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Our cover shows the RCA 1804 microprocessor breaking
through an old-style rendering of the original Watt steam
engine. Because of the power of the engine and the
mechanical improvements that accompanied its develop-
ment, people devised production methods that drastically
altered the shape of societies in the 1800s, leading to a
cluster of technological breakthroughs and applications
known as the Industrial Revolution.

Since that time, many new technologies have helped or
affected us in "revolutionary," though somewhat limited,
ways. But microelectronics will affect such a broad range of
activities that advanced industrial societies will need to
organize their production systems around electronics in
order to stay competitive.

Already, sales of electronic goods are well over $100
billion a year. By 1990, the market may reach about $400
billion a year. and the economy will be global. Micro-
processor technology is so sophisticated and laden with
potential applications that it could be characterized as the
catalyst for a "Second Industrial Revolution." This
technological breakthrough may relegate the idea of
mechanical control to little more than a torn page in an old
book.

American companies, currently accounting for more than
70 percent of the world's production of integrated circuits,
will need to develop and maintain their competitive edge.
This issue of the RCA Engineer samples a variety of micro-
processor applications spanning several RCA businesses.

Our cover design is an extension of an idea by Bob
Mausler, the RCA Engineer's Technical Publications
Administrator at NBC. He is part of the network of talented,
dedicated publications people and engineers throughout
RCA who invaluably assist in planning and recruiting
articles, and producing the issues accurately and on time.
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C.J. Santoro

Microprocessors:
A Revolution Put into Practice
As investment and ingenuity have driven the cost of the micro-
processor down from the hundreds of dollars of the mid -1970s to
the several dollars of today, this technological breakthrough in
computing capability has found itself in the hands of greater
numbers of creative engineers and designers. As a result, a
multitude of new electronic systems now work for us every day -
from uses in entertainment to protection, from control to display
functions.

A broad spectrum of architectures and a wide selection of
word lengths have made available a once -only -dreamed -of
computing capability at a low cost. Microprocessor systems are
even being used to generate and test newer microprocessors.
Communications, data processing, transportation, and defense
systems' features are enhanced by microprocessors. Few days
pass when we fail to come in personal ccntact with a micro-
processor of some kind. The externals of these systems are so
simple to use and so easy to understand that we tend to forget
the complexity of the subcomponents within them.

And yet, we are less than ten years into 'the microprocessor
revolution.' Chips have integration levels of less than 100,000
transistors and we still have not reached an ultimate cost level.
We can be assured that the fertile engineering minds that have
led us this far will continue to extend the capabilities of these
chips.

A key to expansion is the the application of the "micros" -
today's and tomorrow's. Most of today's systems use sub-
stantially less than the full capabilities of the existing micro-
processors, and as we begin to more and more fully use them, we
will see an even broader spectrum of electronic services with
truly astounding sophistication.

At RCA we have been a leader in this microprocessor
revolution and we will continue to establish new directions. We
have talent in every aspect of this technology, from chip design
to system manufacture. By pooling our creative energies, we can
continue to find applications that will transform our world. This
issue features a selection of applications for microprocessors.
These are but a small sample of the multitude of exciting ideas
that clearly show how microprocessors can exert an ever-
increasing influence on our lives.

Carm Santoro
Division Vice -President, Integrated Circuits,
Solid State Division
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in this issue...
Microprocessor applications and development

 Caracappa I Ny I Ripley "When developing small microcomputer
systems, you often do not need the power of the latest development
system with all its options."

 Paradise "The RCA CDP1800 microprocessor series is a well -tried

LSI product line that implements control -oriented microcomputer
functions in CMOS."

 Paradise "These types of components and their functions more
closely match equivalent NMOS offerings found in recent catalogs."

 Wright "If a higher -level program language could be designed -
easy to learn and not requiring a high -cost development system to
use - many new microprocessor applications would open up and
others would dramatically drop in cost."

 Milley I Resnick "EPROM technology is attractive in this applica-
tion because it is cost competitive with ROM."
 Heppl Isham "A system of this type provides a clean break between
the logic that performs the test and the logic that decides which test
to perform."
 Schilp "The purpose of the project described was to build a piece
of equipment to demonstrate the use of RCA Microboards in
specialized manufacturing -test equipment."

are building blocks Oil

 Woestman "The quantity of each of these three liquids added to
the charge vessel at each dispense is determined and controlled by
the microprocessor."
 Alvero "A new microprocessor -based lighthouse control needed
to assure that the panel was exposed equally about the optical axis."

 Malyszka "Satcom D will be the first RCA communications satellite
to employ a microcomputer for fully automatic thruster control."

 Chin I Kaye "As implemented in the REMBASS repeater, the micro-
processor provides most, but not all, of the control and processing
functions."
 Papke "With the subsequent growth of the A/V industry in both
size and sophistication, the manufacturers have turned to program-
mable, non -dedicated microprocessors."
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 Britton 'Stickel "With SUPPOSE, an application is organized
around shared resources."

 Horsley I Clapper "Further upgrading of the signal processor was a
prominent part of the plan, specifically in terms of application of
VLSI technology and distributed microprocessors."

processor
utility

 Ricker "The microprocessor was seen as the ideal host computer multiple

for the architecture - distributed single process nodes - that has
been identified."
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SelectaVision® VideoDisc, manufacturing engineering,
electro-optics



D.N. CaracappaIN.O. Ny G.D. Ripley

Designing and building
microcomputer -based
systems

What do you do when your program works...
almost all the time? How do you handle it
when your constants aren't and your
variables don't? What do you do when your
pull-ups are down and your bus drivers are
on strike?

Abstract: This tutorial on microprocessor software
development begins with a discussion of overall system
design concerns, then addresses the special advantages and
disadvantages of working in a minimum -resource
environment. Next, the authors cover typical medium -
resource tools, M DS and other resident systems, and the
development environment when you have these tools.
Finally, mini -sized systems and non-resident tools provide
a large -resource development environment that the
authors examine. The conclusion shows future trends in
development hardware and software.

Has this ever happened to you? You've worked all week to
finish a phase in the development of a microcomputer -
based system. On Monday, after a weekend of celebration,
you begin the next step and find that the functions that
worked so well on Friday are now totally inoperative. And
all you did was turn the system on.

Developing any computer -based system can be
frustrating indeed. But if you're considering building a
microcomputer -based system, you'll be facing some special
hazards not normally found in developing software for
larger systems. For example, both the software and the
hardware in the system you're developing will initially be
unreliable. And your system itself will prove nearly useless
in helping you put together the software.

These hazards are not found in developing software for
maxi- or even minicomputer -based systems, because the
hardware is generally reliable - any bugs are automatical-
ly isolated to the software. And the computer itself
provides many tools to help develop the software, from
language translators to debuggers.

Reprint RE -26-8-1
Final manuscript received July 6, 1981.

Do you haN.e those days when your bus drivers appear to be
on strike and your pull-ups don't?

We'll give some tips on how you can deal with these and
other problems in developing microcomputer -based
systems, answering questions such as:

 What are some good analysis and design tools to help me
simplify the task?

 Suppose I can't afford the best development tools money
can buy - what then?

 H ow do I decide what to implement in hardware, and
what in software?

 You've sold me - but now how do I obtain these
wonderful tools and the expertise needed to use them in
building my system?

First we'll review the all-important early stages of micro-
computer -based system development: analyzing and
designing the system. Then, we'll focus on implementation
tools for a range of development environments, from "bare
bones" to "large resources." We conclude the guide by
looking at trade-offs and other pragmatic considerations.
You may want to keep the myriad of tools straight in your
mind by referring to the glossary on page 15.

Analyzing and designing
a microcomputer -based system

Three key phases make up the development of any system:
analysis, design, and implementation. Each stage feeds
vital information into the succeeding stage, information
that bears directly on the ultimate outcome of the project
(Fig. I ).

An analysis of the problem identifies the inputs to the
system and the outputs the system should generate in
response to these inputs. In addition, analysis should
resolve such questions as: when must the system be

4 RCA Engineer  26-8  Sept./Oct. 1981
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finished? at what cost? and who is available to work on the
project? The information developed during this stage is
then spelled out in such documents as data -flow diagrams
(Fig. I is an example) and data dictionaries. While we'll
only mention a number of these documents in passing,
Reference I describes them in more detail, with examples
and annotated references to "how-to" books on the subject.
The key point here is that analysis is sometimes not
recognized as a formal step in system development. But by
paying more attention at this stage, you'll usually save a
bundle of trouble later in the project.

A system designer must determine how to apply
available resources to the hardware and software re-
quirements in order to arrive at a solution. The choices that
face the designer are not always obvious, and making a
particular choice sometimes increases the risk of project
failure. As an example, at some point the designer must
choose to do a particular function in hardware or software.
A decision to use off -the -shelf hardware components will
mean higher product cost. On the other hand, the decision
to develop (custom) software may increase the risk of

slipping the schedule. Clearly, the life of a system designer
is far from easy!

What aids will help with the design task?

One aid is a system block diagram, which shows the
different subfunctions and how they are connected.
Another is a diagram showing the interface between the
microcomputer and the rest of the system: how the input
data arrives at the micro, and what outputs from the micro
go where. This interface diagram reflects some of the trade-
offs that have been made between hardware and software.

So, now that you've analyzed and designed the system,
it's time to start building it, right? Almost, but not quite. It
pays to first plan how you'll go about testing the system
once it's put together. You need to plan tests for the step-
by-step integration of hardware and software, and to
develop a final acceptance test that checks that the system
satisfies the original requirements. If testing is not planned
now, while requirements are still fresh in mind and you're
not yet in the heat of the test -debug -modify battle, testing is
likely to be inadequate, and reliability of the resulting
system will suffer.

On the other hand, with these documents - the test plan
and acceptance test - hardware and software development
can take place somewhat independently and concurrently,
with a fair chance of successful integration of these two
portions when the time comes.

Is it really that simple?

Unfortunately, as you've probably suspected, issues in-
volved in analysis, design, and implementation are often
complex and interrelated. You'll find that you'll return to
the design and even the analysis stages as problems and
changes arise. For example, maybe the hardware could be
much cheaper if a timing spec is loosened. The system
designer's job is to determine the ramifications of such a
change to ensure that the system will still work.

Before we move on to the implementation stage, note
that tools are no substitute for a common-sense approach
to designinga system. For example, in the analysis stage, sit
down with the ultimate user to determine the real
requirements. A visit to the installation site can sometimes

BUDGET liSGHEDULE

HARDWARE

REQUIREMENTS

SOFTWARE

REQUIREMENTS

SOFTWARE

DESIGN

HARDWARE

DESIGN

Fig. 1. System development process.
This data -flow diagram shows the
three key phases in the process-
analysis, design, and implementa-
tion.
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Author Ny debugging a microcomputer -based system in a
"bare -bones" environment. Scope is in the foreground.

be helpt ul. If previous or existing solutions are available,
an examination of these can sometimes give further insight
into the problem. The best tool available for designing a
system is thought. Clear -minded, unbiased, unbridled
thought (maybe even blue-sky rambling) can sometimes
lead to a unique and clever approach to the design.

Pictures - block diagrams, data -flow diagrams,
schematics - will give many insights into the analysis and
design process since they usually present a lot of informa-
tion in small, easily understood packages. In short - think,
draw lots of pictures, and communicate with users and
other project members.

Implementing in a "bare -bones" environment

You are faced with implementing a small microprocessor -
based control system, or you simply want to build a small
system to educate yourself about microprocessors in
general. You go to your manager and subtly suggest that
you need $15,000 for a minimal microcomputer develop-
ment system. Using that special tact which is bestowed only
on managers, he counters with something like, "As you
know, this year's budget is very tight. Perhaps we can use
the company time-sharing system and if things go well, we
might be able to get a new oscilloscope next year." And you
hadn't even gotten to the part about needing a $10,000 logic
analyzer yet! Does this sound familiar? Do you need to
implement a small microprocessor system without the

desired resources? Don't despair! This section describes
what we've dubbed the "bare -bones" development environ-
ment.

First of all, note that we used the word "desired" rather
than "necessary" resources. When developing small micro-
computer systems, you often do not need the power of the
latest development system with all its options. You need
not implement your small control programs in Ada. If you
are building a small microprocessor -based system for your
own education, you can assemble your program by hand.
Hand assembly is a means to an end that also gives you
valuable insight on the inner workings of an assembler (for
example, how it handles the symbol table, or why it needs
two passes). You'll be putting the assembled code in an
EPROM (or else a large pile of PROMs), so you'll need
some means of burning the code into the EPROM. One of
the ultraviolet EPROMs, like a 2708 or 2716, will do very
nicely. You'll also need access to an EPROM eraser.

On the other hand, if your task is project -related, you
will need some additional support, even to implement only
a small system. First, you will need access to an assembler.
Here almost anything will do, for example, a resident
assembler on someone else's system, or a cross -assembler
on a larger time-sharing system. The other piece of
equipment needed is a decent oscilloscope. Although
additional available resources would be convenient, you
can implement even medium -complexity microprocessor
systems using nothing more than these tools.

Can I really debug without sophisticated tools?

Yes - by using the system you are building as both your
hardware and software debugging tool. Just be sure to
avoid building all the hardware and then trying to figure
out why it doesn't work. Trying to debug fully -built
hardware with a few hundred connections is not a job for a
single -trace scope.

Instead, build a small piece at a time. Start with the clock
circuitry and convince yourself that it works correctly.
Then connect the microprocessor chip and the EPROM
chip. This usually requires only that you connect the
address and data lines and a few control lines with some
small-scale integrated circuitry. "How can I check that this
is working since I don't have any input or output?" you ask.
The idea here is to keep it simple. At this point, your whole
system consists of only three or four chips with perhaps 20
or 30 connections. Keep the test software simple, since this
is the only time that you have no working system to help
debug the rest of it. A short program that branches
someplace and then branches back again is all you need.
You can then sync the scope on one address line (unique to
one of the locations) and look at the address lines to see if
you are branching between the two locations.

After you have this minimal configuration working, you
now have a valuable tool to help you debug the rest of the
system. You now add the RAM chips and the I/O ports to
your system. Again, do it a step at a time. Add just the
RAM and write a short test program to see if you can read

6 RCA Engineer  26-8  Sept./Oct. 1981



Attempting more complex systems design in the "bare -
bones" environment may be more than you can handle.

and write to memory before you add the I / O. What is
needed in these test programs is pure simplicity to avoid
programming errors. In general, you can read from a non-
existent memory location in order to provide the scope
with a strobe. Then, follow with a simple loop (for RAM,
just write a constant to memory followed by a read from the
same location, then repeat). Now, if things don't work, it
becomes a relatively simple matter to trigger the scope and
look, one at a time, at the data lines, the write line, and so
on, to see what is not working.

Keep this process going, one block at a time, until you
have a good-sized system working (perhaps 20 to 50 chips
with many hundreds of connections). If at any time in the
process the hardware does not work with the previous test
program, you have only the handful of connections to the
additional chip to worry about.

How about debugging the software?

At this point you are probably one step ahead of us, and
have concluded that you should use a similar step -at -a -time
approach to the software development. You are absolutely
right! To debug the software, one very useful piece of
hardware is a box with eight switches tied to an input port
and eight LED lights tied to an output port. Now have your
suspect program perform a single task and output some
intermediate result to the lights, so that you can see the
state of affairs. If things are not what you expected, then
you have only a few lines of code to look at carefully. If it
does work, you simply move your test down past the next
task in the program. As with the hardware, the basic theme
is to keep things simple (even though your overall software
may be quite complicated).

As an example of a system developed in a "bare -bones"
environment, one of the authors recently developed a Z80 -
based controller for a future consumer product. The Zilog
Z80 processor used 4 kbytes of EPROM and 1 kbyte of
RAM ( 1 k = 1024). The system included two program-
mable I/ 0 chips, a programmable counter/ timer, interrupt
controller, and a handful of miscellaneous low-level chips.
The author used a scope, an assembler on an M DS (see the

next section), and an EPROM burner. Excluding the
(borrowed) MDS, this development environment cost less
than $5,000.

Many diehards who have been playing with micro-
processors from the beginning have built entire systems
without an assembler or even a scope. System development
in the "bare -bones" environment, although feasible when
you have nothing better to work with, has some disadvan-
tages. It can become extremely frustrating. Furthermore,
system implementation can require as much as an order of
magnitude more time. It's not that one cannot develop
systems this way, but rather that it becomes much more
productive - and pleasant - with better tools.

Implementing in a mecium-sized environment

As in any other discipline, better tools will let you spend
more time fighting the real problem, and less time fighting
your equipment. What are these wonderful tools that will
free you from a life of drudgery? In this section we'll
mention some of the key development aids.

Can existing tools in the Corporation help?

Yes. For example, simulation programs for electronic
circuit design are available on RCA's IBM 370 system in
Cherry Hill. Two of these programs are RCAP (RCA
Circuit Analysis Program), for use in analyzing analog
circuits, and MIMIC, a circuit analysis program for
analyzing digital circuits. These tools are accessible by
merely opening an account with the people in Cherry Hill.

Other valuable sources of development assistance are all
those manufacturers out there who are so eager for you to
use their products. A well -placed call to the manufacturer
of an IC or piece of equipment you plan to use may bring
you an applications note, or if you are lucky, access to a
good applications engineer.

Several techniques exist for implementing a piece of the
hardware system. You can put together an easily
modifiable breadboard, with quick -connect tools or even
services which can wire -wrap as many boards as you want,
given a wire -connect list. Alternatively, a printed circuit
board approach can be useful when the system must be
replicated many times. There are also computers that aid in
laying out PC boards (such as an Applicon system).

To test the hardware once it's built, you'll generally have
to rely on your wits. However, a few tools can make the job
of testing the digital/ microprocessor components a lot
easier. These include: a good multitrace, wide -bandwidth
oscilloscope; a logic analyzer; and a function generator. As
you know, an oscilloscope records one or more analog
signals for some period after it receives a trigger signal and
displays that information as a graph on a CRT. A logic
analyzer is basically an oscilloscope for digital signals. It
records digital words (usually 8 to 32 bits) and saves some
number of them when it receives a trigger word, and
displays them in either numeric or graphical form on a
CRT. A function generator might be useful for stimulating
the inputs to the system with a known waveform.

Caracappa, et a/ Designing and building mic'ocomputer-based systems 7
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So much for the hardware. But what about the software?
In fact, it is software tools that will make the biggest
difference to your efficiency. We noted in the "bare -bones"
environment the value of an assembler over hand -
assembling your program. This is but one of many useful
software tools. Figure 2 shows the different steps in
developing software in a medium-sized (and large -
resource) environment. The details follow.

How can a higher -level programming language help?

Certainly the most important tool in software development
is a high-level language such as BASIC, FORTRAN, or
Pascal. Programs written in these languages are generally
much shorter and easier to understand, debug, and modify
than those written in assembly language. A compiler is then
used to translate these programs into machine code,
corresponding to the assembler used in translating
assembler programs. For those programs complex enough
to be broken into separate modules, their compiled and
assembled code modules must then be linked together into
a single module, using a linker, and that module must be
relocated to the memory location at which it will reside
during execution.

Stand-alone Microprocessor Development Systems may
not have adequate resources to accommodate the more
complex projects.

Fig. 2. Program development in a

medium- or large -resource environ-
ment.

Finally a program, whether originating as one module or
a collection of modules, is loaded into memory using a
"loader" (often a linker also does the job of the relocater
and loader, combining the three processes into one
program).

Where do these software tools live?

Compilers, assemblers, linkers, relocators, and loaders are
all computer programs, and must have a computer on
which to run. A computer with these facilities, which can
support a single engineer, is called a microcomputer
development system, or MDS. If program preparation has
all been done on such a separate (host) computer, the
process of placing the program into the (target) computer's
memory is called downloading. On occasion you'll want to
send data from the target to the host, using what is called an
uploader.

An MDS also provides an editor for entering your
program into a file prior to compilation or assembly. Since
much of your time will be spent interacting with an editor,
its ease of use and reliability are quite important. If it is
hard to use, making even the simplest change can be very
frustrating. For example, if it loses track of a file after
several hours of creating and correcting it, you may feel like
physically abusing what otherwise might have been a fairly
good MDS!

OK - but who can help me with the really hard part of
finding my program's bugs?

Once a program has been loaded into memory, it is ready to
be executed. This is the supreme test and the moment
you've been waiting for! Unfortunately, for some strange
reason only the simplest of programs run correctly the first
time. Most require many, many iterations of testing,
locating and fixing bugs, recompiling, and relinking. In
fact, the program test phase can easily be the most time-
consuming and frustrating phase of all. If there were ever a
need for assistance, now's the time!

Enter the debugger, which will help monitor and control
execution of the program in memory. A debugger initiates
execution of the program, allows you to look at and modify
the contents of those memory locations you are interested

8 RCA Engineer  26-8  Sept./Oct. 1981



Author Caracappa debugging a system (to his rear and 'eft)
in a medium-sized environment. Intel MDS is in the
background, on the left.

in, and stops at specified locations to enable you to check
values of variables and so on. As with the editor, you'll be
spending a good deal of your time interacting with your
debugger.

Another important form of assistance at the execution
stage is the In -Circuit Emulator (ICE), which physically
stands between an MDS and the target system. An ICE
module comes with a cable that plugs into the socket in
your micro system where the microprocessor normally
goes. It of, or emulates, the micro-
processor. The software portion of the ICE system resides
in the MDS and it allows you to debug as described in the
preceding paragraph. The big edge an ICE system gives you
over a software debugger is that it also provides a debugger
for the hardware. You can check on interrupt operations,
clock operation, address lines, and so on, using an ICE.

What's a typical medium-sized system cost?

An example of a system recently developed as a joint
project by the Labs and the Manufacturing Technology
Center at Indianapolis using medium development
resources is a system to aid in color television instrument
alignment. The system consisted of an Intel 8086 I6 -bit
processor, two wire -wrapped boards of custom analog and

In -circuit emulation hardware can be a valuable tool to help
you eliminate The bugs from your design.

digital logic, 12 kbytes of EPROM and I kbyte of RAM.
The software was developed on an Intel MDS 230, using
the usual steps of editing, compiling, linking, relocating,
and loading. The programming language used, Intel's
PL M, is roughly a small subset of PL/ I. A multitrace
oscilloscope and Intel ICE were the hardware development
aids. This development environment cost approximately
$30,000, although medium-sized systems range from as low
as $15,000 to $50,000 or more.

What is the common thread running through these
medium-sized development tools?

You've guessed it - in building these tools, we've
harnessed some of the power of the computer to help us to
solve our problem. For assistance in hardware tasks, we
have the 370 (or other large computer) to assist with the
design, and the (microprocessor -based) logic analyzers and
function generators to assist with testing and debugging.
For software assistance, the computer has done most of the
dirty work for us, from editing our source code to helping
debug our object code. In short, many of the things that
could be done better by a computer were, indeed, done by a
computer.

You've mentioned the good news in using a medium-
sized system - how about the bad?

There are still plenty of problems left in developing our
microcomputer -based system. The problems lie almost
exclusively in the software area, however. Sometimes, for
example, you will realize that a version of a program that
you've since modified, was correct in the first place. Unless
there is a backed -up copy of the original program, your
only alternative is to recreate this version manually, and go
through the debugging process again. Other times, you'll
want to know the value stored in a variable you've called
X. The debugger in the medium-sized environment may
only know numeric storage addresses. So, you have to read
through the address table produced by the relocator to find
X's address. This activity does not contribute directly to
the development of your system and is error prone.

These are but two examples of weaknesses in this
collection of tools. Nevertheless, these tools can dramat-
ically increase your productivity, and enjoyment, in

developing a microcomputer -based system.

Implementing in a large resource environment

We've seen that a few well-chosen tools, both hardware and
software, can do a great deal for us. In this section, we'll see
that, when necessary, we can carry this approach even
further; the result in doing so is what we've called a "large
resource environment (LRE)."

What's different about a Large Resource Environment ?

Well, first of all, it has as its core a relatively large
computer, such as a Digital Equipment Corporation VAX
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VAX 11/780 large -resource environment from Digital
Equipment Corporation similar to the DEC20 system
mentioned in the article. The system currently supports up
to 32 simultaneous users. A high-speed printer/plotter is in
the foreground.

11/ 780 or even the much larger IBM 370 computer system
at Cherry Hill, in place of the smaller M DS of the medium-
sized environment. It may be dedicated to a particular
project or shared with many other users, such as the Cherry
Hill machine. An LRE should provide a very convenient
cross -development environment with which to prepare and
sometimes execute programs that will eventually run on the
target microprocessor. Hence, as with the medium-sized
environment, we are "cross -developing" programs -
partially developing them on one machine, to ultimately
run on another.

You might he wondering why in the world we would
want to do such a thing? Why fool around developing our
microprocessor program on an entirely different machine?
After all, now we'll have to learn how to use two
machines - not only the micro, but the cross -development
machine as well! Well, you have a point, but sometimes -
depending on the nature of the project -a cross -
development environment can provide enough benefits to
make the effort of using it well worthwhile. Let's first look
at the tools found in a typical LRE, and then get back to the
pros and cons of this approach.

Now, as we've said, an LRE might be thought of as a
larger, more powerful version of the MDS used in the
medium-sized environment. There are, after all, the usual
editors, compilers, and so on, found on an M DS. But there
are important differences - some good, a few not so good.
The good ones include not only a difference of scale, but
also the amount of software tools available and the number
of simultaneous users.

An I.RE computer is likely to be at least several times
faster than most M DSs, typically executing up to a million
or more instructions a second. This means that com-
pilations and linkings will be done more quickly, assuming
the computer is not heavily loaded by other users. There are
generally very large disks (each holding hundreds of
millions of characters), tape drives, fast printers, and other
convenient peripherals.

Do I get more than speed for my money in an LRE?

A good LRE will also have a wealth of software tools,
depending on how long the particular model LRE com-
puter has been in existence and how many other in-
stallations use it for applications similar to yours. In fact,
so important is the software to the success of an LRE, that
the rule of thumb in selecting an LRE should be: choose the
richest and most appropriate software environment you
can find, then buy the hardware that it runs on.

An LRE is likely to include a greater depth of tools
containing, for example, several editors and compilers for
several languages. Some of these tools will be more reliable
than others, some will have better features than others.
Having the freedom to choose between tools with differing
features leads to a better fit for a particular project, and
may lead to higher individual productivity.

There will also likely be a wider range of tools in an LRE.
For example, in addition to source code editors, there may
be special document editors (for producing and quickly
updating specs, memos, and so on) and graphics editors
(for creating graphics scenes to be integrated into and
manipulated by graphics programs). There may be
automatic backing up and archiving of files. There will
likely be cross -compilers and cross -assemblers for a variety
of target microcomputers, extending the usefulness of the
development environment -and the expertise built up in
using it - to other projects. Debuggers may be more
powerful, allowing you to work in terms of your high-level
language program (for example, variable X) instead of in
terms of the raw machine (X's object code address).

Unlike its smaller cousin, the MDS, an LRE is a multi-
user facility. The computer is time-shared by users, each
getting but a fraction of the computer's attention on a
millisecond -by -millisecond basis. This means improved
communications between several project members
developing software; they may "talk" to one another while
remaining at their respective terminals by sending
messages. The LRE's electronic mail system may also be
used for sending notes, to be read and responded to at the
receiver's convenience. And last, but far from least, data
and programs in a time-sharing system are naturally
sharable among its users. Sharing is but a single command
away - no computer -to -computer link, no magnetic tape
transfer of files from one machine to the other, and no
changing of dialects from one machine's high-level
language to the other's - simply copy the program with
one command and run it.

What's the role of the MDS in an LRE?

The MDS is used in an LRE as a kind of intermediary
between the large computer and the micro, rather than as a
program development facility as in the medium environ-
ment. Downloading often goes through the MDS, on
whose disk downloaded programs can be stored before
they are passed on into the micro. This allows for generally
quicker reloading of the micro's memory after aborts, and
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is especially useful for those pieces of the software that
haven't changed lately.

An essential role of the MDS in an LRE is in debugging
using its ICE capability. As we mention later, an LRE can
simulate execution only so far, and then an ICE capability
is needed.

What does a particular LRE look like?

A recent joint project at the Princeton Labs and the
Consumer Electronics Division in Indianapolis, Indiana,
employed a Digital Equipment Corporation DEC20-based
LR E. This computer supported a dozen or so simultaneous
users producing software for an Intel 8086 micro-
computer. The software used for this project included two
editors, two graphics editors, two cross -assemblers, three
cross -compilers, two linker/ relocator/ loaders, an 8086
simulator/ debugger, and a test monitor to assist in
systematically applying the tests in the test plan. It also
included a source -code -version control program to ensure
that changes to a module were recognized by all users of the
changed module; a Pascal debugger; a Pascal program -
performance monitor to identify program bottlenecks;
downloaders to Intel MDSs and to the 8086 directly;
document formatters; and a mail system. In addition to the
DEC20 itself, there were a graphics terminal, two MDSs.
single -board 8086s (the targets), logic analyzers, EPROM
burners, and oscilloscopes.

What are the disadvantages of an LRE?

You've probably been wondering about the price tag of
such a grandiose system. An LRE can be quite expensive.
For example, the above DEC20-based LRE ran well over
$300,000 for hardware and software, over $20,000 per year
for equipment maintenance, and the equivalent of one full-
time person to maintain the system. And these figures don't
include the MDSs and associated equipment. In addition,
over three person -years were spent tailoring the software
tool environment to the project. Of course, the process of
customizing an LRE to your needs is an on -going one, and
cost must be spread over more than one project. On the
other hand, if you plan to use your LRE on another project,
you may well have to purchase, modify, and / or build from
scratch additional tools needed specifically for the
particular micro. This effort can be extensive, and should
be considered from the beginning.

A time-shared LRE can result in productivity losses if it
becomes heavily loaded - and most of them seem to get
that way eventually. Not only does it take longer for the
machine to perform each development step (for example,
compiling your program) on a loaded system, but the
unpredictability of the time that a step will take makes it
hard for you to plan your other activities. At least on a
single -user M DS, if you've found that a particular compila-
tion will take, say, half an hour, other things can be
accomplished during this period.

We've mentioned the ability to simulate execution of a
micro on an LRE. Just how accurate is such a simulation?

Sometimes not very. For one thing, timing is different. So-
called "real-time" programs depend on certain things
happening in a certain amount of time - for example, an
interrupt should be processed in a known time interval. If
these assumptions are violated, the program will likely fail.
Furthermore, most simulators don't really simulate the
entire microprocessor environment; in particular they
don't simulate most peripherals. So when it comes time to
exercise these peripherals. the simulator is no longer useful
and you must execute on the MDS using ICE or on the
target system itself.

Finally, an LRE increases the number of things to be
learned (all those handy tools come with manuals), and
often (depending on how effective your simulator is) it
greatly increases the number of steps you must go through
to test and debug a program. If any steps are particularly
slow, such as downloading (which is fine at 960 bytes per
second but terrible for large programs at 30 bytes per
second), the debug cycle can become very time-consuming.
Furthermore, additional steps mean more things to go
wrong: bugs in the software, hardware problems in the
central computer system. terminals, communications
equipment, or download link.

Nevertheless, an LRE is particularly useful in large
projects. It also offers the longevity that is often missing in
dedicated development systems. Even if the target micro-
processor changes from project to project, many tools will
remain the same: editors, mail system, document system,
and utilities.

Dealing with other system development problems

We've seen three levels of development environments, and
some of the pros and cons of tools at each level. But there
are other issues and considerations besides tools in
developing microcomputer systems.

When can I trust my development tools?

This is a very hard question to answer, but we can offer
some guidelines. First, like almost everything else in life,

Large -system response times can become unbearably slow
when the systems are heavily loaded.

Caracappa, et a/.. Designing and building microcomputer -based systems



When you can't find the cause of your problem, let friends
look at your program because they can often locate errors
which escape you.

you generally get what you pay for. It is often, but not
always, true that a $3,000 software debugger will contain
more of the desired features and be more reliable than a
$300 debugger. At least the higher -priced software usually
comes with more maintenance support (that is, assurance
of bug fixes).

Secondly, the newer the software package, the higher the
risk. Generally, if the version -update number is newer
(version 3.37 instead of version 3.26), chances are that you
will receive a more bug -free version because this denotes
that specific bugs have been found and corrected. On the
other hand, if the version number itself has increased
(version 4.03 instead of version 3.37), you run the risk of
getting an increased number of bugs because a new version
number corresponds to major changes (usually new
features). Unfortunately, companies who turn out new
processor chips are under pressure to deliver development
software and provide in -circuit emulation and debugging
tools quickly. This leads to hardware and software that has
not had the time to be adequately tested.

Even though most tool reliability problems are due to
software failures, occasionally hardware tools will fail. We
have purchased development tools from a manufacturer
(who shall remain nameless!) where we spent several days
trying to find out what was wrong with our hardware, only
to discover that the hardware emulation and debugging
aids were in worse shape than the system we were trying to
debug! It is often better to use an existing tool, which
someone, who knows where the bugs are, has used before,
than to experiment with a new tool.

How do I separate hardware from software problems?

The answer to that question is a rather easy one: always
suspect the software. Provided that the hardware was

checked by simple-minded test routines, future problems
are almost always caused by software errors. This is a
concept which can be difficult to put into practice because
many of us have a rather large ego to contend with. The
typical process goes something like this. We make a change
to the software and notice the program no longer works.
We note the symptoms and start looking at the appropriate
piece of code and sure enough, we find some obvious errors
and fix them. We try it again and it sort of works but not all
the time, and we can't quite isolate the precise conditions
that cause it to fail. At this point, we have carefully looked
at every line of code and convinced ourselves that it cannot
possibly be in error! And now we make the big mistake and
conclude that the only explanation must be that we have a
hardware bug, which we now proceed to look for instead of
looking at the software again.

What went wrong? We sometimes don't like to suspect
ourselves. Often the hardware is designed by us and
constructed by someone else. Even when we build it
ourselves, we like to put the blame on someone or
something physical. After all, when we wrote the program
code, we faithfully wrote the instructions which performed
just the function we had in mind. Or did we? Well, we did
make that obvious error that we found and corrected but
now it must be correct ... Actually, instead of suspecting
the hardware at this point, it's often better to have someone
else look at your program. But don't describe each piece of
your program and how it works. If you do, that person will
go down the same rosy path that you did and reach the
same conclusion that you did - that there is nothing wrong
with the program. Often, someone unfamiliar with your
program will quickly find an error in a piece of code that
you must have looked at hundreds of times. The problem is
that when you wrote it, you were sure it was correct, and
each time thereafter you only further convinced yourself of
its correctness. We'll admit that this procedure can be
somewhat humiliating, but it's often very worthwhile
indeed.

Of course, if you (and your friends) have spent days or
weeks looking for a software problem to no avail, then you
might begin to suspect the hardware. At this point, you'll
drop back to simple hardware test routines to try to isolate
the problem.

Which processor should I use?

When it comes to choosing a processor or deciding whether
or not to perform a given task in software, many factors
should be considered. How much computing power do you
really need? How much effort will be required to perform
this task in software? How much will the finished system
cost?

First, let's start with some realities. It always requires
more effort (often ten or more times more effort) to
implement a given task in software instead of using a
specialty hardware chip. In contrast to the hardware
situation, there are presently very few off -the -shelf
software building blocks. Software is generally written to
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exactly fit a situation, and hence is not reusable in a
different context.

The hardware/ software choice is often dictated by the
ultimate use of the system, and other times by the tools and
development facilities available. Or, the choice may be
based on the experience that the people involved have with
a particular processor.

Shouldn't the ultimate usage guide my choices?

Absolutely. If your system is going to be part of a device
that will be sold by the tens of thousands, then you will
choose the processor with the minimum required
capabilities at the lowest possible cost. Almost every
function possible will be performed in software to reduce
hardware replication costs. For this kind of a situation, the
cost of development tools (although they may be very
expensive) is insignificant. It is also worthwhile to spend a
month to develop a routine in software that eliminates a
$2.00 hardware chip. In short, it is almost worth any effort
(and a lot of effort will be required since it will be just barely
possible to perform the functions with the processor that is
chosen) in order to reduce the system replication cost by a
few pennies.

On the other hand, suppose you are developing a system
that will be one of a kind, or perhaps replicated a few times.
Then you should not be afraid to include a liberal
sprinkling of sophisticated hardware support chips in your
design, as it will reduce the development time and effort
required. And if the processor you choose is more
expensive and has capabilities that you will not fully use, so
what? It is also perfectly reasonable to use a processor that
you are familiar with even if it may not be the best choice,
particularly if you want something working in a relatively
short period of time.

How can I obtain the necessary equipment and
expertise?

Obtaining microprocessor development equipment can be
an expensive proposition (remember your manager's
reaction!). Also, if you don't have some system design
experience it is very difficult to know what you should buy.
First, you must determine your needs. If you will have to
implement a wide variety of systems, then one of the
general-purpose systems that support several of the pop-
ular processors might be appropriate (such as one from
Tektronix or General Radio). On the other hand, if your
needs can be met by one family of processors from a single
vendor, then you will be better off with a development
system from that vendor. The reason for this is that you will
be able to get support for the latest product the vendor has
to offer almost as soon as it is available. Also, you can
usually get help with problems from vendors who are
anxious to sell you their processors.

We should point out that a general-purpose develop-
ment system, although more flexible and adaptable to new
processors, does have some drawbacks. Availability in
these systems of in -circuit debugging hardware and

Where do you go from here?
A wide range of aiailabJa
tools can greatly ifnprora
your productivity .n
develooing a micrp-based
systen.. What does this
mean or you? Well,
productivity is a complex
issue, depending on sucn
things as the "friendliness"
of the system, the ease of
learning the opera-ing
system and applications
programs, the languages
and other software
availab.e for the system,
and the expandabi.ity for
future Epplications.

Common sense Palls us
that we don't need the
power of a time-sharing
system to develop simply
controller and likewise Ari
cannot nave twenty peop.e
working on a comp'icateo
project in the "bare -bones '
environment. In most
cases, however, we are no'
faced with such an obvious
choice. Ilsually more than
one person and less than
twenty must be cons.derec'.
Also, the project is often
neither simple nor extreme-
ly complicated.

What choice should one
make? Part of the ar swer
lies in understandinc the
minimum resources
needed to implemen your
particular applicatior.
There is a problem it you
are getting into micro-
processor systems fcr the
first time with little
awareness of the options
available To you. You could

listen to the salesmen for
the various micro, mini and
time-sharing development
systems, but when you
listen to a salesman you
may get the impression that
with a few expensive
options the system could
double as a boat or an air-
plane for weekend
recreational purposes.

If you are inexperienced,
try to get some advice on
what your minimum
resource requirements are.
After you have a good feel
for the features you need,
talk to development system
vendors and ask a lot of
tough questions such as:
how does your option really
fit my needs? If the option is
new, how soon will it be
installed in my plant, and
what happens if it doesn't
work? If you fino that you
need a lot of expensive
options to the basic system
in order to meet /our
needs, you should
probably consider a more
powerful basic system. In
many cases, a less powerful
system with lots of options
will be the more expensive
choice.

The main point is to let
your demonstrated (as op-
posed to imagined) needs
drive your quest for and
selection of development
tools. This way you're more
assured of using what you
buy - at least unti; the next
incompatible project
comes along!

software for a new processor usually lags behind that
available from the manufacturer by many months or even
years in some cases. The general-purpose systems are also
usually rather slow by comparison and are designed to be a
jack-of-all-trades and consequently master of none. Still, if
you need to work with a variety of processors that are not
the very latest that technology has to offer, then the
general-purpose system is your best choice.

But how do I learn to use all these tools?

If may not be as hard as it sounds. If you learn well in a
classroom environment, then there are several micro-
processor courses offered as part of RCA's continuing
education program. There are also many good books on
microprocessors and system design - some from the
manufacturers themselves are free. If you learn best by
doing, then there are several microprocessor courses
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offered that include a small computer system (yours to
keep). This is particularly useful since you can continue to
play with your small system to gain additional insight and
expertise. If you are also an incurable experimenter (once
having gained the necessary experience, this person
probably makes the best small -system designer), you will
probably want to obtain a microprocessor and some
support chips and design your own system from the start.
You can get by with very little, other than your desire to
learn what makes the system tick. You can start off in the
"bare -bones" environment, as discussed earlier, and obtain
some valuable experience and insight. If you have the
desire don't be afraid to dig right in with only a handful of
chips. Even if you have no hardware experience, you can
usually gain what is needed from a manufacturer's
applications note.

Trends in microprocessor system development

It seems hard to imagine that the microprocessor field
began only a few short years ago with the lowly 8008 from
Intel. Even the term "microprocessor" has lost some of its
original meaning. Some of the newer "micros" can
legitimately be considered minicomputers or even main-
frames. Micros now come in assorted flavors from single -
bit controllers up to 32 -bit machines with 4-, 8-, 12-, and 16 -
bit machines in between. The trend is forever upward in size
and complexity. Where will it all lead? Will we have
handheld 370s before the decade is out? Everyone is
squeezing more and more into the same silicon real estate
as before; even the limits of optical lithography do not seem
to have slowed anyone down.

How will this trend affect my hardware/software
system designs?

For the one -of -a -kind system, life will become increasingly
easier as you make use of the specialty support chips now
becoming widely available. The software task in many
cases will center on merely sending data to and from the
support chips. For medium size systems, it will be hard to
justify anything written in anything other than a high-level
language. With the low cost of memory, you can now
reasonably implement your software in FORTRAN,
BASIC, Pascal or even PL/ I on even the low-cost 8 -bit

Intelligent peripheral control chips essentially reduce the
programming burden to one of handshaking.

machines. Microprocessor manufacturers are also design-
ing machines for specific languages by gearing instruction
sets to particular languages, such as the Pascal Micro
Engine from Western Digital or the Ada -oriented iAPX
432 microprocessor from Intel.

All these advances lead to reduced effort to develop
useful applications software. This is very significant when
you consider that software development costs and effort
are often an order of magnitude greater than those for
hardware development. Even the cost -sensitive
applications which cannot use these new wonders will
benefit from the lower cost of the simpler chips due to the
experience gained in making the more complex ones.
Overall; we see the trend continuing with more and more
specialty chips to reduce your software effort as well as a
steady trend towards high-level language development for
small systems implementation.

Will cheaper, more powerful hardware affect software
development tools?

Most certainly. The new, much more powerful dedicated
computer systems are beginning to blur the distinctions
between the LRE and M DS environment. In fact, systems
for around $30,000 combine the best of these two
environments - the power and peripherals of a mini-
computer, plus a high-speed network for tying systems
together (providing the vital communications link found in
a time-sharing system). Although these systems can be
shared by several users, the tendency as they become
cheaper and more plentiful, will be to use them as single -
user ("personal") systems.

Perhaps the most important software trend is the
ongoing implementation (through the combined effort of
many companies and universities) of generally useful
software tool sets. These tools run on any machine that
supports FORTRAN (virtually all machines). This effort
was motivated by the work at Bell Labs on a system called
Unix'. Unix' consists of an operating system and a very
wide and deep set of software tools, all implemented in the
high-level language C. For a while Unix' only was
implemented for PDP/ 11 computers, but it is now
becoming available on a wide variety of computers,
including Digital's VAX, IBM's 370, and many micro-
computers. This commonality of tool sets across projects
and machines will help improve productivity in the
software development area.

It sounds exciting, but...

Although all of these developments help reduce the
software effort required for a given application, things are
becoming more complex with each new processor. Gaining
expertise with each of these new developments will become
a greater burden. Development tools will also be more
sophisticated and costly, and as everything becomes more
complex, you will not be able to do without them. For
example, programs written for Intel's 8086 processor are
nearly impossible to hand -assemble due to the complexity
of both the machine and the assembly language.
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Microcomputer systems
and development terms
acceptance test Final test of a system-tests a
system s functionality, reliability, etc.

Ada A powerful, new, U.S.-government-sponsored
high-level programming language for embedded
computer systems, but generally useful for a wide
range of applications. It has its origins in Pascal.

assembler Translates an assembly -language
program into object code (see "object code";.

BASIC An old but still thriving high-level program-
ming language used for scientific and other
applications. It emphasizes interactive computing.

breadboard The initial hardware part of a system
used to iron out the flaws (usually wired by hand).

circuit analysis program From a description cf an
electronic circuit, initial circuit condition, and input
(driving) functions, this program simulates the circuit
and generates a set of output (response) functions.

Although each of the new chips tends to make things
easier than they were before, each of them promises more
processing power and speed. At the same time, we are
attempting to implement much larger, more complex
applications.

Are things becoming too complex? No! There will
always he applications which are just out of reach of the
current technology. But more and more applications are
coming within reach of the ever-expanding micro-
processor frontier. This same technology, coupled with
sophisticated software packages, means that we will also
have the necessary tools to build tomorrow's systems.

Reference
I. Ripley. 6.1).. "Some Soltware Engineering techniques.- RCA Technical Report
(Oct. 1980).

David Caracappa has been with RCA since 1974, and is currently a
Member of Technical Staff at the Laboratories. Originally he was
with Astro-Electronics in Hightstown. While there, he workeo on
the TIROS weather satellite program and did advanced system
design work on utilizing microprocessors in command decoders.
telemetry processors, and the space shuttle camera controller.
Since joining DSRC in 1978, he has been involved in the design and
implementation of microprocessor -based systems for new Con-
sumer Electronics products and color TV manufacturing systems.
Contact him at
RCA Laboratories
Princeton, N.J.
TACNET: 226-2278

Nils Ny originally joined RCA in 1965 at Astro-Electronics in
Hightstown and came to the Laboratories a year later. He has been
involved with minicomputer and microprocessor systems for a
variety of applications including colorimetry analysis, cable TV
communications and factory automation. He is currently a Member

compiler Translates high-level language programs
on host machine into object code for the host
machine.

cross -assembler Translates assembly -language
programs on host machine into object code for the
target machine.

cross -compiler Translates high-level language
programs on the host machine into object code for
the target machine.

cross -developing Deveoping software on the host
computer for the target computer.

data -flow diagram Shows flow of data and data
transformations in a system.

debugger Provides execution -time help to program-
mer in finding bugs in his or her program.

downloader See loader.

editor A text editor (or just "editor") is used to
compose and modify a program's source code. A
document editor formats a document as it is entered
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into the machine. A graphics editor is used to
compose and modify graphics scenes for presenta-
tion on a usually high -resolution, color CRT.

electronic mail Enables users of a time-sharing
system (or collection of connected computers) to
communicate by sending each other messages, or
"mail."
emulator Hardware that mimics a particular
processor chip.

EPROM Eraseable Programmable Read -Only
Memory; can usually be erased by exposure to
ultraviolet light, and reused.

executable image The binary version of a program
that can be loaded directly into memory and ex-
ecuted.

FORTRAN An old but active high-level program-
ming language used primarily for science and
engineering applications, and available on nearly all
machines.

function generator Hardware used to produce elec-
trical signals of desired waveshape. These may be
analog or digital functions.

high-level language A programming language that
contains terms and constructs that are high-level (or
English -like) and applications -oriented.

host system The computer system on which software
is cross -developed (see "target system").

ICE (In -Circuit Emulation) Debugging by using an
emulator instead of the processor chip in the target
system.

interface diagram Shows connections of external
signals to the microprocessor in the system.

linker Combines separately compiled or assembled
object modules into one program by filling in linkages
(calls and data references to the various modules).

loader Loads an executable image into a computer's
memory. If there is loading from host machine to
target machine, it consists of two parts: the "pitcher"
or the host, sending the image to the "catcher" or the
target, which then loads into the target memory.
combination is called the down loader.

logic analyzer Hardware that displays a state
diagram of some of its inputs (usually 8 or 16) upon
occurrence of a specified condition of the other
inputs (usually 16).

MDS Microcomputer development system.

micro See microcomputer.

microcomputer A single chip containing a
processor, RAM, ROM (or EPROM), and I/O.

microcomputer development system A host system

consisting of a computer, I/O devices (e.g., CRT,
printer), mass storage (e.g., floppy disk), and
software for developing software for a target system.

microprocessor A single chip containing only a
processor.

module A single main program, subroutine,
procedure, or function.

object code The binary representation of a
program -t-anslated source code.

oscilloscope Hardware which displays a graphical
representation of one or two inputs.

Pascal A modern, high-level programming language,
used for a wide range of applications, that
emphasizes flexible data types and error checking.

PL/I A large high-level programming language for
general-purpose use that has features from FOR-
TRAN, COBOL (a popular business language), and
ALSOL (an early scientific language).

port The physical means through which a computer
communicates with external devices (there are
typically at least several of these per processor).

processor The central processing unit in a computer.
It fetches End executes instructions.

RAM (Random Access Memory) A memory device,
an arbitrary location of which can be read from or
written into.

relocator Relocates object code addresses to enable
the code to reside in a specified memory location.

ROM (Read Only Memory) A memory device, an
arbitrary location of which can be read from but not
written into.

simulator Simulates the execution of one computer
on another computer.

source code The original, human -readable represen-
tation of a program.

strobe An electrically generated pulse that can be
used to synchronize other events.

system block diagram Shows basic functional
portions of the system and their relationships to each
other.

target system A computer system for which software
is developed (see "host system").

test plan Describes tests to be made on the target
system and specifies intent, expected results, and
chronology.

time-sharing Scheme for sharing a computer
between a number of simultaneous users, each of
which appears to have the computer to himself or
herself.
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J.P. Paradise

New CDP1805 microprocessor
upgrades CDP1800-based systems

A new microprocessor, the CDP1805, speeds throughput and
reduces chip count while retaining all the advantages of the
register -based CDP1800-series architecture.

Abstract: The CDP1805, an updated version of the time -
tested CDP1802 microprocessor, possesses on -chip
hardware and software functions that are similar to those
found on many microcomputers. These additional
functions, coupled with a higher clock rate than on the
CDP1802, can offer significant improvement in both
system throughput and integration, as well as widen the
field of application of CDP1802-based systems.

The RCA CDPI800 microprocessor series is a well -tried
LSI product line that implements control -oriented micro-
computer functions in CMOS technology. The preeminent
device of the series, the CDP1802, has been in production
since 1977, with yearly output now exceeding one million
devices per year. Finding its way into a wide range of
applications that require low power for portability, high
noise immunity for satisfactory operation in industrial
environments, or a wide operating temperature and voltage
range to assure optimum performance under a wide variety
of ambient conditions, the CDP1802 has established itself
as the leading CMOS microprocessor. With the introduc-
tion of the CDP1805 by RCA, CDP1800-based designs can
be further enhanced, and proposed new or improved
system designs whose performance requirements previous-
ly exceeded the capability of the CDP1802 can now be
implemented.

The CDP1800-series
microprocessor architecture

This section will help readers unfamiliar with CDP 1 800 -
series architecture to understand its fundamentals and
salient features, so that the enhancements achieved in the
CDP1805 can be more fully appreciated.

Reprint RE -26-8-2 ST -7009
Final manuscript received July 15. 1981

As shown in Fig. 1, the central feature of the CDP1800-
series microprocessor is an array of sixteen 16 -bit

scratchpad registers used to provide control over memory
addressing and internal housekeeping. When used to
address memory, the registers are selected by software
instructions that load 4 -bit values into register selectors
(P,N,X). These selectors program the scratchpad registers
as program counters, memory pointers, and stack pointers.
This assignment flexibility allows the use of multiple -
pointer and context -switching techniques, and provides
quick subroutine -call implementation and efficient stack
and interrupt handling in real-time control applications. In
addition, these same registers can be used for variable data
storage, providing up to 30 bytes of data memory on -chip.

The 16 -bit -wide register -array matrix provides two
advantages in its dual use in address and data operations. A
216 or 65,536 -byte memory address range is possible for
RAM/ ROM addressing in main program, subroutine, and
stack operations. For data storage, the contents of each 16 -
bit register can be used as a 16 -bit data word, with
instructions for increment, decrement, register -to -register,
and register -to -memory manipulation of 16 -bit operands.
Thus, 16 -bit arithmetic and logic operations can be
supported by this internal architectural configuration.

Externally, CDPI800-series devices interface with a
variety of bus and I/O pins to external memory and
peripheral functions. Memory addresses are generated via
a multiplexed address bus; a latching TPA signal is

provided for the high -order byte. I/O addressing is
accomplished via a separate 3 -bit I/O bus with dedicated
instructions for data transfer between memory and
peripherals.

Other I/ 0 lines are provided for on -board DMA address
and control -line generation, for interrupt vectoring, for use
as flag lines for polling, and for implementation of a Q -line -
output port for control of external devices. The flag and Q
lines, in conjunction with a software -driver routine, can
also be used as a serial port to external I/O.

RCA Engineer  26-8  Sept./Oct. 1981 17
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Fig. 1. CDP1800-series architecture features a scratchpad register array for
address and Flata manipulation.

The remainder of this article describes specific CDP1805
features and explains how they are optimally applied in a
microcomputer system.

CDP1805 - the specifics

On -board RAM complement

The CDPI805 includes, on -board, a 64 -byte RAM array in
addition to the 16 x 16 scratchpad register array described
above. The RAM's six address lines are internally con-
nected to the CPU section; the eight data lines are part of
the CPU's external bus. The chip -select function for the
RAM is available through pin 16 (the Vcc connection on
the CDP1802). Thus, the RAM is essentially configured as
independent memory, with its 64 -byte block locatable
anywhere in memory space, and with its data lines available
to external 1/O for reading and writing. The 64 -byte block
is of adequate size for a stack area, being able to handle
many levels of subroutine and interrupt nesting, as well as
providing sufficient space for a modest data stack for main
program or 1/O routines. Figure 2 shows a typical
connection of the CDPI805 in a CDP1800-based system.

COUNTER -
TIMER

CDPI805

-0. EFI
EF2

0

1

ADDR

TPA

MRD

ME 4

< DATA

CDP1835

2K x 8
O. ROM

CEO

Fig. 2. Minimum connection diagram for a CDP1800-
based system that includes CPU, 2-kbytes ROM, 64
bytes of RAM, and a counter -timer.

On -board counter -timer

The CDPI805 contains an 8 -bit presettable down -counter
on -chip. The counter is configurable in a wide variety of
modes through the use of new CDPI805 software in-
structions (Fig. 3); external input and output lines are
available via the flag and Q pins. The counter features an
internal counter interrupt, which is activated on counter
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underflow, and internal execution similar to the external
interrupt mechanism found on the CDP1802.

The counter is loaded with a desired count, and preset to
its intended operating mode, by means of software
instructions. Counter contents may be loaded into the CPU
D register and manually decremented, a function that can
replace software loops in timing applications. In its
dynamic operating modes (of which there are five) the
counter -timer may receive its internal decrement -clock
signal from TPA divided by a ÷ 32 prescaler, or from flag
lines EF1 and EF2 (Fig. 4).

In the timer mode, the effective clock input is the crystal
frequency divided by 256 (XTAL ÷ 8 = TPA, TPA ÷ 32 =
prescaler output). Interrupts are generated on each counter
underflow; the preset counter value is reloaded into the
counter after each interrupt. In the timer mode, the
counter -timer can function as an accurate time base in real-
time applications. An ETQ instruction causes Q to toggle
with each interrupt, creating a programmable -frequency
square wave for external -device control applications.

Event counting can be performed in the SCM I and
SCM2 modes (Fig. 3) by bypassing the internal TPA clock
and feeding inputs directly from EFI and EF2. This
arrangement still permits the flag lines to retain their
normal functions. Again, the counter generates an in-
terrupt when a preset number of external events have
occurred.

EFI and EF2 can also be used to make pulse -width
measurements in the SPM I or SPM2 modes (Fig. 3). In
either of these modes, EF 1 and EF2 are used as a gate to the
TPA clock without the prescale divider. An interrupt is
generated, with the remaining count frozen, on the trailing -
edge transition of the flag line. Thus, the counter value
represents the width of the pulse appearing at EF1 or EF2.
Since the two flag inputs may be used together, these modes
are useful for comparison -type measurements.

These generalized explanations give some idea of how
the counter can be used in control applications The
specific examples given below employ some of these
counter -timer functions and illustrate other powerful
features of CDP1800-series I / O.

Enhanced hardware DMA: the counter -timer

On -board DMA control is a useful I/O feature of
CDPI800 architecture, especially in data transfer
operations where high speed is essential. Instead of
requiring an external controller to provide address and
memory read/write signals, the CDPI800 processor per-
forms these functions automatically, through register
R(0), when DMA -in or DMA -out pins are activated. The
counter -timer, along with a single inexpensive CD401 I, a
COS/ MOS NAND gate, keeps track of the desired number
of DMA transfers, with the peripheral only required to
issue a DMA request in the form of a single short pulse. The
modest internal software initialization and maintenance
required with this method results in an acceptable trade-off
with external hardware techniques.

LDC - LOAD
GEC - READ
STPC - STOP
DTC - DECREMENT
STN - TIMER MODE
SCM1 - EVENT COUNTER VIA EF1
SCM2 - EVENT COUNTER VIA EF2
SPM1 - PULSE WIDTH VIA EF1
SPM2 - PULSE WIDTH VIA EF2
ETO - COUNTER OUTPUT VIA 0

Fig. 3. CDP1805 counter -timer instructions for manual
control and selection of one of five dynamic modes.

Fig. 4. CDP1805 counter -rimer model. The 8 -bit down -
counter has a variety of possible inputs and an output
available from the Q line.

In the configuration shown in Fig. 5, the CDPI805 itself
keeps track of DMA transfers. The counter -timer is placed
in event -counting -mode SCM I, and counts TPA
transitions that occur during the time that DMA is active.
When the desired number of transfers is complete, Q
toggles, ending the DMA mode.

Software DMA with the CDPI805 counter -timer

When properly initialized, the CDP1805 can be used to
generate software -driven DMA (Fig. 6). In this applica-
tion, the counter -timer is set to pulse -mode SPM1. An
SEQ instruction, locatable anywhere in software. forces
DMA to begin. The counter counts internal TPA pulses

INPUT
PULSE -Lr
INITIATES
DMA

UN DERFLOW
TERMINATES
DMA

Fig. 5. CD P1805 -enhanced DMA operation using on -board
counter -timer. The counter -timer can be present to count
from 1 to 255 DMA transfers.

SCI

NW TPA

CDPI805

EFI

COUNTER COUNTS
DMA CYCLES
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EFI

0 FORCES DMA
CYCLES UNTIL
RESET BY
UNDERFLOW

L_COUNTER DETECTS
WIDTH OF DMA SIGNAL

Fig. 6. Software -controlled DMA using counter -timer.
The user has full control over any DMA transfer.

INT I

INT 2

INT

EFI

SCO

SC I

CDPI805

ACK I

ACK 2

Fig. 7. CDP1805 multiple interrupt capability with
handshaking using counter -timer. The additional in-
terrupt is edge -sensitive and has its own handshake line.

until underflow, at which time Q toggles and terminates the
DMA mode. The process may be repeated anywhere in the
software sequence; the number of transferred bytes is
determined by the count loaded into the counter -timer.

Adding a second interrupt to the CDPI 805

The internal counter -timer interrupt that is generated
within the CDP1805 can be used to advantage as a second
external interrupt, complete with a dedicated handshake
line. Furthermore, this interrupt is edge rather than level
sensitive, and the interrupt -acknowledge signal can be reset
manually within the service routine to provide accurate
status information to a peripheral.

For this operation, shown in Fig. 7, the counter -timer is
set to the counter mode, with a count of 01 preloaded, and
with ETQ enabled. The first high -to -low input -signal
transition causes a counter underflow, generating an
interrupt and creating ACK2. The interrupt source is
arbitrated within the interrupt -service routine, during
which time ACK2 can be reset.

Enhanced interrupt control

The type of interrupt action described in the counter -timer
discussion above is made possible because of the enhanced
interrupt -control logic and instructions of the CDP1805.
Since two interrupts must be dealt with internally in the
CD P1805, six additional linked instructions, shown in Fig.
8, have been provided for arbitration and control. In
addition to standard CDPI800-series RET and DIS
instructions, which provide master interrupt control,
separate X1E, XID, CIE, and CID instructions are
provided for independent control of external and counter

interrupts. In addition, both external and counter in-
terrupts are pollable by means of BXI and BCI short -
branch instructions.

The advantages to the user of this structure are that he
can enable or disable a counter or external interrupt
request with a simple instruction, and avoid the indirect
programming structure of RET and DIS for simple enable
or disable functions. Although not latched, the external
interrupt is pollable, making it useful as a fifth flag line, if
desired. Finally, the latched counter interrupt can be tested
as a real-time or polled event by selective use of the CIE,
CID, and BCI instructions.

RC -oscillator capability

The addition of a Schmitt trigger in the CDP1805 oscillator
section provides crystal or RC -oscillator capability (Fig.
9). An RC oscillator can have several advantages over a
crystal in noncritical timing applications. The most
obvious advantage is in cost; the crystal typically costs ten
times more than the resistor -capacitor combination. A
temperature -compensated capacitor can be purchased to
i mprovestability further when required by the application.

The RC structure also permits easier change of frequen-
cy. The resistor can be replaced with a simple user -
adjustable potentiometer. Further, step changes in fre-
quency for specific applications, time -base changes, or
lower power considerations can be accommodated through
simple RC -switching techniques. By way of providing basic
design guidelines, Fig. 10 matches resistor and capacitor
values with frequency.

Higher clock rate

The 4 -MHz clock speed of the CDP I 805, a 25 -percent
increase over the 3.2 MHz of the CD P1802A, can give the

XIE - ENABLE EXTERNAL INT
XID - DISABLE EXTERNAL INT
CIE - ENABLE COUNTER INT
CID - DISABLE COUNTER INT
BCI - BRANCH ON COUNTER INT
BXI - BRANCH ON EXTERNAL INT

Fig. 8. CDP1805 interrupt -control instructions. These
instructions arbitrate between external and counter
interrupts.

R

PIN I

Fig. 9. CDP1805 os-
cillator configuration
using RC time cons -

PIN 39 tant. The internal
Schmitt trigger allows
crystal or RC opera-
tion.
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Fig. 10. Component values as a function of frequency for
the RC oscillator. The graph shows that frequencies up to
1 MHz are achievable.

CD P1805 the performance edge in certain applications.
This performance edge, together with the enhanced data
instructions described below, can produce fast throughput
in both real-time and response -critical applications.

SCAL and SRET instructions

Of all new CDPI805 instructions, the new call and return
instructions, SCAL and SRET, provide the most signifi-
cant improvement in throughput. These 4 -byte instructions
perform the same function as the SCRT technique outlined

in existing user manuals. However, the savings in code and
execution time is significant (Table I), especially where
subroutines are frequently used.

Besides providing subroutine call -and -return capability
in a single instruction, SCAL and SRET support the
additional parameter -passing feature. Parameters are
passed from main program to subroutine by saving the
main program counter in a scratchpad register, rather than
on a stack, and using a memory -load instruction to link
data following the SCAL instruction to the subroutine.

16 -bit data instructions

Four instructions, RLDI, RLXA, RSXD, and RNX, were
added to the CDP 1805 to handle enhanced 16 -bit
operations involving the scratchpad registers. Figures 11
and 12 illustrate the enhancements made possible through
these new instructions. For example, they permit 16 -bit
loads of data from program memory to a designated
scratchpad, 16 -bit loads and stores between scratchpads
and memory, and transfer of the contents of any
scratchpad to R(X).

4 TO 16
DECODER

4 -BIT
N REG

16 16 -BIT
SCRATCHPAD

REGISTER
ARRAY

R(N),I R(N).0

8 -BIT
D REG

Fig. 11. CDP1802
scratchpad-register
data -transfer model.
The register array is
accessed via tne D
reg ster.

Table I. Performance Comparisons - subroutine call and routine for CDP1802
and CDP1805 implemented with various techniques.

1802 SO=TWARE 1802 SOFTWARE
"SCRT" "SEP.'

TECHNIQUE TECHNIQUE

1804/05 SOFTWARE
SCAL / SRET

INSTRUCTIONS

1804/05 SOFTWARE
"SEP"

TECHNIQUE

NUMBER OF
IA ACHINE

CYC_ES - CALL

NUMBER OF
MACHINE

CYCLES -3E TURN

CALL TIME
(1802 @ 3.2 MHz)

(1804/05 4MHz)

32 2 10 2

24

80 piS

4 8 4

5 20 pis 4 pis

RETURN TIME
(1802 6E032 MHz)

(1804/06 © 4 MHz)

NUMBER CF
BYTES SOFTWARE
CALL+ RETURN

60 ois 10 pis 16 pis e

45 4 6 4
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INC, DEC

RLDI
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SCRATCHPAD

REGISTER
ARRAY

R(X)
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PROG
MEM

DATA
MEM

Fig. 12. Enhanced CDP1805 scratchpad-register data -
transfer model. The CDP1805 allows direct register -
memory transfers.

Several advantages accrue from these enhancements. In
the case of RLDI, two bytes are saved for each register
load, but more importantly, the contents of the D register
are not destroyed in the process. RLXA and RSXD
register loads and stores, from or to memory, are useful for
stack storage of 16 -bit address values, or 16 -bit data
manipulation in arithmetic operations. Finally, the RNX
instruction permits any scratchpad to become a memory
pointer for stack and I/O operations.

Conclusion

The architecture and performance improvements afforded
by the new CDP1805 microprocessor have been reviewed.
For each improvement, an advantage or benefit to the user
in a real system application has been pointed out. For

j
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customers requiring any or all of these performance
improvements, the CDP1805 may prove to be the ap-
propriate choice in a new or modified CMOS system
design.
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J.P. Paradise

CDP1800-series peripherals
are building blccks

of a complete

processor family

The CDP1800 series now offers a full array of auxiliary chips
that make available functions, flexibility, and performance

levels once achievable only with NMOS technokogy.

Abstract: The author discusses the structure, operation
and application of a number of peripheral devices that take
advantage of the versatility of the CDP 1800 -series I/O
architecture to allow implementation of diverse systems.

Table I lists all of the currently available and soon -to -be -
announced peripheral functions in the CDP1800 series.
These functions range from simple buffers, decoders, and
latches to complex special and general-purpose devices.
See other paper in this issue or the appropriate literature
(listed in the references) for more information on
CD P1800 -series 1/ O.'

This discussion is focused on the more complex general-
purpose components (marked with an asterisk in the table),
which contain a number of addressable registers and which
can operate in a variety of programmable modes. These
types of components and their functions more closely
match equivalent NMOS offerings found in recent
catalogs, and all feature the ability to interface with any
general-purpose bus -oriented microprocessor or expan-
dable microcomputer. The diagram in Fig. I shows a
typical interface between CMOS multiplexed-
address/data bus processors and complex CDP 1800 -series
I/O devices. All of these featured devices will operate in a 5-
M Hz CDP 1800 system, with access times on the order of
500 nanoseconds (at 5 volts). Operation is over a voltage
range of 4 to 10.5 volts, and over a temperature spread of
-40 to +85°C.

CDP1851, programmable I/O expander

The CDP1851 is a general-purpose programmable I/O
device that has 20 1/0 lines that may be used in several

Reprint RE -26-8-3 ST -7023
Final manuscript received July 15. 1981

different modes of operation.2 Two full 8 -bit ports,
complete with handshaking lines, provide efficient inter-
facing between a parallel CPU bus and peripheral
functions. The CDP1851 is programmed by the CPU - by
means of the CDPI851 control register-to define port
mode, interrupt enabling, I/O bit assignment, bit masking,
and so on.

Table 11 shows a summary of the CDPI851 program-
ming modes with corresponding pin configurations. Sim-
ple input- or output -port functions with "ready" and
"strobe" handshaking control lines may be selected, or
more complete bidirectional and bit -programmable modes
may be used. In the bidirectional mode, the handshake

Table I. Twenty-seven I/O functions support the CDP1800-
series product line.

I/O Ports
CDP1851
CDP1852
CDP1872
CDP1874
CDP1875

Memory/I/O Decoders
CDP1853
CDP1858
CDP1859
CDP1866
CDP1867
CDP1868
CDP1873

UART
CDP1854A'

Multiply/Divide
CDP1855*

Buffers
CDP1856
CDP1857

Video Control
CDP1861
CDP1862
CDP1864
CDP1869
CDP1870
CDP1876

Keyboard Interface
CDP1871

Timer Functions
CDP1863
CDP1878*
CDP1879'
Interrupt Control
CDP1 877

'Discussed in detail in this paper.
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Fig. 1. General interface requirements. CMOS multiplexed -
bus CPU is connected to CDP1800-series I/O.

control lines maintain proper bus -flow discipline and allow
the CDP1851 to interface to a master or slave bidirectional
bus. In the bit -programmable mode, individual lines can be
designated as input or output lines, including the
handshake pins, which are not used for ready and strobe in
this mode.

Separate interrupt lines are available for each port, with

Table II. CDP1851 programming modes.

OR -tie capability for single interrupt CPU inputs. In-
terrupts may be enabled or disabled, and can be read from
an on -board status register. In the bit -programmable
mode, interrupts are generated by logic conditions (AND,
OR, NAND, NOR) programmed on bit inputs. Thus, a bit -
programmable port can act as an interrupt expander in the
OR mode, or can respond to the coincidence of several
input conditions in the AND mode.

The CDP1851 interfaces, without additional com-
ponents, to all CDP 1800 -series processors in either I / O or
memory space. In I/O space, the N lines are connected
directly to CDP 1851 inputs, with different N -code com-
binations selecting the CDP1851 registers and ports (see
Table III). In memory space, an on -board latch is provided
to create a chip -select from any selected high -order address
line on the CDP1800 multiplex bus.

Figure 2 illustrates an application that uses the complex
capabilities of the CDP1851 in a multiprocessor applica-
tion. In this configuration, one or more CDP1851 devices
can interface to a CPU or shared master memory. Port A is
used as a bidirectional port, with handshake lines con-
trolling bus transfer. Port B is configured as a bit -program-
mable port, and is used to accept interrupt requests from
the master controller for proper sequencing and placement
of data transferred by the CDP1851. Because master bus
interfacing is done under interrupt control, individual slave
CPUs can perform independent dedicated tasks and
ultimately increase total system throughput and perfor-
mance.

Mode

(8)

Port A
Data Pins

(2)
Port A, Hand-
shaking Pins

(8)

Port B
Data Pins

(2)
Port B, Hand -
shaking Pins

Input Accept input data Ready, Strobe Accept input data Ready, Strobe

Output Output data Ready, Strobe Output data Ready, Strobe

Bidirectional
(Port A only)

Transfer input/
output data

Input hand-
shaking for

Port A

Must be
previously set to

bit -programmable
mode

Output hand -
shaking for

Port A

Bit-
Programmable

Programmed
individually as

inputs or outputs

Programmed
individually as

inputs or outputs

Programmed
individually as

inputs or outputs

Programmed
individually as

inputs or outputs

Table III. CDP1851 I/O space -register assignment.

N Line Code Instruction Action Register

NO N1

INP 1 READ STATUS REGISTER1 0

1 0 OUT 1 LOAD CONTROL REGISTER
0 1 INP 2 READ PORT A
0 1 OUT 2 LOAD PORT A

1 INP 3 READ PORT B
1 1 OUT 3 LOAD PORT B
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Fig. 2. CDP1851 master/slave
multiprocessor application.
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Fig. 3. C DP1 8 54A Mode -1 interface to C DP1 800 -series
CPU.

CDP1854A, UART

The CDPI854A is a CMOS Universal Asynchronous
Receiver/ Transmitter (UART) circuit.' It provides the
necessary formatting and control for interfacing between
parallel and serial data paths. The circuit operates half or
full -duplex, has a double -buffered receiver and transmitter
section., and features a programmable data word, parity
bit, and stop -bit length. The receiver can check parity and
the occurrence of a stop bit with parity, overrun, and
framing -error output indication.

The CDP 1854A can be programmed to operate in one of
two modes through the use of a single control pin. In Mode
1, it is fully CDP1800 compatible, as shown in Fig. 3, and

features programmability options made available through
a control register that is accessed with N lines. In Mode 0,
the CDP1854A is compatible with industry -type 1602
devices, and uses hard -wired external pins for data
formatting and control.

The CDP1854A is useful in any serial communication
circuit where hardware parallel -to -serial or serial -to -
parallel operation is desired. Performance is superior to
equivalent bit -banging software techniques, with typical
data rates in excess of 250 kbits per second possible.

This UART device can provide an interface in loosely
coupled systems to other processors, with transmit and
receive UA RTs isolating local buses from each other - the
diagram in Fig. 4 shows such an application. In the
configuration shown, the CDP1802 acts as an intelligent
controller in interfacing a master system to a print buffer,
and frees the host CPU for other tasks during the spooling
operation. In the figure, the CDPI854A is configured in
Mode 0, with handshakingto both the CPU and printer for
data transfer. As data is received by the UART into its
receiver holding register, it flags the CDP1802 for transfer
to buffer memory under CPU DMA (direct memory
access) control. The CDP1802 also polls the printer for
data transfer from buffer memory to printer through the
transmit section of the same U ART. Since the receiver and
transmitter functions are independent, the data exchange
rates can match those of both the higher -speed host system
and the slower printer.

CDP1855, MDU

The CD P i 855 is a Multiply -Divide Unit (MDU) that can
be an efficient hardware replacement for the software -only
implementation of arithmetic and signal -processing
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algorithms.4 It performs multiplication and division
operations on unsigned 8 -bit data with an add -and -shift
hardware implementation, and permits cascading of
identical units to handle operands of up to 32 bits.

The MDU has three 8 -bit registers - X, Y, and Z - that
are loaded by the CPU with operands prior to the
arithmetic operation, and which contain a product or
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Fig. 5. Minimum 6805/CDP1855 memory -mapped (in 4k)
interface.

quotient when the process is complete. The actual
hardware operation typically requires only five micro-
seconds for an 8 -bit calculation, with additional software
overhead time for loading and unloading registers. An 8 -bit
control register defines and initiates the operation, with a
status register available for overflow indication.

The MDU can typically be mapped in I/O space, with
eight instructions required to address its X, Y, Z, control
and status registers. The device also easily maps into the
memory space of other processors, as shown in Fig. 5,
where an MDU is interfaced to an MC146805E2.

The CDP1855 can be used in any application that
requires fast multiply or divide throughput, or where the
CPU would be required to perform real-time tasks during a
long arithmetic routine. M DU efficiency increases as word
size increases, as shown in the chart of Table IV. In
addition, in low -frequency signal -processing applications,
the MDU is suitable for use as a recursive digital filter in
conjunction with A/ D and D/ A conversion circuitry.

CDP1878, counter -timer

The CD P1878 is a dual 16 -bit counter -timer with a variety
of operational modes.' It is a general-purpose device that
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Table IV. Software versus hardware multiply -time com-
parisons for the CDP1855 MDU.

Word Size Approximate Time in Machine Cycles

Software Hardware

8 x 8 280 26
16 x 16 1000 41

32 x 32 5000 89

can produce an assortment of output formats usable in
real-time or control -oriented applications. It handshakes
with the CPU through an interrupt line that is independent
of the timer outputs. This mechanism provides efficient
operation with a minimum of software overhead, and
without compromising the wave shape required by an
external device.

Each section of the CDP1878 consists of a 16 -bit

programmable down counter with a separate control
register, programmable -level gate, true and complement

outputs, and a maskable interrupt request that can appear
on a shared output pin and in a status register.

In operation, the user jams a desired counter value in two
8 -bit sequences, and then selects the desired counter mode
and initiates timing by writing to the control register. This
control register, which programs gate level and interrupt
enabling, can also be used to stop the counter at any time,
and can assure a stable counter readout by freezing the
present count into a separate holding register.

The five counter modes of the CDP1878 are shown in
Table V along with typical applications for each. These
modes, along with different combinations of gating levels,
output polarity, and underflow interrupt indication,
provide a complete array of timing, pulse -forming, and
event -counting programming for efficient use of the device
in system designs.

The CDP1878 can be mapped into CDP1800 1/ 0 space,
or into the memory space of CDP1800 or other general-
purpose processors by means of an external control pin.
Fig. 6 shows a typical application for the device, which, in

Table V. CDP1878 counter -timer's modes of operation.

Name Function Application
1 Timeout Outputs change when

clock decrements coulter
to zero.

Event counter

2 Timeout s'robe One clock -wide output
pulse when clock decrements
counter to zero.

Trigger pulse

3 Gate cont'olled
one-shot

Outputs change when clock
decrements counter tc zero.
Retriggerable

Time -delay
generation

4 Rate generator Repetitive clockwide
output pulse

Timebase
generator

5 Variable duty cycle Repetitive output with
Programmed duty cycle

Motor control
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PULSES COUNTER A Fig. 6. CDP1878 engine -

MODE I control application.
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the figure, is mapped in the I/ 0 space of the CDP1805. The
circuit provides a means for generating spark advance and
dwell timing based on engine speed and a lookup table of
engine constants for various load conditions. Half of the
CD P 1878 is used to monitor engine speed as a high -
resolution, 16 -bit count based on time period, while the
other half outputs a variable -duty -cycle phase -shifted pulse
to the ignition circuitry, with proper formatting for correct
dwell and spark -advance settings.

CDP1879, real-time clock

The CDP1879 is a time -of -day clock/calendar chip useful
in a variety of real-time applications.6 The device counts
seconds, minutes, hours, date, and month. It operates with
a variety of crystal frequencies, has a separate clock output,
and features an interrupt alarm that has a one -second
resolution with a 24 -hour period.

This real-time clock device can be thought of as a
programmable divider chain. One of four crystal fre-
quencies, from 32 kHz to 4 MHz, is selected as the clock
source. An on -board control register selects the ap-
propriate prescaling to produce a one -second pulse that is
fed to a chain of five programmable counters. The prescaler
and divider chain can be tapped to generate 50 -percent
duty -cycle pulses (subsecond or one per second, minute,
hour, or day) at the clock output along with an interrupt
request. Counters may be written to or read from in BCD
format through individual addresses. Special circuitry
allows reading "on -the -fly," even if the counter chain is
rippling through a clock pulse at the instant a read attempt
is made. Separate second, minute, and hour alarm registers
generate an interrupt request when their values match
those of the counters. A status register keeps track of alarm
and clock status when interrupts are disabled.

The CDP1879, like the CDP1878, interfaces in I/O
space to all CDPI800 CPUs, as well as in memory space to
CD P1800 or other general-purpose processors, through a
single control pin.

A powerful application for this real-time clock is as a
wake-up control to a CPU that reduces total system power
in intermittent -use systems. A hookup diagram illustrating
this feature is shown in Fig. 7. In this configuration, the
alarm and power -down features of the CDP1879 are
utilized in the control of the sleep and wake-up states of the
CPU. A typical shut-down/start-up sequence for this
system could proceed as follows:

1. The CPU has finished a current task and will be inactive
for the next six hours.

2. The CPU loads the CDP1879 alarm registers with the
desired wake-up time.

3. The CD P1800 Q output is set high, which stops the CPU
oscillator. As an alternative, in an N MOS system, power
to all components except the clock chip could be shut
off.
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En
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Fig. 7. CPU wake-up circuit using the CDP1879 real-time
clock.

4. This Q -output signal is received by the CDP1879 as a
power -down signal.

5. The CDP1879 tri-states all pins (to accomodate
powered -down chips).

6. The CDP 1879 eventually times out, and sets an alarm by
driving the INT-output low.

7. The alarm signal resets the CPU (to avoid oscillator
start-up problems) and flags the processor for a warm -
start routine.

8. The CPU, once into its normal software sequence, writes
to the CDP1879 control register to reset the interrupt
request.

Because of the versatility of the CDP1879, it is not
restricted to use with CMOS processors. Any processor
capable of writing to and reading from the clock chip can
use its low -power capability.
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J.K. Wright, Jr.

CLIP -3 is a high-level controller
language for 1802 microcomputers

We can expand the area of microprocessor applications by
making microprocessor systems easier and less expensive to
use. CLIP -3 is another step in that direction.

Abstract: As software development becomes the
predominant cost and time factor in designing micro-
processor -based systems, the need for methods to reduce
software costs becomes more urgent . High-level languages
represent one solution in the effort to overcome this
problem, but many small microprocessor systems, such as
controllers, cannot easily support afull high-level language
due to the larger memory requirements and development
system costs. This article describes a high-level hexa-
decimal controller language - CLIP -3 (Control
Language Interpreter Program) - designed to use
minimum memory, to be easy to use, and to require a
minimum cost development system. The language has
been implemented for a specific 1802 -based controller
board having l6 ON/OFF inputs, 16 ON/ OFF outputs, a
60 -Hz clock on the interrupt line, and 2 or 4 kbytes of
program memory (it should be adaptable to other 1802
microcomputers having similar features).

When microprocessors were first introduced, many
engineers were very excited about the new chips' ability to
replace random logic hardware with a program written by
the designer to perform the same functions. This would
mean that, as the system hardware design progressed, the
program could be "easily" changed to iron out design bugs
or add features. At least, the changes were easier than
constantly redesigning the random logic and rewiring the
board. However, gaining these advantages meant that one
had to learn the machine (or assembly) language of the
processor being used, and also had to buy and learn to use a
suitable development system. In lower -cost, controller-

oriented microprocessor applications, the high cost of the
development system and the time required to write and
debug the program can make many possible applications
Reprint RE -26-8-4
Final manuscript received June 8. 1981

difficult to justify. If a higher -level program language could
be designed -easy to learn and not requiring a high -cost
development system to use - many new microprocessor
applications would open up and others would dramatically
drop in cost.

Emphasis is on higher -level program languages

High-level languages reduce the amount of time and cost
required to generate a given application program. It has
been shown that an average programmer can program
approximately ten lines of debugged code per day no
matter what the language, and a higher -level language
results in fewer lines of code (examples of some typical
high-level languages are BASIC, FORTRAN, and Pascal).
Also, the resulting program is more reliable and easier to
debug since it has fewer instructions and is easier to
understand. Program maintenance is also less costly for the
same reasons. One trade-off in using a higher -level
language is increased execution time of the high-level
program over an equivalent machine -language version.
However, all that is really necessary is that the execution
time be adequate for the application being programmed. In
I/O -intensive applications such as controllers, speed of
execution determines the delay between the last known
picture of the system as seen by the controller inputs and
the actual picture of the system when control is subsequent-
ly applied to it. This delay can be on the order of 2 to 10
milliseconds without causing problems for most
applications.

Another trade-off in using a high-level language is that
the high-level language system requires more memory. This
is becoming less of a problem as memory costs continue to
decline. Also, designing a high-level language specifically
for control applications reduces the overall memory
requirements from that required for a more general
language.
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Fig. 1. Block diagram of an 1802 -based controller. The control interpreter and the
user's program are resident in EPROM, and 16 single -bit inputs and 16 single -bit
outputs are available for connection to the outside world.

In most cases, the more general-purpose we make a
language or a system, the harder it is to use; and conversely,
the more special-purpose we make it, the easier it is to use.
We have, therefore, concentrated our language -design
efforts in a specific limited applications area; that is,
control applications that can be performed by a single -
board 1802 -based computer with 16 ON/ OFF inputs and
16 ON/OFF outputs. These applications do not require
extensive mathematical processing of the input data or
extensive storage of the input data. Because of the general
observation that there are many more applications for
lower -cost processor systems than for the sophisticated
higher -cost systems, we expect that limiting and focusing
our controller language in this way will not excessively
limit the number of applications for it. In fact, as
mentioned earlier, the lower cost of the processor system
and the ease of use of the language should open up even
more applications.

Applications

Typical applications of our controller and language include
intelligent sequencers of all kinds, automatic sorting
machines, component or system testers, conveyor con-
trollers, operation counters, robot controllers, or any
control problem that requires logical decision, counting, or
timing functions. CLIP -3 would have applications in a
wide range of industries, including food and drug process-
ing, film processing, glass works, packaging, paper and
cardboard, printing and publishing, plastics, textile, and so
on. All these applications involve many decision -oriented

16 SINGLE BIT ION OFF) INPUTS

FLAG INPUTS

16 SINGLE BIT ION/OFFI OUTPUTS

USER AREA

FUNCTIONS UNIQUE TO

EACH USER, SUCH AS

SIGNAL CONDITIONING,

SPECIAL INTERFACING,

RELAYS, LEDs, etc

tasks that result in simple ON/OFF commands. For
example: is limit switch closed? Has timer interval ended?
Has counter reached XXXX? When inputs A, B, and C are
on, start motor M3.

A more specific example of a controller application
would be a plastic parts sorter that sorts the parts by color.
The controller program analyzes color signals from three
photodiodes capped with filters to determine each part's
color, then it directs each part into the appropriate bin.
Another example is the controller's use as a system or
component life -tester. Controller output lines turn the
system or component on and off and provide input signals
to it as necessary, while the controller input lines check it
for proper functioning, and count the number of cycles
until failure occurs. A third example would be the
controlling of a game -token press, where controller out-
puts would operate the coin -blank feeder, the coin press,
and the packaging equipment, while controller inputs
would sense if a blank was positioned in the press, and if the
boxes and cartons were positioned properly for loading.
Other outputs could provide an alarm signal for various
equipment failure modes, and could clock a counter
display to show how many tokens had been packaged. Yet
another example would be the control of an automatic
press brake; as the punch penetrates the metal workpiece,
the controller senses the force expended during penetra-
tion, and tells the machine precisely when to reverse its
motion for the best result. We thus get an improvement in
both quality and speed as well as reduced waste. All of these
areas of application are increasingly important today as
companies work to improve their productivity.
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Fig. 2. The entire controller shown in Fig. 1 fits on o le small
PC board.

An I802 -based controller that would handle
applications in these areas was designed, and its general
structure is shown in Fig. 1. A photograph of the controller
is shown in Fig. 2. It was designed hand -in -hand with the
high-level controller language in an attempt to reduce the
language's memory requirements and increase the execu-

tion speed. The low cost and small size of the board mean
that should a failure occur, quick replacement by a
duplicate board is a feasible solution. The small size also
makes it easier to isolate the board from environmental
extremes and from external noise. For a typical controller
application, the 1802 controller board, including the user's
program in EPROM, should cost less than $100, and the
program itself will have required much less time to write,
debug, and maintain than if it had been done in machine
language.

The 1802 microprocessor was used because it lends itself
readily to writing high-level languages in the form of
interpreters. An interpreter is a special program in memory
that "interprets" or executes the statements of the user's
program when the user's program is run. The best-known
and most widely used interpreter is the one used to run the
BASIC language. If the user typed in the BASIC statement,
"LET A = B," for example, the interpreter program would
analyze the statement when the program was run and then
perform the operation. In this case, it would determine that
this is a "LET' command, and would then set A equal to
the present value of B. It would then go on to the next
statement and interpret it, and so on. In general terms, we
can think of an interpreter as actually changing the
characteristics of a processor so that it will look like a
"higher -level" processor; this then executes commands in
the higher -level language rather than in machine language
(Fig. 3). The new 1804 microprocessor, with its internal
ROM, can be made to look like a higher -level processor by
programming this ROM with an interpreter program.

In designing the control language, a limited version of
BASIC was considered as a possible approach. This has
been useful in several applications (see References I, 2, 3),

1802

MICROPROCESSOR

INTER RETER
PROGRAM

MEMORY

HIGHER -
LEVEL

PROCESSOR

Fig. 3. An interpreter can be thought of as actually changing the characteristics of
a microprocessor, producing a new "higher -level" processor.
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Table I. General instruction summary for CLIP -3.

I. Turn specified Output Line ON or OFF.

2. Turn specified Output Line ON or OFF until specified Input
goes ON or OFF.

3. Turn specified Output Line ON or OFF until specified Delay
Expires.

4. Delay by a specified Time (this time may be specified in the
instruction or may be specified in a register).

5. Delay until a specified Input goes ON or OFF.

6. Set any VX Register.

7. Add two VX Registers.

8. Subtract two VX Registers.

9. Set any ZX Register.

10. Skip the next N instructions depending on a specified Input or
on the value of any ZX Register.

II. Execute a specified Control Language Subroutine (from one
to 255 times).

12. Execute a specified Machine Language Subroutine.

13. Set a Time Limit on how long a Control Language
Subroutine can be executed before an automatic exit is
caused.

14. Let ZX indicate which one of several Control Language
Subroutines is to be executed.

15. Stop.

area, requiring the user to write machine -language routines
for most of the controlling and sensing functions his
program will perform. Also, its execution speed is typically
very slow, which eliminates it from several application
areas. In an effort to eliminate these disadvantages, a new
control language was designed using techniques similar to
those used in the RCA VIP's CHIP -8 language, a higher -
level language used to write video game programs. The
control language was named CLIP -3 (Control Language
Interpreter Program), and, like BASIC, is an interpreter -
based language. It runs over 10 -times faster than BASIC
and requires less than half the memory of a typical "Tiny
BASIC" interpreter (typical "Tiny BASIC" = 2 kbytes).

Control language description

A general summary of the CLIP -3 instruction set is given in
Table I. For low-cost control applications, the most
important functions that a language should have are
timing, counting, and ON/ OFF control and sensing. The
CLIP -3 interpreter creates a controller structure that
includes sixteen 16 -bit registers, identified by the name VX,
where X is a hexadecimal number between 0 and F (in other
words, the 16 registers are VO, VI, V2, VF). These
registers can be used as timers, counters, or to hold input or
output data. There are also sixteen 8 -bit registers, called
ZX, where X again ranges from 0 to F. These are used
chiefly as indicators - they can be set in one part of the

program and then checked in another part to determine
which of several choices for action should be made. One
(ZO) is dedicated as an easy -to -use subroutine loop counter,
and another (ZF) is used as an overflow indicator. A typical
instruction is composed of two hexadecimal bytes,
although several instructions requiring long arguments are
longer than two bytes.

Although having the instructions in the form of hexa-
decimal bytes does reduce the readability of a user's
program, this format greatly reduces the program's
memory requirements and increases its execution speed
over a language such as BASIC. It also allows using an
inexpensive VIP as a development system for transferring
programs froin paper to EPROM. A more sophisticated
development system would allow the user to type in
alphanumeric commands that would be translated by the
development system software into the CLIP -3 hexadecimal
instructions.

The CLIP -3 instructions

Setting and manipulating the VX registers

6K8N
DDDD
EEEE

Starting with VK, load the next N 16 -bit
hexadecimal data words (starting
with DDDD) into the VXs.

In other words, load DDDD into VK,
load EEEE into V(K+ I ) and so on. until
N VXs have been loaded.

6X4Y Add two VXs: VX = VX+VY.
ZF = 01 if overflow, else 00. ZF can be
checked by a 3N4X or a 3N9X instruction
(see page 34).

6X2Y Subtract two VXs: VX = VX-VY.
ZF = 00 if result is negative, else 01.

Setting the ZX registers

5XKK Set ZX = KK, where KK can be any number
between 00 and FF. Note: ZO is dedicated
as a control language subroutine loop
counter (see subroutine instructions), and ZF
is used as an overflow indicator in the
6X4Y and 6X2Y instructions.

Subroutines

 (ailing a subroutine

2MMM Do CLIP -3 subroutine at OMMM. OMMM
is the hexadecimal address of the first
instruction in the subroutine.

1MMM Same as 2MMM except that the subroutine
return skips the 2 -byte instruction fol-
lowing 1M M M. This instruction saves
memory when you want to do either one
or the other of two subroutines but not
both, based on some condition. The second
subroutine call would follow the 1MMM.

The next instruction is used before calling a subroutine
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to specify how many times the subroutine is to be done. If
you only want to do the subroutine once, then it is not
necessary to use this instruction at all (that is, default is 01).

50KK Do the next subroutine KK times (KK = 00
through FF). This instruction uses ZO.

Any subroutine can call other subroutines (this is called
"nesting"), and subroutines can be nested to ten levels. The
50KK instruction can also be used within subroutines or
nested subroutines.

Although seldom necessary, machine language sub-
routines can be called by using the next instruction:

OMMM Do machine language subroutine at hex
address OMMM.

 Writing a subroutine

Subroutines can be written using any of the normal CLIP -3
instructions, but each subroutine must have one of the
following exit or looping instructions:

00AA Exit the subroutine (return to the calling
program).

00AE Check if the subroutine has been done the
number of times specified by the 50KK
instruction. If it has, exit the subroutine. If
it has not, go back and repeat the sub-
routine again.

00A6 Go back to the first statement of the
subroutine.

D4 Exit the subroutine - used only by machine
language subroutines.

Timing

FFFF Delay by DDDD.
DDDD

FF8X Delay by contents of VX.

The hexadecimal number DDDD or the contents of VX
can range between 0001 and FFFF, which corresponds to
delays between about 1/ 60th of a second and 18.2 minutes.
Longer delays can be realized by stacking instructions.

FF7Y Delay until Input Y = OFF (Logic 0).
Y designates one of the 16 single -bit inputs.

FF3Y Delay until Input Y = ON (Logic I).
Y designates one of the 16 single -bit inputs.

In the above instructions, the processor can do nothing
while the delay is being counted down. There are many
cases where you would like to set a timer and then have the
processor continue to execute part of the program while the
timer is running. When the timer expires, the processor will
be notified to stop the present program and go on to the
next one. For instance, you may want the processor to
watch a two -state sensor or a process for a fixed time, and
then do one of two things, depending on the sensor output
or process result. This can be done with the SET TIMER
instruction:

0054 Set special timer to TTTT.
FMMM Then immediately do this subroutine at

OMMM. If this subroutine is exited
before the timer expires, skip the
next 2 -byte line. If the timer expires
before the processor exits the sub-
routine, the processor is forced to
immediately exit the subroutine and to
do the next statement.

As in the previous timing instructions, TTTT can vary
between 0001 and FFFF (1/ 60th second to 18.2 minutes).
Timers can be nested (that is, the subroutine at OM M M can
also use this instruction) to a maximum of four levels. The
50KK instruction can be used first to set the number of
times the subroutine is to be repeated during the timer
interval.

This instruction also allows putting a maximum time
limit on all "until" instructions to keep the processor from
waiting too long for the specified condition to occur. For
example, when using the instruction "Delay until Input Y =
ON," if Input Y never changed to ON, the processor would
"hang up" in that instruction indefinitely. By setting the
timer first, the processor would be forced out of this
instruction when the timer expired. The statement follow-
ing FMMM (done after a forced exit) should turn off any
output lines (see ON/ OFF control instructions) turned on
by the FMMM subroutine if that subroutine would have
turned them off before a normal exit . A normal exit is one
in which the subroutine is exited before the timer expires.

A requirement to toggle an output or perform some
sequence repetitively for a fixed time can also be handled
by this instruction. A subroutine to perform the required
sequence is first written using the subroutine looping
instruction 00A6. The subroutine is then called as follows:

0054 Set Timer = TTTT.
TTTT

FMMM Call subroutine.
XXXX Next instruction in main program.

Program continues.

The subroutine will now be repetitively executed until
the timer interval TTTT has expired and then the
instruction XXXX will be executed.

ON/OFF control

In these instructions, Q designates one of the 16 single -
bit outputs of the controller card. At program reset, all 16
output bits are automatically zeroed by the hardware.
ON = Logic 1, and OFF = Logic 0 (ground).

9000 Set Output bit Q to ON.
907Y Set Output bit Q to ON until Input

Y = OFF.*
903Y Set Output bit Q to ON until Input

Y = ON.*

Wright: CLIP -3 is a high-level controller language for 1802 microcomputers 33



908X Set Output bit Q to ON until Delay VX
has expired.

90FF Set Output bit Q to ON until Delay
DDDD DDDD has expired.

8000 Set Output bit Q to OFF.
807Y Set Output bit Q to OFF until Input

Y = OFF.*
803Y Set Output bit Q to OFF until Input

Y = ON.*
808X Set Output bit Q to OFF until Delay VX

has expired.
80FF Set Output bit Q to OFF until Delay
DDDD DDDD has expired.
0123 Set all Output bits to OFF.

* Input Y is checked first and if it is already in the specified
state, Output bit Q is not changed.

Conditionals

In these instruction descriptions, one line = 2 bytes or 4
hex digits (usually one instruction).

3N1Y If Input Y = OFF, skip next N lines.
3N2Y If Input Y = ON, skip next N lines.
3N4X If ZX = 0, skip next N lines.
3N9X If ZX 0, skip next N lines.
3N90 Skip next N lines (since ZO

is always 0 0).

For all the above instructions, if N = 0, it is equivalent to
a CONTINUE statement.

Since the first two instructions above each take about
220 microseconds or more to execute, the maximum
"sampling frequency" of checking inputs is about once
every 220 microseconds (with a 2 -MHz microprocessor
clock).

"CASE" instruction

CX00

J MM M

KNNN

If ZX = J, do
CLIP -3 subroutine at OMMM, else if
ZX = K, do
CLIP -3 subroutine at ON N N, etc.

OPPP else if ZX = none of the above, do
CLIP -3 subroutine at OPPP. If this
line is 0000, it means, "end of instruc-
tion, continue."

This instruction is similar to the Pascal "CASE"
instruction; it decides which of several subroutines to do
based on the value of ZX. The X in ZX is specified by the
first part of the instruction, the CX00. The next line of the
instruction, JM MM, says that if ZX = J, do the subroutine
at address OMMM. Appropriate subroutines to be ex-
ecuted for other values of ZX (1 through F) can be added

next in the same format (the ZX value is the first digit; the
subroutine address is the last three digits). The last line of
this instruction must have 0 as the first digit. If the
remaining three digits are also 0, it means "end of
instruction, continue." If the remaining digits are not 0,
they are taken as the address of a CLIP -3 subroutine to be
executed for any other values of ZX not specified in the
earlier part of the instruction.

Miscellaneous

011E STOP
The last instruction in the main pro-
gram must be a "STOP" instruction.

EMMM Go to Address OMMM.
If you want to write "STRUCTURED" pro-
grams that are easier to debug and to
understand later, use this instruction
as little as possible.

The procedure for using CLIP -3 in a typical application
is as follows:

 Decide on the input and output lines to be used on the
controller board. Interface these to the system to be
controlled.

 Write the control program in CLIP -3.
O Load the CLIP -3 interpreter and your program into the

development system memory and transfer to a standard
2716 or 2732 EPROM. The memory map in Fig. 4 shows
the memory map of the EPROM. For faster program
development, the Intel 2816 EEPROM can be used (it
doesn't have to be UV -erased every time a program
change is to be made).

 Insert EPROM in controller board and turn on power.

To show how the control language would be used, let's
write a short program to transfer the register V2 to a LED
display in decimal. The contents of V2 might represent a
count of the number of items rejected or sorted by the
controller, for example. First, we connect a counter -
display chip, such as the Intersil ICM7217, to a controller
output line, say Output #1. This single inexpensive chip will
count the pulses on the output line in decimal, and will
display the result on an attached LED display. Now we
write a subroutine to count down V2 to 0, turning output
line #1 ON and OFF at each count (Set VI = 0001 first).

Subroutine:

6221: V2 = V2 -V 1.
319F: If V2 is positive, skip next

instruction.
00AA: Exit subroutine.
9100: Turn Output #1 ON.
8100: Turn Output #1 OFF.
00A6: Return to first statement above, that is

do this subroutine again.

When this subroutine is called, it will transfer the count
in V2 to the LED display.
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Fig. 4. The memory map of the controller's EPROM, which
includes the CLIP -3 interpreter and the user's control
program, written in CLIP -3.

If the CLIP -3 language is to be used with other 1802
microcomputers, all except the I/O instructions can be
used unchanged (the microcomputer must have a 60 -Hz
interrupt generator and one page of RAM). Generally, the
changes required to rewrite the I /0 instructions will result
in a larger interpreter and slower execution of the I/O
instructions, since the controller board that CLIP -3 was
written for was designed specifically for use with an
interpreter, to maximize execution speed and minimize
interpreter size.

CLIP -3 was also designed to allow the user to add
additional instructions if required for his application. For
example, if an integer multiply instruction were needed,
there is room in the language framework to add this.
Machine language subroutines can also be added, if
necessary, to increase execution speed in time -critical parts
of a user's program, although this is seldom necessary.
Analog inputs or outputs can be handled by interfacing
A/ D or D/ A chips to the normal controller inputs or
outputs.

Conclusion

The CLIP -3 language has been used to control an
industrial ball sorter (automatically separating steel,
aluminum, and plastic balls) and a toy robot tank. The
robot tank system (a modified Milton Bradley "BIG
TRA K") was fitted with an 1802 controller board to
illustrate the power of the CLIP -3 language and the
compactness of the controller hardware. It was program-

med to sense its environment, and with no human
intervention, search a room for a way out without getting
boxed into a corner or trapped under a chair. The control
programs for both these systems were written by relatively
inexperienced users who were able to learn and to use the
language much faster than they would have been able to
learn assembly language. The compactness of the language
allowed both the CLIP -3 interpreter and the user program
to fit easily into a 2-kbyte EPROM in both of these
applications. Execution speed was fast enough so that no
special machine language subroutines were needed in any
part of the control program.
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D.A. Milley1H.L. Resnick

For Army vehicles:

Memory design in a
microprocessor -based test set
Automated Systems engineers ingeniously used 1802
microprocessor software and hardware to expand
the Simplified Test Equipment applications data base
to include a few new Army vehicles.

Abstract: The authors describe methods for using bank -
switching and logical addressing to allow an 1802 micro-
processor to use several hundred kilobytes of EPROM.
This application expands the Simplified Test Equip-
ment (STE) applications data base to include a
number of new Army vehicles. STE minimizes the
difficulties of vehicle testing faced by the Army mechanic.
Now STE can be used on more vehicles, because engineers
at Automated Systems developed this 1802 -based test set
with over 314 -million bytes of memory.

In order for repair and support capabilities to keep pace
with the increasing complexity of Army combat vehicles,
RCA has developed a family of microprocessor -based field
test sets. Designed with the goal of minimizing the technical
difficulties of vehicle testing faced by the Army mechanic,
this family has been designated as Simplified Test Equip-
ment (STE).

In expanding this product line to capture the encoded
diagnostic test procedures for a number of vehicles,
including the ABRAMS M I Tank, the Infantry/ Cavalry -
carrier Fighting Vehicle System (FVS), and a number of
others planned in the future, a variety of strains were
created on state-of-the-art hardware and software
capabilities. One of these strains involved the difficulty of
providing enough nonvolatile memory, on the order of 400
kbytes (kilobytes), to store the applications data base. This
problem was solved with a combination of bank switching
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and logical addressing that allows an 1802 microprocessor
to use several hundred kbytes of Erasable Programmable
Read -Only Memory ( EPROM).

Software system based on EPROMs

EPROM technology is attractive in this application
because it is cost competitive with ROM. Also, with such a
large volume of application programs and changing
baseline for the supported Army vehicles, periodic
software updates must be expected. EPROMs, because
they are erasable, allow for convenient updating.

The software system, based on a design that uses up to 60
EPROM chips, uses an addressing scheme whereby code
anywhere within the system can be referenced by a 20 -bit
logical address, and data local to a test being executed is
referenced by a 16 -bit offset pointer, relative to a logical
address. This 20 -bit addressing scheme provides potential
access to over one -million bytes of memory and allows
addresses to be independent of the physical location of
memory within the system.

The hardware for this system has been designed with
expansion in mind, providing capacity for up to five
EPROM -bearing boards per test set. Two of these boards
are known as "computer" boards, with six EPROMs each.
These EPROMs may be either 4- or 8-kbyte types, are
always addressable, and are thus referred to as
"unswitched" memory. The other three boards, known as
"memory boards," contain up to 16 EPROMs each. This
memory is addressed in 4-kbyte blocks regardless of
EPROM size. Since bank switching is used, these blocks
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are referred to as "switched" memory. EPROM chips on
these boards can be in the form of 4-, 8-, or when available,
16-kbyte chips. In a full 60 -chip system, this can provide
240, 480, or 864-kbytes of storage.

STE/M1 field test system

The field test system pictured in Fig. 1 is designated
STE/ M 1. It was designed to provide on -vehicle
maintenance support for the ABRAMS M I tank. The
development of software application programs for the
STE/ M I created a demand for an extraordinarily large
stored -program memory capacity. Applications -program
development is based on analysis of each vehicle subsystem
and subsequent structuring of test flowcharts indicating
detailed test procedures.

A portion of a flowchart page is shown in Fig. 2.
Flowcharts contain: messages as displayed to the operator
on the hand-held communicator (in parallelograms),
measurements made by the test set (hexagons), comparison
of measurement results to limits by the test set (diamonds).
and diagnostic conclusions (parallelograms with double

Fig. 1. The STE-M1 test system. Containing two 1802
microprocessors and 192 kbytes of EPROM memory it was
designed to provide support for the ABRAMS M1 tar k with
minimal use of manuals
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Fig. 2. A typical diagnostic flcwchart. It
contains messages to the operator,
measurements by the test set, comparisons
to limits, and diagnostic conclusions.
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FVS

Fig. 3. Memory requirements for supporting ABRAMS M1
and FVS turret exceed 200 kbytes.

[TURRET ONLY]

80K OF DATA BASE

"Mii=M1111111t
Fig. 4. The STE-M1 memory board was designed to bank -
switch sixteen 4-kbyte EPROMs, providing a storage
capacity of 64 kbytes.

lines). I he entire MI diagnostic package is composed of
approximately 800 pages of flowcharts. Memory re-
quirements for holding such a large diagnostic package are
unusually high.

Figure 3 summarizes the memory requirements for the
MI -tank support package. Since the addressing capacity of
the 1802 microprocessor employed by STE/ ICE is only 64
kbytes, it is obvious that some special techniques were
required to handle the amount of memory shown in Fig. 3.
This memory problem was solved by two techniques: bank
switching of EPROM memory chips, and using a 20 -bit
logical addressing mode to extend the address space of the
1802.

When the hardware for the STE/ MI test set was
designed, the state-of-the-art in EPROMs was the 4-kbyte
device. Pictured in Fig. 4 is the memory board designed to
bank -switch 16 of these EPROMs. The test set initially
contained two such boards plus two computer boards
containing 16 additional unswitched EPROMs for a total
memory capacity of 192 kbytes per system. The unswitched
EPROMs contain the operating system software, such as
power -up initialization routines, self -test, interpreters,
measurement utilities, and the test -set executive. Bank -
switched EPROMs, residing on memory boards, hold the
applications program data base.

Software fills memory

Software for supporting the ABRAMS M1 vehicle filled
virtually all 192 kbytes of memory in the STE/ M I test set.
In order to accommodate new vehicle applications, more
memory had to be added, creating an update to the
STE/ MI system. This new version, known as STE-
MI / FVS, had two modifications for memory expansion.
First, the memory board was redesigned to hold any of
three PROM types - the original 4-kbyte chip, the present
state-of-the-art 8-kbyte chip, or a projected near -term 16-
kbyte chip. The computer board was redesigned to use
either 4- or 8-kbyte PROMs. Second, the executive
software was modified to allow use of a spare board slot for
an additional memory board.

Bank -switching employed

A block diagram of the bank -switching scheme employed
in STE-M1/ FVS is shown in Fig. 5. As stated before, the
1802 microprocessor can directly address 64 kbytes of
memory via its 16 address lines. There are two micro-
processors in the system. Each 64-kbyte memory space is
divided into sixteen 4-kbyte blocks. Twelve of these blocks
(or 48k) are used for the unswitched EPROMs, and three
blocks (12k) are used for RAM. This leaves one 4-kbyte
block for the switched EPROMs.

A memory board loaded with 16 chips must be divided
into 4-kbyte blocks regardless of the size of the device
employed. To accomplish this, all eight bits of the micro-
processor data bus are used. Four bus bits are decoded to
select one of sixteen EPROMs on the board. Two bits act
as the upper -two address bits for the 8- or 16-kbyte
EPROMs. This allows a 4-kbyte portion of the device to be
selected. The last two bits are used to distinguish between
the existing memory board and the board added to the
spare slot. Thus, each memory board is treated as if it were

H
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Fig. 5. The bank -switching technique allows up to 512
kbytes of EPROM memory to occupy 4 kbytes of address
space.
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Fig. 6. The 20 -bit logical address is divided into an 8 -bit
bank address and a 12 -bit physical address.

an ISO device. It must be selected by an output instruction
from the microprocessor, and it receives parameters via the
data bus. If both boards are installed, their outputs are tied
together to occupy the same 4-kbyte block, since only one
board may be on at any given time.

The bank -switching scheme described ultimately results
in a data base on the order of hundreds of kbytes of
memory. In order to address a data base of that size, it was
necessary to develop a special addressing scheme tailored
to the EPROM bank -switching technique. A 20 -bit logical
addressing mode, capable of accessing approximately one -
million bytes of memory, was chosen.

Figure 6 shows the bit utilization of the 20 -bit address as
it relates to hardware bank -switching. The first byte,
known as the bank address, is mapped through a table that
is used to select a 4-kbyte page within the data -base

STE/ICE 14K

STE-M1 192K

STE-M1/FVS (CURRENT) 480K
STE-V11/FVS (POTENTIAL) 864K

Fig. 8. Sophisticated memory manipulation and improving
technDlgy have allowed an evolution to over "4-rnillion bytes
of EPROM memory in an 1802 microprocessor -based
system.

memory. This is accomplished by energizing the correct
memory board and selecting the correct chip or portion of a
chip within that board. The final 12 bits of the logical
address are used by the 1802 microprocessor as an offset
within the selected 4-kbyte page.

The mapping table

The mapping table used by the system for translating the
bank address portion of a logical address is filled within
RAM during the test set's power -up initialization se-
quence. This table has 256 slots, allowing one slot for each
possible 8 -bit bank address.

Figure 7 illustrates the use of the mapping table. The
EPROM chip in board #2, slot #9, assumed to be a 4-kbyte
chip, is shown identifying itself as bank -address IA during
a poll taken by the executive system at power -up time. The
executive would then fill table -slot 1 A with information
that corresponds to board #2, slot #9. During subsequent
execution of application software, any logical address that

SL OF SLOT SLOT SLOT SLOT SLOT SAT SLOT

.1 A2 n3 .4 A5 n6 Q7

BANK \
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SLOT SLOT SLOT SLOT SLOT SLOT SLOT
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.10

TABLE SLOT IA

001

.12 .13

MEMORY BOARD .2

.14
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0 - BOARD .2 SAT .9

FF I
256 BYTES

Fig. 7. The bank address is mapped through a table in order
to energize the correct board and slot.
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begins with IA will result in board #2, slot #9, being
enabled. By taking the memory page corresponding to
switched memory and adding the remaining I2 -bit offset
from the logical address, the 1802 can then address the
data -base memory in its normal way.

Summary

Figure 8 summarizes the memory capacities of the
STE/ ICE test set and the STE-M I / FVS test system based
on 4-, 8-, and I 6-kbyte EPROMs. The evolution of an
I802 -based test set to a system with over 3/ 4 -million bytes
of memory was made possible by the innovative hardware
and software memory manipulation techniques engineered
within the STE projects.

Herb Resnick, Senior Design Engineer (standing), and
Dave Milley (seated) Member Technical Staff, Automated
Systems, Burlington, Massachusetts.
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W.J. Hepp R.H. (sham

Multimicroprocessor-based
transistor test equipment

A mu1timicroprocessor-based test set employs several levels
of intelligence in a test console that provides many new test -
system features.

Abstract: A state-of-the-art transistor test set that per-
forms all commonly required tests and that is adaptable to
almost any custom -test requirement is described. The set
features complete testing with one insertion and includes
self -calibration and self -diagnosis capability. Its in-house
fabrication cost can be as little as one -fifth the cost of a
commercially available test unit .

As the capability of power devices has improved, it has
become increasingly important to accurately test not only
for the traditional parameters, but for characteristics -
such as thermal resistance and forward -biased second
breakdown - directly related to the application in which
the device is used. In addition, some customers require
special -use tests. Switching tests and high -temperature
parameter verification are also being required in an
increasing number of applications. Traditionally, these
testing needs have been satisfied by multiplexed computer -
controlled test sets that measure standard parameters, and
a multiplicity of special-purpose test sets that measure
those characteristics that must be controlled in specific
applications or that cannot be measured effectively in
conventional test sets. The need to reduce as much as
possible the number of insertions, that is, the number of
different types of test sets that a device must pass through,
has also increased in importance. The passage of a device
through a multitude of test sets increases its cost by adding
handling costs, and increases the possibility that it will be
mis-segregated at least once. These factors are particularly
important in the testing of automotive ignition transistors,
where very high quality levels are demanded, and where
pricing is very competitive. This paper discusses a modern

Reprint RE -28-8-6 ST -7020
Final manuscript received July 30 1981

test system that meets these demands through its ability to
perform multiple -temperature testing of traditional and
custom parameters in one insertion.

History

Computer -controlled test equipment was first introduced
to the RCA Solid State Division (SSD) power -
manufacturing facility in the form of SCOPE test systems.'
More than 35 of these hardware -multiplexed mini-
computer systems were built between 1969 and 1976, and
25 are still being used in various SSD locations throughout
the world for routine device testing.

The marketing of high -voltage Darlington transistors
for use in automotive ignition systems required testing to
quality levels unprecedented for commercial devices. Some
customers also insisted that tests be performed to simulate
distributor misfiring, reversed battery polarity, battery
disconnect transients, and fouled spark -plug operation.
One -hundred -percent testing of both switching time at
room temperature and dc parameters at several high
temperatures was also required. Traditional testing
methods would have involved at least seven insertions,
making the achievement of the required quality levels
difficult.

A method of internally heating a power transistor by
dissipating energy had been demonstrated through the use
of an engineering version of a SCOPE test system. The
method worked well, but required more test time on a
multiplexed, multisocket SCOPE system than the max-
imum 200 to 300 milliseconds that was economically
feasible. It was recognized that a nonmultiplexed SCOPE
system would not suffer the same restriction since all of the
hardware would be dedicated to a single socket. In
addition. removal of the multiplex circuitry, with its long
leads and high stray capacitance, would allow a primitive
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switching -time circuit and the special customer tests to be
added.

A prototype of a nonmultiplexed system, the first GALT
test station,' was developed and placed on line in 1975. It
used the basic SCOPE concepts, implemented in state-of-
the-art hardware, and was optimized for single -insertion
multiple -temperature testing of automotive Darlington
transistors. It was connected to the minicomputer in an
existing SCOPE test system and operated by "stealing"
CPU time. Calculations had shown that more than 20
GALT stations could be added to the system with no
degradation in the performance of the SCOPE system.
This prototype station is still in use in SSD's plant in
Malaysia.

Introduction of the SWITCH MAX high-speed
transistor families in 1977 brought a need for accurate
testing of switching time at high temperatures. Using
experience gained with the prototype GALT system, a new
station optimized for high-speed switching time was
designed. In this station, the minicomputer was replaced
with a COSMAC development system as the station
controller. This replacement was possible because the mini-
computer in a typical SCOPE station is idle about 99
percent of the time during testing, and has a machine -cycle
time only ten -times faster than a COSMAC CPU. To keep
the cost down, the only peripheral included with the GALT
station was an RCA Microterminal, which was to be used
primarily for maintenance purposes. A central computer
system was used to load test programs and to log results
over a serial data link.

A second COS MAC development system with disk -
operating software and four test -station interfaces was
originally used for the central computer. More recent
GALT sets have tied to existing Hewlett-Packard mini-
computer -based systems, and have employed RCA
M icroboard prototyping systems as the station controllers.

Fig. 1. GALT V switching -time console
(with door removed).

Fig. 2. Microboard station controller (with cover removed).

A total of three of these high -temperature -switching -
time test stations (Fig. I) have been built to date. One is in
operation in SSD's Mountaintop location and the other
two are operating in Malaysia. In addition to testing
switching time, the stations are configured to test forward -
biased second breakdown and several conventional
parameters.

System description

Unlike most other commercial test -system manufacturers,
RCA has generally grouped test hardware functions on
boards; one board contains all of the drivers needed for
gain measurements, another those needed for leakage
measurements, and so on. This practice allows customizing
of the response of each driver to suit the task, and allows
modification or addition of one class of test without
affecting others.

Until recently, there had been little control at the board
level. All information needed to run a test was placed in
parallel on the test backplane, timing signals were
generated, and results read under control of the central
computer. More complex tests, such as switching time,
required more information than could be placed on a test
backplane or transmitted over a parallel data link. This
predicament suggested a board -level controller that could
accept data in serial/ parallel fashion, run the test, and
return results. A system of this type provides a clean break
between the logic that performs the test and the logic that
decides which test to perform. Thus, the testing hardware
developed can be used in different systems with minimum
trouble, and can be easily expanded.

The heart of the test station developed to satisfy the
needs just described is an RCA Microboard computer
system (Figs. 2, 3, and 4). Figure 2 is a photograph of the
Microboard station controller itself. Figure 3 depicts the
system Microboard complement, and Fig. 4, the block
diagram of the switching -time console. As shown in Fig. 2,
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Fig. 5. Forward -drop board.

the system employs four standard cards: the CDP18S601
CPU, the CDP18S641 UART, the CDP18S640 control
and display board, and the CDP 18S622 battery -backed 8k
RAM card. A custom parallel I/O card completes the
system.

Test programs are loaded from a central station at 2400
baud through the UART card. No further external
communication is needed unless data taking is requested.
The battery -backed RAM provides protection from power
outages; the control and display card provides the interface

to an RCA Microterminal (a pocket -sized keyboard and
display unit) used for servicing. The custom I/O card
provides communications with the set of test boards and
with the test head.

The test head houses pass/ fail LEDs as well as hexa-
decimal readouts for displaying bin selection. As in RCA
SCOPE systems, light and photocell pairs are grouped
around the test socket to detect the operator's hands. The
readouts are latched internally and driven by address, data,
and timing signals from the custom I/O card. The "hand -
clear" signal from the test -head photocells is critical; the
operator's safety depends on it. It is used to signal the
system to start a test sequence and to provide a hardware
reset to all test boards, overriding any software. The signal
is also generated during power up to clear all boards.

Each class of tests is accommodated on a 11- by 17 -inch
board with two 43 -pin edge connectors. One connector
handles large signals: transistor -under -test leads, dedicated
power -supply connections, and high -power system
supplies. The second connector handles all low -power
system supplies, data, and handshaking lines. Figure 5
shows a typical board with its two connectors, and Fig. 6
shows a typical test -board assembly or "cage."

Each test board contains a small CDP1802-based system
(Fig. 7) that controls the hardware on the board and
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communicates with the test -station controller. The system
includes 1 kilobyte of ROM, 32 bytes of RAM, a C DP1851
programmable input/output port, and some handshaking
and address -decoding logic. A self -calibration feature
added to some boards requires the addition of a C DP1855
multiply -divide chip. Because of the limited I/O decoding
capability of the CDP1802, eight memory addresses are
decoded for the on -board hardware interface.

The CD PI802 was chosen as the main component of the
board -level processor system for several reasons. Designer
familiarity and its low cost were important factors, but
CMOS noise immunity was the deciding one. There has,
indeed, been very little trouble with "glitches," despite the
electrically noisy environment of the test stations.

Two data buses connect the test boards to the system
controller: one to pass "board codes" or test set-up data to
the boards, and one to pass back results and status. The
"hand -clear" signal resets each board at the start of a test
sequence. All output ports to the backplane are three -
stated; the boards initialize (and self -calibrate) and wait in
an idle loop. The station controller places the address of the
desired test (board code) on the backplane and generates a
signal to interrupt all boards. All boards compare the
"board code," and the addressed board responds with a
flag. Sufficient data to run the test is then passed over the

bus using a simple handshaking scheme. The board
compiles the set-up data, runs the test, and signals the
system controller to retrieve the results. Again, using a
simple handshaking scheme, two bytes of results and status
are passed back. The board then idles, waiting for another
interrupt.

The leakage board (Fig. 8) typifies recent hardware in
that it uses no off -board components and is self -

calibrating. The microprocessor front-end interfaces to the
hardware through relay drivers, a data latch, and A/ D and
D/ A converters. The D/ A converter is time multiplexed to
set both base -bias conditions and collector or emitter
voltage.

When the board has received all data needed to specify a
test, the relay -driver bits are determined and outputted.
During the relay -settling time, the base and then the
collector D/ A -converter values are calculated and loaded
(the D/ A converter has two internal registers). The base
bias is isolated from the D/ A converter, the collector
voltage is "rippled through," and the collector -supply
inverter is activated. After a further settling time, which
depends on current measuring range, the A/ D converter is
strobed. Supplies are shut off in reverse order, and the
results are returned.

As an example of a noise source present in the test set, the
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leakage supply is a 125 -kHz push-pull inverter with a !-
kilovolt output. The inverter is located within several
inches of the microprocessor "front end."

Switching -time measurements

The measurement of power -transistor switching
parameters over a wide range of conditions requires more
than one board of hardware; Fig. 9 shows the set-up used.
The transistor under test must be disconnected from the
normal test -board backplane and connected in a low -
inductance loop with a collector load and a current -sensing
transformer. A second low -inductance loop is composed of
the base -drive circuitry and a second current transformer.
A third low -inductance loop contains high-speed switching
diodes and bypass capacitors that clamp collector voltage
when inductive loads are switched.

Base- and collector -current and collector -voltage
waveforms (Fig. 10) are fed back to the switching -time
board. These signals then pass through programmable gain
amplifiers and comparators into the measurement cir-
cuitry. Measurement is made by time -interval averaging,'
which produces a resolution of five nanoseconds. All
comparator levels are set under program control, an
arrangement that allows the measurement points to vary.

The processor system is somewhat larger than on other
test boards, with more RAM and 32 decoded output lines.
A separate rack is provided for all supply drivers, relay
drivers, the base -drive timing driver, and so on.

The most difficult hardware functions to implement in
the multimicroprocessor test set included the base -drive
circuitry and the programmable amplifiers. The base drive
must output a reversing current pulse of 5- to 50 -
microseconds duration and of 1 -milliampere to 6 -amperes
magnitude. Rise and fall times of less than 20 nanoseconds
are produced at low currents, with socket and wiring
inductance limiting the highest current pulses to 50
nanoseconds. The drive is entirely bipolar; both n -p -n and
p -n -p transistors can be accommodated. The program-
mable amplifiers must operate over a gain range of 1 to
2000, with 1, 2, 5 sequence. Rise and settling times total 25
nanoseconds, accuracy is one percent, and inverting or
noninverting gain is provided.

The main collector and collector -clamp supplies were
also somewhat difficult to realize. They must sink or source
currents as high as one-half ampere at voltages up to 450
volts, also under program control, and can be stacked to a
maximum of 900 -volts clamp voltage.

The appearance of the switching -time circuitry to the
test -console controller is similar to any other test board,
but approximately 20 bytes are required to specify the test.
Nine different parameters can be measured in one test, but
as described earlier, only one result of up to 16 bits is
returned per test. To avoid unnecessary test repetition, the
board first compares all set-up conditions to those of the
previous test. If the conditions compare exactly (except for
the result requested) and no other board has been called

c

VCE:
(SHOWN FOR
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-awl Le- TF

i41.1 r,_ TT
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VcE CLAMP

, I

F~TVR
Fig. 10. Base- and collector -current and collector -voltage
waveforms supplied lo the switching -time board during
switching -time measurements.

since the last test, the board will go directly to returning
results.

If a new test is required, the first function of the system is
to decode and energize the required relays. The starting
values for all supplies are then calculated, and after a
waiting period for relay settling, the supplies are
programmed up. Reference values for all D/ A converters
are outputted along with other set-up conditions, such as
base -drive pulse width. After the waiting period for supply
ramp -up, the base drive is activated at a 2 -millisecond
repetition rate. At this time a supply -adjustment procedure
begins.

Switching parameters can be very sensitive to small
changes in set-up conditions; therefore, these conditions
must be maintained as accurately as possible. Some
parameters, such as reverse base current during turn-off,
maintain their peak value for less than 50 nanoseconds.
These constraints make conventional regulation tech-
niques difficult, and it is for this reason that the processor
has been made part of the feedback loop. Comparators are
set with the desired peak values of collector current,
forward- and reverse -base current, and collector -clamp
voltage. During a switching cycle, latches are set if any
value exceeds that desired. The processor examines the
latches after each cycle, and increases or decreases each
supply as needed. This adjustment is made after every cycle
for 100 cycles, and then reduced to one adjustment on every
fourth cycle. The measurement circuitry is then enabled,
and the switching, adjusting, and measuring continue for
another 100 cycles. Supplies are then disabled, results
calculated, possible errors checked, and the result phase
entered.

Operating -system software

The operating -system software in any test system should
provide the means for testing devices in the minimum
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amount of time necessary to bin (or sort) a device
accurately. When multiple temperatures are used, the
problem is complicated, since it is time consuming to cool a
device once it has been heated. For this reason, all tests that
might be needed at a given temperature must be performed
before the unit under test is heated to the next temperature.
Those tests not needed must be excluded to save time.

The Microboard computer contained in the GALT
stations has been programmed to perform testing along an
optimum path. Units are tested so that the device will fall
into the highest priority bin for which it is qualified, with no
unnecessary testing. The test program contains a list of test
conditions to be used by the hardware to perform the tests.
There is one entry for each parameter at each set of
conditions. The program also contains lists of tests
required for each bin. Each entry contains a pointer to the
proper entry in the test -condition list and the limits to
which the results of the test are to be compared. Limit
comparison is done in software, since each test returns an
actual result. This is a departure from almost all com-
mercial test systems, which make only analog hardware
comparisons. A unit is assumed to be eligible for all bins
before testing begins. An eligibility flag for each bin is
maintained in memory during testing, and is used by the
steering logic to determine which test to perform next.

Testing begins when a device is plugged into the test head
and the "hand -clear" flag is set by the photocell hardware.
The first test performed is a continuity test to assure that
the unit is making proper contact in the socket. If this test
fails, the continuity -fail code is displayed on the bin lights,
and testing is complete. If this test passes, all of the
eligibility flags are set to "eligible," and all of the test -result
locations are set to indicate that no tests have been
performed. The pointer for the first test of the highest -
priority bin (the one which must be filled first) is then
retrieved from the required test list, and the test is

performed. The results of the test are stored in the memory
location reserved for that test, overwriting the test -not -
performed flag. The results are then compared to the
specifications for the highest -priority bin. If the test has
failed, the eligibility flag for that bin is set to "reject," and
no further tests are performed for that bin. If the test
passes, the eligibility flag remains unchanged, and the
pointer for the next test in that bin is retrieved.

Testing continues, as long as a fail does not occur, until
the last room -temperature test for the highest -priority bin
is performed. At this point, the program looks ahead to see
if any tests are required at higher temperatures. If they are,
the eligibility code remains unchanged and testing con-
tinues with the next bin. If no tests are required at higher
temperature, the eligibility code is set to "qualified."

Before the room temperature tests for the next bin are
started, the list of tests for that bin is scanned to see if any of
the tests have already been performed. The previously
performed tests are compared to the required limits, and a
pass/ fail decision is made for each. If a failure occurs, the
eligibility code is set to "reject" (as above) for that bin, and

no further tests are performed for that bin. If no failures
are found, and there are remaining room -temperature
tests, they are performed. This look -ahead feature prevents
further testing of a device that has already failed an
identical test, and prevents repeating tests already per-
formed to the same set of conditions.

Room -temperature testing proceeds for the remaining
bins or until a bin is found for which the device is fully
qualified. The program then checks to see if the device is
eligible for higher -temperature testing for a bin of a higher
priority. If it is not, the number of the bin for which the
device qualifies is displayed and testing is complete. If the
device is eligible for higher -priority bin testing at a higher
temperature, the proper amount of energy is dissipated in
the device to heat it to the next temperature. The test -result
flags are reset to show no tests done, and testing continues.
The process is repeated for each temperature. If, at any
point, all eligibility codes are set to "fail," the reject code is
displayed on the bin lights and testing is complete.

The method of heating devices through the use of
internal heating is a time-consuming one. Therefore, there
is a tendency on the part of the test programmer to heat the
device as fast as possible by setting the dissipation as close
to the capability of the device as he can. When this is done,
however, some of the tested devices may experience
forward -biased second breakdown. If this condition oc-
curs, the device does not reach the proper temperature and
further testing is inaccurate. The control program handles
this problem by displaying a failed heating code on the bin
lights and by considering testing complete. Since this
condition is not a true failure, the device can be placed in a
bin for retesting with lower -energy heating pulses.

Some of the tests used to classify power devices require
the dissipation of energy sufficient to damage a device and
make the previous test results invalid. A feature has been
included in the subject test -system control program to code
such tests. If at any time the device fails one of these
potentially destructive tests, a special code is displayed on
the bin lights, and testing is complete.

Some of the microprocessor -controlled test boards have
provisions for self -diagnostic checks. When one of these
checks fails, a code is included in the test results sent to the
Microboard computer. When the control program senses
this code, it immediately stops the testing process and
displays a flashing code on the bin lights to indicate a board
failure. The display includes both the board number and
type of failure. The test station is locked up at this time.
After the board failure is noted, the station can be reset to
allow testing of the next device, although board failure will
be detected if it occurs again.

When one test board is switched off and a different one
called, there is the possibility that a relay may fail to open.
Since this situation is potentially destructive, the software
calls in a "hung -relay" check each time the boards are
switched. If a hung relay is found, the system locks -up in a
manner similar to that for a failed board.
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Utility software

The control software contains two methods of testing in
addition to the optimum path described above. A user can
define a data -test program that contains a list of tests in a
specified sequence. This method is used in conjunction with
a data -analysis program in the central computer to record
actual test results. In this mode, the testing begins when the
serial number of the device to be tested is sent from the
central computer to the test station. The serial number is
displayed on the bin lights and the test station is enabled.
When a "hand -clear" flag is received, the tests are
performed as specified. The results are sent to the central
computer, which processes them and, when ready, sends
back another serial number. The process continues until
the file of serial numbers is depleted and the central
computer sends a test -complete code in place of a serial
number. This signal causes the test -complete code to be
displayed on the bin lights, and testing is complete.

The second method of testing is a very simple test mode
designed for maintenance purposes. This mode employs
the station's Microterminal for 1/ O. The necessary control
words for a single test are loaded into a scratchpad area of
memory. When operating in this mode, the control
program repeats the test defined in the scratchpad con-
tinuously and displays the results on the Microterminal.
Repetition times can vary from 12 milliseconds to 30
seconds. This mode can be used to perform a test once only
by setting the repetition factor to zero. Utility software that
checks the operation of the bin lights, photocells, and
communications link has been included.

The software also contains routines for the loading of
test programs from the central computer. While com-
munication is proceeding, the photocell flag is ignored.
This arrangement prevents an operator from testing while a
program is being changed.

Maintainability

The most useful tool in facilitating repair of the subject
transistor test system has been the RCA Microterminal
used with the utility software described above. Because of
the intelligence available at the board level, the words
needed to run a test are simple to compile by hand. By
manually loading a single test and using the appropriate
control software, a board can easily be observed in
operation.

Because it is known that the setting up of A/ D and D/ A
converters is time consuming (and often ignored when one
of these functions is being replaced), a way was sought to
bypass these operations without compromising testing
accuracy. The method decided on involves the placement
of an accurate voltage reference on each board along with
facilities to connect the A D converter to the reference and
to the D/ A converters. Immediately after the "hand -clear"
flag is set by the photocell hardware, each board reads
ground and the reference voltage through its A/ D con -
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verter. Gain and offset factors are calculated and stored for
use in correcting the A/ D -converter readings. Each D/ A
converter is then driven to ground and to a value near the
end of the scale. Using the corrected A/ D converter, gain
and offset factors for the D/ A converters can be calculated.
During a board's operation, the factors are recalled and
used to correct the D/ A -converter outputs. Calculations
are done during the three -millisecond relay -settling time,
so that no test time is added. The result is corrected at the
end of the test, which adds several hundred microseconds
to the test time.

The test -board circuitry is designed to be minimally
affected by offsets or other op -amp parameters. This fact,
together with the self -calibration feature, allows the boards
to meet one -percent accuracy specifications with no set-up
at all, thus reducing labor content considerably.

Some limited self -diagnosis is starting to be included on
test boards, with status bits being returned along with test
results. A simple diagnostic test, such as for forward -biased
second breakdown (IS/ b) may report that a supply had run
out -of -compliance, thus negating the result. A complex
board, such as the switching -time board, may report such
problems as counter overflow, supplies adjusted out of
expected range, or improper base -drive response. It must
be stressed that several problems may have identical
symptoms; the diagnostics can only suggest the general
location of the trouble.

Summary

The placement of several levels of intelligence in a test
console has provided many new test -system features. The
extreme modularity of the set, in both hardware and
software aspects, allows a very flexible system design. The
addition of a capability to an existing set is as simple as

plugging -in a board. The system software is independent of
the boards used.

The optimum -path software provides a powerful and
time -saving determination of test sequence. The multiple -
temperature, multiple -binning capability in one insertion
provides a cost-effective way of meeting ever more
stringent custom -testing requirements.

Utility software, Microterminal access, self -calibration,
and self -diagnosis speed the understanding and solution of
problems. Self -calibration and self -diagnosis decrease the
possibility of mistesting the product. The construction and
check-out time of boards is also greatly reduced, and the
need for minor adjustments ("tweaking") has been
eliminated.

The multimicroprocessor-based transistor test system is
a flexible system that is adaptable to almost any custom -
test requirement. As a bonus, the cost to fabricate the
system internally can be as little as one -fifth of the purchase
price of commercially available test systems.
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W.H. Schilp, Jr.

Microboard equipment control

RCA Microboards and higher -level languages speed design
of specialized microprocessor -controlled manufacturing
equipment.

Abstract: An approach to the design of microprocessor -
control equipment through the use of RCA Microboards is
discussed. The use of standard board products greatly
simplifies the hardware design. As an example, a
demonstration unit of a portion of the transistor test set
described by Hepp and !sham in this issue was designed
and built completely with Microboards. To ease the
programming, two of RCA's higher -level languages were
used in the project: Basic3 and PLM 1800.

The purpose of the project described was to build a piece of
equipment to demonstrate the use of RCA Microboards in
specialized manufacturing -test equipment. The specific
example selected was the testing of some active parameters
of power transistors. The equipment was required to give a
pass/ fail response to preprogrammed limits for one type of
transistor and to optionally enter a diagnostic mode and
record statistics. The system was designed to 5e user
interactive and to be flexible and expandable, so that
additional tests, limits, or transistor types could be
handled. All information is displayed by the system on a
color monitor; the program comes -up running in the
pass/ fail mode. Since portability is a requirement, a 10 -

Test
Device

Beta Test Subsystem

milliampere limit has been placed on current testing to keep
the power requirement low.

System configuration

In the typical factory power -transistor test set there are
four major blocks: central computer, station controller,
board -level controller, and transistor under test. In the
demonstration system, the central computer was replaced
by a video terminal and keyboard because only one
transistor type was to be tested and there was no need for
mass storage of test programs. Figure 1 is a block diagram
of the demonstration system. It shows a multiprocessor
design with the processor in the system controller handling
the key board inputs, video output, pass/ fail criteria and
diagnostics, while the test -subsystem processor controls
the test conditions for the transistor under test and the
reading of the test results. The system is designed so that
additional test subsystems for tests such as leakage current,
breakdown voltage, switching parameters, and energy
capability can easily be added.

Reprint RE -26-8-7 ST -7026
Final manuscript received Aug 4, 1991

System Controller

Parallel I/O
CDP18S602
CPU

AJD
CDP18S644
Analog -Digital

D/A

CDP18S659
Breadboard

C

Programmed In PLM 1800

Fig. 1. Block diagram of the test system.
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Fig. 2. Diagram of typical Microboard-system complement.

Why use Microboards?

Only a few units of a piece of equipment like the subject
tester are usually built, and those, in many cases, by people
familiar with the product to be tested rather than micro-
processor circuit design. One way of assuring a more
successful product under these conditions is the use of
standard board -level products, in this case the RCA
M icroboards.

Some of the more common reasons given for using
Microboards include:

 they can be used by those who lack microprocessor
circuit -design expertise;

 they give fast turnaround;
 low volume cannot justify in-house development;
 they require low initial investment;
 they overcome manpower limitations;
 there is no manufacturing capacity; and
 they minimize risk.

The advantages provided by the RCA Microboards are:

 the high noise immunity standard with all CMOS devices;

 low -power operation and, consequently, low-cost power -
supply requirements;

 the compactness of the 4.5 -by -7.5 -inch boards;

 easy system modification through the use of the universal
backplane (described below); and

 good support from a full line of compatible hardware and
software products.

The Universal Backplane

Since the requirements of the test system include flexibility
and expandability, the board interconnections must ex-
hibit the same properties. The RCA Universal Backplane is
of an industry -standard, 44 -pin, card -edge design that
accommodates all pins on all boards in a standard
configuration. All control signals of the CDP1802 are
available on the backplane, an advantage that minimizes
software manipulation as different boards are accessed.
The parallel signal, and pin, configuration of all RCA
Microboards allows the use of the simple yet rugged
printed -circuit board backplane that makes hardware
changes easy; any Microboard can simply be added or
removed as system memory or I/O requirements change.
All of the I/O connections that are specific to an individual
Microboard are brought out at the opposite end of the
board from the backplane connection, again with industry -
standard connectors. Figure 2, a diagram of a typical
Microboard configuration, illustrates the board con-
nections.
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Circuit operation

On power up, both the system controller and test -
subsystem processors are reset, and an initialization
program for each is stored in PROM. The operator is
prompted to insert a transistor in the test socket and key an
input on the keyboard to start testing. The system -
controller calculates test words, which are sent over a serial
line to the test subsystem. The test -subsystem micro-
processor decodes these words, sets up the proper con-
ditions on the transistor and causes a measurement
(reading) to be taken. Based on the reading, the test -
subsystem processor may change some of the conditions
and take additional readings. If a proper reading is
achieved, data words are sent back; if not, an error code is
returned. The system -controller processor then stores the
reading and sends another set of data words. This action
continues until all of the tests are performed. The system -
controller calculates the beta, compares it to pre-
programmed limits, and outputs a pass or fail message to
the video display. The operator can then have the
equipment enter a diagnostic mode, can retest the same
device, or can insert a new one.

System controller

Hardware

The system controller is designed to calculate and transmit
the data words to the test subsystem, receive and decode the
data words, calculate pass/ fail information, receive inputs
from the keyboard, and update the video monitor as new
information becomes available. Because the controller
must be interactive with the user and easily expanded or
changed, an interpretive language was chosen as its means
of communications with the system. A requirement of this
language was that it have the floating-point arithmetic
capability required to perform arithmetic calculations.
RCA's Basic 3 meets these criteria and, in addition, is
available in the Microcomputer Development System
Microboard, CDP18S693. A CDP18S641 UART (univer-
sal asynchronous receiver/ transmitter) Microboard is used
to provide communication (it transmits test and data
words) over the RS232 link with the remainder of the
system. A CDP18S661A Audio, Video, Keyboard -
Interface Microboard is used for keyboard and color -
video -monitor control; all of the video is in color. These
boards, together with those in the MCDS (microcomputer
development system), the CDP18S601 CPU Microboard
and the CDP18S652 ROM, RAM, Cassette -Interface
Microboard, complete the board complement of the
system controller.

All system Microboards are housed in a CDP18S676
chassis with cover; the dc voltages -+15, -15 and +5
volts - are brought into the rear of the chassis. The RS232
link cable plugs into the CDP18S602 board of the test -
subsystem.

Software

During the initial software development for the system
controller, the developmental version of Basic 3 was used,
so that it was possible to encode and run the program in
real-time. Once the code was completed, it was burned into
EPROM and the Run Time Basic PROMs were sub-
stituted for the developmental version. The Interpreter
PRO Ms occupy 12 kilobytes (kbytes) of memory, the Basic
program occupies 2 kbytes, and the text for the video
output takes 4 kbytes. Approximately 1 kbyte of RAM is
used for stack, variable storage and work area.

On reset, the program initializes the UART board and
the video board, outputs a message on the video monitor
and waits for command input from the operator to start
testing. On command, the system controller calculates and
sends test words to the test subsystem and receives and
stores the data words. After the testing is complete, the beta
of the transistor is calculated for each test point and
compared to a limit. A pass or fail message is output to the
video. and the system waits for an input telling it to retest or
enter the diagnostic mode. Figure 3 is a portion of the
Basic 3 program, specifically, the single-step diagnostic
mode

Diagnostics

Three choices of diagnostic mode are available: single step,
table of values, and graph of beta -versus -collector current.
In the single-step mode, the operator is prompted to input a
collector -emitter voltage and collector current. From these
values, the system controller calculates the test words and
transmits them to the test subsystem, which performs the
test and returns the data words. The data is decoded and
beta is calculated; the base current and beta are displayed
for the operator. The second option will display a table of
the value of collector current, base current, and beta as
found during the pass/ fail testing. The final option
presently uses the graphics capability of the CDP18S661A
Video Microboard. A graph of beta -versus -collector
current is calculated from the pass/ fail test data and
displayed one video dot at a time by this board, a practice
that produces a smooth and continuous curve.

Beta -test subsystem

Hardware

The beta -test portion of the test system is required to accept
and decode test words, set up the test parameters for the
transistor under test, read the results, reset the test
parameters, if necessary, and finally transmit the results. A
latch was needed to store the emitter -current -range bits for
the test. A power -on reset assures that the system comes -up
running, and ROM and RAM are used to store the
program and provide for stack area. All of these
capabilities are available on the CDP18S602 CPU
Microboard. The transistor under test is connected into the
system through a CDP 8S659 Microboard breadboard.
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410111.BAS DESN: NEW BASIC

10 PRINT CHRE(4)
2) DEFINi H
30 PRINT -ENTER A COLLECTOR VOLTAGE BETWEEN .1 AND 10 VOLTS-
,...) INPUT X
50 IF X:10X=Iv
60 A=INUM(0:25;
70 PRINT "ENTER A COLLECTOR CURRENT BETWEEN .001 AND 10 MILLIAMPS-
80 INr1.1 0:W=V
90 IF W>=10W=9.990
100 W(.001W=.001
110 l=.434*L00(1000*W)
120 B=4*INTIY)
130 C=INUM(250*(W/10'(FNUM(INT(Y))-2)))
140 OUT (2.3,4t1D,
150 H=INP(2,2)
160 0=0
170 OU1 (2,2,B): GOSUB 340
180 OUT (2,2,C): 60'.,k1B 340
190 OUT (2,2,A)
200 0=1: GOSUB 340
210 D=INP(2,2): OUT (2,2,0)
220 GOSOB 340
230 E=INP(2,2): OUT (2,2,0)
24i 5=1ENOM(E))/250*10'(D-3)
250 IF S=0 PRINT "BASE CURRENT IS BELOW RANGE"
26.0 it =0 GOTO 300
270 PRINT "AT A COLLECTOR TO EMITTER VOLTAGE OF "ixi" VOLTS. AND A"
280 PRINT -COLLECTOR CURRENT OF ";Vi" MILLIAMPS. THE BASE CURRENT IS"
290 PRINT Si" MILLIAMF'S, GIVING A BETA OF "iINUM(V/S)
500 PRINT : PRINT : PRINT : PRINT
310 INPUT "DEPRESS C TO CONTINUE OR E TO EXIT AND RETURN -As

ir Gard 10
330 END
340 H=INP(2,3)
350 F=H AND 1

360 iF F<>1 60111 340
370 IF 0=1 RETURN
380 H=,-Ni,(2,2): RETURN
390 WFLN -ATOD1.BAS:0"
400 DOUI : LIST : CLOSE : TOUT
410 EN,

Fig. 3. The single-step diagnostic -mode portion of the Basic 3.

The V('E voltage -test word and the
emitter -current word must be converted
into analog signals before they can be
applied to the transistor. In the subject
system, eight bits of data are sufficient for
the desired accuracy. The two D/ A
channels in the CDP18S644 A/ D and D/ A
converter Microboard handle this conver-
sion. The CDP I8S644 also has sixteen 8 -
bit A/ D channels, one of which is used to
read the voltage across the base sense
resistors to provide a base -current mul-
tiplier. The values of the multiplier and the
base -current range are transmitted through
the UART to the system controller, which
outputs the value of the base current.

Software

The software program for this part of the
system was written on a CDP I8S008
CDSIV Development System in PLM
1800. PLM was chosen because of the ease
of coding in the higher -level language, and
particularly because of the I/O constructs
in this language that permit direct com-
munication with the I/OMicroboards. On
reset the PLM program starts automatical-
ly, initializes the hardware, and waits for a
signal from the UART to the effect that it

William Schilp is a Member, Technical Staff,
in the Microsystems Engineering Depart-
ment of the Solid State Division at
Somerville. He joined RCA in 1964 at the
RCA Laboratories in Princeton in advanced
silicon -device process research. In 1969, he
moved to the Solid State Division and
became involved in power -transistor design
engineering. Mr. Schilp was responsible for
the design of a number of power transistors
including most of the radiation -hardened
power devices. In March 1980 he transferred
to the applications area of the microsystems
group.

Contact him at:
Solid State Division
Somerville, N.J.
TACNET: 325-6369
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DO;
MAIN: PROCEDURE;
DECLARE OUTSLOOP BYTE INITIAL(0),

CONYINUESPROC'ESSING BYTE INI-11AL(0),
INNERSLOOP BYTE,
STOP BYTE INITIAL(1),

UART$BOARD BYTE INITIAL(1),
UANY$WOND BYTE INITIAL(IDH),
ATODTOASBOARD BYTE INITIAL(30H),
FIXEDSCHANNEL BYTE INITIAL(0),
STARTSCONVERSION BYTE INITIAL(0),
PIOSBOARD BICE INITIAL(8),

TABLE(10) ADDRESS,
1CSRANGE BYTE INITIAL(1),
ICSMULTIPLIER BYTE INITIAL(2),
VCESVOLTAGE BYTE INITIAL(3),
IBSRANGE BYTE INITIAL(4),
IBSMULTIPLIER BYTE INITIAL(5),

DUMMY BYTE,
I BYTE;

WAIT: PROCEDURE;
DUMMY = 0;
DO WHILE DUMMY=0;

DUMMY=INPUT(3) AND 1;
END;

END WAIT;
DO WHILE OUTSLOOP=CONTINUESPROCESSING;
TABLE(IBSRANGE)=0;
OUTPUT(1)=UARTSBOARD;
OUTPUT (3) =UARTSWURD;
DUMMY=INPUT(2);
DO 1=1C$RANGE TO VCESVOLTAGE;

CALL WAIT;
TABLE(I)=INPU7(2);
OUTPUT(2)=0;

END;
OUTPUT(1)=ATODTOASBOARD;
OUTPUT(3)=TABLE(VCESVOLTAGE);
OUTPUT(4)=TABLE(ICSMULTIPLIEk);
INNERSLOOP=CONTINUESPRUCESSING;
DO WHILE INNERSLOOP=CONTINUESPROCESSING;
OUTPUT(1)=PIUSBOARD;
OUTPUT(2)=TABLE(ICSRANGE) OR TABLE(IBSRANGE);
CALL TIME(27); /*WAIT FUR BOARD TO SETTLE DOWN*/
OUTPUT(1)=ATODTOASBOARD;
OUTPUT(6)=FIXEDSCHANNEL; /*CHANNEL 0 & SINGLE ENDED*/
OUTPUT(5)=STARTSCONVERSION;
DO WHILE (EF1=0); END; /*WAIT FOR CONVERSION TO COMPLETE*:
TABLE(IBSMULTIPLIER)=INPUT(3);
IF TABLE(111$MULTIPLIER) > OFBH

THEN DO; /*IF OUT OF IB RANGE, GOTO OUT OF RANGE ROUTINE*/
IF TABLE(IBSRANGE) NE 03H
THEN TABLE(IBSRANGE)=7ABLE(IBSRANGE)+1;
ELSE DO;

TABLE(IBSMULTIPLIER)=OFFH;
INNERSLOUP=STOP; END;

END;
ELSE INNEksLuup=sioe;

END;
OUTPUT(1)=UARTSBOARD;
DO I=IBSRANGE TO IBSMULTIPLIER;

OUTPUT(2)=TABLE(I);
CALL WAIT;
DUMMY=INPUT(2);

END;
END;
END MAIN;
CALL MAIN;
END ATOD;
EOF

Fig. 4. PLM source code of the program.

has received data. After receiving the third
data word, all three words are sent to the
A/ D and D/ A converter board and the
parallel I/O port of the CDP I 8S602 board,
which sets up the voltage and current for
the transistor. The A/ D converter is in-
structed to read the sense resistor and
convert the data, which is then transmitted
to the system controller via the DART. The
program then loops back and waits for
another set of inputs. Figure 4 is the PLM
source code of the program. The assembled
code occupies approximately 3 kbytes of
PROM and uses less than one page of
RAM area.

System expansion

With additional software only, the beta -
test subsystem can be made to perform
base -emitter voltage (VBE active) testing.
By adding additional CDP I8S641 UART
Microboards to the system controller,
additional subsystems can be designed and
added to measure other transistor
parameters, such as emitter -base and
emitter -collector saturation voltages, junc-
tion breakdown voltages, and junction
leakages. Each subsystem can
and built as a module and, since each has its
own microprocessor, can, with the overall
supervision of the system controller, test,
make some first -level decisions, and pass
back only final data, thus speeding up the
overall process of testing.
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J.W. Woestman

Slurry -control equipment
uses microprocessor

A microprocessor gives dynamic adjustment of the slurry
composition used on color picture tubes at every dispense so
that specific gravity and viscosity are maintained
continuously.

Abstract: The microprocessor system
controls the specific gravity and
viscosity of the phosphor slurry that is
deposited on the top of the picture
tube. The program repeatedly
calculates errors or imbalances in the
slurry, water, and PVA makeup.

In the manufacture of the cap, or panel,
on the front of a color picture tube, the
three color phosphors are deposited
individually on the inner surface in a
process known as screening. The
phosphor crystals of a single color are
combined in a batch of slurry together
with water, polyvinyl alcohol (PVA),
and other stabilizing and wetting
agents.

The established method of screening
requires that the slurry be generously
dispensed into the cap and distributed
all across its inside frontal surface.
Excess slurry is salvaged and returned
to the mixture both because a greater
number of caps can be screened per
batch and because the phosphor
crystals are too costly to scrap.

When the salvaged slurry is com-
bined with the main slurry stock, the
specific gravity and viscosity of the.
batch is modified because the
diminished phosphor content lowers
the specific gravity and viscosity. For
optimum screening conditions,
specific gravity and viscosity should
remain constant.

Reprint RE -26-8-8
Final manuscript received June 19. 1981.

The practical compromise has been
to maintain the slurry level in the six -
liter charge vessel by replenishing its
contents from a filler vessel. The
specific gravity and viscosity of the
slurry in the filler vessel are above
bogie, so that, combined with the
salvage, the slurry composition
remains within an acceptable range
until exhausted.

The introduction of a micro-
processor to screening provides for
dynamic adjustment of the slurry com-
position at every dispense so that the
specific gravity and viscosity is main-
tained continuously very near to bogie
values.

Control implementation

In order to provide for continual adjust-
ment of the slurry composition in the
charge vessel, three stocks of liquid are
located close -by. The filler vessel
contains slurry having very high densi-
ty and slightly high viscosity. Another
vessel contains a highly viscous PVA
mixture, and the third vessel contains
water. The quantity of each of these
three liquids added to the charge
vessel at each dispense is determined
and controlled by the microprocessor.
Figure 1 depicts the arrangement of the
slurry equipment.

Solenoid valves at each of the three
slurry vessels control the quantity of
make-up slurry added to the charge
vessel after every dispense to a cap.
The exact quantity of a liquid is

determined by the length of time its
valve is open. The flow rate from any
vessel is a function of the viscosity,
density, and head of the liquid (all
valves are the same size). This flow
information is stored in the micro-
processor program. It is fixed for the
water and PVA liquids, but is operator -
adjustable for the filler slurry
(described later). The quantity of liquid
from each vessel is that required to
restore or maintain the charge slurry at
bogie specific gravity and viscosity,
and to maintain the level of slurry in the
charge vessel at a predetermined
height. The latter is important so that
the calculation of quantities necessary
to reduce errors to zero can be based
on a (relatively) fixed quantity of slurry
in the charge vessel. The system
operates in a controlled environment
and corrections for temperature and
humidity are not necessary. The
quantity of make-up slurry is also ad-
justable by the operator to match
different size caps (13 -to 25 -inch color
picture tubes) Dynatror specific
gravity and viscosity sensors provide
variable input signals.

The control electronics are housed
in a metal cabinet shown in Fig. 2. The
front panel has controls and indicators
for putting the system in operation and
for monitoring it. The system normally
operates unattended once the set
points have been entered. Alarms are
provided to signal the operator if the
slurry specific gravity, viscosity, or
level exceed predetermined limits. In-
dicator LEDs tell when valves are open,
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..1Fig. 1. Arrangement of slurry
equipment showing liquid
flow paths and control signals.

when high and low variable limits are
exceeded, when set points are illegal,
and whether set points or sensor
readings are being presented on the

set points are entered by thumbwheel
switches. A 31/2 -digit display indicates
specific gravity reading or set point,
viscosity reading or set point, filler
slurry flow -rate setting, and dispense -
volume setting.

Electronic components are an Intel
iSBC 80/20-4 microprocessor board,
an eight -channel A/D converter board
having a two -channel D/A converter as
well (Burr Brown MP8413), a multi -
voltage regulated power supply (Intel
iSBC 655) and optically isolated solid-
state relays for operating the valves.

The slurry -control equipment uses
23 input and 19 output ports of the
available 48 I/O ports. One -hundred -

SLURRY CONTROL EQUIPMENT

0. o 9 9
9 o

-0 -0 -411 -ID

111

MM.

it- MP:

013

Fig. 2. Control cabinet showing location of front panel.

and -eighty bytes of RAM and over 5200
bytes of ROM are used in the program.
Only four of the eight analog input
channels are used and one of the two
D/A converter outputs is used for dis-
play on a digital panel meter. Although
this method of display is somewhat
unusual, it is economical. The D/A
converter channel was provided
anyway, as part of the analog board;
the digital panel meter, being a high
volume component, is inexpensive;
and output is provided with only a few
lines of code in the program. The
program contains four sections, in-
itialization, valve timing calculations,
indicator and alarm servicing, and
thumbwheel and display servicing. A
modified form of BASIC named SLAM
is the programming language used.

In the initialization section, software
programming of the Intel micro-
processor board is done and initial
values are assigned to particular
variables. Also, default set points for
specific gravity and viscosity are set.

In the section for valve timing
calculations, the four analog input
channels are read and the time for each
valve to be open is calculated. The
algorithm for this calculation first
determines the specific gravity and
viscosity error. It then determines the
volL-me of water, PVA, and filler to
correct the error. These volumes are
compensatory. For example, if X ml of
extra filler slurry are needed to correct
a specific gravity error, then X ml of
water will be subtracted from the total
water added. The total of all three of the
liqu ds contributing to a dispense is
determined by the size of cap being
screened. These volumes range from
50 to 150 ml. In addition, the total
added volume is increased or
decreased to maintain the prescribed
level in the charge vessel. Constants
and parameters for the algorithm were
determined first by calculation. They
were then refined by extensive testing
in a mock set-up. Operators began
inputting the filler flow rate when it was
found that filler flow rate varied from
batch to batch.

Valve timing calcuations are made
repeatedly by the program. But, when a
dispense to the cap is made, the
calculations are suspended until all of
the valves have closed. That occurs
when the replenishing of the slurry
dispensed from the charge vessel has
been completed.

Timing for the valves is done by
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Fig. 5. Test setup used for laboratory simulation. Main charge vessel is at lower
right.

using one of the four counters on the
Intel 80/20 board. During initialization,
counter #1 is loaded with a value that
provides a countdown to zero in 0.01
second. When the counter reaches
zero, it generates an interrupt. Upon
interrupt, the variables representing
the valve on -times are each
decremented. Then the counter is
reloaded, and the interrupt ended.
Thus, to open a valve for one second,
the program will load 100 into the
variable for that valve.

For indicator and alarm servicing,
the sensed values of specific gravity
and viscosity are compared to high and
low limits. If any limit is exceeded, the
appropriate indicator light on the panel
is lit, and an alarm is sounded. Level is
also sensed, but this is not an analog
signal. Level is sensed as too high, too
low or neither of these. The level sensor

is essentially two switches. The alarm
for level -limits exceeded has a different
sound from the other limit alarm.

If panel switches for activating the
thumbwheel switches and display are
appropriately set, the program enters
the routines to service them. Set points
entered on the thumbwheel switches
are entered into the program when the
"enter" pushbutton is depressed. The
value entered is echoed by the display
unless it is an out -of -limit value. If an
out -of -limit value is put on the
thumbwheel switch, a red "set -point
out -of -limit" light comes on, the value
is not entered, and the previous set
point is retained. Display of sensed or
set -point values is obtained by front
panel switches. Set points for cap size
and filler flow rate are entered by
potentiometer settings. Values entered
are displayed.

Joh- Woestman spent three years in the
development of commercial equipment us-
ing microprocessors prior to joining the
Picture Tube Division as Member Technical
Staff in August, 1978. He received his BSEE
from the University of Cincinnati in 1949. He
has had design experience in transistor
circuits, and in infrared and optical sensors
for military and spacecraft applications.
Contact him at:
Picture Tube Division
Lancaster, Pa.
TACNET: 227-2435

Figure 3 is a block diagram of the
control and Fig. 4 is a generalized flow
chart.

The equipment has been extensively
tested in the laboratory where the
algorithm was developed and refined.
Operation simulating production con-
ditions demonstrated potential to con-
trol specific gravity to ±0.05 and
viscosity to ±2 centipoise. A prototype
unit is being readied for test at the
Marion, Indiana tube plant. A
photograph of the test setup is shown
in Fig. 5.
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E.J. Alvero

Microprocessor -based lighthouses

During the mechanized screening process in the Marion
picture tube plant, a microprocessor -based machine
controls exposure times and motor movements on the
lighthouse, and is part of a larger, coordinated system
control.

Abstract: Automated sliptop
lighthouse equipment is part of the
mechanized, picture -tube screening
process at Marion. During the time that
the panel is on the lighthouse for
exposure to ultraviolet light, several
local inputs determine the exposure
time. In addition, the panel is moving
with respect to the light source while
the panel is being exposed. A micro-
processor was selected to control the
exposure time and to control motor
movement. In addition, the automated
lighthouse is a part of larger system
control. The microprocessor com-
municates to a programmable
controller.

Manufacturers use "lighthouses" to
make screens for color -TV picture
tubes. Lighthouses are used to expose
the photoresist coatings on the inside
of the glass -panel screen with ul-
traviolet light. RCA is now using a
microprocessor -based machine in the
mechanized screening room in the
picture -tube manufacturing plant at
Marion, Indiana.

Normal procedures go like this.
Before placing the panel on the
lighthouse, the phosphor and
photoresist coating is applied on a
screening machine. After further
processing, the mask -frame assembly,
which has a graded aperture mask, is
inserted into the panel. The panel is
then unloaded from the screening
machine and placed on the lighthouse.
After exposure, the mask -frame
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assembly is removed. The unexposed
photoresist is washed away, leaving a
phosphor pattern on the screen. This
procedure is repeated for green, blue,
and red phosphors.

Motor movement is required

The light source is positioned
mechanically on the lighthouse with
respect to the panel in the x-axis and z-
axis. The x-axis (S) mechanical place-
ment is for the separation between
colors for the particular tube. The z-
axis (P) is set up for the distance
between the light source and the seal
end of the panel for the particular tube
type. Previously, lighthouses were set
up with the y-axis at optical center. No
motor movement occurred during ex-
posure. Thus, lighthouse control was
only exposure -time control, achieved
with electromechanical timers.

However, with the precision in -line
matrix tube types, motor movement in
the y-axis during exposure is desirable.
There are several reasons for this. The
first reason is due to the artwork of the
mask. It is rectangularly slotted, and
moving the light source during ex-
posure eliminates "necking" caused by
the vertical distance between mask
slots (Fig. 1). An elongated light source
and motor movement during exposure
greatly reduces this problem. Second-
ly, motor movement during exposure
minimizes any errors due to dirt spots
on the optical lens during exposure
Finally, the tolerance of the mask
assembly does not have to be as tight to
produce good screens.

Fig. 1. Phosphor line with no move-
ment (left), and phosphor line with
motor movement on exposure (right).

Requirements

A new microprocessor -based
lighthouse control needed to assure
that the panel was exposed equally
about the optical axis. The distance the
lighthouse moved during exposure
was to be variable with tube type, and
externally adjustable. If the tube type
was non -matrix, the lighthouse control
had to provide exposure at optical
center with no motor movement.
Tighter control on exposure time was
also desired. Exposure of the panel
based on cell -size information was to
be provided as in the old lighthouse
control.

Based on the mask transmission of
the mask -frame assembly, panels are
divided into one of four cells. Each cell
requires a different exposure. A panel
with a mask assembly having a low
mask transmission is exposed longer.
Later refinements of the system in-
cluded compensating for reduced
lamp intensity by increasing exposure
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time and putting the lighthouse uncer a
larger automated system control.
Because the requirements seemed to
involve much input data processing to
produce an accurate distance move-
ment while also maintaining an ac-
curate exposure, a microprocessor -
based system was selected. We chose
an Intel 80/20 single -board computer,
which has the 8080 microprocessor.

Figure 2 shows the block diagram of
the lighthouse -control system. The
system inputs fall into two categories:
local input data from the lighthouse -
control panel or lighthouse -machine
base, and signals provided by external
programmable controllers.

One external controller is the
Modicon 484 PC used by a transfer
unit. The transfer unit takes a panel off
the screening machine and places it on
an available lighthouse. The 484
passes a signal that tells the lighthouse
to begin processing. It also provides 8 -
bit data that is either actual mask
transmission for that panel, or cell -size
information. A supervisory program-
mable controller provides the signal as
to whether the data is mask transmis-
sion or cell -size data.

The main local inputs are: five 3 -digit
thumbwheels that give exposure and
excursion distance data for the tube
type being processed on the light-
house; inputs from an incremental
rotary encoder and a home limit switch,
which does the positioning of the y-
axis; and inputs used to provide ex-
posure control based on the intensity
of the mercury arc lamp used in ex-
posing the panel. A toggle switch to
determine whether to move during ex-
posure is another important input. The
five thumbwheel switches are mul-
tiplexed. Five lines are used to select
the appropriate thumbwheel, and
twelve lines are input to the computer.
The program selects the thumbwheels
to be read and performs checks to see if
the inputs are within limits. Functions
are as follows: (a) a switch that sets the
minimum exposure preset time for the
tube type being processed, (b) a switch
that specifies the difference between
the base exposure and the maximum
exposure for the tube type, (c) two
switches that specify the minimum and
maximum transmission value for the
tube type and that are used only if the
data passed by the transfer unit is
actual mask transmission, and (d) a
switch that specifies the distance to be
moved while exposing the panel.
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DONE
V
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UNIT
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START
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DATA
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MISSION

ALARM
CONDITIO

SUPERVISORY
CONTROL

WATT TRANSDUCERV/F THAT MEASURESCONVERTER LAMP POWER

ViSHUTTER1

MOVE SIGNAL

PHOTO SENSOR FOR
DETECTING PANEL
ON LIGHTHOUSE

V*?
MICRO

COMPUTER

A 4414

AIR CYLINDERS
TO PLACE PANEL

IN AGAINST
POSITIONING PADS

(2) DIRECTION 'STEPPING
PULSES
RATE -

500 PULSES/SEC
PULSE OUTPUT

MOTOR
* CONTROL

HOME INDEX PULSE

(!1°'

(12)

5 THUMBWHEEL
SWITCHES TO

DETERMINE EXPOSURE
TIME AND EXCURSION

DISTANCE

Fig. 2. Block diagram of lighthouse control.

A stepping motor creates 'movement
on the y-axis. A closed -loop system
ensures that the transfer ur it always
places the panel properly on the
lighthouse. Signals provided by the
encoder are the DATA signal and the
"home" index pulse. The "home" index
pulse occurs every revolution of the
stepping motor shaft. There are 200
steps per revolution of the motor shaft.
Each step moves the y-axis one mil
(0.001 in.). Pulses provided to the
stepping motor controller occur at a
fixed rate of 500 pulses/second. Thus,
the DATA signal of the encoder going
to the computer is at that rate. A micro -
switch, positioned 0.775 in. from
optical center, is used to find the home
pulse on power -up. The computer
turns the motor counterclockwise until
the home index pulse from the encoder
is found. That pulse is set up to be 0.675
in. from optical center.

The final important local input is the
data to provide compensation for
changes in lamp intensity. .A watt
transducer monitors the input power to
the lamp. The lamp intensity is directly
proportional to changes in lamp power.
The analog voltage output from the
transducer is converted to a frequency
and input to the computer. That fre-
quency (pulse train) is the clock to a
16 -bit counter on the computer. To
generate an exposure from a
calculated preset time, the computer
calculates how many pulses it must
count from the V/F converter to get the

STEPPING
MOTOR

INCREMENTAL
ROTARY
ENCODER

oF-MICROSWITCH
PO FIND HOME

-PULSE ON
:I_POWER UP

MICROSWITCH TO
DECIDE TO MOVE
DURING EXPOSURE

des 'ed exposure. It is performing this
calc.Jlation based on what the fre-
quency was when the lighthouse was
calbrated. Since the lamp power
needed to produce a given light -
intensity output varies from lighthouse
to lighthouse, a calibration feature was
designed. The computer calculates the
average frequency of the V/F converter
over a certain time window when a
"ca ibrate" pushbutton is pressed. That
pushbutton is an external interrupt to
the 80/20 computer. The principle
behind the exposure compensation is
faiirly simple. As lamp power
decreases, the frequency is reduced by
the same amount. Since that frequency
is clocking the counter that controls
exposure, the exposure time is in-
creased proportionally.

The outputs from the computer to
the !ransfer-unit controller are two
hardshaking signals. One tells the
transfer unit that the lighthouse is
ready to accept another panel. It
signals this if there is no panel on the
ligt-thouse (sensed by photo sensors
mounted just above where the panel is
placed). The other signal calls for the
parel's removal. An alarm signal is
passed to the supervisory controller if
any problems occur while the light-
house is processing the panel. The
local outputs are: the signals to open
the shutter, the direction signals
(clockwise and counterclockwise), and
an Dutput signal with a rate of 500
pulse/second that goes to the stepper
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Fig. 3. Normal lighthouse operation flowchart.

control, and the signal to place the
panel against positioning pads by
activating air cylinders.

Figure 3 shows the basic flowchart
for normal operating lighthouse con-
trol. A start -stop operation of the
stepping motor is used because travel-
ing a short distance continuously over
the normal exposure range introduces
a vibration on the mask. The exposure
is divided into ten equal intervals. In the
first nine intervals, there is a certain
dwell time, then there is a move time in
which the stepper moves one -ninth of
the total excursion distance. The final
interval is used to dwell. This scheme
ensures equal exposure about the
optical axis. The calculation to com-
pute the number of steps it has to travel
before opening the shutter is as
follows: pretravel equals 675, minus the
excursion distance divided by two. If
the excursion is 1.00 in., then the
excursion distance equals 1000 steps.

CJMPJTE MOTOR STEPS
TO BE MOVED IN FIRST
9(NINE) INTERVALS

4
ACTIVATE AIR CYLINDERS
TO MOVE PANEL AGAINST
POSITIONING PADS

MOVE MOTOR CLOCKWISE
TO SHUTTER

OPEN POSITION
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4
DWELL AND MOVE

FOR FIRST 9(NINE)
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4
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4,

CLOSE SHUTTER

4
RETURN TO

HOME POSITION

4
RETRACT AIR
CYLINDERS

4
'SEND DONE SIGNAL
,TO TRANSFER UNIT

4
GO BACK TO
STEP 0

The calculation to compute ex-
posure time from manual cell -size data
is as follows: (1) the exposure range
value is divided by four to set up an
equal time range for each cell, (2) the
cell -size 8 -bit data is converted to a cell
code (either 0, 1, 2 or 3), (3) the cell
code is added to 0.5 to get the mid-
range of the cell and multiplied by the
exposure range, and (4) that result is
added to the base exposure.

After doing the data processing, the
lighthouse exposes the panel and
moves the panel with respect to the
source. After finishing this task, the
lighthouse sends a signal for the robot
to place the panel back on the screen-
ing machine. These lighthouses, a part
of the mechanized screening room in
the RCA picture -tube manufacturing
plant in Marion, Indiana, have shown
satisfactory results. The time to
produce a working system was short
due to the use of the microcomputer.

Ernie Alvero is Member Technical Staff
Picture Tube Division, in Lancaster. He
joined RCA in August 1976 in the Equipment
Development section where he is currently
employed. His technical activities include
microprocessor -based lighthouse design,
and he is currently developing computer -
control system software for the horizontal
mask -etch line. His BSEE is from City
College of New York.
Contact him at:
Picture Tube Division
Lancaster, Pa.
TACNET: 227-3438

62 RCA Engineer  26-8  Sept./Oct. 1981



S. Malyszka

Microcomputers in space:
Automatic thruster control for Satcom

Once Satcom D is in orbit, microcomputer architecture
based on the RCA CDP1802 will help it keep its station.

The geostationary Satcom orbit
degrades with time and must be
periodically adjusted to maintain the
satellite to within 0.1 degree of its
assigned station. Orbit degradation is
caused by the gravitational effects of
the sun, earth, moon, and solar -
radiation pressure. Orbit adjustment
(called stationkeeping) is ac -
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complished with 12 hydrazine
thrusters. These thrusters are also
used, during stationkeeping
maneuvers, for satellite attitude con-
trol.

On earlier Satcoms, thruster control
was semiautomatic, performed by
ground commands in conjunction with
on -board sequential logic. Satcom D
will be the first RCA commu,ications
satellite to employ a microcomputer for
fully automatic thruster control.
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Abstract: The attitude logic processor
(ALP) is the microcomputer that will
provide automatic thruster control on
Satcom D. The author briefly describes
the capabilities of the firmware, in-
cluding interfaces and safety features.

Automatic control minimizes ground
intervention during stationkeeping
maneuvers. These factors provide for
more reliable service to customers and
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Fig. 1. Block diagram of the ALP.
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Fig. 2. Overview of ALP firmware.

increased ease of operations. Micro-
computer control offers flexibility in
accommodating logic changes
resulting from varying mission re-
quirements simply by changing the
firmware. The following is a descrip-
tion of the attitude logic processor
(ALP), the microcomputer that
provides the automatic thruster control
on Satcom D.

The attitude logic
processor (ALP)

A block diagram of the ALP is shown in
Fig. 1. It receives pitch, roll, and yaw
attitude data, together with a measure
of the satellite bias momentum (pitch -
control -loop compensation -amplifier
output voltage) from the satellite sen-
sors and the attitude control elec-
tronics (ACE). The ALP then computes
.and generates thruster -firing control
sequences according to algorithms
stored in the microcomputer's read-
only memory (ROM). The firmware
incorporates the logic required to per-
form the following tasks:
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 Preoperational Mode

 Spin precession maneuver (SPM) ex-
ecution. During the transfer orbit, the
spacecraft is spinning about the
thrust axis at a nominal 60 rpm. It is
necessary to place the spacecraft in
the proper orientation with respect to
the orbit prior to firing the apogee
kick motor. This maneuver is called
the SPM.

 Mission Mode

 North -south (N -S) stationkeeping
(latitude orbit correction) and attitude
control.

 East -west (E -W) stationkeeping
(longitude orbit correction) and
attitude control.

 Back roll control. Propulsive roll con-
trol is used as a backup in case of
failure of both roll magnetic torquing
coils.

 Automatic pitch error and momentum
adjust control. Propulsive control is
used to stabilize the spacecraft about
the pitch axis and to off-load the
momentum wheel, that is, to reduce
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its speed, during N -S stationkeeping
maneuvers.

The firmware also includes code for
required interfaces: uplink -command
processing, telemetry collection,
earth- and sun -sensor data inputs,
and yaw gyro data processing. In addi-
tion, several safety features are an
integral part of the firmware: uplink
command and data validity checking,
maneuver backup timers, maneuver -
attitude -error and momentum -level -
abort limits, and continuous monitor-
ing of the ROM. Provisions for a com-
plete memory dump of both the ROM
and the random-access memory
(RAM) are available.

The ALP, ACE, and yaw gyro are
asynchronous. The firmware, however,
is synchronized to the spacecraft
telemetry system in order to syn-
chronize the ALP telemetry data
readout with the timing operations of
the telemetry system. A backup
"flywheel" mode is provided in case
of telemetry sync loss. Firmware
routines requiring precise timing are
driven by a 1024 -Hz interrupt clock.
Other routines are run in the
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background, according to a 2 -second
schedule that activates them often
enough to detect changes in their
input. An overview of this operation is
given in Fig. 2. The RAM is initialized at
power turn -on, and the actual
telemetry output is by way of direct -
memory access (DMA). The ALP also
incorporates a hardware safety feature.
A "watch -dog" circuit is provided to
periodically monitor the status of the
microcomputer. A firmware routine,
executed once every two seconds,
provides a reset pulse to the watch -dog
timer. Should the microcomputer fail to
execute two or more timer reset pulses,
the watch -dog circuit will automatical-
ly disable all thruster -firing outputs.

The ALP microcomputer architec-
ture is based on the RCA CDP1802
microprocessor, with 4.6 kbytes of

Stephen Malyszka joined RCA as a design
engineer in 1967 and currently is the Elec-
trical Design Manager in the Electronic
Systems Department at Astro-Electronics,
Princeton, New Jersey. His group is
responsible for the design and test of elec-
tronic subsystems for satellite applications.
Contact him at:
Astro-Electronics
Government Systems Division
Princeton, N.J.
TACNET: 229-2825

bipolar ROM
programs and 1 kbyte of SOS (silicon -
on -sapphire) RAM for data storage.
Programmable ROMs are used to ac-
commodate program changes as mis-

for storing the control sion requirements vary. The PROMs
are power switched in the ALP to
conserve power. The use of CMOS
integrated circuits also contributes to
low -power operation.

Proud of your hobby?
Why not share your hobby with others? Perhaps their interest will make your
hobby more satisfying. Or maybe you'll find others who already share your hobby
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The RCA Engineer likes to give credit to
engineers who use their technical

knowledge away from the job. We've
published articles about subjects as

diverse as a satellite weather station,
model aircraft and railroading, solar

heating, and an electronic fish finder.

For more information on how you can
participate in this feature of the RCA

Engineer, call your local EdRep (listed
on the irside back cover of the Engineer)
or contact Frank Strobl (222-4220).
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G.D. ChiniL.C. Kaye

THE

ACC
The 1802 microprocessor, applied to a VHF repeater for
message handling and data verification, can provide real-
timse operation to relay message -data packets reliably.

Abstract: The 1802 microprocessor is
applied to a VHF repeater to perform
message handling and data verifica-
tion. The microprocessor examines
and analyzes all incoming data bits;
selects and stores the valid message
data; and enables the transmitter to
rebroadcast any stacked messages.
One novel feature is that the system
can process high -density signals in
real-time. The repeater is small, uses
low power, and can be adapted easily
to accommodate different message
structures.

For an unmanned radio repeater to
reliably discriminate and relay
messages or data packets that occur
randomly and have several possible
formats, a high level of built-in in-
telligence is essential. As used in the
Army's REMBASS (Remote Battlefield
Sensor System) communication link
operating in a warfare environment, the
repeater normally maintains radio
silence to evade electronic detection
by the enemy, and only when a proper-
ly signatured message is received does
it respond immediately with a short
message -retransmission burst. To be
very selective in accepting messages
and achieve a high rate of correct
message retransmissions, the required
processing involves not only accurate-
ly recognizing a message and orderly
managing its content, but also verify-

ing the integrity of the received data.
The repeater must also be able to
handle peak message traffic, while
maintaining a low probability of missed
messages. Thus, whenever the re-
ceived -message rate is greater than the
retransmission rate, the excess or
backed -up messages need to be tem-
porarily stacked in a data buffer and
released on a first -in, first -out basis.
These operational requirements,
coupled with the control functions for
system initialization, message
transmission and various scheduled
events, constitute a control-
ler/processor work load that is
well suited for a microprocessor.

As implemented in the REMBASS
repeater, the microprocessor provides
most, but not all, of the control and
processing functions-a compromise
situation created by timing constraints
due partly to the data rate in a message
and partly to the operating limits of the
selected microprocessor itself.
However, the advantages of the micro-
processor -based design-even with
some auxiliary hardwired functions-
still outweighed that of an all -random -
logic approach. Besides providing a
lower -cost system with less hardware
complexity and attendant power con-
sumption, the microprocessor ap-
proach resulted in a more flexible
system that can be easily modified via
software to accommodate future
operational requirements. Also, by

software control, the power drain of
high -load circuits, particularly in the
transmitter, can be duty -cycle
managed, producing a more efficient
system and prolonging battery life.
Another attractive benefit was the
realization of a data buffer with ade-
quate capacity in the RAM and its
access by software, making for a very
inexpensive message -storage
medium.

REMBASS overview

Developed for the U.S. Army by RCA,'
REMBASS is a family of equipment that
is used to gather activity information in
forward battle areas or in rear protec-
tion zones. This ruggedized sur-
veillance system employs unattended
electronic sensors that are hand -
emplaced, air dropped or ballistically
delivered in potential avenues of
enemy approach. A variety of available
sensors respond to seismic distur-
bances, acoustic energy, magnetic
field changes and object heat
produced by enemy personnel and
vehicle movements. Detection of
activity is reported by a sensor in a

 Under Contract DAAB07-77-C-3298,
sponsored by ERADCOM, U.S. Army, Fort
Monmouth, New Jersey.
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The main electronics chassis contains a six -bay battery compartment at one end, a
diplexer at the midsection, and all remaining electronics assemblies at the other
end. The card cage holds four printed circuit boards and the transmitter assembly,
which is constructed as a plug-in unit. The receiver and control panel are located
behind the card cage.

short digital message to a remote data -
monitoring unit via an FM -radio com-
munication link. The remote monitor-
ing unit may receive activity
messages directly from the field -
deployed sensors or through
repeaters, as illustrated in the
operational deployment configuration
(Fig. 1) The sensor message arriving at
the monitor is demodulated, deccded,
displayed and permanently
recorded - the record, with timing
reference, being provided for post -
evaluation of the activity in the
monitored areas.

System equipment

The repeater -equipment complement
for ground deployment is comprised of
an omnidirectional monopole antenna,
a tripod -based mast and an elec-
tronics unit (Fig. 2). In a field installa-
tion, the antenna is press -fitted of top
of the mast and the telescopic mast is
extended and locked to the desired
antenna height. Connecting the tree
end of the antenna cable to the elec-
tronics unit, completes the system. For
operation in a helicopter, the mast and
antenna are not used. Instead, tl-e
electronics unit, mounted on a
vibration -isolation tray, connects to an
existing VHF antenna on the aircraft
using a supplied extender cable.

Electrical description

The REM 3ASS repeater operates as a
simplex communication unit,
providing 320 digitally selectable
channels in the VHF band from 138
MHz to 153 MHz. In any given
operational set-up, a pair cf separate
channels, one for receiving and one for
transmitting, are used to permit
simultaneous reception and rebroad-
cast of real-time (analog) as well as
time -delayed (digital) messages.

A block diagram of the major
functional modules in the repeater is
shown in Fig. 3. The antenna is shared
by the receiver and transmitter through
the diplexer, which contains two band-

s]

S SENSOR

R REPEATER

M MONITOR

pass filters that separate the total
operating frequency band into a low -
band and a high -band region, each 4 -
MHz wide. With the receiver tuned to
operate in one of the bands and the
trarsmitter working in the other band,
the diplexer provides the necessary
signal isolation to allow both the
receiver and transmitter to function at
the same time without mutual in-
terference.

The low -band and high -band ports
of the diplexer connect to the receiver-
RF input and the transmitter -RP output
by way of a coaxial relay -switching
network (not shown in Fig. 3). Con-
ditioned during system initialization,
these relays select the required RF
pat -s according to the transmitter's
assigned frequency channel. The
receiver is automatically connected to
the iiplexer port oppos to that for the
transmitter.

Both the receiver and transmitter are
modular assemblies that have common
use in the REMBASS family of equip-
ment. Consuming less than 250
milliwatts, the receiver accepts FM
signals in one of 600 programmable
channels spaced 25 kHz apart over the
operating frequency bald. It has an
input sensitivity of -114 dBm, exclusive
of the diplexer and line 'osses. For the
digitally modulated RF signal, the
nominal peak -to -peak frequency
deviation is 6 kHz.

The receiver is channel -designated
by an 11 -bit select word provided from
one of two sources -a memory on the
Power and R/T Control module that
has been preloaded by an external
code -programming unit or a data
register on the Analog Conditioner that
is software controlled. The output lines

S

Fig. 1. Depending on the terrain features and distance to the monitoring unit, one
or more repeaters are used in an operational deployment to extend the broadcast
reach of sensor messages. A repeater in a relay chain and the mor itor can service
locally -emplaced sensors within a 15 -kilometer radius.
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from the receiver consist of an analog
signal that is further amplified in the
Analog Conditioner and three digital
signals that are translated and format-
ted in the RCVR-XMTR Interface
module for use by the micro-
processor.

Like the receiver, the transmitter is
also programmable to select 600 fre-
quency channels over the same band.
Its carrier frequency is generated by a
voltage -controlled oscillator (VCO)
operating in a digitally controlled
phase -lock loop that is referenced to a
highly stable local frequency source.
To produce the frequency -modulated
carrier signal, the message information
is modified in a shaping modulation
filter and inserted at the summing
mode of the phase -lock loop. The
resulting modulated carrier from the
VCO is boosted by a power amplifier to
provide a minimum RF output of 2
watts. The synthesized carrier is high in
purity with residual sidebands down
-50 dBc and spurious signals down -65
dBc.

The four modules that communicate
with the 8 -bit data bus represent the
circuit partitioning of the remaining
electronics for the repeater. On these
modules, low -power analog circuits
and CMOS logic operating at 5 volts
are used throughout to conserve
battery power.

General system control and data
processing is managed by software
resident in a 2-kbyte ROM device on
the Microprocessor -Memory module.
In addition to an 1802 CMOS micro-
processor element and the 2-kbyte
ROM, this module contains a 2 -MHz
crystal, 1 kbyte of RAM, an address
decoder for the first 16 kbytes of
memory address space, bus separators
for the on -board memory, associated
memory -timing circuits and pre -wired
sockets for three more ROM devices
for future software growth. For the
software development phase, ultra-
violet PROM -type 2716, which is pin
compatible with the 2-kbyte CMOS
ROM (Hughes type -1836), was used.

On the Receiver/Transmitter Inter-
face module, the three digital output
signals from the receiver are pre-
processed to a more acceptable form
for microprocessor analysis. The data
clock is recovered from the incoming
biphase data to set the interrupt -

Fig. 2. The REMBASS repeater consists of an omnidirectional radial antenna with
a pre -attached RF coaxial cable (top right), a tripod -based mast used to raise the
antenna up to a maximum height of 14 feet (top left), and an electronics unit
containing batteries to sustain a 30 -day mission (bottom).

BATTERY

SUPPLY

RECEIVER

A
tt

RCA

CHAN

SEL

TRI STATE

ANTENNA V

DIPLEXER

STATUS/DATA

RCVD

ANALOG

BUS

II

POWER &

lin CONTROL

tt

XMIT

ANALOG

ANALOG

CONOIlIONER

TRANSMITTER

A

CNTL/DATA

RCVR/XMTR
INTERFACE

MICROPROCESSOR

/MEMORY

v8 DATA BUS

A
V8

Fig. 3. Block Diagram-the major functional modules consist of the receiver,
diplexer and transmitter subassemblies, and four printed circuit boards which
communicate among themselves over the data bus.
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request flag, identifying the mid -bit
clock transition. The extracted clock is
monitored to detect "out -of -tolerance"
clock periods and the two received
signal -status lines are combined by
logic to sense a signal fade during a
message. Fault signals for a detected
erroneous clock period and a message
fade are provided to the micro-
processor for use in data -bit accep-
tance decisions.

Once initiated, a message transmis-
sion is completely controlled by
dedicated logic on the
Receiver/Transmitter Interface
module. The transmission -control
logic consists of a data -clock
generator, an 8 -bit parallel -to -serial
converter, a biphase encoder, a 16 -bit
message length counter and an 8 -bit
system control register.

The Analog Conditioner module
contains a programmable gain
amplifier to adjust the analog path
gain, a 2 -byte register to provide a
channel -control word to redesignate
the receiver and four coaxial switch
drivers during system initialization. To
complete the gain -calibration circuitry,
a 600 -Hz sinewave reference
generator, two peak -amplitude detec-
tors and a voltage comparator are
included on this module. During
system initialization, the analog path
gain is set in an end -to -end RF self -test
loop, with a 600 -Hz modulation tone,
normalizing the transmit -to -receive
modulation ratio for a factor of one.

A 5 -volt switching regulator and the
battery -protection diodes are located
on the Power FM- Control module. Also
included are the tamper -monitoring
circuitry, the mission -life timers, the
battery -voltage monitor, and a 32 -bit
data register that stores the operating
receive -transmit channel words.

The battery complement for 30 days
of digital -messages -only operation is
three 12 -volt, 20-AH, lithium organic
batteries; for 30 days of combined
digital and analog operation, six
batteries.

Message characteristics

The repeater will respond only to the
REMBASS-defined messages and
other like -formatted messages that use
the same data -structuring rules. There
are two types of REMBASS
messages -a 29 -bit basic digital type
and a hybrid or "analog" type con-

sisting of a 29 -bit basic mes-
sage as the sensor type ideltifier
followed by 15 seconds of analog
(audio) signal. A totally digital
message is generally processed on a
store and forward basis; that is, the
entire message is received, stored and
verified before it is transmitted. In the
case of a hybrid message, tne digital
portion is similarly processed, but after
sending the 29th bit, the analog portion
is switched in for real-time retransmis-
sion. The two message formats used in
REMBASS are shown in Fig. 4.

There are four principal sections in a
29 -bit basic message. The pre-
amble/sync section consists of a
fixed pattern of eight "Os" fol owed by a
"1" bit, he sync bit. The next four bits
provide the message type code, which
usually identifies the user system or
subsystem. The remaining two
sections are the data fields, each with
its own parity bit. For REMBASS, field
one contains 7 bits and field two has 9
bits. As can be seen, an analog
message has the analog signal
appended to the 29 -bit basic message
that series as the header. At a nominal
data rate of 1200 bits per second, the
"on -air" time for a 29 -bit massage is
24.2 milliseconds.

Two other message formats can be
serviced by the repeater -a long
message format where a long data field
is attached to a basic message and a
modified 29 -bit message with a single
data field of 16 bits.

Message processing

On a continuous basis, the receiver
monitors the designates listening
channel for the occurrence of a sensor
message, while the processor ex-
amines the data output from the
receiver for a particular starting bit
pattern or preamble. Before the
received data is presented to the micro-
processor for analysis, 't is pre-
processed to extract the data clock
cortained in the Manchester biphase-
encoded signal. The mid -bit transition
of the data clock is used to generate an
interrupt request to prompt the micro-
processor to accept the data bit. The
per od of the data clock is also pre-
screened to determine whether the
clock rate is within the accepted
tolerance window. When a clock period
is too long, an "out -of -window" signal
is provided to the microprocessor to
reject the current message.

As the signal strength of a message
exceeds the detection threshold, the
receiver sends a "Message -Ready"
signal to indicate that the incoming
data is conditionally valid. Since the
incl cation signal of a detection will
tend to lag the leading message bits,
the incoming data bits will initially be
examined regardless of RF-signal
level - the initial data -acceptance
criteria being that the data values are
zer:s and the data -bit periods are
witiin the tolerance window.

After a starting pattern of a minimum
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Fig. 4. The message formats to be handled by the repeater fall into four
categories - the basic message, the analog ressage, the long message, and the
modified basic message (others). In processing data, a characteristic table is used
to select and define the bit and field handling routines for a part cular message
(MSG) type.
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of five zeros has been collected and
"Message Ready" is true, the
transmitter - except for its final output
stage-is commanded to power -up to
allow its frequency synthesizer to
stabilize in anticipation of a possible
message retransmission. The
processor proceeds to collect the next
expected message portion of a sync bit
(one), followed by the four bits defining
the message type. If the message type
code is pre -defined in the message -
characteristic table, the processor will
store the preamble of zeros (8), the
sync bit, and the message type code in
a revolving data buffer in RAM. The
remaining incoming data bits are
collected. formatted in byte form, and
stored in successive byte locations. As
the parity bit appears in the data
stream, it is checked for correctness. If
the parity bit indicates an error, the
message -handling activity is
terminated and the processing returns

ADDRESS (HEX)

0000

0129

0500

0600

0700 -

07FF

3000

3F00

ROM

INITIALIZATION
(10 SPARE BYTES)

MAIN

(430 SPARE BYTES)

BIT HANDLERS
(50 SPARE BYTES)

FIELD HANDLERS
(132 SPARE BYTES)

MESSAGE CHARACTERISTIC
TABLE

RAM

DATA

BUFFER

WORKING SPACE
AND STACK

3FFF

Fig. 5. The 2 -kilobyte ROM contains
the firmware for system initialization,
main system control, bit handlers, field
handlers, and message -characteristics
table. Up to 109 basic REMBASS
messages can be stored before the
data buffer pointers return to the
starting address.

to seek a new message. There are two
parity checks for a basic 29 -bit REM -
BASS message.

After a complete message has been
stored, the processor will initiate a
message -transmission cycle. A
message -length word is transferred to
a message -bit counter in the RCVR/
XMTR interface module and a trans-
mit command is issued to energize the
output stage of the transmitter. By
direct memory access (DMA) into the
data buffer, the message data is ob-
tained, a byte at a time, controlled by
dedicated output logic. The parallel
data is converted to a serial,
Manchester biphase format for driving
the transmitter modulator. When the
last message bit has been sent, the
message -bit counter stops the
transmission event and the
transmitter's output stage is de -
energized. After 5 seconds of delay
following the last transmitted bit, the
transmitter's frequency synthesizer is
turned off. For a programmed mission
life of 7.5 or 15 days, this frequency
synthesizer is kept powered.

The handling routine for a hybrid
message, one consisting of a 29 -bit
header and 15 seconds of analog
signal, is automatically called when the
analog message type code is
recognized. The entire message
header will be treated like a basic 29 -bit
message in the "store -and -forward"
manner. At the end of transmitting the
29th bit, the modulator input is
switched from the digital message
source to the amplified analog signal
provided by the Analog Conditioner.
The processor will maintain the analog
transmission for a minimum of 14
seconds and allow the end of the
analog signal to terminate the
transmission in the next final second. If
the duration of the analog signal is
longer than 15 seconds, the transmis-
sion is automatically truncated at 15
seconds.

Memory map

The on -board address decoder selects
operational memory in 2-kbyte blocks
for the first 16 kbytes of memory ad-
dress. Shown in Fig. 5, the memory
map identifies the various program
segments resident in the current 2-
kbyte ROM (address 0000 to 07FF) and
the location of the data buffer, working
space and stack in the 1-kbyte RAM
(address 3C00 to 3FFF). To cover

future design modifications and per-
formance growth, 6 kbytes of
additional ROM space has been
prewired.

Located in the first 768 bytes of RAM
is the revolving data buffer, which is
managed by three register pointers-
two for the input activity and one for
the output activity. Because the input
pointer must be recoverable to restart a
new message storage in case of an
input message abort, a first -byte -input -
reference pointer is needed in addition
to a normal incrementing input pointer.
When an input message fails a verifica-
tion test, any prior stored data is re-
jected by overwriting it with the next
message, relying on the first -byte -
input pointer to restore the increment-
ing pointer to the starting data bin.

All messages are stored with a 2 -byte
prefix that defines the message -bit
length. For the 29 -bit REMBASS
message, seven bytes of buffer space is
required-two for message length,
four for actual data, and one for output -
timing adjustment.

The data -buffer pointers are con-
tinuously monitored by software to
sense the approach of the upper -buffer
address or the end of the buffer. When
the input or output pointer indicates
that less than seven bytes are left, the
pointer is automatically returned to the
beginning of the buffer. The "end -of -
the -buffer" test and pointer readjust-
ment is a regularly scheduled main
program event.

The 2-kbyte ROM is partitioned into
five principal subprogram sections
consisting of the initialization program,
the executive program, the bit
handlers, the field handlers, and the
message characteristic table. Certain
subprograms are started at 256 -byte
page boundaries to take advantage of
the short branch instructions. Spare
bytes are purposely interspersed to
facilitate design changes or expansion
without disrupting the overall
subprogram -addressing scheme.

Design approach

The primary design goal was to accept
input data at its peak rate, process each
data bit, assemble the message and
retransmit it utilizing the resources of
the 1802 microprocessor to reduce the
hardware requirements.

The main task was to monitor the
receiver output for the starting pream-
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ble of a message and, noting its arrival,
collect and analyze the remaining
message data. At an input data rate of
1200 baud, a new bit occurs every 833
ms, during which about 104 in-
structions can be executed if a 2 -MHz
microprocessor clock is used. Because
of this low number of available in-
structions and a worst -case input of
contiguous incoming messages, it was
decided that the output -control
functions be implemented with
hardwired logic to minimize the re-
quired output -control software. Data
for the output message would be ex-
tracted from the data buffer by DMA.
The required output software merely
presets the DMA pointer and hardwired
output -timing logic to initiate the
transmission event. The hardwired
logic will convert the parallel data byte
from the buffer to serial Manchester
encoded data for driving the modulator
in the transmitter. A new DMA request
for a data byte will occur after every
eight shifted bits, continuing until the
message length counter that monitors
the number of transmitted bits
terminates the output activity.

The software was also assigned the
tasks of managing the system -control
flags between the input -bit interrupts,
supervising the data buffer and
monitoring for RF interference by other
communication or countermeasure
systems.

Projected performance growth in-
volves the handling of new message
types and different data formats that
may be employed by other potential
repeater users. Based on the current
tri-service interoperability data -link
concept, the first 13 bits of the message
header is common for all message
types with the remainder of the
message to be defined by the service
user. The most practical approach to
easily accommodate the new message
types was the use of a message -
characteristic table that would contain
a specific processing menu or
schedule for each message type. When
a new message type is to be handled by
the repeater, the required processing
menu consisting of subroutine ad-
dresses and appropriate constants is
simply added to the ROM containing
the table. A 256 -byte table was selected
to cover all 16 message types (4 -bit
code) allotting a 16 -byte menu per
message. Currently, the table is
programmed to recognize five
message types for rebroadcasting.
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Fig. 6. The primary software activities involve the system control events, the
acceptance and handling of the input data, and the transmission control of the
output data.

Software design

The software is concerned with three
major activities, the interrupt event for
handling the input data, the main
program for controlling the system
functions and the DMA activity for
providing output data. Depicted in Fig.

6. these activities are imp emented in a
multiprogramming approach to obtain
apparent concurrent operations of
both systems control and data
processing.

The main or executive program per-
forms operational systems control and
schedule housekeeping functions on a

Table I. Software flag definitions. Software flags 1 through 14 and 18 are used to
request a particular service or to indicate an event status.

Flag No. Function

1 7.5/15 -day mission

2 Synthesizer enable request

3 Synthesizer on and stable

4 Synthesizer warm -.,p delay (33 ms)

5 Abort store and forward message

6 Synthesizer turn-off delay (5 sec)

7 S & F message transmit request

8 Long message transmit request

9 End of long message

10 Long message abort request

11 Transmitter busy

12 Synthesizer on anc stable (also flag 3)

13 Analog message transmit request

14 Irterference test request

18 Thansmitter on during last received bit
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ILO ode
flag -request basis. These flags are
software generated by the input/output
activities in handling a sensor message
and by the internally scheduled events
such as transmitter -frequency syn-
thesizer control, maintenance of buffer
pointers and RF-interference monitor-
ing. Routinely scanned in a loop are
operational flags, listed in Table I, to
indicate a specific control state or a
service request. As each raised flag is
encountered, a service or function is
performed, following which the
program returns to the flag -testing
loop. The main program is interrupted
any time a data -clock transition has
occurred whether it is due to real -data
or open -receiver noise.

The role of the interrupt activity is to
collect, analyze and store a packet of
data in a revolving file or buffer, arrang-
ing the data in groups of eight bits and
storing the groups in the proper se-
quence for later data retrieval by DMA.
The header of all messages inclusive of
the message type code is processed in
an identical manner.

The output activity is automatically
instituted whenever there are un-
transmitted messages remaining in the
data buffer. A transmission cycle is
initiated by the main program with a
very minimal subprogram and es-
sentially off -loads the output task to
the hardwired output logic, which then
manages a message transmission to its
conclusion including the transfer of
data from the RAM buffer by DMA.

The required software functions in-
cluded system initialization and some
coarse software timers.

Summary

A microprocessor -based repeater can
provide real-time operation to relay
message -data packets in a reliable
manner. This system implementation
has greater flexibility for incorporating
new performance requirements or
modifying current operations or
functions. Particularly for handling
new message types that meet the
general message structure being
processed, the repeater can be up-
dated simply by reprogramming one
ROM device. Because of timing
limitations in this application, however,
inevitable trade-offs were made to
remove some counting -intensive

operations from the software load. The
sizeable data buffer - employing
RAM, of course-was obtained at very
little expense.
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F.E. Papke

Multi -image programming:
Using microprocessors to "move" people

Computerized programming has brought a new level of
professionalism to slide presentations. Government Systems
Division is using the programmed p.'esentation of visual
images to communicate more effectively to today's
sophisticated, demanding audiences.

In addition to its economic and in-
dustrial impact, the computer is direct-
ly affecting all phases of our society.
Computer technology is being
harnessed to induce massive changes
in the cultural and artistic realms.
Nowhere is this more evident than in
the sweeping changes taking place in
audiovisual (A/V) presentations, in
particular those using banks of projec-
tors on a number of screens.

Such multi -image presentations, as
they are popularly called, are not new;
they were used at world's fairs and
industrial expositions before the turn
of the century and are currently well -
established in museums, planetariums,

Reprint RE -26-8-12
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and exhibits scattered throughout the
country. But for the most part, while
computer technology was evolving in
the '50s and '60$, presentations
produced for industry, education, and
government were limited to either
large-scale temporary extravaganzas,
simple filmstrips or one -projector slide
shows. These were time-consuming to
produce and suffered from equipment
unreliability.

In the early '70s, automated multi -
image equipment emerged based on
the new digital computer technology.
By the mid -70s, a major breakthrough
occurred in the form of electronic
programming equipment that freed the
show producer from tedious
housekeeping functions and allowed
him to be more innovative-enabling

Photo courtesy Lyons Studios Incorporated

him to create sophisticated effects on
the screen in a fraction of the time
normally required for production.

These early programmers used hard-
wired microprocessors which the
manufacturers saw as a means of
reducing their product costs to meet
the low -volume A/V market. But with
the subsequent growth of the A/V
industry in both size and sophistica-
tion, the manufacturers have turned to
programmable, non -dedicated micro-
processors. These units enable
meeting the performance demands of
multi -image through software up-
dating, and at the same time add a
capability to meet business
applications such as word processing,
accounting, inventory and other data-
base management functions.
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Fig. 1. Multi -image equipment in a typical show configuration. Dissolve units
control the action of slide projectors in response to digital commands from a
programmer or magnetic tape.

Programming systems are now
available or in development that use
either the rapidly proliferating
business computers, such as the Apple
II and the Bell & Howell Model 078401,
or similar specially designed units such
as the AVL Eagle or the Apple II -
modified Clear Light Superstar. And
some manufacturers are going one-
step further in applying their systems
to the generation of simple graphics for
producing low-cost slides, and in
adding microprocessor control to
slide/animation cameras and com-
pound tables.

This multi -image equipment
development over the last decade has
coincided with a real explosion in slide
usage in the business world. In terms of
dollars expended, slides are the
leading visual communcations
medium, nearly generating as much
total annual spending as video and
motion pictures combined.

Multi -image equipment
operation

A typical multi -image projection setup
is shown in Fig. 1. Dissolve units con-
trol the action of slide projectors in
response to digital commands from a
programmer memory or from a
magnetic tape track. Each dissolve unit

commonly controls a stack of two,
three, or four slide projectors
(depending on the manufacturer's
design) with each stack illuminating a
separate screen area. Screen areas can
be butted to achieve a desired overall
configuration; and screens can be
overlapped to increase projector
capacity and enable greater animation
or special effects in the overlap area.
Once the programming is completed,
the commands can be recorded in sync
with the audio, and show playback can
be accomplished directly from the tape
through the dissolve units.

What and why multi -image

Multi -image deals with the
programmed presentation of visual im-
ages to convey information and create
an impression (see lead illustration).
Multi -image is a dense com-
munications medium. Programming is
the key. It enables you to manipulate
images; to dissolve from one image to
the next at any of a number of rates; to
animate; and to integrate slides, mo-
tion pictures, light displays, and other
special effects into an automatically
controlled, repeatable production.

Programmed presentations offer a
flexibility in communication that is not
available with most single -image

media such as slides, films, or video.
Multi -image presentations can project
multiple -viewpoints of the same
subject-and can do it simultaneous-
ly. This enables the viewers to see
objects, events, or settings in
perspectives impossible through nor-
mal human perception. Viewers can
see the whole as well as the parts; the
top, bottom, and the sides; the begin-
ning, middle, and the end-and all at
the same time.

And through this enhanced percep-
tion and organization, multi -image can
compress the time needed to convey
the information and to create the
desired impression. It is a dense com-
munications medium.

With multi -image, the visual format
can be selected to suit the audience,
and to enhance the message or impres-
sion you wish to convey. Screen format
is almost unlimited. Multi -screen and
wide panoramic presentations create
an excitement for the viewer who is all -
too -conditioned to watching a 21 -inch
image on his home TV.

And, perhaps best of all, multi -image
production is economical. The use of
slides provides a modularity not
available in video and motion -picture
productions. Manipulation of images
and development of special effects is
easily accommodated in program-
ming, and changes at any time-even
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GSD uses the Multi -Image
Program Development
Center to produce multi -
image presentations for in-
dustry trade shows. Here, a
typical GSD booth (top),
some of the recording equip-
ment used (far right), and a
multi -image presentation
(right) are shown.

after show completion - can be rapid-
ly and inexpensively accomplished.

GSD efforts in multi -image

Early in 1980, the Multi -Image Program
Development Center was
established -a pilot project to
produce multi -image presentations for
RCA Government Systems Division.
Several six- and nine -projector shows
have been produced for industry trade
shows and employee -motivation
presentations. Except for slide
preparation, the Center is fully
equipped for all phases of multi -image
production.

Our programming equipment has
almost unlimited capability. The AVL
Eagle programmer, with its 32-kbyte
memory and more than 130 program-
ming controls, can drive up to 120 slide
projectors. It programs in English and
offers continual capabilities -updating
through software modifications.
Twelve slide projectors with dissolve

units and stacks enable us to take a six -
projector show on the road while
simultaneously developing another
six -projector show in-house. An
assortment of lenses can accom-
modate a range of projection re-
quirements, from a tight booth space to
a large auditorium. And our audio
equipment can fill that auditorium with
sound. An audio mixer and four -track
magnetic tape recorders enable us to
prepare quality stereo sound tracks
that comb ne live narration with
production music and sound effects
from our record library. Other equip-
ment includes a recorder designed for
continuous play of short shows, a two -
projector dissolve unit for control of
simpler presentations, and light tables
that facilitate slide viewing and show
assembly.

Shows are produced in a dedicated
area in budding 204-1 in Cherry Hill. It
includes both a production room and a
combination screening/conference
room that can accommodate both front
and rear projection.

Fred Papke is Manager, Proposal Media and
Presentations Concepts in tie Government
Systems Division Staff Marketirg organiza-
tion. He has 23 years of experience in
technical communications in a variety of
media. In 1980, he established the Multi -
Image Program Development Center and
has s nce directed its operations.
Contact him at:
Government Systems Division
Cherry Hill, N.J.
TACMET: 222-5804
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D.E. BrittonlM.E. Stickel

SUPPOSE: A microcomputer operating system
for distributed applications

SUPPOSE, an operating system for dedicated networks of
microcomputers, provides a run-time environment for ais-
tributed applications as well as a conceptual framework for
programming them. SUPPOSE is an acronym for Server
Uniform Process Protocol Operating System Environment.

Abstract: SUPPOSE is an operating system for dedicated
networks of microcomputers that run distributed
applications. A distributed application running under
SUPPOSE consists of a number of cooperating concurrent
processes, with one or more processes executing on each
microcomputer in the network. SUPPOSE provides
facilities for memory, process, and device management . In
addition, SUPPOSE provides a conceptualframework for
programming distributed applications. The services and
resources provided and used by an application determine
how the application can be decomposed into a set of
cooperating processes. Processes may be servers, which
provide a service or control a resource, or requestors,
which use a service or resource. SUPPOSE supports this
conceptual framework by providing a set of highly
disciplined interprocess communication operations. As a
result, SUPPOSEfacilitates the design and implementa-
tion of distributed applications and makes them com-
prehensible.

The SUPPOSE operating system provides a conceptual
framework for structuring distributed applications and is,
in addition, the operating system on which a distributed
application executes.

Distributing processing among several computers is
sometimes more advantageous than using a single com-
puter. For instance, distributing the processing among
several computers allows each computer a lighter process-
ing load, and consequently lighter memory and speed
requirements, than if a single computer were used. Thus,
the processing requirements of an application may be able

Reprint RE -26-8-13
Final manuscript received July 17. 1981

to be met more economically with a number of computers
than with a single, more powerful computer - indeed, a
single computer that is powerful enough may not even
exist. Applications that use several peripheral devices each
with substantial processing and real-time response
requirements - examples include message switching,
signal processing, and device monitoring - are good
candidates for distributed processing (Fig. I).

Another motivation for using distributed processing is
that it is sometimes advantageous to place processing
power close to where it is needed, for example, in each of
several microprocessors attached to devices in a device -
monitoring system. Distributed processing permits this.

Yet another reason for using distributed processing is for
system reliability. When an application is appropriately
decomposed and distributed over several computers,
failure of one computer in the network need not result in
failure of the entire application. The combined use of
redundancy and geographic distribution of processing and
data can avoid loss that would otherwise result from a
single accident.

Unfortunately, effective program design techniques for

Printer

Microcomputer 1

Transmitter Processes
Receiver Processes

SUPPOSE

H
Microcomputer 2 1 Microcomputer 3

SUPPOSE
Printer Processes
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Radio

Intercomputer Bus--------
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Database Processes

Disk Processes

5,7.1

Fig. 1. SUPPOSE radio -message -switching application.
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distributed applications are not easy to discover. Often the
designer of an application may have few guidelines for
structuring the application so that it can be effectively
distributed. SUPPOSE corrects this situation by providing
both an operating system for distributed microprocessor
applications and a conceptual framework for their design.

The SUPPOSE conceptual framework

In the SUPPOSE conceptual framework, an application
consists of a set of cooperating concurrent processes. Each
process can act as a requestor process, a server process, or
both. The distinction between requestor and server
processes provides a basis for decomposing an application
into modular units that can be distributed over a network.

A server process provides a service, such as controlling a
device or providing access to a database. A requestor
process uses the services of one or more server processes. A
server process may itself require the services of other
processes, so that a process may be both a server and a
requestor. Processes communicate entirely with messages
that are passed from process to process. Thus, a requestor
process requests a service by sending a message to the
appropriate server and the server responds by sending a
message back.

With SUPPOSE, an application is organized around
shared resources. Each shared resource, such as a device or
database, is controlled by a server process. In order to
access a shared resource, requestor processes make re-
quests on the server process controlling the resource. The
server handles the service requests one at a time as they are
received, assuring mutually exclusive access to the resource
for all requestors.

After an application has been decomposed in this
manner, it can be fitted to a network of microcomputers.
SUPPOSE permits one or more processes to execute on
each microcomputer in the network. The application
designer assigns piocesses to microcomputers, taking into
account such factors as the aggregate processing load on
each microcomputer, the need for device driver processes
to be located on the microcomputer to which the device is
attached, and the reduced cost of communication between
processes that are on the same microcomputer.

Processes communicate exclusively via messages
regardless of whether or not they reside on the same
microcomputer, the only difference being that it takes
longer for a message to be sent between processes on
different microcomputers. Consequently, where a process
is to reside does not affect the way the process is pro-
grammed. Application decomposition and programming
can be done before it is known where each process will
reside or how many microcomputers will be in the network.

The SUPPOSE operating system

SUPPOSE provides those facilities that are needed by
every microcomputer in a network dedicated to a dis-

SUPPOSE

Applica_ron Processes

In erprocess Communication

Device Management

Process Management

Memorw Management

,crocorouter Hardwarr

Fig. 2. SUPPOSE hierarchy of services.

Network
Interface
to Other
161crocomputers

tributed application: memory management, process
management, device management, and interprocess com-
munication (Fig. 2).

SUPPOSE does not provide facilities such as file
systems, databases, or support for particular hardware
devices. These would all be programmed as SUPPOSE
server processes in an application and would probably
reside on only one node. Any process needing access to
such a facility would make requests on the appropriate
server process.

SUPPOSE is an operating system strictly for the
execution, not the development, of distributed appli-
cations. A SUPPOSE program development environment
could, however, be written as a SUPPOSE application.

Memory management

SUPPOSE memory management provides shareable
process code, non-shareable process data, and dynamic
objects (Table I).

Any process can create a dynamic object by using a
SUPPOSE operation. A SUPPOSE object is always
owned by and accessible to a single process, initially the
object's creator. A SUPPOSE object can be used as a
message to be sent from one process to another or can be
pointed to as a subobject of a message. The message
recipient becomes the new owner of the object.

The creator of an object specifies its type and format.
The object type can be examined by application processes

Table I. SUPPOSE memory management operations.

new
dispose
copy
typeof

nobjs, nints,
nreals, nchars

getobj, getint,
getreal, getchar

putobj, putint,
putreal, putchar

mgetint, mgetreal,
mgetchar

mputint, mputreal,
mputchar

create object
destroy object
copy object
return type of object

return number of subobjects, integers,
reals, or characters in object

get subobject, integer,
real, or character from object

put subobject, integer,
real, or character into object

get multiple integers, reals,
or characters from object

put multiple integers, reals,
or characters into object
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and is checked by SUPPOSE to make certain that server
processes receive only messages of the expected type. The
object format determines how many integers, reals,
characters, and pointers to subobjects are contained in the
object. SUPPOSE provides operations to interrogate the
type or format of an object, to fetch or store values in an
object, to copy an object, and to destroy an object which is
no longer needed.

Process management

SUPPOSE processes are programmed as procedures in a
sequential programming language such as Pascal. The
SUPPOSE operating system schedules these procedures
and runs them as independent processes. Processes com-
municate with each other through message operations
provided by SUPPOSE.

Each process executes on a single microcomputer, and
more than one process can execute on each micro-
computer. Processes have execution priorities: on each
microcomputer, the highest -priority "runnable" process
runs until it blocks itself or until a higher -priority process
becomes runnable. Processes block themselves by waiting
for a message or an interrupt, and become runnable again
when the waited -for message or interrupt arrives.

SUPPOSE provides an operation that creates a process
from a programmer -specified procedure (Table II). The
programmer specifies the name of the procedure, the name
of the process, its execution priority, its data space
requirements, and an initialization object. The initializa-
tion object is a SUPPOSE dynamic object that provides
initialization information to the process. Ownership of the
object passes from the creating process to the created
process. Exiting the procedure causes termination of the
process.

Device management

Devices are resources in applications using SUPPOSE.
They are owned and controlled by single processes, the
device driver processes.

Devices can be divided into two categories: those for
which interrupts are solicited, and those for which in-
terrupts are unsolicited. Solicited interrupts are expected in
response to a requested device control operation having
been performed, for example, completion of a disk read.
Unsolicited interrupts are caused by external events, for

Table II. SUPPOSE process management operations.

create create process
mypid return name of current process

Table Ill. SUPPOSE device management operations.

initio initialize I/O device
waitio wait for I/O interrupt
pool allocate messages for device driver

example, a character being typed on keyboard. Driver
processes for devices in the first category behave like server
processes. They receive requests, perform device control
operations, wait for interrupts, and return responses.
Driver processes for devices in the second category behave
like requestor processes. They perform device control
operations, wait for interrupts, and send request messages
(Table HI).

Each device driver process is usually used by a single
server process, referred to as a device handler process,
which makes the device available to the rest of the processes
in the application. For example, the device handler process
for a keyboard would queue input lines or characters and
dispense them on request to other processes as needed. The
device handler process for a printer would prevent in-
terleaved printer listings by providing processes with
mutually exclusive access to the printer for the duration of
as many print requests as needed for a single listing.

Interprocess communication

What makes SUPPOSE especially well -suited for dis-
tributed applications-and indeed is the basis of the
SUPPOSE conceptual framework - is its interprocess
communication facility (Table IV). It is only through the
SUPPOSE interprocess communication facility that
processes on the same or different microcomputers are able
to communicate and thus cooperate in performing a task.
The SUPPOSE interprocess communication facility con-
sists of a set of operations on messages, divided into
operations for requestors and operations for servers.

A requestor obtains services from servers by sending
request messages. For each request it sends, a requestor can
assume that a response message will be returned, which
indicates completion of the service and may include return
values.

Usually, a requestor immediately waits for the response
to a request. However, a requestor may increase the
concurrency of requests by having several done in parallel.
Thus, the requestor may send requests to several servers
and then wait for the responses. When several requests are

Table IV. SUPPOSE Interprocess communication operations.

Requestor Operations

send
response
anyresponse
disregard
request
sendoff

Server Operations

receive
respond
forward
defer
continue
length

send request to server
receive response to particular request
receive response to any request
disregard response to request
send + response
send + disregard

receive request from requestor
respond to request
forward request to another server
defer request until later
cause deferred request to be re -received
return length of deferral queue

78 RCA Engineer  26-8  Sept./Oct. 1981



outstanding, the requestor uses sequence numbers
generated by SUPPOSE to keep track of which responses
belong to which requests.

Although a requestor may assume that there will be a
response to every request, a requestor may not always care
about the response. In such situations, a requestor may
choose, either at the time the request is issued or
afterwards, never to see the response.

A server process receives requests, one at a time, from
requestors in first -come -first -served order. Every server
has a mailbox, from which it receives all requests. Since
requestors can assume that a response will he returned for
each request, a server has the responsibility for responding
to each request it receives or seeing to it that some other
server responds to the request. Moreover, having received a
request, a server is required to meet this responsibility
before receiving another request.

The most direct way in which a server can meet its
responsibility for responding to a request is to perform the
requested service and return a response. The response to a
request is the request message itself, the server having
perhaps modified the contents of the message before
returning it to the server.

Another way in which a server can meet its responsibility
for responding to a request is to forward it to some other
server process, transferring the responsibility to the new
server. The forward operation allows a server to process
several requests concurrently by delegating the requests to
concurrently executing "subordinate" servers.

Sometimes it is not possible for a server process to honor
a request immediately. For example, the resource con-
trolled by a server may already he allocated to another
requestor. In such situations, a server may use a deferral
queue to hold the request until a more suitable time.
Deferral of a request temporarily discharges the server's
responsibility for responding to the request, so that other
requests may be received. Later, when the server is able to
handle the request, the server moves the request from the
deferral queue to the server's mailbox. A server may have
any number of deferral queues, each of which may hold as
many messages as necessary.

The constraint that a server must respond to, forward, or
defer a received request before receiving the next request
implies that server processes are programmed most
naturally as initialization code followed by an infinite loop.
The loop consists of the only receive operation in the server
followed by code that determines which service is being
requested and then responds to, forwards, or defers the
request (Fig. 3).

SUPPOSE interprocess communication is a message -
based adaptation of the monitor concept' to a distributed
environment. Because requests can be forwarded and
multiple requests can be made in parallel, SUPPOSE
interprocess communication permits greater concurrency
than monitors do. A more detailed description of SUP-
POSE interprocess communication is given in the
references.

The clockserver process clers three services that provide
access to a clock: tirr e, delay, and tick. When the process is
created, it is passed to an object that is used to set the clock.

The time service returns the current value of the clock in
the response to the request.

The delay service :ausea the request to be responded to
immediately if the c ock t Tie is as great as the time
argument in the request. Otherwise, the request is deferred
until a tick request, updating the clock, is received.

The tick service ircremwts the clock. It woL Id normally
be requested by the clock device driver to update the clock.
Tick causes the cortinua- on of all previously deferred
delay requests which may now be able to be acted upon
since the delay may have expired.

procedure clocksen.er (mm:: object);
var meg. waitq: object;

pid: processid:
i. clock: integer:

begin
msg:= nilobject; waitq:= iilobject;
clock:= getint(init. timefield);
dispoEe(init);
repeat

recEive(msg, pid);
case getint(msg, sery :efield) of

time: begin
putint(msg, timeCald, clock):
respond(msg) end;

delay:
if (getint(msg, tinnefield) > clock) then

respond(msg)
else

defer(msg. wai:1);
tick: begin

clock := clock +
for i 1 to lengt-(waitq) do

continuetwaitq);
respond(msg) end end;

until false
end:

Fig. 3. Clockserver process example.

SUPPOSE implementation

A prototype implementation of SUPPOSE has been
developed for the DEC LSI-I I microcomputer. It is

written mostly in Pascal,' a high-level programming
language, which facilitates its reimplementation on other
microcomputers. Assembly language is used for program-
ming concepts inexpressible in Pascal, such as processes
and interrupts, and sometimes for efficiency.

SUPPOSE executes on a configuration of up to four
LSI-I I microcomputers connected by a custom-built
intercomputer bus developed by William G. Wong at RCA
Laboratories.' SUPPOSE was programmed and
developed by the authors on the LSI-I I computers using
the RT- I I operating system.

An early version of SUPPOSE was converted by
Howard C. Edinger, Jr., at RCA Laboratories to run on a
configuration of three Intel 8086 microcomputers con-
nected by shared memory simulating an intercomputer
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bus. The 8086 version of SUPPOSE was developed on a
DECsystem-20 computer using cross -development
software for the 8086.
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At your RCA Library

Bibliography Covers Microprocessors,
Programming and Programming Languages

As the use of microprocessors accelerates and the art
of programming improves, the literature published
about these subjects, and acquired by RCA's
technical libraries, has grown steadily. In 1978, a
bibliography entitled Books on Microprocessors in
RCA Libraries was compiled. A second bibliography,
Books on Programming and Programming
Languages in RCA Libraries, was issued in October
1979.

With the cooperation of RCA's technical librarians,
Technical Information Systems, Corporate Engineer-
ing, has now come out with a new bibliography which
combines the two listed above and adds to it all of the
books which have been acquired by RCA libraries in
the last three years on those subjects. The new
bibliography, entitled Books on Microprocessors,
Programming and Programming Languages,

includes 700 books, each indexed by author, title, and
subject. The selection of titles for inclusion was made
from Library of Congress subject headings in the
fields of microcomputers, microprocessors, micro-
programming, computer programs, programming,
programming languages, programming of specific
computers, acronyms for computer languages, and
other closely related topics. Each book is identified by
the libraries which hold it.

For a copy of the bibliography, see the librarian at
your location. If you do not have access to a library, a
copy can be obtained from:

Doris Hutchison
Bldg. 204-2
Cherry Hill, N.J.
TACN ET: 222-5412
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J.0. Horsley S.L. Clapper

A multiple -processor solution for
the advanced AEGIS signal processor

This system enhances internal computational capability,
minimizes custom equipment design and allows flexible
implementation of future designs.

Abstract: Modern microprocessor technology qlli,rs a
combination of rapid eve/c limes and memory capacity that
is well suited to the placement o/ computers near the
equipment they .support. This paper describes the
application qf microprocessors in a signal processor design
/or the AEGIS A N I SPY -I B Radar System, in which II
microprocessors satis.11y the requirements for equipment
tinting and control. The microprocessors are arranged in
two parallel, sequential configurations driven by a control
computer. Thus, system control is centralized, hut execu
tion is decentralized.

The original signal processor for the AEGIS AN/ SPY -I
radar was designed in the early 1970s, before micro-
processor technology had matured to its present levels. The
design, although functionally suitable to its purpose, was
relatively large, heavy, and expensive; it also presented
difficulties in manufacture and test.

As part of an ongoing Navy program of system
simplification and cost reduction, detailed system design
trade-offs were conducted during 1973 and early 1974,
resulting in part in a modified radar system, designated
AN / SPY -I A. Included in these modifications was a
packaging simplification of the signal processor, involving
incorporation of LSI technology and resulting in a
reduction in equipment cabinets from 15 to I I.

Further study efforts in the area of system simplification
and cost reduction during 1977 and 1978 addressed
application of new technology to AEGIS. One result of this
work was a plan for additional performance increase and
cost reduction in the AN/SPY-IA Radar System, to be
completed in 1983 and redesignated AN/ SPY -I B. Further
upgrading of the signal processor was a prominent part of
the plan, specifically in terms of application of VLSI
technology and distributed microprocessors.

Studies and subsequent concept design probed the
Reprint RE -26-8-14
Final manuscript received Aug 14. 1981.

feasibility of the approach to the signal processor, and the
program has moved forward into final design and initial
fabrication. Application of current VLSI technology, as
anticipated, makes the AN/ SPY -I B signal processor
significantly lighter, smaller (5 equipment cabinets), and
less costly. Important additional benefits, attributable in
part to the application of microprocessors, include in-
creases in performance capability, equipment reliability,
and ease of manufacture and test.

This paper traces the evolution of the AN / SPY -I B
signal processor, beginning with a general description of
multiple processor applications, followed by a brief discus-
sion of the signal processor requirements of the radar, the
design drivers involved, and the methodology used to
achieve a multiple-proceor solution for the advanced
signal processor.

Multiple -processor utility

Because oftheir modular nature, multiple -processor
systems generally afford higher system throughput rates
than do single -processor systems. As throughput rates
increase, single -processor systems soon reach
technological limits. The conclusion should not be drawn,
however. that N processors with the equivalent speed of a
single processor can yield the same performance (number
of operations in a specified time). Performance in multiple -
processor systems is diluted by the increased flow of
input output data and by the sequential nature of the
computations. Sequential (or pipeline) processing,
however, is generally acceptable in radar applications.

System planners prefer multiple processors for systems
that require functional modularity and incremental
growth. Such arrangements permit the tailoring of a base
system to satisfy different requirements of various users
without the need to completely redesign the system for each
user.

Multiple -processor systems are also regarded as more
fault -tolerant than single -processor systems. When a
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Fig. 1. AN/SPY-1A radar system block diagram imposed on
an outline of the CG 47 cruiser in which the radar will be
installed. Note position of arrays to provide 360° coverage.

failure occurs, automatic load sharing and proper network
selection provide for graceful degradation in performance.
When a failure occurs in a single -processor system.
however, the complete system fails.

Advances in integrated circuit technology and packaging
techniques have enhanced the effectiveness of multiple -
processor systems through the contiguous placement of
microprocessors with the equipment they support. Such
placement simplifies system interfaces because these
devices are controlled by standard bus structures. Integra-
tion of these microprocessors with the equipment leads to a
network eminently suited to radar system applications, as
described in the following paragraphs.

AEGIS AN/SPY-1A radar system

The AEGIS AN/SPY-IA radar system, shown in Fig. I, is
a shipboard phased array system that includes four arrays,
two R F transmitters and receivers, a control computer, and
a signal processor. The radar provides 360 degrees of
coverage and can search for, acquire. and track large
numbers of targets. The control computer schedules all
radar activity, issuing a set of high-level commands to the
signal processor for each dwell to be executed. (A dwell is
the interval during which the radar beam is in a fixed
position.) This command set is translated by the signal
processor into a series of controls that configures the
system to transmit the specified waveform and to receive
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Fig. 2. AN/SPY-1B signal processor block diagram. The
addition of microprocessors (dashed blocks) is a major
change which, along with other modifications, results in the
advanced -design signal processor.

the resultant radar returns. From these returns, the signal
processor measures target detection ranges in search modes
and monopulse angle errors in track modes.

AN/SPY-1A signal processor

The AN/SPY-IA signal processor, shown in Fig. 2, (which
becomes the AN/ SPY -I B signal processor with the addi-
tion of the microprocessors in the dashed blocks)
has an input-output buffer for communication with the
control computer. It also includes signal generation, signal
processing. and radar timing and control equipment. This
equipment enables the signal processor to perform the
following basic functions:

 Signal generation - includes frequency sources for
transmission and reception of all specified waveforms.
When ordered, the signal generator also generates
simulated target returns at specified ranges for operator
training and test purposes.

 Signal return processing- performs detection functions
and measures range and angle errors for tracking
purposes. It utilizes sensitivity time control and sidelobe
blanking. and has a moving -target indicator system for
clutter rejection.

 Computer buffering - serves as the primary interface for
messages that are interchanged between the control
computer and the signal processor.

 System synchronization and mode control establishes
the radar pulse repetition frequency and configures the
system to the mode commanded by the control computer.
It generates all system timing and control signals to
ensure synchronization between transmit and receive
cycles.

Evolution of the AN/SPY-1B
radar signal processor

Processing requirements

All signal processing is bounded by radar dwells; the
required processing is accomplished within a dwell. The
control computer, however, can link these dwells to
perform a specific function. The AN / SPY -I B signal
processor's requirements may be expressed in terms of
message handling, processing to be performed, and control
needed to properly set up the equipment for data collec-
tion.

 Message Handling - On each radar dwell the signal
processor must accept a serial block of command data of
up to 64 32 -bit words from the control computer.
Concurrent within the dwell, the signal processor must
furnish the control computer with a report that can also
he up to 64 32 -bit words.

 Processing - Input processing requirements include
message decomposition for application to the equipment
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and the translation of range -related command words that
are expressed in nautical miles by the control computer to
radar range bins usable by the equipment. Output data
processing requirements include automatic alignment of
the system to account for system biases caused by
variations in signal paths from the four arrays, and
provisions to adjust for long-term drifts of equipment
components.

 Equipment Control - The signal generator and
transmitter must be set up to transmit one of a set of
waveforms for each radar dwell. The return signal
processing equipment must be set up for all -range
matched -filter processing, either before or after clutter
rejection by the moving -target indicator system. Other
processing requirements include the setup of timing
generators for system synchronization to control the
transmission, reception, and processing of radar return
signals.

Considering all requirements, the total load translates
into a throughput requirement of approximately 16
megabits per second.

Other requirements and design drivers

Like previous designs, the AN/SPY-1B signal processor
must interface with the control computer that is tasked to
provide overall system command and control. Provisions
must also be made to off-load certain functions from the
control computer that are best performed at the local level.
In addition to these requirements, the signal processor
must be highly reliable and provide internal fault process-
ing as part of the AEGIS Weapon System's Operational
Readiness Test System.

The selected design must be adaptable to functional
changes with minimal impact on equipment design, must
allow for incremental growth, and must provide a soft -
failure capability.

Network methodology

Extensive treatment of network structure and
methodology exists in the literature. The particular
application and system performance requirements,
however, usually dictate network structure.

In choosing the network for the AN/SPY-1B signal
processor, we first analyzed the overall system structure
and performance requirements and identified those areas
that could benefit from the use of microprocessors. Next,
we selected the family of available microprocessors that
could effectively do the job and then integrated them into
the overall system architecture.

System structure analysis

From the signal processor overview, shown in Fig. 2, the
input-output buffer, signal generation, radar control,
signal processing, and test -point equipment were identified

as areas that could benefit from the use of micro-
processors.

A microprocessor in the 1:0 buffer equipment off -loads
certain functions from the control computer and serves as
an clverall executive for the signal processor system. The
functiona'_ tasks of an executive microprocessor include:

 System synchronization control;
 Radar control computer communication;
 Radar stimulus command decoding and distribution to

local microprocessors;

 Radar target report collection and formulation; and
 Self -test.

Microprocessors, placed at the local equipment levels,
are embedded into the equipment they support, and
translate high-level orders from the control computer into
a detailed set of commands directly usable by the equip-
ment. A functional task matrix is given in Table I.

A microprocessor in the signal processing equipment
performs such post -processing functions as computing
monopulse errors for tracking purposes. These error
estimates are then sent to the control computer for further
processing; track files on selected targets are established
and !maintained. Post -processor functional tasking in-
cludes:

 Monopulse angle error estimate computation;
 Auto -alignment;

 Processing of radar signals to assess the environment;
 Target data report formulation; and
 Self -test.

Operational readiness and test system functional inter-
faces extend throughout the signal processor group. A test
microprocessor monitors the performance of all other
microprocessors and includes:

 Test stimulus setup;
 Test results collection and evaluation;
 Fault isolation to the lowest replaceable unit;
 Fault report development; and
 Self -test.

Processor selection criteria

To meet our performance requirements, the selected
processor must have an average instruction time execution
rate of at least 1 MHz. Since the equipment is distributed
(imposing a large amount of input/ output data at each
microprocessor), an input/output throughput rate of
about 1 MHz (500 ns per read or write) is also required. In
addition to meeting military specifications for equipment,
the configuration must allow for future expansion and
performance upgrading. Finally, the system must efficient-
ly emulate a military standard (M1L-STD-1750A) instruc-
tion set.
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Table I. Local microprocessor functional tasking.

Task
Signal

Processing
Microprocessor

Signal
Generation

Microprocessor

Radar
Control

Microprocessor

Accepts selected stimulus command words from
executive microprocessor.

Decodes and distributes data to the IF processors,
detection processors, and search -track processors
for thresholding, etc.

Decodes and distributes data to the waveform
generator and auxiliary waveform generator.

Decodes and distributes data to the transmitters,
RF receivers, displays, and environment analyzer
equipments.

Decodes and distributes command words to the
post processor.

Sets up hardware counters and buffers for
timing and control.

Self -test

X

X

X

X

Selected microprocessor

The microprocessor selected, shown in Fig. 3, uses the
A MD 2900 bit -slice family of integrated circuits. It offers a
solution to high precision, high data rate, and special
equipment control applications; is configurable as a 16 -bit
system; and efficiently supports MIL -STD -1750A. It is fast
(0.6 ;As per instruction), constructed with all Mil -Spec
parts, and runs off a single 5-V power supply.

Network selection

The last selection methodology step is integration of the
identified microprocessors into an acceptable network.
Many networks are possible: stars, rings/ loops, broadcast,
irregulars, fully coupled, etc. The network selected, based
on the stipulated requirements and design drivers, is a
symmetrical arrangement of two irregular sides, each of
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Fig. 3. Block diagram of the selected microprocessor
configured in a 16 -bit system.

which is the mirror image of the other. This network
satisfies the single -failure criterion - system availability
with the failure of a single microprocessor - because either
side of the network can function independently of the
other.

AN/SPY-1B signal processor

The selected network, when superimposed over the equip-
ment, translates into the system shown in Fig. 4. Two of the
processors shown perform executive processing, six are
used to control local hardware, and two others perform
post -processing functions. The eleventh unit, as part of the
operational and readiness test system, assesses system
operability and is used to detect and locate faults.

The two executive microprocessors process messages
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Fig. 4. Selected network translates to functional AN/SPY-
1B signal processor.
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that are interchanges between the control computer and the
signal processor. They accept a command block of data
from the computer for each radar dwell and distribute
selected subsets of this data to microprocessors at the local
level for execution. When radar data is available from the
equipment and from the post processor, these micro-
processors collect and format a report block for transfer to
the control computer where further processing occurs. The
executive microprocessors also control real-time clocks
that generate system synchronization of timing pulses.

The six microprocessors at the local hardware levels
control signal processing equipments, signal generation
equipments, transmitters, antenna arrays, and the display
equipments. They accept commands from the executive
microprocessors and translate them into a detailed set of
control signals for their respective equipments.

The two post processors accept radar data from the
signal processing equipment and form error estimates for
tracking purposes. These units also perform computation
to analyze the environment for the presence of electronic
countermeasures.

The three -cabinet AN/ SPY -I B signal processor includes
signal processing equipment comprising four IF
processors, four search -track processors, two detection
processors, and two environment analyzers. By channeliz-
ing this equipment into equal halves, each of which is
assigned a portion of the AEGIS waveform to process, the
single -failure criterion can be satisfied with no more than a
3 -dB loss in radar detection performance. This signal
processing equipment is supported by two signal process-
ing microprocessors.

In addition to the signal processing equipment are two
signal generators and input-output buffer equipment for
communication with the control computer. Each signal
generator is assigned a microprocessor as is each half of the
input-output buffer. The two microprocessors in the input-
output buffer control the transmitters, arrays, and dis-
plays.

The design approach in the signal processor structure is
duality rather than redundancy. All elements of the system
are required for normal operations. If a failure should
occur, performance degrades gracefully. One example of
duality is that both executive microprocessors are loaded
with identical programs. During each radar dwell, they
process the same command block and form identical
reports for the control computer. Similarly, corresponding
local microprocessors execute identical programs in each
functional half.

Processing flow

If all processing were accomplished within the same radar
dwell, the pulse repetition interval would be too long for
this application; it would influence sector search times and
the number of targets that could be revisited for tracking
purposes. To avoid these long radar dwell intervals, a
pipeline process flow was established, as illustrated in Fig.
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Fig. 5. Processing flow activity designed to perform all
functions over six dwells.

5. This procedure allocates a radar dwell for processing at
each microprocessor level.

As illustrated (diagonal arrow), the central computer
sends command data for dwell N during the execution of
dwell N-3. This command set is received, distributed, used
for equipment setup, and executed during dwell N.
Resultant data is available from the post processor during
dwell N+ I. Thus, the report data from dwell N is formed
during the execution of dwell N+2.

This throughput delay meets the response criterion for
loop closures by the radar control computer. During any
given dwell N (dashed segment of figure), the signal
processor receives a command set from the control
computer for dwell N+3 and furnishes a report based on
data collected during dwell N-2. The flow can be related to
intra-dwell microprocessor activity, as shown in Fig. 6.

System bus structure

Each microprocessor has a dedicated data bus, as shown in
Fig. 7. During any given dwell, data does not flow between
buses (which might create contention), but is interchanged
through first -in, first -out (FIFO) buffer memories. This
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Fig. 6. Intra-dwell microprocessor activity, showing
actions of radar control computer and ten micro-
processors during a single radar dwell.
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permits each microprocessor to con-
trol all activities on its own bus. Each
microprocessor can fetch data from
these buffers connected to its bus and
output data to FIFO buffers connected
to other microprocessor buses. Each
buffer stack was made deep enough to
hold two dwells of data. In that way,
each microprocessor can unload the
stack at any time within the dwell
interval without placing timing
restrictions on any other micro-
processor.

Summary

As seen in the case of the AN/ SPY -I B
signal processor, microprocessors dis-
tributed throughout the signal
processor have helped to satisfy the overall system ob-
jectives. A methodology was followed that identified
hardware areas that could benefit from having a micro-
processor. Tasks were allocated to each microprocessor
and the correct microprocessor selected to meet those
tasks. The microprocessors were then integrated into a
network that would satisfy the requirements and design
drivers.

This multiple -processor solution greatly enhances the
internal computational capability of the AN/ SPY -I B
signal processor. The multiple -processor approach
minimizes the design of custom equipment and offers
flexibility in the implementation of designs that may
appear in the future - including the microprocessor itself.

Conclusions

Multiple processors distributed throughout a system offer
the distinct advantages of:
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 Modularity;
 A soft -failure capability if appropriately networked; and
 Increased system throughput.

Distributed processor systems, however, do create
situations that do not exist in systems with a single
processor. While the microprocessor may prove the sine
qua non for today's innovative designer, certain factors
must be addressed and overcome before committing a
system to a multiple -processor solution:

 Added 1:0;
 Inherent sequential nature of computing; and
 System synchronization requirements.

Multiple microprocessors have been used in the design of
an improved signal processor for the AEGIS AN/ SPY -1B
Radar System. Although this application is unique, these
same principles can be applied to other military, industrial.
and commercial system solutions.

Steve Clapper (left) enters a line of code
while Jim Horsley watches.

Jim Horsley is Principal Member of the Engineering Staff in the
Systems and Advanced Technology Department at RCA Missile
and Surface Radar. Jim joined RCA in 1958. His areas of expertise
include the design of signal processors and of radar timing and
control systems. Recently, his assignments have concentrated on
the application of microprocessors to radar systems.
Contact him at
Missile and Sur'ace Radar
Moorestowr, N.J.
TACNET: 224-2055

Steve Clapper is Senior Member of the Engineering Staff in the
Systems and Advanced Technology Department at RCA Missile
and Surface Radar. Since 1975, when he joined RCA, Steve has
designed microprocessors and developed supporting software. He
is now designing and fabricating microprocessors for incorpora-
tion into high-speed signal processors.
Contact him at.
Missile and Surace Radar
Moorestown, N.J.
TACNET: 224-2401

86 RCA Engineer  26-8  Sept./Oct. 1981



C.L. RickerIR.J. Moran

Microprocessor
network in operation

RCA Government Communications
Systems shows that a less complex
software architecture pays off.

Abstract: A distributed processing approach to a GCS
ommunications application was undertaken to improve

upon expensive software maintenance, system availability
and survivability. A description of the system is followed
by a section on enhancements of the man/machine
interface including touch panels and voice input 1 output .

In January of 1980, an extensive IR&D program was
instituted for a GCS application that used a network of
microprocessors. At that time, only a plan existed -today
an operational system exists including 40,000 lines of code,
an architecture that weaves together software, firmware
and hardware, a functional flow methodology and a
substantial array of hardware (Figs. I and 2).

This paper will concentrate on architecture and
functional flow implementation, but the objectives of the

TAPE

PLAYERS
VOICE I/O

TOUCH

PANEL

PMO

LIGHT

PEN

Fig. 1. Distributed functions.

Fig. 2. RCA distributed processor
network hardware.

IR&D program will be reviewed first. The IR&D ob-
jectives are to conduct studies and develop concepts for:

 Man/ machine interface
 On-line training during network operation
 Operational tolerance of hardware and software faults

 On-line fault isolation and repair during network
operation

 Automated start-up and restart

System architecture

The fundamental engineering approach was to construct a
relatively complex system out of smaller, less complex
parts. The motivation behind this approach was to improve
upon system maintainability, availability, and survivabili-
ty.

In an attempt to identify a system architecture that
would support these basic objectives, the distribution of
application functions was first considered.

Distributed processing

One dimension within which architectures can be

characterized is the degree of functional distribution.
Figure 3 shows the spectrum of approaches, which includes
a fully centralized architecture that assigns all
functions to a high-powered central processor, a federated
approach that consists of a smaller number of multi-
functional systems, a distributed approach that assigns
each major functional area to its own processor. and a fully
distributed approach that assigns each subfunction to its
own processor.

As can be expected, these approaches each have their
disadvantages and advantages. The distributed approach
was selected because it provides a flexible structure for
introducing fault -tolerant design to support a high -

Reprint RE -26-8-15 Final manuscript received July 27. 1981.
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Inventory of the network
Support equipmentHardware

Software Development 2 M DS -230 (INTEL)Processors
1 LSI-11 (DEC)

Nodes 6 INTEL 8080 2 Line Printers

Sub -nodes 2 INTEL 8080 Firmware Development 2 Techtronix 8002
I PROM burnerEmbedded 6 Various chips

Buses Software

RCA Contention (2)

MIL -STD -1553B
System software

Lines of Code
IEEE 488 Executive (per node) 400

Bus Management
I/O devices

Contention/ Node 500
Color Graphic CRT 2 Intecolor 1553/ Node 750
Light Pen 2 Intecolor 1553 Controller 1000
Touch CRT Panel I Carrol Mfg. IEEE 488 Controller 750
Voice Input I Interstate Electronics IEEE 483/Node 500
Voice Output I Interstate Electronics Performance Monitoring 2500
Plasma CRT 1 Interstate Electronics On-line Training 1500
Teletype ( M ilitarized) I UGC -74 Fault Tolerance 3000
RCA Programmed

Fault Isolation and Repair 2500Demodulator 1 PMD
Start and Restart/ Node 100Bubble Memory 2 Intel 512 KB

Archival Tape Cartridge I USH-26 Man/machine interface 12000

Input Tape Playbacks 8 Applications 15000

CP

FULLY CENTRALIZED

8 8 ©
CP, CP2 CP,

0
CP4 CPs CPs

DISTRIBUTED

CP,

Fig. 3. Approaches to functional distribution.
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availability grade of service and to decrease the complexity
of software.

Single process per node

Once it was clear that a distributed architectural approach
was to be used, the overhead associated with distributed
systems was considered. The software to support these
services - for example, process -to -process
communications - can be quite complex and can deplete a
large percentage of a project's resources. With this in mind,
it was felt that it would be desirable to minimize these
services without imposing upon the application.

A typical network service structure consists of a
minimum of four levels of control: physical; link; network;
and process. The services provided by each of these layers
is shown in Table I.

A spectrum of approaches to distributing the application
functions among processor units can be identified. The
four approaches in Fig. 3 represent significant samples
along that spectrum.

The physical, link, and process levels were viewed as
essential control mechanisms. Also, the routing function
within the network control level was also viewed as
essential to support the functional reconfiguration.
However, the most complex and costly service, the virtual
channel mechanism which provides process -to -process
communication, could be removed if there was a single
process in each node. In such a situation, the link level
would effectively provide the necessary process -to -process
capability. So it was decided that all functions with more
than one software process would be distributed to separate
processors and that the virtual channel feature would not
be included in the system.

Microprocessor -based nodes

The microprocessor was seen as the ideal host computer for
the architecture - distributed single process nodes - that
had been identified. Labor and funding resources helped
determine that a total of six microprocessor nodes would
be used in the net.

The basic nodal configuration consists of an INTEL
8080A -based CPU board and an RS 232C asynchronous
serial data interface module, which can be populated with
up to 6 ports, 8-kbyte or 16-kbyte PROM and RAM
modules, and a module providing parallel interface to the
contention data bus which connects all nodes. The
architecture provides communication between all nodes.
Each node is configured with serial I/O and memory
boards to suit its particular application (Fig. 4).

Executive operating system

The executive operating system software developed for
each node consists of the following elements:

Table I. Network Control Services.

Network
Control
Level Services

Physical

Link

Network

Data
Communications/

Transport
Layers

Electrical signal interchange
to establish/disconnect link
and transfer data.

Controls data transfer across
physical link.
Map logical destination to
physical address; support
virtual channels.

Process Application Interpret message contents and
format messages.

 PROM support program (boot and debug)

 Single task executive
 Contention bus driver
 Peripheral device drivers
 Real-time clock manager
 Shared utility routines

An overview of the complete node software architecture is
shown in Fig. 5.

Host software architecture

The executive program is continuously polling the
prioritized queues for messages generated by device
drivers, clock managers, or bus drivers. Depending upon
routing information in the message, the appropriate
subprocess is scheduled for processing. When the executive
is idle, a performance -monitoring program is executing.

Application process allocation

Identified were: the functions which were to be supported;
the architectural guidelines providing the framework
within which more detailed system definition could be
produced; and the physical constraints imposed by the
availability and type of microprocessors and the selection
of the microprocessor bus. An effort was made to distribute
the application processes and associated peripheral equip -
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Fig. 4. Nodal microprocessor configuration.
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Fig. 5. Host software architecture.

ment among the nodal computers. The results of this effort
are shown in Fig. 6.

System application

The system application basically consists of three sets of
functional flows: application reception, operator control,
and application transmission.

Operator control flows (Fig. 6)

I. The operator sends application control parameters.
2. The operator requests an index of some subset of stored

received data.

3. The index is displayed.
4. The operator selects data from that index and requests

retrieval from the data base.

APPLICATION

PROCESSOR

MESSAGE

PRINT

PROCESSOR

DATA

BASE

PROCESSOR

COMMAND

CENTER

PROCESSOR

PRIMARY

OPERATOR

PROCESSOR

Fig. 6. Operator control flows.

5. The selected message is displayed.

6. The operator sends retrieved data for display.
7. The operator sends retrieved data to be printed.

Application transmission flows (Fig. 7)

I. The operator prepares data for output.
2. Forwarded to command center for authorization.
3. Following authorization, they are stored in the database

for subsequent access by the operator.
4. The operator retrieves the desired data and adds it to a

queue of data ready to be output.
5. The operator initiates output of the data.

Application reception flows (Fig. 8)

I. Data is input.
2. The data is forwarded to the M PP for printing.

3. This data is forwarded to the DBP for storage in the
incoming data file.

4. High priority data is sent to the CEP.
5. A control message is sent to POP to update the incoming

data.
6. The operator selects to review the next received data so a

retrieve request is sent to the DBP.
7. The next data for review is displayed.
8. A title is appended and the data is returned to DBP for

permanent storage.

Final system

Man/machine interface

Evaluation of the applicability of available man machine
interface technologies is being continued by incorporating
touch panel and voice recognition/ synthesis capabilities
into the existing system.

DATA
( 3 & 5 )

APPLICATION BASE
DROCESSOR PROCESSOR

( 284 )

(g)MESSAGE COMMAND PRIMARY

PRINT CENTER ..z-/ OPERATOR

PROCESSOR PROCESSOR PROCESSOR

Fig. 7. Application transmission flows.
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Fig. 8. Application reception flows.
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Touch panel

To improve upon the poor reliability and difficulties of
operation demonstrated by the light pen, a touch -panel
made by Carroll Manufacturing, Champaign, Illinois is
being installed on the ISC 800113 color graphics CRT used
as the general operator display. Carroll's touch input
system utilizes the scanning infrared technology, which is
implemented by surrounding the display area with LED
emitters and phototransistor detectors. The associated
control logic converts interruptions into X,Y-coordinates
and transmits them back to the host computer. Existing
software handles these inputs identically to light pen input.

The system, which exhibits single character resolution.
allows operators the capability of pointing at selection
targets with their finger, thus eliminating the need to pick
up and put down the light pen.

The availability of resources dictated the use of floppy
disks for the storage medium for the existing system. Two
enhancements are currently being made to the demonstra-
tion system. First, the real-time data base floppy disk
system currently in use is being replaced by Intel bubble -
memory devices. In addition, an AN/ US H-26 cassette tape
unit is being added to perform as a tape archival data base.

Other enhancements include the addition of a 1553
microprocessor bus, a quality -monitoring feature, and on-
line training and diagnostic software.

Charles L. Ricker (left), Unit Manager in GCS Software
Engineering, is shown discussing the impact of replacing
keyboard control with voice input/output control. Richard
Moran, also of GCS Software Engineering, was software
architect for the demonstration system. He provided the
design and managed the implementation of the software.

Charles Ricker is Unit Manager in Government Communications
Systems Software Engineering at Camden, New Jersey. He joined
RCA in 1977 and has 30 years of experience in software, with a
specialty in the man/machine interface.

him at:
Government Commun catioris Systems
Camden. N.J.
TACNET: 222-4605

Richard Moran was employed in GCS Software Engineering. He
has left the company.

Voice input/output

To improve ease of operation, two off -the -shelf circuit
boards were added which permit speech exchange with the
application system software.

Alerts and responses about input verbal commands will
be spoken. Verbal inputs include application commands.
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Patents

Advanced
Technology Laboratories

Gilson, A.P.ISiryj, B.W.
Protective cartridge for optical discs -
4273342

Siryj, B.W.IGilson, A.P.
Optical disc player system -4271489

Siryj, B.W.IMoore, L.D.
Apparatus for converting rotary motion to
linear motion -4274294

Astro-Electronics

Bilsky, H.W.ICallen, P.J.
Redundant battery protection system -
4281278

Hubert, C.H.
Orientation of momentum stabilized
vehicles -4275861

Phillips, K.J.
Nutation damping in a dual -spin
spacecraft -4272045

Consumer Electronics

Fitzgerald, W.V., Jr.
Service switch apparatus -4272777

Fuhrer, J.S.
Defect compensation for color television -
4272785

George, J.B.
Power supply arrangement for a tuning
system -4281349

Parker, R.P.
Circuit for inhibiting radio frequency in-
terference in a television receiver -4276566

Government
Communications Systems

Nossen, E.J.
Range determining system -4278977

Packer, M.
Method for releasing printed wiring boards
from printed wiring board racks -4279073

Laboratories

Abeles, B.
Precoated resistive lens structure for elec-

tron gun and method of fabrication -
4281270

Abrahams, M.S. I Blanc, J.
Method of improving silicon crystal perfec-
tion in silicon -on -sapphire devices -
4279688

Angle, R.L.
Method for making a closed gate MOS
transistor with self -aligned contacts with
dual passivation layer -4272881

Berkman, S.IMetzl, R.
Novak, R.E.I Patterson, D.L.
Heat radiation deflectors within an EFG
crucible -4271129

Bube, K.R.
Glazing paste for bonding a metal layer to a
ceramic substrate -4273822

Datta, P.
Video disc processing -4275100

Datta, P.IFriel, R.N.
Video discs and molding compositions
therefor -4280941

Dholakia, A.R.
Selectively damped video disc stylus
assembly -4280024

Dieterich, C.B.
PCM detector -4275416

Evans, R.M.
Method for tuning a filter circuit -4272743

Fisher, A.W.
Method of laying out an integrated circuit
with specific alignment of the collector
contact with the emitter region -4272882

Fukazawa, K.IYamada, A.
Video disc locked groove clearance
system -4278846

Gange, R.A.IMarlowe, F.J.
System for compensating for cathode
variations in display devices utilizirg line
cathodes -4271377

Gibson, J.J.
Video disc playback apparatus with non-
linear aperture correction -4272786

Hanak, J.J.
Tandem junction amorphous silicon solar
cells -4272641

Hinn, W.
Automatic kinescope biasing system with
increased interference immunity -4277798

Hsu. S.T.
Method for forming buried contact com-
plementary MOS devices -4276688

Hsu, S.T.
Method for forming an improved gate
member utilizing special masking and ox-
idation to eliminate projecting points on
silicon islands -4277884

Ipri, A.C.
CMOS SOS with narrow ring shaped P
silicon gate common to both devices -
4271422

Knop, K.
Apparatus and method for measuring the
ratio of two signals -4272197

Miller, E.A.
Centering support for a rotatable wafer
support susceptor-4275282

Rhodes, R.N.
Color filter having vertical color stripes with
a nonintegral relationship to CCD
photosensors-4277801

Rockett, L.R., Jr.
Quantizing circuits -4280191

Ross, M.D.
Slow down color processor for video disc
mastering using a special mode VTR -
4277796

Theriault, G.E.
Saw filter preamplifier -4271433

Tosima, S.
Surface acoustic wave pickup and
recording device -4281407

Tracy, C.E. I Kern, W.
Bulk glass having improved properties -
4273828

Wang, C.C.IEkstrom, L.
Lausman, T.C.IWielicki, H.
Video disc lubricants -4275101

White, L.K.IComizzoli, R.B.ISchnable, G.L.
Method of detecting a cathodic corrosion
site on a metallized substrate -4278508

Williams, B.F.
Method for forming an electrical contact to a
solar cell -4278704

Wine, C.M.
Receiver with a channel swapping
apparatus -4271532
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Missile and Surface Radar

Schwarzmann, A.
Phase shifter -4275366

Picture Tube Division

Farmer, F.C., Jr.i Knight, D.P.
Precision cathode current regulator -
4275347

Morrell, A.M.
Color picture tube with screen having light
absorbing areas -4271247

Villanyi, S.T.
Cathode-ray tube having corrugated
shadow mask with varying waveform -
4280077

SelectaVision® VideoDisc
Operations

Christopher, T.J.
PCM detector for video reproducer
apparatus -4278992

Christopher, T.J.
Stylus position sensing apparatus for video
disc player -4280023

Torrington, L.A.
Video disc player having record extracting
mechanism -4272083

Wilber, J.A.IYorkanis, B.J.
Amplifier having dead zone of controllable
width and position -4277695

RCA Service Company

Crosby, E.L , Jr.
Balloon with deflation port -4280674

Solid State Division

Angle, R.L.
Method for making a closed gate MOS
transistor with self -aligned contacts -
4274193

Dawson, R.H.ISchnable, G.L.
Passivating composite for a semiconductor
device comprising a silicon nitride (Si3N4)
layer and phosphosilicate glass (PSG)
layer -42738C5

Goldman, M B.IMorton, G I
A -C rectifier circuit for powering monolithic
integrated circuits -4276592

Harford, J R
Gain controlled amplifier using a pin
diode -4275362

Harwood, L.A.iShanley, R.L., 2nd
Color -difference signal processing
circuits -4272778

Kaplan, L.A.
Current scaling circuitry -4278946

Knapp. W.K.
Resettable bistable circuit -4275316

Leidich, A.J.
Amplif er circuit -4271394

Malchow, M.E.
Differential FM detector with series tuned
filter -4272726

Rodgers, R.L., 3rd
Simplified vertical deflection circuit -
4277729

Schade, 0.H., Jr
Switched current source for current limiting
complementary symmetry inverter -
4274014

Schanzer, H I Stewart, R.G.
Circuit for reducing the loading effect of an
insulated -gate field-effect transistor
(IGFET) on a signal source -4281400

Webb, P.P.
Photodiode having enhanced long
wavelength response -4277793

Wittlirger, H.A.
Differential -input amplifier circuit -
4272728

Pen and Podium Recent RCA technical papers and presentations

To obtain copies of papers, check your library or contact the author or his divisional
Technical Publications Administrator (listed on back cover) for a reprint.

Advanced
Technology Laboratories

F. Borgini1B. Suskind
The COS; SOS Automated Universal
Array-The Custom Integrated Circuits
Conference, Rochester, N.Y., Proceedings
(5/12/81)

A. Feller
Automatic Layout and Checking
Programs-The CAD Symposium, Ft. Mon-
mouth, N.J. (4/30/81)

A. Feller
LSI and VLSI Automatic Layout Tech-
nique-The Industry Microelectronics Sym-
posium at Mississippi State Univ. and
published in the Proceedings (5/26/81)

K. KatsumatalS. Ozga
The Advantages of CMOS/SOS VLSI and
the GPU Chip Set in Emulating Standard
Military Computers-NAECON 81 Con-
ference, Dayton, Ohio (5/19-21/81)

R.F. Kenville
Optical Disc Techniques-The IEEE Com-
puter Elements Workshop, Vail, Colorado
(6/23/81)

D. Smith
Automatic Hybrid Layout Program-The
CAD Symposium, Ft. Monmouth. N.J.
(4/30/81)

M. Stebnisky
Short Channel SOS Performance-The In-
dustry Microelectronics Symposium at Mis-

sissippi State University published in the
Proceedings (5/26/81)

Astro-Electronics
S.M. Fox
Initial Analysis of the Effects of Plume
Impingement on the RCA SATCOM I

Satellite-AIAA SAE ASME 17th Joint
Propulsion Conference, Coiorado Springs,
Cola (7/27/81)

C. Hubert
The Attitude Dynamics of Dynamics Ex-
plorer A-AAS/AIAA Astrodynamics Con-
ference, Lake Tahoe, Nev. 18/3/81)

J. Swalei R. Josh
A Simple Attitude Data Filter for Three Axis
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Attitude Initialization for Autonomous As-
cent of Shuttle -Launched Spacecraft-
AAS/AIAA Astrodynamics Conference,
Lake Tahoe, Nev. (8/3/81)

Automated Systems

M.J. Cantellai H. HonickmanlK.H. Kim
IR Focal Plane Array Noise Characterization
and Measurements-IRIS Detector Special-
ty Group Meeting, Syracuse, N.Y. (6/81)

J.C. PhillipsiD.R. Higgs (MSR)
Technical Reports and Proposals-
Technical Writers Institute, Rensselaer
Polytechnic Institute, Troy, N.Y. (6/81)

M.J. Kurina
Electronic Packaging for an Artillery
Delivered Sensor-Electronic Packaging
and Production (6/81)

E H. Miller
Military Applications of Commercial Com-
puter Technology-Signal magazine (7/81)

P. Berrett
A3 for Project Seaguard-Microprocessor
Applications Symposium, RCA, Princeton,
N.J. (5/81)

H.L. Resnick
Practical Problems in Applying Micro-
processors-Microprocessor Applications
Symposium, RCA, Princeton, N.J. (5/81)

W.R. Wadden
Combat Analysis Center-Distributed
Processing Symposium, RCA Moorestown,
N.J. (6/81)

W.X. JohnsonIW.A. Helbig (ATL)
B.R. Eldridge (Tetra Tech, Inc.)
Four Well Chosen Bits-Undersea Sur-
veillance Symposium, Navy Post -Graduate
School, Monterey, Calif. (7/81)

Broadcast Systems

D.S. Newborg
CP Antennas for TV Stations-International
Broadcast Engineer, a UK publication
(1/19/81)

Laboratories

A.E. Bell IF.W. Spong
Reversible Optical Recording in Trilayer
Structures-Appl. Phys. Lett., Vol. 38, No. 11
(6/1/81)

D Botez
CW High -Power Single -Mode Operation of
Constricted Double-Heterojunction
AlGaAs Lasers with a Large Optical
Cavity-Appl. Phys. Lett., Vol. 36, No. 3
(2/80)

D. BotezIJ.C. ConnollyID.B. Gilbert
High -Temperature CW and Pulsed Opera-
tion in Constricted Double-Heterojunction

AlGaAs Diode Lasers-Appl. Phys. Lett.,
Vol. 39, No. 1 (7/1/81)

K.K. N. Chang
An Analytic Solution of a Magnetic
Electron -Beam Bender-RCA Review, Vol.
42 (3/81)

R.S.Crandall
Determination of the Drift Mobility in High -
Conductivity Amorphous Silicon-J Agpl.
Phys., Vol. 52, No. 3 (3/81)

P. Dattal G. KaganowiczIA.W. Levine
Alignment and Wetting Properties of
Nematic Liquid Crystals on Plasma -
Polymerized Films-Journal of Colloid and
Interface Science, Vol. 82, No. 1 (7/81)

D.P. DorseylR.S. FilsonIW.H. Tsien
The Design, Construction, and Evaluation
of a Porcelain -Steel -Substrate Hybrid -
Circuit Module-RCA Review, Vol. 42, No. 2
(6/81)

J. Dresneri D.J. Szonstak I B. Goldstein
Diffusion Length of Holes in a -Si : H by tne
Surface Photovoltage Method-Appl. Phys.
Lett., Vol. 38, No. 12 (6/15/81)

K.W. Hang iJ. AndruslW.M. Anderson
High -Temperature Porcelain -Coated -Steel
Electronic Substrates: Composition and
Properties-RCA Review, Vol. 42, No. 2
(6/81)

E.O. Johnson IS. Tosima
Visual -Perception -Related Effects in
Chinese -Japanese Written Characters-
RCA Review. Vol. 42 (3/81)

H. Kressel
Lasers and LEDs for Optical Com-
munications Using Fibers-Radio Science,
Vol. 16, No. 4 (7/8/81)

I. LadanyIF.Z. Hawrylo
Comparison of Single and Two -Phase LPE
Growth Methods for InGaAsP/InP Lasers
and LEDs-Journal of Crystal Growth, Vol.
54, pp. 69-75, North -Holland Publishing
Company (1981)

E.W. MabyIC.P. Wy
Carrier Mobility in Laser -Annealed Silicon -
on -Sapphire Films-RCA Review, Vol. 42
(3/81)

C.W. Magee (Labs)IJ.C. BeanIG. Foti
J.M. Poate (Bell Labs)
Observation of Gas Absorption in
Evaporated Amorphous Silicon Films Using
Secondary Ion Mass Spectrometry- Thin
Solid Films, Vol. 81, pp. 1-6 (1981)

J.H. McCusker
Finite -Element Analysis of Stresses and
Thermal Flow in Porcelain -Enamelled -Steel
PC Boards-RCA Review, Vol. 42, No. 2,
(6/81)

R.W. Noskeri L.A. DiMarcoiR. Williams
Deliquescence as the Mechanism for Strong
Dust Adhesion-App/. Phys. Lett., Vol. 38,
No. 12 (6/15/81)

L.S. Onyshkevych
Introduction to Special Issue on Porcelain -
Enamelled -Steel Boards for Electronic
Applications-RCA Review, Vol. 42, No. 2
(6/81)

L.S. OnyshkevychlW.H. Tsien
T.T. HitchiP.R. Smith
Manufacturing Steps in the Production of
Porcelain -Enamel PC Boards-RCA
Review, Vol. 42, No. 2 (6/81)

J.I. PankovelJ.T. McGinnIC.P. Wu
Bombardment -Induced Corrosion
Resistance of Aluminum-Appl. Phys. Lett.
Vol. 39, No. 1 (7/81)

A.N. Prabhu I E.J. Conlon lA.Z. Miller
J.H. McCuskerlT.T. Hitch
Fabrication of Large -Area Thick -Film
Hybrid Circuits on RCA Porcelain -Coated -
Steel Substrates-RCA Review, Vol. 42, No.
2 (6/81)

A.N. PrabhulK.W. Hang IE.J. Conlon
T.T. HitchiA. Kusenko
Characterization of Thick Film Com-
positions on RCA Porcelain -Coated -Steel
Substrates-RCA Review, Vol. 42, No. 2
(6/81)

A.N. PrabhulK.W. Hang
E.J. ConloniS.M. Boardman
Optimization of RCA Porcelain for Com-
patibility with Thick Films-RCA Review,
Vol. 42, No. 2 (6/81)

D. Raychaudhuri
Performance Analysis of Random Access
Packet -Switched Code Division Multiple
Access Systems-IEEE Transactions on
Communications, Vol. COM-29, No. 6 (6/81)

W. RehwaldIA. Vonlanthen
Evidence for Solitonlike Discommen-
surations in K2Se0 4 from Ultrasonic
Measurements of the Shear Stiffness c55-
Solid State Communications, Vol. 38, pp.
209-212

G.A. Reitmeier
Spatial Compression and Expansion of
Digital Television Images-RCA Review,
Vol. 42 (3/81)

P.H. Robinson' R.V. D'Aiello
The Effect of Atomic Hydrogen Passivation
on Polycrystalline Silicon Epitaxial Solar
Cells-App/. Phys. Lett., Vol. 39, No. 1

(7/1/81)

A. SussmanlT. Ward
Electrophoretic Deposition of Coatings
from Glass-Isopropanol Slurries-RCA
Review, Vol. 42, No. 2 (6/81)

B.J. Thaler]J.H. McCuskerlJ.P. Honore, Ill
Electrical Properties of RCA Porcelain -
Enamelled -Steel PC Boards-RCA Review,
Vol. 42, No. 2 (6/81)

W.H. Tsien I J .H. McCuskerlB.J. Thaler
Mechanical Properties of RCA Porcelain -
Enamelled -Steel PC Boards-RCA Review,
Vol. 42, No. 2 (6/81)

L.K. White
Etch Rates of SiO2 Films in Deuterated
Acidic Fluorides-Thin Solid Films, Vol.
79, L73 -L76, (1981)

L.K. WhitelR.B. Comizzoli
C.A. DeckertlG.L. Schnoble
The Detection of Corrosion Phenomena
with pH -Sensitive Fluorescent Dyes on
Aluminum -and -Gold -Metallized IC
Devices-J. Electrochem. Soc...
Electrochemical Science and Technology
(5/81)
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J L Vossen
Growth. Synergism, and Advocacy-The
American Vacuum Society in 1980-J. Vac
Sci. Technol.. Vol. 18. No. 2 (3/81)

P.J. ZanzucchilW R. Frenchu
Multisampling of Microgram Quantities for
Infrared Spectrometric Analysis-
Analytical Chemistry. Vol. 53. No. 7 (6/81)

Missile and Surface Radar
J Golub' B B. Levyi D.M. Greeley
SIMATR, An Air Battle Simulation of the
USAF Tactical Control System (TACS) with
Advanced Tactical Radars -1981 Summer
Computer Simulation Conference. Con-
ference Proceedings. Washington. D.0
(7/81)

Solid State Division

C. Field a. Jarl C Salerno
Apply Pulse -Width Modulators to Produce
Variable dc Voltage-EDN magazine. Vol.
213, No 16 (8, 19, 81)

Engineering News and Highlights

Stoeger is Division
Vice -President, Engineering

Appointment of Joseph E. Steoger to the
newly -created position of Division Vice -
President, Engineering was announced to-
day by George D. Prestwich, President, RCA
Service Company.

Mr. Prestwich said that the new position
was established to meet a growing need for
greater engineering expertise among the
company's increasingly complex electronic
businesses.

Mr. Steoger will be responsible for in-
tegrating engineering knowledge and con-
cepts across the company's vaned
businesses and for developing plans and
programs to match company needs and
capabilities to technological advances.

Prior to the appointment, Mr. Steoger was
director of engineering support, Consumer
and Commercial Services, since 1978. He
joined RCA Service Company in 1942 as a
field engineer and held a series of in-
creasingly more responsible management
positions before being named manager of
engineering, Consumer Services, in 1971.

Yannotti is TPA at Astro

Frank Yannotti has been appointed Editorial
Representative and Technical Publications
Administrator at RCA Astro-Electronics,
Princeton. N.J. Frank has recently rejoined
AE after spending seven years with RCA
Solid State Division. Somerville. N.J. In his
present assignment he is Administrator,
Engineering Operations, reporting to the
Chief Engineer.

Frank joined RCA in 1952 as an electrical
engineer in Harrison, N.J. In 1961 he moved
to AE, where be built and managed the
Environmental Test Center until 1974 when
he transferred to SSD at Somerville. There.
he served as Administrator. Power
Operations, until May, 1981 when he
returned to AE.

Contact him at:
RCA Astro-Electronics
Princeton, N.J.
TACNET: 229-3246

Klarmann is Astro's Ed Rep

Carol Klarmann is the new Editorial
Representative for the RCA Engineer at
RCA Astro-Electronics. She oined RCA
Astro-Electronics in 1978 as an engineering
writer responsible for IR&D documentation.
She also prepares Patent and New
Technology Reports for Air Force and
NASA contracts. Before joinirg RCA. she
worked at AT&T Long Lines editing
documentation for tariff filings with the
FCC. She holds a bachelor's degree in
physics from Douglass College.

Contact her at:
RCA Astro-Electronics
Princeton, N.J.
TACNET: 229-2919
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Staff Announcements

Thornton F. Bradshaw, Chairman of the
Board and Chief Executive Officer. an-
nounces the following changes on his staff.
Kenneth W. Bilby assumes responsibility for
the Corporate Affairs activity. Mr. Bilby was
elected as an Executive Vice -President at
the August 5, 1981, meeting of the RCA
Board of Directors. William C. Hittinger, as
Executive Vice -President, in addition to his
responsibilities for Research and Engineer-
ing, Licensing, and Patent Operations.
assumes responsibility for RCA Com-
munications. Inc.. and for International.
Rocco M. Laginestra, as Senior Vice -
President. serves as special assistant to the
Chairman and Chief Executive Officer and
will continue his responsibilities for Plan-
ning, Marketing and Real Estate activities.

William C. Hittinger, Executive Vice -
President, announces his organization as
follows: Stephen S. Barone, Senior Vice -
President, Licensing; Eugene F. Murphy,
President and Chief Executive Officer. RCA
Communications, Inc. (Mr. Murphy is also
an RCA Group Vice -President); John V.
Regan, Vice -President. Patent Operations:
Howard Rosenthal, Staff Vice -President,
Engineering; Eugene A. Sekulow, Vice -
President. International; William M.
Webster, Vice -President, RCA Laboratories.

Roy H. Pollack, Executive Vice -President,
announces that the Board of Directors of
RCA Corporation elected James M. Alic,
Group Vice -President. Mr. Alic will continue
his present responsibilities for: RCA Service
Company. "SelectaVision" VideoDisc
Operations, and VideoDisc Business and
Operations Planning.

Consumer Electronics

J. Peter Bingham, Division Vice -President.
Engineering, announces his organization as
follows: Larry A. Cochran, Director, Signal
Systems and Components: Eugene Lemke,
Director, Advanced Products; James A. Mc-
Donald, Director, Display Systems
Engineering; Perry C. Olsen, Director,
Product Design Engineering; Willard M.
Workman, Director, VideoDisc Player
Engineering: and at the New Products
Laboratory, James E. Carnes. Director. New
Products Laboratory.

Eugene Lemke, Director. Advanced
Products, announces his organization as
follows: Paul E. Crookshanks, Manager,
Project Engineering; Harry W. Kidwell,
Administrator, Data Management; James C.
Marsh, Jr., Manager. Project Engineering;
Jereld R. Reeder, Manager. Project
Engineering.

James E. Carnes, Director. New Products
Laboratory. announces his organization as
follows: Billy W. Beyers, Jr., Manager,

Digital Products Development; Scott A.
Keneman, Manager. Television Digital
Systems: James L. Newsome, Manager,
Technology Applications: John C. Peer,
Manager, Television Systems Development;
Richard A. Sunshine. Manager, Engineering
Systems: and Craig S. Young, Manager,
Advanced Mechanical Engineering.

Larry A. Cochran, Director, Signa. Systems
and Components. announces his organiza-
tion as follows: David J. Carlson, Manager.
RF/IF Systems Engineering; Roger W. Fitch,
Manager. Components Engineering: Jack S.
Fuhrer, Manager, Baseband Signal Process-
ing; Ronald R. Norley, Manager, Taiwan
Coordination and Competitive Analysis;
and Robert P. Parker, Manager. Television
Digital Applications.

Robert L. Pletcher, Manager, Consumer
Acceptance and Reliability Testing, an-
nounces the appointment of Donald E.
Peyton as Manager, Consumer Acceptance
and Reliability Testing-VideoDisc Player.

Andrew G. Kolbeck, Manager, Material
Engineering and Development, announces
that Robert R. Russo, Manager, Process
Development, will report to the Manager,
Material Engineering and Development.

Laboratories

Bernard J. Lechner, Director, Video
Systems Research Laboratory, announces
his organization as follows: Frank J. Marlow
continues as Head. Digital Video Research;
Charles B. Oakley is appointed Head,
Satellite Transmission Technology
Research; Leonard Schiff continues as
Head. Communication Analysis Research:
Paul Schnitzler is appointed Head, Broad-
cast Systems Research; Robert E. Flory
continues as Fellow. Technical Staff: J. Guy
Woodward continues as Fellow. Technical
Staff: and Harold Staras continues as Staff
Scientist.

Dr. Jon K. Clemens, Director. VideoDisc
Systems Research Laboratory, announces
the appointment of John G.N. Henderson as
Head. Signal Systems Research and James
J. Power as Head. Player Control Research.

RCA International

William C. Hittinger, Executive Vice -
President, announces the appointment of
Eugene A. Sekulow as Vice -President. Inter-
national

Eugene A. Sekulow, Vice -President. Inter-
national. announces his organization as
follows: G. Denton Clark, Chairman of the
Board and President, RCA Inc. (Canada);
Louis Couttolenc, Vice -President, Latin
America. RCA International, Ltd. (Ber-
muda): Ming Hsu, Staff Vice -President. In-
ternational Trade Relations, and John H.

Rich, Vice -President. Asia -Pacific, RCA In-
ternational, Ltd. (Bermuda) (Tokyo
Branch).

RCA Service Company

George D. Prestwich. President, RCA
Service Company. announces his organiza-
tion as follows: Martin J. Barnabic, Division
Vice -President. Consumer and Industry Af-
fairs: George J. Brennan, Division Vice -
President. Management Services and
Systems Planning: Michael F. Camardo,
Division Vice -President, Finance; Donald M.
Cook, Division Vice -President, Government
Services: Philip J. Martin, Division Vice -
President. Business Development and
Strategic Planning: George D. Prestwich,
Acting. United Kingdom Operations: Melvin
F. Riedberger, Division Vice -President. In-
dustrial Relations: Raymond J. Sokolowski,
Division Vice -President, Consumer and
Commercial Services: and Joseph E.
Steoger. Division Vice -President, Engineer-
ing.

Solid State Division

Carl R. Turner, Division Vice -President,
Product Assurance and Planning, an-
nounces his organization as follows:
Leonard J. Berton, Manager. Systems
Modernization; Thomas L. Cambria,
Director, Management Information
Systems: Angelo D. Checki, Jr.,
Administrator. Strategic Planning; Larry J.
Gallace, Director. Quality and Reliability
Assurance; Ralph S. Hartz, Director. Latin
American Operations: Edwin W. Lyons,
Administrator. Systems and Services,
Leonard Mineur, Director, Materials and
Manufacturing Systems; and Edward M.
Troy, Director. Operations Planning and
Support.

Leonard J. Berton, Manager. Systems
Modernization Project, announces his
organization as follows: Robert A. Fried-
man, Manager, Applications Development;
Paul D. McNamara, Manager, System
Services: and Lawrence E. Towner,
Manager, Data Base Administration.

Larry J. French, Division Vice -President,
Solid State Technology Center. announces
the appointment of David S. Jacobson as
Director, Custom Large Scale Integration.

David S. Jacobson, Director, Custom Large
Scale Integration, announces his organiza-
tion as follows: Richard H. Bergman,
Manager, Design Test and Applications.
Joseph J. Fabula, Manager. Production
Engineering; David S. Jacobson, Acting
Manager. Quality and Reliability Assurance;
Burnett Sams, Leader Technical Staff, CAM:
William C. Schneider, Manager, Program
Management and Business Planning: and
Evan P. Zlock, Manager, Custom LSI
Production and Product Control.
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Editorial Representatives
Contact your Editorial Representative at the TACNET
numbers listed here to schedule technical papers
and announce your professional activities.

Commercial Communications
Systems Division (CCSD)
Broadcast Systems
 Bill Sepich Camden, New Jersey
Krishna Praba Gibbsboro, New Jersey
Andrew Billie Meadowlands, Pennsylvania

Cablevision Systems
 John Ovnick Van Nuys, California

TACNET

222-2156
222-3605
228-6231

534-3011

RCA Communications TACNET

America, Communications
 Murray Rosenthal Princeton. New Jersey 258-4192
Carolyn Powell Princeton, New Jersey 258-4194

Global Communications
 William Hartweg New York. New York 323-7300

RCA Limited (Canada)
Consumer Electronics (CE) Bob McIntyrf .:te Anne de Bellevue 514-457-9000

 Clyde Hoyt
Francis Holt

Indianapolis, Indiana
Indianapolis, Indiana

422-5208
422-5217 RCA Records

Chuck Limberg Indianapolis, Indiana 422-5117
Don Willis Indianapolis, Indiana 422-5883  Greg Bogantz Indianapolis, Indiana 424-6141

Government Systems Division (GSD) RCA Service Company
Advanced Technology Laboratories  Joe Steoger Cherry Hill. New Jersey 222-5547

Merle Plfatz Camden. New Jersey 222-2161 Ray MacWilliams Cherry Hill. New Jersey 222-5986
Dick Dcmbrosky Cherry Hill, New Jersey 222-4414

Astro-Electronics
 Frank Yannotti Princeton, New Jersey 229-3246 Research and Engineering
Carol Klarmann Princeton, New Jersey 229-2919

Corporate Engineering
Automated Systems

 Hans Jenny Cherry Hill, New Jersey 222-4251 Ken Palm Burlington, Massachusetts 326-3797
Dale Sherman Burlington, Massachusetts 326-2985 Laboratories

Government Communications Systems Eva Dukes Princeton, New Jersey 226-2882

 Dan Tannenbaum Camden, New Jersey 222-3081
Harry Ketcham Camden, New Jersey 222-3913 SelectaVision® VideoDisc Operations

GSD Staff ' Nelson Crooks Indianapolis, Indiana 426-3164
 Ed Moore Cherry Hill, New Jersey 222-5833

Missile and Surface Radar Solid State Division (SSD)
 Don Higgs Moorestown, New Jersey 224-2836
Jack Friedman Moorestown, New Jersey 224-2112  John Schoen Somerville, New Jersey 325-6467

Power Devices
National Broadcasting Company (NBC) Harold Ronan Mountaintop, Pennsylvania 327-1633

 Brm M,i sl, r New York, New York 324-4385 or 327-1827
John Cadra Somerville, New Jersey 325-6909

Patent Operations Integrated Circuits
Dick Morey Palm Beach Gardens. Florida 722-1262

Joseph rrlpo. Princeton, New Jersey 226-2992 Sy Silverstein Somerville, New Jersey 325-6168
John Young Findlay, Oho 425-1307

Picture Tube Division (PTD) Electro-Optics and Devices
 Ed Madenford Lancaster. Pennsylvania 227-3657 John Grosh Lancaster, Pennsylvania 227-2077
Nick Meena Circleville, Ohio 432-1228
Jack Nubani Scranton, Pennsylvania 329-1499 Solid State Technology Center
J.R. Reece Marion, Indiana 427-5566 Judy Yeast Somerville. New Jersey 325-6248

*Technical Publications Administrators, responsible for review and approval
of papers and presentations, are indicated here with asterisks before their names.
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