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Our cover shows a crisp still life made from outputs gen-
erated by authors contributing to this Modeling, Simula-
tion, and Analysis issue (the keyline above shows
authors and page numbers). These engineers and scien-
tists are a special breed. They predict how engineered
products and systems will act.

Given a jumble of information and outputs, our authors
must constantly bestow order and describe gray areas in
black and white terms. They can give the green light to a
step in an an engineering project, or suggest that it go
back to the drawing board. More rarely laying hands on
costly, time-consuming prototypes and breadboards to
try out ideas, our authors today take to their terminals
instead, and use increasingly well-developed simulation
and modeling programs to tell them whether something
will work.

These practitioners, as gurus of the engineering com-
munity, establish “photographically accurate” engineer-
ing perceptions of the future—based on mathematics,
computer analyses, and algorithmically disciplined logic
and intuition. Though these professionals may seem to
work at their green CRTs and study their green duotoned
computer printouts in a silent twilight zone, nevertheless
we can see that the stark realism of their work boggles
the mind.

—MRS

[NE Engineer

A technical journal published by
RCA Research and Engineering

Bldg. 204-2

Cherry Hill, NJ 08358

TACNET: 222-4254 (609-338-4254)

Tom King

Mike Sweeny
Louise Carr
Frank Strobl
Betty Gutchigian
Dorothy Berry

Jay Brandinger

John Christopher
Hans Jenny

Arch Luther

Howie Rosenthal
Ed Troy

Bill Underwood

Bil Webster

Ed Burke
Walt Dennen

Charlie Foster

John Phillips

RCA Engineer Staff

Editor

Associate Editor
Art Editor
Contributing Editor
Composition
Editorial Secretary

Editorial Advisory Board

Division Vice-President and General
Manager, “SelectaVision”
VideoDisc Operations

Vice-President, Technical Operations,
RCA Americom
Manager, Engineering Information

Division Vice-President, Engineering
and Product Assurance,
Commercial Communications
Systems Division

Staff Vice-President, Engineering

Director, Operations Planning and
Support, Solid State Division
Director, Engineering
Professional Programs

Vice-President, Laboratories

Consulting Editors

Administrator, Marketing
Information and Communications,
Government Systems Division

Manager, Naval Systems Department
Communications and Information,
Missile and Surface Radar

Manager, Systems and Procedures,
RCA Laboratories

Manager, Business Development
and Planning, RCA Service Company

© To disseminate to RCA engineers technical information of professional value @ To publish
in an approprate manrer important technical developments at RCA. and the role of the
engineer ® To serve as a medium of interchange of technicat information between various
groups at RCA e To create a community of engineering interest within the company by
stressing the interrelatec nature of all technical contributions e To help publicize engineer-
ing achievements 1n a manner that will promote the interests and reputation of RCA in the
engineering field ® To provide a convenient means by which the RCA engineer may review
his professional work before associates and engineering management e To announce out-
standing and unusual achievements of RCA engineers in a manner most likely to enhance
their prestige and professional status.




Modeling and simulation:
Tools for the eighties

Over the last few decades, modeling has had many meanings for
different people. When | was a teenager, modeling was something
done only by untouchable beauties in sophisticated outfits (or lack
of them). As a young graduate engineer in the early sixties, model-
ing had an overtone of being a last resort when a designer was not
able to theoretically analyze, or directly build, his circuit or system.
Today the designer often won't begin his task without a selection of
these design tools at his disposal.

Modeling and simulation have become integral parts of the
design process for a surprisingly wide range of application areas. It
will be obvious from scanning this issue of the RCA Engineer that
the techniques are invaluable for management analyses of new
business areas, as well as for technical designs ranging from large
multi-satellite communication systems to dc motors to complex
integrated circuits. Simulations have become incredible time savers
in the design cycle—reducing costs of false starts in fabrication or
breadboard, and creating much more flexibility for considering
alternate approaches.

Perhaps more important, many of today's technologies cannot be
used effectively at all without simulation tools. For example, bread-
boards alone cannot fully characterize a final integrated circuit; or
manual textbook analyses cannot handle the number of variables
critical to a large system. In situations such as these, the computer
becomes not only an aid, but an essential to the design process.

The usefulness of any of these tools remains critically dependent
upon their human interface. How easy is it to input the data, to
characterize the parameters, to request different simulations? How
are the results reported or displayed? Is it easy to use the results to
modify the design or the approach? More and more emphasis is
being placed on this interface, and the resulting user-friendliness is
largely responsible for the enormous growth in use of modeling and
simulation tools.

Despite the recent growth, we have only barely begun to use this
aspect of the computer’'s power. Within ten years, it may well be that
every engineer uses computer modeling and simulation to design,
test and validate his system long before fabrication.
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Alfred H. Teger
Staff Vice-President, Systems Research
RCA Laboratories
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in this issue ...
modeling, simulation, and analysis

@ Barton/Pitts: “We must describe the important questions we want to
answer and use these criteria to develop the model.”

@ Ashkinazy: “Due to the complexity of LSI and VLSI chips, computer
simulation has essentially replaced the breadboard . ... "

@ De Maria/Bodzioch: “The simulation program was written to repre-
sent the operation of a specific modem used in HF radio transmission.”

@ Sparks/Liston: “We have selected a mechanically scanned radar
system as an example of a system of moderate complexity, with three
distinct areas of concern facing the designer.”

8 Golub: “Although only weapon systems have been discussed, dis-
crete-event simulations have been widely used for transportation, logis-
tics, and traffic-control problems.”

® Suhy: “Thousands of programming errors have been detected, pre-
cisely documented, and corrected using such simulations.”

® Hayman: “Imaging seekers which utilize considerably more informa-
tion concerning the target area are now possible.”

® Perlow: “The circuit and desired outputs can be modified easily by
means of a simple conversational mode that does not require editing of
data files.”

8 Adelson/Carlson/Pica: “Indeed, for all of us, seeing seems so direct
and effortless that we remain unaware of the complex visual processing
that underlies a statement like, ‘That's a good picture.” "

® Nigam/Hong/Spence: “This paper describes a model developed to
help Astro-Electronics analyze the business impact of design alterna-
tives of a multisatellite system.”

® Enstrom: “Finite-element modeling analysis has been used at RCA in
the solution of numerous complex problems.”

B Browne: “The model helps design engineers to set manufacturing
tolerances by providing estimates of motor-performance variation from
these various design parameters.”

® Guida, et al.: “The emphasis is on what the models do, not how they
doit”
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technology transfer/energy,
RCA technology guide
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R.R. Barton |K.A. Pitts

Simulation in an engineering environment

Simulation is a powerful tool for solving complex engineering

problems. When s it useful?

Abstract: Simulation—developing a
model of a real system—is a powerful tool
if used correctly. Concerns in simulation
include how to formulate, develop, and
verify models; how to use computers effec-
tively; and how to present the resulls.

Why simulate? Given that modern sci-
ence is based on mathematical models that
simulate the observed behavior of physi-
cal, chemical, and electrical systems, this
question, in the broad sense, appears to be
thetorical. The reasons for using models
are clear: It may be impractical or costly
to manipulate the real system, or one may
want to perform experiments on a com-
pressed time scale. We ask the question to
focus on the more parochial definition of
simulation we're dealing with here. Simu-
lations, though perhaps sophisticated, are
usually thought of as modeling by brute
force. Rather than solving a system of dif-
ferential equations to predict circuit behav-
ior or a projectile trajectory, we step
through a series of calculations using dif-
ference equations and simple arithmetic,
recording the approximate voltage or posi-
tion at each time increment. In this nar-
rower sense, simulation models can be con-
sidered as alternatives to analytical models,
and the question, “Why simulate?”, be-
comes meaningful.

A frequent reason to simulate is that the
system or problem being modeled is too
complex to understand any other way.
The only way to understand the interac-
tion between parts of a system, to improve
the current methods, or to design a new
system may be to model the system and
simulate reality. For example, we may be
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enlarging our production facility. Which
machines should we add? How many?
Where will our potential bottlenecks be?

Simulation can also be used to identify
trouble spots. Suppose a piece of auto-
matic test equipment is a bottleneck. What
happens if we increase the speed of the
equipment? The quality of incoming mate-
rial? Another frequent reason to simulate,
closely related to the complexity issue, is
that the mathematics needed to analyze
the system are intractable. In a complex
queuing system—such as a production floor,
highway-traffic network, or telephone-switch-
ing system—the underlying mathematical
behavior may not lead to equations that
are easy to solve.

Although we usually think of simula-
tion as a problem-solving tool, it does
have other uses. Simulation models are
frequently used as a training tool—flight
simulation is a well-known example. Weap-
ons systems have been simulated, as well
as other man-machine interfaces, Another
reason to simulate is to check the behavior
of a new algorithm, mathematical tech-
nique, or model. To answer the question,
“Does the algorithm work?”, you can con-
struct information you know and under-
stand (historical or randomly generated da-
ta), and then examine the algorithm’s perfor-
mance when it is given the known data.
This method is frequently used to test math-
ematical techniques. Recently, statisticians
used computer simulations to develop more
robust measures than the simple average.
The average (arithmetic mean) can give
misleading estimates if some of the obser-
vations are faulty (misplaced decimal points,
bad readings, disasters during the measure-
ment, changes in equipment). Several alter-
natives to the average have been suggested.
These methods have been tested through

simulation: One generates known distribu-
tions of numbers, and checks how badly
each technique errs when supplied with
contaminated data or data from unusual
distributions,

Building simulation models

Simulation is a modeling and problem-
solving tool. In any modeling situation,
each of the following four steps must be
used to build good simulation tools: (1)
Formulate the problem—What questions
do we wish to answer? (2) Develop the
model—How do we estimate the param-
eters? What data and formulas do we
need? (3) Verify the model—Does the
model work correctly? and (4) Validate
the model—Does the model resemble real-
ity closely enough?

Problem formulation

We've said that simulation can tell us the
answers to questions we have about our
system. Why do we rely on the abstrac-
tion? How can we make sure that the
information we get is useful and not mis-
leading? To develop a simulation to help
us understand our system, we have to
decide what portion of the problem we
want to study. Good problem formulation
is essential. We simply cannot model our
current system in all its detail, and then
hope to answer questions efficiently or well.
Some detail must be lost in the transfer
from a real system to a mathematical model
of it. We must decide the important ques-
tions we want to answer and use those
criteria to develop the model.

Keep the following example in mind
when we talk about simulation. Consider
a production line. Say we have a simple
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situation—three process steps to complete,
and machines for the three processes, A,
B, and C. These processes vary in com-
plexity and time to complete the job. We
have incoming raw material, and outgoing
finished product. We might want answers
to questions like: Where are our bottle-
necks? Do we need more type-B machines?
Do we need a preventive maintenance
program? Do we need a new priority
scheme for scheduling work?

Model development

Once we have identified the problems we
wish to solve, we must construct the model.
Which aspects of our production system
must we model in detail to answer these
questions? Which parts of our system can
be modeled at reduced levels of detail or
left out? We will need to collect data from
the actual system we are modeling. How
long does each process take? What is the
vanability? How often do orders come in?
What probability distribution do the ma-
chine failures follow? As we collect the
data, we begin to develop the model by
making assumptions about the data distri-
bution, the simplifications we want to make,
the parameters that are the most impor-
tant, the vanables we will track or control,
the ways we will vary them, the ways the
variables interact, and so on.

Model development includes implemen-
tation. What do we use to build the model?
Its parts may be physical, analog, or dig-
ital. If it is a digital computer model, we
must choose the programming language
and the computer on which it will run.

In what form will it provide answers?
Tables? Graphs? Will these answers be
adequate for our needs? This last point
seems common sense, but, incredibly, it is
often overlooked until the model is com-
plete. In some cases this oversight means
retrofitting the model to provide the right
information; in other cases, the conse-
quences are more severe!

Verification and validation

After we have developed the model, we
must verify it. The model should work as
we planned (debugged). Is the behavior
roughly what we expect? Is there some-
thing grossly wrong? The final step, one of
the most important and also most frequently
neglected, is validation. How does our ab-
straction compare with reality? How well
does it do on a different data set? Is it too
detailed? Too simplistic? Does it address
accurately or precisely the questions of
original interest? Can it be extended to

other questions? At this stage we frequently
find problems, and repeat the process of
formulation, model development, testing,
and verification.

The structure of simulation models

What are the general charactenstics of mod-
els that simulate systems? We think of a
system as being a set of objects with char-
acteristics and some interdependence in-
volved in actions. In simulaticn jargon, the
“objects™ are called entities, their “charac-
teristics” are amributes, and the “actions”
are called activities. Examples of systems
are shown in Table 1.

Queues are entities waiting to perform activities.

The items listed in Table I for any one
system are by no means complete. The
items (entities, attributes, and activities) cho-
sen to be included in the model, and the
interrelations chosen to be modeled, depend
on the purpose the user has in mind. When
we model a system, we pick such a subset
of entities and interrelations. One clear
trade-off in model formulation is the level
of aggregation. A simple model with many
entities aggregated into a few major enti-
ties is much easier to program, test, and
debug since there are fewer entities and
interactions. Of course, the resulting model
may generate a poor approximation to the
real system. A good strategy is to start

Table |. Examples of systems. Systems are sets of objects, with characteristics and

some interdependent actions.

System Entities Attributes Activities
Airline counter Passengers With/without ticket Get information
With/without baggage Purchase ticket
Flight Number Check in
Check baggage
Agents Capability (tickets only, Give information
baggage only, or both}) Sell ticket
Check in
Check baggage
Fighter-missile  Fighter Position Evasion
Velocity
Performance ability
Attack missile Position Pursuit
Velocity
Performance ability
Assembly line Components Type Assemble
Defective/nondefective Test
Assemblers Type (fast, slow) Assemble
Test
Computer Programs Core requirements lan- Compile
guage (e.g.. FORTRAN)  Execute
Special libraries Print
Execution time Plot

Peripheral devices

Store on tape
Store data on disk

Barton/Pitts: Simulation in an engineering environment




with simple representations and augment
the model later in areas that are found to
be too crude.

For the level of detail chosen, the state
(at time ¢) of the system is given by a
complete description of all entities, attri-
butes, and activities at one point in time, £
We define an event to be something which
causes the state of the system to change.

The kind of simulation model we choose
depends on what kinds of characteristics
we try to model. We need to consider
whether the structural relationships are to
be static or dynamic; and whether the
attributes and/or activities are to be deter-
ministic or probabilistic. We might use a
static probabilistic simulation to study the
strength of a building made with compo-
nents of randomly varying strength. One
could simulate many such buildings being
constructed, and simulate stresses, to deter-
mine what fraction of such buildings would
collapse. To model waiting times at an air-
line counter, on the other hand, would
involve dynamic relations of arrival times
and service times. Difference equations or
analog computers are often used to per-
form deterministic simulations of the per-
formance of physical systems.

A broad definition of simulation models
includes mathematical models, physical mod-
els, and electronic-analog, and digital-elec-
tronic models. Each of these implementa-
tions can be used to imitate the performance
of the real system being studied. Some
models such as flight simulators combine
physical, electronic-analog, and digital simu-
lation techniques. When we speak of sys-
tem simulation below, we will refer to a
narrow meaning—dynamic, probabilistic,
digital-electronic (computer) simulation. To
give a better understanding of these mod-
els, we'll review the important considera-
tions in building and using them.

Issues in computer-simulation
modeling

Simulation languages

One critical issue in developing a compu-
ter model for simulation is whether to
program the model with a general-purpose
language or to use one of the simulation
languages currently available. This decision
is based on your access to the language,
your ability and desire to program, and
the complexity of the system you are sim-
ulating. The more complex the system, the
more you should seriously consider using
a simulation language. There are clear ad-
vantages in using a special-purpose simula-
tion language like Simscript, as opposed to

A static, probabilistic computer simulation

For this three-link riveted assembly, what will be the variability in
the span (X) given the variability of the inter-hole distances Y,, Y,,

Y,?

X = \(8*[))74 (c+d)? - (L‘Qg_gz*_d) (a2+c2-e?)

reality —> trigonometric model

If the random distances a, b, ¢, d, and e have normal probabil-
ity distributions, we cannot find the distribution of X analytically.
So we simulate the assembly of many parts.

How the computer simulation works:

Step 1. Compute random distances for a, ¢, from distribution 1.
Step 2. Compute random distances for b, d, from distribution 2.
Step 3. Compute random distances for e from distribution 3.
Step 4. Compute X via the model and save the value.

Repeating steps 1 through 4 many times, the computer simula-
tion generates a large set of X values. A histogram of values
gives a good representation of the variability that can be
expected. The sample variance can be computed from the data

as well.

Probabulity

X value

Simulation output

X=125

D

a general-purpose language like FOR-
TRAN. The high-level representation means
a shorter, simpler program that takes less
time to code and is more likely to pass
verification tests for proper operation. On
the other hand, the main disadvantages—
greater memory and execution-time require-
ments—can be devastating for a frequently
run model. When we use a simulation
approach to identify optimal control, or
planning strategies, we will need to be
able 10 make many repeat runs quickly,
calling the simulation program from within
an optimization routine, and modifying its
operation via parameters passed from the

optimization program. Fortunately, pack-
ages written as a set of general-purpose
language subroutines allow the engineer
an intermediate approach (see box, page
7.

For complex systems the output of a
simulation can be a horrendous pile of
numbers. Tables and tables of numbers
are difficult to scan for interesting correla-
tions, time trends, or exceptional events,
It’s of utmost importance to find ways to
graphically display the results, so this con-
sideration should weigh heavily in your
choice of a simulation language. If you
don’t find something acceptable, take heart.
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Computer-graphics capabilities are chang-
ing rapidly, and packages are being con-
tinually updated.

Graphical methods increase the useful-
ness of simulation output.

Modeling a dynamic system

A dynamic system such as the fighter-mis-
sile pursuit system is clearly continuous in
nature. Position, time of contact, and so
on, can vary continuously. For other sys-
tems the important events can be consid-
ered to occur at discrete points in time.
For the assembly-line system, these dis-
crete events are the arrival of components
for assembly, completion of assembly, start
of test, and so on.

Since dynamic systems evolve over time,
some sort of timing scheme must be chosen
for the model. For continuous systems, a
fixed-increment timing approximation is
used for digital simulations. For discrete-
event systems, there is no need to examine
the system between events. Virtually all
modem simulation languages use a next event
scheduling-timing method.

There are two methods for dynamic
discrete-event simulation. One is called
event scheduling, the other, process inter-
action. In most cases, a simulation lan-
guage is structured to do one or the other.
Simscript IS and GASP IV use event
scheduling; Simscript IL.5, GPSS, and Sim-
ula use process interaction. For event sched-
uling, one models the system by focusing
on what events or activities can happen.
Typical events are arrival, repair, comple-
tion, service interruption, and machine break-
down. Since time lapses between events,
one can regard an event scheduling as a
string of all events that will happen to the
system. Process-interaction provides a sepa-
rate procedure for each entity in the sys-
tem. Machine, operator, CPU, I/O-device,

Some common simulation languages*

Simscript I1.5 is a complete high-level programming language
with specific structures to make simulation easy. It uses a com-
piler, has good, well-documented random-number generators;
and has good capabilities for handling complex systems. It is,
however, a programming language, not a software package. You
sacrifice ease in getting a model up and running but you gain
increased control while it is running. It is available only on large
computers.

GPSS is a software package, working with an interpreter rather
than a compiler. It is easy to work with, easy for beginners to use.
Its defects are clumsy generation of most probability distribu-
tions, and difficulties in collecting statistics. In addition, we have
not found documentation on its random-number generator. Also,
GPSS is no longer supported by IBM. GPSS is available only on
large computers.

GASP IV is a collection of FORTRAN IV subroutines to help in
simulation. GASP IV provides many of the necessary simulation
tools; however, itis necessary to write the programs to handle
the data, call the routines, and print the results. Its advantages
are that it runs on any system with a FORTRAN compiler. It also

subroutines.

does both discrete and continuous simulations.

SIMULA is an algol-based simulation language. It is similar to
Simscript in that it is a programming language with all that that
implies. (It includes a compiler to decrease computer execution
time, but one must still learn a new programming language).

RCAP is a circuit-simulation package that can provide static,
dynamic, and frequency-domain simulations of integrated-circuit
performance. Arbitrary circuit elements may be supplied as

DYNAMO is a language used for modeling large social or indus-
trial systems via a set of interconnected difference equations.

* This listis by no means complete. See Reference 4, page 115-
143, for more detail on some of these.

and airplane processes are typical. In the
terms we defined earlier, processes are enti-
ties/activity sets. In a production-schedul-
ing problem one would model each pro-
duction process; in event scheduling, each
event. Both approaches base their timing
routines on a next-event basis. Although
the process-interaction approach is often
conceptually simpler, there is some loss in
programming control. Collecting informa-
tion about congestion, lengths of queues,
and so on, is more difficult.

Modeling random variability

Most simulation models have random var-
iables (service time, interarrival time, com-
ponent strength, and so on) that one must
somehow generate either prior to or dur-
ing the simulation. Practically speaking,
continuous random variables with any kind

Barton/Pitts: Simulation in an engineering environment

of probability distribution can be gener-
ated on the computer by transforming a
set of random numbers uniformly distrib-
uted on the interval [0, 1]. The impor-
tance of the uniform distribution stems
from the fact that if X is a continuous ran-
dom variable with cumulative distribution
function F, then the quantity F(X) has a
uniform [0, 1] distribution. Many simula-
tion packages automatically provide ran-
dom numbers from common distribution
families such as the normal, Poisson, or
exponential. Some packages also allow one
to generate nonstandard distributions.

We often need to model random events
that are correlated; for example, assembly
time may be correlated with component-
interarrival time if the assembilers are fresher
after a break. Special multivariate tech-
niques are needed to generate pairs (or trip-
lets, etc.) of correlated random variables.




Correlated variables are also useful for im-
proving the precision of the simulation
results; we’ll talk more about this later.

Verification/validation

What techniques are used to verify and
validate simulation models? Some func-
tional checks will be unique to particular
models, but there are others that we must
make in most situations. The quality of
random variates generated for a simulation
may require examination. Random-number
generators can have several problems—
cycling or other serial dependence, wrong
distributional form, and so on. Statisticians
have developed a battery of tests to check
for various kinds of misbehavior. One
should plot histograms and perform Kol-
mogorov-Smirnov tests to check for proper
distributional form. An effective check for
first-order dependence is to plot generated
random variates against time and against
one another. Contingency tables (chi-square
tests) are also used to check independence.

For functional tests, one can often test
the mode! using the following technique:
Feed the model by controlled. rather than
random, number streams in such a way
that the outcome can be clearly predicted.
For example, to test the three-link assem-
bly simulation (page 6), one could use
values for a, b, ¢, d. and e that make X
easy to check. for example.

a=b=c=d=e=1 — X=2.

It is sometimes possible to design an
experiment to test a model’s faithfulness to
reality. This validation technique supplies
the same input conditions, or events, to
both the real and the simulated systems,
comparing the resulting behavior. Typically
this is not possible. The most common
way o ensure that the simulation is gener-
ating a good approximation to reality is to
test it on historical data. One of the best
methods is to use a random sample of his-
torical data to develop the model. and
another sample to verify the model.

Using the model

We have to be careful in deriving infor-
mation from simulation data. particularly
for probabilistic models. In estimating quan-
tities like average backlog, average waiting
time, or average throughput, the common
statistical techniques assume the observa-
tions are random and independent. Clearly
for some models, the time it takes the ith
item to be completed depends heavily on
the completion times for previous items.
There are two solutions to this dependence

4
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problem. One is based on renewal theory,
where you group data into batches,
called epochs, that are statistically inde-
pendent. If you study the information for
each epoch separately, you then satisfy the
independence assumption and can use stan-
dard techniques. For example, in the air-
line-reservation system, with Poisson arri-
vals and exponential service times, the time
between the empty states (no one waiting
in the system, no one in service) is inde-
pendent. In this case, you collect all the

information for times the reservationist is
busy and calculate statistics using this data.
If it is not possible to identify independent
epochs, by renewal theory. another solu-
tion is to model the time dependence expli-
citly. A field of statistics known as time
series does this explicit modeling to get
valid estimates. Without independent
epochs, the estimates may also be biased if
they are based on data taken before the
system reaches equilibrium. It is usual to
start a simulation from an empty and idle
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situation; but, most real systems do not
start from empty and idle. The simulation
system must be given sufficient time to
reach conditions matching the real system.
Given a simulation in working order,
we can use techniques from experimental
design to make efficient use of our com-
puting resources. Suppose we are model-
ing an eight-step production process. and
want to identify the value of adding capac-
ity at each of the eight locations. One-at-a-
time modification would not identify any
interactions—the effects of improvements
at one location on performance at other
locations. On the other hand. a full factor-
ial design would require 2", or 256, separ-
ate simulation runs. A fractional factorial
design, well known in statistics, could pro-
vide valuable interaction estimates as well
as main effects in perhaps 32 runs.
Statistical techniques can also be used
to reduce the variability of estimates derived
from the model. One method, called the
antithetic variate method. uses uniform [0-
1] random numbers U,, U, ... U, for
one stream and (1-U)). (1-U-). .. (1-U))
for the second stream. Estimates based on
sums of these effects will have reduced
variance, since the terms are negatively

correlated. This follows from the fact that
the variance of a sum is equal to the sum
of the variances plus twice the covariance,
and the latter term here is a negative
number.

When is simulation
the right approach?

We have skimmed the surface of several
issues in simulation. The question of wheth-
er or not to simulate remains unanswered.
Simulation is a powerful took it also re-
quires effort, time, and extensive runs on a
computer. When should we use simulation?

Let’s review the costs and practicality of
simulation. Are the data for the model
readily available? How much will it cost
(both in time and effort) to get the data?
How complex a model is needed? A sim-
ple model will take much less time to
develop. verify, and manipulate than a com-
plicated one. How concerned are we about
computer time and costs? Simulations are
not cheap. How important are the results
of the model? If we are designing a pro-
duction facility and find. through simula-
tion, that the building should be 10 per-
cent longer, the results are very important,

If the model's results are unlikely to be
used, think twice before starting to simu-
late. Finally, can you wait for the answer?
The time to develop. run, and verify the
model and to analyze the results are non-
trivial. Conversely. if you need to simulate,
you should plan for the time it will take.
Lest all this scems too negative, let’s
reiterate that simulation is a powerful tool
that solves problems that cannot be solved
by other means. For understanding com-
plex systems, for evaluating new techniques,
for teaching complex tasks. simulation pro-
vides an excellent alternative to inefficient
production, invalid algorithms, and expen-
sive mistakes. Simulation, although power-
ful. is not easy. Simulate. but don’t under-
estimate the complexity of the task.
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A. Ashkinazy

The MIMIC
logic simulator

MIMIC simulates the behavior
of complex digital circuits, and
helps engineers do it right

the first time.

Abstract: The author describes the logic
simulation program, MIMIC, used at the
Solid State Technology Center at
Somerville, New Jersey, and gives the
benefits (reduction of expensive rework
cycles, for example). The needs for logic
simulation and an overview of computer-
aided design capabilities at Somerville are
given. MIMIC is examined in detail by
reference 1o examples, and the network
description language, modeling capabili-
ties, and run commands to control the
simulation process are covered.

MlMlC is a logic simulation program
developed by the Design Automation
Group of the Solid State Technology Cen-
ter at Somerville, New Jersey. Using
MIMIC, the engineer can perform logic
design verification of large-scale-integrated
(LSI) and very-large-scale-integrated (VLSI)
circuits in a very cost-effective manner,
before mask generation, and reduce or elimi-
nate expensive rework cycles due to design
errors. Designers can simulate the actual
circuit being implemented, check for races,
hazards, or spike conditions, and examine
critical timing of various paths in the logic.
y 1982-RCA Corporation
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If errors are found, MIMIC contains nu-
merous debugging aids to help the engi-
neer localize problem areas.

Simulation and automated design

Not too long ago, integrated circuits con-
tained less than 100 gates and flip flops
per chip. It was then possible for the engi-
neer to perform a paper design of the cir-
cuit with reasonable confidence that any
design error could be detected and cor-
rected before committing to silicon. The
complexity of today’s LSI and VLSI cir-
cuits, containing thousands of components
per chip, precludes a thorough manual
analysis. Computer simulation provides the
engineer with detailed information about
the state of each signal in the circuit that
would be difficult or impossible to obtain
by hand. Thus, simulation helps the designer
get it right the first ume and avoid costly
and lengthy mask-generation cycles. The
Solid State Technology Center in Somer-
ville has an impressive track record in this
regard; 21 of the past 22 universal arrays
designed by the Tech Center (SOS and
Bulk CMOS) worked the first tume. All
were simulated with MIMIC.

Due to the complexity of LSI and VLSI
chips, computer simulation has essentially

replaced the breadboard (which can be
viewed as a hardware simulation). Bread-
boards of complex digital systems are expen-
sive, due to the cost of the hardware, the
cost of specialized and sophisticated test
equipment for exercising and monitoring
the hardware, and the time required to
purchase the components and test equip-
ment, assemble the breadboard, and debug
the system. Even then, correct operation of
the breadboard does not necessarily imply
correct operation of the integrated circuit,
since the latter’s implementation may differ
and on-chip delays will certainly differ from
those on the breadboard.

On-chip delays can only be determined
after the layout has been completed. The
Design Automation Group of the Solid
State Technology Center is developing the
software to close the simulation loop for
semi-custom and gate-array designs. These
design methodologies use standard cells
with fixed geometries, thereby simplifying
the tasks of automatic placement and rout-
ing (APAR), and extraction of the logical
connectivity and wiring capacitance from
the computer-generated layout. Standard
cell libraries exist, or are being developed,
for SOS, CCL, CMOS I, and CMOS 1I.
Figure | illustrates the design cycle using
this software. The designer (an outside cus-
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tomer or an RCA engineer) generates a
MIMIC description of the circuit as an
interconnection of parts that can ultimately
be resolved into standard cells. After gen-
erating functional tests, the designer simu-
lates the response of the circuit to the test
patterns. If errors are detected, the designer
modifies the circuit and/or test patterns,
and iterates until the simulation results are
correct. From there on, the designer “pushes
the button” and everything else is done
automatically by RCA software running
on RCA-owned computers. These programs
generate a finished layout and a simulator-
compatible description of the circuit as
extracted from the artwork. The designer
can then compare the actual circuit de-
scription to the one onginally simulated,
and then simulate the actual circuit using
true wining delays. If there are no errors,
masks are made and the chip is manufac-
tured. The sidebar on page 13 details the
programs involved.

Structured design

The hierarchical (nested) structure of
CADL, MIMIC’s circuit description lan-
guage, allows top-down design and bot-
tom-up venfication. In the design phase,
the overall circuit with its connections to
the outside world is at the highest level.
Next, the circuit is partitioned into sub-
functions, and blocks representing the sub-
functions are interconnected. Then, each
subfunctional block is represented as an
interconnection of smaller subfunctions, and
so on, until the subfunctions at the lowest
levels contain only MIMIC primitives (built-
in elements; see page 13). Examples of

(a)

SEMI-CUSTOM CAD SYSTEM

CUSTOMER { RCA
* LOGIC l
DESCRIPTION |
AUTOMATIC
b MIMIC LAYOUT
Oln NET DELAYS
-|s Y |
< |w i
Ol { |
8
Oolg | PG, MASKS,
g WAFER FAB
\ |
TEST PROGRAM l > l
GENERATION I TEST
FUNCTIONAL
CHARACTERIZE |[¢——F—1 c's

Fig. 1. Semi-custom CAD system. This system consists of a number of computer
programs that automate the design cycle from simulation through layout and test-
program generation. They helo the engineer to minimize errors in all aspects of the

design process.

lowest level user-defined subfunctions are
the standard cell libranes for semi-custom
(APAR) and gate arrays (GUA or AUA).
This approach is a top-down design.

In order to debug the circuit, the lowest
level subfunctions are simulated, and all

logical errors and timing problems are cor-
rected. Then, the next higher level sub-
functions (now containing verified com-
ponents) are simulated and debugged. This
procedure, iterated until the entire circuit
i1s included, is bottom-up verification.

T T TA[ 87 T ae[ B6|”~  _as| 85|~~~ Aa] “ea|” ~ ~ A3] “e3[  ~az] s2[ " Al "B ~ ~ "A0} BO[ CiN| 1
| |
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~ 7 4
' 0 crfmidco cIfe—edco crje<3-co crpmtco crfedco crjesi—co cIle——co cI :;
: AD § FAD S FAD S RO S FAD § FAD § FAD S FAD S |
| Cou :
|
s7 s6 s5 34 1
IFADS s3 s2 s L) i
(b) C=6-BIT FULL ADDER
TYPE=FAD8 I=A7,A6,A5,A4,A3,A2,A1,A0,B7,86,85B4,83,82,81,B0,CIN § PART=F3 TYPE=FAD |=A3,83,C3 0=S3,C4
0=COUT,57,56,55,54.53,52,51,50 PART=F4 TYPE=FAD |=A4,B4,C4 0=54,C5
PART=F0 TYPE=FAD 1=-A0,B0,CIN 0=50,C1 PART=F5 TYPE=FAD I-A5,B5,C5 0=55,C6
PART=F1 TYPE=FAD I=-A1,B1,C1 0=§1,C2 PART=F6 TYPE=FAD |=A6,86,C6 0O=S6,C7
PART=F2 TYPE=FAD |-A2,B2,C2 0=52,C3 PART=F7 TYPE-=FAD |=A7,87,C7 0O=S7,COUT
Fig.2. FADS circuit of example #1. (a) Decomposition of FAD8 (eight-bit full adder)
as iterative array of eight FAD (one-bit full adder) cells. (b) MIMIC description of
FADS8 corresponding to (a). Figures 2 through 5 illustrate the concept of hierarchi-
cal design, and the description of this hierarchy to the MIMIC logic simulator.
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(b) C=FULL-ADDER CELL

i

TYPE=FAD 1=A,B,CI 0=5,CO
PART=S TYPE=XOR3 I1=A,B,CI 0=§
PART=CO TYPE=MAJ3 I=A,B,CI 0=CO

Fig.3. FAD circuit of Example #1. (a) Decomposition of FAD into sum logic (XOR3)
and carry logic (MAJ3). (b) MIMIC description of FAD corresponding to (a).
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(b)
C=3-INPUT EXCLUSIVE-OR

TYPE=XOR3 I=U,V,W 0=Y
PART=2Z TYPE=EXOR I1=U,V 0=2
PART=Y TYPE=EXOR (=Z,W 0=y

Fig.4. XOR3 circuit of Example #1. (a)
Decomposition of XOR3 into two 2-input
exclusive-OR gates. (b) MIMIC descrip-
tion of XOR3 corresponding to (a).

Example #1: Top-down design of an
8-bit ripple-carry adder

The first step in designing an 8-bit full-
adder is to decompose it into an array of
eight individual 1-bit full-adders. This is
shown in Fig. 2(a). At this point, the inter-
nal realization of each 1-bit adder is not
yet known. The MIMIC description of the
circuit at this level is shown in Fig. 2(b).
The first statement is a TYPE statement,
which declares the beginning of a subnet-
work definition. The statement actually
spans two lines; the dollar sign at the end
of the first line is the MIMIC continuation
character. The TYPE statement defines a
tvpe of circuit called FADS8 having seven-
teen inputs (A7-A0,B7-B0,CIN) and nine
outputs (COUT.S7-S0). The next eight state-
ments are PART statements that describe
the internal components of the FADS8 and
their interconnections. Each component hap-
pens to be a FAD circuit, as vet unde-
fined. The first FAD circuit, named FO,
has three inputs (AQ,BO,CIN) and two out-
puts (SO,C1). The second through eighth
PART statements describe the rest of the
FADS circuit in the identical manner.

The second step in the design procedure
is to fill in each 1-bit adder. Figure 3(a)
illustrates this next level of design. The S
output, representing the modulo-2 sum of
A. B, and CI, is the exclusive-or of these
three inputs. The CO output, representing
the carry-out, is the majority function of

(b)
C=3-INPUT MAJORITY GATE

TYPE=MAJ3 I=A,B,C 0=M ODOM=1
PART=1 TYPE=AND 1=AB O=M
PART=2 TYPE=AND I=A,C O=M
PART=3 TYPE=AND I=-B,C O=M

Fig.5. MAJ3 circuit of Example #1. (a)
Implementation of MAJ3. (b) MIMIC de-
scription of MAJ3 corresponding to (a).

the three inputs (that is. CO is a logical 1
if two or three inputs are logical 1, and
CO is a logical 0 otherwise). Figure 3(b)
illustrates the MIMIC description of the
1-bit adder. The TYPE statement defines
the FAD cell as having three inputs and
two outputs. The next two lines are PART
statements that define the two components
of the FAD cell as a three-input XOR3
cell (that generates the sum, S) and a
three-input MAJ3 cell (that generates the
carry-out).

The XOR3 cell and the MAJ3 cell
must be filled in next. These cells are
shown in Fig. 4 and Fig. 5, respectively.
Since all components in these cells are
built-in MIMIC primitives, the design is
now complete.

The wire-tie in the MAJ3 cell, output
signal M, acts as a wired-OR. Delay infor-
mation has been omitted here, but will be
included in the simulation of this circuit in
Example #2 below.

MIMIC’s simulation capability

MIMIC is a four-state simulator. That is,
each signal in the simulated circuit will be
in one of four possible states: 0 (logical 0),
1 (logical 1), X (unknown or uninitial-
ized), or HIZ (high impedance or float-
ing). MIMIC models the logical operation
of each component, in addition to timing
and propagation delays along signal paths
of the circuit.

The smallest interval of time in MIMIC
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is the time-unit. That is, time is modeled
as a sequence of discrete time-units, and
all events that occur within the same time-
unit are considered to be simultaneous.
The user is free to scale time-units accord-
ing to the technology (for example, equate
1 time-unit to 1 nanosecond).

MIMIC rise and fall delays

All signal delays are expressed in time-
units, and the user may specify indepen-
dent rise and fall delays for each output of
each element. Either delay (or both) may
be linear functions of loading. Each input
of each element may be individually as-
signed a load value, and the loading on a
particular signal is automatically computed
as the sum of the load values of the input
pins that the signal drives.

MIMIC spikes and pulses

A spike condition in MIMIC is synony-
mous with an attempt to drive a gate’s
output faster than it can respond. Here, the
gate begins to respond to a new input
state, but before the output signal can swing
too far, a second input change drives the
output back to its original value. This con-
dition is one cause of the ubiquitous
“glitch.” MIMIC will normally suppress a
spike, and the simulated signal will appear
clean. Optionally, the user can request prop-
agation of spikes as unknown (X) pulses.
In either case, MIMIC will report the occur-
rence of a spike if the user requests this
information.

A pulse condition in MIMIC is the
occurrence of a pulse whose width is com-
parable to the average propagation delay,
(rise + fall)/2, of the signal. Narrow pulses
on signals are usually unplanned, and an
unexpected pulse could cause problems.
Puises could be regarded as spikes that
“made it.” In many cases, minor variation
of element delays could transform pulses
into spikes and vice versa. MIMIC reports
the occurrence of pulses at the user’s option.
Example #2 (page 15) illustrates spikes
and pulses.

MIMIC built-in models

MIMIC supports a variety of built-in, or
primitive, logic elements. In addition to
the basic combinational types (for exam-
ple, inverter, AND, NOR, and so on),
MIMIC models a two-input multiplexer, a
four-input AND-AND-NOR, and a four-
input OR-OR-NAND. It models three basic
types of latches and six different edge-trig-

Ashkinazy: The MIMIC logic simulator

gered flip flops. MIMIC also models sev-
eral types of tristate input/output pads that
are particularly useful for test applications.
It models complex functional blocks such
as decade counters, ROMs, RAMs, and
PLAs. In addition, the bilateral transmission
gate (BTG) is a built-in primitive that mod-
els two-way signal flow.

Wire-ties and transmission gates

MIMIC automatically handles wire-ties with-
out the user having to insert fictitious ele-
ments (as was required in most older sim-
ulators). Element ports (for example, the
outputs of several AND gates) are tied
together by assigning the same name to
the signals connected to them. Also, due
to the bilateral nature of transmission gates,
distinct (differently named) signals could
be electrically tied together at times. MIMIC
actually supports three types of wire-ties:
wired-AND (any 0 dominates), wired-OR
(any 1 dominates), and wire-tie-without-
dominance (where oppositely-pulling tied
signals are recognized and reported as a
conflict). Signal M in Fig. 5(b) acts as a
wired-OR due to the ODOM = 1 entry
in the TYPE statement.

MIMIC'’s simulation algorithm

MIMIC's simulation algorithm is efficient,
since it only performs computation when
signals change values (event driven), and
only simulates those elements whose inputs
have actually changed (selective trace).
MIMIC initiates simulation by setting all
signals in the network to the unknown
(X) state. The user may initialize selected
signals to known values, if desired. The
first primary input pattern is applied, and
the effects of this input state nipple through
the circuit being simulated at rates deter-
mined by the delays of the changing inter-
nal signals. When the circuit reaches a
stable state, the second input pattern is
applied, and so on, until the simulation is
terminated either by exhausting the input
patterns or by the occurrence of a user-
specified condition. If the input sequence
is designed properly, and if the circuit is
designed for testability, the number of sig-
nals in the unknown (X) state should de-
crease as the effects of the (known) input
patterns propagate through the logic.

MIMIC run commands

MIMIC’s run command language allows
the user to control the entire simulation
process. Run commands may be issued

CAD programs and authors

MIMIC is part of an integrated
CAD system used at RCA and
illustrated in Fig. 1. The programs
and their sequence of use are
given below. Program names are
capitalized and their authors’
names are parenthesized.

After verifying the circuit design
using MIMIC, the MIMIC network
description is inputted to the
CADLM program (David Tsao).
The output of this program is then
inputted to the MP2D (semi-cus-
tom) or the AUA (gate array) pro-
gram, resulting in a complete cir-
cuit layout. This layout can then
be inputted to the CONCERT
piogram (Joe Mastroianni) which
extracts the logical connectivity
from the layout. The FASTRACK
system (Fred Heath, Dick Lydick)
currently automates the path from
MIMIC through CONCERT. This
extracted network description
can then be compared to the orig-
inal MIMIC description to verify
equivalence (this step is not yet
automated). The wiring capaci-
tance can then be added to the
extracted network description
(this step is not yet automated)
and the reconstructed circuit,
now containing actual implemen-
tation delays, can be simulated by
MIMIC.

If no timing problems exist the
circuit can optionally be fault
simulated by TESTGEN (Henry
Hellman) to verify the effective-
ness of the test patterns. Finally,
the TGEN file created by MIMIC
can be inputted to the AFTER
program (Mark Turner) to gener-
ate the tester (for example, Sentry,
Teradyne) program.

from the terminal (interactive session), or
may be contained in files that are accessed
using the EXECUTE command (interac-
tive or batch). Saving predefined run com-
mand sequences in files is extremely useful
if these operations are performed repeat-
edly (in one or more simulation sessions).
The following is a brief overview of these
commands.

Controlling signal values. The DEFINE

command allows the user to define pri-
mary input patterns hierarchically. It is
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ILOGICAL

C=8-BIT FULL ADDER
TYPE=FADS8

0=COuUT,s7,56,55,54,53,52,51,50

PART=F0 TYPE=FAD 1=A0,80,CIN 0=S0,C1
PART=F1 TYPE=FAD I1=A1,B1,C1 0=S1,C2
PART=F2 TYPE=FAD 1=A2,B2,C2 0-=52,C3
PART=F3 TYPE=FAD 1=A3,83,C3 0-=S3,C4
PART=F4 TYPE=FAD [=A4,84,C4 0=54,C5
PART=FS TYPE FAD 1=A5B85C5 0=S5,C6
PART=F6 TYPE=FAD [-A6,86,C6 0-=S6,C7
PART=F7 TYPE=FAD |=A7,87,C7 0=S7,COUT
C=FULL-ADDER CELL
TYPE=FAD 1=A,8,Cl 0=5,CO
PART=S TYPE=XOR3 1=A,B,Cl| 0=§
PART=CO TYPE=MAJ3 1=A,B,Cl 0=CO
C=3-INPUT EXCLUSIVE-OR
TYPE=XOR3 1=UV W o=y
PART=2Z TYPE=EXOR |=U,V 0=Z ODEL=DEL1
PART=Y TYPE=EXOR 1=Z,W O=Y ODEL=DEL4
C=3-INPUT MAJORITY GATE
TYPE=MAJ3 1=A,B,C 0=M ODEL=DEL2
PART=1 TYPE=AND I=A,B O=M
PART=2 TYPE=AND I=A,C O=M
PART=3 TYPE=AND 1=B,C O0=M
IDELAY
DELAY=DEL1 RISE=1 FALL=1
DELAY=DEL2 CHANGE=2
DELAY=DEL4 CHANGE=4

Fig.6. MIMIC description of ripple-carry adder (Example #2). Figures 6 through 10

illustrate the use of MIMIC.

DEFINE FILE=FAD

GET TYPE=FADS8 FILE:

DEFINE PRIPPLE.17= 00000000 00000000 0 $
00000000 11111111 1

APPLY PATTERNS=PRIPPLE

WARN FILE: HAZARD=COUT,57,56,55,54,53,52,51,50

WRITE CHANGE: LIST=A7,A6,A5,A4,A3,A2,A1,A0,.,B7,B6,85,84,83,82,81,B0,
+,CIN,..,COUT,.,56,55,54,53,52,51,50

1=A7,A6,A5,A4,A3,A2,A1,A0,B87,86,85,84,83,82,81,B0,CIN

ODOM=1

FILE:

Fig. 7. MIMIC run commands for ripple-carry adder (Example #2).

C= AAAAAAAA

C= 76543210

(C=

C=
0T 1:00000000
2T 1: 00000000
5T 1:00000000
6T 1: 00000000
6T 1: 00000000
0T 2: 00000000
5T 2: 00000000
10T 2: 00000000
12T 2: 00000000
14T 2: 00000000
16T 2: 00000000
18T 2: 00000000
18T 2: 00000000

Fig.8. Simulation results of ripple-carry adder generated by MIMIC in response to

the WRITE command (in Fig. 7).
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88BBBBBB
76543210

00000000
00000000
00000000
00000000
00000000
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111

- ek ek e k- - OO0 O

-2 s0000O0COOQOOCOX-COO

SSSSSSSS
76543210

AXXXXXXX
AXXXXXXX
XXXXXXX 0
00000000
00000000
00000000
11111000
11110000
11100000
11000000
10000000
00000000
00000000

$

also used to establish certain defaults. Exam-
ple 3 illustrates hierarchical pattern de-
scription.

The SET command allows the user to
set (initialize) selected signals to specified
values (0,1, X HIZ). These signal values may
subsequently change in the course of simu-
lation. The CLAMP command is similar
to SET, except that CLAMPed signals re-
main at their specified values until released
by the user.

The RESTORE command allows the
user to restore the total state of the circuit
10 a state that was attained at some pre-
vious time, either in the same session or in
a previous session. The restored state was
saved at that time as a result of MIMIC’s
SAVE command. The user has total con-
trol over which states are saved (if any),
and therefore from which states simulation
can be resumed.

Observing signal values. The PRINT
(to the terminal) and WRITE (to a speci-
fied file) commands allow the user to speci-
fy the signals whose values are to be listed
in the course of simulation. The signal
values may optionally be listed whenever
any of the selected signals changes state.

The TRACE command allows the user
to observe transitions of specified (or all)
signals. This command is useful in tracing
signal activity leading to spikes and races.

The LOOK command allows the user
to observe selected signal values while simu-
lation is suspended. Essentially, the user
can probe signal values while the circuit
state is frozen in time.

The WARN command allows the user
to control reports about questionable cir-
cuit operation. Events that are reported
include spikes, pulses, wire-tie conflicts, and
oscillations. The user may specify signals
1o be monitored for each type of question-
able event.

The TGEN command controls the gen-
eration of a file containing the input state
and resulting output state for each input
pattern. This stimulus/response file is com-
patible with the output of TESTGEN,
RCA'’s good-logic/fault simulator, and can
be used for test program generation in
conjunction with the AFTER program.
Optionally, the TGEN command may be
used to generate a circuit description file
that is compatible with TESTGEN, if fault
simulation is desired.

Simulation control. The BREAK com-
mand allows the user to conditionally inter-
rupt simulation. The user-specificd condi-
tions that could interrupt simulation include
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Fig.9. Simulation resuits of ripple-carry adder as plotted by MIME program.

(a) a change in value or attainment of a
specified value at selected signals, or (b)

the occurrence of a spike, pulse, wire-tie WARN-ON-SPIKE . . . SIGNAL: S0

flict illation at selected siemal TIME: 1. TEST: 2. LEVELS: 0—>1—>0
conflict, or oscillation at selected signals. WARN-ON-SPIKE . .. SIGNAL: S1
Whatever the cause of the interrupt, simu- TIME: 2. TEST: 2. LEVELS: 0—>1—>0
lation can always be resumed, if desired. WARN-ON-SPIKE . . . SIGNAL: S2

TIME: 4. TEST: 2. LEVELS: 0 —>1—>0

WARN-ON-PULSE(WIDTH= 1.25) .. SIGNAL: 83

Example #2. Simulation of the TIME: 10. TEST: 2. LEVELS: 0 —>1—>0

ripple-carry adder

This example illustrates the MIMIC simu-
lation of the 8-bit full adder discussed in
Example #1. The MIMIC network descrip-
tion file, shown in Fig. 6, contains all the
cell descriptions of Figs. 2 through 5. In
addition, delay information has been added
to the cells at the lowest levels. For exam-
ple, the exclusive-or generating U® V in
the XOR3 cell has been assigned an out-
put delay (ODEL) DELYI, and the second
exclusive-or (generating U® V@ W) has
been assigned an output delay of DELA4.
These symbolic delay names reference the
delay tables contained in the bottom three
lines of Fig. 6. Thus, DELI specifies a rise
delay of 1 and a fall delay of 1. If the rise
and fall delays are identical, the single
CHANGE keyword can be used in place
of the two keywords RISE and FALL.
Thus, DEL4 specifies rise and fall delays
of 4, and DEL2 specifies rise and fall
delays of 2. Note that the output delay of
the MAJ3 has been specified as DEL2, so
the carry signal will propagate from stage
to stage with a delay of 2 time-units.

The worst-case response time of the rip-
ple carry adder occurs when carry signals
propagate through every stage. Thus, if the
A-inputs are set to all zeros, the B-inputs
are set to all ones, and the carry into the
least significant bit (CIN) is set to one, the
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WARN-ON-PULSE(WIDTH= 1.75) . . SIGNAL: S4
TIME: 12. TEST: 2. LEVELS: 0—>1—>0
WARN-ON-PULSE(WIDTH= 2.25). . SIGNAL: 85
TIME: 14. TEST: 2. LEVELS: 0 —>1—>0
WARN-ON-PULSE(WIDTH= 2.75) . . SIGNAL: S6

TIME: 16. TEST:

2. LEVELS: 0—>1—>0

Fig. 10. Spike and pulse WARN messages for ripple-carry adder generated by
MIMIC in response to the WARN command (in Fig. 7).

correct output state (COUT = 1, all S-
outputs are 0) can only occur after carries
have rippled to the most significant bit and
the sum, S7, and carryout, COUT, have
reacted. Since the carry signals ripple
through seven stages, at 2 time-units per
stage, and since the XOR3 output signals
have a delay of 4 time-units, this will
require 7 X 2 + 4 = 18 time-units. Mean-
while, transient 1-pulses will appear at the
outputs, with longer pulses occurring at
the most significant bits.

Figure 7 illustrates the run commands
issued to MIMIC, and Fig. 8 shows the
simulation results. Referring to Fig. 7, the
third run command defines a 17-bit input
pattern (called PRIPPLE) consisting of two
tests. The first test pattern sets all seven-
teen inputs to 0 and the second test pat-
tern changes the B-inputs and CIN to all
I’s. The WRITE command instructs
MIMIC to list all the inputs and outputs
whenever any of these signals changes state.

Referring to Fig. 8, time increases verti-
cally downward. Signal A7 is listed first,
then A6, and so on, then the B-inputs,
then CIN, COUT, and the S-outputs. The
output signals (COUT,S7-S0) are initially
in the unknown (X) state at the beginning
of the first test pattern. As time goes on,
known values ultimately reach all these
signals. The response to the second test
pattern exhibits progressively wider pulses
at the S-outputs of higher significance.

Figure 9 illustrates the same waveforms
as Fig. 8, formatted as timing diagrams.
These plots were generated by the MIME
program, which postprocesses MIMIC out-
put files. The pulses on the S-outputs clearly
catch the eye in this representation.

Outputs SO through S2 appear to be
constant 0’s, but actually they contain
spikes. These are shown in Fig. 10, which
lists all MIMIC warnings on spikes and
pulses for the outputs in response to the
WARN run command (see Fig. 7). The
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Fig.11(a). Three-stage shift register of Example #3.
RESET CLOCK LOAD D4 D2 D1
(1) 1 1 1 d d d loadthe value ddd
2) 1 1 0 o 0 O disable load control
3) 1 0 0 0 0 O
(4) 1 1 0 0 0 0 (firstclock
(5) i 0 0 0O 0 O
(6) 1 1 0 0O 0 O second clock edge
(7) 1 0 0 0O 0 O
(8) 1 1 0 0 0 O thirdclock edge

Fig. 11(b). Subsequence to test the three-stage shift register.

IDELAY

DELAY=GATE-DELAY RISE=2 FALL=1

DELAY=FF-DELAY
ILOGICAL
IFORMAT PART=
TYPE=SHIFTER

TYPE=

I=RESET,CLOCK,LOAD,D4,D2,D1

RISE=(0,1),(3,4) FALL=(2,5),(5,8)

I= 0= ODEL=

0=Q1

G4 NAND LOAD,D4 G4 GATE-DELAY
G2 NAND LOAD,D2 G2 GATE-DELAY
G1 NAND LOAD,D1 G1 GATE-DELAY
Q4 DCF RESET,G4,CLOCK,ZERO Q4 FF-DELAY
Q2 DCF RESET,G2,CLOCK,Q4 Q2 FF-DELAY
Q1 DCF RESET,G1,CLOCK,Q2 Q1 FF-DELAY

Fig. 11(c). MIMIC description of three-stage shift register

first three WARN messages report spikes
at these three signals.

Example #3. Parallel-to-serial
converter

The purpose of this example is to illustrate
hierarchical input-pattern description. Con-
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sider the three-stage shift register shown in
Fig. 11(a). This register contains parallel
inputs to the three flip-lop-SET terminals
(active LOW), and can be operated as a
parallel-to-serial converter by using the se-
quence of eight input patterns (assuming
the three flip-flops are initially reset) shown

C=DEFINE 65-PATTERN TEST SEQUENCE
'PTEST’

DEFINE PSHIFT.6 = 110000 DO3

(100000 110000)
DEFINE P000.6
DEFINE P001.6
DEFINE P010.6
DEFINE P011.6
DEFINE P100.6
DEFINE P101.6

= 111000 PSHIFT
=111001 PSHIFT
= 111010 PSHIFT
= 111011 PSHIFT
=111100 PSHIFT
= 111101 PSHIFT
DEFINE P110.6 = 111110 PSHIFT
DEFINE P111.6 = 111111 PSHIFT
DEFINE PTEST.6 = 010000 P000 PO01 P010

P011 P100 P101 P110 P111
C= END OF INPUT PATTERN DEFINITIONS

Fig.12. Hierarchical description of
PTEST, the 65 primary input patterns of
Example #3.

in Fig. 11(b). Note that the flip-flops are
positive-edge triggered and that logical O is
shifted into the register as the senal data is
shifted out.

If the circuit 1s to be tested exhaustively,
all eight combinations of the parallel data
inputs must be applied. This requires 8 X
8. or 64, input patterns plus an initial
resetting pattern. One way to specify these
65 input patterns is o explicitly enumerate
them in a DEFINE statement. Due to the
repetitive nature of these patterns, they can
be hierarchically described as follows:

Let PSHIFT be the last seven patterns
of the clocking sequence (patterns two
through eight above).

Let Pi be the enure eight-pattern test

when the three parallel inputs are in

state / (i between zero and seven in-
clusive).

Let PTEST be the entire 65-pattern test

sequence.

Then the ten DEFINE statements shown

in Figure 12 completely define the entire

test sequence, PTEST.

This example incidentally illustrates sev-
eral aspects of MIMIC’s network descrip-
tion language unrelated to the above. Re-
ferring to Fig. 11(c), the delay called FF-
DELAY contains independent rise and fall
delays based on loading. Each of these
delays specifies a pair of points on a straight
line representing delay (in time-units) ver-
sus loading. Thus, the rise-delay specifica-
tion contains a delay of 1 for 0 loading,
and a delay of 4 for a loading of 3. For
any other loading, MIMIC interpolates a
value along the line joining these two points.

A second item illustrated in Fig. 11(d)
is the 'FORMAT statement that specifies
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the order of keywords in all subsequent
PART statements. MIMIC fills-in each such
statement with these ordered keywords.
For example. this 'FORMAT statement
causes the first line after the TYPE siate-
ment to be equivalent to:

PART =G4 TYPE = NAND
I=LOAD.D4 O =G4
ODEL = GATE-DELAY

The 'FORMAT statement allows consid-
erable reduction in the amount of typing
required to specify the circuit.

Accessing MIMIC

This paper has presented an overview of
MIMIC. The MIMIC User Guide contains
a complete description of the simulator.
and the MIMIC Primer contains good intro-
ductory material. Anyone interested in ob-
taining a copy of the Guide or the Primer,
or using MIMIC, should contact Gary
Gendel at Somerville (TACNET 325-7399).
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P.A. De Maria |K.J. Bodzioch

An HF modem simulation

A powerful tool for high-frequency equipment design
and evaluation . . . computer simulation and modeling.

Abstract: 4 modular simulation archi-
tecture developed on the VAX 11/780
computer models the transmitter and
receiver portions of the AN/USQ-74 multi-
tone modem used by the Navy's Anti-Sub-
marine Warfare Operations Center. The
program structure is examined, and func-
tional descriptions of the components are
given.

With the resurgence of high-frequency
(HF) military communications as a backup
for satellite communication networks, com-
puter simulation and analysis is becoming
a valuable method for evaluating the per-
formance of HF communications equip-
ment. Simulation offers an alternative to
the expensive method of evaluating equip-
ment by field testing, and it also provides
for a common reference for performance
comparison. This is especially true at HF
where, due to the dynamic behavior of the
media, equipment being compared would
need to be tested at the same time, over
the same link, so that the widely varying
effects of the ionosphere are identical for
each test. The computer allows storage of
sets of standard ionospheric conditions for
regular use when comparing different
pieces of equipment.

A result of this interest was a program
for modeling and simulating an existing
element of an HF radio facility, the
AN/USQ-74 multi-tone modem used by
the Navy as part of the LINK-11 opera-
tions for the Anti-Submarine Warfare Op-
erations Center (ASWOC). Figures 1 and
2 represent the top-level flow for both the
transmitter and receiver programs.

©1982 RCA Corporation
Final ipt
Reprint RE-27-6-3

45 13, 1982.
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T0 STOP COOE
NO
SET COUNTER SET DATA SET COUNTER s
FOR S5 FRAMES | |TOSTART cooe FOR 1 FRAME | GENERATE
n| stopcooe
F| FRAMES
R
a| cenerate | |E| cenenare
E [ PREAMBLE N| START coDE %Tu::t}:
; FRAMES ; FRAMES CLOSE
INPUT FILE
G
o £| GENERATE
SET COUNTER - e
FOR 1 FRAME F| FRAME
a CLOSE
OUTPUT FILE
SET PHASE o
REFERENCE Tor
PHASES ( $T0 )
EOF = END OF FILE

Fig. 1. Top-level flowchart illustrating transmitter functional flow and control code

processing.
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OPEN
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OPEN
OUTPUT FILE
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STATE=0

I

SET FREQUENCY
CORRECTION
T0 -55 Hz

READ 64
SAMPLE

VALUES FROM
INPUT FILE

I

FREQUENCY
TRANSLATE
64 SAMPLES

]

PERFORM
64-PDINT FFT

COMPUTE
AND STORE
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CHECK
FOR SIGMAL
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ATTEMPT
TO ESTABLISH
FRAME SYNC

O <M

DBTAIN
PHASE
REFERENCE

O O O

T"TMDIT o

ERROR

DEMODULATE
JBIv
DATA WORD

(J

Fig.2. Top-level flowchart illustrating the receiver’s functional flow and control

code processing.

The simulation architecture, wrtten in
BASIC, was developed ona VAX 11/780
computer as a series of modular subpro-
grams, with each subprogram simulating a
major function of the modem. The simula-
tion is divided into two main programs,
one performing as the transmitter portion
of the modem and the other as the receiver
portion.

General description

The USQ-74 can transmit data at two dif-
ferent rates: 75 baud per channel or 45.45
baud per channel. The transmitter has six-
teen separate channels: fifteen channels are
used for data transmission and one is re-
served for the transmission of an unmodu-

De Maria/Bodzioch: An HF modem simulation

lated Doppler reference tone. All sixteen
channels are summed to produce a com-
posite waveform, which is sampled by a
12-bit analog-to-digital (A/D) converter.
The computer simulation generates a sam-
pled waveform for each channel and these
sampled waveforms are summed to pro-
duce sampled values of the composite
waveform.

Binary data is input to the modem in
groups of 24 bits, representing three 8-bit
ASCII characters. The modem encodes
each 24-bit data word with 6 error-detec-
tion/correction (EDAC) bits to produce a
30-bit frame for modulation. The data
frames that comprnise a message are pre-
ceded by header frames, which are pro-

CONTRDL
CODE

PROCESS AND
STRIP PARITY
BITS

[/

r
ADD 2 ERROR
i INDICATORSTOD
24 DATA BITS

WRITE 26
BITS ON
DUTPUT FILE

CLOSE
INPUT
FILE

CLOSE
ouTPUT
FILE

(oo )
STOP

duced by the modem. The header frames
include five preamble frames, a phase ref-
erence frame, and two start-code frames.
The preamble frames contain a Doppler
tone used by the receiver for signal detec-
tion and a sync tone used to establish
frame synchronization.

The start codes are 30-bit sequences
that contain no error-detection bits. After
the start codes are transmitted, data infor-
mation is sent in the following frames. The
modem encodes each 30-bit data frame by
separating it into bit pairs that modulate
the fifteen transmitted data tones. Depend-
ing on the bit pair, the data tones are
modulated in phase by either +45° or
+135°. The transmitter uses a Quadrature
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Fig.3. Plotted sample values generate
frame of the preamble.

Phase Shift Keying (QPSK) modulation
scheme to encode the transmitted data on
each of sixteen separate channels. Data
frames are followed by two stop-code
frames used to indicate the end of a
message.

The receiver uses the header generated
by the transmitter for several functions.
The preamble frames are used to deter-
mine signal presence and frame synchroni-
zation. The phases transmitted in the phase
reference are stored by the receiver and
used to demodulate the following start-
code frames. Both start-code frames must
be successfully demodulated for the mes-
sage processing to continue. The receiver
analyzes the transmitted information by
performing a Fast Fourier Transform (FFT)
on the received frames. The resulting fre-
quency components are examined and their
amplitude and phase information are used
to accomplish the above functions.

Transmitter subfunctions

The USQ-74 modem simulation uses four
subprograms to perform transmitter func-
tions. The subprograms are responsible for
computing sample values for each tone,
performing EDAC encoding, generating pre-
amble frames, and performing QPSK modu-
lation. The four subprograms used for these
functions are called GENTN, PREAM,
GENFR, and QPSK.
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d by the transmitter program for the first

GENTN

GENTN is the subprogram that generates
the sample values for each tone transmit-
ted. The values are produced by executing
a table look-up of stored values of a sam-
pled cosine wave. The table contains 128
sample points of one complete cycle of a
55-Hz cosine. The amplitude values of the
cosine range over +127. Tones that are
multiples of 55 Hz can be reproduced by
reading the points from the table in a spec-
ified order. By reading every jth point,
where j is the harmonic of 55, sample
values of the j X 55 Hz tone are pro-
duced. For example, to produce a 2200-
Hz tone every 40th value would be read
from the table. When the index of the
table exceeds 128, modulo-128 arithmetic
is performed on the index. For this exam-
ple, sample values corresponding to table
entries 40, 80, 120, 12, 52, . . . would be
read out.

The phase of the tone is produced in a
similar manner. The phase is determined
by selecting the appropriate starting point
in the table from which the points will be
read. Since the wave stored is a cosine, a
reading of the points—starting with the
first entry in the table—produces a tone at
90° phase. To produce the same tone start-
ing 180° later in phase, the 64th point
would be the first point read from the
table. Once the starting point is selected
to determine the phase, the points are

read out using the algorithm described
previously.

In the example of the 2200-Hz tone, to
produce that tone at a phase of 135°, the
first point read from the table would be
}6, then 56, 96, 8, ... . The resulting
formula for tone generation can be written
as

N=UJ*M+ D
where N is the entry to read from the
table; J is the harmonic being generated;
P(1) is the starting phase of the /th tone (/
equals 1 to 16); and M equals O through
the number of samples/frame.

As each tone is produced, a running
sum of the amplitude values for each sam-
ple point is produced. Depending on the
rate, either 94 or 155 composite amplitude
values will be formed by adding the cor-
responding sample points for each of the
16 tones. A preamble-frame-waveform gen-
erated by this method is shown in Fig, 3.

PREAM

The PREAM subprogram generates the
preamble frames that precede each mes-
sage. The preamble frame consists of two
tones, the Doppler tone at 605 Hz and a
sync tone at 2915 Hz. The USQ-74 gen-
erates five preamble frames for each data
transmission. The sync tone is generated
using tone 16 so that it is advanced in
phase by 180° at the preamble frame bound-
aries. This phase discontinuity of 180° at
each frame boundary allows the receiver
to establish frame synchronization.

GENFR

The GENFR subprogram performs two
functions. The first function involves encod-
ing the 24-bit data words with six Ham-
ming-code parity bits. The second function
involves writing the amplitude values of
the composite waveform to the output file.

QPSK

The QPSK subprogram simulates differen-
tial phase-shift-keying modulation of the
input data. The 30-bit frame from GENFR
is broken into 15-bit pairs, each pair cor-
responding to one of the data tones. The
bit pairs are then examined to determine
the modulation phase. The modulating phase
is then added to each tone’s previous phase
value, which has indicated the phase of
the tone at the end of the last frame. This
produces a phase shift at the frame bound-
ary equal to the modulating phase when
the tone is generated during the next frame.
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Receiver functional description

The receiver portion of the USQ-74 modem
can operate in several different modes. It
can demodulate either an upper or a lower
sideband signal alone or use the two side-
bands to form a diversity signal. The re-
ceiver demodulates the input signal(s) by
performing an FFT on a frame of sample
data. The frame is either 94 or 155 sam-
ples long, depending on the modem rate
(75 or 45.45 baud).

The receiver does not use all of the
sample points contained in a frame for
demodulation. The abrupt phase changes
that occur at frame boundaries make it an
undesirable place to look at the signal.
Therefore, the receiver examines only the
center portion of each frame.

The two frame rates are processed slight-
ly differently. At the fast rate, the central
64 points are used to perform the FFT.
This leaves a guard band of 15 points on
each side. When the slow rate is being
processed, the central 128 points of the
155 sample point frame are used. This
leaves a guard band of 13 points at the
beginning of the frame, and 14 points at
the end. In the slow case, two 64-point
FFTs are performed, instead of a 128-
point FFT. The first FFT uses the first half
of the 128 points; the second FFT, the
second half. The results of these two trans-
formations are added together and divided
by two to produce a single set of 64 fre-
quency components. These components are
then processed in the same manner as in
the fast rate.

The receiver performs the following four
functions for signal demodulation: (1) it
establishes that a signal is present before
doing any further processing; (2) it pro-
vides frame synchronization; (3) it estab-
lishes the proper reference phases; and (4)
it decodes the received signal into a binary
stream. In addition, the receiver is respon-
sible for various decision-making processes,
as well as support processing. Support pro-
cessing includes performing a Fast Fourier
Transform and error-detection-and-correc-
tion decoding. The four basic functions
have been segmented into subprograms.
Each subprogram performs a specific func-
tion and passes information back to the
main program to be used for further
processing.

Signal presence is determined by the
SIGPR subprogram. SIGPR uses the Dop-
pler tone present in the preamble frames
to determine if a signal is located in the
received data. The amplitudes of the fre-
quency components of the signal located
about the Doppler tone are compared to
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Fig.4. Window position when a minimum occurs in the DFT value, indicating a

frame boundary.

the amplitudes of the frequency compo-
nents located in the rest of the band. If the
power a1 the Doppler frequency is greater
than that in the rest of the band, a signal is
assumed to be present.

Once a signal presence is detected, the
SIGPR subprogram performs a coarse Dop-
pler-shift calculation. A Doppler shift of
the received spectrum may occur if either
the radio transmitter or receiver is located
on a moving platform (for example, on an
aircraft). Instability in any of the frequency
devices used in the modulation/demodula-
tion or in frequency translations in receiver
and transmitter may also contribute to a
frequency shift. This coarse correction is
based upon how much energy in the Dop-
pler tone has “spilled over” into adjacent
frequency components. The sidelobe with
the larger amplitude indicates the direction
in which the Doppler shift occurred.

Once signal presence has been detected,
the receiver must sync to the incoming
signal. The FSYNC subprogram performs
this function in addition to calculating a
fine Doppler correction. Having stored the
frequencv components of the Doppler tone,
FSYNC computes the phase difference of
the Doppler tone in two successive frames.
This difference is the amount the phase
advanced over 64 sample points or 9.09
milliseconds (64 samples, at 7040 samples/
second). The Doppler frequency correction
therefore equals the change in phase over
the 9.09 milliseconds or

fo =% =6, - 6:/(909 X 107)

where 6, is the phase of the Doppler in
frame 1.

After calculating a fine Doppler correc-
tion, FSYNC begins processing to locate
the frame boundary. FSYNC uses the 180°
phase change of the sync tone between
frames in locating the frame boundary. It
locates the frame boundary by using a
Discrete Fourier Transform (DFT) of the

sample points. Because the phase of the
sync tone changes by 180°, sample win-
dows of the DFT, which have an equal
number of points of the sync tone at 0°
phase and 180° phase, will produce a min-
imum value for the amplitudes of the sync
tone. This condition occurs when the DFT
window straddles a frame boundary, as
shown in Fig. 4. FSYNC, in performing
the DFT, slides the sample window one
point at a time, using a recursive formula
to compute the DFT. By keeping track of
the location of the DFT window. and
knowing its position when a minimum is
produced, the program locates the frame
boundary.

The PHREF subprogram is responsible
for detecting the phase-reference frame.
PHREEF also stores the frequency compo-
nen:s for each reference vector. These vec-
tors will be compared with the vectors of
the next frame. The phase differences be-
tween the vectors in successive frames con-
tain the information necessary to allow the
decoding of the data tones.

Message decoding

The data information contained in a mes-
sage can be decoded by the DEMOD
subprogram once the phase-reference frame
has been found, and the reference vectors
stored. Each of the 15 data tones contains
two bits of information. The exact bit pair
transmitted for each tone is determined by
the phase difference between the present
data vector and the corresponding vector
from the previous frame.

Rather than examining the real and imag-
inary parts of the frequency components
for each tone to determine the phase of
each, and then the phase difference between
the two, a complex-conjugate vector mul-
tiplication is performed between the refer-
ence vector and the present data vector.
The resultant vector of the multiplication
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is stored in the P array. This operation is
shown in the equation below.

P(k) = FO*(k) - X(k)
where FO*(k) is the complex conjugate of
the reference vector; X(k) is the present

data vector; and * represents complex multi-
plication.
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Because the phase for each frame is
measured several sample points “in” from
the beginning of a frame, the phase of the
resultant vector of the complex conjugate
multiplication must now be corrected by
the amount the phase has advanced from
the end of one sample window to the
beginning of the next. The resultant vec-

tors P(k) are phase-corrected, using the
equation shown below, and stored in the
Z array. The equation is

Z(k) = P(k) X e ™

where 8 is the advance in phase and & is
the number of the harmonic of the data
tone.

After phase correction, the vectors can
be used for decoding the received data.
The complex-conjugate multiplication is
equivalent to a translation of the axis. It is,
therefore, possible to use the resultant vec-
tor to determine the phase difference by
noting which quadrant the resultant vector
lies in. This quadrant of the resultant vec-
tor is determined by the sign of its real
and imaginary components.

The bit pairs are decoded using the fol-
lowing algorithm. If the real part of the
resultant vector is positive, the first bit of
the pair is a 1, otherwise it's a 0. If the
imaginary part is positive, then the second
bit of the pair is a 0, otherwise it’s a 1.

The receiver then performs error detec-
tion and correction by using the six parity
bits at the end of each frame. The Ham-
ming code is capable of double-bit detec-
tion and single-bit correction. A two-bit
status word, indicating which of the above
conditions occurred, is appended to the
demodulated word.

Diversity processing

The modem program also simulates the di-
versity processing of the receiver. The USQ-
74 receiver can operate in two diversity
modes. One diversity mode forms a coher-
ent combination of the upper and lower
sideband signals after they have been indi-
vidually corrected for Doppler shift. The
other diversity mode carries all the sig-
nals—upper-sideband, lower-sideband and
diversity—through to demodulation. After
a frame has been demodulated on all three
channels, the receiver determines the frame
that will be used as output by examining
the error-status bits for each word. The
diversity frame is examined first, then the
upper-sideband frame and, finally, the lower-
sideband frame. If all of the channels are
found to have an uncorrectable number of
errors, the diversity word is chosen for
output.

Summary

The simulation program was written to
represent the operation of a specific modem
used in HF radio transmission. The simu-
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lation results correlate well with standard
theoretical results. Figure 5 shows the simu-
lation performance when Gaussian noise is
added to the simulated signal. The simula-
tion serves three purposes: (1) It offers
reduced cost and effort in evaluating mo-
dem performance; (2) it can be used as a
confidence-building test bed prior to mak-
ing expensive changes on the existing equip-
ment; and (3) its modular design allows
addition or deletion of selected modules to
represent performance of other similar Link
11 modems without a major modeling and
redesign effort.
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Have you ‘“‘given a stroke” to your TEC lately?

De Maria/Bodzioch: An HF modem simulation

Do you know that engineers at RCA are devoting time
and effort to help you in establishing and maintaining a
satisfying career? They are your Technical Excellence
Committee and they attempt to contribute to a stimulat-
ing working environment by determining your needs in
the areas of technical education, technical information,
professional activities and recognition. Once the need
is established, they move on to develop and execute
supportive activities.

Most of you are somewhat aware of and use the
technical excellence activities. But have you paid your
dues by expressing your appreciation to your TEC
representative? Or even better, do you tell him your
views on today's engineering climate and the career
needs you perceive?

Engineers are highly skilled professionals, but all too
often they keep their thoughts and needs to themselves,
perhaps because they are busily engaged solving their
problems. Technologies, techniques, and engineering
tools—the entire supporting environment is constantly
changing and better ways to do engineering work are
evolving. Do you take the time to discover and master
them? This is where the TEC is attempting to support
you—you can help the TEC help you, by sharing your
thoughts with the TEC members. Then give them credit
for their efforts, every once in a while.
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G.M. Sparks |J. Liston

Dynamic analysis and simulation
of mechanically scanned radar systems

For complex systems problems with no direct and easily
managed solution, digital simulation often affords the
only practical analytical approach.

Abstract: The methods by which
mechanically scanned radars are dynami-
cally analyzed through digital computer
simulation are summarized. Three distinct
areas of concern are addressed as exam-
ples: (1) Dynamic modeling of the radar
and its antenna drive as the mechanical
interaction of a viscous damped spring-
mass system; (2) The implementation of
digital filters for servo compensation; and
(3) Detection analysis as the radar
antenna beam scans past a target. The
simulation methods that are presented are
not restricted to the analysis of radar sys-
tems, but can readily be applied to other
fields.

System analysts and designers make exten-
sive use of digital simulation as a means of
predicting the dynamic performance of com-
plex systems. These systems are subjected
to mechanical and environmental distur-
bances that, along with design constraints,
impose fundamental performance lim-
itations.

Simulation usually is not warranted for
relatively simple systems that readily yield
a direct mathematical solution for the vari-
ables of interest. For complex systems, how-
ever, a tractable mathematical solution
may not exist, or may be so cumbersome
that its utility is compromised. In this situa-
tion, digital simulation of the system be-
comes a virtual necessity; simulation is espe-
cially valuable in conserving engineering
time and resources.

©1982 RCA Corporation
Final manuscript received September 29, 1982.
Reprint RE-27-6-4
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Fig. 1. Mobile radar mounted on a tank (above) and its dynamic model (opposite).

Three areas for simulation

This paper illustrates a number of specific
techniques that are useful in simulating the
performance of any complex system. We
have selected a mechanically scanned radar
system as an example of a system of mod-
erate complexity, with three distinct areas
of concern facing the designer. Problems
in each of the areas cited below have been
solved by means of digital computer simu-
lation. The approaches are sufficiently gen-
eral to be directly applicable to the solu-
tion of related problems in other areas.
The first technique is the digital repres-
entation of a mechanical system. A com-

plex mechanical body (the radar, antenna,
and pedestal) is modeled by springs, masses,
and viscous dampers with the objective of
simulating the dynamic response as the
radar tracks maneuvering targets in noise,
clutter, and multipath. The simulation tech-
niques account for the effect of platform
motion of the mount to which the radar is
attached, and allow for external torque
disturbances (for example, wind, gun fir-
ing, and vehicle motion) at designated
points within the system. These analyses
and simulation techniques have been used
to identify potential design problems and
their solutions early in the design phase
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lems associated with servo-noise transients
and also with inherent antenna drive rate
and acceleration limits. The simulation al-
lowed these problems to be solved “off-
line” during critical periods when the actual
system was not available.

The third technique is target detection
using a mechanically scanned radar. An
important element of radar design is a
definition of system parameters that will
provide a satisfactory probability of detec-
tion. Simulation is a useful tool to estimate
the ability of a mechanically scanned radar
to detect a target with specified character-
istics in a specified environment. Methods
are presented that allow this capability.

Dynamic analysis methodology to
represent a mechanical system

The first example of simulation as a tool—
digital representation of a mechanical sys-
tem—was used to model a fire control
system ccnsisting of a radar mounted on
the breech of a gun. The gun and its drive
system are mounted on a full-track vehi-
cle. The vehicle, its gun, and the radar are
shown in Fig. 1. Each axis of this fire con-
trol system is modeled dynamically as a
seven-mass system. The elevation-axis mod-
el is similar to the azimuth-axis model
shown on the right of the figure. Each axis
contains both radar and gun-drive subsys-
tems, with external torque disturbances in-
troduced al each mass.

This complex system, with each axis
described by seven interacting, second-order

differential equations, can be solved as a
set of N simultaneous, linear, constant-
coefficient differential equations with M
time-varying inputs. The constant coeffi-
cients of the differential equations are orga-
nized into an N X N matrix A, which
defines the compliance, inertia, and vis-
cous damping of the system elements.*
The M time-varying inputs are represented
as an N X M matrix B, which defines the
manner in which the M-forcing functions
are coupled to the system.' The resulting
differential equations are written in matrix
form (see box, equations (1) and (2)).

To simulate this process on a digital
computer, we assume the input to be con-
stant over a sample period 7. In the result-
ing equation, the state variables that con-
stitute the vector X are known at time kT,
and the input vector M is constant within the
time interval from time k7 to (k + )T,
The resulting equation is given in the box
as equation (3).

The computational steps in calculating
the a and B matrices are rather complex;
however, with widely available library rou-
tines for matrix operation (solutions for
eigenvalues, eigenvectors, and matrix inver-
sion), their implementations in a simula-
tion is straightforward. Also, because their
elements are invariant with time, they need
only be computed once and stored for use
as required. Subsequent iterations of equa-
tion (3), which involve only multiplica-

* Matrices and vectors are given in bold face.

when corrective action can be accomplished
with relatively minor schedule and cost
penalties.

The second technique is the implemen-
tation of digital filters. In modern radar
design, many functions previously per-
formed with hardware are now executed
with software. One of these functions is
the compensation filtering for the servos
used to drive the antenna in azimuth and
elevation. Two examples are presented that
show the importance of using simulation
to solve problems that arise during system
tests. The simulation model used in these
tests precipitated a solution to specific prob-

Mathematical description of a complex mechanical system
X(1) = AX(1) + Bu(1) 1w
where:
[y 7] = —
Xl F‘l r?ll al N r_i-?ll hllﬂ
X u: .
X= u= A= B=
3 I P R PRSI P
The solution to equation (1) is: .
X(1)=exp [Att — 1)1 X(t) + [ exp[AG— )] Bu(r) dr )
X[(k+ 1) T]=aX(kD + BM (kD ©)
Where a = exp (AT), and N X M is a matrix with constant elements
B8=[a—1]A™" B,and N X M is a matrix with constant elements
I is the identity matrix

Sparks/Liston: Dynamic analysis and simulation of mechanically scanned radar systems
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Fig.2. Block diagram of a digital servo-drive system.

tions and summation, are solved efficiently
in a digital computer.

In solving matrix a, the first step in-
volves determining the eigenvalues A, A,
..., Ax of the matrix A. Then the N-
element eigenvector Z, needs to be deter-
mined for each eigenvalue A, The diago-
nal matrix A can then be formed:

The N X N matrix, F, whose columns
are the eigenvectors of A, is formed as:

F=[Z,2,,...24) (5)

Finally, exp (AT) is calculated, using a
similarity transformation that involves invert-
ing the F matrix. With successive multi-
plications,

a =exp (AT) = FAF'

with a calculated, the matrix 8 can be
determined, as indicated in equation (3).
This step requires inverting the A matrix,
which must be non-singular.*

These two matrices provide the basis
for solving the set of given differential
equations for a sequence of time-varying
inputs. Once the equations are solved, the
system outputs are determined by simple

—
o
0
A= ] 4)
0
eA A
Guillemin
Eirl
Bush
E.

—— s ]

Fig. 3. Alternative methods of implementing digital filters.
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multiplications from a set of stored co-
efficients,

Digital implementation of servo
compensation filters

A typical digital servo-drive system is repre-
sented by the block diagram in Fig. 2.
Nonlinear effects occurring in the servo
system include signal, rate, and acceleration
limiting. Signal limiting occurs in the A/D
and D/A converters; rate and acceleration
limiting occur in the drive system. Com-
puter simulation is used to determine the
effects of such limiting as well as the effects
of noise on system performance.

For a second-order (Type II) servo, a
compensation filter is required to provide
the specified performance and ensure sta-
ble operation. The transfer function of this
filter is

GI(S) = EU(S)/EM(S)
=K ST\ + 1V/S(ST-+ 1) (7)

To implement G, (S) in a digital com-
puter it is necessary to use a state-variable
representation. There is no unique set of
state-variable equations for a given transfer
function. Discussions of some forms of
particular interest are found in references
1, 2, and 3. This paper is concerned with
two methods,” one known as Guillemin’s
form and another known as Bush’s form.+
These are shown in Fig. 3 and are, hence-
forth, referred to as Method 1 and Method
2, respectively.

The integrators in either of the two
methods can be digitally implemented by
various approaches, the bilinear transfor-
mation being a frequently used method.
Each of these two methods were used for
two system designs, the HR-76 radar servo
and the NIDIR servo; these designs required
different state variable representations be-
cause of their different requirements and
conditions. Specifically, the HR-76 radar
was required to provide a means of select-
ing different servo bandwidths in order to
optimize performance in the presence of
noise and varying target dynamics. In the
case of the NIDIR radar, a single servo
bandwidth was specified; however, unlike
the HR-76, there was the requirement to
accommodate severe antenna-scan-rate and
acceleration conditions. Simulation was use-
ful in selecting the best filter design for
each system.

* Special techniques exist that can be applied when the A
matrix is singular,

t Also referred 1o as the Standard Controllable form in ref-
erence 1.
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HR-76 radar
servo-noise transients

Method | was initially used to implement
the compensation filters for the HR-76 ra-
dar, which is a system designed and devel-
oped at RCA Missile and Surface Radar,
Moorestown, New Jersey. During the sys-
tem tests, a transient error that occurred
when switching from a wide to a narrow
servo bandwidth was noticed. To deter-
mine the cause of this problem, the servo
closed-loop system was simulated on the
digital computer. The simulated drive-sys-
tem transfer function was:

G:(S)=1/S[(S/wo)+ 1] (8)
The parameters for the compensation filter
and the drive system transfer functions,

G (S) and G.(S) respectively, are given in
Table I.

Table |. Filter and drive-system param-
eters.

Parameter BW=4Hz BW=1Hz
K 28.8 2.56
T 0.374 1.25
T 0.0064 0.08
w, 30 30

With E;, = 0 (noise input only), the tran-
sient effect was reproduced when switch-
ing from a 4-Hz to a 1-Hz servo band-
width. The result is shown in Fig. 4.

The filter implementation in the simula-
tion was changed to Method 2. Using the
same input-noise sequence and same sys-
tem parameters, the bandwidth was again
switched from 4 Hz to | Hz. This tran-
sient error, also shown in Fig. 4, is much
smaller than that obtained using Method
1, leading to a design change in the HR-
76 system.

Even though these two approaches have
identical transfer functions, they do not
have identical state equations. At the time
the bandwidth is reduced, a non-zero value
of E, exists. For Method 1, this value
immediately after switching is the same as
that immediately prior to switching because
it is maintained as the initial condition on
the integrator. For Method 2, however,
the value of E, decreases at the switching
time because of the reduction of the KT,
product.

NIDIR designation servo-
limiting effects

Another system design that was aided by
simulation was the NIDIR-designation ser-

METHOD 1
-
=2
o
-
3
et
>
= METHOD 2
w
| | | | S | | | | K
0 1 2 3 4 6 7 8 9 10
TIME (sec)

Fig.4. Servo output with noise only as the input.

vo. This servo did not have a bandwidth-
switching requirement but needed to ac-
quire targets under conditions that would
reach both system-rate and acceleration
limits during the transitional slew to the
moving target. In order that the value of
E, and E, in Fig. 3 not reach extremely
large values during saturation times, it was
necessary to limit the output of the inte-
grator described by K/S to a value equal
to the rate limit. Otherwise, the integrator
output during saturation periods could reach
values, that could cause loss of track. The
system of interest had rate, acceleration,
and error limits of respectively 0.5 rad/
sec, 0.5 rad/sec,’ and 0.4 rad. The prob-
lem was to acquire a constant velocity
crossing target with the conditions given in
the inset of Fig. 5.

Systems using both Methods | and 2
were simulated and tested, the trajectory
being defined as in the inset of Fig. 5. The
values of K, T, and T3, are, respectively,
4, 1, and 0.0625. Plots of the servo error,
as a function of time for each system, are
shown in Fig. 5. Note that Method 1 in
this case is far superior to Method 2.

For both methods, the output of the
integrator, K/S, is limited. In Method 1,
the input to the integrator senses the rate
of change of the error, E;,, and causes the
integrator to come out of saturation as
soon as the error starts to decrease. In
Method 2, however, the integrator input

Sparks/Liston: Dynamic analysis and simulation of mechanically scanned radar systems

does not change polarity until the error,
E,;,, changes polarity. The irtegrator does
not come out of saturation until the error
changes polarity. This results in a large
overshoot.

As discussed, simulation is a valuable
analytic tool for selecting design approaches,
not only from the two examples presented
but for the design requirements that may
arise in the future.

Target detection simulation

The process of detecting a radar return as
an antenna beam scans past a target can
be modeled as illustrated in Fig. 6. In this
figure. the radar returns are represented as
a time sequence of signal-amplitude sam-
ples whose statistics reflect a specific rms
signal-to-noise ratio (S/N),, assuming that
the target is located on the peak of the
antenna pattern mainlobe. The amplitude
of the signal samples vary from pulse to
pulse or from scan to scan depending upon
the type of target that is modeled. Figure 7
shows a variety of radar-fluctuating target
models that are commonly used as a basis
for specifying radar detection performance.

Simple algorithms can be used in con-
junction with random-number generators
to simulate the desired target signal-return
fluctuations. Of the models shown in Fig.
7, the amplitude fluctuations from those
mode!s that have a suffix I or‘IIl are com-
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geometry.

pletely correlated within any given scan
and are independent from scan to scan.
Those models that have a suffix Il or IV
result in amplitude fluctuations that are
independent from pulse to pulse as well as
from scan to scan.

The detection performance, which is
achieved with a sequence of N constant
rms-amplitude target returns processed with
a square-law detector and post-detection
integrator (as shown in the shaded blocks
of Fig. 6), can be analyzed directly with-

out resorting to Monte-Carlo simulation.
In the event a mechanism is present that
modulates the level of the target returns,
such as the gain pattern of a scanning
antenna beam, a rigorous theoretical analy-
sis becomes very cumbersome and Monte-
Carlo methods can be presented as a vi-
able alternative.

Figure 8 illustrates the degree to which
a simple 2000-trial Monte-Carlo simula-
tion of a detection process, involving the
post-detection integration of 4 pulses (exclu-
sive of beam shape modulation effects),
approaches the theoretical” detection per-
formance of a 4-pulse integrator. For these
cases, the threshold level is analytically
calculated using the method of Pachares,’
which assumes a square-law detector model
of the form:

v=(%x
x=

9

where the input voltage level

¥ = the ouiput voltage level.

The threshold curves of Fig. 9 show the
threshold voltage variation with the number
of pulses integrated for different values of
faise alarm probability. These values are
normalized with respect to rms noise and
are directly applied to the threshold deci-
sion block of Fig. 6.

Detection performance achieved by the
entire process outlined in Fig. 6 has been
analyzed by means of a 5000-trial Monte-
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Fig.6. Radar receiver/signal processor simulation.
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Carlo simulation, and the results are plot-
ted in Fig. 10. For each trial, the beam
(modeled as a sin x/x one-way amplitude
pattern) scans past the target, and eight
target returns are integrated in a sliding
window integrator. This is a process in
which the eight most recent target returns,
modulated by the round-trip antenna pat-
tern are: (1) contaminated by in-phase and
quadrature-phase components of white
Gaussian noise; (2) square-law detected;
and (3) accumulated as a summation.

During this process, the beam position
and subsequent pattern loss are varied from
pulse to pulse to reflect the antenna scan
rate. After each target return is received,
the summation of the last eight processed
returns are tested to see if the detection
threshold is exceeded, in which case the
Monte-Carlo trial is said to have resulted
in a detection and the trial is completed.
Otherwise, the beam advances to the next
angular position in the sequence, a new
return is accepted, and the process is
repeated.

In the event no threshold crossing occurs
by the time the main lobe of the antenna
scans past the target, a missed target decla-
ration is made and the Monte-Carlo trial
is completed. For the cases shown in Fig.
10, 5000 trials were carried out for each
data point on the curves, with the detec-
tion probability calculated as the ratio of
detections to Monte-Carlo trials.

Figure 10 also shows the results for an
ideal rectangular beam-shape pattern, in
which eight pulses are integrated without
the influence of an antenna pattern loss.
The difference between the curves is the
beam-shape loss for a scanning radar, which
is seen to be in the neighborhood of 0.7 to
0.9 dB, depending on the SNR and target-
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@
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4 PULSES INTEGRATED /
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8888 3
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Fig.8. Comparison of theoretical detection probability values with that obtained

from a Monte-Carlo simulation.

fluctuation model. The results presented
are based on an antenna-scanning rate such
that the sliding-window integrator receives
eight pukes as the antenna scans through a
sector corresponding to 85 percent of the
3-dB one-way beamwidth.

Blake™ and Trunk® show this to be an
optimum integration window length in the
sense of minimizing the SNR required for
a specified detection probability. The results
compare with a pattern loss of 1.6 dB,
which is frequently cited as a tvpical beam-
shape loss in a scanning radar. The 1.6-dB

Sparks/Liston: Dynamic analysis and simulation of mechanically scanned radar systems

value applies strictly to a gate positioned
so that the pulses modulated by the antenna
pattern are accepted by the gate only within
the gated angle centered on the beam maxi-
mum 7.

For the cases simulated in this paper,
the sliding window (or gate) effectively
scans completely through the region of
maximum antenna-gain-modulated target
returns, thereby affording additional detec-
tion opportunities. While the noise com-
ponent of the post-detection integrated sig-
nal-plus-noise variates is highly correlated
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within the scan, there is still a modest
improvement in detectability to account
for the reduction in beamshape loss.

Conclusion

In addition to solving these specific prob-
lems, computer simulation was used in
1970 to simulate the entire AN/MPS-36
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instrumentation radar.” '’ The realism and
the modular nature of the simulation en-
abled a wide variety of experiments and
studies as follows:

1. Investigation of the capabilities of the
existing radar system to support planned
future missions.

2. Isolation of those radar parameters that

may limit the radar’s performance capa-
bilities and that are the most likely
candidates for future modification.

3. Assessment of the improvements in radar
performance that might be achieved from
various proposed radar modifications.

4. Comparison of the existing/modified
AN/MPS-36 radar’s performance and
capabilities with the performance that
can be achieved with other existing/new
tracking systems.

5. Study of the effects of radar location
upon the mission-supporting capabilities
of the radars.

6. Post-mission data analysis whereby ap-
parent radar breakdowns/ problems can
be simulated to check on the validity of
the analysis results.

7. Integration of the present simulation
program as a building block in a larger
multi-station, multi-instrument, tracking
network. A larger system such as this
could be used to determine an opti-
mum tracking configuration for a spe-
cific mission,

The simulation of the AN/MPS-36 radar
was successful and has been used exten-
sively by the government. These uses have
included general studies and investigations
of the radar’s operation so as to improve
understanding of the complex interactions
that occur within the complete tracking
system (the radar, the target, the environ-
ment, and so on).

To summarize, we have presented the
solutions to three important problems re-
lated to mechanically scanned radar sys-
tems. Specific examples have been pre-
sented that demonstrate how to use these
techniques to solve radar design problems.
The approaches to these problems, how-
ever, are general and not restricted to radar-
related problems.
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J. Golub

Discrete-event simulations
of complex weapon systems

Using proven simulation principles, engineers can easily vary a
plethora of parameters and quickly gain information about

weapon-system behavior.

Abstract: Discrete-event simulations
model system functions as event subpro-
grams occurring at discrete times. This
modeling process yields a structure suited
{0 the representation of complex weapon
systems. An elementary example demon-
strates the principles. The author describes
the initial program developed by the Simu-
lation Group at Missile and Surface
Radar, called MEDUSA, and an advanced
program derivative. He continues with de-
scriptions of techniques being used to
develop a new simulation, and concludes
with a note on potential uses in modeling
other complex systems such as air-traffic
control or transportation planning.

Modern weapon Systems contain many
complex components, not the least of which
are digital computers that control opera-
tions via real-time software. The variables
and options available in designing and de-
ploying these systems present a bewilder-
ing array of possibilities to systems ana-
lysts. Classical analyses cannot provide all
the necessary answers in the required time.
However, with a well-designed, large-scale
digital computer simulation of the weapon
system, engineers can readily explore dif-
ferent system designs and deployments.

For the last eight years, the System Simu-
lation group in the Naval Systems Depart-
ment of Missile and Surface Radar has been
designing and developing discrete-event
©1982 RCA Corporation
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simulations of complex weapon systems.
These simulations, written in FORTRAN,
have been applied to many problems in
areas such as system performance, algo-
rithm design, evaluation, testing, surviva-
bility, and requirements specifications.
MEDUSA (Multi-target Effectiveness De-
termined Under Simulation for AEGIS),
the AEGIS Operations Analysis Simula-
tion, was the initial program developed by
the Simulation Group. MEDUSA has been
in use for over seven years to aid AEGIS
tactical algorithm designers, predict AEGIS
Weapon System performance against com-
plex raids, and support tests at the CSED
(Combat System Engineering Development)
site. MEDUSA s a discrete-event simula-
tion that models significant AEGIS func-
tions—from search, detection, and track
through threat evaluation, weapon sched-
uling, and intercept in defending surface
fleets against air attacks. The success of
MEDUSA led to the development of dis-
crete-event simulations of other weapon
systems. To obtain useful results quickly
from these new simulations, their original
versions were developed by adding new
models to MEDUSA and removing mod-
els unnecessary for the new simulations.
SIMATR (Simulation of Integrated Mul-
tiple Advanced Tactical Radars), the most
successful MEDUSA derivative, models the
aspects of Tactical Air Control Systems
(TACS) that detect and track hostile air-
craft and missiles and that control fighters
to intercept these targets. With emphasis
on a network of ground radars assisting

airborne interceptors defending Western
Europe, SIMATR contributes to the deter-
mination of the relative military worth of
phased-array and rotator radars.

A current Independent Research and
Development (IR&D) program to develop
a discrete-event simulation of a naval bat-
tle group provides an excellent opportun-
ity to implement the techniques learned
and developed from several years expe-
rience. Since the scope of this simulation
makes it impractical to generate the initial
version by modifying MEDUSA, a PROTO-
type of a Naval Simulation (PROTONS)
has been selected as the vehicle to deter-
mine development methods, user inter-
faces, and level of detail for the battle-
group simulation.

Elements of
discrete-event simulations

A discrete-event digital computer simula-
tion represents a system by event subpro-
grams that model system functions, inter-
actions between the system and its environ-
ment, and actions in the environment. The
events that model the system are chosen
and designed to achieve a sufficient degree
of realism without using excessive compu-
ter time. Since these events occur at dis-
crete times, the state varnables that de-
scribe the components and interactions of
the system change only at these times and
not continuously as they would in the real
system,

Computations are performed and logi-
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INPUT/INITIALIZATION
SECTION

CALENDAR
EMPTY

|

SIMULATION
COMPLETED

REMOVE LIST
SPECIFYING NEXT
EVENT TO BE
EXECUTED

i

ADVANCE
SIMULATION
TIME TO TIME
OF THIS EVENT

YES

SIMULATION
TIME > STOP
TIME

CALL EVENT SUB-
PROGRAM
CORRESPONDING
TO THIS EVENT

P

Fig. 1. Operation of the event sequenc-
er, the executive subprogram that con-
trols simulation cycling after initialization.

cal decisions are made when significant
events are expected to occur rather than at
evenly spaced time intervals. This yields
efficient use of computer time as events
are executed only when their results are
needed. The operation of these event sub-
programs is controlled by an executive
subprogram called the event sequencer that
interacts with the event calendar, a time-
ordered list of scheduled events.

After the input is read and the initial
events are placed on the calendar, control
is transferred to the event sequencer, which
drives the simulation by the following steps
(Fig. 1)

1. Remove the top event from the event
calendar.

2. Advance the simulation time to the
time of this event.

3. Call the event subprogram correspond-
ing to the removed event.

4. Repeat the above steps until the event
calendar is empty or simulation time is
greater than a specified simulation stop
time.

A hypothetical shipboard antiair missile
system (sidebar, pages 34-35) illustrates
the above concepts (refer to Fig. 2 for a
graphic description of the example).

%;,Y; TARGET

ATTACKING

SHIP 360+
\\

Xi.Y;
TARGET
PASSING
SHIP

Fig.2. An aerial view of a surface-to-air missile ship defending an area against
two aircraft, one that is attacking the ship and another that is passing through the
defended area. The missile coverage zone is represented by the circle, and the
points indicate where the two targets enter and leave this coverage. This example
was chosen to illustrate discrete-event simulation principles.

MEDUSA, the AEGIS Operations
Analysis Simulation

MEDUSA (Multi-target Effectiveness Deter-
mined Under Simulation for AEGIS), a
discrete-event simulation, was designed and
implemented by RCA’s AEGIS System
Simulation Group to support the devel-
opment of the AEGIS Weapon System
Mark 7, which performs the antiair-war-
fare functions of the AEGIS Combat
System.

The AEGIS Weapon System is com-
posed of nine computer-directed elements
that can stand as a fully automatic antiair
and antisurface missile system. As part of
the Combat System, the AEGIS Weapon
System performs the principal air and sur-
face defense functions. The control elements
of this group provide track maintenance
and threat evaluation, as well as weapon
assignment and control for all warfare oper-
ations. It is the AEGIS Weapon System
that furnishes direction, commands, and
automation to the AEGIS Ship Combat
System.

Golub: Discrete-event simulations of complex weapon systems

Work began on MEDUSA in early 1975
when a simulation was needed to predict
the performance of the AEGIS Weapon
System against complex multi-target threats.
A discrete-event architecture in FORTRAN
was chosen because: (1) AEGIS and its
interaction with the environment can eas-
ily be represented by discrete events; (2)
the subroutines described above were avail-
able; and (3) discrete-event simulations had
been successfully used to model other weap-
on systems.

The example in the sidebar may be
viewed as an extreme simplification of the
AEGIS Weapon System and analogously,
the sample simulation described is an ex-
tremely simplified version of MEDUSA.
Some of the important differences between
the two simulations indicate the vast dis-
parity in complexity. In MEDUSA, for
example, a three-dimensional curved-earth
geometry is used; targets are modeled by
multi-leg trajectories; radar detection is mod-
eled; the availability of shipboard resources

(Continued on page 36)
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Hypothetical antiair missile system example

A ship with a surface-to-air missile sys-
tem attempts to intercept enemy air
targets entering its missile coverage
zone but can engage only a single
target at a time. The targets fly straight
trajectory legs at constant speeds and
the ship’s missiles fly at an average
speed, V., over their effective range,
R, It is assumed that the ship is aware
of all targets in its coverage zone. The
missile system is controlled by the
ship’s Combat Direction System
(CDS) computer to fire at the closest
target. The CDS computer executes a
program every 10 seconds to determine
the closest target. A missile is launched
only if an engagement is not in prog-
ress. An engagement lasts from missile
firing time to intercept. Missiles are
given a 65-percent chance of successful
intercept, and a target hitting the ship is
given an 80-percent chance of destroy-
ing it.

To simplify this example, two-dimen-
sional (x, y) planar geometry will be
used. The ship will be stationary and
positioned at (0,0). A target trajectory

can be specified by:
initial position  x, ,
final position  xj, y,
initial time 1,
speed S

Therefore, its position at any time (r),
is computed as:

x(n)=x+ xftr— 1]

yoy=wr+ifr—1] 1N
where x is the target velocity in the x
direction and y is the target velocity in
the p direction and S'is (3% + i%)"2.
The position of the target is a continu-
ous function of time, but the simulation
will compute the position only at the
discrete times when requested by an
event subprogram.

The times, fi/0us, a target enters and
leaves the missile coverage zone (a cir-
cle of radius R,,) is computed by solv-
ing the quadratic equation for the inter-
section of the straight-line trajectory
and the coverage circle (see eqn. 2) .
The time, , a missile intercepts a target
is computed from the intersection of
the missile and target trajectories (see
eqn. 3) .

Although this system is a simple
one, it is a good example to demon-
strate the principles of discrete-event
simulation, and the seven events de-
scribed in Table I could be used to
model it.

The preceding principles of simula-
tion operation can easily be put into
practice if subroutines and techniques

exist to:

1. Represent events.

2. Represent a calendar of events.
3. Schedule events on the calendar.
4. Cancel events from the calendar.
S. Access events on the calendar.

Events are represented by five-word
blocks of memory called events lists,
with words numbered —1, 0, 1, 2, and
3, as shown in Fig. 3.

Word #

—1 # Words in block (5)

0 Index of next event list
1 Event #
2 Event time

3 Data for event subroutine

Fig.3. A list representing a simulation
event. These lists are linked to the event
calendar when the corresponding events
are scheduled. They are removed when
the event is executed or cancelled.

Words —1, and 0 are for bookkeeping

and calendar linkage. Word 1 contains
the event number, word 2 contains the

event time, and word 3 is available to

pass information to the event stibrou-
tine. Word 3 could contain the target
number for the target, enter, leave, at-
tack, launch and intercept events in the
example.

The calendar is a set of time-ordered
lists that represent events that have
been scheduled but not executed. A
package of subroutines that create lists
from a dynamic storage array and that
schedule, cancel and access events is
used to handle simulation bookkeeping
functions. Table II shows the event
sequencer for the example.

Other available subroutines are use-
ful for maintaining and accessing the
internal database that dynamically de-
scribes the status of the simulated enti-
ties and their relationships. Although
these subroutines are not necessary for
simulation, they provide an extremely
flexible method of maintaining an
internal database and they allow the
representation of virtually unlimited
numbers of entities of different types.

This package of subroutines is writ-
ten in FORTRAN and is used daily on
the MSR DEC 2060 computer.' Ver-
sions are also available for the IBM
370/168, CDC 6700, Honeywell, and
UNIVAC computers. These simula-
tion-management and list-handling sub-
routines and the techniques for using
them are similar to GASP IV,? a simu-
lation language that consists of FOR-
TRAN-callable subroutines. These sub-
routines were selected at MSR over
GASP because of their immediate
availability in 1975 and the subsequent
success with them.

{ mjout = ]

where, R, = (x% + )7

_ [ —(xix + yib) :t\/(x,.\" + vi)? — SR — R.D) ]

(2)

3

A\

—(xak + ) =V (ak + ) — (82— V) RE

(SZ - sz)
= Ri2xix + )

|S7 # V'
3)
|53= sz

where x;, y; is the target position at launch time, R’ = x/ + y7, and V,, is

missile average speed.
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Table I. Events for hypothetical antiair missile system example.

Events Name/#

Scheduling conditions

Function

TARGET/1 For each target at Computes the time the target enters and leaves missile coverage (eqn. 2) and
the time the target schedules ENTER and LEAVE events at these times. If a target is within missile cover-
trajectory begins age at the beginning of its trajectory, ENTER is scheduled at this time. If a target tra-
jectory ends within the missile coverage, a LEAVE event is scheduled at the end of
trajectory time. For a target attacking the ship, an ATTACK event is scheduled at
the time the target arrives at the ship.
ENTER/2 By TARGET for each Makes the target eligible for engagement by the missile system. The first ENTER
target entering missile  event executed schedules CDS, the command and decision event.
coverage
LEAVE/3 By TARGET for each Cancels all events for this target. No further computations will be made
target leaving missile  for this target.
coverage
ATTACK/4 By TARGET when the  Assesses the attack by comparing random number (rp) with 0.80. If ra <0.8, the ship
target arrives at the is destroyed and the simulation ends. If rp >0.8, the attack failed.
ship
CDS/5 The first CDS is Prioritizes the targets in missile coverage in order of distance from the ship and
scheduled by the first  schedules LAUNCH for the closest target if an engagement is not in progress.
ENTER. Thereafter,
CDS schedules itself
on a 10-second cycle.
LAUNCH/6 By CDS for each tar- Computes intercept time (eqn. 3) and schedules INTERCEPT at this time.
get to be engaged at
launch time
INTERCEPT/7 By LAUNCH at inter- Assesses the intercept by comparing a random number (r) with 0.65. If r; <0.55, the

cept time

target is killed and all events for the target are cancelled. If r; >0.65, the missile missed
the target and the target is eligible for re-engagement by CDS.

Table ll. Event sequencer to control cycling of simulation of hypothetical antiair missile system.

FORTRAN statement

Comment

5 ICAL=0

CALL GETCAL (ICAL, $100)
CALL CANCEL (ICAL)
TIME = Q (ICAL2)*

IF (TIME

.GT. TSTOP) GO

TO 100
J =Q(ICAL )"
GO TO (10,20,30,40,50,60,70).J

10 CALL TARGET (ICAL) T
GOTOS

20 CALL ENTER (ICAL)
GOTOS

30 CALL LEAVE (ICAL)
GOTOS

40 CALL ATACK (ICAL) g
GOTOS

50 CALL CDS (ICAL)
GOTOS

60 CALL LAUNCH (ICAL)
GOTOS

70 CALLINTCPT (ICAL)
GOTOS

100 RETURN
END

INITIALIZE

GET ICAL, INDEX OF FIRST EVENT, ON CALENDAR

REMOVE EVENT LIST FROM CALENDAR

UPDATE SIMULATION TIME

IS SIMULATION TIME GREATER THAN SPECIFIED
STOP TIME?

GET EVENT NUMBER

GO TO CALL STATEMENT FOR EVENT J

CALL THE SPECIFIED EVENT AND GET THE NEXT
EVENT LIST ON THE CALENDAR.

ALL EVENTS HAVE BEEN EXECUTED OR TIME
GREATER THAN TSTOP

*Q is the dynamic storage array used to store event lists and other lists that describe system entities.

Golub: Discrete-event simulations of complex weapon systems
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(Cont. from page 33)

is considered when scheduling targets for
intercept; and realistic engageability and
missile time-of-flight data are used. Al-
though the two simulations differ in com-
plexity, the discrete-event architecture is
suitable for both. The selection from the
many AEGIS functions to be used as MED-
USA events was dependent on the intended
MEDUSA uses. Some of the events used
to model AEGIS Weapon System func-
tions and interactions with the environ-
ment are briefly described in Table III.
Other MEDUSA events model SPY-1A
radar tracking; the Standard Missile launch,
mid-course guidance, illumination, and inter-
cept; the Combat Air Patrol target inter-
cept: and the PHALANX close-in weapon
system.

Although MEDUSA was developed pri-
marily to demonstrate AEGIS perfor-
mance against complex raids, the discrete-
event architecture permitted a wider range
of applications. Some of these are listed
below:

1. Evaluation of tactical algorithms for:
« Standard missile engageability
« Threat evaluation
« Missile scheduling
« Variations in missile salvo doctrine
« Electronic countermeasures algorithms

2. Evaluation of combat system configu-
rations such as:

o Casualty modes
o Alternative illuminator positioning

3. Design of tests at the CSED site and at
the production test center

4. Verification of system qualification tests

5. Determination of new missile-system re-
quirements

6. Demonstration of performance of
AEGIS derivative systems.

The versatility and portability of these
discrete-event simulation techniques is at-
tested to by MEDUSA operation on the
UNIVAC SPECTRA 70, IBM 370/168,
DEC system 2020, 2040, 2060, and CDC
6700 computers. Naval Surface Weapon
Center personnel, who were able to mod-
ify and use MEDUSA in less than four
months,’ demonstrated that these tech-
niques were easy to learn.

The original version of MEDUSA mod-
eled a limited number of AEGIS functions
with nine events. The open-ended nature
of the architecture allowed new events to
be added easily and quickly as they were
required for new analyses and studies. The
current version of MEDUSA includes 20
events and the evolutionary nature of the
program indicates that more will be added
in the near future.

SIMATR (Simulation of Integrated
Multiple Advanced Tactical Radars)

In addition to its value to the AEGIS pro-
gram, MEDUSA has been used as the
nucleus for simulations of other weapon
systems. These simulations were started by
removing events unnecessary to the model-
ing of the new system and adding events
required to model the new system. This
technique made it possible to make a work-
ing simulation of a subset of the new sys-
tem operational in a short time.

The most successful MEDUSA deriva-
tive is SIMATR,* an air-battle simulation
of USAF Tactical Air Control Systems
(TACS). SIMATR demonstrates how a
network of phased-array ground radars can
increase the effectiveness of airborne inter-
ceptors in repulsing an enemy air attack.
This increased effectiveness is realized in
the direct control and designation of each
airborne interceptor by extending its effec-
tive range to provide the interceptor a
standoff shot with an air-to-air missile in
the initial engagement phases. RCA needed
a TACS air-battle simulation to evaluate
the effectiveness of phased-array radars, to
assess C’ system loading, and to determine
the other resources needed to wage an air
battle.

Many of the models required for
SIMATR were derived from MEDUSA.
Indeed. all of the MEDUSA architectural
and simulation management features were

Table lll. Selected MEDUSA events that model AEGIS functions and interactions with the environment.

Event Function modeled Event operation

DETECT Response of SPY-1A Computes probability of detection (Pg) as a function of radar parameters, target radar
to the return of a sur- cross section, target position, multipath, anc the position and power of all simu-
veillance pulse from lated jammers. The psuedo-random numbet rpis generated from a uniform distri-

a target. bution. It rp < Pp, the detection is successful and TRACK is scheduled. If rp>Pp, the
target is not detected and DETECT is scheduled to occur one radar scan time in the
future.

TEWS Execution of the threat- Computes TV for all tracks as a function of target indentification, position and velocity.
evaluation (TV) and The targets are prioritized by TV. Targets beyond a specified range from the AEGIS
weapon-selection al-  ship are selected for engagement by Combat Air Patrol and CAPINT events are
gorithms by the AEGIS scheduled at the expected intercept times. An engagement-order transmission is
CDS computer. simulated for targets engageable by SM-2 by entering them in the Engagement Order

Queue (EOQ). TEWS schedules itself cyclically.

ENGAGE Execution of the SM-2  Targets in the EOQ with the highest threat values are placed in the smaller pre-
scheduling algorithm engagement queue (P/Q). A target will be scheduled for SM-2 engagement if a
by the AEGIS WCS launcher is available within its launch window; an illuminator is available for the
computer. homing period; and the maximum allowable missiles in flight will not be exceeded from

launch through intercept.
To determine the above conditions, there are models to compute earliest and
latest faunch times (launch window); solve the fire control problem for SM-2; compute
the homing interval; maintain periods of launcher and illuminator availability; and deter-
mine launcher and illuminator tie-up times. A successful schedule for a target con-
sists of a launcher available for the required tie-up time and an illuminator avail-
able for the homing interval. A list of successful scheduled engagements is main-
tained and ENGAGE schedules LAUNCH, the SM-2 launch event, at the scheduled
launch times.
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directly applicable to a TACS simulation.
In addition, the MEDUSA target-genera-
tor, jamming, radar, threat-evaluation, CAP-
assignment, and CAP-intercept models ful-
filled the corresponding TACS modeling
requirements with minor modifications.
Thus, after the MEDUSA Standard Missile,
PHALANX, and SPY-1 ECM logic models
were removed, the MEDUSA architecture
and a subset of the MEDUSA models
were sufficient for elementary TACS analy-
sis. In order to perform more extensive
analyses, models were implemented for sur-
face-to-air missile systems, short-range de-
fense systems, attrition of interceptors, and
netted multiple radars.

Although SIMATR models distributed
weapon systems and sensors described by
analytic algorithms, whereas MEDUSA rep-
resents the shipboard AEGIS Weapon Sys-
tem controlled by tactical algorithms, the
generality of the discrete-event techniques
made it possible to derive the initial ver-
sion of SIMATR from MEDUSA in less
than two months.

Simulation of a naval battle group

In 1982 an IR&D project was undertaken
at MSR to develop a digital computer
simulation of two opposing naval battle
groups. The Operations Analysis and Sys-
tem Simulation groups combined to pro-
vide a tool to: determine the effectiveness
of new weapon systems in a battle-group
environment; perform comparative analyses
between existing and new ships; evaluate
fleet-level tactics and doctrine; and deter-
mine the effects of different types of com-
munications and coordination on battle-
group performance. These capabilities will
directly support follow-up AEGIS
programs.

A survey of existing battle-group simu-
lations developed by government agencies
and private industry showed that most of
them used a discrete-event architecture.
Some used special simulation languages,
but most were written in FORTRAN. This
confirmed our decision to write the battle-
group simulation in FORTRAN using dis-
crete-event architecture.

The battle-group simulation provided an
opportunity to apply the techniques devel-
oped over the past seven years. The crea-
tion of a simulation to accomplish the
goals of a complete battle-group simula-
tion is an enormous undertaking, and it is
difficult to decide where to begin and how
to proceed. A prototype simulation was
the vehicle chosen to evaluate development
methods, input formats, levels of model

PROTONS

Fig.4. A sample PROTONS output showing five ships being attacked by three
groups of aircraft. The smaller circles represent coverage zones and the larger

circles represent radar coverage.

detail, combinations of warfare areas, and
output formats.

PROTONS (PROTOtype of a Naval
Simulation) was initiated in early 1982
and will evolve into a comprehensive bat-
tle-group simulation of two opposing bat-
tle groups waging air, surface, and subsur-
face warfare. Extensive models of commu-
nication and coordination will be included.

A key simulation technique successfully
evaluated with PROTONS was the use of
an event-sequencer generator program. The
event sequencers used in MEDUSA and
SIMATR were created manually and
changed manually when events were added
and deleted. This approach involves re-
moving or deleting subroutine calls and
adding or deleting arrays defining and cor-
relating event names and numbers for inter-
nal simulation use. Changes are required
in a few subprograms and although it is a
direct procedure, it is prone to error as are
most manual operations. However, this pro-
cedure is ideal for automation via a com-
puter program, GENSIM.

Golub: Discrete-event simulations of complex weapon systems

A new PROTONS event sequencer is
generated by the GENSIM program when-
ever an event name is added or deleted
from the names of all PROTONS events
in a disk file. Although. GENSIM was
written for PROTONS, it is usable for a
simulation of any system and quickly pro-
vides an executive subprogram for simula-
tion control.

A program has been developed to create
input subroutines from a disk file describ-
ing input variables. It allows the addition
of input variables and default values to the
simulation without programming. This pro-
gram is applicable to simulations of any
system and for any programs that require
separate input subroutines.

Other software techniques being evalu-
ated via PROTONS are increased use of
graphics for both simulation input and out-
put. The most useful SIMATR and
MEDUSA outputs are multicolor plots show-
ing the results of key system events, and
area maps showing trajectories and facili-
ties. Figure 4 is the initial PROTONS
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Jerry Golub (right) reviews simulation graphics produced by a member of the simu-
lations group.

Jerry Golub is Unit Manager of the System
Simulation and Data Reduction group in
the Naval Systems Department at Missile
and Surface Radar in Moorestown. His
group designs and develops simulations of
the AEGIS Weapon System and writes
data-reduction programs to analyze AEGIS
tests. SPECTRM, the AEGIS dynamic simu-
lation, and MEDUSA, the AEGIS

operations analysis simulation, have

been important system engineering tools
throughout the AEGIS Program. Currently,
a major group project is the design and
development of a battie group simulation.
Contact him at;

Missile and Surface Radar

Moorestown, N.J.

TACNET: 224-2426

graphic output showing ship position, radar
and missile coverages, and the trajectories
of attacking air targets. The battle-group
simulation will be the simulation group’s
first program that will allow users to create
input by interacting with data on the screen
of a graphic CRT terminal.

PROTONS provides an effective means
of evaluating and exercising the simulation
techniques leamed and developed over the
past eight years. The ultimate models to
be included in the final version of the bat-
tle-group simulation have not been deter-
mined, but the discrete-event architecture,
and the tools developed to facilitate their
use, ensure that this program will easily be
developed to meet simulation needs.

Conclusion

Discrete-event simulations of complex weap-
on systems have been successfully applied
to a variety of problems for the past eight
years, The discrete-event architecture is well
suited to model complex weapon systems
that are composed of many elements inter-
acting with the environment and attacking
forces. Techniques and software developed
by the Naval Systems Department simula-
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tion group make initiation of new simula-
tions much easier than previously. Although
only weapon systems have been discussed,
discrete-event simulations have been widely
used for transportation, logistics, and traf-
fic-control problems.

Anyone designing or analyzing complex
systems with many elements and interac-
tions can beneficially use the methods dis-
cussed in this paper. All of the software
discussed is operational on the DEC 2060
computer system, and the calendar man-
agement and list-handling subroutines have
operated on the RCA IBM 370/168. More-
over, since all programs are written in
FORTRAN, their conversion to other sys-
tems would not be difficult. MEDUSA
has been operational on UNIVAC, IBM,
and CDC computers, and SIMATR has
been converted to operate on UNIVAC,
CDC, and Honeywell computers.

Discrete-event simulations of complex
weapon systems have been successfully used
for system design, algorithm design, test
design, test analysis, predicting system per-
formance, evaluation, requirements speci-
fication, operations analysis, mission analy-
sis and education. Without simulation, the
myriad weapon-system parameters that

were varied for these analyses would have
required many more years of engineering
manpower.
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G.W. Suhy

Digital interface simulation
for large system development

Techniques used to simulate critical hardware-software
interfaces are essential to cost-effective development and test

of very large real-time systems.

Abstract: Digital real-time interface
simulation has become an important tool
in developing large military systems, par-
ticularly those incorporating embedded
computer subsystems. This paper discusses
the application of interface simulation as a
means of reducing programming errors,
improving the technical quality of devel-
opmental systems, and significantly cutting
the cost and complexity of system lesting.

The in-process testing of incremental base-
lines has always been a vital part of the
development process for large electronic
systems. As these systems have made increas-
ing use of embedded computer subsystems,
the testing technology to support them has
also become increasingly computer-based.
This condition has led to the application
of digital interface simulation as a signifi-
cant element of large system development.

At RCA Missile and Surface Radar, the
extensive use of real-time interface simula-
tion technology has become an integral
part of the engineering development pro-
cess for the U.S. Navy's AEGIS Combat
System as well as for a range of other
advanced, highly computer-based radar sys-
tems. This paper describes the application
of interface simulation to this type of pro-
ject, with particular emphasis on the AEGIS
System because of its large size and the
diversity of technical issues involved.
:W?RCA Corporation
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AEGIS Combat System application

The Ticonderoga (CG 47) class of guided-
missile cruisers armed with the AEGIS
Combat System, is the primary protection
for the Navy’s aircraft carrier battle groups.

Armed to provide anti-air, anti-surface, and
anti-submarine protection, Ticonderoga and
her AEGIS Combat System create an “en-
velope of defense” for the battle group,

providing protection that ranges from below
the surface to the stratosphere. The quick
reaction and the high firepower of AEGIS
repel missiles and aircraft attacking from
very low and very high ahitudes. The ship
can counter a saturation missile attack,
making her one of the most survivable
cruisers ever built. Figure | is an overview
of the AEGIS Combat System.

AEGIS | one
TACTICALLOATA OIS NAk T AR cowTROL SEAHAWK /%
SYSTEM A
A Do
&
T | vemrcaTon \1/
ELECTRONIC :"': HARPOON % ?
T SVSTEM T ANISPY-IA missie
| RADAR SYSTEM @‘
- NAVIGATION PHALAMX | ooy
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T FIRE CONTROL
SYSTEM @

Fig. 1. Elements of the AEGIS Combat System. The AEGIS system includes a wide
range of sensor and weapons subsystems under computer control, all of which
must be extensively simulated prior to ship delivery.
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Development of the many computer pro-
grams required is a major part of the
AEGIS shipbuilding program. Hundreds
of thousands of lines of source code are
needed to control and process sensor infor-
mation, control the weapons systems, moni-
tor equipment status, and provide the crew
with a powerful and flexible command
and control capability. Major computer
programs must be developed and tested
before the equipment with which they inter-
face is fully available; frequent, and some-
times major, design changes occur after
the equipment becomes available; and the
entire development process involves large
numbers of subcontractors, all with differ-
ent approaches to equipment and comput-
er-program development.”

Tens of thousands of detailed test items
must be demonstrated in acceptance proce-
dures; the cost of personnel, aircraft, mis-
siles, and targets is prohibitive for all but
the final stages of testing. In this environ-
ment, the AEGIS Interface Simulator Sys-
tem filled a need for an affordable, highly
versatile test bed for the development of
the tactical computer programs.

Requirements

The general requirement for the AEGIS
Interface Simulator System (ISS) is to pro-
vide for each major computer-program ele-
ment (or group of elements) a real-time
interface simulation sufficiently realistic to
test each of the functions of that element
(or group of elements) over its entire range
of operating conditions. In addition to pro-
viding a realistic interface at each channel
of the computers in which the tactical
programs operate, other requirements are
that the ISS be reconfigurable for a wide
range of test cases using the same basic
programs, that it provide monitoring and
data recording at these interfaces, and that
it have a minimal dependence on special-
purpose equipment (that is, it must be able
to operate in an off-site computer labora-
tory without requiring special shipboard
equipment).’

Design

The computer programs that control the
ship equipment are organized into three
major groups, or tactical elements: AN/
SPY-1A (radar), Command and Decision
Mark 1 (C&D), and Weapons Control
System Mark 1 (WCS). Three ISS con-
figurations were developed to support test-
ing of each of these elements individually
(Fig. 2). Other configurations were then

40

Table I. Principal and derivative ISS configurations.

Number of

Configuration Purpose computers
AN/SPY-1A Stand-alone testing of AN/SPY-1A tactical element 2
C&D Stand-alone testing of C&D tactical element 3
WCS Stand-alone testing of WCS tactical element 3
CcDSs Testing of combined C&D and WCS tactical 3

elements
System Testing of all three tactical elements 5
SPY/VLS Testing of AN/SPY-1A tactical elements, modified 2

for vertical launching system*
CcDV Testing of combined C&D and WCS, modified 3

for VLS
System/VLS Testing of all three elements, modified for VLS 5
ORTS Testing of the Operational Readiness and 2

Test System
GDC Testing of the Gyro Data Converter 2
ADG Testing of the special display system 1
ADG/MAC ADG ISS reconfigured to operate in MAC 1

maintenance computer

Scenario generator  (See text)

* VLS is a missile launching system to be used in later AEGIS ships.

derived for combinations of these groups
and for special functions, as shown in Ta-
ble I. The ISS consists of approximately
320,000 lines of source code in the CMS-
2 language and operates on one to five
Univac AN/UYK-7 computers, depending
on configuration.

In addition to meeting its functional
requirements, the design of the Interface
Simulator System had to resolve a number
of other computer-program engineering is-
sues such as cost. host equipment charac-
teristics, precision, communications, and
maintainability. These issues were resolved
in the form of two fundamental design
trade-offs: cost and processing time versus
modularity, and degree of off-line prepro-
cessing versus precision and real-time
resources.

In the first relationship, there are strong
design and maintainability advantages in
writing a set of functionally decoupled mod-
ules (or subprograms) rather than one very
large program. Separate modules are eas-
ier to design, and it is easier to isolate the
source of a system problem when each
module performs only a specific function.
As module sizes become smaller, however,
the total number of modules increases, as
do the computer time and memory over-
head for inter-module communications, con-
figuration control, and maintenance. Fur-
thermore, as retroactive design changes are
made throughout the system’s later life,

the number of modules that must be mod-
ified for each change also increases. The
nature of this relationship is shown in Fig.
3. The optimum modular partitioning for
ISS was one module for each equipment
subsystem to be simulated; one module for
each group of equipment subsystems would
have been the next higher step, and one
module for each function of each subsys-
tem, the next lower. This resulted in 80
modules with an average module size of
about 4,000 lines of source code.

The second relationship, on-line versus
off-line processing, is somewhat more com-
plex. Many of the phenomena being simu-
lated (such as radar reflections from mul-
tiple targets in an electronic counter-
measures environment) occur very quickly,
on the order of several microseconds, and
the tactical programs expect to receive these
signals at very high data rates. However,
the analytical solution of these complex
electromagnetic phenomena by a simula-
tor requires computer time that is several
orders of magnitude greater than that re-
quired by the tactical programs to measure
and process these signals. Furthermore,
many of these external electromagnetic
events cause the simultaneous reporting of
signals by sensors having widely different
characteristics; as a result, the simulator
must synchronize events precisely.

The use of very-high-speed computers
and special-purpose analog simulators to
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Fig. 2. Principal configurations in the AEGIS Interface Simulator System. The ISS is
designed to be reconfigurable to support the AEGIS system at various stages of

development.

solve the computational loading and mul-
ti-sensor synchronization problems was not
economically feasible. The general approach
to solving these problems within available
resources required that the simulation pro-
cess operate on standard Navy computers
and be divided into a real-time phase and
an off-line preprocessing phase. During the
preprocessing phase, all external events are
analyzed in terms of the effects they would
have on all possible sensors. This informa-
tion is re-<computed in discrete steps across
both the range of normal operating condi-
tions and the length of the test case, and

then stored to a high-speed disk file.
During the real-time phase, this data is
read back from the disk. corrected for fac-
tors not predictable in advance, and trans-
mitted to the tactical computer programs
Examples of the types of corrections per-
formed in real-time are: suppression of
signals for sensors that are not enabled:
interpolation of the data to the value of
the real-time clock: response to human
operator actions; and generation of flight
data for manually initiated missile launches.
A roughly inverse relationship exists be-
tween the sizes and other cost factors of

Suhy: Digital interface simulation for large system development
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Source code
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Syttem cott taotore

Initial design,
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1/Module size

Fig. 3. Program modularity trade-offs. Op-
timum subprogram module size depends
on communications and maintenance
costs as well as functional partitioning.

Size and running time
of real-time program

Size and running time
of off-line program

Disk storage

Cost factors

50% 100%
Fraction of computing done off-line

Fig. 4. Real-time/off-line trade-offs for
a single configuration. For an interface
simulator, cost savings can be achieved
by preprocessing functions that use an
off-line program.

the real-time and off-line programs, as
shown in Fig. 4. The size of the real-time
program tends to decrease in a linear fash-
ion (down to some absolute minimum) as
functions are transferred to the off-line pro-
gram. The size of the off-line program
increases linearly with the increase of pre-
cision and the addition of relatively un-
coupled functions. A point is reached. how-
ever, where the further transfer of real-time
functions to the off-line process requires a
high degree of anticipation and the com-
pounding of interrelated conditions. At this
point, the size of the off-line program in-
creases much more rapidly.

M the interpolation required in real-time
were halved, the size of a target trajectory
file produced off-line would double. How-
ever, transference of the responses to opera-
tor actions from the real-time program
would require the anticipation of all pos-
sible operator actions and would increase
both size and computing time by far more
than a proportional amount. In manually
initiated missile launches, for example, the
computation of a missile trajectory is af-
fected by firing doctrine, launch time, type

41




Size and running time
of single real-time
program

\
L Size and running time

\__.—of multiple real-time
Y programs
\\
Size and running time
of off-line program
~

Cost factors

-—
——

Disk storage

50% B0% 100%
Fraction of computing done off-line

Fig. 5. Real-time/off-line trade-offs using
a common off-line program with multi-
ple real-time programs. Additional cost
savings can be achieved by sharing a
general off-line program with several
real-time programs.

of missile selected. and the cumulative effect
of previous launches. In addition, the flight
path is altered in real-time by guidance
data from the Weapons Control System.
The anticipation of all possible flight paths,
even with real-time interpolation, would
involve the generation of hundreds of dis-
tinct trajectory files. This kind of nonlin-
earity determines the optimum trade-off
point between real-time and off-line
processing.

Within the functional requirements and
equipment characteristics of the AEGIS
ISS. the optimum fraction of total process-
ing for a given configuration to be per-
formed off-line was 50 to 60 percent. How-
ever, an additional economy was realized
due to the inherent similarity among the
data files used by different sensor simula-
tions. For example, although the AN/
SPY-1A phased-array radar, the RDP (Re-
mote Digital Plotter) radars (Fig. 1), and
the AN/UPX-29 IFF (identification, friend
or foe) radars have different ranges, data
rates and interface formats, they have sub-
stantial overlap in the targets that they can
detect simultaneously. By modifying the
off-line program to produce a disk file (or
“scenario™) general enough to be used by
all sensors and by adding simple discrimi-
nation logic to each of the real-time pro-
grams to suppress inapplicable data, it was
possible to have one off-line program driv-
ing several real-time programs.

When seen in this light (that is, the cost
of one off-line program versus the total
cost of several real-time programs), the
trade-off point shifts considerably in the
direction of a more sophisticated off-line
program (Fig. 5). In the case of the ISS,
the trade-off point was approximately 80
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percent. An additional advantage in this
common-data-file approach is the consid-
erable simplification of intersensor synchron-
ization processing in the real-time programs,
The use of several files would have required
compensation logic for the timing differ-
ences between the different disk drives.

Development

Once the overall design of the Interface
Simulator System was completed. a number
of detailed development policies were estab-
lished to assure the technical integrity and
timely availability of the ISS to the overall
AEGIS Program. With the large number
of programmers participating in the devel-
opment of the ISS and the number of tac-
tical programs (peak levels of 30 and 150,
respectively), it was necessary to assure
that the two efforts did not drift apart. A
parallel development plan was established
wherein both projects were governed by
the same set of formal interface design
specifications and supported by the same
system engineering team under similar, con-
current schedules.

Because of the large size of the Interface
Simulator System (approximately 320,000
lines) and the contract requirements, spe-
cial attention was given to a formal devel-
opment methodology. Use of CMS-2 (a
structured, higher-order Navy computer lan-
guage) was specified, as were formal doc-
umentation and coding standards, and ap-
proval of both the initial designs and the
subsequent changes by external review
teams. High productivity levels were sup-
ported with the extensive use of program-
ming tools such as a text editor, source-
code indenter, automatic flowcharter, file
management system, and module-level test
drivers. Additional cost and reliability ad-
vantages were achieved by using the same
types of computers, the same operating
systems (one for real-time and one for off-
line operation), and the same configura-
tion control and quality assurances servi-
ces as those used by the tactical program-
ming team.

With Ticonderoga due to commission
early in 1983, the role of a sophisticated
interface simulation facility in reducing costs
and assuring technical integrity is well estab-
lished. Throughout the AEGIS engineer-
ing development process, the Interface Sim-
ulator System provided a number of valu-
able functions:

« A controlled and repeatable means for
meeting thousands of detailed formal test
requirements;

« An effective bridge between system-level
test engineers and software developers:;

« Early identification of the specification
conflicts;

» A basis for long-term *“‘regression
testing™;

» A basis for testing otherwise untestable
“worst-case” tactical scenarios;

« Reduced dependence on equipment-avail-
ability schedules; and

» A major system-performance and confi-
guration-control mechanism.

The Interface Simulator System will con-
tinue to be used to support the production
of subsequent Ticonderoga-class ships and
will be used at the Naval Surface Wea-
pons Center, Dahlgren, Virginia, to repro-
duce, investigate, and correct problems en-
countered in ships at sea as well as to
support any computer-program retrofitting
of future ships.

Related applications

Interface simulation techniques have been
applied to the development of a wide range
of systems such as conventional and phased-
array radars and also for such non-radar
applications as communications, electronic
countermeasures, navigation and fire con-
trol. The best candidates for interface sim-
ulation are systems having an embedded
control computer (or distributed system of
computers) and well-defined digital inter-
faces to peripheral equipment. The most
economically advantageous applications of
interface simulation have been for real-
time target generation, particularly for co-
ordinated multiple-sensor systems.

Another benefit has been the resolution
of hardware/software specification conflicts.
Since an interface simulator, although itself
a computer program, is usually derived
from the specifications of the external equip-
ment being simulated, the operation of the
embedded computer against the simulator
can often reveal specification errors or am-
biguities that, although minor in a techni-
cal sense, can be very costly to isolate and
correct at a later stage.

In several projects in the early stages of
design, simulators are being used to replace
some equipment subsystems and are being
operated with the embedded control com-
puter to optimize computer timing as well
as overall system performance. This is being
done at an early enough stage to allow
modifications in both the hardware and
software designs. In other systems, analyti-
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cal simulators, which are much larger and
usually do not operate at real-time speeds,
are used to develop detailed critical test
cases. These test cases then are repro-
grammed as input data to interface simula-
tors, thereby combining the analytical pow-
er of a large computer with the real-time
characteristics of an interface simulator.

Although many of the early applications
of interface simulation were developed with
Independent Research and Development
funding, this approach is gaining increas-
ing acceptance and many newer system
projects now require the use of interface
simulation for development and acceptance
testing as part of the development contract.

Summary

The use of digital real-time interface simu-
lation has repeatedly demonstrated both
technical and economic benefits in the devel-
opment of large system projects. Thousands
of programming errors have been detected,
precisely documented, and corrected using
such simulations. It also has enhanced flexi-
bility of project scheduling, has improved
technical quality by providing precise and
reproducible external conditions, and has
greatly reduced many of the costs asso-
ciated with full-system testing. As the size
and complexity of modern electronic sys-
tems continue to grow, interface simula-
tion will be a required engineering tool for
large system development.

References

1. F.5. Adams, "Putting AEGIS to Sea,” RCA Engi-
neer, Vol. 26, No. 7, p. 40 (July/August 1981).

2. C.N. Falcon, “Testing of Systems Developed by the
Incremental Build Method.™ Proceedings, of the Work-
shop on Software Testing and Test Documentation,
Fu. Lauderdale, Florida (December 1978).

3. G.W. Suhy. “Real-Time Simulation as a Tool for
System Development,” Ninth Annual Modeling and
Simulation Conference Proceedings, University of
Paisburgh (Apnl 1978).

The Engineer’s Notebook

Design and simulation of an intelligent missile seeker

Julius Hayman
RCA Government Systems Division
Cherry Hill, N.J.

An intelligent tracking algorithm for an infrared (IR) imaging
missile seeker and a method of evaluating its performance in
simulated flight is described in this paper. The missile is a fire-
and-forget, shoulder-launched, anti-tank weapon that lofts to an
altitude of approximately 150 meters and then homes toward
the target using proportional guidance. A gyro-stabilized seeker
is precessed to the target by pointing comands. These pointing
commands are developed from an imaging sensor by a new
tracking algorithm that performs well in a highly cluttered back-
ground.

Both the tracking algorithm design and its evaluation in mis-
sile flights were accomplished using a digital computer simula-
tion called HUGGER. This program includes a 6-degree-of-free-
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dom missile simulation, a detailed seeker model, a three-dimen-
sional model of the target, a two-dimensional background model,
and the intelligent tracking algorithm.

Sensor images of the target as seen from the missile are
formed on a 64 X 128 pixel IR-charge-coupled-device (CCD)
array. The algorithm uses three features within the image: inten-
sity, spatial frequency, and internal gradients. A multithresh-
olding technique is also described which enhances target dis-
crimination.

Tactical missiles of today have definite operational limitations
because seekers are apt to lose track of targets against highly
cluttered backgrounds. Such scenarios may be attacks on tanks
against a background of roads, foliage, rocks, and so on; attacks
on aircraft against a varied cloud background; or attacks from
above on aircraft against a terrain background.

The next generation of tactical missiles may use imaging
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trackers because of the large amount of information in the image
that can be utilized by an intelligent tracking algorithm. The
algorithm is used to separate (or segment) the target from a clut-
tered background, and then track this target. With the advent of
small, solid-state CCD arrays and high-speed microprocessors, it
is now practical to utilize imaging seekers with intelligent track-
ing algorithms. Two recent developments by RCA initiated this
study. These are the ATMAC microprocessor developed by the
Advanced Technology Laboratory,' and the Schottky-barrier
IR-CCD array developed by the David Sarnoff Labora-
tories™ “ * *. The latter is a 64 X 128 element staring array that
operates in the 3- to S-micrometer wavelength band with excel-
lent uniformity, sensitivity, and dynamic range. Since it uses sil-
icon technology, its potential production economy appears very
attractive.

Computer simulation work verifies successful operation of a
missile system containing the IR-CCD array and tracking algo-
rithm. Both the tracking algorithm design and its evaluation in
missile flights were accomplished using program HUGGER whose
scenario is illustrated in Fig. 1. Simulated sensor images of the
target as seen from the missile are displayed with the tracking
gates superimposed to assist in the algorithm development. HUG-
GER also provides each corresponding segmented image so that
the algorithm’s discrimination capability can be evaluated.

The intelligent tracking algorithm encloses the target with an
adaptive gate and uses multifeature and multithreshold tech-
niques to achieve superior image segmentation. A rectangular
adaptive gate is servoed to enclose only the target vicinity, there-
by eliminating most of the extraneous background clutter within
the field of view. A background gate is located around the
perimeter of the centroid gate. There are three features extracted
from the image: intensity, spatial frequency, and internal gra-
dients. Each of these features is thresholded using the multi-
threshold technique where up to four thresholds are automati-

Fig.1. Program HUGGER is

a simulation of a missile- \‘k

cally employed, allowing target pixels to be identified if they are
above, below, or in between background value bands. Enhance-
ment is accomplished by changing the intensity value of a pixel
if either the spatial frequency or the gradient value is over its
respective threshold. The enhanced intensity feature is then finally
thresholded to provide the segmented image. Adaptive gate size,
seeker pointing commands, as well as missile guidance signals,
are all derived from this segmented image.

During terminal navigation, when the target fills the entire
field-of-view. the adaptive gate tracker is replaced by a centrally
weighted correlation tracker. Correlation is performed along a
horizontal strip for yaw and a vertical strip for pitch. These two
strips form a cross at the center of the field-of-view. Because of
the high rate of range closure and the high-line-of sight rates
during terminal flight, correlation must be done on a frame-to-
frame basis. Drift due to the range closure effect is minimized by
centrally weighting each correlation strip. This low-drift algo-
rithm is used until impact.

The simulations showed that the 64 X 128 CCD array, with
the intelligent algorithm, would track targets in high clutter and
could be made to consistently impact the upper surface of a tank
where armor is at a minimum. Program HUGGER was an
excellent tool for evaluating algorithm modifications during devel-
opment. Algorithms can be compared over the same trajectory,
with the same target intensity and background statistics. It would
be impossible to do this otherwise, even with actual hardware.
HUGGER also allows target tracking with realistic line-of-sight
rates and accelerations, range closure, and a changing aspect
angle.

Program HUGGER

Program HUGGER is a modularized FORTRAN program con-
sisting of 18 subroutines. Output data is provided in the follow-

ACTUAT
target system in which a = ( MISSIL (6 DOF)

seeker forms images on a 64
x 128 CCD array. The missile ==
is guided by a processing of
these images with an intelli-
gent tracking algorithm.,
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Fig.2. Simulated images of a tank are formed by Program HUGGER
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x5 Ruciudin
with the track-

ing gates superimposed. These images are formed every 1/60 second and are

processed to obtain missile guidance commands.

ing formats:
« Printed data, where 56 variables are printed.
« Striplot, where up to 10 variables are plotted against time.

« Segmented image plots, indicating target/nontarget pixels as
determined by the intelligent algorithm.

« Image plots (Fig. 2), where images formed on a 64 X 128
IR-CCD array are plotted using a gray scale.

Considerable detail is modeled in HUGGER so that many
parts of the missile system can be studied during flight. To elimi-
nate excessive execution time, the following options are provided:

« A detailed gyro-stabilized seeker with gimbal friction, magnetic
torques and input errors, or a simplified seeker model.

« A three-dimensional target model, the tracking algorithm and
image forming, or a simple point target.

« An optical point-spread function, or a simple one-ray-per-pixel
projection.

» Image plots, or no image plots.

« Steady or gusty wind or both, or no wind.

« A moving or a static target.

Conclusion

Recent military events have vividly shown that precision guided
missiles are so effective they have changed concepts of modern
warfare. With the advent of small, high-speed microprocessors
and solid-state staring arrays, this trend will continue. Imaging
seekers which utilize considerably more information concerning

the target area are now possible. The recently-developed Schottky-
barrier IR-CCD sensor array has the potential for being econom-
ically produced since it is fabricated using conventional silicon
technology. Intelligent tracking algorithms can be implemented
economically with software using presently available digital
Processors.

Development of intelligent algorithms can be accomplished
efficiently by using computer simulations of the entire missile-
target system. All the variables of the algorithm and missile are
observable, and both the target intensity and the background
statistics are controllable.
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ANA radio-frequency circuit
simulation and analysis

Computer-aided circuit simulation permits the development and
adjustment of circuit elements without costly construction of

a laboratory model.

Abstract: Computer-aided design ena-
bles the radio-frequency (RF) or micro-
wave circuit designer to design a circuit
and modify element placement quickly and
cost effectively. The ANA program,
designed primarily for minicomputers, is
an extremely simple approach to com-
puter-aided design of linear RF circuits.
With it, coding of elements and their
placement is in the form of easily renem-
bered English acronyms. The simulator
circuit can be modified by use of an on-
line conversational mode.

Computer-aided design provides the mod-
ern radio-frequency (RF) circuit designer
with a tool that allows initial circuit ele-
ment and topology design and adjustment
before a laboratory model is constructed.
In addition to providing a means for pro-
ducing designs quickly and at a relatively
low cost, computer simulation allows the
creation of circuits that may have been
impossible to design otherwise.

The circuit analysis program, ANA, can
be used to design and model RF circuits. It
is easy to usc because it requires only a
simple description of elements and circuit
topology. The circuit and desired outputs
can be modified easily by means of a sim-
ple conversational mode that does not re-
quire editing of data files. Data, or com-
plete circuits, may be written to or from
disks or magnetic-tape-based libraries. This
program was expected to be used on a con-
tinuous, daily basis; it was, therefore, writ-
ten to be run on a minicomputer rather
than a large, time-shared mainframe com-
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puter with prohibitive running costs. ANA
is presently installed on HP 1000 computers
at RCA Laboratories, Princeton; Astro-E-
lectronics (AE), Princeton; Missile and Sur-
face Radar (MSR), Moorestown; Consu-
mer Electronics Division (CED), Indiana-
polis; RCA Laboratories Limited, Zurich;
and Advanced Technology Laboratories
(ATL), Camden.

Table I. Two-port element descriptors.

Describing the circuit elements

Circuit elements may be divided into three
categories, as shown in Tables I, II, and 111.
The coding for each element type consists
of either a simple acronym or, as in the case
of impedance and admittance, the symbol
conventionally used in texts. The simple
two-port elements shown in Table | have
fixed parameter values.

Element type Coding* Parameters
R L C
O—wb——o |——O0 Series RLC SRLC  R({}), L(nH), C(pF)
R
AAA
o é e —O Parallel RLC PRLC  R({)), L{nH), C(pF)
.4
R !
O—W—‘D—O Impedance Z Zo(). R/Zy, X112,
G
4B ———0 Admittance Y Yol}). G/Y,,, B/Y,
K
c - - o .
L1 ; E L2 Coupled coils (of03 K, L1(nH), L2(nH)

O }—0
%

Oeif™™  Je—ig)

Transmission line

TL F(GHz),ATT(dB/A), Z,5(1)), L{deg)

* Only the first two characters for SRLC and PRLC are needed.

+ For ideal transformer, use K = 1 and then L1:L2 is square of turns ratio.
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Table Il. Tabulated element descriptors.

Element type Coding Parameters
S11 S12 p—0
Scattering parameters SPara S11, 21, §12, S22
0—4{ 521 s224—0 (MAG, ANGLE)
o—y11 y12p—0
Y-parameters YPara Y11,Y21,Y12,Y22
y21 y22 —O [MAG (mmhos), ANGLE]
o— 8
ABCD-parameters ABcd A.B,C, D
o0—C o—o (REAL, IMAGINARY)
o—w—{1—+—0
R jx Tabulated impedance TZ Z,(0), R/Z,, X/Z,
(o, —0
G} ﬁjs Tabulated admittance  TY Yol13). G/Y,o, B/Y,,
?

O
l‘| | L_o Reflection coefficient

GAmma (MAG, ANGLE)

The tabulated elements of Table II consist
of parameters that must be tabulated for
each frequency specified in the analysis.
The impedance and admittance elements
may also be tabulated for each frequency
by specifying TZ or TY, instead of Z or Y.
This feature is useful if the impedance or
admittance of an element is known as a
function of frequency, but is difficult to syn-
thesize as R, L, and C values.

The multiports of Table Il cannot be
connected as two ports, but must always be
connected in a nodal configuration. This is
discussed in the next section.

Describing the circuit topology

A complete circuit description requires spec-
ification of how its elements are connected
and what its input and output are. This
may be accomplished by using standard,
two-port connections such as cascades,
branches, and paths, or by specifying nodes
to which the elements are connected.

Two-port connections

Two-port connections are preferred over
nodal connections because they are compu-
tationally more efficient. A designer ac-
customed to two-port connections can usu-
ally generate a complete circuit mentally,
because node numbers do not have to be
remembered.

Cascade connections. Cascade of ele-
ments is easily accomplished by specifying
that the element is connected as either a
series element (SE) or a parallel element
(PE), as shown in Fig. 1.

Branch connections. Branch connections
are used if more complex networks are
connected in series or parallel with the
main signal path. A series branch is initiated
by the symbol SB, while a parallel branch
is initiated by the symbol PB. All topology
and element entries following these sym-
bols are considered part of the branch until
the symbol EB, indicating the end of branch,
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is used. Entries following EB are consi-
dered to be main-path entries. A second
branch may not be imbedded in a branch.
Branch connections are shown in Fig. 2.

Path connections. Path connections indi-
cate circuit elements that depart from the
main path, but eventually return (unlike
branches that just terminate). The symbol
PP indicates the beginning of a parallel
path. All entries following this symbol are
considered part of the first path until either
another PP or an SP for series path is
entered. The second path symbol indicates
the end of the first path and the beginning
of the second. All entries following the
second path symbol are considered part of
this second path until a third path symbol is
entered. This third symbol indicates the end
of the second path and the rejoining of both
paths into a single or main path. Note that
the first- and second-path symbols do not
have to be the same. For example, the
main path can break into two parallel
paths. initialized by PP. The two paths can
then be reconnected in a series path rather
than a parallel connection, in which case
the second- and third-path entries are SP.
The second- and third-path entries must
agree because they are the same conditions.
The four possible path combinations are
shown in Fig. 3.

An incomplete path will cause the ter-
minal to show an error message when an
analysis is performed.

Structure connections. Series structures
(SS) and parallel structures (PS) are identi-
cal to the path connections. except for
name and symbol. The change in nomen-
clature is to allow imbedding a structure
within a path, or vice versa, without ambi-
guity. For example, if a series path were to
be imbedded (or nested) within a parallel
path, initiation of the parallel path would
be PP. Initiation of the imbedded series
path would be SP. Unfortunately, the use
of SP as the second-path entry indicates the
conclusion of the origin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>