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Adherence of Phosphor Screens 

S. Larach and J. E. McGowan 
RCA Laboratories, Princeton, NJ 08540 

Abstract-Properties of poly(vinyl alcohol), faceplate glass, phosphor 
slurries, and their interfaces have been investigated with re- 
spect to wet adherence of phosphor screens. Through mea- 
surements of bulk and interfacial properties, correlations of 
wet adherence were found with hydrodynamic parameters of 
PVA, using a new method of measuring adherence. The rea- 
sons for etching and precoating are discussed, and evidence 
is presented for a model involving glass surface silanol link- 
ages to the PVA precoat, as well as the effects of the hitherto 
unsuspected glass -surface impurity layer due to etching. It has 
also been established for faceplate glass that each successive 
phosphor slurry sees a different surface in screening, the 
largest change being for the second phosphor deposited. 

1. Introduction 

While the PVA-dichromate system has been employed for many 
years in the world-wide production of color television picture tubes, 
there is a great paucity of data on the basic aspects of phosphor 
adherence to kinescope face -plates, a matter of great importance. 
The present study had three major aspects: (1) to determine the 
effect of various slurry additives on adherence, (2) to investigate 
basic screen adherence properties, in order to understand the pro- 
cesses that occur in screening and (3) to improve, if possible, the 
screen adherence of phosphors. 

In defining the problem, we must also define the terms used. By 
adherence, we mean a phosphor screen, dot or line, or portion 
thereof, that is bonded to a glass substrate. This does not basically 
refer to particle -to -particle bonding, but rather the bonding of a 
particular geometric ensemble of phosphor particles to the glass 
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substrate and, in particular, to faceplate glass. In addition, we de- 
fine wet adherence as the adherence of a phosphor screen after it 
has been wet with water, i.e., after development. 

The experimental procedure for screening is shown in Fig. 1. The 
left portion of the figure involves the preparation of the substrate, 
faceplate glass (FPG); the right portion of the figure involves the 
chemical aspects of the phosphor slurry preparation/sensitization. 
The center portion of the figure treats of the screen application steps 
through developing, followed by wet adherence measurement by the 
jet impingement method. Although these steps are inter -related, 
different areas were studied by different techniques in order to ar- 
rive at a coherent model for phosphor screening. 

Over the years, much practical lore has accumulated on phosphor 
screen adherence. Some beliefs are due to individual engineer's pref- 
erences or prejudices, but some constitute facts, more -or -less agreed 
to by the industry. These are usually based on invaluable experi- 
ence in turning out a product, although the basic reasons for their 
use may have remained unknown. Two examples of these areas are 
etching of the substrate and use of a pre -coat prior to screening. 
These two particular aspects are part of the research reported here. 

WASH 
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Fig. 1-Experimental procedure for screening. 
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PHOSPHOR SCREENS 

In examining the overall problem of phosphor screen adherence, 
we decided to treat it as an interacting multi -interface system. As 
shown schematically in Fig. 2, we can consider a system comprising 
a section of faceplate glass (FPG) which forms interface 11 and 12, 

although some work was also done on the other interfaces. The way 
Il is affected by the etching treatment must also be considered in 
this analysis. The research involved the bulk properties of PVA, the 
FPG surface as affected by the etchant, the properties of dilute so- 
lutions of PVA, as used in precoats, and the surface chemistry of 
the glass. These will be treated in separate sections, as they relate 
to adherence. 

The phosphor slurry was reduced eventually to its basic compo- 
nents: phosphor, PVA, water, and dichromate. This slurry is re- 
ferred to as a model slurry in this paper. Phosphors were obtained 
from the RCA Video Components and Display Div., and the sensi- 
tizer was sodium dichromate. A variety of techniques were used in 
characterizing the various aspects of adherence. 

This program was divided into several phases, the first of which 
was to evolve a method for studying adherence quantitatively. 
Adhesion measurements are best summarized by a statement from 
Mittal1 in a 1981 paper: "Although there is available a cornucopia 
of adhesion measurement techniques, there is no single technique 
which can be recommended in all situations and which can be ac- 
cepted by all those who have the need to measure adhesion. As a 
matter of fact, one should use that particular technique which best 
stimulates the usage conditions of the coating." 

2. Adherence Measurements 

To measure wet adherence of our screens, a zero -degree -spread jet 

Iq 

I// 
P VA - PRECOAT A 

I2 

I1 

FACEPLATE GLASS 

Fig. 2-Phosphor screen interfaces. 
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impingement method was evolved. In this method, a jet of de -ionized 
water, at a constant temperature, is impinged at constant pressure 
and time onto a wet screen that is a constant distance from the jet 
nozzle. The area of the screen lost is determined either by micro- 
scopic measurement or photometrically, and the wet adherence is 
taken as being inversely related to the area, i.e., the smaller the 
area of screen lost, the larger the adherence -factor. Relative adher- 
ence factor can then be plotted against some variable to compare 
the effects of changes or treatments. 

An advantage of this method is that, with certain simplifying 
assumptions, values of "absolute" adherence can be calculated in 
ergs cm -2. Both relative and absolute values of wet adherence are 
given in this paper. For a thorough treatment of the theory of par- 
ticles in a water stream, the reader is referred to A. D. Zimon.3 

Fig. 3 shows a typical plot for screen adherence, where the total 
jet kinetic energy is plotted against hole area for different times. 
The slope of the line yields a value of 8 x 107 ergs cm -2 for wet 
adherence for this particular case. Using a different and much more 
elaborate technique, Deryagin2 has reported adherences of about 6 
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Fig. 3-Plot of kinetic energy vs hole area 
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PHOSPHOR SCREENS 

x 105 ergs cm -2 for polymer films on germanium surfaces, and 
about 3 x 104 ergs cm -2 for chlorinated PVC films on glass. 

The mini -screening apparatus of Fonger4 was adapted for use in 
our work (see Fig. 4). The holding tank for water was connected by 
1/4 -inch stainless steel tubing to a pump capable of delivering water 
at 65 PSI at 21°C. The outlet side of the water pump was connected 
by 1/2 -inch stainless steel tubing leading to a Jenkin's Bros. gate 
valve and an in -line valve reduction train. This consists of three 
Wilkerson brass reduction valves connected by 1/4 -inch stainless 
steel tubing to a Unijet zero -degree -spread nozzle, solid stream tip 
number 000019, 0.12 inch in diameter, obtainable from the 
Spraying Systems Co. Each Wilkerson reduction valve had a 0-60 
PSI gauge attached to it. 

To activate this system, the pump is turned on with a gauge 
pressure reading of zero. The Jenkins gate valve is opened, and by 
means of the speed control of the pump, the reading on the U.S. 
Gauge connected above the pump is raised slowly to 50 PSI. The 
first in -line Wilkerson reduction valve (nearest the pump) is set at 
46; the next reduction valve is set at 40 PSI; and the last reduction 
valve before the solid stream nozzle is set at 36 PSI. The distance 
from the target is 7.8 cm. The target, a phosphor screen deposited 
on a 3 x 3 inch faceplate glass, is exposed and developed and set 
in an aluminum enclosure which is approximately a one foot cube, 
open at the top and at the jet -stream delivery side. The stream is 

permitted to hit the target for a given length of time. The target is 

dried under an IR lamp and the hole in the target is measured. 
Nineteen -inch panels of virgin faceplate glass (FPG) cut into 3 x 

3 inch sections were used in our experimental work. The glass sec - 

U. S. Gauge 
50 Psi 

Speed Control 
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Pump 

Wilkerson 
Gauges 

psi psi psi 
46 40 36 

Jenkins Valve 

-Water Inlet 
Unijet Nozzle 

Fig. 4-Zero-degree-spread jet system for measuring adherence. 
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tions are first washed with a mild soap (Ivory) and warm tap water, 
followed by thorough rinsing in warm tap water and then in de - 
ionized water. The glass is then etched in a 5% solution of ammo- 
nium bifluoride for 30 seconds and rinsed with de -ionized water. 
While the glass is still wet, a precoat consisting of 0.5% poly(vinyl 
alcohol) at a pH of 2.7 is applied. This is done by using a Manostat 
syringe to apply the PVA uniformly over the glass surface. During 
PVA application, the glass rotates on a spinner at 7 rpm under a 
filtered 250 watt IR lamp 7 inches above the platform. As soon as 
the 2 ml of precoat PVA has been applied to the glass, the speed of 
rotation is increased to 96 rpm and the precoat is dried under the 
IR lamp for 5 minutes. Ten ml of phosphor slurry containing sodium 
dichromate is applied over the dry precoat on the faceplate glass at 
7 rpm. The phosphor slurry consisted of the following formulation: 

PVA 540/Total Solution = 3.5% 
Phosphor/PVA = 12.5% 
Pluronic/Phosphor = 0.1% 
Phosphor/Total = 30% 

After the phosphor slurry has been applied, the speed of rotation is 
increased to 96 rpm and the coating table holding the spinner is 
tilted to an angle of 105°. The IR lamp is attached to and tilts with 
the spinner, maintaining a constant normal incidence to the 
coating. The drying time is six minutes. 

After the drying has ended, the spinner is tilted upright and the 
3 x 3 inch glass section is removed. For the purpose of adherence 
testing, the entire phosphor coating is exposed using a bare 200 
watt Hanovia X2 -Hg compact -arc -lamp without a collimator. The 
source -to -coating distance is 13 inches, while the time of exposure 
can be varied. 

After exposure, the coating is developed using 47°C deionized 
water for 30 seconds at 15 psi over a distance of 1 foot. 

While still wet, the coating is set in the aluminum enclosure for 
adherence testing and is subjected to the jet stream. The coating is 
dried and the hole in the coating is measured for adherence calcu- 
lation. 

Fig. 5 shows wet adherence measurements for an RCA green - 
emitting phosphor, made into a model slurry, as a function of ex- 
posure time. We see, in this semi -log plot, the monotonic increase 
of adherence with exposure time until at about 55 seconds exposure, 
there is a sharp increase in adherence. Two reactions are pro- 
ceeding; one at shorter exposure times with a specific rate constant 
of 4 x 10-4 sec -1 and a half-life of 1.7 msec, and one at larger 
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200 

100 

10 
10 20 30 40 50 

EXP. TIME (sec.) 

Fig. 5-Wet adherence vs exposure time. 

60 70 

exposure times with a specific rate constant of about 2.7 x 10-3 
sec -1 and a half-life of about 25.6 msec. 

3. Bulk PVA Properties 

Poly(vinyl alcohol), PVA, is utilized in our manufacturing process 
both as a pre -coat and as a major part of the phosphor slurry, which 
is sensitized with dichromate. By poly(vinyl alcohol), we are refer- 
ring to a material structured of linear molecules, A-(CH2OH)P B, 
where p is the degree of polymerization and the end groups A and 
B are small and chemically inert. The average sterochemistry of 
the vinyl groups with respect to each other determine the tacticity. 
However, PVA, usually prepared from poly(vinyl acetate), may 
have minor structural complications because of side reactions. 
These are summarized in Table 1.10 While PVA easily loses water 
when heated at 60°-100°C, this does not provide complete dehydra- 
tion. Complete dehydration of PVA has been reportedll by exposure 
for at least five hours to a suspension of calcium hydride in dry 
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Table 1-Main Structural Deviations from -(CH2CHOH)P Contained in 
Poly(vinyl alcohol) (From Pritchard10) 

Structure 

Likely percent 
of monomer 

units Cause 

-CH(OR)CH2- 
-CH(OCOR')CH2- 

-CH2CHOHCHOH- 
CH2CH2CHOH- 

-CH2COH(CH2CH1 
OH-)CH2CHOH- 

-CH(CH2CHOH-)- 
CHOH- 

-CH2COH(CH2CHOH 
CH2CH2OH)- 

-CH2(C-O)- 
Cyclic ketal in single 

chains, and ketal 
between two chains 

Ether formation in single 
chains, and cyclic ether 
in single chains 

-CH=CH- 

- CH2OH end group 

-CH(OH)X end group - CHO end group 

Interchain cyclic acetal 

0-5% (ethers) 
0-5% (ethers) 

0-2%, vinyl esters 
0-'/2%, vinyl 

ethers 
0-0.05% 

0-0.05% 

Not easily 
estimated 

0-0.02% 

Very small 

Very small 

High if polymer 
heated in right 
medium 

(Ideal) 

0-50% 
0-50% 

Not easily 
estimated 

Chemically incomplete 
reaction during 
transformation to PVA 

Occasional condensation of 
monomer by a -carbon 

Elimination of hydrogen 
atoms at a- and 13 -carbon to 
start branches 

Termination of chain end by 
abstraction of hydrogen on 
penultimate a -carbon 

Oxidation by air, especially 
catalyzed by bases 

Condensation of oxo and 
hydroxy groups 

Dehydration 

Dehydration 

Termination of propagating 
chain by abstraction of 
hydrogen atom 

Termination by X 
Elimination of catalyst 

residue as HX, from end 
group; especially HX = 
RCO2H, ROH, or H2O 

Condensation of aldehyde 
group at end of chain with 
hydroxy groups 

pyridine at 117°C. The resultant dehydrated product was a black 
polymer containing long chains of CH = CH groups. To examine 
some of the basic properties of PVA, particularly in dilute solutions 
(the PVA concentration in precoats is about 0.5% or less), measure- 
ments of viscosity were carried out. 

3.1 Viscosity 

If force per unit area, s, causes a layer of liquid at a distance x from 
a wall to move with a velocity, v, the viscosity, ,q, is defined as the 
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ratio between the shear stress s and the velocity gradient av/ax or 
rate of shear, y, so that 

tiU 
S = c3x-Tly [11 

A very convenient way of characterizing PVA materials is by 
their viscosities. In our work, we used an Ubbelohde viscometer, in 
a thermostatted water bath held at 30°C. The initial PVA solution 
was less than 1% and was diluted after each run to the desired 
concentration. Thermal equilibrium times were taken into account 
throughout the experiments, and triple -distilled water was used as 
a reference standard before each measurement. 

Specific viscosities, Tlsp, were obtained from flow -time measure- 
ments for water and for the PVA solutions. The intrinsic viscosity, 
[,n], is defined* as 

[n] = him (Thp/c), 12] 

c is the PVA concentration in grams per deciliter. 111 was 
obtained by extrapolating the reduced viscosity, (asp/c) plotted 
against c, to zero concentration. Fig. 6 illustrates our results for 
three different PVA materials. 

Intrinsic viscosities characterize polymers where the individual 
polymer molecules can be taken as being essentially free of the 
influence of neighboring molecules. Again, this is of particular in- 
terest for PVA precoats, since dilute solutions are involved. We can 
compare our intrinsic viscosities with the intrinsic -viscosity -molec- 
ular -weight relationships reported for aqueous solutions of PVA. 
Using the equation of Matsumoto and Ohyanagi5, 

IT1130`C = 4.25 X 10-4 Mw0.64 131 

we obtain [,q] = 1.7 for PVA540, compared to our 1.08, which is in 
good agreement considering our nonfractioned PVA. 

Elias6, in a review of available data, has published the equation 

1T1125T = 7.31 x 10-4 Mw0.616 141 

found to apply over a range of PVA molecular weights from 104 to 
5 x 105. Using the Elias equation, we obtain [Ti1250c = 0.97 for our 
PVA540 material, again as against our [n] = 1.08 value, at 30°C. 

Note that [9] is given in deciliters per gram, and is sometimes referred to as the 
"limiting viscosity number" in the revised clasification system recommended by 
IUPAC in 1952. 
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Fig. 6-Reduced viscosity vs concentration of PVA. 

The effect of temperature on the intrinsic viscosity of PVA in water 
has been given by Sakurada7 as 

= 1.07-(T-2o>no[1i12o°c [5] 

It should be noted that the Elias equation is of the form En] = 
Kitt, in which K and a are constants, usually independent of mo- 
lecular weight but dependent on the nature of the polymer. This 
type of equation is usually referred to as the Mark-Houwink equa- 
tion, and is applied to fractionated polymers or to polymers with 
narrow molecular weight distributions. 

3.2 Basic Hydrodynamic Parameters 

Flory8 has evolved a hydrodynamic equation for the intrinsic vis- 
cosity of long -chain molecules in solution. In its simplified form, 
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Table 2-Hydrodynamic Parameters of Selected Samples of Poly(vinyl alcohol)(8) 

Degree of Degree of 
PVA Type Polym. Hydration <r,2>'12 <s2>92 Rti b) l.Lpu 

540 2400 0.88 393Á 160Á 96Á 1.08 
125 1800 0.996 336 137 82. 1.02 
523 1800 0.88 307 125 75 0.69 

(a) appropriate corrections in molecular weight made for residual acetyl groups. 
a') / is taken as 0.6 for the calculation of Rh. See Garvey, Tadros, and Wilson, J. 
Colloid of Interface Sci. 19 (1), 64 (1974). 

this equation states that 
¡r2 

[1] = I M'/2, [6] 

where d) is a fundamental constant, which for linear vinyl polymers 
is 2.1 x 1021; M is the molecular weight, and < 02> is the mean 
square end -to -end distance of the unperturbed polymer chain. Thus, 
(02)'/2 constitutes the root -mean -square end -to -end distance. Other 
basic hydrodynamic parameters* include <S2>'/2 radius of gyration, 
or the rms distance of the elements of the chain from its center of 
gravity, and Rh, the hydrodynamic radius. 

The hydrodynamic parameters were calculated for PVA Samples 
540, 125 and 523, and are given in Table 2. 

It is interesting to compare our results for PVA 540, the material 
presently in use, to published values of other, similar, materials. 
Thus, Koopal and Lyklema9 worked with Wacker (FRG)PVA of 0.88 
degree of hydrolysis and molecular weight similar to our PVA 540. 
Their chain dimension parameters for this material are 380 A for 
the end -to -end distance, and 160 Á for the radius of gyration, both 
in excellent agreement with our findings. As a check, the viscosity 
characteristic of PVA 540 at several concentrations were deter- 
mined with a Ferranti direct -reading viscometer at various shear 
rates. The viscometer was first calibrated against NBS viscosity 
standards. Experimental values were converted to specific viscosi- 
ties, which were then corrected to zero shear rate by extrapolation. 
Plots of corrected viscosities against concentration gave a value of 
1.1 for the intrinsic viscosity of PVA 540, as against 1.08 deter- 
mined by the generally accepted Ubbelohde method. 

* See, for example, F. W. Bilmayer, Textbook of Polymer Science, Interscience, NY, 
1964. 
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3.3 Rheology of Phosphor Slurry 

We have investigated the rheology of our green phosphor model 
slurry, using a Ferranti-Couette viscometer, which has the advan- 
tage of being able to operate at varous shear rates, which is ideal 
for this examination. We found the viscosity of both resist and 
slurry to be Newtonian, i.e., following Eq. I l Í. Results are shown in 
Fig. 7, with shear rate (sec -1) plotted against shear force (dynes 
cm -2). There was no evidence of thixotropy. 

4. Pre -coat Properties 

The role of the PVA pre -coat (PC) in screening has been a puzzling 
one for many years, although the necessity of a PC seems to have 
been well established. In our experiments with faceplate glass, we 
found the PC to be essential to good adherence. We therefore in- 
vestigated some of the properties of the PC layer as they relate to 
adherence. 

600 
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(1-020180N) 
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Fig. 7-Shear rate vs shear force for resist and green slurry. 
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4.1 Adherence and Pre -Coat Hydrodynamic Parameters 

While it is difficult to correlate adherence with "normal" PVA pre - 
coat parameters, such as degree of polymerization and degree of 
hydrolysis, an excellent correlation is arrived at with hydrelynamic 
parameters. Fig. 8 is a plot of relative wet adherence against the 
hydrodynamic parameters derived in Table 1. We see that wet ad- 
herence increases with increasing hydrodynamic radius, radius of 
gyration, and the rms end -to -end distance of the unperturbed 
polymer chain. Thus, from Fig. 8, PVA 540 used as á pre -coat yields 
a phosphor screen with ten times greater wet adherence than PVA 
523 and about 50% greater than PVA 125. It is of interest that in 
going from a degree of hydrolysis (DH) of 88% for PVA 523 to a DH 
of 99.6% for the PVA 125, both with the same degree of polymer- 
ization, the wet adherence increases seven -fold. It is apparent there- 
fore that the hydrodynamic parameters of the PVA pre -coat are of 
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Fig. 8-Relative wet adherence vs hydrodynamic parameters. 
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great importance in determining the wet adherence of the phosphor 
screen. 

4.2 Tacticity 

Natta12 devised the nomenclature which describes stereoregular 
configurations involving an asymmetric carbon. The isotactic con- 
figuration results when all the substituent groups R are above or 
below the plane of the main chain. If the R -groups lie alternately 
above and below the plane, the configuration is syndiotactic, and if 
the R -positions are random, the configuration is atactic or hetero- 
tactic. Fig. 9, from Finch13, shows an example for PVA, where the 
polymer chain is shown in the fully -extended planar position. 

Infrared spectra are used frequently to measure tacticity, and we 
have determined the tacticities for several of our PVA samples. 
Table 3, from Pritchard10, after Liang and Learson14, lists some 
characteristics of the IR spectrum of PVA. The bonds occurring at 
916 cm -1 and at 850 cm -1 are characteristic skeletal vibrations of 
syndiotactic and isotactic PVA, and the percent tacticity is often 
arrived at from empirical relationships between tacticity and the 
ratios of the optical densities at these cited frequencies. For ex- 
ample, Kennedy and Willcockson15 give: 

Percent syndiotactic = 60 (D916/D850) + 7 17] 

Percent isotactic = 59-78 (D916/D850) [81 

H H H H H 

Isotactic -^^ C -CH ,-C -CH _-C-CH,-C-CH2-C,^^ 
I I I I I 

OH OH OH OH OH 

Atactic 

H OH OH H H 
I I I I I -C -CH-C-CH2 -C -CH_-C-CH2-C-^- 
I I I I I 

OH H H OH OH 

H OH H OH H 
I I I I I 

Syndiotactic -MC-CH2-C-CH2- i -CH2- i -CH2-C^^ 
OH H OH H OH 

Fig. 9-Tacticity of PVA. 

350 RCA Review Vol. 45 September 1984 



PHOSPHOR SCREENS 

Table 3-Characteristics of the Infrared Spectrum of Poly(vinyl alcohol)'° 14 

Frequency (cm-') Relative intensity Likely assignment 

3340 Very strong O-H stretching 
2942 Strong C-H stretching 
2910 Strong C-H stretching 
2840 Shoulder C-H stretching 
1446 Strong 0-H and C-H bending 
1430 Strong CH2 bending 
1376 Weak CH2 wagging 
1376 Medium C-H and O-H bending 
1320 Weak C-H bending 
1235 Weak C-H wagging 
1215 Very weak 
1144 Medium C-C and C-0 stretching 
1096 Strong C -O stretch & 0-H bend 
1087 Shoulder 
1040 Shoulder 
916 Medium Skeletal 
890 Very weak 
850 Medium Skeletal 
825 Shoulder CH2 rocking 
640 Medium, very broad 0-H twisting 
610 Weak 
480 Weak 
410 Weak 
360 Shoulder 
185 Very weak 
135 Very weak 

Table 4 lists the tacticities and carbonyl for several of our PVA 

samples. It should be noted that (1) the sum of the tacticities is not 
exactly 100% due to the formulae utilized; and (2) the tacticities of 

the presently used pre -coat, PVA 540, are not greatly different from 

those of PVA 125 and PVA 523. Differences are found in syndi- 
otactic and isotactic content compared to PVA 425. It is interesting 
that PVA 125, nearly 100% hydrolyzed, showed no detectable car- 
bonyl; PVA 425 (about 96% DH) had 0.8% carbonyl; while PVA 523 

and PVA 540 each 88% DH), had about 4% carbonyl. Carbonyl con- 

tent varies inversely with DH. 

Table 4-Tacticities and Carbonyl for Several PVA Samples 

PVA D.H. Syndiotacticity ISO. Hetero. Carbonyl 

125 99.6% 25% 36% 40% 0 

425 95.5% 20% 42% 38% 0.8 

523 88% 25% 36% 40% 4.0 

540 88% 25% 37% 38% 3.7 
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4.3 Pre -Coat Hydroxyl Content 

Results obtained on PVA powders, using FT -IR, 100 scans, showed 
a relationship between wet adherence and the hydroxyl concentra- 
tion of the pre -coat PVA. This is shown in Fig. 10 for green phosphor 
model -slurry where three different pre -coats were used, all at 0.5% 
concentration and all at pH 2.7. These results corroborate the find- 
ings that for this PVA group of low (79,000) molecular weight, wet 
adherence was found to increase with increasing degree of hydro- 
lysis. It should be noted, however, that the molecular weight of the 
PVA appears to have an over-riding effect on wet adherence. Thus, 
the 88% -hydrolyzed PVA 540 showed a wet adherence nearly an 
order greater than the corresponding low molecular weight PVA. 
Again, the important aspects are the hydrodynamic parameters. 

It is interesting to compare the hydroxyl concentration results 
with those for wet adherence as a function of degree of hydrolysis, 
as shown in Fig. 11, for 0.3% PVA. We see, as expected, the sharp 
dependence of wet adherence with degree of hydrolysis for these 
three samples of PVA. Note that the lowest adherence, 22 in -2, is 

160 

40 

- =1_---_ -- __-_-- -- ----_ 
__ :-=_.-_-_-=-=-_: -M 79,000 -- _ =r -' --= --------P -n-M-1800 
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Fig. 10-Wet adherence vs pre -coat hydroxyl concentration. 
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Fig. 11-Wet adherence vs degree of hydrolysis of PC-PVA. 

for PVA 523 with DH = 0.88 and DP = 1800. For PVA 540, with 
DH = 0.88, but with DP = 2400, the adherence was about 200 

in -2, as indicated at the top of the figure. 

4.4 Adherence and Pre -Coat pH 

Wet adherence has been found by Harper16 and by Wilcox17 to be 

affected by pH. This effect was corroborated here, and was also 
found to depend on the type of glass substrate. Samples of model 
slurry were prepared, and the wet adherence was checked for 0.5% 

PVA at various pH's, using FPG or soda lime glass (SLG) sub- 
strates. 

It is seen from Fig. 12 that wet adherence for FPG substrates 
increases with decreasing pre -coat pH, the effect leveling -off as pH 
= 1 is reached. The screen quality is poorer at the very low pH pre - 
coats, however, and we chose pH = 2.7 for our pre -coat work. The 

adherence of 4 screens made on SLG shows better adherence than 
those on FPG; adherence levels off at a pH of about 3.7 and remains 
constant to at least pH = 1.5. Other differences due to glass type 
will be described in the sectión on glasses. 
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Fig. 12-Wet adherence vs pre -coat pH. 

4.5 Pre -Coat Thickness Effects 

A series of screens was prepared where the pre -coat thickness was 
varied by using PVA solutions of different concentrations, all at pH 
2.7. Tallysurf measurements18 were made of the PVA pre -coat 
thickness, and a plot of PVA concentrations versus PC thickness is 
shown in Fig. 13 for 0-4% PVA. The relative adherence plotted 
against PVA pre -coat thickness, for thicknesses from 0.18 µm to 
about 1.5 p.m is shown in Fig. 14A. There is a striking decrease in 
adherence in going from 1800 to 2000 A, followed by a constant 
adherence to at least 1.5 p.m thickness of pre -coat. Further inves- 
tigations of even lower concentrations of pre -coat PVA yielded re- 
sults shown in Fig. 14B. Here, we have plots of wet adherence 
versus percent PVA concentration in the PC for SLG and FPG. The 
optimum PVA concentration was about 0.3%, which, for FPG, 
yielded a PC thickness of about 600 Á. Thickness points of 400 Á 
and 1000 Á are also indicated. Again, the SLG substrates show 
greater adherence. Knowing the area, density of solid PVA, and the 
volume (0.08 nm3) and the cross-sectional area of a PVA segment 
(0.2 nm2) from the work of Koopal and Lyklema9, it can be calcu- 
lated that the optimum pre -coat thickness consisted of about 200 
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Fig. 13-PVA concentration vs PC thickness. 
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monolayers. Our work also indicated a retention of 3.9% for PVA 
pre -coat after spin-off. Apparently, there is an optimum pre -coat 
thickness for maximum adherence, again involving interfaces 1 and 
2. Yakhinin20 has reported that forming an adsorbed layer of PVA 
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Fig. 14A-Relative adherence vs PC thickness. 
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Fig. 14B-Wet adherence vs pre -coat PVA concentration. 

decreased the contact interaction between a glass plate and 45 µm 
particles of rutile. 

4.6 /-Potential 

A potential difference exists between the surface of a particle and 
the bulk solution because of a charge density localized in the plane 
of its surface. Since the system as a whole is electrically neutral, 
this surface charge is balanced by an opposite equal excess ionic 
charge in the liquid phase that will concentrate in the vicinity of 
the particle surface. 

When such a system is put in an electric field, the particles move 
toward the oppositely charged electrode, the counter ions moving 
in the reverse direction. The particle velocity increases with the /- 
potential of the particle. Thus, by using an electrophoretic mobility 
apparatus, we can derive c -potentials. 

The greater the /-potential of a particle, the greater the repulsive 
force between it and similar particles. If two such high / particles 
are driven together thermally or mechanically, they will tend to 
separate in spite of van der Waal's forces tending to bind them 
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together. This could conceivably be of importance in such screening 
characteristics as porosity, line definition and cross -contamination. 

The Micromeritics Model 1202 Electrophoretic Mass Transport 
Analyzer is capable of measurements under very high solids loading 
conditions. With this instrument, we determine the average particle 
electrophoretic mobility: 

..S WA 
VE 

ti d>(1 - (b)(pp - PL) 
[91 

where VE is the mobility, -SW is the mass difference, i is the current, 
t the time, A the specific conductance, 4) the volume fraction of 

dispersed matter, and p is the density of the particle (p), or of the 
liquid (L). 

The zeta -potential is then calculated from the Smoluchowski 
equation relating / to electrophoretic mobility, viscosity ri, and di- 

electric constant Dr: 

= v 

(47rii) 
Dr 

or, in the case of our instrument, 

4rT(AW)X-q 

ti (1) (Pp - PL)DT 
. 

[101 

Since our 3 x 3 inch FPG slides could not be accommodated in 

the apparatus, faceplate glass was crushed and ground to a powder. 

Blank FPG had g = +4 to +6 mV. However, FPG which had been 

etched (5% NH44F) and washed had / = + 130 mV, while etched, 

washed, and PVA-coated FPG had / = + 73 mV. This was the first 

indication that the adsorbed ions due to etching of the glass im- 

parted a highly positive zeta -potential to the FPG, which is reduced 

but remains highly positive after adsorption of small amounts of 

PVA from the 0.5% pre -coat. Fig. 15 illustrates the effect on the 

zeta -potential of increasing amounts of PVA. While this particular 
curve was obtained for pre -pigmented red -emitting phosphor, sim- 

ilar results were obtained with green. This Y919F Fe203-coated red 

phosphor has a specific surface area of 0.350 m2gm - 1; the total 
phosphor area was 15.75 m2. 
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Tadros21 has published on the variation of zeta -potential with 
concentration of PVA adsorbed on an organic substrate and has 
obtained similar shapes, which he explains by invoking the mac- 
romolecules having a flat configuration which leads to thicker ad- 
sorbed layers. This will cause a shift in the shear plane toward the 
solution, leading to a lowering of zeta -potential until it reaches a 
limiting value. 

Koopal and Lyklema9 investigated the adsorption of PVA on 
silver iodide by double layer measurements using PVA samples 
similar to PVA 540. They report that the first 0.15 mg/m2 adsorb 
in trains or flat loops; PVA in excess of this amount is adsorbed as 
loops. A detailed analysis of this first layer found there were twice 
as many trains as loops. 

Garvey et al.23 have compared different adsorbed layer thick- 
nesses of PVA on polystyrene latex particles. For a 0.87 hydrolyzed 
PVA (Mu, = 67,000, <S2> = 117 A, Rh = 67.5 A), they report an 
effective thickness of the adsorbed PVA layer of 380 + 50 A. It is 
interesting to compare this value for a PVA with small hydrody- 
namic factors and molecular weight with our value of 600 A for the 
optimum PVA pre -coat thickness for adherence. 

4.7 Adsorbed PVA 

Examination of the green phosphor slurried in PVA showed, by the 
boric acid -iodine method of Zwick19, that PVA is adsorbed onto the 
phosphor particles. This analytical method, highly sensitive for 
small amounts of PVA, was extended to larger amounts. A typical 
calibration curve is shown as Fig. 16, and Fig. 17 shows an adsorp- 
tion curve for PVA in pre -pigmented red -emitting phosphor; axes 
are given in y-PVA per millimole Y2O2S:Eu, and y-PVA per square 
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Fig. 16-Calibration curve for PVA adsorption. 

meter surface area of phosphor. Similar results were obtained for 
green phosphor. 

While one may speculate about a negative -c particle coated with 
PVA impinging on a positive -c FPG substrate to provide initial 
sticking, our measurements indicate that the FPG is even more 
positive without the pre -coat. However, our adherence tests show 
adherence failure without the pre -coat. Zeta -potentials by them- 
selves, therefore, do not provide a complete explanation, but do con- 
stitute an important aspect of adherence, particularly with respect 
to the FPG. 

In polymers and in glass, adhesion is believed to involve func- 
tional groups with large group dipole moments.2 One could then 
have good adherence due to the asymmetrical electron density dis- 
tribution in the contact zone, leading to an electrical -double -layer. 
Table 5 gives some pertinent values for several materials. 

In the reactions of organic molecules with the molecules of a sub- 
strate, the major factors are the electronic processes that occur in 
the molecules and in the contact zone. If an asymmetric electron 
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E 

a 

density distribution occurs, with a double layer being formed, then 
the charge density o- can be defined as 

a = en, [ 121 

where n is the number of donor -acceptor pairs. The electron nega- 
tivity series for functional groups in order of decreasing electron - 
donor properties is 

Donor 
NH2>OH>OR>OCOR>CH3>C6H3>halogens>COOR>CO>CN 
Acceptor. 

Usually, the most reactive group in a polymer is the hydroxyl. 

5. Glass Substrates 

It became apparent during the course of our investigations that the 
nature of the glass substrate was of great importance to the adher- 

Table 5-Group and Total Dipole Moments2 

Polymer MW 

Group Dipole Moment 
(x10-18) 

Total Dipole Moment 
(x 

Vinyl acetate 86 1.75 1.75 
Ethyl acetate 88 1.86 1.86 
Polyvinyl acetate 24,000 1.71 28.7 

60,000 1.68 44.4 
Polystyrene 12,900 0.08 0.89 

42,900 0.09 1.83 
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ence process. Therefore, some work was done on glasses, particu- 
larly face -plate glass. 

Glass is generally thought of as an amorphous material, having 
a random network structure23, pure silica being a continuous, 
random, three-dimensional polymer. Glasses also contain additives 
(impurities) that seem to reduce the melting point and viscosity, to 
control expansion, improve durability, and to prevent crystalliza- 
tion. Our FPG also contains lead for x-ray protection. The nature 
of the surface of a glass is controlled by the melt temperatures, 
volatiles lost during the melting step, volatiles lost during the hot - 
forming step, water vapor absorbed during forming and cooling, 
hydrocarbons from lubricating oils, and impurities from dies during 
the pressing cycle. 

As discussed in previous sections, we noticed a difference in ad- 
herence between soda lime glass and faceplate glass. Since SLG 
could not be used in our CTV picture tube process, we concentrated 
on FPG. 

5.1 Surface Hydroxyl (Silanol) Groups 

It is well known that glass has surface hydroxyl groups.23 The con- 
centration of such groups can be increased by strong acids or hot 
strong ammonia. That such silanol groups are involved in adher- 
ence was shown by two experiments: 
(1) FPG was washed in hot, concentrated ammonia, followed by the 
normal wash, pre -coat, slurry and developing. The adherence was 
found to be equivalent to the HF-etched control. 
(2) FPG was etched in the normal fashion, after which surface sil- 
anol groups were removed by hexamethyldisilazine (HMDS), a well 
known method for removing surface hydroxyl groups.25 In this 
method, 

(CH3) SiNHSi(CH3)3 + ROH -> ROSi(CH3)3, [ 13] 

so that the surface hydroxyl is converted efficiently to trimethylsilyl 
groups.26 Complete screens made in this fashion showed, on devel- 
oping, excellent lateral coherence but no adherence to the FPG, 
sliding off the glass as a complete coherent screen. We find then 
that the wet adherence of screens is related to the glass silanols. 

There is general agreement in the literature on glass that there 
are spectroscopic changes as glass is dehydrated and re -hydrated. 

RCA Review Vol. 45 September 1984 361 



Thus, if a glass is heated above 450°C, the hydration process is not 
easily reversible, and the reaction is: 

OH OH O 
I T > 400°C A 

Si -O -Si > Si -O -Si [14l 

where the OH's are so-called vicinal hydroxyl groups. 
Fig. 18 indicates the possible mechanisms involved in etching and 

pre -coating. Part (a) shows dehydrated vicinal surface hydroxyls. In 
part (b), the formation of silanol groups on the surface is due to 
etching. Part (c) shows the pre -coat PVA layer applied to the glass 
surface, and Part (d) indicates the oxygen -bridge bonding of pre - 
coat to glass surface. 

This figure does not take into account the ions leached from the 
glass by the etchant and the interfacial results cited later in this 
report. 

5.2 Leaching Impurities from Faceplate Glass 

Faceplate glass slides, cut from the same faceplate, were leached 
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(b) 

lc) 

(d) 
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OH OH OH OH 
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Fig. 18-Model for etching and pre -coating. 

362 RCA Review Vol. 45 September 1984 



PHOSPHOR SCREENS 

overnight in triple -distilled water in plastic containers for 0.5, 1.0, 
2.0, and 4.0 hours. Runs included blanks, unwashed FPG, washed 
and etchd FPG, and washed, etched, and pre -coated (0.5% PVA) 
FPG. Samples of the water were then analyzed by optical emission 
spectrometry and atomic absorption.24 The results are summarized 
in Table 6. 

We see from Table 6 that etching serves to release a number of 
ions from FPG and that the concentration leached out after etching 
is time -dependent. The effect of the pre -coat is interesting in that 
pre -coating after etching results in lower leached ion concentrations 
in every case, even at the high (4 hour), leach time. Silicon is 
striking in that it is absent in the etched-precoated FPG but present 
in the etched FPG. It is felt that the leached ions are partially 
complexed by the PVA and silanols thus resulting in lower concen- 
trations in the leach water. Relz et al.27 have reported on the fixa- 
tion of metal complexes on glasses. 

Results of our experiments indicate the possibility that glass im- 
purity ions are also involved in adherence. A possible model to ex- 
plain our results at this point is shown in Fig. 19. Here, FPG has 
been etched to give surface silanol groups and impurity ions M. 
These impurity ions could be coordinated betwen glass silanols and 
PVA hydroxyls of the pre -coat at interface I1 (see Fig. 2). Other 
impurity ions could then coordinate between hydroxyls of pre -coat 
PVA and of phosphor particle PVA, as in interface 12 of Fig. 2, thus 
resulting in screen adherence. As will be discussed later, this is not 
the complete model. 

5.3 Interfaces 

For the exploration of interfaces (particularly I1 and I2) as they 
relate to tube processing steps in particular, we chose to investigate 

Table 6-Leachable Impurities From Faceplate Glass and the Effect of Etching and 
Pre -Coating 

FPG 
Time(hrs) Blank 

Unwashed Washed/Etched Wash/Etch Precoat 

0.5 1 2 4 0.5 1 2 4 0.5 1 2 4 

Ba(ppm) 1 - 10 10 0.3 0.3 1 2 
Sr(ppm) 12 12 60 60 10 10 12 12 
Si(ppm) 2 2 2 10 6 - - - - 
Mg(ppm) 0.3 0.3 0.3 0.3 2 100 100 300 300 2 10 50 100 
Ca(ppm) 60 60 300 300 15 15 100 100 
Al(ppm) 6 6 120 120 6 6 30 30 
Pb(ppm) 20 20 200 200 - - 50 50 
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Fig. 19-Impurity ions in adherence. 

contact angles. A commercial type Roué -Hart contact angle instru- 
ment was used, where advancing and receding angles could be 
studied as a function of tilt angle. Specially -prepared water was 
used as the fluid, and drops were obtained reproducibly from a cal- 
ibrated Teflon microsyringe. 

Contact Angles 

More than 150 years ago, Young proposed treating the contact angle 
of a liquid on a solid as a result of the equilibrium of the drop under 
three surface tensions, the liquid -vapor interface (yLv), the solid - 
liquid interface (ysv), and the solid -vapor interface (ysv), as shown 
in Fig. 20. The Young equation is 

ysv - YSL = yLv COS 0, [ 151 

where 0 is the contact angle. 
Since glass is a "high energy surface" (i.e., high specific surface 

free energy) and organics have low specific surface free energies, 
organics would be expected to spread on glass, as there would be a 
large decrease in the surface free energy of the system. We can thus 
consider the interfaces of Fig. 2 as a high-energy surface (FPG), on 
which is a low -energy surface (pre -coat), on which is another low - 
energy surface (phosphor PVA), which, in turn, has been deposited 
on a high-energy surface (phosphor). 

The critical surface tension, ye, of PVA solid is 37 dynes cm -1 as 
reported by Scholz et aí.28, who also found ye to be between 40-45 
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Fig. 20-Contact angles of a sessile drop. 

dynes cm -I for a series of hydroxyl -rich surfaces of the starch - 
polymer type. Spreading on low energy surfaces is caused by the 
lowering of the surface tension of water. Since ye of solid PVA is in 
the neighborhood of 37 dynes cm -1, the solution will spread on the 
surface of PVA whenever a wetting agent lowers the surface tension 
of water below that level. 

Processing and Contact Angle 

Faceplate glass was taken through the steps of washing, etching, 
and pre -coating with 0.5% PVA 540, and contact angles were de- 
termined for each step at various tilt angles. The results were in- 
dependent of tilt angle, and are shown in Fig. 21. It is seen that 
washed FPG has a contact angle of 30°. Etching the FPG decreased 
the contact angle to 10°, and pre -coating increased the contact angle 
to 28°. Continuing the same FPG through another wash, etch, pre - 
coat cycle, we see that the second wash increased the contact angle 
to 70°, the subsequent etch decreased the contact angle to 29°, and 
the following pre -coat and wash increased the contact angle again 
to 75°. Although only two processing cycles are shown in the figure, 
additional processing resulted in a repetition of these cycles. It is 
apparent that etching decreases the contact angle greatly, which is 
to be expected if the FPG surface is hydroxylated, and thus, becomes 
more hydrophilic. Pre -coating with PVA increases the contact 
angle, making the glass less hydrophilic. 

The first three steps of Fig. 21 correspond to the initial processing 
for the first phosphor in a CTV kinescope. This first phosphor slurry 
is applied, dried, exposed, and developed. At this point, however, 
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the FPG contact angle increases toward hydrophobicity (before the 
second phosphor slurry is applied). What happens to adherence? We 
investigated this by making blue screens and measuring the adher- 
ences for FPG treated to have 6 = 30° and O = 70°. We found 
adherence = 220 for 6 = 30°, and 156 for 9 = 70°, or a ratio of 1.41. 
The work of adherence on a surface, Wa, is given by 

Wa = -yL (1 + cos()) [161 

yL was measured with a DuNouy tensiometer; Wa30° was calcu- 
lated as 125.1 and Wa70° as 90.1, a ratio of 1.39. It would appear 
therefore that adherence of our phosphor screens is related to the 
work of adherence on the surface, which would therefore call for the 
smallest contact angle, which we obtain by etching the FPG. 

When we wash the pre -coat layer, 6 increases to 70° instead of 
decreasing to 10°, as it did after the first etching. This is interpret- 
able as further evidence that a hydrophobic layer exists in interface 
1, quite possibly contiguous to the glass as shown in Fig. 22. It may 
be formed by a coordinated metal-ion-PVA reaction, and there is 
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unreacted PVA on its surface. Washing the surface will remove 
interface IlB (Fig. 22), thereby exposing interface IlA. Subsequent 
etching might remove most, but not all, of lA, thereby decreasing 
6, but not to the 9 value of the original etched surface. It is of 
interest that recent work has appeared on metal in complexes with 
PVA.29 In terms of adhesion, partly-hydrolized PVA has been de- 
scribed for highly hydrophobic polymer surfaces.30 

6. Adherence as a Function of Processing Steps 

Our technique of measuring adherence by jet -impingement 3 x 3 

inch sections of phosphor screens on FPG enables us to examine the 
variation in adherence during the processing procedure. 

The adherence of dried pre -coat was measured by precoating a 
slide, drying it, and jet -impinging. The hole made by the jet is ren- 
dered visible by treating the slide with methylene -blue -dye dis- 
solved in methanol. This dye stains the PVA so that the hole is 
easily measured and the adherence calculated. Similar adherence 
measurements were made after the slurry was applied and dried, 
after exposure, and after development. The results are shown in 
Fig. 23. We see that pre -coat adherence is very low, and dried slurry 
adherence is only about 35% higher. Exposing the screen increases 
the adherence by a factor of fifty, but the developing step reduces 
it by a factor of three. Soda lime glass, while showing identical 
adherence for pre -coat and slurry, shows better adherence than FPG 
after exposure and after development. 

These results indicate the importance of interfaces I3 and 14 in 
the adherence procedure. For these cases, the dichromate sensiti- 
zation step becomes important in cross -linking the PVA and thus 
bonding the phosphor particles. Grimm et al.30 have discussed the 
photochemical reactions in a dichromated resist, and this aspect will 

AV I FPV 

Fig. 22-Coordinated metal -ion interface. 
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not be reviewed here. From our point of view, the sensitized PVA- 
phosphor slurry provides for inter -particle bonding, the first parti- 
cles of which form I2 (Fig. 2). 

7. Contact Characteristics of Model Slurries 

The contact properties of model slurries, prepared with PVA540, 
were investigated since these properties are important in commer- 
cial tube production. Tube simulation studies were carried out using 
FPG, which was washed, etched, pre -coated with PVA540, and 
dried.* Contact angles were determined on this surface for water 
and for pre -pigmented blue phosphor model slurry (surface tension 
= 40.2 dynes cm -1), which corresponds to the deposition of the first 
phosphor. This FPG substrate was then water -washed, corre - 

The abbreviated notation developed during this work would be: FPG/W/E/PC540/ 
D//. 
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Table 7-Blue Model Slurry Contact Properties 

Processing Steps Blue Slurry H2O 

8 WA 9 WA 

FPG/W,E/PC/D// 58° ± 3° 62 37° ± 3° 121 
FPG/WrE/PC/D/W/D// 39° ± 3° 72 66° ± 3° 94 

sponding to the developing step, and dried, giving a total history of 
FPG/W/E/PC54O/D/W/D//, and contact angles were again deter- 
mined for water and for the blue slurry, which now corresponded to 
the second phosphor layer. 

Consistent with the results shown in Fig. 21, the surface seen by 
the second layer of blue phosphor is more hydrophobic than that 
seen by the first layer of phosphor, so that the energy of wetting of 
the blue phosphor is different, depending on whether it is deposited 
as a first layer or as a second layer. Similarly, WA, the work needed 
to remove a film, increases as the surface becomes more hydro- 
phobic. These results are summarized in Table 7. Interestingly, the 
third phosphor deposition "sees" a more hydrophilic surface, per- 
haps due to build-up of PVA on the surface. 

It would appear from these results that the more hydrophilic a 
surface, the more "organophobic"; and the more hydrophobic the 
surface, the more "organophilic" as applying to the model phosphor 
slurry. 

Having investigated the contact angle of (blue) slurry, we ex- 
amined separately deposition of the resist component (PVA540) on 
pre -coats of PVA540 and PVA165. A comparison of the results 
shown in Table 8 with Table 7 shows (a) PVA540 resist acts in an 
identical fashion for contact angle, with PVA540 or PVA165 pre - 
coats and (b) that the contact angle is determined primarily by the 
resist portion of the slurry. The surface tension of the resist was 
measured as 39 dynes cm -1. 

Results shown in Table 7 indicate that the PVA pre -coated sur- 
face is hydrophilic, and organophobic. When the PVA pre -coated 

Table 8-Contact Angles of PVA540 Resist on PVA540 and PVA165 Pre -coats 

PVA540PC PVA165PC 
Processing Step e e 

FPG/W/D// 46° ± 3° 42° ± 3° 
FPG/W/E/D// 40° ± 3° 45° + 3° 
FPG/W/E/PC/D// 59° ± 3° 61° ± 3° 
FPG/W/E/PC/D/W/D// 45° ± 3° 42° ± 3° 
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surface is washed, the new surface becomes more hydrophobic and 
more organophilic to the blue slurry. While this might be due to 
acetyl groups on the PVA540 pre -coat, the results in Table 8 for 
PVA540 and for PVA165 show that this is not the case. 

What would be the effect of changing the type of PVA pre -coat 
on the contact angle of water? For these experiments, PVA165, D.H. 
= 99.7%, was used as the pre -coat. Results, including the previous 
PVA540 pre -coat for comparison purposes, are given in Table 9. 

It is interesting to note that for PVA165 the ratio of WA is 0.9, 
and the adherence ratio is 1. Similarly, for PVA540, the WA ratio 
is 1.3 and the adherence ratio is 1.4. 

8. Other Effects 

FPG Surface Additives 

Since the etching step appears to have two functions, silanol for- 
mation and release of impurity ions, experiments were performed 
where the FPG surface was exposed to a given ion and dried prior 
to pre -coating, thus eliminating the etch step. Fair adherences were 
obtained in this manner with an apparent correlation between ad- 
herence and the solubility product of the metal -ion -sulfide. That the 
green (sulfide) phosphor was necessary for adherence was established 
by applying resist (no phosphor) to the surface -treated unetched 
FPG. No adherence was obtained. With green slurry, adherence 
appeared. For the ions tried, the adherence order was: copper (S.P. 
of the sulfide 10-47) best, followed by cadmium (S.P. 10-29) and zinc 
(S.P. 10-23). 

Pre -Coat Additives 

We also investigated the addition of inorganic ions to the PVA pre - 
coat to provide a highly cross -linkable region at interface I1, the 
critical interface for adherence. Y3+ was used as the additive, since 
previous work here31 had shown it to have a cross -linking effect. 

Table 9-PVA165 and PVA540 Pre -coats 

PVA 165 PVA540 

0H2O WA ADH. HzO WA ADH. 

FPG/W/E/PC/DRY// 52° 108 115 37° 121 222 
FPG/W/E/PC/DRY/W/D// 40 119 115 66 94 156 
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Experimental results did indeed show an increased adherence for 
screens prepared with yttrium -doped pre -coats. Fig. 24 shows the 
yttrium -effect on the adherence of our green model slurry, the op- 
timum being at about 50 micrograms of yttrium. However, this 
effect was absent with slurry containing triethyleneglycol because 
the yttrium evidently complexed with the triethyleneglycol in the 
slurry, thereby becoming unavailable for crosslinking at the inter- 
face. 

Slurry Additives 

Triethyleneglycol (TEG) was investigated as an additive to our 
green model slurry. Using our standard procedure, namely, FPG/ 
W/E/PC/D//, we found that the adherence increased monotonically 
with increasing TEG, as shown in Fig. 25. It is believed that this 
particular effect can be accounted for by the increase in sensitivity 
found with the addition of TEG. Over the range of TEG/PVA cov- 
ered in our experiments, Fonger32 has reported a monotonic de- 
crease in threshold, T, also shown in Fig. 25. This increase in sen- 
sitivity produces an increase in adherence for a constant time (and 
intensity) of exposure. 

Aging Effects in Slurry 

During the course of these investigations, it was observed that 
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Fig. 24-Adherence vs pre -coat Y+3 concentration. 
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aging effects were taking place, i.e., adherence appeared to improve 
as our green slurry aged. This was examined in some detail, and 
the results are shown in Fig. 26 where we see that maximum wet 
adherence occurred after about six days aging. Such effects might 
be related to cluster growth in the slurry to an optimum size. Cau- 
tion must be observed in investigating aging effects, since other 
parameters may be operative. For example, aging in blue slurry 
showed a decrease in adherence that could be correlated with the 
effect of Mg" ions (used in the phosphor) on the hydroxyl ion 
concentration. This is shown in Fig. 27. 

Plasma -Treated Pre -Coats 

Plasma -treating the pre -coat could effect cross -linking. It might also 
effect the aldehyde and ketone concentrations in the PVA and the 
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Fig. 26-Adherence vs aging for green slurry. 
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proportion of high -molecular -weight polymer. Exploratory runs 
were made33 on PVA-precoated faceplate glass. Results are sum- 
marized in Table 10. 

In summary, a one -minute treatment with Ar or Ar + H2 plasma 
had no effect. However, extending the plasma time to ten minutes 
resulted in a large decrease in adherence for Ar-plasma, but in an 
increase for samples treated in Ar + H2 plasma. 

Pinning 

The availability of hydroxyls for bonding in a polymer molecule is 
of leading importance. If we consider the case of an ideal, uncoiled, 
linear PVA, we note that the hydroxyl unit repeats for every alter- 
nate carbon on the backbone. If we now consider such a PVA on an 
idealized glass surface (i.e., with a silanol for every surface silicon), 
we would have a matching hydroxyl ratio of PVA/glass of 1:2, or 
Nm 0.5. We can thus consider, for this case, that half the silanols 
are "pinned". 

Now consider more rigid polymers having hydroxyl groups, such 
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as hydroxyethylcellulose (HEC) and hydroxypropylcellulose (HPC). 
HEC has three hydroxy groups available per anhydroglucose unit 
of the cellulose. Due to steric considerations, two possibilities exist 
for "pinning", one with N - 0.2 and another with N,,, - 0.1. Using 
HEC as a precoat resulted in a screen adherence factor about six 
times worse than with PVA. It is interesting to compare that value 
to the ratio Nm'T^lNmEc which is 2.5 for one steric case and 5.0 for 
the second. 

For the HPC case, steric hindrance and hydrogen -bonding con- 
siderations show that essentially none of the hydroxyls would be 

available for silanol "pinning", and our adherence experiments 
show no adherence when HPC is used as a precoat material. 

Table 10-Plasma Treatment Effects on PVA-Precoated FPG 

Plasma Time (min) Adherence Ratio* 

Ar 1 1.00 
Ar 10 0.32 
Ar + H2 1 1.00 
Ar + H2 10 1.40 

* Ratio of plasma -treated sample adherence to non -treated sample. 
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The above data, together with our work on adherence as a func- 
tion of hydroxyl content, lead to important considerations: (1) hy- 
droxyaliphatics will yield higher "pinning" ratios than hydroxy- 
aromatics; (2) poly(vinyl alcohol), with a "pinning" ratio of about 
0.5 is a good precoat; (3) new precoats with pinning ratios greater 
than 0.5 should be explored. 

9. Discussion 

The wet adherence of phosphor screens to faceplate glass is a highly 
complex phenomenon involving many parameters, only a few of 
which have been described in this paper. The complexity is in- 
creased by the fact that many of the parameters involving adher- 
ence are not isolated but operate as interlinked systems. 

Our investigations involved mainly interfaces and their effect on 
adherence as changes were made. Thus, we have investigated the 
phenomenon of etching and its effect of the glass surface. Our find- 
ings that etching with NH4HF (or with NaOH) probably forms sur- 
face silanol groups, as well as releasing impurities from the glass, 
link well with the application of a PVA pre -coat whose hydroxyls 
can (1) react with the silanols to bond the precoat to the faceplate 
glass, and (2) form coordination compounds with the impurities. 
Other unreacted pre -coat hydroxyls react with phosphor particle 
PVA to bond such particles to the precoat. Interfacial chemical 
bonding has been discussed recently by Runge34 for the case of glass- 
polybutadiene joints. The experiments we report on etchless adher- 
ence by impurity addition are of interest, particularly as adherence 
appeared to be a function of the solubility product of the metal 
sulfide. This would indicate the possibility of diffusion of the metal 
ion through PVA interfaces to bond with surface sulfide of the phos- 
phor. VanOoij35 has reported on the mechanism of rubber -to -brass 
adhesion which he finds due to a thin film of cuprous sulfide formed 
on the brass surface, with sulfur atoms being transferred to rubber 
molecules, thus giving interaction adhesion. Our work has indicated 
an optimum pre -coat film thickness for adherence and VanOoij also 
reports film thickness effects in his work. It is possible that our pre - 
coat optimum thickness is the limiting thickness for diffusion of 
metal ions. Obviously, much more work remains to be done, uti- 
lizing such techniques as ESCA, XPS, STEM, and FTIR to further 
characterize the surfaces and interfaces. 

We have explored the effects of differences in degree of hydrolysis 
and degree of polymerization of the PVA and have shown the use- 
fulness of the concept of hydrodynamic parameters to characterize 
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PVA. Zeta -potentials were obtained for portions of our system, and 
contact angles have established that successive layers of phosphor 
slurry see different surface conditions. Contact angle changes as a 
function of processing step for faceplate glass have been investi- 
gated, and the results indicated that wet adherence is dependent on 
contact angle and can be correlated with surface energy. The 
problem of crosscontamination is undoubtedly also related to sur- 
face effects of the initial and contaminating phosphors, as previous 
work has shown.36 This problem has not been treated in the present 
work and remains to be explored in depth, particularly as it relates 
to surface coatings. A recent paper37 has examined some changes 
in adhesion forces during picture -tube production. 

The roles of double layer and of polymer inter -diffusion in adher- 
ence should be examined. At interface I2, we have pre -coat PVA 
interfacing phosphor (slurry) PVA. If this is treated as the case of 
two identical polymers in contact, we would not expect much ad- 
herence from the doublelayer donor -acceptor aspect. Thermal mo- 
tion of the molecules of the chain could lead, at the extreme case, 
to a mixed layer of complete mutual intersolubility. Exposing the 
phosphor slurry acts to cross-link the PVA, so that the phosphor 
PVA and the pre -coat PVA are no longer identical. However, mo- 
bility of some of the segments (although the chains are immobile 
translationally) can give a limited inter -diffusion, which should 
give a large increase in adherence. Josefowitz and Mark38 have 
discussed the role of chain -segment diffusion as applied to polymer 
self -adherence. Interface I2 can thus be pictured as consisting of a 
sensitized exposed PVA in contact with a thin PVA coating that 
contains ions leached from the underlying faceplate glass. Such a 
model for interface I2 would provide for a limited inter -diffused re- 
gion for greater adherence. The role of the exposure then would 
include both providing for the phosphor particle -to -particle adher- 
ence through mutual cross -linking and providing for segment inter - 
diffusion with the PVA pre -coat. It is of interest that Deryagin2 
gives the width of the interface diffusional zone necessary for the 
contact of several pairs of polymers as ranging from 6 x 10-2 mm 
for paraffin/SKN to 10-3 mm for SKB/chlorinated PVC, with an 
average of about 10-3 mm. This compares to about 10-4 mm for 
the optimum pre -coat thickness we found for PVA pre -coat on face- 

plate glass. In addition, since we are interested in maximizing the 
inter -polymer donor -acceptor pair population, it might be well to 
consider a double -layer system with dissimilar polymers for pre - 
coat and for phosphor slurry. 
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10. Conclusions 

The adherence of phosphor screens to faceplate glass substrates is 
a complex phenomenon involving several interfaces and effects in- 
cluding the glass, the PVA, the pre -coat, and sensitization. A new 
method for determining adherence was evolved as part of this in- 
vestigation. The effects of etching have been shown to involve sil- 
anol groups and release of impurities from the glass substrate. 
These, in turn, operate on the pre -coat, which has an optimum 
thickness and serves as an "impedance -matching" layer, binding 
both to the substrate and to the initial layer of phosphor particles, 
these interfaces being most important in adherence. 

Characterization of the PVA can be carried out by determining 
the hydrodynamic parameters which relate to adherence. Simi- 
larly, interfacial properties can be characterized by the contact 
angle of the surfaces to water, resist or slurry. It has been found 
that phosphor slurries see different surfaces as a faceplate is 
screened in the shadow -mask process. The largest deviation of sur- 
face from best adherence takes place with the deposition of the 
second phosphor. Data on contact angle versus the screen processing 
step has been obtained, and adherence has been shown to be cor- 
relatable with the energy necessary to remove a screen from a sur- 
face. 

An examination of the role of zeta -potentials, combined with PVA 
adsorption studies, indicate their possible initial importance in the 
adherence process, particularly with the addition of certain addi- 
tives. The role of triethyleneglycol in promoting adherence was con- 
firmed, and attributed to its effect in decreasing the sensitivity 
threshold. 

Finally, models of etched, precoated, screened substrates were 
evolved. 
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Operating Mechanism of the 
One -Piece Cathode 

K. T. Chiang and J. J. Maley 
RCA Video Component and Display Div., Lancaster, PA 17604 

Abstract-Extensive life testing and metallurgical examinations have 
been conducted to study the performance characteristics and 
operating mechanism of the one-piece bimetal cathode. This 
cathode shows superior emission life and less cutoff change 
with life. Chromium, originally in the bottom layer of the 
cathode base metal, is found to diffuse into the nickel portion 
of the cathode cap and subsequently react with the oxide 
coating. A reaction in which chromium acts as an activator 
and chemically reduces barium oxide to free barium is pro- 
posed to account for the better emission life. The rate of chro- 
mium diffusion, rate of reaction, interface compound forma- 
tion, and the effect of chromium on cutoff change during life 
will be discussed. 

1. Introduction 

Oxide cathodes for electron tubes generally consist of a nickel base 
substrate coated with a porous layer of alkaline earth metal oxide 
(BaSrCa)O. The nickel base contains a low concentration of re- 
ducing agents such as Mg, Si, Al, etc. At high temperature the 
reducing agents continuously diffuse into the oxide coating, re- 
ducing a small amount of barium oxide to the metal, thus providing 
the free barium necessary to activate the oxide emitting surface. A 
summary of theories advanced to explain the operating mechanism 
of the oxide cathode is given in Refs. [11 and 121. 

In a conventional oxide cathode, the nickel base is a cup -like 
structure attached to a cylindrical nichrome (Ni -20 wt.% Cr) sleeve 
by welding. The one-piece bimetal cathode design is an integral 
cathode substrate and sleeve.3 This cathode structure may be fab- 
ricated by deep -drawing blanks from a bimetal laminate strip and 
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then etching away portions of the nickel alloy layer. Aside from the 
fabrication method, a major difference between the one-piece bi- 
metal cathode and the conventional welded two-piece cathode is the 
presence of a layer of nichrome beneath the cathode nickel. This 
difference is illustrated by the cross -sections of the two cathodes 
shown in Fig. 1. 

Extensive testing of the one-piece bimetal cathode was carried 
out to determine the emission and other electrical characteristics 
of the electron gun over an extended life cycle. An important pa- 
rameter associated with these tests was "cutoff voltage". Given a 
specific negative potential applied to the first grid (G1), the cutoff 
voltage is defined as the positive potential required on the second 
grid (G2) to start drawing current of approximately 1 microampere. 
In tube application, the cathode should have a long emission life 
and a cutoff voltage that is stable over time. 

The life tests were done at the normal filament voltage of 6.3 
volts and at accelerated test conditions of 6.9, 7.5, and 8.1 volts. 
The major conclusions from these tests were that (1) the emission 
life of the one-piece bimetal cathode is superior to that of the con- 
ventional two-piece cathode and (2) the cutoff change with life is 
less for the one-piece bimetal cathode than for the two-piece 
cathode. Results of the typical life tests for emission and cutoff 
voltage are presented in Figs. 2 and 3, respectively. 

To explain these test results, we initiated a program to study the 
operating mechanism of the one-piece bimetal cathode. An under - 

o 

a b 

Fig. 1-(a) Cross-section of the one-piece cathode formed by removal of 
nickel from the sleeve portion of the bimetal; the cathode cap has 
2 mils of Ni -4 wt% W on top of 1 mil nichrome. (b) Cross-section 
of standard KS904 cathode; the 2 -mil Ni -4 wt% W cap is welded 
to the nichrome sleeve. (Enlarged approximately 20x.) 
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Fig. 2-Cathode emission versus time. 
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Fig. 3-Cutoff voltage change versus time. 
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standing of the operating mechanism is essential to the manufac- 
ture, processing, and use of this cathode, as well as for future 
cathode development. A survey of scientific literature on oxide - 
coated cathodes4,5 revealed that chromium above 0.003 wt.% has 
never been intentionally added or present in cathode nickel. Special 
attention was therefore paid to the study of the migration of chro- 
mium and its effect on cathode performance. Specifically, it was 
intended to answer the following questions concerning the presence 
of chromium in the one-piece cathode. 

(1) Earlier researchers6 have reported the formation of a high -re- 
sistance interface layer on cathodes made from chromium - 
plated nickel. Does a similar reaction occur on the one-piece 
cathode? 

(2) How long does it take for chromium to diffuse through the nickel 
portion of the cathode cap at normal operating voltage of 6.3 V 

EI. and at accelerated test conditions? 
(3) After reaching the oxide-coating/metal interface, how does chro- 

mium react with the oxide coating? Does the reaction compound 
form an interface barrier? 

(4) What is the role of chromium in improving the emission and 
cutoff characteristics of the cathode during life? 

All of these aspects were carefully examined during the course of 
this study. As a result, an operating mechanism that extended over 
all stages of the cathode life was defined. 

2. Experimental Procedures 

The experimental methods used for analysis involved x-ray diffrac- 
tion, optical metallography, x-ray photoelectron spectroscopy (XPS), 
scanning electron microscopy, and electron microprobe analysis. 

Most long -term -life -test samples had at least 15,000 hours of life. 
After life test, the cathodes were visually inspected to determine 
the extent of coating discoloration. Cross -sections of the cathodes 
were then prepared for further analysis using optical -microscope 
and scanning -electron -microscope techniques. For selected samples, 
parts of the oxide coating were scraped from the cathode and ana- 
lyzed by x-ray diffraction. This technique offered information on the 
crystal structure of the reaction product and allowed new phases to 
be identified. 

To study chromium diffusion in the base metal, microprobe scans 
were made on cross-sectional samples along a line perpendicular to 
the cathode surface. A series of samples with different life -test con - 
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ditions and operating times were examined. The tube operating con- 
ditions included filament voltages (E1) of 6.3, 6.9, 7.5, and 8.1 V. 

The corresponding cathode temperature, in terms of optical bright- 
ness, were approximately 1075, 1120, 1150, and 1200°K. For oper- 
ating filament voltages of 6.3 and 6.9 V, the cathodes were exam- 
ined after interrupting the life tests at 1, 3, 5, 11, and 15 weeks. At 
filament voltages of 7.5 and 8.1 V, the life tests were interrupted 
at 1, 2, 3, 5 and 7 weeks. 

Cathodes operated for even longer times were chosen for the study 
of the migration of chromium into the oxide coating. Energy dis- 
persive analysis of x-rays (EDAX) was used to identify the elements 
present in the coating. Scanning electron micrographs and x-ray dot 
maps were taken to show the distribution of chromium in the base 
metal as well as in the oxide coating. In this analysis, the detector 
was tuned to respond to the x-ray wavelength characteristic of chro- 
mium. The density of the white dots therefore provided information 
on the abundance of chromium in the examined areas. To study the 
interface compound between the oxide coating and the base metal, 
similar x-ray maps of barium, tungsten, oxygen and nickel were 
also obtained. 

XPS analysis was carried out to study the cathode surface before 
spraying the alkaline -earth carbonate coating. This surface -sensi- 
tive technique offered chemical -element and chemical -bonding in- 
formation within a 100 A range of the sample surface. 

3. Initial Reaction at the Metal/Coating Interface 

To study the surface reaction between the oxide coating and the 
base metal, three sets of cathode samples were prepared for XPS 
analysis: 

(1) One-piece bimetal cathode before H2 firing 
One-piece bimetal cathode after H2 firing 

(2) Nichrome cathode before H2 firing 
Nichrome cathode after H2 firing 

(3) Standard KS904 cathode before H2 firing 
Standard KS904 cathode after H2 firing 

The nichrome cathode was made by removing all the nickel from 
the one-piece bimetal cathode. XPS analysis showed the following 
results:7 

(1) Approximately 10 nm of nickel oxide was observed on the un- 
fired nickel surface of the one-piece bimetal cathode, composed 
of NiO and a nickel suboxide Ni203 (or perhaps a partial hy- 
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droxide NiOOH). After H2 firing, the oxide was somewhat 
thinner and richer in NiO. The oxide on the standard cathode 
closely resembled the one-piece cathode. 

(2) The surface of the unfired nichrome cathode was chromium en- 
riched and contained a mixture of Cr2O3 and nickel oxides. No 
nickel -oxygen bonding was present after firing, but the Cr2O3 
was unaffected. 

The results are as expected from a thermodynamic perspective. 
The atmosphere of the hydrogen firing furnace is slightly reducing 
for nickel oxide on the cathode caps of the standard and the one- 
piece bimetal cathode. For the nichrome cathode, however, Cr2O3 is 
present on the cathode surface and is stable in the H2 tiring atmo- 
sphere. The Cr2O3 enriched layer continues to grow during subse- 
quent cathode processing and tube processing. As a result, after the 
cathode activation process at a cathode temperature of about 
1250°K, the interface reaction compound on the nichrome cathode 
surface is of the form BaO-Cr2O3. This interface layer is similar to 
that in chromium plated nickel. The higher resistance of this 
compounds may cause difficulty in drawing current through the 
coating. In addition, the coefficient of thermal expansion of this 
layer may be different from the cathode substrate body causing 
peeling of the oxide coating. Both these effects were observed for 
nichrome cathodes at 8.1V Ef life test. The nichrome cathodes had 
early emission failures at 8.1V E1life test and many of the cathodes 
had poor coating adherence. For the standard cathode and the one- 
piece bimetal cathode, the interface reaction between the oxide 
coating and the substrate is of the form BaO-NiO. This reaction 
forms a strong bond between the oxide coating and base metal and 
is responsible for the good adherence of the cathode coating. 

This analysis shows that the detrimental effect of high -resistance 
chromium compound formation was avoided due to the presence of 
a 2 -mil layer of cathode nickel. 

4. Chromium Diffusion in the Base Metal 
4.1 During Tube Processing 

Fig. 4a shows an optical micrograph of the one-piece cathode before 
tube processing. The two -layer structure is clearly visible. The 2 - 

mil cathode nickel (with 4 wt.% W and trace amounts of Mg and Si 
as reducing impurities) was hot bonded to the 1 -mil nichrome alloy 
(Ni -20 wt.% Cr). Microprobe traces of Ni and Cr (Fig. 4b) across the 
cap indicated chromium was confined to the bottom 1 -mil layer, and 
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Fig. 4-(a) Cross-section of the one-piece cathode cap before tube pro- 
cessing (approx. 130 x ). (b) Ni and Cr concentration profiles along 
the line of traverse indicated by the arrow in the photo. 

Nickel 
Nichrome 

NlckI 

the top layer contained higher nickel concentration. This result is 
as expected, since the initial cathode nickel contained 96 wt.% 
nickel as compared to about 80 wt.% in the nichrome layer. After 
tube processing, a significant amount of chromium had already dif- 
fused into the nickel portion of the cap. At the same time, some 
nickel diffused back to the nichrome portion. The interdiffusion zone 
is seen in the cross-section (Fig. 5a) as the slightly darker area 
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Fig. 5-(a) Cross-section of the one-piece cathode cap after tube pro- 
cessing (approx. 130 x ). (b) Ni and Cr concentration profiles 
along the line of traverse indicated by the arrow in the photo. 

around the original nickel/nichrome interface. The interdiffusion of 
nickel and chromium is clearly evident from the concentration pro- 
files of the two elements as shown in Fig. 5b. 

4.2 During Life 

Chromium profiles across the cathode cap after different operating 
times at filament voltages of 6.3, 6.9, 7.5, and 8.1 volts are presented 
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Fig. 6-Cr concentration profiles across the one-piece cathode cap after 
different times on life at filament voltages of 6.3 and 6.9 volts. 

in Figs. 6(a), (b), (c), and (d). Different samples were examined for 
different operating voltages and operating times. It is noted that in 
all cases, chromium diffusion progresses at a rapid rate. As shown 
in Fig. 6(a), at a filament voltage of 6.3 V, it takes about 3 weeks 
for chromium to diffuse through the nickel portion of the cap and 
to reach the metal/oxide coating interface. At an operating filament 
voltage of 8.1 V, it takes only one week for chromium to diffuse to 
the interface (Fig. 6(d)). Similarly, only one to two weeks are needed 
for chromium to reach the metal/oxide coating interface at filament 
voltages of 6.9 and 7.5 V (Figs. 6(b) and 6(c)). This rapid diffusion 
rate can be explained by diffusion through easy diffusion paths, 
such as grain boundaries that are present in both the nickel and 
nichrome portion of the cap. The grain structure in the cathode cap 
is shown in Fig. 7a. The grain structure in the nichrome alloy is 
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Fig. 6-(Continued)-Cr concentration profiles for filament voltages of 
7.5 and 8.1 volts and for different periods of time on life than in 
Fig. 6(a) and (b). 

shown in Fig. 7b. The rapid diffusion along these grain boundaries, 
followed by volume diffusion within the grains, allows chromium to 
diffuse into the nickel lattice during early stages of the cathode 
operation. 

5. Reaction Between Chromium and Oxide Coating 
5.1 Migration of Chromium 

Two one-piece bimetal cathodes after long term life tests at 6.3 and 
5.7V E1 and one similar cathode after accelerated life test at 8.1V 
Ef were selected for this study. All three cathodes out -lived their 
two-piece cathode counterparts. The operating conditions, time on 

388 RCA Review Vol. 45 % September 1984 



ONE-PIECE CATHODE 

-. - ' LRy' - ...Y- 

- 
Fig. 

o-:". . 
a 

ti_ - 
1Y : _ _`l 7_ iT 

5 

7-;{iP --i 
, _ L1f Or ~3. 

- -- . I-. -j 
__-9oill 

b 

7-Surface micrograph of the one-piece cathode showing grain 
boundaries within the base metal (approx. 100x): (a) grain struc- 
ture of cathode cap and (b) grain structure of nichrome alloy. 

life, and cathode emission levels when the tubes were opened, are 
as follows: 

Ef = 6.3V, 110 weeks, greater than 80% of initial emission 
Ef = 8.1V, 10 weeks, approximately 80% of initial emission 
Ef = 5.7V, 110 weeks, greater than 80% of initial emission 

The heating cycle of the life test is 2-3/4 hours on and 1/4 hour off. 

One hundred and ten weeks of life test corresponds to about 17,000 
hours of cathode working life. 

Fig. 8a shows the cross-section of the 6.3V Ef cathode. EDAX of 
the outer part of the coating shows Ba, Sr, and Ca, which are the 
constituents of the oxide coating (Fig. 8b). The inner part of the 
coating contains Cr in addition to Ba, Sr, and Ca (Fig. 8c). The 
migration of chromium into the oxide coating is clearly indicated. 
X-ray powder diffraction of the coating scraped from the 6.3V Ef 
sample and from 8.1V Ef samples showed the chromium -containing 
phase was in the form of Ba3(Cr04)2.8 This phase is yellow and can 
be visually detected in cathodes after accelerated life test. 

To compare the extent of chromium migration into the oxide 
coating at different operating temperatures, chromium x-ray maps 
were taken of the three samples. Fig. 9a shows that after 110 weeks 
at 6.3V Ef, a small amount of chromium was present in the inner 
part of the coating. For the cathodes after 10 weeks at 8.1V Ef, 

massive migration of chromium into the coating was observed (Fig. 
9b). In some areas, migration through the oxide was complete. The 
chromium concentration in the oxide coating was estimated to be 
between 10-50 times higher than in the chromium -containing re- 
gion of the 6.3V Ef cathode. In contrast, no detectable chromium 
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Fig. 8-(a) Scanning electron micrograph of the one-piece cathode after 
110 weeks at E, = 6.3 V (approx. 400 x ); (b) shows EDAX of outer 
part of oxide coating (point A) and (c) EDAX of inner part of oxide 
coating (point B). 

was found in the oxide coating of the 5.7V E1 cathode (Fig. 9c). 
Although Cr may be present in the oxide in a small amount, it is 
below the detection limit of this technique. Some background x-rays 
are seen in the coating part of the micrograph. 

The aforementioned results show that the rate of chromium mi- 
gration is highly temperature dependent in the temperature range 
of the life tests. Other significant results from these data are: 

(1) Iri all three cases, chromium is uniformly distributed in the base 
metal including the portion originally containing only cathode 
nickel. (See Figs. 9a, b, c.) These data confirm the results of 
microprobe trace study of diffusion of chromium in the base 
metal. 

(2) In all three cases, there was no accumulation of chromium in 
the oxide-coating/metal interfaces. (See Figs. 9a, b, c.) 

If the reaction between chromium and the oxide coating is 
controlled by solid-state diffusion of chromium in the base metal, a 
high concentration of chromium in the interface is expected. The 
observation that chromium works its way up through the highly 
porous cathode coating instead of accumulating in an interface layer 
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Fig. 9-Chromium Ka x-ray maps of the one-piece cathode: (a) after 110 
weeks at Ef = 6.3 V (area outlined in Fig. 8a), (b) after 10 weeks 
at E, = 8.1 V, and (c) after 110 weeks at E, = 5.7 V. 

strongly suggests that the migration is through a vapor transport 
process. 

The vapor pressure of chromium at various temperatures can be 
calculated from Ref. [9]. At filament voltages of 5.7, 6.3, and 8.1V, 
the vapor pressures of chromium are 4.08 x 10-11, 8.05 x 10-11, 
and 4.02 x 10-9 atm, respectively. The vapor transport rate of 
chromium was increased by a factor of 2 when the filament voltage 
was increased from 5.7V to 6.3V, and by a factor of 50 when the 
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filament voltage was increased from 6.3V to 8.1V. These data show 
that the vapor transport mechanism is consistent with the observed 
temperature -dependent nature of the chromium migration. 

5.2 Interface Compound 

To complete the description of the coating/metal interface reaction 
for the one-piece cathode, nickel, tungsten, barium, and oxygen x- 
ray maps were taken of the interface region of the 6.3V Ef cathode. 
The region examined is the blocked area shown in Fig. 8a. Nickel 
stays in the base metal (Fig. l0a). An accumulation of tungsten in 
the coating/metal interface is clearly seen (Fig. 10b). This layer is 
also enriched with barium and contains oxygen (Figs. 10c and 10d), 
suggesting that the interface compound is barium tungstate (pos- 
sibly 3BaO WO3). The formation of the barium tungstate interface 
layer is expected and observed for all KS904 cathodes using Ni -4 
wt.% W cathode nickel.10 Some penetration of barium and oxygen 
into the metal substrate is also noted in Figs. 10c and 10d. 

This analysis shows the interface compound of the one-piece bi- 
metal cathode to be similar to the standard KS904 cathode. Chro- 
mium does migrate into the coating and reacts with the oxide to 
form a compound of Ba3(CrO4)2. The reaction is controlled by vapor 
transport of chromium and does not concentrate in an interface 
layer. Cathodes with this compound in the oxide coating have very 
long emission life. This is further evidence that the chromium mi- 
gration does not cause excessive bulk or interface resistance or loss 
of coating adherence. 

6. Reaction Mechanism 
6.1 Role of Chromium in Reducing Cutoff Change 

Cutoff voltage is an electrical characteristic of the electron gun that 
is sensitive to cathode -to -grid (G1) spacing." An increase in cutoff 
voltage during life usually represents an increase in cathode -G1 
spacing. Contributors to this increase are sintering of the cathode 
coating during life, thinning of the coating due to evaporation of 
coating material, and the thermal deformation of cathode cap and 
sleeve. Comparing the one-piece bimetal cathode and the standard 
two-piece cathode, the effects of coating sintering and evaporation 
are the same. The initial slight decrease in cutoff voltage of the one- 
piece cathode in life testing may be due to the elimination of cathode 
cap -sleeve welding and related to the interdiffusion of nickel and 
chromium. Details of this process are not yet completely understood. 
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Fig. 10-Distribution of nickel, tungsten, barium, and oxygen in 
outlined in Fig. 8a: (a) Ni Ka x-ray map, (b) W La x-ray 
Ba La x-ray map, and (d) O Ka x-ray map. 
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map, (c) 

After several weeks of life test, nickel and chromium are uni- 
formly distributed throughout the cathode cap by diffusion. The 
presence of chromium in the nickel alloy strengthens the nickel 
lattice and results in smaller cap deformation during life. Conse- 
quently, the net cutoff increase in the same operating time period 
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is reduced. The solid -solution strengthening effect of chromium on 
nickel base alloys at high temperature is well documented in the 
literature. 12,13 

6.2 Role of Chromium in Increasing Cathode Life 

Maintenance of emission levels is dependent upon a delicate bal- 
ance of the amount of free alkaline -earth metal (Ba or Sr). A con- 
tinuous production of free Ba is required, because a constant evap- 
oration of the metal from the oxide surface takes place during tube 
operation. The production of free Ba is determined by the transport 
and availability of the activators. As the operating time of a cathode 
increases to thousands of hours, the supply of activators (Mg or Si) 
can be gradually depleted in two ways. 

First, evaporation and activation reaction at the coating/metal 
interface gradually deplete the core metal of its activators.14 Con- 
sequently, the flux of activators to the interface is reduced. Second, 
BaO dissociates into Ba and O. Oxygen and part of the barium 
diffuse back into the nickel cap.15 Mg and Si may be oxidized inside 
the base metal through the reactions: 

Mg + O - Mg0 
Si + 20 - SiO2 

Barium may precipitate along these oxides at grain boundaries. 
Subsequent diffusion of free activators is partly inhibited by these 
internal oxides. 

For the one-piece bimetal cathode, chromium diffuses into the 
nickel portion of the cathode cap during the first several weeks of 
the tube operation. After diffusing to the coating/metal interface, 
chromium migrates via vapor transport to react with the oxide 
coating. A reaction such as 

8BaO + 2Cr -* Ba3(CrO4)2 + 5Ba 

occurs in the coating. In this reaction, chromium acts as an activator 
to chemically reduce barium oxide and thus provide an excess of 
free metallic barium. The life of the cathode is prolonged by this 
reaction when original activators are depleted by the two afore- 
mentioned processes. 

Although there is not much difference in the time needed for 
chromium to diffuse to the oxide/metal interface at different oper- 
ating temperatures (about 1 week at 8.1V E1, 3 weeks at 6.3V E1), 
the migration rate of chromium into the oxide coating changes 
greatly with different operating temperatures. At the normal op - 
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erating temperature of 6.3V Ef, chromium is metered out slowly 
and the cathode activity is maintained over a long period of time. 

7. Summary and Conclusions 

The one-piece bimetal cathode is a system that shows superior emis- 
sion life and less cutoff voltage change with time than a conven- 
tional cathode. The major structural difference between the one- 
piece bimetal cathode and the standard two-piece cathode is the 
presence of a 1 -mil nichrome layer beneath the cathode nickel. 

Initial activation of the one-piece cathode is accomplished by the 
activators (Mg and Si) present in the cathode nickel, as in the case 
of the standard cathode. The interface reaction between the oxide 
coating and the substrate is of the form BaO-NiO. During tube 
processing and the initial stage of cathode life, chromium diffuses 
into the nickel portion of the one-piece cathode cap. The process 
involves grain boundary diffusion and progresses at a rapid rate. 
Only one to three weeks are needed for chromium to reach the oxide 
coating/metal interface. Chromium subsequently migrates via 
vapor transport to react with the oxide coating. In this reaction 
chromium acts as an activator and prolongs the cathode emission 
life. 

The decrease in cutoff voltage change with time for the one-piece 
cathode is related to the elimination of cathode cap -sleeve welding 
and to solid -solution strengthening of the nickel lattice by chro- 
mium. 
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A Contour Deformation Model of 
Capacitance VideoDisc Signal Pickup 

P. D. Southgate 
RCA Laboratories, Princeton, NJ 08540 

Abstract-A method of calculating the videodisc pickup signal is de- 
scribed that includes the elastic deformation of the disc by the 
stylus. The stylus shoe is idealized to a flat, rectangular shape 
and small vertical displacements are assumed. Disc -stylus ca- 
pacitance is calculated using a two-dimensional geometry and 
an approximation to the field configuration that allows fast 
computation. Typical results are described for the wavelength 
and tracking -force dependence of pickup. There is agreement 
between most general features of calculated and measured 
pickup. The mechanism of soundbeat is investigated and 
shown, within the terms of this model, to depend primarily on 
the elastic deformation of the signal contour. The calculated 
magnitude and the wavelength dependence of soundbeat 
agrees well with measurement; for a "flat -top" signal, drop of 
soundbeat and change of wavelength dependence of the type 
observed are predicted. Calculations usually deviate from 
measurements only by a magnitude similar to the mutual de- 
viation of measurements made under varying conditions. 

Introduction 

The successfully optimized combination of stylus configuration and 
signal depth used in the capacitance pickup VideoDisc system has 
been developed by exhaustive experimental trial in conjunction 
with idealized models of electrode -disc capacitance. These models, 
although providing substantial insight into the pickup mechanism, 
are not complete, since they do not fully take into account the elastic 
deformation of the disc surface by the stylus. Since, as will be seen, 
deformation has a major effect in modifying the signal contour, par- 
ticularly with regard to second -order effects, such as harmonic gen - 
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eration and soundbeat, it is of considerable interest to include this 
deformation. In this paper, a model is developed that represents the 
deformation, with some approximations that are geometrical in na- 
ture and are believed to be small. The model is simplified by rep- 
resenting the disc surface as a perfect conductor with a thin dielec- 
tric layer on top; gradations and fluctuation noise in the conductive 
layer are not included. It is also assumed that the stylus tip ís 
surrounded by the lubricating oil so that signal -frequency fluctua- 
tions in the oil surface contour do not affect the electrode -disc ca- 
pacitance. 

Some general features of the signal pickup predicted by the model 
will be described and compared with measurements made by a 
number of workers in RCA Laboratories. The correspondence with 
measurement is usually reasonably good, within the variability of 
the measurements. Small systematic differences may be caused by 
the geometric approximations made in this analysis; a greater dif- 
ference probably arises from an inadequate accounting of the oil 
film behavior, both in its viscoelastic properties and its varying 
dielectric effect. A full treatment of this would be very difficult; the 
model is therefore presented as a demonstration of how closely 
stylus performance can be predicted with only an elementary inclu- 
sion of these effects. 

Other models, using different approximations, have been de- 
scribed in the past. The basis of these has been indicated by Clem- 
ens;' the analysis has been extended considerably in unpublished 
work by J. J. Gibson, J. R. Matey, and R. W. Nosker. 

Elastic Contour Deformation 

Computation of the deformation due to the stylus is reduced to man- 
ageable proportions by using an idealized stylus form. Fig. 1 com- 
pares this form with the real stylus. The grooves are flattened and 
the contact area of the shoe has a straight rather than an acute 
leading edge. The shoe shape transverse to the groove direction is 
taken to be slightly rounded so that the pressure under the shoe 
does not depend on the distance from the groove center. Calculations 
of vertical surface -contour deformation are made at points along the 
groove center; it can be shown that if the location is moved toward 
the side of the shoe, the deformation will not change much until it 
is close to the side. 

The elastic modulus used is the low -strain time -independent 
value; yield, relaxation effects, and inertial effects are ignored. Al- 
though the total stress near the stylus contact at the tips of the 
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Fig. 1-Idealized form of stylus, used in calculations, compared with real 
stylus. Electrode and signal depth is approximately to scale; dis- 
tribution of oil is assumed. 

signal elements can be large, the smaller shear component, which 
would lead to yield, usually does not exceed the yield stress. In 
addition, it is transient, and the short-term yield stress in disc ma- 
terial has been shown to be much higher than the static value. The 
material damping has been shown to be low at frequencies of the 
order of 1 MHz, justifying the neglect of relaxation effects. Inertial 
effects are not important, because the speed of sound is about 400 
times the speed of the disc, so that the elastic deformation is always 
near equilibrium. 

In addition to its possible dielectric effects, the lubricating oil can 
modify the pressure distribution under the shoe if it is sufficiently 
viscous. The bulk viscosity is of the order of 0.2 poise at low shear 
rates and probably considerably less at the high rates obtaining 
between the shoe and disc. Simple calculations show that for normal 
video signals, where the channel space between the shoe and the 
disc is 800 A or more, the normal stylus pressure will cause the oil 
to flow laterally outward in a time short compared with the transit 
time of the disc under the shoe. The pressure profile near the elec- 
trode will therefore be little modified by the oil. For signals of 
shallow modulation depth, however, oil flow may be slower; for a 
smooth groove and oil of viscosity 0.1 poise, an initial thickness of 
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400 A will be reduced to 250 A only after the oil has traversed the 
whole way under a 41.tm long shoe. It is likely therefore that the oil 
under these conditions will cause the pressure under the leading 
part of a shoe, which is essentially parallel to the disc, to be a little 
greater than that under the following part. The oil may also con- 
tribute an essentially elastic thin surface layer; this layer will be 
included in the surface dielectric of the disc material. Errors intro- 
duced by the above approximations are believed to be small but are 
difficult to assess; it would require a comparison with exact calcu- 
lation for some configurations, a formidable task which has not been 
attempted. 

A point force F perpendicular to a horizontal semi -infinite elastic 
solid surface produces a vertical deflection at distance r, if F is 
small, of 

z = F(1 - v2)/TrEr, I11 

where E is Young's modulus and y Poisson's ratio. If the stylus shoe 
is divided into strip elements as shown in Fig. 2, then the vertical 
deflection at a point on the groove center due to one of these ele- 
ments may be obtained by integrating the deflection of Eq. 111 over 
the element, which is assumed to apply a constant vertical pressure 
to the disc surface. It is convenient to use two analytic approxi- 
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Fig. 2-Shoe-area element dimensions. 
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mations to this integral. One is for a close element of width 2a 
comparable to its distance r from the point considered. 

F (1 - v2) 
1 1(r + a)ln(r + a) 

bTr E 2a 

- (r - a)ln(r - a)] - 1 - ln2b) ; 121 

the other approximation is for more distant elements, 

F (1 - v2) 1 (1 + r2/b2) - 1 - zIn 
bvr E 2 (1 + r2/b2) + 1 

[31 

Here F is the total force on the element and a and b are its half 
width and length. The b/a ratios used in these calculations (20 or 
greater) give a sufficiently large region of overlap between these 
two approximations. 

If the number of elemental spaces between the force and the de- 
flection point is k = r/2a, then the interaction coefficient is defined 
as I(k) = z/F, given by the appropriate Eq. 121 or 131. The total 
displacement at the location of element j along the axis due to a set 
of forces F(i) at location i will then be 

z(j) = F(i) I(i - 1). [4] 

Incorporation of a disc surface signal modulation into these cal- 
culations proceeds as in Fig. 3. The upper diagram shows the signal 
surface contour before stylus pressure is applied, the mean plane of 
the disc being indicated by the broken line. When the pressure is 
applied, the disc mean plane is depressed by the sum of the stylus 
depth below the initial mean plane and the signal contour modu- 
lation, if the stylus is in contact with the disc. The situation is 
shown in the lower diagram. In these calculations, the elastic strain 
in those parts of the disc between the surface and the mean plane 
is ignored. Region A (Fig. 3) is assumed to be stiff in the vertical 
direction (so that d1 = d2) but not to contribute otherwise to the 
disc stiffness; region B is taken to contribute to disc stiffness al- 
though it is in fact not present. Fig. 3 suggests a greater error from 
this cause than is the case, since the vertical scale is exaggerated; 
the error can be shown to be small and comparable to that produced 
by the implicit assumption of Eq. [ 1] that the vertical displacements 
are small compared with the horizontal scale. 

The procedure followed to calculate surface contour deformation, 
then, is first to consider only those elements in contact with the 
shoe. The vertical displacements of the disc surface at the locations 

RCA Review Vol. 45 September 1984 401 



di 

+ 

- q, V 
d2 

Fig. 3-Elastic deformation of mid -plane of disc surface showing regions 
of material in which the compression is ignored. 

will be the sum of the stylus depth below the mean disc plane and 
of the modulation. Thus, in the set of Eqs. 141, if the range of i and 
j is restricted to only the contact points, all values of z(j) are known, 
so that this forms a complete and solvable set of equations. The set 
may then be inverted to give the F(i) values. 

This procedure is followed iteratively. At first, a convenient set 
of points under the stylus but near the signal peaks is chosen. Eqs. 
141 are solved and the derived F(i) values are used to obtain the 
surface contour at all points under the stylus. Two physically un- 
realistic situations may then be found: the disc surface may be 
above the shoe or the force may be negative (so that the surface is 
pulled up toward the shoe). Points of the first kind are added to the 
original set and points of the second kind are removed, forming a 
new set of final contact points. Further iterations are then made 
until all forces are positive and all disc surface locations are at or 
below the shoe surface. Given this final set of forces, the desired 
calculation of the deflection of all points on the disc surface can be 
made. 

It is only close to the electrode that a small element size is needed 
to give accuracy in the final capacitance calculations. In the cal- 
culations to be described, the elements within 2000 Á of the elec- 
trode -stylus interface are 100 Á wide, and elsewhere they are 1000 
Á, as indicated in Fig. 2. Interaction coefficients are scaled to ac- 
commodate this change of size. 

To produce a varying stylus tracking force, the depth of the shoe 
below the average disc surface is varied. It is a feature of these 
computations that the tracking force cannot be specified in advance; 
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reasonable estimates must be made and the final results for the 
desired tracking force found by interpolation. The curvature of the 
stylus shoe can vary depending on its playing -wear history. An as- 
sessment of the stylus shoe profile can be made from scanning elec- 
tron microscope (SEM) observations. When this is known for the 
particular shoe used, or for one that has had a similar history, an 
analytic form can be fitted to the observed profile and this form can 
be used in the deformation calculations. Alternatively, a "standard" 
shoe profile is sometimes used, which is the profile that gives a 
uniform pressure on a signal -free disc at 65 dyne tracking force. 
This profile may be increased by a "curvature factor" S. 

General Features of the Calculated Deformation 

The type of signal for which pickup is most affected by the details 
of elastic deformation is the low -amplitude audio -only signal played 
by a shoe of low curvature. The shoe is here in contact with the disc 
surface along almost its whole length, so that there is no modulation 
at the electrode -stylus contact plane. It might be expected that this 
would lead to a very low value of capacitive pickup from the elec- 
trode. Further examination shows, however, that the variation of 
pressure as the signal passes under the shoe produces an enhanced 
"bulge" close to the pressure edge. The situation is shown in Fig. 4, 
where the surface configuration is given for 12 successive phases of 
the signal. The vertical scale is exaggerated by 14 times. The broken 
line, for reference, gives the dimple that would be produced in a 
smooth disc. In addition, the pressure profile is plotted. It can be 
seen that the pressure fluctuates greatly at the edge; in fact, there 
is a mathematical singularity there, and at the limit of infinitesimal 
element size the pressure will swing between zero and infinity. It 
is this sharp change of pressure that causes the local bulge, so that 
2000 Á from the edge, the surface modulation is quite large, even 
though this distance is small compared with the signal wavelength. 
Since the electrode extends out 2000 Á, the enhanced modulation 
produces capacitance pickup. 

This model therefore provides an answer to the question of why 
significant audio -only pickup can be obtained even though the 
signal elements are completely compressed by the stylus. For a stan- 
dard video signal, the modulation depth is larger, so that complete 
compression does not occur; in this case the effects of finite elastic 
distortion are less obvious. In addition, a real stylus -shoe is more 
rounded near the electrode than is the constant -pressure profile 
used for Fig. 4. Fig. 5 shows one phase of two similar video + audio 
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Fig. 4-Surface contour for twelve equally spaced phases of a audio -only 
signal near the pressure edge. The pressure profile and the 
stylus outline are identified in phase 11 (vertical/horizontal scale 
ratio = 14). 

signals, with a modulation depth of 850 A and a wavelength of 11.1m. 

The "flat -top" signal will be described later. For the phase shown, 
the disc surface contacts the shoe near the electrode, and the defor- 
mation in that region will depend quite strongly on various param- 
eters such as the tracking force. For much of the remainder of the 
cycle, the electrode -disc spacing will be less sensitive to these pa- 
rameters. The calculated pickup amplitude will therefore usually 
not vary greatly from that obtained by more simplified assumptions 
on the conformation of the surface. What will differ are the second - 
order effects-harmonic distortion, signal intermodulation, sound - 
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Fig. 5-Surface contours, over the whole shoe and on a magnified scale 
near the pressure edge for video plus audio signal. Top shows 
normal signal and bottom "flat top" signal. 
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beat and the dependence of these on wavelength, tracking force, 
shoe length, and shoe curvature. 

Capacitance Pickup 

Having obtained the surface contour, the capacitance between the 
stylus electrode and the disc (assuming a two-dimensional situation) 
may be computed exactly using a field distribution program based 
on Poissons equation. Calculations of this kind have been carried 
out by N. Binenbaum and R. W. Nosker of these laboratories for the 
case of a trapezoidal signal form. Significant contributions to the 
capacitance modulation occur only within about 1 p.m of the elec- 
trode, so calculations can be confined to this region. In the present 
paper the electrode is represented as having an angled end and a 
step -back from the stylus shoe edge, which is a reasonable repre- 
sentation of the form often seen in SEM displays. In addition, the 
conducting surface of the disc is taken to be displaced below the 
contact surface due to an intervening dielectric layer (the surface 
vinyl above the contacting graphite grains) and possibly to an ad- 
herent monolayer of oil. Fig. 6(a) shows the dimensions involved. 

The exact capacitance calculation involves significant computer 
time. Again, for the numerous configurations, with the different 
signals, phases, and electrode shapes needed in this investigation, 
simplified calculation is desirable. An approximation is used here 
in which a reasonable estimate is made of the shape of the field 
lines and of the variation in length of these lines computed as the 
signal contour passes under the electrode. The contribution to the 
total capacitance from the element containing the line will then 
vary inversely as the length of the line, suitably weighted by the 
dielectric constant. 

The dielectric gap is divided into elements bounded by the field 
lines as shown in Fig. 6(b). The capacitance of each element can 
then be calculated approximately from its average cross-section 
area and the length of the lines. Errors in this method will be least 
in the region where the parallel -plate situation is approximated as 
in region III of Fig. 6(b), which in fact contributes the majority of 
the capacitance variation. The shape of the field lines in region III 
is taken as straight and parallel to the vertical electrode face. In 
regions I and II, the lines are taken as arcs of a circle for the more 
distant elements. For elements that are closer than three times the 
shoe -disc gap on the after side of the electrode, the elements grade 
from circular arcs to straight lines. An interpolation for both ele - 
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Fig. 6-(a) Identification of electrode and disc spacing dimensions; (b) 

approximation used for field configuration; and (c) trapezoidal 
waveform used to check approximate calculations. 

ment length and width is made between these two forms for the 
intermediate elements. 

An approximation of this kind can be expected to be only mod- 
erately accurate for calculations of absolute capacitance. However, 
for perturbations of this capacitance, such as are given by the signal 
form on the disc, a higher accuracy can be expected. An independent 
derivation of the expected error would be difficult to make, but 
comparisons with exact calculations for specific forms give a good 
idea of the general accuracy. Table 1 shows the results of Binen- 
baum and Nosker for the trapezoidal waveform shown in Fig. 6(c). 
Using 11 phases of this wave, limited to a 11/2 wavelength segment, 
they derived values of capacitance modulation and its second and 
third harmonic content for a number of electrode shapes. Table 1 

also shows the result of the approximate calculations just described. 
Fourier analysis of the capacitance values gives fundamental and 
harmonic pick-up components, which in this paper will be quoted 
in dB relative to laF (10-18F) RMS (designated dBR) and dB rel- 
ative to the fundamental, respectively. The approximate results 
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Table 1-Comparison of Approximate (B) with Exact (A) Electrode -Disc Capacitance 
Calculations 

Harmonics 

Electrode and Dielectric 
Dimensions (A) 

Fundamental 
(dBR) 

dB Relative to Fundamental 
2nd 3rd 

d, d2 d, k, A 13 A B A B 

200 200 200 2.4 32.9 33.5 - 16.6 - 16.7 - 37.5 - 32.0 
0 0 200 1 42.1 42.3 -8.8 -8.8 -21.9 -23.3 

200 2000 200 2.4 28.2 29.2 - 14.7 -14.6 - 26.7 
200 200 700 2.4 22.7 23.6 - 22.7 -21.6 - 42.9 

agree quite well with the exact values, particularly in the second 
harmonic content of the pickup. Greater error is seen in the third 
harmonic at low levels; it is of the order of 1% of the fundamental 
and is comparable with errors expected from the finite number of 
sampling points. Agreement is good even when the electrode -disc 
spacing is as large as 700 A, in which case the field configuration 
used in the approximation will differ significantly from the true 
configuration. The approximate calculations will be used in the re- 
mainder of the work to be described. 

Calculations of deformed contour and, from them, of capacitance, 
are made for single sine waves of various amplitudes and wave- 
lengths at each of 12 phases of the wave. 

More complex signals, composed of video and audio superposed, 
are arranged to have an integral number of video wavelengths in 
an audio signal to minimize calculation of one complete cycle of the 
total signals. Again, 12 phases of each video cycle are taken. These 
signals are analyzed by bandpass filtering and computation of the 
zero -crossing points of the filtered video waveform. Subsequent 
Fourier analysis then gives the fundamental (i.e., audio -frequency) 
component of these zero -crossing deviations. Soundbeat, which is 
the phase modulation of the video carrier pickup by the superposed 
audio carrier, may then be calculated from the zero -crossings. For 
a waveform phase -modulated by 

cos (wt + _Sch cos wat), 

soundbeat (in dB) is defined as 

201og (5 wa ..5(t/w). 

The filtering action removes some components that contribute to 
soundbeat; these are restored by adding a small correction to the 
value directly calculated from the zero crossings. 
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Pickup of Single -Frequency Signals 

In general, for a constant modulation depth, calculated pick-up 
tends to increase steadily with the modulation depth and to fall off 
at long and short wavelengths. The dependence on tracking force is 
more complex; it may increase, decrease, or go through a maximum. 
The results to be described have been calculated using a disc 
Young's modulus of 5.4 x 1010 dyne cm -2 and a Poisson ratio of 
0.35, near the values measured at 15 MHz by Rehwald and Von- 
lanthen of RCA Laboratories, Zurich. Fig. 7(a) and 7(b) show the 
calculated pickup from a sinusoidal signal as a function of tracking 
force, with separate plots for two different shoelengths (1 dyne is 
approximately 1 mg force). The electrode is of form E2 [Table 2 and 
Fig. 6(a)] and the stylus curvature factor is 2. Decrease of pickup 
with increased tracking force is strongest for long wavelength and 
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Fig. 7-Effect of tracking force variation on calculated pickup, of a 200 A 
p -p signal with wavelengths of from 0.5 to 16 µm. Two shoe 
lengths L and pressure edge set -back d3 are shown. 
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Table 2-Electrode and Disc Dielectric Dimensions (See Fig. 6) 

Electrode 
designation d, d1 d3 d, 

El 200 500 0 200 
E2 300 1000 0 200 

small signal depth, that is, when all angles to the horizontal are 
minimized. The increased tracking force then compresses the signal 
contour. The opposite effect of increased signal with increasing 
tracking force is seen for short wavelength and large signal depth, 
where the dominant effect is to bring the electrode closer to the disc 
surface rather than to compress the contour. Changes of electrode 
form, or thickness of disc surface dielectric layer, will change the 
magnitude of the pickup amplitude but, within limits, do not have 
a large effect on the shape of the curves. A set -back of the pressure 
edge or an increase of shoe length both tend to decrease the effect 
of tracking force variation. Fig. 7(c) shows the marked flattening 
that occurs with a pressure -edge set -back of 1000 A. A set -back of 
this magnitude would be difficult to detect experimentally; the dif- 
ference between Fig. 7(b) and 7(c) therefore illustrates the caution 
that should be exercised in comparing calculation with experiment. 

Curves similar to those of Fig. 7 can now be used to obtain the 
pickup at constant tracking force. A typical variation with wave- 
length is shown in Fig. 8 for a signal depth of 200 A p -p. Calculated 
curves are shown as dashed lines and are compared with measured 
curves (solid lines). The electrode gap value has been adjusted to 
give approximately the same pickup magnitude as measured; these 
values are in the 300 to 800 A range and correspond roughly to 
those estimated from SEM observations in each case. A "standard" 
shoe shape with a curvature factor of 2 has been used. The tracking 
force is 60 dyne for the top two curves and 40 dyne for the lower 
curve. These adjustments from the total applied tracking force of 
65 dyne have been made to account for a proportion of the force 
supported by oil and debris outside the shoe area, guessed to be 
10%. For curve C in Fig. 7, the shoe width is 40% greater than that 
for curves A and B. In addition the shoes have been given a slight 
tilt to stimulate a possible wedge action of the oil film, as discussed 
before; the prow end is 150 Á lower than the electrode end of the 
shoe. 

The curves show a fall -off at both short and long wavelengths. At 
the longer wavelengths the signal profile can conform more closely 
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to the shoe and so a fall -off can be expected, beginning at wave- 
lengths comparable to the shoe length. At short wavelengths, the 
effective electrical aperture of the electrode capacitance becomes 
comparable with the wavelength and this reduces pickup. However, 
for the shorter shoes, the calculated fall -off is less than measured. 
One factor that could change the fall -off rate is the assigned elec- 
trode gap. This does not seem to be responsible, however, since 
a change of gap that produces a large deviation of absolute value 
of pickup from that measured does not produce a significantly 
better shape match. A second possible factor is the skewing of the 
electrode edge line from the signal peak ridge. This also cannot 
explain the difference, since a skew sufficient to produce a 3dB 
change in output would also produce a sharp change in the slope of 
the pickup versus wavelength curve, which is not seen in the mea- 
surements. Different shoe shapes and tracking force, within limits 
that reasonably correspond to measurement, do not produce a sig- 
nificantly better fit to measurement than seen in Fig. 8. 

Measurements of dependence of pickup on signal amplitude, 
using a shoe of 5.2 µm overall length, are shown in Fig. 9. Com- 
parable calculations for wavelengths of 1 and 8 p.m are shown as 
dashed lines, using a shoe of profile matched to SEM measurements 
and with a corresponding effective length of 4.6 p.m. The stylus is 
given an 80 A tilt and 60 dyne tracking force. The most noticeable 
characteristic of the measurements is the flattening of the curve at 
higher amplitudes, which occurs more strongly at the shorter wave- 
lengths. A similar effect is seen in the calculated curves at 1 p.m 
wavelength. The linearity of the 8 p.m calculated curves, however, 
is at variance with the slight curvature measured at both 4.2 and 
13.3 p.m, at which wavelengths the original signal is believed to be 
well -calibrated. Various stylus and electrode shapes have been 
tried, but all give curves close to linear; this discrepancy also has 
not been resolved within the framework of the model. 

Comparison of the measured harmonic content of pickup with 
calculations using the same shoe profile as in Fig. 9 is given in Fig. 
10. The electrode gap again was adjusted to give the same magni- 
tude of the pickup amplitude as measured. The calculated magni- 
tude of both second and third harmonic is of the same order as 
measurement at higher signal amplitude; at low amplitudes, the 
calculated harmonics do not fall off as rapidly as measured. Below 
-30 dB, calculation is not expected to give accurate results. In some 
regions, a rapid change of harmonic content with tracking force was 
calculated, in which case harmonic levels were averaged over the 
50- to 70 -dyne range. 

RCA Review Vol. 45 September 1984 411 



30 

dBR 

20 

/ 
/C 200Á p -p 

10 / I I 

1 4 
WAVELENGTH (µm) 

16 

SHOE 
LENGTH 

(µm) 
34 

52 

8.8 

Fig. 8-Calculated variation (dashed lines) of pickup of a 200 A p -p signal 
with wavelength compared with measurement (solid curves). 

Results of several sets of measurements of pickup amplitude and 
harmonic content as a function of tracking force are shown in Fig. 
11 as solid lines and dot -dash lines. Both audio (97 A p -p, approx. 
1 p.m wavelength) and video (800 A p -p, approx. 7 p.m wavelength) 
signals were measured. The scale for the dot -dash lines is arbitrary 
since no absolute capacitance calibration was made for this set of 
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Fig. 9-Amplitude dependence of pickup at different wavelengths in µm 
(solid curves are measured values, dashed lines are calculated 
values). 
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Fig. 10-Harmonic content of pickup as a function of signal amplitude 
(solid curves are measured values, dashed lines calculated 
values). Wavelength in p.m on curves. 

measurements; the video response has been placed close to that of 
the other data. The tracking -force dependence of the audio response 
shown by one of the solid lines can be seen to differ significantly 
from that of the other curves, more in fact than the error bars which 
show the data point scatter. The open circles shown are single points 
from another set of measurements at 65 dyne. It is evident that 
there is a considerable spread in the experimental data, produced 
by factors whose nature has not been determined. 

Corresponding calculations of pickup amplitude and second har- 
monic dependence on tracking force are shown in Fig. 11 as dashed 
lines. An effective shoe length of 4 p.m has been used, together with 
an electrode gap of about 500 A, which gives an audio pickup am- 
plitude within the range measured. The calculated tracking -force 
dependences, the audio/video ratio, the second/third harmonic ra- 
tios, are all consistent with the type of measured behavior. Varia- 
tions in tracking -force dependence of measured audio pickup are 
consistent with the variations calculated in Fig. 7 for different shoe 
set -back values. The comparison therefore gives some plausibility 
to the model, even if a close correspondence cannot be made. 

Fig. 12 shows the tracking -force dependence of the 5 MHz, 2 MHz, 
and 8 MHz signals. These measurements are shown as dashed lines 
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Fig. 11-Pickup amplitude and harmonic content as a function of tracking 
force for video (850 A, 1µm wavelength) and audio (100 A p -p, 
7 µm wavelength) signals. The solid lines, dot -dash lines, and 
circles are measured values; the dashed lines are calculated 
values. An arbitrary dB zero is used for the dot -dash curves. 

with error bars to indicate scatter of the measured points; the ab- 
solute amplitude scale for the whole set again, is arbitrary. The 
solid curves show the result of present calculations with the same 
shoe as in Figure 11; the variation of the calculated curve slope 
with signal frequency is consistent with that measured. 

Soundbeat 

Details of the mechanism generating soundbeat are quite subtle and 
the way in which it may vary with various pickup parameters is 

not intuitively obvious. Understanding of the soundbeat mechanism 
is gained if two separate components of the change of capacitance, 
before and after the stylus -electrode plane, are considered sepa- 
rately. It then becomes apparent that the soundbeat of each indi- 
vidual component is less than that of the combination. There is, 
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Fig. 12-Dependence of pickup on tracking force at three signal frequen- 
cies (5 MHz=1 µm wavelength). Solid curves are for calculated 
values and dashed lines for measured values (arbitrary dB zero). 
Measurement error is indicated. 

however, an amplitude modulation at the audio frequency that is 
different for the two parts, being less for the forward part which is 
compressed under the shoe. Since there is a substantial phase -shift 
between the two parts, the amplitude modulation translates to a 
phase modulation in the total pickup. This is to be contrasted with 
the situation of a stylus on a rigid, undeformed signal contour. Here 
the amplitude modulation of the two parts is of similar magnitude; 
when they are summed, the net phase modulation is small. Fig. 13 
shows the after and before parts (A and F) and the total (T) calcu- 
lated capacitance modulation for a deformed contour; the larger 
amplitude modulation of the after part can be seen. The upper trace 
(S) is the bandpass filtered signal, where the audio component and 
the harmonics have been removed from the T trace. The soundbeat 
is too small to be visible on this scale. 

Table 3 gives the modulation for a typical signal -stylus combi- 
nation with 85 A p -p audio, for normal disc elasticity and tracking 
force and also for a rigid contour (equivalently obtained by setting 
a zero tracking force). The electrode gap has been adjusted to give 
approximately similar pickup amplitude in each case. With the 
normal situation, the video amplitude modulation depths are 0.2 
dB and 0.9 dB before and after the electrode, respectively. This 
small difference, together with the video phase shift of 0.187 of a 
cycle, is the primary cause of the soundbeat, which is 4.6 dB greater 
than the average of the two parts. In comparison with this, for the 
rigid contour, the amplitude modulation of both parts of the video 
signal is the same (1.5 dB), so there will be no extra component 
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Fig. 13-Calculated components of total pickup from before (F) and after 
(A) the stylus/electrode plane. The total signal (T=A+ F) is shown 
bandpass filtered in the upper trace (S). 

added to the soundbeat of the individual parts. The phases of the 
individual parts, however, are opposed, being 0.40 and - 0.11 of a 
cycle respectively. As a consequence, the total computed soundbeat 
is reduced to - 48.6 dB. This difference value will be sensitive to 
electrode configuration. 

When the contour is rigid, the phase modulation of the after part 

Table 3-Contribution of Forward and After Parts to the Total Soundbeat (SB) and 
Pickup Amplitude for Deformed and for Rigid Contours 

Part of 
Stylus Plane Deformed 

Contour 
Rigid 

After 
SB (-dB) 31.9 35.5 

(Phase) 0.46 -0.11 
Video (dBR) 25.8 27.5 

(dB Modulation) 0.9 1.5 
(Phase) 0.660 0.649 

Forward 
SB (-dB) 31.3 31.7 

(Phase) 0.46 0.40 
Video (dBR) 25.3 25.3 

(dB Modulation) 0.2 1.5 
(Phase) 0.473 0.446 

Total 
SB (-dB) 27.0 48.6 
Video (dBR) 30.0 30.6 
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is opposite to that of the forward part, because a motion of the disc 
surface toward the stylus causes greater relative contribution from 
the capacitance elements near the center plane. The phases of video 
pickup from the two parts therefore move toward each other. It may 
then be questioned why this does not happen when the contour is 
normally deformed. Table 3 shows that the video phase of the after 
part moves back rather than forward as the surface approaches the 
electrode at the peak of the audio. The reason is not clear. It must 
be supposed that the contour distorts in such a way that a compen- 
sating phase shift away from the electrode is produced. 

Calculations of soundbeat are shown in Fig. 14 for a shoe of ef- 
fective length 3.5 µm and a profile matched to SEM measurement 
of a normal shoe. These are compared with scattered values mea- 
sured using a number of standard styli with similar shoe lengths, 
averaging about 4.5 µm overall, and a test disc with an audio am- 
plitude of 85 A p -p and a video wavelength of approximately 1µm. 
The three calculated points in Fig. 14 correspond to three different 
electrode gaps. The points are seen to lie well within the scatter of 
measurements but about 1 dB lower than the mean. The drop of 
soundbeat with increased pickup is consistent with measurement, 
although the scatter is too great to give this any real significance. 

Two sets of measurements of the dependence of soundbeat on 
signal wavelength are shown in Fig. 15(a). Both sets used test discs 
in which the signal frequency remains constant, so that the wave- 
length varies as the playing radius changes. In all cases the audio 
amplitude was 100 A p -p and the video 850 Á p -p; the video fre- 
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Fig. 14-Calculated soudbeat (solid line) as a function of pickup change 
caused by electrode -gap variation compared with measurements 
using a number of standard styli. 
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Fig. 15-Soundbeat for normal signal as a function of wavelength: (a) 

measured values of soundbeat for different shoe lengths (values 
shown by crosses are from R. W. Nosker; circles are from this 
study (uncertain dB zero)); (b) calculated values for video output 
level similar to measured values for different audio/video wave- 
length ratios. 

quency was 5 MHz and the audio less by a factor of 7 (S1 signal) or 
of 5.6 (S2 signal). The steeper lines of the measurements shown by 
crosses were made with a flatter stylus shoe. Lines shown by circles 
(S1 signal only) include a small estimated correction for the zero 
offset of the whole group. 

Calculated curves corresponding to these measurements are 
shown in Figure 15(b). Again, the stylus shoe profile was taken as 
approximating those seen in SEM and the electrode spacing ad- 
justed to give the magnitude of video pickup that was measured. 
The shorter -wavelength audio signal in the calculations had only 5 

times the video wavelength and so does not correspond exactly to 
the S2 factor of 5.6. Measurement and calculation are in reasonable 
agreement, although there is still a tendency for calculated sound - 
beat values for the normal length shoe to be about 1 dB lower than 
measured; changes of stylus profile, shoe length, or electrode 
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spacing within a reasonable range did not increase soundbeat sig- 
nificantly above values in Fig. 15(b). 

The points marked "flatter shoe" were calculated for a shoe with 
curvature 0.7 of that used in the other curves; it shows a stronger 
wavelength dependence, as in the measurements. Calculations for 
an 8µm shoe show little change of soundbeat from the normal - 
length shoe if the shoe is level, which is in contrast to the 7 dB drop 
measured for the 9.8 µm real shoe compared to a 5µm real shoe 
(plots c versus a and b in Fig. 10(a)). The reason for this may be 
the higher sensitivity of the longer shoe to shoe tilt, that is, to a 
slightly prow -down condition. A further calculation using a shoe 
that is 200 prow -down, corresponding to the tilt produced by a 
rise in record level of only 4 mils, shows a dramatic drop in sound - 
beat, on the order of 10 dB. This is primarily due to the drop of 
stylus pressure near the electrode as the shoe tilts to a prow -down 
condition. For a normal length shoe, the effect is calculated to occur 
only for much larger tilts. 

Finally, the effect of a flat -top signal may be noted. Soundbeat 
can be reduced by modifying the waveform so that all signal contour 
peaks are at the same level: 

A = Ao coskax + (A - Aacoskax) cosk,x 

Table 4 shows the soundbeat calculated for this waveform, for an 
S1 audio signal of 85 Á p -p amplitude (2A0), and a shoe of curvature 
factor 1.5 compared with that for a normal signal. The reduction of 
soundbeat is substantial: 7.5 dB for electrode E2 (Table 2), which 
gives a normal video signal output level, and 9.3 dB for El, which 
is close -spaced and gives a signal about 4 dB above normal. Mea- 
surements with the same three styli as Fig. 15(a) for a flat -top 
signal with a nominal 100 A p -p audio component gave soundbeat 
values that were lower and had a dependence on video wavelength 
in the opposite direction to that of a normal signal. Calculated 

Table 4-Effect of Flat -top Signal on Soundbeat (SB) for Electrodes El and E2 (See 
Table 2) 

El E2 

Signal SB (-dB) Video (dBR) SB (-dB) Video (dBR) 

Normal 27.7 33.5 28.0 29.4 
Flat 37.0 33.5 35.5 29.4 
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values have a similar dependence on wavelength but a magnitude 
that represents an approximately 3 dB greater reduction from the 
normal signal. This difference may be due to the way in which the 
disc signal is produced. Even though a flat -top electrical signal was 
fed to the cutter head that made the original master, the cutting 
process may be sufficiently nonlinear to reintroduce some added 
audio signal. 

Conclusions 

The general agreement of the calculations with measurement con- 
firms the broad validity of the contour deformation model of stylus 
pickup. Many of the apparent discrepancies can be seen to lie within 
the scatter of experiment or to involve unknown factors, such as the 
linearity of the signal -cutting mechanism. Agreement is best when 
an electrical calibration is not involved, as in the dependence on 
tracking force. A more extensive and correlated set of measure- 
ments would be required to elucidate the effect of all stylus and disc 
parameters and obtain a complete understanding of the limitations 
of the model. 

Acknowledgements 

The author is indebted to C. H. Anderson, R. W. Nosker and J. R. 
Matey for a number of informative discussions on the basic physical 
concepts of this analysis; to R. W. Klopfenstein for showing the 
method of solution for the pressure distribution; and to J. J. Gibson 
for discussion of alternate analyses and for the design of the flat- 
top signal geometry. The various measurements quoted have been 
made, at varying locations within RCA, by D. Brigham, J. E. Econ- 
omou, J. R. Matey, R. W. Nosker, J. G. Pecorari, and E. D. Sims- 
hauser, with the assistance of G. R. Auth and J. F. McLaughlin; 
their contribution to this paper is gratefully acknowledged. 

References: 

1J. K. Clemens, "Capacitive Pickup and the Buried Subcarrier Encoding System 
for the RCA VideoDisc," RCA Rev., 39, p. 33, March 1978. 
2 S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd Edition, McGraw- 
Hill Book Co., p. 402. 

420 RCA Review Vol. 45 September 1984 



Some Applications of z -Transforms 
and State Variables to Feedback 
Shift Registers 

Harry Urkowitz 
RCA Government Systems Div., Moorestown, NJ 08057 

Abstract-After a brief review of the elementary properties of binary linear 
recursive sequences, two types of feedback shift register for 
their generation are introduced. One is the simple feedback 
shift register generator (SSRG) and the other is the multiple 
return, or modular, shift register generator (MSRG). With ap- 
propriate feedback connections, both types can generate the 
same sequence. 

The values in the storage elements of a feedback shift reg- 
ister constitute the state vector of the register. The succession 
of states describes completely the autonomous (self) behavior 
of the register. A particularly apt method of analyzing the 
succession of states involves discrete state variables. Through 
their use and the use of z -transforms, equivalences are estab- 
lished between an SSRG and an MSRG to yield the same se- 
quence, between parallel combinations and a single large reg- 
ister, between cascade combinations and a single larger reg- 
ister, and some equivalences are established involving 
complemented sequences including alternating complements 
and generalized complements. 

1. Introduction 

In this paper we consider two forms of feedback shift registers that 
generate binary linear recursive sequences. In particular, we con- 
sider conversion of states from one form to the other and cascade 
and parallel combinations. These equivalences are obtained by the 
application of z -transforms and by the state variable approach. 

Both z -transforms and state variables have been applied to feed- 
back shift registers before, particularly by Huffman1"2 and by Pe - 
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terson,3,4 but there are some differences in our approach. Huffman 
introduced the delay operator D which is formally equivalent to 1/z 

of the bilateral z -transform. In this paper we use the unilateral 
z -transform because initial conditions are more readily inserted. 
The autonomous behavior is readily studied by means of state vari- 
ables (particularly the use of the state transition matrix) used by 
(among others) Elspas5 and Birdsall and Ristenbatt,' although the 
usual modern terminology was not used by them. 

Of particular interest to us are the two forms of feedback shift 
register, called by Birdsall and Ristenbatt the "simple" shift reg- 
ister generator (SSRG) and the "modular" or "multiple return" shift 
register generator (MSRG). The SSRG uses several cascaded delay 
or storage elements and has a single feedback reentry point. The 
MSRG has multiple reentry points in the feedback paths so that 
binary adders are required between some of the storage elements. 
While appropriate connections of the two forms will produce iden- 
tical binary sequences, the states (i.e. the contents) of the two forms, 
as the elements of the output sequence are generated, will be dif- 
ferent, in general. There are two reasons for treating both forms: 

(1) The successive states of an n -stage SSRG are successive N -digit 
portions of the output sequence, i.e., the contents of the SSRG 
appear in the output sequence. 

(2) The successive states of an n -stage MSRG may be identified 
with the elements of a Galois (i.e., finite) field of characteristic 
2; i.e., we may say that an MSRG performs "field counting". 
This is pointed out by Peterson3.4 and by Berlekamp.7 

Peterson points out that there is a one-to-one correspondence be- 
tween the states of the two types of shift register, but formulas 
relating the two are not given. By combining the use of state vari- 
ables and unilateral z -transforms, explicit formulas are derived 
here for conversion from an SSRG state to an MSRG state. 

In this paper, we first apply the one-sided z -transform to a linear 
recursive sequence and show how initial conditions enter. These 
initial conditions are identified with the state of an SSRG that gen- 
erates the linear recursive sequence. 

We then couple z -transforms with state variables. Transfer func- 
tions are derived as rational fractions in z. Together with the state 
transition matrix describing the autonomous behavior, z -trans- 
forms are used to derive the equivalence between MSRG and SSRG 
states. 

Next, using the coupling mentioned above, we obtain the behavior 
of a series and a parallel combination of either type of shift register, 
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together with derivations of equivalent initial states. Among the 
results obtained is the extraction of the component sequences from 
the sequence produced by a cascade. 

Last the z -transform is used to show some interesting algebraic 
properties of complements, alternating complements, and general- 
ized complements of binary sequences. 

It is believed that almost all of the results beginning with Sec. 5 
are new except, possibly, for the application to dual -state modula- 
tion of the z -transforms of singly complemented sequences. The ma- 
terial on generalized complements has not yet, as far as the author 
knows, found application to modulation schemes. 

For the reader's convenience, the definition of symbols used in 
this paper are given in Appendix B. 

2. Linear Recursions and Their z -Transforms 

A recurrence or recursion is a relationship that describes how each 
element of a sequence depends upon the previous elements. A linear 
recurrence refers to a linear combination of past elements. Thus, let 
{y(k)}, k = 0, 1, 2, ... , represent a sequence of elements y(k). Then 
a linear recurrent sequence, or linear recursive sequence, satisfies 
an equation of the form: 

y(k + n) = foy(k) + fiy(k + 1) + ... + f,, 1y(n + k - 1) 

n-1 

= , f y(k + j) 
;=o 

= V k = 0, 1, 2, . . . [1] 
j=k 

where the coefficients f are elements of a field and do not depend 
on k. For the case of integers modulo 2, the f will be 0 or 1 and the 
addition will be modulo 2. Eq. [1] refers to an nth order sequence. 

It may be seen that the equation that is satisfied by a linear 
recursive sequence is a linear difference equation and can be ana- 
lyzed with all of the tools available for such equations, including z - 
transforms. 

Suppose we rewrite Eq. [1] in the following way: 

E f y(k + j) = 0, k , 0, [21 
j=0 

where it is understood that f = 1 and all arithmetic is modulo 2. 
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Eq. 121 is a homogeneous linear difference equation with constant 
coefficients. Being homogeneous, it has a solution or solutions that 
depend only on initial conditions; no driving force is implied, except 
for the initial conditions. Thus, when we consider physical devices 
for the generation of sequences that are solutions of Eq. 121, we will 
consider their undriven or "autonomous" behavior. The sequence 
that comes out of such a network naturally consists of a set of digits 
arriving sequentially in time. Thus, the network may be known as 
a "sequential" network. Therefore, we may say that we are studying 
linear, autonomous, sequential networks. 

The shift register generators we study have periodic sequences 
and the maximum period obtainable from an n -stage feedback shift 
register is 2n - 1. The first n digits of the sequence are the initial 
conditions and must be assigned. However, in the sequence, because 
of the recursive relationship of Eq. 121, any /r digits may be consid- 
ered as the initial conditions for the rest of the sequence. 

More insight may be obtained from the z -transform of the se- 
quence.8 The (one-sided) z -transform of a sequence {y(k)}, h , 0, is 
defined by 

Z{y(k)} '= Y(z) '_ E y(k) z -k. 131 
k=0 

Eq. 131 can be applied to Eq. 111 by rearranging it. Assuming that 
the f are integers in the field modulo 2, we have, after some ma- 
nipulation, 

-1 n r, 

y(i)zi-r I zit f,v(i - j) 
Y(z) = 

i= 1 i=0 j=1 i=i 

f (z) f (z) 

n n 

zi > y(n - i)l-i+i 
='=1 [41 

f (z) 

where the polynomial f (z) is 

f(z) = f + /1z + f2z2 + ... + f,,zn 151 

1(z) is called the "characteristic polynomial of the sequence. 

3. Transfer Function and Impulse Responses 

In this section we determine the transfer function and the state 
transition matrix of both types of feedback shift register. The es - 
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sential elements of binary sequential networks are the binary 
adder, the multiplier (having the value 0 or 1), and the delay or 
storage element. 

These basic elements are combined to form feedback shift regis- 
ters as shown in Figs. 1 and 2. Both the plus sign and the sub - 
scripted sigma indicate addition modulo 2. Fig. 1 shows two repre- 
sentations for the SSRG, while Fig. 2 shows two representations for 
the MSRG. For either generator, the state component or value of 
any particular stage is taken as the value that would be obtained 
if that stage were sampled. Therefore, the output y(k) is the content 
of the last stage or storage element at shift k. The feedback weights, 
in both cases, are either 0 or 1. When necessary, we distinguish the 
state, or set of contents, of each type of generator by different sub- 
scripts: xsi(k) for the SSRG and xmi(k) for the MSRG. Note that the 
weights for both types of generator have been labeled to correspond, 
so that the external behavior is to be the same. 

The impulse sequence response or, simply, the impulse response 
of either form, is obtained by setting the input u(k) to the unit pulse: 

DELAY OR STORAGE ELEMENTS 

u(k) 

xslk) xs2(k) 

u(k) 

la) 

xs(k) 

ylk) 

ylk) 

Ib) 

Fig. 1-Two representations for the simple feedback shift register (SSRG). 
At shift k, the values stored in the stages are xs1(k), xs2(k), ... , 

xs(k). The weights f, are 0 or 1. At shift k, the output y(k) is taken 
as xs(k). 
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u(k) 

u(k) -o 

xM2(k) 

la) 

xMflk) xM2(k) xM n-f(k) xMn(k) 

Off Qf2 Afn-2 A fn 
-f 

v(k) 

y(k) 

(b) 

Fig. 2-Two representations for the modular shift register (MSRG). At shift 
k, the values stored in the stages are xMI(k), xM2(k), ... , xMf(k). 
The weights f, are 0 or 1. At shift k, the output y(k) is taken as 
xMf(k). The weights fi are labeled to correspond with those of Fig. 
1 to provide the same external behavior. 

u(k) = 80(k), [6] 

where 80(k) is 1 for k = 0 and 0 for k O. No initial conditions 
exist within the generator. The transfer function is the z -transform 
of the impulse response and may be found by direct analysis. The 
following terminology will be used: 

hs(k) = impulse response of the SSRG 
h.%j(k) = impulse response of the MSRG 
Hs(z) = transfer function of the SSRG 
HM(z) = transfer function of the MSRG 

Straightforward analysis, with the aid of Fig. 1, shows that 
r+ 1 

Hs(z) = E fi = 1/ f (z) , [7] 
1=0 

with f taken as unity. Similarly, with the aid of Fig. 2, it is found 
that 

HM(z) = 1/f(z). 18] 

Of course, we anticipated the equality of Hs(z) and HM(z) by our 
labeling of Figs. 1 and 2. 
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It is easy to show that hs(k) or hM(k) satisfies the recurrence de- 
scribed by Eq. [21. 

4. State Variable-Autonomous Behavior 

Now let us turn to the application of state variables as a means for 
describing the autonomous behavior. An appropriate reference for 
the application of state variables is Cadzow.8 

A system may be characterized by an internal state vector, whose 
components are state variables. The state variables may be chosen 
in many ways, but we shall choose the values of the numbers stored 
in the shift register as state variables. As time passes, the state of 
the shift register will change and the way in which the state vector 
changes with time and the way in which the outputs vary make up 
the state space description or state variable description. 

Our interest at the moment is in the autonomous behavior; there 
will be no input so the sequence u(k) is zero. We concentrate on the 
state vector x(k): 

x(k) = 1x1(k) ... x(k)1T 19] 

and the scalar output sequence y(k). The index k is a time index and 
is an integer. No subscript indicating the SSRG or the MSRG is 
used at this point because the discussion is general so far. When it 
becomes necessary to distinguish between the two forms of gener- 
ator, the subscripts s and M will be used, as in Figs. 1 and 2. 

For our purpose, the autonomous system dynamics are described 
by a set of first -order difference equations, called the state vector 
equation and the output equation: 

x(k + 1) = A x(k) [10a] 

y(k) = C x(k) [ 10b] 

A is an n x n matrix called the system matrix and C is a row vector 
of n components. In fact, examination of Figs. 1 and 2 shows that 
y(k) = x (k), so that 

C = [00 ... 1]. [111 

Another quantity of importance is the state transition matrix 
1(k), defined as follows: 

1(k) = Ak, 4(0) = I. [121 

Using (t)(k), the solution of Eq. 1121 is the pair 

x(k) = (G(k) x(0) = Ak x(0) 1131 
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y(k) = C (I)(k) x(0) = C Ak x(0) 1141 

The system matrices for the SSRG (subscript s) and for the MSRG 
(subscript M) are: 

As = 

Am = 

l; -1 fit -2 /n-3 
1 0 0 
0 1 0 
0 0 1 

fi 1 

0 0 
0 0 
0 0 

0 0 0 1 0 

0 0 0 0 1 

1 0 0 0 f1 

0 1 0 0 /2 
0 0 1 0 /3 

J 

0 0 0 1 fn -1 

where it is presumed that /á = fn = 1. 

There are two aspects to the autonomous behavior. One is the 
succession of states; this is given by Eq. 1131. The other aspect is 
the output sequence for a given initial state vector. This is given 
by Eq. 1141 with the system or A matrix given by Eqs. 1151 and 1161 
for the two types of shift registers. Eqs. 1131 and 1141 can be viewed 
as the solution or description of the autonomous behavior. However, 
it is useful to express Eq. 1141 in terms of z -transforms; these will 
be needed in the sequel when conversion from one generator to the 
other is considered. Specifically, we seek the z -transform of the 
output sequence y(h) for the two types of shift register generator. 

Using the subscripts s and M, respectively, for the SSRG and 
MSRG, it is shown in Appendix A that the z -transforms of the 
output sequences in the two cases are given by 

1151 

116] 

Ys(z) - 

11 n 

r z xs;(0) fn-r+,¡ 
J=1 i=J 

n 

f (z) 

xMi(0)zi 

1171 

YM(z) = J-1 1181 f (z) 

In the next section, we equate Eqs. 1171 and 1181 in order to show 
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equivalent or corresponding states of the two forms of shift register 
generator. However, there is an additional relationship between the 
components of the state vector of the SSRG which will be found 
useful in what follows. If we examine Fig. 1, we see that xs1(k) is 
obtained from the weighted sum of the components from the pre- 
vious shift k - 1. Thus, it follows that 

n-1 
xl(k + 1) = fi xn_j(k) = E xi(k) 

j=0 j=1 

5. Equivalent or Corresponding States 

Let us consider two shift register generators, one an SSRG and the 
other an MSRG. Let them both have the same characteristic poly- 
nomial f(z). Let us demand the same output: 

Ys(z) = YM(z) = Y(z). 1201 

What will be the corresponding initial states to satisfy Eq. 1201? In 
general, what will be the corresponding states at any value of shift? 

To answer these questions, we may equate Eqs. 1171 and 1181 and 
arrive at corresponding initial state vectors xs(0) and xN1(0). How- 
ever, it should be realized that the output following a given state 
is dependent only on that state and not on the previous state. By 
considering the shift origin as arbitrary, we get a correspondence 
or equivalence for any value of shift, k. With these statements in 
mind, we get: 
n n n ` xMj(k) zi = zi xsi(k) fn-i+j 

j=1 j=1 i=1 
1211 

Equating like powers of z, we get the following equivalence for- 
mulas: 

xMj(k) = G xsi(k) 

_ r F xs,n-i+j(k) 
i =j 

122] 

It is interesting to note that the constant term fo of the polynomial 
f(z) does not enter into the conversion. 

These equations can be expressed in compact form by defining a 
"state conversion" matrix G as follows: 

RCA Review Vol. 45 September 1984 429 



G = 

Li 

fn -1 fn -2 
1 fn -1 
0 1 

0 0 ... 
0 0 ... 0 

Then Eq. 1221 can be expressed as 

xm = G xs. 

The reverse process of expressing 
x 1 can be accomplished by using 
tained from G by a little tedious a 
the counterpart of Eq. 122]. These 

1 

xs = 

or 

f1 

f3 

1 

fz 

1231 

1241 

the components of xs in terms of 
the inverse of the matrix G, ob- 
lgebra, or by a formula which is 
expressions are 

n-1 

xsj = xMj + f,t-1 xMj+1 + E (fn -1 + fn- i xMi+1, 
i=j+1 

where 

1 fi¡ -1 fn -1 + fn -2 fit -1 + fn -3 
0 1 f-1 fn -1 + fn -2 

G-1 = 
0 0 1 fü-1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

fn -1 +f3 
f4 

fn - 1 + fs 

1 

0 

0 

fi - 1 + f2 

fit -1 + 1.3 

fn- 1 + f4 

fn -1 
1 

0 

fn - 1 + fl 
- 1 + f2 

fn - 1 + f3 

fn -1 + fn -2 
fn -1 
1 

6. Shift Register Combinations 

125] 

1261 

1271 

We are interested in the properties of shift registers connected in 
cascade or in parallel. Some of these properties are found simply by 
inspection. For example, the zero initial state transfer function of 
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two shift registers in cascade is the product of the individual zero 
initial state transfer functions. The transfer function of two shift 
registers connected in parallel (i.e., their outputs are added modulo 
2) is the sum of the individual transfer functions. Other properties, 
including the effects of nonzero initial states, are not so easy to find. 

When shift registers are combined, with or without zero initial 
states, it is often of interest to determine whether there is a single 
shift register that is equivalent to the combination. We shall be 
able to find such equivalents for arbitrary initial states. More im- 
portantly we shall be able to find the initial states of the component 
shift registers to yield a prescribed initial state of the equivalent 
single register. For example, suppose we wish to combine two shift 
registers of n1 and n2 states, respectively, to be equivalent to a 
single shift register of n 1 + n2 stages. We desire the output sequence 
of the combination, with zero input, to start with n1 + n2 - 1 zeros 
followed by a one. What should be the initial states of the component 
shift registers? 

7. Simple Shift Register Generators in Parallel 

We consider the autonomous behavior of two simple shift registers 
whose outputs are added, as shown in Fig. 3 for two SSRG's. If the 
individual outputs have transforms Y111(z) and Y(2)(z), the total 
output has a transform Y(z) given by the sum of Ytlk(z) and Y(2)(z). 
Let the two SSRG's have n1 and n2 stages, respectively, and char- 
acteristic polynomials `(1)(z), `(2)(z). Then, using Eq. [ 171 the output 
transform is 

` I 

Fig. 3-Two SSRGs in parallel. 
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Y(z) = 

n, n, n2 n2 

g(1)(z) E zj x())(0)f¡,;)_;+j + g'2)(z) ; zj E x12)(0)f(,22)-(+j 

J=1 i=J J=1 i=J 

lcm( f(11, f(2)) 

1281 

where 

lcm(f(I), f(2)) = least common multiple of f111(z), f(2)(z) 1291 

lcm(fl'), f(2)) 
1)(z) = /11>(z) 

lcm(f(1) f(2)) 
g2)(z) = flz)(z) 

With this formula we can find the equivalent single shift register 
that will give the same output as the parallel combination of Fig. 
3, when these have given initial states. What we seek from Eq. [281 
is the initial state of the equivalent single shift register. 

The necessary formula is derived by noting that for a single shift 
register, the output transform is given by Eq. 1171. By equating that 
equation to Eq. 1281 using 

f(z) = lcm(f(1), /(2)), 
1321 

we get, with ii = degree of f (z), 

s n, n, 

z Xin-i+j J f = g(1)(z ) zJ E c.. 
j=1 i=J j=1 i=J 

"2 n2 

+ g(2)(z) G zj \' 112)/12) 
L+ L. n2-rij. 

j=1 i=J 

1311 

1331 

The left hand side refers to the single equivalent shift register. The 
argument has been omitted from each x;, xtl), and x(2) because the 
result is implied to refer to an initial state which is referred to an 
arbitrary origin. 

Eq. [331 is used by equating like powers of z on both sides of the 
equation. 

8. Modular Shift Register Generators in Parallel 

Results similar to those in the previous section may be obtained for 
MSRG's. Starting with Eq. 1181, we get the formula corresponding 
to Eq. 1331: 
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n n1 n2 

xjzj = g'1(z) v x51) .21 + g121(z) xrz1, 1341 
j=1 1=1 1=1 

where g11)(z) and g()(z) are defined by Eqs. 130] and 1311, and 

f(z) = lcm(f(1), f(2)). 1351 

Again, like powers of z are equated to get a set of linear equations 
in the desired values for the initial states xj(1) and xj(2). 

9. Simple Shift Register Generators In Cascade 

With two shift registers in cascade, the output of the first is the 
input to the second. The zero state behavior of the cascade is deter- 
mined simply by multiplying the individual transfer functions. This 
product is then multiplied by the z -transform of the input to the 
cascade to get the z -transform of the output. This behavior presents 
no particular difficulty, so we turn to the zero input behavior. That 
is, we consider the autonomous behavior of the cascade with specific 
initial states in the two shift registers. In particular, we consider 
the required initial states to give the same output as a single shift 
register having a prescribed initial state. 

We approach the problem by noting that the output of the first 
shift register is the input to the second. The output of the second, 
therefore, has two components: one is due to the output of the first, 
and the other is due to the initial state of the second. Accordingly, 
we write 

n2 n2 

Zj 

Y(2)(z) = Y(1)(z)H(2)(z) + j=( i=i 

x(2)(0)f;,2) 
r+ 2- J 

f(2)(z) 
1361 

where the superscripts refer to the particular shift register. Now, 
from Eqs. 171 and 1171 

H(2)(2,) 1 
f[2)(z) 

nl nt 

zj x(1)(p)f(1) n-i+j 
J=1 =J Y(1)(z) - 

f(1)(z) 

so that the transform Y(z) of the output of the cascade is 

1371 

1381 
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Y(z) = 

nl nl n2 n2 

E x(1)(0)fcl) + f(1)(z) zj E x(2)(0)f(2) L n7-i+j n2-i+j 
j=1 i=j j=1 i=j 

f(1)(z) f(2)(z) 

[391 

We are interested now in determining the characteristic polynomial 
and initial state of the equivalent single SSRG. First of all, the 
characteristic polynomial f(z) is 

1(z) = fn)(z) f(2)(z). I401 

This shows that the degree /l of the equivalent single SSRG is 

n = n1 + n2. 1411 

The initial state of the equivalent SSRG is related to the initial 
states of the individual SSRG's in cascade through the equation: 

nl+n2 n nl n¿ 

zj r xi(0)fn_i+.J = G zj E x(1)(0) f (17)-i+j 

j=1 i=j j=1 i=j 

n2 n2 

+ f(1)(z) zj 
x(2)(0)fn2)_i+j 

j=1 i=j 
1421 

where n = n1 + n2. Further simplification of Eq. 1421 does not 
appear warranted. It is used by equating the coefficients of like 
powers of z, yielding a set of equations for the xi(0) in terms of the 
x11)(0) and x12)(0). 

It is interesting to note that the last n2 initial values of the single 
equivalent SSRG are the same as the n2 initial values of the second 
SSRG, i.e., 

xn(0) = 4(0) 
xi_1(0) = x1z)-1(0) 

1431 

xn-n2+2(0) = xnj+2(0) = x22)(0) 

xn-n2+1(0) = xl+1(0) = xj2)(0) 

A closely related problem is this. Given: 
(1) A characteristic polynomial f(z) that is the product of two fac- 
tors: 

Az) = f(1)(z) f(2)(z). 1441 
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The degree of f(z) is n, the degree of f(1)(z) is n1, and the degree 
f(2)(z) is n2. 

(2) n = n1 + n2 successive output digits. 

We wish to find the equivalent decomposition into two cascaded 

SSRG's and find their initial states. 
As before, we let f(2)(z) be the characteristic polynomial of the 

second SSRG. The last n2 values of the x;(0) are known and these 
are the values of the initial state of the second SSRG, as shown by 

Eq. 143]. The job remaining is to find the x1)(0), i = 1, 2, ... , n 1. 

Fig. 4 indicates the decomposition into two cascaded SSRG's. The 

output of the second SSRG ís the output of the cascade or of the 
single SSRG equivalent: 
y(k) = y(2)(k). [451 

The input to the second SSRG is the modulo 2 sum of the output 
y(1)(k) of the first SSRG and the result w(k) of the feedback in the 
second SSRG. The input to the second SSRG is simply the value in 

its first stage at the next shift, xj2)(k + 1). Thus, 

r 

f111(z) 

ni stages 0111k1 x11211k+11 

f(21(z) 

n2 stages 

n2 

Mk) = E x111k1f11_; 
i=1 2 

(a) Cascade equivalent of (b) 

f(z)=f111fz1f(2)(z) 

n=n1+n2 stages 

E2 

E2 

y(k) 

v12/(k)= Ylkl 

Ibl Single SSRG equivalent of la) 

Fig. 4-Decomposition of an SSRG into a cascade equivalent. 

RCA Review Vol. 45 September 1984 435 



xi2)(k + 1) = y")(k) + w(k) 

n2 

y(')(k) = x2)(k + 1) + w(k) = x(2)(1,+ 1) + x2)(k)f;z)_ 
. 

1461 
i=1 

Now, 

y(i)(ni - j) = x1')(0) 
x12j(k + 1) = yf2)(k + n2) = x,(k) = xj(k - n1 + j), 1471 

and 

42)(n1 - j) = x;+j(0) 

"2 
x1)(0) _ V, x41(0) f,2)-; 

;=o 
1481 

This is the formula we sought. 
Sometimes it is desirable to get the output of the first register in 

the equivalent cascade as a physical sequence so that the state of 
the first register in the equivalent cascade can be operated upon. 
That is, given y(k), produce y(1)(k) physically. The circuit for doing 
so can be derived from Eq. 1461. We note that 
x2)(k) = y(k + n2 - i). 1491 

Therefore, 

"2 

y(u(k) = y(k + n2) + y(k + n2 - i)f1,2)-;. 
;=1 

Then 

"2 
y(1)(k - n2) = y(k) + E y(k - i)f2)-; 

;=1 

= y(k - i)f(22) n-;, 
=o 

1501 

1511 

since f H) = 1. This is the desired formula for extracting the com- 
ponent setluences. A circuit to realize Eq. 1511 is shown in Fig. 5. 

10. Modular Shift Register Generators in Cascade 

Here we use a formula like Eq. 1361 except that we use, instead of 
the second term on the right of Eqs. 1361 and [381, the corresponding 
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y(k) 

y1111k.n2) 

Fig. 5-Extraction of the component sequences from an equivalent cas- 
cade. 

formula for MSRG's. The formula is, using Eq. 1181 and some al- 
gebra, 

nt n2 

x1')(0)zi + i(l)(z) .02)(0)zi 

Y(z) = y(2)(z) i= 1 = 1 

f(l)(z) f(2)(z) 
1521 

As above, the characteristic polynomial of the equivalent single 
MSRG is f (1)(z) f(2)(z) and the degree n of the equivalent is n1 + n2. 

The initial state of the equivalent single MSRG is related to the 
initial states of the individual MSRG's in cascade through the fol- 

lowing equation: 

n n n2 

r xi(0)zi = S xt)(p)zJ + fll)(z) r2)(0)zi. 

i=1 i=1 i=1 
1531 

By equating the coefficients of like powers of z on both sides of Eq. 

1531, we get the following expression for the values of the initial 
state vector of the equivalent single MSRG: 

1 

xi(0) = xy)(0) /p xy),(0),j = 1, 2, . . . , n. 1541 
r=o 

When this formula is used, it must be remembered that 
x(1)(0) = 0, j > ni 
fin) =0,j>n1 
x)2);(0) = 0,j > n2 + i 

11. Complements of Sequences 

155] 

The z -transform is particularly helpful in the investigation of the 
properties of the complements of sequences. A simple complement 

RCA Review Vol. 45 September 1984 437 



merely reverses the value of all the digits of a sequence. The alter- 
nating complement of a sequence is obtained by changing the value 
of every other digit. An interesting application of the alternating 
complement occurs in dual -state modulation of a communication 
signal. More general complements are possible and they are consid- 
ered here, but the author knows of no application that has yet been 
made of these generalized complements. 

Suppose we have a sequence y(1)(k), k , 0, and we want to gen- 
erate its complement y(k); that is, we want to generate a sequence 
in which zeros have been changed to ones and ones have been 
changed to zeros. This means that 

y(k) = 1 + yfl)(k), k , 0 (mod 2, of course). [561 

To obtain generators of the complement, it is more convenient to 
work with the z -transform of y(k). The z -transform of both sides of 
Eq. [561 yields 

Y(z) = z-k + Ycl)(z) 
k=0 

- z 
+ Y(l)(z). 

1 + z 
[571 

Several realizations of Eq. [571 are possible. One involves two shift 
registers in parallel, one corresponding to Y(1)(z) and the other cor- 
responding to z/(1 + z), which we may label Y(2)(z): 

Y(2)(z) z 
1 + z 

[581 

When this expression is compared with either Eqs. 1171 or 1181, it 
will be seen that Eq. 1581 represents the output of a single stage 
feedback shift register whose characteristic polynomial is 

`(2)(z) = z + 1 1591 

and whose initial state is unity. The output of the combination is 
the complement of y(1)(k). 

The parallel realization is an obvious one based on the appearance 
of Eq. [571. Is there a cascade realization? Is there an equivalent 
single shift register to give the same output? Let us try, at first, to 
answer the cascade question using an SSRG. 

The situation we want to consider is shown in Fig. 6. The n stage 
SSRG shown in part (a), with characteristic polynomial f(z) and 
initial state x(0), produces a certain sequence y(k). The arrangement 

1 
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,101 .0101 

n STAGES --+ Ylk) 

flzl 

(a) n stage SSRG 

.11(0) " 1110 

n STAGES 

Hz) 

f(21(z) 
z+1 

1 Ylkl 

(b) n stage SSRG cascaded with a complementer 

Fig. 6-A cascade arrangement for obtaining the complement of a se- 
quence. 

in Fig. 6(b) is to produce the complement 1 + y(k) of the sequence 
y(k) by cascading an n stage SSRG having the same characteristic 
polynomial with a single stage shift register acting as a comple- 
menter. Of course, we do not expect the initial state x(1)(0) in Fig. 
6(b) to be the same as the initial state x(0) of Fig. 6(a). 

What has to be done now is to solve for x(1)(0) and for the initial 
state x1(2)(0) of the complementer. We find that 

x(12)(0) = 1 + x0(0) = 1 + y(0), 

and 
x(1) k(0) = xn-k(0) + xn-k-1(0), k = 0, 1, 2, . , n - 2 

x1(1)(0) = x1(0) + xj(0)fn-j. 160] 
j=1 

Similar formulas may be found for the arrangement where the corn- 

plementer precedes the other shift register. 
It is possible to find a single shift register equivalent to either 

the parallel arrangement or the cascade arrangement discussed 
above. If f(z) is the characteristic polynomial of the uncomple- 
mented sequence, the complemented sequence will have a charac- 
teristic polynomial given by lcml f(z), z + 1]. The initial state of 
the single equivalent SSRG can be obtained by equating like powers 
of z in the expressions for the output sequence in terms of the initial 
states. 
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12. Alternating Complements 

Suppose we have a sequence y11)(k), k a 0, and we want to generate 
a sequence y(k) that is the alternating complement of the sequence 
y(1)(k); that is, every other digit is complemented. This means that 
y(k) = yo(k) + y(2)(k), 1611 

where 

y(2)(k) = 0, k even 
= 1, k odd. 1621 

The z -transform of y(1)(k) is 

y(2)(2) = Y 2-k = z-1 y -2k 
kodd k==.o 

z 

1 + z2 

The z -transform of Eq. 1611 becomes 

Y(z) = Y(1)(z) + 
z2 + 1 

z 

1631 

1641 

When the second term on the right hand side of Eq. [641 is compared 
with Eq. 1191, we can determine that y(2)(2) can be realized by a 
simple two stage feedback shift register, whose characteristic poly- 
nomial is 

f(2)(2) = z2 + 1, 1651 

and whose initial state is given by 

x2)(0) = 1 
x22)(0) = O. 

With this realization of Y(2)(z), the parallel combination of shift 
register generators to realize Y(z), that is, the sequence that is y111(k) 
with alternate digits complemented, is shown in Fig. 7. 

We now look for a single SSRG that is equivalent to the parallel 
combination shown in Fig. 7. We can see that the single equivalent 
will have a characteristic polynomial given by lcm(f(1), z2 + 1). The 
state of the single equivalent can be determined from the states of 
the parallel arrangement of Fig. 7 by using Eq. 1331. 

1661 
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(2) 12) 
"2 (0) 101 

y1111k1 

y12 (k) 

ylkl 

f121(z) 
= z2+1 

Fig. 7-Obtaining the alternating complement of the sequence yi1(k), i.e., 
the alternate digits of y(1)(k) have been reversed. 

13. An Application of z-Transforms-Dual 
State Modulation 

In this section, we consider the modulation of a binary sequence 
upon a carrier wave such that the state (e.g., phase or frequency) 
of the carrier may or may not change in accordance with the binary 
sequence message. For example, consider a frequency difference 
keyed (FDK) waveform in which the current frequency is changed 
if the next symbol is a zero and is left unchanged if the next symbol 
is a one. Fig. 8 illustrates the process of modulation. 

There is a base frequency F1. At the start of modulation, the 
frequency changes to its other value F2 because the first symbol in 
the modulating sequence is a zero. If we let 

y(k) = message sequence = modulating sequence 
m(k) = modulated sequence = transmitted sequence 

we can see that 

m(k) + m(k - 1) = 1 + y(k). 1671 

The received sequence, after converting frequency to symbols, is 
m(k), where either frequency may be demodulated as a one. Re- 
covery of the message y(k) is accomplished using Eq. [67]: 

y(k) = 1 + m(k) + m(k - 1). [68] 

An algorithm for recovery of the message is shown in Fig. 9, which 
simply provides the operation of Eq. [68]. 

Additional insight is obtained by using z -transforms. Let 
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MODULATING SEQUENCE 

ylkl: 0 1 1 0 0 1 0 0 0 

BASE 
FREQUENCY 

1 1 
---FREQUENCYFz 

I I I I I I I I I 111 I I I II I 

I i L_J I `_J L- _ _ FREQUENCY F1 

START OF MODULATION 

Fig. 8-Frequency difference keying (FDK) by a binary modulating se- 
quence. 

Y(z) = z -transform of y(k) 
M(z) = z -transform of m(k). 

The z -transform of Eq. 1681 yields 

Y(z) - 
z + 1 

+ M(z) (1 + z-1). 1691 

Solving for M(z) yields 
z 

M(z) - 
z +z1 + z2 + 1 . 

[701 

Now, Y(z) is the transform of a shift register sequence with a char- 

m(k) 

FIRST DIFFERENCE ALGORITHM 

E 

L 

DELAY 
z1 

INITIAL STATE 

m1k11 

Í 

J 

1 STAGE FEEDBACK SHIFT REGISTER 

ylkl 

Fig. 9-Recovery of message y(k) from an FDK signal. The first difference 
algorithm may be accomplished by a one -stage shift register with 
initial state zero. 
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acteristic polynomial f (z), say. This means that Y(z) can be written 
as 

Y(z) - N(z) 171] ' 

where N(z) is a polynomial in z. Inserting Eq. [71] in Eq. [70], we 

obtain 

M(z) = 
z(z + 1)N(z) + z2f(z) ¡72] 

(z2 + 1)f(z) ' 

presuming that z + 1 does not divide f (z). Examination of Eq. [721 

shows that m(k), the sequence whose transform is M(z), has a char- 
acteristic polynomial (z2 + 1) f (z). This has degree two greater than 
the degree of f(z). Thus, we may say that the process of frequency 
difference keying increases the degree of a sequence by two. 

Now consider what happens after the first difference process. The 
transfer function is 1 + 1/z, so that with m(k) as its input, the output 
transform is 

M(z)(z + 1) (z + 1)N(z) + zf(z) 
z (z+1)f(z) 

[73] 

The resulting sequence has (z + 1)1(z) as its characteristic poly- 

nomial. Thus, the first difference process yields a sequence that has 
degree one greater than the original modulating sequence. The pro- 

cess of complementing will add the z -function z/(z + 1) to Eq. [731. 

The result is N(z)/ f (z) which is Y(z). 

14. Generalized Complements 

The idea of complementing a sequence can be generalized and the 
use of z -transforms with such generalizations shows some inter- 
esting algebraic properties. However, the author has so far found 
no applications beyond those for the alternating complement dis- 

cussed earlier. We start with the following definition: An nth order, 
single -digit complement is one of the sequences obtained by comple- 

menting every nth digit of a given sequence. The ordinary comple- 
ment is the first -order, single -digit complement. The alternating 
complements (there are two) are second -order, single -digit comple- 
ments. For a given sequence, there are m possible mth order single - 
digit complements. 

We shall consider single -digit complements first; this will make 
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simpler the understanding of multiple -digit complements. We de- 
fine an mth order single -digit complementing sequence as follows: 

y(k; m, 1; j) = 1, k = j mod in 

= 0, otherwise. 

Here, k is the integer time index; m is the order of the comple- 
menting sequence; j = 0, 1, ... , m - 1 and j indicates the partic- 
ular one of the in possible complementing sequences; the number 
following ni (a 1 in this case) indicates the number of digits com- 
plemented (i.e. reversed) in each group of in. 

The complementing sequence is added to a given complemented 
sequence y(1)(k) to yield a complementary sequence (i.e., an nth order 
single -digit complementary sequence). With y(k) indicating the re- 
sulting sequence, we have 
y(k) = ynl(k) + y(k; in, 1; j). 1751 

An example will help to clarify the notation. Let in = 3; then j has 
the possible values 0, 1, 2. Then, we have 

y(k; 3, 1; 0) = 1, k = 0 mod 3 
= 0, otherwise 

y(k; 3, 1; 1) = 1, k = 1 mod 3 

= 0, otherwise 
y(k; 3, 1; 2) = 1, k = 2 mod 3 

= 0, otherwise 

Now we apply the definition Eq. 131 of the z -transform to Eq. 1741. 
We find that nonzero values occur only for k = j + rm, where r = 
0, 1, .... Then the z -transform of y(k; in, 1; j) is 

x zm -J 
Y(z; m, 1; j) = E Z-J-rm = 

r=0 1 + Zm 

1741 

[761 

Now, the z -transform of y111(k), it will be recalled, has the form 

Y111(z) = gul(z)/ flu(z), 
1771 

where f11k(z) is the characteristic polynomial of y111(k) and the poly- 
nomial g11W(z) represents a set of initial conditions and determines 
which of the possible sequences is under discussion with charac- 
teristic polynomial fllk(z). A comparison with Eq. 1171 shows that 
g(1)(z) corresponds to the initial state of an SSRG which generates 
y(1)(k). A comparison with Eq. [181 shows that the coefficients of 
gt1k(z) are, directly, the elements of the initial state of the MSRG 
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which generates y(1)(k). We now use Eqs. [76] and 177] to get Y(z), 
the z -transform of y(k): 

Y(z) = Y(1)(z) + Y(z; in, 1; j) 
= g(t)(z)/ffl)(z) + zm-Jl(1 + z"') 
= g(z)/1cm(f(1)(z), 1 + z"') [78] 

Here, g(z) is a polynomial of degree not exceeding in plus the degree 
of f(1)(z). Under the presumption that the numerator and denomi- 
nator of Eq. [781 have no common factors, we can recognize that the 
denominator represents the characteristic polynomial 1(z) of a shift 
register sequence: 

f(z) = lcm(f(1)(z), 1 + zm). [79] 

The numerator g(z) represents the initial conditions of the single 
shift register generator that would generate Y(z). By equating 1781 

with Eq. 1171, g(z) would give the initial state of the SSRG and 1(z) 
would give the characteristic polynomial for generating the result 
y(k). By equating 178] with Eq. 1181, the corresponding initial state 
of the equivalent MSRG would be obtained. 

Of course, a direct way of generating y(k) is to add the outputs of 
the shift register that generates y(1)(k) and the shift register that 
generates y(k; in, 1; j). The complementing SSRG would have its 
initial state consist of a single nonzero digit in the position repre- 
sented by the exponent in - j in Eq. 176]. Its characteristic poly- 
nomial is 1 + zm; this represents a circulating shift register whose 
output is fed back directly to the first stage. 

If it is desired to recover the original sequence y(1)(k) frcm y(k) 
when y(k) is known to be an mth order single -digit complementary 
sequence, we simply write, from Eq. 1751, 

y(1)(k) = y(k) + y(k; m, 1; j). 1801 

Because j is unknown, there will be ni possible second terms on the 
right hand side of Eq. [801. All of these are to be tried, yielding ni 
different sequences. To determine the correct one, each is tested to 
see that it produces the proper recursion. That is, Eq. 111 or 12] is 
to be satisfied. 

We can generalize the above by considering q digit, 'nth order 
complementing sequences and using the symbol y(k; m, q; j). The 
symbols q and m indicate that q digits out of each block of in have 
been reversed. The number j indexes the various possible patterns 
of r positions in each group of in. This number is ('r), i.e., j = 0, 1, 
... , (r) - 1. In y(k; m, q; j), nonzero values occur only for certain 
values of k, say kk in each block of in. That is, 
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y(k; ni, q; j) = 1, k = kj + rm 
= 0, otherwise, 

where r is an integer and j = 0, 1, 2, ... , q - 1. This shows that 
in each block of m digits, there are just q positions that have nonzero 
digits. Of course Eq. 1811 does not indicate which of the (q) possible 
patterns of nonzero digits is meant. 

The z -transform of Eq. 1811 is 
q x 

Y(z; m,q; j) = 
j = 1 rG=0 

1 q zm-k.1 

1 + z"' j=1 

[811 

1821 

As before, a comparison with Eq. 1171 shows that y(k; in, q; j) many 
be obtained by a circulating shift register whose initial state is 
described by the polynomial in the numerator of Eq. 1821. If an 
SSRG is used, then Eq. 1171 applies; if an MSRG is used, Eq. 1181 
applies. 

To create a complementary sequence y(k) from a given sequence 
y(1 )(k), y(k; m,q; j) is added: 
y(k) = yui(k) + y(k;m,q;j), 1831 

just as in Eq. 1751 for single -digit complements. The resulting se- 
quence will have a z -transform like Eq. 1781 and the characteristic 
polynomial will be given by Eq. 1791. The remarks following Eq. 
[791 apply here as well. 

15. Conclusions 

In this paper, state variables and z -transforms have been used to 
obtain several properties of shift -register sequence generators. 
Among these results are equivalences between simple shift register 
generators (SSRG's) and multiple return or modular shift register 
generators (MSRG's), between parallel or cascade combinations and 
a single larger register, and some equivalences involving comple- 
mented sequences, alternating complements, and generalized com- 
plements. The results are all given in terms of mathematical for- 
mulas that enable one, in principle, to work out any specific case. 
For long shift registers, the hand methods can be quite tedious and, 
in fact, may not be suitable at all. Machine conversion from an 
SSRG state to the equivalent MSRG state is straightforward, be- 
cause the conversion formula is a convolution of the SSRG state 
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with the characteristic polynomial. Another conversion involving a 
simple convolution is the extraction of the component sequences 
from a sequence that has been generated by a cascade of two shift 
register generators. 

All of the other conversions and equivalences involve operations 
that can be performed by linear binary shift registers. These oper- 
ations may include binary polynomial arithmetic which Peterson3,4 
shows may be performed with shift registers. 

Appendix A-Derivation of the z -Transforms of the 
Autonomous Outputs 

Eqs. [17] and [18] are the z -transforms of the autonomous output 
sequences of the SSRG and MSRG, respectively, when the initial 
states are respectively xsi and xMi, i = 1, 2, . , n. We start with 
the SSRG. Eq. [17] may be derived from the last of Eq. 14]. In Eq. 
14], the set y(n - i), 1 , i , n, can be considered as the initial state 
for the sequence y(k). If this is so, we may simply set 

xsi(0) = y(n - i) [84] 

This yields Eq. [17] from Eq. [4]. 
Obtaining Eq. [181 is a little more involved. The demonstration 

is made by showing that Y(z) as obtained from Eq. 114] is the same 
as Eq. [18] for the MSRG. Starting with Eq. [10a], we take the z - 

transform of both sides, noting that 

Z1x(k + 1)] = zX(z) - x(0). [85] 

Then Eq. [131 is used to get 

Z11(k)] = (1)(z) = zIzI - A1-1 [861 

It follows from Eq. 114] that 

Y(z) = zC[zI - -1x(0). 
[87] 

Eq. [16] is to be used in Eq. [87], but the entire inverse matrix is 
not needed. As Eq. 111] shows, C is a row vector whose only nonzero 
component is the last, unity. Thus, only the last row 4,, , i2, ... 
(bnn of the inverse needs to be calculated. When this fact is used 
(after some labor) and the result put into Eq. [87], the result will 
be Eqs. [181. 

Appendix B.-Glossary of Principal Symbols 

A 

Ant 

system matrix 
system matrix of the MSRG 
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As system matrix of the SSRG 
C output matrix, relating the contribution of a state x(k) 

to the output y(k) 
f(z) characteristic polynomial: coefficients are /o, ... , f, 
G state conversion matrix 
H(z) transfer fuhction 
HM(z) transfer function of an MSRG 
Hs(z) transfer function of an SSRG 
h(k) impulse (sequence) response 
1 w(k) impulse response of an MSRG 
hs(k) impulse response of an SSRG 
k integer shift or time index 
lcm least common multiple 
MSRG modular or multiple return shift register generator 
t number of shift register stages. Degree of characteristic 

polynomial 
SSRG simple shift register generator 
x(k) state vector. Components are xi(k) 
x1(k) state vector of an MSRG. Components are .r.1ti(k) 
xs(k) state vector of an SSRG. Components are xsi(k) 
Y(z) z -transform of the output sequence 
YM(z) z -transform of the output sequence of an MSRG 
Ys(z) z-transfo'rrñ of the output sequence of an SSRG 
y(k) output sequence 
yttl(k) a component sequence 
y(k;m,,j,r) an tnth order, r digit, complementing sequence 
z z -transform variable 
I(k) state transition matrix (= Ak) 
cb(z) z -transform of <1)(k). Elements are (l)y(z). 
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Image Formation in Contact -Printed 
PMMA Resist Sublayers 

L. K. White and D. Meyerhofer 
RCA Laboratories, Princeton, NJ 08540 

Abstract-Contact printing of PMMA sublayers is used in portable con- 
formal mask (PCM) multilayer resist techniques. The deep -UV 
exposure and development of these PMMA sublayers are sim- 
ulaté'd and compared to experimental results. For thick plan- 
arization sublayers (,2 µm), diffraction of the deep -UV radia- 
tion produces significant exposure variations across the resist 
mask apertures. This effect leads to an edge -sharpening phe- 
nomena. The Fresnel diffraction approximation is used to cal- 
culate exposure variations within the sublayer and a modified 
SAMPLE program is used to obtain the sublayer image. The 
effects of dye additions to the sublayer are also analysed. Es- 
timates of the wall profiles and dimensional deviations have 
been obtained for various isolated space feature sizes. 

Introduction 

As the requirements for integrated -circuit geometries become more 
demanding, new lithographic techniques are required. One such 
technique, the portable conformable mask (PCM) multilayer resist 
processing scheme, has been used to print fine -line optical lithog- 
raphy patterns p.m) on topographical features.1-3 A polyme- 
thylmethacrylate (PMMA) sublayer is used to planarize the topo- 
graphical features on the substrate. It is covered with a layer of 
positive resist that is patterned as usual. This layer acts as a con- 
formal mask for deep -UV (DUV) exposure (200-250 nm) of the 
PMMA sublayer. Organic developers are usually used to remove 
the exposed portions of the PMMA sublayer. 

Several important processing considerations arise for the prac- 
tical implementation of this bilayer process. Interfacial mixing of 
the positive resist with the PMMA can leave positive resist residues 
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in the PMMA that effectively mask the DUV exposure of the PMMA 
sublayer.3,4 The PMMA sublayer is transparent to the actinic ra- 
diation that exposes the positive resist. When the radiation is re- 
flected from the substrate, exposure variations are produced in the 
resist layer due to interference effects (standing wave phenomena) 
and side -wall reflections.5-7 Suitable dye additions to the sublayer 
are required, therefore, for effective linewidth control on reflective 
substrates. If the positive -resist mask is left intact after exposure 
on the sublayer, the developer for the PMMA sublayer must not 
attack the positive -resist material. Chlorobenzene has been the only 
developer reported that appears to meet this requirement.3,4,6 

Recently, reports8.9 of this bilayer process being used in a produc- 
tion mode have appeared. Kodak 809 resist material was used to 
minimize interfacial mixing and a Coumarin dye10 was added to the 
sublayer. The positive resist mask was removed prior to sublayer 
development so that conventional PMMA developer formulations 
could be used. Plasma etching conditions for the substrate had to 
be carefully controlled due to the poor plasma etch resistance of the 
exposed PMMA sublayer. 

These developments, particularly the use of the erodable PMMA 
sublayer as the dry -etch mask, have placed emphasis on the reso- 
lution limits and details of image formation during contact printing. 
In this work, we analyze the effects of diffraction -induced exposure 
phenomena and the subsequent development process on the actual 
contact -printed PMMA sublayer image. Experimentally obtained 
images are compared to simulated images obtained from exposure 
and development models. Dimensional deviations as a function of 
the sublayer thickness and the feature size are presented. An esti- 
mate of the effects on these parameters of dye additions to the sub - 
layer is also included. 

Experimental 

Three -inch -diameter silicon wafers were coated with two layers of 
KTI PMMA (496 K) 9% solids to produce a 2 -p.m -thick sublayer. 
Kodak 809 at 32% solids was used as the DUV conformal mask at 
a thickness of 1.4 p.m. The thick resist layer was used so that near - 
perfect mask properties could be obtained. A PE220 aligner or an 
Optimetrix 8010 stepper were used to expose the Kodak 809 resist 
layer. After development, the sublayer was exposed by a Canon 501 
FA aligner with a Xe-Hg (800A) lamp and 250-nm cold mirror. The 
intensity as measured by an OAI 253-nm probe was 10 mW/cm2. A 
dose of 2000 mJ/cm2 was required to develop the PMMA with a 90- 
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second dip in chlorobenzene. A toluene rinse and spin dry was used 
to end the development cycle. The image patterns examined are 
one-dimensional lines and spaces. 

For the dye -addition studies, the Coumarin 6 dye was added di- 
rectly to the 9% solids KTI solution to produce 2.9% dye by weight. 
The identical double -coating procedure produced a film thickness 
that was only 200 A greater than that of the PMMA coating without 
the dye addition. The optical absorption spectra of the dyed and 
undyed PMMA films were determined by spinning the film on 
transparent sapphire substrates (Fig. 1). At 2.9% dye concentration, 
a 2 -p.m -thick dyed layer has an optical density of 0.9 at 440 nm and 
of 0.27 at 250 nm. A density of 0.9 is sufficient to eliminate most 
of the reflections off the substrate that affect the resist exposure.5,11 
During the deep UV exposure we did not detect any appreciable 
change in the optical density at 250 nm. Accordingly, our simula- 
tions of dyed sublayer development do not include bleaching. 

Modelling of Exposure and Development 

To fully understand the PCM system it is necessary to have a model 
of exposure and development. As a first approximation, we assume 
that the top photo resist layer is totally opaque to DUV radiation, 
the only kind that exposes the PMMA. Then the resist-sublayer 
interface acts a binary mask, either transmitting or blocking the 
DUV radiation. This truly conformable situation is a good approx- 
imation, since most conventional positive resists are very heavily 

20 
AFTER 7.2 J/cm2 EXPOSURE AT 253 nm 

PMMA WITH 2.9% COUMARIN 6 

1 

1 

1 

1 PURE PMMA 

200 300 400 
WAVELENGTH (nm) 

500 

Fig. 1-Absorptions curves of PMMA with and without Coumarin 6 dye. 
The films were approximately 2.0 µm thick. The dashed line shows 
the absorption of the dyed film after heavy DUV exposure. 
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absorbing (105 cm -1) in the range X < 250 nm, where PMMA is 
sensitive. 

We determine the radiation intensity in the sublayer by making 
use of the Fresnel-Kirchoff equations.12 Similar calculations have 
been used to describe proximity printing of resist films.13 This ap- 
proximation is poor at the very top of the sublayer, just below the 
mask, but provides a good representation of the light distribution 
for depths more than 0.1 to 0.2 µm below the mask. Examples of 
calculated diffraction patterns are shown in Fig. 2. The exposure in 
the absence of a mask would be 0.5 intensity units. The images are 
long isolated spaces of 2.0-, 1.5-, and 0.75 -p.m widths and the figure 
shows a cross-section of these spaces. The radiation is taken to be 
monochromatic (230 nm) and normally incident, an adequate ap- 
proximation for the case of this optical system and PMMA. The 
calculations can readily be extended to multiple wave -lengths and 
to a range of incident angles, if necessary. In Fig. 2 we have as- 
sumed the PMMA is transparent to the radiation and that there is 
no reflection from the substrate. The actual absorption can readily 
be included in the calculation.12 Any reflection from the substrate 
is added in an incoherent way to complete the radiation pattern. 

Fig. 3a shows a three-dimensional display of the radiation pattern 
from a 1.5 -µm -wide space in pure PMMA. The dose at the top of the 
layer is taken as 1000 mJ/cm2. The measured value of absorption 
coefficient of PMMA at 230 nm, 0.27 µm-1, is used in the calcula- 
tion. The diffraction patterns are more obvious in this representa- 
tion, and it can be seen how they change with distance from the 
mask. When the effect of the dye is included by changing the ab- 
sorption coefficient to 0.66 µm-1, the pattern of Fig. 3b is obtained. 
The exposure at the substrate interface is considerably reduced. 

The radiation pattern and exposure time are used as input to a 
calculation of development contours. This calculation uses a modi- 
fied SAMPLE program.14 To determine the input parameters, we 
measured the development rates of PMMA films after exposure with 
a high-pressure Hg lamp, whose main contribution is at 253 nm. 
The program plots the resist contours that can be expected after 
various times of development. 

Results 

Fig. 4 shows SEM micrographs of partially developed sublayer im- 
ages for various -size isolated spaces. The positive resist conformal 
mask was patterned with a PE220 aligner. An imprint of the dif- 
fraction pattern has been recorded in the sublayer image. Similar 
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DIFFRACTION PATTERN IN PMMR 

DIFFRACTION PATTERN IN AMR WITH DYE 

Fig. 3-(a) Three-dimensional diffraction pattern in PMMA from 1.5 p.m 
wide slit. The absorption coefficient of the PMMA at 230 nm is 
taken to be 0.27 µm-1. The incident dose is 1000 mJ/cm2. (b) The 
diffraction pattern for Coumarin doped PMMA, with same param- 
eters. 

results have been reported by Lin.2 For large feature sizes (>2 p.m), 
the PMMA close to the edge of the resist mask develops out first. 
As the dimensions shrink, the two edges become one in the center 
of the line and, finally, the edge sharpening disappears altogether. 
Fig. 5 shows similar results for the positive resist mask patterned 
with an Optimetrix 8010 stepper. The 2-µm PMMA sublayer is de- 
veloped out to a thickness of about 1.0 p.m. 

Fig. 6 shows crossectional simulations of the isolated space fea- 
ture that correspond to those presented in the experimental results 
in Figs. 4 and 5. The same development cycle was used for all the 
simulations. The 2 -p.m space development simulation results agree 
reasonably well with the experimental results. Deep trenches are 
produced near the sidewalls and shallow trenches are observed near 
the center of the feature. Simulations for the 1.5 -p.m space and 0.75 - 
p.m space do not show as good agreement as the previous results. 
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° 

k-85° 

85° 

Iµm 

1µm 

Fig. 4-Partially developed PMMA sublayer with 0.5 µm of initial 2.0 -p.m 
thickness remaining. 

The combining of the two sidewall trenches for the 1.5 -p.m space is 
not observed in the simulation, although the smaller trenches in 
the center have disappeared. At the 0.75 -p.m feature size, the sim- 
ulated images breakthrough to the substrate, while the experi- 
mental images are not as deep. A 10% reduction in the development 
cycle, however, produces no breakthrough to the substrate. This 
anomaly may indicate that reduced development rates may occur 
for these small space widths. Although we cannot be certain of the 
exact reason for these discrepancies, we believe that anomalies in 
the positive -resist mask are the most probable cause. The 1.5- and 
0.75 -p.m isolated spaces are difficult to print at all on a Perkin 
Elmer 220 machine. Slight resist residues that may have dissolved 
during sublayer development could effectively change the actual 
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r2.0µm I 

o 

I.5µm 

1.0µm 

1 J 
Fig. 5.-Partially developed PMMA sublayer with 1.0 µm of initial 2.0-µm 

thickness remaining. 

dimension of the isolated line. Note that the experimental diffrac- 
tion pattern gives a result that can be predicted by using a slightly 
smaller resist -mask dimension. With these considerations in mind 
we are somewhat assured the modelling procedure employed here 
gives an useful approximation of the actual contact -printed image 
of the sublayer. 

Fig. 7 shows simulations of fully developed isolated spaces. The 
development time was adjusted so that the developed width of the 
2.0-1.tm feature had the correct dimension. Table 1 gives the devel- 
oped sublayer spacewidth dimension at the depths of 2.0, 1.0, and 
0.0 p.m. The estimated wall profiles at the bottom of the sublayer 
(between 1.0- and 2.0 -p.m thickness) and the top of the sublayer 
(between the 0.0- and 1.0 -p.m thickness) are shown. At the 1.5 -p.m 
resist -mask dimension, the developed sublayer spacewidth still 
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-1.0 -0.5 0.0 0.5 1.0 1.5 

RESIST CONIOUR (MICRONS FROM CENTER) 

Fig. 6-Calculated resist profiles for partially developed PMMA films. 
Three different mask openings are shown: (a) 2.0, (b) 1.5, (c) 0.75 
p.m. The same development times were used in all cases. 

matches the resist -mask dimension. Even at the 0.75 -p.m resist - 
mask dimension, only a slight skrinkage in spacewidth is observed. 
The behavior at half thickness (at 1 -p.m depth) is quite similar. 
These results suggest that sublayer image degradation does not 
occur until feature sizes are below 1.5 p.m. Even at the 0.75 -p.m 
level, image degradation appears to be slight. Note that wall pro- 
files at the bottom of the step are considerably less steep than those 
at the top of the step. 

N 

C 

b 

a 

-1.0 -0.5 0.0 0.5 1.0 1.5 

RESIST CONTOUR (MICRONS FROM CENTER) 

Fig. 7-The same profiles as in Fig. 6, but development is allowed to 
proceed until the 2.0 -p.m feature had the nominal width at the 
substrate. The other two curves are for the same development 
time. 
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Table 1 -Dimensional Data for Simulated Sublayer Development 

Depth 
in 

Sublayer (µm) 

Developed Spacewidth Dimension 

2.0 µm 
Resist Mask 

1.5 µm 
Resist Mask 

0.75 µm 
Resist Mask 

0.0 (top) 2.38 1.86 1.10 
1.0 2.31 1.80 1.02 
2.0 (bottom) 2.00 1.50 0.70 

Estimated Wall Profiles 

1.0-2.0 depth 81° 81° 80° 
0.0-1.0 depth 88° 88° 87° 

The same development simulations were also performed on 
PMMA containing dyes. We used the measured value of absorption 
coefficient, corresponding to the data of Fig. 3b, as well as a sample 
with an even higher value of the absorption coefficient, 1.03 p.m -1 

(more dye). The three cases that are compared in Fig. 8 are for a 
1.5 -µm -wide space. The radiation doses have been adjusted to pro- 
duce the same opening at the substrate interface in all three cases. 
As expected, the higher absorption requires a longer exposure. In 
addition, the slope at the substrate decreases and there is more of 
an undercut relative to the initial positive resist mask. The mea- 
sured slopes between 1.0- and 2.0-µm sublayer depths for a, b, and 
c are 81°, 76°, and 72°, respectively. 

O 

-1.0 -0.5 0.0 0.5 1.0 

RESIST CONTOUR (MICRONS FROM CENTER) 

Fig. 8 -Comparison of profiles produced in PMMA films with varying ab- 
sorption coefficients: (1) 0.27, (b) 0.66, (c) 1.03 µm-1. (a) corre- 
sponds to pure PMMA and (b) to PMMA with 2.9% Coumarin 6 

dye. 

1.5 
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Experimental resist profiles of dyed and undyed samples were 
also compared. For the 2.9% dye the required exposure for the same 
development time increased by a factor of 2 to 3, which is consistent 
with the increased development time in the calculation. The profiles 
showed the correct trend, but the effect is too small to measure 
quantitatively. 

The estimations of resist -wall profile and dimensional control ob- 
tained from the model may be adequate for several device designs 
and etching processes. Improved sublayer parameters can be ob- 
tained by overdeveloping or overexposing the sublayer, provided the 
accompanying dimensional shrinkage can be tolerated. Fig. 9 shows 
SEM micrographs of fully developed sublayers with and without the 
dye. The wall profiles are in reasonable agreement with those pre- 
dicted by the modeling procedure. 

Conclusions 

The PMMA resist profiles in the PCM structure appear to be well 
described by diffraction/contact printing and standard development 

1µm 

Fig. 9-Fully developed PMMA sublayers. Top is PMMA sublayer without 
dye and bottom is PMMA sublayer with 2.9% Coumarin 6 dye. 
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modeling. Penalties in edge acuity (wall -profile steepness) and di- 
mensional deviations on steps due to optical density changes at the 
actinic wavelength of the sublayer can be predicted with reasonable 
accuracy. 
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An Analytical Study of the Winding 
Harmonics of a Saddle Deflection Coil 

Basab B. Dasgupta 
RCA Consumer Electronics, 600 N. Sherman Drive, 
Indianapolis, IN 46201 

Abstract-A closed -form analytical expression is derived for the harmonic 
(Fourier) coefficients of the winding distribution of a saddle - 
shaped magnetic -deflection coil by assuming that this distri- 
bution is expanded as a Fourier series at a given cross-section 
in terms of the polar angle about the coil axis. The dependence 
of the harmonics on various design parameters is analyzed. 
The effect of nonuniformity in the packing of wires during 
winding of the coil is discussed. 

1. Introduction 

The key to understanding the operating principles of wide-angle 
magnetic -deflection yokes used in modern color TV tubes is the 
harmonic analysis. In this analysis the current distributions in the 
horizontal and vertical coils are expanded as Fourier series in the 
polar angle 9 about the yoke axis. Knowing the nth Fourier coeffi- 

cients of the currents, one can determine the nth coefficients of the 
magnetic field components and hence the total magnetic field. 1 2 The 
harmonic coefficients of the wire distribution of a saddle coil, which 
is still in the design stage, are usually calculated by means of a 
computer program that Fourier analyzes the cross-section of the 
arbor cavity designed to make the proposed coil. While such pro- 
grams are not difficult to run or understand, they do not provide 
physical insight into the dependence of the harmonic coefficients on 
the various geometric parameters of the cavity cross-section. 

The purpose of the present paper is to derive an analytic expres- 
sion for the harmonics of the winding distribution of all orders for 
a cavity -wound saddle coil. This expression allows us to make a 
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critical evaluation of the merits of any proposed design change in 
an existing arbor by analyzing its effect on various harmonics. It is 
also useful in designing a completely new arbor that would have a 
desired set of harmonics. Such an arbor design process is usually 
done by a computer program that goes through hundreds, possibly 
thousands, of iterations of changes in the design and calculates the 
harmonics in an attempt to match a meaningful design with the 
given harmonics. Obviously, if the computation of the harmonic 
coefficients is done analytically, the over-all program will be faster 
and more economical (if computer cost is a concern). 

2. Calculation 

A cross-section of a typical arbor cavity in a plane perpendicular to 
the coil axis is shown in Fig. 1, which also defines the various pa- 
rameters involved (R, Ro, R1, H, K, A, D, P, B and W). The saddle 
coil is made by winding turns through such a cavity and has a shape 
similar to the one shown in Fig. 2. Our derivation is based on the 
observation that typically the H and K parameters of the cavity are 

Fig. 1-Cross-section of the arbor cavity in a plane perpendicular to the 
coil axis; only one quadrant is shown. Its boundary consists of 
two circular arcs, one of radius R and center at the origin (0, 0) 
and the second one of radius and center at the point (H, K), 
plus linear segments of lengths B, A, and P. 
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small* compared to RI, and hence one can make binomial expan- 
sions of the relevant expressions in powers of the ratios H/R1 and 
K/R1. For the sake of simplicity, we assume that the arbor is packed 
uniformly by wires during the winding process so that the har- 
monics of the wire distribution are the same as those of the incre- 
mental area variation of the arbor cross-section (apart from a con- 
stant multiplicative factor). 

We will divide the cavity cross-section into five regions, as shown 
in Fig. 3, by different labelings. If f(9)d9 is the incremental area of 
the cavity between the angles 9 and 9 + dO, then it can be easily 
shown3 that f(9) is given by the expression 

(R0 + A)2 sec29 - D2cosec29 in Region 1 

(Ra + A)2 sec20 - R8sec29 in Region 2 

2f(9) = g(9) -Rósec29 in Region 3 [1] 
g(9) - R2 in Region 4 

g(9) - W2sec29 in Region 5 

where g(9) is given by 

g(9) = (H2 - K2)cos29 + 2HKsin29 + Ri 
+ 2(Hcos9 + Ksin9){R? - (Hsin9 - Kcos9)2}. [2] 

Using the binomial theorem, we can write 

Fig. 2-One-half of a saddle coil wound in an arbor cavity. A cross-section 
is shown as the shaded area; this should be identical to Fig. 1 in 
each plane perpendicular to the coil axis if wires are uniformly 
packed into the cavity. 

For almost all commercial coils, R1 is typically in the range of one to three inches, 
depending on the tube geometry and coil cross section, whereas H and K are of 
the order of 0.2 inch or less. 
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x 
Fig. 3-The cavity cross-section can be divided into five regions de- 

pending upon the shape. 

{Ri - (Hsin9 - Kcosl02}1 _ R1 - (Hsinu - KcosO)2/2R1, [31 

so that 

g(9) = R? + (H2 - K2)cos26 + 2HKsin20 + 2R1(HcosO + Ksin9) 
- (Hcos( + KsinO)(HsinO - Kcos9)2/R1. 141 

The nth Fourier component of f(6) is given by' 

J 

nit= 

(4/7r) f(H)cosnod0. 151 

It is now a straight -forward but somewhat tedious exercise to sub- 
stitute Eqs. Ill and 141 into Eq. 151 and carry out the indicated 
integration. The resulting expression for f is inconveniently long. 
To write it in a compact form let us introduce the following quan- 
tities 

S,(0) sin(n + m)9 sin(n - m)H 

2(n + m) 2(n - m) 

cos(n - m)A cos(n + m)9 
C""'(0) - 2(n - m) 2(n + in) 

cosnO 
I(6) = I do 

cos29 

= (-1)('á-t)I2n In tan (2 + 2) 

[61 

[71 

In Eq. [5] as well as in Eq. [20], we impose the sign convention that f (9) (and A(9)) 
are positive in the first and fourth quadrants (where the current in the coil is going 
in one direction) and negative in the other two quadrants (where the current goes 
in the opposite direction). 
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(»-3)/2/ sin(n - 2k' - 2)0 
+ 4(1-8ri1) 

ko 
I\ 

(n - 2k' - 2) 

(n -3)/2 (n -3-2k)/2 
+ 4(1 - 5,1)(1 - 5n,3) E (-1)k 

k=1 k'=0 k 

(n - k - 21 ( n - k + 11 sin(n - 2k - 2k' - 2)9 

k' J k-1 J (n -2k -2k'-2) 
and 

Jn(e) = cosn0 
sin20 

(n -1)/2 (n - 1)/2 
= 2(n-1) r (_1)k 

k=0 k 

sin2k-le 
(2k - 1) 

(n-1)/2 (n -1-2k)/2 

l 
+ (1 - S ) 

E (-1)k+k' n 2n -1-2k 
n, 

k=1 k'=0 

((n - 1 - 2k)l21 n - k + 1 sin2k'-10 
k' J k - 1 (2k' - 1) 

In Egs. [81 and [91 dn is defined as 

1ifn=m 
8"'m 0 if n nl 

and 

n nt 

k) k!(n - k)! 
. 

We can now write the expression for as 

fn = (2/7r)[(Ro + A)2{In(93) - 4(91)} - D2{Jn(92) - J(91)} 
- R8{In(94) - In(92)} + R;{Sno(06) - Sn0(e3)} 
+ (H2 - K2){Sn2(96) - S,2(03)} 
+ 2HK{Cn2(96) - Ci2(93)} + {2R1H - H(H2 + K2)/8R1} 

{S,1(96) - Sni(e3)} 
+ {2R1K - K(H2 + K2)/8R1}{C0(e6) - Cn1(e3)} 

H(3K2 - H2) - {Sn3(06) - Si3(03)} 
4R1 

, [8] 

[91 

[101 
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K (K2 - 3H2) 
4R1 

{C,,3(06) - Cn3(e3)} 

- R2{Sn0(e5) - S,t0(04)} - W2{4(06) - 4(05)}], 1121 

where 

01 = arc tan {D/(R0 + A)} 

02 = arc tan (D/R0) 

03 = arc tan {(D + P)/(R0 + A)} 

04 = arc tan {(D + P)/R0} 

05 = arc cos (WIR) 

06 = arc tan {(Rsin05 + B)/W} 

The expression given by Eq. 1121 is accurate up to terms of order 
(HIR1)3 and (KIR1)3, but the binomial expansion used in Eq. [21 can 
be continued to include higher order terms and an expression can 
be derived that is accurate to any desired degree of accuracy. 

3. Dependence on Design Parameters 

This section will be devoted to a discussion of the effect of varying 
certain geometric cavity parameters on the various harmonics. 

3.1 Dependence on H, K, and W 

In order to analyze this dependence let us assume that D = P = 0 
and 06 _ 05 = 00 so that W =- RcosO0; this assumption simplifies 
the analysis and should not significantly change our conclusions. 
Furthermore, let us retain only terms up to second power in H and 
K. Then Eq. 1121 reduces to 

f = (2/,r)I(R? - R2)(sin ,i00)ln + (H2 - K2)S2(00) 
+ HK{C2(00) - C2(0)} 
+ 2R1HS1(90) - 2R1K{C1(00) - C1(0)}1 1131 

Several special cases of this equation deserve attention. 

Case (1): H = K = 0 
This case corresponds to an arbor cavity consisting of two concentric 
circles. For such a cavity, any harmonic can be made to vanish by 
an appropriate choice of 00. For example, f will be zero if 00 is 
chosen to be -r/n. 

Case (2): K = 0, R = R1, 00 _ 7r/2 and H is small (so that its square 
can be neglected 
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Then Eq. [13] reduces to 

f 10 ifn 1 

" R1H ifn=1 [14] 

i.e., the cavity would produce a coil with an almost pure cosine 
winding distribution (note that 00 cannot be exactly 7r/2 because 
some nonzero window length is required for winding the coil). This 
"trick" has been used in the past by yoke designers to design saddle 
coils that produce uniform fields. 

Case (3): n = 3 and 40° < 00 < 70° 
This case is interesting because in a self -converging saddle -toroidal 
yoke, the angle 00 in the saddle coil is typically of the order of 40° 

near the front end of the yoke and 70° near the rear end and varies 
monotonically in between. Furthermore, the value of the third har- 
monic coefficient f3 is the most significant in determining the yoke 
performance. From Eq. 1131, we see that 

f3 - (2/7r)[(Ri - R2)sin360/3 + R1H(sin 400 + 2sin200)/4 
- R1K(2cos200 - cos460 - 1)/4]. [15] 

If one plots the coefficients of H and K as functions of 00, it is easy 
to see that the coefficient of H becomes large and that of K becomes 
small as 00 approaches 40°; the converse is true as 00 approaches 
70°. The sin300 term is zero at 00 = 60° and, in general, small near 
the rear -end; also the converging properties of a yoke are relatively 
insensitive to the winding distributions near the front-end of the 
saddle coil (where the effect of H is largest). We conclude that K is 
more critical than H as a variable design parameter in making a 
satisfactory yoke. This observation is consistent with the traditional 
design practice of "opening" or "closing" the cavity, which is effec- 
tively a way of varying the K parameter. 

Case (4): 
The change in the harmonics caused by the addition of one turn of 
angular diameter J0( = dIR, d being the actual wire diameter) at 
the "window" (i.e., at angle 00) can be expressed as 

,fn - (a0(900)-50 
= (2cosn00.50/Tr)[(Ri - R2) + (H2 - K2)cos200 
+ HKsin260 + 2R 1Hcos60 + 2R 1Ksin601 [ 16] 

The change in the n-th harmonic is most pronounced if 00 = 7r/n 

and zero if 00 = it/2n 
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Case (5): n is very large 
If ri > 2, the leading term in Eq. 1131 takes the form 

f = (2/17)1(Ri - R2) + (H2 - K2) + R1H1 sin n0o/n 
(2/7)1(R1 + H/2)2 - R2] sin Ain 1171 

This equation tells us that for very high order harmonics the cavity 
behaves as if it consisted of two concentric circles of radii R and R1 
+ H/2. 

3.2 Dependence on D, P, and A 

Like H and K, these parameters are typically small (compared to R 
or Ro). If we subtract the expression given by Eq. 1131 (which is 
valid when D = P = 0) from the one given by Eq. 1121 and retain 
only terms of the lowest order in the small quantities D, P, and A, 
we get the following correction term: 

(2/7r)1 -AD + AP - (RV - R2)(D + P)/R01. 1181 

The most significant thing about this equation is that f is inde- 
pendent of n and each parameter is involved linearly. Hence we can 
draw the following conclusion which might be a useful guideline to 
yoke designers: 

If any design parameter near the x-axis (D, P, or A) is changed by 
a small amount while the others are kept constant, it changes all 
harmonics by the same amount (i.e. smaller harmonics undergo 
larger % changes), and the "slope" of this change (i.e. change in 
harmonic per unit change in the value of the parameter) is the same 
for all harmonics. 

4. Effect of Nonuniform Packing of Wires 

The discussion up to this point has been based on the assumption 
that the arbor cavity is packed uniformly by wires during the 
winding process. This is seldom the case in reality because of me- 
chanical variations in the winding machine. If such variations are 
completely random then it is likely that the effect of nonuniformity 
in the wire packing would be averaged out over the length of the 
coil. The purpose of this section is to analyze the effect of systematic 
variations in the packing on the harmonics. 

First, let us define a "packing factor function" p(0) as follows: let 

468 RCA Review Vol. 45 September 1984 



WINDING HARMONICS 

A(0)d0 be the area of the cavity cross-section between the angles 0 

and 0 + d0 and let f (0)d0 be the area actually occupied by the wire 
cross -sections; then define p(0) such that 

1(0) = p(0) A(0). 1191 

If p(0) arises because of systematic variations in the winding ma- 
chine, then it would be symmetric about both x and y axes. Fur- 
thermore, because of our sign convention*, p(0) must always be pos- 
itive. Hence it can be expanded ast 

p(0) = pcosn0. [201 
n=0,2,4. . 

A(0) can be expanded as usual: 

A(0) = E Acosn0. 
n = 1,3,5.. . 

Substituting Eqs. 119], [201, and 1211 into Eq. [5], we get 

fn = POAn + ¿ (Pm+n + Pim+ndArn12 
m#n 

[21] 

122] 

The first term, of course, corresponds to a uniform packing and Ipol 

I PnI (n > 0). An important general result following from this equa- 
tion can be stated as a theorem: If p(0) has a large value for its 
harmonic coefficient pt, where l is some specific even integer, then f 
and An can be considerably different when n = l ± 1. 

We will discuss a simple but important special case in more detail. 
Consider the packing represented by the function 

p(0) = Po + p2 cos 20, 1231 

with IPoI IP2I. It corresponds to a gradual decrease (if p2 > 0) or 
increase (if p2 < 0) of the packing factor with angle 0 from the value 
(Po + p2) at 0 = 0° to (Po - p2) at 0 = 90°. The first few winding 
harmonics in this case are given by 

fi = PoAI + p2A3/2 [24a] 

f3 = poA3 + p2(A 1 + A5)/2 124b1 

See footnote to Eq. [5]. 
t Here, we assume that although the packing is nonuniform, it is still symmetric 
about x - z and y - z planes. One can further generalize our treatment by taking 
into account various types of unsymmetries in wire packing. 
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f5 - P0A5 + p2(A3 + A7)/2 (24c] 

f7 = p0A7 + p2(A5 + A9)/2 124d] 

We note that f poA for all n except n = 3. For n = 3, the p2A1 
term in Eq. [24b1 can be comparable to p0A3 even though Ip2I < !Poi 
if IA3I < 1.411. This latter condition may indeed be valid near the 
rear end of most yokes; since the converging properties of a yoke 
are rather sensitive to the value of 13 near the rear -end, a nonzero 
value of p2 must be taken into account in computing the yoke char- 
acteristics. As we approach the front end of the coil, A3/A 1 increases 
and the term poA3 dominates in Eq. 124b1 and the variable nature 
of p(6) does not make too much difference in yoke performance. A 
similar conclusion can be drawn regarding 13 if p(9) has a non- 
zero p4. 

If p(9) has higher order coefficients, such as ps, ps, ... , then the 
wire harmonics f and cavity harmonics An may be quite different 
near the rear end of the coil (for n = 5, 7 ... ). But this observation 
is inconsequential, since the electron beam near the rear lies very 
close to the axis where the higher harmonics of the magnetic field 
are negligible anyway. 

In a practical situation, po, p2, and p4 may be determined for a 
given type of coil and a given winding machine by digitizing a 
number of cross -sections of a coil made by this machine and com- 
paring the wire harmonics determined by digitization with the 
cavity harmonics. One can then hope that for any other coil of this 
"type", the coefficients po, p2, p4 would remain approximately the 
same. 

5. Conclusion 

We have derived an analytical expression for the winding har- 
monics in a saddle coil, which can be either the horizontal -deflecting 
or vertical -deflecting coil of a magnetic -deflection yoke. Several 
general conclusions have been drawn regarding the relationship 
between the harmonics and the design parameters of the coil on the 
basis of this expression. Some of these conclusions justify the tra- 
ditional manipulations of the yoke designers, while the others 
might be useful in understanding yet unsolved mysteries about 
yokes. 
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Extending the Content and Expanding 
the Usefulness of the Simple Gaussian 
Lens Equations-Part 3, Section B: (c) 
(Continued) Permissible Sign 
Groupings That Typify Non-Afocal 
Relaying Actions Generally; (d) The 
Single Thick Lens Treated as a System 
of Two Quasi -Separated Lenses; (e) 
Concluding Summary Statement. 

L. T. Sachtleben 
RCA Advanced Technology Laboratories, Camden, NJ 

Abstract-The Gaussian expressions for the optical separation of the two 
lenses of a non-afocal primitive relay optical system are de- 
veloped in general forms that are suited to any one of the four 
conjugate distances being assigned an infinite value. These are 
extended to the case where the members of one of the con- 
jugate pairs are both infinite, and the system afocal. The afocal 
system is analyzed to obtain relationships that simplify Gaus- 
sian design of an afocal telescope when all four conjugate 
distances are finite. Examples are worked through to illustrate 
applications. The relaying action of any non-afocal optical 
system (for two discrete object distances) is studied in its most 
general terms, with the four conjugate distances, the focal 
length, and the two magnifications being represented as literal 
parameters with fixed signs. Eight optically possible sign 
groupings of the parameters are identified when conjugate dis- 
tances are Newtonian. They are used to identify the eighteen 
optically possible sign groupings when the conjugate dis- 
tances are Gaussian. The two sorts of groupings are tabulated 
for easy reference and to simplify their intercomparison. Anal- 
yses that relate the Newtonian and Gaussian groupings are 
performed in terms of inequalities. Examples of possible ap- 
plications are reviewed. Useful applications of the theory of 
two separated lenses to the problems of a single thick lens are 
developed. Examples are worked through. 
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29. Continuation of Part 3, Section A, RCA Review 45, No. 
1, pp. 136-149. 

V. The Eighteen Optically Possible Sign -Groupings of the 
Ten Gaussian Parameters; In Any Centered, Non-Afocal 
System.of Spherical Lenses, In Air or Vacuum, When Used 
As a Relayt 

The construction of Table 15 has been the objective toward which 
the studies of this section (Sec. 29) have been consistently directed. 
In particular, Appendix 9 describes the final procedure for con- 

structing Table 15 from Table 14; it may be studied separately. 
Table 15 provides a basis for preliminarily judging the problem 

of designing a non-afocal relaying optical system (for use in air or 
vacuum) when the problem is in íts earliest, formative, or proposal 
stage. It is assumed that at this stage, the proposed or prospective 
system is defined solely in terms of the signs of some or all ten of 
the Gaussian parameters of columns (1), (2)", (3)', ... , (8), (10), and 
(11) of the table. 

For example, if the proposed signs of the ten parameters are all 
given, or assumed, this set of signs must correspond exactly to that 
of one of the eighteen groups of Table 15. Otherwise, at least some 
of the signs must be revised until such a correspondence exists for 

in the absence of such a correspondence the proposed relaying 
system will be impossible to design. 

If the signs of fewer than the ten Gaussian parameters are given, 
or assumed, and if this partial set of signs corresponds exactly to 

that of the corresponding parameters of one or more of the eighteen 
groups of Table 15, then the signs of the remaining parameters must 
be made the same as those of one or another of such groups. Oth- 
erwise the prospective system is not designable, unless revised. 

Table 15 applies just as well to the case of a system that produces 
a single image of a single object, as to that of a system that images 
two axially separated objects. For the case of a single object Table 
15 simplifies, being then restricted to Column Nos. (1), (2)*, (4)*, 

and (6)* and to Group Nos. Ia, Id, IV, V, VIIIa, and VIIId. Columns 

t Editors Note: This paper is a continuation and conclusion of the author's previous 
papers in the December 1976, June 1978, and March 1984 issues of the RCA Review. 
Section and equation numbers continue from Part 3, Section A. 
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(3)', (5)', and (7)' are superfluous, and Columns (8), (9), (10), and 
(11) do not apply in the case of a single object; also, all the primed 
system numbers in the left hand column of Table 15 are super- 
fluous.t 

By way of review of the eighteen groups, Ia through VIIId of Table 
15, all share the following important internal relationships, which 
must hold true within each of them. Parameters X, X', Y, and Y' 
are measured from the two principal points of the system to the four 
object- and image -points; the locations of all six of these points may 
be partly or wholly unknown. Nevertheless, the following relation- 
ships must effectively apply in the case of any group of Table 15. 

M = X and M' = X, ; see Table I (V-1), Part 1. 

= X' -X and ..5cy = Y' - Y; see Sec. 10, Part 1, Sec. 17, Part 
2, and Eqs. [ 172] and [ 1731, Part 2. 

XY X' Y' 
X-Y X' - Y' 

- f (or F); see Table 1 (II -1), Part 1. 

-MM'x -cy 
M' - M M' - M 

= f (or F); see Eqs. 142] and [431, Part 1. 

= MM' = M,; see Eq. [411, Part 1, and Eq. [ 2321, Part 3. 

Any of the foregoing relationships may be expressed in many other 
useful ways, as suggested by the 33 given or implied relationships 
that are grouped in Table 1, Part 1. 

When the system of any group, Ia through VIIId of Table 15, has 
the form of a separated two -lens system, it may be necessary to find 
the values of fl, [2, and their optical separation a. Sometimes one 
or another of these three values may be given as a problem require- 
ment, or it may be assigned an arbitrary trial value or a set of such 
values. In solving for these three quantities the solutions may take 
numerous forms depending on the nature of the problem. The so- 
lution may contain any of the parameters of Table 15, and in ad- 
dition may include any of the parameters D, D', Dm, DNS, x1, xí, y2, 

t When considering a single object and its image at conjugate distances X and 
Y, the usefulness of the entire Table 15 may be preserved by the fictional device of 
assuming X' and Y' each to be appropriately related to and arbitrarily close to zero, 
while also assuming M' to be appropriately related to and arbitrarily close to +1. 
The reference to Table 14 then also continues to apply to the primed system num- 
bers of Table 15; while .cx = X' - X = -X, .5cy = Y' - Y = - Y, and M, = MM' 
= M. 
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y2, S1, S2, and S of Fig. 12. Numerous expressions throughout the 
three parts of this paper involve some of these quantities; they may 
be important to formulating the solution, as will be suggested by 
the following examples. The variety of forms that problems may 
take and the number of solutions that may be required are great 
and a few examples cannot develop them all (see last paragraph of 
Sec. 7, Part 1, and, in particular, all of Part 2). 

29A. Representative Applications 

Example 13. A certain image -relaying problem can apparently be 
solved by making X > 0 and Y < 0, and at the same time making 
X' < 0 and Y' > O. The advisability of attempting a solution along 
this line calls for Table 15 to be consulted. Should development of 
such a system be attempted? 

The schedule of Table 15 shows this to be an impossible condition 
to meet, because the signs of X and Y call for the system focal length 
to be negative whereas the signs of X' and Y' require it to be pos- 
itive. The only system that could meet these conflicting require- 
ments would have to have a "zero" focal length, which is impossible 
(see closing discussion in Appendix 7),t or it would have to have an 
infinite focal length. The latter possibility should be studied further 
in the light of Secs. 26 and 26A. Table 15 does not apply to afocal 
systems, and the matter is not considered further here. 
Example 14. This example does not attempt to represent any par- 
ticular practical problem or application, but rather to indicate how 
the parameters may be related among themselves in any group of 
Table 15, including parameters not explicitly appearing in that 
table. It also leads to consideration of how a simple change in the 
value of a parameter in one group may change a problem to mem- 
bership in another group. 

The signed numerical values of three of the parameters of Table 
15 are given the values shown in Table 16, where they are arranged 
(left to right) according to the general scheme of Table 15. Quan- 
tities not known are indicated by "?". The signs of the given quan- 
tities appear in line 4 of the table. The units chosen for the linear 
quantities may be arbitrary. 

From Table 16, all of the remaining seven unknown quantities 
are readily calculated as follows. (Note: The final signs of all quan- 
tities in the table, as determined below, are shown in line 5; they 

t Consult final paragraphs of Appendix 7 and Fig. 21. 
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By (II -1), Table 1, F = 

identify the system as corresponding to Group IV, Table 15. The 
signs in the last two columns need only be alike; either both P or 
both N.) 

By (V-1), Table 1, M = X 812 - 7. Col. (6)*. 

XY -12(84) = + 10.500000. 
X - Y -12 - 84 Col. (1). 

By (III 5), Table 1 X' = FY'= 10.5(17) = -27.461538. 
' F - Y' 10.5 - 17 Col. (3)'. 

By (V-1), Table 1, M' - Y 17 = -0.619048. 
X' -27.461538 Col. (7)'. 

By Eq. [2321, Sec. 27, M, = MM' = -7(- 0.619048) 
= + 4.333333. Col. (8). 

By Eq. [ 1721, Part 2, &cx = X' -X = - 27.461538 - (-12) 
= -15.461538. Col. (10). 

By Eq. [ 1731, Part 2, Jay = Y' - Y = 17 - 84 
_ -67.000000. Col. (11). 

The positive value of 11/1 the relaying action is "regular," 
as recorded in Col. (9), line 5. 

The signs of the calculated values of the seven unknown (or "?") 
parameters of Table 16 match Group IV, Table 15. The signs in 
columns (10) and (11) may be either P or N, but must both be the 
same; in this case, both negative. If the signs in line 4 had been all 
that was known of the system, then the system could have corre- 
sponded to either Group Illb or Group IV, Table 15, but to no 
others.t 

Table 15 also suggests that by suitably changing the sign and 
numerical value of Y', the signs of all the parameters could be made 
to match Group IIIa of the table; and that by similarly changing X' 
the signs could be made to match Group IIIb. These suggested pos- 
sibilities will be more fully discussed in Example 15. 

Figure 12 (repeated from Part 3, Sec. A for the reader's conve- 
nience) schematically represents a non-afocal, two -lens relay 
system and identifies all of the parameters of Table 15. Additional 

t Readers should examine the overall effect on Table 16, including the effect on 
the group -number of its Table 15 system, of changing the Y- quantity to Y = 8; 
also of changing the Y -quantity to Y = -8. No changes are to be made in the given 
values of X and Y'. 
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Light Direction 

always positive 

Fig. 12-Quantities involved in the Gaussian design relationships for the 
primitive relay optical system. Similar to Fig. 10, Part 2. Sche- 
matic only-not to scale. 

y2D 

parameters included in the figure are the D, D', and Dm of Fig. 10, 
Part 2; they are usefully related to the other parameters by Eqs. 
[1811, 11821, 1183], etc., of Part 2. A new parameter D,¡1 is included 
in the figure. Its value is indicated by inspection of the figure to be 

DM = D' - _Scy = D - _Scx = D' - MM'_Scx 

from which, with the aid of Eq. 11811, we may write 

DM = DM - (.5,x + 

[245] 

246] 

In Fig. 12, the principal points of the system are identified as H 
and H', respectively, at distances x1p and yep from the first and 
second principal points of lenses L1 and L2. They are separated by 
the distance S. The location of the object- and image -points with 
reference to the pair of separated lenses is indicated by the Gaussian 
object -distances X and X', measured from H, and by the corre- 
sponding image-distart'ces Y and Y', measured from H'. The object - 
and image -locations are also indicated, respectively, by distances x1 

and xí, measured from the first principal point of lens L1, and by y2 

and yz, measured from the second principal point of lens L2. The 
original numerical subscripts of Part 1, Secs. 5-9, are used, but 
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they are subject to omission according to the scheme of Part 2, Sec. 
18, if the reader prefers. 

By inspection of Fig. 12, we write the general equation for a non- 
afocal, separated two -lens system in terms of the parameters for 
object O and its image I. This equation is 

D= -X -x1p+S1 +a+S2+y2p+Y. [2471 

Adding primes to D, X, Y, x1p, and yep in this equation, makes it 
apply to object O' and its image I'. The relationships of continued 
Eq. [1811 permit Eq. [2471 to be easily expressed in terms of Dm and 

or of DM and ..Scx, should this be desired. 
By multiplying the right side of Eq. 132], Part 1, by 12/12 = 1, a 

substitution from Eq. [451 (or [1131) permits us to write 

x1p = fF 
. [248] 

A similar procedure applied to Eq. [331, where the multiplying 
factor is fi/fi = 1, yields the equation 

-aF 
Y2p 

fi 

Equation 1451 is symmetrical in fl and f2; its solution for 12 is 

(fi - a)F 
f2= 

fi -F 
in which the just -mentioned symmetry property allows the numer- 
ical subscripts to be interchanged, if desired, to obtain the solution 
of Eq. 145] for f1. 

When the expressions for x1p, yep, and 12 of Eqs. 12481, [2491, and 
12501 are substituted into Eq. [2471 to eliminate those three vari- 
ables, the resulting equation simplifies to the standard form of a 
quadratic in f1, which is 

fi(D - Y + X - Si - S2) - fla1(D - Y + X - Si - S2) - aJ 
- a2F = 0, [2511 

from which the solution for f1 is 

a[(D-Y+X-S1-S2)-al 

12491 

fi = 2(D - Y + X - Si - S2) + 1252] 
Ca2I(D-Y+X-S1-S2)-a]2 a2F 14z 

4(D-Y+X-S1 -S2)2 +D-Y+X-S1-S2JI 

12501 
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For solutions to be real, the value of the discriminant of Eq. [251] 
must be 

a2[(D-Y+X -S1 -S2)-a]2 
+ 4a2F(D - Y + X - S1 - S2) % 0. [2531 

The values of X, Y, and F in Eq. [252] have already been given 
or calculated. The values of a > 0, D, S1, and S2 may be assigned 
arbitrarily, except that the values of the seven quantities must to- 
gether satisfy Ineq. 1253]. The seven values, which are given in 
Table 16, are calculated immediately following it, or are arbitrarily 
assumed, are 

X = -12 Given in Table 16 
Y = 84 Given in Table 16 
F = 10.5 Calculated following Table 16 
a = 5.0 Arbitrary 
D = 48 Arbitrary 
Si = 0.25 Arbitrary 
S2 = 0.25 Arbitrary 

Additional values to be used in this example are calculated imme- 
diately following Table 16 as 

M = -7 
X' = -27.461538 
M' = -0.619048 
M_1 = MM' = + 4.333333 
Jx = -15.461538 
Jcy = -67.000000 

By substitutions into the left side of Ineq. [2531 of the values of the 
first seven parameters that follow it, 

52(48 - 84 - 12 - 0.5)2 + 4(5)2(10.5)(48 - 84 - 12 - 0.5) 
= 20631.25. 

This satisfies the inequality and assures that the solution for fl, by 
Eq. 12521, will be real. Accordingly, by substitutions into Eq. 1252] 

fl = 2.757732 ± 1.480782 = 4.238514 or 1.276950, 

and by substitutions into Eq. 1250], the corresponding solutions for 
f2 are 

12 = 1.276950 or 4.238514, 

which, due to the symmetry of the equations in fl and 12, serves as 
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a check on the values off,. As a further check, using the relationship 
of Eq. 145], Part 1, 

[112 4.238514(1.276950) F=- 
f1 + 12 - a 4.238514 + 1.276950 - 5.0 

= 10.500000, a perfect check! 

Numerous further checks are of interest, one of them by Eq. [180], 
Part 2, when expressed in the form 

M(xí - -Scx)(y2 + MM'Jcx) - M'xíy2 
. [254] 

MM' _Scx 

Here, MM'.5cx = - 67.000000. Also, by Eq. 1248] and inspection of 
Fig. 12, 

xí = X' + 
2a 

[2551 

and by Eq. [249] and Fig. 12, 

Fa [256] 
y2=Y- fi 
(Note: In Eq. 1255] the primes may be arbitrarily removed from xí 
and X', and in Eq. 12561 they may be arbitrarily added to y2 and Y. 

This makes the first of those two equations applicable to object - 
point O, and the second to image -point I'.) 

Thus we have, by Eqs. 12551 and [256], 

xí = -27.461538 + 
10.5(5) 

13.652053 
1.276950 

10.5(5) 
= + 71.613583. 

4.238514 

We then have from Eq. [254], by numerical substitutions 

- 7(13.652053 + 15.461538)(71.613538 - 67) 
-( - 0.619048)(13.652053)(71.613583) 

a - - 67 
a = + 4.999996 

which closely checks the arbitrarily assigned value of a. As a further 
check, a can be calculated from Eq. 1161, Part 1, as 

D-S1-S2 
a = + - 

2 
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[[D_si_s2-12 
(D-S1-S2)(fi+12)-(1 

M )2 1.112 

or 

1/2 

1257] 

a = 23.750000 ± x/351.562490 
a = 23.750000 ± 18.750000 
a = 42.500000 or 5.000000, 

which again checks the arbitrarily assigned value of a. Among other 
numerous check possibilities from Sec. 7 of Part 1, Eq. 1131 may be 
written 

M' - 1112 

(f1 + 12 - a)xí + 11(12 - a) 
from which 

12581 

4.238514(1.276950) 
M' - 

(4.238514 + 1.276950 - 5.0)(13.652053) 
+(4.238514)(1.276950 - 5.0) 

M' = - 0.619048, 

which exactly checks the value calculated following Table 16. 
In this example, D has been one of the arbitrary parameters. 

If, instead, DM or DM had been arbitrary, Eq. 12521 could still have 
been used by first calculating D from 

D = DM - _Sey (see Eq. 11811, Part 2) 12591 

or 

D = DM + ¿ x (see Eq. 12451). 1260] 

Similarly, for D' 

D' = DM - _Scx (see Eq. 11811, Part 2) 12611 

or 

D' = D y + Acy (see Eq. 12451), 12621 

which may be useful when Eq. 12521 is expressed in terms of D', X', 
and Y'. 

The problem discussed in this example has Eq. 12521 as an im- 
portant part of its solution. Readers must expect that every problem 
is likely to have a different algebraic solution, which in many cases 
can be reached or approached with the aid of the tables, schematic 
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diagrams, and equations that are developed in the text and ap- 
pendices of the three parts of this paper; or may be reached by 
contriving new solutions in the general manner of the solutions 
found herein. 
Example 15. In Example 14, the signed numerical values of X, Y, 

and Y' were the initially given parameters of Table 16. It proved 
possible through calculation of additional parameters to identify the 
problem as belonging to Group IV of Table 15. If the sign of Y' is 
merely reversed, without any change in the values of X and Y, will 
the problem then automatically belong to Group IIIa (as Table 15 

appears to suggest), and what additional restrictions, if any, will 
result? It is assumed that the sign of f (or F) is held unchanged.t 

This question is readily examined by expressing X' as in (III -5), 
Table 1, Part 1, with f and Y' substituted in signet form (see footnote 
to Sec. 28, RCA Rev. 45, No. 1, p. 136); thus, 

[Y' (f>0)(Y'<0) (fY')<0 
f - Y' (f > 0) - (Y' < 0) (f - Y') > 0 

= (X' < 0). 

12631 

This means that for any (Y' < 0) and any (f > 0) there will always 
be an (X' < 0), as required by Group IIIa. 

Furthermore, from (V-5), Table 1, M' = (f - Y')/f to produce 

(f> 0) - (Y' < 0) (f - Y') > 0 = (M' > 0) 1264] 
(f > 0) (f > 0) 

as required by Group IIIa; and since in the numerator of Ineq. 12641 

(f > 0) - (Y' < 0) = (f > 0) + [-(Y' < 0)] 
= (f>0) + (-Y'>0) = [(f - Y') > 01> (f > 0), [2651 

then (for, the sum of two positive quantities-both > 0-is always 
greater than either), it is also true that (M' > 0) > 1, as required 
by Group IIIa. 

The sign of M = Y/X, since the signs of Y and X remain opposed, 
remains (M < 0), as required by group IIIa. 

The signs of ..1,x and .Xcy are all that remain to be determined, 
and it will suffice to determine the sign of only one of them. By 
substituting the appropriate signets into Eq. 1431, Part 1, 

Jcy = - f(M' - M) = -(f > 0)1(M' > 0) - (M < 0)] 

t If the signs of both Y' and f (or F) of Group IV are changed, to what group will 
the signet -substitution process (about to be; discussed), show the problem of Ex- 
ample 14 to be converted? See Appendix 9. 
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or 
= - (f > 0)[(M' > 0) + (- M > 0)] = (_Sey < 0) [265A1 

as required by Group IIIa. Then by Eq. 12321 

,`x MM' (M <,0)(MO> 0) 
= 

(..Scx 
> 0) (2661 

as required by Group IIIa. 
This completes demonstration that the mere sign reversal of Y' 

automatically changes the problem of Group IV to Group IIIa in 
Table 15. Additional restrictions are that the parameters in col- 
umns (3)', (7)', (10), and (11) will have to be recomputed even 
though there is no change in the numerical values of the parameters 
in columns (2) *, (4)`, and (5)'. Changes in the numerical values of 
these latter three parameters will, however, also require recompu- 
tation of the parameters in columns (1), and (6)". The statements 
of this paragraph can be checked along the lines of the calculations 
that follow Table 16. 

Using the general technique of signet substitution that has just 
been illustrated, readers should prove in detail that reversal of the 
signs of both X' and Y in Group IV will convert the problem to the 
form of Group VIIIb in every respect. Derive, for Groups IV and 
VIIIb, the nn. -metrics that relate X directly to Y and X' directly to 
Y' in signet form. i Readers should also study the result of reversing 
the signs of both X' and Y' in Group IV, and should also prove that 
reversal of the sign of X' only, in Group IV, in all respects converts 
the problem to the form of Group IIIb. 
Example 16. (Note: This example of the Gaussian design of an aux- 
iliary optical system is expressed in terms of, among other things, 
an auxiliary magnification (M > 0) > 1. It is natural to inquire 
about the effect of changing this magnification to (M > 0) < 1. The 
effect of such a change on the procedure of simple Gaussian design 
of the auxiliary optical system is not trivial, and is the subject of 
Example 19, Sec. 30A). 

An optical system (see Fig. 17) illuminates a transparent object, 
such as a photographic negative, by projecting the image of a light 
source through it and focusing the source image upon the plane of 
the entrance pupil EP of a projection lens. Without making any 
other changes whatsoever, it is required to place an auxiliary lens 
(or a separated pair of auxiliary lenses) between the transparency 
and the projection lens, in order to produce a small increase in the 
size of the final projected image of the transparency without shifting 

t Example: A required nn. -metric for Group IV is (Y > 0) 5 (-X > 0) or (- Y < 0) 
(X < 0) or any others among their numerous equivalents. 
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the location of the transparency's image along the axis. The light 
source must not shift its location along the axis and must at the 
same time remain focused on the plane of the entrance pupil of the 
projection lens, which also must not move to a new location re- 
specting the transparency. 

Without going into details, a little consideration of these require- 
ments in relation to Table 15 indicates that the system to be de- 
signed probably corresponds to Group Ib, and that there is therefore 
apparently no fundamental reason to expect serious difficulty in 
working out a Gaussian design that will meet the stated require- 
ments. 

The distance of the projection lens entrance pupil from the trans- 
parency is 12.5 inches, and the auxiliary lens is to magnify the 
image of the transparency by the factor (M > 0) = + 1.020. The 
projection lens itself, as well as the original magnification of the 
transparency's image, is in no sense a part of the problem. 

For the auxiliary lens or separated pair, let the transparency be 
the real object O of Fig. 17, and the source image that is projected 
onto the entrance pupil of the projection lens be the virtual object 
0'. The conditions of the problem require the virtual image I (of 0), 
that is produced by the auxiliary lens or separated pair, to be in the 
plane of O. They also require the real image I' (of 0') to be in the 
plane of O'. 

Thus, the distance from O to I, which is OI, is 

D = OI = Zero, 

Transparency and condenser. 

(Both fixed in location.) 

O and 
D=01=zero 

Light source. 
(Fixed in location; 
focmd on EP of 
projector lens) 

Light Direction áf4 
always positive 

12.50.: (=01'=00'=II'=x .1cy=DM--X+g+Y') 

/ Projection Lena 

f = F = f =+315.594059" (fixed In location) 

Entrance pupil, EP 
Li L2 (fixed in location) 

H If Hs 

a.J' f2 
` 1{ D' and I' r xx` D'=0' I' =zero 

Auxiliary optic `I, 
Ischerratic only) Pdncipel points 

of auxiliary 
system 

X =-6.1::119" 

Y = -6.311881' 
(M = +1.020000) 

X' = +6.311881"-w. 

C 

Final projected image 
of transparency. 
(Fixed in location ) 

Y' = +6.188119" f+- 
(M' = +.980392 = 1/M) 

=+.123762" 

Fig. 17-Diagram of auxiliary optical system problem of Sec. 29A, Ex- 
ample 16. For schedule of solutions, see Table 17. Schematic 
only-not to scale. 
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and the distance from O' to I', which is O'I', is 

D' = O'I' = Zero. 

From this circumstance, and from Eq. 11811, Part 2, 

OI' = 00' = II' = ..Scx = or ..5,.y/Acx = 1. 

Therefore, from Eq. 12321, 

JylJx = MM' = 1, or M = 1/M', 

a result that is also confirmed by the established relationships of 
optical system photometry (see Refs. 23-28, Part 2). Furthermore, 
Eq. 11811 shows that since 

D'=D=Zero=OI=O'I' 
then 

Jx=.Sey=01'=DM 
which is the distance from the transparency to the projection lens 
entrance pupil. Thus 

= icy = 12.5 inches 

and Eq. [43], Part 1, enables us to calculate the focal length of the 
auxiliary system as 

- -xcy f - M 

or on taking note that M' = 1/M 

- M-1cY 
f - M2 

giving 

[2671 

- 1.02(12.5) f 
1 - (1.02)2 

f = +315.594059 inches. 

Since D, M, and f are now all known quantities, and since by 
(I-8) Table 1, Part 1, 

(D - S) = -f(1-M)2/M 
we may now express the separation of the two principal points of 
the auxiliary as 
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S=f(1-M)2+D M 
or 

1268] 

S = 
+315.594059(1 - 1.02)2 

+ Zero 
1.02 

S = + 0.123762 inch. 

These results are readily checked by use of the equation (see Sec. 
4, Part 1, p. 441) 

r 12 
M1,2 = 1- D 

2f 
S± 11 

D 2f 
St 

1 12691 

from which, given that D = D' = 0, S = + 0.123762, and f = 
+ 315.594059, 

M1,2 = + 1.000196 ± 0.019804 

or 

M1 = 1.020000 
M2 = 0.980392 (= 

This provides an indirect but exact confirmation of the correctness 
of the values of S, D, and f. The justification of this method of check 
is left to the reader. 

We may also write, from (III -10) Table 1, Part 1, 

X M - 1.02 3761 - -6.188119 inches, 1269a] 

and from (IV -10) Table 1, 

(D' - S)M' - 0.123762(0.980392) 
= + 6.188119 inches, 

M' - 1 0.980392 - 1 

[269b] 

and since D' = 0, and Y' + S = X' (because Y' - X' = D' - S, 
from (I-1) Table 1), and since also X' - X = .5,x by Eq. [1721, it 
follows that 

-X + S + Y' = ..Scx = 2(6.188119) + 0.123762 
= 12.500000 inches. 

This confirms the values of S, D, D', X, and Y', and it shows that 
because X = - Y', the principal points of the lens, or separated 
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pair, are centered exactly midway between the transparency and 
the projection lens entrance pupil. 

The auxiliary may be a single lens, with a focal length f = 
+315.594059 inches and principal plane separation S = 0.123762 
inch. All planolenses and most ordinary double -convex or double - 
concave lenses have positive principal plane separations. Plano - 
lenses, whether convex or concave, have positive values of S which 
are independent of the focal length of the lens, but they do depend 
on the thickness and the refractive index of the glass. For any plano - 
lens, S = d(n - 1)/n, where d > 0 is the axial thickness of the lens 
and n > 1 is the refractive index of the glass. Also, one of the 
principal points always coincides with the vertex of the spherical 
surface of a plano -lens, the other one being inside the glass. 

These simplifying relationships make plano -lenses very easy and 
inviting to include in the planning stages of an optical system, 
where preliminary design work is based on Gaussian equations. In 
cases where S is negative or very small or zero, problems arise of 
which Example 19, Sec. 30A, is an instance. The theory of Sec. 30 
is very useful in such cases. 

The auxiliary may also be a pair of separated lenses, specified as 
fl, S1, and 12, S2 with an optical separation a. Their combined focal 
length must still be F = +315.594059 inches, and the separation 
of the principal points of the combination must still be S = 0.123762 
inch. The additional design latitude that becomes available with 
the use of two lenses, instead of only one, will now be briefly dis- 
cussed. 

By Eq. 1451, Part 1, 

1112 
12701 fi+12-a 

from which, by setting f2 = kf1, k being an arbitrary constant which 
might be termed a "shape factor," 

kfi - F(1 + k)f1 + Fa = 0 1270a1 

or 

F(1 + k) [21,+ k)2 Faviz=±2 

k ] (f2 = 
kf1). [271] 

Equation 12711 represents the full gamut of real possibilities open 
to fl (and also to 12) when values are assigned to a, F, and k, subject, 
of course, to the requirement that the discriminant of Eq. [270a1, 

F2(1 + k)2 - 4kFa must be , 0. 
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Another factor that is important in this example is the separation 
S between the principal points of the two -lens auxiliary system. By 
Eq. [301, Part 1, this is expressed as 

= 
-aa 

+S1+S2orSi + S2 = S + 
az 

1i +fa - a fi(1+k)-a' 
On then substituting the value of ft from Eq. 12711 

St+S2=S+ a2 

F(1 + k)2 ± 
4k2 

+ k)4 

2k 

Fa(1 + k)2 112 

J k J 

which may be reduced further to 

- a 

2ka2 S1+S2=S+ 
(1 + k)IF(1 + k) ± {F2(1 + k)2 - 4kFa} /ZI - 2ka 

12721 

in which, since it is necessary for Eq. [2721 to be conformable to Eq. 
12711, it is still necessary that the discriminant of Eq. [270a1, 

F2(1 + k)2 - 4kFa shall be > 0. 

Only one simple case of the two -lens auxiliary will be considered 
in detail, that in which k = 1, or f2 = fl, with the lens separation 
a ranging over the reasonable interval 0 , a , 15 inches. In this 
case Eq. 12721 readily reduces to the form 

a 
2 Si2 + S S + (k = 1 or f2 = fl). [2731 21F±(F2-Far21 -a 

Equation [2711 correspondingly reduces to 

1, = f2 = [F ± (F2 - Fa)92] (k = 1 or 12 = 1i). 12741 

In order to make the solution complete it is necessary to solve for 
both x1 and y2 and to show that their values satisfy the equation 
(see Fig. 12. Note: In this example I' happens to coincide with O') 

-x1 + Si + a + S2 + y2 = OI' = DM = Acx. 1275] 

Equation 12751 clearly follows from inspection of Fig. 12. The value 
of x1 is obtained by solving Eq. 1131, Part 1, as 

1112-Mfi(f2-a) - x1 
- a) 

[276] 

By applying the replacement transformation of Sec. 6, Part 1, to 
Eq. [13], noting that in this example M' = 1/M 
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M, = + 12 - a).Y2 + 12(11 - a) 

f1/2 

from which 

12771 

Yz - M11/2 - [2(11 - a) ¡2781 -(/1+/2-a) 
Thus the two -lens auxiliary system will consist of two identical 

double -convex or plano -convex lenses of focal lengths fr and f2 (with 
f2 = fi), optically separated a distance a, with the center point of 
distance a coinciding with the center point of the distance Dm = 
OI', between the transparency and the projection lens entrance 
pupil. If piano -convex lenses are mounted with their convex surfaces 
facing each other, touching them together makes a = O. This prop- 
erty of plano -lenses is mentioned further in Sec. 30. If readers wish 
to study the cases in which h 1, they will find it very helpful to 
have a clear understanding of Sec. 30 and of Example 19, Sec. 30A. 

Table 17 presents assumed values of the parameter a and the 
values of other parameters that are calculated from the indicated 
equations. In the interest of keeping the two lenses from becoming 
too thick, it is desirable to keep Si + S2 in the range 0.125 inch 
(S1 + S2) 0.375 inch. i In the case of the example discussed here, 
this requirement is easily met for all values of a that are possible 
within the limit that is imposed by the 12.5 -inch separation between 
the transparency and the projection lens entrance pupil. 

30. A Brief Introduction to Any Single, Thick, Spherical 
Lens In Air or Vacuum, Treated As a System of Two 
Quasi -Separated Lenses. 

A single, solid, thick lens element L with a focal length F, is a 
physical piece of homogeneous refracting material of index of re- 
fraction n, bounded by two opposed spherical refracting surfaces of 
arbitrary curvature. The two centers of curvature K1 and K2 (or K 
and K') determine a unique right line called the axis; C -C in Fig. 
18. The surfaces intersect the axis in two vertex points VI and V2 

(or V and V') of the figure. Their separation is the axial lens thick- 
ness d. If an object O on C -C is imaged paraxially at I, the distances 
i1 (from VI to 0) and v2 (from V2 to I) are vertex -conjugate dis- 

t If the chosen index of refraction is n, = n2 = n, and the two identical lenses are 
assumed piano -convex, the thickness of each lens is d, = d2 = d = n (S, + S2)/ 
[2(n - 1)1. 
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Table 17 -Calculated values of the variable parameters /', = /'2, S, + S2, x1 = -y2, 
and check 0I' = .X x, as a is varied arbitrarily between zero and 15 inches. 
The calculations depend on the given constants: M = + 1.020, F = 
+315.5940594 inches, and S = +0.123762 inch. All calculated values 
are in inches. Numbers in square brackets identify the equations by which 
the associated quantities are calculated. 

Item 12741 12731 12761 12751 
No. (Assaumd) = 12 (S, + S2) t x, = -yº 01' = x 

1 0 +631.188118 +0.123762 -6.188119 +12.500000 
2 +0.3 631.038082 0.123833 -6.038083 12.499999 
3 0.7 630.837924 0.124151 - 5.837924 12.499999 
4 1.0 630.687721 0.124555 - 5.687722 12.499999 
5 4.0 629.181740 0.136517 -4.181741 12.499999 
6 8.0 627.162443 0.175113 - 2.162443 12.499999 
7 12.0 625.129972 0.240054 -0.129973 12.500000 
8 15.0 623.596817 0.306363 + 1.403182 12.499999 

# If the chosen index of refraction is n1 = 112 = a, and the two identical lenses are 
assumed plano -convex, the thickness of each lens is d1 = d2 = d = n(S, - S21/12(n 
- 1)] 

tances;tt these contrast with the Gaussian conjugate distances X and 
Y, that are measured from the principal points H and H' of the lens. 
The vertex -conjugate distances x1 and y2 can be very important both 
practically and theoretically, in working with single, thick lenses 
(see examples 17 and 18). 

An imagined plane P, normal to C -C, is considered to divide the 
lens L into two parts or components, L1 and L2 (or L and L'). The 
dividing plane may cross the axis anywhere inside the lens mate- 
rial, but for convenience it is arbitrarily assumed to be located 
midway between the vertex points V1 and V2. When considered in 
this way, any simple thick lens may be regarded as a centered 
system of two quasi -separated, plano -spherical component lenses 
with their hypothetical plano -surfaces in contact, coincident or 
"submerged" in the glass, but with their adjacent principal points 
H; and H2 spaced apart by an optical separation a. (To avoid con- 
fusion, it is important to note that these "adjacent" principal points 
are not the principal points of lens L. The matter will be considered 
fully in the second paragraph below.) The individual focal lengths 

1 
and 12 (or % and f'), of the assumed plano -components L1 and L2, 

respectively, are independent of the interior location of plane P. 
This is because in any positive or negative thick plano -lens, whose 
index of refraction and finite radius of curvature are given, the focal 
length is never a function of its thickness. Thus, in Eq. 12871 below, 
F is independent of d when r1 (or r2) = x. The optical separation 

tt When a single thick lens is resolved into piano -components, it is helpful if some 
of the symbols in equations that pertain to such components are distinguished by 
an "arc" written over them. This practice is followed as sparingly as possible. 
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11 = r /Ir} 1) f2 = 42/111-1) 

L1 n n L2 

- / df1 

xlp-H1H=1 

x1 -ÑI0 \ 

-Y H'I 

dí.; 
l\J1 

p-H2H`(n(r1+121-d/ 

-72-;".21 

C-ft- 

d/2 

-TOM n-1 n1 

12 

H 

á d/n 

H' 

r2 

1712 --1-- X C 

v2 

=d 

d/2 

0-01 

ff 
ForF- 12 

Light Direction 11 2- 
always positive 

For the expnsiors for ip z1p, $ Sp á F, and similar 

see Eqr¢ 12191,12801,12811,12821.12831,12841,12881, 
and 12901 of Section 30. 

Fig. 18-Diagram of a thick spherical lens, in illustration of its treatment 
in Sec. 30 as a system of two quasi -separated lenses. Schematic 
only-not to scale. 

HíH2 = á, of the component plano -lenses, into which the plane P is 
assumed to divide any thick lens, is also independent of the plane 
P's location (see Eqs. 12811 and [2821, below). 

By regarding the simple thick lens in the above manner, many 
of the relationships derived earlier for two separated lenses may be 
advantageously applied in dealing with the Gaussian problems of 
any thick lens (see Part 1, Secs. 5 through 9). 

The focal length of a plano -spherical lens in air or vacuum is 
positive when the spherical surface is outwardly convex and nega- 
tive when the surface is outwardly concave. The light direction, 
however, is always positive, and for lens L it is directed from V1 

toward V2. Accordingly, the well-known Gaussian formula for any 
plano -spherical lens in air or vacuum expresses the radius of cur- 
vature of the first or anterior surface of any single thick spherical 
lens as 
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r1 = (n - 1)71 

and that of the second or posterior surface as 

r2 = - (n - 1)72. 

[2791 

[2801 

A radius is always measured from the spherical surface toward its 
center of curvature, and is positive in the direction of the light and 
negative opposed. The thickness of the lens -component does not ap- 
pear in either of these two equations; the equations are accordingly 
independent of lens -component thicknesses. 

The overall axial thickness of lens L is d, each plano -component 
being arbitrarily assigned the thickness d/2. Well-known Gaussian 
formulas then express the principal point separation for each plano - 
lens as 

S1 = S2 = FIR = V1Hí = H2H2 = Ii2V2 = (n - 1)d/2n 12811 

where Hl always coincides with VI, and H.z always coincides with 
V2. The optical separation Ti between the component plano -lenses 
can now be expressed as 

= HiH2 = d - (S1 + S2) = d - 2(n - 1)d/2n = d/n. [282] 

Although the locations of the points Hí and H2 are locations of con- 
venience that depend on the arbitrary or assumed location of di- 
viding plane P, their separation á is fixed, and depends only on d 
and n. But the two points H and H' are the principal points of lens 
L, whose fixed locations are given by Eqs. 1321 and [331, Part 1, as 
the principal distances (in this case vertex -principal distances) 

H1H = V1H z1 = = 
f1dln 

(din = á) 12831 
f1 + f2 - din 

and 
- f2dln 

21 = V2H' = y2 = (din = á). 
p 

f1 + 12 - din 

Furthermore, by suitable substitutions from Eq. [451, Part 1, 

Pd/n H1H=V1H=zjp= (din = 
12 

and 

12841 

[2851 

t This paper has not always been consistent in its choice of a symbol for the focal 
length of a system of two separated lenses; f, F, and F have been variously used, 
sometimes with applicable subscripted numeral(s) or letter(s), or with a distin- 
guishing prime. In Part 3 of the paper the writer favors F as the basic symbol for 
this quantity. 
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- Fdl n 
H2H' = V2H' = y2p = - (din = d). 12861 

/1 

where F is the overall focal length of the combined piano -spherical 
components L1 and L2 (whose hypothetical piano -surfaces are in 
contact, coincident, or "submerged" in the glass). 

In the preceding paragraph, distances x1p and yep (see Sec. 9, Part 
1) are called principal distances, for the first time. Moreover, when 
the two separated lenses are plano -spherical, with their plano -sur- 
faces facing each other (whether in contact or not), their principal 
distances may be written as x ip and yep and termed vertex -principal 
distances (note that in Eqs. 12831 through 12861 the "air -space" be- 
tween the two plano -surfaces must be zero). 

By equating either the two expressions for .r 11 (Eqs. [2831 and 
12851) or, alternatively, those for yep (eqs. 12841 and 12861) and 
solving for 1/F, we readily obtain the usual expression that relates 
F, `l, l2, d, and n of a thick lens in air or vacuum, as 

=(n-1)[r+n1 
r2 

1 rd2 
12871 

where r1 = (n - 1)11 and r2 = -(n - 1)72 (see Eqs. 1279] and 
12801). 

If, from Eq. 1451, Part 1, by allowing á = din, as in Eq. 12821, 

F = _ fife (din = á) 12881 
Íl + /2 - din 

and if, from Eq. 1301, by additionally allowing S1 + S2 = (n - 1)d/ 
n in accordance with Eq. 12811, we write 

z 

S=_ -(d/n) +n-ld_t 
(din =á), 12891 

%i + f2 -din n 

it immediately follows by inspection of Eqs. 12881 and 12891, that 
z - 

S = 
-F(dln) it 1 d (din = á) 12901 ` 

/112 

from which 
-Fd2 + n(n - 1)71/2d 

S - 1290a1 
n2iif2 

t The remarks of the foregoing footnote substantially apply to the symbol s, S, 
or S for the separation of the two principal points of a system of two separated 
lenses. When the k-th lens of a system (in Sec. 30A, Example 19) is treated as a 
quasi -separated system of two lenses, its focal length can be symbolized as either 
fk or as Fk, with an asterisk added if it is an "adjusted" focal length. Similarly, the 
principal point separation for such a system may appear as Sk or as Sk. 
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and 

Fd2 - n(n - 1)717d + n2f f.2S = O. 

The solution of Eq. [288] for 72 is 

(71 - dln)F 
f2 = (din = á), 

f1 -F 
which, on substitution into Eq. 12911, produces 

(71 - P)d2 + (n - 1)71d2 - n f1Sd + n272 - 

[2911 

12921 

n(n 1)71d = 0 

12931 

or 

(n71 - F)d2 - n[f1S + (n - 1)f i [d + n2f iS = 0. 1294] 

The solution for d, for example, is 

d = 
n[f1S + (n - 1)f ll n21 í1S + (n - 1)71]2 n2f is yet 

2(n71 -F) 12(nf1 - F)12 n71 - F 
[2951 

for all arbitrary values of n, 71, P. and S, but with the double proviso 
that (on dividing the discriminant of Eq. [2941 by the always posi- 
tive n2f á): 

+ (n - 1)712 - 4S (n7 -P) % 0 12961 

and 

nf1 - P 0. 12971 

Equation 1293] may be restated and solved for any variable to 
suit the reader's purpose; variables may always be removed and 
replaced with new ones by suitable substitution. The possibilities 
are far too numerous to consider here. Readers may wish to study 
the comments in Conrady's Applied Optics and Optical Design, p. 
64 and pp. 455-456, regarding the "bending" of both thin and thick 
lenses, and to consider how the Conrady procedures may be related 
to Eq. [2931 and any of its solutions. There is no conflict between 
the equations developed in this paper and Conrady's sign conven- 
tion. 

t in a problem that involves a different set of Gaussian parameters, Appendix 11 
derives a much simpler expression for the center thickness d of a simple lens (see 
Eq. [438]). 
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30A. Representative Applications 
Example 17: Identify Some of the Conditions That Must Be 
Met, If a Single, Thick Lens Is to Have Coincident 
Principal Points 

This can be done by analyzing the solution of Eq. 1293] for S, which 
is 

r f i(n2 - n) - (nfl - F)d1 
d1 

J zfl(nf - d) 
[2981 

The principal points are coincident when S = 0. This will always 
be true of thin lenses, for they are characterized by d = 0. In a 
thick lens d 0, and in this case S = 0 only when the numerator 
in Eq. 12981 vanishes, or when 

71712 - n) - (nf1 - F)d = 0 (S = 0). 12991 

This will be true provided 

d 
Z 4z 

+_ (S = 0). (3001 ft = 
2(n2 n) 

4(n2zd) 
n)2 n2Fd 

The requirement for this solution to be real is that the discriminant 
of Eq. [2991 

n2d2 - 4(n2 - n)Fd shall be % 0. 

Since n and d are always positive, this requirement for the discrim- 
inant may be written as 

nd (d > 0); [3011 F 
4(n - 1) (n > 1); 

or as 

gnd (d > 0); 
F - (n 

x 
< 

l (g 0), 1 . 1 

13021 
4(n - 1) 4(n - 1)] 

By making suitable substitutions into Eq. 13001 from Eqs. 12791 
and 13021 and reducing 

r1 = (n - 1)71 = 2 ± fu - g)'i2 (S = 0). 1303] 

Furthermore, from Eqs. 12801 and 12921 we may write 

r2 = -(n - 1)12 - 
-(n - 1)(f1 - d/n)F 

13041 
11 -F 
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and by introducing into Eq. [3041 the expressions for 71 from Eq. 
12791 and for F from Eq. [3021 

rl d gnd 

1 4( 
r2 = 

-(n - 1) 
n- n n-1) 

r1 gnd 

n-1 4(n-1) 
which reduces to 

r2 = -(n - 1)f2 = 
I(n )d -rllgd 

(S = 0). 13051 
4r1 - gnd 

By further simplifying Eqs. [3031 and 13051, their difference yields 

r1 - r2 = d (S = 0). 13061 

This result requires the radii r1 and r2 to originate at a common 
center of curvature for the two surfaces of the lens. 

By substituting f1 = 
n 

rl 

and f2 - 
n-r21 

from Eqs. 12791 and 

12801 and also by substituting d = r1 - r2 from Eq. 13061 into Eqs. 
12831 and 12841, the expressions for the vertex principal distances 
result: 

x 1p = r1 (S = 0) 

and 

yep=r2 (S=0). 

[3071 

13081 

Equations [3071 and [3081 place the first and second principal points 
of the lens at the common center of curvature of the anterior and 
posterior surfaces of the lens, respectively, (see Sec. 9, Part 1). 

It has been proved that in order for a single thick spherical lens 
element to have coincident principal points: 

(1) The lens must be concentric, or the centers of curvature of 
both lens surfaces must be coincident; 

(2) The principal points will be located coincidentally at the 
common center of curvature of the lens surfaces. 
This conclusion is independent both of the index of refraction and 
of the sign of the focal length of the lens. By substitution into Eq. 
12871 from Eq. 13061 it is easily shown that the lens will be double 
convex (not necessarily equi-convex) when of positive focal length, 
and will be concavo-convex (or convexo -concave) when of negative 
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focal length. Readers will also find it stimulating to study the re- 
lationship between this example and Eq. 12951. 

Example 18: Discuss Theoretically At Least Two Possible 
Gaussian Procedures For the Nondestructive Measurement 
of the Index of Refraction of the Material of a Single Thick 
Spherical Lens Element 

Accurate measurement of the indices of refraction of an optical glass 
is a painstaking procedure that ordinarily involves spectroscopic 
methods and equipment to enable measurements to be made at sev- 
eral wavelengths in the spectrum. The glass sample on which the 
measurements are made is usually in the form of a carefully made 
prism. 

It cannot be expected that measurements of index of refraction, 
that depend on the Gaussian properties of a spherical lens into 
which the glass has already been fabricated, can be made with the 
accuracy that is possible when the spectroscopic method is used; but 
it may sometimes be desirable, useful, or even imperative that such 
a measurement be made, without modifying the lens in any way. 
Possible Procedure No. 1: Equation 12871 for any single thick lens 
is quadratic in n. It can be solved for the index of refraction in the 
form 

n 
F(r2 - r1 + 2d) + r1r2 

2F(r2 - r1 + d) 

rIF(r2 - r1 + 2d) + r1r212 192 d 
13091 

12F(r2 - r1 + d)12 r2 - r1 + d 

Measurements of d, r1, and r2 may usually be made with reason- 
able accuracy with a micrometer and test glasses or other good 
spherometric techniques. However, the paraxial focal length F, in 
light of a definite wavelength or color such as provided by a laser, 
generally must be measured indirectly, usually by some magnifi- 
cation method that nearly always involves numerous uncertainties 
and inaccuracies. In order to avoid the effect of lens aberrations on 
judgment of the paraxial image location, the lens must be stopped 
down. Unfortunately the judgment of image location then remains 
uncertain due to the increased depth of focus of the image. There is 
a possibility of overcoming this difficulty by using a pinhole as a 
test -object and employing the Foucault knife-edge technique to lo- 
cate the true paraxial image. The magnification can then be mea- 
sured by moving the pinhole a measured, signed distance to trans - 

500 RCA Review Vol. 45 September 1984 



GAUSSIAN LENS EQUATIONS 

verse to the lens axis and measuring the corresponding, signed 
transverse motion ti of its image. The magnification is then M = 
ti/to. Keeping the lens location fixed, the pinhole is moved along the 
lens axis and the magnification M' of the new paraxial image is 
measured. The axial separation of the two pinhole locations is _Scx 

and that of the two paraxial images is .1.y. By Eqs. 1431 and 1421, 
Part 1, the focal length is then calculated as 

F 
- -MM' _Sex 

13101 
M' -M M' -M 

Substitution of the measured and calculated values of the four vari- 
ables r1, r2, d, and F into Eq. 13091 allows a to be calculated. Note 
that these four quantities are fixed, or constant, for any given lens, 
and except for measurement errors they are ideally independent of 
the kinds of measurements from which they are derived. 

It is possible, under certain conditions, for the two values of a 
that are determined by Eq. 13091 to be numerically close together, 
in which case the equation offers no clue to which of them is the 
true index of the measured lens. This always present, potential am- 
biguity of Procedure No. 1, together with the anticipated freedom 
from it of Possible Procedure No. 2 now to be developed, is discussed 
fully in Appendix 10. 
Possible Procedure No. 2: (Discussion of this procedure is fully il- 
lustrated by Fig. 18.) It is clearly desirable to avoid measurement 
of the magnification of any image produced by the lens as a step in 
the measurement of its index of refraction. 

That the possibility of doing so may exist becomes apparent when 
the simple, thick spherical lens is regarded as a quasi -separated 
system of two centered plano -spherical component lenses, with 
piano -surfaces hypothetically coincident, in contact, or "submerged" 
in the glass in the manner of the approach that is taken to such 
lenses by Sec. 30. For then, any of the equations that characterize 
a system of tv% o separated lenses may be applied to learn if the 
magnification measurements can be eliminated. 

By applying the equations for systems of two separated lenses, 
such as Eqs. 171 through 1221 and Eqs. 1631 and 1641, Part 1, to 
"Possible Procedure Nc. 2," it is seen that the vertex -conjugate ob- 
ject -distances xt are measured from H1 of lens -component L1 and 
that the vertex -conjugate image -distances 372 are measured from Hl 
of lens -component L2. It is assumed that these distances are mea- 
sured in light of a definite wavelength or color, such as provided by 
a laser. 

In the case of any simple lens, H1 and H2 coincide, respectively, 
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with the vertex points V1 and V2, as pointed out at the beginning 
of Sec. 30. This ensures that in the case of a simple lens, 3-cs1 and y2 
can always be measured from the vertices of the lens surfaces, which 
differs importantly from measuring X and Y from possibly inacces- 
sible and usually unknown principal points H and H' elsewhere on 
the lens axis. 

Also among these equations, Eq. [ 191, Part 1, might be a basis for 
the desired Procedure No. 2, because magnification M does not ap- 
pear in it. For these several reasons the possibility of the existence 
of a more practical alternative to Procedure No. 1 as a means of 
measuring the index of refraction of a simple lens appears favorable. 

Before proceeding further it will be useful to identify some quan- 
tities and their equivalents that are involved in working with equa- 
tions that relate to a single thick, simple lens. These are collected 
in Table 18, where each quantity is identified by an item number. 
The equivalents assigned to the symbols stem largely from Eqs. 
[2791 through [2821, which are derived in Sec. 30. 

In the following discussions of Procedure No. 2 of this example, 
all item numbers refer to Table 18, unless otherwise referenced. 
Since the equations pertain to components of lens L, fl and f2 have 
been changed to f 

1 
and f2 to indicate that fact, etc. 

By Eq. [ 191, Part 1, 

D-S1-S2=á-x1+ _ /21(7i-a)x1-flan [3111 
(fl + 

72 - a)xl + 71(72 - a) 

or, by substituting a suitable equivalent to D from item 15 

721(71 -d).71- fial - 0. [3121 
(fl + 72 - a)xl + 71(72 - a) 

(Special NOTE: Equation [3121 could also have been derived 
(without benefit of Eq. [ 191) by eliminating M between Eq. [131 and 
its replacement transformation (see Sec. 6, Part 1) and then solving 
for 372 and reducing. This useful shortcut procedure once again dem- 
onstrates and confirms a possible application of the replacement 
transformation. Details are left to the reader.) 
On further substitution into Eq. [3121 of equivalents to 71, 72, and 
Ft, from items 3, 6, and 12 

-kr2 kd kd / 
hr1 

krl 
I - 

1 + h) xl - 
\ 

(1 + k) -y2+ -0 
(kri - kr2 

kd hd 
kr1 - 

1+k x1 + (_kr2 
1 + k [313] 
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which expands to 

- _y2(r1 - r2 - d)x1 - ky2(r1 - r2)r1 + kr1Y2(r2 + d) 
+k2r1r2372 - kr2(r1 - d)x1 - k2r1r2x1 + k2r1r2d = 0 

and factors to the quadratic in k 

k2r1r2(y2 - + d) - kl x 1.Y2(rl - r2) + r1r2( r 
1 
- Y2) 

-(x1r2 + y2r1)d] - iy2(rl - r2 - d) = O. 

The solution for k is 

k = x152(rl - r2) + r1r2(x1 - y2) - (31r2 + y2r1)d 
-2r1r2(x1 - 512 - d) 

[I xly2(rl - r2) + r1r2(x1 - Y2) - (11r2 + V2r1)d12 

I2r1r2(z1 - Y2 - d)12 

r2 - d)192 

r1r2(5c1 - y2 - d) 

Then, by item 3 the solution for n is 

13141 

[3151 

13161 

n = 
k 

+ 1 - 1 
h 

k 
(see Table 18, items 3 and 12). 13171 

Equations 13161 and 13171 make possible the direct calculation of 
the index of refraction a of a simple lens from directly measured 
values of r1, r2, d, xl, and v2, without measurement of any magni- 
fication and without calculation of any focal length. The longitu- 
dinal axial location of the paraxial image I should be determined 
by the Foucault knife-edge technique. Negative lenses and lenses 
of very short focal length will present special problems, and the 
procedure affords ample opportunity for development of technique. 

Readers will wish to test Eqs. 13091, 13161, and 13171 by actual 
numerical substitution, and for that purpose they will be interested 
in the following (for a further comparative discussion of System Nos. 
1 and 2, see Appendix 10): 
Hypothetical Problem: It is necessary to duplicate a certain impor- 
tant simple lens as accurately as possible, but no specimen of the 
lens is available for measurements. Accurate computer readout rec- 
ords of certain design data at numerous specified wavelengths can 
be located, but, strange to say, there are no records of the indices 
of refraction. The records that are available include (for sodium -d 
light) 

1. F = + 3.9370... u (where u is an arbitrary unit) 
2.d=+0.750...0 
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3. r1 = + 50.34011553 u 
4. r2 = - 2.211106823 u 
5. x l = - 4.59320 . .. u 
6. Y2 = + 17.69591504 u 

The value of n obtained by calculating k and n from Eqs. [3161 and 
1317] should be verified by also calculating n from Eq. 13091. They 
will be found to differ by less than one part in a billion (109, not the 
British 1012). The other two solutions for n are negative, and their 
ratio is about 13.45. 

Readers will also be interested in estimating the relative accur- 
acies of the two procedures, in case n were calculated from actual 
measurements performed on an accurately made specimen of the 
lens that is described by items 2, 3, and 4 in the preceding list. This 
can be done by estimating the probable minimum inaccuracies that 
occur in the actual measurements, and by then using them in the 
combinations that will produce the greatest inaccuracies in the cal- 
culated values of n that result from each procedure. Detailed in- 
vestigation of this point is left to the interested reader. 

Example 19: Develop the Gaussian Design Procedures For 
Auxiliary Optical Systems Similar to the Earlier Example 16 
of Sec. 29 But In Which k = f2/f1 0 1. (See Eqs. [272], 
[273], and [274]) 

I. Sample Specifications, and Preliminary Stage of Solution 

The cited Example 16 of Sec. 29 is radically changed in its solution 
when a certain apparently trivial change is made in the system's 
specification. The specification change consists only in replacing M 
= + 1.020 by its reciprocal, M = 1/1.020 = +0.980392 (which was 
the M' of Example 16). By then preliminarily applying the proce- 
dure of Example 16 in every detail, but without going beyond the 
end of the paragraph that contains Eq. 1269b], the new conditions, 
on which the solution of Example 19 must be based, are found 
to be 

f = - 315.594060 inches (usually designated F for a separated 
system of two lenses) 

S = - 0.123762 inch (usually designated S for a separated system 
of two lenses) 

X = - 6.311881 inches 
Y' = + 6.311881 inches 
(X and Y' calculated by (III -8) and (IV -8), Table 1, Part 1. 
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Compared to Example 16, land S merely have their signs reversed, 
the relation X = - Y' remaining unchanged, but X and Y' assume 
new values without changing sign. Also, the relationship -X + S 
+ Y' = _Scx = + 12.500 inches remains unchanged. 

II. General Analysis, and Application of Equations For the 
Primary Stage of the Solution 

It is easy to see that the "new conditions" exclude the type of 
primary -stage solution that was convenient in Example 16, where 
the auxiliary could consist of two identical plano -lenses symmetri- 
cally arranged in the system. In that system S1 = S2 > 0, and the 
optical separation of the lenses was a , 0. By slightly restating Eq. 
[2731 of Example 16 

(S1 +S2)-S= 21F±(F2-Fa)1/2]-a 
a2 (h = 1, or f.l = 11, 

a,0,F>0,S>0). 
13181 

This equation was made a basis for the solution of Example 16, but 
because the application of the preliminary procedures of Example 
16 (through Eq. 12681 of that example) to Example 19 demonstrates 
a reversal of the signs of F and S, the assumption that S1, S2, and 
a may all remain positive requires examination. 

If we write (as representative of the new conditions of Example 
19) the hypothetical function (based on Eq. 13181) as 

a2 (a 0,F<O,1<0, (1)(a)= 2[F±(F2-Fa)921 -a h=1,orf2=f1), 
it may be shown routinely that 

1. (b(a > 0) < 0, 
2. 4(0) = 0, 

and that 

3. lim Oa) = 4(0). 
a 0+ 

Conclusions 1 and 2 demonstrate that Eq. 13181 holds true under 
the new conditions of Example 19, provided only that (S1 + S2) < 
0 (since S < 0); while conclusions 2 and 3 demonstrate that 4(a) is 
continuous from the right at (a , 0) = 0. Therefore, S1 and S2 may 
not both remain positive. 

In the solutions about to be developed, the condition h = 1 or 12 

= fi that defines the derivation of Eq. 13181 from Eq. [2721 will be 
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merely a special or limiting case. The solutions will apply generally, 
in the case of any value of k = 12111 for which the values of f1, 

expressed by Eq. 12711, are real. The condition k = +1 will apply 
only when the discriminant of Eq. [3241 below, as expressed by Eq. 
[3261, vanishes. 

Only one approach to solution of the problem, that defined by the 
new conditions, will be examined and completed here. Possible mod- 
ifications of this approach, that will require readers to apply some 
effort and originality to their analyses and solutions, will then be 
briefly indicated and defined. 

We begin with Eq. 1451, Part 1, which states 

F = 1112 1319] 
- a 

from which 

1 

1i+12 -a 1112 

and, from which, 

F(11 - a) 
f2 - 

f1 - F 

From Eq. [301, Part 1, 

S- a2 + S1 + S2 13221 f1+f2-a 
or, by substitution into Eq. 13221 from Eq. 13201, 

- a2F 
S - 

fif2 
+ S1 + S2. [3231 

On substituting the value of 12 into Eq. 13231 from Eq. 13211, the 
former reduces to the quadratic in f1, 

/V(. - S1 - S2) + flat a - (S - Si - S2)] - a2F = 0, 1324] 

which has the conjugate solutions 

a[a - (S - Si - S2)1 
f1 - -2(S - S1 - S2) 

[a2la-(S-S1-S2)]2+_ 
a2F 1. [3251 

4(S-S1 -S2)2 S-S1 -S2 

[3201 

[3211 

Equations [3191 through 13231 are all symmetrical in f1 and f2. 
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This means that the two values of f1 that are represented by Eq. 
1325] can be substituted, respectively, for fi and f2 in Eq. 13211 and 
satisfy that equation. This is easily verified by arbitrary numerical 
substitutions into Eqs. 13251 and [321]. The conjugate solutions of 
Eq. 13241 are therefore the symmetrically related focal lengths /1 

and f2 of any Gaussian system of two separated lenses. Only real 
solutions of Eq. 13241 are of any interest, of course. 

In many problems where the locations and focal lengths of two 
lenses are sought, Eq. [3251 would complete the solution. This is not 
the case here, for the unknowns a and (S1 + S2) are not evaluated. 
The optical separation a can be given an arbitrary value, but this 
cannot be done for (S1 + S2). Once a is arbitrarily given, the fol- 
lowing procedure can be used to find quasi -arbitrary values of (S1 
+ S2) that will always result in real (not complex) solutions of Eq. 
[324]. 

The discriminant of Eq. 1324] is 

a1 = a2[a - S + (S1 + S2)]2 + 4a2FIS - (S1 + S2)] 1326] 

or 

¿)1 = a2[(S1 + S2)2 + 2(a - S - 2F)(S1 + S2) + (a - S)2 + 4FS], 
13271 

which itself happens, in this example, to have the general form of 
a quadratic in (S1 + S2). 

In order for the roots of Eq. 13241 to be real, it is necessary that 
a1 = (a1 = 0). Thus the variable i11 = (d1 0) has the extremum, or 
lower limit, a1 = (a1x = 0), corresponding to which the radicand of 
Eq. 1325] vanishes, and Eq. [327] has two limiting solutions for (S1 
+ S2). These are 

(S1 + S2) ¡ _ -(a -S- 2F) ± I(a - S - 2F)2 
- (a - S)2 - 4FS19z 1328] 

to which the special condition k = +1, or f2 = fi of Eq. 1318], 
corresponds (for when Fit = (8ix = 0), Eqs. 1324] and 13251 always 
yield f2 = fl). 
Note: The limiting solutions of Eq. 13271 are keyed to the mixed 
sign in the root on the right side of Eq. 13281, as are the limiting 
derivatives expressed by Eq. [330], below. In the cases both of the 
limiting solutions and the limiting derivatives, the subscript X sig- 
nifies that the discriminant a1 = (a1.t = 0). 

Since a1 can have an infinity of values 
X11 

> ('1x = 0) for which 
the conjugate solutions of Eq. 13241 are real, there will be quasiar- 
bitrary values (S1 + S2) = (S1 + S2)1 + d(S1 + S2), which second 
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addend is a differential or increment of (S1 + S2), that correspond 
to the positive values al = (alx = 0) + dal, which second addend 
ís a differential or increment of al. The problem now is to find the 
algebraic sign that the differential or increment d(S1 + S2) must 
have. By differentiation of Eq. [3271 

d(S + S2) - 2a2[(S1 + S2) + a -S - 2F1. 13291 

Substitution of (Si + S2) = (S1 + S2)X into Eq. 1329] results in two 
limiting values of the derivative, which are 

dal 

d(S1 + S2) 1x 

Since the limits expressed by Eqs. 13281 and 13301 assume that the 
discriminant a1 = (al , 0) is at the limit al = (alx = 0), any dif- 
ferential or increment dal that is added to alx mist be positive or 
the solution of Eq. 13241 will be complex. Therefore, the sign of any 
differential or increment d(S1 + S2) that is added to either of the 
limits (Si + S2)3±c must be that of the corresponding derivative 

da, 

d(S1 + S2) x 

when (S1 + S2)X is substituted into Eq. [330]. 
Table 19 is arranged in 10 Roman -numeral columns, each with 

an identifying symbol and an identifying equation number by which 
the corresponding signed numerical values of the symbols in each 
column are calculated. Each of the 30 Arabic -numeral rows of the 
table identifies one trial, partial -solution of Example 19. The rows 
are arranged in six groups of five, each group being identified by a 
different assumed optical separation a (Column III) between lenses 
L1 and L2. Individual rows are further identified by the quasi -ar- 
bitrary sum (Si + S2) (Column VI) of the principal point separa- 
tions, Si of L1 and S2 of L2. The uppermost sum in Column VI of 
each group has been adjusted slightly, as needed, to ensure real 
values of fl and [2. Rounding -off errors in computing Column IV 
make this necessary. The other sums Si + S2 in Column VI of any 
group represent successive incremental additions of 0 < d(S1 + S2) 

+0.002 inch.t Column IV also gives the second solutions (Si + 

52)x of Eq. 13281, which range between - 1262.1 and - 1262.9 
inches; they can be investigated at the pleasure of the reader. 

= 2a2[(S1 + S2)1 + a -S- 2P1. 13301 

t Carefully review the above discussions that follow Eqs. 1323] through [330]. 
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An inspection of the table and a review of the development in the 
text of each equation cited at the tops of the columns will serve to 
clarify both. Computation (or assumption) of the quantities in any 
row proceeds in logical order from Col. I through Col. X. 

Ill. Review of the Preliminary and the Primary Stages of the 
Solution 

The work to this point is characterized as being in two stages: the 
preliminary stage and the primary stage of the Gaussian design. In 
the preliminary stage, calculations were performed directly on the 
given data of Example 19. Columns I and II, Table 19, are the 
partial result of that stage. The primary stage roughed out a col- 
lection of 30 trial systems, in terms (in Columns VII and VIII) of 
the focal lengths f1 and f2 of the two lenses L1 and L2, (respectively 
identified as the f ¡` and f r' values of Eq. (3251), as well as in 
terms (in Columns IX and X) of the respective principal distances 
xlpt and y2pt from their appropriate principal points, to the auxil- 
iary system's principal points H and H' (see Sec. 9, Part 1). This 
notion of principal distances will be expanded and clarified in the 
following secondary stage of the design work. 

Specific focal lengths and lens separations have not been settled 
upon that will ensure that the auxiliary system will be restricted 
to the space between the transparency and the lens entrance pupil 
of the system that is to be modified by the auxiliary. With the sum 
(S1 + S2) being negative, it is obvious that at least one of the two 
lenses L1 and L2 must have a negative principal point separation. 
Beyond this assertion, the values of S1 and S2 remain individually 
unknown. A major part of the work of the secondary stage will be 
concerned with the design of a simple lens Lz with a negative prin- 
cipal point separation S2. Readers should also consider the effect of 
alternatively setting S1 < 0 in order that (S1 + S2) < 0. 

IV. The Secondary Stage of the Solution 

Ordinary simple lenses that are of common concern usually have 
their axial principal points either inside the lens, or not far from 
its surfaces if one or both of them are outside the lens. This has led 
to the habit and expectation of identifying the location of the prin- 
cipal points substantially with the location of the physical lens. It 
can sometimes happen, however, that the principal points will lie 

t See footnote re: Steps 4 and 5, Table 21. 
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at a considerable distance from the physical lens, and this circum- 
stance can lead to troublesome disorientation and confusion in 
working with such lenses if care is not taken to avoid it. The reason 
for this is that changes in paraxial ray directions that are assumed 
by the Gaussian equations take place (mathematically, not physi- 
cally) at the transverse planes through the two principal points of 
the lenses or lens subsystems wherever those points may happen to 
be located along the axis. In contrast to this, the actual changes in 
ray directions take place, physically and sequentially, at each suc- 
cessive lens surface, where each change involves an initial ray di- 
rection, a refractive index, the radius of curvature of the surface 
where the change of direction is taking place, the thicknesses and 
separations of the individual lenses, etc. The Gaussian -lens -equa- 
tion approach is much more general, because more abstract, and it 
"lumps" all of the data of actual, physical, surface -by -surface par- 
axial ray refraction in terms of much more general and inclusive 
parameters such as focal lengths, magnifications, object distances, 
system lengths, and the like. The advantages of the Gaussian ap- 
proach have been made evident in the three parts of this paper 
where its use in the early stages of system planning has avoided 
much physical detail. In some cases the Gaussian abstractions and 
some of the concrete lens requirements are advantageously consid- 
ered together, as will be done in the secondary stage of the solution 
of Example 19. 

In Item 18 of Table 19, the linear quantities in Columns VII 
through X are small as a group and are considered likely to result 
in an auxiliary system of practical length that will readily fit be- 
tween the transparency and the projection lens entrance pupil. The 
secondary stage of the work will accordingly be based on it without 
further justification. Lens Li (f = +2.914725 inches) will be taken 
plano -convex, with its Si = +0.060 inch, merely because this is 

easy to do. In order to keep (S1 + S2) = - 0.120 inch, S2 of lens L2 

(12 = - 2.878143 inches) must then be S2 = S2 = 1 = - 0.180 
inch. It is clear from Example 17 that the principal points of a 
negative lens must lie at a considerable distance from the physical 
lens, if their separation is to be S2 = S2 = S2 = 0, and that they 
may lie still further away if S2 < 0, as is now required. 

The symbolism regarding lens L2 in Fig. 19 corresponds roughly 
to the symbolism in Fig. 18 and to the footnotes that relate to Eqs. 
[2851 and [2891. All symbols that pertain exclusively to lens L2 of 
Fig. 19 or to its components L2 and L2 are subscripted either solely 
or terminally with numeral 2 or with numeral 2. The principal 
points H2 and H2 of lens L2 lie roughly an inch to the anterior side 
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Light Direction / 
ezzazzazzsszLf + 

2 always positive f2 = r2/(n-1 f 2 =-r2/(rt-11-\ 
12 _ 1 y2y=H'217=+1.082758"-.. -1H'=S=-.123762" L2 

+-x1p = H 1A=+1.096520" 

f1=+2.914725"' 

"2/;k c-x-x-x- 

r 

/ 
.a = H'1H2 =+.010' 

-S1 -+.060" 

H' H 
H'2 

72-2- '72'72=-180". 

».-11p2 

S1+SZ=-.120 

n=1.523 

d2/2 

12p2 4.9 2 H.2 
.. 

/P 

Sec Table 19, Item 18. 

See Table 20, Item E. 
NOTE: 
H1 and H'1 are first arel second principal points of leis L1 (not shots i) 
H2 and H'2 are first and second principal points of lens L2 (as T2 combine) with L 2) 

Hand IT are first and second principal points of combination of lenses L1 and L2 

H2 and H are first and second principal points of tfat component of lens L2 

H"2 and H"1 am first arel second principal points of the L'2 component of lets L2 

Fig. 19-Diagram illustrating unadjusted secondary stage solution of Ex- 
ample 19 of Sec. 30A. See also Tables 19 and 20 and Fig. 18. For 
adjustments, see Table 21. Schematic only-not to scale. 

of the point H.z of lens L2 and of its anterior component E2. The 
NOTE of Fig. 19, upon application of close inspection to the sym- 
bolism of the text and of Fig. 19, should allay any confusion. The 
symbols x1p2 and v1p2 of Fig. 19 are explained immediately fol- 
lowing Eqs. 13331 and 13341. The practice of using an "arc" ( ) above 
a literal or numerical symbol has been followed as sparingly as 
possible in the interest of keeping the symbols simple. 

Lens L2 will have somewhat the form of Fig. 19. It will be me- 
niscus, with its centers of curvature K2 and K2 and its two principal 
points H2 and HZ on the concave side of the lens. The lens will be 
considered as a system of two quasi -separated lenses of refractive 
index n and thickness d2 = d2 + d2, in the manner of Sec. 30 and 
Table 18. The optical separation will be a2 = d2/n. The two plano - 
component focal lengths will be (2 and f2. The principal point sep- 
aration of L2 will be S2 = S2 = S2 = H2H2. The focal length of L2 
will be f2 = F2 = F. If, in Eq. 12931, we let d = d2; F = F2; S = 
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Sz; and fl = 12 of the anterior 1;2 -component of lens L2 (not the fl 
of Eq. [2921), the equation may easily be put in the standard form 
of the quadratic in f2, as 

[ - n(n - 1)d2 + n21-21(1 2 + [ - nS2d2 + nd2] f2 - F2d2 = 0, [3311 

the conjugate solutionst of which are 

d2(S2 - d2) 
f2-2[nS2 -(n-1)d2] 

-4- 

d2(S2 - d2)2 F2d2 

41nS2 - (n - 1)d2]2 + n[nS2 - (n 1)d21 

These are also expressed as the symmetrical solution set {72,72}, 

where f2 is the focal length of the posterior plano -component L2 

of lens L2. 

The known or given quantities in Eq. 13321 are 

S2 = - 0.180000 inch 
n = 1.523000 
FZ = f2 = - 2.878143 inches (Table 19, Item 18, Col. VIII). 

Thickness d2 is not known, but it may be considered to lie some- 
where between the arbitrary but reasonable extremes of the in- 
terval 0 d2 , 1.50 inches. By making d2 the arbitrary parameter 
in Eq. [3321, Table 20 (below) is constructed that relates d2, f2, 
f 2, r2, r2, x1p2' and .721,2 (see text immediately following Eq. 13341 be- 
low) of lens L2. Equation 12851 is readily reexpressed for present 
purposes as 

FZd2/n 
X 1p2 - 

f2 
and Eq. 12861 as 

-FIT/2/7/ 
.Y 2p2 - 

f2 

where the numeral 2, that terminates the subscripts of vertex -prin- 
cipal distances z 1p2 and 572p2, unmistakably identifies these quantities 
with the members of the quasi -separated pair L2, LZ of lens L2. Note 
that it is important that plano -component L2 be the negative com- 
ponent in lens L2. If this is not done, lens L2 may become physically 

11/2 

13321 

t See discussion of the meaning of the conjugate solutions of Eq. [324]. 

[3331 

[3341 
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located anterior to lens L1, although it will still be (mathematically 
or in the purely Gaussian sense) at optical separation a = 
+0.010000 inch (see Table 19, Item 18, Col. III) from L1, and in 
that purely Gaussian sense posterior to L1. This confusing point is 
worthy of very careful thought by the reader, for it is at such a stage 
in the work that the "troublesome disorientation and confusion" 
mentioned earlier can enter. The following two paragraphs should 
be helpful regarding the matter. 

Assume that an optical system comprises a number of physical 
lenses spaced apart along a common axis or line of centers. The 
possibility then always exists of reversing the orientation of one of 
these lenses by rotating it 180° about, say, an axis normal to the 
system axis through one of the vertex points of the lens, and then 
moving the lens along the common axis until the axial or principal 
interval between its two principal points is restored to its original 
position along the system axis. The overall Gaussian or paraxial 
imagery of the system will be unaffected by such a reversal. This 
idea is more complicated than its simple statement suggests, and it 
invites careful consideration by readers. If this reversal and relo- 
cation cannot be accomplished without the "collision" of two phys- 
ical lenses or without the interchange of their order along the axis, 
then the physical lens can have only one orientation in the system 
unless similar reversals of neighboring lenses can be performed to 
avoid such "collision" or order reversal. This "collision" or reversal 
of order is especially likely to occur if the principal points of the 
lens lie at a considerable distance outside the space included be- 
tween the lens surfaces. 

These physical considerations have been of importance in 
working out the solution to the secondary stage of Example 19 
where they relate to the treatment, in Sec. 30, of a single thick lens 
as a system of two quasi -separated lenses. This treatment intro- 
duced physical considerations into the Gaussian equations for the 
first time in the form of the lens thickness d and the index of re- 
fraction n (see Eqs. 12791 through 13171, and Eqs. 13311 through 
13341). The matter is not considered further here, and additional 
study of details is left to the reader. 

Table 20, which summarizes the results of the secondary stage of 
the solution of Example 19, is arranged in seven Arabic -numeral 
columns, numbered 1 through 7, with identifying symbols and with 
equation numbers by which the corresponding signed numerical 
values of the symbols in each column are calculated. Each of the 
nine capital -letter rows identifies one trial, secondary -stage solu- 
tion of the example. Each row is also individually identified by an 
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arbitrary value of parameter d2 in Col. 1. The numbers in each row, 
Cols. 2 and 4, are conjugate solutions of Eq. 13311. The numbers in 
Table 19, Item 18, and in Table 20, Item E, together are considered 
to represent complete solution of Example 19 when they are sup- 
plemented by X = -6.311881 inches and Y' = + 6.311881 inches 
from the preliminary stage of the work and when a is adjusted to 
the value a' = +0.009997 inch, as shown in step 3 of the 7 steps 
of verification and adjustment in Table 21 (note also the adjusted 
values of f2, x1p, and y21, of Cols. VIII, IX, and X, Table 19, Item 18 
and steps 1, 4, and 5, Table 21). All quantities not found in Table 
20 but which are involved in calculating the numbers in that table 
are given immediately following Eq. 13321, above. 

It is readily seen that by making some moderate changes, partic- 
ularly in the values of a and (S1 + S2) of Table 19, Cols. III and VI, 
and d2 of Table 20, Col. 1, any number of other solutions are possible 
along the same general line of approach. Other lines of approach, 
some of which may be better or simpler, are always possible. A 
complete, adjusted, and summarized statement of the given and 
calculated quantities that represent the problem and its present 
solution follow the verification and adjustment procedures that are 
developed and grouped in Table 21. The complete summary state- 
ment appears as Table 22. 

(Appendix 11 outlines how the literal quantities that basically 
define the simple, thick lens of Table 20, may be related in a simple 
manner.) 

This essentially completes solution of the problem of Example 19. 
The arrangement of transparency, entrance pupil of the projection 
lens, and the auxiliary lenses that will slightly modify the mag- 
nification of the original optical system of Example 16, in the 
new way that has been required by Example 19, is illustrated by 
Fig. 20. 

V. Verification and Adjustments 

In general, the calculated numerical quantities in Table 20, Item 
E, were all considered "exact" as is the verification value f = 
of Table 21, step 1 (below), although it disagrees slightly with and 
will now replace for all further purposes f2 of Table 19, Item 18, 
Col. VIII. The verification step 2 (Table 21) conflicts with this judg- 
ment but is brought (adjusted) into agreement with it by making a 
very slight adjustment of a to a_new value a" in step 3. This sub- 
stantially restores the value of F in Table 19, Col. 1, on which all 
of that table was based. The value of S" = - 0.123760 inch, which 
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Table 21-Calculation of "verification" and "adjusted" values of some of the quan- 
tities in Tables 19 and 20 to reduce the effects of the rounding -off errors 
on the system that represents a solution to Example 19. Quantities that 
appear in the calculations, but which are not otherwise identified, appear 
in Table 19, Item 18, also in Table 20, Item E, or in this table or following 
Eq. 13321. St = +0.060 inch. 

Step 
No. Calculation of "Verification" and "Adjusted" Values 

1. By Eq. 12881, calculate the verification (and adjusted) value of /2, as 

f27í 
fz = _ - 2.878146 inches, and regard it as the exact 

12 + fl - d2/n or slightly adjusted value 
f2, of f2 in Table 19, It. 18, 
Col. VIII. 

2. By Eq. [2701, calculate the verification value of F, as 

F* 
F = f' 2 - 315.625272 inches (considerably less than the exact 

fi + Fº - a of Table 19, Col. I, and therefore 
calling for an adjusted value of a to 
be calculated in following step 3). 

3. By a solution of Eq. 13191, calculate an adjusted (exact) value of a, as 

+ P F* 
_ (f z)F -ft z 

+0.009997 inch (to keep F at its original, exact 
F -315.594060 inches of Table 

19, Col. I; actually, within 
0.004409 inch of original F). 

4. By Eq. 12481, calculate an adjusted (exact) value of xip, as 

a*F 
xjp = = + 1.096190 inches (considerably less than the xip in Table 19, 

Item 18, Col. IX).t 

5. By Eq. [2491, calculate the adjusted (exact) value of yep, as 

y2p = -aF - + 1.082433 inches (considerably less than the yep in Table 19, 
ti Item 18, Col. X).t 

6. By Eqs. 1323] and 12851, calculate the verification value of S, 

S = 
-a.xip 

+ Si + S2 = -0.123760 inch. (Note: SZ = -0.180000 inch; 
fi see given quantities that follow 

Eq. 13321.) 

7. By Eqs. 13231 and 12861, calculate the verification value of S, as 

S= a%Y2p 
+ SI + S2 = -0.123760 inch (in precise agreement with the re- 

sult of step 6, and differing so 
slightly from the S = -0.123762 
inch of Table 19, Col. II, that the 
latter value is accepted as "exact"). 

t These "considerable" changes in the principal distances zip and y2p to the principal 
points H and FI' of the system, are important only as they may indicate a change in 
S = HH'. Steps 6 and 7 show this change to be negligible. 



Table 22 -Summary of the symbolic quantities and their status as given (gvn), as- 
sumed (asd), calculated (cal), or adjusted (adj) values in Example 19 and 
its solution. See also Fig. 20. 

Status and 
Item No. 

Symbolic Quantities and 
Their Numerical Values 

(gvn) 
(gvn) 

1 

2 
M = +0.980392 
00' = 1ex = X' -X = + 12.500000 in. 

(gvn) 3 II' = y = Y' - Y = + 12.500000 in. 
(cal) 4 M' = +1.020000 (from ..5cy/Acx = MM') 
(cal) 5 F = -315.594060 in. 
(cal) 6 S = -0.123762 in. 
(cal) 7 X = -6.311881in. 
(cal) 8 Y' = +6.311881 in. 
(cal) 9 Y = MX = -6.188118 in. 
(cal) 10 

(gvn) 11 
(gvn) 12 

X' = Y'/M' = +6.188118 in. 
D = 0I = Zero 
D' = O'I' = Zero 

(asd & adj) 13 aX = +0.009997 in. 
(asd) 14 S1 S2 = St + 52 = -0.120000 in. 
(asd) 15 S1 = +0.060000 in. 
(cal) 16 S2 = S2 = -0.180000 in. 
(cal) 17 = +2.914725 in. 

(gvn) 18 n = + 1.523000 
(asd) 19 r1 = x 
(cal) 20 ri = -(7+ - 1)(1 = - 1.524401 in. 
(cal) 21 d1 = nS1/(n - 1) = +0.174723 in. 

(cal & adj) 22 /2 = F2 = -2.878146 in. 
(cal & adj) 23 r¡p = -r 1.096190 in. 
(cal & adj) 24 y1p = +1.082433 in. 

(cal) 25 S2 = S2 = -0.180000 in. 
(cal) 26 12 = -0.968223 in. 

(gvn) 27 n = + 1.523000 
(cal) 28 r2 = (o - 1) (2 = -0.506381 in. 
(cal) 29 /2 = +2.448515 in. 
(cal) 30 r2 = -(o - 1)/'2 = -1.280573 in. 
(cal) 31 x1p2 = -0.771809 in. 
(cal) 32 524 = -1.951810 in. 
(asd) 33 d2 = + 1.000000 in. 
(cal) 34 ñ2 = d2 n = +0.656599 in. 
(cal) 35 S2 + S2 = d2 - 52 = +0.343401 in. 

very nearly verifies the value of S in Table 19, Col. II, can also be 
calculated from the adjusted values of x and y2p in steps 6 and 7. 
It is also easily shown, from Eqs. 1289] and 12901, that the values 
of S1 and S2 = S2 are respectively dependent only on the construc- 
tion of lenses L1 and L2, and are wholly independent of a or a*. 

As briefly as possible, the treatment of accumulated rounding -off 
errors (reduction of their effects, by adjustment) is indicated in steps 
1 through 7 of Table 21, all referenced to Table 19, Item 18, and to 
Table 20, Item E. Note that in steps 2 through 7 the calculations 
involve some quantities that are calculated in the preceding step or 
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12.50..:' (=01'=00'=11'= -1e= _1,y= DM = -X+S+Y') 

1=F=r=315.590061]' 

/ 1 

Transparency and condenser. _ _ Projection lens. 

(Both fixed in lacatio,.) 12=F2=F7 (see Tide 19, Item 18) (Fixed in location.) 

/Extrarnce pupil, EP. 

(Fixed in location.) 

0 and 1 /-/-\ 
D 01=rno Prindpalpointsof 

H. Fr L2 
H auxiliary systen 

fl 
1.175-" 

a H'1Ñ2=1.010' 

Light source. 
( nej in location; 
focused on EP of 
projection firs.) 

5.275+" 

.781806" 

Auxiliary optics 
(Schematic only) 

X= -6.311881" 

V=-6.188118" 
(M=+980392) 

5.443-- 
O' and I' 

0'=0' I' =zero 

§=R17. -.123762- 

EP 

Final projected inu7e 
of transparency 
(Fixed in location.) 

X'=+6.188118" Light Direction 

Y' -s6.311881" 
always positive 

IM'=1.020000.1/11 

Fig. 20-Diagram of auxiliary optical system problem of Sec. 30A, Ex- 
ample 19. For schedules of solutions, see Table 19, especially 
Item 18, and Table 20, especially Item E. (See also Fig. 19.) For 
adjustments, see Table 21. Schematic only-not to scale. 

steps. Calculation of an underlined symbol from Table 19, or Table 
20, is a "verification" calculation. If the result is expected to be 
taken thereafter as the "exact," "true," or "adjusted" value of the 
symbol, it is "asterisked" in addition to being underlined; otherwise 
only the asterisk is retained and used, and the underline is dropped. 
The "adjusted" values of all other symbols are identified by aster- 
isks. 

Table 22 summarizes most of the numerical values of the symbols 
that pertain to Example 19 and its solution and contains the four 
adjusted (asterisked) values that were calculated in Table 21. 

From the assembled data of Table 22 and the arrangement of Fig. 
20, readers can readily verify that the distance of object O from the 
plane surface of lens L1 approximates - 5.101 inches, that the dis- 
tance of image I' from the convex surface of lens L2 approximates 
+5.443 inches, and that the distance of the convex surface of lens 
L2 from the plane surface of lens L1 approximates + 1.957 inches. 
Thus, the proposed auxiliary system, as here designed paraxially, 
will be easily accommodated in the + 12.500 -inch space between the 
transparency and the projection lens entrance pupil. 
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VI. Additional Procedures for Checking the Content of Table 22 

At least three procedures are available for checking or determining 
the correctness of the results collected in Table 22. 

1. Start with object O and calculate the location and magnification 
of each intermediate image (including the final image) of O, on 
a lens -by -lens basis, using the Gaussian equations of Table 1, 

Part 1. Multiply all of the intermediate magnifications together 
to get the value of the overall magnification M. Calculate the 
distance of the final image I from the initial object O by addition 
and subtraction of the appropriate conjugate distances, optical 
separations, principal point separations, lens thicknesses, air 
spacings, etc. Do the same, starting with object O' and ending 
with image I'. 

2. Perform the foregoing check by making a paraxial ray trace from 
O to I and from O' to I'. This will base the check on radii of 
curvature and indices of refraction, instead of the Gaussian focal 
lengths. A performance of these traces proved to be an excellent 
check. Details of paraxial ray tracing are not a part of this paper, 
but may be found in many books on lens design and a few on 
geometrical optics. 

3. From Eq. 1131, Part 1, calculate the magnifications M (from ob- 
ject O to image I) and M' (from object O' to image I'), as 

1112 M _ 
(11+12-a)x1+11(12-a) 

13351 

where, from Table 22, 

xt = X + x l,, = - 6.311881 + 1.096190 = - 5.215691 inches 
xí = X' + x=1p = +6.188118 + 1.096190 = +7.284308 inches 
fi = fl = +2.914725 inches 
12 = f 2 = - 2.878146 inches 
a = a ` = + 0.009997 inch 
M(required) = +0.980392 
M'(required) = + 1.020000. 

Also, from Eq. 1191, Part 1, calculate the distances D (from object O 
to image I) and D' (from object O' to image I'), as 

D = a - x1 + Si + S2 + 12[(11 - a) -Y1 - ftal 

where, also from Table 22, 

(fi + f2 - a)xl + fi(12 - a) 
[3361 
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S1 = S1 = + 0.060000 inch 
S2 = S2 = -0.180000 inch 
D(required) = 0.000000 inch 
D'(required) = 0.000000 inch. 

Upon making the indicated substitutions into Eq. [335], the results 
are 

M = + 0.980392 
M' = + 1.020000 

which check the required values of M and M' exactly. With similar 
substitution into Eq. 13361, the results are 

D = +0.000004 inch 
D' = +0.000005 inch 

whereas the sixth decimal digits should be zero for both dimensions. 
The checks by means of Eqs. [3351 and 13361 are considered highly 

satisfactory. Readers can use many of the equations of this paper 
to devise procedures for checking the solution of Example 19 in as 
much additional detail as desired. 

VI. Some Further Questions for the Study of Example 19. 

Example 19 has, no doubt, raised many questions in readers' minds, 
which they are encouraged to look into on their own initiative. The 
writer suggests they also examine the answers to the following 
questions. 

1. In principle, the problem of Example 19 can be solved by the use 

of a single negative lens. Examine the results of proceeding to 

reach such a solution. 
2. Starting with the preliminary- and primary -stage solutions that 

are identified by Table 19, Item 18; complete the secondary -stage 
solution on the assumption thatSi = - 0.180000 inch, that S2 

= + 0.060000 inch, and that a, S, and ft remain unchanged. 
3. In the solution of Example 19 that is represented by Table 19, 

Item 18 and Table 20, Item E, change the focal length f z of 

component lens L2 to f 2 = -0.968223 inch, and change focal 

length f 2 of component lens LZ to f2 = - 0.968223 0.968223 inch, and 
change focal length 12 of component lens L2 to f2 = + 2.448515 
inches. Keeping d2, a, and 12 unchanged, what happens to the 
Gaussian solution to the problem? What happens to the physical 
solution of the problem? 
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4. Assuming that nothing is changed in the specification of Ex- 
ample 19 except the value of M' = 1/M, what is the approximate 
limit to the value of (M' > 0)? Is it, for instance, greater or less 
than M' = + 1.1? Greater or less than M' = + 1.5? 

5. Given Eqs. [3241, 1325, and 13261, what are the implications of 
insisting that the solution of Example 19 must assume that k = 
+ 1 or that f2 = fl? 

31. A Note On the Number of Decimal Places Retained In 
the Sample Calculations Performed In the Examples of 
This Paper 

In applying the Gaussian theory and its equations, there is usually 
no practical reason to retain more than a decimal place or two. It 
is a concern of this paper, however, to develop exact equations that 
do not themselves unduly limit the accuracy of calculations that are 
performed with them. It is believed that this is demonstrated to 
have been accomplished if calculations that retain a relatively large 
number of decimal places are confirmed to essentially the same 
number of places by check calculations that employ other formulas 
or routines of calculation. When users are thus assured of the ac- 
curacy of the equations, they can freely be their own judge of the 
accuracy they will demand of their computations. 

32. Brief Historical Note and Summary Conclusion 

The practice and the science of European lens optics began about 
1250-1300 with efforts to improve aging human vision by the use 
of crude spectacle lenses. This led to further experimentation with 
lenses, and in the late 1500s and early 1600s the powers of normal 
human vision were greatly extended by two inventions, the com- 
pound microscope and the telescope. 

The improvements and extensions of human visual powers were 
real, but the images had troublesome imperfections that were in- 
herent in the lens means that produced them. After the appearance 
of the microscope and telescope, image imperfections and their re- 
duction or elimination gradually became a major object of study in 
the developing science of geometrical optics. This trend was rein- 
forced by the development of the photographic camera in the early 
1800s for photographic lenses exhibited the same image defects. The 
improvements that have since been made in the quality of images 
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in all lens applications have been astonishingly great.t Image 
quality remains a problem, however, that continues to receive ex- 
tremely close attention in the theoretical and experimental devel- 
opment as well as design and manufacture of lenses and optical 
systems. 

In about 1840 Carl Friedrich Gauss published his version of the 
theory of lens system optics, under the title "Dioptrische Untersu- 
chungen." This book dealt with the locations and sizes of images in 
relation to focal lengths and object -locations in lens systems gen- 
erally; the theory was restricted to object -points and image -points 
that were either on or very close to the lens system axis, and to rays 
that lie extremely (or paraxially) close to the axis. The Gaussian 
theory did not promise to be of much use in solving the problems of 
image quality, but it did supply insights that allowed the problem 
to be described in the broadest of terms. The theory apparently 
received little published attention or development after a version 
of it was published in Italian by Galileo Ferraris in 1876. t t 

Persons who become established in the practice and science of 
lens optics, by close association with the methods and practices of 
the past that are embodied in existing institutions, appear not to 
be limited in their accomplishments by the lack of published de- 
velopment of the Gaussian theory. However, persons without access 
to such association are not as fortunate. If they must work alone 
with their lens problems, they have great difficulty in compre- 
hending and employing the simple or fundamental quantitative re- 
lationships that exist within a lens system. 

This paper attempts further development of the Gaussian theory 
of lens systems to make it possible for the non -expert to lay out 

t Sustained mostly by the importance and the wonder of the human visual sense, 
and of the wider worlds it might (>1609) be assisted to reveal, for nearly four 
centuries dedicated human effort and inspiration were devoted to solving a host 
of lens problems, the nature and extreme difficulty of which could certainly not 
have been suspected in 1300 nor, perhaps, even in 1600. The results of these 
centuries of effort are concentrated, for example, in a modern photographic ob- 
jective, which could have had no existence without all of those results. Some of 
the most important among such results have only been attainable since the late 
1930s and the early 1950s. The commanding importance of human sight in human 
affairs is attested by efforts to further develop and improve the means and methods 
that are used in conventional imaging systems (and also to develop radically un- 
conventional systems) that continue unabated in the 1980s. This carries on the 
tradition begun in the late 1200s that has progressively developed without inter- 
ruption since the early 1600s. 
tt Originally titled "The Fundamental Principles of Dioptric Instruments." English 
tr. by Oscar Faber titled "Ferraris' Dioptric Instruments," London, H. M. Stationery 
Office (February 1919). 
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systems to accomplish . desired imagery in a desired space and to 
determine focal lengths and spacings of lenses that can be used in 
experimental trials and tests of such systems on the optical bench. 

Such further developed theory goes far beyond blindly explor- 
atory, experimental lens -bench setups, and beyond trial calcula- 
tions that are based on those narrowly restricted Gaussian rela- 
tionships heretofore published which appear as Eqs. [1], [2], [32], 
[33], and 1451 in Part 1 of this paper. The extended theory makes it 
possible to avoid use of the graphical and other roundabout 
methods, or the dependence on liberal amounts of intuition that 
must often supplement the incompleteness of those five equations. 

The methods of this paper include the following (all references 
appear in Part 1 of the paper). 

1. Adoption of a purely optical sign convention, that is readily 
manageable under all practical conditions of lens system loca- 
tion and spatial orientation (see Sec. 3). 

2. Extension of the routinely published, two Gaussian "thin lens" 
equations (Eqs. [1] and [21) to include a third equation (Eq. [3]) 
that effectively makes accessible the full analytical potential of 
the Gaussian theory (see Sec. 3). 

3. The development of general equations for systems of two sep- 
arated lenses (or two separated systems of lenses) that provide 
a basis for deriving many useful Gaussian lens system rela- 
tionships (see Secs. 5, 7, and 9; Example 6; appendixes 1 and 2; 
etc.). 

4. A simplifying replacement transformation that eliminates 
much unnecessary work and is a very great time and trouble 
saver (see Sec. 6). 

5. A simplification of the analytical solutions of many lens prob- 
lems by use of a theorem that has been named the Conjugate 
Displacement Theorem (see Sec. 10 and Example 7). 

6. Complete solutions of the three basic Gaussian, "thick lens" (or 
system) Eqs. 111, 121, and [3] of Part 1, and their inclusion in 
Table 1 for easy, working reference (see Secs. 3 and 4). 

A fair sampling of examples that are illustrative of practical ap- 
plications of the extended Gaussian theory is included in the three 
parts of this paper. Frequent derivation of new equations in the text 
and appendices illustrates the extensive analytical possibilities of 
the three basic equations, as well as uses of the special methods 
cited in the six items above. The paper has suggested and empha- 
sized, and here emphasizes again, that this study of the optical 
relationships that are implicit in the general Gaussian Eqs. [11, [21, 
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and 13] is by no means complete. The approach that is taken by the 
study offers apparently unlimited opportunity for further extension 
in any manner and direction that might appear promising or of 
interest. 

To return to the question of image quality: This problem may be 
very broadly framed in terms of the simplest concepts of Gaussian 
lens theory. In actual practice the achievement of good image 
quality assumes and substantially requires the following: 

7. All object -points are in a plane normal to the lens axis. 
8. The images formed of those points are in a plane that is normal 

to the axis. 
9. All light, regardless of its color, in the image of each point, is 

confined to an area that is as small as possible; a so-called 

"point" image. This already indicates the presence of compro- 

mise in the work of improving image quality. 
10. The image of the axial object -point coincides as nearly as pos- 

sible with the location of its Gaussian or paraxial image, which 
is formed in light of some specific, predetermined color or wave- 

length. 
11. The magnification of the image is the Gaussian or paraxial 

magnification that is exhibited by the system, in item 10 above. 

Call it M. 
12. The image of an object -point that is distant h from the axis is 

distant h' = Mh from the axis. 

Further in relation to image quality: The Gaussian theory is like 
a scaffold that is essential to the construction of a building, but that 
contributes few or none of the details. In lens system design prac- 
tice, The Gaussian theory is constantly represented by paraxial ray 
traces, and principal ray or chief ray traces, and the interpretations 
that are based on them. 

The theory of high -quality images is very involved. A good basic 
treatment of it appears in Parts One and Two of references 5 and 
21 that accompany Parts 1 and 2 of this paper. 

The discussion of the relation of Gaussian theory to image quality 
justifies the following paragraph, which is quoted from Sec. 23, Con- 

clusion of Part 2. 
"Once a system is initially conceived in Gaussian terms, its later 

elaboration and development may cause it to differ widely from its 
preliminary form in order to meet all requirements. It will usually, 
however, continue to conform closely in paraxial terms to the 
broadly stated Gaussian relationships of the initial solution." 
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Appendix 9-Outline of Procedure for Constructing Table 
15 from Table 14. 

In Table 14, the four columns headed "System Nos.," "... Conjugate 
Gaussian Inequalities," "f -signets," and "M -signets With Fit n. -met- 
rics" are chiefly of interest. The footnote to Sec. 28 (RCA Rev. 15, 
No. 1, p. 136) defines and describes the terms "signet" and "metric." 

Any numbered system from the above identified columns directly 
applies to an actual Gaussian image -forming situation, in which 
one object O and its image I are involved (see Fig. 16). In fact no 
other actual Gaussian image -forming situations exist for lenses and 
lens systems. Where relaying actions are involved, any of the num- 
bered systems will similarly apply to a second object O' and its 
image I', if identifying primes are added to X, Y, and M. Focal 
length f remains unprimed on the assumption that it remains the 
same for the imagery of both O and O'. 

In other words, in a relaying action O and O' may each be imaged 
according to the relationships of a single system (System No. 1, for 
example), or, on the other hand, each may be imaged according to 
a different one of the two relationships that apply in Table 14 to 
any two differently numbered systems, provided the two systems 
share the same f=signet. 

To illustrate, O may be imaged according to either System No. 2 
or System No. 1 (in terms of the X-, Y-, /-, and M -signets of the 
system), while O' is imaged according to System No. 5' (in terms of 
the X'-, Y'-, f-, and M' -signets of that system). The f=signet is (f > 
0) for all three of those systems. Note that when the object is O', it 
is convenient to also prime the System No. in the interest of easy 
identification, and this practice will be followed. O and O' may be 
arbitrarily attached to any two of those three (or other corre- 
sponding) systems, or to any one of them. 

In the Conjugate Gaussian Inequalities column of Table 14, it is 
easy to see that the groupings or combinations of the X-, Y-, and f- 
signets are different for each of the six systems. These groupings 
are uniquely determined by the nn. -metrics that relate the signets 
of each system in this column. For example, the three indicated 
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signets are grouped for each system according to f -signet in the 
manner of Table 23 below. 

The reader can easily see and take note of the fact that the two 
hypothetical groupings (X > 0), (Y < 0), (1> 0) and (X < 0), (Y > 
0), (f < 0), which are absent from Tables 14 and 23, can have no 
existence in Gaussian imagery. For, by substituting the signets of 
the first of these "absent" groupings into (II -1), Table 1, Part 1, the 
result is 

(X > 0)(Y < 0) 
(f > 0) 14001 (X>0)-(Y<0) 

which is an unconditionally false "equation" of sign. i Similar sub- 
stitution of the second absent grouping also produces an uncondi- 
tionally false "equation" of sign. On the other hand, corresponding 
substitutions of the signet groupings of Systems No. 1, 2, 3, and 4 

result in conditionally true equations of sign, due to the corre- 
sponding denominators in Ineq. [400] each being the difference of 
two like signets in which lXI may be either Z. IYi. System Nos. 5 

and 6 produce unconditionally true (identity type) equations of sign 
because the corresponding denominators are each the difference of 
two unlike signets. A true equation of sign merely equates expres- 
sions that have the same sign. 

(In contrast to the foregoing paragraph and Table 23, the situa- 
tion is quite different for the case of the column, "... Conjugate 
Newtonian Inequalities" of Table 14. Here it is found not only that 
the XN, YN, and f -signet groupings are identical for System Nos. 1 

and 2, but that the groupings are also identical for System Nos. 3 

and 4. The distinctions between the two members of each of these 
two pairs of systems, that correspond to Table 23, probably depend 

Table 23-The six unique groupings of the Gaussian X-, Y-, and /=signets of System 
Nos. 1 through 6 in Table 14 for the f signets (f > 0) and (1 < 0). 

System Nos. X-, Y-, and f -Signet Groupings 

(f > 0) 
1 (X < 0), (Y < 0), (f > 0) 
2 (X>0),(Y>0),(f>0) 
5 (X<0),(Y>0),(f>0) 

(f< 0) 
3 (X > 0), (Y > 0), (f < 0) 
4 (X < 0), (Y < 0), (f < 0) 
6 (X>0),(Y<0),(f<0) 

t See footnote to Ineq. [392], Appendix 8 (RCA Rev. 45, No. 1, p. 163). 
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Table 24-Relaying-actions, of pair -combination groupings of System Nos. 1, 2, and 
5 of Table 14 for the f -signet (f > 0) only. 

Group 
Nos. 

System No. 
Combinations 
(See Table 14) 

Correlations of X-, Y-, X'-, Y'-, M-, and 
M' -Signets, Together with Applicable M- and 

M' -n. -Metrics, When the f -Signet is (f > 0) 

I 

I 
b 

I 

Id 

No. 1 with 
No. 1'. 

No. 1 with 
No.2'. 

No. 2 with 
No. 1'. 

No. 2, with 
No. 2'. 

(X < 0),(Y < 0) 

(X<0),(Y<0) 

(X > 0),(Y > 0) 

(X>0),(Y>0) 

(X' <0),(Y' <0) 

(X' > 0),(Y' > 0) 

(X' < 0),(Y' < 0) 

(X' > 0),(Y' > 0) 

(M > 0) > 1 

(M' > 0)> 1 

(M>0)> 1 

(M'>0)<1 
(M > 0) < 1 

(M' > 0) > 1 

(M > 0) < 1 

(M'>0)<1 

IIa 

IIb 

No. 1 with 
No. 5'. 

No. 2, with 
No. 5'. 

(X < 0),(Y < 0) 

(X > 0),(Y > 0) 

(X' < 0),(Y' > 0) 

(X' < 0),(Y' > 0) 

(M>0)>1 
(M' < 0) 

(M > 0) < 1 

(M' < 0) 

IIIa 

IIIb 

No. 5 with 
No. 1'. 

No. 5 with 
No. 2'. 

(X < 0),(Y > 0) 

(X < 0),(Y > 0) 

(X' < 0),(Y' < 0) 

(X' > 0),(Y' > 0) 

(M < 0) 
(M' > 0) > 1 

(M < 0) 
(M' > 0) < 1 

IV No. 5 with 
No. 5'. 

(X < 0),(Y > 0) 
(X' < 0),(Y' > 0) 

(M < 0) 
(M' < 0) 

on the simple nn. -metrical relationships between the signets, and 
may depend also on n. -metrical relationships that this paper does 
not define and examine. A result of this situation is that the New- 
tonian lens equations identifying fewer distinctions of optical im- 
agery that depend only on the signs of the quantities involved than 
do the Gaussian lens equations, which makes the Newtonian equa- 
tions less generally useful.) 

Table 24 presents the nine System No. combinations that may be 
involved in a relaying action, given the signet groupings of the X-, 
Y-, X'-, Y'-, M-, and M' -signets that are represented by the "Gaus- 
sian nn. -metrics; ..." of Table 14, when the f -signet is (f > 0). Each 
combination is given a Roman group -identification number with a 
lower case literal subscript (there is no subscript for the unique 
Group IV). The Roman group -numbers are assigned in Table 24, to 
correlate the table with Table 12 according to the occurrence in 
them of the magnification -signets, as noted in the Table 25. 

The scheme of Table 24 may easily be extended by the reader for 
those system combinations where the f -signet is (f < 0). The groups 
of such an extension will comprise, from Table 14: 
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Table 25-The M-, M'-, and M; signets that correlate Groups Ia through IV of Table 
24 (for the signet (f > 0) only), with the same Group Numbers of 
Table 12. 

In Groups I, (M > 0),(M' > 0),(M, > 0) 
In Groups II, (M > 0),(M' < 0),(Má < 0) 
In Groups III, (M < 0),(M' > 0),(M, 

Table 12. 
In Group IV, (M < 0),(M' < 0),(Má > 0) 

= MM'; as in Group I, Table 12. 
= MM'; as in Group II, Table 12. 
< 0) = MM'; as in Group III, 

= MM'; as in Group IV, Table 12. 

Firstly, Group No. V, System Nos. 6 and 6'.t 
Secondly, Group No. VIa, System Nos. 6 and 4' and Group No. VIb, 

System Nos. 6 and 3'. 
Thirdly, Group No. VIIa, System Nos. 4 and 6', and Group No. VIIb, 

System Nos. 3 and 6'. 
Fourthly, Group No. VIIIa, System Nos. 4 and 4', and Group No. 

VIIIb, System Nos. 4 and 3', and also Group No. VIII, System 
Nos. 3 and 4', and Group No. VIIId, System Nos. 3 and 3'. 

In such an extension of Table 24 the correlation between that table 
and Table 12, according to their Group Nos. V, VI, VII, and VIII, 
parallels the general scheme of Table 25. 

The information collected in Table 24 makes it possible to deter- 
mine the signs of the displacements cx and ..5cy for every system 
combination for which the `signet is (f> 0). The general procedure 
for identifying the _Scx- and Acy-signets is outlined in summary form 
in Table 26. In this table ..Scx and ..S,y are expressed in terms of 
(X,X') and (Y,Y'), respectively, as they are in Eqs. 11721 and [1731. 
It is immaterial whether x and x' or X and X' are used in Eq. 11721 

and correspondingly for Eq. 11731 (see Fig. 10 and Sec. 17, Part 2). 

In Table 26, Group No. Ia, the signs of .Sex and icy are both 
inherently indeterminate because they depend only on the differ- 
ences between negative signets whose relative numerical values are 
unknown.tt However, the signs of Acx and ..1ey must be the same 
because .,y/J,x = MM' = (M, > 0), (see Table 14). With this 
restriction, the signs of .Sex and _Scy in Group No. Ia are arbitrary 
in practice. Similar considerations also apply in the cases of Group 
Nos. Id and IV. In no other groups of Table 26 are the Acx- and .. y - 
signets both inherently indeterminate. Extension of Table 26 to 

t To avoid confusion, readers must note that the Roman numeral "Table 13 Case 
Ident. Nos." in the second column of Table 14, are not related to the Roman nu- 
meral Group Nos. of Table 12 and Tables 24, 25, 26, and 15. 
ft All differences between like signets, whether both positive or both negative, are 
indeterminate in sign. Any difference between unlike signets is always determinate 
in sign and expressible as a signet. 

RCA Review Vol. 45 September 1984 531 



T
ab

le
 2

6-
T

he
 M

, -
si

gn
et

s 
w

ith
 t

he
 _

Se
x-

 
an

d 
ác

y-
si

gn
et

s 
an

d 
th

ei
r 

st
at

us
 f

or
 G

ro
up

s 
N

o.
 I

. t
hr

ou
gh

 I
V

; 
w

he
re

 t
he

 f
 -s

ig
ne

t 
is

 (
f >

 0
),

 o
nl

y;
 

re
fe

re
nc

e 
T

ab
le

s 
25

 a
nd

 1
4.

 

G
ro

up
 

N
os

. 

Sy
st

em
 N

o.
 

C
om

bi
na

tio
ns

 
(S

ee
 T

ab
le

 2
4)

 
M

yS
ig

ne
ts

 
(M

, 
=

 
M

M
' 

_ 
1a

y/
-1

,x
) 

.,x
- 

&
 -

5,
y-

Si
gn

et
s 

an
d 

th
ei

r 
St

at
us

, 
(S

ee
 E

qs
. 

11
72

1 
an

d 
11

73
1,

 
P

ar
t 

2)
 

Ia
 

I
b
 I Id
 

N
o.

 1
 

w
ith

 
N

o.
 

1'
 

N
o.

 
1 

w
ith

 
N

o.
 2

' 

N
o.

 2
 
w

ith
 

N
o.

 1
' 

N
o.

 2
 w

ith
 

N
o.

 2
' 

(M
, 

>
 0

) 

B
y 

T
ab

le
 1

4 
<

 (
M

 >
 0

) 
(M

' 
>

 0
) 

(M
, 

>
 0

) 

B
y 

T
ab

le
 1

4 
(M

 >
 0

) 

(M
,>

0)
 

B
y 

T
ab

le
 1

4 
<

 (
M

 >
 0

) 
(M

' 
>

 0
) 

(M
, 

>
 0

) 

B
y 

T
ab

le
 1

4 
<

 (
M

 >
 0

) 
(M

' 
>

 0
) 

- 
=

 
(X

' 
<

 0
) 

- 
(X

 <
 0

) 
<

 0
, 

in
de

te
rm

in
at

e.
 

ác
y 

=
 

(Y
' 

<
 0

) 
- 

(Y
 <

 0
) 

<
 0

, 
be

ca
us

e 
(M

, 
>

 0
).

 

á c
x 

=
 

(X
' 

>
 0

) 
- 

(X
 <

 0
) 

>
 0

, 
de

te
rm

in
at

e.
 

Sc
y 

=
 

(Y
' 

>
 0

) 
- 

(Y
 <

 0
) 

>
 0

, 
de

te
rm

in
at

e.
 

A
cx

 
=

 (
X

' 
<

 0
) 
- 

(X
 >

 0
) 

<
 0

, 
de

te
rm

in
at

e.
 

=
 

(Y
' 

<
 0

) 
- 

(Y
 >

 0
) 

<
 0

, 
de

te
rm

in
at

e.
 

ác
x 

=
 (

X
' 

>
 0

) 
- 

(X
 >

 0
) 

<
 0

, 
in

de
te

rm
in

at
e.

 

=
 (

Y
' 

>
 0

) 
- 

(Y
 >

 0
) 

<
 0

, 
be

ca
us

e 
(M

, 
>

 0
).

 

II
a 

II
b 

N
o.

 
1 

w
ith

 
N

o.
 5

' 

N
o.

 2
 w

ith
 

N
o.

 5
' 

(M
, 

<
 0

) 

B
y 

T
ab

le
 1

4 
<

 (
M

 >
 0

) 
(M

' 
<

 0
) 

(M
, 

<
 0

) 

B
y 

T
ab

le
 1

4 
<

 (
M

 >
 0

) 
(M

'<
0)

 

Ic
y 

=
 

(Y
' 

>
 0

) 
- 

(Y
 <

 0
) 

>
 0

, 
de

te
rm

in
at

e.
 

- 
=

 
(X

' 
<

 0
) 

- 
(X

 <
 0

) 
<

 0
, 

be
ca

us
e 

(M
, 

<
 0

).
 

A
cx

 
=

 
(X

' 
<

 0
) 

- 
(X

 >
 0

) 
<

 0
, 

de
te

rm
in

at
e.

 

ác
y 

=
 (

Y
' 

>
 0

) 
- 

(Y
 >

 0
) 

>
 0

, 
be

ca
us

e 
(M

, 
<

 0
).

 

N
o.

 5
 w

ith
 

N
o.

 1
' 

N
o.

 5
 w

ith
 

N
o.

 2
' 

(M
, 

<
 0

) 

B
y 

T
ab

le
 1

4 
<

 (
M

 <
 0

) 
(M

' 
>

 0
) 

(M
, 

<
 0

) 

B
y 

T
ab

le
 1

4 
<

 (
M

 <
 0

) 
(M

' 
>

 0
) 

=
 

(Y
' 

<
 0

) 
- 

(Y
 >

 0
) 

<
 0

, 
de

te
rm

in
at

e.
 

ár
x 

=
 

(X
' 

<
 0

) 
- 

(X
 <

 0
) 

>
 0

, 
be

ca
us

e 
(M

, 
<

 0
).

 

ác
x 

=
 

(X
' 

>
 0

) 
- 

(X
 <

 0
) 

>
 0

, 
de

te
rm

in
at

e.
 

1y
 =

 
(Y

' 
>

 0
) 

- 
(Y

 
>

 0
) 

<
 0

, 
be

ca
us

e 
(M

, 
<

 0
).

 

IV
 

N
o.

 5
 w

ith
 

N
o.

 5
' 

(M
, 

>
 0

) 

B
y 

T
ab

le
 1

4 
<

 (
M

 <
 0

) 
(M

' 
<

 0
) 

1c
x 

=
 

(X
' 

<
 0

) 
- 

(X
 <

 0
) 

<
 0

, 
in

de
te

rm
in

at
e.

 

ác
y 

=
 

(Y
' 

>
 0

) 
- 

(Y
 >

 0
) 

<
 0

, 
be

ca
us

e 
(M

, 
>

 0
).

 



GAUSSIAN LENS EQUATIONS 

include the groups for which the /-signet is (f < 0) will produce 
corresponding inherent indeterminacies. Discussions that relate to 
such an extension of the table will appear below. It develops that 
in all groups where the ,ex- and _Scy-signets are both inherently 
indeterminate, they must both be given the same arbitrary sign in 
practice. 

In Group Nos. IIa, IIb, IIIa, and IIIb of Table 26, the sign of either 
the x- or the ....1,y -signet is inherently determinate while that of 
its conjugate displacement -signet, although inherently indetermi- 
nate, is functionally assignable on the basis of the conjugate dis- 
placement theorem of Eq. 12321. Thus, when either signet is deter- 
minate, the M- and M' -signets of Table 25 (or Table 14) and the 
relationship of Eq. [2321 make it easy to assign or identify the con- 
jugate signet. 

As in the case of Table 24, Table 26 includes only Group Nos. I. 
through IV for which (f> 0). The scheme of Table 26 may be carried 
forward by the reader in the cases of all System No. combinations 
for which the f -signet is (f < 0), after Tables 24 and 25 have been 
extended in the manner suggested above. 

Table 15, whose construction depends on the procedures outlined 
in this appendix and in Appendix 8, is largely assembled from the 
information that is collected in Tables 24 and 26, for Groups I. 
through IV. The reader's extensions of those tables will provide the 
information for Group Nos. V through VIIId, from which the cor- 
responding portions of Table 15 may be similarly assembled. 

For example, in Table 15, the line for Group No. Id, System Nos. 
2 with 2', pertains to (f > 0) for column (1), and is completed for 
columns (2)* through (7)' from the information assembled for Group 
No. Id in Table 24. The same line, in Table 15, is similarly completed 
for columns (8), (10), and (11) from the information assembled for 
Group No. Id in Table 26. 

Signets do not appear as such in Table 15. For example, in column 
(4)* the letter P is a convenient contraction of the positive signet 
(Y > 0) to indicate that Y is positive, and in column (11) the letter 
N is a convenient contraction of the negative signet (4y < 0) to 
indicate that .icy is negative. This practice is followed generally 
throughout Table 15. 

In Table 15, when a signet is arbitrary, the fact is indicated as 
in columns (10) and (11) by the contraction P/N; but the P in either 
of these two columns always implies P in the other, and similarly 
for N. 

In columns (6)* and (7)', n. -metrics are used to indicate further 
limitations on all of the positive M- and M' -signets; in Group No. 
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Id these must both be less than unity, as symbolized by the P < 1 

entries in those columns of Table 15. (The n. -metric P = 1 is a 
special case not included in columns (6)* and (7)' of Table 15, but 
it is always easily understood to signify that X = Y = 0 or that X' 
= Y' = 0, as demonstrated in Sec. 8, Part 1. Inclusion of these 
simple cases would have greatly complicated Table 15). No special 
limitations apply to the negative M- and M' -signets of columns (6)" 
and (7)'. 

In column (8), the P and N values assigned to M, correspond, 
respectively, to the "regular" and "inverse" relaying actions of 
column (9), as defined in Sec. 27. 

Note is taken here that in Table 15 the distinction between the 
two members of each of the following sets of Group Nos. {Ib,Ic}, 
{IIa,IIIa}, {IIb,IIIb}, {VIa,VIIa}, {VIb,VIIb}, and {VIIb,VIII} is only nom- 
inal and practical and is not fundamental as is, for example, that 
of the set {Ib,IIIa}. The same is noted of the distinction in Table 12, 
between Group Nos. II and III, and between Group Nos. VI and VII, 
which in both cases is nominal and practical, and not fundamental. 

Appendix 10-Occurrence and Resolution of Ambiguous 
Solutions in the Practical Measurement of the Index of 
Refraction of a Single Thick Lens by the Methods of Sec. 
30A, Example 18. 

The conjugate solutions of Eq. 12871 that are expressed by Eq. 13091 
may be more compactly and, for some purposes, more usefully ex- 
pressed as 

n1 =A"+ -B")`/2 1401] 

and 

n2 = A" - (Añ - B")'/2 1402] 

where, as in Eq. 13091, the fixed values of A" and B" in the case of 
any actual lens, are 

F(r2 - r1 + 2d) + r1r2 
A 14031 

2F(r2 - r1 + d) 

and 

B - d 
r2 - r1 + d 

Also, the useful relationships 

14041 
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n1+n2=A 
2 n 

and 

nln2 = Bn 

GAUSSIAN LENS EQUATIONS 

[405] 

[406] 

are easily derived from Eqs. 1401] and [402]. 
The numerical subscripts added to the n's merely indicate each 

of them to be a different one of the two real conjugate solutions of 

Eq. [287], which is quadratic in n. 

The quantities that determine An and Bn are the three fixed geo- 

metric dimensions of the lens and, in the case of An, the fixed focal 

length of the lens which, in turn, depends on the identity of the 
glass and the wavelength of the light. Furthermore, the measure- 
ments of the quantities M, M', Jcx (= x' - x, both arbitrary), or 

Jcy (=y' - y, both arbitrary) that express the focal length in Eq. 

[310] do not in any way affect the calculated value of focal length 
F, except as a result of measurement inaccuracies. In other words, 

the calculated index values n1 and n2 that are expressed by Eqs. 

[401] and [402] are both fixed and independent of the measurements 
except for measurement errors. As a matter of practical informa- 
tion, the refractive index of any optical glass (in the present state 
of the art) typically lies somewhere inside an interval that extends 
roughly between + 1.4 and + 2.0. 

The remainder of this appendix deals with the case of a lens whose 

actual glass index is n2 = 1.5407, but whose geometry and focal 

length are such that the second value of index, calculated by Eq. 

1401], is n1 = 1.6236. In a case of this kind the two refractive in- 

dexes that are yielded by the measurements of "Possible Procedure 
No. 1," and represented by the development of Eq. [309] and its 
dependent Eqs. [401] through [406] both lie inside the refractive 
index interval that also includes all existing optical glasses. It is 

clearly a shortcoming of Procedure No. 1 that the required mea- 

surements are incapable of identifying which of n1 and n2 is the 
true index of the lens. Since it must be the one or the other, the 
procedure is inherently capable of producing an ambiguous result 
that it cannot resolve. 

A lens that will lead to this difficulty has the following specifi- 
cation: 

rl = + 0.3043640345 u (where u is an arbitrary unit) 
r2 = -0.148135228 u 
d = + 0.750 . . . u 

= + 0.4390 . . . u 
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The focal length F of this lens is unaffected by changing the glass 
index from n2 = 1.5407 to n1 = 1.6236, but the value of F is dif- 
ferent for all other values of n. These statements are easily checked 
by making substitutions into Eq. 12871. The specification for this 
lens and the procedure for arriving at it are clarified and developed 
in the final paragraphs of this appendix that are associated with 
Eqs. 1421] through [4341. 

"Possible Procedure No. 2" of Example 18 is entirely different in 
its origin and form from Procedure No. 1. It derives from Eqs. [ 191 
and 13121, where any arbitrary and directly measurable vertex ob- 
ject distance x 

1 
of any simple thick lens is related to its conjugate 

and directly measurable vertex image distance j2 by a function that 
involves the two constant individual focal lengths f1 and fl of its 
plano -components L1 and L2 and their constant optical separation 
a (see Sec. 30). Each of fl, f2, and a is restated in terms of r1 

and k, r2 and k, and d and k, respectively, to produce Eq. 1313]. This 
equation is quadratic in k, where k = 1/(n - 1). Thus, k represents 
the constant refractive index of the lens in, say sodium -d light, but 
is not equal to the index. The equation relates x 1 to y2 by means of 
the constant quantities r1, r2, d, and k that represent the geometry 
of the lens and its material. When reduced to standard form, the 
quadratic in k becomes Eq. 13151, whose conjugate solutions are 
represented by Eqs. 1316] and 1317]. In Procedure No. 2, the focal 
length of the lens under measurement and the magnification at 
which any set of measurements is made do not become explicitly 
involved. 

The solutions that are expressed by Eq. 13161 may be more com- 
pactly and for some purposes more usefully expressed as 

kl = Ak ± (Ak - Bk)'i2, or more generally as 
k v = Ak ± (Ak - Bk)92 1407] 

and furthermore as 

k2 = Ak + (Ak - Bk)1/2, or more generally as 
= Ak + (Ak - Bk)h12 14081 

where, as in Eq. 13161, the values of Ak and Bk are 

X1Y2(r1 - r2) + r1r2(x1 - Y2) - (71 1r2+ Y2rr1)d 
Ak -2r1r2(.l"1 - Y2 - d) 

and 

B k_ x 1J'2(r1 - r2 - d) 

r1r2(x 1 - Y2 - d) 

14091 

14101 
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Also, following Eq. 13171, 

1 1 + k \ 
+ 1 

k±v k -v 
ni 

and 

n2 = 

14111 

k 

1 
1 k + 1= kv 14121 

.v .v 

in which n1 and n2 represent cases of reversed signs before the 
radical in Eq. 14071 and in Eq. 14081 and have no other significance. 

In terms of any actual lens that is measured, the quantities r1, 

r2, d, and k of Eqs. 13131, 14091, and 14101 are all constant, and in 
Eq. 1313] the measured vertex conjugate distance y2 is a rational 
function of the single, independent or arbitrary, measured variable 
:xi. It follows that for every arbitrary, measured value of z i, and of 
its measured dependent conjugate 372, one of the two solutions of 
quadratic Eq. [3131 for k must be a constant functiont (except for 
measurement errors, whose effect is not discussed here) of the single 
independent variable xl. Let this solution be represented by, say 

k -v of Eq. 14071, which assumes that no errors exist in the mea- 
surements. 

The second or conjugate solution of Eq. 13131 for k is then repre- 
sented by k, -v of Eq. [408]. Should this solution also be a constant 
function of x 1, the potential ambiguity of Procedure No. 1 would 
also reside in Procedure No. 2. It is left to the reader to show math- 
eníatically that when the solution of Eq. 14071 is a constant function 
of x 1, the solution of Eq. 14081 is a variable (or at least not neces- 
sarily a constant) function of z 1. The reader will find it relatively 
easy to demonstrate that if it is assumed that Ak and Bk is each a 
variable function of x1 (as is readily conceivable), then k w must 
be a variable function of 3-c1 if k_v is a constant function of it. This 
may be helpful in seeking the more general proof. 

For the less theoretical purposes of this appendix, the properties 
of Procedure No. 2 will now be developed by making precise nu- 
merical substitutions into Eqs. 14071 through [4121. These substi- 
tutions show empirically that k v may be a variable function of x 

1 

t See R. Courant and H. Robbins, What is Mathematics? p. 275 (Oxford University 
Press, NY, 4th Ed., 1947-51). The interesting and useful topic of a constant function 
of a variable parameter appears to be traditionally ignored by textbooks that de- 
velop the calculus. Such constant functions tend to be loosely regarded as "in- 
dependent" of the parameter and, therefore, unimportant from the elementary cal- 
culus point of view. This misapprehension needs to be corrected by the "expert" 
writers of calculus texts. 
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when k ± is a constant function of it. When this is true, no unde- 
tectable ambiguity will occur. The effects of errors that are made 
in measuring the five quantities in Eqs. 14091 and [4101 are not 
considered. 

The lens will be the same that was specified above to have F = 
+0.4390 ... u whether the glass index is n1 = 1.6236 or 112 = 
1.5407. The glass selected for the lens has index n2 = 1.5407. Values 
of set {x1,57.,} are calculated to correspond to an arbitrary M = 
-2.0... , and of set {x;,57 } to correspond to an arbitrary M' = 
-15.0.... They will be precisely calculated for the selected n2 and 
for the lens dimensions 

rl = + 0.3043640345 u (where u is an arbitrary unit) 
r2 = - 0.1458135228 u 
d = +0.750... u 

By Egs. 12791, 12801, and [ 2821 

71 = r1/(n2 - 1) = +0.5629074061 u, [4131 

72 = -r2/(n2 - 1) = +0.2696754629 u, [4141 

d = dln2 = +0.4867917181 u. [4151 

By solution of Eq. 1131 of Part 1 

xl - 7172 - M71(72 - Q ) 

M(71 + 72 - á) 
14161 

and by replacement transformation of this solution, according to 
Table 3, Sec. 6, Part 1 

-Mf172 + 72(71 - -a) 
Y2 - 

(f1 + 72 - ) 
Thus, for arbitrary M = M = - 2.0 .. . ; 

1 
= + 0.1339397791 u, 

y2 = +0.9373610723 u and for arbitrary M = M' = -15.0 ...; 
= +0.3241731127 u, y 2 = +6.644361075 u 

Equation 1401, Part 1, may be used as a check, thus 

.Y2 Y2 6.644361075 - 0.9373610723 
x í -z 

1 
0.3241731127 - 0.1339397791 

= +29.99999997 14181 

14171 

which is considered an excellent check. 
The values of k_v, k,.v, n1, and n2 are calculated from Eqs. [4071 

through [ 4121. Those of k ± v and 1?,., are checked by the relation- 
ships 
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k -v + k+v 
2 

and 

[419] 

k ± vk+v = Bk [4201 

which are very easily derived from Eqs. 14071 and 14081. 

By using appropriate signs before the radical and substituting 
the foregoing values of r1, r2, d, 11 and y2 into Eqs. 1407] through 
[4121, the results may be represented as (for arbitrary M = 
-2.0...) 
k v = + 1.849454410, n2 = + 1.540700000 

k+v = - 0.2952273660, n1 = - 2.387219869 
v + k+v 

Ak = +0.7771135220; ck. 
2 

+0.7771135220 

Bk = - 0.5460095537; ck. k+\ k+v = -0.5460095540 

and by Eq. [2871, F = +2.133941980 x 10-2 u when n = n1; F = 
+ 0.4390000002 u when n = n2. Then, by changing 11 to x j and Y2 

to 5;2, the results may be represented as (for arbitrary M' =- 

- 15.0 . . .) 

k ±v = + 1.849454408, 112 = + 1.540700001 

k+v = -1.112829502, n1 = +.1013897473 

Ak = +0.3683124531; ck. -v 2 k'v = +0.3683124530 

Bk = -2.058127427; ck. k + vk+v = -2.058127428 

and by Eq. [2871, F = -6.958602049 x 10-3 u when n = n1; F = 

+ 0.4390000002 u when n = n2. 

Thus the calculated value of n2 = 1.5407 is shown empirically to 
be a substantially constant function of 11 while the calculated value 
of n1 is seen to be a variable function of 

The procedure for determining r1, r2, d, and F for a simple thick 
lens so that the arbitrary refractive indexes n1 and n2 will each 
satisfy Eq. [2871 will nom be briefly indicated. By noting Eq. 14041 

and solving Eq. 1406] for r2 

d + n1n2(r1 - d) 
r2 - . 

nln2 
[421] 

Then, by substituting this value of r2 into Eq. 1405] (after noting 
Eq. [4031), the resulting equation readily reduces to the standard 
form of a quadratic in r1 

RCA Review Vol. 45 September 1984 539 



nln2ri - d(n1n2 - 1)r1 - Fd(n1 + n2 - n1n2 - 1) = 0 [4221 

whose solution may be expressed as 

d(n1n2 - 1) 
r1c r1 = 

2n1n2 

d(nin2-1) 2 Fd(1+nln2-nl -n2) v2 

2711712 nln2 . 

14231 

This may in turn be re -expressed in the more compact and, for some 
purposes, more useful forms 

ric = r1 = A,. ± (A? - B,.)`/2 14241 

and 

ríá = Ar + (A? - B,.)'/2 14251 

where, on noting Eq. 14231 

A 
d(nin2 - 1) 

14261 r 

and 

Br _Fd(1+n1n2-nl -n2) 
14271 

n1n2 

Once again, as in the case of Eqs. 14011 and 14021 (also the case of 
Eqs. 14071 and 14081), the relationships 

(rio + ríc)/2 = A,. 

and 
1428] 

r1 ríá = Br 14291 

are easily derived from Eqs. [4241 and 14251. 
Since merely interchanging the signs of the irrational term be- 

tween Eqs. 14241 and 14251 interchanges the algebraic values of r1c 
and ríc., it follows that if r1 of the lens = r1c then r2 = - rí,.. This 
being the case, Eqs. 14281 and 14291 may be re -expressed in the form 

(r1c + ríá)/2 = (r1 - r2)12 = Ar [4301 

and 

ricríc = -rir2 = Br 14311 
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Recalling, once again, that by arbitrary choice n1 = 1.6236 and n2 

= 1.5407, then Eq. [424] becomes (by noting Eqs. 1426] and 14271) 

r1, = r1 = 10.3001183715d ± (9.007103691 x 10_2d2 

-0.1347923829Fd)'/21u 1432] 

in which d and F may be given arbitrary values (in the same unit, 
of course), restricted only by the requirements that d > 0 and that 
the radicand in Eq. 1432] be % 0 so that r1c, will be real. In general, 

r1c will be real if, in Eq. 14231, 

rd(nln2 - 1)12 nlrr2 
.t 14331 

IL 2n1n2 J d(1 + nln2 - n1 - n2) 

This means that if the arbitrary value of d is d = +0.750 ... u, 

then F +0.5011653938 u. With this as a guide, the value of F 
has been arbitrarily taken as F = +0.4390 ... u. Equation 1432] 

then becomes simply 

r1c = r1 = +0.2250887786 u ± (5.066495825 x 10-2 
- 4.438039206 x 10-2)92 u 1434] 

From Eq. 1434], it follows that 

r1 = r1 = + 0.3043640345 u 
- /lc = r2 = - 0.1458135228 u 

Ar = +0.2250887786.' 0.2250887786; ck. (ric + rí,)/2 = + 0.2250887787 
Br. _ +4.438039206 x 10-2; ck. rlcríc _ +4.438039208 x 10-2. 

It is seen that Eqs. 1430] and 1431] serve very well as check for- 

mulas. 
To summarize- 

n1 = +1.6236 Assumed arbitrarily 
n2 = + 1.5407 Assumed arbitrarily 
d = +0.750... u A reasonable assumption (u is an arbitrary unit) 
F = + 0.4390... u A reasonable assumption (see Eq. (433] et seq.] 

r1 = r1c = +0.3043640345 u Calculated by Eq. 1424] 

r2 = - ríc = - 0.1458135228 u Calculated by Eq. 14251 

The earlier part of this appendix, associated with Eqs. 1401] through 
(4201, depended upon these assumed and calculated simple lens 

specifications to compare the properties of Possible Procedures No. 

1 and No. 2 of Example 18. 

t The _ sign in Eq. [433] is fixed because the second factor on the right is always 

positive. 
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Appendix 11-Outline of a Further Extension of the 
Theory of a Simple, Thick, Spherical Lens, Based On the 
Assumption That the Lens Is a System of Two Quasi - 
Separated Lenses In the Manner of Section 30. 

This appendix suggests how a new and useful equation respecting 
a thick simple lens may be developed. Details are left to the reader. 
From Eq. [172] Part 2, x' = x + . x. On substitution of this value 
of x' into Eq. [180], allowing x = xl, Y = Y2, 

Mx1(y2 + MM'Acx) - M'y2(xl + J,x) 
MM'JCx 

This equation relates some of the literal quantities that appear in 
the system of Fig. 12. 

By assuming M = +1 = 1/M, the relationships (III -8) and (IV - 
8) of Table 1, Part 1 show that the Gaussian object- and image - 
distances are, respectively, X = 0 and Y = 0, or x1 = x1p and Y2 = 
yep in Fig. 12. 

By also assuming M' = -1 = 1/M', (III -8) of Table 1 shows that 
the corresponding Gaussian object -distance is X' = - 2F, where F 
is the focal length of the system of Fig. 12. This makes .Sex = xí - 
x1 = X' -X = -2P - 0 = - 2F in Fig. 12. Substitution of M = 
+ 1, M' = -1, x1 = x1p, y2 = yep, and &x = - 2F into Eq. [435] 
produces 

x1p(y2p + 2F) + y2p(x1p - 2F) 
a - 

2F 
[436] 

Since M = +1 = 1/M and M' = -1 = 1/M', these special values 
of M and M' that produce Eq. [436] from Eq. [435] preserve the 
generality in Eq. [436] that makes it subject to the replacement 
transformation of Sec. 6, Part 1. (See derivation of Eqs. [32] and 
[33] from Eq. [31] Part 1.) 

By further inspection of Fig. 12 it is easily seen that 

y2p = xlp + S - Sl - S2 - a. [437] 

In order to now treat the system of Fig. 12 as being two quasi - 
separated lenses in the manner of Sec. 30, the following substitu- 
tions are made into Eqs. [436] and [437]. (See Fig. 18 and Eqs. [281] 
and [282].) 

a - 

a = á = din (d 0) 
xlp = xlp 
Y2p = y2p 
s=s 

sl=s1 
S2 = 79.2 

S 1 + -S-2 + CZ = d 

[435] 
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By introducing these substitutions and equivalents, first into Eq. 
[437] and then into Eq. 14361, the center thickness d of a simple 
lens is easily solved for as 

d = n 
I 

Fp+ i 

-gulp- 
F) I 

(d 
, 0). [4381 

Ip 

In Eq. [4381 the replacement transformation calls only for zip to 
be replaced by - y2p. After such replacement the equation still holds 
true. The same holds true for Eqs. 14391 and 14401 below, provided 
fi and 12 are also interchanged between those two equations. 

Equations [4381 can be solved for xip or for any of its other vari- 
ables. However, if d = 0 the lens is "thin," and in that case d = 0 
and the solution for zip must be x1 = 0 (and also S = 0), and not 
the general quadratic solution for xip when the numerator of Eq. 
[4381 is zero (see Fig. 18, Eqs. 14371, [281], [2821, 1290a], and Eq. 
[321 Part 1). 

The following equations are adapted from Eqs. 1651 and [661 of 
Example 6, Part 1: 

fi = fi = (dln)(zip - F)l(zi - dln) (d > 0; fi 0) 14391 

12 = f2 = (dln)F/xip (d > 0; 12 0). 14401 

Furthermore, by Eqs. [2791 and 12801, 

r1 = (n - 1)71 14411 

r2 = -(n - 1)72. [442] 

Once again, see the statement following Eq. 1438] above regarding 
replacement transformations of Eqs. [438], 14391, and [4401. 

The numerical values in Table 20 are easily verified by making 
appropriate substitutions into Eqs. 14381 through [4421. In those 
equations, however, fi and 12 are represented, respectively, by 12 

and f2 of Table 20 and r1 and r2 of the equations are represented, 
respectively, by r2 and r2 of the Table. 

Equation 14381 makes it easily possible to calculate the center 
thickness d that any simple lens must have, assuming that the 
refractive index n, the principal point locations as represented by 
zip and S, and the lens' paraxial focal length F are all given or 
known parameters. The same will be true in terms of yep if zip is 
replaced by -372p in the equation. If the calculated value of d is 
negative, the lens is, paraxially speaking, an absolute physical im- 
possibility unless its constants are changed. Care must always be 
taken to correctly apply the Gardner sign convention. 
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Equation 14381 may easily be made the basis for a graphical study 
of the basic parameters of simple thick lenses. 

Equation 14381 is the result of analyzing and solving the problem 
of the thickness of a simple lens on its lowest and simplest terms, 
with all extraneous considerations eliminated (see, for example, Eq. 
1295]). The derivation procedure for Eq. 14381 and the brief items of 
discussion that occur in this appendix reflect the broad unity of 
treatment of the simple Gaussian lens equations that exists 
throughout all parts of this paper. 

Appendix 11 should not be terminated without noting that by 
substituting the value of y2p from Eq. [4371 into Eq. 14361, the so- 
lution for a, in a system of two separated lenses in air or vacuum, 
then becomes 

xlp + (x1p - F)(S - s1 - so 
a = 

x1F, 

while from Eqs. 1651 and 1661 

a(xlP - F) 
f1 

x1p - a 

and 

14431 

14441 

aF f2=-. (4451 
x1p 

In order to give a practical meaning to the last three equations 
as well as to various unidentified equations that appear throughout 
this paper, readers should investigate the possibilities of Gaussian 
design that may exist for a system that must produce a real image 
of a real object when the magnification is M' = -1, the system 
focal length is F = 6 units, and the distance of the image from the 
object is D = 19 units. The lens separation a (should a system of 
two lenses be required) must be positive. The lenses in any such 
system may be assumed "thin." 

Details of numerous other ways in which practical application 
may be made of Eqs. 14431 through 14451 to problems that involve 
two separated lenses are left to the reader. 
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Patents Issued to RCA Inventors-Second Quarter 1984 

April 

G. J. Ammon Track Jump Servo System for Disc Player (4,443,869) 
F. Aschwanden and W. H. Groeneweg Frequency Search System for a Phase 
Locked Loop (4,443,769) 
R. L. Barbin Electron Beam and Deflection Yoke Alignment for Producing Conver- 
gence of Plural In -Line Beams (31,552) 
E. A. Brauer Stylus Protecting Mechanism for Video Disc Player (4,442,517) 
D. E. Carlson and B. F Williams Photodetector Having Enhanced Back Reflection 
(4,442,310) 
H. Chen Electron Gun for Dynamic Beam Shape Modulation (4,443,736) 
P. Datta and E. S. Polinak High Density Information Disc Lubricants (4,444,820) 
A. R. Dholakia Stylus Lowering, Lifting and Cleaning Apparatus (4,443,871) 
E. Dixon Digital Gyromagnetic Phase Shifter (4,445,099) 
T. J. Faith, Jr. Monitor for Impurity Levels in Aluminum Deposition (4,440,799) 
R. A. Gange Telephone Station Incorporating Exchange Message System 
(4,443,664) 
L. A. Harwood and R. L. Shanley, 2nd Adjustable Coring Circuit (4,441,121) 
L. A. Harwood High Voltage Protection for an Output Circuit (4,441,137) 
L. V. Hedlund and J. D. Shields Tunnel for Tape Accumulation During Wind -Off 
(4,442,465) 
A. C. Ipri and R. G. Stewart Electrically Alterable Nonvolatile Floating Gate Memory 
Device (4,442,447) 
W. Kern Chemical Deposition Termination (4,442,134) 
T. F. Kirschner Video Disc Player Having Caddy Lockout Mechanism (4,443,872) 
W. L. Lehmann Television Receiver Tuning Circuit Tunable Over a Wide Frequency 
Range (4,442,548) 
S. A. Lipp Method of Making a Focusing Color -Selection Structure for a CRT 
(4,443,499) 
B. E. Lock Concentricity Measuring Instrument (4,439,925) 
D. W. Luz Deflection Circuit With Linearity Correction (4,441,058) 
R. M. Mendelson Self -Extinguishing Load Driving System (4,441,069) 
C. H. Morris, Jr. Method for the Manufacture of Lapping Disc for Forming Keels on 
Videodisc Styli (4,440,604) 
S. T. Newell Damping Mechanism for a Video Disc Stylus Holder (4,441,176) 
W. R. Poff and D. W. Bartch Method for Selectively Etching Integral Cathode Sub- 
strate and Support (4,441,957) 
D. R. Preslar Push -Pull Non -Complementary Transistor Amplifier (4,442,409) 
G. A. Reitmeler and C. H. Strolle Compaction of Television Display Graphics in 
Phantom-Raster:Scanned Image Memory (4,442,545) 
A. Schwarzmann Switching Microwave Integrated Bridge T Group Delay Equalizer 
(4,443,772) 
E. B. Smith and R. A. Craft Phase Locked -Loop Generator With Closed -Loop 
Forcing Function Shaper (4,442,412) 
K. J. Susnjara Method and Apparatus for Making Thin -Walled Plastic Articles 
(4,440,702) 
G. A. Swartz Series Connected Solar Cells on a Single Substrate (4,443,651) 
J. Tults Counter Arrangement Useful in a Frequency Locked Loop Tuning System 
for Measuring the Frequency of a Local Oscillator Signal (4,442,547) 
H. R. Warren Crosstalk Filtering Arrangement With Variable Frequency Filtering to 
Remove Effects of FM Carrier (4,441,090) 
D. H. Willis Degaussing Circuit for Television Receiver Having Switching Mode 
Power Supply (4,441,052) 

May 

N. Z. Assil and R. H. Hughes Color Picture Tube With Focusing Electrode Having 
Electrostatic Field Distortion Aperture Therein (4,449,069) 
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J. P. Beltz and K. W. Hang Automated Liquid Dispensing Apparatus for Spinning 
Surface of Uniform Thickness (4,451,507) 
B. W. Beyers, Jr. Tuning Arrangement for Providing Relatively Uniform Automatic 
Fine Tuning Sensitivity (4,450,587) 
O. H. Bismarck Speed Up Circuit (4,450,371) 
F. T. D'Augustine and R. L. Berardi Apparatus and Method for Aligning the Enve- 
lope and Electron Gun Mount Assembly of a CRT (4,445,874) 
F. T. D'Augustine, M. E. Terry, H. F. Welsh and F. A. Payne Automatic Mask -Frame 
Inserter (4,451,243) 
A. G. Dingwall and V. Zazzu Switching Circuitry as for a Flash A/D Converter 
(4,449,118) 
R. A. Dischert and K. H. Powers Transcodeable Vertically -Scanned High Definition 
Television System (4,449,143) 
C. E. Doner Tuning Means for a Transmission Line Cavity (4,451,806) 
C. W. Ebert and E. S. Thal! Method of Blackening Surfaces of Steel Parts With Wet 
Nitrogen (4,448,612) 
R. D. Faulkner, D. L. Thoman and A. F. McDonie Photomultiplier Tube Having Im- 
proved Count -Rate Stability (4,446,401) 
R. D. Faulkner, D. V. Henry and D. L. Muth Broad Area Cathode Contact for a Pho- 
tomultiplier Tube (4,447,758) 
J. S. Fuhrer Plural Operating Mode Ambient Light Responsive Television Picture 
Control (4,451,849) 
W. V. Fuldner Linearity Adjustment of Spacecraft Tubular Spar -Type Members 
(4,451,828) 
P. M. Heyman Workpiece with Abraded Machine -Readable Marking Therein and 
Method of Making (4,446,362) 
S. T. Hsu Low Resistance Contact for High Density Integrated Circuit (4,445,270) 
L. M. Hughes Disc Record Player Having Stylus Cleaner (4,450,548) 
K. C. Kelleher Stepper Motor Drive Circuit (4,450,394) 
T. F. Kirschner Record Extraction Mechanism for Disc Player (4,451,912) 
M. J. Kurina and J. Thornhill Stiffening Clamp for Self -Erecting Antenna (4,447,816) 
H. G. Lewis, Jr. and S. M. Eliscu Digital Television Receiver Automatic Chroma 
Control System (4,447,826) 
R. C. Maehl Extendible Tubular Booms for Remote Sensors (4,446,466) 
A. R. Marcantonio Linear Velocity Control Means (4,450,552) 
D. P. Marinelli and I. Ladany Heating Fixture (4,451,727) 
J. R. Matey Apparatus and Method for Making a Video Disc (4,447,381) 
K. W. McGlashan and J. R. Archer Television Raster Pincushion Distortion Correc- 
tion Device (4,451,807) 
J. Mount Electrical Heating Unit for Sealing Vacuum Electron Tubes (4,451,725) 
E. M. Musselman Vibration Inhibiting Mesh Assembly for a Pick -Up Tube (4,446,398) 
J. R. Oberman and R. G. Ott Implementation of Instruction for a Branch Which Can 
Cross One Page Boundary (4,449,185) 
J. R. Oberman Single Chip Microcomputer With External Decoder and Memory and 
Internal Logic for Disabling the ROM and Relocating the RAM (4,450,524) 
J. G. Ottos Method of Detecting the Vaporization of Getter Material During Man- 
ufacture of a CRT (4,445,872) 
R. G. Raush Device for Supporting and Aligning Photographic Masters (4,448,522) 
C. W. Reno Multi -Beam Optical Record and Playback Apparatus (4,449,212) 
C. W. Reno Apparatus for Varying Track Spacing in Multi -Track Optical Record 
(4,449,215) 
A. Schwarzmann Monolithic Reflection Phase Shifter (4,450,419) 
R. L. Shanley, 2nd Picture Control for Television Receiver On -Screen Display 
(4,451,840) 
F. Sterzer Pickup Circuit for Video Disc Including Dual -Gate FET with Injected RF 
(4,450,550) 
C. H. Strolle Linear Interpolation Between Regularly Spaced Digital Samples 
(4,446,529) 
J. C. Talant, 2nd Delayed Reaction Automatic Kinescope Biasing System (4,450,476) 
M. Toda and S. Osaka Counterbalance System for Sagging Rotating Element 
(4,449,563) 
I. T. Wacyk and R. G. Stewart Two Level Parity Error Correction System (4,450,562) 
H. A. Weakliem and J. L. Vossen, Jr. Glow Discharge Plasma Deposition of Thin 
Films (4,450,787) 
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N. D. Welch and J. W. Woestman Circuit for Providing a Common Setpoint for 
Manual and Automatic Regulation of a Process Control System (4,451,879) 
J. C. Whartenby, R. Brown, S. T. Rao and R. J. Menna Method for Fabricating Via 
Connectors Through Semiconductor Wafers (4,445,978) 
D. J. Wierschke Cathode Head Having Improved Seal Means (4,445,995) 
D. H. Willis Television Receiver Ferroresonant Load Power Supply (4,446,405) 
J. W. Woestman System and Method for Controlling the Specific Gravity and Vis- 
cosity of the Slurry Applied to Television Picture Tube Faceplates (4,445,526) 

June 

L. Abbott TV Privacy System Using Gray Sync (4,454,544) 
A. R. Balaban and S. A. Steckler Dual Polarity Sync Processor (4,453,183) 
A. R. Balaban and S. A. Steckler Reduced Data Rate Comb Filter System (4,456,922) 
V. S. Ban and E. S. Poliniak Method of Applying High -Density Information Record 
Lubricants (4,456,636) 
D. E. Carlson and B. F Williams Photocell Utilizing a Wide-Bandgap Semicon- 
ductor Material (4,453,173) 
P. Datta and E. S. Poliniak High Density Information Disc Lubricants (4,455,335) 
C. B. Dieterich Coding System for Recorded Digital Audio (4,455,635) 
R. A. Duschl Charge Coupled Device Based Blemish Detection System and Method 
(4,454,541) 
R. A. Duschl Charge Coupled Device Based Inspection System and Method 
(4,454,545) 
R. D. Faulkner and D. V. Henry Mesh Structure for a Photomultiplier Tube 
(4,456,852) 
A. M. Goodman and R. U. Martinelli Vertical MOSFET With an Aligned Gate Elec- 
trode and Aligned Drain Shield Electrode (4,455,565) 
f. Gorog Method for Evaluating Distortions in Video Disc Recordings (4,455,633) 
T. F. Kirschner Video Disc Player Having Caddy Overtravel Mechanism (4,453,240) 
H. P. Kleinknecht Method and Apparatus for Determining the Doping Profile in 
Epitaxial Layers of Semiconductors (4,456,879) 
W. A. Lagoni Vertical Detail Coring Circuit to Track a Gain Adjusted Signal 
(4,454,533) 
J. N. Laprade and R. S. Wondowski Microwave Circuit Interconnect System 
(4,455,537) 
A. R. Moore Method and Apparatus for Determining Minority Carrier Diffusion 
Length in Semiconductors (4,454,472) 
F. Okamoto and K. Kato Solid Particles Encapsulated With Cyanoacrylate Polymer 
(4,452,861) 
W. T. Patton Method of Determining Excitation of Individual Elements of a Phase 
Array Antenna from Near -Field Data (4,453,164) 
K. H. Powers Multiplier for Multiplying N -Bit Number by Quotient of an Integer 
Divided by an Integer Power of Two (4,455,611) 
A. N. Prabhu and K. W. Hang Low Value Resistor Inks (4,452,844) 
F. R. Ragland, Jr. Color Picture Tube Having Improved Temperature Compensating 
Support for a Mask -Frame Assembly (4,455,505) 
D. J. Sauer CCD Input Circuits (31,612) 
O. H. Schade, Jr. Circuitry for Generating Non -Overlapping Pulse Trains (4,456,837) 
M. Toda Surface Acoustic Wave Cutterhead for Disc Recording Having a Circular 
Transducer (4,453,242) - 

J. R. Tomcavage Electron Tube Having a Low Impedance Reduced Stress Anode 
Structure (4,456,851) 
B. Vanbreemen Projection Television Screen Having a Selected Audience 
Envelope (4,452,509) 
R. M. Wilson RF Radial Choke for Use in Record Playback Apparatus (4,455,638) 
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