visual observations. The brush did remove visible amounts of dust from the records we played.

User Comment. The sound of the Model V15 Type IV is much like that of the Model V15 Type III, which also has a very flat frequency response. We doubt that the two cartridges could be distinguished by ear when playing most records. The best way to demonstrate the improved performance of the Type IV is to play records that tax the abilities of the Type III, but be prepared to find very few such records.

One test that highlights the difference between the cartridges is on the older Shure TTR110 "Audio Obstacle Course-Era III" test record. Some strain and incipient mistracking can be heard on the highest levels of the sibi-
lance test with the Type III (and almost every other cartridge). At 1 gram, the Type IV was able to handle every part of this record with a complete lack of strain that is rarely encountered even with the finest cartridges. We also tried the completely different material on the new "Era IV" test record but obtained no definitive results. Those obtained with the "Era IV" record were not as easy to interpret as with the "Era III" record, perhaps because the cartridge was able to track it so completely without trouble.

The Type IV appears to be a cartridge that has the "most" of every desirable quality and the "least" of every undesirable quality. It is unsurpassed in the smoothness and flatness of its frequency response, low distortion, high trackability, and neutral sound character. It appears to effectively remove static charges and dust (both from the surface and the grooves) of records

The cartridge's damping effect at bass resonance is accomplished in a manner that surpasses every other cartridge known to us. Aside from any audible benefits the damper might bestow on record playing, it makes a dramatic improvement in the tracking of warped records. We verified this with a number of warped records that were literally unplayable with other cartridges. Almost all of them were playable with the Type IV, which acted like it was glued to the surfaces of the records. We noted very little tendency for the cartridge to lift from the record surface at the crest of a warp.
About the only shortcoming of the Type IV is its rather high price, although this is certainly not the only phono cartridge in the $\$ 150$ price range. Most important, with the Type IV, one gets very tangible improvements in performance instead of a cosmetic updating or unnecessary fancy packaging.

CIRCLE NO tor on free information card

Product Focus

Most of the innovative aspects of the Shure Model V15 Type N phono cartridge are not visible to the eye. Some are not even easy to measure with instruments. However, the cartridge's feature that sets it apart from other cartridges is its hinged stylus guard that is part of its removable stylus assembly.
Close examination reveals that a small brush is built into the lower portion of the stylus guard. It measures about $1 / 4$ " (6.4mm) wide and is designed to ride on the surface of the record just ahead of the stylus. There is nothing new about record brushes, even when they are attached to a cartridge, but the brush on the Type IV is rather unique. It consists of some 10,000 tiny graphite fibers, each of which is about 0.3 mil in diameter. In addition to removing dust from the record during play, about 10 of the fibers can fill a record groove to reach in and remove dust from the walls and bottom of the groove.
A more effective record-cleaning brush cannot by itself qualify as a novel cartridge teature. The difference with the brush on the Type IV cartridge is that the graphite fibers are electrically conductive. This plus the fact that the stylus guard is made of metal and is wired through to a ground terminal of the cartridge's signal outputs is what makes the brush unique. As a record is played, electrostatic charges that build up on its surface are drained off to ground. This keeps the net charge relatively low.

There are several advantages to neutralizing the static charge on a record being played. First, the vertical tracking force of the cartridge is not increased by electrostatic attraction, which can otherwise add several tenths of a gram to the net force. Second, the tendency of the vinyl record material to attract dust is greatly reduced. And, third, the crackling and popping sounds generated by electrostatic discharges while playing a record are eliminated or reduced.

The final contribution of the guard assembly is perhaps most important. The pivots of the guard are viscous damped so that the entire assembly acts as a damper for the low-frequency tonearm/ cartridge resonance. The rise in the output of the cartridge at some low bass frequency, usually in the range of 8 to 10 Hz , is eliminated by the damping action and the tracking of warped records is greatly improved.

Before you buy a DC integrated amp, find out how much DC youre getting.

Pure DC. From infut to output. With each amplifier-stage direct coupled (DC). With no capccitors in between. From tre pre-amp to -he power amp. Trat's what makes Technics SU-8080 a true DC integrated amp. But that's just one of the reasons for buying it.

Waveform fidelity is ancther. With the major source of phase shift, noise and distortior eliminated, Technics engineers were able to increase the frequency response of the SU-8080 to $\mathrm{DC} \sim 100 \mathrm{kHz}-1 \mathrm{~dB}$. And that means the SU-8J80 can accurately reproduce waveforms, toneb Jist signals and square waves. Imagine how accurately it epreduces music.

To the SU-8030's DC Fre-amp our engineers added an extremely quiet fhono equalizer complete with Technics-developed ultra-low-noise transistors. The result: An ircraased phiono S / N ratio of 100 dB at 10 mV with sharply red scec circuil and transistor noise, especially when compared to consentional designs. They also added some ather uncenventional controls. Like a subsonic filter in the phono ョqualizer and a fcur-step phono irpedance selecter.

And to match our DC integrcted amp, there's our equally imp -essive natching ST-8080 tuner.

Two RF stages with Iow-7oise 4-pole dual-gcte jur ction FETs cembined with a linear FM variable tuning capacitor boost sensitivity while greatly reducing interferen:e signal levels. Af the sarre lime, Technics-ceveloped नat group delay filers in the IF (Itermodulation Frequency) stage increase selectivitz without increasing distortion.

There's also a Phase Locked Loop IC in the MPX circuit as well as a pilot signal canceler for razor-sharp cancellation of the 19 kHz pilot signal and ruler-flat high-erd response: 20 Hz to $18 \mathrm{kHz}(+0.2 \mathrm{~dB},-0.3 \mathrm{~dB})$.

New thiat you know what DC does or the SJ-8080 integrated amp and the matching ST- 8080 tuner, find ou- whar DC does bor their specs.

SU-8080 Amp. PO NER DUTPUT: 72 watts per channet min. RMS into 8 ohrs from 20 Hz to 20 kHz with nc more ihan 0.02% tonal harmonic distortion.

PO:NER SECTION S.N (I-F A): 115 dB . PHONG S.N (IHF A): $100 \mathrm{~dB}(10 \mathrm{mV})$. NPU ${ }^{-}$SENSITIVITY $1 \mathrm{~V} / 47 \mathrm{kS} 2$ ST-8080 Tuner. 50 AB Q JIETING SENSIT VITY: MOno 13.6 dEF. Stereo 34.3 dBF. SELECTIVITY: 85 dB . THD: Mono C. 15%. Stereo 0. 3%. CAPTURE RATIO: 1.0 dB .

Technics 8080 Series. A rare combinat on of audio technolagy. A new standard $\partial \mathrm{f}$ audio excellence.

FREQ OUT.

Introducing CSC s new Mini-Max. It brings down the cost of counting up the frequency for CB-ers, hams, computer enthu siasts audiophiles . just about any engineer, technician or hobbyist will find it indispensable. It s mini' sized too-a pocketable $3 \times 6 \times 11 / 2$ inches. But when it comes to performance, Mini-Max means maximum value. Measuring signals as low as 30 mV from 100 Hz to a guaranteed 50 MHz , with $\pm 3 \mathrm{ppm}$ timebase accuracy and better than 0.2 ppm $/{ }^{\circ} \mathrm{C}$ stability from 0 to $50^{\circ} \mathrm{C}$. Completely automatically Advanced LSI circuitry with a crystal controlled timebase provides precise frequency readings on a bright, six-digit LED display, with automatic $\mathrm{KHz} / \mathrm{MHz}$ indications. Mini-Max is versatile, too You can connect it directly to the circuit under

10 Hz to 50 MHz . \$89.95*

test, or use its matching mini antenna for easy RF checking. Either way, the input is protected against overload to 50 V (100 V below 1 KHz)

Mini-Max is as inexpensive to use as it is to own An ordinary 9 volt alkaline battery gives up to 8 hours of intermittent operation, and you have the flexibility of a battery eliminator for AC operation. For increased versatility there s a complete line of accessories, including standard clip-lead cable and mini antenna - eliminator and carrying case are optional

CSC's new, all-American made Mini-Max is everything you need for high!y-accurate checking of frequencies up to 50 MHz . At a price that will Freq you out Order today. Call 203-624-3103, 9a.m.5 p.m. Eastern Standard Time. Major credit cards accepted. Or see your CSC dealer. Prices slightly higher outside U.S.A.

*Manufacturer's suggested retail price (c) 1978 Continental Specialties Corporation

Protect Your AIR CONDITIONER WITH A "COMPRESSOR GUARD"

Add-on device prevents compressor

 damage due to sudden loss and reappearance of electric power and low-voltage conditions.BY RICHARD B. FERMOYLE

\mathbf{P}
OWER BLACKOUTS and brownouts, especially during hot spells when the demand for power is at its peak, can cause damage to air-conditioners, refrigerators, and freezers. You can protect your compressor-type appliances from damage due to fluctuating power with the "Compressor Guard" described in this article. It costs about $\$ 15$ to build and is easily installed.

Problem Defined. If power to the compressor is suddenly lost and reapplied before system pressures can be equalized, such as during a momentary power outage. damage to the system compressor can result. A low-voltage condition, commonly called "brownout," can also cause damage. In both cases, the damage usually takes place

Fig. 1. Circuit provides 4.5 min. delay before power is applied.

PARTS LIST

C1-100- $\mu \mathrm{F}, 50$-volt electrolytic $\mathrm{C} 2 . \mathrm{C} 3-0.01-\mu \mathrm{F}$ disc capacitor C4 $-0.1-\mu \mathrm{F}$ dise capacitor
C $5-10-\mu \mathrm{F}$ Tantalum capacitor D2-ZZener diode (see text)
D3--IN4001 rectifier diode FI-- $1 / 4$-ampere fast-blow fuse and holder IC1-7812 voltage regulator
IC2--555 timer
K $1-$ Spst relay with 12 -volt coil and 1 -ampere contacts (Radio Shack No. 275-003 or similar) or appropriate substitute (see text) LEDI.LED2-Discrete light-emitting diode
(one red, one green)
Q1.Q2-M9570 or similar npn transistor
The following resistors are $1 / 4$-watt, 10% :
R1 - 10.000 ohms
R2-22 megohms
R3-100.000 ohms
R4- 1500 ohms
R5,R6-560 ohms
RECT 1-50 PIV bridge rectifier assembly SI.S2—Spst switch
Misc.-Socket for IC2; chassis; 4-conductor cable; rubber grommets; machine hardware; hookup wire; solder, etc.
in the compressor's drive motor as a result of overheating due to excessive current drain.

Unfortunately, the compressor and its associated drive motor are generally contained in a single sealed unit in home appliances. This means that the entire unit must be replaced as one expensive component. Although the drive motor for the compressor is usually equipped with a thermal circuit breaker, it takes time for it to sense an overload condition and disable power to the motor. The problem here is that during the time the overload condition exists, before is is sensed and power is cut off. the motor can stall and burn out. Repeated momentary power outages take their toll in weakening the motor. with the result that the motor is ultimately damaged even with the thermal circuit breaker in proper operating condition protecting the circuit.

The Compressor Guard circuit described here can be added to any com-pressor-type appliance to provide an added degree of protection
shown in Fig. 2. This transformer is part of the air-conditioning control circuitry and supplies power to the compressor's control relay through the contacts of the house thermostat. If the house is too warm, the thermostat closes and energizes the control relay. which in turn supplies power to the compressor unit. (Note: If the compressor system operates at a higher voltage, a separate 24volt source and a relay with contacts rated for high voltage and current must be used in addition.)

The 24 volts ac is converted to regulated dc by RECT1, C1, and IC1 in Fig. 1 to supply power for the timer circuit. Approximately 4.5 minutes after power is applied, pin 3 of $1 C 2$ switches low and energizes relay $K 1$. The period is controlled by $R 2$ and $C 5$. With the $K 1$ contacts closed, a series circuit with the system's thermostat is completed. The compressor can then energize. If a momentary power outage occurs, a minimum of 4.5 minutes must lapse before power can be reapplied to the compressor. This period of time is all that is needed to allow system pressures to equalize and the compressor to be safely started once again.

The low-voltage brownout protection feature of the Compressor Guard is provided by the Q1 and Q2 circuits. The breakdown voltage rating of zener diode $D 2$ is approximately 7% to 10% less than the normal dc output potential of RECT1. As long as the output potential from RECT1 is greater than the breakdown point of $D 2, Q 2$ is in a state of conduction and $Q 1$ is held at cutoff.

If system line voltage drops, a resultant decrease in the output potential from RECT1 will occur. If the potential drops to less than the breakdown voltage of D2. Q2 goes into cutoff and Q1 con-
ducts. This grounds pin 2 of $I C 2$, caus-

How It Works. As shown in Fig. 1, the Compressor Guard is built around a 555 timer integrated circuit (IC2). The power source for the timer circuit is 24 volts ac, which is taken from the appliance itself. In the case of a central air-conditioning system, the 24 volts is supplied by the system's step-down transformer, as

Fig. 2. Circuit showing how to wire Compressor Guard to existing system.

Fig. 3. It is best to assemble the circuit on a printed circuit board. An etching and drilling guide is at top with component placement guide shown belowit.

Fig. 4. Photo of prototype printed circuit board removed from enclosure.
ing pin 3 of $1 C 2$ to switch high and deenergizing $K 1$. As long as the lowvoltage condition exists, $K 1$ remains deenergized and interrupts power to the compressor. About 4.5 minutes after the brownout condition clears, $K 1$ energizes to once again supply power to the compressor system.

Status indication of the timer circuit is
provided by LED1 and LED2, which are red and green light-emitting diodes, respectively. While the timer is cycling LED1 is on. Then, when K1 is energized. LED1 extinguishes and LED2 comes on. The LED's and resistors R5 and $R 6$ are not essential to the circuit and can be omitted if desired.

The Compressor Guard can be by-
passed by closing S2. This shorts out the contacts of $K 1$. Switch S2 is included in the circuit to allow system maintenance to be performed.

Construction. Most of the circuit is best assembled on a printed circuit board, the etching-and-drilling guide and component-placement diagram for which are shown in Fig. 3. A small rightangle bracket is used as a heatsink for regulator IC1.

Since the pc board assembly mounts behind the front panel of the cabinet in which the circuit is housed, LED1 and LED2 (if used) should be mounted on the foil side of the board. Leave enough lead length on the LED's to permit the lenses to fit into small rubber grommets in the front panel when the board is mounted in place with spacers and machine hardware. The fuse holder for $F 1$, POWER switch S1, and OPERATE/ BYPASS switch $S 2$ should also be mounted on the front panel.

The 24 -volt power and relay contact lines can be contained in a four-conductor cable that enters the cabinet through a rubber-grommet-lined hole in the front panel. The assembled printed circuit board is shown in Fig. 4.

To install the Compressor Guard in a system, use the diagram shown in Fig. 2 as a guide. Although Fig. 2 is the representation of the typical scheme used in most central air-conditioning systems, check your system closely to insure compatibility with the Compressor Guard's circuitry. Also, if you are using the Compressor Guard to protect a refrigerator or freezer that does not have the stepped-down 24 volts required, be sure to use a separate 24 -volt supply and a heavy-duty relay.

With the Compressor Guard turned on and the compressor running, measure the dc output potential from RECT1. Then multiply the figure obtained by 0.93 or 0.90 to obtain the approximate breakdown value of the zener diode required for D2. If you cannot obtain a zener diode with the proper breakdown voltage, use two zener diodes that, when connected in series, yield a breakdown characteristic that is as close as possible to the required value

One Last Note. The Compressor Guard presented here has been designed for inside installations. If you plan to use it in an outside air-conditioning installation, be sure to provide adequate weather proofing to protect the circuit from the elements.

Solid-state fuzz box for interesting sound effects.

ELECTRIC guitarists often use special circuits to alter the sounds their instruments produce. One of the oldest but still most popular of these signal modifiers is the "fuzz box." A solid-state circuit, the fuzz box generates a sound like that produced by early, low-cost vacuum-tube power amplifiers. When one of these amps was overdriven, a distorted, but pleasing sound resulted. The fuzz box, when controlled by a foot pedal, allowed the guitarist to introduce some "fuzz" without interrupting his performance to turn up the amp's gain.
Many different fuzz box designs have appeared over the years. The project presented here, is a somewhat different sine-to-square-wave converter. It produces a substantial output signal, even when used with inexpensive instruments. Its "fuzz" effect is as prominent in the bass as in the midrange and treble. In addition to the standard distortion effects, the circuit can produce a raspier, but at the same time mellower, voicing. The circuit's wide range of available output levels allows the user to preset different levels for the rhythm and lead modes. The project is especially useful with electric bass guitars because it can generate many of the effects called for in today's music without sacrificing the bass's characteristic deep tones.

The circuit is simple, uses a small number of readily available components, and can be built for about $\$ 10$.

PARTS LIST

B1,B2,B3-1.5-volt AA, A, C or D cells
$\mathrm{Cl}-1-\mu \mathrm{F}, 16-\mathrm{V}$ radial-lead electrolytic ICl-74ICV operational amplifier (Radio Shack 276-(007 or equivalent) J1,J2-1/4-inch open-circuit phone jacks
Q1-General-purpose, high-beta pnp switching or audio transistor (2N705. Radio Shack RS-2005 or similar)
The following are $1 / 4$-watt, 10% tolerance fixed resistors:
RI.R4- 10,000 ohms
R2-2.2 megohms
R5- 1000 ohms
R6- 100,000 ohms
R7-47.000) ohms

R3-500.000-ohm linear-taper potentiometer R8- 10,000 -ohm linear-taper potentiometer SI—Dpdt switch
S2--Dpst switch
Misc.--Printed circuit board, battery holders, hookup wire, suitable enclosure, knobs, pc board spacers, machine hardware, solder, etc.
Note-The following are available from BNB Kits, RDI, Box 241 H , Tennent Rd., Englishtown, NJ 07726: etched and drilled pe board, \#F-PC at $\$ 3.25$; complete kit of parts including etched and drilled pc board, electronic components, jacks and switches, \#F-E at $\$ 12.50$. NJ residents add 5% sales tax.

Fig. 2. Waveforms show effect of fuzz control R3. When it is set to pass maximum signal, the output waveform folds over and the sound is raspy.

About the Circuit. As shown in Fig.

 1 , input signals from the guitar pickup are routed by $S 1$ to the output jack or to inverting amplifier IC1, a standard 741 op amp. You might notice that the power supply voltages, furnished by seriesconnected AA penlight batteries, are lower than those normally used with this op amp. In this application, IC1 is used solely to turn Q1 on and off. The supply voltages employed allow the op amp to saturate at lower than normal input levels to produce the desired base drive for the transistor.An input signal of about 30 mV produces ± 1 volt at the output of IC1, which is applied to the base of Q1 through R3. A positive output from IC1 causes Q1 to cut off, and a negative output saturates the transistor. An ac signal will switch Q1 between saturation and cutoff, thus producing a square-wave output from the circuit.
With R3 adjusted so as to pass maximum signal to the base of Q1, IC1 forward biases the base-collector junction of the transistor as the op amp's output goes negative. When this happens, Q1

Fig. 3. Full-size etching and drilling guide for pe board is above left; component layout at right.
stops acting like an inverting switch (see Fig. 2) and passes the signal like a simple diode. The voltage at the collector then follows that at the base and, in effect, causes the signal waveform to "fold over" as shown in the bottom trace of Fig. 2. This signal is rich in harmonics and has a raspy, but mellow, sound.

Signals at the collector of Q1 are ac coupled by $C 1$ to voltage divider $R 6, R 7$. Level shifting at this point presents a ze-ro-volt signal to output level control $R 8$ in the absence of an input signal. This inhibits the generation of "popping" signal transients as the fuzz box is switched in and out of the signal path. The required supply voltages (+3 and -1.5 volts) are provided by three 1.5 -volt batteries. Suitable for this application are AA, A, C or D cells.

Construction. Any assembly technique is acceptable, but a printed circuit board is perhaps the easiest and neatest way to reproduce the circuit. (See Parts List for availability of pc board and kit.) Suitable etching and drilling and parts placement guides are shown in Fig. 3. After the project has been wired and is operating, it can be housed in any suitable enclosure, including the electric guitar or bass. If you decide to put it in your musical instrument, keep the batteries accessible for replacement.

Checkout and Use. Connect your guitar or bass to the input jack and your amplifier to the fuzz box's output. Rotate the instrument's output level control for maximum signal and, with S1 in its NORMAL position, adjust the amplifier's master volume control for a comfortable listening level. Set $R 8$ (volume) for $1 / 3$ rotation and R3 (FUzz) for $3 / 4$ rotation. Place S1 in the fuzz position and play the instrument, noting the sound produced. Rotate R3 fully to hear a sound with increased "bite" or raspiness.

Next, adjust R3 so that the wiper is at the midpoint of its travel and set the instrument's output level control for less signal until the following occurs. When a string is first plucked, a distorted output is heard. As the output level begins to decay, the distortion diminishes to the point where the instrument's sound is relatively unaltered. This is the characteristic distorted "tube" sound that inspired the original fuzz box.

Continue to experiment with different control settings. You'll doubtlessly discover many sounds that will add to your enjoyment of playing and the audience's listening pleasure.

BY CASS LEWART

Uses a
Wheatstone bridge sensing circuit and an incandescent lamp indicator.

Build a Low-cost SWR TESTER

nitial adjustment of a CB antenna calls for the use of an SWR meter. However. the meter need not be left in the line after the antenna has been tuned, so most CBers have not felt the need to purchase one. The project presented here-an inexpensive SWR Testerallows an operator to make periodic "good/bad" checks of his antenna system. Employing only a handful of resistors, a switch, and a small incandescent lamp, the project can be built for about \$3. The SWR Tester will not yield a numerical SWR measurement, but will tell the user whether the antenna/line
mismatch is severe enough to warrant further investigation.

About the Circuit. The schematic diagram of the SWR Tester is shown in the diagram. It is a Wheatstone bridge, one of whose arms is formed by the transmission line and antenna. The remaining three arms are 50-ohm carbon resistors. Indicator 11, a low-voltage incandescent lamp, current limiting resistor R4 and pushbutton switch S1 comprise the bridge's detector.

When an antenna having a 50 -ohm resistive feedpoint impedance (the ideal
condition for maximum power transfer) is connected to jack $\mathrm{J1}$ by a length of 50 ohm coax. the impedances of the bridge arms are equal. Therefore, the bridge is balanced and no voltage drop exists across the detector. Lamp 11 remains dark. indicating an SWR close to unity. If the antenna's feedpoint impedance deviates from the ideal 50 ohms, the bridge becomes unbalanced and a voltage drop exists across the detector.

An antenna/feedline impedance mismatch (that is, an SWR) of about 2.5:1 will produce a voltage drop across the detector sufficient to cause 11 to glow.

Schematic diagram of tester. The antenna/feedline combination forms the fourth leg of a Wheatstone bridge.

PARTS LIST

J1-SO-2.39 coaxial connector 11 - 1.5 -volt. $25-\mathrm{mA}$ miniature incandescent lamp (Radio Shack 272-1139 or equivalent) P1-PL-259 coaxial connector
R1.R2.R3-47- or 50 -ohm, 2-watt 5% carbon composition resistor.
R4-220-ohm, $1 / 2$-watt, 10% carbon composition resistor
SI-Normally open pushbutton switch
Misc.-Suitable metal utility box, ceramic standoff insulators or multi-lug terminal strip, hook-up wire, RG-58-U coaxial cable, rubber grommets, machine hardware, solder, etc.

WHAT IS SWR?

Tie a rope or string to some solid, stationary object such as a tree or post, as shown in the diagram. Grasp the free end and start waving the rope up and down. You are now generating a train of waves, much in the way that a transmitter sends waves down a transmission line.

When the wave reaches the point where the rope is anchored, there is no place for it to go so it is reflected back down the length of the rope. In this way, a pattern is formed as shown, with the loops being the points of maximum movement and the nodes the points of minimum movement of the rope. The ratio of the maximum to minimum waveform amplitude along the rope (called the Standing Wave Ratio, or SWR) in this case is $1: 0$, or infinity. This happens because essentially no energy is being absorbed by the wall and all is being reflected back to the driving source. This is analogous to the termination of a transmission line with an impedance that is different from that of the line. If the rope were not

SWR
 Reflection Loss (dB)
 Antenna Power (watts)

tied to the poles and were free to continue to move so that the transmission of the wave could continue, there would be no wave reflection. Each point on the rope would then reach the same maximum amplitude and the SWR would be 1:1, or simply 1.0 .

In electrical terms, SWR can be considered as the ratio between the antenna impedance and the CB transmitter output impedance, with the larger value being the dividend and the small value, the divisor. The closer the ratio is to $1: 1$, the more of the transmitter r-f goes to the antenna. Besides reducing the power output to the antenna, a high SWR can also damage the transmitter output stage by submitting it to either excessive voltage or current. Therefore, keeping the SWR close to 1.0 is very important.

The table shows the relationship between SWR and the power delivered to the antenna, assuming a nominal 4 -watt output from the CB transmitter.

1.0	1.2	1.5	2.0	3.0	5.0
0.00	0.04	0.18	0.51	1.25	2.55
4.00	3.97	3.84	3.56	3.00	2.22

The higher the SWR becomes, the brighter 11 will glow. Closing normally open $S 1$ increases the bridge detector's sensitivity so that /1 begins to glow at an SWR of about 1.5:1. Note that this causes $R 4$ to be bypassed, removing the resistor's protective current limiting action from the detector circuit. If $S 1$ is closed when a high SWR exists on the line and 11 is glowing, the lamp might burn out.

The bridge presents a 50 -ohm impedance to the transceiver's antenna output when a 50 -ohm antenna is connected to coaxial connector J1. However, there is a 6-dB power loss associated with inserting the SWR Tester between the rig and the antenna. The project is not designed for continuous monitoring of the SWR during communications, and should be removed from the signal path after tests have been completed. This can be accomplished by either physical-
ly disconnecting the SWR Tester or the installation of a ceramic DPDT switch inside the project's enclosure to bypass the bridge circuitry.

Construction. The circuitry of the SWR Tester is very simple, and point-topoint wiring is suitable. Solder lugs mounted on ceramic standoff insulators make ideal circuit tie points, but the standoffs might be hard to find. If you can't procure them, use a multi-lug terminal strip instead.

Mount the standoffs, switch, and coaxial jack in a small metal utility box. Drill holes for the indicator lamp and RG-58-U cable. Insert grommets into these holes, mount the indicator lamp, and pass one end of an 18-to-36-inch (45.7-to-91.4-cm) length of coax through the wall of the enclosure. Form a simple loop knot to act as a strain relief. Then remove $11 / 4^{\prime \prime}(3.2 \mathrm{~cm})$ of the outer in-
sulating jacket at the end of the cable inside the utility box. Comb out the braid, expose a short length of the inner conductor, and wire the circuit as per the schematic diagram. Terminate the other end of the cable with P1, a PL-259 coaxial connector.

Checkout and Use. Attach P1 to the transceiver's antenna output jack. Prepare a dummy load by terminating a PL-259 with a 150 -ohm, 2 -watt carbon composition resistor and attach it to jack 11. Tune the transceiver's channel selector to channel 13 , or to channel 20 if the radio has 40 -channel capability. Place the mode switch in the AM position if you are using an AM/SSB rig. Then key the transceiver's push-to-talk switch.

Lamp it will glow brightly. Note its brightness, and repeat the procedure on the other channels. If the rig's output remains relatively constant across the band. It's brightness will not vary from one channel to the next. Next, replace the 150 -ohm resistive dummy load with a 100 -ohm component. Key the transmitter. With S1 open, 11 will be dark. Closing S1 will cause the lamp to glow.

The SWR Tester is now ready for use. Connect the coaxial feedline from the antenna to jack J1. If the antenna has been properly tuned and is in good working order, the lamp will remain dark when S1 is open and the transceiver is keyed. The indicator might glow when S1 is closed. especially when the channel selector is set to either end of the band and the antenna has been tuned to the center channel. This is normal because it is difficult to maintain a close impedance match over a wide band of frequencies. Short mobile whips with large loading coils are subject to such bandwidth limitations almost as a matter of course.

If the indicator glows when $S 1$ is open no matter which channel is selected, you should inspect the antenna and feedline for oxidized or corroded connections, clean metal-to-metal contact between the ground plane (vehicle body) and antenna base, etc. If no suspicious conditions are discovered, retune the antenna using an SWR meter and/or a field strength meter.

After you have retuned the antenna or completed your SWR tests, remove the project from the signal path-either physically or by means of a bypass switch. Otherwise, signals passing from the transceiver to the antenna (and vice versa) will be substantially attenuated.

MicroPROCESSOR MICROCOURSE

N Part 3 of this series (May, 1978), we learned about semiconductor memories and how three-state logic allows data transfer over a bidirectional data bus. We also looked at the basic organization of a microprocessor.

This month we're going to meet PIP-2, a very simple, 4-bit educational microprocessor. Though PIP-2 is not as powerful as the 8080, Z80, 6502 and other real-world microprocessors, it illustrates some of the more important operating features of microprocessors.

Introducing PIP-2. $P I P$ is an acronym for Programmable Instruction Processor. PIP-2 is a simplified successor to PIP-1, an educational computer described in detail in Understanding Digital Computers, a new book published by Radio Shack.

While PIP-2 is simple, it has many of the elements of a sophisticated microprocessor. For example, PIP-2 contains a built-in program memory-so it really qualifies as a microcomputer. Since it also contains a microprogrammable control ROM, this means that its instruction set can be revised, or replaced, by entirely new instructions, as we will see in Part 5 of this series.

PIP-2's Organization. A block diagram of the major components of PIP-2 is shown in Fig. I. As you can see, PIP-2 is a bus-organized microprocessor. All of its sections are connected to a 4-bit bidirectional bus which permits data and memory addresses to be transferred from one section to one or more other sections connected to this bus.

Remember from Part 3 that only one section can read data onto a bidirection-
al bus at any one time. PIP-2 meets this operating restriction by employing threestate outputs on all sections designed to read data onto the bus. This isolates the output of those sections from the bus
until they are activated (one at a time) by an appropriate enable signal from PIP-2's control section.

Let's now take a look at each of the sections in PIP-2.

Fig. 1. Block diagram showing organization of the PIP-2 microprocessor.

Input. A row of four toggle switches, a LOAD switch and an INITIATE switch comprise PIP-2's input. All these switches are shown in Fig. 2, a front-panel arrangement that allows PIP-2 to be used like a microcomputer.

Applying power to PIP-2 automatically clears the A and B registers, the program counter and the program memory to all O's. This permits a program to be loaded into the program memory by simply switching in a binary instruction or data word and pressing the LOAD switch.

Up to sixteen 4-bit instructions and data words can be loaded into PIP-2's program memory. After the program is loaded, the program counter is cleared to 0000 by pressing the INITIATE switch. This returns the program counter to the first memory address in the program memory in preparation for running the program.

Program Memory. This is a 64-bit read/write memory (RAM) organized as sixteen 4-bit words or "nibbles." The RAM has a three-state output to keep its instructions and data isolated from the address data bus until they're needed.

The program memory has a single control input, RAM/R ($R=$ read). When RAM/R is low, the three-state output is enabled, and the RAM reads the word addressed by the program counter onto the address data bus. When RAM/R is high, instructions and data can be loaded into the RAM.

Program Counter. This is a 4-bit binary counter. PIP-1 and many real microprocessors have a special memory address register that saves the contents of the program counter until it's time to advance to the next memory address. In PIP-2, the program counter doubles as a memory address register.

The program counter has three control inputs. A "low" that's supplied to PC/C by pressing the INITIATE switch clears the counter to 0000. The rising edge of a pulse applied to PC/I increments the program counter to the next
higher count. A low at PC/W (W = write) writes any data on the address data bus into the program counter. This is a valuable feature since it means the program counter can branch to any address in the program memory.
A and B Registers. These are standard 4-bit data registers with three-state outputs. Each has two control inputs and a clock input ($\phi 2$).

When A / R or B / R is low, data is read from the selected register onto the address/data bus. When A/W or B/W is low, any data on the address/data bus is written into the selected register when the next clock pulse ($\phi 2$) arrives.

Adder. This is a 4-bit combinational logic circuit that continually sums the contents of the A and B registers. The sum is isolated from the address/data bus by a three-state buffer. When ADD/R is low, the buffer is enabled and the sum is placed on the bus.

Output. PIP-2's output consists of four light emitting diodes (LED's) that continually show the contents of the B register. It's possible, of course, to connect external devices in place of the LED's. A 4 -line to 16 -line decoder, for example, would permit PIP-2 to control any one of up to sixteen external devices.

Control. This is the electronic nerve center of PIP-2. Control fetches instructions from the program memory and
executes them one by one under the perfectly synchronized control of timing signals ($\phi 1$ and $\phi 2$) produced by the clock.

Control consists of a 128-bit ROM organized as sixteen 8 -bit bytes, an address decoder, several microinstruction decoders and a two-phase clock. PIP-2's instruction register doubles as a microprogram counter and is so closely associated with control that it can be considered part of it.
in the next instaliment, we'll look at a block diagram of control and study its operation in detail. For now, suffice it to say that control's ROM contains a sequence of from one to five microinstructions for each of the various microroutines necessary to execute PIP-2's six instructions. As you'll recall from Part 3, individual microinstructions implement simple operations such as data transfers from one register to another, etc.

PIP-2's Instruction Set. PIP-2 can process six separate instructions. Each instruction is identified for humans by a type of shorthand called a mnemonic (memory aid) and for PIP-2 by a 4 -bit nibble called an operation code or in simple terms an op-code.

Some of the instructions require only one program memory address, while others are followed by a data word. These latter instructions require two program memory addresses and are called memory reference instructions. For example,

$$
\begin{array}{ll}
0001 & \text { (LDA) } \\
1111 & \text { (data) }
\end{array}
$$

is the format for a memory reference instruction that loads the A register (LDA) with the data word 1111 .

Shown in the box below is a table that summarizes PIP-2's instructions set. These instructions are so simple that they really need no further explanation.

PIP-2's INSTRUCTION SET			
Mnemonic	Op-Code	Nibbles	Operation
NOP	1111	1	no operation.
LDA (nibble)	0001 $(x \times x \times x)$	2	load A with next nibble.
ADD	0101	1	add A+B; store sum in A.
JMP (address)	1000 $(x \times x \times x)$	2	jump to address in next nibble.
MOV	1011	1	move A into B; save A.
HLT	1110	1	halt the microprocessor.

It will be easier to apply them in actual programs, however, if we know something about how and why they're used. Therefore let's discuss the instructions one by one.

NOP. Pronounced "no-op," this is a do-nothing instruction with several valuable applications. You can use a NOP or two to reserve space in a program for an instruction or two you might want to add later. And you can use NOP's to replace instructions you remove from a program without rewriting the program. Finally, you can use NOP's to add a predictable time delay to a program. This is handy for calibrating a program that loops through a cycle of instructions again and again to act like a timer.

LDA. This memory reference instruction (load A) loads the A register with the data nibble in the next program memory address. It is used to temporarily store a nibble for addition or later transfer to the output or program counter.
$A D D$. This single-step instruction initiates a string of five microinstructions that adds the contents of the A and B registers and place the sum in the A register. It is used for ordinary addition, and to increment the nibble in the A register by some specified number (often 1). Incidentally, ADD uses the A register like the accumulator register found in real microprocessors.
$J M P$. This (jump) is a very powerful instruction that orders the program counter to branch (or jump) to the address in the program memory specified in the following nibble. JMP is used to set up a loop, a program or section of a program that continues to execute again and again until PIP-2 is halted by pressing its stop button.

MOV. This register-transfer instruction has several applications. As an output instruction, it allows PIP-2's operator to see the contents of the A register on the LED readout (output). It also allows you to accomplish the equivalent of a LDB (load B) instruction by preceeding it with LDA (load A). And, it lets you double a number by following it with an ADD.

HLT. This instruction (halt) is placed at the end of all PIP-2 programs. It disables the clock in the control section, thus preventing PIP-2 from executing any additional instructions.
In the next part of the course, we'll examine the microroutines for each of these instructions in detail. We'll also learn how to add new instructions by changing the microinstructions in con-
trol's ROM. Meanwhile, let's learn how to program PIP-2.

How to Program. Let's write a simple program for PIP-2 that continually increments the number in the A register by one and displays the updated count on the LED readout of the output. Here's the program:

Program
 Memory Address Mnemonics/Data

0000	LDA
0001	0001
0010	ADD
0011	MOV
0100	JMP
0101	0000
0110	HLT

It's easy to see how this program works. When PIP-2 is started, both the A and B registers are cleared to 0000 . This means that the first three instructions load 0001 into A, add A to B and store the sum (0001) in both A and B. JMP loops the program back to line 0000 for another cycle. LDA replaces the contents of A with 0001 first. Register B also contains 0001 so ADD gives 0010. The sum, 0010, is moved into B and displayed on the readout.

Again, JMP loops the program back to line 0000 and the process continues. The result is that the readout flashes a binary count of 0000 to 1111 and continues repeatedly until PIP-2 is halted.

As you can see, this program is nothing more than a software version of an ordinary 4-bit counter. That alone is not very impressive since PIP-2 already contains two such counters in its hardware, the program counter and instruction register.

What's significant is that this simple program can be easily modified to implement any count increment from 0000 to 1111 by simply changing the data nibble following LDA! While this can be accomplished with some relatively simple hardware, PIP-2 performs the task after only a few seconds of software modification. This nicely illustrates the amazing versatility of using a microprocessor to simulate many different hardware functions with the help of software.

Running the Program. The simple counter program we've been discussing is called a source program since it's written using the mnemonics of the various instructions. Before it can be loaded into PIP-2's program memory, it must be converted to an object program.

An object program is written using the binary numbers a microprocessor understands. Sometimes it's called a machine language program. All that's necessary to generate the object program for our software counter routine is to substitute the appropriate op-codes for the mnemonics in the source program with the help of the table showing PIP-2's instruction set. Here's the machine language result:

Address	Source Program	Object Program
0000	LDA	0001
0001	0001	0001
0010	ADD	0101
0011	MOV	1011
0100	JMP	1000
0101	OO00	0000
0110	HLT	1110

After the object program is compiled, it's a simple matter to load it into PIP-2's program memory. First, the power switch is turned on. This automatically clears all of the program memory, registers and counters to all 0's. Then the first object code nibble in the program (0001) is switched in via the front panel switches (a switch is 0 in the down position and 1 in the up position) and the LOAD switch is pressed. This action loads the nibble 0001 into the 0000 address of the program memory and automatically advances the program counter to the next address.

The remaining nibbles are loaded one by one until they are all stored sequentially in the program memory. Then the initiate switch is pressed to return the program counter to the 0000 address of the program memory.

Now all that remains is to press START. This causes control to fetch the first instruction from the program memo$r y$, load it into the instruction register, decode it and execute it. The program is processed like this a step at a time as the output displays the updated contents of the B register.

Incidentally, if the clock speed is more than about a hundred Hz , the count displayed on the readout will blur into a continuous 1111. Since the clock of most real microprocessors runs at a MHz or more, time delay loops must be added to their programs intended to display data to be viewed by an operator.

Other PIP. 2 Programs. Though PIP-2's instruction set is very primitive, it's possible to write a number of differ-
ent programs with it. Here, for example, is a source program that adds two numbers and displays their sum:

LDA

(first number) MOV LDA
(second number) ADD MOV
HLT
Here's a source program that doubles a number:

> LDA
(number) MOV
ADD
HLT
And here's a program that counts by two's:

> LDA

0002
ADD
MOV
JMP
0000
HLT

Programming Real Microproces.

sors. Real microprocessors have dozens of instructions in their instruction sets. A typical microprocessor such as the 6800 or 8080 has instructions that can accomplish any of these tasks:

- Move data and addresses between registers.
- Shift and rotate the bits in a data word.
- Perform various arithmetic and logical operations.
- Branch conditionally or unconditionally to any part of a program or to a subroutine.
- Make various logical comparisons.
- Increment or decrement the contents of a register or memory address.

Real microprocessors also have special instructions that may be unique to a particular family of microprocessors. For example, some microprocessors have various instructions for accepting data from outside circuits. Others have built-in decimal arithmetic capability.

Programming real microprocessors can be both tedious and time consuming, but most people can learn to write simple programs with a little practice and some hands-on experience with a microprocessor using a keyboard (best) or toggle switch (OK) input. Of course, many microprocessor programs have been published in books and articles; and as time goes by, the number of available programs will multiply.
 through PC board ptus RCA 1861 video IC to display and segment of memory on a video monitor or TV screen

EXPANSION OPTIONS

- ELF II GIANT BOARD WITHCASSETTE I/O RS $232-\mathrm{C} / \mathrm{TTY} / 1 / 0,8-\mathrm{b} \dagger \mathrm{P}$ 1/0 decoders for 14 separate $1 / O$ instructions and a system monitor/editor Jurns ELF II into the heart of a full size system w th massive computing power' $\$ 3995 \mathrm{kt}$ - 4k Static RAM. Addressabe to any 4 k page to 64 k Uses low power 2102 s Chıp select circuti allows original 256 bytes to be used Fully butfered Onboard 5 vo regulator $\$ 89.95 \mathrm{kIt}$
- Prototype (Kluge) Board accepts up to 36 I.C's including 40,24.22.18.1614 pin Space avallable for onboard pin Space avalable for onboard
requlator $\$ 1700$ - Gold plate
- Gold plated 86.pinconnector. \$5,70
- ELF II Full ASCII Keyboard Upper \& lower case $\$ 64.95 \mathrm{kvt}$
- 5 amp Expansion Power Supply Powers the entire ELF II (Not required un less adding 4k RAM boards) $\$ 3495 \mathrm{klt}$
All of the above PC boards plug directly into ELF II's expansion bus
ELF II TINY BASIC
Communicate with ELF II in BASIC. ELF II Tiry BASIC is compat ble with either 4SCII keyboard and TV screen or stan dard teletype/video terminal utidsing RS 232 Cor 20 mil IVY intertace. Commands include SAVE and LOAD for storng programs on standard cassettes. a plot command to display graphic information and special commands for controlling ELF II l/O devices 16 bit integer arithmetic. $\pm, ~ X, \div$ (1.26 variables 4.2 arithmetic. $-x,-1.26$ variabies $4-2$
Other commands nclude LET, IF/THEN INPUT, PRINT, GOTO. GO SUB, RETURN INPUI. PRINT, GO TO. GOS RUN. PLOT,
END, REM CIEAR. IST RUN $E N D, ~ R E M$ CLEAR, IIST, RUN. PLOT,
PEEK POKE. Comes with mantenance PEEK POKE. Comes with maintenance
documentation and excellent user s documentation and excellent user s
manual that allows even beginners to use manual that allows even beginners to use
ELF il for sophisticated applicat ons 4 k memory required.) \$1495 on cassette tape

Coming Soon.

- DA A.O Converter - ControHer Board - Cabinet - Light Pen (Lets you write or draw anything on a TV screen or draw anything ong
Imagine having a "magic wand that magine having a mates like a crayon'l
wren

Stop reading about computers and get your hands on one t Lf it is an outstarding
tramer tor anyone who needs to use a compute to maximiz his or her persor alentec traner tor anyone who needs to use a computet to maximize hisor her persor alente computer system
FOR $\$ 99.95$ YOU GET ALL THIS-
No other small personal computer otters video output and ELF II 5 espanion Capabilites tor anywhere near $\$ 9995$ ELF II can create adphics on you It sa reell
and play electronic games' it pays for itsell over and over akan in the tur it piovides and play electronic games' It pays lor itsell over dnd over agdin in the tur it plovides
tor your whole tamily Engineers and hobbiests can use ELf in in micropracesso. based cricuits as a counter. alarm. lock thermostat. tinler telephone dialet ett The possibilities are endiess ${ }^{1}$
THEN ELF II EXPLODES INIO A GIANT
Once you've mastered computer tundamentals. ELF II car give you POWEP' Pluk if the GIANT BOARO"' and you can recoid and play back your progrdms. edt dnd debug programs communicate with remote devices and make thungs happen in the real wor'd Add Kluge Board to solve specitic problems such as ope iating a more comple : alarm system or controlling a printing press ak memory units let you ante iongt programs and solve even more sophisticated busimess incustidal scientific and per son cis II problems
ADD ELF II IINY BASIC and asCII KEYBOARD
To make ELF Ileasier to use we ve developed ELF II Tin, Basic litels vou progidm ELf II with simple words you can type out on a keyboald such as PRINT. RUN a"d LOAD ELF II responds by displaymg answers on your pICH WRItE ANO RUN PROGRAMS THE VERY FIRSI NIGHT!
The ELF 11 kIt includes all components and everything you need to nite and run your own programs plus the new Pixie Graphics chip that lets you display an; 256 Jyte seg ment of memory on a wideo montor or TV screen No wonder ELF II Is now be ing use as a trainer in many high schools and uthversities Easy instructionts get you Started right away even it you ve never used a compute;
before The newly expanded ELF II Manual covers assembly lesting programimine video graphics and games ELF It can be assembled in a single evening and yo., II still have time to run

Train with NTS for the

MicroComputers, digital the first name

The world of electronics is daily becoming more challenging. Technology is growing more specialized, and the importance of digital systems increases every day. Test instruments, home entertainment units and industrial control systems are all going digital. And now, NTS training programs include a wider choice of solid-state and digital equipment than ever before offered in any home study course: Advanced NTS/Heath digital color TV (25" diagonal with optional programming capability), NTS/Heath microcomputer, digital test equipment, digital stereo receiver (70 watts per channel), NTS compu-trainer, plus much more state-of-the-art equipment to make your training exciting and relevant.
The equipment you receive with NTS training programs is selected to provide you with a solid
background in electronic systems. Kits and lessons are designed to work together to demonstrate electronic principles and applications. The kit-building not only shows you how electronic hardware functions, but how various circuit designs accomplish different purposes. Your lessons guide you through any number of experiments associated with many projects. This is the Project-Method, and it works. Step-by-step, you learn how and why digital electronics has become a part of our world, and the even bigger role it is sure to play in the future.
Whether you are looking for training in Consumer, Commercial, or Industrial electronics, NTS offers fourteen courses, some basic, many advanced, in several areas of electronics. An all-new full-color NTS catalog shows you what each course covers,

ELECTRONICS DIVISION

\square Color TV Servicina
\square B8W TV and Radio Servicing \square FCC License Cours:
\square Basic Electronics
\square Electronic Communirations \square
\square Electronics Technology
\square Computer Electronics
Audio Electroniss Servicing
\square Digital Electronics
MicroComputers/ Microprocessors

MECHANICS DIVISION

\square Master Course in Auto, Truck \& Diesel Mechanics
\square Automotive Mechanics
\square Engine Tune-Up and
Diagnostic Analysis

AIR CONDITIONING, REFRIGERATION, HEATING DIVISION
\square Master Course in Air Conditioning, Refrigeration \& Heating
HOME APPLIANCES DIVISION
\square Home Appliance Master Technician's Course
\square Handyman Appliance Repair
[" Approved for Veteran Training. Checik for details.
\square Check if interested ONIY in classroom trarning in Los Angeles.

205-068
Name \qquad Age

Address
Apt. \qquad City

State \qquad Zip

NATIONAL SCHOOLS

Technical-Tiade Training Since 1905. Resident and Home-Study Schools. 4000 S. Figueroa St , Los Angeles, Calıt 90037

BUSINESS REPLY MAIL

No Postage Stamp Necessary if Mailed in the U.S.

POSTAGE WILL BE PAID BY:

NATIONAL SCHOOLS 4000 South Figueroa Street
Los Angeles, California 90037

electronics of the future.

systems and more...from in home study.

and every piece of equipment included
Send for it today, and see for yourself what's really happening in electronics training technology at NTS. Find out how much has changed, and what new directions the field is taking. You'll probably want to be a part of it.

It's free. Just mail the card or coupon. Today.

NO OBLIGATION. NO SALESMAN WILL CALL. APPROVED FOR VETERAN TRAINING.

TECHNICAL-TRADE TRAINING SINCE 1905 Resident and Home-Study Schools 4000 South Figueroa St. Los Argeles, Calif. 90037

focus On
 Spenker Systems

BY IVAN BERGER, Senicr Editor

A buying guide to loudspeaker systems, including model comparisons.

I. UNDERSTANDING THE SPECIFICATIONS

THE SPECIFICATIONS on the following pages cover the vast majority of high-quality speaker systems available in the U.S. and though specs alone can't tell you what a speaker sounds like, they can serve as a preliminary screening guide to help you narrow down your list of speakers to the few most likely to suit your requirements. Since there are probably more manufacturers of speakers than of any other high-fidelity component, that can save you a lot of time.

Nationally Advertised Value. The prices listed in our guide are those that are nationally advertised by the manufacturers. But dealers in your area may offer lower ones-check before buying. The fact that discounts are available on some models means that you needn't restrict your list of possibilities to those whose nominal price is within your budget-models listed at up to one-third more than your budget figure may actually be available in your price range. On the other hand, don't be too surprised if some of the prices listed here have risen by the time you get to an audio dealer. Speaker manufacturers' costs go up, too, and fluctuations in foreign-exchange rates can play havoc with the cost of imports.

When setting your speaker budget, don't stint. Speakers have a greater effect on your system's overall sound than any other component, so it pays to invest substantially in them. But if two speakers sound absolutely equal to you (they'll rarely sound absolutely alike), feel free to buy the less expensive ones if all else meets your needs.

Enclosure Types. Like most technical specifications, this one is sometimes over-emphasized in sales literature. In most cases today, it's possible to build equally good-sounding-and even similar-sounding-systems with any enclosure type. But every speaker must have some sort of baffle or enclosure to keep the waves that radiate from the back of the speaker from mixing uncontrollably with the front waves. Since the front and rear waves are out of phase, uncontrolled mixing would allow them to neutralize each other, cancelling the sound. In practice, this only occurs at the low frequencies, where the wave lengths are longer than the distance around the baffle. For this reason, enclosure design has most effect on the bass frequencies.
Acoustic-suspension or "air-suspension" enclosures are small, sealed boxes whose trapped air serves as the spring for otherwise floppy speakers. Acoustic-suspension speakers have been most popular for years because they can deliver clean, deep bass from comparatively small enclosures. The drawback of acoustic-suspension systems has been their low efficiency: all else being equal, it takes more power to drive an acoustic-suspension speaker to a given output leve than it takes to drive most other systems.

The bass-reflex system, unlike the air-suspension type, has an opening or "port" through which the low-frequency driver's back wave can escape to the front. With careful design, this wave can be made to emerge in-phase with the woofer's front wave, just at the frequencies where the woofer needs
help most. You'll find more and more bass-reflex systems among the newer models, since the characteristics of such systems can now be more precisely formulated than a decade ago. This allows designers to eliminate boomy resonances that formerly characterized some reflex systems. And since the back wave is used, not wasted, reflex speakers tend to have higher efficiency than air-suspension types.

Passive radiators (also known as "drone cones" or "auxiliary bass radiators") are sometimes used in place of ordinary open vents. At least one manufacturer therefore calls them "vent substitutes."

Several of the formulas for ventedspeaker designs involve the deliberate acceptance of small response irregularities, which can easily be corrected with external equalizers, in exchange for better performance in areas where equalizers cannot help. The equalizer must be carefully matched to the speaker in such cases, and several speakers which come with such external equalizers are listed here. Not all reflex systems offer high efficiency, though. The formulas that now govern reflex system design allow a trade-off between efficiency, deep bass, and enclosure size. Designers may choose to give you more of one in return for less of another.
"Transmission-line" or "acousticlabyrinth" designs are basically long, padded tubes, folded back and forth to fit into a box of a convenient-size. This is a very clean way to absorb the back wave of the speaker, but its absorption means it cannot contribute to efficien-
cy. Some labyrinths (only the closed type are true transmission lines) therefore are open-ended, tuned so that the back wave emerges in phase at a low frequency where its contribution will be useful.

Horn speakers, today a rarity among woofer enclosures (though horn tweeters are still common) have the highest efficiency of any speaker, and gain low distortion by keeping cone movement small. But their mouths must be immense for good bass output, so the most common type is the "corner horn," which uses the walls of a room corner as part of the horn. Such speakers are, however, expensive-the horn must be folded in upon itself like the labyrinth, making the enclosure complicated to build-and still large. And they can only be used in rooms having suitable corners. (Not all corner speakers are horns, though-and placing any speaker in a corner will reinforce bass response.)
Open baffles also work, but they must be large in order to control bass cancellation. The Transar and many full-range electrostatic and planar speakers use such baffles.

Woofer Size and Type. It's generally believed that the bigger the woofer, the lower the bass. But that's only true if the enclosure is made larger, too. Larger woofers do have lower resonant frequencies when measured in free air. But once mounted in an enclosure, a larger woofer will (all else being equal) exhibit a higher resonant frequency that a smaller one mounted in the same box! The larger cone moves more air for the same degree of cone excursion. Moving more air into a box of a given size raises the air pressure in the box, stiffening the "air spring" the driver is pushing against. Since the resonant frequency depends on both the mass (of cone and air) and the compliance, or springiness, of the air and the driver suspension, the reduction in air compliance raises the system's resonance more than the increased driver mass lowers it.
Within a given enclosure, then, a larger woofer (which moves more air for a given cone excursion) wifl produce bass more efficiently--but a
smaller woofer will produce deeper bass frequencies, though weaker in output. Enlarging the enclosure lets the larger woofer deliver deep bass, too, and more efficiently. But the system then takes up more space and costs more. In short, don't expect woofer size alone to make one system deliver deeper bass than another.

Most woofers are standard cone drivers, regardless of enclosure type. Even here, however, there are some variations. Many makers now use woofers covered or impregnated with plastics (commonly Bextrene) or carbon fibres, to stiffen the woofer and increase its internal damping, both of which reduce cone breakup distortion.

Some manufacturers use very shallow woofers, to minimize the phase differences between woofer and tweeter. Others stagger their drivers, so that the tweeter's mouth is far behind the woofer's. Both techniques put the woofer and tweeter voice coils in the same plane, allowing the output from both drivers to reach the listener at precisely the same time, not a tiny fraction of a second apart (provided the crossover networks dividing the sound between woofer and tweeter do not add time delay problems of their own). Opinions are divided as to whether or not phasecoherent design audibly improves the sound, but there's no question that phase-coherence can't degrade it.

Planar woofers, such as the various electrostatics and the "flat-panel" speakers driven by regular or distributed voice coils, are usually in open baffles. Either the baffles or the speaker driving elements (preferably the latter) must be large to deliver sound power at low frequencies. In practice, this means that such speakers often require additional subwoofers for the very low bass-note the rated frequen-cy-response figures in our chart.

Other Driver Sizes and Types.

 Most speaker systems use at least two separate drivers-a massive woofer for the lows and a small tweeter for the highs-and many use 3 or more driver sizes. This is because each end of the frequency spectrum imposes opposite requirements on a driver. Bass response requires a large driver that canmove a lot of air and handle a great deal of power. Treble response requires as light a driver as possible (which also improves transient response). In addition, it requires a small driver, for broad, even dispersion. (Dispersion is a function of the ratio between driver size and sound wavelength.) Midrange dispersion is rarely a problem, especially in speakers with separate midrange drivers. So high-frequency dispersion-as evidenced by tweeter size-is probably the most important specification in this column.

Dome tweeters have no better (or worse) dispersion than cone types of equal size. However, dome tweeters have larger voice coils, which allows more power-handling capacity-and also increases the size and cost of the magnet that must be used with them.

Electrostatic tweeters tend to have limited excursion, which makes it easier to give them good transient response, but also means they must be larger than cone types, which limits their dispersion. For that reason, most electrostatic tweeters use several tweeter elements, angled apart to cover a wider sound field. (Some nonelectrostatic tweeters do this, too.)

Horn tweeters allow a small, light diaphragm with good transient response to radiate appreciable power efficiently without breaking up. The driving diaphragm is usually a dome or flat diaphragm with a conventional voice coil, but more and more horn tweeters use piezoelectric drivers, sol-id-state devices that produce sounds by flexing in response to signal voltages. But designing horns for good high-frequency dispersion is hard. The approaches taken include the use of multi-cellular horns, and of "acousticlens" louvers at the horn mouth.

Crossover Point. Dividing the frequency range between several different drivers requires that each driver handle only that part of the range that it's designed for. Electrical "crossover networks" ensure that each driver get only its proper range, and that response slopes off at those frequencies that another driver should handle. In practice, the frequency ranges of ad-

Focu On Spenker Systems continued

joining drivers overlap, and there is a point-the crossover frequencywhere each is contributing half the total radiated sound. The more divisions, the more such frequencies: a two-way (woofer-tweeter) system has just one crossover poini, a three-way (woofer-midrange-tweeter) system has two crossovers, and so on.

Impedance. A speaker's impedance changes with frequency. Its rated impedance is usually the lowest impedance it will reach at any point within its frequency range (generally, the mid-bass region), Usually given as 4. 8 or 16 chms, impedance is mainly important when you iritend to connect more thian one pair of speakers to the same amplifier. Many amplifier circuits can be damaged by the 2 -ohm impedance which results from operating two 4 -ohm speakers in parallel. Unless you know your amplifier can handle it, buy higher-impedance speaker systems for multiple-speaker installations.

Frequency Response. This specification is useful, but only as a rough guide: measurement standards vary, and a speaker's measured iesponse will vary with the microphone position and the space surrounding the speaker when it's tested. The specified response might be the on-axis response in an anechoic chamber, the on-axis response in a reverterant chamber (which would show more bass-how much more depending on the chamber
size and shape), or a total-radiatedpower response taken in a reverberant room but including both on-axis and off-axis measurements
Frequency response figures which specify how many decibels (dB) the sound varies over the indicated range are more meaningful than those which simply state the frequencies spanned. You know that a speaker that is within $\pm 6 \mathrm{dE}$ from 30 to $18,000 \mathrm{~Hz}$ has fairly substantial bass response, but a speaker whose response is stated only as an unqualified " 30 to 18,000 " could be considerably more than 6 dB down at 30 Hz (though it could be less than 6 dB down, too). Without the qualification in dB, you just can't tell

Sensitivity and Minimum Rec.

 ommended Power. These useful specifications help determine how much amplifier power you need to drive the speaker system satisfactorily. (Remember that, when driving two speakers, each gets about half the amplifier power, so a " 20 -watt" minimum means 20 watts per channel.)Sensitivity (which is a measure of efficiency) is usually stated in terms of sound output from a 1 -watt signal measured at a 1-meter distance. For example, a signal that delivers 92 dB SPL (sound pressure level) from a 1-watt signal will require 3 dB less power for a given output than one which delivers 89 dB from the same watt. Thus, the more sensitive (more efficient) speaker can be used with an amplifier half as

Dispersion can be shown by superimposing frequencyresponse graphs taken at several angles (above) or as polar plots for several frequencies (below).

powerful as the $89-\mathrm{dB}$ speaker would require. The catch, though, is that the rating varies according to the frequency components of the test signal used. Therefore, the manufacturer's minimum power recommendation should be given at least as much weight as the sensitivity figure.

E-V Interfuce: B has matching equalizer, passive radiator.

Technics SB6000A has stepped-bach drivers for phase correction and ducted port.

AR-15 air suspension system with

Power-handling Capacity. This tells you both how much power the speaker can safely accept. Since this specification is not rigidly defined, you should use it only as a rough guideline.

We ve distinguished, where possible, between those power-handling ratings that specify momentary peak input power and those that specify continuous power capacity. However. that still leaves open the question of how long a signal of that power is safe in either case, and what the frequency components of the test signals were. In general, it's safe to use an amplifier whose continuous-power rating is the same as or a little larger than the speaker's, or one-half the speaker's peak power rating. But you can use amplifiers with higher power if you're careful not to drop the tonearm onto the groove with the volume control well up, or to plug and unplug signal sources while the amplifier is on, either of which can create speaker-blowing transients on almost any system. You can also use a high-power amplifier if you don't play your system so loud it goes into audible distortion.

If you combine the maximum power figure with the sensitivity rating, you can tell how loud the speaker can be safely played. Since 20 watts is 13 dB above one watt, a speaker with a pow-er-handling capacity of 30 watts and a sensitivity figure of 93 dB for 1 watt input can play at levels of up to 106 dB $(93+13 \mathrm{~dB})$ with some presumption of speaker safety. That is probably loud enough for most classical listeners, but not for the truly dedicated rock listener, who would probably prefer a limit of $110-115 \mathrm{~dB}$

Still, check the speaker at your preferred listening level before buying it. The figures tell you only how loud the speaker can play without damage not how loud it can play without audible distortion.

Level Controls. The sound of most speakers can be altered somewhat to account for listener preferences as well as the acoustics of the listening room and the speakers' location therein by altering the high-to-low-frequency balance. This usually requires at least a tweeter level control, and may also
involve additional controls for the midrange and other drivers. (Woofer controls are almost unheard-of.)

The more such controls there are, and the more continuous their adjustment (as opposed to simple two- or three-position switches), the more precisely the speakers' frequency balance can be adjusted. But the more adjustments there are, the harder you'll have to work to get it just the way you want. incidentally, tweeter-level settings labelled "flat" or "normal" are just re-commendations-alter them if you feel that it makes an iriprovement.

Dimensions and Weight. These have little to do with the sound of a speaker (save that, all else being equal-which rarely occurs-bigger cabinets permit lower bass with fewer trade-offs). But they do help determine how well a speaker will fit into your home Dimensions are most important, of course, if you plan to locate your speaker systems on bookshelves. And for shelf mounting, weight is important, too. Make sure your shelf can handle any speaker you plan to put on it. \diamond

II. UNDERSTANDING WHAT YOU HEAR

THE SPECIFICATION sheet for a speaker system tells the buyer less about the system's sound than do the similar sheets for other audio components. Thus, the speaker buyer is
forced to rely heavily on the judgment of his own ears-superbly sensitive instruments, but not very precisely calibrated ones.

The art of buying a good speaker
must therefore begin with training our ears and minds to appreciate and understand what we are hearing. Untrained. it is too easy to fall under the seductive spell of a speaker that

Powered Advent has amplifier inside rear panel.

JBL L2IVhas mid/highfrequency"satellites"and commom bass module.

Klipschorn folded-hom system.

Focur On Spenker Sydems

makes one type of program material sound startlingly real only to find its sound inadequate for those types of music you listen to most often. The sound you hear in one acoustic environment is likely to be very different in another listening room, too. There are no perfect speakers. But to the knowledgeable ears, the least inperfect speaker is the one which reproduces recorded sound most realistically, imposing the least possible coloration on that sound.

Assessing realism is, however, difficult. If you attend live concerts of acoustical-not electrical-instruments, you can use them to sharpen your listening judgements. Before shopping for a speaker, attend a concert or two. Close your eyes and analyze the sound you hear, attempting to sum up verbally the differences between this sound and the sound of the same music played at home. The verbal summation is important-words are easier to remember precisely than are subtle differences in sound.

Rock concerts are less useful training for the ear, because rock records rarely attempt to reproduce the concert sound instead, rock performances strive to reproduce on stage the sonic experiences that are so easily achieved in the recording studio. Besides, the sound you hear from electrically amplified performances is the sound of the amplifiers and speakers used. Recordings are usually made by direct pickup from the instruments
themselves, rather than by microphones aimed at the speakers you'd hear at a concert.

Your Own Tests. In an audio dealer's store, intelligent listening can quickly screen out the most blatantly colored or limited speaker systems. Listen to as many types of program material as you can, but with special emphasis on the kinds of music you will listen to at home. Any speaker which seems to lack highs or lows on all recordings should be rejected. The ear is easily fooled, however, since many colorations sound quite pleas-ing-on some material. For instance, listen to whether the bass seems rich and full and whether it is rich and full on many different notes. Or does it lend all such notes the same pitch, which is a sign of uncontrolled bass resonance? (Note, too, that below the resonant frequency, speaker output drops off dramatically.) Make sure the musical notes you hear are the ones being played, as well. On a descending passage of bass notes, for example, the fundamental tone should keep descending, not reach a plateau and stop. Some speakers falsify bass by "doubling," delivering a distorted overtone of notes below a real low-frequency limit. In this case, a distorted $60-\mathrm{Hz}$ note. may be heard when a clean 30 Hz is called for. If you could play a sweep-frequency record through such loudspeakers, you would hear the sound fade cleanly as the frequency
lowered, then come back at higher volume with higher pitch. A good speaker will simply fade out below its low-frequency cutoff. It's always better to miss a few rarely recorded bass tones that are there than to muddy the sound output with tones that weren't recorded to begin with.

Test reports are a help, of courseeven reports on speakers you do not intend to buy. Listen to speakers about which you have read reports, and try to correlate what you hear with what the tester heard and measured. Do this for several speakers. This will help you differentiate various speaker deficiencies and virtues

While frequency-response specifications tell you comparatively little about a speaker, frequency-response graphs-whether in specification sheets or test reports-tell you a great deal. Minor squiggles can be ignored since all speakers have them (though some speaker specification sheets smooth out curves for public consumption). In your mind, however, shade in the spaces between the response curve and the reference-level chart line. The audibility of response deviations is roughly proportional to this mentally shaded area. Broad, shallow bulges and dips will be plainly audible. So will sharp but high-amplitude resonances. However, resonant peaks and dips that are both sharp and short will not greatly affect the speaker's sound
Observe, too, at what frequency extremes response begins to drop off,
B.E.S. Geostatic's dipole planar drivers radiate from both sides.

H.H. Scott Pro-100 also reflects sound from ceiling,

Heil AMT tweeter squeezes

 air instead of pushingit.
and how fast it drops. At the bass end, look for a speaker that rolls off smoothly, rather than one which exhibits an exaggerated response hump just above the roll-off point.

Teach yourself also to recognize the effects of room acoustics on speaker demonstrations. Bear in mind that if the room you'll listen in at home has a greater percentage of hard surfaces than the store's listening room, you'll hear more highs at home. If your room

A response curve can be made to look smoother by stretching the horiozontal axis.
is full of soft, absorbent surfaces, highs will be weaker. To some extent, the speaker's tweeter and midrange level controls can help compensate for this when you get it home. But, if the dealer's listening room is more absorbent than your own, and you have to turn the tweeter down to make it sound best in the store, then try another speakeryou may not have enough adjustment range left to compensate for the acoustics in your home.
compensating fully for a system with deficient treble response.
Note, too, how speaker placement in a room affects bass response. Resting a speaker on a floor accentuates its bass; placing it on the floor in a corner accentuates it further. Raising it above the floor on a stand (or bookshelf) will reduce bass. Conscientious dealers often to try to equalize for these effects by setting up the speakers assymmetrically, so that the speaker nearest the

A heavily upholstered room or a turned-down tweeter control can help correct for a speaker whose high-frequency response is exaggerated, but still smooth. It cannot correct, however, for shrillness caused by peaks within the treble region. One can only eliminate these by turning down the treble enough to lose the desired highs as well. Sometimes, though, an equalizer can help here. Similarly, one cannot count on a room that is more "live'
corner on one side of the room will be farthest from it at the other. This gives each pair of speaker systems demonstrated a roughly equal chance.

Long listening sessions lead to listener fatigue, and consequent errors of judgement. So do not assume that you'll be able to pick the perfect speaker (for you) in one visit to a dealer. Take your time; limit your listening experience. You're making a substantial investment to last for many years.

Be sure not to try to compare three or more systems at once. Your sound "memory" won't be good enough. To truly discern the difference between speakers, you must compare two pairs at a time. When you have chosen the better pair, you then may compare them to a third set.

The speakers you're comparing must be precisely matched in level. If one speaker is grossly louder than the other, you will hear this mainly as a difference in sound level. But if they differ by only a fraction of a decibel, you are likely to judge the louder one as being clearer, and not attribute the difference to volume at all. Dealers today frequently provide for such level matching in their speaker switchers (the levelmatch attenuators used should be between the system amplifier and preamp, not between amplifier and speaker). But this match should be rechecked frequently. Of two speakers balanced on, say, pink noise, one might be slightly louder when playing music with a good deal of bass con-

Pioneer horn tweeter is

segmented for dispersion.
Sansui 3-way system. Note horn tweeter with acoustic lens.

Bose 901 reflects most of its sound from room wall.

tent, and the other slightly louder when playing music strong in treble tones.

As you compare two sets of speakers, spend some time switching quickly between them (preferably in midpassage, not just as the music changes) to hear how each handles essentially the same sounds. Also spend some time listening to each at length.

Listen to as many types of sound as possible. Bring records you're familiar with (fresh copies, if your old ones are worn or dirty), covering as many types of music as possible. Listen also to the noise heard between stations on an FM tuner or receiver.
Why noise, when the emphasis thus far has been on reproducing music naturally? Simply because FM noise contains a balance of all the frequencies over a range of about 50 to 15,000 Hz . Peaks and dips in a speaker's response will often show up quickly on white noise, when you might otherwise have to wait a long time for music to hit a note that would expose them clearly. The sound should be a smooth rushing noise, with both bass and treble clearly present. Grittiness or roughness is one sign of coloration. So is a milky smoothness, usually the sign of insufficient treble. If all you hear is hiss, on the other hand, there's probably too little bass response. The sound should seem high-pitched with no specific pitch attributable to it. Any distinct pitch you can hear is because a resonance overemphasizes a single frequency or narrow frequency band.
Here's an interesting test one can make to check for the nasality or honkiness that afflicts speakers with overemphasized midrange response. With you hands cupped over your mouth, say "Shhhhh"; then listen to the same sound made with your hands removed. White noise should have the same smooth, rushing quality as in the second example. If the speaker sounds as though its hands were over its mouth, it will add nasal coloration to the music.
Noise is also a good test for high-frequency dispersion. Starting from a point on the speaker's axis, walk to either side until the high-frequency sound quality changes noticeably. Then continue walking slowly until the hissiness disappears from the sound.

The farther from the speaker's axis you must go to reach these points, the broader and more even the speaker's high frequency dispersion. If, with your eyes closed, you can reliably tell just when you're directly on the speaker's axis, its dispersion is deficient.

While you're tuned to FM, listen to some deep-voiced male announcers. They should sound natural, as if they were in the room with you, not as if they were in a rain-barrel or tub. This boominess or chestiness is a sign of a speaker-response peak at about 100 10200 Hz . (Check several announcers, though, to be certain that the problem doesn't rest with the broadcast studio or your reception area.)

The ultimate speaker test is on music, of course. That, after all, is what you're buying speakers to hear. Each type of music has different information to impart about the speakers you're auditioning.

Try rock music, where it's easy to listen for bass definition. Transient thumps should be sharp and powerful, not softened into a mushy drone. You should be able to play the speaker as loud as you like, using an amplifier of the wattage you intend to use at home without breakup or distortion from speaker or amplifier. (If the amplifier distorts, then you need a more efficient speaker or you must revise your amplifier selection.)

Rock piano should be clear, transparent, almost bell-like. If it's jangly or annoying, that's usually a sign of high-frequency peakiness or distortion; if too soft, and sweet, the speaker system probably lacks satisfactory treble.

Now listen to massed orchestras or-still better-choruses. You should be able to hear them as groups of individual instruments or voices, not a puree of sound. This is one of the best possible tests for speaker clarity.

String instruments are rich in harmonics and, therefore, a good test of distortion and high-frequency response. Solo and chamber recordings should let you hear the bite of bow on string but without rasping. Cellos should sound full, not thin or ponderous. Massed violins should have a silky sheen, not shrill or dull. Animated
passages will reveal more than slow, legato ones.

Organ pedal notes do demonstrate low-bass capability, but they take a long time to build up, so they are not as exacting a test as a good swift thump of bass drum or tympani.

There isn't time in the audio showroom to play every selection on every record you bring as demonstration material. So carefully note what you want to play before you reach the store. If some of your records aren't conveniently divided into bands, you can make a cardboard index that can fit against the spindle as a guide to where to put down the tonearm.

Listen carefully at both the highest levels you're likely to listen to at home and at the lowest. The speaker's sound should not change radically (other than your ears' fading out on bass as it gets lower and a slight loss of treble) as the level diminishes.

Check also for instrument positions. You should be able to differentiate clearly the positions of the various instruments and voices within the stereo fields (easier on some records than others). Be skeptical of speakers with strong. immediate appeal. The speakers that instantly excite you often do so because they sound greatly different from those faithfully reproducing recordings. Perfect speakers, if they existed, would all sound alike. Among high-quality systems a speaker's superiority is likely to be fairly subtle.
Note that every speaker system does not aim all its sound directly forward. Some have drivers facing to the sides, the top, or even to the rear. (And dipoles, of course, project sound equally to both the front and the rear.)

In most cases, this involves midrange and treble drivers whose indirect output, reaching the listener by reflection, may overcome some room acoustic problems, enlarge the apparent sonic space, or simply make the sound richer. Some critics, however, feel that it also diffuses the stereo image or makes solo instruments sound unnaturally large. Here again, the listener should make up his or her own mind. Side-firing woofers, however are there to eliminate an upper-bass dip caused by wall reflections.

SPEAKER SPECIFICATION GUIDE

ABOUT PRICES . . . With repeal of Fair Trade Laws, manufacturers are now providing "Suggested Retail" figures for the guidance of their dealers and customers. Prices stated in the speaker charts are those provided by manufacturers under these conditions. They are, of course, subject to change without notice and some products may be purchased in your trading area at a price that differs from that given here.

Avid
300
200
101
102
100
80
Bang \& Olutsen
Beovo M. 100
8eovox M. 70
Beovax S. 75
Beovox P. 45
Beovox 5-45-2
8envox P-30
Beovox S. 35
Beovox S. 25
Bedini/Streliof
TS. 1
BES
D.120w
0.75W
060 W
460
U50
Beta Sound
10018
075
050
045

Harold Beveridge

System 3
System 2SW
System 2
Bevenidge J.
B.I.C.
BML Electonics
2001 Sound Ddyssey
1001 Sound Window

PM 100
LS3/5A
Cizek
'Wooter'
1
2
3
Concept
CEM
CE 1
CE 2
CM Labs Div.
Audio int 1 .
Audio int T.
CM15B
CM10a
Contrara Research
Vector 5
Elarf
Vector 4
Vector Two
Pedesta
Vector One A
Vector Two B
Tower
Vector 0 ne
Piccola 3
Rectangle
Piccola 2
Craig
5706
5705
5704
Dahiquist
00.10
JO.1W
Dayton Wright
XG-8 Mk 3 Series 3
Design Acoustics
0.8
Phase 3 Model 60

interface: C

Interface B II
Interface: All
Interface: 3
Interface: 2
Intertace: 1

$$
\begin{aligned}
& \text { Ezekiel } \\
& \text { FRL II }
\end{aligned}
$$

MTM
WRL

$$
\begin{aligned}
& \text { EPI } \\
& 350
\end{aligned}
$$

70	75	air susp.
Epicure		
1000	1000	air susp
$400+$	400	aır susp.
$20+$	275	air susp.
14	199	pass. rad.
11	149	vented
10	125	air susp.
5	80	air susp.
ESS		
Transar atd	p3500	intinite

DS 930 DS. 920 HD. 880 DS. 900 H0.770 HO. 660

7 MK II

HO.550
6 MK II
5 MK II

HD. 440
Martin Speakers Div.
Eastern Sound
Sound Tower
Magnitical
Gamma 1500
Gamma 1200M
Gamma 412
Gamma 310
Garmma 308
Gamma 208
Matrecs Industries
MA 254

MA 224
MA. 203

MA. 123
Mc Intosh Laboratory
XR7
ML. 2

XRG

XR5

The Realistic Mach One isn't just for your ears!

Multicell midrange horn

Provides a true spatial image Smooth 800-8000 Hz response for a "live" presence

Heavy-duty tweeter horn Delivers crisp and clean highs from 8000 to $25,000 \mathrm{~Hz}$.

Treble, midrange L-pads
Calibrated controls for precise adjustment of response to suit room acoustics.

Oiled walnut veneer

We make speaker positioning easy by including a cabinet with the look and feet of fine furniture - so the Mach One looks great anywhere!

Removable grille

The sturdy grille frame snaps on and off for easy access to the response controls.

Massive 15" woofer

The acoustic suspension, large-excursion cone has an effective radiating area of over 100 square inches-the equivalent of a huge air-pump - for bass you can feel all the way down to 20 Hz . The four-layer voice coil is wound on a brass form for heavy power handling capacity-over 100 watts peak program material

A great loudspeaker doesn't just please your ears. It reproduces deep bass with a power and punch your entire body feels ... it recreates the live ambience so accurately that when you close your eyes, you're "on location" in that auditorium, concert hall or night spot . . . and it delivers top performance with both moderate and high-powered amplifiers. If you think we're talking about a $\$ 400$ speaker, you haven't experienced the Mach One. For just $\$ 219.95$ each*, you get incredible "live theatre" sound from a name you can depend on: Realistic. Backed by 56 years in audio design, manufacture, sales and service. So bring in your favorite record for a Mach One audition, and discover the feel of music.

A DIVISION OF TANOY CORPORATION - FORT WORTH, TEXAS 76102 OVER 7000 LOCATIONS IN NINE COUNTRIES

> Useful logic circuit has many applications in waveform generation or digital control.

BY KARL LUNT

THE Programmable Logic Array (PLA) is an important, little-understood electronic circuit which many experimenters would use more if they knew more about it. Described here, to help in such an understanding, is a circuit that can be used to generate a wide variety of output waveshapes with frequencies up to 15 MHz , with complete control over the output waveshape.

With some changes in the timing or

Fig. 1. Frequencies of either 555 can be from 1 MHz to one pulse per minute, depending on selected R and C values.
output circuit, the PLA can also serve as a switch and light controller for model train layouts, a digital controller and sequencer for simple machine or processing operations, a sophisticated timercontroller for use in a lab, darkroom, or kitchen, or even as an electronic "house-sitter" to control several appliances. This PLA can be built for about \$15-less if you have a well-stocked "junkbox."

The circuit consists of three elements: a timer and driver that converts a series of clock pulses into $B C D$ information that selects an input line of the PLA matrix, the PLA itself (in this case a diode matrix), and the output circuit that includes the necessary interfaces to relays, lights, other TTL or a digital-to-analog converter.

Circuit Operation. The basic timer can be built around one of two cir-cuits-a pair of conventional 555 timers as shown in Fig. 1 or the 555-7490 circuit shown in Fig. 2. The output frequencies of the 555's are dependent on their resistor-capacitor values and clock rates
can be as high as 1 MHz or as low as one pulse per minute.

The selected outputs of the clock oscillators can be used to drive a one-oftwo selector like that shown in Fig. 3. The output of this circuit can be either clock-A or clock-B depending on the signal applied to control input C.

The main circuit shown in Fig. 4, accepts the selected clock output from IC1 and drives one or more decade counters

Fig. 2. The 555 drives decade counter in this clock. As many counters as desired can be added for ultra-slow clocks.
(IC2 is an example of one), and then the final decade counter $1 C 3$ whose outputs are BCD that count from 0 to 9 then automatically repeat.

The BCD outputs are applied to a 1-

Fig. 3. A one-of-two selector allows PLA to control its own frequency. Output is A or B depending on control input C.
of-10 decoder (IC4) with each decoded output applied to a corresponding input line of the PLA-in this case, a $10 \times \mathrm{N}$ matrix. The $10 \times \mathrm{N}$ means that there are 10 inputs and any selected number (N) of outputs. In this matrix, the diode lines are driven low in sequential order by IC4 and a diode connected between the selected input and output lines will drive that output low. The outputs are fed to the inputs of the hex inverters within IC5 and IC6 that provide both inverting and buffering. The outputs of IC5 and IC6

Photo shows the author's prototype of complete PLA project. Diodes are on commercial matrix board at right. $I C$'s and other electronics are on perf board.

Fig. 4. Note how diodes connect between input and output lines of matrix.

PARTS LIST

C1 $-47-\mu \mathrm{F}, 12-\mathrm{V}$ nonpolar capacitor (two $100-\mu \mathrm{F}$ units connected in parallel)
IC 1-7402 quad 2-input NOR gate [C2.IC3-7490 decade counter IC4-74421-of-10 decoder IC5,IC6-7404 hex inverter RI-330,000-ohm resistor

R2—510-ohm resistor
R.3-1000-ohm resistor

R4-2000-ohm resistor
R5-3900-ohm resistor
Misc.-Perforated board, component mounting clips, sockets for IC's, matrix diodes (1N914), 555 timers and passive elements (see text), mounting hardware
can be used to drive other TTL devices, relay drivers, or, in the case shown in Fig. 4, a simple D/A converter that can be used to create various output waveshapes.

Construction. Layout and lead dress are not critical so any type of construction can be used. Sockets are suggested for mounting the IC's.

The heart of the system is the diode matrix PLA that uses conventional silicon diodes (such as the 1N914) to form the matrix. In the prototype, a commercial pc board with a built-in 18×18 matrix of press-in terminals was used, although one can be built of conventional "flea clips" (or similar) with each horizontal (input) row interconnected and wired to its pin on IC4. Each vertical (output) column is built in a similar fashion and connected to the IC5-IC6 inputs. The selected diode clips should be capable of accepting the diode leads. The diodes are installed as shown in the matrix of Fig 4.

Either of the two oscillators can be selected, with any desired frequency used as the clock input

The simple D/A converter shown in Fig. 4 consists of four resistors (although more can be added as the matrix is enlarged) that sum across R1. The voltage developed across these resistors is dependent on the placement of the diodes in the matrix. The square wave generated across R1 is smoothed by C1. The value of C1 can be changed as desired, or any other method of filtering can be used.

Once the basic circuit has been built, it should be powered and an oscilloscope used to make sure that all perti-

nent waveforms are present and have the required fast rise and fall times suitable for TTL.

Use. There are two ways that the diode matrix can be used to control the output frequency. The simplest approach is to tie the "reset-to-zero" inputs (pins 2 and 3) of IC3 to an unused output line of the matrix and, if a diode is connected to this line, the circuit will recycle back to zero. The obvious disadvantage to this approach is that it becomes impossible to use any diode positions beyond the reset point.

The second method is to change the clock frequency coming from the driver circuits A simple 1-of-2 decoder such as
the 7402 shown can be used to switch either one of two independent clocks (Fig. 1) or one of two frequencies derived from the same clock (Fig. 2). In the case of Fig. 1, the clocks may operate out of sync, therefore the clock in Fig. 2 may be used for more accurate timing. The control input of the 1-of- \hat{c} selector (Fig. 3) can be tied to an unused output line of the matrix, and the clock frequency that drives the system can be controlled using a diode on that particular line.

The system shown uses a 7490-7442 combination to produce a $10 \times \mathrm{N}$ matrix. If desired, a 7493-74154 combination can be used to produce a $15 \times \mathrm{N}$ matrix. The output waveform shape can be
changed by varyirg the value of filter capacitor C1 and the clock frequency. You can experiment with either of these values and observe the results.

It is possible to trigger the timing cycle with a pushbutton switch coupled to a monostable multivibrator. This allows the PLA to be used as an envelope generator in an electronic music system. It is also possible to generate two independent outputs from IC5 and IC6. Either output can be swith selected.

Although the circuit described is not presented as an actual construction project, it can be easily assembled, and the various parameters altered to create just about any reascnable output signal or waveform the builder can use.

MOTOR CONTROL CIRCUITS

WITHIN industry, solid-state devices and circuits are used extensively for controlling and driving electric motors and other electromechanical actuators, including solenoids, linear drives and electric valves. Similar techniques can be just as valuable for a variety of hobbyist, experimenter and home projects. Typically, solid-state circuits can be used in constant- and variable-speed motor controls for toys, and household appliances such as mixers, stirrers, grinders and fans, workshop tools, including drills and sanders, and even in more sophisticated applications, such as tape recorders and computer floppy-disk drives. The range of potential applications, in fact, is virtually endless, limited only by the imagination, skill, and resources of the hobbyist.

Small dc motors of the type used in many toys can be controlled easily using a single low-to-medium-power transistor. A typical circuit is given in Fig. 1A. Here, the motor's current, hence its speed, varies as Q1's base bias is adjusted by potentiometer R2. Although a pnp transistor is shown, an npn type can be used, if preferred, simply by reversing the battery and motor connections. Bypass capacitor C1 is optional, as is the fuse. If the transistor is used at or near its maximum ratings, a suitable heatsink should be provided to prevent overheating. In some applications it may be necessary to connect a small bypass capacitor (0.05 to $0.1 \mu \mathrm{~F}$) across the motor terminals to reduce noise. Actual component values will depend, of course, upon the supply voltage, the transistor's

Fig. 2. A typical triac light-dimmer circuit that can also be used for motor control. Component values depend on specific devices used and intended application.

Fig. 3. Here solid-state devices are used in circuit of starting winding for medium and higher-power ac motor.

Fig. 1. Two basic motor control circuits. The one at (A) uses a transistor, while (B) is a circuit using an SCR for control.

characteristics, the type of operation required, and the motor's rating. As a general rule, however, the values are not critical. Generally, R1 is chosen to limit Q1's maximum base bias and thus its maximum collector current and the top motor speed, with R2, typically from five to twenty times R1's value. If, for example, a 100 -ohm resistor is used for R1, $R 2$ might have a value from 500 to 2000 ohms. Similarly, if R1's value is, say, 10,000 ohms, R2 might range from 50,000 to as much as 200,000 ohms. Where the motor's minimum as well as its maximum speed must be limited, a second fixed resistor can be connected between R2's lower terminal and the power source, thus limiting its bias control range.

Line-operated "universal" (ac/dc) series motors of the type found in many home appliances and small power tools can be controlled effectively using the SCR circuit illustrated in Fig. 1B. Suggested by RCA in Power Options from the Powerhouse (publication No. 2M1169), the design uses two generalpurpose diodes, an SCR, a fixed resistor (R1) and a control potentiometer (R2). As in the transistor circuit, the actual component values depend on the specific semiconductor devices used, the motor characteristics, and the mode of operation needed. RCA suggests SCR types S2060, S2061, and S2062 for motors requiring up to 4 amperes, type S2600 for requirements to 7 A , and type S 2800 if as much as 10 A is needed. Again, heat sinking may be required.

As long as maximum ratings are observed, most triac light dimmer circuits also can be used as light-duty speed controls for household appliances and small power tools. A typical circuit was described in this column in December, 1977, and another is given in Fig. 2. As before, the component values depend on the specific devices used and the intended application (i.e., motor rating and desired control range). Typical values, however, are $0.1 \mu \mathrm{~F}$ for C1 and C2, 100 $\mu \mathrm{H}$ for $L, 2.2 \mathrm{k}$ to 4.7 k for $R 1$, and 50 k to 250k for R2. The diac may be type D3202Y or D3202U, while the triac may be types 2N5757, T2301 and T2302 for loads of up to 2.5 amperes, type T2500B for loads up to 6 A, and types 2N5571, 2N5572, T2800, T2850, T4100 and T4 120 for requirements up to 15 A .

Unfortunately, not all ac motors are amenable to solid-state speed control. With synchronous and induction motors, for example, speed is essentially fixed and is determined by design and the
power-line frequency. Any variation from the design speed is caused by "slippage" due to loading. Attempts to reduce speed by controlling the line voltage or current may result in a severe loss of torque and power, perhaps even causing a stall and burn-out.

Despite the limitations, solid-state controls can be used effectively for medium and higher power ac motor switching applications. Suggested by RCA, the motor-starting switch illustrated in Fig. 3 is a typical example. Suitable for medi-um-power motors operating on standard
household ac lines, the motor-starting circuit uses a triac as an automatic switch for the motor's start winding and its associated phase-shifting capacitor, C. The triacs used may range from types T2800 and T2850 for current requirements of up to 8 amperes to types 2N5567, 2N5569, and T4120 for loads of up to 15 A, or types 2N5441 and T6420 for currents of up to 40 A .

With the increasing popularity of solidstate motor controls, several semiconductor manufacturers have developed special IC's for such uses. The ICH8510/

The DR22-C Fully Synthesized General Coverage Receiver from McKAY DYMEK

FEATURES

- Shortwave. CB, ham radio, ships at sea, overseas phone calls, etc.
- Hi Fi, SWL, commercial, industrial and government uses.
- High level RF front end for excellent intermodulation rejection and sensitivity.
- Crystal filters in first and second IF amplifiers, ceramic filter in third IF.
- Quartz crystal tuning accuracy at all frequencies, no crystals to buy.
- Built in power supply for 110-120 or $220-240 \mathrm{VAC}$ switchable, $50-60 \mathrm{~Hz}$.

SPECIFICATIONS

- Low Phase Noise Synthesizer
- Solid state, phase locked, digital synthesis tuning.
- Extreme ease of tuning at all frequencies.
- No mechanical tuning dial error or backlash.
- Switch selectable 4 or 8 kHz RF bandwidth.
- Built in monitor speaker with external speaker connectors.
- Switchable impulse noise limiters for AM and SSB.

$8520 / 8530$ family offered by Intersil, Inc. (10710 N. Tantau Ave., Cupertino, CA 95014) is a representative example. Assembled in 8-pin TO-3 style metal cases, the devices are hybrid power amplifiers designed specifically for driving linear and rotary actuators, electric valves, push-pull solenoids, and ac or dc motors. Available for operation on dc supply sources

SOCKET SALE

WIRE WRAP SOCKETS
14 Pin Wire Wrap
.30
.27/400
16 Pin Wire Wrap
.32 .29/350

EDGE CARD CONNECTORS

44 Pin ST Edge Card Connector
100 Pin ST Edge Card Connector 100 Pin WW Edge Card Connector $3.50 \quad 3.00 / 10$1.75
3.50
1.50/10
$3.00 / 10$ All Sockets \& Connectors Include Gold SOLDERLESS
BREADBOARDS
SK $10 \quad \$ 16.50$ INCLUDING:
Over 100 pieces of precut wire in assorted lengths - free! Choose 1 color: Red, Black. Blue, Yellow, Green, White, Orange Or Assortment.

PAGE DIGITAL ELECTRONICS

135 E. Chestnut Street 4A Monrovia. California 91016 Phone (213) 357-5005

ORDERING INFORMATION

- Orders under $\$ 25$ and COD's. add $\$ 2$ - All others. shipped Ppd in US via UPS - For Blue Label (Alr) or 1st Class. add \$1 - We accept Visa \& Master Charge
- Most orders shipped same day Deater Inquiries Invited
of up to $\pm 30 \mathrm{~V}$, the ICH8510 will supply an output current of up to 1 A , the ICH8520 up to 2 A , and the ICH8530 up to 2.7 A. The devices are protected against inductive kickback by internal power limiting, have integral frequency compensation, offer an equivalent dc gain of better than 100 dB , and require a standby quiescent current of only 20 mA .

Manufactured by the Fairchild Camera and Instrument Corporation (464 Ellis Street, Mountain View, CA 94042), the $\mu \mathrm{A} 3991$ represents another type of motor-control IC. It is designed for precision, closed-loop, systems such as capstan drives in automotive and portable tape players, in floppy-disk drives for computer memories, and in data cartridge drives. Assembled in a 12-pin power package DIP with heavy heatsink tabs, the device will deliver a motor starting surge current of up to 3.5 A and a running current of 2 A . It can be operated on dc source voltages from 6.3 to 16 V . Intended for use with an external motor driven tachometer generator, it will accept tachometer inputs from 100 mV to 1.0 V p-p. The device includes voltage regulator, pulse generator, comparator, thermal sensor, overvoltage sensor, and stall timing threshold and latch circuits as well as driver and power amplifier stages. In operation, the tachometer generator supplies an input signal proportional to motor speed. This signal is converted into fixed amplitude pulses and integrated by a standard R-C network before application to a comparator, where it is compared to a reference voltage representing the desired speed. The result of the comparison controls the duty cycle of the pulse width modulated switching motor drive output stage, thus closing the system's feedback loop and holding the motor speed to the rate established by the reference voltage. The thermal and overvoltage sensor circuits provide shutdown for self protection while the "stall timer" circuit protects the motor itself from burn-out during extended mechanical jams.

A typical application circuit featuring the $\mu \mathrm{A} 7391$ is illustrated in Fig. 4. The circuit component values will vary with the characteristics of the motor and tachometer used.
'As a general rule, layout and lead dress are not critical factors when assembling and wiring motor-control circuits, although good wiring practice should be followed, with care taken to observe all dc polarities and to avoid overheating the
semiconductor devices during installation. In addition, adequate heatsinks should be provided for the output drivers, whether transistors, SCR's, triacs, or IC's.

Readers' Circuits. Needing a visual indicator for his ac line-operated TRANSMIT/RECEIVE antenna relay, Ted Reiter (1442 Brook Drive, Titusville, FL 32780), replaced his standard spdt unit with a dpdt version, planning to use the extra contacts to control the indicator devices. After rejecting the use of neon lamps and short-lived incandescent types, Ted devised the circuit illustrated in Fig. 5. Permitting standard LED operation on the relay coil (ac line) voltage, Ted's design

Fig. 5. Reader's circuit provides visual indication of whether relay is open or closed.
avoids the need for a step-down transformer, battery, or conventional dc power supply while retaining the low power and long life advantages offered by these devices.

Ted writes that virtually any LED's will work in his circuit, including low-cost "surplus" types, but warns that the series
dropping resistor, R1, gets rather warm during operation and should be mounted accordingly.
Edward C. Mauro (12 Pyramid Lane, Rochester, NY 14624) thinks readers may find his digital-logic automatic pump control circuit of interest and value. Used in conjunction with a transistorized relay to operate a water pump, Ed's circuit, Fig. 6, provides automatic level control for a water tank or sump. Ed writes that he uses his model to empty a dehumidifier tank

Fig. 6. Digital control circuit for a pump is controlled by level sensors.
automatically in the summer and to control the level in a furnace humidifier overflow holding tank in theTMS* winter.

Using standard CMOS 2 -input NOR gates, the circuit's operation is straightforward and easy to follow. HWS and LWS are the high and low water sensors, respectively. When the

water level is below both, IC3's output is low. As the water level rises past LWS, IC3's output remains low until HWS is reached. At this point, IC3's output goes high. Sensed by the transistorized relay, the high output switches the pump on. The water level starts dropping down past HWS, but IC3's output remains high due to the feedback loop to $I C 2$, and the pump continues to operate. When the water level drops below LWS, however, IC3's output goes low and the pump shuts down completely.

Ed has specified inexpensive, readily available components in his design. The HWS, LWS and GND sensors are one-inch diameter sections of standard pc board (unetched). The LWS and GND sensors are suspended on insulated leads near the bottom of the tank, but above the pump intake level, while the HWS sensor is suspended at the desired pump "turn-on" level. The circuit may be assembled on perf board, a suitably etched pc board, or on a wirewrap breadboard, as preferred. It may be used with virtually any standard transistorized relay circuit compatible with CMOS output levels.

Device/Product News. Three new series of fast turn-off SCR's intended for high-speed switching applications such as power inverters, switching regulators, and high-current pulsing are now available from RCA's Solid State Division (Box 3200, Somerville, NJ 08876). Identified as the S5800, S5801, and S5802 series, the new devices may be used at frequencies of up to 25 kHz . Each series includes five types with voltage ratings ranging from 200 to 600 volts. The turn-off times for an 8 -A load is 6μ s for the 55800 series, $10 \mu \mathrm{~s}$ for the S5801 series, and $15 \mu \mathrm{~s}$ for the S5802 series. All the devices
are supplied in JEDEC TO-220A/B plastic packages.
Motorola Semiconductor Products Inc. (P. O. Box 20912, Phoenix, AZ 85036) has added four new devices to its popular Switchmode ${ }^{\sqrt{1}}$ line of power transistors. Suitable for applications as motor controls, inverters, solenoid and relay drivers, and in deflection circuits, the new units include the 10-A types MJ13014 and MJ13015, with $V_{\text {ceo }}$ ratings of 350 and 400 volts, respectively, plus two 20-A Darlingtons, types MJ10008 and MJ10009, rated at 450 and 500 volts.

Motorcla also has a new FM stereo demodulator IC which is fabricated using the latest in $1^{2} \mathrm{~L}$., Ion Implant, and Bandgap technologies. Designated type MC1309, the device requires no inductors and very few other external components. A single potentiometer sets initial subcarrier vco frequency in the PLL demodulator, while an external load resistor choice enables the unit to be inserted as a unity gain element in the FM receiver's audio path, and a LED driver output is provided to indicate stereo operation. For operation on 4.5 to 16 volts, the MC1309 is supplied in a standard 16-pin DIP

National Semiconductor Corporation (2900 Semiconductor Drive, Santa Clara, CA 95051) has developed a family of negative three-terminal adjustable voltage regulators. Designated the LM137 series, the monolithic devices complement the LM117 series of positive three-terminal regulators. With outputs adjustable from -1.2 to -37 volts using only two external resistors, the units have integral thermal regulation and a current rating of 1.5 A . Other features of the series are a high ripple rejection of 75 dB and an rms output noise of a mere 0.003% of the output voltage up to 10 kHz . The LM137 devices are in TO-3, TO-5, TO-220 and TO-202 packages. \diamond

- Personal Computer Systems now including Floppy Disk Storage
- Power Supplies - Oscilloscopes - Frequency Counters - VTVM's and VOM's
- Ham Radio Gear - Digital Programmable Color TV - Hi-Fi Components
- Electronic Clocks and Weather Instruments - Learn-at-home Electronics Courses
- Auto, Fishing, Marine and Aircraft Accessories - nearly 400 kits in all!

Every Heathkit product comes with a fully illustrated, step-by-step assembly manual that tells you everything you need to know to make kitbuilding fun and easy. Thousands of people have discovered the satisfaction - and savings - of handcrafting a fine piece of electronic equipment. You can build it better. . Iet us show you how.

Send for your FREE Catalog today! $>$ Heath Company, Dept. 010-420, Benton Harbor, Michigan 49022

Heqfili Experimenter's Corner

the voltage multiplier

THIS MONTH, we're going to look at the diode-capacitor voltage multiplier, an extremely simple but very useful power-supply circuit. The diodecapacitor voltage multiplier allows the user to obtain a larger dc voltage than that available from his battery or transformer/rectifier supply. In ac circuits, this voltage multiplication is readily accomplished by transformers, so you can consider the voltage multiplier as a solid-state, dc step-up transformer with very limited current regulation capability.

These networks have found many applications in semiconductor electronics. They are commonly used in digital wristwatches to derive required operating voltages from a single mercury cell. Voltage multipliers are also employed to obtain the relatively high voltages needed for powering neon glow lamps, electrofluorescent displays and semiconductor lasers. Heavily insulated voltage multipliers are frequently found in the highvoltage sections of color television receivers and infrared-to-visible light conversion systems.

Although there are several basic voltage multiplier designs, they are all based on the principle of charging and discharging capacitors with the help of steering diodes. Let's look at a few representative circuits. All inputs are ac.

Typical Voltage Multipliers. Figure 1 is the schematic diagram of the traditional voltage doubler. In operation, an ac voltage is applied across the input terminals. During the negative half-cycle of the input signal (BP2 positive with respect to BP1), C2 charges to the peak

Fig. 1. Traditional diodecapacitor voltage multiplier.
value of the input voltage. During the positive half-cycle, C1 charges up to the peak value of the input voltage. Since C1 and C2 are in series, the output voltage is double the peak input voltage if the output is lightly loaded. Therefore, the capacitors must be rated to withstand the peak value of the input voltage and the diodes twice that value.

Figure 2 shows two other ways to make a voltage doubler. The cascade doubler (A) isn't as efficient or as wellregulated as either the traditional or bridge doubler, but it can easily be expanded to many stages. (Component voltage ratings are given in parentheses.) It's possible to obtain outputs of many thousands of volts from multistage cascade voltage multipliers. Figure 3 shows both a full-wave voltage tripler (A) and quadrupler (B).

You can duplicate any of the circuits in Figs. 1 through 3 using ordinary silicon rectifiers and suitably rated capacitors.

Switching diodes (IN914 or IN4148) work fine in low-voltage applications. Rectifiers in the IN4000 series are a good choice for circuits with higher working voltages. Here are the voltage ratings for these rectifiers: IN4001, 50 volts; IN4002, 100 volts; IN4003, 200 volts; IN4004, 400 volts; IN4005, 600 volts; IN4006, 800 volts; IN4007, 1000 volts. Be sure to observe the polarities of diodes and electrolytic capacitors.

A Word of Caution. The sample voltage multiplier circuits that follow produce relatively low voltages. Voltage multipliers, however, can easily produce very high output voltages. If you decide to experiment with high-voltage multipliers, use caution and always make sure the capacitor chain is fully discharged before touching any circuit nodes. The capacitors in an unloaded voltage multiplier chain can retain a dangerous charge for hours after the power supply has been turned off.

Op-Amp Voltage Multiplier. It's very easy to generate square waves with an operational amplifier, so an opamp oscillator makes an ideal input for a voltage multiplier. Figure 4 shows one possible circuit.
Virtually any op amp will work as a square-wave generator, but l've selected the RCA CA3078, a micropower op amp that will operate with power-supply voltages as low as ± 0.75 volt. With the component values shown in Fig. 4, the

Fig. 2. Two different ways to make a voltage divider.

Fig. 3. Full-wave voltage tripler and quadrupler circuits.

Fig. 4. Micropower op-amp oscillator circuit.
oscillator produces square pulses approximately four milliseconds wide at a frequency of 144 Hz . Increasing the value of $C 1$ will increase the pulse width and reduce the oscillation frequency.
You can use the basic op-amp square-wave generator as an ac source for any voltage multiplier circuit. Figure 5 shows the results for a ten-stage cascade multiplier. Don't use a supply voltage greater than ± 7 volts if you use a CA3078 as the square-wave generator. For higher output voltages, add more multiplier stages or an op amp such as the 741 that will accept a higher supply voltage.

CMOS Voltage Multiplier. It's easy to build CMOS oscillator circuits that provide a square-wave output. Figure 6 shows one way to connect a voltage doubler to a typical CMOS oscillator comprising a clock followed by a 4013 D flip-flop. The clock is an astable multivibrator made from two of the four NAND gates in a 4011 integrated circuit. The flip-flop is operated as a toggle by feeding the not- \bar{Q} output back to the D input.
Note that only half of each IC is used in this circuit. Because unterminated CMOS inputs can bias the gates into the linear operating region, it is essential to connect all unused inputs to either VDD (the positive supply) or $V_{S S}$ (ground). If your circuitry suddenly stops operating and one of the IC's becomes very hot, chances are you've left one or more inputs floating!

The voltage doubler shown in Fig. 6 works quite well. With the capacitor values given and a power supply of 6 volts, the flip-flop toggles at a frequency of 170 Hz and the doubler generates 11.3 volts.

Don't hesitate to experiment with the CMOS multiplier circuit. You can easily
produce more than 100 volts by powering the CMOS clock with a 12 -volt supply and connecting the flip-flop to a tenstage voltage multiplier like the one shown in Fig. 5. That's more than enough voltage for a neon glow lamp and a 100,000 -ohm series resistor between the positive output terminal of the multiplier and VSS (ground). (Take care-the high voltage can easily zap one or both of the CMOS chips.)

Further Reading. The Motorola "Silicon Rectifier Handbook" (1966) has an excellent chapter on voltage multipliers (Chapter 6). Radio Shack's "Semiconductor Projects, Volume 1" (1975) has a chapter that describes an op-amp pulse generator that powers a ten-stage cascade voltage multiplier. This circuit is capable of producing a 140 -volt output when the op amp is powered by a 35volt supply.

Fig. 5. Performance of op-amp oscillator and ten-stage multiplier.

Fig. 6. CMOS oscillator and voltage doubler.

Product Test Reports

TRAM MODEL D62 AM/SSB MOBILE CB TRANSCEIVER

Rig has fine SSB performance and incorporates quick-release bracket.

THE Tram Model D62 CB transceiver is a 40-channel phase-locked loop (PLL) frequency-synthesized AM/SSB mobile rig. A special feature is an AntiTheft Snap-Brak, an instantaneous quick-release mobile mounting bracket.

Other features include: LED numeric channel display; r-f, audio, and microphone gain controls; switchable automatic noise limiter (anl) and noise blanker(NB) combination; squelch and clarifier controls; SWR indicator; illuminated $\mathrm{S} / \mathrm{r}-\mathrm{f} / \mathrm{SWR}$ meter; transmit-on indicator; automatic level or modulation control (alc or amc); PA facility; external-speaker jacks; detachable dynamic microphone; electronic voltage regulation for critical circuits; AM/LSB/USB mode switch; operation from a nominal 13.8volt negative- or positive-ground dc source; and line filter and reverse-polarity protection.

The transceiver measures $103 / 4^{\prime \prime} \mathrm{D} \times$ $615 / 16^{\prime \prime} \mathrm{W} \times 23 /^{\prime \prime} \mathrm{H}(27.3 \times 17.6 \times 6$ $\mathrm{cm})$. Suggested retail price is $\$ 450$.

Technical Description. The receiver section employs a single-conversion design, with its i-f at 7.8 MHz . AM and SSB selectivity are obtained with a crys-tal-lattice filter. A dual-gate FET r-f input amplifier provides high sensitivity with very good signal-handling capabilities against overloads.

The local heterodyning signal at the mixer is obtained from the PLL's FET voltage-controlled oscillator (the vco), whose output signal frequency is at the high side of the CB signal (CB signal plus 7.8 MHz). There are actually two in-
dividual vco's, one of which is used for AM and USB and the other for LSB. (The frequencies for each channel differ by approximately 3000 Hz so that the signal is in proper relationship to the i-f filter for the related transmission mode.)

Three i-f stages follow the filter, after which either a diode envelope detector and a series-gate anl are provided for AM or a transistorized product detector is used for SSB. The receiver's entire audio system is contained in a single $I C$. The power-output section of this IC doubles as the transmitter AM modulator.

Built into the receiver section is an amplified squelch setup. The noise blanker is arranged so that it is switched in and out simultaneously with the AM anl. The circuit data for the noise blanker was not given; the only indication that one is included is on the schematic diagram, with a note that it is incorporated into a single IC. The noise-blanker system picks up the noise pulses from the r-f amplifier and processes them for disabling the output of the mixer for the duration of each pulse.

The standard reference signal for the PLL system is derived from a $5120-\mathrm{kHz}$ crystal oscillator. The output signal frequency from the vco is also divided to provide the comparison signal. As usual, both signals go to a phase comparator, where an error voltage is generated for correcting the vco's frequency. Red LED displays for the channel numbers are activated by decoder drivers.

On transmit, the $7802.5-\mathrm{kHz}$ bfo signal goes to the balanced modulator for SSB and then to the filter and a balanced mixer, where the difference-mixture with the output of the vco produces the on-channel signal. The AM carrier is similarly generated at this mixer. The remainder of the transmitter's lineup consists of two r-f amplifiers, a driver stage, and a power amplifier operated in class C for AM and linearly for SSB.

On AM, a speech amplifier is inserted
ahead of the IC in the receiver that is used to modulate the transmitter, while on SSB two additional audio preamplifiers feed the balanced modulator. An automatic level control (alc) system is included for both AM and SSB to maintain high modulation without introducing adverse overmodulation.

A multielement output network in the power amplifier stage matches to 50 ohm lines and attenuates spurious responses. This network is also switched in on receive, where it provides improved image rejection and minimizes receiver radiation from the antenna terminals at frequencies above 28 MHz . Radiation from the case in the receiver section is additionally minimized with complete shielding and external-lead bypass capacitors. Antenna switching is performed with a relay, which also initiates other changeover functions.

Laboratory Measurements. On our test bench, the receiver's sensitivity measured $0.5 \mu \mathrm{~V}$ on AM with 30% modulation at 1000 Hz and at least $0.15 \mu \mathrm{~V}$ on SSB for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$. A slight divergence from these figures occurred on different channels. The squelch threshold range was 0.5 to $2500 \mu \mathrm{~V}$. The agc held the audio output to within 10 dB with an $80-\mathrm{dB}$ r-f change at 1 to 10,000 $\mu \mathrm{V}$. The S meter registered S 9 with a nominal $50-\mu \mathrm{V}$ signal, but meter peaking did not exactly coincide with maximum audio output.

The image, i-f, and other unwanted spurious-signal rejection were an unusually good 85,85 , and 75 dB minimum, respectively. On the other hand, a $1-\mu V$ internal "tweet" appeared on SSB when the clarifier control was set to one end of its extremes. Adjacent-channel rejection and desensitization was a minimum of 65 dB . The unwanted-sideband rejection at 1000 Hz was 60 dB .
The $6-\mathrm{dB}$ audio response on AM was 325 to 4000 Hz , while on SSB, it was 700 to 4700 Hz . The maximum sinewave output on receive and PA was 3 watts at the onset of clipping with 1.1% THD at 1000 Hz and 1.7% THD at 400 Hz , both into 8 ohms.
Operating the transceiver from a nominal 13.8 -volt dc power source, the output power of the carrier measured 4.25 to 4.5 watts, depending on the temperature. Tone modulation went to 90% at microphone input levels 16 dB greater than required for 50% modulation. The THD at 1000 Hz was $6 \%(6.5 \%$ at 500 Hz). Adjacent-channel splatter under these conditions was 50 dB down at

1000 Hz and 45 to 50 dB at 2500 Hz . With voice operation at maximum microphone gain, the modulation tended to slightly exceed 100% on both negative and positive peaks. Nevertheless, the splatter was 50 to 60 dB down. The overall $6-\mathrm{dB}$ audio response of the transmitter was 700 to 2800 Hz on AM. It peaked at +3 dB at $1350 \mathrm{~Hz}(600 \mathrm{~Hz}$ was down 10 dB).
On SSB, the output power measured 12 watts PEP, with both tone and voice. A tendency toward flattopping was observed at maximum mike levels. However, third-order distortion products were 28 dB below PEP (22 dB below two equal-level tones). Carrier suppression was 45 dB . On LSB, the unwantedsideband suppression at 1000 Hz was 45 dB , and on USB, it was 50 dB . (While still using a single $1000-\mathrm{Hz}$ tone in the USB mode, a $35-\mathrm{dB}$ down spur appeared at $\pm 3000 \mathrm{~Hz}$. Beyond an 800to $-1200-\mathrm{Hz}$ tone input, these spurs disappeared. In any event, we observed no deterioration in on-the-air signal quality. The overall $6-\mathrm{dB}$ audio response on SSB was nominally 300 to 1350 Hz . The frequency tolerance of the transmitter held to within 0.0015% on all channels
at 65° to $85^{\circ} \mathrm{F}\left(18^{\circ}\right.$ to $\left.29^{\circ} \mathrm{C}\right)$ ambient temperatures.

User Comment. The Anti-Theft Snap-Brak featured with this transceiver does not in itself prevent theft. What it does is allow the transceiver to be quickly and easily removed from its bracket without having to manipulate the usual holding knobs. This permits convenient removal of the rig for hidden storage elsewhere when the vehicle is left unattended, which is still the best insurance against theft. Removal is also simplified with a quick-disconnect plug at the power cable, although the antenna cable still requires unscrewing the connector.

During bench tests with an impulsenoise generator, the noise blanker/anl system performed well with noise pulses up to 100 dB above $1 \mu \mathrm{~V} / \mathrm{MHz}$ bandwidth, except at the $50-\mathrm{dB}$ level, where its effectiveness was reduced. In on-theroad tests, we obtained good NB/anl performance on AM. Here, the audio gain of the receiver diminished to reduce weak signals by 6 to 8 dB . The end result of this was an improved S / N ratio.
The effectiveness in reducing noise pulses was not as noticeable on SSB,
which is inherently less noisy than AM.
On $A M$, the audio receiving quality was full and clear. As can be seen from our SSB response figures, the quality on SSB was somewhat thinner than on AM, apparently due to the high low-frequency cutoff point. However, the resulting crispness produced excellent intelligibility. Adjacent-channel rejection and freedom from overload made reception more interference-free than is usually the case in the presence of properly operated strong signals.

The audio quality on transmit in the AM mode was a bit thinner than usual. On SSB, however, it produced high intelligibility. SSB transmitting quality sounded lower pitched, but still provided excellent readability.

Although occasional overmodulation was experienced on both AM and SSB, no adverse effects were noted during our on-the-air tests.

In sum, this is a fine all-around transceiver. It provides excellent AM performance, while giving the operator all the advantages of SSB communication, a mode of communication to which more and more CB'ers are turning.

CIRCLE NO. 103 ON FREE IMFORMATION GARD

If You're Into Automotive Investment, Here's a Statement About Profit and Loss: Buy The Mark Ten B Electronic Ignition And Sonic Sentry Anti-Theft Alarm Now!

The profitable part about the Mark Ten B capacitive discharge system is that it actually eliminates 3 out of 4 tune-ups and deals with rough idling, slow starting, hesitation during acceleration and poor gas mileageon the spot! To prevent loss, the Sonic Sentry protects your vehicle and contents from theft by literally blowing the horn on anyone who intrudes into the harmless, ultrasonic field it emits throughout the interior of your car, truck, van, camper, bus, boat or airplane. To learn more about these quality, protective accessories from Delta, invest a minute of your time by filling out and mailing the attached coupon today!

DELTA PRODUCTS, INC.
 One Delta Way, Dept. PE

Grand Junction, Colorado 81501/(303) 242-9000
Please send complete information about the Mark Ten B and the Sonic Sentry, together with facts on Delta's full line of dynamite automotive, recreational vehicle, and security products to:

Name

Street Address

City
State Zip

ANNOUNCING A New CREI Program: Minicomputer \& Microprocessor Technology Including A Microprocessor Laboratory

> Now you can learn at home the new technology that is revolutionizing electronics

The microprocessor has ushered in the age of microtechnology and electronics will never again be the same. The microprocessor has made possible the placing of an entire computer on a silicon chip one quarter inch square. The microprocessor "miracle chip" is in the process of changing the world. Soon all technical personnel in electronics will have to understand and work with the microprocessor. It is invading virtually every area of electronics. And it is profoundly affecting your electronics career.

Brand New Program

CREI has a brand new program to help you learn how to work effectively with this revolutionary electronics development. CREI's new program in Minicomputer and Microprocessor Technology is designed to prepare you for this field by giving you the education and practical experience you need.
The program provides solid preparation in electronics engineering technology with a specialization in minicomputers and microprocessors. In addition, it includes a microprocessor laboratory which features a fully programmable microcomputer which utilizes the Motorola 6802 microprocessor chip. This is an extremely important element of your program.

Programming Essential

As you may well know, you must learn how to program the microprocessor in order to design, service or troubleshoot microprocessor electronic systems. There is onty one effective way to learn this all-important skill of programming, and that is by actually doing it. CREI's new program gives you this opportunity as you work with the exciting microprocessor laboratory.

Programming Is Easy

With CREI's new program, learning the skill of programming is simple. Within a few hours you'll be programming the microprocessor and in a short time you'll learn how to program it in three languages: BASIC, assembly and machine languages. In addition, you will learn how to interface the microprocessor with other systems and to test and debug specialized programs.

Preparation at Home

Wide Choice of Programs

Please note, however, that CREI's new program is only one of 16 state-of-theart programs in advanced electronic technology offered by CREI. So even if you choose not to specialize in microprocessor technology. CRFI has an advanced electronics program to meet your needs.

With CREI. you may choose from any of the following areas of specialization in advanced electronics:

Microprocessor Technology
Computer Engineering
Communications Engineering
Digital Communications
Electronic Systems
Automatic Controls
Industrial Electronics
Television Engineering
Microwave Engineering
Cable Television
Radar and Sonar
Nuclear Instrumentation
Satellite Communications
Aeronautical and Navigational
Solid State Theory
Nuclear Engineering

Unique Lab
 Program

An exclusive option available uith CREI programs in electronic engineering technology is CREI's unique Electronic Design I aboratory program. It gives you actual experience in designing practical electronic circuits. It also helps you to understand the theories of advanced electronics and gives you extensive experience in such areas as tests and measurements, breadboarding, prototype construction. circuit operation and behavior. characteristics of electronics components and how to apply integrated circuits. Only CRFI offers this unique L ab Program.

Practical
 Engineering

CREI programs give you a practical engineering knowledge of electronics. That is. each part of your training is planned for your "use on the job." By using your training, you reinforce the learning process. And by demonstrating your increased knowledge to your employer, you may qualify for faster career advancement.

Free Book

There isn't room here to give you all of the facts about career opportunities in advanced electronics and how CRFI prepares you for them. So we invite you to send for our free catalog. This fully illustrated. 56 page book deseribes in detail the programs, equipment and herices of CREI

Qualifications

You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to
($-1 \begin{aligned} & 1 \\ & \square\end{aligned} \begin{aligned} & \text { CAPITOL } \\ & \text { RADIO } \\ & \text { ENGINEERING } \\ & \text { INSTITUTE }\end{aligned}$

GI Bill
CREI programs are approved for training of rete:ans and serviemen mader the G.I. Bill.

[^1]
Amateur Radio

GETTING IT TOGETHER AS A NOVICE

By Karl T. Thurber, Jr., W8FX

0NE BRIGHT summer day in 1954, I found in the mailbox a small rectangular envelope from the FCC containing a Novice Class ham license. Station KN2IKZ was now authorized to go on the air. Receiving the license was a particular thrill for me, then a 12 -year-old SWL. I had failed the Novice code exam on the first try-in those days, exams were given on FCC premises and a passing score was by no means assured.

Once the thrill of actually holding a valid "ham" license had passed, I, like any newly licensed amateur, had to face the serious challenge of getting on the air and making the first contact. A Phil-
more 2-tube, 25 -watt rig using a 6 V 6 crystal oscillator and 5 Y 3 rectifier (remember them?) got KN2IKZ going on 40 meters. Also used were a Hallicrafters S-40B all-wave receiver and a 60 -foot "random wire" antenna. Not exactly a dream station, it did the job for several months until I got my General ticket and a then-modern Johnson Viking II and Hallicrafters SX-96 replaced their more humble predecessors.

The thrill is still experienced by today's newly licensed Novices, but the equipment today is different-and better! With the exception of those who tackle a Heath receiver kit, practically no one builds his or her own receiver any-

"My father built this Schober Organ for me!"

You'd be proud to buy her an organ this good. .. but how would you feel if you'd also built it? It's a special kind of satisfaction. The gift of a lifetime of magnificent music, crafted with your own hands!

And you can do it! You need no prior electronic or mechanical abilities. Just the capacity to follow instructions. Every step is clearly detailed, every component is supplied You'll find the assembly process as enjoyable as the music which follows!

And what music! For this is a truly fine instrument you will build. Far superior to most
'ready-made" organs ...easily comparable to others at twice the price. Kit costs range from $\$ 650$ to $\$ 2850$ for all basic components, and you can purchase it in sections to spread costs out ...or have two-year time payments

When you've completed the basic organ, Schober offers a full complement of accessories...plus complete organ playing courses People have been building Schober Electronic Organs for their daughters, sons, wives, nusbands...for themselves ...for 20 years now. Join the thousands of delighted Schober people.

You can have all the details without cost or obligation. Just send the coupon for the fascinating Schober color catalog (or enclose $\$ 1$ for a record that lets you hear as well as see the quality of Schober). Why not clip it right now, before you forget?

more. The technical sophistication of modern receivers, incorporating such features as frequency synthesis, multiple conversion and i-f filtering, make construction and check-out a very difficult task. Relatively few hams. Novice or otherwise, build their own transmitters, though it certainly can be done by the more enterprising and technically oriented. Transmitter construction, particularly for CW (Morse code) gear, is not as demanding, but is a much greater task than it was in 1954. This is due to the simple fact that unless you're working with a pre-packaged kit, obtaining all the parts needed is now a formidable task. The best bet for most Novices is to buy either ready-made gear or a kit, limiting initial construction projects to various accessories.

In the old days (actually, up to mid-1976, when the FCC raised the Novice power limit and allowed the use of vfo's), most Novices set their sights on a low-power, crystal-controlled ("rock-bound") transmitter such as the

Yoesu's FT-101E runs 180 WCW ($\because 60 W^{+} P E P S S B$) on $160-10$ meters.

Heathkit DX-series $(35,40,60$, etc.) and an SWL-type receiver such as one of the old National, Hallicrafters; or Hammarlund models. The relaxation of the Novice operating restrictions has shed an entirely new light on the situation. Now, those who can afford it initially buy equipment suitable for General and higher-class operation. A compromise route is to purchase as good a receiver as possible, and to keep the first transmitter simple. The idea is to hold on to the receiver for some time but to sell the transmitter upon attaining the General or Advanced Class license, applying the proceeds toward the purchase of a CW/ SSB transmitter or transceiver.

The first-class entry to ham radio, is simply to buy the future station transceiver or transmitter/receiver combination at the outset. There is much to be said for this approach-the more sophisticated gear works very well on CW, usually with full or partial break-in, and is
capable of running from 180 watts to 1000 watts on CW and SSB. These rigs usually cover 80 through 10 meters, with some covering 160 as well. This avoids the problem of disposing of the "starter" station but assumes that the Novice license will be upgraded. The approach represents considerable investment however, and may spur the newcomer to upgrade his license from a financial standpoint. if nothing else!

Transceivers Vs. Separates. Which is better-a transceiver or separate transmitter and receiver? That's not an easy question to answer. Overall price levels are often the same, and no one rig will suit everyone's operating tastes. Amateur transceivers, like their CB counterparts, make efficient use of stages which perform dual receive and transmit-type functions. They tend to be compact and often can be placed in the car for mobile operation, and then taken out for portable use in a motel or vacation retreat. Some of the new solid-state units have built-in 12 -volt dc and 117volt ac power supplies. That means everything is in one package except mike, key. and antenna!

On the negative side, transceivers do have their limitations, so the very bestequipped stations do not normally use them. Without an external vfo, one cannot transmit and receive on different frequencies. Although in most QSO's both hams are on the same frequency, some DX stations will not listen for calls on their own frequency. Instead, they ask stations to call them, for example, " 10 kHz up" or " 10 down" to avoid a pile-up on the DX station's transmitting frequency. The use of an external vfo alleviates this problem, but then we're back to two separate units and added cost. Another problem is that serious CW work is difficult with some transceivers because of exact zero-beating (getting exactly on the other fellow's frequency) problems, lack of full break-in keying, and restricted frequency coverage.

For those willing to put the time and energy into building a transceiver kit, a good bet probably was the Heathkit HW-16 transceiver. Unfortunately, it has been discontinued. The Heath Company does sell the HW-8, a 3-watt QRP (fleapower) package that, notwithstanding Heath's reputation for quality and the success some operators have had working at very low power levels, probably will not do the job on today's supercrowded bands, with many Novices running the full 250 -watt limit. Successfully

Heath MR-1680 SSB/CW receiver Lit covers 80-10 meters.
operating a "QRP station" takes a great deal of skill and clear frequencies. The HW-16 can be found in dealers' used-
equipment showrooms and at hamfests. The same is true for its transmitter counterparts such as the $D \times-35, ~ D X-40$, ard DX-60. There is now a dearth of new low-to-medium power, CW-only rigs suitable for use by the beginner. (Used amateur gear is, incidentally, usually very well maintained and cared for by iss owner and should definitely be considered for purchase.)

On the brighter side, Ten-Tec has introduced its new "Cent!ry 21" CW transceiver. The rig is solid-state and runs 70 watts, has vfo control, covers 80

AUTO BURGLAR ALARM KIT

\#ALR-1WT WIRED \& $\$ 19.95$

60 MHZ COUNTER WITH CABINET \& P.S
 KIT\#PSL-650650 mhz Prescaler (not shown) MODEL\#FC-50WT MODEL \#FC-50/600 WT

60 MHZ COUNTER WIRED. TESTED \& CAL

60 HZ .

Willenable Digital Clock Kits or Clock-Calendar Kils tooperate Kiss 12 V OC
frome Hom 12 DDC
$1 \times 2 \mathrm{PC}$ Board

Complete kir $\mathbf{4}^{95}$ Wir \& Cal $\$ 9.95$

PLEXIGLAS

 (2 5 MA TYP) Easy I wirenookup Accuracy $\pm 2 P P M$ \#TB-1 (Adjuslable)

Great for Clocks orany LED Digital profect Clear-Red Chassis serves as Bezel to increase contrast of cigita! displays

3"H, $6 y_{4}{ }^{\prime \prime}$ W, $5 y_{2}$ "D Black, Whits or CABINET II Clear Cover $\$ 6.50$ ea

 REDORGREYPLEXIGLASFOR DIGITAL BEZELS VARIABLE REGULATED1 AMP POWER SUPPLY KIT - VARIARLE FROM 41010 V
SHOAT CIACUT PROOF
St $:$ SHORT CIRCUTT PROOA
 - cuarent limiting at I am KiT IS COMPLETE INCIUDING ORILLED \& SOLDER Plated FIBERGLASS PC BOARO AND allpaats kless thans. FORMER: KITPPS.O1 SB. 95 TRANSFORMER 24V CT Nili

Fairchild Super Digit

 I Ampal 5 V .

MDEUELED CLALK

95\& ea, $10 / 58.50$
SETOF 6 FND-359 WITHMULTIPLEX PC BOARD $\$ 9.95$ OPTOELECTRONICS, INC.

5821 N.E. 14TH AVE

FORT LAUDERDALE, FLA 33334 PHONE (305) 771-2050 / 771-2051 ORDERSTO USA \& CANADA ADD 5° FOR SH!PPING HANDLING \& INSURANCE. ALL OTHERS ADD 10% ALDITIONAL $\$ 1.00$ CHARGE FLA. RES. ADD 4% TAX

through 10 meters and sports a number of accessories of interest to the Novice or CW buff, including an inexpensive keyer and plug-in crystal calibrator. Price is approximately $\$ 300$, about the most you would want to invest in a CW-only 'starter' transceiver.

As for receivers, there is frankly little available to the Novice who wants to build a kit, but good, ready-made equipment is available from Drake, Collins, Kenwood and Yaesu. However, the Heath HR-1680 solid-state SSB/CW receiver kit is a good one, and at $\$ 200$

Ten-Tec Century/21 Nomicerig.
represents an excellent value. It can provide several years of service before

The Speed Radar Detector with "Performance Plus"' BEARFINDER X-K Two + Two

 ance that is unmatched by any speed radar device on the market.

You'll find it is finely tuned to sense radar in both congested city driving and on open highways.
The BEARFINDER X-K has lots of pluses for you. For example, two independent antennas to seek out X and K band radar, and all other bands in between. Two continual "warning systems"light and sound to alert you to radar's presence. An all new "failsafe" system. The BEARFINDER

X-K easily mounts on your dash and operates through your cigarette lighter. No license is required and you also receive a 90-day limited warranty.

Visit your BEARFINDER distributor today and ask for the finest performing speed radar detector on the market today-the BEARFINDER X-K Two + Two!
Write us for free literature!

most hams will see the need to upgrade. Even then, it could find a place in the shack as an auxiliary receiver. Heath's instructions, in case you don't know, are usually as foolproof as they can possibly be. The kit features no-instrument alignment. four printed circuit boards, an open chassis layout, and a wiring harness to simplify assembly. If you do go the separate receiver/transmitter route, buy the very best receiver you can afford at the outset to avoid having to dispose of a cheaper unit that will probably outgrow its usefulness when a higher-class license is obtained.

Many of the older (but not ancient) good-quality receivers will also be suitable. Among these are the SX-71, SX-76, HQ-180, NC-183D, NC-303, SX-111, HQ-110, SX-190, HA-350, and the HRO series. Unless you're a technical whiz, stay away from World War II surplus receivers-they just won't make it today. Exceptions to this rule are the Collins war-surplus R-390 and 51-J1.

Rapidly becoming a Novice "standard" is the relatively inexpensive ($\$ 340$) Heath HW-101 5-band transceiver which runs 170 watts on CW or 180 on SSB. Because phone provisions are built-in. the rig is perfectly suitable for use after your General ticket has arrived. It features semi-break-in keying. The VOX circuitry is keyed by a built-in CW sidetone which also allows you to monitor the transmitted CW signal. About the only accessories needed to get the HW-101 on the air are an antenna key, ac power supply, and (not absolutely necessary but nice) the 400 -cycle CW accessory crystal filter to separate closely spaced signals. Very similar to the HW-101 but not a kit, is the Tempo One, an import distributed by Henry Radio. It carries many of the features of higher-priced gear, but costs a shade under $\$ 500$. Both can be purchased as used equipment.
R.L. Drake's TR-4CW SSB/CW transceiver is also a good bet for the beginner, and won't be obsoleted once the General license is obtained. Designed especially with the Novice/Technician in mind, it covers 80 through 10 meters with up to 300 watts PEP (peak envelope power) SSB input and 200 watts on CW. That's more than enough power to drive a $2-\mathrm{kW}$ PEP linear amplifier should the occasion arise. Some of the features which make it especially attractive to the Novice are the built-in 500 kHz CW filter, $1-\mathrm{kHz}$ dial calibration, $100-\mathrm{kHz}$ crystal calibrator, wide-range agc and shifted-carrier CW operation.

Incidentally, Drake equipment is essentially tube-type. Tube-type rigs are considered "old-fashioned" by many but are somewhat easier to repair by the nontechnical ham. Available as optional accessories are an external vo for split-frequency work, matching speaker and choice of power supplies (dc or ac).

The Drake Transceiver is in a different price class than the simpler Heath equipment mentioned earlier-the TR4CW without accessories retails at about $\$ 650$. That's quite an investment for a beginner! However, older, used Drake equipment, such as the TR-3 and TR-4 would do a good job for the beginner with a more modest investment. Also. if you're lucky enough to find one in good condition, the venerable Johnson Viking "Ranger" or "Navigator" of late 50 's vintage make beautiful Novice transmitters, having vfo control and medium power levels (75 watts for the Ranger and 40 for the Navigator). E.F. Johnson long ago gave up on the Amateur market, going heavily into $C B$, but its equipment is still occasionally seen at hamfests and in the used equipment sections of dealers' showrooms.

Comparable to the Drake line are the Tempo 2020, the Yaesu FT-101E series and the Kenwood TS-520. All offer "custom" features which must be evaluated in terms of the user's interest in the hobby and his needs. The best bet, of course, is to thoroughly investigate the market (including the used equipment market) before buying anything. Seek advice from local hams and obtain comparative literature from various manufacturers. The period between taking the Novice exam and receiving the license is an excellent time to evaluate specifications, decide on a transceiver vs. receiver/transceiver combination, and actually set up the station in preparation for the big day.

In Closing. No matter what your final decision is as to what equipment will comprise your first ham station, choose carefully and keep the future in mind. A correct first choice can mean the difference between enjoying ham radio and losing interest. Keep in mind that cheap equipment is not necessarily the best value for your dollar. Before plunking down that hard-earned cash, ask a ham who uses the equipment you're considering for his honest opinion of his gear. Finally, visit one of the big hamfests or conventions where the major manufacturers exhibit their wares so you can make side-by-side comparisons.

Get all the newest and latest information on the new McIntosh Sc!id State equipment in the McIntosh catalog. In addition you will receive an FM station directory that covers all of North America.

FM/FM STEREO - AM TUNER AND PREAMPLIFIER

SEND TODAY!

\qquad | CITY STATE \qquad -1

If you are in a hurry for your catalog please send the coupon to McIntosh.
For non rush service send the Reader Service Card to the magazine. CIRCLE NO 35 ON FREE INFORMATION CARD

Fascinated By Home Computers And Video Games?

Creative Computing is the Number 1 applications and software magazine because we offer you ways to get the most out of your computer

We bring you things like data base and file systems. text editing. graphics and animation. artificial intelligence. communications and networks, small business functions. investment analysis, building control and music synthesis. Complete programs. too. with thorough documentations. listings and sample runs

Just getting started? Then turn to our technology tutorials. learning activities short programs and problem-
solving pages. No-nonsense book reviews. too

Buying a system or adding on to one? Then you need Creative Computing's in-depth equipment and software evaluations.

We cover the whole gamut from smart electronic and video games to mini and micro computers. Terminals. floppy disks. displays. softwarethere's something for everyone ir. each issue of Creative Computing.

Can't wait? Use your bankcard and call our toll-free number. 800-631-8112 (In NJ call 201-540-0445)

Greative compatino

COMPUTERS TO AID HANDICAPPED

By Leslie Solomon

LAST MARCH, we attended the second annual West Coast Computer Faire and heard eight papers discussing different ways computer enthusiasts can help handicapped people.

This is ample evidence that making home computers to aid the handicapped is an excellent project for computer clubs. It would certainly be more gratifying than Star Trek or creating more computer games. And modestly priced equipment-voice interfaces modems, controllers, etc--for this purpose is at hand. If you would like to contribute your talents to this much-needed computer-to-human interfacing, contact Computers for the Handicapped, c/o Warren Dunning, 5939 Woodbine Ave., Phila-
delphia, PA 19131. You will find it challenging and exciting.

PET Doings. The PET computer, like many of its predecessors is starting to spawn a "cottage industry" of bus plugin devices.

HUH Electronic Music Productions, BOX 259, Fairfax, CA 9.4930 (Tel: 415-457-7598), is now making several PET add-ons. Among these is the PET-100, that allows the PET to use conventional S-100 boards. This approach uses a cable-connected board that plugs into an S-100 motherboard (that also has a power supply), with the other end of the cable connected to the PET expansion connector. Two versions
are available: mode-1 emulates most S-100 functions except RDY so it has fast memory and no wait states; and mode-2 allows read and write wait states. Kit is \$199.95, assembled it is $\$ 279.95$

Another add-on is PETSQUEAK ($\$ 19.95$) which automatically "beeps" when a file header is found or written, and when a program is loaded or saved. It may also be used as a beeper under program control. PET-TUNE-YA ($\$ 29.95$) is an 8-bit D/A converter that can be used as a music generator or as a DAC for graphics or control. The PET Video Buffer (\$19.95) is a video combiner that allows the use of conventional large-screen video monitors for classroom display.

S-100 Bus Things. It seems like almost every day something new comes along for the ubiquitous S-100 bus, and here is one more

Objective Design Inc., POB 20325, Tallahassee, FL 32304 (Tel: 904-224-5545), has released its Programmable Character Generator board for $\$ 149.95$ kit and $\$ 195$ assembled/tested. This S-100 plug-in works with any of the

A P DIP Jumpers make the connection

- Available with 14, 16, 24 and 40 contacts.
- Mate with standard IC sockets.
- Fully assembled and tested.
- Integral molded-on strain relief.
- Line-by-line probeability.

Faster and Easier is what we're all about.

AP PRODUCTS INCORPORATED
Box 11072 Corwin Drive
Painesville, OH 44077
(216) 354-2101 TWX: 810-425-2250
PROFESSIONAL DISCOUNTS

We're HP's authorized franchise dealer - all accessories are prolessionally discounied
Also SCM, olivetti. Casio. Canon. APF. Sharp. Craig. Sanyo. Record-A-Call. Noreico-Phillips and more. All at great prices!
$\begin{array}{llll}\text { Norelco NT-1 } & \$ 164.00 & \text { Sanyo } 9908 & \mathbf{\$ 2 4 9 . 9 5}\end{array}$ Norelco 186 245.00 Sanyo 8000 A 199.95
WE WILL BEAT OR MEET ANY COMPETITORS' PRICE IF HE HAS MERGHANDISE ON HAND. All URH: shipped in original factory cartons with accessonies according to manutacturers specincatons in Calit catl 213 370 pures are tor cast only Bank meurard Visa \& Master Charge prices difter Send money order Pers ok 12 wks 10 clearl In CA add 6% sales tax Add $\$ 350 \mathrm{~min}$ shipping charges WF SHIP AlP on rpques: Subtect to avalahllty Send mall orders to DEPT EM.

16611 HAWTHORNE BLVD LAWNDALE CA 90260 (213) 370-5795 • (800) 421-0367
CIRCLE NO 55 ON EREE INFORMATION CARD

WAHL CLIPPER CORPORATION

ORIGINATORS OF PRACTICAL CORDLESS SOLDERING - Sterling. Illinois 61081 • (815) 625-6525

- Manufacturing Excellinct siner 1919

Motorola 9×7 matrix character generators such as used in the VDM-1, SOL, Poly VTI, SSM Video Board, etc. To use this new board, the character generator ROM is removed from the existing system, and plugged into a socket on the PCG. The PCG, in turn, is plugged into the now-empty character generator socket. Under software control, data in the 2 K of RAM on the PCG can replace some or all of the characters in the old ROM. Such features as APL characters, special math or scientific symbols, foreign alphabets, italics, or other forms of emphasis, or even music symbols can be created. Programmable characters may be used to create graphics up to 512×256. The PCG achieves its high resolution without external memory or DMA activity.

Breadboarding. Probably the best way to try out a new circuit is to breadboard it, preferably using solderless sockets. This way, you can try all sorts of hardware "tricks" without causing any heat damage. In line with this, AP Products Inc., Box 110, 72 Corwin Drive, Painsville, OH 44077 (Tel: 216-3542102), has released three POWER-ACE Circuit Evaluators said to have twice the component capacity of other solderless breadboards. All three models offer 256 $\times 5$ tie-point terminals, and 16×25 tiepoint busses, fused power supply, and a ground plane.

POWERACE 101 (\$84.95) features a 5 -to- 15 -volt, $600-\mathrm{mA}$ dc supply having excellent characteristics, and a 5%, $0-15$-volt meter. POWERACE 102 (\$114.95) has a fixed 5 -volt, 1 -ampere supply, four slide switches with logic-0 or logic-1 outputs, and two debounced momentary switches delivering positive or negative output pulses. In addition, this model also has four LED's, a debounced pushbutton with positive or negative pulse output, and a clock generator from 1 Hz to 100 kHz output. POWERACE 103 ($\$ 124.95$) is a beefedup version of the 102 , with the addition of a +15 -volt, $250-\mathrm{mA}$ supply, and a $0-15$-volt meter

EPROM Erasure. There have been many articles on programming EPROM's, but erasure has been left up to the user. One way to erase EPROM's is by using the UVS-11E Low-Cost EPROM Erasing Lamp ($\$ 59.50$) from UI-tra-Violet Products Inc., 5100 Wainut Grove Ave., San Gabriel, CA 91778 (Tel: 213-285-3123). It is available from many electronics suppliers and comput-

The first and only lab accuracy portable DMM Kit featuring MOS/LSI ic economy and reliability. Measures DC/AC Volts, Kilohms, DC/ AC milliamps in 21 ranges. Polarity indicators and overload protection are provided, and 0.5 inch LED displays give easiest-to-read digital readout to 1999. The 270 features a basic 0.5% DC accuracy, 10 Meg ohm input impedance, low voltage drop in all current ranges and auto-matically-flashing overrange indicator. Assembled $\$ 109.95$

FREE '78 EICO CATALOG

Check reader service card or send 50% for first class mail. See your local EICO Dealer or call (516) 681-9300, 9:00 a.m.-5:00 p.m. EST. Major credit cards accepted
EICO-108 New South Rd
Hicksville, N.Y. 11801
CIRCLE NO 22 ON FREE INFORMATION CARD

Put Professional Knowledge and a

 COLLEGE DEGREEin your Electronics Career through HOME STUDY DEGREE
by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin E78 .

Grantham College of Engineering
 2000 Stoner Avenue
 P. O. Box 25992
 Los Angeles, CA 90025

Worldwide Career Training thru Home Study

THIS SPEAKER s IMPOSSIBLE.

It would seem impossible to squeeze accurate, full-range sound reproduction out of a speaker only ten inches high. Especially flat response from 70 to $20,000 \mathrm{hz}$. But it's possible with the Speakerlab point One, a two-element stereo speaker with a dome tweeter 6 " butyl-surround woofer and $12 \mathrm{~dB} /$ octave Butterworth crossover network. All snuggled into an enclosure one-tenth of a cubic foot in volume! Perfect for apartments, extension speakers or cars. it's not the only "miniature speaker on the market. But it's the only one that's a $\$ 55$ kit 50 easy to assemble we guarantee you can do it or we'll finish it for you free!

Read more about the Point One and its nine bigger brothers in our 54 -page color catalog. Send for it today and learn how possible the impossible speaker is

Our new Bearcat ${ }^{\circledR}$ 250I

50 synthesized crystalless channels

- User selectable scanning speeds
- Priority channel
- Digital time clock-accurate to seconds - Automatic or user controlled squelch - Search Direction-Search "up" or "down" for quicker return to desired frequencies - Transmission activity counter-tells you how busy each frequency has been
- Search \& Store-Will find and "remember" up to 64 active frequencies for later recall
- Direct channel select-Advance directly to channel without stepping through interim channels
- Non volatile memory-No batteries required to retain memory, even when scanner is unplugged
- Auxiliary-On/Off control of equipment (tape deck, alarms, lights, etc.) when transmissions occur on programmed channels
To reserve your space-age Bearcat ${ }^{\circ} 250$ and receive your order priority number for springsummer delivery, send $\$ 389.00$ plus $\$ 5.00$ for U.S. U.P.S. shipping. Foreign orders invited at slightly higher cost. Visa and Master Charge card holders may call toll free 800-521-4414 to order. Outside the U.S. and Michigan dial 313-994-4441. To order by mail or for a free catalog completely describing the fantastic crystalless Bearcat ${ }^{\star} 250$ write: COMMUNICATIONS ELECTRONICS, Box 1002-Dept. 5. Ann Arbor, Michigan 48106 U.S.A.

er stores. The UVS-11E holds up to four chips in a conductive foam base, and supports the chips at $1^{\prime \prime}$ from the UV lamp. Up to four chips can be erased in 20 minutes. The holding tray absorbs all UV while transmitting visible light. (The UV lamp will not operate unless seated within the holding tray. When the lamp is lifted from the tray, it goes off.)

Cabinets. Its one thing to build a new keyboard, a TVT, or a complete system, but locating a decent cabinet is something else.

If packaging has been a problem. contact Custom Electronics Industries, 609 Route 109. West Babylon, NY 11704 (Tel: 516-884-2121). This firm makes a variety of high-impact plastic enclosures for a variety of computer items. Prices range from $\$ 39.95$ for a TVT cabinet and up depending on size. Cabinets are available painted or unpainted.

New 1/O Port. According to Vector Graphics Inc., 790 Hampshire Rd., A-B, Westlake Village, CA 91361 (Tel: 805-497-6853), its Bit Streamer 1/O S-100 board ($\$ 155$ kit, $\$ 195$ assembled), available through most computer stores, combines two parallel, and one serial I/O port with an 8251 programmable UART. One parallel port can also be used as a keyboard input port. Without changes to the pre-jumpered options, the board can also operate as an RS-232 serial port.

Ham/Computer Terminal. Xitex Corp., POB 20887. Dallas, TX 75220 (Tel: 214-620-2993), is marketing its SCT-100 low-cost S-100 plug-in video terminal. Using the Mostek 3870, the board produces 64 characters and 16 lines of 5×8 dot matrix characters and has a 128 -character set including upper and lower case, numerics, Greek, common symbols, and special graphic symbols. The board can use either ASCII ($110 / 300$ baud) or baudot ($45 / 72$ baud). Full cursor control is provided. Both $20-$ and $60-\mathrm{mA}$ serial loops are provided, as is RS-232. All loops are opto-isolated

Having both ASCII and baudot, the board can be used for ham FSK as well as computer applications. Three versions are available: SCT-100A is assembled and tested for \$185; SCT-100K is a kit for $\$ 155$; and SCT-100P is a partial kit that includes the 3870, character generator ROM, crystal, pc board, and complete documentation at a price of $\$ 85$. The documentation package (SCT-100D) is available for $\$ 3$.

Choose from over 75 of the top-name brands in $\mathrm{Hi}-\mathrm{Fi}$ equipment and accessories, plus the latest in records and tapes - all at incredibly discounted prices!

- VISA - MASTERCHARGE

Toll Free Ordering 1-800-638-3920
We give quotes by Phone

STIEIRED IDNCXDUNITIRS
 6730 Santa Barbara Court - Balto., Md. 21227

6800 High-Speed Cassette Save/ Load Program. Designed for the SWTPC M68 computer and AC-30 cassette interface, WHIZ can save and load programs at $9 \times$ MIKBUG speed, or $3 X$ binary-format

speed, using ordinary cassette recorders. The program has a built-in relocator, and allows the user to specify the start, end and program-start addresses for a dump. When loading, WHIZ will produce an "OK" message and display the last address referenced on tape and the PC start address. Other hardware requirements include a terminal with control-character decoding. WHIZ resides in about 1 k , and is supplied on KC cassette with origin 1000 h , for $\$ 15.95$, or on Smoke Signal Broadcasting BFD-68-format diskette for $\$ 20.95$. Write: Shifting Sands Microcomputer Products Corp., Box 441, Fairborn, OH 45324.

Micro "APL" for 8080. 8k EMPL is a micro APL for 8080 based computers, using ASCII-character adaptations of the APL symbols and operators. EMPL has numeric and character vectors (one-dimensional arrays), user-defined functions, 22 primitive functions, 9 system commands, and many other special operators and characters. Typical operators

THE MKROCOMPUIER MPRT COMPUTER RELALL STORES

CALIFORNIA

Byte Shop \#1
1063 West El Camino Real
Mountain View, California 94040
(415) 969-5464

Rainbow Computing, Inc.
10723 White Oak Avenue
Granada Hills, California 91344
(213) $360 \cdot 2171$

GEORGIA

Datamart, Inc.
3001 North Fulton Drive, NE
Atlanta, Georgia 30305
(404) 266-0336

ILLINOIS

American Microprocessors
Equipment and Supply Corp. At the Chicagoland Airport 20 North Milwaukee Avenue
Half Day, Illinois 60069
(312) 634-0076

INDIANA
Audio Specialists
415 North Michigan Street
South Bend, Indiana 46601
(219) 234-5001

MICHIGAN

The Computer Mart
1800 West 14 Mile Road
Royal Oak, Michigan 48073
(313) 576-0900

United Microsystems Corp.
2601 South State Street
Ann Arbor, Michigan 48104
(313) 668-6806

NEW JERSEY

Computer Mart of New Jersey
501 Route 27
Iselin, New Jersey 08830
(201) 283-0600

NEW YORK

Byte Shop of New York
130 East 40th Street
Corner of Lexington Avenue
New York, New York 10016
(212) 889.4204

Readout Computer Stores
6 Winspear Avenue
Buffalo, New York 14214
(716) 835-7750

PENNSYLVANIA

Personal Computer Corp.
Frazer Mall
Lancaster Avenue and Route 352
Frazer, Pennsylvania 19355
(215) 647-8463

TEXAS
Compushop
13933 North Central Expressway
Dallas, Texas 75243
(214) 234-3412

KA Electronics Sales
1220 Majesty Drive
Dallas, Texas 75247
(214) 634.7870

VIRGINIA

Computer Systems Store
1984 Chain Bridge Road
McLean (Tysons Corner), Va. 22101
(703) 821 -8333

The Computer Hardware Store, Inc.
818 Franklin Street
Alexandria, Virginia 22314
(703) 548.8085

The Computer Workshop of Northern Virginia
5240 Port Royal Road \# 203
Springfield, Virginia 22151
(703) 321-9047
and commands include: logical and arithmetic functions, catenation, string, literal-text, branch, absolute, random, and many others. The program itself resides in the first 5.6 k bytes of memory, but requires a minimum of 8 k total RAM. Double-precision integer arithmetic, with a range of ± 32767 is used. EMPL is available on Tarbell cassette for $\$ 10$ (NJ residents add 5% tax), including user's manual, from Erik T. Mueller, Britten House, Roosevelt, NJ 08555; and from Tarbell Electronics. 20620 S. Leapwood Ave., Suite P, Carson, CA 90746, for $\$ 15$ (California residents add 6% tax). Also available for $\$ 20$ on paper tape, North Star disk, CUTS cassette or MITS cassette from supplier.

6800 Math Package. A math package with 12 -digit accuracy up to the value $549,755,813,887$, and with 11 -digit accuracy for higher values, is available for the SWTPC 6800 computer. Calculations are floatingpoint, with 5-byte mantissas plus 1-byte exponent, a 25% saving in storage over BASIC, with higher accuracy. The package also supports Fortran-type formatting of floating-point and integer specifications in both read and write. The package includes binary-to-ASCII conversion routines. Updates will be sent to all original purchasers for the cost of postage and disk or tape. If the customer supplies his own disk or tape, the charge will be $\$ 1.00$. Cost of the math package is $\$ 107.50$ in Smoke Signal Broadcasting disk, or $\$ 103.00$ on KC-standard, 300-baud cassette. Write: AAA Chicago Computer Center, $30071 / 2 \mathrm{~W}$. Waveland Ave., Chicago, IL 60618, or participating dealers.

6502 Resident Assembler and Editor. The ASM65 resident assembler and Mini-Editor for 6502 systems are designed to work together, and can produce object paper tapes as well as listings. Both are available in KIM or TIM format; addressing for the ASM65 is 1000-1FA6 (TIM) or 20002FBD (KIM); for the mini-editor it's 2600297F and 3600-3997F for the TIM and KIM versions respectively. The ASM65 on hex dump or paper tape is $\$ 13$; the manual is $\$ 5$, and a cross-assembly listing is $\$ 28$. Prices for the Mini-Editor are $\$ 4.00$ for the hex dump or binary paper tape, $\$ 2.50$ for the manual, and $\$ 7.50$ for the listing. All prices are postpaid, first class. A catalog of other programs is $\$ 1.00$. Write: The 6502 Program Exchange, 2920 Moana, Reno, NV 89509.

8080 Multitasking Scheduler. MTS/80 is a real-time multitasking scheduler for Intel SBC 80/10 single-board computers. It features relocatable binary libraries, including I/O drivers and system utilities; source code. and manuals. On MDS-800-compatible floppy discs, MTS/80 is $\$ 995$. If purchased separately, the user's manual is $\$ 25$, and the System Generation Procedure and I/O Driver Implementation Manuals are $\$ 10$ each. Write: Resource Control, 2701 152nd Ave. NE, Redmond, WA 98052.

Don Lancaster's ingenius design provides software controllable options including:

- Scrolling • Full performance cursor
- Over 2K on-screen characters with only 3 MHz bandwidth
- Variety of line/character formats including 16/32, 16/64
.....even 32/64
- User selectable line lengths

TELLME MORE!
() Send instruction manual for the TVT-6 Kit with full operational details. \$1 enclosed.

Name
Address
City \qquad Stat \qquad Zip:

; 49

() send free cataloc
electronics.inc.
DE.PTI 6 P 1020 W. WISHMRE RYO. OKLAHOMA CITY, OK 73116 CIRCLE NO 44 ON FREE INFORMATION CARO

S
SAVE! MONEY - TIME - FREIGHT QUALITY STEREO EQUIPMENT AT LOWEST PRICES YOUR REQUEST FOR QUOTA TION RETURNED SAME DAY FACTORY SEALED CARTONSCUARANTEED AND INSURED

SAVE ON NAME BRANDS LIKE

PIONEER	SANSUI
KENWOOD	DYNACO
SHURE	SONY
MARANTZ	KOSS

AND MORE THAN 50 OTHERS buy the modern way BY MAIL - FROM

12 East Delaware Chicago, Illinois 60611 312.664.0020 CIRCLE NO 30 ON freE information card

rintion

Radio Shack: No. 1 Parts Place Buy Offthe-Sheff! Low Prices! Huge Selection!

Top-quality devices, fully functional, carefully inspected. Guaranteed to turer's quality control procedures. These are not rejects, not fallouts, not meet all specifications, both electrically and mechanically. All are made seconds. In fact, there are none better on the market! Always count on by well-known American manufacturers, and all have to pass manufac- Radio Shack for the finest quality electronic parts.

Linear ICs		
By National Semiconductor and Motorola - first quality		
Type	Cat. No.	ONLY
301 CN	${ }^{276-017}$	494
324 N	276.1711	1.49
${ }_{386 \mathrm{CN}}^{339 \mathrm{~N}}$	276.1712 276.1731	1.49 99
${ }_{555 C N}$	276-1723	799
${ }_{556 C N}$	276-1728	1.39
566 CN	276-1724	1.69
567 CN	276-1721	1.99
${ }^{723 C N}$	276.1740	69%
${ }_{74} 1 \mathrm{CN}$	276-007	494
741 H	276-010	49 c
3900 N	276.1713	994
3309 N	276.1705	999
3919 N	276.1706	1.99
4558 CN	276-038	796
75491	276.1701	999
${ }_{7805}^{75492}$	276.1702 $276-1770$	996
7812	276-1771	1.29 1.29
7815	276-1772	1.29

Computer Chips

Prime Devices
8080A Microprocessor. 8-bit. NMOS 276-2510 Reg. 1795

Sale 12.95
276-2501
2.49 Ea. or $8 / 14.95$

REGULARLY \$1.95. Archer ${ }^{\text {(1) }}$ Semiconductor Reference and Application Handbook. Complete specs and application data on every Archer semiconductor - display devices, too! 46,000 cross-reference/substitution listings plus glossary of words, symbols, abbreviations. 276.4002 ... With Any \$5 Parts Purchase, Only 99 e

Offer good at participating Radio Shack stores and dealers

Trim Multi-Purpose Cabinets

+ SALE
© Compact. Makes even your small projects look professional 6x9×4/6. 270-281
(8) Low-Profile. Slim-design - only $57 / 8 \times 11^{3 / 8} \times 3^{1 / 2} 2$

270-282. Reg. 14.95 Sale 12.95

Digits	Size	Drive	Cat. No.	Reg.	SALE	Digits	Size	Drive	Cat ${ }^{\text {No }}$	Reg	SALE
	06^{-}		276-056	2.99	2.29	-1	03°	Anod	276-1210	46.99	4.5 .49
	$0.6{ }^{\text {c }}$	Cath.	276.066	2.99	2.29	${ }^{-1}$	0.3 "	Cath	276-1211	4699	4/5.49
- ${ }_{4}^{1}$	${ }^{0}{ }^{3}$	${ }_{\text {Anod }}$	276.053 $276-062$	1.99 199	1.49 1.49	${ }^{15} 4$	05 05	Anod	276-1201 276. 202	6.95 6.95	5.99 5.99

IC Accessories

(0) DIP Switch. For changing preset ogic states. 275-1301 [E Right-Angle 16-Pin Socket 276-1985

Just add switches and install! 12-hour readout. $0.3^{\prime \prime}$ digits, $+0.5 \mathrm{sec} /$ day accuracy 12 VDC . 277-1003. Reg. 24.95

Archer ${ }^{\oplus}$ Project-Boards - Predrilled PCB's

NEW

5V. 3-Amp Power Supply. Metered output current. foldback limiting. Remote sensing.

277-119 (PCB less parts)
ended Parts and Cases

(1 1-Amp, 50 PIV. Mini DIP fits PCB or 8 and 14 -pin sockets 276-1161 leads. heat sink mtg hole 276-1180	Mike Elements Dynamic. Tiny yet delivers $80-10,000 \mathrm{~Hz}$ response -65 dB 200 ohms ${ }^{3 / 4 x^{7 / 8}}{ }^{6}$. 270-093 sponse $-55 \mathrm{~dB} .1 \mathrm{k} \times 11 / \mathrm{m}^{\prime \prime}$ 270-095		35VDC Electrolytic Pak Package of 10 with two of each value 4.7.10. 25. 50 and $100 \mu \mathrm{~F}$. PC mounting. 272-1035 2.99

WHY WAIT FOR MAIL ORDER DELIVERY?

 IN STOCK NOW AT OUR STORE NEAR YOU!

Intersil 3½ DIGIT PANEL METER LCD or LED KITS

BUILD A WORKING DPM IN $1 / 2$ HOUR WITH THESE COMPLETE EVALUATION KITS Test these new parts for yourself with Intersit's low cost
prototypang kits complete with A/D converter and LCD display (for the 7106) or LED display (for the 7107) Kits provide a ICL7106EV (LCD) $\$ 29.95$ ICL7107 (LED) $\$ 24.9$

MS-15 MINISCOPE $\$ 289.00$

41.140	CARRYING CASE	30.00
$41-141$	10 TO 1 PROBE	24.50

EVK99	\$133.00
EVK100.	269.95
EVK200.	449.95
EVK300 (pictured)	699.00

Soft Touch TONE DIAL

- Solid Slate elelabilic:

Utilie 'ar orene signdling alio.
Unscrew the mou thpere on your relephone

Serew on tive
ready to se se it
Cones in Six colors--Black. Ton, Reft, Gireen,

AANCRONA Send Check or Money Order to
P.O. Box 2208P. Culver City. Calit 90230. Calif residents add 6% sales tax. Minimum Order $\$ 10.00$. ADD $\$ 1.00$ to Bankamericard welcomed linclude your card number and exp. datel.TELEPHONE ORDERS: California customers (213) 641.4064

Out of State Toll Free 800-421-6813

VISIT ONE OF OUR STORES TODAY	CALIFORNIA ANCRONA 1054 E El Camino Aeal Sunnyuale, CA 94087	CANADA.B.C ANCRONA
CALIFOANIA ANCRONA 11080 Jetterson Biva Culver City.CA 90230 (213) 390-3595	CALIFORNIA ANCRONA 1300 E Edinget Ave Santa Ana, Ca 92705 (714) 547-8424	ARIZONA ANCRONA 4518 E. Broaroway Tucson AZ 85711 (602) $881-2348$
OREGON ANCAONA 1125 N E 82nd Ave Portland, OR 97220 (503) 254-554 1	GEORGIA ANCRONA 3330 Fiedmont Rd NE Allanta GA 30305 104) 2517100	TEXAS ANCRONA 2649 Fichmond Housion. TX 77098 (713) 529.3489

MORE THAN 20,000 DIFFERENT COMPONENTS

$\mathbf{7 4 0 0}$					
7400	.18	7442	1.08	74107	.49
7401	.29	7448	1.15	74121	.55
7402	.21	7450	.26	74122	.49
7404	.21	7451	.27	74123	.05
7405	.24	7453	.27	74125	.60
7407	.45	7454	.41	74126	.81
7408	.25	7460	.22	74132	3.00
7409	.25	7472	.39	74141	1.15
7410	.20	7473	.45	74150	1.10
7411	.30	7474	.45	74151	1.25
7413	.85	7475	.80	74153	1.35
7416	.43	7482	.75	74154	.54
7417	.43	7483	1.15	74157	1.30
7420	.21	7485	1.12	74161	1.45
7422	1.50	74966	.45	74164	1.65
7425	.43	7489	2.49	74165	1.65
7427	.37	7490	.69	74166	1.70
7428	.35	7491	1.20	74174	1.95
7430	.26	7492	.82	74175	1.95
7432	.31	7493	.82	74180	1.05
7437	.47	7494	.91	74181	3.55
7438	.40	7495	.91	74191	1.50
7440	.21	7496	.91	74195	1.00
7441	1.10	74100	1.25	74197	1.00

\section*{74L SERIES TTL} | $74 L 00$ | .33 | $74 L S O 4$ | .45 | $74 L S 113$ | .98 |
| :--- | ---: | :--- | :--- | :--- | :--- |
| $74 L 10$ | .33 | $74 L S 10$ | .39 | $74 L S 138$ | 1.89 |
| $74 L 30$ | .33 | $74 L S 20$ | .39 | $74 L S 174$ | 2.50 |
| $74 L 42$ | 1.50 | $74 L S 51$ | .39 | $74 L S 386$ | 5.50 |
| $74 L 86$ | .69 | $74 L S 74$ | .65 | $74 S 153$ | 2.25 |
| $74 L S 00$ | .39 | $74 L S 112.65$ | $74 S 387$ | 1.95 | |
| $74 H 100$ | | | | | THL |
| $74 H 00$ | .33 | $74 H 11$ | .33 | $74 H 53$ | .39 |
| $74 H 01$ | .33 | $74 H 20$ | .33 | $74 H 55$ | .39 |
| $74 H 04$ | .33 | $74 H 21$ | .33 | $74 H 73$ | .59 |
| $74 H 05$ | .35 | $74 H 30$ | .33 | $74 H 74$ | .59 |
| $74 H 10$ | .33 | $74 H 40$ | .33 | $74 H 76$ | .65 |

MOTOROLA

MC663P	2.50	MC1460	3.95
MC666P	1.60	MC1469R	2.50
MC670P	1.60	MC1489	4.60
MC679P	2.50	MC1496	1.65
MC725P	1.50	MC1510G	8.00
MC789P	1.50	MC1514L	4.50
MC790P	1.50	- MC1595L	6.25
MC817P	1.30	MC1723CL	3.60
MC836P	1.35	MC1741CG	1.20
MC844	1.25	MC1810P	1.25
MC853P	2.25	MC3004L	2.25
MC876P	2.25	MC3007P	2.25
MC1004L	1.25	MC3021L	2.15
MC1010	1.25	MC3060L	2.65
MC1305	1.95	MC3062L	3.00
MC1352P	1.55	MC4024P	2.20
MC1357	1.70	MC4044P	4.80
MC1371	1.85	MC14507CP	1.25
MC1439	2.65	MC14511CP	2.76
MC1458P	. 50	MC14512CP	1.70

754508P 75451 BP 75452BP 754538P 75454BP 75491 BP 75492BP CA3005 CA3006 CA3018 CA3018A CA3026 CA3046

LINEAR

.49
.39
.39
.39
.79
.85
1.60
3.50
1.10
1.60
1.50
.35
IC's

LM301H LM 307 H LM

BBD BUCKET BRIGADE DEVICE
MM3001 19.50 MN3002 11.70 MM3003 9.45
$\begin{array}{llll}\text { HALL IC:DN834 } & 1.25 & \text { DN837 } & 1.50\end{array}$ DN835 1.35 DN838(NEW)

ZENER DIODES

1/2 Watt, $\pm 10 \%$......... $\$.30$ each to 33 V 1 Watt, $\pm 10 \%$ $\$.30$ each to 33 V
$\$.40$ each to 33 V Voltages to 200 V , and $\pm 5 \%$ Available 1 Megohm Potentiometer - Made by Clarostat. $1 /{ }^{\mathrm{B}}$ " diam., split, knurled shaft $1 / 2 \mathrm{l}$ " long. NT544 \$.39 Three for \$1.00

5400 SERIES

5400	1.00	5475	1.50
5444	1.25	5486	1.90
5410	1.00	5493	2.00
5446	1.25	54100	1.80
5473	1.50	541504	1.00

RESISTORS

1/4 Watl $\pm 5 \%$ Packed 5 of any | one value |
| :--- |
| $1 / 2$ Watt $\pm 5 \%$ Packed 5 of $\$ 25$ | One value

STANDARD RESISTANCE VALUES

NEW FROM NEWTONE

Regulated Power Supply Components Kit - Contains the components needed to build a fixed-voltage regulated supply including: $117 / 17 \mathrm{~V}-1$ ampere Transformer, Bridge Rectifier, 2000 uF Capacitor, and a 1 ampere LM340 3-terminal IC Regulator. Makes a fine "on board" supply or use it for breadboarding. Components only. Specify $5,6,8,12$ or 15 volts.

NT525 \$4.99
Pioneer 6" Speaker • $71 / 2$-watt, 3.2-ohm speaker made the way speakers should be made. Has heavy-duty treated paper cone, protected magnet housing, and a ceramic terminal strip marked with polarity. A beautiful speaker at half the price you'd expect. NT526 $\$ 2.39$ Three for $\$ 6.00$ PC Boards - MIL grade, $1 / 1{ }^{\prime}$ ' glass-epoxy boards with 2ounce copper on one side.
NT521 6"x3" \$.50, NT522 6"x6" \$.90' NT523 6"x8" \$1.20 Dry Transfer Pattems for PC Boards - Includes 0.1" spaced IC pads, donuts, angles, and 3-and 4-connector pads. Over 225 patterns on a $2^{\prime \prime} \times 71^{\prime \prime}$ " sheet. NT520 $\$ 1.49$ 3PDT - 24 Vold DC Relay - Potter \& Bromfield KU14D57. Each contact can handle 10 amperes at voltages to 240 Vac . Coil resistance is 450 ohms. A super buy! Limited quantities. NT508 \$. 99

$5^{\prime \prime}$ Taut-Band Meter . One milliampere full scale, $31 / 2^{\prime \prime}$,

 scale length. Coil resistance 465° ohms. Made by Modutec for Bose. Meter scale in VUs $(-20$ to +3). Meter is designed to be mounted coil up. Complete with "smoke" plastic cover. Over-all $51 / 8^{\prime \prime} \times 4^{\prime \prime}$. Meter face mounts in a $5 \frac{1}{8}$ " $\times 23 /{ }^{3 \prime}$ " cutout: A beautiful meter. \quad NT539 $\$ 4.89$ Aluminum Knob - Solid machined aluminum knob with fluted sides made for Bose. Black front-face insert, black pointer line. Fits flat $1 / 4$ " shaft, does not require set screws. .8 high, .7 diam. Easily worth $\$ 1.50 \quad$ NT540 $\$.822$ for $\$ 1.50$
MINIMUM ORDER $\$ 5.00$

Canada $\$ 1.50$
N.I. Residents add 5% soles tox

ELECTROLYTIC CAPACITORS					
2.2MF50	Axial Leads	. 15	30MF25	Axial Leads	
3.3MF10	Axial Leads	. 15	47MF25	Radial Leads	19
3.3MF10	No Polarity	. 15	47MF50	Radial Leads	. 24
10 MF 25	Axial Leads	. 15	100 MF 16	Radial Leads	. 19
10MF50	Axial Leads	16	100MF25	Radial Leads	. 24
10MF150	Axial Leads	. 20	$500 \mathrm{MF50}$	Axial Leads	60
25MF35	Axial Leads	. 18	1000MF35	Axial Leads	. 65
MICROPROCESSOR					
C1702A	9.95		34.95	8008	19.95
2101		01-3	4.50	8080A	19.95
Contact us for all y yur microprocessor need					

RECTIFIERS

	10	100
	For	For
1N4001	.60	5.00
1N4002	.70	6.00
1N4003	.80	7.00
1N4004	.90	8.00
1N4005	1.00	9.00
1N4006	1.10	10.00
1N4007	1.20	11.00

HARDWARE - SOCKETS
Nylon Screws, Nuts and Rivets - 50 piece assortment $\$ 1.99$ MK 20 TO- 3 Mounting Kit TO-3, TO-66 or TO-220 C Socket or TO-220 IC Socket

10 sets for $\$.99$ ets for $\$.99$
$\$.25$ each $\$.25$ each
$\$.27$ each $\$.32$ each

We have been informed by the Bose Corporation that the original BOSE $301^{T M}$ speaker system has not been discontinued as we stated in our previous ad. The BOSE 301 is available through Bose dealers.
We still have a small quantity of speakers originally made for Bose. The woofers have been tested with the Bose "Tone Standard" as a reference and subjected to the Bose power-handling test which includes both fixed and sweep-frequency testing.
8-Inch Woofer (Bose Part No. 102606) has a freeair resonant frequency of $25-35 \mathrm{~Hz}$., and has a 1.5', 8.5-ounce magnet. The upper tested-frequency is 4000 Hz .
3-Inch Tweeter (Bose Part No. 107376) has a free-air resonant frequency of $1200-1500 \mathrm{~Hz}$., and has an upper tested-frequency of 16.5 kHz . Supplies are limited. We urge you to take advantage of these prices and stock up for your future needs.
Sorry, we have no information about the Bose enclosures or the crossover networks, nor do we have more specs. Bose says these data are proprietary information.
8"' Woofer NT541 $\$ 10.95$
3'' Tweeter NT542 \$ 3.95

POPULAR JEDEC TYPES

POLY PAKS' PENNY REVOLUTION THESE ONE-CENTERS ARE THE CENT-CIBLE WAY TO SHOP AND SAVE! buy one at sale price, 2ND FOR ONLY

THIS NEW LIST OF "ONE-CENTERS" HELPS FIGHT INFLATION!

YOU GET 120-DAY MONEY BACK GUARANTEE

- ${ }^{10}$ AMP PDOWERTABS: THITS:

QIVADIRAd

HI-POWER STUD RECTIFIERS

 .60

LIEIDS:

ZENERS! order by cat No. 6ES210 A voltage \& wattage!

- IDIP SWITTHECN
POP-AMPS AT "CENT-CIBLE" PRICES
 IC SOCKETS:

FOR ALL CUSTOMERS EXCEPT CALIF.
CALL TOLL FREE 800-421.5809

$\begin{aligned} & 21 \mathrm{~L} 02 \\ & \text { Static }(450 \mathrm{~ns}) \\ & 100 \text { @ } \$ 1.10 \text { ea. } \end{aligned}$	$\begin{array}{ll} 1702 \mathrm{~A} \\ \text { E—PROM } & \\ 8 @ \$ 3.75 & \mathrm{ea} . \end{array}$	6502 Microprocessor 5 @ \$11.00 ea.	$\begin{aligned} & 2708 \text { (450 ns) } \\ & \text { E-PROM } \\ & 8 \text { @ } \$ 11.00 \\ & \text { ea. } \end{aligned}$	$\begin{aligned} & 21 \mathrm{~L} 02(250 \mathrm{~ns}) \\ & \text { Static Rams } \\ & 100 @ \$ 1.36 \\ & \hline \end{aligned}$	Z-80A Microprocessor 5 @ \$25.00 ea.	$\begin{aligned} & 8212 \\ & 8 \text { Bit } 1 / 0 \text { Port } \\ & 25 @ \$ 3.00 \text { ea. } \end{aligned}$	$\begin{aligned} & 4116 \text { (200ns) } \\ & 16 \mathrm{~K} \text { Dyn. Ram } \\ & 16 @ \$ 24.00 \text { ea. } \end{aligned}$
$\angle-\phi u$ Microprocessor 5 @ $\$ 20.00$ ea.	$8224-4$ CIk.Gen.\&Dvr. 25 @ $\$ 8.75 \mathrm{ea}$.	$410 \mathrm{D}(200 \mathrm{~ns})$ $S t a t i c$ $100 @ \$ 8.75 \mathrm{ea}$.	4096 Dynamic Ram 100 @ $\$ 3.50 \mathrm{ea}$	$\begin{aligned} & 4200 \mathrm{~A}(200 \mathrm{~ns}) \\ & \text { Static Rams } \\ & 25 @ \$ 10.00 \text { ea. } \end{aligned}$	$\begin{array}{ll} \hline 74 \text { LS367 } & \\ \text { Hex Buffer } & \\ 100 \text { @ } .70 \phi & \text { ea. } \end{array}$	$74 \text { LS368 }$ Hex Inverter $100 @ .70 \nless \mathrm{ea}$.	2513 (5v) Character Gen. $5 @ \$ 9.00 \mathrm{ea}$.

MICROCOMPUTER COMPONENTS

microprocessor's	
${ }_{280}$	${ }_{12}^{16.95}$
	28.00
2650020	20.95
AM2901	22.95
(6800	18.95 25.08
8008.	9.95
${ }_{8080} 8$	1195
${ }_{\text {TM }}{ }^{80859900 ~ T L ~}$	27.08 75.00
8080A SUPPORT DEVICES	
8212 8214 820	3.50 9.00
8216 8224	3.75
- 82224.4	9.95
${ }^{8238}$. 5
8251	9.95
885	${ }^{211.95}$
825'	21.95
	2150
${ }_{8219}^{827}$	25.00

1718	
17118.01	55.95
57.95	

AYS-360 PROM'S

280 SUPPORT DEVICES | 3881 |
| :---: |
| 3882 |
| 18 | STATIC RAMS

 Character generators

Waveform generator | 8038 | |
| :--- | :--- |
| 804024 | 3.50 |
| 566 | |
| 564 | |
| | 1.50 |

DYNAMC RAMS
$4160 / 411$

103
2004

$\$ 2350$

A 5.1013 A
AY 5
1014 A

TR15028
TM5011

1946020
1 M6403
baft board $\$ 30.00$

E-PROM BOARDS

MOTHER BOARD's - S 100 Style 13 siot - w/tront panel slot BARE BOARD $\$ 3500$ KIT $\$ 95.00$

THE PROM SETTER

WRIte \& READ
EPROM
${ }^{1702 A}{ }_{5204}^{2708} \quad 2716$
\qquad
\qquad

$\begin{aligned} & \text { KIM-1 } \\ & \text { ASSEMBLED \& TESTED } \$ 245.00 \end{aligned}$
MEMORY PLUS for KIM-1 8K RAM (21L02) 8 K EPROM ASSEMBLED \& TESTED $\$ 245.00$

7400 TTL Series
1978 CATALOG NOW AVAILABLE

MCROPROCESSOR CRYSTALS			
FAEQUEMCY	price	FREQUENCY	price
1.0 MHI$18432 \mathrm{MHZ}_{2}$2.0 MHz$2.0971 \mathrm{SZ} \mathrm{MH}_{\mathrm{I}}$	5.95	$\begin{aligned} & 50 \mathrm{MHz} \\ & 50688 \mathrm{MHz} \end{aligned}$	4.95
	9.80		4.95
	$\begin{aligned} & 5.95 \\ & 8.50 \end{aligned}$		
		$\begin{aligned} & 5185 \mathrm{MHI}_{2} \\ & 57143 \mathrm{MHz} \end{aligned}$	495
			4.954.95
$2.4576 \mathrm{MH}_{2}$	8.50		
$2.667 \mathrm{MH}_{2}$	8.50	$\begin{aligned} & 6.144 \mathrm{MHZ} \\ & 640 \mathrm{MHz} \\ & 65536 \mathrm{MHZ} \end{aligned}$	$\begin{aligned} & 4.95 \\ & 495 \\ & 495 \end{aligned}$
300 MHz	8.50		
320 MHz	8.50	80 MHz100 MHz1800 MHz18432 MHz	$\begin{aligned} & 4.95 \\ & 4.95 \\ & 4.95 \\ & 4.95 \\ & \hline \end{aligned}$
32768 MHz	8.50		
3579545 MHz	1.25		
40 MHz	4.95		
40 MHz	4.95	200 MHz221184 MHz770 MHz$760 \mathrm{MH/}$480 MH :	4.954.954.95495495
4194304 MHz	4.95		
$491520 \mathrm{MHz}^{\text {c }}$	4.95		
FOR PROCESSOR TECH			
14.318			

MM16 EP - Ullizing up 10162708 EPROM - S. 100 Bus Computer Syslems - Memory capacily ol 8 K or 16 K - 8K Doundary addressing Dy DI - Oto 4 wat cycles Dy DIP Switc - Data output address input line - Epoxy solder masked	OM Mes of op $\$ 99.00$ fully buffered -thru moles
	F hetror SLIT-N-WRAP WIRE WRAP YOOL - Slits and opens insulation exposing Dare wire - No pre-curting or pre-stipping - Comes complele win rao 100 tispoois - 28 AWG wie
$\sqrt{(4 / 1 / \%}$ Plugboards 8800 V	
	Universal Microcomputerl processor plugboara use with Fto bus complete wh heal sink os hatowaro $53 \times 10 \times 1,16$ $\$ 19.95$

EDGE CONNECTORS

CIRCLE NO 63 on free information caro

\square integhated electronics
 5100 El Camino Real, Los Altos, CA 94022. (415) 969-7827

$\begin{aligned} & 74 \mathrm{LSOO} \\ & 74 \mathrm{LSO} 1 \end{aligned}$	
	74LSO2
	74LS03
	74LS04
	74LS05
	74LSO8
	74LS09
	74LS10
	74LS11
	74LS12
	74 LS13
	74LS14
	74LS15
	74LS20
	74LS21
	74LS22
	74LS26
	74LS27
	74LS28
	74LS30
	74LS32
	74 LS33
	74LS37
	74LS38
	74LSAO
	74LS42
	74 LS47
	$74 \mathrm{LS48}$
	74 LS49
	74LS51
	74LS54
	74LS55
	74

21 L02 - Guaranteed prime $\$ 1.50,10$ up ± 3 digit A/D LD $130 \quad \$ 6.50$

Minimum order $\$ 5.00$ US currency. Check or money order only Add 5\% to cover shipping and handling charges. Calif, residents add 6% sales tax. Santa Clara Co. residents add 6.5% sates tax

ABOUT YOUR SUBSCRIPTION

Your subscription to Popular ELECTRONICS is maintained on one of the world's most modern, efficient computer systems, and if you're like 99% of our subscribers, you'll never have any reason to complain about your subscription service.

We have found that when complaints do arise, the majority of them occur because people have written their names or addresses differently at different times. For example, if your subscription were listed under "William Jones, Cedar Lane, Middetown, Arizona," and you were to renew it as "Bill Jones, Cedar Lane, Middletown, Arizona," our computer would think that two separate subscriptions were involved, and it would start sending you two copies of Popular Electronics each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as 100 2nd St.

So, please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine-or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more
quickly.

EDI introduces

NEC

NEC America, Inc.
NEC QUALITY ASSURANCE - HIGHEST STANDARDS IN THE WORLD As one of the warld's largest electronics manuacturers. NEC has
developed a qualty control organization with quality assurance tests developed a quality control organ
and procedures second to none
and procedures second to none
Listed are the NEC Product Serles stocked by EDI. also a few ex amples of the exceptional values we can otter A larger listing is amples of on request
dvalabie on request
integrated Circuits - TTL Family CMOS uPD400C Series Linea IC's. ECI 10 K Series. Optoelectronic Devices. Zener Diodes $1 / 2$ and Watt Series. Solid Tantalum Capacitors. Fluorescent Indicator Panels

LINEAR IC PRODUCTS

- High Reliability Industrial linear Circuits

NEC	Voltage	National	$\begin{gathered} \text { Assorted } \\ 1-9 \end{gathered}$	$\begin{gathered} \text { Assortad } \\ 10-49 \end{gathered}$	$\begin{aligned} & \text { Assorted } \\ & 50.99 \end{aligned}$
UPC14305H*	5	LM340T-5	1.17	95	86
$4 \mathrm{PC} 14308 \mathrm{H}^{*}$	8	LM340T-8	1.17	95	86
UPC 14312H**	12	LM340T-12	1.17	95	86
UPC14315H	15	LM340T-15	1.17	95	86
UPC6030 ${ }^{\circ}$ - Precision			10.00	8.05	7.38

- Pin Connection and Electrical Characteristics are completely compatible to original manulacturers | Operaling temp. range for metal can and Cer DIP $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ |
| :--- |
| for plastra molded DIP |
| $-20^{\circ} \mathrm{C}$ |

$$
\text { - Commercial Linear Circuits (Topt }=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \text {) }
$$

NEC National

NEC	National
UPC741C	LM74iCN

UPC741C LM741CN
UPC301C
UPC301С
UPC1458C
UPC1458C
UPC324C
UPC324C
UPC311C
UPC311C
UPC339C
UPC339C
UPC305C
(M376

VOICE ACTIVATED SOLID STATE SWTTCH

- Opens Wh When Activated tarily Disconnected

sas . 88

SOLID-TANTALUM CAPACITORS Epoxy Dipped Solid Electrolyte					
Part No.	Capacitanc (4120 Hz (UF)	1-9	$\begin{gathered} \text { Assorted } \\ 10.99 \end{gathered}$	Assorted $100-999$	$\begin{gathered} \text { Assorted } \\ 1000 \end{gathered}$
35 VOLt rating					
NDA104K35S	0.1	. 26	22	174	138
NDA154K35S	0.15	. 26	22	174	138
NDA224K35s	0.22	26	22	174	138
NDA334K35S	0.33	. 26	22	174	. 138
NDA474K35S	0.47	. 26	22	174	138
NDA684k35S	0.68	. 26	22	174	138
NDA105K35S	1.0	. 26	22	174	138
NDB155K35S	1.5	. 30	25	200	. 159
NDC225K35S	2.2	. 33	28	220	175
NDD335k35S	33	. 33	28	220	175
NDE475K35S	4.7	. 36	. 30	240	191
NDF685K35S	6.8	39	. 33	260	206
NDG106k35S	10	48	40	32	254

MINIATURE PHOTO FLASH CAPACITOR

600 MFD. 360 Voits
Size: 11.
$0 i a l$
1222.89 3250

1½-3 VOLT ADJUSTABLE DC SIGNAL HORN
${ }^{\text {N34 }} .35$ $3 / 1.00$

SUPER GLUE
(EPOXY-A Drop Will Hold Tons) Permanently Welds
Permanently welds: AliMetals - Masonry

- Porcelains
Ceramics
Glass
Fiberglass

China
Resists Heat, Cold, and Fungus Easy to use, Dries Almost Clea K. 14 Reg. 2.03
sесани .99
INTRUDER/FIRE ALARM CONTROL MODULE
29.99 Value

- 12 Volt AC, 60 Cycles, 12 Volt DC Lite Act. - Test D/Act. Act. Term Burglar NC Circuit
NC Circuit
Horn Circuit
N -250 Special
8^{88}
NEW 5DEP1 5'' ROUND FLAT FACE OSCILLOSCOPE TUBE

N

OUR BEST SELLER:
 ECONORAM II ${ }^{\text {m }}$

S-100 compatible $8 \mathrm{~K} \times 8$ in \Rightarrow cost-effective package. All lines buflered, fast. low power, unique configuration as two 4K blocks, handles DMA. and many other features . . packed on a high quality
board and using high quality parts (all sockets in board and using high quality
cluded). Iotally static design.
See the $1 / 78$ issue of Kilobaud for an in depth evaluation, or send SASE to "KB Reprint" and we'll selld you a copy ... or better yet, talk to somebody who owns one.
Kit: $\$ 135.00$; 3 kits: $\mathbf{\$ 3 7 5 . 0 0}$;
Assembled: $\mathbf{\$ 1 5 5 . 0 0}$

H8 COMPATIBLE ECONORAM VI ${ }^{\text {m/ }}$ KIT

$12 \mathrm{~K} \times 8$ for the H8, with the same features that have made Econoram the name in $\mathrm{S}-100$ buss memory. Static design. buffering, plus alt sockets and
bypass caps ate already soldered in place so you can bypass caps ate already soldered in place
get right into the best part of kit building. get right ints the best
Kit form: $\mathbf{\$ 2 3 5 . 0 0}$

NEW!
16K ECONORAM IV ${ }^{\text {™ }}$ KIT
S. 100 compatible $16 \mathrm{~K} \times 8$ memory. Static design, current under 2000 mA . manual write prctect swit-
ches for 4 K blocks. can be used with or without phanches for 4 K blocks. can be used with or without phan-
tom line.... and it actually costs less than dynamic tom line..

COMING SOON:

24K ECONORAM VII ${ }^{m}$ KIT
Just around the corner for the S-100 buss think you'll like it. All the regular features of pur static Econorams, plus some extras. It's static. it's 24 K , it's an Econoram . . . watch for it!
 PLGG FROM BILL:- Theres more the fife than compuetr, like
music. Craig Anderton, noted outhor and designer of our wsikit prod music. Craig Anderton. noted suthor and designer of our N "usikit prod
ucts. has produced a cassette lape of or ignal music that is distribuled by our Friends al PAIA Electranics $\{1020 \mathrm{~W}$. Witshire. Oklahoma City. OK
$73116: 56.45$ ppd). In addition to hearing our Musikits in action, you get
to hear some really good modern mustc. We like it . . you crobably will TERMS TERMS: Please allow TERMS: Please allow up to 5% for shipping: excess relunded. Califor
nians add tax COD orders accepted with street address for UyS. For VISA "/Mastercharge" orders call our 24 hour order desk
(415) 5620636 . Prices good through cover month of macazine. FREE FLYER: These are just a few of the tems we carry tor the com
puter enthusiast. We also stock a broad line of semiconductors. passive
compontents. and hobbyist tems we will gladiy send you t fyer describ BODBOUS

Electronic Warning Flasher Kit

MORE NEW ITEMS!

JUMBO LED READOUT ARRAY
 $\$ 1.95$ umited stock plexed clock chips

By Bowmar character common cathode. Designed for use with multi4 digts in 1 pack

Assembled \& test ed. Not a kit. Has tapped output for either 4,8 or 16 OHMS. With sche-

MOTOROLA 4K RAM's - 99世 EACH (WITH DATA) A major US computer mig removed these parts from PC boards. then retested them to tull specs Best Memory Buy in the US $\mathrm{A} .4096 \times 1$ Bits One of the easiest Dynamic RAMS to use A complete memory board design using these chios is detailed in the MOTOROLA M6800 APPLICATIONS MANUAL starting on page 470 The 6605 is the popular 22 Pin Dip
 8 FOR $\mathbf{S 6}^{\mathbf{2 s}}$
 MCM6605
 FAIRCHILD
 Jumbo readouts
 FND-S10-Common Anode YOUR CHOICE 696 10 FOR $\$ 5.75$
 Jumbo Red Leds New by G.E. Like MV5024. Number
 SSL-22.
 6/\$1. $\quad 25 / \$ 3.75$
 DISC CAPACITORS .1 MFD 16 V . P.C. leads. Most popular value! By Sprague
 20 for $\$ 1.00$
 Motorola PNP Power! 2N4905 TO-3 case. 90W. VCEO-50 HFE-100 max at 25A Good mate tor the 2N3055 PRIMEI 75 c ea. $\quad 4 / 52.50$
 Digital Research Corporation
 P. O. BOX 401247 A GARLAND, TEXAS 75040 •(214) 271-2461

NATIONAL SEMICONDUCTOR
six digit alarm clock chip

SPECIAL OFFER!
With purchase of Clock Chlp at left. $=T 1 L 312 \quad 33 \mathrm{NCH}$ HIGH EFFICIENCY
A PERFECT MATE
59 ${ }_{\text {e }}$
BUILD YOUR OWN CLOCK!
4 WE SUPPLY DATA!
MOTOROLA 7805R Voltage Regulator
Same as standard 7805 except 750 MA output. TO-220. 5VDC output. 44c each 10/\$3.95

TERMS: Orders under \$15. add 75c. No COD's. We accept VISA, MasterCharge and American Express Cards. Money Back Guarantee on all items! Texas Residents add 5\% Sales Tax. WE PAY POSTAGE!

Operation Assist

pampenent a schamatic 0ar'chist elc amonereater miant be abie 10 assist Simply sencla posticard 10 Oper tinn Assist POPULGRELectronics 1 Path Ave New York
Ny 10016 For those who cat haletraters Ny 1001 l For those who can hato readers pledse respond duec'y them They "tappreciale: "Only thonse thems regarding equmment no avallabie from noma

Chicago industrial Instrument Co. model 531 tube and battery tester. Schematic diagram. Atwater Kent model 44 Schematic, source for tubes and power transformer Parrick Stallings, Sr. 1307 Suffolk Dr.. Austin, TX 78723.

Crescent Industries, Inc , portable wire recorder. Service manual or any repair information. Dr. FT. Lee. Dept. of Phy sics. University of Rochester. Rochester, NY 14627.

Lafayette CAB transceiver tester model J 0788. Syivania type 132 oscilloscope. Schematic and manuals. J. Douglas Sanfear. 5 Green Ave., Gten Falls. NY 12801

Precision Radiation Instruments, Inc.. Model 107B pro tessional geiger counter. Schematic and operator/instruction manuals. Harold Timmons. 1819 Hazel St., Gridley. CA 95948

Dumont 340 serial \#4X72 oscilloscope. Need manual sche matics or any information. Richard Gorton, Drawer B N-13 Patton, CA 92369

Westinghouse RA/DA vintage radio Schematic, parts or any information. J.A. Call. 1876 E. 2990 So.. Salt Lake City UT 84106.

Supreme model 333 tube tester. Superior model 450 tube tester Schematic diagram. service manual or lube chart. M. Aaron. 3012 Center St.. Oklahoma City. OK 73120.

Lafayette $\mathrm{HE}-30$ communications receiver Conversion schematic needed A Plamondon, 339 Edinburgh Di Ridge. NY 11961

B\&K TV Analyst model 1075. Operation manual and sche matic Ron Patton. Country Ests Pk-9B, Pratt. KS 67124
Paco model C-20 register capacitor bridge Need power transformer or entre inoperative unit for paris Robert Pilch er. Box 548. Jackson. NJ 08527

Rheem Califone Corp duplex booth recorder model LP 901, serial \#70703165 reel-to-reel tape recorder Parts list, schematic and operator's manual Michael Dutin. Box 38 McAdenville, NC 28101

Bendix flightphone model PATR-10A. Manual, schematic Joaquin A Araujo. Box 11433. Dallas. TX 75223

Jackson cathode ray oscilloscope Model CRO-3 Schemat ic R Aggarwal, 1-D Bennet Pkwy Hornell. NY 14843

Hycon navy oscilloscope. model OS-8A/U Schematics. J Moskowitz 18 Homer St Brookline, MA 02146

Supreme model 561 AF and RF combination signal genera tor Simpson VTVM of era 1950-1960. Schematic and oper ating manual. Allen G. Fryou. 3735 Fairmont Dr, New Or teans. LA 70122

RCA AVO-50 weather radio Duplication manual if original unavailable Cecil K Wells Box 4-2889. Anchorage. AK 99509

Silvertone 25 console color TV Mfg 1963 Schematic Steve Miller. 131 Thelma Ave. Somerset. MA 02726.

Benrus oscilloscope model 41-168 seria: \#2. Alan Ritter. RR1 Box 126. Longdale, OK 73755

Hallicrafters S 40 B schematic and manual. James F. Mayer, 24 Chater Oak Dr. Groton. CT 06340

Motorola model U4GGT-TA236 transceiver. Schematc and instruction manual Kenton Duncan. 622 N . Elm. Pacific MO 63069 .

Fisher AM/FM chassis, power transtormer \#T 686-115. AI Brier. 238 Lincoin St . Berkeley Heights. NJ 07922

Dumont Laboratories Type 224-A oscilloscope Schematic
and operating manual Leonard Falba. 38 Bryson Mill Ro New Castle. PA 16101

Lafayette model Comstal 25A. Schematic and owner's manual Kenneth Bracken Route 2. Box 339. Mocksville NC 27028

Eico 753 tr band SSB/AM/CW transcerver Operation manual and schematic. Tony Renna Box 391, Ft Jones, CA 95032.

Multi-Elmac Trans-citer model AF-67 transmiter. Schematic and manual Gary Cormier. 1411 S Maple Ave.. Green Bay. WI 54304

British Thompson Houston Co. Lid. amplifier model M2958, type 307 Need tubes UU9. 6F11. 6P26 and schematic. Allen Weist c/o Hatchet Bay P.O. Eleuthera. Bahamas.

Wings Goodyear Radio model \#778. schematic and senice manual for replacement of parts Jack Stowe. Apt-A-9 Hillcrest Dr. SE. Mableton, GA 30059

RCA NO 158 oscilloscope and Jackson 640 signal genera1or D.E. Burgess, 4901 Mt Etna Dr. San Diego. CA 92117

Dura model Mach 10 electronic typewriter Schematic. Paul Lennard 3139 East Almond Ave. Orange CA 92669

Heathkit extended range $0-6$ oscilloscope Operation manual and schematic. Charles Van Dyke 1123 , Oak St El Monte. CA 91731

Harman-Kardon model 3-30 stereo receiver Schematic and information on power transtormer Mike Welp. 1522 10th Ave Noth. Ft Dodge. IA 50501

Waterman Products modei S-15A pocketscope. Operation manual and any available information Frank Sokolove. 3015 Graham Rd Falls Church. VA 22042

RCA WV-98A VTVM Schematic Paul Lombardi. 470 W Fountain St Providence R102903.

Metrotec model TA-200 graphic stereo equalizer Scnemat
ic Duane Anderson. Rt 2. Box 64, Leeds. ND 58346

Introducing Prime 4000 Series CMOS At Lowest Prices Anywhere

Popular Electronics

ADVERTISERS INDEX

READER
SERVICE NO
ADVERTISER
PAGE NO

```
A P Products Incorporated
Active Electronic Sales Corp
Ancrona Corp
Audio Discount Warehouse
Audio-Technica U.S., Inc
B&F Enterprises
B&K Precision, Dynascan Corporation 
Bearfinder, Inc .................. }10
Byte
CREI Capitol Radio Engineering
    Institute
        102.103,104,105

```

 leveland Institute of
 Electronics, Inc
 Cobra, Product of
Dynascan

```
.
```

 SECOND COVER
 12 Communications Electronics
14 Continental Specialties Corporation

ESS

Jameco Electronics 124,125

FOURTH COVER
McIntosh Laboratory Inc 109
McKay Dymek Co
Micro Computer MartNRI Schools18, 19, 20, 21National TechnicalSchools52535455
Netronics R\&D Ltd 51New-Tone ElectronicsOK Machine \& Tool Corporation138
Olson Electronics
Optoelectronics131
107
107
PAIA Electronics, Inc 114Page Digital ElectronicsPoly Paks
Quest Electronics
Radio Hut23. 87.116
Sansui Electronics Corp 27
106
Scientific Audio Electronics, IncSolid State SalesSouthwest Technical Products CorpSpeakerlab, IncStanton Magnetics, IncStereo Discounters
TK Enterprises
TAB Books
57
5859 Wahl Clipper CorporationCLASSIFIED ADVERTISING135, 136, 137

DLDCIRONIC STSTDNS

 P.O. Box 9641 San Jose, CA 95157 (408) 374-5984FOR CATALOG INCLUDING PARTS LISTS AND SCHEMATICS, SEND A SELF ADDRESSED ENVELOPE WITH 24e POSTAGE.

RS-232/TTY*

 INTERFACEPart no. 600

- Converts RS- 232 to 20 ma current loop, and 20 mA current loop to RS-232
- Two separate circuits
- Requires +12 and -12 volts
- Board only S4.50. with parts $\$ 7.00$

RS-232 / TTL INTEREACE *

Part no. 232

- Converts TTL to RS-232, and converts RS-232 to TTL
- Two separate circuits
- Requires -12 and +12 volts
- All connections go to a 10 pin gold plated edge connector - Board only $\$ 4.50$; with parts $\$ 7.00$
- Converts serial to parallel and parallel to serial
- Low cost on board baud rate generator
- Baud rates: 110,150 ,
$300,600,1200$, and 2400
- Low power drain +5 volts and
- 12 volts required
- TTL compatible
- All characters contain a start
bit, 5 to 8 data bits, 1 or 2 stop
bits, and either odd or even parity.
- All connections go to a 44 pin gold plated edge connector - Board only $\$ 12.00$; with parts $\$ 35.00$

BE SAAC BA

Part no. 300

- 8K Altair bus menory
- Uses 2102 Static memory chips
- Memory protert
- Gold contacts
- Wait states
- On board regulator
- S-100 bus compatible
- Vector input option
- TRI state buffered
- Board only \$22.50; with parts $\$ 160.00$

Part no. 6085

- Board supplies a regulated +5 volts at 3 amps., $+12,-12$. and -5 volts at lamp.
- Power required is 8 volts

ACat 3 amps., and 24 volts AC
C.T. at 1.5 amps .

- Board only \$ 12.50: with parts $\$ 42.50$ excluding transformers

TIDMA*

Part no. 112

- Tape Interface Direct Memory Access
- Hecord and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direet connections for inputsand outputs to a digital recorder at any baud rate.
- S-100 bus compatible
- Board only \$35.00;
with parts \$110.00

Part no. 111

TAPE

 INTEREACE*- Play and record Kansas City

Standard tapes

- Converts a low cost tape recorder to a digital recorder
- Works up to 1200 baud
- Digital in and out are TTL-serial
- Output of board connects to mic. in of recorder
- Earphone of recorder connects to input on board
- Requires +5 volts, low power drain
- Board \$7.60; with parts $\$ 27.50$
- No coils

Part

no. 107
RF

MODULATOR *

- Converts video to AM modulated RF, Channels 2 or 3
- Power required is 12 volts AC
C.T., or +5 volts DC
- Board \$7.60; with parts $\$ 13.50$

Apple II Serial 1/0 Interface *

Part No. 2

- Baud rates up to 30,000
- Plugs into Apple Peripheral connector
- Low-current drain
- RS-232 Input and Output SOFTWARE
- Input and Output routine from monitor or BASIC to teletype or other serial printer.
- Program for using an Apple 11 for a video or an intelligent terminal. Board only - $\$ 15.00$; with parts - \$42.00; assembled and teated - $\$ 62.00$.

TELEVISION TYPEWRITER

Part no. 106

- Standalone TVT
- 32 char/line, 16 lines modifi-
cations for 64 char/line included
- Parallel ASCII (TTL) input
- Video output
- IK on board memory
- Outpul for computer con-
trolled curser
- Auto scroll
- Non-destructive curser
- Curser inputs: up. down, left. right. home, EOI. EOS
- Scroll up, down
- Requires +5 volts at 1.5 amps and -12 volts at 30 mA
- All 7100. TTLchips
- Char. gen. 2513
- Upper case only
- Bnard only 839.00 ; with parts $\$ 145.00$

M(0) Dan *

Part no. 109

- Type 103

- Full or half duplex
- Works up to 300 baud
- Originate or Answer
- No coils, only low cost components
- TTL input and output-serial
- Connect 8 ohm speaker and
crystal mic. directly to board
- Uses XR FSK demodulator
- Requires +5 volls
- Board $\$ 7.60$; with parts $\$ 27.50$

To Order:

Mention part number and description. For parts kits add " A " to part number. Shipping paid for orders accompanied by check, money order, or Master Charge, BankAmericard, or VISA number, expiration date and signature. Shipping charges added to C.O.D. orders. California residents add 6.5% for tax. Parts kits include sockets for all ICs, components, and circuit board. Documentation is included with all products. Dealer inquiries invited. 24 Hour Order Line : (408) 374-5984.* Designed by John Bell.

ElectronicsClassified

REGULAR CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, $\$ 2.40$ per word. Minimum order $\$ 36.00$. EX PAND-AD ${ }^{\bar{k}}$ CLASSIFIED RATE: $\$ 3.60$ per word. Minimum order $\$ 54$. 00 . Frequency discount; 5% for $6 \mathrm{months} ; 10 \%$ for 12 months paid in advance. PERSONAL RATE: For individuals with a personal item to buy or sell, $\$ 1.40$ per word. No minimum! DISPLAY CLASSIFIED: $1^{\prime \prime}$ by 1 col. ($2-1 / 4^{\prime \prime}$ wide), $\$ 280.00$. $2^{\prime \prime}$ by 1 col., $\$ 560.00$. $3^{\prime \prime}$ by $1 \mathrm{col} ., \$ 840.00$. Advertiser to supply film positives. For frequency rates, please inquire COLOR: Color avail for all classified ad styles at earned rate plus additional 25%. Color choice Publisher's option \& subject to availability. Publisher reserves right to run ad in black if color not available on classified pages. In such cases color charge will be refunded or credited. GENERAL INFORMATION: Ad copy must be typewritten or clearly printed

FOR SALE

FREE! Bargain Catalog-I.C s, LED's. readouts. fiber op tics, calculators parts \& kits. semiconductors. parts. Poly Paks. Box 942PE, Lynnfield. Mass. 01940.
GOVERNMENT and industrial surplus receivers. transmit ters, snooperscopes. electronic parts. Picture Catalog 25 cents. Meshna. Nahant. Mass. 01908
LOWEST Prices Electronic Parts. Contidential Catalog Free. KNAPP, 475096 th St. N., St. Petersburg. FL 33708. ELECTRONIC PARTS, semiconductors. kits. FREE FLYER Large catalog $\$ 1.00$ deposit. BIGELOW ELECTRONICS Bluftion. Ohio 45817
RADIO-T.V. Tubes- 36 cents each. Send for free catalog Cornell, 4213 University. San Diego. Calif. 92105.
AMATEUR SCIENTISTS, Electronics Experimenters. Science Fair Students...Construction plans-Complete including drawings, schematics. parts list with prices and sources . Robot Man - Psychedelic shows - Lasers Emotıon/Lie Detector - Touch Tone Dial - Quadraphonic Adapter - Transistorized Ignition - Burglar Alarm Sound Meter...over 60 items Send 50 cents coin (no stamps) for complete catalog. Technical Writers Group. Box 5994, University Station. Raleigh, N.C. 27607.
METERS-Surplus, new. used, panel or portable. Send for list. Hanchett, Box 5577 . Riverside, CA 92507.
TEKTRONICS RM35A \$395. 585AR \$495. 1A1 \$395, 1A5 \$395. Boonton Q260A \$295. RX250A \$695. 202F \$195 HP650A $\$ 125$. Resistor networks list 12/\$10. Fertik's. 5400 Ella. Philadelphia. PA 19120.
SOUND SYNTHESIZER KITS—Surt $\$ 14.95$. Wind $\$ 14.95$. Wind Chimes \$19.95. Musical Accessories, many more. Catalog free. PAIA Electronics. Box J14359. Oklahoma City. OK 73114.
HEAR POLICE / FIRE Dispatchers! Catalog shows exclusive directories of "confidential" channels, scanners Send postage stamp. Communications. Box $56-\mathrm{PE}$, Commack. N Y. 11725.
UNSCRAMBLERS: Fits any scanner or monitor, easily adjusts to all scrambled frequencies. Only 4" square $\$ 29.95$ fully guaranteed Dealer inquiries welcomed PDQ Electronics. Box 841, North Little Rock. Arkansas 72115.
POLICE/Fire scanners, large stock scanner crystals, antennas. Harvey Park Radio, Box 19224, Denver, CO 80219
TELETYPE EQUIPMENT for sale for beginners and experienced computer enthusiast. Teletype machines, parts. supplies. Catalogue $\$ 1.00$ to: ATLANTIC SALES, 3730 Nautilus Ave.. Brooklyn, NY 11224. Tel: (212) 372-0349. WHOLESALE C.B.. Scanners. Antennas, Catalog 25 cents Crystals: Special cut, $\$ 4.95$. Monitor $\$ 3.95$. Send make, model, trequency. G. Enterprises, Box 461P, Cleartield. UT 84015

USED TEST EQUIPMENT - Tektronix, HP. GR. Write: PTI. Box 8699, White Bear Lake. MN 55110. Phone: (612) 429-2975.
WEATHER MAP RECORDERS: Copy Satellite Photographs, National-Local Weather Maps. Learn How! \$1.00. Atlantic Sales, 3730 Nautilus Ave., Brooklyn, N.Y. 11224. Tel: (212) 372-0349.
GIANT BARGAIN ELECTRONIC CATALOG listing thou. sands of components. tubes, transistors. IC's. kits, test equipment. Edie's. 2700-1PA Hempstead Turnpike, Levit town. N.Y. 11756. Price $\$ 1.00$ refundable with first order

ORGAN KITS KEYBOARDS

the ultimate in design AND SOUND
Demo Record \& Brochure $\$ 1.00$ DEVTRONIX ORGAN PRODUCTS, Dept. C 5872 Amapola Dr. - San Jose, CA 95129

AUDIO EXPERIMENTERS, Serious Music Syn thesizer Stuff: literature, kits, components, circuits and more. Send SASE for FREE INFO. CFR Associates, POB F, Newton, NH 03858.
build and save. telephones. television, detec. TIVE. BROADCAST Electronics. We sell construction plans with an Engineering Service. Speakerphones, Answering Machines, Carphones. Phonevision. Dialers. Color TV Converters. VTR. Games. \$25 TV Camera. Electron Microscope. Special Effects Generator. Time Base Correc tor. Chroma Key. Engineering Courses in Telephone. Integrated Circuits. Detective Electronics. PLUS MUCH MORE. NEW Super Hobby Catalog PLUS year's subscription to Electronic News Letter, \$1.00. Don Britton Enterprises. 6200 Wilshire Bivd., Los Angeles. Calif. 90048.
NAME BRAND Test Equipment. Up to 50% discount. Free catalog. Salen Electronics, Box 82. Skokie. Hlinois 60076. SURPLUS COMPONENTS. Communication and test equip ment. Illustrated catalog 25 cents. E. French, P.O. Box 249 Aurora, illinois 60505.
TELEPHONES UNLIMITED, Equipment, Supplies, All types, Regular, Keyed, Modular. Catalog 50 cents. Box 1147E, San Diego, California 92112. CARBON FILM RESISTORS $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}$ - 1.7 cents each FREE sample / specifications. Other components. COMPONENTS CENTER, Box 295. W. Islip, New York 11795. UNSCRAMBLE CODED MESSAGES from Police. Fire and Medical Channels. Same day service. Satisfaction guaranteed. Don Nobles Electronics, Inc., Rt. 7. Box 265B, Hot Springs, Arkansas 71901. (501) 623-6027.

WIRE PVC INSULATED - BUSS WIRE - WIRE WRAP

HAM ELECTRONICS, 80×336 BROOKHAVEN N Y 11719
TRANSISTORS FOR CB REPAIR, IC's and diodes. TV audio repairs. 2 SC799 - $\$ 3.00,2$ SC1306 \$2.95, 2SC1307 - \$3.85, TA7205- \$3.50, more. Free catalog and transistor. B\&D Enterprizes, Box 32, Mt. Jewett, PA 16740.
UNSCRAMBLER KIT: Tunes all scramble frequencies. may be built-1n most scanners, $2.3 / 4 \times 2.1 / 4 \times 1 / 2 . \$ 19.95$. Factory buill Code-Breaker $\$ 29.95$. Free Catalog: KRYSTAL KITS, Box 445, Bentonville. Ark. 72712 (501) 273-5340.
NAME BRAND TEST EQUIPMENT at discount prices. 72 page catalogue free. Write: Dept. PE, North American Electronics. 1468 West 25th Street, Cleveland. OH 44113.
AMAZINGLY Low component prices! Ask for free flyer Write: EEP, 11 Revere Place. Tappan, NY 10983.
UNSCRAMBLERS FOR any scanner. Several models available. Free literature. Capri Electronics. 8753T Windom, St. Louis, MO 63114.
B\&K Test Equipment. Free catalog. Free Shipping. Dino saur discounts. Spacetron-AF, 948 Prospect. Elmhurst. IL 60126.

THE UNRUSTABLES

DETROIT APPROVED: No rust or weld sealment - Install one hour-lightwelght. no bodywork required - Complete Klt - Guaranteed life ol venicle - Meets Federal \& State standards For FREE Catalog-TOLL FREE 800/433-2386 (In TEXAS call COLLECT 817/756-6221)
PICKUP \& VAN EQUIPMENT CO.
Dept. PE, P.O. Drawer C, Hewitt, TX 76643
RADIO SHACK MERCHANDISE 10% off catalog prices $\$ 25.00$ or more delivered. A.S.C. 2224 N .10 th St., McAllen TX 78501
1702A PROMs programmed to your specifications. $\$ 25.00$. Copies $\$ 10.00$. Key Telemetering Products, 2829 Lewis Lane. Owensboro, KY 42301. (502) 683-9871.

ELECTRONIC SURPLUS FREE CATALoGS
 ETCO ELECTRONICS, Dept. EB North Country Shopping Center R1. 9N, Platssburgh, N.Y. 12901

BREAKERLESS ELECTRONIC igmıtion: Auburn Spark plugs, Synthetic Lubricants. Wheel Stabilizers. Information 26 cents Anderson Engıneering, Epsom, N.H. 03234. LOWEST PRICES. CPUs: 1802 \$19.95. 6502 \$24.50. 6800 \$24.95. 8035 \$23. 8035-8 \$22. 8080A \$9.50. 1.3us 8080A-1 \$12.45. 1.5us 8080A-2 \$10.35, 8085 \$20. 8748 \$276, 8748-8 $\$ 186.280 \$ 29.95$. EPROMS: 1702A \$4.95, 2708Q \$15, 2716 \$34.95. RAMS. 1101 \$1 49. 1103 \$12. 2101 \$4. 2102 \$1.28 $2104 \mathrm{~A}-4$ \$4.95, $2107 \mathrm{~B} \$ 4,2111$ \$4. $2112 \$ 4.00,2114 \$ 14$ $70 n s 2115$ \$7, 2116 \$52, 45ns2125A \$8. 3101 \$7. 5101 \$10 8080/8085 Backup: $8155 \$ 21.8212 \$ 3.50,8214 \$ 7.95 .8216$ $\$ 3.95 .8224 \$ 3.50$. $8228 \$ 625.8238 \$ 8.50 .8251 \$ 11.50,8255$ $\$ 10.75$. 8257 \$29.75. 8259 \$25. 8279 \$21. 8755-8 \$186 CLOCKS MM5309. MM5311. MM5312, MM5313. MM5314 MM5316, 5375AA. 5375AB \$3.60 each. MM5369 \$2.10 16KBit CCD 2416 16pin \$35.95: Quad CCD Driver $5244 \$ 9$ Minimum Order $\$ 500$. BYTE ELECTRONICS. Box 8603. San Jose. California 95155.
PARTS: SERVICE SUPPLIES! Free catalog. Write Tommy Comm-Tech, 104 North Third Street, Richmond. Kentucky 40475.

SOLDER PINS, periect for double sided boards. FREE SAMPLES. $\$ 6.50$ per 1000 postpaid. Industrial Inventions, Box 111. Monmouth Junction. N.J. 08852.
BARGAINS IN Surplus. Liquidations. Bankruptcies Components. Test Equipment, Machınery. Tools. Rush $\$ 1.00$ get on PERMANENT BIDDERS LIST. METRECO, 4120 Rio Bravo, El Paso, TX 79902.
CITIZENS BAND EQUIPMENT Lowest discount prices Free Price List. CRS. 1552 Central Ave., Yonkers, N.Y 10710.

SUMMER SPECIAL! New. Adjustable. Three Output. Regu lated POWER SUPPLY, plus 900 parts worth over $\$ 400.00$ in complete CARTRIVISION television recorder electronic as sembly. Documentation included. Perfect for MICROPRO. CESSOR and atl electronic applications. $\$ 11.50$ plus $\$ 3.50$ S\&H. Master Charge. BankAmericard. MADISON ELEC. TRONICS. 369. Madison. Alabama 35758. MONEY BACK guarantee.
PRINTED CIRCUITRY, Stop frustration. Stop waste. Save time and money. Get professional quality supplies and in structions where engineers and educators buy. Catalog $\$ 1.00$. Refunded with order. CiRCOLEX, Box 198, Marcy New York 13403.

SURPLUS ELECTRONICS

ATTENTION HOBBYISTS - SEND FOR

 YOUR FREE CATALOGGreat buys in tape drives, keyboards, power supplies, and transformers. We also have heat sinks, steel cabinets. 1/O terminals video dis plays, printers, and equipment cases. And of course components, fans, wire, and cable. Write now to
Worldwide Electronics Hudson. NH 03051
BUILD THE ARTISAN ELECTRONIC ORGAN. .. The 20th century successor to the classic pipe organ Kits feature modular construction. with logic controlled stops and RAM Pre-Set Memory Sysiem. Be an ar-ti-san Write for our free Drochure. AOK Manufacturing. Inc Box 445 . Kenmore. WA 98028.

STELLAVOX. SP-7 Stereo Tape Recorder. Mint, 7-1/2 and 15 Heads. Extras. $\$ 1.875$ Box 803. Derby. CT 06418

> MICRO MINI MIKE WIRELESS MICROPHONE. World's smallest; solid state. self-contain-
eu. Pius up and transmits most sounds without wires up ta 300 ft through FM Radio. Use as mike. ampt, alarm \& alert sys.. hot line, baby sitter, etc Money back guar.
B/A. MiC cds. COD ok. $\$ 18.95$ plus $\$ 1.00$ post $\&$ hdlg. Calif. res. add tax. Mail orders
Qty Disc. Avail. Qty Disc. Avall.
Dept. 23, Box 928 . Downey, Calif, 90241

IGITAL INSTRUMENTATION for your CARNAN/TRUCK/BOAT. 120 -page book of ex planations and schematics on how to build DIGITAL tachometers, clocks, temperature, voltage, gas, oil and other projects. $\$ 5.95 \mathrm{pp}$. M. O. only. DIGITAL WORLD. P.O. B0x 5508 . Augusta, GA 30906.
CORE MEMORY PLANES 8/\$40; Circuit Board $1 / 16^{-1} 2$ side 6×850 cents each: Stepping Motors 15° step $28 v \$ 5$ ea: TO-3 sockets $4 / \$ 1.00 ; 74$ LO4's 15 cents ea: Bypass Caps PC cut $01, .005, .0033,120 \mathrm{pf}$. $70 \mathrm{pi}, 20$ each value $\$ 1.00$ 200-\$5: Card Guides 15 pair whack $\$ 4.95$: 15 socket "Elco" 37 pin. 100 center, $15 / \$ 4.95$. Free Catalog minimum order, $\$ 5.00$. MC. BAC, VISA, J \& E Electronics, P.O. Box 4504 . Ft. Worth. TX 76106. (817) 625-2961.
AUTOMOTIVEPARTS AND EQUIPMENT. Nationally adverlised brands at discounted prices for mechanics Send stamped envelope for specials. Associated Distributors. 401 Augusta St., Cincinnati, OH 45202 Dept. Z.
SECURITY AT TOUCH OF BUTTON - Build Iow-cost abbreviated dialer. Holds 8 Nos. Works with any pushbutton phone. Comprehensive 25 page repor:, $\$ 10$ HORIZON. Box 68. Glenview. IL 60025.

SILICON BULLET DIODES 1A. 50PIV. 100 pieces for $\$ 4.95$. send check or money order to Richard Hochleitner. RD 1. Zonsville, PA 18092

THE BEST CB ANTENNA

send forfree pal full line CATALOG AND DECAL PAL 'Firestik' Antenna Corp. 2614 EAST ADAMS - PHOENIX ARIZONA 85034

PRINTED CIRCUIT TECHNIQUES Booklet and product catalog. \$1.50 Trumbull Company. 833 Balra Drive, El Cerrito. California 94530 .
$\overline{C B}$ ANTENNA CONSTRUCTION MANUAL• Build 16 DB Gain Beams plus Quads. Verticais. Ground Planes using common hardware. Easy assembly highest performance Complete $\$ 4.00$ Tenna-Farm. 1117 Dewitt Tr . Linden. N.J 07036.

PLANS AND KITS

[^2]

FREE KIT Catalog contains Test and Experimen ter's Equipment. Dage Sciientific Instruments, Box 1054P, Livermore, CA 94550.

FIVE LASER PLANS - $\$ 8.00$; Welding-Burning Laser plans - $\$ 9.00$. Catalog $\$ 2.00$. Solaser, PE 678, Box 1005, Claremont, California 91711

AMAZING ELECTRONIC PRODUCTS
 Catalog $\$ 1$ Box 626 lord Jettery Pl • Aminerst. N H 03031

QUALITY KITS, over 7.000 schematics. $\$ 1$ (refundable) tor llustrated catalog. Tek-Devices. Box 19154c. Honolutu, HI 96817.

CB/HAM Construction Plans. OMNIPOLARIZED BASE ANTENNAS. Modulation boosting VOX-COMPRESSOR Portable 300 MHz FREQUENCY COUNTER with memory! Plans $\$ 3.00$ ea. $\$ 7.50 /$ all Many others, catalog with order. PANAXIS, Box 5516-A6, Wainut Creek, CA 94596.

HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure. Pickering. Stanton. Empre, Grado and ADC. Send for free catalog. LYLE CARTRIDGES, Dept. P. Box 69. Kensington Station. Brooklyn. New York 11218. For Fast Service call Toll Free 800-221-0906.

MUSICAL INSTRUMENTS

UP TO 60\% DISCOUNT. Name brand instruments catalog. Freeport Music 114 G Manan St W Babylon N Y 11704.

TUBES

RADIO \& T.V Tubes- 36 cents each. Send for free Catalog. Cornell, 4213 University, San Diego, Calif. 92105. TUBES: "Oldies", Latest. Supplies, components, schematics. Catalog Free (stamp appreciated). Steinmetz, 7519PE Maplewood, Hammond, Ind, 46324.
FREE BARGAIN CATALOG, Industrial, Ham, Receiving Tubes. Send Stamp. Astral, P.O.B. 707 pet, Linden, N.J. 07036.
TUBES Send 10 cents for large conclusive list Low Prices. T-J Specialties, Box 43, Bradley Beach, New Jersey 07720. (201) 774-8429,

TUBES-RECEIVING. Industrial and Semiconductors Factory Boxed. Free price sheet including TV, Radio and audio parts list. Low. low prices. Transleteronic. Inc., 1365 39th St., Brooklyn, New York 11218. Telephone' (212) 633-2800 Toll free : 800-221-5802.
1.000 TYPES including obsoletes Popular types up to 85% off list. pillouts from 29 cents. Free catalog and $\$ 1.00$ certificate Connolly, POB 1333P. Sun Valley, Calif. 91352

ALARMS

QUALITY BURGLAR-FIRE ALARM EQUIPMENT at discount prices. Free Catalog' Steffens, Box 624 K . Cranford, N J 07016.
DON'T PURCHASE alarm equipment before getting our free value packed catalog. Sasco. 5619-C St. John. Kansas City MO 64123 (816) 483-4612

WANTED

GOLD. Silver. Platınum. Mercury, Tantalum wanted Highest prices paid by refinery. Ores assayed. Free circular. Mercury Terminal. Norwood. MA 02062

WANTED!CB DEALERS AND DISTRIBUTORS PAL'Firestik' Antenna Corp.

2614 EAST ADAMS • PHOENII, ARIZONA 85034

TAPE AND RECORDERS

[^3]
GOVERNMENT SURPLUS

MANUALS for Govt Surpius radios, test sets, scopes. List 50 cents (coin). Books. 7218 Roanne Drive, Washington, D.C. 20021.

GOVERNMENT SURPLUS Buy in your Area. How, where. Send $\$ 2.00$. Surplus, 30177-PE Headquarters Building, Washington, D.C. 20014.
GOV T SURPLUS-buy direct from gov't. Complete info plus application form $\$ 2.00$. info-Capsule A-1, P.O. Box 151, Sheiocta, PA 15774.
JEEPS - $\$ 59.30!$ - CARS - $\$ 33.50$ - 200,000 Items! Government Surplus - Most Comprehensive Directory Avaitable tells how. where to buy - Your Area - $\$ 2.00$ MONEYBACK GUARANTEE - Government Information Services. Department GE-21, Box 99249, San Francisco. CA 94109. (433 California).

SPORTS/HOBBIES

[^4]
INVENTIONS WANTED

FREE PAMPHLET "Tips on Marketing Your Invention" from an experienced fee-based invention service company. Write: United States Inventors Service Company. Dept. T 1435 G Street NW, Washington DC 20005.

EMPLOYMENT OPPORTUNITIES

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUNITIES. Report on jobs now open Details FREE. Aviation Employment Information Service. Box 240 E . Northport. New York 11768.

DO-IT-YOURSELF

MODULAR TELEPHONES nOw avallable Sets and components. compatible with Western Eiectric concept. Catalog 50 cents. Box 1147W. San Diego. California 92112.

HYPNOTISM

SLEEP learning Hypnotic method. 92% effective Detalls free ASR Foundation, Box 23429 EG . Fort Lauderdale. Florida 33307
FREE Hypnotism. Self-Hypnosis. Sleep Learning Catalog' Drawer H400, Ruidoso. New Mexico 88345.

BUSINESS OPPORTUNITIES

I MADE \$40.000.00 Year by Mallorder! Helped others make money' Free Prool. Torrey. Box 318-NN. Ypsilantı, Michigan 48197.
FREE CATALOGS. Repair air conditioning, refrigeration. Toots, supplies. full instructions. Doolin, 2016 Canton. Dallas. Texas 75201.

ELECTRONIC FACTORY

Investment unnecessary, knowledge not required, sales handled by profetsionale. Postcard brings fects about thls unusual opportunity. Write today! Barta- DF, Box 248, Walnut Greek, CA 94597.

NEW LUXURY Car Without Cost. Free Details! Codex-ZZ, Box 6073, Toledo. Ohio 43614.
GET RICH!!! Secret law erases debts. Free report exposes millionare $\$ \$$ secrets. Blueprints. No. EE6, 453 W .256 , NYC 10471.
MECHANICALLY INCLINED Individuals desiring ownership of Small Electronics Manufacturing Business - without investment. Write: BUSINESSES, 92 -K2 Brighton 11 hn, Brooklyn. New York 11235.
MILLIONS in Mail!! Free Secrets. Transworld-17. Box 6226. Toledo. OH 43614.

HOW TO MAKE $\$ 100$ weekly kitchen table! Free brochure American, Box 428-ZDE. Pomona, Kansas 66076.
\$650 WEEKLY for beginners!! Free report Mailorder Consultants MEE6, 453 W256. NYC 10471
EARN $\$ 1000$ monthly stuffing envelopes Free Supplies! Guaranteed!! Write L.O.E., Box 06180-EP. Portland. OR 97206.
$\$ 3.000$ MONTHLY Receive $\$ 2.60$ each envelope you mail. plus cash for newspaper clippings. Free report Modern Services. Box 222-E. Upland. CA 91786.
CB DEALERS - write on letterhead for best wholesale prices. Dixie CB Distributors. Rt No 3. Box 547. Prairieville. LA 70769 Phone: (504) 622-2571.
$\$ 1500$ MONTHLY Home income mailing program Start immediately. Free Details GLAD. Box $5368-\mathrm{EP}$. Lighthouse Point. Florida 33064

INSTRUCTION

SCORE high on FC.C Exams Over 300 questions and answers. Covers 3rd. 2nd. 1st and even Radar Third and Second Test. $\$ 14.50$: First Class Test. $\$ 15.00$. All tests \$26.50. R.E.I. Inc. Box 806. Sarasota. Fia. 33577
UNIVERSITY DEGREES BY MAIL! Bachelors. Masters, Ph.D's. Free revealing details. Counseling. Box 317-PE06, Tustin, California 92680.
SELF-STUDY CB RADIO REPAIR COURSE THERES MONEY TO BE MADE REPAIRING CB RADIOS This easy-to-learn course can prepare you for a career in electronics enabling you to earn as much as $\$ 1600$ anhour in your spare time. For more information write CB RADIO REPAIR COURSE. Dept PE068. 531 N Ann Arbor. Oklanoma City Okta 73127
LEARN WHILE ASLEEP! HYPNOTIZE! Astonishing details, strange catalog free! Autosuggestion. Box 24-ZD. Olympia Wasnington 98507.
GRANTHAM S FCC LICENSE STUDY GUIDE - 377 pages 1465 questions with answers/discussions - covering third. second. first radotelephone examinations $\$ 1345$ postpaid GSE, P.O Box 25992. Los Angeles. Calitornia 90025 INTENSIVE 5 week course tor Broadcast Engineers. FCC First Class license. Student rooms at the school Radio Engineering |nc.. 61 N. Pineapple Ave.. Sarasota. FL 33577 and 2402 Tidewater Trail. Fredericksburg. VA 22401
1978 "TESTS - ANSWERS" for FCC First Class License. Plus - "Self-Study Ability Test.,' Proven! $\$ 9.95$. Moneyback Guarantee. Command Produc. tions, Box 26348-P, San Francisco, CA 94126.
BROADCAST STATION: Start your own Any type' Home, school. church, business operation Get tree equipment, records. Details free "Broadcasting", Box 5516-A6. Walnut Creek. CA 94596
DIGITAL ELECTRONICS - Comprehensive learn by doing course Instructions problems, solutions. Econo-Designer. text plus all parts required. $\$ 4995$ Micro-Lite. RFD 1. Box 30, N Stonington, CT 06359
PASS YOUR FCC EXAMS New Tests by noted Author and Teacher 500 questions. Second Class $\$ 995.200$ First Class $\$ 695$: 100 Radar. $\$ 395$: postpaid Save $\$ 8$. all three. $\$ 12.95$ Complete Mathematical Solutions Free Counsell ing Service Victor Veley. P.O. Box 14 La Verne. CA 91750 NEED HELP PREPARING FOR THE FCC RADIO. TELEPHONE LICENSING EXAMS? The GreggMcGraw Hill book. Practice Tests for Radiotelephone Licenses. by Shrader and Boyce. does everything but lake the exams for you it is full of multiple-choice questions typical of those you will find on the FCC exams for 3 rd . 2nd and 1st class commercial hcenses. Easily removable answer sheets simulate those used on the actual tests You can read, answer and analyze FCC-type questions before you sit down to take the real test. Send for your copy today $\$ 6.80$ post paid Gregg McGraw-Hill. 1221 Avenue of the Americas New York. New York 10020 Attention R. Reskow. 28th floor
WE TRAIN Electricians and Engineers. Edison Scnool of Electrical Engineering. P.O. Box 891. Kenner. Loulsiana 70063.

REPAIRS AND SERVICES

SERVICEMEN -- Cleaners. Lubricants. Adhesives for all electronic repairs Write for FREE catalog. Projector-Recorder Belt Corp. Box 176. Whitewater. WI 53190 800-558-9572 except WI.
PRINTING. Rubber Stamps. Low Prices, Fast Service. Free Catalog. Magestro's Printing. North Ave., New Brighton, PA 15066.

HOBBYIST give your project the professional look. PRINTED CIRCUIT boards from your sketch or ariwork Affordable prices. Rush free details. DANOCINTHS Box 261. Westland. MI 48185.

PERSONALS

MAKE FRIENDS WORLDWIDE through international correspondence. Illustraled brochure free Hermes-Veriag. Box $110660 / 2$, D-1000 Berlin 11, Germany.

REAL ESTATE

BIG ...FREE ...CATALOG 'Over 2.500 top values coast to Coast! UNITED FARM AGENCY, 612-EP. West 47th. Kansas City. MO 64112

RUBBER STAMPS

RUBBER STAMPS BUSINESS CARDS. Many new products. Catalog Jackson's. Dept K, Brownsville Rd. Mt Vernon. III 62864

BOOKS AND MAGAZINES

FREE book prophet Elıjah coming before Christ Wonderful bible evidence MEGIDDO Mission. Dept. 64. 481 Thurston Rd.. Rochester. N. Y 14619.
POPULAR ELECTRONICS INDEXES For 1976 now avait. able. Prepared in cooperation with the Editors of "P/E." this index contains hundreds of references to product lests. construction projects. circuit tips and theory and is an essential companion to your magazine collection. 1976 Edition. $\$ 150$ per copy All editions from 1972 onward still avallable at the same price. Add $\$.25$ per order for postage and handling. $\$.50$ per copy, foreign orders INDEX. Box 2228. Falls Church, Va. 22042

ELECTRONICS books. models. projecis. experiments, network ineorems. calculations. Invaluable for students. engineers. Sercolab. Box 78K. Arlington. MA 02174
BACK ISSUE MAGAZINES. Free List Send stamped en velope Everybody's Bookshop. 317 West 6th. Dept PE. Los Angeles, CA 90014.

MOTION PICTURE FILMS

COLUMBIA PICTURES Super 8 Sound Sale - Brand new feature titles: New Centurians. Fail Safe. Buck \& the Preacher. Odessa File. Breakout. Shamus, 1976 World Series (Reds/Yankees) - ea 400' Super 8 Sound color films
$\$ 45.95$ ea $+\$ 1.00$ shipping. Perfect Home Entertainment! Football Follies or Fabulous Harlem Globe Trotters - lots of bloopers \& nonsense, 200' 88 color/silent, $\$ 19.95$ ea: S8 BN, $\$ 8.95$ ea $+\$ 0.85$ per film shipping. Indy " 500 " 1976 (Johnny Ruthertord) pre-race special, Eastman $\$ 8$ color. 200^{\prime} reel, sitent with script. $\$ 17.95$ ea delivered. Alabama " 500 NASCAR Stocks 77, S8 Color/Sound - see 5 -story banks at 190 MPH - Waltrip tops Yarborough. $\$ 27.95$ ea PPD (save $\$ 5$ per print). Unversal 64-pg catalog. \$0.85; Universal, Sportlite, Ring Classics, Columbia (being printed) order forms. $\$ 0.35$ ea. SPORTLITE FILMS. Elec-6/78. Box 24-500. Speedway. IN 46224.

SERVICES

CATALOGS GALORE! Your name sent to over 100 mailorder advertisers. \$1. "Lists", 17-14 Pond Way, Manorville, NY 11949.

miscellaneous

1978 COMMUNICATIONS HANDBOOK

Everything you want to know need to know-about Ham Radio SWL, Police-Fire Monitoring, CB Marine Radio, and Radar Detec tors Features, specifications lates: prices, and photographs of equipment on the market are at your fingertips Order your at your ingertips Order your copy from COMMUNICATIONS Station, Brooklyn. N Y. 11205 Station, Brooklyn, N Y. 11205
Enclose $\$ 3^{*}$ (postage and handling included). "Residents of CA, CO. FL. IL, MI, MO. NY STATE. DC and TX add applicable sales tax.

INTRODUCING THE LOGD. - TURE THE FULL RANO AVAR-MOTION SYO SYSTEM BY

Five years ago last March, ESS, a small California corporation, electrified the high fidelity world by introducing the AMT-1, the first loudspeaker to incorporate the Heil air-motion transformer as its midrange and tweeter. Two thousand AMT-1's were sold in the first ten days; twenty thousand in the remaining nine months of 1973 - more loudspeakers than any similarly priced loudspeaker in history.

Like all great breakthroughs, the Heil was not just a mere improvement on conventional technology; it was the discovery of a better way that applied the principle of leverage to loudspeaker technology for the first time. All speakers are "transducers". They all convert electrical energy into acoustic energy. But only the Heil is also a "transformer" that increases the energy velocity 430 percent.

This increase in velocity is the crucial difference. Acceleration capacity is as vital to a loudspeaker as power is to an amplifier. That extraordinary increase in velocity gives the Heil its great clarity and definition, superb dynamic range, crisp transients and superior dispersion - in short, its audible superiority.

The Heil achieves this virtually "instant acceleration" (aim by squeezing air rather than pushing it. A simple experiment dramatically illustrates the superiority of the squeezing mo-

Dr. Oskar Heil's cherry pit illustration

tion. Imagine trying to "shot put" or push a light object like a cherry pit (air) with the palm of your hand (a speaker cone). It won't travel very far or fast (Fig. 1). Now put the pit between your thumb and forefinger and squeeze (Fig. 2). It squirts out at high velocity. The physics of the Heil are just this simple and brilliant.

Transar/atd, the first full range Heil airmotion sound system, uniting the Heil air-motion transformer with the new Heil low frequency driver, is an equally astounding breakthrough. Transar's technical brilliance can be explicated at great length, but not in a few paragraphs. However, we invite requests for ESS's theoretical monograph "Transar: A Study in Genuis, A Study in Physics". But Transar is not the kind of product that stands or falls on theory. Its profound superiority is something one experiences with a sudden "shock of recognition". Treat yourself to the loudspeaker of the future. Experience Transar.

Transar/atd, the world's most accurate reproducer.
DMO』э әu! ui !no spupłs punos Stl

 Lim 'gcozi-dา əut +ng asuadxa inok $\ddagger 0-\lambda a p o \partial a p$

 BUILT-IN FM DOLBY , power to capture even the most demanding passag
with perfect tidelity . even at the highest listening
 reiver con distor the signol pos when loure gives you 120 watts. The channel: more power (like a fine automobile) is pure power. The LR-1200B RESERVE POWER. One measure of a fine receiver this price level that offers you all of the following fea-

 Adjustable FM muting may be the LR-1200B punq buin
 suoltołs to spərpuny ero erə The LR-120DB helps you pict Yourtuning band is like everick

[^0]: Get details and order now at Radio Shack stores and deale's in the USA, Carada. UK, Australia, Belgium, Holland, France, Japan.

[^1]: McGraw-Hill Continuing Education Center
 3939 Wisconsin Avenue Northwest
 Washington, D.C. 20016
 Accredited Member National Home Study Council

[^2]: AUDIO AMPLIFIER. inexpensive, simple construction, tenfifty watts, plans: $\$ 2.95$ Malcolm Smith, Miltonmills, N.H. 03833.

 BUILD YOUR OWN COLOR ORGAN for under $\$ 10.00$. Send $\$ 1.25$ for plans. PPG, 14725 Oxnard. Van Nuys, CA 91401.

[^3]: 8-TRACK and CASSETTE BELTS - money back guarantee. Long wearing. Free Catalog - $\$ 3$ minimum order PRB Corp. Box 176. Whitewater. Wisconsin 53190. order PRB Corp, Box 176.
 (800) 558-9572 except Wi.
 TAPE HEAD CLEANER. 8 oz - $-\$ 2.30$ Includes postage and handling Write "Cleaner", Box 176, Whitewater, WI 53190
 RECORDS - TAPES! Discounts to 73%; all labels; no purchase obligations; newsletter, discount dividend certificates; 100% guarantees. Free details. Discount Music Club, 650 Main St., Dept 5-0678. New Rochelle. New York. NY. 10801

[^4]: FISHING TACKLE - LURES
 BADGER SPINNING, CASTING, TROLLING SPOON. Fantastic action! Write for FREE illustrated, descriptive folder. with many introductory bargain offers. Address: SENECA TACKLE. Box 2841 N, Providence, R.I. 02907.

