

P

1

MICROPROCESSORS - More introductory articles

- HIRE

ill

Well stacked in front

The new range of JVC front-loading cassettes is here. And if you think that's the only change, you're highly mistaken. Because, as usual, JVC brings in the range with a few unique additions which are going to make you think twice about any other brand.

For a start, the JVC ANRS sound reduction system is incorporated throughout, to make hi fi recording and playback as free of hiss as possible. And in some cases, even improving the dynamic range of normal cassettes.

Another exclusive is the JVC Sen-alloy head, and believe it or not, it offers you the clearest sound and longest wearing lifespan of any head available; originally designed solely for professional use, this head is now incorporated in JVC cassette decks CD-S200 and CD-1970

And yet another first: JVC is the only manufacturer to provide decks with 5 LED peaklevel indicators so that your recordings are perfect at all times. These are featured on models CD-1920 and CD-S200.

Loading is, of course, simplified. The special compartment is air-damped and removable for uncramped head maintenance

> The JVC famous range of top-loaders is still available, offering you the very highest quality. All things considered, there is no other consideration.

For details on JVC Hi Fi Equipment, write to: JVC Advisory Service, P.O. Box 49, Kensington, N.S.W. 2033.

OCTOBER 1976, Vol. 6 No. 10

Editorial Director Assistant Editor Managing Director Secretary Marketing Services Manager Subscriptions & Circulation Manager

A MODERN MAGAZINES PUBLICATION

Electronics Today International is Australian owned and produced. It is published both in Australia and Britain and is the fastest growing electronics magazine in each country.

HI-FI CONTEST

1st prize –	Stereo System				
2nd prize -	FM tuner				
3rd prize –	dbx unit				
- see page 10					

Win a BWD scope - see page 19

Where to get kits for our projects — - see page 108

COVER: Most of you have a car and most of you have access to an oscilloscope, but have you ever thought of connecting the two together? Turn to page 14 and read how to do it, and how to interpret the waveforms you see.

* Recommended retail price only

Printed by Wilke and Company Limited 37-49 Browns Road, Clayton, Victoria.

PROJECTS

A series of simple projects to educate the beginner:
ETI 044, Two-tone doorbell
ETI 043, Heads or tails circuit
ETI 061, Simple amplifier62 Four transistor, half watt amplifier
ETI 068, LED dice circuit
REMOTE CONTROL SWITCH
FEATURES
SCOPE TEST YOUR CAR
REVIEW OF THE YAMAHA B1 AMPLIFIER
CMOS – A PRACTICAL GUIDE
ELECTRONICS IT'S EASY
DATASHEET
MICROPROCESSORS
MICROCOMPUTER TERMINAL
MICROPROCESSORS FOR THE PROFESSIONAL
MULTIPROCESSORS
COMPUTER ON A BOARD
KIT SUMMARY

KIT SUMMARY Kevin Barnes completes his survey

News	Special offer
Calculator contest	Please explain
Win a stereo	Mini-mart
Oscilloscope contest 19	Kits for projects
Mark-down 13	Reader services
Ideas for experimenters 99	Advertisers' index 108

SC-2002

The True Hi-Fi Front-Loading Cassette Deck.

It makes sense. A well-made cassette tape deck these days gives open reel a good run for the money. 0

CLANERS ROOM

If you're involved with music at the true hi-fi level, here's a reliable one from Sansui. Note:

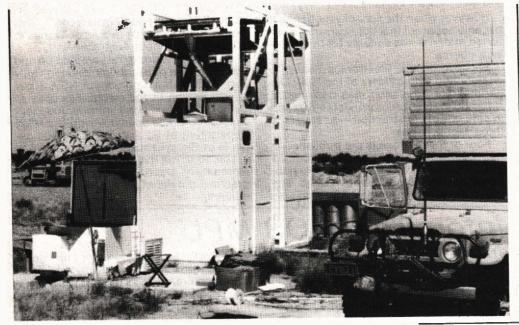
Front-loading convenience means positioning your tapes rightside up and keeping them vertical and fully visible at all times. Important? You'll discover front-loading saves a lot of tape trouble.

The electronic DC servomotor gives constant speed regulation regardless of voltage changes or tape loads. Independent capstan drive contributes to very low wow/flutter (0.1%). Fully automatic stop and shut-off is even more operating convenience.

The SC-2002 makes sense in other ways, too. Dolby noise reduction ensures recordings made from any source will play back with a drastically reduced tape hiss and noise content.

And such features as output level control, left/right independent recording level controls and wide dynamic range mic circuits contribute to fine sound performance.

The SC-2002 is one of four fine Sansui front-loading decks now available in different styles and price ranges.


When you come right down to it, our true hi-fi components sound so good because hi-fi is the only thing we make.

Maybe this is why we always make sense to people who love music.

EASTERN AUSTRALIA: RANK INDUSTRIES AUSTRALIA PTY. LTD. SYDNEY: 12 Barcoo Street, East Roseville, N.S.W. 2069 Phone: 406 5666 MELBOURNE: 68 Queensbridge Street, South Melbourne, Vic, 3205 Phone: 62 0031 ADELAIDE: 234 Currie Street, Adelaide, S.A. 5000 Phone: 212 2555 BRISBANE: 14 Proe Street, Fortitude Valley, Brisbane, Qld. 4006 Phone: 52 7333 CANBERRA: 25 Molonglo Mall, Fyshwick, Canberra, A.C.T. Phone: 95 2144 / WESTERN AUSTRALIA: ATKINS CARLYLE LTD. 44 Belmont Avenue, Belmont, Western Australia 6104 Phone: 65 0511 / SANSUI ELECTRIC CO., LTD. 14-1, 2-chome, Izumi, Suginami-ku, Tokyo 168, Japan

NEWS DIGEST

A fleet of 92 radio-controlled vehicles, including two light aircraft and a helicopter, will patrol and maintain the natural gas pipeline from central Australia to the east coast when it comes into operation.

The equipment for the vehicle communications system has been designed and installed by Amalgamated Wireless (Australasia).

Melbourne's IREE International Convention

Organised by the Melbourne Division of the Institution of Radio and Electronics Engineers Australia, IREECON International convention and equipment exhibition will be held in the Exhibition Building, Melbourne, from August 8 to 12, 1977.

It will be the IREE's sixteenth convention at which overseas and local scientists and engineers will deliver papers on a wide range of subjects and manufacturers and distributors will show the latest technological advances in electronic equipment.

Chairman of IREECON Convention Board, Mr S.J. Rubenstein, said that although the convention was almost a year away it had already aroused considerable interest both locally and overseas.

Manufacturers and distributors were enquiring regarding space reservations in equipment exhibition the which will occupy the Eastern Annexe with a total gross area of more than 30,000 sq ft. At last year's International Electronics Exhibition '75 in Sydney, he said, the value of equipment on display was about \$15 million. This indicated the considerable Interest shown by both International and local organisations in a technical 'show window' such as that organised by the IREE.

Companies and government Instrumentalities wishing to reserve space should contact the IREE at Clunies Ross House, 191 Royal Parade, Parkville, 3052, or 157 Gloucester Street, Sydney, 2000. These information Centres would also supply information regarding the cali for and submission of technical papers for inclusion in the lecture programme delegate registration.

PLLs in, Xtals out

Crystal manufacturers have been doing quite well out of the CB boom in America but they now fear that the equipment manufacturers will turn to phase-locked loop circuits when they produce new gear for the 40-channel band which comes in next year. At present an estimated 40 percent of manufacture uses PLL circuitry (which only needs one crystal, not fourteen).

CB designers have also come up with a novel way of changing the operating frequency of the PLL without redesigning the circuit. They use a PROM to control the programmable counter in the circuit.

Japan's first 8-bit microcomputer chip from Toshiba

The T3444 is a 42-pin ceramic IC containing the ALU, the RAM, the ROM, and the I/O parts for a simple microcomputer. The ROM can hold 256 24-bit words but it is mask-programmed for the specific application. The RAM is only 16 8-bit words and the I/O drivers are not on the chip. But it is fast; clock cycles of 1.25 microseconds are possible. The instruction set of the ALU is 14, compared to fifty-plus for common microprocessors.

Toshiba expects the T3444 to be used in heating control, microwave ovens, video games, and data processing applications. The price will be around \$22 in quantity.

Would you like to sell CB?

Dick Smith Electronics Pty Ltd of Sydney, Australian Agents for 'Midland' communication equipment, advise that they still have a number of openings in their Australia wide dealer network.

Dick Smith's have only been marketing Midland Equipment since last February. During that time, the growth rate of sales has been staggering, they claim. The bulk of sales so far have been in the Marine CB area. The great potential, however, is in the 23 channel gear that is so popular these days in the USA. In this connection, Staff of Dick Smith Electronics are confident that the PMG will eventually allow CB for everyone to use.

Anyone interested in becoming a dealer should contact:

Gary Johnston. D.S. Distributors, P.O. Box 747, Crows Nest, NSW 2065

ETI Staff

We are delighted to report that Geoff Petschler has recently joined ETI as NSW Advertising Sales Manager.

Geoff is very well known in the Australian electronics industry. For many years Geoff was NSW sales manager of A & R Soanar.

Microcomputer Hobby News

What was claimed to be the first America-wide microcomputer hobby show was held in Atlantic City at the end of August. I wonder how long it will be before one is held here in Australia?

Those readers who wrote in response to the piece in the August issue about forming an Australian Amateur Computer Club should be hearing from us soon. A newsletter is being prepared and a meeting is being planned.

ł

6

NEWS DIGEST

Electronics projects for schools

There is no better entry to enjoying and understanding electronics than building electronics projects. We were therefore delighted to learn that project construction was to be part of the high schools' Technical Syllabus from 1976 onwards.

However when the school year began it became apparent that little currently published material was suitable for the threeyear course.

Because of this, Electronics Today, in conjunction with officers of the NSW Department of Education, has designed a range of 28 electronics projects — graded in difficulty of construction - to cover the three year syllabus.

Four of these projects are published in this issue — under the heading PROJECT ELECTRONICS. Several more will be published during the next three months. The entire three-year course will be available

in book form in mid-February 1977. This book will be available in bulk deliveries to schools throughout Australia.

Our advisor during the compilation and design of this publication has been Rolly Jones of Galston High School, NSW. Rolly is well known in the electronics area as author of the text book 'Introducing Electronics', and has been advising the NSW Department of Education on various aspects of the syllabus.

The book will include a short course in elementary electronics as well as full practical details of all aspects of project building.

Intercil's CMOS MPU

The IM6100 is a 12-bit CMOS microprocessor IC which comes with a range of CMOS support chips. CMOS offers the advantages of simple power supplies, high noise immunity, and overall ruggedness.

This means that the Intercil computer can be run off solar cells and batteries to control, for example, weather stations in the middle of the desert or the ocean.

Another big advantage of the 12-bit word length of the IM6100 is that minicomputer software can be used - the IM6100 is compatible with PDP-8E software.

In the US Intercil are advertising two interesting packages to promote the sys-

Limericks

The Unitrex calculator for the winner of the contest in the August issue goes to W.G. Mottram of Bowral. The entries for this contest were limericks on the theme of life

tem. The first is their 'sampler'; this gives you the MPU, the PIE, a 1K byte ROM, a UART, and three 256 x 4 RAMs. These are on special offer until the end of October for less than half the usual price, for US\$55.

The other interesting package is a onecard computer called the Intercept Jr Tutorial System. This battery-operated computer has its own keyboard, and display (eight LEDs). It comes complete with Tutorial manual for US\$281. Optional extras include RAM (an extra 1K bytes for \$145), ROM (for up to 2K words of program, \$74.65), and I/O (for TTY and paper tape, \$81.70).

in the next century. The winning limerick is shown below:

In 2001 on sabbatical, By matter transmitter it's practical, At a million parsecs, To transduce by Videx, 'Electronics Today Intergalactical'.

Voltages on the ETI443 Expander- Compressor

The tables show voltages measured on the prototype of this project. They are given as a guide only. The setting of RV1 affects the relationship between the input voltage and the other readings in table one.

		TA	BLEI		
Input	Ou tput	Output	Output	Output	Output
Signal*	1C 1/1	1C1/1	1C3	1C2/2	1C4
1 mV	3.4 mV	—1.6 mV	+4.88 V	-4.84 V	-0.5V
10 mV	30 mV	+28.6 mV	+4.86 V	-4.83 V	-0.5 V
100 mV	350 mV	+338 mV	+1.95 V	-1.96 V	-0.55 V
1 V	3.7 V	+3.59 V	-2.34 V	+2.32 V	-0.63 V

* Input signal is a 1 kHz tone fed to both inputs. The output from 1C1/1 is ac, all other readings are dc.

RV2 Wiper	Output 1C5	Output 1C6	Output 1C7/2	Pins 5/3 TP3
-4 V -3 V -2 V -1 V 0 V +1 V +2 V +3 V +4 V	-0.84 V -0.73 V -0.67 V -0.62 V -0.59 -0.57 V -0.55 V -0.55 V -0.54 V	+93 V +5.31 V +3.1 V +1.78 V +1.78 V +1.03 V +0.61 V +0.35 V +0.20 V +0.12 V	-9.79V -6.0 V -3.78 V -2.44 V -1.68 V -1.24 V -0.98 V -0.82 V -0.72 V	-0.67 -0.63 V -0.61 V -0.59 V -0.58 V -0.56 V -0.55 V -0.54 V -0.53 V

TABLE II

The voltage on the wiper of RV2 can be set by adjusting RV2 and the input signal.

NEWS DIGEST

New microprocessor makes the others look out-of-date

The third generation of microrprocessors has arrived. The Z-80 microcomputer chip set is as big an advance over the Intel 8080 as the 8080 was over the 8008. The chart shows a comparison to the 8080A. Note the double-size instruction set which includes all the 8080 instructions, this software compatability means that the Z-80 will be easily incorporated into present systems and 8080 designers will find it easy to use in new systems.

Features:	BOBGA	Z80-CPU	Features:	ADBOB	ZBO-CPU
Power Supplies	+5,-5,+12	+5	Instructions	78	158*
Clock	24, + 12 Volt	1¢ 5 Volt	OP Codes	244	696
Standard Clock Speed	500 na	400 ns	Addressing Modes	7	11
Interface	Requires	Requires no other logic and includes dynamic RAM Refresh	Working Registers	8	17
	8222,8228 & 8224		Throughput	Up to 5 time than the 80	s greater SOA
Interrupt	1 mode	3 modes: up to 6X faster	Program Memory Generally 50% less than the 8080A		7% less 30A
Non-maskable Interrupt	No	Yeş	Including all of the 8	060A's instruct	lons

For less than half of the program memory used by its predecessors the Z-80 can handle two to five times the throughput.

The microcomputer chipset is now out in the United States and we don't yet know when or how it will be available in Australia. Zilog Microcomputers are the American manufacturers; their address is 170 State Street, Los Altos, California, 94022, phone 415-941 5055.

Transducers in measurement and control

A series of articles dealing with all aspects of transducers was published in Electronics Today during 1972 and 1973, The series were written by ETI's special contributor, Dr Peter Sydenham M.E., Ph.D., F.I.I.C.A., M. Inst. M.C.

Ph.D., F.I.I.C.A., M. Inst. M.C. Continued requests from tertiary institution teachers, both in Australia and in Britain have resulted in the series being reprinted as an Inexpensive reference and teaching text. Research workers, hardware system designers, students in engineering and the sciences, scientific instrument manufacturers and their agents, and managerial level technical executives should find this extensive cover of value.

Profusely illustrated with several hundred diagrams and photographs, it explains how the commonly encountered measurement variables are converted into electrical signals in order to make records or achieve control. Each chapter contains a reading list: an index has been added.

Transducers in measurement and control is still available at \$4.50 post paid (in Australia) from Electronics Today International, 15-19 Boundary St, Rushcutters Bay, NSW.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

Dick Smith, of Dick Smith Electronics will be flying his Piper Twin engined Commanche Aircraft — REG VH-DIC, in the Australian Air Race from Perth to Adelaide, Melbourne and Sydney from October 20th to the 24th. He will be operating continuously on all 2 Metre Amateur Channels using an FDK Multi 7 feeding a ¼ wave whip. (call sign VK2ZIP).

Dick will be on the look out for all contacts and will QSL with an attractive 'Air Race' QSL Card. He will make an award for the contact with the longest communication distance (we hear one Amateur is setting up on Ayers Rock). Co-Pilot for the race will be

Co-Pilot for the race will be famous Australian Aviatrix, Nancy Bird-Walton. Route

Sanken Components

Autotronics has just appointed J.E.S. Electronic Components of 6 Shofer Rd, Blackburn, Vic. as their official Victorian distributor and stockist.

Low-cost calibrated oscilloscope

A new version of the popular BWD 504 single beam oscilloscope has been produced by BWD Electronics Pty Ltd. In addition to being calibrated and carrying a full 12 months warranty, it is claimed to have a low price tag for a quality instrument.

It has a full sizes 8 x 10 CRT,

AIR RACE ITINERARY VH-DIC. DICK SMITH ELECTRONICS

October 20th Start Perth – Norseman – Forest.

October 21st

Forest – Ceduna – Port Augusta – Adelaide

October 22nd

Adelaide – Camerai – Warnambool – Melbourne

October 24th

Melbourne – Narrandera – Parkes – Bathurst – Sydney

segments are as follows — if you are planning to travel to a remote mountain top write to Dick first and he will listen especially for you.

and features a DC to 6 MHz bandwidth, 10 mV to 50V/cm sensitivity, and a remarkable 5 Hz to 15 MHz automatic trigger for the 0.5u Sec to 0.1 Sec/cm time base. The X-Y operation is within 3 degrees from DC to 50 kHz. With a common line isolated to 400V DC, it is an excellent instrument for use by students and teachers, as well as experimenters, servicing and production work. The new version incorporates a beam rotation facility controlled by a rear panel preset potentiometer. This enables the trace to be accurately aligned to the precision graticule. Full technical details are described on a data sheet which is readily available from **BWD Electronics Pty Ltd.**, Miles Street, Mulgrave Vic. 3170, phone (03) 561-2888 or branch of-fices throughout Australia.

Design a contest and win a prize

For the Unitrex calculator contest this month we can't think of a suitably interesting puzzle to set, that is we couldn't until someone thought of getting you the reader to help. We will give the calculator offered by Unitrex as a prize to the reader who can think up a good idea for a contest. We don't want you to give us something you've seen in another magazine, we want you to enter something you have made up yourself. And it will have to be better than the ideas we have had in recent calculator contests or you won't stand a chance of winning the prize.

If you want a start we can suggest you try a mathematical puzzle based on an interesting numerical phenomenon. If you must send in quiz-type problems make sure they are interesting ... nobody is going to enter a contest if you ask them to do some boring problem from a school maths book (and certainly they won't if its a question from a school history book).

So, in summary, our main criterion is that the idea be interesting; at the same time it would be advantageous if it was within the resources of the average reader to attempt an answer, and if you want to be really clever make sure that if we eventually use It in the magazine it will make interesting reading both when posed as a question and when, in a subsequent issue, the answer is published.

Send your entries (to reach us by November 9th) to ETI/Unitrex Contest (October Issue), Modern Magazines, 15 Boundary Street, Rushcutters Bay, NSW 2011.

Permit number TC7578

Microprocessors and ETI

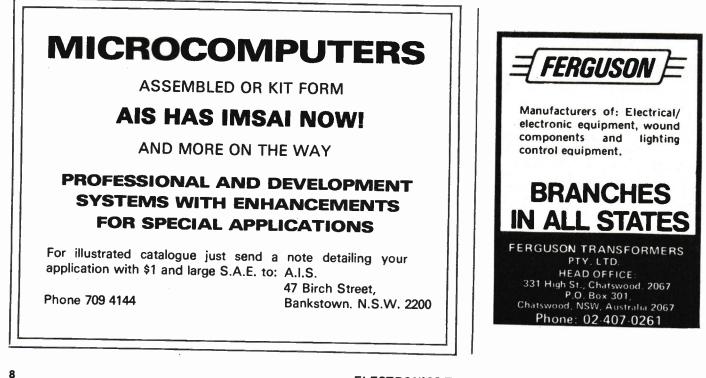
For the last three issues we have published introductory articles on microprocessors and now we announce the establishment of a regular section to be published in future ETIs to cover this new field. We will

Would you like to work on ETI?

We're currently seeking a youngish man or woman to help produce Electronics Today and associated publications.

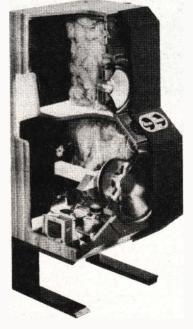
You must know a fair bit about electronics - and be able to write clear concise English. Previous journalistic experience would be useful but by no means essential.

Interested? Then write to or telephone Collyn Rivers as soon as possible.


print news, background information, reviews, and projects. This section will be edited by Kevin Barnes and each month there should be something for the amateur and something for the professional.

Siemens Evaluation Kits

Seimens in West Germany have announced two evaluation kits based on their SAB8080A microprocessor. The Sikit-N/8080 sells for about \$170 and contains an electrically programmable and eras-able 256-byte ROM. The other kit is the Slkit-DK8080 which sells for about \$360 and contains more ROM, RAM and interface facilities.


ERRATA

The NF Ltd model E-1011 function oscillator described in News Digest last month was credited with a distortion of 0.5 percent. This should have read 0.05 percent.

Each B & W speaker comes with its own written proof of superb performance:

B&W's reputation is based on producing clean natural sound without distortion, even at low volume. Each B&W speaker is tested in an Anechoic Chamber and issued with its own individual pen graph. You know exactly the performance of the speaker you are buying

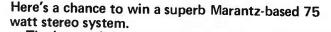
B&W DM6 Monitor A brand new design. A high powered dynamic loudspeaker with low colouration and very high transient performance.

B&W DM2A Monitor A more conventional design, utilising B&W research into acoustic line rear loading.. Brilliant clarity and lack of distortion.

Hear B & W Speakers at:

ALLANS MUSIC (AUST) LTD., 276 Collins Street, Melbourne, Vic. 3000. (03) 63-0451; ENCEL ELECTRONICS PTY' LTD. 431 Bridge Road, Richmond, Vic. 3121. (03) 42-3761; INSTROL HI-FI (VIC) PTY. LTD. 375 Lonsdale Street, Melbourne Vic. 3000. (03) 67-5831; SOUTHERN SOUND, 337 La Trobe Street, Melbourne. Vic. 3000. (03) 67-7869; SOUTHERN SOUND 963 Nepean Highway, Moorabbin, Vic. 3189. (03) 97-7245; TIVOL HI-FI, 91 Cotham Road, Kew, Vic. 3101. (03) 80-4956; E & B WHOLESALE, 172 Moorabool Street, Geelong, Vic. 3220. (052) 9-6616. THE GRAMOPHONE SHOP, Shop 151, Westfield Shopping Town, Parramatta, N.S.W. 2150. (02) 633-2846; INSTROL HI-FI PTY. LTD. 91a York Street, Sydney, N.S.W. 2000. (02) 29-4258; MILVERSON PTY. LTD. Warringah Mall, Brookvale, N.S.W. 2100. (02) 938-2205; MILVERSON PTY. LTD. 793 Pacific Highway, Chatswood, N.S.W. 2100. (02) 412-2122; RIVERSON PTY. LTD. 793 Pacific Highway, Chatswood, N.S.W. 2000. (02) 412-2122; RIVERSON PTY. LTD. 793 Pacific Highway, Chatswood, N.S.W. 2000. (02) 232-3718; WESTS (BURWOOD) PTY. LTD. 170 Burwood Road, Burwood, N.S.W. 2134. (02) 747-4444; PITMAN'S RADIO & T.V., 38 Baylis Street, Wagga, N.S.W. 2650. (069) 25-2155; JOHN GIPPS SOUND 12 Douglas Street, Milton, Cld. 4064. (07) 36-0080; PREMIER SOUND, Elphinstone Street, Rockhampton Nth, Cld. 4701. (079) 28-2701. BEL CANTO, 138 Liverpool Street, Hobart. Tas. 7000. (002) 34-2008. AUDIO DISTRIBUTORS, 10 Glyde Street, Mosman Park, W.A. 6012. (092) 31-5455. PACIFIC STEREO, Style Arcade, Manuka, A.C.T. 2603. (062) 95-0695; DURATONE, Altree Court, Phillip, A.C.T. 2606. (062) 82-1388. SOUND SPECTRUM, 33 Regents Arcade, Adelaide, S.A. 5000. DECIBEL, 345 North East Road, Hillcrest, S.A. 5086. (08) 61-1865; ERN SMITH HI-FI, 50 King William Street, Adelaide, S.A. 5000. (08) 21-6351; ALLANS MUSIC (AUST) PTY. LTD., 58 Gawler Place, Adelaide, S.A. 5000. (08) 223-5533.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976



B&W DM4 Monitor A speaker with large B&W Monitor characteristics; its performance surpasses speakers of much greater size.

B&W DM5 A speaker for small living areas. It has above average performance at moderate cost.

Sole Australian Agents Convoy Invernational Pty. Ltd. 4 Dowling Street, Woolloomooloo, 2011 Sydney, N.S.W. Tel: (02) 357-2444 387 George Street, Sydney, NSW. Tel: (02) 29-1364

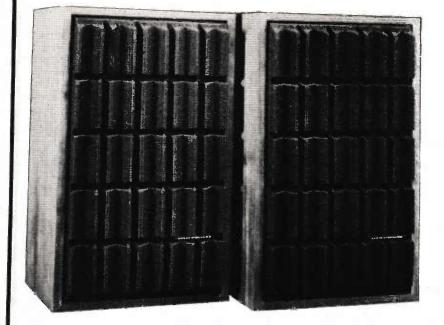
The heart of the system is Marantz' great 3200/140 pre-amp/power amp combination. Driving this is the Marantz 6200 belt drive servo-controlled fully automatic turntable — complete with an ADC Q36 cartridge. Loudspeakers are a pair of Marantz HD 66s.

Total value of this first prize is approximately \$1600.

SECOND PRIZE is a Marantz model 112 AM/FM tuner – value approximately \$300.

THIRD PRIZE is a dbx 117 noise reduction unit – value approximately \$200.

The contest consists of nine questions all carrying equal marks.


In the event of more than one all-correct entry being received, we will thoroughly mix the all-correct entries and draw them one by one from a barrel. The winning entries will then be in the order drawn.

Marantz HD 66 bookshelf speakers – handles up to 150 watts programme material. Frequency response 37 Hz to 20 kHz ± 3 dB. Driver are 10" woofer, 4%" mid-range and 1" dome tweeter. Recommended retail price \$498 pair. A unique feature of the HD66 is the Vari-Q Acoustic Plug; this converts the speaker from an acoustic suspension format to a bass reflex format when the plug is removed. It also increases bass efficiency.



RSYSTE

channel expander/compressore enhances dynamic range of records, tapes and FM broadcasts simultaneously reducing surface and background noise.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

-SUPER 9	SYSTEM T	NWINI	We would	d appreciate if you wo	ould also answer the following
			question	s:	
7 100 11 11 11 11			How man	ny gramophone record	ls do you buy each year?
7. What is the full ad	dress of your nearest Auri	ema dealer?		1-10	
				10-25	Ĵ
		*********		25-50	
				50 +	
your temper answ			lf your sy details (L	ystem cost more than Jse separate sheet plea	\$500 may we have brief se).
			Do you ir	ntend to upgrade any	of the following items this
9. Under average con	ditions what is the minimu		year?	and to upgrade any	or the following items this
in sound level that	the average listener can de	tect?		Amp	
0.0	1 dB			Speakers	YES/NO
0.1	dB				YES/NO
1.0	dB			Cartridge	YES/NO
1.5	dB			Turntable	YES/NO
				Cassette Deck	YES/NO
				Tape Deck	YES/NO
	ENTRY FORM	i r	001175		
I have read and and	ee to abide by the contest		CONTE	ST RULES	
published on these	Dages	rules	THIS C	ONTEST is open to all pe	rsons normally living in
	pages.	11	, tasti an	a event supprovees of M	odern Magazines and associated
Name		1			
			Today I	nternational 15 Rounder	Auriema Contest, Electronics
Address		i l			y St, Rushcutters Bay, NSW
		i 1			
1					
1	· · · · · · · · · · · · · · P/code				egram on the day the results with the winning answers will
1	·····P/code	******			
Permit No.			FIIOLO	OSTATS OF CLEARLY Writton o	opies of the state of the state
I chine No.					
				the person will be	accepted.
			Please pla	ease make sure you inclu e of your entry.	de your name and address on
AURIEMA AGENTS		L	cach pag	e or your entry.	
NSW & ACT	1				
	Dubb - Hi Fi				
Allied Music Systems,	Dubbo Hi-Fi, Dubbo,	Jock Leate,		Mironda LL: C:	0
Crows Nest.		Hurstville.		Miranda Hi-Fi, Gosford,	Sonarta Music Service, Concord.
Anno's Hi-Fi,	Electronic Parts, Sydney,	Leeton Record Cen	tre,		
Orange.		Leeton.		Miranda Hi-Fi, Bankstown.	Selsound, South Hurstville.
Arrow Electronics,	Goodwins Retrovision, Taree.	Macarthur Radio,		Miranda Hi-Fi.	
Sydney.		Katoomba,		Parramatta,	Springwood Hi-Fi,
Car Radio & Hi Fi,	Gramophone Shop, Parramatta.	Milversons,		Newcastle Hi-Fi.	Springwood.
Wagga Wagga.	rananatta,	Chatswood.		Newcastle.	Wests (Burwood), Burwood,
Ron Chapman Hi-Fi, Newcastle West.	Hornsby Hi-Fi, Waitara.	Miller & Chaney, Parkes,		Record Centre.	C. P. Walker,
Convoy Technocentre,	Hunter Valley Electronics,			Griffith.	Nowra.
Woolloomooloo.	Maitland.	Miranda Hi-Fi, Miranda Fair.		Riverina Hi-Fi, Brookvale.	Scotty Wallace
Douglas Hi-Fi,	Kibblers,	Miranda Hi-Fi.		Sonarta Hi-Fi.	Forbes.
Sydney.	Cowra.	Liverpool.		Wollongong.	Pacific Stereo, Manuka,
VICTORIA	Soundcraftsmen,				
Allans Music,	I SOUNdCraftsmen	Milton,	Mar	ckay Audio Centre,	TASMANIA
Melbourne.	North Caulfield		Iviac	skay Audio Centre.	
Belmont Stereo Systems,	North Caulfield.	Brisbane Agencies,	I Mac	kav.	Audio Services
	North Caulfield. Southern Sound.	Fortitude Valley.		skay.	Audio Services, Burnie.
Belmont.	North Caulfield. Southern Sound, Melbourne.	Fortitude Valley. Dixons Photographi	Reg	ckay. I Mills Stereo,	Burnie.
Belmont.	North Caulfield. Southern Sound, Melbourne. Southern Sound,	Fortitude Valley. Dixons Photographi Rockhampton.	ic, Reg Bur	skay. I Mills Stereo, anda.	
Belmont. Caminsound,	North Caulfield. Southern Sound, Melbourne. Southern Sound, Moorabbin.	Fortitude Valley. Dixons Photographi Rockhampton. Hi-Fi Shop.	ic, Reg Bur Targ	ckay. I Mills Stereo, anda. ga Electronics,	Burnie. Kingsway Audio, Launceston.
Belmont. Caminsound, Sale.	North Caulfield. Southern Sound, Melbourne. Southern Sound, Moorabbin. Tivoli Hi-Fi,	Fortitude Valley. Dixons Photographi Rockhampton.	ic, Reg Bur	ckay. I Mills Stereo, anda. ga Electronics,	Burnie. Kingsway Audio,
Belmont. Caminsound, Sale. Electronic Parts,	North Caulfield. Southern Sound, Melbourne. Southern Sound, Moorabbin. Tivoli Hi-Fi, Kew.	Fortitude Valley. Dixons Photographi Rockhampton. Hi-Fi Shop, Mooloolaba. Ian Jones,	ic, Reg Bur Targ Cair	skay. I Mills Stereo, anda. ga Electronics, rns.	Burnie. Kingsway Audio, Launceston. Quantam Electronics, Hobart.
Belmont. Caminsound, Sale. Electronic Parts, Melbourne.	North Caulfield. Southern Sound, Melbourne. Southern Sound, Moorabbin. Tivoli Hi-Fi, Kew. G. W. Williams,	Fortitude Valley. Dixons Photographi Rockhampton. Hi-Fi Shop, Mooloolaba.	ic, Reg Bur Tarç Cair	skay. 1 Mills Stereo, anda. ga Electronics, rns. JTH AUSTRALIA	Burnie. Kingsway Audio, Launceston. Quantam Electronics.
Belmont. Caminsound, Sale. Electronic Parts, Melbourne. Haiden Demaj,	North Caulfield. Southern Sound, Melbourne. Southern Sound, Moorabbin. Tivoli Hi-Fi, Kew.	Fortitude Valley. Dixons Photographi Rockhampton. Hi-Fi Shop, Mooloolaba. Ian Jones, Nambour. Ipswich Hi-Fi,	ic, Reg Bur Tarç Cair SOL Blac	:kay. 1 Mills Stereo, anda. ga Electronics, rns. JTH AUSTRALIA :kwood Sound Centre,	Burnie. Kingsway Audio, Launceston. Quantam Electronics, Hobart. United Electronics, Hobart.
Belmont. Caminsound, Sale. Electronic Parts, Melbourne. Haiden Demaj, Wangaratta. Lance & Yorke,	North Caulfield. Southern Sound, Melbourne. Southern Sound, Moorabbin. Tivoli Hi-Fi, Kew. G. W. Williams,	Fortitude Valley. Dixons Photographi Rockhampton. Hi-Fi Shop, Mooloolaba. Ian Jones, Nambour.	ic, Reg Bur Tarç Cair SOL Blac	skay. 1 Mills Stereo, anda. ga Electronics, rns. JTH AUSTRALIA	Burnie. Kingsway Audio, Launceston. Quantam Electronics, Hobart. United Electronics,

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

NEW ETI FEATURE

offering our existing advertisers free space each month to offer goods or services, substantially cheaper than normal. 'Substantially' begins at 15% -there's no lower limit!

This is an experimental feature. We're

In theory everyone wins. You buy things cheaper - advertisers sell more at zero expense - with luck we sell more ETIs.

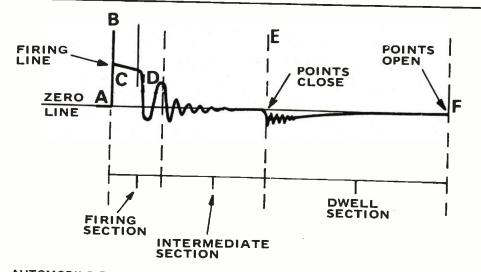
Offers expire Oct. 30, 1976 unless otherwise specified.

If it works we'll keep it as a regular feature.

Advertisers – ring Collyn Rivers on 33-4282 for details. (Companies not normally advertising may take space in this feature at our normal rate of \$70 per insertion).

PROJECTS FROM ETI **Normal price** \$2.00 Last few to clear \$1.00 (plus 40 cents

Electronics Today International, **15 Boundary Street,** Rushcutters Bay 2011.


ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

Phone 33-5850.

13

'Scope test your car

How to use your 'scope to check out a car's carburetion and ignition systems.

AUTOMOBILE ENGINE TUNING IS A grossly misused and misunderstood operation. To many it implies some esoteric knowledge or ability – of listening to an engine and somehow deducing that the ignition must be advanced – or the mixture strength richened a bit on the front carburettor.

In reality it consists almost entirely of ensuring that ignition and carburetion is adjusted to the vehicle manufacturer's specifications.

No more – no less.

But to do this it is virtually essential to use at least some basic instrumentation; a dwell meter, a tachometer, a good exhaust gas analyser — and preferably an ignition analyser.

Many car enthusiasts have at least a tacho/dwell meter — but few have access to an ignition analyser for such devices are costly indeed. Nevertheless if a few limitations are accepted virtually *any* standard oscilloscope can be used as an ignition analyser simply by making a couple of very simple capacitive probes — which can be as simple as clothes pegs and a few square inches of aluminium foil.

An ignition analyser displays waveforms from the primary or secondary side of the vehicle's ignition system. Surprisingly perhaps, this waveform provides information. not only about the ignition system in general but also about carburetion, and a number of mechanical conditions.

The analyser can do this because the voltage required to fire a petrol/air mixture in an engine is affected by many different variables including air/ fuel ratio, cylinder compression, ignition timing, ignition polarity, spark plug gap and condition etc, etc.

THE SECONDARY WAVEFORM

The simple waveform shown at the beginning of this article is a typical secondary waveform that is derived from the secondary (or high voltage) side of the ignition system. This waveform is the one most commonly used since phenomena occuring in the primary side of the system will be reflected through the coil windings and appear in the secondary pattern.

Point A: is the instant at which the contact points open thus causing the magnetic field to collapse through the coil's primary winding. A very high voltage is thus generated in the secondary winding and this continues to rise – until a spark jumps across the distributor rotor gap and the spark plug gap (point B). The voltage at which this occurs is known as the 'ionization' or the 'firing' voltage and may be anywhere between 5 kV and 15 kV depending on the factors outlined above.

Points C-D: after a very short time the

voltage drops substantially but the arc is maintained (point C). The subsequent section from point C to point D is known as the spark line and when viewed on a 'scope the amount by which this line slopes away from the horizontal is directly related to resistance in the plug and coil ht leads (ignition suppression). A slope of 30° or so is OK - if it's more than that then it's worth checking lead resistance with ohmeter. The total resistance an between the centre terminal of the coil and the centre electrode of the plug should not exceed about 20 k assuming the rotor gap is shorted out of course! Actual resistance is not critical but anything more than 30 k may cause problems. Resistance over 50 k almost certainly will.

Point D: the section immediately following the end of the spark line (point D) should be a series of diminishing oscillations. These should appear as our illustration. If there are no oscillations — or just or or two — then it's a safe bet that there's a shorted turn in the coil. It may not have broken down completely yet but it's a safe bet it shortly will. (See also below).

Point E: is where the contact breaker points close. It is essential that there is a gap between the last oscillation of the preceding section and point E for otherwise the diminishing coil energy will be fed into the now closed points thus preventing the coil re-building its magnetic field for the next cycle of ignition.

A great deal may be learnt by studying point E carefully, point misalignment, point bounce, burnt points etc may be spotted at this part of the waveform. The correct waveform at point E should be a short downward line followed by six or so diminishing oscillations.

Point F: magnetic energy will now build up in the coil until Point F. This is in effect the same point as our previous point A but in the next firing sequence. The section from points E to F is

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

ŧ

FIRING LINE INDICATIONS

known as the dwell section and should occupy roughly the proportion of the total waveform as shown in our main drawing. Dwell is adjusted by varying the contact breaker gap and should be set using a dwell meter.

SPECIFIC INDICATIONS

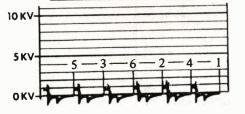
Firing waveforms should be observed with the engine warm and running at about 1000 rpm — that is about 400 rpm higher than normal tickover speed.

Check each section of each firing sequence slowly and carefully. The various figures shown in this article indicate how specific faults will show up.

FIRING LINE

All firing lines should be of roughly equal height. If any plug is 10-15% or more higher than the rest, connect a jumper lead to earth and short out at the plug terminal. If the firing line now decreases the fault lies within that cylinder — either a faulty plug or unusually weak mixture (probably caused by a leaking inlet manifold gasket). If the firing line does *not* decrease there is a partial open circuit in the associated plug lead or that lead is not making firm contact with the connector within the distributor cap.

If the firing lines are unequal on a multi-carburettored engine check to see if the lines which are higher correspond to those cylinders fed by one common carburettor. If so it is probable that the mixture from the carburettors is unbalanced. A further but less common fault that may be spotted this way is an eccentric distributor cap — the gap between rotor and distributor contacts being wider on one side than the other.

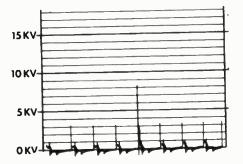

At some time during the check 'snap' the throttle wide open momentarily, meanwhile watching the firing lines. They should all rise by about the same amount. If one or more lines rise substantially higher than the others then there is an open circuit plug lead or resistor, a wide plug gap or badly deteriorated plug electrode.

One or more lines staying lower than normal indicates spark plug breakdown or insulation breakdown in the circuit concerned.

COIL OUTPUT AND INSULATION TEST

While the engine is running disconnect a plug lead and observe the firing pattern for that cylinder. The firing line should rise to about two to three times its previous level (to about 20 kV) and should extend below the base line by about half the upward distance.

If the firing line is short or inter-

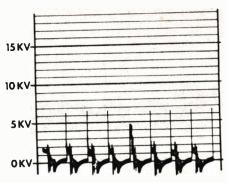


Normal pattern:

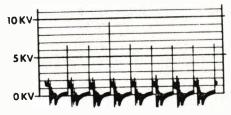
Note that the firing line for cyl. 1 appears at the extreme end of the trace. The remaining cylinders then appear in engine firing sequence.

Firing lines even but high: Excess plug gaps, rotor gap, break in coil ht lead, mixture too lean ignition retarded.

Firing line high on ONE cylinder: Break in plug lead, broken electrode in spark plug. To test short plug — if line drops, problem is within cylinder.



Firing lines uneven: Break in plug leads, worn plugs, burnt distributor cap contacts, uneven air/fuel mixture.



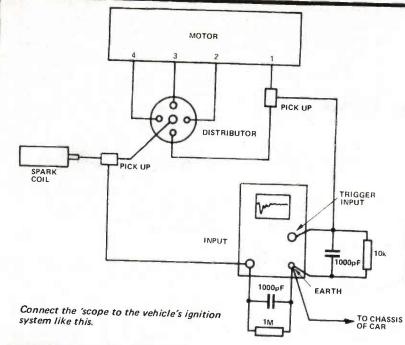
All lines should rise but remain even.

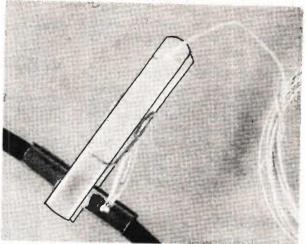
One line breaks up. Insulation break down – probably spark plug fouling. Extreme cases will show similar signal under normal steady running.

One line rises above rest. Wide plug gap, partial break in suppression resistor, plug lead etc.

CONTACT POINT INDICATIONS

Unusual point opening signal (note hash extreme right of picture) burnt or arcing points.


Spike on spark line. Point arcing caused by faulty capacitor.



Points bouncing probably caused by weak closing spring.

Points misaligned - or dirty.

A simple pick-off can be made by glueing short lengths of split metal tube to a clothes peg.

CONNECTING THE 'SCOPE

A motor vehicle's ignition system produces output voltages varying from 3 kV to 20 kV or more. These high voltages must be reduced to a workable level before coupling into an oscilloscope.

The simplest way of doing this is via a resistive voltage divider – however a capacitive divider will work equally well (we are dealing with ac signals) and is simpler to connect.

We can make one of the capacitors by wrapping a piece of Alfoil – about 50 mm long – around the required lead and connecting this foil to the scope. A more professional approach is to glue a short length of split tube to a clothespeg – as shown in the accompanying photograph. This will have a capacitance of about 1 pF – not much but ample for the massive signals we are sampling.

A second capacitor of about 1000 pF should be connected as shown. The capacitive divider thus formed divides the input signal by about 1000:1 thus reducing the input signal to a workable 3–20 volts. A 1 M resistor should be connected across the 1000 pF capacitor to provide a dc load.

The technique in use: Place the 1 pF capacitor over the main lead from the coil to the distributor and connect it to the 'Y' input of the scope.

If the scope has a trigger input this may be used to lock in the ignition signal. Just make up a second capacitive pick-up and place this around number 1 plug lead. Once again use a 1000 pF capacitor as a divider but bridge this capacitor with a 10 k resistor – not 1 M as previously. Start the motor and adjust the 'Y' gain and timebase

frequency to give four (or 6 or 8) complete firing sequences across the screen. The first complete pattern will be number 1 cylinder and the rest will follow in the engine firing order.

All waveforms may be superimposed by expanding the trace and triggering via the X input.

If the scope does not have a trigger input, synchronization is slightly harder to achieve. Number 1 cylinder may be identified simply by shorting out that cylinder momentarily.

When the scope is connected as described above, the ignition waveform will appear inverted relative to that seen on a commercially produced ignition analyser — and the waveforms shown in this article. It is surprisingly easy to adapt to an inverted picture, however if this is found to be a problem it can be remedied simply by coupling the signals into the scope via a simple 1:1 transformer. Details will vary from one scope to another but all that is basically needed is two coils of wire taped together. It may be necessary to reduce the 1000 pF capacitor/s to 470 pF. Just connect the secondary to give the correct picture.

If possible arrange to calibrate the scope's vertical axis so that the magnitude of the signals may be measured. This is best done simply by taking average indications from several vehicles and 'calibrating' by transferring data from the graphs in this article. The result may not be accurate but only a rough guide is required.

'Scope test your car

mittent — or if the lower section does not appear — then there is an insulation breakdown in the distributor cap, plug leads, rotor or coil.

COIL AND CAPACITOR

A series of diminishing oscillations should be observed at point D in the

waveform. If these do not appear, or are truncated, there is either a shorted or crossed turn in the coil — or the capacitor is breaking down.

BREAKER POINTS

Point E on the main waveform. The drawings accompanying this article

show various fault indications. Note however that faulty point action may also show up at the point opening position (A). Check breaker point action with the engine running at all speeds. Weak or incorrect breaker springs will cause the points to bounce – and this is readily seen on the scope pattern.

COIL

With very few exceptions – notably on some Citroens – the high voltage side of a vehicle's ignition system is designed to have positive earth – regardless of overall vehicle battery polarity.

The reason for this is that electrons are emitted more readily from a hot surface than a cold one so as a spark plug centre electrode always runs hundreds of degrees hotter than the side electrode the ignition system is devised so that a negative potential is applied to the centre electrode.

If this polarity is reversed, the plug will require an extra 5 kV or more to fire it — and that voltage may not be available from the coil under heavy load — or when running at light throttle at high speed (remember a weak mixture needs a higher voltage to ignite it than a rich one).

If you are checking polarity on a specialist ignition analyser then the polarity is correct if the pattern is as shown in the illustrations in this article. If you are checking it with a standard scope (with no inverting device) then the pattern should be upside down if polarity is correct. (See inset for full explanation).

Polarity is corrected simply by reversing the coil terminals. (Incorrect polarity is usually caused by a mechanic replacing a coil intended for a negative earth vehicle with a coil meant for a positive earth vehicle — or vice-versa. It may also, but less probably, be caused by an incorrectly manufactured coil, or less likely, by the vehicle's polarity being accidentally reversed by the battery being connected the wrong way round).

MIXTURE STRENGTH

This section is intended for the lucky man who has access to an exhaust gas analyser and tachometer as well as a scope.

If cylinder compression pressures are identical, plugs in good order and evenly gapped, and plug leads and distributor in good order — then any significant difference in firing line heights will almost certainly be caused by differing mixture strength from one cylinder to another.

The voltage required to fire a rich mixture is substantially less than for a weak mixture: for instance a 12:1 ratio may need 3 to 4 kV — whilst a 15:1

ratio may need 7 to 9 kV (typically). Thus even quite small differences in mixture strengths will be reflected quite dramatically in firing line height.

The only accurate way to adjust mixture strength is as follows:

Connect a tachometer to the engine and adjust slow running to 1000 rpm. Without looking at the gas analyser adjust mixture strengths so as to produce the highest tickover speed whilst maintaining the firing lines at an even height. If necessary reduce the tickover speed to keep it around 1000 rpm. Finally richen the mixture a shade until tickover speed drops by about 50 rpm.

Then and only then — look at the gas analyser. You should now have a reading somewhere between 14:1 and 15:1. If you haven't then there's something wrong with the carburetion system an air leak in the induction manifold: incorrect float chamber level: blocked slow running jet or something.

Never ever tune an engine by using a gas analyser alone — or in any other sequence than that spelled out above. If you do it's a certainty that sooner or later you're going to start with one fault and end up with two or more.

ŝ.

receptedesessessessessessessessesses B 2 P STOCK CLEARANCE N M M B M B **RANK AUSTRALIA ARE OFFERING FOR SALE** 19 M B THE FOLLOWING SUPERSEDED STOCK: B M 19 B P BB Electrolytic capacitors Plessey C100X-8 Wide range R 1.000 MFD. speakers. Look at the spec's!!! N B 180v working upright mounting. Power handling 20w RMS* Fundamental 19 M \$2.40 each plus tax and freight. residence 45Hz. Voice coil diameter 1". B 19 Impedance 8 ohms. Frequency response 19 Hurry - limited quantities only. 2222 33Hz – 20 KHz. 222 At the crazy price of \$10.00 each plus tax if RING THE SPARE applicable, and freight charges. Less 5% for PARTS DIVISION. 19 cartons of 10, limited quantity available. **RANK INDUSTRIES AUSTRALIA:** *in recommended enclosure. • SYDNEY: (02) 4065666 • CANBERRA: Power transformers fully 2221 (062) 952144 • NEWCASTLE: (049) 262466 B shielded E Core Pri. 240V. • MELBOURNE: (03) 62 0031 • BRISBANE: (07) 52 7333 Secondary, nominal 115v at minimum 1 amp 22 plus 1 x 6.3v at 1.2 amp. Suitable for use as • ADELAIDE: (08) 2122555 • PERTH: (092) 283933 19 step down transformer for 110v appliances. R P Price \$25.00 plus tax and freight. P P 19 BANK N CU97/76 AUSTRALIA 17 ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

WIN THIS BWD 504 6 MHz OSCILLOSCOPE!

Fill in the coupon below and send it to ETI/BWD contest, Modern Magazines, 15 Boundary Street, Rushcutters Bay, NSW 2011, to arrive by 1st November 1976. The winner will be the sender of the first correct entry drawn after that date.

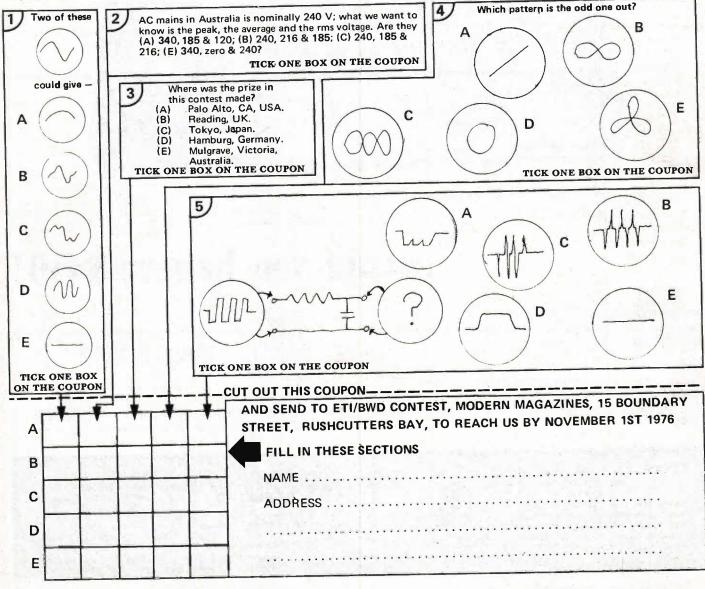
SPECIFICATIONS - BWD 504

80 x 100 mm graticule printed on light blue filter. VERTICAL AMPLIFIER: Sensitivity:

10 mV to 50/cm in 12 calibrated steps of 1,2,5,10 sequence.

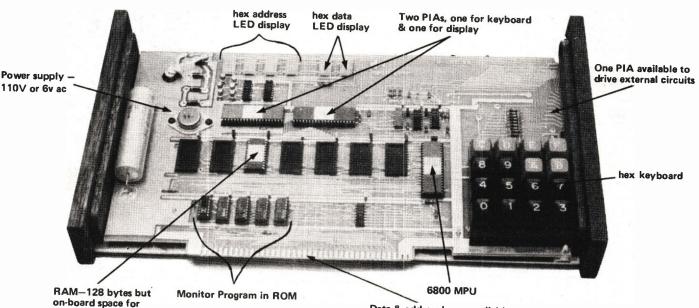
Bandwidth: dc to 6 MHz, -3 dB. Typically -6 dB at 10 MHz, Rise Time: 55 nanoseconds. Input Impedance: 1 M Ω & 30 pF. Calibration: Better than 5% including 10% line variation.

Max. Input: Fully protected to \pm 400 V from dc to 500 kHz at any attenuator setting.


TIME BASE: Range: 0.5 μ sec to 0.1 sec/ cm in 5 decade ranges plus additional 0.5 μ sec range. Calibration: <5% with vernier at Cal. Vernier: 12:1 continuous control between each range.

TRIGGERING: Auto-lock with no manual controls. Sensitivity: >1 cm deflection 10 Hz to >10 MHz typicall to >15 MHz at 2 cm.

LF, trigger extends below 5 Hz with 2 cm deflection. Trigger circuit locks to the mean value of the displayed waveform.


HORIZONTAL AMPLIFIER: Sensitivity: Approx, 500 mV to 50 V/cm continuously variable.

BANDWIDTH: dc to 1 MHz, -3 dB Input Impedance: 100 K Ω and 20 pF. X-Y Phase Shift: $\leq 3^{\circ}$ from dc to 50 kHz,

The M6800 Microprocessor with terminal and power supply for less than a thousand bucks?

The Micro 68 computer -

another 768 bytes

Data & address buses available for peripherals

...would you believe \$430!

Monitor Program -

Contains routines needed to load, inspect & change data in the RAM so programs can easily be written & edited.

Memory -

Plugging in 6810, 128-byte, RAM ICs expand the memory onboard to 768 words, but the full addressing capability of the M6800 (64K words) can be used utilising external memory cards.

Ideal for Teaching -

Learn to program the Motorola 6800 - 72 instructions, binary or decimal arithmetic; loading, storing, shifting or rotating data; conditional or unconditional branching, interrupt or stack manipulations.

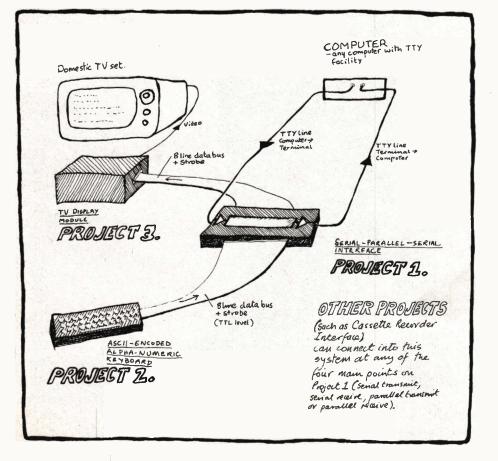
PIA interface -

The PIA universal interface is available to control external circuits, either as an input or an output device.

for more information contact

PEC ENGINEERING CO.

42 The Strand, CROYDON, N.S.W. 2132. P.O. Box 18, Strathfield, 2135. Cables: AMPEC Sydney. Telex AA27136. Ph: (02) 747-2731, 74-8063. MELBOURNE: Arlec Instruments Ph: (03) 569-6984.


MICROCOMPUTER TERMINAL

Here we release plans for three projects soon to be published in ETI. Together they make a computer terminal which can directly replace a teletype (as far as the computer is concerned).

IN THE LAST FEW WEEKS WE HAVE had quite a few enquiries from readers wanting to know what projects we have lined up in the microcomputing area, so we decided to publish our plans so you will know what to expect.

We feel that the most-wanted project at the moment is a terminal which looks like a teletype as far as the computer is concerned. This can be then used with an evaluation-board computer (using the monitor program to the full), a homemade computer with a teletype interface, or with a ready-built machine.

The approach we chose is illustrated in the sketch — we will use a domestic TV set for the display and an alphanumeric keyboard as an input device. The sketch also shows that we are planning to make the terminal in three parts. Each part we designed as a project in its own right using standard codes and levels at points of interconnection. This will enable readers to build only

Sketch of microcomputer terminal projects.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

the parts they require if they intend to use other equipment in their system. The modular design makes it easy to add other peripherals at a later stage (for example an ASCII printer could parallel or replace the TV display).

The method we have adopted, making a teletype substitute, is not the simplest way of using a TV display and an alphanumeric keyboard with any given microcomputer. It would be simpler to connect a display module directly to the data bus of the computer but individual designs would be needed for different microprocessors. Our terminal can be used with any microprocessor — we feel this is important for our first microcomputer project.

There are three projects we will publish:

1 Serial-Parallel Interface: This device will handle the TTY input and output lines and provide parallel lines for the data to be transmitted or received.

2 Keyboard: This project will enable you to buy a computer keyboard equipped only with switch contacts and furnish it with the electronics required for ASCII operation. The output will be capable of driving several TTL loads or connecting directly into the serial-parallel interface.

3 Display: This project will be designed with low-cost and availability of components as the main criteria. It will store characters as they arrive (coded in ASCII) on its parallel input bus and from its memory it will generate the video signals required to display these characters on the screen. Although intended for use with a microcomputer this project can be incorporated into other systems — for TV caption generating, for instance.

We will start publishing constructional details of our terminal projects as soon as possible.

How to put down the music without putting the music down.

If you're serious about what you record, you should be just as serious about what you record on. Which is why you should consider

BASF tape for your reel to reel. Or cassette deck. Or both. BASF tape and cassettes are made in Germany and come with an unconditional replacement warranty."

The warranty says a lot about the kind of quality reproduction you can expect from BASF. But you'd be wrong to think it's strictly for professionals. It's at home in the smallest reel to reel or cassette recorder. Ask for the BASF tape or cassette that suits your equipment best.

If you'd like a ready-made example of BASF quality, look for the range of BASF pre-recorded tapes and records. "Not applicable to pre-recorded tapes and records.

For the best in tape, you've got to spell it out. BASF ferrochroi

*BASF Aktiengesellschaft 6700 Ludwigshafen F

A BASF Hobby Box is packed with goodies. Splicer. Scissors. Tweezers. Marker. Screwdrivers. Leader tape. L-clips, and more. All you need to have a whole lot of fun and to keep the show on the

If cassettes are your bag, this is your Box.

road. And only \$12. There's also a Hobby Box for reel to reel buffs too. Sole Australian Distributors: Maurice Chapman & Co. Pty. Ltd., Hordern Place. Denison Street, Camperdown, N.S.W. 2050, tel. 5163366.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

PKB510.FPM.C

MICROCOMPUTERS FOR THE PROFESSIONAL

In the last couple of issues of ETI we have looked at the microprocessor IC and the evaluation kits that are available from the manufacturers. We have looked at these products from the point of view of the amateur with a limited budget. In this article Ed Schoell of National Semiconductor in Melbourne looks at what microprocessors have to offer the professional user with a specific application in mind. He goes beyond the 8-bit evaluation card and discusses 16-bit systems, development systems, assemblers, and training schools.

IN THE LAST YEAR OR SO, THE microprocessor, as a design tool for the electronic engineer, has become noticed. This is only the tip of the iceberg — in the next months and years its presence will be felt to a much larger extent. Most digital design engineers and technicians will find that the microprocessor offers them the design flexibility and the power of problem solution equivalent to the change from using individual resistors, capacitors and transistors (or valves!) to make a flip-flop to now using a DM7474 (and having a spare thrown in).

This article discusses some of the development aids available for microprocessor system design, how these are used, and how a typical system is put together.

THE FIRST STEP: Should I use a microprocessor?

As with most things in life, the answer is "it depends"! It depends on a lot of things.

The questions to be answered are:

1. Is my problem mathematical or logical in nature?

2. Do I have a variety of inputs and outputs to be examined and/or controlled?

3. Do I need to be able to vary the control and system parameters easily?

Changing a program is often a lot easier than carving up a printed circuit board. 4. Is it going to be more economical to use readily available microprocessor printed circuit cards, than "doing my own thing"? (Taking "off-the-shelf" cards saves having to do a lot of hardware development. Often, only a custom interface card is needed – the rest of the system uses standard module and custom software (program) stored in field-programmed PROMS.)

If a project is being rushed often a microprocessor approach allows the custom interface boards to be designed first, to interface to standard bus configurations, and to be checked out from a control panel and go to final production. The program writing can proceed at a more leisurely pace, and, as the programming of PROMs takes only a few minutes, a last minute change of program (or changes of mind by the customer!) can be accommodated relatively easily.

If a production run is anticipated, the first units can go out to the field using PROMs (reprogrammable if necessary), and minor changes can be made after field and salesman's comments likes/dislikes are evaluated.

Production can then proceed using factory programmed "fast turn around" PROMs (or ROMs) for added economy.

THE SECOND STEP: which one?

Of the range of microprocessors available, the chances are that there's more than one (from different manufacturers) that could do the job. There are two areas which must be analysed:

1. Microprocessor Characteristics:

(a) Word width. Obviously taking a 12, 14 or 16-bit data word from a counter or A/D connector and working on it with an 8-bit microprocessor adds a lot to program complexity. Similarly the complexity of the maths greatly increases as multiple-word arithmetic becomes necessary. The 16-bit PACE microprocessor gives the mathematical capability in single-word operations and so makes handling of 16-bit data easy.

On the other hand if 8-bits or less of data are used, (implying accuracy of the order of 1%) an 8-bit microprocessor is probably appropriate.

(b) Logic power of instruction set. If the microprocessor is to be used to handle inputs and outputs logically (i.e. to simulate relay "trees", etc) the power and flexibility of the logic instructions must be examined. Logic AND, OR, and EXCLUSIVE-OR operations are needed here, preferably directly from input devices. The National Semiconductor SC/MP microprocessor has a particularly powerful set of these instructions, being capable

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

23

MICROCOMPUTERS FOR THE PROFESSIONAL

of doing AND, OR, X-OR, as well as ADD, COMPLEMENT-and-ADD and DECIMAL ADD from any of 65,536 peripheral addresses, memory addresses or from the extension register to the 8-bit accumulator. Data can then be output from this accumulator to control relays, etc, using the "STORE" instruction.

(c) Microprocessor speed. Obviously speed is applications oriented although often speed comparisons are made blindly, ignoring the factors like efficiency of instruction sets (how much work the machine actually does in an instruction) and interface ease. However it is often possible to make an intelligent decision as to how to interface a particular peripheral:

For example, if we want to talk to a communications line (for remote data transmission) we can have the microprocessor doing this "bit serial", at say 1200 Baud. This means the microprocessor has to look at the line 1200 times a second to take data in, and then form an 8-bit data word and store it again. Alternatively, by adding a \$5 device (a UART) to the system the microprocessor only has to look at the data 120 times per second and the UART does the fast work. The microprocessor speed requirement is reduced by a factor of 10,

In a lot of industrial applications, where heaters, pumps etc are being controlled and relays are the interface elements speed is a "red herring" – times are measured in seconds or minutes and a slower microprocessor is quite adequate.

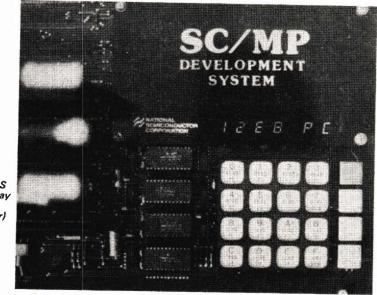
2. Back-up facilities:

The other thing to be considered when choosing a microprocessor is who you are buying it from. Obviously a company with technical backup and support in Australia is a better bet than an "agency" type organization. If the vendors are doing development work of their own in Australia, so much the better — they are then going to have experienced engineers familiar with programming, interfacing and use of prototype systems.

Training schools

National is at the moment setting up a training school in microprocessor applications. Courses will be run in

Fig. 1. SC/MP Low Cost Development System (LCDS). Application cards (CPU, RAM, ROM) are plugged into the mother-board.


Melbourne and Sydney, starting in October '76 and these will give design engineers a speedy start with "hands on" experience with prototype systems.

Classes will cover program writing, and use of prototyping systems to develop and debug software, and also will give experience in interfacing and talking to a range of peripheral devices via ptototyping cards.

"LCDS" low cost development system

Figure 1 shows a development system intended as a low-cost design tool for system development. Custom interface cards are connected in parallel with the standard application cards shown. A cable connection point is provided to allow ribbon cable to connect into an external equipment rack. Because con-

Fig. 2. Control panel of the LCDS system. The display shows the PC (Program Counter) = 12E8 in hexadecimal.

trol panel is provided, no teletype is needed, so this system provides a convenient field servicing tool.

This panel (see Fig. 2) allows examination and alteration of all internal SC/MP registers and memory. As peripherals are addressed as memory, all I/O devices can also be examined or altered from the panel (i.e. relays, motors, etc, can be directly commanded for easy checkout).

As well as the keyboard, the LCDS includes a teletype interface. Program checkout can also be done from the teletype (or CRT) keyboard, and program breakpoints are included.

Paper tape "loading" and "programsave" routines are part of the teletype package. The paper tape output from a cross assembler can be loaded, the program checked out, and then saved on paper tape. This tape can be used to program a MM5204Q PROM.

True program single-stepping, instruction-by-instruction, is available from either panel or teletype. This is a feature really appreciated during program checkout.

NIBL – National Industrial **BASIC Language**

In the near future a ROM card will be available to plug into an LCDS system containing a sub-set of the popular BASIC language. This will allow the programmes to use commands like LET, INPUT, GOSUB, and the mathematical operations ADD, SUBTRACT, MULTIPLY, and DIVIDE, with brackets. So algebraic statements can be used to describe mathematical program steps.

To allow for applications in a "realworld" environment, a powerful "@" indirect statement can precede numbers or variables which allows the BASIC program to very simply read data from peripherals and write data to peripherals. This will be the first time BASIC has been available in a small system of this type.

Assemblers

Discussion so far has assumed the program has been hand-coded, i.e. an instruction like "ADD" has been converted to "FO", in hexadecimal, and "JUMP IF POSITIVE" (JP) converted to "94" in hexadecimal (as prescribed in the instruction set).

Serious program development really needs program assembly capability; this saves a lot of the programmer's time in code-conversion and address calculation.

The printout shows how a typical assembler does this translation.

This assembly was done on an IMP16 microprocessor system (as shown in Fig. 3) in National's Application Lab.

NSC SC/MP ASSEMB	LER					
MEMORY =0:16				υ.		
NEXT ASSEMBLY *.ASM DI0200,D00	205					
END PASS 1						
1	•TITLE D	SPLAY	SC/MP 8 DIGIT	DISPLAY PROG		
2	;	-	UTINE STORES THE	NEXT		
3	;DECODEL	DIGIT	IN THE APPROPRIA	TE		
5	SEVEN S	EGMENT	DISPLAY.			
6	;THE DIG	ITS HAV	E BEEN DECODED B AND ARE STORED	IN MEMORY		
7 8	:LOCATIO	INS POIN	TED TO BY P2 AND) THE		
9	CORREST	ONDING	OFFSET "DIGSEL".			
10	THE PRO	DGRAM IS	ENTERED AS A SU BROUTINE POINTER	BRUUIIME		
11	JUSING 1	PI AS 50	BROUTINE POINTE:			
13 0200	•	•=0200		PROGRAM STARTS 200		
14	; DEFINI			1		
15 0001 16 0002	P1 P2	2 2	1 2			
17 0003		2	3			
18	;		11(FDL 0C)	LOCATION OF PANEL		
19 0200 C408 20 0202 37	DSPLAY:	LDI XPAH	H(FPLOC) P3	; P3 POINTS TO PANEL		
21 0203 C400	••	LDI	0	CLEAR P3 LOW		
22 0205 33	•	XPAL	P3 DIGSEL(P2)	;DIGSEL IS OFFSET		
23 0206 BA00 24 0208 9C08		DLD JNZ	NEXT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
25 020A C401		LDI	1	;SET UP DIGDRV		
26 020C CA01		ST	DIGDRV(P2)	RESET DIGSEL		
27 020E C408 28 0210 CA00		LDI ST	S DIGSEL(P2)	, RESET DIGSED		
29 0212 01	NEXT:	XAE		;DIGSEL TO E		
30 0213 0280		LD	-128(P2)	; DIGIT INTO AC ; SAVE DIGIT IN E		
31 0215 01 32 0216 C201		XAÈ LD	DIGDRV(P2)	; DIGDEV TO AC		
33 0218 1E		RR		ROTATE TO NEXT DIGIT		
34 0219 CA01		ST	DIGDRV(P2)	;SAVE NEW VALUE ;DIGDRV TO E		
35 021B 01 36 021C CB80		XAE ST	-128(P3)·	AC TO NEXT DIGIT		
37 021E 3D		XPPC	1	; RETURN FROM SUBR.		
38	•END					
NO ERROR LIN END PASS 4	ES					
SOURCE CHECK	SUM=07CB					
OBJECT CHEC						
	FIRST INPUT SECTOR HEX - 0200 FINAL INPUT SECTOR HEX - 0203					
	FIRST OBJECT SECTOR HEX - 0205 FINAL OBJECT SECTOR HEX - 0205					

Sample program assembly: An SC/MP program assembled on the system shown in Fig. 3. The source program is called from disc (DI0200) and the object data (binary) is put onto disc (D00205).

The actual program is the one which takes a decoded digit at a prescribed memory location and displays it on a seven-segment display.

The first column is the line number, the second column is the memory address (starting at location 0200 hex), the third column is the translated code, and the other columns are input codes and labels for lines and comments.

For example, line 19 shows that locations 0200 and 0201 contain C4 and 08. These are the equivalent codes for the instruction LD1 and the immediate data calculated from H (FPLOC).

Cross Assemblers are also available on the GE Timesharing network, and some Australian systems.

PROM Programming

Object tapes from assemblers, tape dumped out of the LCDS system or data on disc can be programmed directly into PROMs of the MM5204Q type. This erasable device is programmed in under 30 seconds for 4096 bits of data. Figure 3 shows the PROM card installed in a system.

PACE 16-Bit System Prototyping

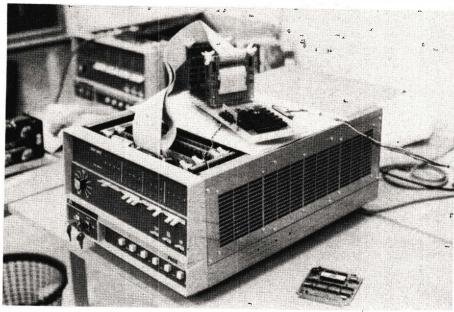
So far most of our discussion has been on the SC/MP system. A similar-range of applications cards is available for the PACE system. Figure 4 shows a series of these cards in an application system being checked out with the PACE prototyping system.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

ł

MICROCOMPUTERS FOR THE PROFESSIONAL

Fig. 3. IMP16 microprocessor development system. The system includes dual floppy disc backing store and PROM programmer.


In this photo, the CPU card is replaced by an umbilical cable so that system check out can be done from the large control panel.

Programs can be loaded, dumped, single stepped from the control panel and system peripherals. Both IMP and PACE systems can be used for program assembly for SC/MP – cross-assemblers are available for both systems.

Fig. 4. PACE prototyping system. This shows use of umbilical cable replacing the CPU card.

With these two there is scarcely a radio service job you couldn't handle

The Philips PM 6456 FM stereo signal generator and PM 5324 RF generator are fully compatible instruments for use in workshop or on call. They offer precision and versatility at a remarkably competitive price. With them you are equipped to diagnose practically every problem ever likely to be encountered in AM, FM and stereo servicing. Check these features for yourself:-

Philips PM 6456 FM stereo generator

- complete stereo signal
- separate L and R signals
- Internal LF modulation: 1 and 5 kHz
- external modulation facility
- X-tal controlled pilot
- adjustable amplitude of multiplex signal
- tunable 100 MHz RF signal

Philips PM 5324 RF signal generator

- frequency range 100 kHz-110 MHz
- X-tal calibration
- special band spread ranges
- high frequency stability
- electronically stabilised output
- calibrated output attenuator
- facilities for internal and external AM and FM
- wobbulating with sweep width control
- simultaneous AM and FM
- big easy to read illuminated dial with LEDs to read range

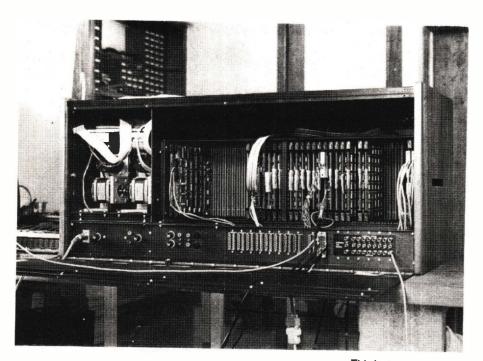
Test and Measuring Instruments

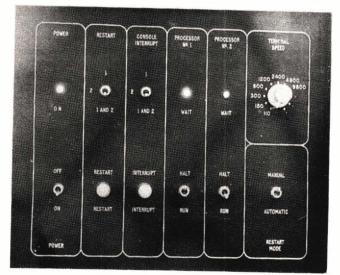
And servicing TV too... ... with the PM 5334 sweep generator

This highly versatile TV sweep generator allows quick and easy alignment of colour or monochrome receivers in the workshop or on call. Its excellent

specification makes it ideal for service and small production departments, as well as development and educational establishments.

Features include: • radio and TV service equipment 8 frequency ranges, 3 MHz-860 MHz • sweep frequency adjustable, 8-50 Hz • one variable and three fixed markers • signal frequency is highly accurate and thermally stable • stabilised output into 75Ω load • built-in floating bias source If you would like further information send in this coupon:


Philips Scientific and Industrial Equipment-	l
Test & Measuring Instruments:	
P.O. Box 119, North Ryde, 2113.	
Please send me further information on:	1
PM 6456 FM stereo generator	
PM 5324 RF signal generator	
PM 5334 TV sweep generator	1
NAME	
ADDRESS	
TEL	1
	_


PHILIPS

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

MULTIPROCESSOR

Economies of scale enable microprocessors to be made quite cheaply but there are some jobs that are just too much for them to handle — when used conventionally. Then somebody thought of using two or more microprocessors to handle one problem . . .

This is the back view of the prototype Qasar synthesiser with about two-thirds of the boards in place. The boards for the dual-processor computer are at the left near the two floppy disc drives. The basic computer system used in this synthesiser consists of one dual processor board, one processor control board (with up to 68 K of ROM), three 16 K RAM boards, one video display board, one lightpen board and two floppy disc boards,

Left: The processor control panel consists only of a few switches and indicators

THE LATEST DEVELOPMENTS IN microprocessor systems are in using two or more processors with shared memory. We know of one American microcomputer manufacturer offering a 'shared memory' board but surprisingly we discovered a couple of people working with dual processors here in Australia. Information Electronics in Canberra sell a terminal using two processors (one to handle the screen and keyboard and one to handle the line) and in Sydney we discovered a guy who has developed a general-purpose dualprocessor computer soon to be available from Fairlight Instruments Pty. Ltd. This computer was designed by one of Australia's leading microcomputer consultants, Tony Furse, and we went out to visit him to see what his system could do.

The world's best music synthesiser?

The dual-processor computer was originally developed to control an electronic music synthesiser. But surely one microprocessor would be enough, especially when current synthesisers don't have any sort of digital control? But wait 'til you hear what the machine can do - there's a polyphonic keyboard, eight 'instruments' can be synthesised at one time, there's a VDU screen which can be used to graphically display all sorts of information to the operator, there's up to eight terminals which can be used to synthesise sounds using programs in the firmware of the machine (for example, key in 80 80 80 80 80 80 . . . and watch the VDU display. You get a sine wave of amplitude 80 (I've no idea what units) followed by its 1st harmonic at the same amplitude, then the 2nd, 3rd, 4th ... at the prescribed amplitudes. As you watch the

synthesis of the waveform you hear the sound out of the speakers). Obviously it would take a complete article to describe the system but you can see it is pretty complicated – too complicated for one microprocessor to handle with the response demanded by musicians in a live performance.

So dual processors take over where single processors leave off?

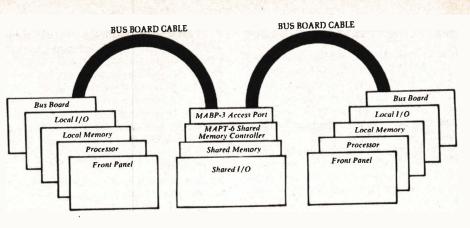
No, even in a simple application (capable of single-processor control) there are advantages offered by the dualprocessor.

What advantages of the dual processor?

Put simply there are three advantages: **1. Speed** due to one processor being

optimised for dealing with the outside world. 2. Programs are simpler because inter-

2. Programs are simpler bootasts which normally divert the processor temporarily can be handled by one processor optimised for this task, enabling the other to be expert at number-crunching. The second processor is more organised because it doesn't have to worry about things coming in from the outside world. Its data is pre-processed by the first processor and arranged in an optimal way for the second processor. The two processors are more than twice as good as one (it is something like four times as fast as a single processor for some jobs).


3. Debugging and testing. Testing of a program can be made quite simple because you can make the program go round and round without doing any output. You don't have to worry about output routines because you can use the debugging firmware package in the second processor to read the data tables that the first one uses.

Normally (with a single processor) if you are trying a program and nothing comes out you don't know if it's your output routine or what.

With a dual-processor system you can use the second processor to change the numbers in the program being run by the first processor. Then you can see the effect immediately.

Would the advantages of using two processors be similar to the advantages of using a 16-bit processor rather than an 8-bit type?

No. Two eight-bit processors don't provide a simple substitute for a 16-bit processor if it's 16-bit arithmetic or logic you want, provided of course that your choice of 16-bit processor is such that it does a 16-bit operation in the same time as an 8-bit processor does a similar 8-bit operation. It turns out however that many 16-bit microprocessors are quite a bit slower than the 6800, in fact this difference can

MULTIPROCESSORS AND SHARED MEMORY

The IMSAI multiprocessor system uses a different concept to that of the Qasar system described in the text, it is a method of interconnecting two or more of the IMSAI 8080 computers so that they share memory. Not only do you have two processors but have have two of everything else, plus the extra boards in the centre of the diagram. Each 8080 processor has its own memory, which may be anything up to 64K minus the amount of shared memory. The Shared Memory Access Port and Shared Memory Controller boards available can link up to six computers.

be such that one 6800 even though it must execute upwards of twice as many instructions for a given 16-bit function still produces the 16-bit result faster.

One other problem one encounters regularly is a need for 24-bit arithmetic. To give the one part in a million precision needed in these applications to the 8-bit processor this problem is merely a matter of triple precision arithmetic, but to the 16-bit processor one would usually be tempted to go to 32-bit precision to avoid programming complication. However this may be very wasteful of memory space if arrays of 32-bit data must be maintained. Once again this 8-bit processor tends to win against the current 16-bit opposition, this time on two counts: speed for a given operation and memory efficiency.

One other interesting aspect of the 8-bit versus 16-bit debate is the fact that generally a large part of all information to or from the outside world is in 8-bit bytes. Some 16-bit microprocessors are quite ugly when it comes to processing bytes and text and unfortunately byte processing constitutes something like 60% to 80% of the programme of human engineered interactive systems.

Can the two processors communicate?

On the computer there is an interface which enables the two processors to interrupt each other, but this doesn't happen often: only when there is a whole table of new data.

The processors have a second way of talking to each other – through memory locations. Periodically they can look up certain "mailbox" locations to see if any flags have been left there by the other processor. Another advantage is that you can run an editor and an assembler simultaneously. Two completely independent programs can be run simultaneously.

Interface

Having the second processor means you can have peripheral interfaces that are a lot less sophisticated.

One could use most of the resources or the second processor in avoiding complicated hardware to interface to various peripheral devices, this technique, often termed "bit banging", uses the processor to control various individual input and output bit patterns normally controlled by external gates, flip flops, one shots etc. For example, a floppy disk normally needs around 60 to 150 TTL ICs for its microcomputer interface using up 50% of the processing resources of the second processor and providing a serial synchronous communications adaptor chip and several other TTL MSI chips. One gains a floppy disk interface which is controlled by software operating the second processor. The cost in hardware terms is possibly as little as 25% of the cost of the alternative, not to mention the extra flexibility gained.

If you take out the second processor chip, you have a port capable of gulping information out of the memory at a million bytes a second. And this has continuous access.

How do you keep the processors from colliding?

They are never operating at the same instant, they run out of phase. The memory is twice as fast as either of them needs: one processor does its cycle and before it gets round to doing the next the other processor has been

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

L

MULTIPROCESSOR

in. With the 6800 all the activity occurs within half of the cycle so these devices are particularly suited to interleaving.

In a scientific application would you use one processor to do the numbercrunching and one to handle look-up tables?

Providing you can organise the program in such a way that you've got something for the first processor to do when the other processor is doing some crunching, then its advantageous. But if you've got to halt everything while the other processor goes off then you might as well just use one. Quite often you can organise a program so you can pass a multiplication or a division over to the second processor and the first can go with something else.

Is the dual processor only for people who know about microprocessors already, or does it offer advantages to the beginner?

The advantage for the guy who doesn't know so much about microprocessors is that he doesn't have to diddle about with input-output routines to try out programs. Once he knows the two processors behave identically he can load his program under the control of one with the other switched off, then he can start it running which immediately takes all the time of that first processor. Then he can use the second processor to get at the program while it is running. He can change numbers and things and see the immediate effects.

Quite often normal single processor debugging techniques make it very difficult to debug programs in which time critical closed loop control of some device or peripheral is a feature; in such programs data is read from the device processed and new control information is then output in order to keep the device under control. Use of program breakpoints or instruction tracing results in interference with the integrity or the control loop and of course under such circumstances the data gained in this manner may at best be misleading.

Use of the second processor in such applications allows inspection and modification of data without any interference to the loop integrity and of course allows far more effective debugging since loop overload recovery and other exotic s may be simply tested.

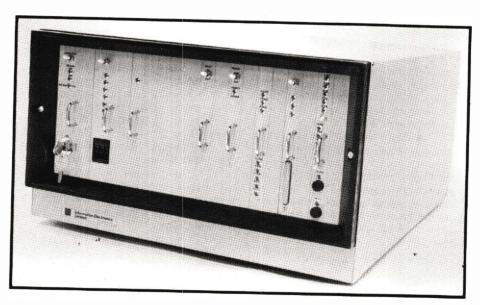
In practice, if you're handling a lot of peripherals, you use one processor to deal with the outside world (8 terminals, a graphics display, disc storage, etc in the case of the synthesiser). This is then the peripheral controller processor. It queues up work for itself to do and then does it. The other processor is free to get on with the business of crunching numbers and handling its very high-priority tasks. 30 In the case of the synthesiser both processors are handling interrupts at four levels, and the response is critical – its got to service an interrupt within a few fractions of a millisecond, because there's something you will hear if it doesn't. It is impossible to have a single processor handling all that load and handling other devices like floppy discs and displays and all the other keyboards.

So dual processors are ideal for systems where there are an unusually high number of peripherals and interrupts.

Yes, it helps in getting a large amount of information into a system and it makes the job of writing a real-time executive very simple (because you've got something which is totally optimal to collecting information from the outside world).

What about the typical business system, where say an accountant would have a terminal for interrogating a computer undertaking stock control?

This is where you come into a very simple way of doing things, one processor can be working away doing a little batch job, leaving the second processor available for someone to come in and interrogate files of the memory.


But in that application speed is not important, so one processor could handle it?

It's the question of the sophistication of the software that's important: it is quite complicated to make a one-processor system do two things at once. With the dual system: you just start two different programs off at two different places in in the memory. It's like having two different computers but with the added advantage that they share common storage devices. With two computers it can be quite a job getting them to use common storage.

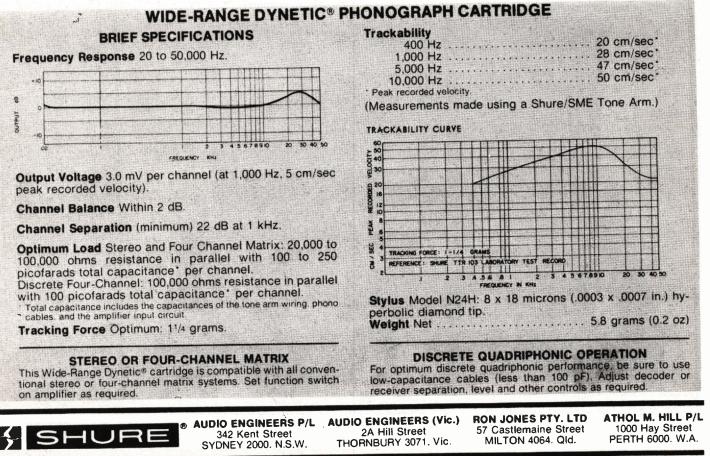
What other applications can you suggest?

If you've got a lot of file searches the dual system can be an efficient way of handling this: one processor can search and prepare data for the second one to start processing. This is very advantageous, especially when you are dealing with things like floppy discs, where there's quite a bit of time involved in setting up the transfer and finding out where you are going to get the information, looking up the index on the disc and finding where the file is and putting it in a buffer. The dual system gets rid of the need for one of the processors to wait; you can create a smooth loop flow for it if you use a bit of nous in writing the program.

Another obvious application of the dual processor is of course that of providing for the first time at a low cost a tool for the educator or "computer ham" to study the software and programming systems; the trend in the computer industry seems to be toward multiprocessors, however it is a select few who know anything much about such things. I would suggest that there is enough work required in this area to keep several universities in PhD students for the next few years.

The IE 180 microprocessor system from Information Electronics is aimed at the data communications and process control markets. It is based on the Intel 8080 processor but can incorporate two other processors, one for fast functions like moving memory blocks and one for doing complex scientific calculations.

The company also uses the multiprocessor concept in a Visual Display Unit, the IE 139. Two Intel 8080s are used as follows: One microprocessor is dedicated to line handling and communication, permitting line data rates up to 9600 baud. The second microprocessor controls the display functions and manipulation of data within the unit. The microprocessors have access to a common central dual port memory and interprocessor buffer thus making their actions time-independent. In addition, each microprocessor can address up to 4K of Read Only Memory for the firmware control program.


We call it "2+4": a totally different concept in a phono cartridge that combines Shure's traditional pre-eminence in stereo and state-of-the-art quad technology. It's the first such cartridge that doesn't sacrifice stereo for quad capability!

For quad enthusiasts, both matrix and discrete, this M24H Cartridge represents the distillation of the most advanced quadriphonic technology — PLUS new Shure advancements, such as the lowest effective stylus mass (0.39 mg.) available in quadriphony, and a new hyperbolic stylus tip for improved groove contact.

Each of these dimensions in hi-fi performance would be a best seller in its own right, but with "2+4" synergism, the M24H will be the blockbuster the hi-fi enthusiast has been waiting for.

The M24H does not compete with the V-15 Type III or M95 Cartridge. The M24H is for those who want excellent stereo and quad without having to change cartridges every time they change records.

FEW CARTRIDGES AVAILABLE TODAY CAN OFFER THIS COMBINATION OF STEREO SUPERIORITY AND QUAD CAPABILITY.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

AE107/FP 31

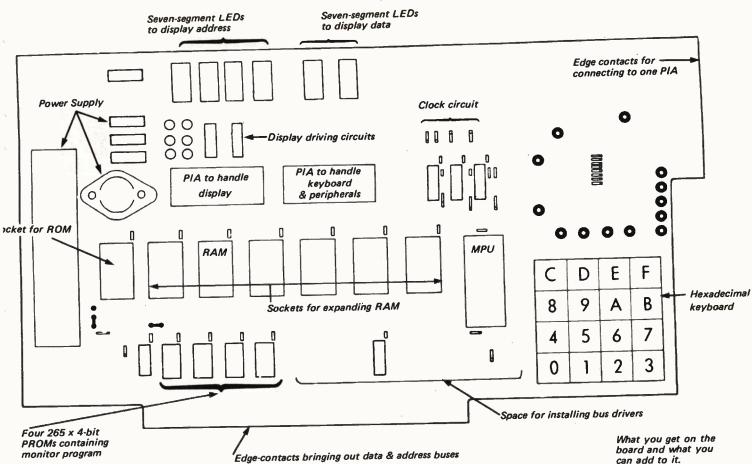
Computer on a board

This basic microcomputer with its own hex terminal is readily available in Australia for \$430. It comes ready assembled so the beginner with no knowledge of electronics can start directly learning how to program.

IN THE MAY ISSUE OF ETI WE HAD an advertisement for this computer, an advertisement which took us a little by surprise. We were surprised to find that anyone in Australia was importing microcomputers for the educational/ hobby market, and especially pleased that the Micro 68 was a complete


computer with its terminal build-in for less than \$500.

This article results from the importer, Ampec Engineering Co, lending ETI one of these to play with.


The M6800 microprocessor

Last month's ETI looked briefly at the capabilities of the 6800: this processor

(with its 6 registers, 72 instructions and seven address modes) is one of the most versatile and is the best-documented of the 8-bit types. The monitor program used in the Micro 68 is not the same as the one used by Motorola in their evaluation kits, but the full capabilities of the M6800 can be used as the data and address buses are available at an

The complete computer comes on one pcb. Other pcbs can be added later when it comes to expanding the system.

edge of the board. This, however, would require additional electronics for some of the facilities because the Micro 68 cannot (unmodified) handle serial inputs or outputs.

RAM

The computer comes with six sockets for the 6810 RAM chips, but comes with only one of these plugged in. This means you initially get 128 words of RAM which, at a cost of \$6.40 per 128 words, can be expanded to 768 words on the pcb. Using more boards the full 64K addressing capability can be utilised. There is also space on the board to buffer the memory lines.

ROM

Four 256 x 4-bit PROMs hold the 512 word monitor program, 'John-Bug'. On Wotorola evaluation-kit ROM "MIK BUG", available from suppliers for \$33. MIKBUG overcomes the limitations of the simple John-Bug program and allows you to interface to a teletype and a cassette recorder (although you will need a \$149 adaptor to do this).

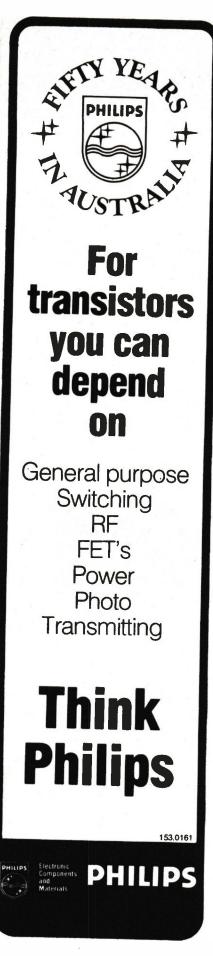
The John-Bug monitor program

This handles interface to the display and keyboard and allows the operator to write, load, inspect, edit and execute his own programs. The top eight keys are used to enable eight commands of the monitor program when the computer is in an 'expect command' mode; at other times they represent hexadecimal numbers. Pressing both 4 and 0 at any time will reset the computer.

These are the command keys and the commands:

- EXAMINE command; the E aives pressing E002A will display 002A XX, where XX is the data at location 002A.
- F gives the FORWARD command; continuing from the previous example pressing F will display 002B YY, where YY is the data the next address, 002B. Repeated pressing of the F key will step through successive addresses.
- B gives the BACK command; this decrements the displayed address by one digit so the data stored there can be examined.
- gives the CHANGE command; this enables the operator to change the data at the address being displayed.

can add to it.


- A is the AUTO command; if you enter A followed by an address you can load a large block of data or program into successive memory locations starting from that address, the addresses will increment automatically so only the data has to be keyed in.
- D is the DO command; enter D followed by the starting address of a program and that program will be executed.
- gives you the RTI (return from interrupt) command; this lets you handle interrupts from the keyboard.
- 9 is the LOAD command; this lets you load the RAM from an external device via the PIA edge connections.

Subroutines & programs

The programmer can call on the subroutines of the monitor program. These enable 8-bit patterns to be displayed as 7-segment configurations, 4-bit patterns to be displayed as hex characters and depressed keys to load data.

The manual contains a listing of the monitor program (although we did find a couple of mistakes in it) which provides a useful model for programs you may wish to write yourself.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

Computer on a board

The manual also contains a couple of simple programs to get you started. One program automatically scans consecutive address locations and displays the address and data, automatically incrementing at 1 second intervals. The other program loads data into the first 41 locations of RAM and from those produces a 41-character message which moves across the LEDs in a ticker-tape fashion. The published program gives data for a ... HELLO CAN I HELP YOU? message. We were soon able to write our own messages for this program (the lit/unlit status of the eight elements of the 7-segment display is translated to 0s and 1s in an 8-bit byte, and this is then converted to two hex characters for entry via the keyboard). It is, however, difficult to get recognisable representations of alpha characters like W, M, K, etc, using 7-segment displays.

The simple 41-character message program takes up all the available programming space of the Micro 68 as supplied. The program (including the message) takes up 81 locations ... this is all that is left to the programmer out of the 128 byte RAM.

The PIAs

One PIA is used to handle the display and the other is used for the keyboard and peripherals. The LOAD command uses the PIA and the edge connector to load data from a peripheral into consecutive memory locations. The PIA, however, can be configured to act as an input or an output.

The manual

If you want a very simple introduction to microcomputers the manual is OK for an hour or so. The complete manual is 63 pages and apart from the monitor program listing and the two programs mentioned there is little else: a circuit diagram, brief instructions and a few diagrams. But there would have been little point in the makers' duplicating the stacks of Motorola material on the 6800. This literature is absolutely necessary to any programming on the Micro 68 and any owner must buy it.

Still, the complexity of the Motorola manuals can be a little overpowering and the Micro 68 manual makes it all

look fairly simple. In fact the best feature of the Micro 68 system is that it makes microcomputers so simple: you don't need to build up any pcbs, you don't need to connect anything to the computer, the display and keyboard are easy to understand and you can copy a program from the manual and get it running without needing any prior knowledge of computing. And the hands-on experience will teach you more quickly than just reading ETI.

Problems

The first problem is the power supply. The computer comes with an American $8.5 \vee$, 1.5 A, ac mains adaptor which has to be plugged into a 110 V mains supply. If you can't manage that then there is an easy solution, replace the transformer with a 240 V-8.5 V type.

The next problem is getting more RAM; at the time we borrowed the Micro 68 there was a general shortage of 6810s but the suppliers of the Micro 68 say they have lots in stock. I have already mentioned the brevity of the manual, but think I should mention it again under the 'problems' heading.

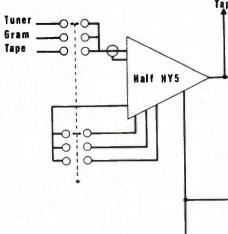
For the length of time that we had the computer it's limitations didn't develop into problems, but I'm sure they would eventually do so. No hard copy and no easy means of storing programs makes programming tedious when things start to get complicated. But more peripherals are available from Ampec, for those who can afford them. Like an expansion cabinet with power supplies and sockets for RAM cards and floppy-discs. And there's a dot-matrix 40-column, 80-character printer for \$520.

Micro 68:

Manufactured by Electronic Product Associates, Inc. San Diego.

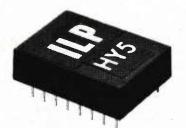
Australian Agents:

Ampec Engineering Co., 42 The Strand, Croydon, N.S.W. 2132. P.O. Box 18, Strathfield, 2135. Phone: (02) 747-2731, (02) 74-8063.


Price \$430.

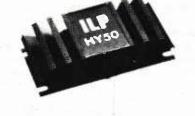
SHEER SIMPLICITY!

I.L.P


Ċ

Q

Fuse HY50 Half HY5 L.S TREBLE BALANCE VOLUME Stereo.Mono switch -¥ PSU50 ٥v


Mono electrical circuit diagram with interconnections for stereo shown.

The HY5 is a complete mono hybrid preamplifier, ideally suited for both mono and stereo applications. Internally the device consists of two high quality amplifiers—the first contains frequency equalisation and gain correction, while the second caters for tone control and balance.

TECHNICAL SPECIFICATION

inputs	
Magnetic Pick-up	3mV.RIAA
Ceramic Pick-up	30 m V
Microphone	10 m V
Tuner	100mV
Auxillary	3-100m∨
Input impedance	47kΩ at 1kHz.
Outputs	
Tape	100mV
Main output Odb (0.775 volts RMS)
Active Tone Controls	
Treble ±12db at	10kHz
Bass ± 12db at	100Hz
Distortion	0.05% at 1kHz
Signal/Noise Ratio	68db
	40 db on most
Ordiner	sensitive input
Supply Voltage	+16-25 volts.
PRICE \$16.06 P&P.	\$0.30
	TWO YEA

The HY50 is a complete solid state hybrid Hi-Fi amplifier incorporating its own high conductivity heatsink hermetically sealed in black epoxy resin. Only five connections are provided: Input, output, power lines and earth.

TECHNICAL SPECIFICATION Output Power 25 watts RMS into 8Ω Load Impedance $4-16\Omega$ Input Sensitivity Odb (0.775 volts RMS)

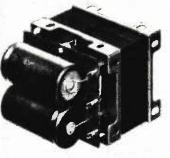
Input Impedance 47kΩ Distortion Less than 0.1% at 25 watts

typically 0.05% Signal/Noise Ratio Better than 75db Frequency Response 10Hz-50kHz 1 3db Supply Voltage 1 25 volts Size 105 x 50 x 25 mm.

PRICE \$20.27 P&P \$0.40

P&P \$2.00 FOR 1 COMPLETE SET OF HY5 + HY50 + PSU50

ARS GUARANTEE ON ALL OUR PRODUCTS


K. D. FISHER & CO. P. O. Box 34, Nailsworth, S.A. 5083. Telephone 269-2544.

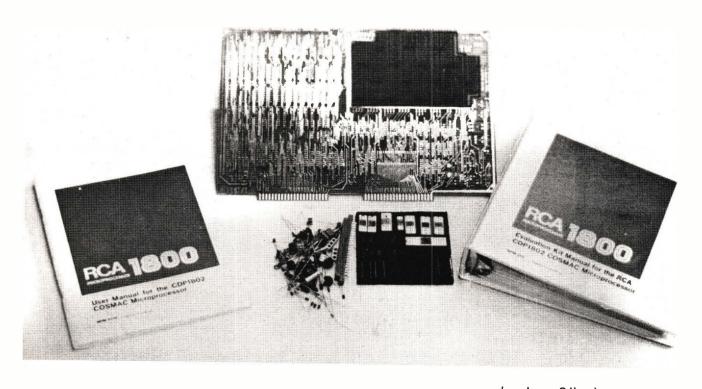
Total Purchase Price_ 1 Enclose Cheque Destal Orders Money Order D

Name & Address_

Please Supply.

Signature_

The PSU50 incorporated a specially designed transformer and can be used for either mono or stereo systems.


TECHNICAL SPECIFICATIONS Output voltage 50 volts (25-0-25) 210-240 volts Input voltage L.70, D.90, H.60 mm. Size PRICE \$20.41 P&P \$2.00

Microprocessors

KIT SUMMARY

Last month we looked at four evaluation kits available from the manufacturers of common microprocessors. We complete the survey this month by looking at two more kits and listing other microprocessors that are available.

RAM

ROM

The evaluation kits tor the RCA 1802 microprocessor chips are only just beginning to arrive in Australia and unfortunately we were unable to obtain one to try out. This was disappointing because the 1802 is made utilising CMOS and has features that make it different from the other processors so far examined.

AWA were able to show us the set of manuals that come with the 1802 COSMAC evaluation kit and from these we have been able to list the kit's main teatures.

RCA CDP 185020 EVALUATION KIT

Microprocessor RCA CDP 1802 CD Word Size 8-bits Technology CMOS Max. Memory 65,536 bytes (a 16 bit address bus multi-

plexed over 8 lines) Kit comes with 256 bytes with room on the pc board to expand it to 4096 bytes. Comes with a 512 byte ROM containing the monitor program. This ROM is mask-programmed and cannot be reprogrammed. There is space on the board for another 512-byte ROM and provision to configure 1K of RAM to behave like a ROM. **Monitor Program** Called UT4, 512 bytes in length and it expects to communicate to a terminal in ASCII code via a teletype RS232 interface.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

No. of Instructions 91 I/O On

One 8-bit output port and one 8-bit input port. The output port is a static output, that is, once data has been sent there by the microprocessor it remains latched until a new 8-bit word arrives. Unique to the 1802 kit is an 8-line output strobe. Under control of the microprocessor this strobe can be used to select output devices or operate switches.

DOCUMENTATION

Comes in the form of two soft cover manuals and a large 3 ring binder.

The User's Manual: (115 pages) appears to give a quite detailed description of the microprocessor. Forty-six pages are used in the explanation of the instruction set, 20 pages on programming techniques and 18 pages on interfacing other ICs to the 1802 and on timing diagrams. My overall view of this manual was that it contained a lot of essential information and has to be read by any 1802 user.

The Evaluation Kit Manual: Comes in the 3 ring binder and is grouped into five sections:

Section 1. -29 pages on how to assemble the kit. Included is a checkout list and a troubleshooting guide if by some chance something does go wrong. The assembly instructions

SIGNETICS

are very detailed and much use is made of overlays to show component placement.

Section 2. — a 30 page description of how the evaluation kits circuits work.

Section 3. -23 pages on how to use the monitor program, complete with examples.

Section 4. – complete set of data sheets on all ICs used in the kit.

Section 5. – application notes on clock generator, I/O ports, memory and software.

Cosmac Resident Software Manual: Is a 73-page run-down on the 1802 symbolic assembly language, and the rules for using it. This is essential reading for commercial users who can afford the extra memory and terminal and have another computer capable of running a cross assembler program.

Power Supply

Nominally 5V at 800 mA. Note, however, that being a CMOS device the 1802 microprocessor (or certain versions) will run on voltages between 3 to 12 volts.

COMMENTS: Of interest particularly to those who won't be using a terminal, the 1802 evaluation board has LEDs to display the state of the data and address bus. It also has single step circuitry. This allows the operator to execute one instruction at a time and it means that half the work of building an operator's front panel has already been done.

CONTROL PROCESS	Clock – Maximum memory – RAM –	Board supplied with a crystal oscillator 32,768 bytes. The PC1001 board comes complete with 1024 bytes of read-write memory. Expansion of memory must be off- board and to help the control and data bus signals are available at an edge connector.	1
ADDRESS BUFFERS ADDRESS BUFFERS ADDRES	ROM — Monitor Program —	Has a total capacity of 1024 bytes and is made up with eight 256 x 4 bipolar programmable ROMs. These ROMs have been preprogrammed with the monitor program by blowing fusable links and can't be reprogrammed with new data. The ROMs are mounted in IC sockets and can be easily replaced with new ones containing other programs. Called Pipbug and is 1024 bytes long. It has been written to be driven from a terminal via a teletyper or RS232	
SIGNETICS PC1001 PROTOTYPING CARD Microprocessor chip – 2650 8 bit Technology – NMOS	Command Types —	 interface, and it expects ASCII code. (1) Display the contents of a memory location and change it if need be. (2) Punch a paper tape copy of memory on the terminal. (3) Load memory from a paper tape copy. (4) 'Go to' command to transfer con- trol from the Pipbug program to the users program in ROM. (5) To set break points in the user's program to force control back to 	
FUENTERNATIONAL - OCTORED 1076			27

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

ţ

KIT SUMMARY

Pipbug. The user has the option of setting one or two breakpoints in his program.

Number of Instructions -

(6) To clear or automatically remove breakpoints from the program. 39 instructions, but counting the different addressing modes this gives 75 instructions (note: with the other evaluation kits we only gave the basic number - for example, the 72 instructions of the 6800 became 232 when different modes are considered),

Number of Addressing [Mailtonian Science Modes -D.M.A. -

them). Yes, the 2650 can disconnect itself from the data and address bus for direct memory access for you to

Up to 8 (depends how you define

connect an operator's front panel.

1/0

PC1001 has 16 latched output ports, organised into two groups of eight. One other output is available if you don't use the TTY. For input there are also 16 ports organised as two groups of eight. One other input is also available if you are not using the TTY. All these ports are designed for TTL signals. As well, available at the edge connector is the address bus, and an inverted data bus. These signals have been buffered by an IC on the PC board and are capable of driving more than the one TTL load that the other evaluation boards are limited to. Power Supply -+5.0 volts at 2.0 amps +15.0 volts) at 50 milliamps Available as a No, but Philips do a kit based on the 2650 - see comments. kit –

DOCUMENTATION:

With the sample PC1001 we received a 2680 introductory manual, a Pipbug Application Note and a 15 page 2650 Evaluation PC board level system (PC1001) manual. This documentation proved enough to get the thing going and to write a simple program but was rather less than the other manufacturers had supplied. A quick phone call to Philips revealed that much more was available in the form of a BM1000 users Manual for \$32 and a 2650 manual for \$5 and that these had not been supplied to us because they thought we already had copies.

If you want more information about the different systems offered, get hold of the 2650 Introductory Brochure and Short Form Catalogue as this has guite detailed information on each of the systems offered by Philips. These catalogues should be available at most Philips distributors.

COMMENTS: The PC1001 is supplied in an assembled form so all it took to get it going was to hook up the power supply and teletype leads. This ended up taking more time than expected because we didn't have a suitable edge connector. A polite letter that arrived with the evaluation board revealed that Philips were also having trouble obtaining edge connectors, but we found a way around the problem and the PM1001 soon had the teletype humming.

Operating Pipbug proved very easy. In fact the Pipbug program must rate as just about the easiest to use of all the monitor programs so far tested.

At around the \$400 mark, the PC1001 is expensive compared to the other kits tested, so what can it offer to entice you to buy it? To the home constructor I think these things are worth noticing:

It comes with 1024 bytes of ROM, compared with most others' 256 words, all signal and control lines are buffered and are available at an edge connector, the ROMs can be easily replaced with PROMs that can be programmed at home with a simple fuse blower and it is already assembled so there is no chance of an expensive mistake because of an assembly error.

For those who will not be using a teletype terminal and want a cheaper system there is the KT9000 prototype kit for around \$156. It comes with the 2650, 512 words of RAM, 512 words of unprogrammed ROM, two 8-bit bidirectional I/O ports, and some bus drivers for buffering and a user's manual. Note that no pc board is included and the actual constructional method is left to you.

If you want a pc board then there's the KTG500 kit at \$190 or assembled as the KT1500 at around \$245. Briefly you get the 2650 microprocessor chip, 512 bytes of RAM, 1024 bytes of ROM programmed with the monitor program Pipbug, two 8-bit I/O ports and buffers on the data, address and control lines. The pc board also has some unused area drilled out with plated-through holes to take unconnected IC sockets.

OTHER MICROPROCESSORS

Here are some more microprocessors which didn't get mentioned in the Kit Summary. Note, too, that there are other kits available for the microprocessors that were mentioned.

MOSTEK 5065	a PMOS eight-bit microprocessor.	
NATIONAL IMP 8	a PMOS eight-bit processor which can address 64 K of memory.	
TEXAS INSTRU- MENTS TMS8080	this is a locally-available second-source of the NMOS Untel 8080.	
AMI \$6800	a second-source of the Motorola 6800.	
MOS TECH- NOLOGY 6502	an eight-bit NMOS microprocessor.	
ROCKWELL PPS8	an eight-bit PMOS microprocessor which can address 12 K of memory.	
INTERSIL IM6100	a CMOS microprocessor with 12-bit word length and capability of addressing 32 K of memory.	
Next month we will be giving names and addresses of companies handling these and other microcomputer products.		

FROM "ROCK" TO "RACHMANINOFF" WHATEVER YOUR CHOICE IN MUSIC FOR THE MOST PLEASING RESULTS SELECT FROM THE LARGE VALUE PACKED RANGE OF SYSTEMS.

0000

The SYMPHONIC MKIV.

FM/AM STEREO TUNER AMPLIFIER MODEL PRO 1007 Output 30 watts RMS each channel into 8 ohms load. Harmonic Distortion 0.5%. Frequency response 20 Hz to 40,000 Hz.

BELT DRIVE TURNTABLE MODEL BDP 100

Elliptical Stylus. Synchronous motor. Anti skating and lateral balance. Auto Cut/Auto Return. Oil damped cueing. Spring loaded detachable injection moulded lid.

CD 4910 CASSETTE DECK

Auto stop on all functions. High density permaloy heads. CrO2 Tape selector for bias and equalizing.

CS661 SPEAKER SYSTEMS

10" 3 way Speaker System. 3 way crossover net work. 8 ohms impedance. 30 watts capacity.

RAMBLER "The Best Thing That

••

Audio

ems

Has Happened to Music." See and hear the Rambler range of

sound equipment at your Rambler dealer now and compare the outstanding performance and value.

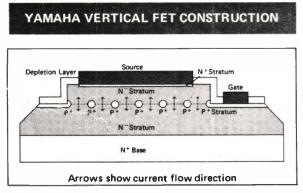
Distributed and serviced throughout Australia by Sun Electric Co. Pty. Ltd. Melbourne, Sydney, Brisbane, Perth, Adelaide, Hobart and Canberra.

MR239

Yamaha B-1 Vertical FET Power Amplifier

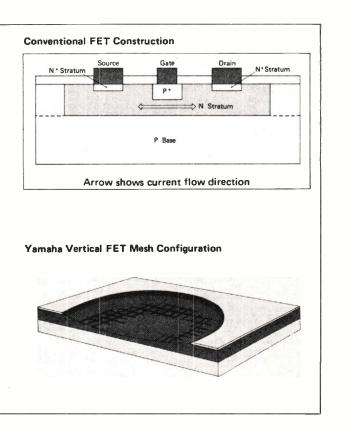
THERE IS A UNIVERSAL NEED, said Nietzsche, to exercise some kind of power, or to create for one's self the appearance of some power...

Some followed Nietzsche rather more closely than they might, but amongst his less militant disciples are a growing number of hi-fi amplifier manufacturers. Crown, Phase Linear, Marantz, Dynaco, Ampzilla and many others have each produced amplifiers with outputs such that a chassis dynamometer might fittingly replace our dummy resistive loads.


All are good offering tremendous value in terms of dollars per watt and all are capable of generating truly magnificent sound levels with very low levels of distortion.

We suspect the motive to be Nietzschian – or at least a strong desire for each manufacturer to upstage his competitor by producing the ultimate amplifier – but whatever the motivation the results are remarkably good!

Conventional power output transistors produce a fairly high level of distortion as a result the non-linearity of their transfer characteristics. In fact transistor manufacturers have been searching for many years for a solid state device which would have characteristics more nearly equivalent to the hitherto ubiquitous valve.


Professor J. Nishizawa's development of the field effect transistor provided the break-through that had long been sought. The characteristics of these FET s, when compared with the conventional bipolar transistor, are firstly the elimination of carrier storage effects, reducing switching or notch distortion when used in Class AB or B power stages, and extremely rapid rise and decay times. High order harmonic distortion is dramatically reduced because of the squareness of the transfer characteristics and the power drive requirements are extremely low.


Unlike bipolar transistors, when the temperature rises the quiescent current decreases and so the big bugbear of bipolar transistors, thermal runaway, is very conveniently avoided. When placed in a power output stage of a power amplifier this provides the opportunity to develop extremely low open loop

As the vertical FET illustration below shows, the source, gate and drain are aligned vertically, permitting much higher power capacity. Each element of the mesh is, in effect, equivalent to an independent FET; a single Yamaha vertical FET contains tens of thousands of such elements.

The mesh itself measures $5 \cdot 10\mu$ across. To assure highest possible drain-source and drain-gate breakdown voltage, impurity concentration is reduced to a level far below any previous semiconductors, through a special epitaxial layer formation method.

Yamaha B-1 amplifier with UC-1 control unit.

distortion and, in theory, almost the ultimate in power amplification characteristics.

The B-1 Power Amplifier is a braggart's delight! It's bigger, heavier, more powerful (within limits) and has better performance than any other power amplifier in its class that we have ever tested. It also has many most valuable features that are not commonly encountered.

The B-1 unit is a big ventilated black box on which are mounted a power ON/OFF switch, two speaker level controls and three LED s indicating the operation of the overload protection, the state of the thermal overlaod protection and power ON/OFF.

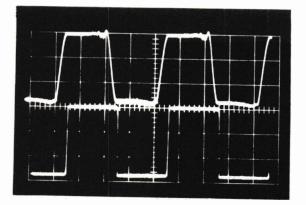
These controls are set in an anodised aluminium panel which is readily removeable to enable it to be interchanged with a Basic Amp Controller UC-1 which includes two large peak level meters with the unusually wide dynamic range of -50 dB to +5 dB.

These are also calibrated in terms of watts into an 8 ohm load; i.e., a range of up to 0.01 W to 300 W. This unit allows the connection of any one or more of up to five pairs of stereo speakers each with its own pair of individual pre-set level controls, the load terminals for which already exist on the rear panel of the main amplifier.

Main amplifier features include completely separate power supplies for left and right channels and a third power supply for the relay control functions. These are activated via a relay from the front panel power switch such that when the power is switched on the speaker protection muting circuit operates to disconnect the speaker loads until the amplifier voltage conditions have stabilised.

There are two separate protection

MEASURED PERFORMANCE OF YAMAHA B-1 POWER


AMPLIFIER – SERIAL NO. 2869

circuits whose operation is indicated on

the front panel. These are, firstly, thermal protection – designed to cut off the power supply if there is any danger in any circuit elements rising to a temperature exceeding 100° C: simultaneously, the speaker protection circuit will be activated cutting off the sound.

	demae no. 2000
Frequency Response:	-0.4 dB at 10 Hz and 122 kHz -3.0 dB at 2.3 Hz and 122 kHz*
Power at Clipping Point: (Both channels driven)	210 watts (8 Ω 1 kHz) \sim 222 watts (4 Ω 1 kHz)
Power Bandwidth:	5 Hz: 144 W 8 Ω 0.13% THD 50 kHz: 105 W 8 Ω 0.3% THD
Total Harmonic Distortion: (Both channels driven)	100 Hz 0.03% 100 W 8 Ω 1 kHz <<0.01% 6.3 kHz 0.07%
	100 Hz <0.03% 1 W 8 Ω 1 kHz <0.03% 6.3 kHz 0.04%
Noise:	-99 dB re max. power i.e. 0.46 mV (= .026 μ W 8 Ω)
Hum	—106 dB (A) " " —126 dB " "
Sensitivity:	60 mV input gives 1 watt (8 Ω)
Input Impedance: Output Impedance:	92 k Ω at 1 kHz 0.08 Ω at 1 kHz
*Max measurable frequency	with test gear used.

Yamaha B-1 Vertical FET Power Amplifier

This circuit is self re-setting when the internal temperature returns to a safe level. A second protection circuit operates on overloads resulting from three distinct conditions. Firstly, the speakers are disconnected if a dc level exceeding ±2 volts is detected at the out output terminals. Secondly, the muting circuit already mentioned is activated immediately following power turn-on to eliminate loudspeaker thumps and thirdly, the power supply is disconnected whenever an abnormal voltage or current is detected in the output circuitry. This provides amongst other things protection against short circuits on the output or loads of less than 4 ohm impedance. This feature may preclude the amplifier being used with some 4 ohm speakers - the impedance of which falls to well below 4 ohms at some frequencies.

A rumble filter with a 12 dB per octave filter (below 10 Hz) protects the loudspeakers from low frequency transients. The control switch for this filter is at the back of the unit.

MEASURED PERFORMANCE

Our past experience with Yamaha products has been that the manufacturer's specification is generally bettered. The Yamaha B-1 was no exception. It has a frequency response which was +0 - 0.4 dB from 10 Hz to 122 kHz, a straight line on a level recording. The manufacturer's power ratings were easily exceeded, both with 8 ohm and 4 ohm loads, being 210 watts into an 8 ohm and 220 watts into 4 ohm with both channels driven. The power bandwidth was 5 Hz to 50 kHz – precisely as stated by the manufacturer.

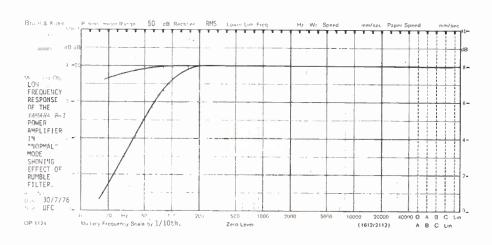
Distortion is very low indeed - over most of the frequency and power output range the unit introduced no increase in distortion beyond the inherent distortion of our measuring system.

Yamaha conservatively state that at one watt output, the distortion at 1 kHz is 0.02% — and 0.03% at 20 kHz. Our findings indicated that under those conditions the distortion was respectively less than 0.03% and less than 0.04%respectively. At 100 W output the distortion was very much less than 0.01% (being typically less than 0.005%) and at 6.3 kHz it was a precise 0.07%.

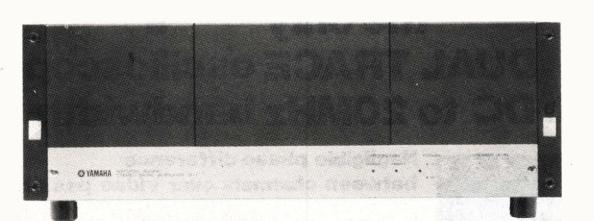
Until recently it was generally believed that ultra-low distortion levels were irrelevant. It is certainly true that few people can hear the slightest difference between an amplifier producing say 0.01% total harmonic distortion and another producing distortion even ten times as great.

Nevertheless there is increasing evidence that basic design improvements such as those incorporated in the Yamaha B-1 amplifier result in audible improvements – even though these improvements are not necessarily measurable by standard steady-state test methods.

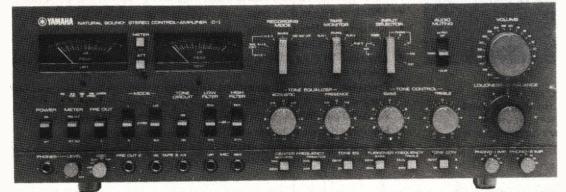
Noise was found to be $-99 \, dB$ with respect to maximum output or, if you prefer it, less than half a millivolt at the output terminals. Hum was an extraordinarily low $-126 \, dB$ with respect to maximum power output.


SUMMARY

As hard as we tried we could in no way fault the performance of this unit, except lamely to say that when we picked it up we found it too heavy (it weighs 37 kg) and rather expensive – close to \$2,000 with the UC-1.


Currently research shows that amplifiers offering higher linearity with lower levels of inverse feedback offer very good transient performance.

We think, but cannot prove, that the subjective performance of this unit is better than other amplifiers using conventional bipolar transistors but must honestly say that we have not positively proven it so, on the basis of instrumental measurements.


Let it suffice to say that our subjective evaluation leads us to believe that the performance that this amplifier produced was the cleanest that we believe we have ever heard up to this time.

Why this spectacular Yamaha amplification system is worth every cent of its audacious price.

You don't pay this much money for any amplifier without very good reasons. Here are some of them: **Power amplifier:** Laboratory-standard unit with spectacular specifications. Absolutely the most advanced electronic technology. 150 watts RMS per channel. Revolutionary vertical FET circuitry. Excitingly superior to bipolar transistors — with all the benefits of triode vacuum tubes.

Pre-amplifier: One of 3 models, all utilising laboratory-standard circuitry. This model, with

state-of-the-art specifications is equipped with professional facilities.

Yamaha Dealer Organization, c/- Rose Music Pty. Ltd., 17 Market Street, South Melbourne, 3205.

Natural Sound

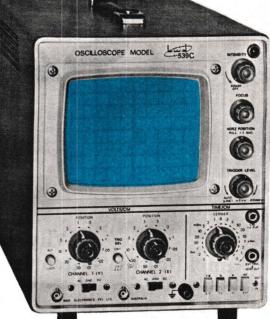
Please	send	free	booklet to:
riease	20110	1166	DOOMICTIC.

Name

Address _

Postcode

CUT ALONG DOT TED-LINE


	4		
		1 to	
ک کی زانی میں جبیب کی کی بنی	عدين بد		

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

45

Y9335

At \$415 the only DUAL TRACE oscilloscope with DC to 20MHz bandwidth

≁

The bwd539C stands at the forefront of oscilloscope design and manufacture. Be ready for tomorrow's measurements with an oscilloscope as new as today.

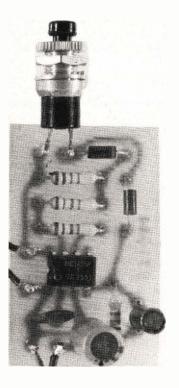
* FIS Australian Capital Cities plus sales tax if applicable. Negligible phase difference between channels over video pass band

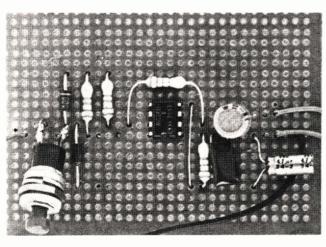
and ALL these outstanding features:

- DC to 20MHz 3db bandwidth 17n Sec Rise Time!
- 10mV to 50V/cm sensitivity 12 step attenuators.
- 1mV/cm 10Hz to 100kHz single channel for very low level signals.
- 100nS to 1S/cm time base 19 steps + 5-1 vernier.
- <5Hz to 30MHz triggering bright AUTO base line. TV line & frame selection included.
- Identical X-Y to 2MHz, phase corrected to 2° from DC to 200kHz for vector displays & amplifier testing.
- Precision 1V p-p cal waveform coincident with power line zero cross over for probe alignment & an ideal trigger source for power line measurements.
- An 8x10 cm display, 3.3KV EHT for bright crisp waveforms.
- Measures signals to beyond 40MHz sensitivity chart included.
- 5% calibration including effects of a 10% power line variation accuracy that doesn't change with the time of the day or from job to job!

B.W.D. ELEC	TRONICS PTY. LTD.
Winner of Award for Outstanding Export Achievement	MILES STREET, MULGRAVE, VIC., 3170 PHONE: (03) 561 2888 CABLES: 'OSCILLOSCOPE, MELB. N.S.W. PHONE: (02) 929 7452 DISTRIBUTORS: S.A.: (08) 269 1244 W.A.: (092) 25 3144 QLD.: (07) 52 7255 TAS.: (002) 23 1843
1955/1975	20 YEARS OF AUSTRALIAN DESIGN INNOVATION

	MB1013B
B.W.D. Electronics Pty. Ltd., P.O. Box 325, Springvale, Vic. 3171. Please let me have full details on the bwd539C oscilloscope	
Name	i
Company	Į
Address	
L	


Project 044-


TWO TONE DOORBELL

project electronics

A simple circuit based on the 555 integrated circuit used in both timing and oscillator modes of operation.

THIS ELECTRONIC DOORBELL IS based on the 555 integrated circuit. The device is widely used in many types of timers and as a simple oscillator. In this project both operations are used. When the button is pressed the 555 oscillates at one frequency (tone), when the button is released the tone changes and the IC continues to produce this second tone for a predetermined period. Thus by pressing the control button once a two-tone doorbell sound is produced by the speaker driven directly from the integrated circuit.

How the completed unit looks when constructed on Veroboard.

Construction

The circuit is very simple and contains only a few parts. It may be very quickly assembled on a piece of Veroboard. However any other method may be used if desired as the layout is not critical.

Veroboard has copper tracks on one side and these must be cut in ten places as shown in Fig. 2. The tracks are cut by using a small drill bit, rotated by hand, to clear the copper from around the hole. Note also that two holes are cleared between the integrated circuit pins, as pins 2 and 6 must be linked on the track side of the board. Clearing these holes eliminates any possibility of the link shorting to the track through the centre of the pins.

Assemble the components as shown in the component overlay diagram. Note that in this diagram the copper tracks are shown dotted as they are on the opposite side of the board from the components and therefore cannot be seen.

The integrated circuit, diodes, and the electrolytic capacitors must be mounted the correct way around. The overlay shows the distinguishing marks on each component, and the component must be placed so that the marks on the component are the same way as on the overlay diagram.

Whilst the push button on our unit is shown mounted onto the board it would normally be mounted remote from the board and a pair of leads would need to be run from the board to the remote button. We used a small nine-volt battery to power our unit but as the current drain is about five milliamps at all times a battery eliminator or separate power supply would need to be used in permanent installations.

The two-tone doorbell project is based around the 555 timer IC which is made to operate as an oscillator at two different frequencies. The second frequency is held for a fixed time before the unit switches off.

The 555 IC has a number of functional circuit blocks within it. The first of these are two level detectors. The first level detector is set to operate when the voltage at pin 2 rises above 6 volts (two-thirds of the supply voltage) and the second level detector is set to operate at 3 volts (one third of the supply voltage). If both pins 2 and 6 are higher than their respective threshold voltages the output from the IC at pin 3 will be 'low' at about 0.5 volts. If both pins 2 and 6 are lower than their respective thresholds the output of the IC will be 'high' at about 8.5 volts. The case where pin 2 is higher than its threshold and pin 6 is lower than its threshold is not defined and the output could be in either a high or low state. The only remaining possibility is where both pins are somewhere between 3 and 6 volts. In this case the output will not change from its previously set state.

When the output of the IC is caused to go low, an internal transistor connected between pin 7 and ground is turned on thus effectively shorting pin 7 to ground (pin 1). There is also a reset input (pin 4) available but we will leave the explanation of this for the moment.

Operation of the doorbell may be described as follows: The capacitor C2 initially charges towards plus nine volts via resistors R2, 3 and 4. However the top of the capacitor is connected to both pin 2 and pin 6 of the 555 timer IC. Hence when the voltage on the capacitor reaches 6

HOW IT WORKS -- ETI 044

volts both comparators will be above threshold and the output of the 555 at pin 3 will go low and the internal transistor will switch on, shorting pin 7 to ground. However pin 7 is connected to the junction of R3 and R4 and C2 will therefore now be discharged via R4. When the voltage on C2 falls below 3 volts the output will go high again, the transistor will turn off, and C2 will commence charging again via R2, 3 and 4. This sequence continues thus producing a triangular waveform across C2 and a pulse train at pin 3. The pulse train output from pin 3 is coupled to the loudspeaker via C3 which prevents the dc component of the voltage from reaching the speaker.

The triangular waveform is produced by C2 charging from 3 to 6 volts and then discharging from 6V to 3V.

The time for C2 to charge from 3V to 6V is:-

Tc = 0.69 (R2+R3+R4)x 22 x 10⁻⁹ seconds

= 1.5 milliseconds

and the discharge time from 6V to 3V is:-

Td = 0.69 (R4) x 22 x 10⁻⁹ seconds = 0.5 milliseconds

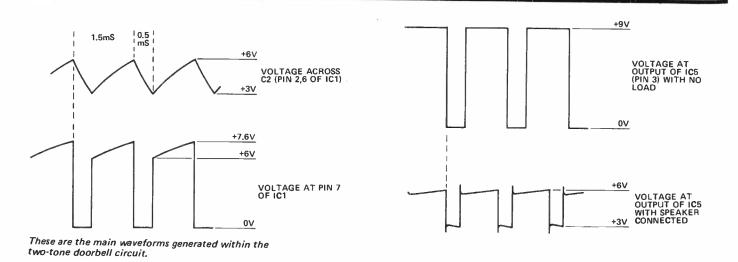
The total time for a complete cycle is therefore about 2 milliseconds and since frequency is the reciprocal of period

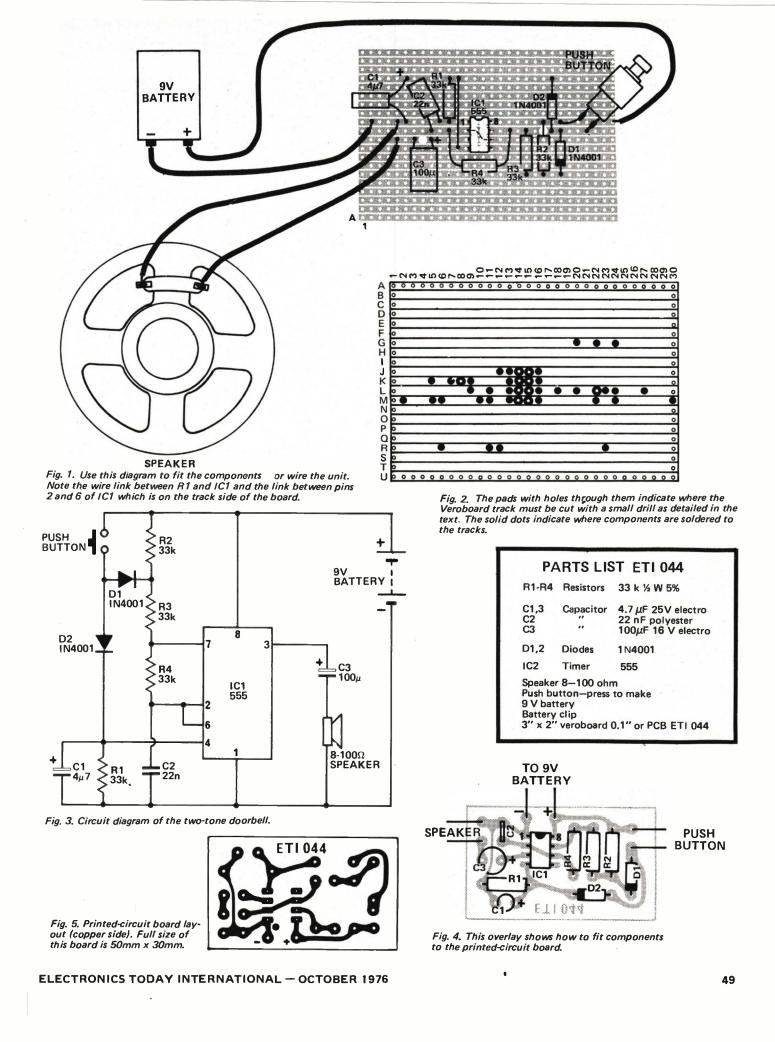
$$=\frac{1}{P} = \frac{1}{2 \times 10^{-3}}$$

f

When the button is pressed resistor R2 is shorted out by the push button and this reduces the charging time to $0.69 (R3 + R4) \times 22 \times 10^{-9}$ seconds

= 1 millisecond


The total period whilst the button is pressed is about 1.5 milliseconds


equivalent to a frequency of 667 Hz. That is the pitch is higher whilst the button is pressed.

Lastly we must consider the effect of the circuitry connected to the reset terminal. If the voltage on this terminal is less than about 0.8 volts the output of the IC will go high and the oscillation will stop. When the button is pressed capacitor C1 is charged up to about 8.5 volts via diode D2 allowing the oscillator to start. Whilst ever the button is pressed it shorts out resistor R2 via diode D1 and the output of the oscillator will be 667 Hz. When the button is released the lower frequency is produced immediately and C1 begins to discharge via R1. After about ¾ of a second the voltage across C1 will have dropped below 0.8 volts and the oscillator will stop. The output will therefore be the higher tone whilst the button is pressed followed by ¾ second of the low tone after the button is released.

The two diodes are needed to isolate the two control functions which are performed by the one push button. If a two-pole push button were to be used the functions could be isolated and the diodes would not be required. However two-pole push buttons are not generally obtainable and the diode approach was therefore used.

If a different pitch tone is required R2,3,4 or C2 may be altered in value. The new frequencies may be calculated using the formulae given above. If a longer period is required for the second tone this may be obtained by increasing the value of C1. (Decrease the value for a shorter second tone).

WESTERN SUBURBS NEWEST DEALER... WESTERN SUBURBS

It makes sense

DISCOUNTS -	Official orders accepted	Terms: Non-account cus- tomers cash, cheque,	
This page only over	for trade sales.	postal order or Bankcard.	bankcard
\$15 7½/2 \$70 17½/2 \$25 107 \$100 207	CMOS		welcome here
\$40 12½ \$200 22½ \$60 15½ \$300 25½	74C00 .45 CD4006 .45	PUBLICATIONS	Welcomenere
	74C02 .65 CD4007 .45 74C08 1.10 CD4008 .50 74C10 .50 CD4009 1.25	Philips 1976	RESISTORS, POTS
74 SERIES T.T.L	74C14 2.25 CD4010 1.20 74C20 50 CD4011 45	Catalogue\$2.50 Simple Projects\$2.00	
7400 .39 7482 1.90 7401 .39 7483 1.80	74C32 .65 CD4013 1.25 74C42 2.95 CD4014 1.90	Top Projects \$2.50 Audio Projects \$2.00 Electronics It's Easy	½W E12 Series 3c. 5W E12 Series 45c.
7402 39 7485 2.50	74C48 4.95 CD4016 .75 74C73 1.90 CD4017 1.90 74C86 1.60 CD4019 1.10	Electronics It's Easy	S/G LIN, Log 59c. D/G LIN, Log 1.25c.
7403 39 748670 7404 39 7489 \$3.90 7405 39 7490 65 7406 89 7491 1.55	74C89 CD4020 2.10 74C90 1.95 CD4026 P.O.A	Vol. I\$3.00 Vol. II\$3.00	Trimpots Cermet .40
/40/ .89 7492 95	74C154 4.75 CD4027 1.60 74C160 2.95 CD4040 2.10 74C162 3.50 CD4051 1.90		METAL BOXES
7408 .89 7493 .95 7409 .39 7494 1.80 7410 .39 7495 1.30	74C162 3.50 CD4051 1.90 74C174 CD4096 P.D.A. 74C901 1.50 CD4502 2.40	LINEARS	108 x 108 x 50 \$2.50
7411 .45 7496 1.70 7413 .95 74100 2.90	80C95 1.75 CD4053 P.D.A. 80C97 1.75 CD4511 2.75	CA3012 2.60 LM375N \$4.90 CA3018 2.95 LM382N \$2.25 CA3028 1.80 LM387N \$2.25	216 x 108 x 50 \$3.75
7414 2.25 74107 .69 7416 .85 74S112 2.50	CD4001 .39 CD4520 2.10 CD4002 .39 + others	CA3028 1.80 LM387N \$2.25 CA3075 1.90 LM395K \$6.90 CA3076 2.90 LM555 .95	PLUS OTHERS IN STOCK
7418 \$4.90 74122 85 7420 39 74123 .95	PHILIPS LOCMOS - 4000-P	CA3089 2.90 LM556 2.75 CA3090 5.90 LM561 9.50 CA3130 1.95 LM555CH \$1.70	SCOPES
	HEF4001 .45 HEF4066 1.20	CA3140 1.65 LM566 S1.95 LM14H \$3.90 LM710CN \$1.25 LM301A .69 LM733N \$2.50	WE STOCK TRIO SCOPES & TEST GEAR
7432 55 74151 1.70 7437 75 74153 1.55	HEF4002 .45 HEF4067 7.50 HEF4006 .45 HEF4068 .45 HEF4007 .45 HEF4069 .50 HEF4008 .50 HEF4070 .45	LM304H \$3.80 LM741CH \$1.20 LM305 \$3.80 LM747CN \$2.50 LM307N \$3.90 LM1800N \$3.90	TRANSISTORS
7441 1.50 74160 2.20	HEF4008 50 HEF4070 45 HEF4011 45 HEF4071 45 HEF4012 45 HEF4072 45	LM308N \$1.90 LM1808N \$3.90 LM309K \$1.95 LM3028AH \$1.80 LM310N \$3.90 LM3086 \$6.90	AC126 \$1.50 TT 801 .95
7442 1.20 74164 2.30 7445 2.10 74165 2.30 7446 2.10 74174 2.30 7447 1.80 74180 2.30	HEF4013 .75 HEF4073 .45 HEF4014 1.90 HEF4075 .45	LM311A \$3.25 LM3905 \$3.90 LM312 \$4.50 LM565 2.90	AD149 \$2.60 2N706A .95 AD161/62PR \$4.50 2N2905 .95
7448 1.80 /4185 3.90	HEF4015 1.90 HEF4078 .45 HEF4016 .75 HEF4081 .45	LM317 6.90 LM567 3.50 LM318 S4.59 LM709 .95 LM319N \$5.50 LM723 .95	AS322 18 2N3053 .80 BC107 .19 2N3054 1.70 BC108 .19 2N3055 95
7450 39 74190 2.50 7451 39 74192 2.20 7453 39 74193 2.20	HEF4017 1.90 HEF4082 .45 HEF4018 1.90 HEF4085 1.35 HEF4019 1.10 HEF4086 1.35	LM319N \$5.50 LM723 .95 LM319 5.90 LM725 3.95 LM320/12 4.50 LM739 2.50	BC108 19 2N3055 .95 BC109 19 2N3564 .55 BC157 25 2N3565 .45
7454 39 74194 \$4.90	HEF4020 2.10 HEF4093 1.50 HEF4021 1.90 HEF4104 2.90	LM320/15 4.50 LM741 .49 LM320K5 \$4.50 LM748 .85	BC158 .25 2N3566 .65 BC159 .25 2N3568 .75 BC212 .50 2N3568 .45
7470 .70 74S196 5.70 7472 .60 74196 2.20	HEF4022 1.80 HEF4510 2.65 HEF4023 .45 HEF4511 2.75 HEF4024 1.45 HEF4514 5.40	LM320K12 \$4.50 LM1303 2.50 LM320K12 \$4.50 LM1310 3.50 LM320K15 \$4.50 LM1310 3.50 LM320T5 \$4.50 LM1458 2.50	BC212 50 2N3569 45 BC559 39 2N3638 45 BC639 95 2N3638A 50
7473 .68 9001 \$1.60 7474 .69 8281 \$3.50 7475 1.10 9368 \$3.20	HEF4025 .45 HEF4515 5.40 HEF4027 .88 HEF4516 2.60	LM320T12 \$4.50 LM1488 5.90 LM320T15 \$4.50 LM1489 4.75	BC157 25 2N3655 45 BC158 25 2N3565 65 BC159 25 2N3568 75 BC212 50 2N3569 45 BC559 .39 2N3639 45 BC639 .95 2N3638 50 BC640 .95 2N3641 55 BD139 .95 2N3642 45 BD140 .95 2N364 55
7475 1.10 9368 \$3.20 7476 .75 7480 1.30 + others	HEF4028 1.50 HEF4518 2.35 HEF4029 2.20 HEF4519 1.10	LM322N \$3.90 LM1496 1.80 LM323K \$7.90 LM3046 3.50	BD140 .95 2N3694 .55 BF180 1.20 2N4249 .55 BF194 .85 2N4360 55
	HEF4030 .80 HEF4520 2.10 HEF4031 3.90 HEF4528 1.50 HEF4035 1.95 HEF4539 1.65	LM325N \$3.90 LM3909 1.50 LM326H \$3.90 MC1350 \$1.60	BFY50 75 2N4355 55 BSX19 75 2N4356 55
DIODES ETC	HEF4040 2.10 HEF4555 1.50 HEF4041 2.10 HEF4556 1.50	LM339 3.25 MC1351 \$2.95 LM340/12 2.90 MC1468L \$6.50	MPF102 .55 40409 3.84
AA119 .25 IN751A .35 BA102 .60 IN752A .35	HEF4042 1.60 HEF4724 3.20 HEF4043 1.90 HEF40097 1.50 HEF4044 1.90 HEF40098 1.50	LM340/15 2.90 MC7815 S2.50 LM340K6 S3.90 MC7805 2.50 LM340K72 \$3.90 MC7812 2.50	MPF104 1.10 40637A 2.85 MPF105 .65 40673 1.65
BB105 .60 IN753A .35 C103B 1.70 IN754A .35 C106D1 1.50 IN755A .35	HEF4046 2.60 HEF40174 2.40 HEF4047 1.60 HEF40175 2.40	LM340K15 \$3.90 MC1454 G 5.40 LM340K18 \$3.90 NE555 .95	MPF131 .95 UJT
EM402 .20 IN759A .35 EM404 .20 IN5626 .65	HEF4049 .75 HEF40192 2.40 HEF4050 .75 HEF40193 2.40 HEF4051 1.90 HEF40194 2.40	LM340K24 \$3.90 NE556 1.80 LM340T5 \$1.90 NE562B 9.50	MJ2955 2.40 2N6027 1.25 TIP318 .95 TIP328 1.00 + others
EM408 35 MB4 1.80 0A91 25 PA 40 4.90	HEF4051 1.90 HEF40194 2.40 HEF4052 1.90 HEF40195 2.40 HEF4053 1.90	LM340T6 \$1.90 NE567 3.50 LM340T12 \$1.90 OM802 \$3.20 LM340T15 \$1.90 TBA651 \$3.90	
IN914 .10 SC151 D 2.50 IN748A .35 V413 .95 IN749A .35 5082-2800 \$2.50		LM340T24 \$1.90 TA300 2.90 LM358N \$2.60 UA706 1.75	
BA114 .27 MEL12 \$1.10 BZX61C12 .72 FCD820 \$1.50	Most data sheets, techni-	LM370 2.95 UA720 3.80 LM373 4.70 UA757 3.80	MAIL ORDER SPECIALS
BZX61C13 .72 0A47 .45 BZX61C33 .72 0A90 .25 BZX70C15 \$1.25 2530 .95	cal info 30c photocopy or	LM380 2.75 UA758 3.80 LM381 2.90 ULN2208 \$1.95 LM382 2.60 ULN2209 \$1.95	Write and ask for your name to be on our flyer
C122E \$3.50 2530R .95 + others	do It yourself on our coin-op machine 10c.	LM371H \$2.50 + others LM372N \$3.90	list.
		LM374N \$7.90	

CHEAP BARGAIN COMPONENTS CAN FINISH UP VERY EXPENSIVE

First quality components and equipment from: AWA, Amidon, Elcoma, I.T.T., Motorola, National, RCA, Solid State, Signetics, Texas and others. Prices subject to change without notice. All offers genuine. Stocks subject to continued availability. All goods new to manufacturers specs. and guarantee. No rubbish, untested or unmarked devices. E.&I.O.E.

NEWEST DEALER... WESTERN SUBURBS NEWEST DEALER...

to buy at E.E.E.

We only sell genuine components.

CERAMICS UP to 82 pf 11c. 100 pf to 0.47 μf 12c. .1 uf 12c. .22 uf 20c.

.47 uf 35c.

DIL SUC	REIJ
8 PIN	.38
14 PIN	.39
16 PIN	.45
24 PIN	.78
40 PIN	1.25

LEDS AND DISPLAYS

SL5023	RED	.28
SL5253	GREEN	.80
SL5353	AMBER	1.30
NSN71 R/L	C/Anode	2.50
NSN74 R/L	C/Cathode	2.50

ELECTROS - AXIAL

.47/63V 1/63V 2.2/63V 3.3/63V 4.7/63 10/25V 10/63V 25/25V 22/63V 33/16V 33/16V 47/15V 47/25V	22 22 26 26 26 28 28 35 28 28 28 28 28 28 28 28 28 28 28 28 28	220/35V 220/63V 330/16V 330/25V 330/25V 470/16V 470/25V 470/35V 470/63V 1000/16V 1000/25Y 1000/35V 1000/35V 1000/35V	.75 .85 .55 .80 .85 .65 .90 .95 .75 .95 1.20 1.80 .98	
	.26	1000/35V	1.20	
47/25V	.30			
47/63V 47/350	1.10	2500/25V	1.40	
100/16V 100/25V	.28	2500/35V 2500/50V	1.65	
100/63V	.55	4700/35¥ 1000/63UR	2.50	
100/350 220/16V	1.50	2500/63UR	2.80	
220/25V	.70			

TEST GEAR Leader quality test gear.

Dip meter\$77	
Ant. Z meter\$77	
Sig. gen\$70	
Audio gen\$117.30	

FREE

Over 20,000 cheapie transistors and diodes to be given away this month. Just call or write, pack of 20 allow 30c P/P.

C.O.D. Welcome. Add \$2.40 to P/P remittance.

VALVES

SPECIAL CHIPS

\$ 50242.....\$12.50 MA1002.....\$12.95 PLUS OTHERS PLEASE CHECK

TRANSFORMERS

We stock Ferguson Transformers made to Aust. standards. Trade prices.

BREADBOARDS

SPEAKERS, KITS

AD0160/T8	\$10.90
AD5060/SQ8	\$13.90
AD8066/W8	\$16.90
AD12100/W8	\$44.90
ADF3000/8	\$8.90
ADF500/4500/8	\$13.90
ADF600/4000/8	\$23.90
AD8K40 Pair	\$125.00
AD12K12 Pair	\$229.00

IF IT'S NOT LISTED IT DOES NOT NECESSARILY MEAN WE DO NOT STOCK THE ITEM.

DON'T FORGET - SUFFI-CIENT P/P AT LEAST 50c BALANCE REFUNDED

HI-FI HITACHI QUALITY

SD1-2690H	
Music Centre	\$480
PS8 T/Table	\$99.00
PS15 T/Table	\$169.00
FT920 Tuner	\$247.00
HA610 AMP	\$369.00
HA300 AMP	\$159.00
D2360 Deck	\$219.00
D2500 Deck	\$295.00
D600 Deck	\$319.00
SR802 AM/FM	\$399.00

COLOUR TV HITACHI 48 CM

Fantastic.....\$539

RADIOS

WE STOCK FAMOUS MIDLAND BCB RECEIVERS, PORTABLE CASSETTE PLAYERS & DIGITAL CLOCK RADIOS

TOROIDS We stock Amidon Toroids.

OUR RANGE of IC's is always expanding

MISCELLANEOUS

Too many to list. Drop in and check it out or write S.A.E.

CRYSTALS, FILTERS

We stock AWA, KVG, Filters Carrier Xtals, 27 mHz XTALS. Crystals Avail to order.

ANTENNAS

8EL T.V.	\$22.90
3111 Colouray	\$39.90
4 EL FM	\$16.35
Mast Assy	\$13.75
We stock all types C	Coax-T.V.
Amateur Use.	

MARINE TRANSCEIVER

Weston OF-912/T 27.88 5 Watt

11 ch capability \$138.00 Antenna \$31.00

BANKCARD-MAIL ORDER Photocopy or cut out

If you wish, the full amount may be debited to your Bankcard Account. Your signature below is authority for us to issue a Bankcard Sales Voucher, if endorsed MAIL ORDER is to be treated as having been signed by the Cardholder.

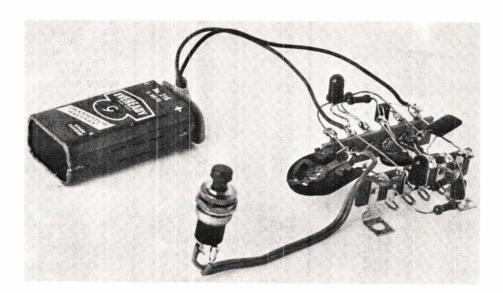
Bankcard No. 496				·
Expiry Date				
Cardholder name shown on Ba	ankcard	• • • •		
Cardholders signature		.		
Date	• • • • • •			
Your Cardbolder conv of th	Banke	ardsa	los va	ucher

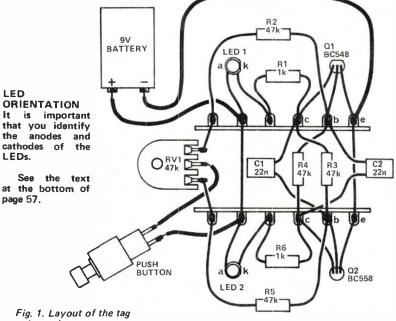
Your Cardholder copy of the Bankcard sales voucher will be included with the goods despatched.

ELECTRONIC ENTHUSIASTS EMPORIUM

Shops 2 & 3, Post Office Arcade, 7-10 Joyce St, Pendle Hill. Mail: P.O. Box 33. Pendle Hill, 2145 (don't forget P/P) 636-6222. Mon. Tues. Weds 8.30-5.30, Thurs 8.30-7.30, Fri 8.30-6.00, Sat 8.00-12.30. Plenty of parking at rear.

project electronics **HEADS OR TAILS**


Play electronic two-up with this simple project and learn the basics of multivibrator circuits.


THE MULTIVIBRATOR IS ONE OF the most commonly-used circuit blocks in electronics - especially in digital circuitry. And the multivibrator forms the basis of this 'heads or tails' project.

The multivibrator is a basic form of square-wave oscillator which in our design runs at about 700 Hz whenever the push-button is pressed. When the button is released the oscillator will stop and the circuit will assume one of the two possible stable states. Either Q1 will be conducting and Q2 will be cut off, or Q2 will be conducting and Q1 will be cut off. Whichever transistor is conducting draws enough current down through the resistor and the light-emitting diode (in series with its collector) to cause the LED to light. The abbreviation 'LED' is commonly used instead of 'light-emitting diode'.

Notice that the circuit is symmetrical and that the two transistors are crosscoupled between their collectors and bases (via R3,C1 and R4,C2). If corresponding components on each side are matched there is equal probability of either transistor being on when the button is released. In practice, however, electronic components do not have exactly the values they are supposed to have, so it is necessary to include potentiometer RV1 to adjust for equal probability. Alternatively it may be useful to maladjust RV1 so that the effect of bias on the results can be assessed.

When either Q1 or Q2 is on, as said before, the associated LED will be on and this gives us our 'heads' or 'tails' indication. When the button is pressed, however, the LEDs are switched on and off alternately at a rate of 700 Hz. The switching cannot, of course, be seen due to the limited flicker-frequency response of the eye. Both LEDs will therefore appear to be illuminated.

strip version.

This circuit may be considered as a multivibrator, when the button is pressed, and as a flip flop, when the button is released. If initially we consider the circuit with R2,R5,C1 and C2 deleted we have a standard flip flop. If Q1 is on it robs current from the base of Q2, thus turning it off. Transistor Q1 will be held on by the current through R6 and R4. However, if Q2 is on, the reverse is the case. Thus only one of the transistors can be on at any time – never both.

The addition of R2,R5 and C1,C2 will not alter the above, providing the push button is not pressed. However if the button is pressed the current through R2 and R5 will try to turn on both transistors.

Take the case where initially Q1 is

HOW IT WORKS - ETI 043

on and Q2 is off. The voltage on the collector of Q1 will be about 0.5 volts and the voltage on Q2 collector about seven volts. We therefore have about 6.4 volts across C2 (as the base of Q1 is at about 0.6 volts). When the button is pressed Q2 will turn on and its collector will drop to 0.5 volts.

However a capacitor cannot instantly change its voltage and the base of Q1 will therefore be forced to -5.9 volts which turns off the transistor. Capacitor C2 then discharges via R2 and R4 until the base voltage is again at +0.6 volts when Q1 will turn on again. This however forces the base of Q2 to -5.9 volts (due to C1) thus turning Q2 off. This process continues back and forth until the push button is released. The circuit then

stops in the state it was at the instant of releasing the button.

To add bias to the circuit RV1 can be adjusted to change the discharge time of C1 or C2 by up to 50%. In this case the two transistors will not be on for equal times and the results will be biased towards one side.

LEDs are included in the collector circuits of each transistor to indicate which transistor is on. If, for display purposes, a slower-running unit is required the values of C1 and C2 may be increased. If both are 10 microfarad electrolytic capacitors the rate will be about 1.5 seconds. Make sure if electrolytics are used that the positive terminal is connected to the collector of the transistor.

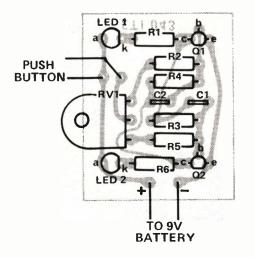
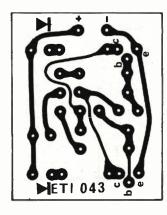


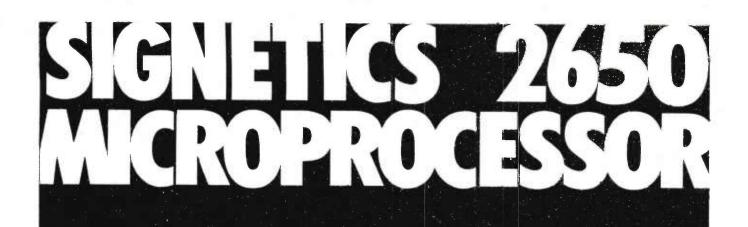
Fig. 2. Layout of the printed-circuit board version.

R1 R2-R5	Resistor Resistor	1 k ½w 5% 47 k ½w 5%
R6	Resistor	1 k ½w 5%
RV1	Potentiome-	
	ter	100 k trim type
C1,2	Capacitors	22 nF polyester
Q1,2	Transistors	BC548
LED 1,2	Light emit-	
	ting diodes	
		nake 9V battery
Battery c	lip ay tag strips	

LED1 PUSH LED2 BUTTON Z ... k 9V BATTERY RV1 47k ξ **R5 R6 R1 R2** 1k 47k 47k 1k R4 47k **R3** 47k **C2** 22n 22n 02 BC548 Q1 BC548

Fig. 3. Circuit diagram of the unit.



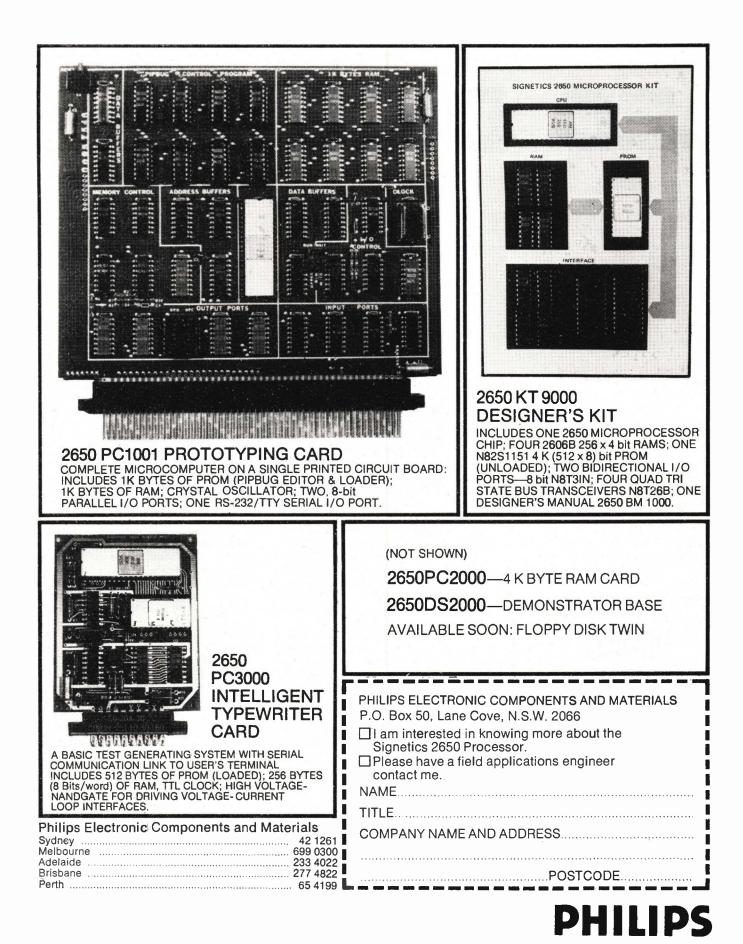

Fig. 4. Printed-circuit Board layout. Full size 50 x 40mm.

Construction

As the circuit is quite simple and symmetrical it can easily be assembled between two six-way tag strips as shown in Fig.X. Alternatively the unit can be assembled onto a small printed-circuit board such as that illustrated in Fig.Y.

The main points to watch are that the transistors are correctly orientated and that the LEDs are the correct way around.

The unit should not be switched on until it has been thoroughly checked a transistor or LED can be destroyed if it is wrongly connected. Double-check the battery connection — a reversed battery can also destroy semiconductors.



Designer's Choice

Electronic Components and Materials

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

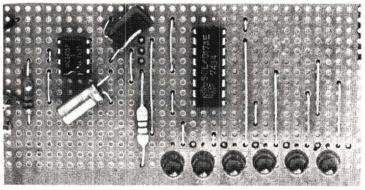
55

Project 068

LED DICE

project electronics

A simple dice circuit using the 555 timer IC and a digital-logic device of the CMOS family.


THIS SIMPLE DICE PROJECT IS BASed on a CMOS (Complementary Metal-Oxide Semiconductor) integrated circuit counter which is stepped by the output of a 555 timer integrated circuit connected to run as an oscillator at approximately 6500 Hz.

When the button on the unit is pressed the 555 oscillates and the 6.5 kHz pulses which it generates at pin 3 are fed to the input of IC2 (pin 14). The integrated circuit, IC2, is a decade counter in which each of the count states (0 to 9) are brought out to separate pins. By connecting the seventh count output (pin 5) back to the reset input (pin 15) the counter is made to reset after every sixth count. The six count states of the IC which are used are each connected

PROJECT Electronics

All projects published in this series have been designed and developed in conjunction with officers of the NSW Dept. of Education.

The full complement, together with accompanying explanatory material will be published in book form in mid-February 1977.

The completed Veroboard version of the unit.

to a light-emitting diode (LED). As the IC counts it will switch on each of the six light emitting diodes in turn. Whilst the button is pressed the LEDs will be switched at a rate of 6.5 kHz and thus all LEDs will appear to be on due to the limited flicker-frequency response of the human eye.

When the button is released the oscillator stops counting leaving one only of the LEDs alight. As the IC cycles through its six states the LEDs will each be on for the same interval. Thus the probability of being on when the button is released is the same for each LED. The LEDs may therefore be numbered from one to six and the device can then be used as a dice.

Construction

The integrated-circuit counter device belongs to the family of devices known collectively as CMOS (Complementary Metal-Oxide Semiconductor). The name is derived from the manufacturing process. This family of devices is at present widely used in digital circuits. Devices in the family range in complexity from the relatively simple to the extremely complex (for example, some calculator ICs made in CMOS may contain up to 5000 transistors).

Whilst CMOS devices are fairly rugged in-circuit, they are liable to be damaged by static discharges when handled out of circuit. For this reason they are supplied in either conductive foam, aluminium foil or specially-coated plastic containers which short all the pins together for protection. The CMOS should only be removed from its protective packing when you are ready to insert the device into the board. All other components should be mounted to the board first and the CMOS inserted last of all. Handle the pins of the device as little as possible and solder in place quickly and cleanly with a light-weight soldering iron.

The dice project may be assembled using the Veroboard layout as given or using the printed-circuit board alternative. If Veroboard is used the tracks must be cut in the positions indicated with a small drill bit. The components are then assembled to the respective board with the appropriate overlay.

The integrated circuits are marked by a small notch or dot at one end of the body. When inserting the IC make sure that this mark is aligned with the orien-

When the push botton is pressed the capacitor C1 is charged up via resistor R1. When the voltage on C1 reaches two thirds of the supply voltage (6 volts) a detector within the IC switches on an internal transistor in the IC, which shorts the capacitor to ground and discharges it until the voltage drops below one third of the supply voltage. When this happens another detector turns off the discharge transistor. The cycle now repeats, as the capacitor is allowed to recharge.

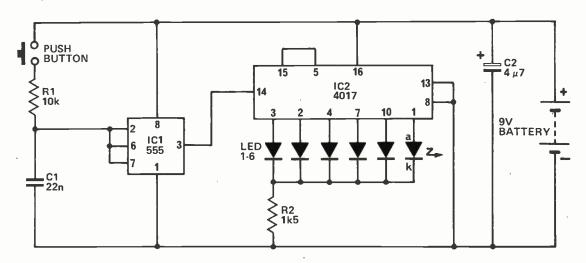
The time to charge the capacitor C1 from one third to two thirds of the supply voltage (that is from 3 to 6 volts with a 9 volt supply) is 150 microseconds ($0.69 \times 10,000 \times 22 \times 10^{-9}$ secs). The discharge time is only about 2 microseconds, due to the fact that the discharge transistor (internal to the IC) is a very low resistance when it is turned on.

While the capacitor is being discharged the output of IC1 (pin 3) drops from +9 volts to 0V and then returns to +9 volts when CI is released. Thus during each discharge period a narrow pulse is generated at the output of the IC. That is, we have a 2 microsecond wide pulse every 150 microseconds which corresponds to an output frequency of about 6600 Hz.

HOW IT WORKS - ETI 068

The display for the dice is formed by six LEDs which are driven by IC2. This IC is a digital device and is a decade counter (it counts to ten) and a decoder in one package. It has ten outputs, one only of which is high (+9 volts) at any one time and all the others are low (0 volts). It also has a clock input and a reset input. When the reset is taken high the device is set to the state where the first of the outputs is high.

The output of IC1 is connected to the clock input of IC2 and every time there is a pulse from IC1 the output of IC2 which was high, will go low and the next output will go high (providing that the reset input is low). Thus the "high" shifts through the ten outputs of IC2 in sequence, at the same rate as the input pulses from IC1. The sequence of ten outputs recycles whilst there are input pulses.


However a dice has only six surfaces so we require IC2 to county by six, rather than by ten. This is quite easily performed by connecting the seventh output of the IC back to the reset input. Now when the counter is clocked from output six to output seven, seven goes high and resets the counter. Once the counter resets the high is removed from output seven and the counter, back at output one, is free to count again. The time taken to do this is only about 100 nanoseconds (0.000 000 1 sec) and is therefore very difficult to see on an oscilloscope.

The outputs one to six of IC2 are each connected to the anode of an LED. The cathodes of the LEDs are all connected in parallel, via a common current-limiting resistor, to 0 volts.

To sum up the operation, when the button is pressed IC1 commences oscillating at 6.6 kHz and this clocks IC2 such that each of the LEDs is lit in sequence – the cycle repeating about 1000 times per second. When the button is released the oscillator will stop and one LED only will be lit. Human reactions are not nearly fast enough to be able to stop the dice at any specific point. The results will therefore be completely at random.

For checking purposes the action may be slowed down by putting a high value resistor across the terminals of the push button (even just the finger across the terminals will do). This will cause the oscillator to run at a low speed so that the changing of the LEDs can be seen.

Fig. 1. Circuit diagram of the LED dice.

tation mark provided on the component overlay. Make sure also that the electrolytic capacitor C2 is inserted with the correct polarity.

The light-emitting diodes will have

their cathode terminals (k) marked in some way. Usually this is by means of a small flat on the plastic body of the component adjacent to the cathode lead or the cathode lead may be shorter than the other. Make sure that the LEDs are inserted with the correct polarity — if any LED fails to light when the button is pressed it is most likely that it is the wrong way round.

ELECTRONICS TODAY INTERNATIONAL -- OCTOBER 1976

57

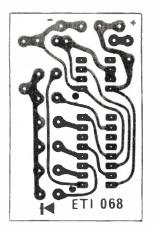


Fig. 2. Printed-circuit board layout for the LED dice. Full size 55mm x 35mm.

	PAR	TS LIST -	– ETI 068
	R1	Resistor	10k ½w 5%
	R2	Resistor	1.5k ½w 5%
	C1	Capacitor	22nF polyester
	C2	Capacitor	4.7μF 25V electro
	IC1	Timer	555
	IC2	Counter	4017 (CMOS)
	LED 1-6	Light emittir	ng diodes
Push button & press to make 9V battery Battery clip 1.5" x 3.5" Veroboard 0.1" or PC Board ETI 068			

9V Fig. 3. Use this diagram to wire the Veroboard version of the unit. Note especially the 15 wire links required. BATTERY 4017 R 1k

PUSH BUTTON

A

000 0000000000000000 0

FD

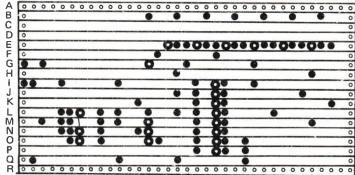
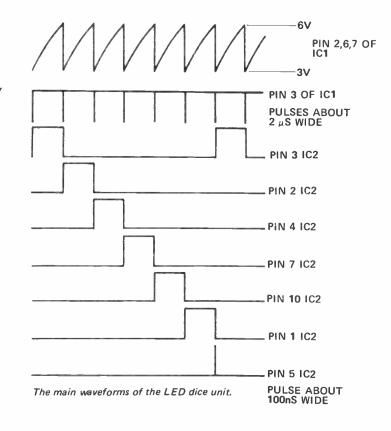



Fig. 4. Cut the Veroboard track in the places indicated by the pads with holes. The other dots are where soldered connections are made.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

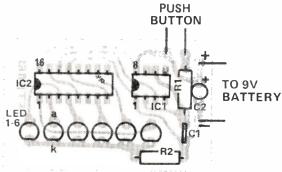
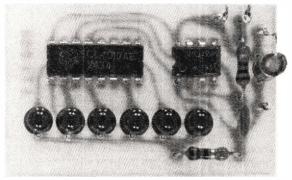
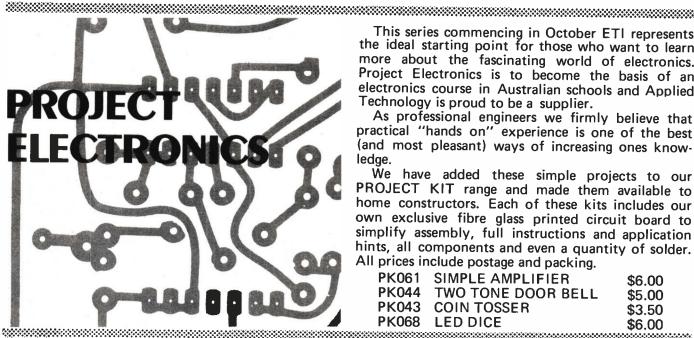



Fig. 5. How the components are mounted to the printed-circuit board.


The completed printed-circuit board version of the LED dice.

58

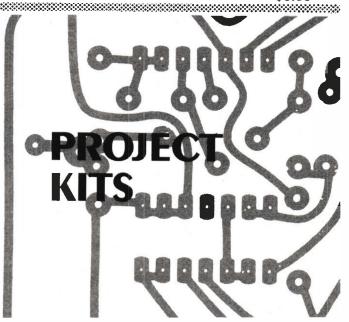
HOBBY NEWS OCTOBER 1976

PROJECT KITS - now everyone can enjoy building solid state Electronic Kits.

This popular range of kits appeals to everyone. Each PROJECT KIT is supplied with a predrilled fibre glass printed circuit board, all components including solder and hookup wire and simplified assembly instructions. All prices quoted include postage and packing.

PK1000	General Purpose IC Amplifier	\$5.00
PK2000	Variable Timer	\$7.50
PK3000	Touch Switch	\$7.75
PK4000	Burglar Alarm	\$10.95
PK5000	3 DIGIT Readout Module	\$19.50
PK5050	Digital Voltmeter Module	\$8.50
PK5080	Frequency Meter Module	\$11.50
PK7000	Spot-O-Light Display	\$9.50
PK8000	Bar-O-Light Display	\$9.50
РК9000	Digital Clock Module	\$13.50
	(transformer for PK9000)	\$7.50
For full	details please refer to our	catalogue in
	1076	j

Eti August 1976.


SEMICONDUCTORS: VOLUME DISCOUNT PRICES

This series commencing in October ETI represents the ideal starting point for those who want to learn more about the fascinating world of electronics. Project Electronics is to become the basis of an electronics course in Australian schools and Applied Technology is proud to be a supplier.

As professional engineers we firmly believe that practical "hands on" experience is one of the best (and most pleasant) ways of increasing ones knowledge.

We have added these simple projects to our PROJECT KIT range and made them available to home constructors. Each of these kits includes our own exclusive fibre glass printed circuit board to simplify assembly, full instructions and application hints, all components and even a quantity of solder. All prices include postage and packing.

РК061 РК044	SIMPLE AMPLIFIER TWO TONE DOOR BELL	\$6.00 \$5.00
PK043	COIN TOSSER	\$3.50
PK068	LED DICE	\$6.00

The semiconductor prices shown in our August catalogue backed with our extensive stocks and fast mail order service have, judging from the volume of orders received, been very well received by our customers. Don't forget we guarantee all devices and only buy from the leading manufacturers.

As an extra service we have now introduced volume discounts on any popular device where we have adequate stocks. Please write or phone for a free quotation.

TECHNOLOGY PTY. LTD. HOBBY NEWS OCTOBER 1976

555 TIMER APPLICATIONS NOTES

The 555 timer is one of the most versatile IC's available to the home hobbyist. We have researched all the available literature from manufacturers such as Signetics, National Semiconductor, and Motorola and have compiled the Applied Technology 555 APPLICATION NOTE. This useful publication lists full data and gives probably the most comprehensive listing of applications for the 555 available today.

SPECIAL OFFER 5-555-4-3 (five 555 timers for \$3)

Order five 555 timers for \$3.00 and receive a free 555 APPLICATION NOTE. Note this offer price includes all postage and packaging.

SATURN 5

TV CAME

NEW SHOWROOM & WAREHOUSES

As this HOBBY NEWS goes to press we are greatly extending our present showroom so that we can display our full range of kits to personal callers in a relaxed, informal atmosphere.

The mail order response to our catalogue in August ETI has been enormous. We have now established a separate warehouse facility to house our enlarged stock and kit production assembly line. Our printed circuit production unit is now being transferred to the warehouse and when fully operational we will have the most efficient kit production factory serving the Australian Hobbyist.

The response to our Saturn 5 TV Game has been overwhelming and the current backlog of orders has resulted in a waiting time of about 6 weeks. We regret that we can not accept any more orders postmarked after September 30th, 1976. We trust you will understand.

MICROPROCESSOR PROJECT

We have now available all components for the ASCII to BAUDOT/BAUDOT to ASCII converter project using the SC/MP Introkit. By special arrangement with NS and Jim Rowe we are prepared to offer the specially programmed ROM for \$40.00. This replaces the KITBUG ROM supplied with the SC/MP INTROKIT and this enables you to use a low cost BAUDOT TELETYPE to become a fully fledged ASCII machine. This probably represents

the lowest cost approach to talk to microprocessors if one is unable to acquire one of those rare and expensive breeds such as a TELETYPE 33ASR!

SC/MP	Microprocessor Introkit	\$89.50
ROM	ASCII/BAUDOT	40.00
S1883	UART	9.50
SOCKET	40 PIN FOR UART	1.60
4N28	OPTO COUPLER	1.50

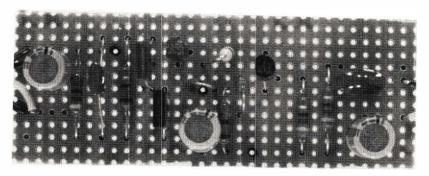
POSTAL ADDRESS: THE ELECTRONIC MAILBOX, P.O. BOX 355, HORNSBY 2077. WAREHOUSE & SHOWROOM: 109-111 HUNTER STREET, HORNSBY, N.S.W. 2077. Telephone: 476 3759 476 4758 TRADING HOURS: 9–5 WEEKDAYS, 9–12.30 SATURDAY

project electronics

SIMPLE AMPLIFIER

This simple amplifier for the experimenter is based on discrete components. It is a useful introduction to the basics of audio power amplifiers.

SIMPLE AMPLIFIER


AT THE PRESENT TIME THERE are numerous single-chip, integratedcircuit amplifiers on the market which offer power amplification of audio signals. Outputs are typically from 0.5 to 5 watts and very few additional components are required to make these devices perform. However such IC amplifiers are sometimes very critical with regard to the layout of components. A poor layout can cause the amplifier to oscillate and such oscillation will often destroy the amplifier IC.

Other hybrid devices (combinations of ICs and transistors within a single sealed package) are available with power outputs up to 100 watts. However, although such hybrid devices work well they are expensive and for most experimental applications such high powers are not required. It is generally adequate to have just sufficient power output and

All projects published in this series have been designed and developed in conjunction with officers of the NSW Dept. of Education.

The full complement, together with accompanying explanatory material will be published in book form in mid-February 1977.

How the completed unit looks when constructed on Veroboard.

gain (amplification) to make audio signals from experimental circuits audible using a small speaker.

A small amplifier is therefore a useful device and, although a single integratedcircuit amplifier could be used, it will teach you quite a lot about transistors if you make your own from discrete components (transistors, resistors and capacitors etc). At the same time it will give you an understanding of the internal operation of audio amplifiers.

This small and inexpensive amplifier has been designed for use in general experimentation. It is much more stable than most integrated-circuit designs and its operation and circuitry are basically similar to those of higher power audio amplifiers.

Construction

As with all these simple projects layouts are given for construction on Veroboard or on a specially-designed printed-circuit board.

If the unit is constructed on Veroboard the tracks must be cut in the places shown in the diagram by rotating a small drill bit in the appropriate hole until the track is completely cut through. Before cutting however make doublysure that you have the right position for each hole.

Whether assembling on Veroboard or printed-circuit board the components must be fitted to the board as shown on the respective component overlay. Component orientation must be carefully watched. For example, the electrolytic capacitors usually have a wide black line

	SPECIFICATIO	ON ETI 061	
Output Power Into 8 ohms Frequency Response C5 = 100 μ F C5 = 470 μ F	500 mW 200 Hz – 300 kHz 45 Hz – 300 kHz		approx 3 ohms 33 dB 33 kohms 500 mV

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

62

R4 47k R1 47k 9V BATTERY 7.29V Q2 BC558 8.34V R2 47k Q3 BD139 5.38V C1 100n (4.75V C4 Q1 BC548 b 10n ╢ 4.09V 04 BD140 5.57V R6 10k C2 100μ 5.05V ,C5 100μ R3 150k R5 **R7** INPUT 470 150 ٥v C3 100µ **8**Ω SPEAKER 0

Fig. 1. Circuit diagram of the amplifier.

The operation of the amplifier may best be explained by dealing within three separate sections.

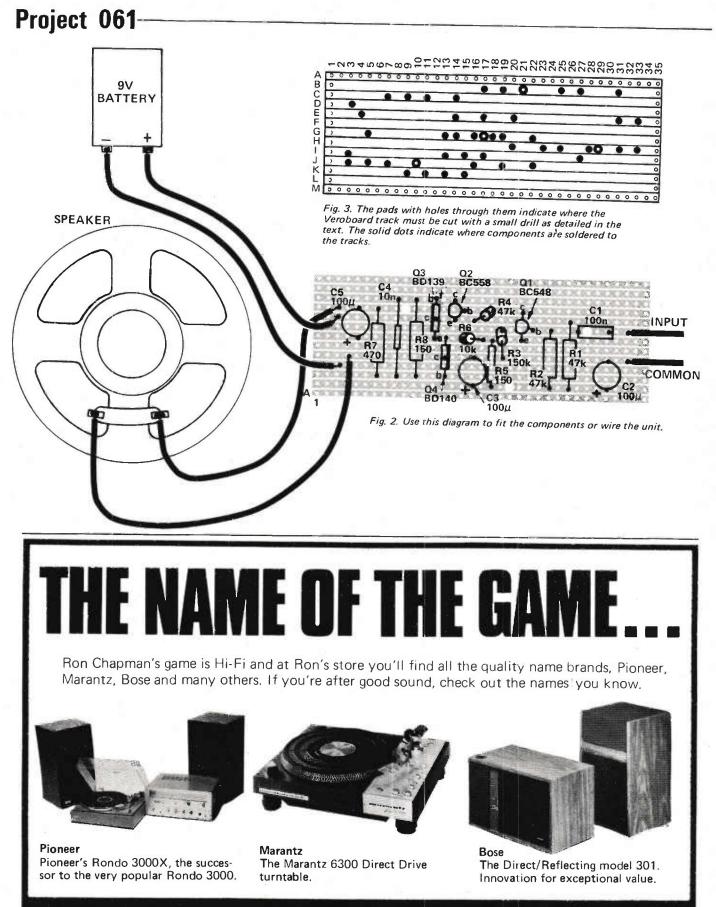
- a. The amplifier Q2.
- b. The buffer Q3,Q4.
- c. The comparator Q1.

With any transistor the current flowing into the base determines the amount of current flowing in the collector circuit. The ratio of the magnitude of the collector current to that of the base current which controls it is known as the beta (β) of the transistor and values for this of 40 to 400 are typical. With a beta of 40 the collector current will be 40 times the current injected into the base. However when the transistor is used as an amplifier a problem occurs due to the fact that the realtionship is not perfectly linear and this gives rise to a phenomenon called distortion (ie the output is not a perfect replica of the input).

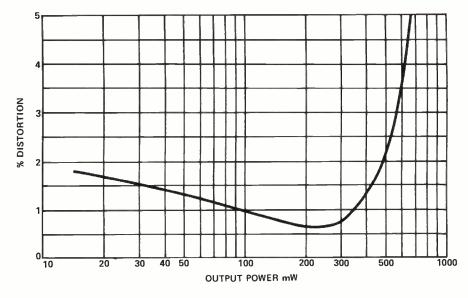
Transistor Q2 is used as such an amplifier to increase the level of the signal voltage at the input. However although the voltage of the input signal has been increased transistor Q2 cannot supply sufficient power on its own to drive the speaker. Transistors Q3 and Q4 therefore are used to buffer the output of Q2 so that the speaker can be driven. (A buffer pro-

HOW IT WORKS - ETI 061

vides a voltage gain of slightly less than one. This provides current gain, and therefore the signal power is increased but not its voltage level.


However, as we said before there is some distortion. To overcome this we take a portion (the level is reduced by R5 and R6) of the output signal back to transistor Q1, where it is compared to the input signal. If the two signals are not identical the transistor Q4 controls the transistor Q2 in such a way as to reduce the error, and hence this reduces the distortion.

The speaker is driven from the output of Q3 and Q4 via C5, which prevents the dc compartment of the output from appearing across the speaker. The resistor R7 provides the load for transistor Q2. This resistor (R7) is returned to the top of the speaker so that a more constant voltage appears across it as the output swings up and down. Doing this helps transistor Q4 handle the negative signal swings and also increases the gain of transistor Q2.


Resistor R8 is used to set up the bias voltages for Q3 and Q4, as no current will flow until there is 0.55 volts between base and emitter of each transistor. This helps to reduce another form of distortion known as crossover distortion which occurs in stages made up of two transistors in the circuit used for Q3 and Q4. Capacitor C4 is incorporated to prevent the possibility of high frequency oscillation.

The dc biasing of the amplifier (that is the dc operating point at the output) is set by the divider chain R1,R2 and R3 which sets about 5.6 volts at the base of Q1. Capacitor C2 prevents any variations in the supply rails from reaching the base of Q1. Transistor Q1 then acts as a comparator and maintains the voltage at its emitter at 0.55 volts less than that at its base. This sets the output voltage to about 4.75 volts on a nine volt supply.

The frequency response on the high frequency side is determined by the characteristics of the transistors themselves and is about 300 kHz. At the low end there are three RC networks which determine the response. The main one is output capacitor C5 together with the speaker resistance which gives a -3 dB point at about 200 Hz - quite adequate for small speakers. Increasing C5 to about 470 microfarad will extend the low end to about 50 Hz if required. The other networks are C3 with R5 (50 Hz), and C1 together with R3 in parallel with R2 at about 10 Hz.


RON CHAPMAN HI-FI NEWCASTLE'S MAILORDER SPECIALIST. — 880 HUNTER STREET, NEWCASTLE 2302. PHONE: 69 2733.

Graph showing relationship between distortion and power output.

P	arts List E	TI 061	
R1,2	Resistors	47 k ½w 5%	
R3	Resistor	150 k ½w 5%	
R4	Resistor	47 k ½w 5%	
R5	Resistor	150 ½w 5%	
R6	Resistor	10 k ½w 5%	
R7	Resistor	470 ½w 5%	
R8	Resistor	150 ½w 5%	
C1	Capacitor	100 nF polyester	
C2,3	Capacitors	100µF 16V electro	
C4	Capacitor	10 nF polyester	
C5	Capacitor	100µF 16V electro	
Q1	Transistor	BC548	
Q2	Transistor	BC558	
Q3	Transistor	BD139	
Q4	Transistor	BD140	
Speaker 8-16 ohm 9V Battery Battery clip 1.2" x 3.2" Veroboard 0.1" or PC Board ETI 061			

Fig. 4. Printed-circuit board layout (copper side). Full size of this board is 40mm x 50mm.

on the side of the capacitor adjacent to the negative lead. On the overlay the positive lead of the capacitor is indicated by a '+' sign. Make sure that the polarities are matched up.

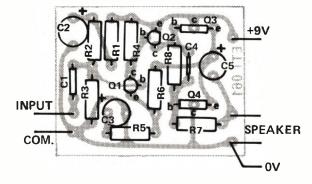
The pin connections of the transistors are also given and these must be carefully checked so that they are inserted the right way round. Note that the BD139 and BD140 transistors have a metal surface on one side but are otherwise symmetrically shaped. Make sure that this surface is pointing the correct way otherwise the pin connections will be wrong.

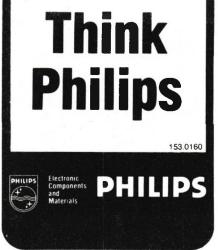
Solder the components into position using a light-weight soldering iron, being careful not to get bridges of solder between adjacent tracks (specially with the Veroboard).

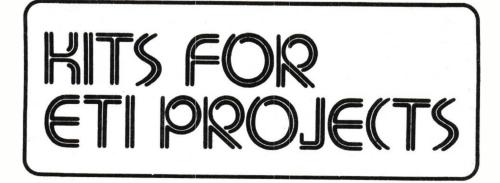
Finally connect the battery clip and the leads to the speaker. The red lead of the battery clip is the positive lead and should be connected to the positive connection on the amplifier. Polarity of the leads to the speaker is unimportant.

Before connecting the battery do a thorough check to ensure that all components are in the right position and are correctly orientated and that all solder joints are sound and there are no solder bridges.

If a small battery is used, eg the Everready 216, a 100 microfarad 16 volt electrolytic capacitor should be connected across the terminals of the battery to lower its effective impedance. This allows a higher output power before signal clipping occurs in the amplifier.




Fig. 5. This overlay shows how to fit components to the printed-circuit board.


STREES.

For diodes you can depend on

Germanium small signal Silicon small signal Zener voltage regulator Power rectifiers SCRS AND TRIACS Photodiodes

We get many enquiries from readers wanting to know where they can get kits for the projects we publish. The list below indicates the suppliers we know about and the kits they do. These kits include hardware as well as electronic components. There are many suppliers who can provide you with all the electronics for a project (companies like Techniparts in Brisbane) so it is not necessary to buy a kit provided you can find a suitable case etc.

Any companies who want to be

ETI 101	Logic Power Supply E. D
ETI 102	Audio Signal Consertor
ETI 103	Logie Decke
ETI 103	Logic Probe
	Widerange Voltmeter
ETI 108	Decade Resistance Box E
ETI 109	Digital Frequency Meter F
ETI 111	IC Power Supply F
ETI 112	Audio Attenuator
ETI 113	7-Input Thermocouple Meter E
ETI 116	Imped anemocouple Meter E Impedance Meter E Digital Voltmeter E.A Simple Frequency Counter E.A SV switching regulator supply E Logic Probe
ETI 117	Digital Voltmeter FA
ETI 118	Simple Frequency Counter FA
ETI 119	5V quitabing regulator supply
ETI 120	Logia Broke
	Logic Probe.
ETI 122	Logic Tester E
ETI 123	CMOS Tester
ETI 124	Tone Burst Generator E
ETI 128	Audio Millivoltmeter
ETI 129	RF Signal Generator.
ETI 131	General Purpose power supply. E.N
	Little carpoor power suppry . Litt
ETI 206	MetronomeE
ETI 218	Monophonic Organ
ETI 219	Siron
ETI 220	Siren
ETI 222	Siren.
	Siren E Transistor Tester E Courtesy Light Extender E
ETI 232	Courtesy Light Extender E
ETI 234	Simple Intercom
ETI 236	Code Practice Oscillator E
ETI 239	Breakdown Beacon
ETI 301	Vari-Wiper
ETI 302	Tacho Dwell
ETI 303	Brake-light Warning F
ETI 309	Battery Charger F
ETI 312	CDI Electronic Ignition E
ETI 313	Car Alarm
511 010	Car Alarin E,D
ETI 401	And a Miner FRM David L. C.
ETI 401	Audio Mixer FET Four Input E
	Guitar Sound Unit
ETI 406	One Transistor Receiver E
ETI 407	Bass Amp
ETI 408	Spring Reverb. Unit
ETI 410	Super Stereo E
ETI 412	Music Calibrator
ETI 413	100 Watt Guitar Amp
ETI 413	x 2 200 Watt Bridge Amp E
ETI 414	Master Mixer
ETI 414	Stage Mixer.
ETI 416	Stage Mixer
ETI 417	Amp Overload Indicator
ETI 419	Amp Overload Indicator E Guitar Amp Pre-Amp E,D
	Four-shannel Amplifier
ET: 490E	Conclusion Amplifier, E
E 11 420E	Four-channel Amplifier E SQ Decoder E International Stereo Amp E
E11422	International Stereo Amp E
ET1 422E	Booster Amp E

included in this list should phone Steve Braidwood on 33-4282.

Key to the companies:

- A Applied Technology Pty. Ltd. of Hornsby, NSW.
- D Dick Smith Pty. Ltd. of Crows Nest, NSW.
- E E.D. & E. Sales, Victoria.
- J Jaycar Pty. Ltd. of Haymarket, NSW.
- N Nebula Electronics Pty. Ltd. of Rushcutters Bay, NSW.

ET1 422	
ETI 423	SAdd-On Decoder Amn F
ETI 424	Spring Reverberation Unit F
ETI 425	D Integrated Audio System F
ETI 426	Rumble Filter
ETI 427	3 Rumble Filter
ETI 430) Microphone Line Amn
ETI 433	Active Crossover F.I
ETI 435	Active Crossover
ETI 436	Bynamic Noise Filter
ETI 438	Audio Level Mater
ETI 440	Simple 25 Watt Amp
ETI 441	Audio Noise Generator
ETI 443	Compressor-Expander E.J
ETI 444	Five Watt Stereo
ETI 445	Process Relation Process Relation
ETI 446	
ETI 447	
D1144/	Audio Limiter E.N
ETI 502	- E
ETI 502	Emergency Flasher
ETI 505	
ETI 506	
ETI 509	50-Day Timer
ETI 512	Photographic Timer
ETI 513	Tape Slide/Synchroniser E
ETI 514	Flash Unit – Sound Operated E
ETI 515	Flash Unit – Light Operated E
ETI 518	Digit Beam Alarm.
ETI 522	Photographic Timer
ETI 523	Sweep Generator. F
ETI 525	Drill Speed Controller
ETI 526	Printimer
ETI 527	Touch Control Light Dimmer E
ETI 528	Home Burglar Alarm
ETI 529	Electronic Poker Machine
ETi 533	Touch Control Light Dimmer E Home Burglar Alarm E Electronic Poker Machine E Digital Display E.A Calculator Stopwatch
ETI 534	Calculator Stopwatch A,D
ETI 539	
ETI 540	
ETI 541	Train Controller
511 041	Ham controller
ETI 601	
4600	Supthesisen
3600	SynthesiserJ
ETI 602	Synthesiser J Mini Organ
E11 002	Mini Organ E,A,D
ETI 701	mar Manshan J A Met mar
ETI 701	TV Masthead Amplifier F.D.
	Antonio Materia Materia
	Antenna Matching UnitE
ETI 704 ETI 706	
	marker Generator
	Modern Solid State Converters E
ETI 740	FM Tuner
ETI 708	Active Antenna E
ETI 710	2 metre Booster
ETI 780	Novice Transmitter

Selling below normal wholesale world famous Marantz amp.

Marantz – for the man who wants the finest in performance. Recognised around the world as one of the great names in HI-FI. With an unbelievable 3 year warranty on parts and labour & against deterioration of performance. Service available in all states! A staggering 40 WATTS R.M.S. output (typically tested to 60 watts R.M.S.) across the entire band 20 Hz-20 kHz. See all Marantz models on continuous Demo now.

Douglas hifi

SEND YOUR CHEQUE TODAY!

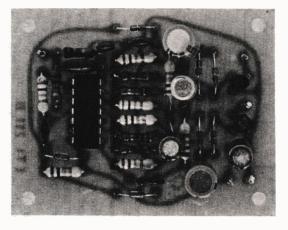
Melbourne 191 Bourke St. 63 9321

Project 711-

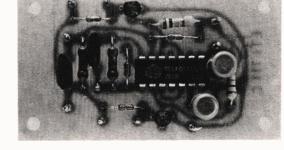
REMOTE CONTROL

The fourth and final part of our 8-channel remote switch system. Having described the transmitter and receiver sections we now look at the receiver power supply and the relay drive circuits.

IN THIS FINAL ARTICLE ON THE Remote Switch' unit we describe the remaining sections of the receiver — the power supply and the relay drive circuits. There are two versions of the relay drive circuitry, the first (called 'Single Control') is used where a command on one channel is used to perform two different functions, on alternate commands. For example, when controlling a motor the first command on the channel causes the motor to go one way and a second command (on the same channel) causes the motor to reverse.


The second relay system (called 'Double Control') uses a command on one channel to switch a device 'on' and a second command on a different channel to switch the device off. The first system thus gives 'on' and 'off' by successive presses of a single button, whilst the second system uses separate buttons for 'on' and 'off'.

Construction

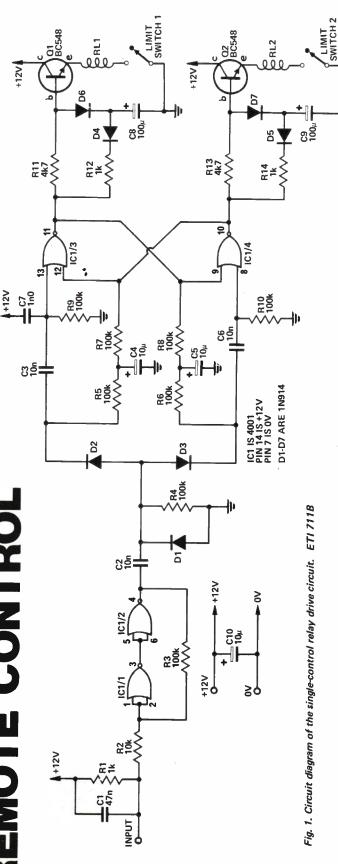

The receiver and decoder are best built into a metal box together with the power supply. As there are only a few components in the power supply these are mounted onto a tag strip.

The relays will normally be operated remotely and it is therefore necessary to terminate the outputs of the decoder in a terminal block on the rear of the unit. The '0' volt and +12 volts should also be made available on this terminal block for use by the relay circuits.

The relay-drive units will normally be mounted close to the device being controlled and possibly housed in a small box attached directly to the controlled motor, etc. For this reason construction-

Finished printed-circuit board for the single-control driver.

Completed double-control relay driver.


al requirements will vary greatly depending on the application and hence it is pointless for us to try to give housing details for these. Housing of the relaydrive boards is therefore left up to the constructor.

To connect the relay-drive units the '0' volt and +12 volt lines and the appropriate control channel lines from the decoder must be connected to the relay circuits using wiring which will not cause too much voltage drop. The voltage drop will depend on the length of line and on the size of the relay being used. If a number of relays are being used in the same location the power supply to them may be commoned to save wiring costs.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

ł

HOW IT WORKS - ETI 711

steering network to ensure that it acts as a toggle. Capacitors C4 and C5 slow bypassed by C1 to eliminate any posdown the toggle rate so that the mulsibility of signal pick-up which could By referring to the decoder circuit it this transistor is resistor R1 which is three pulses may appear at the input pulses are squared up by the schmitt C1, the output of which is differen-Single-Control Relay-drive Circuitry press of the command button up to connected as a flip-flop which has a occur with long leads. With a single tiple input pulses do not trigger the may be seen that the output of the open-circuit collector. The load for The other two sections of IC1 are in a 100 millisecond period. These trigger, formed by two sections of decoder is by a transistor with an tiated by C2 and R4.

thus ensuring that its output is always C8 and C9. These capacitors are, howoccurs due to the action of capacitors ow after initial switch-on. The relays next switched on. The delay of about 100 millisecond period. Capacitor C7 to pin 13 of IC1/3. This capacitor, at lowers. An initial delay on switch-on switch-off the capacitors are discharsure that the full delay occurs when one second ensures that when reverflip-flop more than once in the one are driven by transistors Q1 and Q2 is connected from plus twelve volts which are connected as emitter folswitch-on, feeds a pulse into IC1/3 ged by R12,D4 and R14,D5 to enever, isolated on switch-off by the action of diodes D6 and D7. After sing a motor some time is allowed for the motor to stop before it re-If a light globe (or other device ceives reverse drive.

where only simple on/off operation

a single relay and its associated drive circuitry is required (Q1 and RL1). is required) is being operated, only R12, D4, D6 and C8 may also be omitted.

invariably be required and these are If using motors limit-switches will simply connected in series with the relay coils.

Double-Control Relay Circuitry

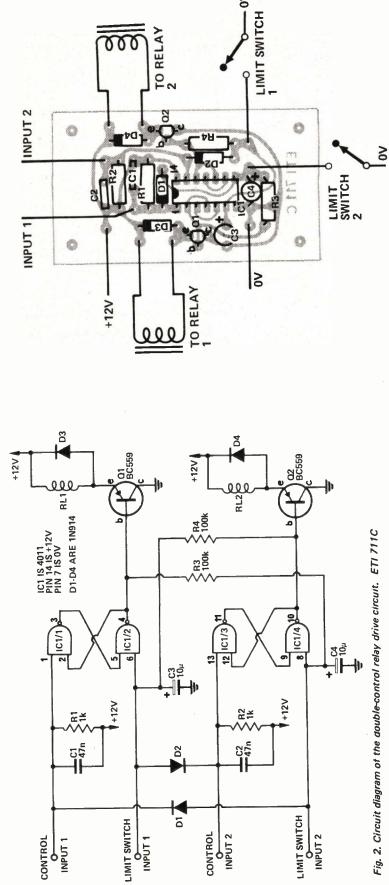
of two separate flip-flops which each This is a simpler circuit than that of drives a relay via a buffer transistor. For the control of drive motors a the single-control unit and consists

ion and a reverse command is given bethe motor is travelling in one directbetween the two different direction stop position must be incorporated commands. With this circuit, when ore the motor has stopped, the motor will simply stop.

Another command must be given for the motor to reverse. However if the

D1/2 are incorporated to provide this has already stopped - then only one limit-switch is made, and the motor command is required. Capacitors C3/4, resistors R3/4 and diodes action.

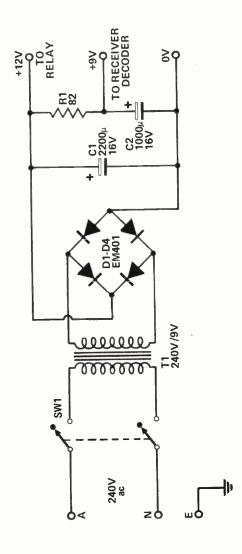
C4, R3,4 and D1,2 and by using input 1 and input 2 and limit-switch 2 to concontrolled this board may be used to control two separate units if required. This may be achieved by deleting C3, If lights or similar devices are being and limit-switch 1 to control RL1 trol RL2


added from pins 6 and 8 to +12V to Additional 1k resistors should be act as loads for the decoder.

Power Supply

and filtered power supply which provolts, via a further RC network, for This is simply a full-wave rectified vides 12 volts for the relays and 9 the receiver and decoder boards.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976


70

201

000

ETI 711 B Relays 12V coil 150 ohm or higher. Contacts to suit requirement.

PCB RL1,2

47 n polyester

Capacitors C1 4: C2,3 10 C4,5 11 C6

10 n polyester 10 μ 16 V electro 10 n polyester

IN914 BC548 4001 (CMOS)

01-07 01,2 ICI

K7

Semiconductors

8 ×

R1 R2 R3-R10 R11 R12 R13 R14

0

100 μ16 V electro 100 μ16 V electro 10 μ16 V electro

C300

Resistors all ½w 5%

Parts List ETI 711 B

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

INPUT 2

CONTROL

LIMIT SWITCH

CONTROL INPUT 1 INPUT 1

71

Project 711-

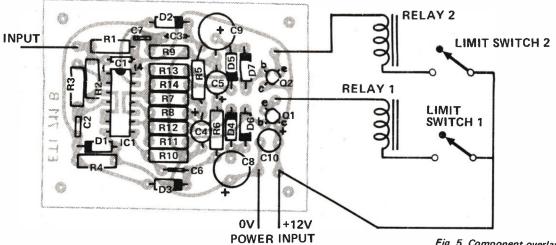
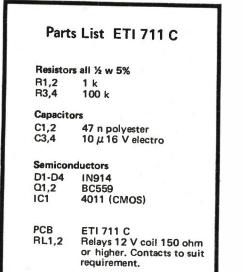



Fig. 5. Component overlay and interconnection diagram for the single-control relay driver. ETI 711B

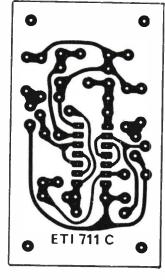


Fig. 6. Printed-circuit layout for the double-control relay driver.

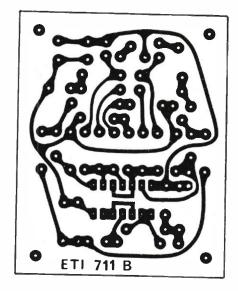
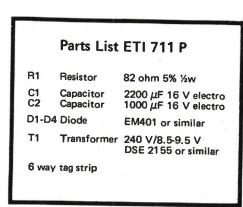



Fig. 7. Printed circuit layout for the single-control relay driver.

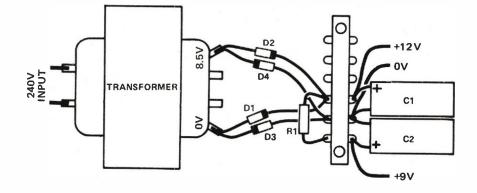


Fig. 8. Interconnection diagram for the power supply.

If you order semiconductors from us by mail order, your order will be despatched within 4 hours of receipt. (It's easy to fill such a simple order!!) However: If you order other products from our full range, it will take just a little longer... the difference between an express and an all stations (?)

ZN414 CA3130 SAK140 UAA170 UAA180

Tachometer Spot-o-light analog to LED display Bar-o-light analog to LED display

ECTRONICS GRO

DICK SMITH

Mail Orders: P.O. Box 747, Crows Nest, N.S.W., 2065 N.S.W. Branches: GORE HILL-162 Pacific Highway, 439 5311. SYDNEY - 125 York St., 29 1126. BANKSTOWN - 361 Hume Hwy., 709 6600. QLD. ~ 166 Logan Rd., Buranda, 391 6233. Interstate Branches: VIC. - 656 Bridge Rd., Richmond, 42 1614.

TIL220

RL209 DL704 DL707 DL747

Red LED Red LED 0.3" comm. cath display 0.3" comm. anode display 0.63" comm. anode display

.22 .20 1.20 2.00 3.00

This is Bang & Olufsen's new Beomaster 1900. Its beauty is not only skin deep.

excellent receiving capacity com- bined with a powerful amplifier (2 x 30 watts RMS and less than 0.07% distortion at full power) provides the very best in sound quality. The third type of B & 0 buyer will want a Beomaster 1900 as part of a completely matched audio system. Illustrated below is Beogram 1100 at \$239; Beovox S45 loud- speakers at \$398 a pair and Beomaster 1900 at \$570	BANG & OLUFSEN OF DENMARK A touch above the rest. Yictoria Danish Hi Fi (Aust.) Pty. Ltd., Shop 9, Southern Cross Hotel, Melbourne. Tel. 63 8930. Danish Hi Fi (Aust.) Pty. Ltd., 698 Burke Road, Camberwell. Tel. 82 4839. N.S.W. Convoy Sound, 4 Dowling Street, Woolloomooloo. Tel. 357 2444. Sonvoy Sound, 387 George Street, Sydney. Tel. 29 1364. Qld. Brisbane Agencies, 72 Wickham Street, Fortitude Valley. Tel. 221 9944. Walcott Street, Mount Lawley. Tel. 71 0100.	
make all adjustments with absolute precision. 5. "Pre-set" volume adjustment- another unique feature This device, which can be pre- set to "High, Medium or Low", makes sure the initial volume level will be the same whenever you turn the set on, no matter what the volume was the last time you turned it off. No other stereo amplifier offers practical convenience like this!	onitors" rs naster nd t-bed. vely hen this rrs a test- and zero testing ster 1900 i ster 1900 i ster 1900 i ople who	Beomaster 1900 because it has the most sophisticated electronic control system available-so simple to operate and yet more reliable than "mechanical" amplifiers. Others, however, will be impressed by its performance. The new FM tuning section with

of a new chapter in the history of **Beomaster 1900-the beginning** sound reproduction.

wonder why it was Bang & Olufsen of coming on the scene all the time. But came up with these remarkable ideas. New high fidelity amplifiers are this one will probably make all the Denmark and not themselves who really big Hi-Fi manufacturers

L. Newly developed electronic controls

The "Sensi-touch" electronic controls provide completely silent operation of volume and mode selectionsguarantees there's no wear and tear no thuds, bumps or crackles as you tronic control of primary functions whatsoever-provides greater reliaswitch from one to the other. Elecbility than traditional mechanical control systems-which, of course, rely on moving parts.

your finger touches the panel, the cir-Olufsen system is that the finger acts The principle behind the Bang & as part of a condenser-the moment cuit is completed and the selected touch without force or movement function activated. Only a light is sufficient.

2. Totally electronic volume control = perfect volume regulation

The technology inside Beomaster potentiometer or an electronic device can be used-B & O chose the latter. (900 is just as untraditional as the exterior. For instance, if a volume control needing only a light finger touch is required, a motor driven

This system-the most reliable in touch "volume up" the light given off a light source controlling the adjustresistors-or LDRs) located around is reduced and resistance (volume) ment of both channels. When you existence is based on four photo resistors (called light dependent

BO830

off to "count" as long as your finger is A binary counting circuit triggers smooth, precise regulation of volume. touching the panel. This ensures a you "touch" the sound down.

increases-the opposite occurs when

Such simple operation requires less fiddling and adjustment-thus adding hours of extra listening pleasure.

3. FM reception-crystal clarity and less need for adjustments

stations. Four FM stations can be pre-B & O's special muting circuit makes It gives long term accuracy in stereo servicing-less need for adjustments. sure there's no tuning noise between set so their selection is then entirely FM reception-less requirement for stantly in tune by the AFC control. capacitors found in other receivers. decoder (a new integrated circuit) electronic, and they are kept conreplaces all the usual circuits and The phase-lock loop stereo

4. Beneath the sturdy aluminium lid, all secondary functions are easy to find!

- A "loudness" function emphasizes tions, others can be selected with Apart from the pre-set FM stathe manual tuning "spinner".
 - normally miss when playing at a the frequency ranges you would low volume. •
- are instantly indicated on the lightpotentiometers-any adjustments adjusted by means of large sliding panel so that you always know Treble, Bass and Balance are Even in this area of what's happening. •

"secondary function" "spin" movements tug"-just gentle "slide", "roll" or there's no "flick, click, twist or

CMOS-a practical guide

Inherently rugged, CMOS logic has many advantages over other logic families – high noise immunity and uncritical power requirements are but two. This, the third article in this series deals with counters.

OUR MAIN SUBJECT THIS MONTH is counters. It might well be true to say that the range available (compared to TTL) reflects the advances which have been made in other branches of electronics. particularly display technology. BCD counters are conspicuous by their absence as they have generally been replaced by seven segment decoded counters. One disadvantage is a need in many cases for external drivers for LED displays but this will be eliminated when liquid crystal technology is more advanced and, hopefully, cheaper.

BINARY COUNTERS

As usual we will start with the less glamorous devices in the range which, in the present instance, are the straight-forward binary counters. First we should mention the general operating conditions required for all CMOS counters. The clock input rise and fall times should be less than 5 μ s and the operating frequency limit is about 2.5 MHz at V_{dd} = 5 V rising to 5 MHz at 10 V. As far as the problem of drive current is concerned, it is advisable to consult the full data sheets for the device in question but it is reasonable to assume that no trouble is likely to be experienced if the requirement is less than 0.25 mA with a 5 V supply or 0.5 mA with 10 V.

Figure 1 gives the pin diagrams for CMOS seven, twelve and fourteen stage binary counters. The outputs are labelled B, with Bo the most significant bit (i.e. giving greatest frequency division). It will be noted that three of the less significant bits are not available as outputs on the 4020A and this limits its usefullness in "divide by N" applications as we shall see later. The greatest division of the input frequency is 128 for the 4020A, 4096 for the 4040A and 16384 for the 4020A. In all cases the counters step on the negative transition of the clock pulse and the reset input sends all stages to logical zero independently of the clock when it is taken high. There is also a twenty-one stage counter (the 4045A) which produces two out-of-phase pulses at

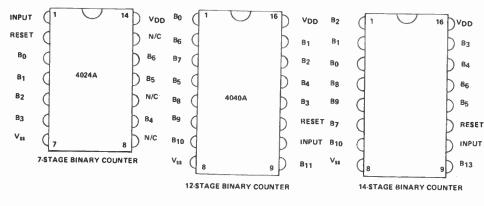
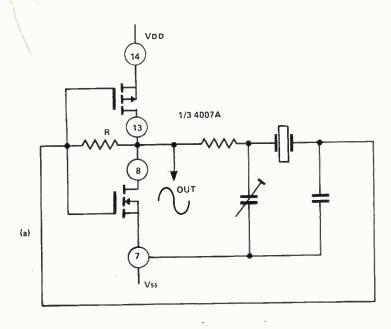


Fig. 1. Three CMOS binary counters.


separate outputs for every 2097152 input pulses. It is intended for producing one second pulses from 2.097 152 MHz crystals for driving clock circuitry and similar applications.

While we are on the subject of major frequency division chains perhaps we should consider crystal oscillators very briefly. Fig. 2(a) shows one common set-up and it is worth noting that the configuration in Fig. 2(b) is the standard way of producing a simple analogue amplifier from a CMOS inverter.

DIVIDE BY N COUNTERS

There are times when it is required to divide a signal by other than some power of two and by using a 4024A or 4040A we may divided by any number from two to 128 and 4096 respectively, although extra components are required. Figure 3 shows two ways of achieving this end.

The circuit in (a) has the binary counter feeding a system of logic gates, the output of which goes high when the counter reaches N-1 (where N is the number the input frequency is to be divided by). This happens on the falling edge of the clock pulse because the counters are negative-edge triggered. On the next rising edge the flip-flop Q output goes low and when the clock goes low again the output goes high, generating a pulse of length equal to one half of the clock period which resets the counter. It is interesting to draw a timing diagram for this circuit and prove it works. It should be noted that although the actual output is a positive going pulse, a similar pulse of twice its length (i.e. one clock period) is available at the Q output of the 4013. A divide by 3600 counter which will provide one pulse an hour from a 1 Hz input is

fin o

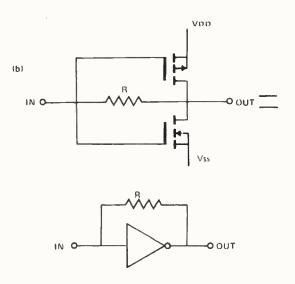


Fig. 2. (a) Basic crystal oscillator using CMOS for the active components. (b) Simple analogue amplifier using a CMOS inverter.

shown in Fig.4 as an example of the technique.

The second mode has the advantage that the "N" count and not the "N-1" count is detected, but two logic networks are required; one to decide when the counter has reached "N" and another to identify the "all zeroes" state and reset the output. It is also a disadvantage in some applications that the counter spends a brief period in the "N" state. It is again interesting to draw a timing diagram and it is worth noting the cross-coupled NOR gates used as an R-S flip-flop. As an example a divide by twenty four counter is shown in Fig. 5 to produce one pulse per day from the one per hour output of Fig. 4 The circuit dissipation of both the counters would be very low (less than 1 mW) at this low operating frequency and the only note of caution to be sounded is that the counter and flip-flop should not both be triggered from the same edge of the clock pulse (i.e. one should be positive and the other negative edge-triggered).

A DECIMAL-DECODED DECADE COUNTER

All the old hands at TTL will doubtless be familiar with the 7490 decade counter and 74141 decimal decoder driver. The 4017A combines the count and decode functions in a single package but has the disadvantage of low output drive capability. Buffering the outputs with 4049A inverters will raise the available output to about five or ten milliamps at supply

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

1

Fig. 3. (and and b) The two reset modes for "divide by N" counters. The output is a pulse in both cases.

CMOS-a practical guide

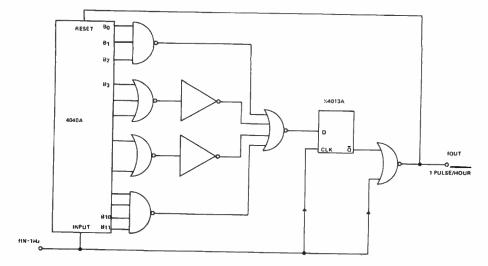
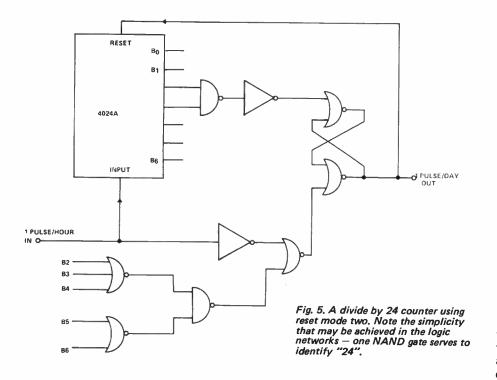



Fig. 4. A divide by 3600 counter using the first reset mode.

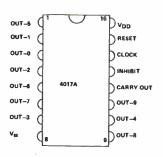
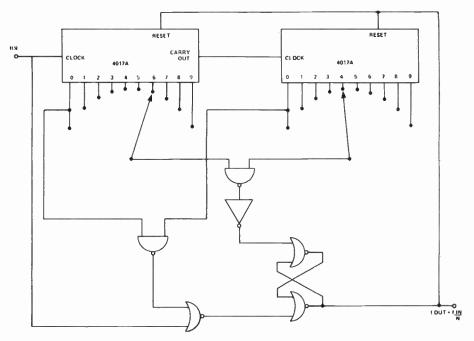


Fig. 6. Pin-out diagram of the 4017A decimally decoded decade counter.

voltages of five and ten volts respectively. The pin diagram is given in Fig. 6 and the counter advances one on the positive clock transition provided that the inhibit is held low. The reset operates asynchronously when taken high as usual. "Carry-out" may be used to clock the next stage in a multi-stage counter.

This device has fairly obvious applications in controlling switches in multiplying equipment as one and only one output is high at any one time. It is fairly clear also that we may extend the

techniques of divide by N counters to cover these devices with the added bonus that they are switch programmable. Figure 7 shows this idea realised using reset mode two because of the ease of switching for N rather than N-1. This circuit has lost an inverter compared with Fig. 5b, this being the change necessary to adapt the circuit for counters and flip-flops which operate on the same clock transition. The sequence of counters could clearly be extended to any desired length and it is an interesting thought that seven of these counters (4017As) and the attendant gates could, when fed with a 1 Hz input generate pulses at any interval from two seconds to over three months! On a more practical note a most versatile digital frequency synthesiser would result if the circuit were used on a phase-locked loop configuration. Remember however that the output is a pulse and it would need squaring (one more flip-flop) before most phase comparators would accept it.


SEVEN SEGMENT DECODED COUNTERS

We mentioned earlier that CMOS IC design reflected the changes in display technology. Two particular examples of this phenomenon are the 4026A and 4033A decade counters with seven-segment outputs. The pin-out diagrams for these devices are shown in and, as one might guess, the Fig. 8 counters are identical, with the exception that the 4026A has a display enable function for use in multiplexing digits and an ungated C-segment output, whereas the 4033A has ripple blanking and a "lamp-test" facility. We shall consider the use of these special facilities when we have discussed the features common to both. The devices are positive edge triggered and advance only when the clock enable is low. The reset operates when taken high as usual and the segment outputs go high when they are active. Just as in the 4017A the signal at the "carry out" terminal may be used to clock the next stage in multi-decade applications.

In the same way as we have considered for other counters, the seven segment outputs may be identified by logic gates and the counters made to divide by any number. Figure 9 gives the information necessary and it should be noted that the "N-1 and flip-flop" method is used because the other method does not count through zero.

Now we will have to consider the

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

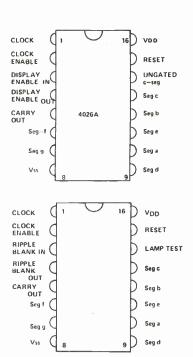
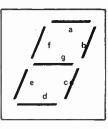
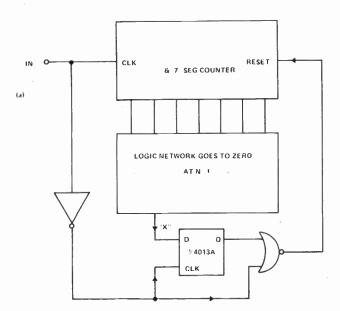
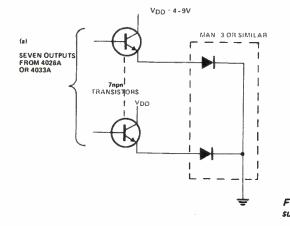




Fig. 7. A switch programmable divide by N counter for N = 2 to 99. Extension to higher N is obvious.

Fig. 8. Pin-out diagram for the 4026A and 4033A seven segment decoded decade counters. The labelling of the segments is also shown.



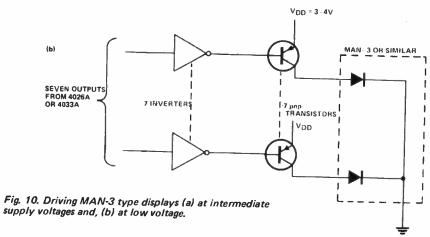
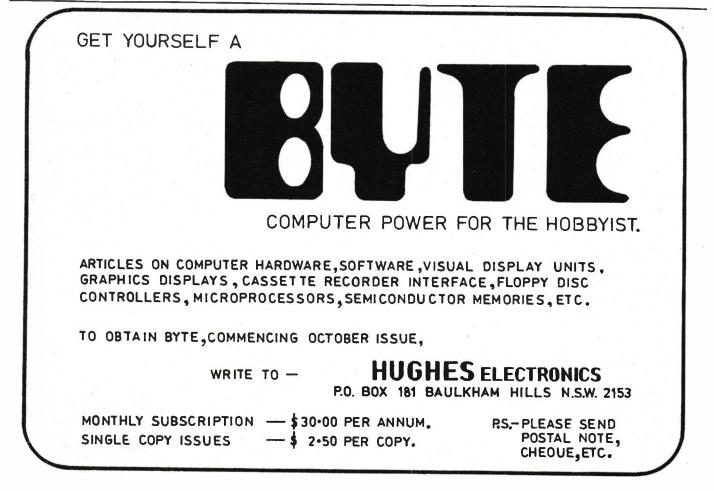

TO IDENTIFY	FOR COUNT OF	REQUIRED NETWORK
1	2	a seg X
2	3	c seg X
3	4	c seg X
4	5	l seg
5	6	CARRY OUT
F	7	e seu
7	. 8	
8	9	h seg e seg f seg g seg

Fig. 9. (a) How to produce direct seven segment divide by N counters, (b) logic networks to identify each digit. The extension to a multidecade version is simple.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

CMOS-a practical guide



interfacing of displays with our seven-segment counters. LEDs like the MAN-3 which have a low current will interface directly with the outputs of the 4026A or 4033A and give a tolerable brightness with the available drive current (about 5 mA), provided that V_{dd} is more than 9 V. If we drop the voltage down to between 4 and 9 V transistors should be inserted, as shown in Fig. 10a, and if the supply drops even lower, the addition of

inverting buffers is recommended. The seven transistors needed are generally the components of a single IC. Note also, the discussion on current limiting resistors to follow.

(to be continued).

Once again Europe sets the standard for speakers

-and you install them yourself!

Sooner or later in the search for that perfect sound you come up against an inescapable fact. You have to turn to Europe.

Today's range of Philips High Fidelity Loudspeakers represents the finest that Europe has

offer. We can supply full instructions for you to install them yourself.

The Philips range comprises tweeters, squawkers and woofers which you can combine into systems to satisfy the hardest-to-please sound fanatic. Some of the systems are available in kit form complete with woodwork and full assembly instructions.

To assist you in your selection we supply full performance data and details on mounting and enclosure for each speaker.

If you would like to know more about these superb imported European units, then send in this coupon:-

PHILIPS	
Æ	
J.	

Electronic Components and Materials

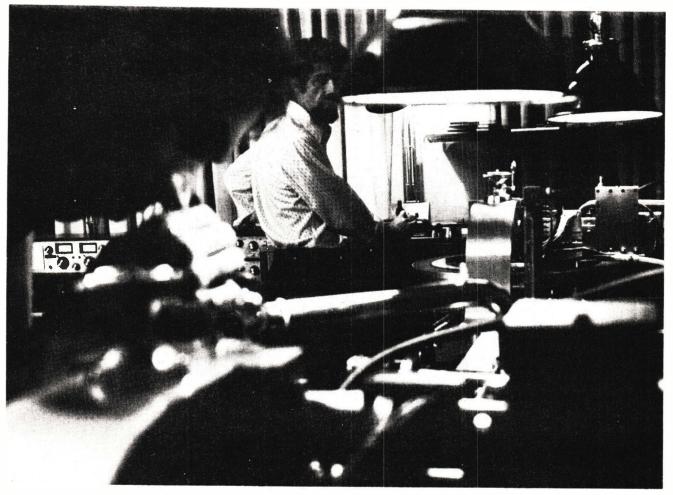
Philips Electronic Components and Materials

Sydney	
Melbourne	
Brisbane	
Adelaide	
Perth	

Philips Electronic Components and Materials, P.O. Box 50, Lane Cove. N.S.W. 2066

Please send me details and enclosure information on your High Fidelity Loudspeakers.

Name


Address

153.0168 **81**

.....Postcode.....

PHILIPS

Top Disc Cutting Studios, like The Mastering Lab, rely on Stanton's 681-Calibration Standard in their Operations.

Not everyone who *plays* records needs the Stanton Calibration Standard cartridge, but everyone who *makes* records does!

At The Mastering Lab, one of the world's leading independent disc mastering facilities, the Stanton 681 Triple-E is the measuring standard which determines whether a "cut" survives or perishes into oblivion.

A recording lathe operator needs the most accurate playback possible, and his constant comparing of lacquer discs to their original source enables him to objectively select the most faithful cartridge. No amount of laboratory testing can reveal true musical accuracy. This accuracy is why the Stanton 681 Series is the choice of leading studios.

When Mike Reese, principal disc cutter at The Mastering Lab, plays back test cuts, he is checking the calibration of the cutting channel, the cutter head, cutting stylus, and the lacquer disc. The most stringent test of all, the evaluation of direct to disc recordings, requires an absolutely reliable playback cartridge... the 681 Triple-E. All Stanton Calibration Standard cartridges are guaranteed to meet specification within exacting limits. Their warranty, an individual calibration test result, comes packed with each unit. For the technological needs of the recording and broadcast industries, and for the fullest enjoyment of home entertainment, you can rely on the professional quality of Stanton products.

Sole Australian Distributors: LEROYA INDUSTRIESCA Head Office: 156 Railway Pde., Leederville, Western Australia 6007. Ph. 81 2930. N.S.W. Office: 100 Walker St., North Sydney 2060. Phone 922 4037. VICTORIA Office: 103 Pelham St., Carlton 3053. Phone 347 7620. Available at quality conscious Hi-Fi dealers throughout Australia! ELECTRONICS TODAY INTERNATIONAL – OCTOBER 1976

LER 146

USE THE HOT SOUND TAPES

Ampex 406/407 and GRAND MASTER Studio Mastering Tapes

Hot! Ampex Low Noise/High Output 406/407 Series

Although GRAND MASTER Studio Mastering Tape stands at the very peak of magnetic recording technology, it could not have reached those heights without the solid foundation laid by the 406/407 Series. All the improvements offered by GRAND MASTER tape derive from the research which has made 406/407 the standard of the industry.

The magnetic oxide system has satisfied stringent studio requirements for low noise, high signal-tonoise ratio, and low distortion in studios throughout the world. The extremely durable oxide binder system was developed to endure the rigors of multiple pass mixdowns. And both 406/407 and GRAND MASTER Studio Mastering Tapes use the same high strength, backcoated polyester base film.

With 406/407 you get proven quality plus the added bonus of biasing compatibility with the new GRAND MASTER.

Hotter! Ampex GRAND MASTER Studio Mastering Tape

A Product of continuing Ampex research, GRAND MASTER Studio Mastering Tape provides improved electro-magnetic performance properties resulting in higher output, lower distortion, greater saturation capability, and sound quality which must be heard to be believed.

It delivers all these superior qualities while maintaining the identical biasing requirements as the 406/407 series, which means not only added convenience, but greater eraseability than other high output tapes which require an increase in bias setting. Like 406/407, the foundation of GRAND MASTER Tape is a durable polyester film with high conductivity backcoating which improves mechanical handling and eliminates dropouts caused by electrostatic attraction of contaminants.

You can drive GRAND MASTER tape harder than you've ever driven a tape before. From a whisper to a scream, it responds with more undistorted output across the entire audible range than any other mastering tape available.

Ampex Australia Pty. Ltd. 4 Carlotta St., Artarmon, N.S.W. 2064 TLX 20608, Phone 439-4077 and 541 King St., West Melbourne, 3003 Phone Melbourne 329-0388

ELECTRONICS —it's easy!

Chart recorders

IN GENERAL, chart recorders are designed to accept electrical voltage signals as these constitute the majority of signals produced by sensing equipment. Occasionally the chart recorder is more appropriately connected to a mechanical output without electrical signals being involved: in some circumstances there is no need for electrical circuitry.

Chart recorders are, therefore, electronic system units which accept a voltage signal converting it to an equivalent graphical representation on paper. The recorder can be put to use in any application where an electrical signal is produced. Examples are measurement of fluctuations of the power mains voltage, records of body currents in medical diagnosis and changes in temperature in a process plant. The earliest chart recorder was probably Lord Kelvin's 19th century paper-tape siphon-recorder used to record electric telegraph signals. Because of the large and varied demand for chart recorders, manufacturers have developed numerous alternatives. Figure 1 shows a number of recorders installed to monitor an oil rig.

In fundamental terms chartrecorders are electro-mechanical converters — electrical signals are changed into equivalent mechanical ones which are used to make a permanent record on a paper-chart. For this reason there are two aspects to a chart recorder its mechanical design and its electrical design. For convenience we look at each more or less separately but in designing and operating the recorder

Fig. 1, Chart recorders are used in many varied applications, The panels of this control room contain a number that are used by the operators to see how the process is behaving.

the two are so closely related that the response depends on adjustment of both disciplines of thought.

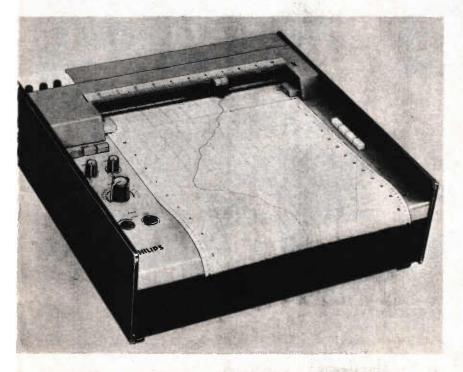
PART 35

Chart Recorder Formats:— Chart recorders are designed to display a signal in a graphical form that is convenient to the user. There are two basic types: those which record one or more variables with respect to time (commonly called x-t recorders) and those which plot one variable against the other (x-y recorders).

Strip-chart:- In these recorders a continuous roll of suitably scaled paper is motor driven at constant speed past the marking head. The paper drive is usually driven by a synchronous or stepping motor as this ensures accurate paper-speed. Where mains supply is not available dc governed-motors and clockwork alternatives can be used. Chart speed changes are commonly obtained by altering gear ratios. Figure 2 shows the construction of a typical panel mounted strip-chart x-t recorder. The module shown withdrawn from the housing is the paper drive unit, the housing contains the electronic amplifier driving the pen which contacts the top of the paper when the drive unit is plugged in.

Strip chart recorders designed for bench top use are also common -Fig. 3. Some strip chart recorders take up the^{*} used paper by rolling it or by folding it in a concertina. The latter, known as z-fold, is very convenient when the need to refer to the record arises. Chart speeds vary widely from metres per second in fast-writing recorders used to capture kilohertz bandwidth transients, down to millimetres per hour for industrial process and slow-scientific phenomenon recording. It is not usual, however, to find a range as wide as this in the one unit.

Process industry strip-chart recorders generally run at one speed only; units for scientific use usually have switched speed capability. The choice is decided by matching the resolution required with the amount of paper consumed.


Paper sheet: - The flat-bed style lends itself to x-y operations where the

axes are driven by two independent variables. Examples are plotting the properties of a material, as shown in Fig. 4, and charting antenna field strength versus position. In this style the recording paper is a single sheet which is attached to the platen. The pen moves both in the x and y directions. The paper may be held by clips or by electrostatic attraction. If the x axis input (horizontal) is fed with voltage that rises linearly with time (a ramp function) the x axis will move across the chart with time

Fig. 3. Flat-bed strip-chart recorder (Philips).

Fig. 2. Typical strip-chart x-t recorder designed for industrial panel mounting. (Record Electrical Co.).

Fig. 4. Plotting an hysteresis curve for material under test in the large magnet shown at the rear.

ELECTRONICS-it's easy!

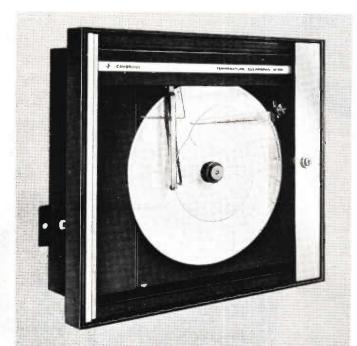
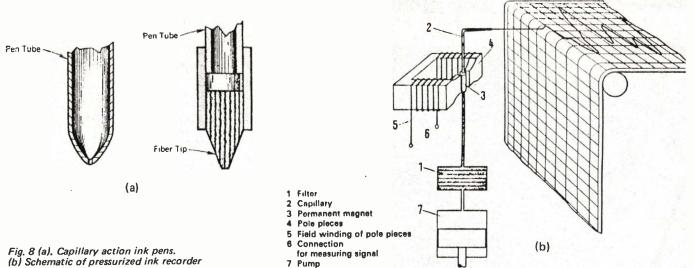


Fig. 5. Plug-in used to convert x-y flat bed recorder to x-t mode of operation.

Fig. 6. Circular chartrecorder.

101

ALCO AND A


1

making the unit an x-t format recorder. Plug-ins generating appropriate ramps are often provided as an accessory — one is illustrated in Fig. 5.

Circular:— Where the Geometry of the measurement task is circular, such as recording out-of-roundness of a ground shaft, or where the measure has a cyclic time function, such as daily temperature changes, a circular form of chart is easier to use. The chart rotates under the marking device at a rotational velocity locked to the geometrical position or the appropriate sub-unit of time — hours, days, weeks and months. An example of a circular-chart recorder is given in Fig. 6.

The size of chart papers varies greatly from recorder to recorder. Strip charts are used from 50 mm width to around 800 mm with lengths as much as 150 m. The duration of the maximum record that can be taken on a roll is decided by the chart length and the chart speed. Flat bed units begin in paper size at about 200 by 300 mm ranging to huge computercontrolled automatic-draughting units with beds as much as 6 m x 4 m. Circular charts rarely exceed 300 mm diameter.

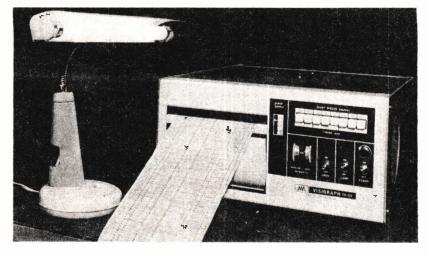
Fig. 7. Kelvin's 1873 siphon recorder introduced the use of continuous ink marking in chart recorders.

(b) Schematic of pressurized ink recorder (Siemens).

Supply of chart papers can be difficult at times because stockists find difficulty in holding large stocks of the numerous options available. It is wise for the operator to hold a generous supply in hand at all times.

When reading values from paper charts care must be exercised in ensuring that inaccuracies caused by paper size changes, paper wander across its platen and marking mechanism offsets are allowed for. Good quality charts are a necessity with high-quality measurements.

PAPER MARKING TECHNIQUES


In these units an electronic amplifier coupled to a mechanical drive moves a mechanical point across the chart. It is then necessary to mark the paper in order to show where the point has travelled. Five commonly used techniques will be encountered. Ink pen-- Samuel Morse's telegraph recorder shown in Part 5 (Fig. 1) used a pencil to mark the paper strip. A limitation is that the lead wears away making a feed mechanism necessary. Ink can flow from a reservoir con-Kelvin introduced the tinuously: siphon system in 1873 - see Fig. 7. This system is used extensively today in one form or other. Ink feed rate is

a factor of the bore of the pen, paper absorbency and ink viscosity. Figure 8a shows pen details.

A second ink feed method uses a combination of gravity feed and capillary action through small bores. These are the ballpoint and fibre-tip pens. A third ink method pressurizes the ink, recording being performed by a very fine ink jet. This method is suitable for fast writing speeds (as high as 60 metres per second compared with around 1 m per second for unpressurized ink feeds). There is no

Fig. 9. Recording multimeter using pressure sensitive paper (Goerz).

ELECTRONICS-it's easy!

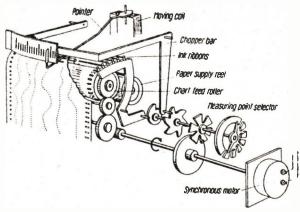


Fig. 10. UV recorders provide traces by exposure of photographic paper. Further exposure is needed to bring the latent image into view.

Fig. 11. Dotting recorders offer the advantages in slow-speed applications of being suitable for multichannel multiplexing.

mechanical contact with the paper in pressurized systems, the fast writing rate arising because of the very small size of nozzle built into the deflecting system. Figure 8b shows the schematic of such a recorder. The pressure is automatically adjusted to suit the chart speed set.

The correct choice of ink and paper for the speed of operation is essential. Water-based inks are to be avoided as the record can be destroyed by accident. Fast drying inks are needed or else the trace may be rolled-up before the ink is dry. In short, although the alternatives to ink offer certain advantages we are still forced to use ink as the best all-round choice in many applications.

Pressure sensitive papers-- Black paper treated with tiny wax beads appears white until the beads are flattened to form a transparent cover window thereby exposing the black. Pressure sensitive papers are marked by the action of a gentle pressure exerted by the stylus. The relatively high contactforce needed restricts these to slow response application. Pressure-sensitive papers are more usually used with marking mechanisms that are periodically pressed against the paper to form a dot. Figure 9 shows a recording multimeter which uses this latter method of marking. Another limitation is that the record can be marked during handling.

Electro-sensitive papers: Some recorders use paper which is marked when an electric current is passed through it. The earliest was carbon impregnated; dielectric breakdown

88

producing the mark by applying a high voltage between the stylus and the platen.

Another method electroplates onto the surface of paper made conductive by saturation, with salts. It requires wet paper use but will operate with lower voltage levels than the above carbon paper method.

Zinc oxide reduced to free zinc is the process used in another kind of recording system. Metallized papers in which the metal film is fused to its paper backing are another. Yet another is based on providing a change in the paper surface which takes up toner (similar to the Xerox process) – it is fine for very fast systems but not those that occur slowly.

Heat senstitive papers: Yet another method of making the record is to use a heated stylus melting a wax-like coating on black paper. These papers can be manufactured with greater resistance to marking (during handling) than the pressure sensitive papers. Stylus temperature can also be varied with ease to suit the writing speed concerned.

Photographic paper: The earliest photographic systems used negative film. Such systems are still in use today but the majority of the highest speed recorders (30 kHz is possible) use ultraviolet light to expose specially treated paper. Exposure produces a latent (invisible) image which needs further exposure to form the visible image. This is shown in Fig. 10: the fluorescent lamp intensifies the traces.

Continuous versus dotting

mechanisms: Fast writing speeds require continuous marking and for these the writing mechanism functions continuously. For very slow speed needs, as are found in process plant monitoring an alternative, in which a dot is produced on the paper at regular periods, has certain advantages. Figure 11 shows one form of mechanical arrangement. A separate motor, or pick-off from the chart drive causes a point to periodically press on the paper, marking it by the appropriate method used. By incorporating a geneva mechanism (one that rotates a shaft in steps) the input signal can be switched sequentially over a number of different signal channels (six and twelve are usual). Also synchronised to the channel changing action is an inking system that steps from colour to colour to provide a different coloured dot for each channel. Inking may be as shown (different ribbons) or may be provided as individual pads each soaked with ink. A multipoint dotting head wipes through this ink, One maker uses a multicolour single ribbon, akin to a typewriter ribbon.

Multi-channel operation is also provided in some continuous trace recorders. This is almost always achieved by incorporating separate recording heads for each signal. Figure 12 is a four pen recorder of the type in which the pens do not overlap: each trace is contained within a quarter of the full chart width. Multitrace recorders in which each trace has the full paper width capability are also available. Mechanical drives have the disadvantage in that the traces must be

slightly out of phase so that the pens can pass one another without fouling. Optical recorders do not suffer from this drawback.

RECORDING MOVEMENTS

We now look at the methods used to transduce the electrical input signal into an equivalent mechanical movement.

Moving coil mechanisms: Basically these use modified moving coil and pointer. The end of the pointer carries an ink pen or acts as a marking point when forced onto the chart paper in dotting styles (see fig. 11). Simple systems trace an arc across the chart giving a non-linear record. (curved markings on the paper overcome this but complicate the platen design). This can be linearized to provide better accuracy by various means such as that shown in Fig. 13.

Optical recorders also use a moving coil unit on which a mirror is mounted to reflect a high intensity focussed beam across the paper. These units have their origin in practical oscillographs designed by Duddell (to Blondel's ideas) at the turn of the century. The choice of galvanometer unit largely decides the frequency response. Today they are supplied as robust plug-in units like that shown in Fig. 14. The application, in many units, decides which galvanometer is used and the optimum terminating resistance value in order to know the deflection and sensitivity for a given frequency of signal. (Refer to reading list for guides). These recorders offer the ability to modulate the trace intensity producing 2-D half-tone chart records.

Potentiometric recorders: Around 1898 Professor Callendar devised his recording resistance pyrometer (Fig. 15) and in doing so provided instrumentation with the potentiometric or self-balancing recorder. This method makes use of a closed-loop system that causes the pointer to follow input signals. Referring to Fig. 16 the recorder has a drive motor mechanism which translates the pointer in one direction or the other depending upon the polarity of the signal driving the motor. Attached to the shaft driving the pen is a rotary resistance balancing potentiometer, as shown in Fig. 16a. Schematically this can be shown as a linear equivalent (the more recent design style used) as shown in Fig. 16(b). The potentiometer: wiper moves across in unison with the pen and generates a changing

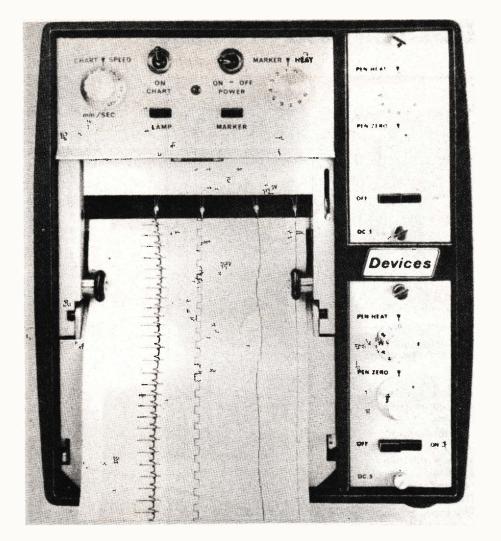


Fig. 12. High-speed four pen recorder. In this style the pens do not cross over each other limiting the trace width to a portion of the paper width.

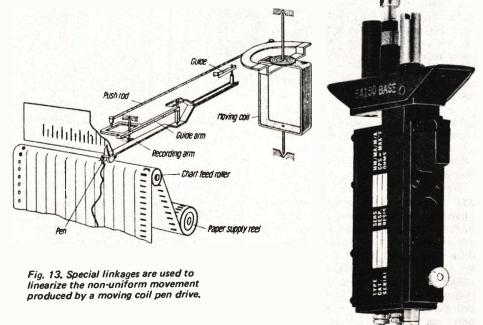


Fig. 14. Galvanometer unit for UV recorder (Hathaway Instruments).

ELECTRONICS-it's easy!

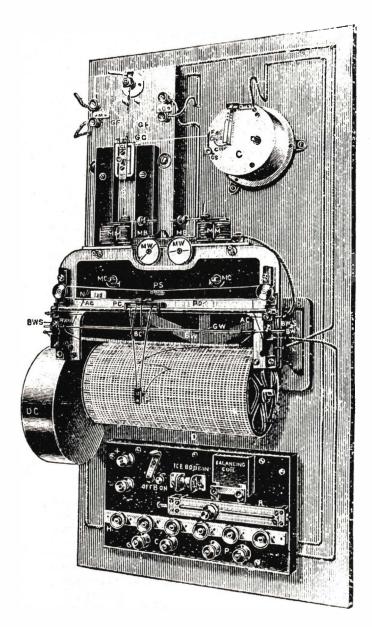


Fig. 15. Callendar's original potentiometric recorder was devised around 1898 to record furnace temperatures.

Balancing potentiometer Ink container cording carriage Fig. 16 (a). Arrangement of motor form of potentiometric recorder. (b) Schematic using linear motor.

(c) Circuit schematic of potentiometric method (simplified.

value signal. The potentiometric system circuit layout is represented in Fig. 16(c). A reference voltage is supplied across the potentiometer. Voltage from the wiper is compared with the input signal voltage to be recorded. If a difference exists this constitutes an error which causes the drive motor to move accordingly to correct the error. The input signal and reference signals are suitably attenuated to provide the sensitivity needed at full-scale deflection. The advantages of recorders such as those described above are that the mechanism plots a linear scale, and there is considerable power available to move the pen against frictional forces. The system, being potentiometric, draws little current once the unit has achieved balance and, as considerable drive power is available under closed-loop control, the pen response can be made tighter than for the open-loop pointer-type moving coil units. Sensitivity is decided more by the amplifier gain than mechanical constants. The majority of flat-bed recorders use this principle: at full trace movement their writing speeds can reach several metres per second. The method also overcomes the restriction on traverse length suffered by rotationally driven eecorder mechanisms. Although a simple dc servo control is shown, potentiometric recorders, especially those built before around 1970 more usually used ac control systems.

Fig. 17. Future style of chart recorder.

CRT - Fibre Optic Recorders: recent design concept couples a CRT linear sweep trace to photosensitive paper via an optical fibre connection. This provides the highest response of all chart recorders so far available - dc to 1 MHz.

DYNAMIC RESPONSE

A point commonly overlooked is that chart recorders have a certain dynamic response and are effectively low-pass filters of the input signal. The response of a recorder to a sine signal, that is, the recorded trace, will look like the original but will lack adequate amplitude if the pen cannot follow fast enough. When quoting response rates it is therefore necessary to state amplitude as well as frequency. For example, moving-coil recorders with short pen arms - as in Fig. 12 - have a typical response thatis flat from dc to 100 Hz at 10 mm peak-to-peak deflection for a sinewave. If the frequency is increased the recorder will still operate but the amplitude of a sinewave record falls off. Plots of complex waveforms may be severely distorted for the fundamental may be recorded at full amplitude with harmonics attenuated progressively. A square-wave input may be recorded as a near sine-wave if the response is inadequate. It is better to use a smaller signal amplitude in such cases.

Simple moving-coil chopper-type recorders will roll off from as low as 1 Hz. Ink jet units extend to 800 Hz: beyond that optical recorders are needed providing up to 1 MHz in the CRT design. Frequencies above this must be viewed by oscilloscopes using cameras to record the image.

Faithful response is also a function of amplifier characteristics. With the exception of simple moving-coil recorders most units have built-in

amplification because the majority of signals to be recorded, have insufficient power to provide an adequate response. Recorder sensitivities may be fixed in manufacture, as in process industry dotting recorders, or have adjustable ranges. The manufacturers of recorders usually provide the amplifiers as part of the recorder, the purchaser only has to make the selection.

Event-marking recorders: In many recording applications the variable remains constant for more of the time than it varies. An example might be recording rainfall in dry areas. If the record must provide fine timeresolution the chart must run fast which means using immense lengths of paper for little data recorded. An approach, slowly finding acceptance, is to use a time/date printer which prints a value each time an increment of event occurs. Each increment printout causes the chart to advance a unit. The result is a record chart completely filled with non-zero data. It is harder to interpret but much more efficient for spasmodic data situations. At present, however, this form of equipment is hard to procure commercially.

THE FUTURE

The design of recorders is decided largely by cost, reliability, sensitivity, and packaging to suit the application. Response and accuracy cost money. The weakest points of inexpensive recorders seem to be the reliability of the marking arrangement, and poor response. Optical recorders eliminate marking problems but still (with the exception of the CRT types) require fine electro-mechanical mechanisms to deflect the trace. We can confidently expect to see solid-state "deflection" systems marketed in the near future which are based on semiconductor technology. Units, like that depicted

in Fig. 17, will use a linear array of LEDs to expose a spot on photographic paper in the appropriate place. This method would eliminate mechanical manufacturing problems, have excellent response characteristics and be readily multiplexed to provide multi-channel traces. Using LSI manufacturing methods, the cost of the array head and analog-to-digital converter would be minimal.

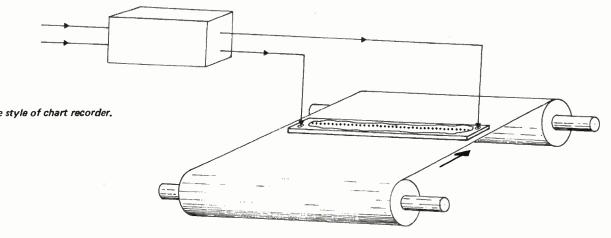
FURTHER READING

Books containing chapters on chart recorders include:

'Basic industrial electronic controls" J. H. Ruiter and R. G. Murphy, Rolf Rinehart and Winston, 1962.

"Measurement systems" E. O. Doeblin, McGraw-Hill, 1966.

"Principles of instrumentation" J. T. Miller, United Trade Press, 1968.


A brief survey of recorders is given in: "Instruments-electric recorders",

Siemens, September, 1968. Liquid jet osillographs are discussed in detail in Siemen's pamphlet MS7/200e, 1967 of that title.

A review of the merits of various writing systems is given in:

"Graphic recorder writing systems", D. R. Davis and C. K. Michener, Hewlett-Packard Jnl. October, 1968. Chart inaccuracies are discussed in "Recording charts", L. Briggs Dunn, Instruments and Control Systems, July, 1969.

When using optical oscillographs the correct choice of galvanometer head and source impedance usually requires calculations to be made. (There is a trend toward elimination of this by providing suitable amplifiers). Manufacturers usually provide such detail. A paper "The Theory of recording galvanometers" by M.A. Le Gette, Consolidated Electrodynamics, Pasadena, California provides in depth detail.

To own one of our new turntables, you may have to go without a few luxuries.

When it comes to good Hi-Fi equipment, it's often a question, not of how much your ears can take, but of how much your wallet can take. Take the new belt drive AKAI AP003 (shown above) or the new fully auto AP005. At a recommended retail price of \$2451 and \$2981 respectively, they'll leave a pretty big hole in most people's wallets. However, if you're one of those people who know the sound you want, one of these turntables is probably just what you're looking for. If you don't particularly wish to go as far as the man in the picture above, we

recommend the AP001C at \$168[†] Like all AKAI Hi-Fi equipment distributed by AKAI Australia, all of these turntables are covered by our Complete Protection Plan^{*}. Which simply means 12 months full parts and labour warranty on all Tape Equipment, 2 years full parts and labour warranty on all Amplifiers, Turntables and Speakers and a lifetime warranty on all GX Tape Heads Make sure the Complete Protection Plan card is with your AKAI eouinment.

equipment.

The AKAI Hi-Fi Professionals are: NEW SOUTH WALES — SYDNEY CITY AND METROPOLITAN. Sydney: Douglas Hi-Fi, 338 George Street; Duty Free Travellers Supplies, 400 Kent Street; European Electronics. 187 Clarence Street; Instrol Hi Fi, Cnr. Pitt & King Streets; Magnetic Sound Industries, 32 York Street; Jack Stein Audio, 275 Clarence Street, Baabatowa: Selsound Hi Fi, Cnr. Pitt & King Streets; Magnetic Sound Industries, 32 York Street; Jack Stein Audio, 275 Clarence Street, Baabatowa: Selsound Hi Fi, Cnr. Pitt & King Streets; Magnetic Sound Industries, 32 York Street; Jack Stein Audio, 275 Clarence Street, Baabatowa: Selsound Hi Fi, Cont. Pitt & King Streets; Magnetic Sound Industries, 32 York Street; Jack Stein Audio, 275 Clarence Street, Baabatowa: Selsound Hi Fi, Cont. Pitt & King Streets; Magnetic Sound Industries, 32 York Street; Jack Stein Audio, 275 Clarence Street, Baabatowa: Selsound Hi Fi, Cont. Pitt & King Streets; Magnetic Sound Industries, 32 York Street; Jack Stein Audio, 275 Clarence Street, Mizanda Fair; Mizanda Hi Fi, Kong Street, Hop 5, Mona Vale Court. Paramatta: Gramophone Shop, Shop 151, Westfield Shoppingtorn: Selsound Hi Fi, 27 Darcey Street, Roselands: Roselands:

*The Complete Protection Plan does not cover equipment purchased outside Australia. *Recommended retail price only.

70618R

(02) 520-9442.

QLD: Fred Hoe & Sons, Brisbane. Techniparts, Brisbane. E.D.A. Delsound, Brisbane. Lighting & Electrical, Brisbane. Haralds Electronics, Rockhampton.

N.S.W.: George Brown & Co., Sydney. Pre-Pak Electronics, Sydney. M.S. Components, Sydney. Radio Despatch Service, Sydney. G.B.L. Sound Systems, Newcastle.

J.E.S. Electronic Components, VIC: Melbourne. J.H. McGrath, Melbourne.

S. AUST: K. D. Fisher & Co., Adelaide.

W. AUST: Continuous Music Systems, Perth. Willis Trading Co., Perth. Atkins Carlisle Ltd., Perth. B.P. Electronics, Albany.

		1			
E	T			S	ELECTRONIC
		with fil	•		297 Lt. Lonsdale St., Melbourne. 3000 Phone: 663-1785
	131	Power	Suppl	v	TAPE RECORDER Microphones
require	whet d. \$7	ther 20	V or 40 \$5 p&p	V version b. Built &	Dynamic 200 ohms Switched \$3.50 P&P 50c. Pioneer PL51A Electronic Direct Drive Turntable Motors, requires 18v D.C. regulated power supply.
Comple	ete kit	2 Mini of parts 25.00 + \$	not incl	uding case	Circuit provided. \$40.00 ea. P &P \$2.50. PL51A Tone Arms. Less Headshell \$15.00 ea. P&P \$1.25. Reflex Horn Speakers. 5" diam. 5 watt
		Stereo 5.00 + 50		qr	8Ω \$8.50 ea. P&P \$1. S.C.R. BT100A - 300R. 300V. 4-5 amp. R.M.S. 2 amp average. 60c each.
		Audio \$6.50 +			P/P 25c. PHILIPS Tuning Capacitors for AM. SW and FM. \$2. each. P/P 60c. PHILIPS Beehive Trimmers. 4 to 25PF.
		3 Ligh Iash T		d	10 for \$2. P/P 50c. 6.5mm Chassis Mount Switched Stereo Sockets. 40c each. P/P 25c.
incl. pc	ost.	<u>.</u>	U	ted \$23.30	Stereo Amplifier and R.F. Board 4 watts RMS per channel including circuit diagram. Boards are complete with all transistors, capacitors — resistors, etc. and are brand new — famous make. Only \$6 set P/P 60c. Stereo balance meters, $1^{1/2}$ " x 7/8" x $1^{1/4}$ " 200ua, \$2 ea P/P 40c 50Ω 3 watt wire wound pots. \$1 ea. P/P 25c.
4th Floo	r, Ryri	ie House	, 15 Bou	Y LTD ndary Street a 33 5850.	10Ω 3 watt wire wound pots. \$75c ea. P/P 25c 6.8. μF 100v polyester capacitors for speaker networks, 75c ea. P/P 20c. Dual 50k push puil switch pots. (Astor/Philips)car radio 60c ea. P/P 25c M.S.P. 250v AC 3 AMP toggle switch. 50c ea. P/P 25c
				1. A.	Paddle switch. D.P.D.T. 250v AC 5A. 40c ea P/P 25c.
				ex	Transistors — AY 9150 PNP 60v 150w — AY 8110 NPN 60v 115 80c ea. AY 8139 NPN — AY 9139 PNP 40v 10w 45c ea. AY 6120 NPN — AY 6121 PNP 50v 1A 40c ea. 2N5088 NPN PN 3694 NPN 10c ea. BF 198 — BF 199 NPN 20c ea. P&P 30c.
	/IK)		asse	ttes	A.3065 TV/FM Sound System. I.C. Silicone Dual in Line suitable for a wide variety of applications including T.V. sound channels — line operated
Per Cassett If you buy		1.11	12.23	24 or more	and car F.M. radios and mobile communication equipment — brand
FC 30	10.0	\$2.10	\$2.00	\$1.75	new. Only \$1 ea. P/P 40c. Balance Meters 1 ¹ /2" x 7/8" x 1 ¹ /4
FC 45 FC 60		\$2.15 \$2.30	\$2.05 \$2.15	\$1.90 \$1.99	Balance Meters 1 ¹ /2" x 7/8" x 1 ¹ /4 Deep 200 UA \$2.25 ea. P/P 40c. M.S.P. 250V A.C. 3 AMP D.P. Toggle
FC 90		\$3.00	\$2.90	\$2.80	switches 50c ea. P/P 25c. 1022 3 Watt. Wire wound pots 75c ea.
FC 120 CC 90		\$4.29 \$4.29	\$3.99 \$3.90	\$3.25 \$3.20	P'P 25c.
UDU Court	1				Multiple Electrolytics. 200 μ F - 50 μ F - 25 μ F at 300V Plus 100 μ F at 325V. VW. \$1 ea. P/P 30c.
HBM Studi	C60	\$1.50	\$1.40	\$1.27	LEVEL METERS 200 micro amp sensitivity size 1" x 1" x 3/4" \$1.50
	C76	\$1.70	\$1.50	\$1.40	P/P 40c.
	C90 C60	\$1.80 \$2.45	\$1.60 \$2.40	\$1,50 \$2.30	SOLENOIDS — tape recorder type. 12V D.C. 5¼ colis. 1 ¹ / ₂ " x 1 ¹ / ₂ " x 3/4" \$2 ea. P/P 30c.
- (C76	\$3.10	\$3.04	\$2.81	TRANSISTOR RADIO. 5k miniature
)	xC90	\$3.60	\$3.40	\$3.05	switched pots. 30c ea. P/P 15c. Miniature 2 gang variable capacitors 30c ea. P/P 15c.
See sp	ecial o	ffer on F	Page 13 t	his issue.	Slide Pots. Single gang. $500\Omega A$, 20KA, 25KA, 100KC, 200KA, 200KB, 500KA, 500KB, 1 meg.D, 35c ea. P&P 550 Nul. conc. 500KB, 250KB, 1
			-	quantity	500KA, 500KB, 1 meg.D, 35c ea. P&P 35c. Dual gang — 50KA, 250KB 1

All cassettes may be mixed for quantity discount.

POSTAGE: Up to 6, 60c or N.S.W. \$1.20 plus 10c per doz. Vic., S.A., Qid., \$1.75 plus 25c per doz. W.A., Tas., N.T., \$1.90 plus 40c per doz.

HUDSON BAY MARKETING CO. Box 250, Cabramatta, 2166 Phone 727-7445

Slide Pots. Single gang. $500\Omega A$, 20KA, 25KA, 100KC, 200KA, 200KB, 500KB, 100KC, 35c ea. P&P 35c. Dual gang — 50KA, 250KB 1 meg.C, 2 meg.C, 60c ea. P&P 35c.

Ineg.C, 2 meg.C, 60c ea. P&P 35c. Skelpton Preset Pots, $100\Omega - 220\Omega$ 47004, 2.2K, 10K. 22K, 47K 10c ea. P&P 20c. Electrolytic Capacitors. 2500 UF 35v 60c. 2200 UF 25v 40c 1000 UF 35v 40c. 1000 UF 10v 20c 470 UF 25v 25c 220 UF 10v 20c P&P 30c. LARGE RANGE OF COMPONENTS - GOVERNMENT AND MANUFACTURERS DISPOSAL EQUIPMENT, ALSO STEREO AND HAM GEAR ALWAYS IN STOCK.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

ETI data sheet

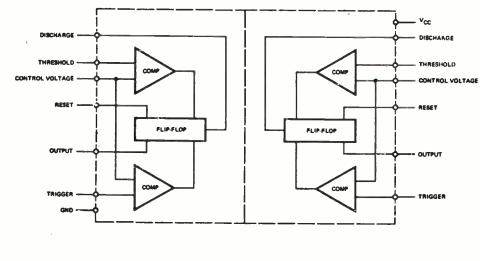
555 & 556 timing circuits

QUICK REFERENCE DATA 555 TIMER

Absolute maximum ratings		
Supply voltage	max.	18 V
Power dissipation	max.	600 mW
Characteristics		
(25 ^o C, V _{CC} 5 to 15 V)		
Supply voltage		4.5 to 15 V
Supply current (low state) (V _{CC} = 5 V)	typ.	3 mA
(V _{CC} = 15 V)	typ.	10 mA
Timing error, initial accuracy	typ.	1%
Timing error, temperature drift	typ.	50 ppm/ ^o C
Timing error, drift with supply voltage	typ.	
Threshold voltage	typ.	1/3 V _{CC}
Control voltage level (V _{CC} = 15 V)	typ.	10 V
$(V_{CC} = 5V)$	typ.	3.3 V
Output voltage drop (LOW)		
V _{CC} = 15 V; I _{SINK} = 10 mA	typ.	0.1 V
^I SINK = 50 mA	typ.	0.4 V
^I SINK = 100 mA	typ.	2 V
V _{CC} = 5V; I _{SINK} = 5mA	typ.	0.25 V
Output voltage drop (HIGH)		
V _{CC} = 15 V; I _{SOURCE} = 200 mA	typ.	12.5 V
ISOURCE = 100 mA	typ.	13.3 V
VCC = 5V	typ.	3.3 V
Risetime/falltime of output	typ.	100 ns

The 555 timer is available from many manufacturers under codings like NE555, μ A555, LM555, MC1455 and MC1555. Recent ETIs have carried ads pricing the device at around 60c to 90c.

The IC is a stable controller which produces very accurate time delays or rectangular-waveform oscillations. One external capacitor and resistor set the time delay, and in the oscillator mode one further resistor is all that is needed to give control of frequency and duty cycle.


A trigger signal sets an internal flipflop and starts the timing (the flip-flop immunises the device from further triggering). A reset signal can be applied to interrupt the timing cycle.

The output is capable of sinking or sourcing 200 mA to drive relays, indicators or further circuitry.

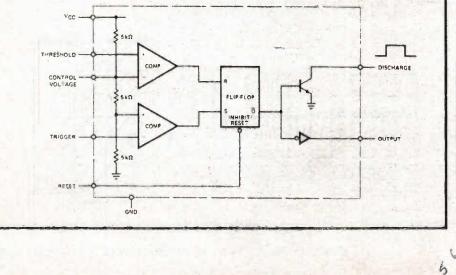
The 556 contains two 555s in one package, for sequential or multiple applications.

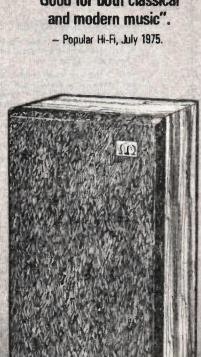
BLOCK DIAGRAM- 556

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

"Remarkably good speaker for the price, very subtle, well balanced tonally and a delight to listen to. Good for both classical and modern music".

1 CUMMENT -Tann 20 0.01 SUPPLY VOLTAGE - V SINK CURRENT - ---HIGH OUTPUT VOLTAGE AS A FUNCTION OF LOW OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT SINK CURRENT OUTPUT SOURCE CURRENT 10 V VOUT 2 8 12 VOLTAGE ş ę TUTTU 10400 Vec . 1.11 SOURCE CURAENT - MA MINIMUM PULSE WIDTH REQUIRED FOR TRIGGERING LOW OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT SINK CURRENT Vcc 2 VOLTAGE -**TUTUT** VOLTAGE LEVEL OF TRIGGER PULSE - X VCC SINK CURRENT - MA **BLOCK DIAGRAM- 555** Vcc


TOTAL SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


LOW OUTPUT VOLTAGE AS A FUNCTION OF

OUTPUT SINK CURRENT

Vec - S V

OUTPUT VOLTAGE - V

MA 7 The best sounding \$269* pair of speakers you can buy!

Sole Australian Distributors:

MANNLEROYA INDUSTRIES

Head Office, W.A.; 156 Railway Pde., Leederville, Western Australia, 6007. Phone 81 2930. N.S.W. Office: 100 Walker Street, North Sydney, N.S.W. 2060. Phone 922 4037. Victoria Office: 103 Pelham Street, Carlton, 3053. Phone 347 7620.

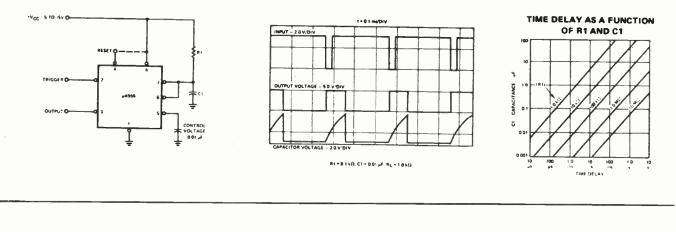
LER 150

ETI data sheet

555 & 556 timing circuits cont'

TYPICAL APPLICATIONS

MONOSTABLE OPERATION


In the monostable mode, the timer functions as a one-shot, Referring to Figure 1 the external capacitor is initially held discharged by a transistor inside the timer.

When a negative trigger pulse is applied to lead 2, the flip-flop is set, releasing the short circuit across the external capacitor and drives the output HIGH. The voltage across the capacitor, increases exponentially with the time constant r = R1C1. When the voltage across the capacitor equals 2/3 V_{CC}, the comparator resets the flip-flop which then discharges the capacitor rapidly and drives the output to its LOW state. Figure 2 shows the actual waveforms generated in this mode of operation.

The circuit triggers on a negative-going input signal when the level reaches 1/3 V_{CC}. Once triggered, the circuit remains in this state

until the set time has elapsed, even if it is triggered again during this interval. The duration of the output HIGH state is given by t = 1.1 R1C1 and is easily determined by Figure 3. Notice that since the charge rate and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply. Applying a negative pulse simultaneously to the Reset terminal (lead 4) and the Trigger terminal (lead 2) during the timing cycle discharges the external capacitor and causes the cycle to start over. The timing cycle now starts on the positive adge of the reset pulse. During the time the reset pulse is applied, the output is driven to its LOW state.

When Reset is not used, it should be tied high to avoid any possibility of false triggering.

ASTABLE OPERATION

When the circuit is connected as shown in Figure 4 (leads 2 and 6 connected) it triggers itself and free runs as a multivibrator. The external capacitor charges through R1 and R2 and discharges through R2 only. Thus the duty cycle may be precisely set by the ratio of these two resistors.

In the astable mode of operation, C1 charges and discharges between 1/3 V_{CC} and 2/3 V_{CC}. As in the triggered mode, the charge and discharge times and therefore frequency are independent of the supply voltage.

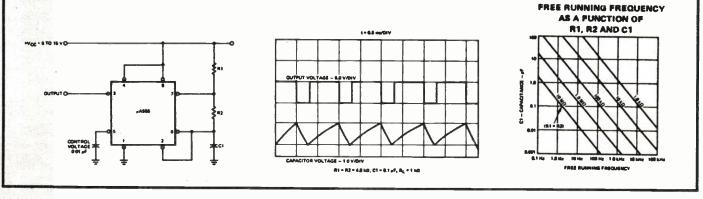
Figure 5 shows actual waveforms generated in this mode of operation.

The charge time (output HIGH) is given by:

t1 = 0.693 (R1 + R2) C1

t2 = 0.693 (R2) C1

Thus the total period T is given by:

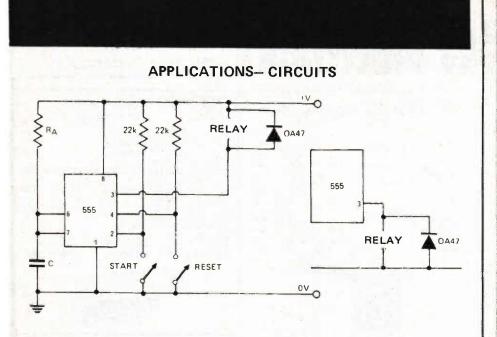

$$T = t_1 + t_2 = 0.693 (R1 + 2R2) C1$$

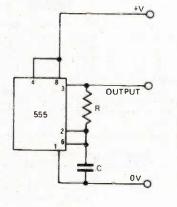
$$f = \frac{1}{T} = \frac{1,44}{(R1 + 2R2) C1}$$

and may be easily found by Figure 6.

The duty cycle is given by:

$$D = \frac{R2}{R1 + 2R2}$$




Fig. 1. Using the 555 to drive a relay. The delay period should be greater than 0.1s and the relay should operate in the 555 supply voltage and draw not more than 200 mA. Here the relay is normally closed — it opens for the delay period. Since the current required by the trigger pin (2) is only 0.5 μ A for 0.1 μ s, it can be triggered by pick-up of the voltage transient produced by the relay

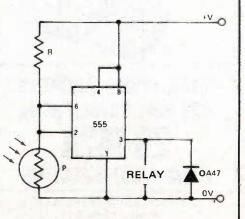

coil when it switches off (the result being a relay which doesn't actually open at the end of the timing period). Figure 2 shows how to connect a diode across the relay to prevent this trouble, but note that the diode has to act pretty fast: gold-bonded germanium types (such as 0A47) are the best, silicon types (like the 1N914) are unsatisfactory.

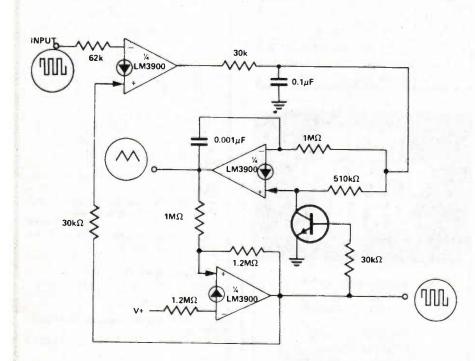
Fig. 3. The simplest 555 astable circuit uses one resistor, one capacitor and the 555. The charging and discharging times are both approximately 0.7RC. A relay may be connected (with suitable diode) between pin 3 and either supply rail. Alternatively the output may be set at audio frequency to provide a square-wave for testing audio gear.

Fig. 4. Using the 555 as a comparator, in this case as a photosensitive switch. The switch-on threshold is reached when the voltage at pin 2 falls to a third of the supply voltage. The second threshold is reached when the voltage rises to two-thirds of the supply voltage — the relay then opens. Adjusting the resistor R will change the light-level for a given cadmium sulphide photo cell. The photocell may be replaced by a thermistor or other device which changes in resistance.

Because the output switches in and off at different levels you get a useful hysteresis effect. This stops any unwanted switching on and off as the light level hovers about the threshold level.

(12 "Monitor Audio have a winner with the MA5 Series II. The lowest colouration and also the most musical sound was produced by this two boline eaker **MONITOR AUDIO MA5 Series II** The best sounding \$425* pair of speakers you can buy! *R.R.P. (Stands extra) Sole Australian Distributors: MANN LEROYA INDUSTRIES Head Office, W.A.: 156 Railway Pde., Leederville, Western Australia, 6007. Phone 81 2930.

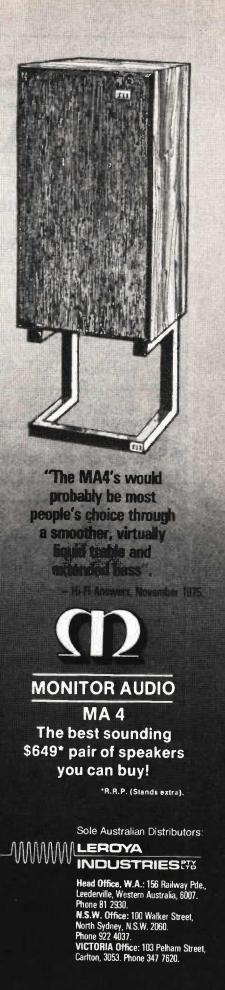
North Sydney, N.S.W. 2060. North Sydney, N.S.W. 2060. Phone 922 4037. VICTORIA Office: 103 Pelham Street, Carlton, 3053. Phone 347 7620.

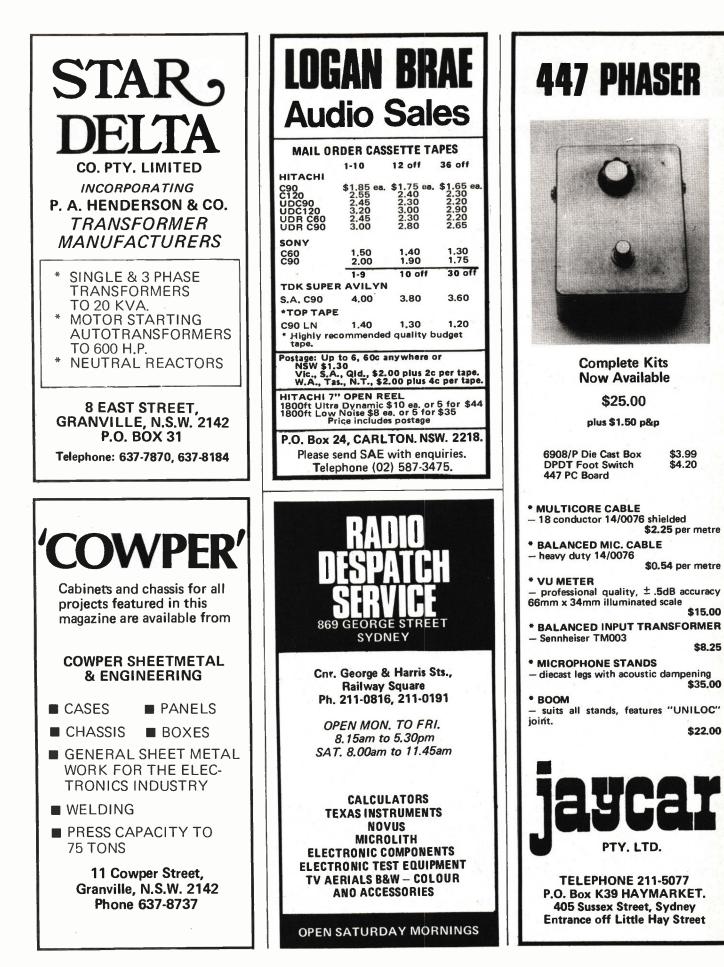

PRE·PA	K electronics	SYDNEY: 718 Parramatta Road, CROYDON, N.S.W. 2132, P.O. Box 43, CROYDON, 2132. Phone: 797-6144. SYDNEY (CITY): 432 Kent Street, Sydney. Phone 29-7426 NEWCASTLE: Shops 3-6 West End Arcade, 810 Hunter Street, WEST NEWCASTLE, 2300. Phone: 69-2103.
(PRE PAK) FOR HI FI	(PRE PAK) FOR SOLDERING IRONS	(PRE PAK) FOR CAR SOUND
SPEAKER KITS CORAL 8SA1 37.50 P.P 4.50 CORAL 10SA1 64.50 P.P 7.50 CORAL 12SA1 91.95 P.P 9.50 APAN TURNTABLES WITH BASE & COVER BMU Manual \$118.00 P.P \$10.00 BRU Semi Auto \$135.00 P.P \$10.00 BRU Semi Auto \$135.00 P.P \$10.00 JELCO CARTRIDGES MC19 \$ 6.95 P.P 1.50 MC15D \$11.50 P.P 1.50 MC14D \$13.50 P.P 1.50 MC14E \$19.95 P.P 1.50 MC14E \$19.95 P.P 1.50 MC14E \$19.95 P.P 1.50 MC14E \$19.95 P.P \$1.50	P.P. \$ c \$ c Mico 10W iron 4, 6 or 12V Mico 20W iron, 4, 6 or 12V Mico 20W iron, 4, 6 or 12V Mico 10W elements, 4, 6 or 12V Mico 10W tips Scope superspeed iron Scope superspeed iron Scope superspeed iron Scope stransformer Scope spares also available 80/40 Resin cored solder. 500G. 16SWG 60/40 " " 25GR TUBE 16SWG 80 1.00 60/40 " " 16GR pkt. 16SWG 35 1.00 1.00	$\begin{array}{c} \text{P,P} \\ \text{5" ROUND CAR SPEAKER 4 OR 8 } \Omega \\ \text{1MPEDANCE CLOTH COVERED 3W} \\ \text{7"x5" OVAL SPEAKER 4 OR 8 } \Omega \\ \text{9"x6" OVAL SPEAKER 4 OR 8 } \Omega \\ \text{9"x6" OVAL SPEAKER 4 OR 8 } \Omega \\ \text{CLOTH COVERED 3W} \\ \text{8"x4" OVAL SPEAKER 4 OR 8 } \Omega \\ \text{6.95 } 1.50 \\ \text{CLOTH COVERED 5W} \\ \text{LOCK DOWN AERIALS} \\ \text{3.95 } 1.50 \\ \text{CLOTH COVERED 5W} \\ \text{LOCK DOWN AERIALS} \\ \text{3.95 } 1.50 \\ \text{6" FIBRE ROD AERIAL} \\ \text{7.95 } 2.00 \\ 12V \text{ MANUAL CAR RADIO WITH} \\ \text{BUILT IN 4" SPEAKER} \\ \text{MOTORISED CAR AERIAL 12V} \\ \text{$$16.50 $$4.00} \\ \hline \end{array}$
8WR \$11.95 P.P \$3.50 6J \$ 7.50 P.P \$3.00 6-25 \$16.50 P.P \$3.50		S STATE
(PRE PAK) FOR ELECTROLYTIC		(PRE_PAK) FOR SEMICONDUCTORS
1.9EA 10.99 P.P 2.2MFD 25V Pigtail 20 16 1.00 3.3 " 25V " 20 16 " 10" 4.7 " 25V " 20 16 " 10" 10 " 25V " 20 16 " 10" 22 " 25V " 20 16 " 10" 22 " 25V " 20 16 " 100" 20 " 25V " 33 30 " 20" 20 " 25V " 55 50 " 470" 25V " 55 50 " 1000 " 25V " 85 75 " 200" 220 " 1" 220 " 1" 200 " 25V " 1.40 1.20 " 1 1" 25" 1" 1" 200 " 25V " 1.40 1.20 " 1" 1" 25" 21 1" 2.2 " 35V " 25 21 " 1" 6.8 35" 100 26" 1" 4.7 35V " 30 26 " 100 3V " 4	$\begin{array}{c c} \hline \textbf{PRE PAK} & \textbf{FOR RELAYS} \\ \hline \textbf{VARLEY RELAYS AS USED} \\ \hline \textbf{IN EA. ETI PROJECTS} \\ \hline \textbf{WARLEY RELAYS AS USED} \\ \hline \textbf{IN EA. ETI PROJECTS} \\ \hline \textbf{WARLEY RELAYS AS USED} \\ \hline \textbf{WARLEY WARLEY RELAYS AS USED } \\ \hline \textbf{WARLEY WARLEY WARLEY RELAYS AS USED } \\ \hline \textbf{WARLEY WARLEY WARLEY RELAYS AS USED } \\ \hline \textbf{WARLEY WARLEY WARLEY WARLEY RELAYS AS USED } \\ \hline WARLEY WARLEY WARLEY WARLEY WARLEY & \hline \textbf{WARLEY WARLEY WARLEY WARLEY & \hline \textbf{WARLEY WARLEY WARLEY WARLEY WARLEY & \hline \textbf{WARLEY WARLEY WARLEY WARLEY WARLEY & \hline \textbf{WARLEY WARLEY WARLEY WARLEY & \hline \textbf{WARLEY WARLEY WARLEY WARLEY WARLEY & \hline \textbf{WARLEY WARLEY WARLEY WARLEY & \hline \textbf{WARLEY WARLEY WARLEY & \hline \textbf{WARLEY WARLEY WARLEY WARLEY & \hline \textbf{WARLEY WARLE$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Magnavor. 830 SPEAKERS PHILIPS I" DOME TWEETER ADIGOTS APAN BRA 121 TURNTABLE WITH BASE & COVER MAGNETIC CARTRIDGE, SERVO CONTROLLED AC MOTOR	VP2 Sockets printed board type 87 VP4 80 1.00 1.00 95 Image: Non-Structure Non-Structure Non-Structure Image: Non-Structure Image: Non-Structure Non-Structure KE117 2 STATION STATION S10.80 S10.95 P.P 2.00 2.50 KE107 2 STATION S10.80 P.P 2.50 KE720 4 STATION STATION S25.50 P.P 2.50	7432 80 70 " 7447 1.95 1.80 " 7490 1.00 90 " 7493 1.10 1.00 " 74154 3.45 3.10 " 74014 2.05 1.85 " 8 PIN DIL SOCKETS GOLD PLATED PINS 40 36 " 14 PIN DIL SOCKETS GOLD PLATED PINS 45 40 "
(PRE PAK) FOR CABLES AND FLEX		(PRE PAK) FOR COMPONENTS
PRE PARK FOR CABLES AND FLEX PER YO PER 100 YDS P.P. SPEAKERS FLEX POLARISED 14/0076 12c 8.75 1.50 3 COLDURS, FIG 8 TWIN FLAT 20c 13.00 1.51 240V MAINS FLEX, FIG 8 TWIN FLAT 20c 13.00 1.50 240V MAINS FLEX, FIG 8 TWIN FLAT 20c 13.00 1.50 240V MAINS FLEX, SIG 8 TWIN FLAT 20c 13.00 1.50 240V MAINS FLEX, SIG 8 TWIN FLAT 20c 13.00 1.50 5005 CAR RADID COAX CABLE 50c 3.00 3.00 5007 554C CAX CARLE 50c 3.00 3.00 5012 54C CAX CARLE 20c 15.00 2.00 WITH WRAP AROUND SHIELD 20c 15.00 3.00 5021 FIG 3 TWIN SHIELDED 45c 30.00 3.00 5021 FIG 3 TWIN SHIELDED 40c 30.00 3.00 5021 FIG 3 TWIN SHIELDED 40c 30.00 3.00 5021 FIG 3 TWIN SHIELDED 40c 30.00 3.00	MAIL ORDER ADDRESS 432 Kent Street, Sydney.	P.P. 2P-1 2" HEAT SINK FINNED SUIT 2N3055 1.73EA 1.00 3P-1 3" " " " " " " " " 2.50 1.00 UV772 2 WAY 75 TV SPLITTER 3.75 1.00 UV373 2 WAY 75 to 75 and 300 SPLITTER 3.95 1.00 UV332 2 WAY 75 " 6.50 1.00 UV374 4 WAY 75 " 6.50 1.00 GTZ BALUN 75 to 300 1.95 1.00 13 3.5mm JACK CHASSIS MOUNT 25 20 P3 3.5mm JACK CHASSIS MOUNT 35 30 P4 6.5mm JACK CHUG METAL CASE 55 50
(PRE PAK) FOR RESISTORS %W 5% RESISTORS 4c ea	29-7426 BANK CARD WELCOME	P44 6.5mm JACK PLUG PLASTIC CASE 35 30 LC2 RCA PLUG PLASTIC HANDLE 25 20 LC3 RCA SOCKET CHASSIS MOUNT 25 20 DP2 DIN 2 PIN PLUG 35 30 DS2 DIN 30CKET CHASSIS MOUNT 30 25 DP3 DIN 3 PIN PLUG 45 40
½W 5% " 4c ea 1W 5% " 7c ea	CROYDON STORE DPEN 6 DAYS Monday to Saturday	DS3 DIN 3 PIN SOCKET CHASSIS MOUNT 35 30 DP5 DIN 5 PIN PLUG 48 43 DS5 DIN 5 PIN SOCKET CHASSIS MOUNT 40 35

Ideas for experimenters

These pages are intended primarily as a source of ideas. As far as reasonably possible all material has been checked for feasibility, component availability etc, but the circuits have not necessarily been built and tested in our laboratory. Because of the nature of the information in this section we cannot enter into any correspondence about any of the circuits, nor can we produce constructional details.

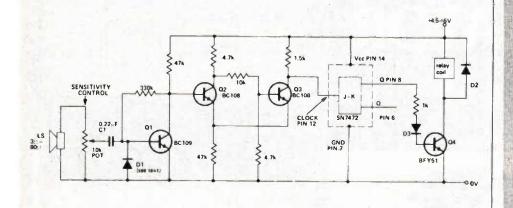
Electronics Today is always seeking material for these pages. All published material is paid for - generally at a rate of \$5 to \$7 per item.


Economical phase locked loop


Integrated circuits which have been specially designed as complete phase locked loops are available, but many of them tend to be rather expensive devices. The circuit shows how the economical LM3900N integrated circuit can be used to build a phase locked loop which has a centre frequency of about 3 kHz.

The LM3900N contains four current differencing amplifiers in a single 14 pin dual-in-line package. Only three of these amplifiers are used in the circuit shown, so the fourth amplifier is available for other purposes. The price of the LM3900N is about a dollar, so it is one of the cheapest linear devices available. The special circuit symbol shown is used for the amplifiers in this device, since they are not a conventional type of operational amplifier.

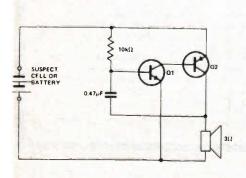
If desired, the locking range of this phase locked loop may be increased by employing the fourth amplifier in the LM3900N in the input circuit to increase the signal amplitude.


LER 152

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

Ideas for experimenters

Sound operated two-way switch


The circuit operates a relay each time a sound of sufficient intensity is made, thus one clap of the hands will switch it one way, a second clap will revert the circuit to the original condition. Q2 and Q3 form a Schmitt trigger. The JK flipflop is used as a bistable whose output changes state every time a pulse is applied to the clock input (pin 12). Q4 allows the output to drive a relay.

Under quiescent conditions Q1 is on, holding the base of Q2 low and keeping the output of the Schmitt trigger low (Q3 collector). If a sharp noise is made (eg. a clap) it will generate a pulse in the loudspeaker which is fed through C1 and switches Q1 off. D1 prevents any large pulses damaging Q1. As Q1 switches off, its output goes high, causing the output of the Schmitt trigger to go high. When the clap is finished Q1 again conducts, causing the output of the schmitt trigger to go low. Therefore each clap causes a high pulse at the

Schmitt trigger's output which is fed to the clock of the JK flip-flop causing its output to change state. This is used to turn a relay on and off. Because the circuit is only sensitive to sharp noises it is generally unaffected by talking or sounds caused by movement. (The sensitivity control can be adjusted to prevent such noises triggering the circuit if this does arise). A moving coil loudspeaker is used as a microphone as it can respond to sounds from any direction. It was found that any loudspeaker from 3-80 Ω worked in the circuit. The Q output of the JK flip-flop could be used as well, allowing two relays to be switched on and off complementarily.

The circuit has limitless applications like turning on a radio or controlling motorised toys by clapping. The diodes can be any general purpose silicon types (1N914 etc) and the relay a 5-6 V type with minimum resistance of 50 ohms.

This device tests the condition of dry cells. The circuit consists of a simple oscillator whose output frequency is relatively independent of supply voltage, but varies greatly with changes in supply impedance. Thus, with the component values shown, a fresh battery or cell will give a note of about 500 Hz, whereas an exhausted cell will give a note above 1 kHz. The device has been tested with battery voltages between 1.5 V and 14 V, using a 2N2923 as Q1, and an OC81D as Q2. The unit is undamaged by reversed supply potentials.

"... it could prove to be an accurate reference speaker for checking the quality and balance of programme material". – Gramophone, June 1974.

Gramophone, June 107-

"With the MA1, one forgets that one is listening to loudspeakers. Colouration is reduced to a level which we have met only rarely".

MONITOR AUDIO MA 1 The best sounding

\$840* pair of speakers you can buy!

'R.R.P. (Stands extra).

Sole Australian Distributors:

LEROYA INDUSTRIES CTX Head Office, W.A.: 156 Railway Pde., Leederville, Western Australia, 6007. Phone 81 2930. N.S.W. Office: 100 Walker Street, North Sydney, N.S.W. 2060. Phone 922 4037.

LER 153

VICTORIA Office: 103 Pelham Street, Carlton, 3053. Phone 347 7620.

ADVANCED CIENTIFIC ATOR

WARRANTY

Ninety days – parts and labour. Please return faulty units to Unitrex Pty Ltd 105 Queen St., Melbourne 3000.

This must surely be the greatest calculator offer yet made. Unitrex's advanced scientific calculator has full scientific notation enabling problems solving with numbers from 1099 to 1099 yet the special offer price is so low that everyone who possibly needs one can afford one.

The offer has been extended until November 25. We regret that we must limit the offer to not more than three units per person (schools etc excepted).

ORDER FORM

Electronics Today 15 Boundary St, Rushcutters Bay, NSW 2011

Please forward one 🗆 two 🗆 or three 🗆	
scientific calculators at \$14.95 each plus & packing.	s \$1.50 each post
Name	

Address

.....P/code....

BUY ONE FOR HOME – ONE FOR THE OFFICE!

4.95

(Plus \$1.50 p&p)

SPECIFICATION

- 8 digit display 5 digit mantissa, 2 digit exponent, 2 signs when answer is in scientific notation
- Scientific notation permits solving problems from 1099 to 10.99
- Algebraic logic with two-levels of parenthesis Π
- Click keyboard on chrome finish for positive entry
- Full accumulating and separate storage memory
- (m +, memory recall, and memory store) Automatically calculates sine, cosine, tangent, arc sine, arc cosine, arc tangent, common logarithms, natural logarithms, e to a power, 10 to a power, reciprocals, squares, roots and
 - powers Automatic change sign and pi keys
- Full floating decimal
 - Complete with carrying case. Operates on a 9 volt battery.

PUT YOUR HANDS TO WORK MAKING MONEY AS A COLOUR TV TECHNICIAN

Do you like to find out why things work, or not work? And do you find electronics an interesting field? Because there is a demand for trained and skilled people to service the millions of pieces of electronic equipment used every day in Australia. Think how many colour TV sets have already been sold in Australia. These will need servicing. And there are millions of older Black and White sets that will also require the services of a good, trained Technician.

If you are interested in electronics, then you should find out more about the ICS training for Electronic and Colour TV Technicians. Send the coupon now, and ICS will return you a complete Career Program guide that tells you how the ICS method works and what the training program teaches you. You study at home, at your own pace. Almost from the first lesson, you can start putting your new knowledge to work. And the study program only asks for about an hour a day.

Would you spend an hour a day to earn more money?

Mail the coupon - today!

International Correspondence Schools, 400 Pacific Highway, Crows Nest, N.S.W. 2065.

International Correspondence Schools 400 Pacific Highway, Crows Nest, N S W 2065

226300

Yes, I would like to put my hands to work to make money. Please send me, without cost or obligation, the Career Program guide I have ticked below.


() Colour TV Technician
() Electronics Technician
Mr./Mrs./Miss
Address

"So how does it all sound? In brief, fantastic! In more detail, the outstanding feature is a complete lack of strain with even the most crashing crescendos coming over easily... particularly outstanding was the bass which can be characterised

as having notable clarity, probably due to an almost total lack of confusing boom".

- Popular Hi-Fi, 1975.

"The first impression one gets when listening to the MA3 is one of physical presence, and this quality seems to be independent of the closeness of the recording. This may be attributable to the exceptional smoothness of its mid-range unit, together with the use of a very analytical tweeter". - Hi-Fi and Audio, May 1975.

MONITOR AUDIO

MA 3 The best sounding speaker you can buy at any price! They cost \$1070* a pair.

*R.R.P. (Stands extra).

Sole Australian Distributors:

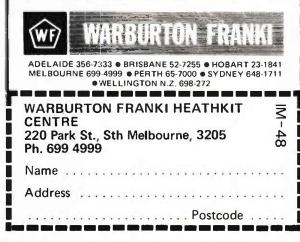
INDUSTRIES

Head Office, W.A.: 156 Railway Pde., Leederville, Western Australia, 6007. Phone 81 2930. N.S.W. Office: 100 Walker Street, North Sydney, N.S.W. 2060. Phone 922 4037. VICTORIA Office: 103 Pelham Street, Carlton, 3053. Phone 347 7620.

LER 154

Build this

Audio Intermodulation Analyser.


Ideal for critical IM distortion checks on stereo and 4-channel components

Three audio test instruments in one. An AC VTVM, wattmeter and IM analyzer are combined in one compact package. High and low signal sources are built in for IM tests. Noninductive load impedance of 4, 8, 16 and 600 ohms are switch-selected. 120/240 VAC, 60/50 Hz, 20 W. Measures $8\frac{1}{2}$ " H x 13" W x 7" D.

Kit IM-48 Shpg. wt. 12 lbs.

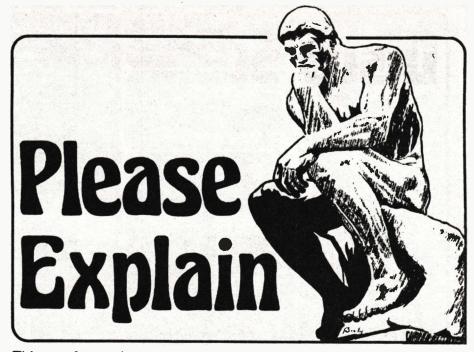
IM-48 SPECIFICATIONS

Frequency response: AC VTVM, 10 Hz to 100 kHz (\pm 1 dB). Wattmeter, 10 Hz to 50 kHz (\pm 1 dB). IM Analyzer (High Pass), 2000 Hz to 12 kHz. IM Analyzer (Low-Pass) 10 Hz to 600 Hz. Sensitivity: AC VTVM, 10 mV full scale max. Wattmeter, .15 mV full scale max. IM Analyzer, .04 V min. HF or .17 V LF and HF mixed 4:1. Ranges: AC VTVM, .01, .03, .1, .3, 1, 3, 10, 30, 100, 300 V rms full scale. DBM, -40, -30, -20, -10, 0, +10, +20, +30, +40, +50, reads -65 to +52 dbm. Wattmeter: .15, 1.5, 15, 150 mW; 1.5, 15 W. IM Analyzer: 1%, 3%, 10%, 30%, 100% full scale. Output Impedance: 3000 ohms (600 ohms when shunted by 750 ohm resistor). Accuracy: AC, VTVM and Wattmeter, 5% full scale. IM Analyzer, within 10% full scale. Power Supply: Transformer, full wave rectifier. Power Requirement: 105-125 or 210-250, 60/50 Hz. Dimensions: 13'' W x 8½'' H x 7'' D.

Real Time

What is meant by the term 'real-time'? J. J. Victoria.

Computers can be used to process data to help man make decisions. This is not a real-time application; real-time applications link the computer to the immediate environment. Incoming signals are monitored and the computer gives output signals as soon as it can so it is continually reacting with the system. Examples are systems to control chemical plants and airline booking systems. It is in some real-time applications that the speed of the computer becomes an important factor.


Crossover Amplifiers and power rating

In October 1975 ETI, there is an explanation of why a single power transformer (and power supply) is all that is needed to power the two complete 422 amplifier boards used with the active crossover:

"The frequency spectrum is split up between the high and low channels and hence each amplifier, although called upon to provide the same peak power, only has to handle half the average power. The transformer is thus quite capable of handling the total load as the system is still nominally 50 watts per channel."

I would be very grateful if you could explain this further. Surely if you have a power amp of 50 watts capability attached to each channel (high and low), then if the whole thing is not limited by the power supply, you have the capability of supplying 100 watts rms. In other words, if you fed an audio signal through a 50 watt rms amp and a passive crossover network, to a multiunit speaker, you could only supply 50 watts to the speaker. If, on the other hand, you used an active crossover and two 50 watt power amps, then you could supply 50 watts at, say, 500 Hz for the low channel andalso 50 watts at, say, 3000 Hz for the high channel? So the net result when you play music (and not sine waves) would be something like 70 or 80 watts rms to each multi-unit speaker? Which would therefore need a beefed-up power supply to take full advantage of it?

A. C. Redwood, Victoria. Your understanding of what would happen if you fed sine-wave signals from a signal generator into the two types of amplifier is quite correct you can get twice the power from the dual system. But the situation is different when you use a music source. What limits the output of an amplifier in normal use is not the rms power level but the incidence of clipping.

This new feature is our response to the many requests we get from readers who want explanation or information on topics they read about in the magazine. If you have a question please send it to Please Explain, ETI Magazine, 15 Boundary Street, Rushcutters Bay, NSW. 2011.

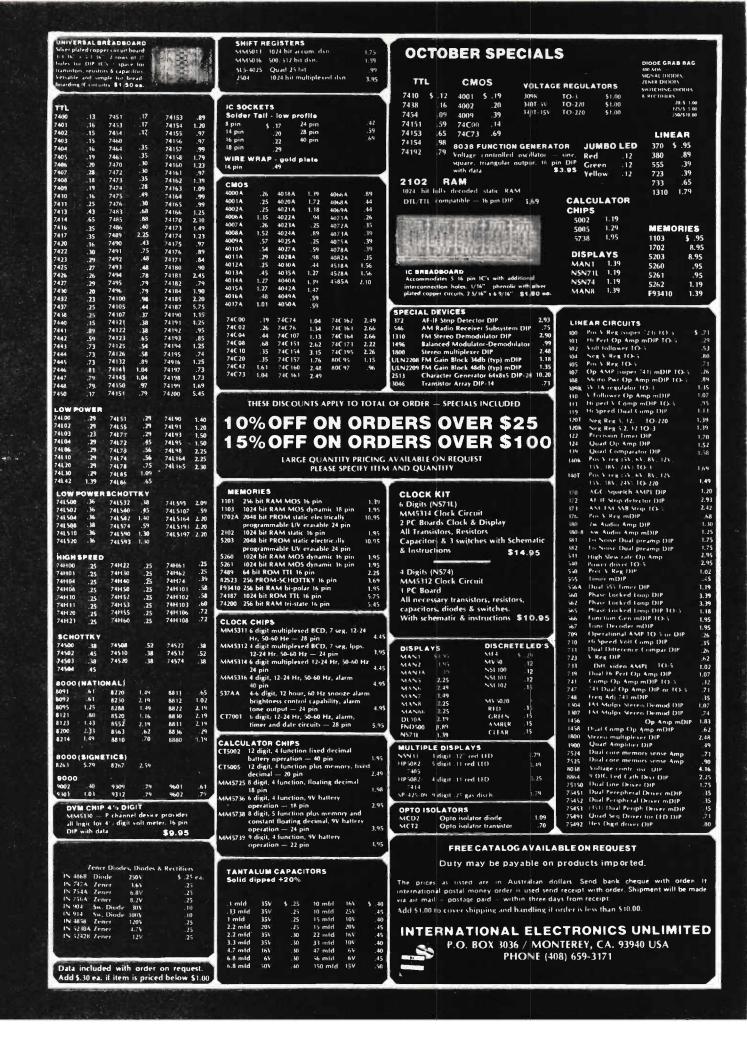
TABLE 1

Comparison of single and dual (2 kHz crossover) ETI 422 amplifiers when sinewaves of equal amplitude start to clip.

SINGLE	peak output voltage at each frequency	rms output power at each frequency	Total rms output
500 Hz or 3 kHz 500 Hz & 3 kHz 200 Hz, 500 Hz, 3 kHz & 6 kHz	28 V 14 V + 14 V 7 V + 7 V + 7 V + 7 V	50 W 12.5 W + 12.5 W 3.1 W + 3.1 W + 3.1 W + 3.1 W	50 W 25 W 12.5 W
DUAL			
500 Hz or 3 kHz 500 Hz & 3 kHz	28 V 28 V + 28 V	50 W 50 W + 50 W	50 W 100 W
200 Hz, 500 Hz, 3 kHz & 6 kHz	14 V + 14 V + 14 V + 14 V	25 W + 25 W + 25 W + 25 W	50 W

This table shows how things change when we stop talking about sinewaves and rms output power. By using two sinewaves the total output of the single 422 falls to 25 W — this is the maximum output power before clipping sets in. The limiting factor is amplitude, in this case 28 V. By studying this table you will appreciate that a complex music waveform will have an rms power much less than that of a sinewave of the same peak voltage level. In the 422 clipping will occur with music outputs of four or five watts rms. Although we are talking about the ETI 422 these figures apply to any amplifier rated at 50 W output.

This is an amplitude limit on the waveform of the signal.


With a music input you get something like ten percent of the rms power of a sinewave with the same peak amplitude.

To answer the main point of the question, for the same acoustic watts output the power taken by each amplifier (single vs dual) from the power supply will be the same. But as you turn up the volume controls the dual amplifier will not start clipping a music signal when the single amplifier starts. You will be able to run the dual amplifier at higher levels and get more volume out before clipping (but you don't get twice the input on a music signal). It is in this region, where you exceed the output power of the single amplifier, that the dual amp draws more current from the power supply. However in normal listening situations the dual amp will not be pushed to this extent and the original power supply will suffice.

Even if the dual amp is driven almost to clipping the power supply in our design it will have sufficient spare capacity to cope provided that normal music signals are being used.

ELECTRONICS TODAY INTERNATIONAL - OCTOBER 1976

Adda and Andrews

CONDITIONS -

Name and address plus phone number (if required) must be included within the 24 words allowed.

Reasonable abbreviations, such as 25 Wrms, count as one word. Private adverts only will be accepted. Please let us know if you find a commercial enterprise using this service.

find a commercial enterprise using this service. Every effort will be made to publish all adverts received – however, no responsibility for so doing is accepted or implied.

Here's a chance to let other ETI readers know about items you have to sell – or wish to buy.

We'll print your 24 words (maximum) totally free of charge. Copy must be with us by the 12th of the month preceding the month of issue. Please, please write or preferably type your adverts clearly, using BLOCK LETTERS.

This section is available to private readers only - it is not available to commercial organisations.

If, like many of our readers, you'd prefer not to cut up your copy of ETI, just make a copy of the relevant part of this page. Please make it the same size as the original – and write your copy using BLOCK LETTERS.

> send your ad to – ETI MiniMart, Modern Magazines, 15 Boundary Street, Rushcutters Bay, NSW 2011.

FOR SALE Sanyo reel to reel video recorder, camera, zoom lens accessories, National Ranger as monitór, exc. cond. \$750. J. Hodgson, 5A Mall Crt, Blackburn, Victoria. Ph: 893-112.

LEADER L.S.G. 532 T.V.F.M. Swemar signal generator in excellent condition \$160. Ph: 660-6716, George Soumelides, 132 Johnston St, Annandale, Sydney.

FERROGRAPH Model 7504DHW tape deck with Dolby. Excellent condition. Two years old. \$950 o.n.o. King, 8 Borral St., Woomera, S.A., 5720. Phone Woomera 737-883.

HAVE A COX 0.02cc Pee Wee engine, fuel, Thunderbolt model, plane to suit, \$14.99 and GT Scateboard \$14.99. Phone (03) 232-3665 after 4 o'clock, ask for Bill.

AKAI GX400DSS 2/4 channel professional standard tape deck plus 70 101/2" & 7" reels of unused master recording tape. Phone Adelaide 42-2065 for details.

FOR SALE Kenwood QR-666 Communications Receiver 1706 Hz to 30 MHz continuous. Excellent condition \$220 o.n.o. Scott Brown, 17 Ramsay Ave, West Pymble 2073. Phone 449-2631.

BSR/C142 Automatic manual turntable base and cover complete fitted with Goldring ES-70S magnetic cartridge \$60.00. E. Gill, 249 Sawtell Road, Boambee, via Coffs Harbour, 2450 NSW.

TO SELL: Kraft three channel radio control, as new, complete, aerials, wiring, etc. \$120. Jon Holmes, 35 Park Road, Beaufort, 3373 Vic. Ph. 221.

I WISH TO BUY an MSP hi-flux 8" Ω woofer. Information on where one could be found would be helpful. Telephone 99-4510. 61 Weatherall Rd, Cheltenham Victoria 3192, Rick Forbes.

WANTED TO BUY — Handbook, circuit diagrams, and/or any relevant information to suit Velco oscilloscope. Model: GRO50. Send: Elmar Schuler, P.O. Box 168, Cairns, Qld., 4870.

INFORMATION on old Valvestester — Paton model VCT-2. Need operation manual, anything on how to operate. John Meldrum, 1 Barbara Boulevarde, Seven Hills, Phone 621-5041.

ETI414 MASTER MIXER Cannon inputs. Extra tape — source monitoring section with tone controls. Best offer. T. Dalziell, 2 Crews Place, Wanniassa, 2903. Ph: (062) 31-8735.

FOR SALE. B.W.D. 539c oscilloscope dual trace D.C720M. Four months old \$350. Write or phone Ernie Elu, 18 Smith Road, Camberwell, 3124. Phone (03) 81-0574.

RCVR, AM FM, 56 to 108 MHz, 174 to 217 MHz. AC/DC powered. Owners manual. \$29. Jeff Lyons, 130 Glebe Point Road, Glebe 2037.

DUMONT SCOPE X, Y, Z, amps \$60. Good condition. Take other equipment in exchange. Halpin 81-4724, 12 Swinburne Ave, 3122 Vic.

FOR SALE. New CO-1303A TRIO Oscilloscope, Phone 602-9873. \$130.00. A. Renton, 198 Newbridge Rd, Moorebank, N.S.W. 2170.

PUBLIC ADDRESS Amplifier Sansui PA100, 40 Wrms, six input mixer, bass treble, V.U. meter, filters, inbuilt monitor. As new \$240. Michael Beaudoin, Sydney 43-2647 after 6 pm.

SALE OR EXCHANGE. Electro's to 50,000 μF 75V. Anodised heat sinks. Ex-comp P.C.B's. 10in x 6in cable connectors. 2N301's 2N380's. J. Winchester, 8 Allambie Avenue, Koonawarra, N.S.W. Phone 042-613245.

FOR SALE. ETI 1972–1975 \$35. AMP 5 W.C.H. \$25. T.V. 3 in 1 stereo 470. 417 Forest Rd, Bexley, N.S.W. Phone 59-5572.

RESISTORS ¼W & ½W 2c. Capacitors 5c up. Upright electro's from \$1.50. Limited values. Send S.A.E. to D. Marzolla, 51 Macquarie St, Leichhardt, NSW, for info.

SELL: COLLINS S-line 75-S1, 32-S1 H.MP/S \$550 lot. Also Gonset 2M. sidewinder \$150. Phone 07-48-3145, D. Horgan, 198 Park Road, Yeerongpilly, Brisbane, 4105.

FOR SALE. 80 W Pico special soldering iron. Mains operated, can be converted to other wattages \$12. Nick Sofianidis, 81 Holborow Street, Croydon Park, N.S.W. 2133.

SELL, DRAKE R4-C communic. receiver with noise blanker, accessory X'tals, phone 86-8201 A.H. or Michael Stevenson, "Attunga", RMB 59, Harden, N.S.W., 2587. \$350 or nearest offer.

WANTED TO BUY. Practical Electronics Sept '73, May '74, Oct. '74. Name your price. I. Maclean, 3/22 Ulm St, Coburg North, Vic. 3058.

STOLEN ET14600 synthesiser, black vinyl, separate keyboard. Also Sony 854/4S 4-track tape recorder 10" reels. Uninsured, sadly missed. Good reward. No questions asked. 387-7595 Sydney, Steve.

SONY TC570 reel to reel tape recorder with S.O.S., stereo, mono. Three speeds including 7.5ips. Original condition. \$250. 9/150 Grange Road, Fairfield, Vic.

BACK ISSUES Electronics Australia 1958 to 1971, 133 magazines, \$15. Greg Edwards, 52 Cardinal Ave, Beecroft, 2119, Sydney, 84-6140 A.H.

RADIO COMPASS RECEIVER R101/ARN6 handbook, control box, receiver mounting rack wanted. Lionel Sharp VK4NS, 19 Kelso Street, Chermaide, Queensland 4032.

INFO WANTED. Diode ring modulator Anzac MD108 mentioned in Plessey SL600 series applications manual. Sanders, 11 Macken St, Oatley, 2223. Work 531-3145, Home 579-3848.

MICROCOMPUTER TERMINALS — Various types & conditions, ASR33, IBM, printers, tape punches, readers etc. Phone Nick (02) 358-2320 any hour.

PL	EASE USE E	BLOCK LETTE	RS

electronics today SERVICES ADVERTISERS INDEX

READERS' LETTERS

We make no charge for replying to readers' letters, however readers must enclose a foolscap-size stamped addressed envelope if a reply is required. Queries concerning projects can only be answered if the queries relate to the project as published. We cannot assist readers who have modified or wish to modify a project in any way, nor those who have used components other than those specified.

TELEPHONE QUERIES

We regret that we cannot answer readers' queries by telephone.

SUBSCRIPTIONS

Electronics Today International can be obtained directly from the publishers for \$14.00 per year (including postage) within Australia.

The cost for countries outside Australia is \$14.65 including postage (surface mail). Airmail rates will be quoted on application. Subscription orders and enquiries should be sent to the address below.

BACK ISSUES

Our subscriptions dept can supply most back issues of ETI for the twelve months preceding the date of this current issue. Some earlier issues are also available.

The price of back copies is currently \$1.00, plus 40 cents postage and packing. Please address orders to Subscriptions Dept, Electronics Today, 15 Boundary St, Rushcutters Bay, NSW 2011.

PHOTOSTATS

Photostats of any article ever published in ETI can be obtained from our subscription dept (address above). The price is currently 45 cents per page including postage.

CONTRIBUTORS

Material is accepted from time to time from outside contributors. Payment is based on quality and is paid 30 days after the date of publication. Constructional projects will be considered for publication but the standard of design must be to fully professional level. All material must be typed using double spacing and wide margins. Drawings, circuit diagrams etc need not be to professional standards as they will be redrawn by our staff. It is advisable to contact the Editor before submitting copy.

A large stamped addressed envelope must be included if unsolicited material is required to be returned.

AOVERTISING QUERIES

Queries concerning goods advertised in ETI should be addressed directly to the advertiser – not to ourselves.

NEWS DIGEST

News Digest items are published free of charge. Manufacturers and importers should send material at least four weeks before the date of publication. Photographs should be of high contrast and preferably at least 100 by 150 mm. Press releases must be of a factual nature — these pages are not free advertising. The Editor reserves the right to accept or reject material at his discretion. Preference will be given to components and equipment of an essentially practical nature.

BINOERS

Binders to hold 12 issues of ETI are available from our subscription dept (address above). Price is \$4.50 (plus 80 cents postage NSW & ACT - or \$1.50 all other States)

COPYRIGHT

The contents of Electronics Today International and associated publications is fully protected by international copyright under the terms of the Common wealth Copyright Act (1968).

Copyright extends to all written material, photographs, drawings, circuit diagrams and printed circuit boards reproduced in our various publications. Although any form of reproduction is technically a breach of copyright, in practice we are not concerned about private individuals constructing one or more projects for their own private use, nor by pop groups (for example) constructing one or more items for use in connection with their performances.

Commercial organisations should note however that no project or part project described in Electronics Today International or associated publications may be offered for sale, or sold, in substantially or fully assembled form, unless a licence has been specifically obtained so to do from the publishers, Modern Magazines (Holdings) Ltd or from the copyright holders.

AIS	
A&R Sonar	
Akai	
Ampec Engineering	.20
Ampex Tape	83
Audio Engineers	31
Applied Technology	60.61
Auriema	110 113
Autotronics	
BWD Electronics	46
Cashmore Sound	104
Convoy	
Cowper	100
Danish Hi-Fi	
Dick Smith	
Douglas Hi-Fi	
Electronic Agencies	
Electronic Disposals	
Elect. Enthusiasts Emporium	
Emona	
Ferguson Transformers	
Fisher, K.D.	
Haco	
Hudson Bay	
Hughes Electronics	
ICS	
Int. Electronics Unlimited	
John Carr	
Leroya	
Logan Brae	
Maurice Chapman	
M.S. Components	
Nebuła	
Philips21	7,34,54,55,81
Pioneer	
Pre-Pak	
Radio Despatch Service	
Rank	17
Ron Chapman Hi-Fi	64
Rose Music	
Sansui	
Star Delta	
Sun Electric Co.	39
Video Technics	26
Warburton Franki	
The out off it formation and an and an and an and an and an and an an an and an a	

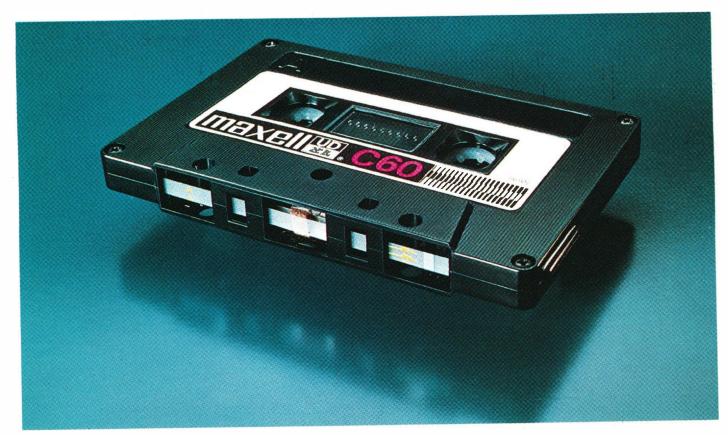
ADVERTISING

Sydney: Bob Taylor (Advertising Manager) Geoff Petschler (NSW Manager) 15 Boundary St., Rushcutters Bay, 2011. Tel 33-4282. Telex AA27243 (MODMAGS)

Melbourne: Dax Ramos, Suite 24, 553 St. Kilda Rd, Melbourne. Tel 51-9836

Brisbane; David Wood, 11-14 Buchanan St, West End. Brisbane. Tel 44-3485

Adelaide: Ad Media Group, 68 North Terrace, Kent Town, 5067. 42-4858.


Perth: Aubrey Barker, 38 Mounts Bay Rd. Tel 22-3184

Tokyo: Genzo Uchida, Bancho Media Service, 15 Sanyeicho, Shintuku-Ku, Tokyo 160.

London: Electronics Today International, 36 Ebury St, SW1 WOLW Tel 01-730 8282

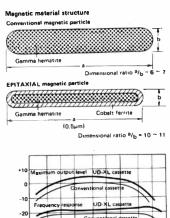
Acoustical Consultants – Louis A. Challis & Associates.

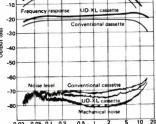
Electronics Today International is published by Modern Magazines (Holdings) Ltd, 15 Boundary St, Rushcutters Bay, NSW 2011. It is printed (in 1976) by Wilke & Co, Browns Road, Clayton, Vic and distributed by Australian Consolidated Press. *Recommended price only. Copyright.

Introducing the revolutionary UD-XL EPITAXIAL cassette

Developed by MAXELL this completely new EPITAXIAL magnetic material combines the advantages of the two materials (gammahematite and cobalt-ferrite): the high sensitivity and reliable output of the gamma-hematite in the low and mid-frequency ranges and the excellent performance of the cobalt-ferrite in the high-frequency range. The result is excellent high-frequency response plus wide

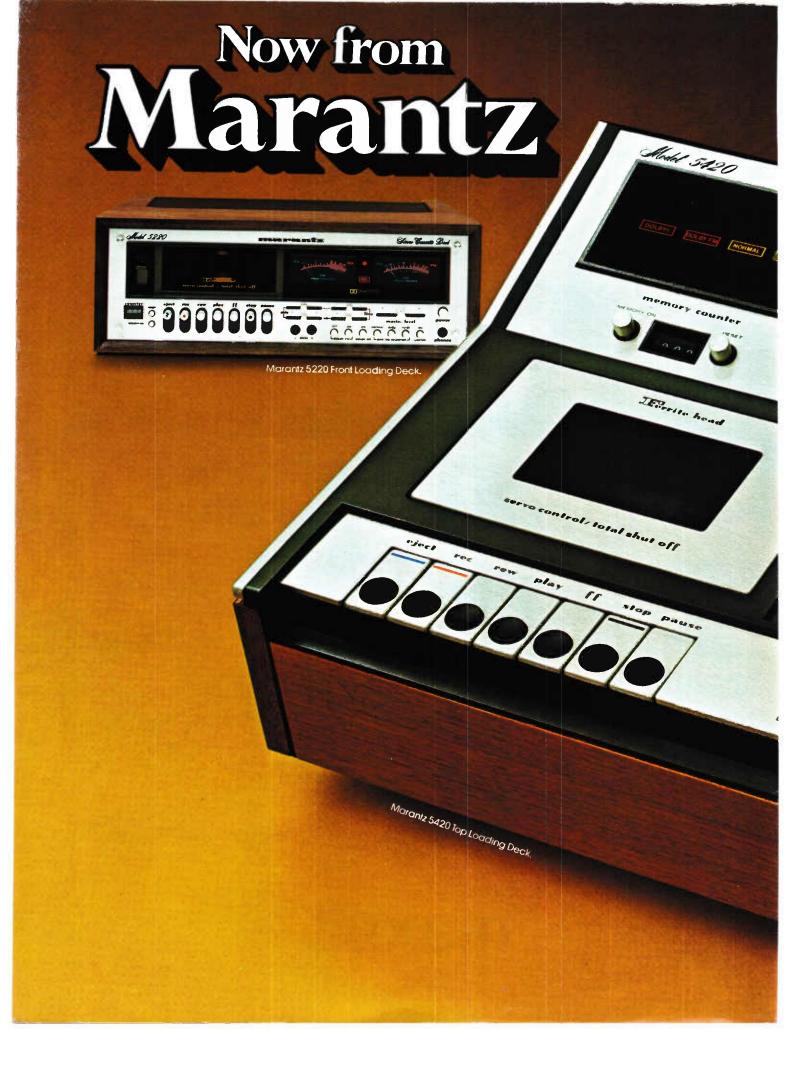
dynamic range over the entire audio frequency spectrum.


Compared to chrome tape, sensitivity has been improved by more than 3.5dB. Because EPITAXIAL is non-abrasive, it extends to the life of the head. Consequently, the UD-XL delivers smooth, distortion-free performance during live recording with high input. When using UD-XL it is recommended that tape selector be in the NORMAL position.



Fidelity is also ensured by a precision-manufactured cassette shell with a special anti-jamming rib that provides smooth tape travel and helps eliminate wow and flutter.

Another good idea of the UD-XL cassette is a replaceable self-index label. Simply peel off the old label and put on a new one when you change the recording contents. No more mess on the label.



For further information please write to Maxell Advisory Service, P.O. Box 49, Kensington, N.S.W. 2033.

WT, GO, 76M

Direct-drive performance brings out the best in any record.

£

-

From cover to cabinet, the PL-510A was created to deliver the performance needed for today's ultra-fidelity records. Right from the start directdrive gets you closer to the original sound by reducing the parts between the motor and the music. The turntable platter is directly connected to the shaft of the servo-controlled motor. Motor rotation is actually turntable rotation. As a result, wow and flutter is measured at no more than 0.03% (WRMS) and the S/N ratio is more than 68dB (DIN B).

PIONEER

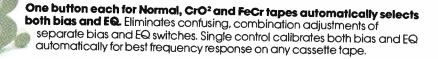
Performance is further enhanced by

the high-trackability S-shaped tone arm. Precision angular contact bearings enable accurate groove tracing even with light stylus pressure cartridges.

In order to maintain the integrity of this engineering achievement, the PL-510A employs a unique "double float" mounting system. Turntable and tone arm assemblies are secured to a rigid sub-chassis which is in turn spring floated from the anti-howling monocoque cabinet. Exterior vibrations are effectively absorbed by large rubber insulators and tonal quality is perfectly preserved. PL-510A

Other advanced features include: electronic speed change at the touch of a button and $\pm 2\%$ fine speed adjustment, illuminated strobe, an anti-skating device, direct readout counterweight and a lateral balancer.

With all these great ideas built-in, it's easy to see how Pioneer's PL-510A direct-drive turntable will bring out the best in all your records.


Pioneer Electronics Australia Pty, Ltd. 178-184 Boundary Road. Braeside, Victoria 3195 Phone: 90-9011, Sydney 93-0246, Brisbane 52-8231, Adelaide 433379, Perth 76-7776.

A STATE	Туре	Drive System	Wow & Flutter	S/N Ratio	Cartridge
1	Manual	Direct-drive	No more than 0.03% (WRMS)		Not included
	Fully-automatic	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	No more than 0.07% (WRMS)	More than 50dB (JIS), 63dB (DIN B)	Induced magnot have
PL-15R	SERVICE SERVICES	Belt-drive	No more than 0.08% (WRMS)		Moving magnet type (PC-12)
PL-12R	Manual	Belt-drive	No More than 0.1% (WRMS)		Moving magnet type (PC-12)

PIONEER leads the world in sound.

five outstanding features

Built-in Dolby[®] that works with built-in mixing console; permits

external Dolby processing on other tape recorders. Ideal for encoding Dolby on reel-to-reel decks. Functions as a fine external mixer with Dolby. Has 25 microsecond deemphasis switch for FM Dolby. Unit can be used with your present Marantz-with-Dolby equipment to achieve dual-process Dolby.

Full 4-input mixing console with pan pot and

master gain control. Four inputs – any combination of mic and line-are operated by four individual slide potentiometers plus one master gain control for fade-in/ fade-out. Two pan pot controls permit inputs 3 and 4 to be assigned to either left, center or right stage. Can operate as a separate mixing panel for masterquality recordings with external tape recorders.

3½-Inch professional VU meters with peak LED overload indicators. Exceptionally large, readable VU panel features special Light Emiting Diodes that illuminate when recorder is overdriven by a high level signal. Minimizes tape saturation and distortion and assures maximum high frequency recording.

Built-in adjustable stand that changes the angle of the control panel from flat to 20 degrees. Angles top loading decks for most suitable viewing and operation.

(Front panel of Marantz 5420)

six outstanding models

Top loading. Front loading. With Dolby. Without Dolby. The Marantz stereo cassette deck line has them all. Six decks with design features as exciting as their performance. The Marantz 5420, for example, keeps wow and flutter down to 0.07%. Plus, it offers a wide frequency response (30 Hz to 17 kHz) and an exceptionally high signal-to-noise ratio (up to 60 dB). All the Marantz decks offer longlife ferrite heads, sophisticated DC servo

motor drive systems with total shut-off, tape counters (Four decks have memory counters.), FET and IC preamps and the Marantz two-year guarantee** on parts and labor.

Marantz stereo cassette tape decks start at just \$385.00! Be sure to see the entire Marantz line including receivers, components and speaker systems at your local Marantz Dealer. Send for free catalog.

We sound better.

For brochures and dealer list contact Auriema (A'sia) Pty Ltd. 15 Orchard Road, Brookvate 2100. Phone 939 1900. †Recommended retail price

^{*}Dolby System under license from Dolby Laboratories, Inc **Marantz Ca, Inc. guarantees to the original registered tape deck owner that all parts will be free from operating defects for two years from purchase date. Product will be repaired or replaced free of charge in the sole discretion of Marantz in the country of purchase, provided it was purchased from an authorized dealer. The serial number cannot be altered or removed. Product must be serviced by authorized Marantz repair lechnicians only.

We spent years designing these Marantz stereo cassette decks. We refused to be satisfied until we surpassed every other deck on the market. INTRODUCING Marantz Stereo Cassette Decks quality and technical excellence equal to Marantz receivers, components and speaker systems.

Store Cault Dat

limiter

AND AD ROAD ROAD AD ROAD

C. LIMITER PANPOT

nhone

Trois

micy

CLUY SYSTEM