

FUNCTION GENERATOR WITH DIGITAL READOUT BUILD A VOIGE OPERATED RELAY PHOTOGRAPHIC TIMER FOR DARKROOMS

FULL-SIZE KEYBOARD FOR THE ZX-81
VOCAL CANCELLER: LETS YOU BE THE STAR

Enter the state of higher fidelity with the new Walkman 2 stereo player, the world's smallest Hi Fi. It's a sensational way to listen to music on cassettes and raise your awareness of sound. Walkman is so light it practically feels weightless. So small it's hardly bigger than
the plastic case that cassettes come in. And so personal, with headphones that weigh next to nothing, that HiFi has never been more intimate.
The new Sony Walkman. It can make your experience of sound infinitely wondrous.

AUSTRALIA'S LARGEST SELLING ELECTRONICS MAGAZINE

This new Function Cenerator produces sine, triangle and square waves, covers the frequency range from 20 Hz to 160 kHz , and features a 4 -digit readout for accuracy of frequency setting. Construction begins on page 36 .

Want an enlarger timer that's easy to build? Phototimer has 12 settings from two to 90 seconds and can handle enlargers rated up to 300 W . Details page 52 .

COMING NEXT MONTH! - Find out what's coming by turning to page 116.

On the cover

"I built one just like it in 1952", says Dick Smith to daughters Hayley (right) and lenny. That humble crystal set - Dick's first project was described in the September 1952 edition of "Radio and Hobbies" by staff member Maurice Findlay. On p68, we tell you how to build a crystal set just like that 1952 version, and meet an eight-year-old Dick Smith in his lizard pit and Maurice Findlay 30 years on.
FEATURES
THE ENGINEER'S DILEMMA Quantity of goods or quality of life? 8
THE STORY OF UNDERSEA CABLES Messages under the sea 12
AUSTRALIA'S RADIO PIONEERS PT 4 The 1920 s to WWII 18
50 AND 25 YEARS AGO Items from past issues 89
HIFI, VIDEO AND REVIEWS
LAS VEGAS ELECTRONICS SHOW A glimpse of the future 26
HIFI REVIEW Mitsubishi LT-5V turntable 34
PROJECTS AND CIRCUITS
FUNCTION GENERATOR WITH DIGITAL READOUT 20 Hz to 160 kHz 36
VOICE-OPERATED RELAY Controls tape recorders, slide projectors 46
PHOTOGRAPHIC ENLARGER TIMER 12 settings from $2-90$ seconds 52
VOCAL CANCELLER Cancels out the lead vocal 64
REDISCOVER THE CRYSTAL SET It works during blackouts! 68
XR-2243 TIMER IC for extra-long time delays 72
PERSONAL COMPUTERS
A FULLSIZE KEYBOARD FOR THE ZX-81 New keyboard kit 74
HOW TO PROGRAM IN MACHINE LANGUAGE Pt 2: extended addressing 76
MICROCOMPUTER NEWS \& PRODUCTS SAA moves on RF interference 106
COLUMN 80 Attitudes to programs and programming 113
AMATEUR RADIO, CB SCENE, DX
AMATEUR RADIO The Antarctic expedition 82
SHORTWAVE SCENE Alaska site of planned gospel station 86
CB SCENE 23-channel transceivers acceptable again 88
THE OFFICIAL LINE Monitoring satellite transmissions 96
COLUMNS
FORUM A tangle in tape compensation 22
THE SERVICEMAN It never pays to be over confident 58
RECORD REVIEWS Classical, popular, special interest 100

DEPARTMENTS

EDITORIAL 3 - NEWS HIGHLIGHTS 4 - CIRCUIT AND DESIGN IDEAS 61 NEW PRODUCTS 92 - BOOKS AND LITERATURE 98 - INFORMATION CENTRE 114 - READER SERVICES 117 - MARKETPLACE 118 - NOTES AND ERRATA 117

Sanwa's now versatile auto-ranging family!

LD-520H

In addition to the functions of the LD-510. the In-520H also has buill-in hife ranjes of 200 and 2000. Measuring ranges are the same as the LD-510. Accuracies: DCV: \pm [0.5% rdy $+0.281 s]$ ACV: \pm ($0.8 \% \mathrm{rdj}+0.25 \% / \mathrm{s}) \Omega: \pm(0.5 \% \mathrm{rdj}+0.2 \% / \mathrm{s})$ $100 \Omega 2: \pm(0.8 \% \mathrm{rdy}+0.5 \% \mathrm{fs}) 0 \mathrm{mmA}: \pm(0.9 \% \mathrm{ordy}$ $+0.2 \%$ /s $)$ ACmA: $\pm(1.2 \% \mathrm{rds}+0.25 \% / \mathrm{s})$.

8®กแี:

LD-510

Aulomatic range selection for DCY. ACV and OMM. Manual salection and range holding devices provided. In addition to the basic measuring ranges, optional adaptor units add the functions of hFE, capacily. Iemparature and circuit check. Supplied with satoly test leads which have vanishing pins and protected lest tip.
DCV: 200m, 2, 20, 200, 1000. ACY: 2, 20, 200.750. S: 200. 2k. 20k. 200k. 2000k. L00S2: 2k. 20k. 200k. 2000k. DCA: 200m, 12. ACA: 200m. 12. Indication: 3.5 dingils. max 1999. LCD. first figure "1" flashes when an overload occurs with the piezo electric buzzer sounding simultaneously. Automatic polarily salector provided. Cells: 1.5 V (UM-3 or R6] $\times 2$. Dimensions \& wainht: $168 \times 90 \times 46.5 \mathrm{~mm} \& 400 \mathrm{~m}$.

LD-530F

The LD-530F also has tuill-in capacithnca ranges of 2 n .20 n . 200n $2 \mu, 20, \mathrm{LE}$. Measuring ranges and accuracies are the same as the LD-52OH oxcept the hFE ranges. Other specifications are the same as the LD-510/LD-520H.
Optional adaplor units: MU-1F (capacity), MU-2H (HFE value). Mu-3T (temparature). MU-6B (circuil check).

Editorial Viewpoint

Appliance power ratings are unimporant . . .

EDITOR-IN-CHIEF
Neville Williams M.IRE E (Ausi.) (VK2XV)

EDITOR

Leo Simpson

ASSISTANT EDITOR

Greg Swain. B Sc (Hons. Sydney)
TECHNICAL PROJECTS
John Clarke. BE (Elect. NSWIT)
Peter Vernon. B.A L.L.B. (NSW)
Paul de Noskowski
Jeff Skeen
Colin Dawson

GRAPHICS
Robert Flynn

PRODUCTION

Danny Hooper

SECRETARIAL

Pam Hilliar

ADVERTISING MANAGER

Selwyn Sayers

CIRCULATION MANAGER
Alan Parker

As we head into winter and the power generation problems of the eastern States become more acute, more people are thinking of ways to save power. There are two cogent reasons for this: people are interested in saving money and also in minimising the inconvenience caused by possible power restrictions.
But as we think about this subject, it seems that there are a number of long-lived misconceptions about power and energy consumption. The first example of this is the recent media campaign to make the public aware of the power ratings of appliances when they are being purchased, with an eye to saving on electricity bills. This is misleading and will not necessarily result in any worthwhile savings.
The second example concerns a spokesman for the neon lighting industry who was reported as complaining that whenever there were power restrictions, neon lighting was the first thing to be banned. He apparently went on to state that the power consumed by neon signs was only a drop in the bucket when compared to the total used by commerce. This is probably true but his case was supported by likening the power used by a typical neon sign to the power used by a typical domestic jug.
When we are talking about any electrical appliance, the power rating on the nameplate is the maximum rate at which it can consume or use electrical energy but it is not necessarily an indication of the total energy consumption over a period of time. This can be illustrated by the electric jug which was cited in the case above.
In reality, a heating appliance such as an electric jug does require a lot of power, typically around 1800 watts. But it does not consume a lot of energy to boil a given amount of water for a cup of tea. And over a three-month period, an electric jug would only account for a small fraction of the total energy consumption of a typical household, or, for that matter, a commercial neon sign.
An even more graphic illustration of this difference between power required and energy consumed is the case of a domestic microwave oven. This may require one kilowatt to run, which is quite a lot. But the amount of energy it uses to cook your meat pie is negligible, because it is only on for a few minutes each time it is used.
The same thinking can be applied to the purchase and use of just about any domestic appliance. Whether you are ironing a shirt, making toast or cooking eggs in an electric frypan, the amount of energy consumed depends as much on the length of time for the task as upon maximum power rating of the appliance.

So when you are buying any small domestic appliance, do not worry too much about the power rating. Buy the one you want and then use it conservatively and you will not waste energy.

[^0]Adelaide - Charles F. Brown \& Associates Ltd
278 Halifax St, Adelaide, 5000
Representative: Sandy Shaw (08) 2674433
Perth - 454 Murray Street. Perth 6000
Representative: Ashley Croft (09) 218217

Subscriptions

Subscription Dept, John Fairfax \& Sons Ltd, GPO
Box 506. Sydney 2001
Enquiries: Phone (02) 20944, ext 2589
Circulation Office
21 Morley Ave. Rosebery. Sydney 2018
Phone (02) 6633911
Distribution
Distributed in NSW by Magazine Promotions. 57 Regent St. Sydney; in Victoria by Magazine Promotions. 392 Little Collins Street. Mebourne: in South Australia by Magazine Promotions, 101.105 Waymouth St. Adelaide; in Western Australia by

Magazine Promotions, 454 Murray Street. Perth: in Zueensland by Gordon and Gotch (A'asia) Ltd: in Tasmania by ingle Distributors, 93 Macquarie St. Hobart: in New Zealand by Gordon and Gotch (NZ) Ltd. Adelaide Rd. Wellington

Copyright. All rights reserved.

Devices or arrangements shown in this magazine may embody patents Information is furnished without responsibility for its ultimate use or for failure of equipment to operate as expected, or for any damage. loss or injury which may be sustain ed Material intended for publication is submitted at the sender's risk and, while care will be taken responsibility for any possible loss will not be ac cepted by "Electronics Australia'

- Recommended and maximum price only

Interscan ready for commercial trials

The first commercial prototype of the advanced microwave landing system Interscan, began demonstration trials recently at the Richard Gebaur Air Force Base in Kansas City, USA.
Interscan consists of equipment for measuring the angle of the aircraft from the centre line of the runway, its elevation and its distance from the beginning of the runway. Incoming aircraft are scanned by narrow fanshaped beams of microwaves from two antennas near the runway. A receiver inside the plane measures the time between pulses of the microwaves, and an on-board computer calculates the position of the plane from this information, up to 40 times a second.
The principte, is known as time-reference-scanning beam (TRSB) and is the basis of Interscan. Up and down scanning produces pulses in the receiver that give information on the plane's elevation, while side-to-side sweeps give azimuth angles.
Unlike conventional landing systems which guide aircraft along a straight approach path, Interscan
allows curved approaches to the runway. It enables the plane to fly on any one of a number of approach paths which can be chosen to suit the requirements of particular airports or aircraft types. In addition, Interscan is not affected by rough terrain near the airport, and will allow more aircraft to be handled in a given time. It is also much less affected by poor weather conditions.

Interscan Australia produced the prototype, with initial development work carried out by the CSIRO. The company has now teamed up with the US company Wilcox Electric Inc to market the system internationally. Wilcox is the world's largest supplier of aircraft landing aids, and has designed the electronics needed for In terscan in the United States. In Australia, AWA developed the microwave electronics and Hawker de Havilland Australia Pty Ltd designed the mechanical parts.
A race to capture a major share of the world market for the system is now on. According to Interscan

An Australian-made elevation antenna, under test in the US.

Australia's managing director, Mr John Drennan, Australian-US partnership is already in the forefront of the competition, being the first to develop and place in the field a complete Interscan landing system. Later this year the partnership plans to bid for a $\$ 50$ million US Federal Aviation Authority (FAA) contract to supply 100 microwave landing systems for large American airports.

The basis of the INTERSCAN microwave landing system

Unleashing the giants: Anti-trust cases against IBM, AT\&T withdrawn

The ripples are still spreading from the December decisions of the United States Justice Department to drop the 13 -yearold anti-trust case against IBM, and to allow American Telephone and Telegraph Co to compete in the commercial marketplace. US observers are predicting much stronger competition in the two areas both companies excel in: computers and communications,

Until the settlement of the case against AT\&T, the giant telephone company was restricted to providing communication services only, as a common carrier, and forbidden to enter the booming market for terminals and communications equipment. Under the agreement with the Federal Communications Commission, AT\&T is to divest itself of 22 local operating companies, which will provide local communication services.
The core of AT\&T will provide long distance communications services, but will also be free to sell communications and computer equipment. With one of the largest research centres in the world, Bell Laboratories, the new company will be a fierce competitor in the marketplace.
listing on the London stock exchange, becoming in effect a multi-national, and is
likely to aggressively sell its products overseas. There are even rumours of a personal computer from the revitalised company.
Freed of the uncertainties caused by the anti-trust suit, IBM seems certain to push into communications. The new freedom for the company is also likely to mean stiffer competition for other computer manufacturers, which over the years have been steadily eating into IBM's share of the market.
Reports from the United States concentrate on the new competitiveness which the decisions are likely to spark off, and warding off the challenge of the Japanese. Said Michael Killen, president of market research firm Strategies Inc: "this decision will enable IBM to keep the Japanese with their fifth-generation computer program from doing to the computer and communications industry what they have done to the automobile industry
Certainly the Japanese have not troubled to hide their moves to establish a 10 year research and development plan dedicated to overtaking US computer technology and capturing the leading position in the world market. The United States is responding by lifting legal restraints on its two biggest companies in the field.

Learn electronics by correspondence

The Australian School of Electronics Pty Ltd is off offering a new correspondence course in basic electronics. Average time for completion of the "LernaKit" course is six months, although students are encouraged to learn at their own rate.
The first part of the course familiarises the student with solid-state components and circuit diagrams. Detailed instructions and all components are supplied to build a simple oscilloscope at this stage.

Practical training continues to be emphasised in the second part of the course, which also introduces electronic theory.

There is no enrollment fee or deposit for the course. A student can commence for less than \$30, with other payments as the course progresses.
Both hobbyists and those with no prior knowledge of electronics can take the course. For more information write to the School Registrar, PO Box 108, Glen Iris, Vic 3146.

New robot has "eyes" responds to voice commands

Vision systems for robots are one of the most challenging areas of robotics research at the moment. Imitating even partially the functions of the human eye is still beyond researchers, but a new robot from Britain points the way.
Scientists at London's Queen Mary College have developed a robot which is designed to detect and handle specific objects and to carry out pre-programmed functions either automatically or under remote control The robot is equipped with a main computer and three microcomputers for motorised control and sensory processing, including
speech processing.
The mobile robot is equipped with ultrasonic and infrared sensors for recognising objects. The sensors are mounted on crab-like arms and grippers, with distance measurement provided by two television cameras mounted on the superstructure.
Controlled by an operator using a console with a speech command system, TV monitor video monitors, a keyboard and joysticks, the robot will eventually be used for remote manipulation in hazardous environments, such as nuclear power stations and reprocessing plants.

British "Information Technology Year"

This year in Britain is "Information Technology Year" a round of governmentsponsored exhibitions, lectures, publicity campaigns and demonstrations - even a play and a ballet - aimed at informing industry and the public about the latest in computer and communica-
tion services.
Launching the campaign, Prime Minister Margaret Thatcher declared "the future prosperity of Britain depends on our being bang up to date in the latest technology, and preferably one step ahead of other countries"

NEWS HIGHLIGHTS

Computer-linked videodisc for education

The video disc may revolutionise our use of television, but it is in the training and educational fields that its biggest impact will occur.
The reason for this is that a video disc is not just a half hour recording of a television program. A disc also contains around 54,000 television pictures, any one of which can be called up and displayed as a "still". Alternatively, a combination of still images and short film clips can be shown, or single frames stepped at any speed.
When combined with computer control of the disc player, a half hour disc can provide audio-visual material for a three hour lesson or training sequence.

The linear progression of the "film" can be replaced by a stop and start sequence of images controlled by the viewer's interest, or progress in a computer generated question and answer session.
When software is made available so that computerassisted instruction sessions can be readily produced on any subject and computer text and graphics combined on the same display as the video disc material, the result is an entirely new approach to education, with far-reaching implications.
A unique VideoDisc/computer combination was displayed recently by Bell and Howell Australia, for the first time outside the United States. Based on the work of

Dr Carl Reuter, formerly head of the faculty of Computer Instruction at the University of Wisconsin, the computer-based video system is designed for use as a training and sales promotion aid.
The system puts an Apple II computer in control of a laser video disc player, and incorporates a software package called PASS - for Professional Authoring Software System. PASS enables people with little or no knowledge of computers to quickly develop effective training programs employing the techniques of Computer Assisted Instruction. (CAI).
With the interactive video disc, each individual can proceed at his or her own rate.

The computer program can monitor the individual's progress by asking questions and waiting for responses typed in on the computer's keyboard. A correct answer means that the program continues, moving on to the next area.
If the answer is incorrect, the computer can call up from the disc the specific part of the lecture or demonstration which deals with that subject, and play it for the student, patiently reinforcing his knowledge until all questions are answered correctly.
Lessons are produced by an instructor using the computer to develop programs tailored to specific training objectives. Using English language prompts and questions, PASS allows the development of such progams by people without prior computer knowledge. The pre-defined format of PASS reduces the time taken to develop a training course, and a full-featured word processing system built into the software allows lessons to be created and changed quickly and easily.
Whether the training course is to teach new staff how to operate a fork lift truck, solder a printed circuit board or service air conditioning equipment, early results of the individual training program have demonstrated its ability to pass on information quickly and effectively. The result is often improved company performance and greater customer satisfaction.

Sharp introduces talking calculator

A wallet-sized calculator that speaks out numbers and arithmetic symbols is the latest application of the Sharp Corporation's research in voice synthesis.
The EL-620 calculator announces results either digit by digit (eight-three-fourfive) or by whole numbers (eight thousand, three hundred, forty five). The calculator includes a 40 mm loudspeaker for clear, easily understandable voice output.

Battery charge controller from WA

The Solar Energy Research Institute of Western Australia has developed a low-cost, compact charge/discharge controller for lead-acid batteries. Called Bemac (Battery Energy Meter and Controller), the device is designed specifically for solar electricity applications, although it can be used in a wide variety of equipment using lead-acid batteries.

Bemac gives a read-out of the state of charge of the
battery, with 10 light emitting diodes providing a bar graph indication of battery state from fully discharged to fully charged.
The provision of a state of charge indicator in a battery charging regulator is particularly important in photovoltaic applications and in electric vehicles. For further information contact Product Engineer Mr Wal James, Solar Research Insitute, Box R1283, GPO

TANDON

MODEL TM600 SERIES MINI-WINCHESTER DISK DRIVES

Tandon's TM600 family of Mini-Winchesters offer unmatched storage capabilities in a $5 \frac{1}{4} 4^{\prime \prime}$ high-speed, random access disk drive. Available in two and three platter models, the TM600 series provides unformatted storage capacities of 6.4 M bytes to an incredible 11.6 M bytes of information.

Up to four Tandon TM600s can be daisy-chained on a single bus, which provides a capability of up to 46 megabytes of on-line storage (unformatted) in a single system.

Interface Flexibility. Tandon offers two industry-standard interfaces on the TM600 family of Mini-Winchesters. The "S" version is compatible with higher capacity drives (i.e.: SA1000). The " T " Version is compatible with the Tandon 5.25 -floppy TM 100 series - where except for data separation, the TM600 series can run in a daisy-chain with the TM100-4, a double sided, double density 96 TPI floppy disk drive, capable of one megabyte (unformatted). This permits 11.6 megabytes (unformatted) fixed disk in daisychain with 3 megabytes (unformatted) removable floppy disk capacity.

TANDON

NEW EIGHT-INCH

 THINLINE DISK DRIVES- Exactly one-half of the height of standard drives.
- Proprietary, Rizh-resolution, read-write heads patented by Tandon.
- D.C. only operation - no A.C. required.
- Industry standard interface
- Three millsecond track-to-track access time.

Tandon Model TM-100 Mini-Floppy Disk Drives

Tandon's TM-100 family of mini-floppies offer the absolute highest storage capabilities of any $51 / 4^{\prime \prime}$ highspeed, random access disk drive available in two single head and two double head models, all double density.
Unsurpassed Storage Capacity - Up to an incredible 1000 K bytes information on 160 tracks Recording density is 5877 BPI.
Advanced Dual-Head Design - Tandon Magnetics has for years been the leading designer and supplier of read/write heads to most major disk drive manufacturers.
Increased Throughput - Tandon's TM-100 have a track-to-track access time of only 5 milliseconds fan incredible 3 milliseconds double track density).
Proven Reliability - Designed for total reliability, as demonstrated by more than 50.000 production models in operation.

AE

ELECTRONICS P/L
418 ST KILDA ROAD. MELEOURNE 3004 Pn 103) 2676800 (4 lines! Telex AA32565

Authorised distributors

Microbase (09) 328 9308, Cisa (02) 29 1599, Toowoomba Computer Centre (076) 32 7542, Compak Computer Shop (03) 5926285.

Quantity of goods or quality of life?

The engineerps

 @llennmby MEREDITH THRING

Technology can be used to create robots and put people out of work; it can also be used to alleviate the suffering of the world's poor. Some engineers see their task as solving technical problems, while others focus on the needs of people. Here a noted British authority describes his changing perception of the engineer's role.

My 27 years as a professor of engineering have taught me that the engineer has a much greater effect on the lives of ordinary people than that more ubiquitous figure, the medical doctor. For while the doctor is concerned with providing remedies for people's physical (and sometimes mental) ailments, the engineer is the person who creates the good and the bad things that originally stemmed from the industrial revolution. The engineer's creations range from brain scanners to nuclear weapons, and from convenient materials to robots. So why, I wonder, have doctors had to take the Hippocratic oath for 2400 years, while engineers still work for money, with no real ethic other than giving their employer or client what he has paid for?
My experiences have had profound effects on my thoughts as to the humanity that engineers should embody

Professor Meredith Thring recently retired as professor of mechanical engineering at Queen Mary College, London. He has written a number of books, the latest being "The Engineer's Conscience".
in their approach to their work. Perhaps they should follow the line of thinking that I proposed in 1971 in an article in New Scientist entitled "A Hippocratic oath tor applied scientists". The shortened version of the oath was, "I vow to strive to work towards the coexistence of all human beings in peace and human dignity with all the necessities for a self-fulfilling life and freedom from fear, stress, ugliness, pollution and noise."
Perhaps the most striking consequence of my studies of engineering's effects on human life has been the change in my attitude to robots. From about 1955 to 1975 I was experimenting on the components of a sophisticated robot that would relieve humans of drudgery in the home, office and factory. In 1960 I suggested that we could, in 10 years, develop a mechanical housemaid that would do all the routine jobs in the house and cost no more than a family car. In April 1964, I developed the idea further, proposing a robot slave that could be programmed to scrub, sweep and dust, wash up, lay tables and make beds. It was to have a memory for
instructions and a limited degree of intelligence so that it could adapt to some objects being out of their normal positions.

My students had already built the stairclimbing machine I had designed, and later a battery-operated prototype wheelchair for carrying handicapped people up kerbs and staircases. These designs resulted from the keen sympathy I felt over the frustration of highly educated women and their husbands having to spend so much time doing the daily chores necessitated by our wish to live in pleasant homes. The work culminated in our developing a tableclearing robot which we demonstrated in 1969 at the British Association for the Advancement of Science meeting in Dundee. The robot could work within the two horizontal dimensions of the table and could sense the diameter of the objects on a rectangular table.

We also built a fire-fighting robot in 1962. This robot navigated its way round a "track" using signals from a gyro compass and measuring distance by wheel-rotation. It left the track when it "saw" a fire and extinguished the fire when its "finger" sensed the flame. The idea was to develop a fully automatic night watchman that could travel around a warehouse and look out for a fire. We also studied a possible robot storekeeper.

The benefits of this work, we thought, would be:

- Avoiding drudgery and boring repetitive work.
- Eliminating danger and discomfort at work.
- Increasing available resources and reducing wastage (this is by no means an essential consequence of robot development: a skilled craftsman uses less power and is
number of reasons why this is so. One is that fossil fuels and other mineral resources are no longer considered to be infinite, and, therefore, it no longer makes sense to build obsolescence into industrial goods. Another reason is that people are no longer so easily satisfied. This leads to what I call the robot fallacy: "It is desirable to employ a robot rather than humans if it reduces production costs." The fallacy is apparent when one

Over the pasi fo years I have become ircifasingiy concerned about several dangersus sonsequences of concentratimg reeaefeis um robcis. The primary gain from installing irciustrial robots is that ihey cut labour cosis ...
much more economical with materials, but a robot will spoil less products than a careless, tired or bored human).
However, over the past 10 years I have become increasingly concerned about several dangerous consequences of concentrating research on robots. The primary gain from installing industrial robots is that they cut labour costs; in other words they reduce the number of human employees.
We have reached the point in the developed countries where we must expect higher unemployment if we want to increase productivity. There are a
considers that each unemployed person costs the country on average $\$ 200$ a week and most humans prefer to feel that they are doing something useful than to be paid for being idle.
For these reasons I have abandoned my work on industrial robots, where the primary aim is to displace human labour. I now work only on applications where the aim is to enable someone to do the job he does now without actually exposing his body to danger or discomfort; or where we need to amplify or diminish his skill and strength. A good example is "telechirics", the name for artefacts that allow people to work
artificial hands and arms and to operate machines in hazardous or unpleasant environments as if they were there, while they are in fact in comfortable and safe conditions. Telechirics provides such good tactile, power and visual feedback that a person can apply his skill remotely. Curiously, telechirics was first developed when engineers thought that they could build nuclear-powered aircraft and wanted something that could go into one if it crashed. Later telechirics was used in space research. It can clearly also be of immense value in mining (especially of dangerous minerals such as asbestos or uranium), and for handling explosives, firefighting, bricklaying in hot furnaces and many other tasks including surgery.
It is 20 years since the first commercial non-adaptive robot was sold and there are still only 20,000 robots in the world, more than half of them in Japan. There are more than one thousand million workers in the world; that means one robot for every 50,000 people. As world unemployment rises, I believe that the robot population will climb to perhaps a few per 100,000 people and that they will be doing only dangerous and uncomfortable jobs (such as paint spraying), tasks that call for repetitive accuracy and manually demanding jobs such as sheep shearing.

Too great a concentration on developing robots also diverts skilled engineering effort from a vastly more important human problem - helping people in poorer nations. Sir Harold Hartley first drew my attention to this

Robots-are they worth developing?

when he chaired a meeting at which I read a paper on the "domestic revolution". I talked about the domestic and the fire-fighting robots, among other things. He said to the meeting, "I felt a little doubtful about his saying that the objective is not raising the standard of life but creating more happiness, because after all he was thinking of was this country and the United States and there are so many other countries where the first duty of applied science is to try to raise the standard of living." This remark set me thinking. Three years later in my Cantor lecture of the Royal Society of Arts I said, "The more developed countries have a moral responsibility to find a technological way of aiding the less developed ones to achieve a satisfactory standard of living for all their peoples. The peace of the world depends on this." My feelings on this matter were enormously strengthened when I was a member of a UNESCO team of ten people who visited Bangladesh in 1979 and I walked through hospitals with hundreds of children suffering diseases resulting from malnutrition.
My work on robots that can sense something and respond, and on the way in which people do the enormous variety of tasks for which their hands are trained, has led me to conclude that an artefact cannot match the sophistication of the trained human system at a price that does not take away resources from vast numbers of people. It is of course possible (and indeed it has already been done in Japan) to make a robot with some limited sensory adaptiveness to do a small variety of fairly simple tasks. But imagine designing a robot with hands that could fold a sheet, thread a needle or cuddle a baby. That is how advanced a human's "system" is and it takes many years of practice and intelligent modification of behaviour to acquire these apparently simple skills.
I have therefore been forced to the
conclusion that we will waste most of the inventiveness and skill now being devoted to developing robots. This is both because unemployment will inevitably rise to socially unacceptable levels in the developed countries, including the most successful ones as well as Britain, and because the only way to avoid world war is for the developed countries to devote a significant fraction of their engineering skill to solving the basic problems of the poor countries. Clearly, tensions in the world - caused by rising populations, increasing poverty and disasters, while the rich countries are consuming the world's oil - will lead to a greater danger of war if they are not checked within another generation. And no amount of the most sophisticated robots will help us in a nuclear holocaust.
Another theme to which I have given continual attention is the attitude in Britain towards industrial innovation and applied science. At first I was solely concerned by the tendency in this country to reject new things "until the foreigner had burnt his fingers first" and to spend most of our limited research funds on "big physics" rather than engineering. This led me to join in discussions about establishing a British society of top engineers with the task of making "far-sighted and wise decisions as to the direction in which invention and development should go". That was in 1966. Then in an article in Nature in 1967 I suggested there should be a British Academy of Engineering, much like the one set up in the US.
I was delighted some 10 years later when, in 1980, the Fellowship of Engineers was set up in this country.
My views about what is the right longterm policy for engineering in Britain have steadily moved away from those of a blind follower of progress for its own sake. Originally, like almost everyone else, I believed in the continuing

Work on robots aims to match skills of trained human beings. In this laboratory demonstration a PUMA robot inserts a light bulb in a dashboard panel.

exponential increase in the speed of travel, output of steel and electricity, standard of living, and so on, although I was always keen on achieving the result with as little fuel as possible. In 1968 I expressed concern with our lack of young inventive engineers because of academic snobbery, bad career advice and the image of engineers as socially irresponsible ("Getting to grips with technology" New Scientist, vol 39, p 644). I criticised our tendency to say of a

C. I have come to iee: that most of the dangers to cur ciyitisation stem from decisians taken on a shortserm basis

new idea that it would not work, or it would not be economic. And in 1969, I proposed a workshop in which inventions should be given as good a chance as new ideas are in pure science, provided they satisfied three criteria. These were: that the idea was not contrary to the known laws of science; it was not contrary to the interests of the individual human being; it appeared to be novel.
The second of these three criteria has become steadily more important to me. I have come to feel that most of the dangers to our civilisation stem from decisions taken on a short-term basis. We take avoiding action because a problem looms up - such as pollution, violence, rising oil costs, unemployment or inflation - but by being short-term, the actions rapidly worsen other problems.
A society that bases its measurements of success solely on the acquisition of status symbols must be self-destructive because there are not enough resources to last for ever. But I remain an optimist because, where lecturing to many thousands of young people, I have found them prepared to take a long-term view and to accept that standards of living will level off while creative self-fulfilment will improve the quality of life.

[^1]
500 MHz Period Meter

Digital Frequency

REF：EA Dec＇81－Feb＇82 500 MHz option only $\$ 26$ extra 50MHz Version $\$ 119$

Lyrebird Piano Kit

 NEW LOW PRICE ${ }^{\circ o \mathrm{oo}}$REF：EA 11／81－1／82

Sub－Woofer Sensation

Many of you have followed the recent articles in EA regarding the design of vented loudspesker enclosures．The natural progression of this discussion was a description of a ventad speaker system． At the same time we were concerned that the most critical component，the low frequency driver must be of high quality with consistent Qt and Vas． Jaycar has had such a speaker madel The unlt has been specially manufactured for us to our specs．It is ideal for subwoofer applicatlons based on the work of Thiele， Small and Snyder．
SPECS：Diameter $10^{\prime \prime}(250 \mathrm{~mm})$ cast frame $\mathrm{QT}=0.39$ VAS＝ 631 Power Handling： 100 W （RMS）Voice Coil $=2^{\circ}(51 \mathrm{~mm})$ dia． －Magnet Assy．＝3kg（6．6Ibs）．
Because of bulk buying we have been able to bring this unit to you at an unbellevable price．Normally this unlt would sell for well over $\$ 100$（they are overseas）．
THE INTRODUCTORY PRICE FOR THIS UNIT？ONLY $\$ 79.50$ A FREE SUBWOOFER CABINET DESIGN IS PROVIDED WITH EACH UNITI

ONLY \＄79．50e9

New EA FUZZ BOX \＄19．50
 Ref：EA Feb＇ 81
 COMPLETEKIT

The engineers at Jaycar have come up with a great veraion of thls versatile klt．The kit features a heany duty footswiteh－a must for the serlous stage muso．
ETI 158 LOW OHMS METER Ref：Nov＇ 81 ETI \＄29．50 This extremely handy kit is now avallable from US．Even capable of testing dry solder iointsil Complete kit inc．case \＆large meter．

Tilting Bail to suit ONLY \＄4．95

Other people may appear to be selling this But you GET less！l！！Exclusive Jaycar features －Heavy gauge front panel．Pro－punched，and silkscreened．（NOT Scotchcal）．Low aging rate 10.000 MHz crystal © Quality IC sockets provided（A MUST） －All metal film resistors used（ $1 \% 50 \mathrm{ppm}$ ）＂Therm－ alloy heatsink for +5 V regulator
Beware of advertised units that

$$
\begin{aligned}
& \text { to not conform to the } \\
& \text { inferior performance. }
\end{aligned}
$$ original design．They may have inferior performance．

NEW LOW PRICEI！Because we are shipping keyboards and other expensive components in bulk due to high demand，we can pass savings on to YOU．
You can now have a magnificent＂Lyrabird＂ 6 octave touch sensitive piano now for only $\$ 47511$ That＇s a staggering $\$ 50$ off the old price． REMEMBERI！THE LYREBIRD OUTPERFORMS READY BUILT PIANOS COSTING UP TO THOUSANDS OF DOLLARS MORE．WHY PAY MORE WHEN YOUR CONSTRUCTION KNOWLEDGE CAN SAVE YOU A FORTUNE？

Brilliant 5000 Series Amps

＂NO COMPROMISE＂

Drum Synthesiser Kit
 As used by WARREN CANN

 of＂ULTRAVOX＂

Original design from the UK magazine ＂Electronics and Music Maker＂April 1981．Self－contained unit produces a variety of fixed and falling pitch effects． Trigger by tapping the unit itself or by D striking a drum to which the unit is atta $\boldsymbol{0}$ ched．The Jaycar＂SYNTOM＂comes D complete with ilgh quality predrilled 20 moulded all ABS box $152 \times 80 \times 47 \mathrm{~mm} \square$ with professional silk－screened front panel．
FEATURES：Decay from less than 0.1 second to several seconds，pitch control， sweep control and volume on／off．
The standard 5000 pre－amp is available at $\$ 245$－no more than others but still better．

It is pleasing to see that many，many hundreds of Australians appreciate a quality kit when they see IT．The 5000 MOSFET P．A．and Pro－amp are so good they are attracting International interest．（We will be exporting our first shipment of these to－would you believe an Asian country as you read this）．Many people still can＇t comprehend their current performance specs make them the BEST amps in the WORLD． WRITE FOR A FREE LEAFLET

EA dual tracking P／S 5uxclumine

 （0）\rightarrow OLINEARITYPOT qused for greater
Ref：EA March 82 accuracy
1\％resistors used NOT 2\％． At lastll A dual－tracking power supply with fixed +5 V reg．at a reason－ able pricell

YOU PAY NO MORE FOR A QUALITY JAYCAR KIT！！

SHOP HOURS
 Mon－Fri 9 to 5.30 Sat 9 to 3

Thurs night to 8 pm
！！！NEW ADDRESS ！！！
125 YORK ST SYDNEY 2000
Ph． 2646688 Telex 72293 Mail Orders To
Box K－39 Haymarket 2000
Post and Packing charges
$\$ 5 \$ 9.99$（ $\$ 1$ ）$\$ 10$ \＄ 24.99 （ $\$ 2$ ） \＄25－\＄49．99（\＄3）\＄50－\＄99．99（\＄4） $\$ 100$ up（ $\$ 5.50$ ）

> Nowadays we take for granted the ease with which we can pick up a telephone and in moments talk to a friend overseas. Usually the process is simple and trouble-free, and we rarely spare a thought for the thousands of kilometres of cable and the feats of engineering which make our conversation possible. Yet the idea of undersea cables is just a little over a hundred years old, and the first undersea telephone cable was laid only 25 years ago. The history of modern communication is a fascinating story.

First underwater telegraph cable between England and France, shown here being laid by the lug Coliath, August 28, 1850.
ball hanging from the end of each wire at the receiving end would attract a piece of paper placed beneath it when energised with electricity, this being achieved by connecting the other end of the wire to a hand-operated frictional machine. If each piece of paper were inscribed with a particular letter of the alphabet, messages could be sent.
Telegraphic messages were actually sent experimentally in 1787 , by means of a system using static electricity, over wires stretched between Madrid and Aranjuez, in Spain. The Spanish showed great interest in this new technology, setting up another line over the same 42 km route in 1798 for the private use of the Royal Family.
During the early years of the 19th century the nations of Europe, plagued by the ambitious Napoleon, found themselves continuously preoccupied with the war. Yet a number of scientifically minded gentlemen continued to

Reprinted from OTC
Information Broadsheet No 6 by permission

The story of

When Captain Arthur Phillip RN, chose the wooded shores of Sydney Cove as the site for the first British settlement in Australia, he knew that he and his party had no hope of communicating with home for years to come. The voyage out had taken eight months. The first ship to reach the colony after its establishment, the Lady Juliana, arrived two-and-a-half years later, having taken 11 months from Plymouth. The mail it carried was already a year or more old and the recipients had not been in touch with the writers for more than three years.
This fixed relationship between distance and communication had existed since time immemorial. It was one of life's constants, like the daily rising of the sun. The thought could not have occurred to Phillip, or the politicians in Westminster who had sent him, that within 50 years this relationship would have been shattered - or that within a little more than 80 years, people at Sydney Cove would be in daily communication with people in London
Amid the 18th century courtliness and rustic torpor of the England they had left
behind the Industrial Revolution had already begun. Their predictable ordered world of sailing ships and sealing wax was about to be swept away on a great tide of change. The skilled iron workers of Birmingham had already started manufacturing James Watt's steam engine. John Wilkinson had built the first iron boat in 1787. The character of the English countryside was undergoing metamorphosis as villages grew into industrial towns, their skylines dominated by tall factory chimneys, as iron bridges leapt across river gorges, as canals and paved roads cut through the green meadows. And a few far-seeing individuals were already seeking ways of harnessing the magical "fluid" electricity, and utilising it for communication.
The first published suggestion for a system of electric telegraphy had appeared in the Scots Magazine 35 years before, on February, 17, 1753. The author, Charles Marshall, proposed a system using 26 wires "extended horizontally between two given places, parallel to one another and each of them about an inch distant from the next." A
entertain themselves and their friends by experimenting with home-made systems of electrical telegraphy. One of these, S. T . von Sommering, demonstrated an electro-chemical telegraph to the Munich Academy of Science in 1809. His contribution to the art is worthy of note because his demonstrations inspired a Russian nobleman, Baron Schilling, to take a lifelong interest in the subject. The work of Schilling, in turn, prompted William Cooke 27 years later to stake everything on turning electrical telegraphy into a commercial system.
Schilling had, by then, refined his receiving equipment so as to utilise the ability of an electric current to deflect a compass needle, a property first observed by Professor Oersted, of the University of Copenhagen, in 1820. Schilling had also developed a signalling code based on combinations of black and white, the needle swinging so as to point to either a black or a white card. This technique removed the need to have as many wires as letters in the alphabet, and foreshadowed the more celebrated Morse Code, A being represented by

black-white, B by black-black-black, C by black-white-white, and so on.
William Fothergill Cooke was just 30 years old when, in March 1836, he saw a copy of Schilling's telegraph. Recently invalided out of the East Indian Army, he had gone to Heidelberg to study medicine. He seems to have realised immediately the potential value of Schilling's idea. (The Baron himself died in that same year.) Within a month, the young Englishman had abandoned his medical studies and returned to England to devote himself to the development of electric telegraphy.
The story of Cooke's success is a story of a need and the technology to satisfy that need arriving together. England was ripe for the development. The first railway, between Stockton and Darlington, had opened in 1825. Stephenson's engine, The Rocket, had amazed the world by reaching $60 \mathrm{~km} / \mathrm{h}$ when hauling a 13 tonne train. Capitalists were

Far left, the Cooke and Wheatstone telegraph instrument as used on the London railway, 1845. At left, bringing the Australian end of the Trans-Tasman cable ashore, Bondi Beach, 1975.

undersea cables

eager to subscribe to new railway ventures. And railway company directors were anxious to have some reliable highspeed system of sending messages between railway stations ahead of the trains.

Cooke, encountering technical difficulties, formed a partnership with Charles Wheatstone, a man of four years his senior, who was Professor of Natural Philosophy at King's College, London. In June 1837 they were granted their first patent. Soon afterwards they
telegraph between Paddington, their London terminus, and West Drayton, 21 km away. This, the world's first commercial electric telegraph, came into operation on July 9, 1839.
The wires of Cooke and Wheatstone's telegraph spread rapidly throughout Britain along with the railways. Improvements in the system reduced the number of needles on each receiving instrument first to two, later to just one. By 1845 the partners were well on the way to becoming wealthy men through
royalties received from railway companies.
While the telegraph flourished in England through private enterprise, the American inventor, Samuel Morse, spent several frustrating years striving in vain to obtain financial backing from the US Government for his own proposed system. Morse, a portrait painter, had first sketched his ideas for an electric
demonstrated their 5 -needle electromagnetic telegraph system to the directors of the new London-Birmingham Railway. Although this test, conducted between Euston and Camden Town stations, proved the effectiveness of the system, the company chose not to place an order. However, the directors of the Great Western Railway were impressed and invited the partners to install a

$$
2
$$

sion and reception of messages in the code of dots and dashes which he and his partner had devised.
Morse's contribution to the new art was immense. His system needed only one wire, the return circuit being provided by the earth. Transmission of the signals was effected simply by tapping a key so as to make and break the connection. The pen and moving strip of paper were later discarded, for it was found in practice that operators could read the messages at the receiving end by listening to the long and short buzzing sounds made by the instruments. Key transmission and the code of dots and dashes survive to this day, especially in the sphere of ship/shore radio communication - as you could observe if you were to visit any one of OTC'S Coast Radio Stations.
The other great innovation introduced by Morse was the automatic relay, a device which enabled the telegraph to transmit messages over great distances without the need for reception and retransmission by operators at intermediate stations. This device played a vital part in the development of telegraphy, especially in its spread across the American continent. The relay functioned by using the current in one section of line to operate a make-and-break device in another section of the line powered by a separate set of batteries, thus causing the same sequence of long and short pulses of current to be sent down the distant line.
Australia got its first telegraph line, between Melbourne and Williamstown, in 1854, the year of the Eureka Stockade revolt. Victoria, only recently granted independent colonial status, was then experiencing a gold rush. The new colony's population had been expanded by a great influx of fortune seekers from many parts of the world and Melbourne had become Australia's most important city. Within four years the telegraph wires reached all the way to Sydney and westward as far as Adelaide, to enable the three capitals to keep in touch by Morse Code.

International telegrams

The idea of linking the nations of the world by running telegraph wires beneath the sea had excited imaginative minds ever since the first discussions of electric telegraphy. By 1850, there seemed to be no great obstacle to be overcome. All that was needed, surely, was effective insulation of the wire. But the pioneers were to discover - as pioneers usually do - that there were more difficulties in the way of progress than they could have dreamed. Samuel Morse, having experimentally laid a rubberinsulated cable across a section of New York Harbour in 1842, found himself the butt of public derision when the line

went dead even before the official opening ceremony. A fisherman, finding the cable fouling his anchor, had angrily chopped through it, letting the severed ends drop back to the bottom of the harbour.
Despite this experience, Morse remained optimistic about the prospects for submarine telegraph. He expressed the conviction, in 1843, that "telegraph communication may with certainty be established across the Atlantic Ocean."
In England, Professor Wheatstone had put forward a proposal for a crossChannel telegraph as early as 1840 in a submission to a House of Commons Committee. The first actual attempt to lay a telegraph cable across the Channel came 10 years later. It was a private commercial venture. It failed.
The man behind this scheme to link Britain to Europe by wire was a 45 -year-old retired antique dealer, John Watkins Brett. He formed a company with his younger brother Jacob, calling it the General Oceanic and Subterranean Electric Printing Telegraph Company. The cable, manufactured by the Gutta-Perchia Company, consisted of a single copper wire surrounded by a 5 mm thickness of gutta-percha insulation.
A small steam tug, the Goliath, paid out the 25 miles of cable from a huge drum on its after-deck throughout the day of August 28, 1850. The end was safely landed at Cape Gris Nez that evening and connected to the Brett's automatic printer. John Brett, in England,

At left, a long-distance cable code recorder, used at Australian cable stations last century. Above is a telegraph key as used on the Overland Telegraph, Darwin to Port Augusta, 1872.
attempted to send a message of greeting to Prince Louis Napoleon Bonaparte, but the receiving equipment recorded only an unintelligible jumble of characters.
Efforts to send messages in both directions continued for some hours but only a few words got through. By the next morning the line was lifeless. A French fisherman had hauled the cable inboard and cut a section from it, believing it to be some strange kind of seaweed with a gold core.
The Bretts tried again, this time with the support and guidance of a railway engineer, Thomas Crampton, who subscribed half the $£ 15,000$ capital for the project. Crampton also designed a new cable consisting of four conductors, each insulated with gutta-percha, contained in a protective sheath of tarred hemp and galvanised iron wires. Laid on September 25, 1851, this second Channel cable proved successful. For the first time, two countries separated by sea could correspond by means of the electric telegraph.
A boom in the production and laying of submarine cables now followed. Over the next few years, cables went into operation across the Irish Sea, the North Sea, the Mediterranean and even the Black Sea. In 1857, India and Ceylon were linked. And in 1859 a cable across Bass Strait joined the telegraph systems of Tasmania and the Australian mainland colonies.
Next month: the story of the first Atlantic cable and events in Australia.

APRIL/MAY

National have a wide range of scopes - to 300 MHz . Please call or write for further information.

-A-SIO TOP NAME

Casio FX-602P Advanced Programmable

* TAX FREE PRICES:

Printer unit

Casio FX-3600P

Scientific/Programmable

he last word in
pocket calculators...

AUDIO
 GENERATOR

TRIO AG-202A
\qquad
$\xrightarrow{2012}$
$10 v_{m s} t+10 x$
Soures weve cherecteratitice
${ }^{2}$

Output artenuation
Entromal emermonizaton.
Input meadance
Cat. $0-1220$
\$175.00
 A-3505 and METAL!
Enjoy the benefits of metal tape facility TEAC METAL TAPE DECK Model V-30
$\$ 169.00$
A-3079
outstanding value
CAR EQUALISER/BOOSTER

 UHTME: (2t)

GREAT SOUND - GREAT VALUE!

HI-RESOLUTION GREEN VIDEO MONITOR

 X-1200

ONLY \$349

GREAT VALUE!

CONSTANT VOLTAGE TRANSFORMER
of program drop-out or worse due to fluctuating valtages - wartry no morels This transtormer will maine due to fluctuating voltages - worry no morel M-9851

ONLY \$195
CLOCK/THERMOMETER MODULE

 Y-1053

ONLY \$34.50
4/2 DIGIT LCD DISPLAY
 Z-4175

ONLY \$8.95
reference data for radio engineers
 B-1104

ONLY \$28.00
A. 6666

PUSH BUTTON DIALLER

ONLY \$27.00

 Sfecian Note Aimaui man tioe

Y-1175 $\$ 69.95$

SOLAR CELL

\$2.95 Z-4835

RADIO HAMS 1982
The

B-2219 \$19.95

CASIO ORGAN/CALCULATOR
\qquad

THE CALCULATING ORGAN

$\$ 89.95$

DICK SMITH Electronics

CAR ALARM KIT MARK II At last! This sought after kit is now available. Quality components and parts at a great price! Cat. K-3253

WORLD CLOCKS LCD
WORLD
CLOCK

24 HOUR QUARTZ
WORLD CLOCK GREAT 5

WORLD TIME DUAL MELODY ALARM $\$ 64{ }^{55}$

LCD WATCH MODULE

Ideal for all experimenters hundreds of uses!

DOWN TO hALF PRICE

SEE OUR OTHER ADS FOR ADDRESS AND SERVICE DETAILS 1982/83 CATALOGUE AVAILABLE FREE IN THIS ISSUE!

The late 1920s to World War II proved to be the golden era of radio experimentation and home construction in Australia. In this, the final article of our four part series, the author looks at this era, and discusses the audio revolution that took place during this period and the introduction of stereo sound reproduction and experimental television.

by PHILIP GEEVES O.A.M.

Fellow of the Royal Australian Historical Society.
The Radio Super was very popular in the 1920s, chiefly because it needed no outside antenna.

Australia's radio pioneers

The first pickups used in Australia were heavy devices, with magnets and armatures in full view. To avoid distortion, announcers changed needles after each record. Although this was an exciting period, it meant endless frustrations for professional radio men. Improvements in valve performance and amplifier design caused broadcasters to invest substantial capital in new audio equipment, but listeners with outmoded receivers could not enjoy the enhanced sound, or even notice it.
The new breed of "wireless addicts" preferred to build their own receivers. Radio magazines were largely responsible for the home construction craze, which gained momentum during the 1920s. They printed illustrated articles showing how to build receivers of every genre, explained circuit diagrams and even ran courses in simplified electrical theory. When technical editors published constructional details of popular models, radio dealers offered kits to home hobbyists. Regular radio exhibitions and amateur displays allowed

Most Australian families of the 1920s heard their first broadcasts on a crystal set. It was a modest investment and needed no batteries, yet it opened the door to a new wonderland. More affluent, or trendy, people often began with a valve set, perhaps even a multivalve receiver capable of driving a loudspeaker. These sets, with tuned RF stages on breadboard layouts mounted in coffin-like cabinets, enabled their owners to demonstrate the occult art of "tuning" for the benefit of wide-eyed friends. A large outdoor antenna was the distinctive hallmark of a radio home, at least until the first prosecutions of unlicensed listeners, when "there was a rush, not towards the licence counter of the GPO, but to get the backyard aerial down before the postman appeared the next morning."

One of the chinf disabilities of early broadcasting was poor reproduction of recorded music. Because small synchronous or induction motors and electro-magnetic pickups had not been perfected, a spring-driven gramophone
did duty as a studio record player: The vibrations of the heavy tone-arm were magnified by the gramophone horn and picked up by a carbon microphone. Discs were still made by the original acoustic process, their restricted dynamic range suggesting that all vocalists were singing at the end of a tunnel. The complex tonal patterns of keyboard instruments defied faithful reproduction from acoustic recordings. Consequently many broadcasters relied on the pianola as a musical reproducer, which anyone with two feet could play like a virtuoso.
The invention of electrical recording changed all that. The vastly improved frequency response of the new discs turned the gramophone into something of a vogue, prompting a noted Australian composer to comment on "the disconcerting popularity of music". The new process coincided with the introduction of dynamic cone speakers, so it was only a short step to electronic reproduction, with the output of a pickup feeding into an audio amplifier.
laymen to study receiver layout and wiring techniques at close quarters. Most sets were battery operated until 1928, but increasing availability of domestic electricity produced the battery eliminator, which freed experimenters from the replacement of expensive B batteries and culminated in the triumph of the 1920s: the all-electric receiver.
The development of radio owed much to engineers who never lost the lively enthusiasms of their amateur days and, in fact, a number of professionals devoted their spare time to ham radio, thus enjoying the best of both worlds. Ray Allsop, who in 1925 became chief engineer of 2BL, was one of them. He relished the challenge of DX communication and allowed the general public to hear the results. In February 1925 Allsop's experimental station, 2YG, was heard in Europe on 80 metres. That same month he intercepted a shortwave test transmission from KDKA, Pittsburgh, the world's first broadcasting station, and relayed the program over 2 BL .
In 1927 Allsop organised a similar rebroadcast of PCIJ, Hilversum, and the public response to this novelty gave him an even more ambitious idea. The BBC had not yet begun its overseas service so Ray Allsop arranged, through the Netherlands Consul in Sydney, for 2LO, London, to be relayed from Hilversum on 30 metres for rebroadcast over 2 BL . This triple transmission proved enormously successful - the first time that Big Ben and the voices of London announcers were heard in Australian homes. It was not until May 1928 that the BBC was heard here somewhat more directly, when the Marconi Company relayed to 2 LO through its own shortwave outlet, 5SW at Chelmsford.
Red-blooded Australians felt an intense involvement with Kingsford Smith's epic trans-Pacific flight from Oakland to Brisbane in 1928 and, because the "Southern Cross" carried radio equipment, it became possible to follow the aircraft's progress. Sydney Newman transmitted continuous Morse homing signals from AWA's radio centre, Pennant Hills, while Ray Allsop and Tom McNeil shared a long listening vigil, interpreting the cryptic messages from the "Southern Cross" and keeping 2BL's audience aware of every development. An American, Jim Warner, was the plane's radio operator and his gear was built by Heintz and Kaufman of San Francisco. The original transmitter may be seen in the National Library, Canberra.
Looking back, it seems that 1929 was a watershed year for Australian electronics. Overseas, the development of efficient audio amplifers and loudspeaker systems had hastened the introduction of sound films - "talkies". In Australia, Ray Allsop took up the challenge. As early as 1921 he had succeeded in synchronising a wax cylinder recording with motion picture film; now he perfected his own Raycophone system which, despite bitter opposition

Spark transmitters were widely used in Australian merchant ships. Pictured above is the radio cabin of S.S. "Burwah", fitted with an AWA $1 / 2 k W$ quenched spark set

Marconi's research chief, H. M. Dowsett (centre) operates an early TV receiver at La Perouse during his 1934 visit.
from American interests, supplied the sound in almost half Australia's cinemas at a fraction of the cost of imported equipment. 1929 was also the year that AWA introduced its first domestic radiogram, the "Duoforte". Coinciding with the debut of sound films, the radiogram enjoyed widespread popularity as an exciting home entertainment package.
Many improvements in components and circuitry date from that time. One veteran remembers it as a stimulating epoch.. . "every week the radio papers printed a new circuit, so we would rush home to build it. Screen grid valves and power pentodes gave radio new horizons and, of course, the superheterodyne was a winner." Housed in splendid, handcrafted cabinets, console receivers of the 1930s were often the most impressive pieces of furniture in average homes and became the focal point of the family circle.

Public fascination with sound films soon generated a belief that television would not be long in coming and, it must be admitted, a few local visionaries were not averse to suggesting that television was just around the corner.
An experimental TV station, using Baird's techniques, was built in Brisbane by T. M. Elliott and limited work was done by other experimenters. Three commercial radio stations, 3UZ, 3DB and 2 UE , toyed briefly with the novelty of transmitting still pictures, but their enthusiasm outstripped the state of the art and public demand. A Melbourne firm, Television \& Radio Laboratories Pty Ltd fostered the idea of Radiovision, which reproduced simple geometric figures on a special receiver. Experimental transmissions over Melbourne stations were soon abandoned. 2UE's interest centred on the Fultograph system, canvassed ardently by its British representative who, however, was realistic enough to

ROD IRUING ELECTRONICS

MAIL ORDERS: P.O. BOX 235 NORTHCOTE, VIC. 3070 Min. P\&P \$2.00. Mail Order Enquiries (03) 4811436.
concede that "transmissions will be of no value until the Fultograph receivers are distributed." And all this in a time of worldwide depression!
Some unusual hookups were adopted to carry film soundtracks to remote places, but few captured the public imagination so completely as the 1930 transmission from VK2ME which enabled Admiral Byrd's expedition in Antarctica to hear Chevalier's film "The Love Parade" direct from the projection box of Sydney's Prince Edward Theatre. Spectacular achievements of this kind served to remind "John Citizen" that the unfolding science of radio was capable of infinitely more than simply producing "agreeable sounds in his living room "wireless". And although Marconi never found time to visit Australia, the very association of his name touched any occasion with magic. It is impossible to convey the feeling of wonderment which engulfed Sydney in March 1930 when, from his yacht "Elettra" in Cenoa harbour, Marconi switched on 2800 lights in the Town Hall to inaugurate that year's radio exhibition.
Dual wave receivers of the 1930s gave Australians a window on the world at a time when European dictators were exploiting the power of radio propaganda. Short-wave broadcasts became commonplace and, through the crackle of atmospherics, that generation listened to history in the making. In Australia, too, short-wave techniques were given some imaginative tests, such as the great Southern Seas broadcast on Empire Day 1933, the first major hookup in this part of the world. One report mentioned
"Nauru transmitted a word picture of natives listening with expressions of awe to the strange voices that came from the air. In New Guinea, miners on the

The Fultograph experimental picture transmission equipment of 1929.
goldfields were sitting around expensive receivers, bought with their newlyacquired wealth, listening to the flashing Empire messages. The minds of many went back to 1914 when intercommunication in the south seas depended on a few strands of cable."
The Wireless Institute of Australia was the sole active national body of its kind until 1932. Each State had a separate Division and the members' prime interest was amateur radio. However, industry leaders, immersed in the rapidly developing science of electronics, felt the need of a more professional organisation. As a result, the Institute's membership began crystallising at two different levels. As early as 1924 Fisk, Mingay and other professionals had the foresight to register the Institution of Radio Engineers, Australia, but the planned organisation remained dormant for eight years when, by common consent,
the IRE hived off from the NSW Division of the Wireless Institute.
The new body quickly established an enviable reputation by snaring some of the front runners of electronics as lecturers. In May 1934 Marconi's research manager, H. M. Dowsett, delivered a paper on "Television and its possibilities in Australia" and four years later the IRE had attained the requisite stature to host the first world radio convention ever held in the British Empire.
That prestigious conclave, which was part of Australia's 150th anniversary celebrations, attracted to Sydney many international figures, including Ceneral James Harbord, Chairman of RCA, and TV inventor John Logie Baird. More than sixty papers were read, a goodly proportion being contributed by Australian engineers.

Conducted by Neville Williams

A TANGLE IN TAPE COMPENSATION . . .

If you're looking for a way to get yourself thoroughly confused, just get involved in a discussion about the recording and playback compensation in an audio tape recorder including, of course, references to time constants and turnover frequencies. More than one reader seems to have had that experience, since publication of our November issue.

In that month, from page 31, we recounted a discussion with Mr Bill Andriesson of BASF, Germany, under the heading "Definitive answers about CRO2 cassettes". In it, he expressed dissatisfaction with the choice of $70 \mu \mathrm{~s}$ as the compensation time constant for chromium dioxide tape, saying that it would have been better left at $120 \mu \mathrm{~s}$, as for ferric oxide
He felt that the decision had been taken because engineers, at the time, did not accept that the tape hiss problem would yield - as it ultimately had - to the use of Dolby-B noise reduction. Dolby NR had made it not only unnecessary but unwise to change the time constant of the equalising networks to $70 \mu \mathrm{~s}$.
By retaining $120 \mu \mathrm{~s}$ for chromium, he maintained, the full potential headroom of the new coating would be realised rather than compromised, yielding a better and more usable dynamic window.
Following publication of the article, received a call from a reader, P.C. of Surry Hills, NSW, who said he could not follow the reasoning at all. It seemed upside-down to what he understood the
facts to be
Indeed, he had referred the matter to a number of technical acquaintances and they were equally puzzled. They felt that we had got our facts mixed up.
Subsequently, I received a letter from him that reflects that puzzlement and I reproduce it below:

Dear Sir,

I must confess to total confusion over your article in the November issue about chromium tapes and equalisation. I would have thought that, where you wrote 120μ s, you meant 70μ s and vice versa.

1. As I understand it, tape saturates in the upper treble frequencies first, as levels are raised. Therefore, the less treble boost needed, the better the headroom.
2. As I understand it, $120 \mu \mathrm{~s}$ is a treble boost (during record) of 6 dB /octave that starts to rise at a lower frequency than does $70 \mu \mathrm{~s}$.
3. I therefore conclude that, for instance, 10 kHz gets more treble boost on "normal" $120 \mu \mathrm{~s}$, and not as much boost
on "chrome" $70 \mu \mathrm{~s}$.
4. I further conclude that, on replay, 120μ s would cut more noise out than would 70μ s.
Therefore I cannot understand how you have reached the opposite conclusion on page 33. Even after our telephone conversation, in which you mentioned the matter of recording head current, I am still confused. Would it be possible for you to publish a more complete explanation.
P. C. (Surry Hills, NSW)

On the back of his letter, P. C. has sketched some ordinary boost and cut curves but then confesses that his convictions don't align with practice. He has noted that switching to the CRO2 position does indeed reduce the upper treble response on playback, thereby confirming what Bill Andriesson had said!
His confusion was therefore complete!
Rather than try to untangle his letter,
the most helpful approach will probably be to follow through the recording and replay systems and, hopefully, let the facts speak for themselves.
To avoid unnessary complication, let's
just talk about the cassette system, although the same principles apply to open reel recorders and to other tape speeds.
If one were to feed a magnetic record head directly from an amplifier with a flat voltage/frequency response, it would be found that the current through the head

To ensure a more uniform flux on the tape at all frequencies, the recording head is fed from a "constant current" source where the current remains constant with frequency.

To match the flux curve more accurately to normal ferric tape, the recording amplifier includes bass boost and treble cut to produce the overall flux curve (idealised) as above
would diminish with rising frequency, because of the rising impedance of the head winding. In short, with a flat voltage/frequency input to the head ("constant voltage" drive) the remanent flux on the tape would diminish with rising frequency at something like $6 \mathrm{~dB} / \mathrm{oc}$ tave. (Fig. 1).
In practice, it is desirable that the remanent flux be substantially constant at all frequencies and, to approximate this situation, it is normal to feed the record head from a "constant current" source or one that has a flat current/frequency characteristic. (Solid line in Fig. 1).
Constant current feed can be approximated by using a driving amplifier stage with an intrinsically high output impedance, or by simply feeding the head through a suitably large series resistor.
But here's where some of the confusion arises. In voltage terms (head voltage/input voltage) constant current feed does seemingly produce a huge treble boost. But the rising voltage is solely the result of rising head impedance and, in terms of what really matters - remanent flux on the tape - constant current feed more closely approximates a flat frequency response.

VITAL DISTINCTION

It is important to distinguish between constant current head feed (and the reasons for it) and recording compensation. So let's now talk about this second subject:
It was realised from the outset that signal/noise ratio would be a problem with the cassette format, considering its low tape speed and narrow tracks. There was therefore good reason to get as large a signal as possible on to the tape, so as not to rely any more than
necessary on playback gain. Constantcurrent feed to the record head was a step in the right direction but not a cureall in itself.
The further objective was to frequencycontour the signal so as to fully utilise the potential of the tape
For example, a close study of tape characteristics and the energy content of low frequency audio led to the conclusion that some bass boost could be tolerated during record. This would permit equivalent attenuation during playback, minimising possible problems with low frequency hum and noise.
Originally, boost was applied below 100 Hz but present-day practice is to employ a time constant of 3180μ s, giving a nominal turnover point of 50 Hz and boosting at the rate of 6 dB /octave below that.
At the other end of the spectrum, it was apparent that the tape could not accommodate the same flux as at mid frequencies. Rather than lower the whole recording level to match the high frequency capability of the tape, the decision was taken to maximise the recording level between 50 Hz and 1000 Hz or more, and design for deliberate treble cut beyond that. The loss would have to be made good by equivalent boost during playback.
The solid line in Fig. 2 shows the standard (and idealised) flux/frequency curve which was settled upon for ferric oxide cassettes - flat between 50 Hz and $1325 \mathrm{~Hz}, 6 \mathrm{~dB}$ /octave boost below 50 Hz and $6 \mathrm{~dB} /$ octave cut above 1325 Hz .
If there were no other considerations, the recording amplifier would be compensated according to this same curve but things are not as simple as that.
In a practical deck, limitations of the head and drive circuitry and

When replaying a flux curve like Fig. 2 , an idealised head would produce the response shown. For a flat overall response, a compensation curve as shown dashed would be necessary.

With rounded rather than abrupt turnover regions, a practical cassette replay compensation curve is as shown at left.

Improve your FM reception or Video \& Sound Tapes.
It is true the sound quality of FM radio is equal to anything you have ever heard on record or tape. and is far superior to the reproduction possible on AM radio. But this performance is largely dependant on level \& quality of the signal fed in. to your FM tuner or video. In many cases you will face the same receiving problems you encounter with TV reception such as (Ghosting Snow - Poor sound).
Regardiess of how much you spend on your FM Tuner Amplifier or Video Cassette your equip. ment will only perform as well as your Antennae System will allow.
We at Electrocraft knowing the problems of TV \& FM reception can offer Free advice and a range of Antennae's \& accessories to overcome these problems.

FM Antennaes

Hills FM1. Di-pole 300 ohm
Hills FM3. 3EL 75 ohm
Hills 353. 3EL 300 ohm
Hills Do-it-yourself kit.
Channel-master 700FM 4EL 300 ohm
Matchmaster FMG2 300 ohm Semi fringe
Matchmaster FMG6 Super fringe
VHF Ch. 0 to 11
UHF Ch. 28 Band 4
UHF Ch.s 7-9-10 Band 5
We have over 50 types of Antennaes in stock plus Cables - Amplifiers - Brackets - Masts $-\&$ all accessories. With some of the cheapest prices in Sydney

Aluminium tube 9.50 D
90c per metre 24.50 D $\$ 3.80$ per metre

If you have recording bugs, our staff have the

ELECTROCRAFT ${ }^{\text {PTYY }}$
68 Whiting Street, Artarmon, NSW Telephone 4384308 or 4383266
WE ARE SPECIALISTS
30 years in the antenna business Hours: 8 am to 5 pm
Prices subject to alteration without notice

FREE TRIP TO MELBOURNE

Computer Country is now proud to announce its "FREE TRIP TO MELBOURNE" plan. This plan applies only to interstate purchasers (non-Victorian) of a NEC PC-8000 Computer System or an Hitachi Peach Computer Package.
(Note - Plan applies only to those systems having a minimum configuration value of $\$ 4,000$ retail without sales tax.)

This is the perfect opportunity to purchase either one of some of the best computers systems on the microcomputer market. You can just buy hardware or add on any one of a number of software packages available which include word processing, general accounting, statistics, entertainment and educational.

THE NEC PC-8000 PROFESSIONAL COMPUTER

It combines the most wanted features of existing micros with new features you have always been looking for.
These features include $4 \mathrm{MH} \times \mathrm{Z}-80 \mathrm{CPU}, 80 \times 25$ display with graphics and 8 colours, 32K ROM, parallel/seriallcassette interface, upperllower case, numeric keypad, 10 special function keys and real time clock - all built-in.
The NEC Professional Computer gives you much more for your money than almost any other micro on the market.
The NEC PC-8000 is supported nationwide by the Hanimex group of companies,

(6) HITACHI "PEACH"

One of the most powerful new microcomputers on the market which uses the 6809 microprocessor. Comes with excellent super high resolution graphics -640×200 dots and has a $40 / 80$ character $\times 25$ lines user programmable screen configuration.

Either choice will give you a great price, a great computer system, a free trip to Melbourne and a special training session as well.

All in all - a great deal from Computer Country. COMPUTER COUNTRY PTY LTD

338 Queens St, Melbourne, Victoria 3000, (03) 3297533.
NOTE - Those residding within the Sydney-Adelaide radius will receive two economy air fares return from those capital cities. Outside that radius, eg Perth and Brisbane, this offer is good for one economy air fair return from those cities.

The compensation curves for $120 \mu \mathrm{~s}$
(Fe) tape and $70 \mu \mathrm{~s}$ (CrO2) tape.
Reduced treble gain for the latter tends to minimise high frequency tape hiss.
demagnetisation in the tape itself impose their own losses in the high frequency region and make it neither necessary nor desirable to roll off the recording amplifer as shown.
Instead, the high frequency response of a recording amplifier is normally "tailored" in individual models (shaded area, Fig. 2) to ensure that the signal on the tape approximates the standard flux/frequency law (solid line). In short, that it will produce a "flat" signal from a properly compensated replay amplifier.

PLAYBACK RESPONSE

Which, of course, brings us to the subject of playback and, here again, we are faced with a two-tier requirement.
Fundamentally, the output voltage from a magnetic playback head tends to be proportional to the rate of change of the flux in the gap. A rapid change, due to a high frequency signal, will induce a much higher terminal voltage than a slow change, due to a low frequency signal.
In practical terms, the output from a magnetic playback head tends to rise with frequency at the rate of $6 \mathrm{~dB} /$ octave. When this upward tilt is combined with the flux curve of Fig. 2, the overall response which results looks like the dot-dash curve in Fig. 3. Indeed, this is the frequency characteristic of the signal presented by the head to the playback amplifier.
To translate this into a level response, the playback compensation circuitry must produce a reciprocal curve, involving the same two time constants: $3180 \mu \mathrm{~s}$ $(50 \mathrm{~Hz})$ and $120 \mu \mathrm{~s}(1325 \mathrm{~Hz})$. The idealised response, shown as the dashed line in Fig. 3, is level below 50 Hz , falls at $6 \mathrm{~dB} /$ octave from 50 Hz to 1325 Hz , and remains flat above 1325 Hz .

Ideally the combination of the two the signal from the head and the amplifier compensation - will produce an overall flat response (solid line).
A practical, as distinct from an idealised, playback response has smooth rather than abrupt "corners" and looks more like Fig. 4. Again, in a practical deck, the desired response may be achieved by "fiddling" the compensation circuitry to make up for possible deficiencies in the head performance, particularly in the upper treble region.
And this brings us to the point where our correspondent stumbled - the relationship between the compensation for ferric and chromium tape - between $120 \mu \mathrm{~s}$ and $70 \mu \mathrm{~s}$.
Fig. 5 repeats the ferric response curve of Fig. 4 but, in addition, it shows the $70 \mu \mathrm{~s}$ curve for chromium tape, with a "corner" frequency of 2270 Hz . Clearly, the amplifier gain beyond 1325 Hz is lower for chromium that it is for ferric tape, which accounts for the greater attenuation of high frequency noise, referred to by Mr Andriesson, and noted in practice by our correspondent.
So everything checks, as far as the basic theory is concerned.
What doesn't check are the $a b-$ breviated explanations that are sometimes offered for tape recording and playback compensation and the failure to clarify the vital role of head response in both modes. It is little wonder the confusion results.
We trust that our correspondent and his friends will be better able to sort the matter out for themselves. But here's a tip for what it's worth. Think purely in terms of tape; don't try to construct parallels with, or borrow phrases from, disc or other technology.
You'll get all tangled up again!

Another cassette problem

Why, asks a reader, is the tape in some cassettes passed around corner pillars, as well as guide rollers? It must surely increase friction.

We put this one to a cassette designer "Yes", he said, "It does increase friction and it is meant to do so. The aim is to increase tape tension by a controlled amount, to ensure smoother flow, better alignment and better winding.

LAS VEGAS: A glimpse of the future at the Consumer Electronics Show

With more than 900 exhibitors and a trade-only attendance of more than 67,000 visitors, the recent Winter Les Vegas CES (Consumer Electronics Show) has more than ever established its place alongside the older Chicago Summer Show. Video was strongly represented but there was still plenty of interest in audio-hifi.

At the Last Winter Show, CBS caused a sensation by announcing that future records would involve a compander system to increase the dynamic range. As the system was claimed to be compatible (the records could be played without an encoder) it was called CX or Compatible Expander. It is intended to be a standard system for all record companies and the idea has been endorsed by Warner, Atlantic and RCA among others. But, so far, only about 24 CX records have been released, although there is no lack of decoders. It is in strong contrast to the early days of stereo when we had records but no suitable phono cartridges!

Opposition to CX comes from recording engineers, who feel that they would lose some control over the sonic quality. Then again, some of us have doubts about its compatibility. Be that

George Tillett is correspondent in the USA for "Electronics Australia" and "VideoMag'.
as it may, CX licensees now include Nakamichi, Kenwood, Pioneer, Yamaha, Marantz, Hitachi and Toshiba.
The dbx noise reduction system is gaining in popularity and both Yamaha and Teac were showing cassette recorders incorporating it. Teac's V-95RX has both Dolby-B and dbx, giving a dynamic range of 69 and 92 dB , respectively. Other features include bidirectional recording and playback; also Up and Down pushbuttons for level and a fader control.

Akai have one of the lowest price models with Dolby-C, the CS-F13, which is only $\$ 199.95$.
Several decks feature auto-reverse and some, like Toshiba's PC-G6R, use an infrared sensor for switching. Instead of changing direction at the extreme end of the tape, the sensor detects the non-metallic leader and switches immediately, thus avoiding the usual 15 -second blank spot which often comes just at the wrong time.
Most of the higher priced decks feature some kind of "Music Search

Sansui are still pushing their "super feedforward" circuitry, as evidenced by this new AU-D33 integrated amplifier, rated at 50 W per channel and a total harmonic distortion figure of less than 0.004%. Denon were also showing three integrated amplifiers which, from the description, would appear to be using a similar system.

by GEORGE TILETT

System" for quick access to chosen selections on the tape and each manufacturer has his own acronym describing it. For example, there's Sansui's AMPS (Automatic Music Program Selection), JVC's MMS (Multiple Music Selection and Teac's CPS or (Computomatic Program Selection).

Some of the systems depend on blank spaces between recorded selections for sensor operation but the Akai Intro-Scan is a little different, as it plays back the first 10 seconds of a selection for easy identification.

Cassette designers must have real headaches trying to figure out new ideas and it is interesting to look out for the latest innovations. This year, I think, it is "push-button head demagnetisation" - so far provided by two models, one from Aiwa and one from B\&O. l'll be surprised if there are not more decks with this feature at the June show
Open-reel recorders are still popular among serious audiophiles, although the estimated sales of 150,000 last year are way below the figure for cassette decks. A number of new models were seen at the Show, most of them having provision for the new Extra Efficiency (EE) tapes.

Teac's $X-1000 R$ is a good example of modern design. It has a built-in dbx system, provision for 267 mm reels, dual capstan closed-loop drive, variable pitch control and bi-directional recording facilities

At $19 \mathrm{~cm} / \mathrm{sec}$, the frequency response extends to $34 \mathrm{kHz}(-3 \mathrm{~dB})$ with a signal-to-noise of 65 dB . Switching in the dbx system extends it to 100 dB . It is claimed - with some justification - that the performance
with EE tapes at $9.5 \mathrm{~cm} / \mathrm{sec}$ is equal to that obtained from "ordinary" tapes at $19 \mathrm{~cm} / \mathrm{sec}$.
Turntables are still coming down in price and there is now quite a selection of direct-drive models costing less than \$200. Small models termed "album size" are becoming very popular for packaged component systems. Sansui's PM-7, for instance, measures about 35 cm square and offers programming of up to 7 musical selections on a record for playback in any order. Incidentally, this model is Sansui's first SLT (Straight Line Tracking) entry.
Another Sansui model is the XR-Q7 which uses two motors to reduce rumble. The second motor is mounted coaxially with the main (direct-drive) motor, but rotates in the opposite direction to cancel out fluctuations. Well that's the theory anyway, but the rumble figure of -80 dB (DIN-B) would indicate that the idea works! The ingenious design is called the "Synchrotor". Among the other features of the XR-Q7 is a low-mass straight arm and a "Repeat" function, which enables a record to be played continuously.

SLT TURNTABLES

Straight line (SLT) turntables use an optical or other kind of sensor which is activated when the arm deviates from its tangential position. A pulse is sent to the arm drive motor and the arm duly moves forward one groove. Critics have said that this one-groove-at-a-time movement means that there must be a tracking error for most of the time. This is perfectly true but it amounts to a fraction of a degree at the worst position at most one-tenth that of pivoted arms.

One model, the Sony PS-800 even reduces this microscopic error by applying a constant drive to the arm in addition to the correction pulses. Another feature of this model is a "bionic" arm which is completely electronically controlled.
A velocity feedback circuit provides the tracking force, and a knob on the front panel enables this force to be varied while a record is playing - a feature which I have found useful when testing phono cartridges.
Now Denon have come up with another model with an "electronic tone arm" that "senses dynamic record conditions and then adjusts its tracking and anti-skating forces accordingly". This model is not an SLT design: it employs a low-mass straight pivoted arm.

United Audio (DUAL) were using a spectrum analyser to show the superiority of their arm, which uses a tuned counterweight. A special record containing eight 1 mm warps plus a 300 Hz signal was employed and the

On display at the Las Vegas CES

Mattel's electronic "Synsonic Drums" unit takes up a lot less space than a conventional acoustic drum set and doesn't have to make as much noise. It also offers another advantage: an in-built memory which makes it possible to compose, play, record and replay drum routines at will.

This Audio Technica "Disc Stabiliser" takes the place of the usual turntable mat. When the space between the disc and the stabiliser is evacuated by means of the hand pump (left) air pressure holds the disc firmly in place during replay.
turntable was fitted with a standard arm as well as a Dual ULM model. Quite an impressive demonstration.

VACUUM BONDING

About two years ago, Luxman introduced an elaborate turntable which has a built-in vacuum pump to bond the record tightly to the platter. The platter has two vent holes in it and the outside rim is raised slightly to form an airtight seal. The pump operated for a few seconds before the stylus landed in the first groove and the vacuum was sufficient to last during play: in fact an automatic release circuit is operated as the arm swings back to its rest - otherwise you just couldn't pry the record from the platter!

Luxman introduced a lower priced version at the Show and another vacuum pump model was shown by the Swiss company of Thorens. This model has two tonearms so it could be classified as a professional unit. The advantages claimed for vacuum bonding include reduced distortion, elimination of record resonances, improved tracking, and the flattening out of warped records.
If you want to fit a vacuum system to your own turntable, Audio Technica have just the job: the Model AT 666 Disc Stabiliser. This consists of a small manual pump and a precision duralumin platter which replaces the turntable mat. A tube connects the pump to the platter valve and a few strokes on the pump creates enough vacuum to hold

AUDIO-VIDEO ELECTRONICS-cont.

the record securely - even if it is warped.
Some three years ago, if I remember correctly. Threshold introduced an amplifier using no negative feedback. Distortion was balanced out by using a voltage amplifier and a null circuit. Sansui uses a similar concept in their "feedforward" amplifiers. Recently, they have added two more models to the range, one rated at 50 watts per channel and one rated at 35 watts - both with a THD of less than 0.005%.

Now Denon have introduced three integrated amplifiers which appear to use the same kind of circuit. I quote from the specifications, ". . . a localised error detection system is used to cancel distortion without any negative feedback". Power ratings are 60, 80 and 100 watts per channel.
Yamaha's new A-1060 uses what they call an X-power supply which is something like Soundcraftsmen's Class-H configuration. Low level signals are handled by a low current supply but a more powerful supply is automatically switched in when required. Yamaha were also showing a Class-A amplifier, the Model BX-1 which is rated at 100 watts each unit: that's right, you need two for stereo and it will set you back a cool \$4000!

NEW RECEIVERS

Many of the higher priced receivers are now featuring some kind of electronic controls with no rotaries at all. All functions are controlled by pushbuttons.

Kenwood's KR-1000 is a good example. Everything is controlled by "push-pads" or touch controls and various displays indicate operating mode, power output, time, station frequency, speakers in use, relative volume level and graphic equaliser positions. Other features of this prestigious receiver include presets for 12 stations, synthesiser tuning, mic mixing, low and high filters and wide-narrow band IF filters.

Kenwood were also showing their second cassette-receiver, a combination that is becoming more common here, although I doubt whether it will be as popular as in Japan.
On the other hand, we have experienced an equivalent boom in tiny portable radio-tape players such as Sony's Walkman and the Koss Music Box, plus many others with names like the Road Runner, Hip Pocket Stereo,

In the latest version of the lonophone tweeter loudspeaker, the ion cloud is formed at the tip of an electrode, as shown on the left. Modulation applied to the sustaining voltage produces sound waves in the range 4 kHz and upwards. The sound source is enclosed in a metal mesh ball, as at right:

Sound Partner Music Mate and so on. All use lightweight headphones. Those from Koss fold up to "fit in the palm of your hand" but prize for the smallest must go to Denon whose AH-P5's are housed in a cassette tape box!

Space will not permit a description of anything like the number of

ten little elephants who

The latest in nursery novelties. Turn the pages of the book, pass an electronic wand over the bar graphs and a speech synthesiser speaks the words "in a warm and friendly voice"?
loudspeakers at the Show but I will pick out a few of the more interesting.
The Quad Electrostatic ESL-63, which I had heard when I visited the plant in England a few months ago, was not on show. I imagine the company has more orders than they can handle at the moment.
However, a full range ESL called the Audiostatic was attracting a lot of attention. It comes from Holland and is in the form of five panels standing about 130 cm high and 115 cm wide. Because the panels are hinged, it is possible to obtain quite good dispersion, although best results are obtained in large rooms. The systems can be obtained with built-in 100W Class-A amplifiers if desired.
The Acoustat company claims to be, "The World's largest manufacturer of electrostatic speaker systems" and their top model is the "four", which measures $150 \times 90 \times 10 \mathrm{~cm}$. Coupling is via a method called Magne-Kinetic Interface, which involves the use of two special transformers. Efficiency is said to be higher than average, with an impedance of around 4 ohms.

LEAD CYLINDER!

The GNP company were demonstrating a system called "The Lead Cylinder" which turned out to be a three-way design with the treble and midrange units housed in separate enclosures, mounted on top of the cabinet containing a 25 cm woofer. The midrange driver was a 11.5 cm cone type, housed in a 18 cm cylinder lined with a sandwich of lead sheeting and some corrugated cellulose material. The object was to reduce colouration and it certainly seemed quite effective.

B\&W, as always, were giving a fine demonstration: this time with their Model 801 which has a new midrange enclosure made from a glass reinforced concrete mix, with an outer skin of

Weecan't hold these prices much longer
 Vicom has long been acknowledged as the leader in Amateur Radio gear.

With the best range of products available at the best prices, we also back everything we sell with the best possible service and maintenance facilities in Australia.

But Vicom is more than just Amateur Radio.

We have a huge range of specialist electronic gear for the home hobbyist.

LSG16

 LDM815 Dip Meter. One of the most signals in the audio and supersonic frequency ranges. Only \$199. it is a battery operated, fully portable uniteful instruments for $\mathrm{Ham}, \mathrm{CB}$ or other communications use. Fully self-contained,LHM80A. Light weight, this is an indispensable item for the TV service man.

ELBEXEntirely self-contained. And only $\$ 49$. Our very special price. For the home video hobbyist we have this Elbex gear at Vicom prices. Just look at this. EX803 black and white video camera with zoom lens. Ideal for the home-video buff who wants to make home movies. It is also ideal in small shop security systems where you want constant surveillance by video. And we are offering this Elbex unit at only $\$ 459$. That's an offer we won't be repeating. We've also got loads of Elbex cable at very special prices. Like EC4 Camera Cable at only $\$ 40$. EX2 VCR Cable at only $\$ 21.95$ and EX3 VCR Cable at only $\$ 16.36$.
 electronic hobbyist. With names like Leader, Jostykit and Elbex we offer the very latest in home electronics. Look at this great Leader test equipment. LSG16. Check out your audio quality at home with this Signal Generator.

A very versatile, solid-state, wide-band signal generator designed for the radio hobbyist, experimenter or service technician. It uses a FET in a stable oscillator circuit to cover the frequency range from 100 KHz to 100 MHz on fundamentals and up to 300 MHz on harmonies. Just $\$ 153$.
 it is a battery operated, fully portable unit. Great value at only $\$ 109$.
 The HF65 FM Transmitter/Signal Generator comes with classy two-transistor circuit for 2-metre Amateur Band (144 MHz) transmitter or high frequency signal generator. And only $\$ 11$.

What value.

 HF385 CHF / UHF Pre-amplifier Kit. This broadband amplifier improves your LW, MW, SW, Walkie-Talkie and F/viradio. It also helps TV reception. This month we are offering it for only $\$ 34$ But be quick, these prices will only last as long as our current stocks.[^2]Springwood: Springwood Hi.Fi F1 51091 Tomworth: Independent Communiccotionn Wollongong: Macelec 291455 Gunnedah: tandlink Communications 422838 Bendigo: Sumner Electronics 431977 Porf Foiry' Ansonic Electronica 681134 Bollanut: Johnt Lewis Electricol 1313322 Welbourne Eostern Communicotions 2883107
Moe Codlin Communications 274510 Homiton. Hamiton Electronics 723333 Western Austalia: Perth Willis Electronecam 392808 Frankston World wide Rodio 7893412 Derby: Hydra Electronics Services 9111307 . Tasmania: Louncestion Gelstan 443882 Advanced Electronia 317075 South 217609 Nefronics 463232 Kolgoorlie: Hocks TV 211906 Hobart. Horvey Skeg9 476074. Burnie VK. Electronics 311708 . Northern Territory: Dorwin Darvin Communicotions 9531 Lounceston. Groeme Thomson Electronics. 444733.
 South Austrolia: Adeloide: Compucom 437981 Mt. Gambier: Set Services 252228 . Port Adeloide International R. E. Hunter 8 Associotes Pry, Ltd. 515092. Whyollo. Gulf Communications 450208

Precision diecast aluminium boxes with slots for sliding in your PCB's. Fully screened to RF when lid is on. Can withstand heat to 600 degrees centigrade!
Cat. H-2201 190 (d) $\times 60$ (h) $\times 110$ (w)
WAS $\$ 12.90$ SAVE $\$ 2.95$ NOW $\$ 9.95$ Cat. H-2206 150 (d) $\times 50$ (h) $\times 80$ (w) $\begin{array}{lll}\text { WAS } \$ 8.95 & \text { SAVE } \$ 1.00 \quad \text { NOW } \$ 7.95 \\ \text { WA }\end{array}$ Cat. H-2211 120 (d) $\times 40$ (h) $\times 65(\mathrm{w})$
WAS $\$ 5.20$ SAVE 25 c . NOW $\$ 4.95$
Cat. H-2221 100(d)×25(h)×50(w)
WAS $\$ 3.50$ SAVE 55c NOW $\$ 2.95$
DRAW UNITS - NOW REDUCED

Cat. H-2584 one drawer
STACKABLE Cat. H-2585 two drawers 'SAVE 55 cents
19 INCH RACK MOUNT CABINET

19'' quality rack mounting cabinet supplied in a flat pack. Has advanced features and is finished in aluminium.
Silver (Cat. H-2480) and Black (Cat. H-2481)

ZIPPY BOXES

High impact styrene with moulded corner supports and ribs all around for mounting PCB's. Aluminium lid and screws.
Cat. H-2751 150 (d) $\times 90(\mathrm{~h}) \times 50(\mathrm{w})$ Cat. H-2752 196(d) $\times 113(\mathrm{~h}) \times 60(\mathrm{w})$ Cat. H-2753 $130(\mathrm{~d}) \times 68(\mathrm{~h}) \times 41(\mathrm{w})$
Cat. H-2755 83(d)x54(h)×28(w)

CANNON PLUGS $\frac{\text { NOD }}{\text { H/P-1622 }}$

High quality connectors reduced in price! Essential for trouble free audio connections. Cat. P-1620 3 pin line socket SAVE 35c NOW ONLY $\$ 3.60$
Cat. P-1622 3 pin panel plug SAVE $\$ 1.80$ NOW ONLY $\$ 1.95$
Cat. P-1624 3 pin line plug SAVE $\$ 1.50$ NOW ONLY $\$ 2.25$
Cat. P-1626 3 pin panel socket SAVE 25c NOW ONLY $\$ 3.95$

SOLDER SELLOUT!
Corrosion free solder - top quality multicore type.
Cat. N-1619 1.25 mm 200 grm
Cat. N-1623 0.71 mm 200 grm

Polyproplene tool box ($427 \times 230 \times 200 \mathrm{~mm}$), with two trays \& 15 compartments. Ideal for all sorts of uses.
Cat. H-2600

Small, but heavy duty box with compartments for small items. Size: $\mathbf{2 1 8 (1) \times 1 1 0 (w)}$ x33(h)mm.

SOLID STATE BUZZER BARGAIN

99 cents

SAVE 96 cents

Solid stave buzzer with reverse polarity protection. Tone is at 450 Hz with high output. Compact - $32 \times 14.5 \mathrm{~mm}$. Use on $4-15 \mathrm{~V}$ DC.
Compact - 32

Superb 100 k ohms per volt multimeter now reduced in price. Not only does it check the usual DC and AC volts and current but also transistors, capacitors, resistance, decibels etc. Worth lots more than this reduced Cat. Q-1140

HITACHI CRO - FAMOUS

This is the top quality Hitachi 15 MHz dual trace cro that is ideal for the serious hobbyist. Has extra high sensitivity up to $1 \mathrm{mV} /$ div plus 5 display modes plus lots more to make this a much sort after cro.
Cat. Q-1242.
DICK SMITH CRO -
REDUCED!!

SAVE
$\$ 20.00$

Dick Smith 6.5 MHz lab cro with 75 mm green screen. The usable bandwidth is from DC to $6.5 \mathrm{MHz}+$, and is ideal for the lab, workshop or classroom.
Cat. Q-1280
RESISTOR SUBSTITUTION

WHEEL
$\$ 7.95$

Dial up any resistance value from 5 ohms to 1 M ohm in 36 steps. Complete with leads and insulated clips. Cat. Q-1410
MIC. PLUG AND SOCKET
Cat. P-1810 Single plug 90c SAVE 20c
Cat. P-1855 Panel skt \$1.20 SAVE 20c

SA. X C90
SA C90
SUPER AVILYN
DUAL COATING 10 for $\$ 49$

AD C90
ACOUSTIC DYNAMIC 10 for $\$ 30$
D C90
DYNAMIC 10 for $\$ 24$

maxall.

UDXL IIS C90
UDXL II C90
UDC 90
EPITAXIAL 12 for $\$ 58$ EPITAXIAL 12 for $\$ 49$

LN C90
ULTRA DYNAMIC 12 for $\$ 38$
BASF
$\mathrm{CRO}_{2} \mathrm{C} 90$
CHROMDIOXIDE 10 for $\$ 48$
FE C90
FERROCHROME 10 for $\$ 38$
LH C90
LOW NOISE 10 for $\$ 25$
VIDEO - OPEN REEL - METAL MAXELL, TDK, BASF, AKAI
SEND FOR COMPLETE TAPE PRICE LISTS - FREE

HI-FI SYSTEMS

AMPLIFIERS, TUNERS, TAPE DECKS, TURNTABLES, SPEAKERS, HEADPHONES, RECEIVERS OUR RANGE INCLUDES:
Sansui @PIONEER
 SOUND DYNAMICS KSW CAR SOUND
RECEIVERS, TAPE PLAYERS, BOOSTERS, EQUALISERS, SPEAKERS - INCLUDING

MPIONEER Voxson ACCESSORIES
 CARTRIDGES, STYLII, CLEANERS,

 DEMAGNETISERS, DISCWASHER

PARABOLIC STYLUS COMPLETE RANGE MOVING COIL AND MAGNETIC CARTRIDGES

RING OR WRITE FOR FREE PRICE LISTS! TAPE ORDERS:

ADD: PACK AND POST \$3.00 PER ORDER AND SEND CHEQUE/MONEY ORDER TO:

AMS
MAIL ORDER CENTRE, 135 HAWTHORN ROAD, CAULFIELD, VIC 3162
(03) 5281149

STOCK AT PRICES SHOWN AVAILABLE AT TIME OF GOING TO PRESS

AUDIO-VIDEO ELECTRONICS - continued

moulded polystyrene
The Hill Plasmatronic system also attracted many discriminating listeners and I noticed that a pair of these impressive systems were used by Threshold to show off their new Stasis (non-feedback) amplifiers. As I am sure most readers will remember, the Hill system uses a modulated plasma discharge for the high frequencies.

IONOPHONE SPEAKER

Which brings me to the latest version of the lonophone, being demonstrated by Magnat from W. Germany. The lonophone was invented about 30 years ago by a French physicist, Dr Klein. It was a corona discharge system using high voltage generated by a 27 MHz oscillator. The corona tip was in a small quartz cell and was coupled to the air by a short horn. Audio signals were fed to a transformer coupled modulator, and the crossover frequency was 1 kHz .

In the late 1950's I was considering using these units in some Decca loudspeakers but found too many problems. Throat distortion was too high and radiation from the 27 MHz oscillator was significant up to the third and fourth harmonics, causing the TV test department to shut down until I changed the lab hours!
Efficient shielding solved that problem and I designed a new horn which was a lot better. But the corona cell pro-
ved to be altogether too erratic, and the project was dropped.
Fane Acoustics in England and Ducane in America subsequently improved the design but now Magnat have gone a stage further. The horn has been eliminated, along with the quartz cell, so the corona is coupled directly to the air. It is about 38 mm long and contained in a perforated metal ball. Inside the ball is a silver-plated sphere which inhibits the cooling of the enclosed air mass. The crossover frequency has been increased to 4 kHz . As the ion cloud is virtually massless, the transient response is superb
The most interesting exhibit in AR's room was not a loudspeaker at all. It was something called the "ADSP" which translates as Adaptive Digital Sound Processor. According to AR, this is a computer, "which listens to a test signal, analyses it and then automatically designs a filter-equaliser to compensate for the roomloudspeaker characteristics.'

In operation, a test signal is picked up by a microphone placed near the listener's position and the information passed to a 16-bit NMOS processor which is the "heart" of the ADSP (They had better come up with a name for the thing before it is on the market!) Texas Instruments helped with the development work and it is hoped that units will be available by June.

Microcomputers are now used in almost everything from ovens to record

Servicing aids from Ralmar Agencies

Of natural interest to "Electronics Australia" readers are the three pressurised products from Ralmar shown above. "Dust Off Spray" (left) can be used to blow dust or debris from vulnerable surfaces (electronic, photographic, etc) without risk of leaving behind moisture droplets. "Zero Freeze" can reduce the temperature of electronic components, while operating normally, and show up possible intermittent faults. "Contact Cleaner" provides an anti-fouling, anti-moisture treatment for electromechanical components like switches, fuses, potentiometers, etc. The above items are stocked by electronic component stores around Australia but, where a supplier cannot be located, readers may write to Ralmar Agencies Pty Ltd, at 4 Carlotta St, Artarmon, NSW 2064. Phone (02) 439 6566.

A BATTERY POWERED STYLUS CLEANER

While a normal phono stylus brush may get rid of loose dust and fluff, it will not necessarily be effective against particles or deposits which tend to adhere to the stylus surface
Goldring Products Ltd, of England, have come up with an interesting answer to this potential problem - a battery powered oscillator, which drives a small vibrating pad on which the stylus can rest. Measuring about 8 mm in diameter, and vibrating at a few hundred Hertz, it is intended to dislodge surface fouling, without risk to the stylus or cartridge In use, the unit is first switched on and then placed on the stationary turntable within the pickup's normal arc of travel. The stylus is then lowered gently on to the vibrating pad and left there for about 5-10 seconds. The amplifier should, of course, be switched off in the meantime
The local distributors say that experience to date has confirmed the effectiveness of the unit and there have been no reports of malfunction or damage to phono cartridges. They stress, however, that the pickup must be handled carefully and not subjected to

any stress beyond what it would encounter in everyday use.
A member of E.A. staff who used the device for a trial period on his own equipment, reported no difficulties and a stylus which looked very clean under the microscope.
The Electronic Stylus Cleaner is distributed in Australia by Soundring Distributors Pty Lid and has a recommended retail price of $\$ 29.95$. It is available through specialty hifi dealers but, in case of difficulty, Soundring can be contacted through PO Box 154 , Cammerary, NSW 2062. Phone (02) 92 1990.
players and toys to trashgrinders but here's a new one: the Audiovox Corporation were demonstrating a hand held unit which sends out signals to start a car. The system is called "Computer Start" and the idea is that the car will be nice and warm in the winter or cool in the summer, before you put your fragile body into it. A luxury no one should be without, says the leaflet!

In brief . .

Digital Audio Disc (DAD) players were shown by Fisher, Pioneer, JVC, Denon, Sony and Hitachi ... Solarex were demonstrating a variety of sun-powered items including a power pack producing 9 V at 50 mA for portable radios, a higher powered battery charger, display turntables and a "Solar Sunflower" with 23 cm spinning petals

Western Publishing, "Connects the World of Books to Electronics" with a mini-computer. The device is intended for young children who learn words by passing a wand over them in a special book, thus activating a "warm friendly voice". Price of the battery operated unit, which "can even say hippopotamus", will be between $\$ 60$ and $\$ 80$... Accutime were showing a "Melody Alarm Clock" with a built-in electronic game - but who wants to play electronic games in bed?
"TELEVISION" magazine in the UK suggests to its readers that they encase electrical connections to the di-
pole of a TV antenna, plus other screws, nuts, washers, \&c in Plasticine, before erecting the antenna. They say that the Plasticine will gradually harden with exposure but it is easily broken away at a later date. The claim is that it will protect fittings and threads and make things easier to service or disassemble if necessary.
TOSHIBA, who developed the Adres system of noise reduction, have come up with a new IC which can reportedly cope both with Adres and the new Dolby-C, under playback conditions. It may even cover $\mathrm{dbx}-\mathrm{II}$ as well. Toshiba are reportedly negotiating with Dolby and dbxinterests in the hope of finding common ground and a way out of the present NR confusion. Toshiba are in a fairly good position to take such initiative because their Adres system ranks number 2 , behind Dolby-B, in terms of units in the field.
THE CAD (Compact Audio Disc) system developed by Philips has picked up another three major supporters in Mitsubishi Electric, Trio-Kenwood and Sharp, all of whom have signed the appropriate licensing agreement. Toshiba has also reached a similar decision and will sign soon. They will join other major Japanese manufacturers such as Sony, Denon, Pioneer and Sanyo. The giant Matsushita has decided to back both the CAD Philips/optical style audio disc, and their AHD capacitance style audio disc based on their existing VHD (Video High Density) technology.

SENSITIZED COPPER BOARD Riston 3000 Coated

(Fibreglass Base)

	Single	Double
36×24	$\$ 45.00$	$\$ 57.00$
24×18	$\$ 22.00$	$\$ 30.00$
18×12	$\$ 12.50$	$\$ 16.00$
12×12	$\$ 7.90$	$\$ 10.75$
12×6	$\$ 4.50$	$\$ 5.85$

QUANTITY DISCOUNTS (Riston \& Plain)
$\$ 100+$ 10%
$\$ 250+$ $121 / 2 \%$
$\$ 1000+$ 15\%
All plus sales tax if applicable.
OTHER SIZES ON APPLICATION

RISTON DEVELOPER PROMOTION SPECIAL

Concentrate $(1=4) \$ 4.25$ litre
** 5 litre \$19.50**
3M 3M 3M Image ' N ' Transfer Scotchcal
Black on Gold Metal NEW NEW NEW
We have complete range of 3 M Photosensitive Products and hold STOCK in DEPTH at Heidelberg and Yarraville.

- CUSTOM

CIRCUIT
BOARD

- LAYOUT

- MANUFACTURE
- ASSEMBLY

PROMPT DELIVERY
101 Burgundy St. Heidelberg 3084 (03) 4582976 Telex AA 37678 MELTON
(03) 7431011

ELECTRONIC COMPONENTS \& ACCESSORIES - SPECIALIST SCHOOL SUPPLIERS -

Mitsubishi LT-5V linear tracking turntable

While there are quite a few turntables on the market which have linear tracking arms, there are only a few which are designed to play in the vertical mode. One such is the Mitsubishi LT-5V which we review this month. It has the advantage of having a standard headshell with the conventional EIA locking collar, so cartridges can be easily interchanged.

In the past, many hifi enthusiasts have probably been attracted to the concept of a vertically operated turntable but it is not until you are faced with an actual model that you realise the problems the designer has had to consider. The Mitsubishi LT-5V is a good example of this. It is not just a conventional player "stood on its edge" but is a completely new design.
While the LT-5V could logically be hung on a wall it does not have provision for this. Instead, it has two mounting "legs" with compliant rubber feet so it can be placed on a shelf. If this is done it will require shelf space 470 mm wide by 200 mm deep with 490 mm clearance above it.
To keep the record on the turntable while it is spinning, the LT-5V has a "swing out clamper" which clips over the spindle. The arm is dynamically balanced but the counterweights are arranged to apply the tracking force "into"" the turntable rather than down, in the normal case. The arm headshell has the standard locking collar so any cartridge/headshell combination with a mass of between 10 and 20 grams can be used.
This is an advantage compared with other turntables with linear tracking arms which can generally only be used with their own unique cartridge.
On the lower righthand corner of the turntable base plate is the control panel accommodating five buttons with microswitch action plus a number of indicators which show speed, mode and arm tracking error, if any. On the top left hand corner is another panel with two speed adjust controls, a light emitting prism for disc size selection and the window for the illuminated strobe.
Because of the positioning of the various controls, the designer of the LT-5V has opted for a half-cover of smoked perspex rather than a full cover which would be more unwieldly but would probably provide better dust protection for records when they are on the platter. While we are not altogether
happy with the half-cover compromise, it is difficult to suggest a better one without redesigning other features.
Three motors drive the LT-5V. Beltdrive is provided to the turntable hub of about 180 mm diameter from a small motor running at around 1200 rpm and controlled by phase locked loop circuitry. Just what the reference is for the PLL we are not sure but it is an internal oscillator rather then the incoming mains.
making the strobe patterns vary while the platter speed remained constant. Interesting!
We should interpose at this stage and state the LT-5V owner's manual gives no technical description of the unit and no circuit diagram.
The other two motors involved in the LT-5V are the optically controlled servomotor for the belt-driven linear tracking mechanism and the motor for the cam-driven lift/cue mechanism. All of these operate smoothly and quietly, although we did find the traverse speed of the arm painfully slow, which made curing operations somewhat tedious. Added to this was the difficulty in estimating where the stylus was in relation to a particular track.
Sure, there are reference markings on

The Mitsubishi LT-5V has a "half cover" for ease of access to the disc clamper and control buttons.

Strangely, in spite of the fact there apparently is a precisely set internal reference oscillator, there are no detent positions on the speed control knobs which would give precise speeds of 33 and 45 rpm . Instead, the user has to rely on the less precise $\pm 2 \%$ accuracy of the incoming mains which powers the illuminated strobe markings on the turntable hub and set the speeds for a stationary strobe pattern.
In fact, we went through the exercise of powering the turntable from a freerunning 240 VAC inverter. Varying the "mains" frequency then had the effect of
the record clamper arm and the top of the deck underneath the arm counterweight but they only give an approximate guide. We found it sorely tempting to lift the headshell and manually cue it instead. Actually, this reviewer succumbed to the temptation although the supplied headshell does not have a finger lift.
Mitsubishi state that moving the tone arm by hand is taboo and that damage may result if it is attempted. We agree that while ever the tone arm is traversing or in the lift/cue modes it certainly is not
(Continued on page 116)

The ROYEL touch ... for high reliability soldering

> | ... for the |
| :--- |
| professional |
| engineer, or |
| technician on |
| the move. |

DUOTEMP

Manual temperature control $3 \mathrm{~mm} .$. . D 30 5 mm ... D 50
Fitted with non-seize tip.

THERMATIC

 Line voltage. Sensitive in-handle electronic circuitry for feedback temperature control.. . . for the workshop that demands state-of-the art soldering equipment.

For stable, low distortion audio signals

Function Generator with digital readout

This attractively housed Function Generator produces sine, triangle and square waves over a frequency range from below 20 Hz to above 160 kHz with low distortion and good envelope stability. It has an inbuilt 4-digit frequency counter for ease and accuracy of frequency setting.

by JOHN CLARKE

Apart from a good multimeter and a power supply such as the one described last month, the next most useful piece of test equipment in the laboratory or home workshop is an audio generator. In the past 15 years or so, this would normally be a solid-state Wien bridge oscillator but more recently the function generator has come into its own, particularly where the potentially very low distortion of the former circuit is not required.
The particular advantage of a function generator is that it has good envelope stability. This means that the output level stays constant regardless of small or large changes in the frequency setting. This is not the case with typical solid state Wien bridge oscillators which are stabilised with a thermistor. These Wien bridge oscillators can fluctuate violently in output level when the frequency is changed and take several seconds to set-
tle. This can be very frustrating when trying to measure the frequency response of a circuit or component such as a loudspeaker.
Using that attractive, low profile case for the Function Generator meant that a different approach was required to the conventional dial scale. If this was used it would have to be of small diameter and, in any case, it would be subject to the normal drawbacks of calibration accuracy, and considerable cramping at the high end of the scale.
This problem has been solved at one stroke by incorporating a 4 -digit counter. This eliminates the need for any dial scale or any calibration procedure. The frequency counter uses the 50 Hz mains as a timebase to give an accuracy of about $\pm 2 \%$.
We used an XR-2206 IC from EXAR to generate the waveforms for our Function Generator. The operation of the IC can
be described in four blocks: a voltage controlled oscillator (VCO), an analog multiplier and sine wave shaper, a unity gain buffer and a set of current switches.

Block Diagrams

As can be seen in Fig. 1, the IC is capable of many operations including amplitude modulation (AM), frequency shift keying (FSK), and frequency modulation, via the current switches. The VCO is the major function block of the circuit, which generates the triangle and square waveforms at a frequency controlled by the current switches. Resistors tied from pins 7 and 8 are used to program the current switches and determine the VCO frequency.
The multiplier and sine wave shaper performs several tasks. It accepts the triangular waveform from the VCO and reshapes this to a sine wave. In addition, the output level of these two waveforms is controlled by a resistor at pin 3 to ground and with the voltage at pin 1. Either sine or triangle is selected with a resistor across the waveform adjust pins (13, 14), or open circuit, respectively, while the unity gain amplifier buffers the sine or triangle waveform.
The sync output at pin 11 is an open collector output that provides a square

These oscillograms show the signal quality at 7 kHz (above) and 100 kHz (below). The square wave rise time is 0.4 us.

wave in synchronisation with the VCO frequency.
Fig. 2 shows a simplified block diagram of the frequency meter. This can be divided into three parts: counter and display, latch and reset and timebase. The timebase gives three counter update times: $20 \mathrm{~ms}, 200 \mathrm{~ms}$ and 2 s . Let us look at the counter operation in the 2 s update situation.
The 50 Hz mains signal is squared by a Schmitt trigger and then fed to two decade dividers for an overall division of 100, giving a waveform with a period of two seconds. This waveform is fed to the latch and reset circuitry so that the input signal to be counted (from the function generator) is gated into the counter in one-second bursts, every two seconds. At the end of each one-second count period, the value of the count is latched (stored in 16 flipflops, four for each digit) and displayed. The counter is then reset, ready for the next count.
When the update time is two seconds, as discussed above, the display indicates the frequency directly in Hertz. For the 0.2 second update time, the reading must be multiplied by 10 and for the .02 second $(20 \mathrm{~ms})$ update time, multiplied by 100 .
Having discussed the circuit in block form, let us now look at the complete circuit diagram in detail.
IC1, the XR-2206 monolithic function generator, is connected to provide both the sine and triangle wave signals. R2 and R3 are trimpot resistors which are used to preset the level of the sine and triangle waves. When switch S1 is in position 2, a triangle wave is produced at pin 2 and the output level of this wave is determined by R2 since R3 is short circuited with S1c. When S1b is in position 1 , a sine wave is produced and the output level of this is determined by R2 and R3. R3 is adjusted so that the sine wave level is the same as the triangle wave level.
In the sine wave mode, the sine wave shaper is brought into play to "round off" the peaks of the triangle wave. Critical adjustment of R4, between pins 13 and 14 of IC1, gives minimum distortion of
the sine wave. R1, the symmetry adjustment between pins 15 and 16 , is adjusted for equal positive and negative swings of the sine and triangle waveforms. Adjustment of these trimpots will be discussed later in this article. S2a is used to select the three frequency ranges by switching separate timing capacitors across pins 5 and 6. Frequency adjustment is with the fine and coarse variable resistors and the $4.7 \mathrm{k} \Omega$ resistor sets the maximum frequency for each range. The frequency of the generated signal is a function of the capacitor value between pins 5 and 6 and the frequency

The open-collector square wave output of ICl1, pin 11, is provided with an external $2.2 \mathrm{k} \Omega$ pullup resistor to drive the input of IC7a, a Schmitt trigger which provides buffering and further squaring of the waveform. IC7c acts as a further buffer to drive an attenuator and then the transistor output stage. The attenuator (voltage divider) consists of $1.8 \mathrm{k} \Omega$ and $2.2 \mathrm{k} \Omega$ resistors, to adjust the level of the square wave to the same peak-to-peak level.
S1a selects the sine, triangle or square wave and the signal is attenuated with the $22 \mathrm{k} \Omega$ level potentiometer. The

adjust resistors. The actual formula is $F=1 / R C$. Since C is a constant for each range, the frequency is proportional to 1/R.
With this $1 / R$ relationship, the actual change in frequency with respect to the change with resistance is hardly linear especially when the resistance is small. This tends to give an unusable control at the low resistance end if only the coarse control were available. With the addition of a low value fine control, frequency changes are easily accomplished at the low end of the resistance range. The fine control has little effect at the high resistance end of the coarse control since, at this end, large changes in resistance are required for a small change in frequency.
resulting signal from the wiper of the pot is fed to the input of the emitter follower output stage.
The emitter follower stage consisting of the NPN BD139 and PNP BD140 transistors is a complementary symmetry arrangement. The NPN transistor drives the output for positive input signals and the PNP transistor drives for the negative input signal. To prevent crossover distortion at the transition when one transistor takes over the signal from the other, the transistors are biased on so that a quiescent current flows through both transistors. $2.2 \mathrm{k} \Omega$ and $1 \mathrm{k} \Omega$ base bias resistors set this current at around 40 mA .
Heavy supply decoupling, consisting of the 100Ω resistors and $47 \mu \mathrm{~F}$ capacitors across each supply rail, ensures good rip-

ple rejection. This allows the output signals to be attenuated, to millivolt levels without hum and noise swamping the signal.
Output impedance of the stage is a nominal 600Ω for all output levels.

Frequency Counter

IC2 is the heart of the frequency counter and is a 74C926, made by National Semiconductor. This is loosely described by the makers as a 4-decade counter with multiplexed 7 -segment output drivers. As well as the 4 -decade counters, it also contains a 4-bit latch for each decade (the four flipflops alluded to earlier), BCD to 7 -segment decoder drivers and the multiplexing circuitry to drive the seven segment lines and the four digit driver transistors. It drives common cathode LED displays via BC337's which are used as digit drivers.
For the 50 Hz timebase reference signal, a connection is made to the transformer secondary via a $10 \mathrm{k} \Omega$ resistor. This is clipped by diodes connected to the positive and negative 5 V supplies and then fed to the input of IC7d, another Schmitt trigger, to be squared up. This signal is then fed to two 4017 decade dividers in cascade (IC4 and IC5) to produce a 0.5 Hz signal (2-second pulses) which gates the 4-digit counter, as described previously.
The timing operation of the circuit is best explained with the waveform diagrams of Fig. 3. Firstly we will assume S2b to be in position 1 for the purposes of explanation. When the waveform at the wiper of S2b is low, the output of IC6c, connected as an inverter, is high and the input frequency from IC7b is allowed to pass to the output of IC6a and to the clock input of IC2. IC2 then counts the number of clock pulses.

When the wiper of S2b goes high, the output of IC6c goes low and the clock signal to IC2 is prevented from passing to IC6a and further clocking IC2. IC2 then stops counting the clock signal.
When switch S2b is in position 1, the 50 Hz is divided by 100 and this signal is applied to pin 12 of IC6d, a NAND gate. The inverted signal from IC6c is also applied to the reset of IC3.
The clock signal is now able to pass through IC6d and clock IC3. After one clock cycle, the " 1 " of IC3 goes high and latches IC2. The counted pulses of IC2 are now stored in the latch of IC2. After another two clock pulses, the " 3 " goes

We estimate that the current cost of components for this project is

$\$ 85$

This includes sale tax.
high and IC2 is reset, ready to count the next set of clock pulses. When the " 4 " output goes high at the next clock cycle, the CE or clock enable is disabled (high) and remains high until reset with pin 10 of IC6c going high.
So the complete cycle of events in counting the clock pulses occurs in this sequence. The cleared counter of IC2 begins to count the clock pulses and is stopped counting when half the timebase period has completed. One clock cycle after this, the counter is latched and the latched count is displayed on the display. The counter is then reset with IC3 and IC3 waits for the end of the timebase cycle when it is reset.
With S2b in position 1, the displayed
count is in Hz since the counter counts over the period of 1 second. When S2b is in position 2, the display is in $\mathrm{Hz} \times 10$ since the counter counts only over 0.1 seconds. The third position of S2b provides a .01 s or 10 ms counting time and the display is in $\mathrm{Hz} \times 100$. If the signal for this timebase were to be taken directly from the output of IC7d, the display would be updated every 20 ms . This would lead to a very fast changing display and make the last digit appear as a flickering 8 .
To alleviate the fast update time, the counting period has been kept the same but the number of counting periods has been reduced by 10 . This is done with IC6b, which passes the 20 ms timebase signal only when pin 10, the " 4 " output of IC4 goes high or once in every ten 20 ms cycles.
Note that S2 selects both the gating time of the frequency meter section and the capacitor of the function generator, IC1.
Power for the circuit is derived from a full-wave centre tapped supply, providing positive and negative supply rails. Filtering is provided with $1000 \mu \mathrm{~F}$ capacitors connected from each supply rail to ground.

There are three 5 V regulators, one positive and two negative. One -5 V regulator supplies IC1 and IC7 while the other supplies IC2 and the associated logic ICs. The reason for this unusual arrangement is to isolate the severe multiplexing noise generated by IC2, from the function generator, IC1. This results in an output waveform free from the noise generated on the other negative supply line.
The $1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ capacitors connected at the input and output of each regulator prevent instability in the regulators and provide transient and ripple rejection at the regulated output.
It should be noted that while IC2 is powered from the negative 5 V rail, its CK, LE and R inputs are driven from IC6 and IC3 which are powered from $\pm 5 \mathrm{~V}$ rails. This means that these signals will swing above the Vcc line for IC2 by +5 V . However, although IC2 can only be operated from a maximum supply voltage of 6 V it can safely handle signal voltages up to 15 V without damage.

Construction

We constructed our Function Generator in a Pac-tec case measuring $207 \times 64 \times 159 \mathrm{~mm}$ and mounted the components on two PC boards. The main PC board is coded 82ao3a and measures $169 \times 126 \mathrm{~mm}$, and the display PC board is coded 82ao3b and measures $83 \times 46 \mathrm{~mm}$. A Scotchcal front panel artwork has been produced for the front panel of the Pac-tec case and measures $199 \times 61 \mathrm{~mm}$.
The larger of the two PC boards is
designed to be screwed to the base of the case and the smaller PC board soldered at right angles to the main PC board. Check that the copper runs right to the edge of the 82ao3a PC board. If not, file the PC board until the copper is flush to the edge.
Next the components can be soldered to the PC board. Use the overlay diagram to help you position the components. It is easier to place the low profile components on the PC board first, such as the links, resistors and diodes followed by the ICs. When soldering the CMOS ICs, solder the supply rails first with the barrel of the soldering iron earthed and then solder each pin quickly. Pay particular attention to orienting the ICs correctly.
When all the components have been positioned, check your work and make sure that all the polarised components such as the diodes, capacitors, transistors and ICs are correctly oriented. Now work can begin on the display PC board. Place the links in first and then the displays. The displays are oriented so that the ribs at the top edge of the display are at the top. When soldering the displays keep them all in line and butted close together.
Placing the PC boards aside for the moment, work can begin on the front panel. We used countersunk screws to support the slider switches so that the Scotchcal panel can be placed over the screws and provide a front panel finish unmarred with screws. In doing this, construction is more difficult, since the rectangular holes for the switches have to be shaped before the Scotchcal label is applied to the front panel, however, the final result is well worth the effort.
Our prototype used a 2 -pole slider switch and a 3-pole slider switch, which agrees with the circuit and wiring diagram. However, these have different actuators, round for the 2 -pole and square for the 3 -pole. So for a better visual effect, it would be better to install two 3-pole sliders, with one pole unused on the Range switch.
We have found that the Scotchcal will stick better to the smooth surface of the plastic panel rather than the stippled side. So use the smooth side of the plastic as the front face of the panel.
Using the Scotchcal art work as a guide, mark up the positions required for the slider switches. Drill and file the rectangular holes and drill the mounting holes and countersink them. Mount the slider switches and check that the rectangular hole is large enough not to affect the operation of the switch slider. The Scotchcal panel can now be positioned on the front panel.
Now cut the holes in the Scotchcal panel for the switches and use the slider switch actuators to guide the Scotchcal when placing it on the plastic front panel baseplate.
The holes for the on/off switch, terminals and potentiometers can now be

drilled. When marking out the hole required for the display, measure the size of the display, $61 \times 16 \mathrm{~mm}$, and try to keep this rectangle central to the border on the artwork. Drill holes around the perimeter of the required cutout and then file the rectangle to shape. Stop to check that the size is to shape by testing with the displays as you go and always file inwards, otherwise the file may catch on the Scotchcal and tear it from the plastic front panel.
The display PC board can now be soldered to the main PC board. Insert the displays into the front panel cutout and place the front panel into the case. Position the main PC board into the case and butt the two PC boards together. A pencil line marked across the back of the display PC board will indicate where the two PC boards have to be soldered. Remove the PC boards from the case and tack solder two of the copper tracks together, making sure that the boards are at right angles. Check that the PC boards are soldered in the correct position by testing the construction in the case. Readjust if necessary, and, when correct, solder all the respective tracks together.
The internal wiring can now begin. Fit

These wiring diagrams show the PC boards from the component side. The display board (left) butts against the main board at right angles and is soldered to it via the edge connector strips. Use 250VAC-rated cable for all mains wiring.

SPECIFICATION

Frequency range: From below 20 Hz to 170 kHz in three ranges. Output level: Continuously variable from 3 mV to 2.5 V peak-peak.
Output impedance: 600Ω (nominal).
Waveforms: Sine, Triangle, Square.
Sine wave distortion: Less than 0.7% at $1 \mathrm{kHz} ; 1 \%$ at 10 kHz and 2% at 100 kHz .
Triangle wave linearity: Better than 1% at 1 kHz .
Square wave rise-time: $0.4 \mathrm{us}(6 \mathrm{~V} / \mathrm{us}$ at maximum output level).
Overshoot, etc: Negligible overshoot, droop or ringing.
Readout accuracy: $\pm 2 \%+$ one digit.
Amplitude stability: Better than 0.1 dB on all ranges.
Power consumption: 7W at 240VAC.

NEED A 40 C.P.S. DAISY WHEEL PRINTER? want to pay less than $\mathbf{\$ 2 , 0 0 0}$?

- Printing speed - 40 c.p.s.
- Printing method Impact daisy wheel (Diablo compatible)
- Form feed - Friction (Optional tractor feed available)
- Serial version available
- Full 90 day warranty + backups.

WE HAVE A LIMITED QUANTITY AVAILABLE AT \$1,999*!

For your nearest Distributor

Please contact . . .

AMPEC ELECTRONICS PTY LTD

1 WELLINGTON STREET, ROZELLE 2039. TEL: (02) 8181166

A view inside the prototype, showing the completed PC board assembly. Note the clip on heatsink for one of the negative regulators.
the potentiometers, mains switch and terminals to the front panel and wire them to the PC board with the aid of the wiring diagram. Several layers of insulation tape should be wrapped around the mains switch after the mains wires have been soldered to it. We also placed some layers of tape over the mains entry to the transformer under the PC board as a safety precaution. The terminal block mounts directly onto the PC board as shown. The earth is soldered to the rear of the potentiometers and to the on/off switch washer.
The mains cable is clamped to the rear of the case with a cord grip grommet. A small clip on heatsink is required tor the negative regulator which supplies IC2.
When the wiring is complete, check your work against the wiring diagram and, if all is correct, the generator is ready to be switched on. Check that all the regulators supply the correct voltage and that the digital display is functioning. Different frequencies should be obtained
when the coarse frequency control is adjusted. Try the control on all ranges.

Setting up

Setting up the Function Generator can be achieved in one of two ways: by using an oscilloscope (if available), or by using a loudspeaker or headphones. For either method, the symmetry trimpot, R1, and the sine adjust trimpot, R4, should initially be adjusted for a midway setting. The level adjust trimpot should be set to the minimum resistance setting (toward the rear of the case) and setting up begun with these settings.
When using an oscilloscope, the maximum level of the sine wave can be determined before clipping by adjusting either R2 or R3. Then switch to the triangle waveform and adjust R2 to give a triangle wave level the same as the previous sine wave setting. Return to the sine wave and adjust the level with K3 only to a level just before clipping. The triangle wave and sine wave levels should now be the same.

PARTS LIST

1 printed circuit board, code 82ao3a, $169 \times 126 \mathrm{~mm}$
1 printed circuit board, code 82ao3b, $83 \times 46 \mathrm{~mm}$
1 Arlec AL7VA/18 or Ferguson PL18/5VA PC mounting transformer
1 Scotchcal front panel, $199 \times 61 \mathrm{~mm}$
1 Pac-tec case, $207 \times 64 \times 159 \mathrm{~mm}$
1 clip-on TO-220 heatsink
1 SPDT switch
2 3-pole, 3-position slide switches (see text)
1 mains cord and plug
1 2-way insulated terminal block
1 cordgrip grommet
2 binding post terminals, one red, one black
3 knobs

SEMICONDUCTORS

1 XR-2206 monolithic function generator
1 74C926 4-digit counter
34017 decade counter/dividers
1 74C14 hex Schmitt trigger
14011 quad NAND gate
27905 three terminal 5V negative regulators
17805 three terminal 5 V positive regulator
4 1N4002 rectifier diodes
2 1N914, 1N4148 small signal diodes
1 BD139 NPN transistor
1 BD140 PNP transistor
4 BC337 NPN transistors
4 FND500 common cathode LED displays

CAPACITORS

$21000 \mu \mathrm{~F} / 16 \mathrm{VW}$ PC electrolytic
$2470 \mu \mathrm{~F} / 10 \mathrm{VW}$ PC electrolytic
$210 \mu \mathrm{~F} / 16 \mathrm{VW}$ PC electrolytic
$310 \mu \mathrm{~F} / 10 \mathrm{VW}$ tantalum
$31 \mu \mathrm{~F} / 16 \mathrm{VW}$ tantalum
$10.12 \mu \mathrm{~F}$ metallised polyester
$1.012 \mu \mathrm{~F}$ metallised polyester
$1.0012 \mu \mathrm{~F}$ metallised polyester

RESISTORS ($1 / 4 \mathrm{~W}$ 5\%)

$1 \times 10 \mathrm{k} \Omega, 1 \times 4.7 \mathrm{k} \Omega, 4 \times 2.2 \mathrm{k} \Omega, 1 \times$ $1.8 \mathrm{k} \Omega, 2 \times 1 \mathrm{k} \Omega, 1 \times 560 \Omega, 2 \times 100 \Omega, 7 \times$ $27 \Omega, 2 \times 22 \Omega$.
$2 \times 100 \mathrm{kS} \Omega$ large vertical trimpot
$1 \times 22 \mathrm{k} \Omega$ large vertical trimpot
$1 \times 470 \Omega$ large vertical trimpot
$1 \times 1 \mathrm{M} \Omega$ (lin) potentiometer
$1 \times 5 k \Omega$ (lin) potentiometer
$1 \times 22 \mathrm{k} \Omega$ (lin) potentiometer

NOTE: Components specified are those used in the prototype. Components with higher ratings may generally be used providing they are physically compatible

kaise
 MULTIMETERS

Easy operation - simply select Volts, Ohms or Milliamps; connect probes...the meter does the rest!

ALL MODELS FEATURE

Fast autoranging on volts and ohms Simple push bution operation Auto polarity indication Overrange indication (Buzzer warning on SK6330) Large $31 / 2$ digit display - Difference measurement facility Low power ohm ranges ■ Single button zero adjustment In-built Stand 300 hour Battery life (uses $2 \times$ AA batteries) Two fuse protection

SK6400 $\$ 75.50$
 $\square 20$ ranges
 - 200 MA AC/DC
 0.8\% accuracy

SK6440 \$85.00

- 22 ranges
$\square 10 \mathrm{amp}$ AC DC
- 0.8% accuracy

SK6330 $\$ 121.50$

- 24 ranges
- Manual range selection as well as fast autoranging
- Buzzer overload and continuity test
- 10 amp AC/DC
- 0.5% accuracy

All prices are puus laxilapplicable

KAISE: advanced design/low cost/fully guaranteed and serviced in Australia.

[^3]
Vic G B Telespares (03) 3284301

Ellistronics (03) 6023282
Stewatt Electronic Components (03) 543373 Teleparts Geelong (052) 217085
Ballarat Electronic Supplies (053) 311947
Tas. George Harvey Electric
Hobart (002) 342233
George Harvey Electric Launceston (003) 316533 W. A. Reserve Electronics (09) 2752377

REACH FOR RALMAR...

MICROPHONES GALORE!

STEREO SET

Twin metal mesh ball dynamic microphones from your own stereo recordings. Low (300 ohm) impedance with omnidirectional pattern. Frequency response $50-10000 \mathrm{~Hz}$. Suitable for most hifi systems and other general voice applications.

BUDGET OMNI
This is our most popular seller. Metal mesh ball. on/oft switch and stand. Low impedance 500 ohms to suit most cassette decks and music centres up to 1000 ohms. Frequency response $50-14000 \mathrm{~Hz}$. Complete with 1 metre cord

DM25D

DUAL IMPEDANCE DYNAMIC

Ideal for PA and band work. Also suitable for home recording. Cardioid pattern. Heavy mesh ball. On/off switch. Low 300 ohms/high 30k ohms. Frequency response $50-14000 \mathrm{~Hz}$. Supplied with 3 metres cord and stand adaptor

RALMAR FOR MICROPHONES

Condenser-Dynamic-Electret. and Cables and Connectors

TRADE ENQUIRIES.
N.S.W. Ralmar Agencies P/Lid (02) 4396566

Vic. Ralmar Agencies P/Ltd (03) 2673028
S.A. Charles Harwood P/Lid (07) 2641118

QLD. Olbertz International P/Lid (07) 2611513
W.A. Bruce Ingram \& Assoc. P/Lid (09) 3817777

TAS. George Harvey P/Lid (003) 3316533

R4 can be adjusted for best visual sine wave output and the symmetry trimpot, R1, adjusted for a symmetrical waveform. The distortion trimming should be done at 1 kHz .
If no oscilloscope is available, then satisfactory results can be achieved with either a loudspeaker or with headphones. Connect to the output terminals and increase R2 and R3 together when listening to the sine wave. Adjust the output level potentiometer to a suitable listening volume. The point at which the sine wave clips will be immediately ob-
vious from the marked increase in distortion. Back the two trimpots off slightly from this point. If both the trimpots are set to the same resistance value, the sine and triangle wave should be of a similar output level.
Now disconnect the loudspeaker or headphones, switch to sine wave and connect a multimeter across the output. With multimeter set to read 200 mV DC or less, adjust R1 for a zero reading. If no meter is available with reasonable sensitivity, set R1 to the centre of its range.
In adjusting the sine wave for sym-
metry, you are equalising the positive and negative swings of the waveform.
Now reconnect the loudspeaker and adjust R4 for minimum distortion on sine wave at 1 kHz . This is done by listening closely for the purest tone. At one extreme (minimum resistance) odd harmonics will predominate while at the other extreme, even harmonics will predominate, so there is a definite setting in between where the tone is purest. With careful setting, it is possible to adjust the distortion by this method to less than 0.7\%.
With both setting up methods, the clipping point of the sine wave should be readjusted after trimming the distortion. The maximum expected output level of the sine wave is around 6 V peak to peak. If you have access to a distortion analyser, it is possible to obtain a minimum harmonic distortion of around 0.5% by critical adjustment of R1, R3 and R4. This will result in distortion of less than 1% at 10 kHz and around 2% at 100 kHz . These figures will naturally be slightly higher if you have used the methods described above. Even so, for most audio work, this is entirely satisfactory.

LET THE

nustralian beginning

 BRING MAINFRAME POWER INTO YOUR HOME OR OFFICE

THE AUSTRALIAN BEGINNING PTY LTD

The Australian Beginning Pty Ltd is an Australian company, with Australian based computer facilities, using the Australian Telecommunications network to offer Australian clients Australian information services and software.

WE ARE PROUD TO ANNOUNCE THE LAUNCHING OF

AUSTRALIA'S FIRST MICROCOMPUTER INFORMATION UTILITY

The AUSTRALIAN BEGINNING is Australia's first microcomputer information utility, aimed at giving the average microcomputer user access to the computer data banks and also massive storage space previously only available to large Mainframe installations. The era of home computers has now officially begun in Australia, now that the AUSTRALIAN BEGINNING is here as now, any small businessman or sludent can have on his desk for an extremely small cost, a system that has the level of storage power and access to data banks for which only a tew years ago, government departments and large private users were paying millions of dollars.

The AUSTRALIAN BEGINNING can be accessed through a number of 'approved' personal computers, and terminals, by use of an accoustic coupler or modem.

Users will receive a number of benefits which will include:

INFORMATION SERVICES

Members will have access to a number of intormation sources which will include the latest news, sports results, linancial reports, and farm information.
NATIONWIDE COMMUNICATION
Members will be able, also, to communicate nationwide with other AUSTRALIAN BEGINNING members through our system.

THE AUSTRALIAN BEGINNING RECOMMENDS $3 M$ DISKETTES

SOFTWARE BANK

Users will have access to a myriad of computer programs that will include entertainment, educational aids, programming and diagnostic tools, and tinancial applications.

MAINFRAME POWER

Users will have the capability to make use of the Mainframe's huge storage capacity by using any of our large programs, or storing your large programs on our system.

SHOP AT HOME

You can take advantage of our -shopping by computer' system to get the best prices on a number of popular consumer items.

EXTREMELY EASY TO USE

You do not have to be a computer programmer to make use of the AUSTRALIAN BEGINNING. All of the instructions are in everyday English, so that even the younger English, so that even the younger
members of your family will be able members of your tamily

LOW COST

While services like these used to cost tens of thousands of dollars to the government departments and large corporations who used them, they are now available to you for less than the cost of a packet of. cigarettes a day for the 'average' user.
You can loin the AUSTRALIAN BEGINNING by paying a one-lime foining lee of \$100, and a small hourly user charge of $\$ 10$ an hour 8 a.m. - 6 p.m. and $\$ 4.50$ an hour 6 p.m. - 8 a.m.

TO JOIN THE AUSTRALIAN BEGINNING FAMILY. AND TAKE ADVANTAGE OF THE EXCITING SERVICES WE WILL BE OFFERING. PLEASE COMPLETE THE COUPON BELOW:

DEALER INQUIRIES INVITED

Voice-operated Relay

This versatile voice-operated relay (or VOX) has a variety of applications. It can be used to control a tape recorder, as a VOX circuit for a transmitter, or to control a slide projector. It can be used with any low or high impedance microphone, or a high level source such as a tape recorder.

by COLIN DAWSON

Quite a few uses can be envisaged for this circuit, the most obvious as a VOX control for a transmitter. It avoids the need to use the press-to-talk switch on the microphone every time the operator wishes to speak.
Another use is to control a tape recorder when the material to be recorded is of a short and spasmodic nature. By fitting a VOX, the tape recorder will be activated only when there is something to be recorded. This eliminates tape wastage and ensures that there are no long gaps between recorded segments when the tape is played back.
You can also team the VOX with a stereo tape recorder to control your slide projector. The narration for the slide show is recorded on one channel, while cueing tones to control the VOX are recorded on the other. Each time a cueing tone triggers the VOX, the relay contacts close to activate the slide change mechanism.

Connecting the VOX to your slide projector is not difficult - the normally open relay contacts are simply wired in parallel with the slide change switch.

Circuit description

The circuit consists of three parts: a microphone preamplifier, a Schmitt trigger and a relay driver. Input signals to the microphone preamplifier are amplified and fed to a threshold trimpot. When the selected threshold is exceeded, the output of the Schmitt trigger immediately oscillates at almost 9 V peak-to-peak. This output is rectified and charges a capacitor to turn the relay driver on and thereby energise the device being controlled.
IC1 functions as the microphone preamplifier and is connected as an inverting amplifier with AC gain variable between 11 and 111 by means of RV1. Frequency roll-off below 20 Hz is set by
the $10 \mu \mathrm{~F}$ electrolytic capacitor, which also sets DC gain at unity.
Input signals from the microphone are AC-coupled via a $0.1 \mu \mathrm{~F}$ capacitor to the non-inverting input of IC1. A voltage divider consisting of two $22 \mathrm{k} \Omega$ resistors sets the bias to the non-inverting input of IC1 and to both inputs of IC2 to half supply so that the two op amps can function from a single supply rail. The bias is applied to IC1 via a $100 \mathrm{k} \Omega$ resistor, while heavy decoupling of the voltage divider is provided by a $100 \mu \mathrm{~F}$ capacitor.
The output signal from the preamplifier is coupled by a $4.7 \mu \mathrm{~F}$ electrolytic capacitor to a $10 \mathrm{k} \Omega$ resistor and a $100 \mathrm{k} \Omega$ trimpot (RV2) which feeds the op amp Schmitt trigger. In addition, the microphone output signal is made available by an additional $10 \mathrm{k} \Omega$ isolating resistor, to drive a high level input on a tape recorder or transmitter etc.
Signals from the trimpot are coupled via a $0.1 \mu \mathrm{~F}$ capacitor to the inverting input of the Schmitt trigger (IC2). Notice

Below: larger than life size photo of the assembled PC board.

The circuit suits 600Ω and $50 k \Omega$ microphones and may be operated from signals of 100 mV RMS or more by omitting the preamp.

We estimate that the cost of parts for this project is approximately

\$15.00

This includes sales tax
that there is no negative feedback to the inverting input. Instead, there is positive feedback via a $100 \mathrm{k} \Omega$ resistor to the noninverting input, and this sets the hysteresis of the Schmitt trigger. For small signals to the inverting input there is no AC output and pin 6 will remain either high or low.
When the signal to the inverting input rises above about 65 mV peak-to-peak (which is 23 mV RMS for a sine wave), the output of the Schmitt trigger suddenly jumps to the limiting condition which is a square wave at the input frequency with amplitude just a little less than the full supply voltage, ie about 9 V peak-topeak.
So op amp IC2 suddenly changes from a zero gain condition to the limiting condition. This contributes to the fast attack time of the circuit.

Output from the Schmitt trigger is fed to a half-wave voltage doubler rectifier which charges a $47 \mu \mathrm{~F}$ capacitor. This capacitor (when charged) provides base bias to relay driver transistor Q1 to enable it to energise the relay. A diode across the relay coil protects the driver transistor against inductive kickback from the relay.

Attack time of the circuit is inherently limited by the closing time of the relay and this is typically about 10 ms . Delay time after the cessation of input signal is set by the size of the $47 \mu \mathrm{~F}$ capacitor to

Follow this wiring diagram carefully and use shielded cable for the microphone input and output connections. Below is the PC board artwork.

about three seconds, which should be ample for most purposes. Optional manual override is provided by a SPDT switch wired in parallel with the relay driver transistor.
Power for the circuit can be derived from any plug pack supply capable of delivering $9-12 \mathrm{~V}$. Decoupling of the supply is provided by R1 (10ת) and C1 $(1000 \mu \mathrm{~F})$.

Construction

All components, except the override switch, are accommodated on a printed circuit board (PCB) coded $82 \mathrm{vx4}$ and measuring $113 \times 60 \mathrm{~mm}$. Begin construction by installing and soldering the PC pins, followed by the resistors and diodes. The remaining components can then be fitted, and the board carefully checked for errors.
7.7nS risetime

Ch A, Ch B, Add, Subtract, Dual, Chop, Alternate modes
Such has been the popularity of the Aaron BS625 since its release that we have been able to arrange a bulk purchase and pass considerable savings on to you.

45MHz/1mV BS625 now \$990.00 *

Popular BS601 $20 \mathrm{MHz} / 5 \mathrm{mV}$ with Component Tester

The 20 MHz scope with a Electronics Australia
15MHz price tag
plus $17 \frac{1}{2} \%$ sales tax.

PROFESSIONAL SCOPE PROBES AT HOBBYIST PRICES!
Coline SP100 scope probes to suit both these scopes and other popular brands provide 10 MHz bandwidth in $x l$ position and 100 MHz in $\times 10$. Complete with probe adaptors and in quality pouch.

SP100 probes $\$ 25.00$ each \star
ARON SCOPES FOR PROFESSIONALS sold and serviced by

In particular, check the polarity of the ICs, transistor, diodes and electrolytic capacitors.
If the circuit is to be controlled by signals with an amplitude of 100 mV or more, the microphone preamplifier stage may be omitted. Just omit all the components to the left of C2 except for the two $22 \mathrm{k} \Omega$ resistors and the $100 \mu \mathrm{~F}$ bypass capacitor, and substitute a wire link for the $10 k \Omega$ resistor connected to the threshold trimpot. The input signal is then coupled in via C2.

The source impedance of the signal to drive C2 in this way must be less than $5 \mathrm{k} \Omega$. The outputs of many cassette and tape decks are quite suitable for this purpose.
The threshold trimpot may be replaced

PARTS LIST

2 LF351, TL071 FET-input op amps
1 BC547 NPN transistor
3 1N4001 diodes
1 printed circuit board, code $82 v \times 4$,
$113 \times 60 \mathrm{~mm}$
1 12V SPDT 180Ω relay
1 SPDT miniature toggle switch
10 PC stakes
CAPACITORS
$11000 \mu \mathrm{~F} 16 \mathrm{VW}$ electrolytic
$1100 \mu \mathrm{~F} 16 \mathrm{VW}$ electrolytic
$147 \mu \mathrm{~F} 16 \mathrm{VW}$ electrolytic
$110 \mu \mathrm{~F} 16 \mathrm{VW}$ electrolytic
$24.7 \mu \mathrm{~F}$ 16VW electrolytic
$20.1 \mu \mathrm{~F}$ metallised polyester (greencap)

RESISTORS ($1 / 4 \mathrm{~W}, 5 \%$)
$2 \times 100 \mathrm{k} \Omega, 3 \times 22 \mathrm{k} \Omega, 4 \times 10 \mathrm{k} \Omega, 2 \times 1 \mathrm{k} \Omega$, $1 \times 10 \mathrm{k} \Omega, 2 \times 100 \mathrm{k} \Omega$ large vertical trimpots (see text).

NOTE: Components with higher ratings may be used provided they are physically compatible.
with a conventional potentiometer as a panel-mounting control, if you so desire. To test the VOX, connect the microphone and power supply and set the RV2 threshold control to maximum sensitivity. RV1 is then set to provide the required signal level at the microphone output pin, while RV2 is adjusted to provide reliable triggering. If you do not intend to use the microphone output facility, set RV2 midway and adjust RV1 for reliable triggering.
Finally, if the microphone preamplifier is retained, the PCB should be housed in a metal box to keep hum and noise to a minimum. The circuit should be grounded only via the microphone input earth return. 종

MPI Hi-D Mini Drives

taking care of business

Just when you were convinced that only massive 8 -inch drives could handle the big jobs, along comes MPI Hi-D, with up to 1 Megabyte capacity, 5 millisecond track-totrack, pushbutton media eject and head load for longer media and head life, all neatly squared away with the elegance and power efficiency of a $51 / 4$-inch drive.
Need less storage? . . . MPI builds 40-, 77- and 80 -track, single or double head $51 / 4$ inch drives with the same classic 8 -inch features.

Authorised Dealers:

Sydney: (02) E\&M Electronics 51 5880. Applied Technology 4872711 . OT Computers 29 5599. Micro Repair 7471061 . Computer Components 8683614 Wollongong: (042) Macelec 291455 Brisbane: (07) Battec 365183 A.C.T.: (062) Ortex 805283 Boulevard 485411 Perth: (09) Micro Controls 3252444. Electronic Systems 335 7313. Adelaide: (08) Rogers Electronics 426666. Micro 802117244 Melbourne: (03) Stewart Electronics 543 3733. Ellistronics 602 3282. Ritronics 4898131. Pennywise Peripherals 82 2389. De Forrest Sottware 8776946 Tasmania: Coastal Computers (004) 313259

daneva australia pty Itd.

66 Bay Road, Sandringham, Vic., 3191. Ph: 598-5622. Telex: AA34439

 }

TO CELEBRATE OUR OPENING AT 125 YORK STREET,
 *NBELIEVABIE SAMPlE BAG OFFER

* huge 20" $\times 10^{\prime \prime}$ bag FILLED with goodies

ITS ON AGAIN! THE 1982 SHOWBAG
Greater value even than last year's great showbag - over 1000 sold! Even so hundreds of people missed out. If you want one this year get in EARLY.
Just like last year's bag it contains a comic, All-day sucker and lots of electronic goodies - we reckon over sixty dollars worth! Once again we could not normally sell this much componentry for such a low price. But the manufacturers have given us this merchandise far BELOW their cost! It's our way of saying "thankyou" for your help in our first year.
YOU WILL NOT FIND the showbag at the Royal Easter Show (hundreds tried last year). It is only available from 125 York St. Sydney OR by Mail Order.
We would like to thank V.S.I. Electronics, I.R.H. \& many others who contributed to this year's bag.

SORRY DUE TO
BULK POST \&
PACKING $\$ 1.50$

THE BAG CONTANS:
$1 \times$ bag of HARDWARE
$1 \times$ bag of RESISTORS
$1 \times$ bag of P.V.C. SLEEVING
$1 \times$ bag of KNOBS
$3 \times$ HOBBY ELECTRONICS MAGS
$1 \times$ MYSTERY KIT
1×2 WATT AUDIO I.C. W/- CIRCUIT
$1 \times$ PHANTOM COMIC
PLUS

- AN ASSORTMENT OF VALUABLE SEMICONDUCTORS FROM MAJOR SUPPLIERS SUCH AS TEXAS, MOTOROLA, NS. ETC.
- PASSIVE COMPONENTS FROM OTHER MAJOR SUPP. LIARS.

GUARANTEED VALUE OVER \$25
PLUS A LOLLYPOP!! $\begin{array}{r}50 \text { cents } \\ \hline\end{array}$
SUBTOTAL \$37.75
more than $\$ 10$ more than \$3 more than $\$ 2.50$ more than $\$ 5$ $\$ 3.75$ more than \$5 more than $\$ 8$.
$\nleftarrow * * * * * * * * * * * * * * * * 1$ C른, 14 WE ARE PASSING ON GREAT SAVINGS TO YOU!!

Yep, we've chopped the prices on Canon and quality Neutrik connectors. Grab them while they last!
3 PIN LINE PLUG
Normally $\$ 3.25$
3 PIN LINE SOCKET
Normally $\$ 3.50$
3 PIN CHASSIS PLUG
Normally $\$ 3.25$
3 PIN CHASSIS SOCKET Normally $\$ 4.00$
240V MAINS LINE PLUG
Normally $\$ 6.50$
240V MAINS CHAS SKT
Normally $\$ 5.25$
"NEUTRIK"
3 PIN LINE PLUG (silver finish) NOW $\$ 2.95$ Normally $\$ 3.95$

SAVE \$1.00
3 PIN LINE SKT (silver finish) NOW $\$ 3.75$ Normally \$4.95 SAVE $\$ 1.20$ 6.5 mm PHONE PLUG (silver finish) $\$ 3.50$ Normally $\$ 4.50$ 3 PIN LINE PLUG (black) Normally $\$ 5.25$
3 PIN LINE SKT (black)
SAVE OVER 40\% ON SOME ITEMS

FREE! FREE! FREE! FREE! FREE! HOVER $\$ 1,000$ GIVEAWAY
We will give you - absolutely FREE a copy of "Hobby Electronics" Maga zine just by calling in to Jaycar during April! You don't have to buy anything and you will get a $\$ 1.25$ magazine for nothing!! Limited to the first 1000 customers.
spring reverb special
We have purchased a small quantity of high quality US-made spring reverb units. This 3 -spring model is the one used in such amps as "PEAVEV' otc. Grab a spare now or build a complete reverb system with free circuit supplied.

FLASHING

LEDs

You don't have to buy 2 from us! $1-949 \mathrm{c}$ each

16 pin I.C. sockets - quality "CAMBION" BRAND

10 up 20c each

We have got too much stock! As used in many Infra-red remote control projects. Versatile I.R. Light Emitting Diode

WAS \$1.25

NOW 75c
SAVE 50c

FABULOUS "MOTOROLA"

Hi-Power Piezo Horn Tweeters. The almost universal choice in high power P.A. or HI-FI applications today now no middleman, we can pass on great savings! SIZE
49 note
61 note
73 note
88 note

DESCRIPTION
C-C Wedge Front Keys C-C Wedge Front Keys
F.F Square (Piano) Front Kays

A-F Square (Piano) Front Keys

PREVIOUSPRICE NEW SAVE $\$ 117.00 \quad \$ 85.00 \quad \$ 52.00$ $\$ 146.00 \quad \$ 95.00 \quad \$ 51.00$ $\$ 169.50 \quad \$ 125.00 \$ 44.50$ $\$ 190.00 \quad \$ 175.00 \$ 15.00$ SAVE UP TO 35% !!!!!!
We also carry a wide range of keyboard contacts etc. for any electronic music applications. 510 STRAND TEST LEAD WIRE (RED \& BLACK) CAN CARRY UP TO 10A. 85 cents metre - 10 metres or more $\mathbf{7 5}$ cents metre - (not in pre-cut packs).

KSN 1005A 50WRMS $4 \mathrm{KHz}-40 \mathrm{KHz}$ $\begin{array}{ll}\text { ONLY } \$ 15.00 \\ \text { KSN 1025A } & \text { 100WRMS } 2.4 \mathrm{KHz}-25 \mathrm{KHz}\end{array}$

EXPERIMENTER BREADBOARDS

We stock a great range of experimenter breadboards.
WB-TH - total 200 holes
WB-2N - total 840 holes
WB-4N - total 1680 holes
WB-6N - total 2420 holes

$\$ 8.95$
\$12.95
\$24.50
\$39.50
enamelled wire bargain
Handy 100 gram rolls of the most common 0.4 mm size (that's 26 B\&S or 27 AWG).
Normally 100 grams would cost you $\$ 4.95$
This month only $\$ 2.95$ per roll
SAVE $\$ 2.00$ a roll!!
SAVE $\$ 2.00$
ONLY \$2.95 roll
SOLDERABLE!!!

We would like to thank the many thousands of people who visited our "Shocking Location" at 380 Sussex St. We are pleased to advise that we are now in a far more convenient location for you - 125 York St. Thats right. The SAME address as Dick Smith - only Dick's in the basement and we are DIRECTLY ABOVE HIM. When you call to see us use the main entrance to the building NOT the D.S. entrance. Our 'phone number has not changed. It's still 2646688.

An easy-to-build photographic timer

Want an easy-to-build photographic enlarger timer that won't cost an arm and a leg? This new Phototimer has 12 separate settings ranging from 2 to 90 seconds, and can handle enlargers

by GREG SWAIN and JEFF SKEEN rated up to 300 watts.

Anyone who has ever timed photographic enlargements by means of a stopwatch will know just how tedious the whole process can be. With this simple unit, your troubles are over. At the push of a button, the unit will energise a 240 V AC mains socket and switch the power off after the required interval. What could be easier?
Simplicity of operation combined with ease of construction were our main goals in designing this new "Phototimer". As can be seen from the photographs, the unit is built into a metal diecast case with a three-pin mains socket at one end to power the enlarger. A large handspan dial on the front panel indicates the timer setting in seconds, while a pushbutton Start switch initiates the timing sequence.
The remaining front panel controls consist of two toggle switches: a Power on/off switch, and a Focus/Time switch which switches the timer in or out of circuit.
When the Focus/Time switch is in the Focus position, the enlarger stays on continuously so that the photographic image can be focused onto the enlarger baseboard. However, when the switch is in the Time position, the enlarger is controlled by the timer. Pressing the Start button in this mode turns the enlarger light on for a period determined by the setting of the handspan dial.
Note that the Focus position overrides the timer. This means that if the switch is moved to the Focus position during a timing cycle, the enlarger will remain on and will not extinguish at the end of the timing cycle.
Since the Phototimer is to be used in a darkroom, illumination of the dial setting is necessary and this is provided by backlighting the appropriate number with a small neon lamp. This means that only the selected setting will be visible under darkroom conditions, thus minimising

Phototimer is housd in a metal case and uses a red neon lamp to backlight the dial setting. Unit can handle enlargers rated up to 300 W .
any chance of error. A red filter in front of the neon lamp (ie, the plastic bezel) removes any violet emissions, which are "bad news" for photographic work.
To readers not involved in photography, the calibrations on the handspan dial may seem rather unusual. The calibrations actually increase as a geometric progression, with the square root of 2 as the multiplier rate. This gives a $1,1.414,2,2.828,4 \ldots$ sequence and means that to double the exposure time, the dial must be "clicked up" two divisions. This is a more logical arrangement than a linear scale for photographic work, since each step on the scale is equivalent to a "half stop" on a camera lens.
(On a camera, the stops are an indication of the effective lens diameter. Increasing the setting by one full stop doubles the exposure value).
The circuit presented here is based on a design originally presented in May, 1973, but with some important modifica-
tions. In particular, our new unit uses a mains transformer and an opto-coupled Triac driver to provide full isolation between the low voltage and mains voltage parts of the circuit. The advantage here is that the unit does not have to be unplugged from the mains for calibration adjustments and, of course, is considerably safer to troubleshoot in the event of difficulties.
Other changes include an additional range to bring the minimum timer period down to two seconds, and a slight modification to the "start timer" circuitry to eliminate possible timer overrun if the Start button is held down.

How it works

Refer now to the circuit. It may be split into four sections: a power supply, a 555 IC timer, a MOC 3020 opto-coupled Triac driver, and a Triac to control the mains supply to the enlarger lamp.
At the heart of the circuit is the 555 lC timer, wired here as a one-shot monostable, ie it delivers a positive DC

240 VAC

PARTS LIST

1 printed circuit board, code 82 pt4, $174 \times 92 \mathrm{~mm}$
1 diecast aluminium box, $190 \times 60 \times$ 110 mm
1 12V transformer: Arlec AL7VA/12, Ferguson PL12/5VA, or 2851
1 Scotchcal front panel, $191 \times 112 \mathrm{~mm}$
1 mains cable and plug
1 mains cable clamp
2 earth lugs
1 surface-mounting mains socket
1 2-way mains terminal strip
1 12-position (single pole) rotary switch
2 SPDT toggle switches
1 momentary contact pushbutton switch

1 neon lamp with red bezel
1 handspan dial
412 mm tapped brass spacers
4 rubber feet
1 large rubber grommet
3 small rubber grommets
20 cm ribbon cable, 16-way
50 cm black mains rated hook-up wire
1.5 m red mains rated hook-up wire

SEMICONDUCTORS
4 1N4002 diodes
18.2 V 1W zener diode

1 red LED
1 MOC3020, MOC3021 optocoupled Triac driver
1 SC141D or SC151D Triac
1 NE555 integrated circuit

CAPACITORS

$1220 \mu \mathrm{~F} 25 \mathrm{VW}$ PC electrolytic
$147 \mu \mathrm{~F} 6.3 \mathrm{VW}$ tantalum
$10.01 \mu \mathrm{~F}$ metallised polyester
RESISTORS ($1 / 4 \mathrm{~W} 5 \%$, unless specified) $1 \times 560 k \Omega, 1 \times 390 k \Omega, 1 \times 270 k \Omega, 1 \times$ $180 \mathrm{k} \Omega, 1 \times 180 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}, 1 \times 120 \mathrm{k} \Omega, 2 \times$ $100 \mathrm{k} \Omega, 1 \times 68 \mathrm{k} \Omega, 1 \times 47 \mathrm{k} \Omega, 1 \times 39 \mathrm{k} \Omega, 1$ $\times 33 k \Omega, 1 \times 22 k \Omega, 1 \times 18 k \Omega, 2 \times 1 k \Omega, 1$ $\times 680 \Omega 1 \mathrm{~W}, 1 \times 560 \Omega, 2 \times 390 \Omega, 1 \times$ $150 \Omega 1 \mathrm{~W}, 1 \times 1 \mathrm{k} \Omega$ large, flat mounting trimpot.

MISCELLANEOUS

Machine screws and nuts, solder, 2 mm spaghetti sleeving etc.
pulse for a set time interval whenever a negative pulse appears on the trigger input (pin 2). The length of this pulse is determined by the external timing capacitor connected to pin 6 of the 555 $(47 \mu \mathrm{~F})$ and the value of the timing resistors between pin 6 and the positive supply rail.
Here's how the circuit works. Initially, the $47 \mu \mathrm{~F}$ timing capacitor is held discharged by a transistor inside the 555 IC. When a trigger pulse is applied to pin 2 (Start button pressed), the discharge transistor is turned off and the output (pin 3) of the 555 goes high. This output remains high while ever the voltage on the capacitor remains below a set threshold voltage (nominally $2 / 3$ the supply voltage VCc).
The $47 \mu \mathrm{~F}$ capacitor now charges via the timing resistor(s) and, when it reaches the threshold voltage, the output at pin 3 goes low and the timing cycle ends. At the same time, the internal discharge transistor is turned on and
discharges the $47 \mu \mathrm{~F}$ capacitor via pin 7 . A 560Ω resistor connected between pins 6 and 7 of the 555 limits the discharge current to a safe value.
Note that once this sequence of events has been started by the trigger pulse at pin 2, further trigger pulses have no effect until the output at pin 3 reverts to zero.
The length of the DC pulse delivered from pin 3 is a function of the time constant formed by the $47 \mu \mathrm{~F}$ timing capacitor (C) and the timing resistance (R) selected by switch 54 . Assuming that the threshold voltage of the 555 is set to $2 / 3 \mathrm{~V}(\mathrm{c}$, this is given by the equation

$$
\mathrm{T}(\mathrm{secs})=R . C \times 1.1
$$

Where T is the length of the output pulse in seconds.
In this circuit, the threshold voltage (and hence the output pulse length) of the 555 is varied by applying a DC voltage to pin 5 . This DC voltage is provided by a voltage divider network consisting of two fixed value resistors and a
$1 \mathrm{k} \Omega$ trimpot, and provides a means by which the circuit may be calibrated to compensate for component tolerances.
Negative-going trigger pulses to pin 2 of the 555 are provided by switch S 3 and its associated RC network. Why the RC network? The reason is that if S3 directly shorted pin 2 to ground, timer operation could be affected by contact bounce. In other words, if S3 was held down for a period longer than the timer setting and then released, the timing cycle should accidentally be repeated.
The RC network prevents this from happening by restricting the trigger pulse to 1 ms duration. It works like this: initially, both sides of the $.01 \mu \mathrm{~F}$ coupling capacitor are held high by the $100 \mathrm{k} \Omega$ and $1 \mathrm{k} \Omega$ resistors. When S 3 is closed, both sides of the capacitor are pulled low to provide the trigger pulse to pin 2 of the 555. The $0.1 \mu \mathrm{~F}$ capacitor then charges via the $100 \mathrm{k} \Omega$ resistor and, after about 1 ms , pulls pin 2 high again to end the trigger pulse.

Follow this diagram when wiring up the Phototimer, but do not install Lk1 or the MOC3020 until after calibration.

So keeping S3 depressed after the timing cycle has started has no effect on the circuit performance.
The output from the 555 is coupled via switch S2 and a 390Ω resistor to the MOC3020 opto-coupled Triac driver. When the pin 3 output of the 555 goes high, the LED inside the MOC3020 lights and triggers a photosensitive Triac output stage. This in turn causes current to flow to the gate of an SC141D power Triac, which turns on to activate the mains output socket.
The enlarger bulb will thus remain lit while ever the output of the 555 timer remains high and gate current is supplied to the power Triac by the opto-coupler. At the completion of the timing pulse, the opto-coupler turns off and the SC141D Triac switches off the enlarger at the end of the next mains half cycle, ie when the load current drops to zero.
The 680Ω resistor limits the repetitive surge current through the MOC3020 to a safe value of about 0.5 A . Switch S 2 switches the input to the MOC 3020 between the output of the 555 timer and the positive supply rail. When the switch is in the Focus position, the LED in the MOC3020 is lit continuously and the enlarger lamp remains on.

Also shown on the circuit diagram is an external LED connected in parallel with the internal LED of the MOC3020 Triac driver. This LED is temporarily inserted into circuit during construction so that the unit can be safely calibrated before the mains active is connected to the output stage.
Power for the unit is obtained from a 12 V transformer which feeds a bridge rectifier circuit and a $200 \mu \mathrm{~F}$ filter capacitor. The resultant DC supply is then passed through a 150Ω current limiting resistor and regulated by an 8.2 V zener diode. Backlighting for the dial is provided by a neon lamp wired in series with a $180 \mathrm{k} \Omega$ resistor across the mains.

Construction

Our new Phototimer is built into a standard metal diecast case measuring 190 x

We estimate that the current cost of components for this project is approximately

\$48

This includes sales tax.
$60 \times 110 \mathrm{~mm}$. A metal case is mandatory for this project so that it can be earthed to guard against electric shock.
Construction is easy, with most components mounted on a printed circuit board (PCB) coded 82pt4 and measuring $174 \times 92 \mathrm{~mm}$. Begin construction by mounting components on the PCB according to the wiring diagram, but do not install the MOC 3020 or link Lk1 at this stage. Fit the resistors and capacitors first, followed by the 555 IC and the diodes.
Make sure that all polarised components are correctly oriented, and don't forget to install the calibration LED in the position indicated on the wiring diagram. The power transformer can also be fitted at this stage, and the board has been designed to accommodate both PCB-mounting transformers and the more conventional 2851 type with flying leads.
The Triac is installed so that its body lies flat against the PCB, as shown in the photograph. Readers should note that the metal tab of the Triac will be at mains potential when the project is operating, so watch it!
Once the PCB has been completed, you can commence fitting the hardware
to the metal diecast case. Begin by temporarily positioning the various items in the case and mark and drill the necessary holes.
The mains cable enters through a grommeted hole and is securely clamped. Terminate the active (brown) and neutral (blue) leads in an insulated terminal block and connect the earth lead to a lug bolted to the chassis.
Wiring to the mains socket should also pass through grommeted holes to ensure safe operation. Make sure that you use mains-rated cable, and note the earth connection to the side of the case.
A Scotchcal adhesive label measuring $191 \times 112 \mathrm{~mm}$ provides an attractive finish to the Phototimer. Spray the label with a hard-setting lacquer (such as "Estapol") to prevent scratches and, when dry, affix it carefully to the lid of the case. Working from the Scotchcal side, drill holes in the lid and mount the front panel switches and the neon indicator lamp. Before mounting the 12-way rotary switch (S 4), cut its shaft to a length of about 15 mm .
The wiring between the PCB and the front panel can now be completed, and the PCB mounted in the case using four 12 mm standoffs. 13 -way rainbow cable is used to make the connections to switch S4, but connections to S1, S2 and S3 and to the neon indicator must use mains rated cable. Lace the wiring to S2, S3 and S4 so that it cannot come into contact with any part of the circuit at mains potential if a wire should come adrift.
As an additional precautionary measure, plastic sleeving should be placed over the soldered connections to S1, S2 and S3 and on the neon indicator.
The handspan dial on the prototype was made using a film transparency. The best course for readers, however, is to photocopy the accompanying artwork and glue it to the back of the dial. This done, set the rotary switch (S4) to position 2 (ie select the $39 \mathrm{k} \Omega$ resistor only) and press the dial onto the switch shaft with the " 2 " lined up against the calibration line.

Calibration

Calbration is performed with link Lk 1 and the MOC 3020 opto-coupler omitted. Check your wiring carefully, then set the Focus/Time switch to the Focus position and switch on. Both the calibration LED and the neon indicator should light.
Now switch to the Time position and check that the calibration LED goes out. Press the Start switch, and the calibration LED should immediately come on again and remain on for a period approximately equal to the setting on the dial.
To calibrate the Phototimer, set the dial to an intermediate setting (eg 16s) and press the Start switch. The LED should remain on for 16 s and then ex-

Use mains-rated cable for all wiring connections, except to switch S4. Note that the Triac and associated circuitry operates at mains potential.

tinguish. If it doesn't remain on for exactly 16 s (which is more than likely), adjust the $7 \mathrm{k} \Omega$ trimpot until it does. Finally, check the performance on the remaining ranges. A difference of a few seconds
between the dial indication and the actual time on the high ranges will be due mainly to the 5% tolerance resistors specified and should be of no consequence.

Actual size artworks for the PC.B and the front panel. Finished boards and panels are available from retailers.

That's it! Your new Phototimer is now calibrated.
Switch the power to the Phototimer off, unplug it from the wall socket and remove the calibration LED. All you have to do now is insert the MOC3020 opto-
coupler and mains-rated link Lk1, and reassemble the unit. The rubber feet are attached by screwing the mounting screws into the PCB standoffs.
As a final test, connect the Phototimer up to your enlarger for a trial run. Check
that the enlarger lamp remains on when the Focus/Time switch is in the Focus position, that it goes off in the Time position, and that the lamp turns on for the set time period when the Start button is pressed.

	EPROM PROGRAMMER $\$ 55.00$	Analogue and Digital Storage CRO Kit
		Duel Tracking Power Supply
Now A \$99 Computer! Plugs into any TV! $E T 1660$ siarter Kit (1K RAM. B\&W video) $\$ 9900$ $\begin{array}{ll}\text { 9V, } 200 \mathrm{~mA} \text { plugback } 10 \text { suit } & \$ 1250 \\ \text { Colour video option } & \$ 1600\end{array}$ RAM EXPANSION (2dO to PCB) $\quad \$ 9.00$ As with all new kits, please phone lirst to check stocks.		SIMPLE METRONOME $\$ 17.00$

ETI 5000 Pre Amp $\$ 239$

Come in and hear the tantastic combination of the ETI5000 power amp \& preamp playing through the ETI4000/1 and 2 speaker systems. EX STOCK

ET729 ET730 ET760 ET1501A	UHF TV Masthead Amp UHF TV Converter Video Mod to suit 660 Micro Negative Ion Generator Dream 6800 Dream 6802 Pwr Supply to suit Dream Micro Kit Hex Keypad 19 Keys
79 T11	Transistor Assisted Ign
79UPS6	Universal Power Supply
$807 C 12$	Bipolar Train Controlter
80CM3A	Digital Capacitance Mit
80PG6	TV Pattern Generator
80 TV8	TV CRO Adapter
80LL7	Leds \& Ladders
808 M 10	Car Battery Monitor
80 SA10	Stereo Amp Mostet
800 Cl 10	Digital Storage Cro Ad.
80LS12	Selectalott
80LBR12	Light Beam Relay
$80 F B 12$	Guitar Fuzz Box
80TM8A	Digital Engine Analyser
80 PP7 A	Eprom Programmer
80RM12	Cylonvoice Stimulator
80RAM12	RAM Expansion lor Dream
80PA6	Playmastet 300W Amp Module
80TRS11	TRS 80 Printer Serial In
810 C 2	Le Gong Doorbell
81 GA 3	Colour Graphic Analyser
$81 / \mathrm{R4A}$	Inlra Red Relay
$815 P 1$	AS232 TRS80 System 80 in
81 SW1	Oscilloscope Switch
810C3B	Digital/Analog Store. Cro.
81 WS10	Wind Speed Indicator
81 P6	Pool/l otto Selector
814010	Audio Test Unil Cass Deck
81 MC8	Musicolour IV
81569	LED Sandglass
81 Cl 9	Digital Clock Thermometer

ETI POWER AMP ONLY \$279
The front panel is now better finished than ever and has no holes visible. The fins themselves are tapped from the rear. Complete kit price is just \$275. Remember the super finish front panel at no extra charge. EX STOCK
We have now sold 150 of this kit and expect to sell hundreds more.
81SS11 Slide Cross Fader
81GA9 Photon Torpedo Game
81 SW7 Train Sleam Whistle
$\begin{array}{ll}81 \text { HB4A } & \text { Heart Rate Monitor } \\ 81 \text { SP5 } & \text { Sound Pressure Meter }\end{array}$
810 R7 Electronic Organ
81 CH12 Christmas Decoration
81 im10a 500 MHz Digital Freq Mt
$\begin{array}{ll}\text { HE102 } & \text { Guitar Phaser } \\ \text { HE103 } & \text { Transistor Tester }\end{array}$
HE104 AM Tuner
HE105 Basic Amplifier
HE106 FM Aadio Microphone
HE107 Electronic Dice
HE108 Power Supply
HE110 Unmistakabell
HE111 Ohmeter
Micromixer
House and Cat Alarm
Scralch and Hiss Filter
Siren
Heads or Tails
Two Tone Doorbel
Morse Practice Set
Buzz Board
Simple Audio Amp
Simple AM Tunet
Electronic Bongos
Electronic Sire
Temp Alarm
LED Dice
Two Octave Organ
Two Octave 0
Car Alarm
Electronic Dummy Load
2 Tone Generator

LE GONG
Fantastic doorbell using the new Siemens SAB 0600 chip.
Kit of parts

INCREDIBLE!!!

E/A has really done it this time. Display your Hi/Fi response on your colour TV. It will really impress your friends. Kit of parts

Over 200 Suld

ET157 Crystal Markei

Prices subject to change without notice. Send 60c and SAE for free pricelists. MAIL ORDERS: PO Box 235, Northcote, Vic 3070.

[5.․․) The Serviceman

It never pays to be over-confident . . .

It never pays to be over-confident in the servicing game. Just when you reckon you know all the likely causes of a certain set of symptoms along will come a set with same symptoms, but a completely different fault.

In some respects this story is a followup on one I told in the January 1982 issue concerning varying brightness problems with a couple of National TC86A sets. It is a follow-up in the sense that it involved the same symptoms in the same make and model of set, but not the same actual set.
Having tracked down two such faults in this model - one of them the hard way - I felt reasonably confident that I now knew this circuit, and most of its tricks, pretty well. Alas my confidence was about to be rudely shattered.
As before, the brightness varied with the temperature of the set. If the brightness was adjusted after the set had been running for 30 minutes or so it would remain stable from then on, until the set was switched off. But when the set was switched on again, after having cooled, the picture would be much too bright.
Naturally, my prime suspect was the edge connectors on the relevant boards, as in the January story, and particularly TNP65113. So these were all given a thorough cleaning and the set put through the warm-up/cool-down cycle again. And this was where my confidence suffered its set-back; results appeared to be exactly the same.
While it was just possible that the edge connectors were at fault, and I had simply failed to fix them, I found this hard to accept. It seemed far more likely that I was facing a completely different fault.

A NASTY SETBACK

This was a nasty set-back. As I explained in January the video chain in this set is long and direct coupled throughout. Finding the cause of a brightness shift in such a network threatened to be an equally long and involved process. As I also explained in the January notes, it
needs only a small voltage change at the beginning of the video chain to build up to very substantial change at the end.
And so began a lengthy series of voltage measurements along the chain, while observing the changes in brightness as the chassis was either warmed or cooled. My first check was at the collectors of the three output transistors (TR351, 352, 353), the collectors of which connect directly to the picțure tube cathodes, and I wasn't really surprised to find significant voltage changes here.
The circuit shows these collector voltages to be around 140 V , although my experience is that it is often somewhat lower at around 130 V . In this case, with the set cold, the voltages were down to around 82 V , rising steadily to about 123 V , as the set warmed-up. At the same time the base voltages were varying from 10.9 V when cold to 9.7 V when hot. Not only was this a substantial base voltage swing, but neither these

"I got it! I got it!"
voltages, nor the collector voltages, approached the values on the circuit.
Well, that was a start, but I still had to find where the shift was actually occuring. According to Murphy's Law, in a case like this it doesn't matter at which end of the chain you start - it will be the wrong end! But I had to start somewhere and, for a number of reasons, I went back to the beginning of the video amplifier chain.
My first checks were around the video processing IC, AN331, and the second video amplifier, TR301, on board TNP65113BZ. One suspect was a 12 V regulator network, involving zener diode D301. After all the problems I have experienced with regulated supplies recently, it wouldn't have surprised me to find a serious voltage drift here.
Unfortunately, it wasn't going to be that easy. The rail measured almost exactly 12 V and, more importantly, appeared to be rock steady. It was much the same story concerning the relevant voltages on AN331 and TR301; such differences as there were infinitisimal, even for this part of the circuit.
1 moved on to the next board, TNP65427, on which are the third and fourth video amplifiers (TR303, 304) and made a series of hot/cold voltage checks here. Again I drew a blank; no significant voltage changes to be found. It was all getting a bit frustrating by now, as the tests had to be spread over several days to provide the necessary temperature changes.

WHAT NOW

I sat back and took stock of what I had established so far, and also spent some time studying this part of the circuit diagram in detail. It is surprising how often one tends to skim over a circuit, absorbing the general configuration, while missing important details which can be vital in cases like this.
The situation so far was that there were significant changes, plus a basic error, in the collector voltages of the three output transistors driving the picture tube cathodes. These changes, and the basic error, were repeated, appropriately scal-

The video output stage of the National TC86A colour receiver. A faulty emitter bypass capacitor (C905) on TR904 proved to be the culprit.
ed down, at the bases of these transistors.
On the other hand, I had been unable to find any significant corresponding changes in the video amplifier chain up to the fourth video amplifier (TR304). This suggested that the fault was somewhere in between these two sections but, unfortunately, the "between" involved some rather complex circuitry.
I went back to the bases of the three output transistors, where I had last observed the voltage changes. These three bases were driven from three emitter followers as R-Y, G-Y, and B-Y amplifiers (TR901, 902, 903), driven in turn by three more amplifiers following the colour decoding circuitry.
The point about the coupling to the emitter followers is that it is not direct, but via three capacitors ($9902,903,904$), which seemed to rule out any suggestion that the drift was coming from these stages, or anything ahead of them in the chrominance chain.
But, as I mentioned earlier, the main video (luminance) circuit is direct coupled. The fourth video amplifier is direct coupled to the three output transistors, but via the emitters, rather than the bases. In fact this is where the matrixing of the luminance and chrominance signals takes place, the composite signal appearing at the collectors and then applied to the picture tube cathodes.
So where was the drift coming from? I took another close look at the circuit. With the DC path blocked by the coupl-
ing capacitors just mentioned there appeared to be only one remaining DC path; all three bases were connected via a network of resistors and diodes to the collectors of a black level clamp transistor (TR904).
The operation of this clamp is quite complex and need not be dealt with here. Suffice to say that its base is fed with horizontal pulses which gate it in such a way that the black level is established during the horizontal flyback period, which is constant regardless of the video content.
Of more immediate importance was the fact that it appeared to be the only remaining part of the circuit where the fault could lie, in spite of the tests which I had already made. One of my routine voltage checks had included the clamp collector voltage, and the changes seemed quite insignificant. In fact, it had amounted to only 0.1 V , from 20.9 V to 21 V from cold to hot.

A CLUE AT LAST

I went over the circuit again, measuring the base and emitter voltages as well as the collector voltage. The base voltage varied from 2.2 V when cold to 2.5 V when hot. Over the same temperature range the emitter varied from 4.1 V to 4.6 V . Both these latter voltages were lower than those given on the circuit.
But if these voltages held a clue, it wasn't immediately obvious, except to reinforce my conviction that the fault was in this stage.

40 \& 65 WATT SWITCHING POWER SUPPLIES

Model No. $+5 \mathrm{~V}+12 \mathrm{~V}-12 \mathrm{~V}-5 \mathrm{~V}$ Power $\begin{array}{lllll}\text { XL51-4501 } & 4 \mathrm{~A} & 2 \mathrm{~A} & 0.5 \mathrm{~A} & 0.5 \mathrm{~A}\end{array} \quad 40 \mathrm{~W}$ $\begin{array}{llllll}\text { XL53.4501 } & 6 \mathrm{~A} & 2.5 \mathrm{~A} & 0.5 \mathrm{~A} & 0.5 \mathrm{~A} & 65 \mathrm{~W}\end{array}$

These low cost Boschert switchers are designed specifically for powering "dumb" and "smart" terminals. Both incorporate a new proprietary current controlled feedback network to achieve tight regulation and low ripple and noise. This in turn guarantees a flicker-free CRT screen.

FEATURES:

- Designed to VDE 0730 specifications, ie 3.5 KV isolation
- Tight regulation on all four outputs
- Built-in OVP
- 20 mSec hold up time
- 120/240V user selectable
- Ideal for Apple computers, etc
1 OFF PRICE: 40W \$172 65W \$210 plus Sales Tax

ELECTRONICS
Suite 104, 11 Spring Street, CHATSWOOD 2067
Telephone (02) 4111323 Telex AA20149 Attn ST-18

I looked at the clamp circuit again. Apart from the transistor there were only a half dozen or so components, mostly resistors. If necessary, I could change all the components in this circuit until I found the culprit. But the most likely suspect was C905, a $3.3 \mu \mathrm{~F}$ (not $33 \mu \mathrm{~F}$ as shown in the circuit) electrolytic as an emitter bypass. Imported low value electrolytics have proved to be notoriously unreliable in recent years, as I have mentioned in previous notes.
I let the set run until it was thoroughly warm, set the brightness to normal, or a little on the low side, then hit this capacitor with a blast from a freezer spray can. And this time I had beaten Murphy at his own game; the picture brightness shot up to what I would have expected had the set been standing overnight. I had hit it in one!
A new electrolytic cured the fault and, incidently, brought the various voltages back to values a lot closer to those shown on the circuit. I ran the set for several days before returning it to the customer. The brightness remained rock steady the whole time.
As a matter of interest I salvaged the faulty capacitor and checked it on the bridge. Even when it was warm its capacitance was below its rated value, being only a little over $2 \mu \mathrm{~F}$, and a blast of freezer would drop this value dramatically.
As for the mechanism by which it caused the symptoms it did, it is obvious (now!) that the fault was a dynamic one, involving the gain of the clamp transistor, rather than a static one, even though the end result was a DC shift.
So that makes three separate faults in this make of set, all having the same symptoms, which I have encountered over a period of a few weeks; the faulty edge connectors, a gassy picture tube, and now the faulty clamp circuit due to a temperature sensitive capacitor.

HUMIDITY AND EHT

To finish off this month, here is a short story on a quite different theme. The last few weeks have been hot and humid, and these conditions invariably bring forth their quota of faults.
The truth is, humidity and electronic devices have never learned to live together. Years ago it was paper capacitors and, before the makers learned how to seal them, speaker transformers were a prime target. And in the early days of monochrome TV, a bout of humid weather would always bring forth a crop of vertical output transformer failures in one particular model.

Fortunately, things have changed for the better. Better winding and sealing techniques, plus a reduction in the number of windings used, have reduced faults of this kind quite markedly. Similarly, the demise of the old paper capacitor in favour of plastic types produced a quite dramatic improvement.
On the other hand, the advent of colour and the increase of EHT up to 25 kV has created its own problems, albeit on a lesser scale. It was against this background that I was hailed by the local butcher one morning just as I was about to open the shop.
"I'd like you to come down and have a look at my TV set. There was a bang, and a flash, and it started to burn. I turned it off smartly, but I think it's history. S'matter of fact, I've been looking at some new sets. Reckon I'll need one. You'd better have a look at it, but I think it's had it."

ASSUMING THE WORST

It never ceases to amaze me that so many customers always assume the worst. And even more surprising is the way they leave themselves open for a smart salesman to make a killing. I've known more than one sharp operator who would have needed much less excuse than that to condemn a set as a write-off and sign the "sucker" up for a brand new set.
In this case I advised the customer not to do anything hasty, and that I'd be down as soon as I could. I was familiar with the set, a Pye T-29, and I tipped that something had gone over in the EHT section. Hopefully, it might not be serious, particularly as he had switched it off smartly.
So, later that day, I was in the lounge room pulling the back off the set. A quick visual inspection failed to reveal any signs of burning or other damage so, while watching the inside carefully, I gingerly switched on. There was an immediate splat and flash reflected from somewhere in the works, though I couldn't see exactly where. I switched off smartly.
There was now no doubt in my mind that it was an EHT flash-over, so I undid the clips and swung out the two sections of the chassis to give a better view of the EHT transformer, tripler, and power supply. Then I switched on again.
There was no doubt about it this time. The flash-over was clearly visible between the EHT lead, where it left the tripler, and an adjacent earthing wire from the picture tube aquadag. The wire had been allowed to drape against the EHT lead and was only lightly insulated.

Initially, this had caused no problem but, with the passage of time and the EHT environment, the insulation had deteriorated. Finally, the humid weather had been the last straw and it had broken down.
I undid the wire at the earthy end and re-routed it well away from the EHT lead, but returned it to its original anchor point on the chassis. This latter point is an essential precaution; selecting another, apparently similar, chassis connection can have serious consequences.
Then I switched on again, keeping my finger on the switch. Nothing drastic happened, the speaker gave forth sound and the picture came up a few seconds later. Yes, it was as simple as that, and a far cry from the "write-off" situation which the owner had assumed.
Granted, the job wasn't finished. There was evidence of corona around the damaged insulation, plus an occasional half-hearted splat to the next nearest chassis point. There was no simple way of replacing the damaged EHT lead without replacing the whole tripler, but this seemed to be an unnecessary waste and expense.
Instead I covered the damaged portion with a liberal coating of a silicone sealing compound. This is a Dow Corning product called Silastic Adhesive Sealant 732RTV. My main use for it is under ultor caps where there is evidence or risk of breakdown between the ultor clip and the aquadag. I have found that it is far superior to silicone grease, which deteriorates into a powder after some time.
There was some evidence of leakage around the ultor clip in this case, again probably aggravated by the humid conditions. I loaded the ultor cap with a small dose, then pressed it into place until a small quantity oozed out from under the edge.
This material takes about 24 hours to cure, so I advised the owner to leave the set off until the next day. After that, I assured him, he should have no further troubles from that source.
Naturally, he was very grateful. A set which he was ready to write off had been restored for the price of a service call, and without even having to buy a single component. The salesman at the local discount house must hate my guts!

[^4]
Tandy Introduces Low-Cost Word Processing for TRS-80 Model II

You'll never want to use a typewriter again! Our all-new Model II SCRIPSITTM program gives you professional word-processing features at a price no one else matches! This system will save you time and money, reduce errors and increase office efficiency. Here's why
It's Easy to Use. SCRIPSIT is user-oriented, with menus and prompts for every important function. An automatically updated information line gives current document status. Automatic centering and justification make tables and special formats easy. Typeover, Insert, Delete, Global Search and other conveniences make editing on the video screen simplicity itself. There's even automatic page numbering, re-numbering and re-ordering!

More Exciting Features. Of course there are full headers and footers, underlining, subscripts, superscripts and boldface. We include a detailed 8 -lesson audio instruction course - you can quickly become an expert with SCRIPSIT.
The Computer is Included. With this system, you not only get word processing, you also get our top-of-the-line computer that, with optional software, can run your inventory, ledger, payables and more. And our Daisy Wheel II printer gives you correction-free electric typewriter quality at 500 words per minute. The complete system, including SCRIPSIT, 64 K Model II Business Computer, Daisy Wheel II Line Printer (and cable), is only $\$ 8717.90^{*}$. You can own or lease now, through our 300 dealer stores and Computer Centres. Come in for details. SCRIPSIT software only ${ }^{\text {s }} 349.95$

- Retail prices may vary at individual dealer stores.

IT NOT ONLY SO

 ITSOUNDSFAN

If you were interested in hi-fi a few years ago, you'll remember the name Fisher.

We made the first dynamic range expander back in 1939.

We introduced the transistorised preamplifier/equalizer in 1956.

In 1959 we gave the world the stereophonic AM/FM receiver.

In fact, we've notched up thirty hi-fi firsts.

So what have we been up to in the last few years?

Our PH492K at left is good news for hi-fi buffs with wanderlust.

There is a cassette deck with Dolby noise reduction, metal tape capability, and automatic track search.

There is a 4 band stereo tuner. So you can shape the sound to whatever room you're listening in, there is a 5 band graphic equaliser.

When you're travelling you'll appreciate the carry handle.

When you stop, you'll appreciate the detachable 2 way speakers.

We have also made a few other models. They come at varying prices.

They all offer varying degrees of technical sophistication.

Of course they all come with the Fisher name.

Which means nearly 50 years of making the most out of music.

But if you have not heard what we have been up to lately, we suggest you get along to a Fisher retailer.

Our name already sounds familiar. You'll soon agree that it also sounds fantastic.

Combining Superb Performance with Economy is Easy With TRIO
The CS-1560AII dual trace, triggered sweep oscilloscope incorporates a brilliant clarity 130 mm diameter cathode ray tube. The solid state circuitry is designed for outstanding reliability and operational stability.
It offers an unsurpassed vertical deflection sensitivity of 10 mV per division right out to 15 MHz and will reliably trigger on larger signals to much higher frequencies (a significant feature unmatched by competitive models). Sweep times range from $0.5 \mu \mathrm{~S} / \mathrm{div}$. to $0.5 \mathrm{~S} / \mathrm{div}$.

XY capabilities allow you to display Lissajous patterns and auto free run makes voltage measurements and the detection of input signals simple and convenient.
Serious Users Don't Accept Second Best, Insist on TRIO!

Sydney: (02) 4393288 Melbourne: (03) 5807444

Circuit \&
 Design Ideas

Interesting circuit ideas from readers and technical

 literature. While this material has been checked as far as possible for feasibility, the circuits have not been built and tested by us. As a consequence, we cannot accept responsibility, enter into correspondence or provide constructional details.
Up/down Pushbutton-Controlled Power Supply

Using two momentary-contact pushbutton switches, or a three-position non-locking rocker switch, this circuit permits raising or lowering the output of a low-voltage $D C$ power supply by pushbutton action. Exact output voltage is dependant upon the length of time either button is held operated. Optionally, a third momentary-contact button can provide the facility of quickly lowering the output of the supply to zero.
The circuit consists of a compound voltage follower which comprises a FET, op amp and a Darlington pair of output transistors. Thus, raising or lowering the potential on the gate of the FET produces a corresponding change in voltage at the output of the unit. A $100 \mu \mathrm{~F}$ capacitor is connected between the FET gate and the negative rail, producing a "hold" function for any potential which is applied to the gate.
From the positive and negative rails resistors are connected to the pushbutton switches, such that when either switch is actuated current flows through

the resistor to charge (or discharge) the $100 \mu \mathrm{~F}$ capacitor and thus vary the gate potential/output voltage. The size of the resistors determine the rate at which the capacitor is charged/discharged, and thus the response of the output to the time that a button is depressed. The
third (optional) button discharges the capacitor directly to the negative rail so that the output may be quickly taken to zero.
B. J. Robertson,
Morphett Vale, SA.

Register Display Routine for the "Sorcerer"

This program enables the user of a Sorcerer computer to display the contents of its $\mathbf{Z 8 0}$ microprocessor's internal registers on command. It functions by using several of the routines already existing in the Sorcerer Monitor. Register contents are not changed and the display may be called up at any time by merely pressing CTRL R. The program is shown in the panel below:
Having entered this program into the computer, type:
mand "CO 6". However, for use as a subroutine called from another program, enter this routine at address 0006.
The following is a sample printout:

$>H^{\prime}$	EA78
DE^{\prime}	E9F0
BC^{\prime}	0023
AF	1242
HL	0000
DE	006 C
BC	91 CD
AF	1242
Y	$7 F 91$
X	E314

Press CTRL R to call up the display; although it can also be run with the com-

T. Fagan,

Middle Park, Vic, 3606.

Economy Mains Autotransformer

A majority of electronic equipment imported from Europe or the USA is rated to run at 220 VAC rather than 240 VAC and may suffer reduced reliability when run at the higher voltage. An economical solution to this problem is to use a transformer with a 20 V secondary connected so it subtracts from the mains supply. The method of connection is shown in the diagram.
Ferguson Transformers Pty Ltd of 331 High St, Chatswood, NSW, 2067 have recently advised us that both their PL and TS series of transformers conform to the required safety standards for the above application and are recommended for this use.

JAYCAR KITS OUALITY RESULTS

DIGITAL CAPACITANCE METER * * *

Ref: EA March 1982
This kit once again uses the amazing DPM 200 LCD display/driver module (see below). Capable of measuring capacitance from 1 pF to 19.99 uF it is a must in every workshop or lab.
Kit includes case.

Only

sensational

LCD Panel
 Meters

The illustration shows the display with all segments and annunciators actuated. The unit is housed in a neat plastic escutcheon. The DPM measures $72 \times 36 \mathrm{~mm}$ overall.
DPM-200 Digital height -15 mm (can be read at distances up to 10 metres).

ONLY
Specs:

Input impedance: $>100 \mathrm{~m}$ Full scale reading: 199.9 mV Accuracy 0.05% of reading +1 digit Power supply: $\mathbf{5}$-15VDC 50uA Sample rate: $3 / \mathrm{sec}$
Auto polarity, auto zero, over-range warning
case to suit $\$ 5.50$ Full data sheet supplied with each unit.

Digital Storage CRO Adaptor
 Ref: Feb 1982 EA

Not only can you avoid buylng an expe nsive CRO but you can have the fatures of the REALLY expensive ones!!

- Can display very slow waveforms
- One shot triggering
- Inbuilr graticle shows on TV screen
- Crystal locked timabase
- DC-100kHz bandwidth
- DC-100kHz bandwidth
- capable of storage operation
Staggering value at $\$ 110$.

SOUND BENDER

150W MOSFET AMP KIT **
EXCLUSIVE!I! Special heavy duty EXTRUDED heatsink bracket.

Ref: ETI March 1982

At last high power, with the stability and inherent safety of MOSFETS. Genulne 150W RMS with power supply on the PCBll You only need to connect the power trannie and Philips 65D heatsink !! PF4361/1 transformer
$\$ 39.50$
65D heatsink, drilled, tapped \& black anodised $\$ 39.50$ anodised ETI MODULE ONLY
$\rightarrow \square$
SHOP HOURS
Mon-Fri 9 to 5.30
Sat 9 to 3
Sun 10 to 2
Thurs night to 8 pm
!!! NEW ADDRESS !!!
125 YORK ST SYDNEY 2000
Ph. 2646688 Telex 72293
Mail Orders To:
Box K-39 Haymarket 2000
Post and Packing charges
\$5-\$9.99 (\$1) \$10\$24.99 (\$2) $\$ 25-\$ 49.99$ ($\$ 3$) $\$ 50-\$ 99.99$ ($\$ 4$) $\$ 100$ up (\$5.50)

CIRCUIT \& DESIGN IDEAS

Auto-Repeat Function for RCA VP601 Keyboard

A relatively simple addition to the RCA VP601 keyboard provides an auto-repeat function for any character whenever this is required. The modified keyboard will repeat the character when its key remains pressed for periods exceeding one second. Auto repeat occurs at a rate of 10 characters per second. Thus the keyboard operates normally under normal operating conditions, but provides auto-repeat on command.
The circuit is inserted into the "key pressed" line prior to derivation of strobe and key-down signals. Therefore the following sections of the circuit continue to generate strobe pulses and audio "beeps" for auto-repeat signals in exactly the same manner as for normal sequential key operation.
Referring to the circuit it can be seen that the $10 \mu \mathrm{~F}$ capacitor at the input to IC1b NOR gate is normally fully charged due to the circuit through the 1N914 diode. The output of this gate is applied to the reset input of a 555 timer, and being normally low prevents the 555 from oscillating in its astable mode.
With the circuit in this state, normal input pulses are routed to the output via

IC1a and IC1c without modification. Whenever a long input pulse (key held down) is applied to the input, the $10 \mu \mathrm{~F}$ capacitor discharges through the $100 \mathrm{k} \Omega$ resistor; and after approximately one second the output of gate IC1b goes high (discharged capacitor) allowing the 555 to oscillate and hence chop the "key pressed" pulse in IC1c. As soon as the key is released the output of IC1a reverts to high, quickly recharging the $10 \mu \mathrm{~F}$ capacitor, returning the circuit to its normal operating mode. Component values around the 555 have been chosen to
give a "chopping frequency" of approximately 10 Hz .
This circuit can be built up on a small piece of matrix board, and interfaced with the VP601 Encoder Board by cutting the track between R1 and R3. Connect the R1 end to the input; and the R3 end to the output. Power for the circuit may be obtained from the 5 V rail of the Encoder Board. Note that a $0.1 \mu \mathrm{~F}$ capacitor must be placed across the supply pins of each IC to prevent instability.
M. A. Irving,

Mount Waverly, Vic.

Novel Wien Bridge Configuration

In an interesting article in a recent issue of "Wireless World", J. L. Linsley Hood of Robins (Electronics), UK has described a new way of using a Wien Bridge in an oscillator circuit to give a sine wave with very low total harmonic distortion (typically less than 0.001\%).

He has pointed out that, on a "conventional" oscillator circuit, a large proportion of the output signal voltage appears at the inputs of the amplifier, which leads to nonlinearities in its transfer characteristics
due to "common mode" defects in practical amplifiers.

The new sign cascades the elements of the Wien Bridge around two opamps to alleviate this problem. Refer to the accompanying diagram for details of the configuration of the new design. Performance of a prototype oscillator (built by Linsley Hood) is depicted on the graph accompanying the circuit diagram. Whilst distortion increases as the frequency is reduced below 1 kHz , Linsley Hood points out that this is
primarily a function of the thermal time constant of the thermistor network, rather than amplifier errors.
In the original article Linsley Hood explores this area in detail and comes up with an alternate system of gain control, utilising an ancillary amplifier and detector circuit to activate a LED, whose light output varies the resistance of a photo-conductive cell, which is used as the gain control element in the new oscillator.
From "Wireless World"
May, 1981.

Vocal Canceller You don't have to be a star

If you have ever imagined yourself as lead vocalist with a famous band, here is your chance to "audition". You can cancel out the lead vocal on almost any stereo record and substitute your own voice or musical instrument.

by COLIN DAWSON

In a stereo record of a band or group, the lead vocalist normally appears to be at centre-stage, ie, midway between the two loudspeakers. This is achieved by directing equal amounts of the vocal signal to the left and right channels during the recording process.
Our Vocal Canceller takes advantage of this fact by feeding the left and right channel signals of a stereo record to the inverting and non-inverting inputs of an operational amplifier. The resultant output signal from the op amp is mono (since there is only one output signal) \because ith the common components of the original left and right channels cancelled out. Ergo, the lead vocalist virtually disappears.
You can substitute your own voice by plugging a microphone into the input provided on the canceller. Alternatively, you could plug in a guitar instead.
The success or otherwise of this cancellation will depend upon the particular record. Some records have more reverberation applied to the lead vocalist and so this cancellation process will tend to produce a "disembody" effect rather than a disappearance. Still, the effect can be reasonably satisfying as your substituted voice is "backed" by the original lead vocalist. In fact, you may prefer this.
Our Vocal Canceller is housed in a standard plastic utility case measuring $158 \times 95 \times 50 \mathrm{~mm}$ and which is fitted with two knobs and two switches. On one end of the case are four RCA phono sockets. Two of these are inputs and two are outputs. The Canceller is intended to be connected into the Tape Monitor loop which is available on most stereo amplifiers and thus it works at Line Output levels, ie, at several hundred millivolts.

Therefore, when connecting the Vocal Canceller to a typical stereo amplifier, the "Tape Rec" signals from the amplifier go to the inputs of the Canceller while its
outputs are connected to the "Tape Mon" inputs on the amplifier.
The two switches on the Canceller are for Power (labelled ON) and Mode which has two positions, Cancel and Normal. In the Normal mode, the canceller circuitry is bypassed and normal stereo reproduction occurs. In the Cancel mode, the depth of the null (or cancellation) can be adjusted by the appropriate knob. The other knob provides a gain control for the microphone input which is suitable for any high impedance dynamic or electret microphone (with inbuilt battery and buffer circuitry).

How it works

A look at the circuit will show that it is quite simple and uses just two low-noise op amps. Our circuit is based on an article in "Popular Electronics" for May 1981. One op amp, IC1, provides the cancellation mode already discussed while the
other, IC2, provides a microphone preamplifier.
IC1 is arranged in what looks like a conventional inverting amplifier with the left channel signal applied to the inverting input, pin 2 , via a $47 \mathrm{k} \Omega$ resistor and $0.22 \mu \mathrm{~F}$ capacitor while DC bias is applied to the non-inverting input, pin 3, via RV1, a $100 \mathrm{k} \Omega$ potentiometer. However, the circuit departs from normal practice in that a signal is also applied to the noninverting input via RV1 and a $.01 \mu \mathrm{~F}$ capacitor. Thus IC1 functions as a differential amplifier and whenever the two signals applied to it are equal in phase and in amplitude they are cancelled out.

IC1 can therefore be considered as an ideal demonstration of a differential amplifier in that it only amplifies signals which have a "difference" between them while signals which are the same (ie, common mode) are rejected. The

Vocal Canceller cancels the lead vocal and lets you substitute your own voice.

The circuit consists of differential amplifier IC1 and microphone preamplifier IC2. Below is the wiring diagram.

amount of rejection achieved by a differential amplifier is called the "common mode rejection ratio" and for typical op amps this figure is about 80 dB .
In fact, if the gain and frequency response of the left and right signal paths were exactly equal, the amount of cancellation or rejection just referred to would be far too high and the remaining signal weak and very lacking in bass. This
is because the bass information on most stereo records is mainly mono (ie, centrally located). This makes it easier for the cartridge to track the record and takes advantage of the fact that there is little in the way of directional information (ie, stereo effect) in signals below about 200 Hz .
In order to avoid undue cancellation of the bass information on the record, we
have arranged the frequency response of the right signal path (to the non-inverting input) to be rolled off at frequencies below about 200 Hz . This is done by selecting a $.01 \mu \mathrm{~F}$ capacitor to couple the signal to RV1 ($100 \mathrm{k} \Omega$) rather than $0.1 \mu \mathrm{~F}$ which would more nearly match the path provided for the left channel by the $0.22 \mu \mathrm{~F}$ capacitor and $47 \mathrm{k} \Omega$ input resistor. Thus, somewhat less cancellation and more bass occurs in the resultant mono signal.
RV1 sets the depth of null, or degree of cancellation of the circuit although, as we have just indicated, the depth of null is limited deliberately by rolling off the frequency response for the right signal path.
IC2 functions as the microphone amplifier and is connected as an inverting amplifier with gain variable between 11 and 111 by means of RV2. The output is connected to the inverting input of ICl via a $11 \mu \mathrm{~F}$ capacitor and a $22 \mathrm{k} \Omega$ resistor which means that this op amp will have a gain of two for the microphone signal.
The circuit requires a bi-polar power supply which we have provided by two 9 V transistor batteries. With a current drain of only about 4 mA the batteries should provide around 100 hours of operation.
A LED is used as a power indicator and this is wired in series with the negative supply rather than the more conventional arrangement via a series resistor. This arrangement takes advantage of the fact that the op amps draw only a few milliamps which is enough to light the LED and avoid the additional current drain and series resistor which would otherwise be required. The slight voltage drop across the LED does not affect normal circuit operation but does slightly increase the "end-point" voltage of the batteries. Even so, as already indicated, battery life is quite satisfactory.
There is one catch with this method of powering the LED. You cannot use LEDs which have an inbuilt series resistor or other means of current limiting. The greater voltage drop across this type of LED will prevent the circuit from working. This means that some LEDs with integral bezels cannot be used. We used a LED with a separate clip-on bezel.

The Canceller is constructed on a printed circuit board (PCB) coded 82 vc 3 , and measuring $75 \times 66 \mathrm{~mm}$. Mount the components according to the overlay diagram and pay particular attention to the orientation of the ICs as they are opposite to each other. The LED should be mounted on the front panel of the plastic utility box, so just install two hook-up wires at this stage. The only other polarised components on the PCB are the four electrolytic capacitors.
If you are using the plastic utility box suggested earlier, mount the four-way

INPUT
\qquad

Above are actual size artworks for the PCB and front panel, while at right is a view inside the unit.

RCA socket strip at one end and the microphone socket at the other. We have prepared a Scotchcal front panel

We estimate that the current cost of parts for this project is approximately
\$20
This includes sales tax
for the Vocal Canceller, and if this is to be used, make sure you mount the sockets to correspond with the Scotchcal. The microphone socket may need to be either 6.5 or 3.5 mm , depending on the particular microphone you use. If you intend to use the microphone from a portable cassette recorder, you will most likely require a 3.5 mm socket.
You will need to drill the front panel to accept the LED, two switches and two pots. These positions are marked on the Scotchcal design. The front panel will also need to be earthed to minimise
hum in the circuit. This can be done by linking the case of RV1 to its "earthy" side.

For the connections to the input and output sockets, use shielded wire. All the other connections can be made with unshielded hook-up wire. Be careful of the polarity of the LED as a wrong connection will prevent the circuit from working.
Having completed and checked the construction, turn the Canceller on and check that the LED illuminates. If it does, you are ready to install the Canceller.

PARTS LIST

1 printed circuit board, $82 \mathrm{vc} 3,75 \mathrm{x}$ 66 mm
1 4-way RCA socket strip
1 microphone socket, 6.5 mm or 3.5 mm (see text)

1 plastic utility box, $158 \times 95 \times$ 50 mm
2 DPDT switches
29 V batteries
2 clips for 9 V batteries
2 knobs for front panel
5 screws and nuts for mounting PCB and battery holder
Shielded and unshielded hook-up wire
2 LF351, TL071 FET input op amps
1 LED bezel

CAPACITORS

$2100 \mu \mathrm{~F} 10 \mathrm{VW}$ electrolytic
$110 \mu \mathrm{~F} 10 \mathrm{VW}$ electrolytic
$11 \mu \mathrm{~F} 10 \mathrm{VW}$ electrolytic
$10.22 \mu \mathrm{~F}$ metallised polyester (greencap)
$10.047 \mu \mathrm{~F}$ greencap
$10.01 \mu \mathrm{~F}$ greencap
RESISTORS ($1 / 2 \mathrm{~W}, 5 \%$)
$2 \times 470 \mathrm{k} \Omega, 1 \times 100 \mathrm{k} \Omega, 2 \times 47 \mathrm{k} \Omega, 1 \times$ $22 \mathrm{k} \Omega, 1 \times 10 \mathrm{k} \Omega, 2 \times 1 \mathrm{k} \Omega, 2 \times 100 \mathrm{k} \Omega$ linear pots.

Installation

The first part of the setting up procedure does not require the Canceller to be switched on. Connect its inputs to the "Tape Rec" sockets on your stereo amplifier and its output to the "Tape Monitor" sockets. Switch the Canceller to the normal position and turn the stereo system on. You should hear normal stereo with the "Tape Monitor" button in or out. If the stereo is distorted, or you can't hear it at all, there is a fault in the wiring.
Now, switch the Canceller on but do not connect a microphone. With S1 still in the "Normal" mode there should be no change from the previous test. Switch the Canceller to the "Cancel" position. Immediately, the stereo should be replaced with mono sound. There will be a decrease in the volume - especially of the lead vocal. Adjust RV1 until the vocal cancellation is maximum. The amount of cancellation possible will vary from record to record, but you should at least be able to put the lead vocal well into the background.
If the circuit is operating properly, connect a pair of headphones to the amplifier, set the microphone gain to minimum and connect a microphone. It is preferable to use headphones rather than speakers until you are familiar with the gain control, otherwise some most unpleasant acoustic feedback may result. With the amplifier set to "Tape monitor" and the Canceller set to

Continued on page 117

IF YOU WANT TO UNDERSTAND MORE ABOUT MICROPROCESSORS

 APPLY HERE.

One of the fastest growing sections of the electronics industry is microprocessing and its associated technology. A sound basic knowledge and a constant up-dating of that knowledge is necessary to stay informed of the developments within this exciting new technology.

Stott's Technical Correspondence College has produced an up-to-the-minute home study course specifically designed for people interested in this subject.

This Stott's home study course has been meticulously prepared by experts in this field and takes you through the stages necessary to reach a basic understanding of micro-computers and the processing techniques needed for their application, whether for consumer or industrial use. To this basic training you can add further knowledge and gain more experience.

The course is prepared in three stages. It begins with initial training in basic electronics, goes on to digital electronics and then proceeds to an in-depth study of microprocessors.

For further information on Stott's Microprocessors Course or other courses which interest you, mail the coupon below.

Rediscover the Crystal Set

No batteries, surprisingly good sound, foolproof circuit

Perhaps the most satisfying project that anyone can build is a crystal set. It does not require a battery and seemingly uses no power. Yet it can pull in a surprising number of broadcast stations and produce good sound quality when connected to a stereo system. And it even works during blackouts!

Over the years we have certainly published many crystal sets but in recent years they have not seemed particularly attractive. This has been because small transistor radios are so cheap and not really worth building yourself. Also the high impedance headphones which are really essential to the success of a crystal set have become difficult to obtain. But we are getting ahead of ourselves.
What is a crystal set and does it bear any relation to the crystal used in so many watches, computers and communications gear? The answer is that a crystal set is the simplest possible radio receiver and the "crystal" it uses bears no relation to the crystal element used in precision high frequency oscillators in
computers and so on.
No. Originally, the crystal referred to here was a piece of galena, a crystalline lead sulphide ore which is a naturally occuring semiconductor material. The galena crystal was mounted in a metal holder and a fine gauge wire called a "cat's whisker" was critically adjusted to touch a sensitive part of the crystal so as to form a primitive diode. And as we all know, a diode only conducts in one direction.
This primitive diode was generally called a crystal detector which referred to its function as a "detector" of radio waves. These days crystal detectors have long since been superseded by germanium and silicon diodes but the simple crystal
set circuit remains as simple as it ever was, as is illustrated in Fig. 1.
A crystal set circuit consists of a coil and a capacitor which form a resonant circuit, a diode (or crystal), another capacitor and a pair of headphones. Just how it works can be seen by referring to Fig. 2.
Fig. 2(a) shows the coil and capacitor referred to above connected together to form a resonant circuit. The little arrow on the capacitor shows that it is variable and can be tuned so that the circuit resonates at a particular radio frequency. The radio frequency is modulated (ie, varied in amplitude) by an audio frequency to give the symmetrical waveform shown.
In radio parlance, the radio frequency (RF) is known as the "carrier" while the audio is known as the "modulation".
Where does this RF waveform come from? From your favourite radio station and it is picked up by the aerial and fed in to the coil. As with any radio, you select your favourite signal by tuning the
resonant circuit by means of the variable capacitor. This capacitor has air-spaced plates and is commonly known as a tuning gang. The word "gang" refers to the fact that there may be more than one of these variable capacitors "ganged" on the one shaft.
Alright. So far we have tuned the circuit so that it resonates at the particular frequency we want to listen to. This means that it has maximum response at that frequency but we still cannot listen to it because it is still in the form of an RF carrier. We need to separate the audio modulation from the carrier.
This is where the diode (or crystal detector) comes in. Fig. 2(b) shows the diode and a load, R1, connected to the resonant circuit. Since the diode only conducts in one direction, it only passes one half of the RF carrier waveform depicted in Fig. 2(a). So now R1 is fed with tiny DC pulses of RF waveform which vary in amplitude according to the original audio signal.
R1 in Fig. 2(b) actually represents the resistance path for the headphones which finally reproduces the audio signal for your enjoyment. The headphones respond to the average value of the DC pulses "detected" from the RF waveform by the diode. The capacitor C1 smooths the waveform so that the signal applied to the headphones is just the remaining audio modulation. Note that Fig. 2(c) is almost identical to the circuit of Fig. 1.
The major difference between the two circuits, is that the coil depicted in the final circuit has a number of taps to which the aerial is connected.

No Soldering Required

There are two special aspects of this project. First, apart from the fact that it does not require a power source, no soldering is required. This is in line with the fact that it is a project for the beginner. This should not stop anybody else who wants to experience the intriguing satisfaction of "getting a crystal set to go".
Second, to be really satisfactory, a crystal set needs a pair of sensitive, high impedance headphones. In recent years these have been very difficult to obtain because they have been rendered virtually obsolete by modern lowimpedance stereo headphones. However, because Dick Smith had a personal interest in this project, he made a special effort to obtain a large consignment of particularly sensitive phones at a good price.
These high resistance phones have an impedance of $2 \mathrm{k} \Omega$ (two thousand ohms) and will be sold for $\$ 7.90$. Alternatively, you can save some brass and opt for an economy $2 k \Omega$ earpiece which will set you back only $\$ 1.25$. For our money, the "proper" headphones are the ones to go for. While they are not hifi and definitely
do not sound as "good as a Walkman" they will certainly give sterling service.

Timber Baseboard

To make this project, you will require a piece of timber or particle board at least 10 mm thick and measuring about 220 x 120 mm . On one side of this you will affix a reproduction of the diagram on page 70 of this article. We understand that Dick Smith Electronics will be making available an adhesive backed copy of this diagram with the kit for this project which will include all parts, even the timber just mentioned.
All connections on this baseboard are

Fig. 1: complete circuit schematic. Fig. 2: (below) explains how it works.
to be made via $1 / 8$-inch (or metric equivalent) screws and nuts. This approach takes advantage of the fact that, for a non-critical circuit such as this, wood is quite a good insulator.
Virtually any tuning gang with a total capacitance of about 350 to 500 pF can be used in this project. The gang to be supplied with the DSE kit has two sections which can be connected together to give a total of just over 500 pF or about 360 pF if just the main section is used by itself. The tuning gang will be supplied with a small aluminium bracket to mount it on the baseboard.

The coil is wound on a 60 mm length of 50 mm ID (internal diameter) plastic water pipe. This is drilled to take mounting screws and the coil anchor points. It is wound with 24 gauge enamelled copper wire. The enamel on the copper wire is an insulator to prevent shorts between turns.
Anchor the wire at one end of the plastic coil former by passing it through one of the termination holes. Pass about 120 mm of the wire through the hole and knot it on the inside of the former. Wind on nine full turns in whichever direction seems easiest, making sure that each

This is what your crystal set will look like when it is finished.

Affix a reproduction of this diagram to the timber baseboard and follow the wiring layout exactly. Connections are made using screws and nuts (see text).
turn is pressed close to the previous one.
When you reach the 10th turn, place one end of a 35 mm length of wooden matchstick under the wire. Then place the following turns underneath the matchstick. Continue until you come to
the 20th turn. This is again wound over the matchstick, as are turns 30, 40 and 50. Finally, wind on another 15 turns, to make a total of 65 . The total winding should then occupy about 40 mm of the length of the coil former and the finish
can be anchored in the same way as the start.
The next step is to push a second matchstick in alongside the first. This will not be too hard if you first cut a slight chamfer on the end of the matchstick, using a penknife or utility knife. Then push the two matchsticks about 10 mm apart.
When you push the two matchsticks apart the wire will stretch slightly but it is not likely to break unless you are very hamfisted. The extra tension on the wire helps keep the coil nice and firm.
If you now carefully scrape the enamel off the five wires going over the five matchsticks and from the start and finish of the winding, you will have virtually finished the coil. The five wires become the tap connections, which are made with small crocodile clips.

PARTS LIST

1 timber baseboard, approximately $220 \times 120 \mathrm{~mm}$
1 baseboard label
1 tuning gang, maximum capacitance 350 to 500 pF
1 bracket to suit tuning gang
1 plastic coil former, 50 mm ID x 60 mm long
12 metres of $24 B$ \& S enamelled copper wire
1 knob to suit gang
2 small crocodile clips
1 OA91 germanium diode
$1.001 \mu \mathrm{~F}$ metallised polyester capacitor (greencap)
1 set of headphones, impedance $2 k \Omega$ OR
$12 k \Omega$ dynamic earpiece

MISCELLANEOUS

Screws, nuts, washers, hookup wire for baseboard connections and aerial.

COST ESTIMATE
We estimate the current cost of parts for this project to be approximately $\$ 7.00$ plus the cost of the dynamic headphones.

Most of the connections in the set are made with screws and nuts, as mentioned previously. The idea is to drill holes for all the screws and then open out the holes on the underside, with a larger drill, so that the screw heads will be recessed. This will avoid the possibility of scratches on your fine olde Tasmanian swamp wattle refectory table.
Pass each screw through its hole and anchor it with a nut. Then sandwich the wires between two washers and secure the lot with another nut and tighten it down. This method of connection applies to all the connections except for that between the tuning gang and the
coil. In this case, take the coil wire, which has been scraped clean of enamel insulation and securely crimp it around the lug or lugs on the tuning gang.
While we have shown the diode connected one way in the circuit and wiring diagram, it does not matter which way you connect it. It will work just as well either way. Just make sure it is a germanium diode as a silicon signal diode will hardly work at all.

Aerial and Earth

Before you can start receiving signals, it is necessary to have an aerial and earth. These days it is more common to refer to the aerial as the antenna but in crystal set parlance, the "aerial" seems to be the favoured word. As far as size is concerned, the bigger the aerial, the better. Ideally, it should be at least 10 metres long and up to 30 metres or more, if you live a long way from the nearest radio station.
If you live on an average suburban lot you may be restricted in the size of the aerial but make it as long and as high as possible, within reason. You can string it from the rooftop to a tree or fence post and you will probably obtain a reasonable signal.
If you live in a home unit, you may find that a strong signal can be obtained from one side of your TV antenna lead.
A good earth connection is also essential for good performance. Ideally, connect the set to a copper or galvanised iron water pipe or to the earthed frame of a permanently connected mains operated appliance such as a refrigerator or freezer. Alternatively, you could drive a length of water pipe directly into the ground and use that for your earth connection.
With the set itself finished, aerial and earth connected, you are ready to try it out. Connect the aerial crocodile clip to the tap on the coil nearest the earthed end. The crocodile clip for the diode detector can then be the next tap up. Now try adjusting the tuning gang and the chances are that you will hear a signal. You can then try other combinations of taps to see which gives the best results.
Generally, you will find the best results with the aerial tap near the bottom (earthy end) of the coil, when a long aerial is used. Moving the tap up the coil reduces the selectivity (the ability of the set to separate stations) and may make two or more stations audible at the one time. You may also want to try the effect of having the detector and the aerial connected to the same tap and the effect of one or both sections of the gang connected together.
Whatever combination serves you best, we are sure that this crystal set will give a large number of readers a lot of satisfaction.

Dick Smith and the Crystal Set

At age eight, (above) Dick Smith looked quite normal (?) although he did have an abiding interest in lizards as this photo shows. Was there any connection between lizards and his eventual development into an electronics magnate? Top right: This is Maurice Findlay, about 30 years ago when he designed and wrote the article which is the precursor of the unit featured in this article.

The article in question was actually published in September 1952 and was the first project ever built by the young Dick Smith. Subsequently, after leaving school, Dick Smith took his first job working for Maurice Findlay, at Findlay Communications Pty Ltd. Pictured below with the crystal set built for this article, are Dick Smith and Maurice Findlay, as they are today.

Dick Smith was so keen to see this project republished in the magazine that he arranged a special purchase of these high impedance dynamic headphones. They are very sensitive and really look the part.

At last - the no com

Do you want to build your own state of the art computer? Do you want a computer which can grow and expand with your changing needs? Then MicroBee is the answer.
MicroBee incorporates some of the most advanced technology available today. So it's not surprising that it has features not available on computers such as APPLE and TRS80; like built in sound and battery backup. And it comes standard with features that are supplied as options on these machines. Like upper/lower case, HiRes (512×256) programmable graphics and an RS232 port for printers and modems.

Superbly Expandable

Most personal Micros offer good value in their basic form, but let you down when it comes to expansion. This is where MicroBee is different. The top or 'Core' board of the MicroBee plugs in and offers tremendous expansion potential. As standard, you can have 32KRAM. 16 K BASIC in ROM is standard and there is room for a further 12 K of ROM (For the Monitor ROM and Networking ROM).
For people whose needs grow further we have provided two things:

YES! CP/M and S100

- All the 280 CPU pins necessary have been brought out (see photo) to the rear of the Core Board So your MicroBee can be interfaced with any of the S100 standards
- In the near future. MicroBee owners will be able to have their machines factory upgraded (by the fitting of a modified Core board and other mods.) to 48K RAM/S100 running CP/M and disc drives. The programmable VDU chip in MicroBee allows the switch to 80×24 screen format.
MicroBee opens the doors to the massive library of CP/M software. MicroBee is the most forward thinking Micro you can buy today. It is your best starting point, wherever you want to go in personal computing. And it's still only $\$ 399$ in kit form.

YES! 16K ROM BASIC

MicroBee has been developed as the finest instructional computer on the market. Its superb 16 K BASIC in ROM makes this possible. Whether you are a novice or advanced enthusiast, MicroWorld BASIC is a delight to use with its advanced error reporting and powerful graphics facilities.

YES! Continuous Memory is here

The use of the latest CMOS RAM chips (6116), has made battery backup of memory possible. Just think, you can store a program or data in RAM, switch off, move to a new location and your program and data is still there.

FIRST PRODUCTION SELLS OUT IN 10 DAYS

MicroBee looks like being Australia's most popular kit computer ever!! As you read this magazine, we are assembling the next run. So order now to avoid delay and disappointment.
If you want to learn more about MicroBee then get us to send you a copy of our fantastic 'Ideas Book'. Its 32 pages are packed with information and applications software on MicroBee. Just send $50 ¢$ to cover postage and packing and we'll get your ideas book to you today.

Complete Kit \$399

 microbeeIncludes manuals, case, 16K BASIC in ROM, Power Supply and IC

promise kit computer

Software Growth

Being $Z 80$ based. MicroBee has a huge software base. And it's one we're improving all the time. New releases include:-

Mini Word Processor/Assembler in ROM.

This great monitor not-only lets you write machine language programmes, it also functions as a great little word processor. Functions include search and replace and edit.
$\$ 49.50$
Cassette Software. The following programmes are supplied on cassette. All are $\$ 6.95$ each.
Pilot A very user friendly language Especially good for writing computer aided instruction material.
Eliza The ultimate artificial intelligence

programme. Actually carries on meaningful conversation.
Target The computer screen becomes a battlefield covered with enemy aircraft. Trek Take command of the USS Enterprise and destroy those nasty Klingons.

No Apologies Service Coupon

With our easy step-by-step assembly manual, solder masked PC boards and socketing inroughout. assembly is very easy. If you do have any trouble, just fill in the NO APOLOGIES coupon with the $\$ 50$ service fee and we will finish building your MicroBee for you and return it to you.

FREE MEMBERSHIP

When you get your MicroBee, you gain free membership of the MicroWorld Users Group. You'll be kept fully informed of all software developments and ideas. We'll keep you and your MicroBee busy!

ORDER DETAILS

MicroBee with 16 K RAM. 16 K ROM BASIC and all manuals $\mathbf{\$ 3 9 9 . 0 0}$ MicroBee as above but with
32K RAM $\$ 499.00$
16 K to 32 K RAM upgrade (changeover) $\$ 120.00$
Mini Word Processor /Assembler in
ROMs with manual $\quad \mathbf{\$ 4 9 . 5 0}$
All Cassette software each \$6.95
Video Monitor
Cassette Recorder
$\$ 35.00$

Order Direct Save Time

To order your MicroBee, all you have to do is phone on our Holline number, give your Bankcard number and name. We'll get the goods on their way to you.

Hotline Number:(02) 4872711 Mail Orders to PO Box 311, Hornsby 2077.

 APPIIED TECHINLOEYY PTY. LTD.

Showroom/Office at 1A Pattison

Ave. Waitara.
Hours: 9-5 Monday to Saturday
Phone (02) 4872711
Telex APPTEC AA72767

A fullsize keyboard for the $\mathbf{Z X} 81$

Abstract

Frustrated by that little touch-sensitive keyboard of the ZX81? Dick Smith Electronics may have the answer - a professional quality full size keyboard kit. We tried it out, so read on for the results.

by PETER VERNON

Adding a new keyboard to the ZX80/81 is a fairly simple operation if you are handy with a soldering iron, and can keep track of the wiring required. Until now, the problem has been the availability of a suitable keyboard.
Dick Smith's answer is their computer keyboard kit, catalogue number K-3601. This is the same keyboard as used in the Super-80 project. The kit provides 60 momentary contact keyswitches, 59 keytops and a space bar, a metal frame to hold the switches and some mounting hardware. The keytops are injection moulded and attractive in appearance, and the keyswitches themselves have a good positive feel. All in all this is quite a good keyboard for the price, normally \$42.95.

Dick Smith Electronics Pty Ltd is making a special offer, however. When purchased with a ZX81 computer the keyboard kit costs just \$25. Assembling the kit and connecting the keyboard to the computer is up to the purchaser.
The keyboard goes together quite easily but wiring it for the use with the ZX81 is a little tedious, as the keyswitches must be connected in a 5×8 matrix. We used heavy gauge tinned copper wire, with slip on plastic "spaghetti" insulation where wires cross over. A 40 cm length of 13 conductor ribbon cable was used to connect the keyboard to the computer.
The wiring diagram, Fig. 1, shows the matrix in ideal form as a rectangular grid.

In reality however, things aren't this simple. The right-hand side of the keyboard, looking from the top, is likely to cause the most confusion. Note that the vertical element of the grid here runs from the " 0 " (zero) key to the " P " key, then out to the key marked "RETURN" and then back and down to the Space-bar.
The horizontal elements on the top row of keys are straight-forward, running from the six key to the zero key. On the next row, the horizontal wiring runs from the " Y " key through to the " P " key. On the third row down, the wiring is from the " H " key to " J ", " K ", " L " and then to the other contact of the "RETURN" key. On the bottom row, run the wiring from the "B" key, to "N", "M", "." (full stop) and then to the unwired pin of the Space-bar. The result is still a matrix, but our rectangular array has become distorted by the physical configuration of the keyboard we are using.
The next step is to join the vertical wire runs into pairs. Join the wire running from the " γ " key to the Shift key to the wire running from the zero key to the Space-bar. The vertical wire run from the " 2 " key to the " Z " is joined to the full stop key. The " 3 " key vertical run is joined to the vertical run from the " 8 " key to the " M " key. The wire running from the " 4 " to " C " is joined to the wire from the "7" to " N ". Finally the " V " and " "B" runs are joined together. These pairs are now the five vertical elements of the matrix, and are connected to Data inputs D_{0} to
D_{4} as shown in Fig. 1.
By soldering the ends of the ribbon cable to the same points on the ZX81 board used to connect the standard membrane keyboard to the computer, our new keyboard was connected in parallel with the existing keys. (Fig. 2)
Connections for the ZX80 are different. Looking at the underside of the PCB, the address lines run from A_{15} to A_{8}, left to right. Connections are made to the anodes of the diodes, D1 for A_{8} to D8 for A_{15}. The data lines go via pullup resistors to U11. D_{4} goes to pin $14, \mathrm{D}_{3}$ to pin $4, \mathrm{D}_{2}$ to pin 12, D_{1} to pin 6 and D_{0} to pin 10.
But wait a minute! If the new keyboard is wired as an 5×8 matrix, and has 59 keys, what happens to the other 19 keys unaccounted for? The answer is that they are not connected, and are wasted. These keys include the comma, ESC, LOCK, TAB, CTRL, backspace, DELETE, and BREAK, to name a few. Perhaps the best thing to do is to mount only the 40 keys which are actually scanned by the ZX80/81 computers and save the rest in a "junk box" for future use. They may come in handy at some time, but not for the Sinclair machines!
There is a further problem. One of the unique advantages of the ZX80 and ZX81 is "Key Word" entry. In this scheme, Basic statements such as LET, RUN, PRINT etc are printed on the screen with just one keystroke. After a line number, the machine assumes that a keyword is

Now the ZX81 sports a new keyboard. Note that the keyboard is bigger than the entire computer, however!

This is the way to wire the 8×5 keyboard matrix.

The wiring is more complicated than the circuit diagram suggests.

KEYBOARD PINOUTS ON UNDERSIDE OF PCB fig. 2
required, and pressing the " P " key, for example, will enter "PRINT" in the program at this point. All Basic statements are entered in this way. Basic functions such as SQR (square root) or COS are entered by first pressing a "function" key, then the key required.
Thus each key of the original keyboard of these computers has at least three functions and some have as many as five. The " P " key, for example means "PRINT" when the computer is expecting a program statement, the letter " P " otherwise; shift P gives quote marks, while function P is TAB. The "S" key is the "SAVE" command, the letter " S ", the ARCCOS functions, "LPRINT" and also has an associated graphics character, all shown on the labelling of the keyboard.
The new keyboard does not have these labels, although it does have others which only serve to increase the confusion. Again, as an example, a standard keyboard generates quote marks with a shift "2", and the Dick Smith keyboard is labelled to represent this, bearing no relationship to the keyboard of the ZX80 or ZX81.
One solution would be to make a copy of the legend of the ZX81 keyboard, perhaps from the user manual, and paste it in a convenient spot adjacent to the
new keyboard. This will depend on how the new keyboard is mounted. It must be raised off the table top in some way, otherwise it will rest on the somewhat fragile pins of the keyswitches.
The problem cannot be solved by rewiring the keyboard matrix, although at first sight this seems possible. For example, if the " 2 " key is wired in place of the " P " to accurately represent the shifted character available, it will also produce the letter " P " when not shifted, and the keyword "PRINT"" when a keyword is required. Other wiring changes would raise similar conflicts.
Speaking of wiring changes, the original idea for this conversion came from an English user magazine "Interface"
The essential problem is how necessary such a conversion is. How many users of the Sinclair computers require to enter long slabs of text? The whole design of the Sinclair machines is aimed at reducing typing. None of the programs in " 30 programs for the Sinclair ZX80" for example, require more than around 50 lines, with the longest line containing no more than 40 characters. With single keystroke entry of key words, keyboard fatigue is not likely to be a problem.
If you feel that the keyboard conversion is necessary for your existing machine, the Dick Smith keyboard is an inexpensive kit to use. If you are considering buying a computer but are put off the Sinclair machines by the tiny touch-sensitive keyboard, we can only report that this package deal does not really solve the problem.

Complete soldering instructions are printed on the back of each card.

Available from your electronic parts supplier

DISTRIBUTORS

N.S.W: (02) 7095293 OL.D: (07) 2774311 VIC: (03)5435122 S.A: (08) 426655 TAS: (002)342233 W.A: (09) 3815500

RS 50

Continuing our series

How to program in machine language

Continuing our series on machine language programming this month we look at Extended addressing and shifting bits, BRAs and programs that jump around. Along the way we answer a few puzzling questions and bring it all together with a sample games program written in machine language for the DREAM 6800. At its maximum speed this program is so fast that it's unplayable - a real indication of the speed, if not the usefulness of machine language.

By TONY HAIG

Last month we looked at immediate mode addressing, in which the operand of the instruction is used (immediately) as data, usually acting on the two accumulators of the 6800. Computer programs almost always use more variables than can be stored in their internal registers, so they need to use free RAM or ROM as additional storage. This means that microprocessors need to have instructions to move values between registers and external memory devices. The MC6800 instruction set is particularly rich in such memory operations due to Motorola's design philosophy of having no secondary accumulators and accessing all peripheral devices as memory locations.
Extended addressing mode instructions provide the most straightforward access to externally stored data. These instructions all have two 8 -bit operands which make up the 16 -bit memory address of the data. For instance LDAA $\$ 0280$ (B60280) will load the number stored at memory location 0280 (hex) into accumulator A, SUBB \$0370 (F00370) will subtract the number at 0370 from accumulator B and the result stays in Acc B. A look down the columns headed EXTND in the instruction set summary shows that all the operations valid in immediate mode are also meaningful in extended mode, with another 18 operations also available in this addressing mode.
The functions of the various operations discussed last month should be readily understood in this new addressing mode; where in immediate addressing mode the accumulator (or Index or Stack Pointer in the operations LDX, CPX, LDS) is loaded from, or EORed with, or added to using the operand as data, in
extended addressing mode the loading, EORiong, or adding is performed using the value stored at a memory location as the data.
The function of the store register operations (STAA, STAB, STX, STS) should also be obvious - the value currently in the register is stored in the memory location specified by the two operands. Let's now look at a fragment of a program as an example (see Fig. 1). If we ignore the rest of the program the function of this fragment is to load Acc A with the contents of memory location $027 \mathrm{~A}, \mathrm{AND}$ it with the value stored at address 027 B and add D1. The result is then stored at 027A. If A7 and 71 were stored at 027A and 027B before the program fragment was performed then when the computer executed this part of the program it would go through the steps mentioned below and would eventually change 027A to F2. (Note that if performed a second time 027A changes to 41. Calculate for yourself what 027A becomes if it was completed a third time.) All values are in hex.

ADDRESS	VALUE		
0217	B6	LDAA (Extended) \$027A	
0218	02		
0219	7A		
021A	B4	ANDA (exte	
021B	02	\$027B	
021C	7B		
021D	80	ADDA (Immediate)	
021E	D1	\#D1	
021F	B7		
0220	02	STA (Extended)	
0221	7A	\$02	
	027A	A7	027A
	027B	71	027B

Fig. 1
(BEFORE)
(AFTER)

Let's now look at the operations which are valid in extended addressing but meaningless in immediate mode. The function of the CLR, DEC, and INC operations are fairly self-explanatory the value of the particular memory location is cleared (has zero stored at it), decremented (has one subtracted from it), or incremented (has one added to it). The operations COM and NEG change the value of memory location into its 1's or 2's complement respectively.
Next we come to the five rotate/shift operations. Consider the decimal operation of multiplying by ten eg, $146 x$ $10=1460$. We merely shift everything left one place and put a zero into the units column. Similarly the binary operation of multiplying by two is performed by shifting each bit left one place and putting a zero in bit 0 , eg, $00000011 \times 2-00000110\left(3_{10} \times 2_{10}\right.$ $=6_{10}$). But consider $10111101 \times 10=1$ $01111010\left(189_{10} \times 2_{10}=379_{10}\right)$; the leftmost bit, bit 7 , when rotated left in 8 bit binary has no place to go in the new byte and often is too important to lose so it is shifted into the carry bit of the Condition Code Register. This total operation of shifting the byte left one place, shifting a zero into bit 0 , and shifting bit 7 out into the carry bit is called Arithmetic Left Shifting (ASL) and can be illustrated as follows:

Left Rotating (ROL) is very similar:

except whatever was in the carry bit before the operation is pushed into bit 0 instead of zero. To multiply a two (or more) byte number by two the low byte should be shifted left then the high byte(s) should be rotated left. (Try checking for yourself that this works.)
Multiplying by two is more important than it may at first seem, especially when the computer becomes involved in heavy number crunching. By shifting left more than once the computer can quickly multiply by 4, 8, 16 etc and using this fact multiplication by any number can be built up, furthermore often we will want to double a value or use the shift function for $1 / 0$ or display purposes. Not surprisingly, binary division by two can be performed by shifting or rotating right. Right Rotating (ROR) is the same as left rotating except the bits travel in the other direction:

However there are two types of right shifting, Logical Right Shirting (LSR):

which is the opposite of ASL; also there is Arithmetic Right Shifting (ASR) in which instead of shifting in a zero, leaves bit 7 unchanged:

Jumping around

The next operation to consider is the Jump (JMP) operation. Like all extended addressing operations the two operands following the op code (7E) form a memory address, so the program "jumps" to that location. The microprocessor's Program Counter (PC) effectively contains the address of the next program instruction byte to be executed, so this instruction amounts to storing the operands in the PC. The JMP operation is the simplest of the jump and branch instructions available to the machine language programmer. Before we look at the more complicated of the PC manipulation instructions we must first look more closely at the CCR.
Recall from the last article that addition and subtraction operations affect the Condition Code Register in various ways, as specified in the instruction set. In operations such as "clear" the result is always zero (obviously) so the effect on the CCR will be to always set the zero status bit (Z-true), reset the negative status bit (zero is non-negative), reset the
overflow and carry bits (no overflow or carry can occur) and leave the half carry unaltered since it is only important in addition operations. Information on how each status bit is affected by a given operation is included in Motorola's summary of the 6800 machine language instructions at the extreme right. (See last month's article.) If a particular bit is unaffected by that operation, a dot is shown below the bit in the row describing that operation.
A point worth emphasising is that the computer has no way of knowing how the human programmer is interpreting the data it is manipulating; so it will always perform the status tests even though the human's interpretation may make the test meaningless, eg, if the data is unsigned then negative status and the (signed) overflow status are both meaningless. So the programmer must be careful that he interprets the status bits correctly.

Which immediately raises the question how can these status bits be used (meaningfully of otherwise)? The 6800 machine language has 14 conditional branch operations which are controlled by the value of these bits. Let's look at first the unconditional branch operation BRA (branch always). The BRA operation is similar to the JMP instruction in that whenever it is executed it causes the computer to jump to another part of the program. However, unlike JMP where the two operands define an "absolute" 16 bit address, BRA is performed in the relative addressing mode the only mode in which branch operations are meaningful) which has one operand also called an "offset", a signed value, which is added to the Program Counter. Since the PC is used as a storage of the address of the next instruction to be executed the computer will continue the program from some other point in the program. It's important to remember that the offset is added at the end of instruction when the PC has already got the address of the instruction after the BRA instruction.

ADDRESS VALUE

$\mathrm{nn}=80$	$\begin{aligned} & 0210 \\ & 0211 \end{aligned}$	$\begin{aligned} & \text { C0 } \\ & 05 \end{aligned}$	$\begin{aligned} & \text { SUBB } \\ & \# 05 \end{aligned}$
	0289	C4	ANDB
	028A	7 F	\#7F
	028B	7A	DEC
$\mathrm{nn}=\mathrm{FB}$	028C	02	\$027A
	028D	7A	
$\mathrm{nn}=\mathrm{FE}$	028 E	20	BRA
	028 F	nn	nn
	0290	7 E	JMP
$n \mathrm{n}=00$	0291	C2	\$C297
	0292	97	
$n \mathrm{n}=03$	0293	88	EORA
	0294	25	\#25
nn - 7F	030F	20	BRA
Fig. 2	0310	4F	4F

Fig. 2 illustrates this by example and highlights three important points. Firstly that BRA 00 makes the computer continue right on as if nothing had happened, since the PC already had the address of the next op code when zero was added to it.
Secondly BRA FE makes the computer jump back to the start of the same BRA FE operation, so therefore the computer "stops" at this instruction and merely performs it hundreds of thousands of times a second. (Remember this - it can be very useful when debugging programs since it stops the computer in its tracks without jumping back to the monitor). And thirdly, note that there is only a limited range of addresses to which the BRA instruction can jump (128 bytes backward or 127 bytes forward from that next address), contrasting with the jump operation which has the range of the entire computer memory. This means that branch instructions requiring a larger range must be performed by jumping to another branch statement or to a jump instruction. The advantages of using BRA instead of JMP are that BRA is a byte shorter and makes the program more readily relocatable (if a working program is moved to a new set of location the "absolute" JMP operands must all be changed while the relative BRA offset will remain correct). The disadvantages are that BRA is slightly slower and it can be messy working out the required offset.
Now that the operation of the unconditional branch has been made clear (hopefully) conditional branching follows easily. An example is BCC (branch if carry clear). When the microprocessor executes this conditional branch operation it tests the branch test (does $C=0$?) and if the carry bit of the CCR is equal to zero then the test is passed and the computer jumps to a new program location using the one operand as an offset, just as if the instruction was a BRA statement. However, if the carry bit equals one then the test is failed and the processor continues on as if the instruction wasn't there. Most of the tests are quite simple, with the computer testing the status of carry, zero, negative or overflow bits only. However, the other six tests involve sometimes complex combinations of the status bits. These conditional branch statements are usually used after comparisons, such as CMPA or CMPB.
Let's assume we want to know if the unsigned value in Acc A is more than, less than, or equal to some unsigned number, perhaps 20 (hex). If we subtract 20 from Acc A using SUBA \#20 Acc A will be changed and so will the Z and C status bits (because the values are unsigned we ignore any change in N or V). If the original value in Acc A was 20 then after the subtraction Acc A will
equal zero and the Z status bit will be set (C will not be set). Alternatively Acc A could originally have been 21 or higher so that after the subtraction it would become 01 or higher, the Z bit is reset, and the C bit will also be reset. If, however, Acc A was originally 1 F or lower after the subtraction the C bit will be set to indicate a borrow situation and the Z bit will be reset. So if we subtract 20 from Acc A we can test whether the accumulator is equal to 20 (does $Z=1$?), greater than 20 (does both $\mathrm{C}=0$ and $\mathrm{Z}=0$ alternatively does $C+Z=0$?), less than 20 (does $C+1$?), greater than or equal to 20 (does $C=0$?), less than or equal to 20 (does both $\mathrm{C}=1$ or $\mathrm{Z}=1$? alternatively does $C+Z=1$?), or not equal to 20 (does $\mathrm{Z}=0$?). So all of the six possibilities can be tested for using the six conditional branch statements $\mathrm{BEQ}, \mathrm{BHI}, \mathrm{BCS}, \mathrm{BCC}$, BLS and BNE.
Of course this system works for any unsigned number, not just 20, and for Acc B as well as Acc A. But what of signed numbers; will those six tests work on signed data as well? The answer is no, the tests involving the carry bit will all be meaningless for data interpreted as being signed, since the carry bit itself is meaningless in one byte signed subtraction. Instead, the negative and overflow bits are important. It turns out (you can check this for yourself) that the various "unsigned tests" involving carry become the required "signed tests" if BCE is used instead of BCC. So although the tests for equal (does $Z=1$?) and not equal (does $Z=0$?) remain the same, the other tests are changed: The tests are named BEQ, BNE, BGT, BLT, BCE and BLE (see also Fig. 3). So we have a wide range of tests we can use to compare the accumulators to a signed or unsigned number after using subtraction.

	Signed Test	Unsigned Test
Acc $A=20$	BEQ	BEQ
Acc $A=20$	BNE	BNE
Acc $A \geq 20$	BGT	BHI
Acc $A \leq 20$	BLT	BCS
Acc $A \geq 20$	BCE	BCC
Acc $A \leq 20$	BLE	BLS

Fig. 3: testing for a given value

The only small problem is that in performing the test the value in the accumulator has been altered to a lower value by the subtraction operation - an undesirable situation. So we have a few operations which can be used which don't alter the value of the register they are testing. The first of these is the compare operation CMPA, CMPB which operates in the same manner as the

SUBA or SUBB instructions, except the result instead of going back to the accumulator is left in the Arithmetic Logic Unit (see Fig. 1, last month), and is usually lost in the next operation. However the status bits are not lost and can be used to control the conditional branch operations just as if SUBA or SUBB had been used. CMPA and CMPB are valid in both immediate and extended modes, so that comparisons can be made to a value being the operand or to some number stored in memory.
A very similar operation is CPX, which is valid in immediate and extended modes; in which a sixteen bit unsigned number is subtracted from the index register. Again the status bits are retained and the actual result lost. Remember that C is not tested for and N and V have special tests in this operation.
Another important comparison is the TST operation. This is valid in extended mode and compares the value stored in the memory defined by the two operands to zero. From the setting of the status bits the program can check if the memory is zero, nonzero, greater than zero, etc.
The other useful comparison operation is used to test whether a specific bit of an accumulator has been set. As an example suppose we need to know whether or not bit 6 of Acc A equalled one. Consider the binary number 0100 0000 (which is 40 in hex) which has zeroes in every bit, except bit 6 which has a one. If we AND this number with Acc A using ANDA \# 40, let's calculate what happens for a number of values stored in Acc A:

Acc A	1111	1111	FF
Operand	. 0100	0000	40
Result	0100	0000	40
Acc A	1011	1111	BF
Operand	. 0100	0000	40
Result	0000	0000	00
Acc A	1101	0100	D4
Operand	0100	0000	40
Result	0100	0000	40

Notice that when the value in Acc A has a one in bit 6 the result is non-zero (hence Z will be cleared) but when bit 6 is zero the result is 00 (hence Z will be set). So to test whether any bit is set or cleared in an accumulator work out the number which has a one for that bit, but all other bits zero and AND that number to the accumulator, the Z status can then control BEQ or BNE. Again the problem arises that ANDA and ANDB alter the accumulator. So the BITA and BITB
instructions are available, which perform the ANDA and ANDB instructions without altering Acc A or $A c c B$.
While on the general subject of PC manipulation I might answer a problem that seems to bother people learning machine language - how does the microprocessor know the difference between information coming from a ROM or RAM or PIA (or disks etc) and how does it know what memory data is an op code, or an operand, or a variable, or just garbage? The answer is firstly (and simply) that it doesn't know, nor needs to know where the data is coming from or going to. The MC6800 chip puts out a signal requesting (or representing) a data byte, specifies a certain address and expects some memory device to supply (or store) the information correctly. If no memory device supplies data for a read memory then it uses whatever garbage is induced into the "drifting" data lines, if it tries storing memory into "nonwriteable" memory like ROM's or undefined storage space then the data is lost. So the programmer must make sure that the computer performs memory operations on the right type of memory or must make sure that the computer is not instructed to branch to an undefined memory address.
In answer to the second part of the question the computer can only tell if the hexadecimal data in the memory storage devices are op codes, operands, variables, etc, only when it reaches that data's address in the course of running the program. Consider that program fragment shown in Fig. 2. Just before the computer fetches the ANDB instruction the PC will have 0289 stored in it, the address of the next instruction. It reads the value stored at that address and since it is at the start of a new instruction it interprets it as an op code, stores it in the Instruction Register (one of the buffer registers, see Fig. 1 last month), and the PC is incremented. C4 is an op code requiring an operand, and $P C$ has the address of that operand (028A), so the operand is then loaded into the 6800 from memory, the PC is incremented, and the instruction can be completed.
Now the microprocessor "wants" a new op code so it loads the new op code ($7 A$) in from the address in the PC $(028 B)$, the it can increment the $P C .7 A$ is an op code requiring two operands, so the 6800 gets the first operand from the address in the PC (028C), increments the PC, gets the second operand from the new address in the PC (028D), increments the PC, and then can complete the DEC instruction. Notice that each time the program reaches the start of a new instruction the PC has the address of an op code stored, and as the

0080	FLAC		If THIS BYTE IS ZERO THEN THE BULLET IS STATIONARY.
0081	CLR \$0100	$7 F 0100$	
0084	INC \$0083	$7 \mathrm{C0083}$	THIS SECTION CLEARS THE SCREEN.
0087	BNE F8	2678	
0089	LDAA \#80	8680	THIS PUTS TWO DOTS ON THE SCREEN, THE TARGET DOT IN THE TOP LEFT CORNER AND THE BULIET IN ITS INITIAL
008B	STA \$0100	B70100	IN THE TOP LEFT CORNER AND THE BULLET IN ITS INITIAL
008E	STA \$0162	B70162	PLACE.
0091	CLR \$0080	7F0080	THIS INITIALISES THE FLAG.
0094	LDAA \#40	8640	
0096	LDAB \#FF	C6FF	THIS IS A TIME DELAY. BEFORE THE COMPUTER FINISHES
0098	SUBB \#01	C001	THIS SECTION IT LOOPS THROUGH ABOUT 33,000
009A	BNE FC	26FC	INSTRUCTIONS, WHICH SLOWS THE MOVEMENT DOWN
009C	SUBA \#01	8001	TO A REASONABLE SPEED. CHANGING 0095 ALTERS THE
009 E	BNE F8	$26 F 8$	NUMBER OF LOOPS AND THE MOVEMENT SPEED.
00A0	LSR \$0100	740100	
00A3	ROR \$0101	760101	THIS IS A FOUR BYTE RIGHT ROTATION OF THE FIRST FOUR
00A6	ROR \$0102	760102	BYTES OF THE DISPLAY.
00A9	ROR \$0103	760103	
OOAC	BCC 08	2408	If A DOT TRIES TO LEAVE THOSE FIRST FOUR THEN THIS
OOAE	LDAA \$0100	B60100	PUTS IT BACK INTO THE EXTREME LEFT AND TOP OF THE
00B1	ORAA \#80	8 A80	DISPLAY BUFFER.
00B3	STAA \$0100	B70100	
0086	LDAA \$8010	B68010	
00B9	CMPA \#F0	81 F0	CHANGES THE FLAG TO A NON-ZERO NUMBER.
$\begin{aligned} & \text { OOBB } \\ & \text { OOBD } \end{aligned}$	BEQ 02 STAA \$80	$\begin{aligned} & 2702 \\ & 9780 \end{aligned}$	
O0BF	TST \$0080	7D0080	
00C2	BEQ D0	27D0	
00C4	LDAA \$D3	96D3	THIS CHECKS THE FLAG VALUE, THEN IF THE BULLET IS
00C6	STAA \$D0	97D0	STATIONARY (SO DOESN'T REQUIRE MOVING) THE
00C8	SUBA \#08	8008	COMPUTER BRANCHES BACK TO THE TIME DELAY TO
OOCA	STAA \$D3	97D3	CONTINUE THE PROGRAM. IF THE BULLET DOES REQUIRE
OOCC	STAA \$D8	97D8	MOVING IT IS PERFORMED BY ERASING THE OLD DOT AND
OOCE	CLR \$015A	7F015A	PUTTING A NEW DOT EIGHT BYTES LOWER (ONE ROW
00D1	LDAB \$0162	F60162	HICHER). THE DOT IS EORed INTO POSITION SO IT
00D4	EORB \#80	C880	DESTROYS THE TARGET IF THEY COLLIDE.
00D6	STAB \$0162	F70162	
00D9	CMPA \#02	8102	
00DB	BNE B7	$26 \mathrm{B7}$	
00DD	LDAB \#5A	C65A	
00DF	STAB \$D0	D7D0	
O0E1	LDAB \#62	C662	THIS CHECKS If THE BULLET HAS REACHED THE TOP ROW.
OOE 3	STAB \$D3	D7D3	IF IT HASN'T THEN IT BRANCHES BACK TO THE DELAY
OOE5	STAB \$D8	D7D8	SECTION TO CONTINUE THE PROGRAM. IF THE BULLET
OOE7	LDAA \#80	8680	HAS REACHED THE TOP THEN THE PLAYER IS SET UP WITH
00E9	BRA A3	20A3	A NEW BULLET, AND THE GAME CONTINUES INDEFINITELY.

PC slowly increases, it cycles past the operand's address/es.
That essentially is the only way in which the computer differentiates between the information in the memory devices. All addresses whose particular memory location is stored in the PC at the start of an instruction must have an op code stored, while all the other locations which the PC stores during the running of the program (in between op codes) must be operands. Any memory which during the entire running of the program does not have its address stored in the PC is not part of the program and is available for the storage of data and variables.

This may seem obvious to some readers, but 1 hope it clears up a problem for others. I hope it also stresses that it is up to the programmer to keep the program bytes and the data
bytes separate - don't jump "into" a series of data bytes and don't store values in your program. To digress for a moment: jumping to the wrong location either into data or "landing" on an operand, seems to cause one of three undesirable events: the computer may eventually continue the program after leaving out some instructions or adding some unwanted ones in, the computer may stop dead and do nothing, or the computer may go wild, characterised in my DREAM by a flickering screen and/or rewriting with garbage my carefully entered program. It all seems to depend on whether or not the new op codes happen to be one of the 197 valid codes. Accidental alteration of the program bytes usually has similar results, especially if it is an op code which is rotated or cleared etc.
If the alteration is carefully planned,
however, this can be a particularly useful programming trick. The program at the end of this article has two examples of how this trick can be used in changing an operand. Storing a new branch offset also has many useful applications, as does a (careful) change of the operation code. It is worth remembering this trick as it often provides a handy way of shortening long, repetitive program sections. It is very rarely discussed in books on computer programming because the use of programs which alter themselves as they run ("self-modifying code") is considered bad style - chiefly because they can be very hard to debug.
In any case, it is common machine language programming practice to keep the variables separate from the program by storing all the variables in memory at the beginning (or end) of the available memory, followed (preceded) by the
program bytes. That section of memory is usually called the "scratchpad" and is referenced frequently by the program in the course of changing, loading, and storing the various variables. This is the reason for having the Direct addressing mode. If the scratchpad is put in the bottom page (lowest 256 bytes of memory) then obviously the scratchpad will be in the addresses between 0000 and OOFF. Since the scratchpad is frequently referred to there will be many instructions like STAA $\$ 0080$, EORB \$008A, LDX\$0012 etc. Notice that each time the first operand will be 00 . So Direct addressing is the same as Extended addressing except that for Direct instructions the microprocessor assumes that the first half of the address is 00 , so the programmer only needs to specify the lower half of the memory address. So those Extended instructions STAA \$0080 (B70080), EORB \$008A (F80012), LDX \$0012 (FE0012) become
the Direct instructions STAA \$80 (9780), EORB \$8A (D88A), and LDX \$12 (DE12), and so on. The advantage of using Direct instructions is that they are shorter and faster than similar Extended instructions. However not all Extended mode instructions are available in Direct mode, just 25 of the commonly used ones.
Recall that the dollar sign $(\$)$ is used to indicate a load from an address location, so that, for example, the Extended mode instruction LDDA \$033F (B6033F in machine code) means load accumulator A with the contents of the address 033F. There should be no confusion between Extended and Direct mode instructions since the first has twice as many operands. The special symbols however do serve to separate instructions like LDX 033F (CE033F) and LDX \$033F (FE033F). Relative mode operations do not need any prefix since they are only valid in this one addressing mode. You should now be armed with

STARTING POSITION

At left are diagrams of what the screen should look like at various stages of the DREAM "skeet" game. The program is on the previous page.
sufficient 6800 machine language knowledge to write some simple programs. Writing programs, no matter how small initially, is the best way to really get to know a computer language. Example programs also are usually helpful so we'll look at a short game, written for the DREAM 6800 (but should be adaptable to other 6800 machines) using the instructions encountered in these first two articles. The program makes use of the fact that the value stored at 8010 is usually FO, but changes when a button is pressed. Also I remind you that the display buffer is located at 0100-01FF.
The game is a DREAM version of the "Shoot" or "Skeet" game where the player is required to "hir" lighted LED's chasing through six positions. In the DREAM version a dot moves horizontally through 32 positions with an initially stationary bullet dot 14 positions below and halfway along the target's path. On pressing any button on the keybad the bullet moves up to the level of the target dot. If it "hits" the target the target is destroyed, if it misses the bullet now moves horizontally as well and must also be destroyed (the player gets unlimited replacement bullets). The game is over when all targets are eventually destroyed. The target speed should be variable to make the game harder or easier. See also Fig. 4. The listing I have given has the address at the left, the mnemonic, value and comments. The arrows show the branch "paths". Changing the operand at address 0095 varies the speed.
Next month: Indexed and Implied addressing, the stack pointer and subroutines.

줏

OUR BOARDS DON'T COME BACK

Despite the TLC we give them, like through hole plating, reflow soldering, high quality fibre glass, solder resist masks and hard gold edge connectors - our boards and cages, and systems just don't come back to visit.

We know they all don't go to good homes either. Some are stuck in dusty factories, some are in the hot and steamy tropics, some are even sent to sea. You'd think some of them would get sick of it and come back - even if it's only for a check up.

If you are interested, here are some of our most ungrateful lines.

S100 PRODUCTS

SBC 800

The SME Systems Z80 single board computer. On board EPROM, battery backed CMOS RAM \& clock and a host of other features.
Kit $\$ 445$ A\&T $\$ 495$.

FDC-II DISK CONTROLLER

For single or double density, $5^{\prime \prime}$ \& $8^{\prime \prime}$ drives. SDOS and CP/m available.
Kit \$395 A\&T \$465.
64K DYNAMIC RAM CARD DRC-III
Fur low-cost memory expansion from $64 \mathrm{~K}-256 \mathrm{~K}$. Invisible refresh.
Kit $\$ 550$ A\&T $\$ 600$.

I/O BOARD SPC-29
Dual serial ports capable of up to 19,200 baud. Nine pro grammable parallel ports. Many more features.
Kit \$205 A\&T \$245.
MPB 100-CPU
Meets $Z 80 \mathrm{CPu}$ card requirements. Provision for 4 K PROM. Kit \$310. A\&T \$365.

OTHER BOARDS INCLUDE

 VDB 8024 VIDEO(On board CUP and keyboard interface).
FDC-I DISK CONTROLLER
(for 5" \& 8" single dens.)
Z-80 STARTER KIT
(Low-cost entry into micros).
MPC-4
(Multi Port Card, 4 serial)
WIRE WRAP CARD
EPROM PROGRAMMER

And many more. Send today for a full catalogue. Enclose $72 \mathbb{}$ in stamps.

SPECIAL APPLICATIONS

If your board isn't on our list, or our drawing board, we'll design and build it for you.

UNICORN MICROCOMPUTER SYSTEM - widely popular in
business and industry. 4 MHz Z80 CUP, 64K dynamic memory with bank select to allow multi-tasking multi-user through 8 pages of 64 K each, and up to 256 K of RAM on a single board.
DOS CP/M and CDOS compatible with a wide range of software. Supplied as basic system or as complete turnkey package.

CARTRIDGE DRIVE $5+5$ Mbyte Interfaces to S100, Apple \& Tandy Systems and others.

DUAL 8" DRIVE SYSTEM Available rack or bench mount. DDR-II Rack Mount $\$ 1800$ DDR-II Bench Mount $\$ 1750$

S100 CARD CAGE

Available rack or bench mount.
Fan cooled power supply - 8 v @ 15 amps ; $\pm 16 \mathrm{v}$ @2amps.
11 slot motherboard.
R/M Kit $\$ 375$ A\&T $\$ 475$
B/M Kit \$415 A\&T \$515.

DATASOUTH DS180

180cps dot matrix printer with long list of features. $\$ 2840$.

TELEVIDEO TV1950

Smart terminal 80×25 display, 15 baud rates, programmable function keys and many uther features. $\$ 1595$.

SOFTWARE

Business packages, languages, word processing, entire CP/M users library. Database debuggers, assemblers - call us for a full list.

ELECTRONIC SYSTEMS SPECIALISTS HOURS 9 a.m. - 5 p.m.

The Antarctic Expedition - solar activity effects skeds

More on the Antarctic Research Expedition's progress, and news of a CW QRP club, are among the items covered this month.

During early February, 1982, very severe solar activity with a resulting polar cap absorption effect, and magnetic disturbances, severely restricted the usable frequencies, making contact with the Oceanic Research Foundation impossible for several days. This was a complete reversal of the extremely good conditions experienced during January. At the time of writing propagation was still very disturbed, but showing signs of improvement.
Since the January 15, 1982 contact, reported in last month's notes, and January 29, 1982, daily contacts were made with the Expedition, on board the "Dick Smith Explorer". During that period the schooner was moored in a small natural boat harbour, discovered by Mawson 71 years ago, in Commonwealth Bay. The position is 67 degrees south latitude, 142 degrees 41 minutes east longitude.
The daily skeds on 14105 kHz were generally at good signal strength and readability. A 14 MHz dipole antenna sloping from the top of the main mast had made quite an improvement to VKODL signals.

On Saturday and Sunday January 16/17, 1982, visitors to the Museum of Applied Arts and Sciences, Sydney, NSW, were able to join in a contact with VKODL, having their questions on conditions in Antarctica answered by Don Richards, VK2BXM, the expedition's radio operator.
During the good communication period many messages of congratulations and good wishes were passed to the expedition by amateurs in Sydney, Australia, and Auckland, Christchurch, and Nelson, in New Zealand. On several occasions relatives were able to talk directly to expedition members.
On the January 21, 1982 a special message was received from VKODL for all crew members' relatives. The message was to allay any distress or fears resulting from news of a mishap the
previous evening. A catamaran, two canoe hulls braced together, in which a party of four were going ashore had been swamped in rough water, subjecting the occupants to submersion in the icy water. Quick thinking by Dr David Lewis and other members enabled them to be rescued within minutes. Although suffering from varying degrees of hypothermia, all had recovered within an hour. But the incident was not without its anxious moments.
Apart from passing messages, many interesting and informative facts about Antarctica were received firsthand. The biology work includes counting penguin chicks, seals, and bird life, and the scientific study of ice formation on land adjacent to the mooring, and on Greater and Lesser Mackeller Islands. Tunnelling through snow drift and ice to gain access to Mawson's Hut - an Australian national shrine - was also described. Also mentioned was the temperature in the "radio room" (the schooner wheelhouse) - zero degrees Celcius!

Undoubtedly the most interesting messages described the condition and contents of Mawson's hut: a May 1912 London newspaper, with photographs of the Titanic disaster survivors; the wording on food and medicine container labels; a large, almost full, tin of honey that still smells and tastes good; and the effect that wind and ice has had on the outer wall timber. To hear these descriptions and to ask questions of someone on the spot was an enthralling experience.
After experiencing gusty winds blowing up to $70 \mathrm{~km} / \mathrm{h}$ for five days, the expedition sailed from the boat harbour in calm weather at 1100UTC on January 29, 1982. On the next sked, at 0900UTC January 30, their position was $66^{\circ} 51 \mathrm{~min}$ south latitude, $143^{\circ} 44 \mathrm{~min}$ east longitude. They were in calm, clear weather with a slight breeze, in the Way Archipelago, checking penguin rookeries and bird life.

During the next three days no contact was possible due to a very severe solar disturbance which affected all radio contact to Australia and New Zealand from Antarctica.
At 0915UTC on February 3, 1982 one of the New Zealand net stations was able to copy a faint CW signal from VKODL and learn that all was well on board and the position was $66^{\circ} 52 \mathrm{~min}$ south latitude, $146^{\circ} 02 \mathrm{~min}$ east longitude. A strange feature of this type of disturbance is that phone signals from Australia and New Zealand generally can be copied in Antarctica but signals back are non-existent.
On February 4, 1982, on the 0900UTC sked, it was learned that since leaving Commonwealth Bay they had sailed east and found an iceberg, suitable for scientific study, in Pacquita Bay. However, overnight the ice pack froze, conditions became dangerous, and they had to leave. The antenna on the stern was lost.
Moving west along the coast they found an area of open water in Buchanan Bay. There was plenty of pack ice around but they were looking for another iceberg to study.
The polar cap absorption effect, solar flares, and magnetic disturbance were still very severely affecting signals from within the Antarctic circle but not so bad on the reverse path.
The position given on February 5, sked was $66^{\circ} 54 \mathrm{~min}$ south latitude, 144° 23 min east longitude, still in the Buchanan Bay area among pack ice, in a strong breeze. Signals had improved considerably. One message from Don had the landlubbers on the net puzzled. After several requests for repeats it was learned that old nylon stockings have a very important use in the Antarctic, attached to the rigging as wind indicators.
Comparing the position $66^{\circ} 56 \mathrm{~min}$ south latitude, $144^{\circ} 28 \mathrm{~min}$ east longitude, given at 0915UTC, February 6, with that of February 5, revealed little progress through pack ice in the Buchanan Bay area.
Signals from VKODL continued to have the characteristic polar flutter selective distortion, or rapid fading into the noise

Join the people who have made the Air Force theirlife

I've seen a lot of Australia. Now I'm looking forward to being posted overseas

You don't mind working hard if it's for a specific purpose like the country's security.

I enjoy being a member of the team that keeps our F111's fully operational.

At 23 I found myself promoted to Section Head That kept me on my toes

You're trained to work on some of the most advanced equipment in the world

It isn't all work I have time to relax and play my favourite sport.

The opportunities for promotion with more pay and responsibility are there.

'The training has set me up with a career for life - it's really professional

The satisfaction and rewards are immense.

A new lifestyle. New friends. New interests New qualifications. New places visited. And you start on full adult pay too! After training we'll pay you even more! Then there's four weeks annual leave and the opportunity to continue studying for higher qualifications. So if you want to reach a higher rank, it's up to you

It's not an easy life.

Success demands application. A disciplined approach to your work. What's more, you'll be part of a special team that's proud to wear the Air Force uniform.
Normally you'll work a five day week. But at times we expect you to do extra duties.
You must be prepared to join us for a minimum of six years and be prepared to live and work on any one of our bases.

Your future.

Is it in Flight Systems, Propulsion Systems, Air Frames, Telecommunications, Engineering, Administration, Weaponry, Supply or Motor Transport?

The choice is vast. The scope unrivalled.
So if you're aged between 17 and 34 years (17 and 43 years if no trade training is required). an Australian citizen or meet our nationality requirements, we would like to meet you. (People with civilian qualifications and experience are most welcome to apply.) Enquiries are also invited for Apprenticeships.

Today, walk into the Air Force Recruiting Office nearest you and have a chat with a Careers Adviser. The address is in the phone book. It could be your first important step to an exciting new career. Alternatively send the coupon or phone for the facts

Brisbane

2262626
Wollangang 286294
Hobart: Melbourne: Meibourne
613731

Townsvilte 713191 Parramalla 6351511 Adelaide Adelaide
2121455 Newcastle Newcastle:
25476

You're somebody

 in Today's Air Force

level due to the severe solar disturbance which peaked earlier in the week.
However, description of awesome icebergs, towering ice peaks, and large ice caverns at the tip of the Mertz Clacier have been pieced together by participants in the Oceanic Research Foundation Expedition Net, listening intently to VKODL.
The conclusion to this month's report on the progress of the expedition is to lay claim on behalf of Don VK2BXM/VKODL mobile marine and myself VK2APQ - to being the first to establish amateur radio teletype (RTTY) contact between a mobile marine station in Antarctica and Sydney.
To make it more memorable is the fact that it was from an Australian expedition in Commonwealth Bay, within sight of Mawson's hut, 71 years since he established his base and the 100th anniversary of his birth.
It surely symbolises the progress in communications since that early expedition.
Several RTTY contacts have been made. The first fully completed was on Sunday, January 24, 1982, at 1045 UTC, lasting nearly two hours. The RTTY terminal units were Tono Theta 7000 E with video displays, plus printout in Sydney.
The Tono Theta 7000 E and video monitor on board the "Dick Smith Explorer" was made available to the expedition by Vicom International Pty Ltd, through their Sydney branch. It was operating in a temperature around zero degrees Celsius, a good test for both the equipment and the operator's fingers.

NORTH QUEENSLAND CONVENTION

There were 95 registrations at the fifth WIA North Queensland Convention held at Townsville on September 25-27, 1981. The venue was the T.ownsville College of Advanced Education. The convention was officially opened by the Mayor of Townsville, Alderman Mike Reynold.
The event was well patronised by trade houses with displays of the latest in amateur equipment and, together with lectures, inspections, and field events, all interests were well catered for.
A most interesting lecture, illustrated with slides, was given by Harry Kinzbrunner, VK4HK, on the Royal Flying Doctor Service 1928-1929. At the James Cook University a lecture was given by Kevin O'Neil on the work being done on
transmission lines, followed by a tour of the research facilities. Dr John Nicol, also of the James Cook University, delivered a lecture on high frequency antennas.
There were several other talks and visits, all of which helped to make the event a memorable one.
This is a biennial event - so plan to be in Townsville in 1983.
For those amateurs who in the next few months may be holidaying in the North Queensland area away from the cold south, here are a few details of the Townsville Amateur Radio Club
President - Roger Cordukes, VK4CD; vice-president and publicity officer Peter Renton, VK4PV; vice-president and awards manager - Bill Sebbens, VK4XZ; secretary - Don Bowman, VK4ZYZ; treasurer - Ken Telford, VK4ZOC.
Saturday afternoon lectures are held for the novice class and provide a valuable service to the newcomer to amateur radio. AOCP classes are planned for 1982.
The TARC repeater, VK4RAT, on Mount Stuart, gives very good coverage for mobile operation. The frequencies are, input 146.100 MHz , output 147.000 MHz . The club station call sign is VK4WIT. Beacons on two, six and 10-metre bands are also provided by the club, and are kept in service by John Stevens, VK4AFS.
The TARC monthly newsletter is editored by Evelyn Bahr, VK4EQ.
Throughout the year the club participates in slow Morse code training sessions, field days, Scout Jamboree on the Air, amateur radio displays, and regular general and social meetings.
For full details write to the Secretary, PO Box 964, Townsville, Qld, 4810.

VK CW QRP CLUB

This club has about 60 members scattered throughout Australia, and is actively seeking new members in all VK call areas.
The aim of the club is to promote the use of CW (Morse code) and QRP (decreased power) as a means of communication between local and overseas stations. Although not a new concept, CW and QRP does offer a challenge in this era of high power, commercially produced, amateur station equipment and the general use of single side band telephony.
It is claimed that QRP CW takes up less bandspace, causes less interference (QRM) and can be used under conditions that make voice communication impractical.
A friendly competition is conducted among club members which caters for those who just want to chat to local sta-

[^5]tions as well as those keen on DXhunting. Membership of the club does not compel anyone to submit competition entries on a regular basis. However, everyday on-the-air results can be applied to the competition.
An annual contest is held about November on an international basis, which is attracting an increasing number of entries from Australian and overseas stations.
Members are kept informed of happenings on the club scene by a quarterly news bulletin which covers - contest score boards, DX news, awards, world QRP news, home-built equipment, and items of general interest.
Membership fee is $\$ 4$ plus $\$ 1$ for a membership certificate issued when a total of 50 points is scored in the local/DX competition. An informative brochure for prospective members covering all aspects of the VK CW QRP Club may be obtained from the following:
Barry Bennets, VK1BB, 48 Chuculba Cr Giralang ACT 2617.
Colin Stevenson VK2VVA, PO Box 109, Mt Druitt NSW 2770.
Lou laquinto VK3DFI, 36 Amelia Street, McKinnon Vic 3204.
John Saunders VK4VEH, Cl-S. Marks Coll PO, James Cook University, Townsville Qld 4811.
Len O'Donnel VK5ZF, 33 Lucas Street, Richmond SA 5033.
Jack Swiney VKGJS, Collova Way, Wattleup WA 6166.
Rai Taylor VK7VV, 25 Twelfth Avenue, West Moonah Tas 7009.
Inquiries from VK8 or VK9 call areas should go to VK6JS or the nearest state representative.

TASMAN SPANNED ON 1296 MHz

Dick Norman, VK2BDN of Croydon, Sydney, NSW worked B. Ryall, ZL1AVZ in Auckland, NZ on 1296 MHz , distance approximately 2163 km , at 6.47 EST on 9/2/82. VK2BDN used 30W to two loop Yagis at 18 m high, while ZL1AVZ used 1.3 W to a 3.6 m dish antenna. As far as it is known, this is the first time that the Tasman has been spanned on 1296 MHz .

DO YOU WANT TO BE A RADIO AMATEUR?

The Wireless Institute of Australia, established in 1910 to further the interests of Amateur Radio, conducts a Correspondence Course for the A.O.C.P. and L.A O.C P. Examinations conducted by Telecom. Throughout the Course, your papers are checked and commented upon to lead you to a successful conclusion.
For further information, write to

> THE COURSE SUPERVISOR W.I.A. (N.S.W. DIVISION) P.O. Box 123, ST. LEONARDS, N.S.W. 2065.

Alaska site of planned Gospel station

The Federal Communications Commission in Washington has

 received an application from the World Christian Broadcasting Corporation to establish a shortwave transmitter at Anchor Point, Alaska, to beam programs over the North Pole to Europe.The plans are for a 100 kW shortwave transmitter to be located at Anchor Point, the southernmost tip of Alaska, to broadcast to Russia, the Far East and over the Pole to Europe. A curtain antenna and a log periodic antenna will be used to cover the target area. There has been some local reaction to the operation of a high powered shortwave station located near a populated area, according to a member of the FCC, discussing the application with Jonathan Marks of Radio Netherland.
The proposal to send a signal over the polar area, which is subject to often severe disturbed reception due to aurora displays, has led to the technical feasibility of the station being questioned in many quarters. Plans are for the station to be operating early next year and if the project becomes a reality Alaska for the first time will be available on shortwave, as a new country in international broadcasting. In the past the Alaskan mediumwave stations have been the only means of confirming reception of the 50th State of the United States.

RADIO NEW ORLEANS

After plenty of advance publicity about WRNO Radio New Orleans and its planned shortwave commercial programing to Europe and Canada, the station is finally in operation. The initial tests were carried out in January using a 100 kW transmitter beaming signals across the Pole to Europe and were very well received in Australia and New Zealand. Our reception of the tests was on 17895 kHz up to 2000 UTC while Harry Weatherley in Melbourne noted the broadcasts at 2200 UTC on 11890 kHz . The station address is: WRNO Radio New Orleans Worldwide, New Orleans, 70002 Louisiana, USA.
The tentative schedule is

[^6]1800-2000UTC 17895 kHz ; 2000-2200 15355; 2200-2400 11890; 2400-0200 11965; 0200-0700 6155. On Sundays the transmissions will be for 24 hours. Commercial programming is being restricted to 12 minutes in each hour with bright music being the main feature of the broadcasts. WRNO is using a variety of frequencies all of which should be heard in Australia during the broadcast day.

EUROPEAN NEWS

BELGIUM: Brussels has retimed its English broadcast heard during our late mornings and this is now on the air from 0030-0115UTC on 9870 and 11695 kHz . A service to Asia $1400-1430$ broadcast Monday to Friday is received on 21810 kHz . Two new frequencies have been observed with local programing; 9780 kHz opens at 0800 in Dutch while 17900 kHz has been heard in French at 1830.
GREECE: Athens broadcasting to Australia at 2100UTC has moved to 15335 kHz from 15345 to avoid interference from the Armed Forces Radio. The broadcast is also on 9645 and 11730 kHz and is repeated to Australia 2200-2250 on 9645 kHz .
IRELAND: South Dublin Radio 6240 kHz broadcasts on Sunday 0600-0800UTC using 1 kW , according to a verification. The station address is South Dublin Radio, North St, Sworde, County of Dublin, Ireland.

ASIAN NEWS

DUBAI: Radio Dubai has made a frequency change to avoid interference with Radio Nederland Bonaire on 9590 kHz . The new frequency is 9595 kHz which carries English news at 0330UTC, and is beamed to North America. Two other channels 11755 and 11940 kHz carry the same program with the latter channel suffering some interference from Radio Canada before the start of the English news.
MALAYSIA: A new time zone has been created in this area and Malaysia,

Singapore, Sarawak and Sabah are now all eight hours ahead of UTC. Formerly Singapore and Malaysia were seven and a half hours ahead of UTC, while the other two countries were eight hours ahead of UTC.
JAPAN: The Far East Network in Tokyo on 6155 kHz is received at 0900 UTC when frequency information and a jingle is presented before the news. Bryan Clark of Auckland, NZ, reports fair reception of this transmission with some interference from a Russian Home Service program. Chris Rogers of Melbourne, reporting in DX Post, gives information on reception of another frequency, 3910 kHz , which is heard at 1600 UTC presenting a program of popular music.
SRI LANKA: The SLBC has been heard on 6075 kHz with an English gospel service at 1245 UTC and station identification at 1300. Simon Tuck of Adelaide reported in DX Post that this frequency suffers some interference from KCEI San Francisco during the early part of reception.
NORTH KOREA: Radio Pyongyang is using some new frequencies for its English broadcast to the South Pacific in the transmission 0800-0950UTC. 11780 kHz suffers interference from Radio Nacional, Brazilia while 9977 kHz is the channel giving the best reception. Another outlet, 3560 kHz beamed to South East Asia, gives poor reception. A transmission at $0600-0750$ UTC on 9420 kHz to Europe gives the best reception in this area. 11945 kHz also carries the same broadcast, according to the BBC

LATIN AMERICAN NEWS

ARGENTINE-ANTARCTICA: Radio Nacional Arcangel San Gabriel has been heard on 15476 kHz closing at 0105 or 0108UTC. This interesting station was heard by Bryan Clark of Auckland and Steven Greenyer of Invercargill over the past few weeks and its signal strength should improve during the winter months in Australia.
BRAZIL: Signals from Brazilian stations at 0800UTC have been well received on $9585,9675,11765$ and 11780 kHz . All these stations are commercial except 11780 kHz which is an internal broadcast by Radio Nacional at Brazilia.

23-channel transceivers acceptable again

The word has finally come through that 23 -channel CB sets already in this country, which pass the FCC 1976 specifications, will be licenced, whether or not they have been licenced previously. This opens the way for many people to have their equipment legalised.

It is obvious that the Department is opening as many doors as possible to enable operators to become "legal" and I urge you to take advantage of this opportunity, not only for your own benefit, but for the benefit of the CBRS. As I have said many times: the more operators there are licensed, the greater the weight of our arguments when we ask for concessions from the Department.
Or, to put it another way, when negotiating with the Department, it is helpful not to have the spectre of CB "pirates" looming in the background!

From New Zealand

I was interested to receive a letter trom a CBer in New Zealand, following my remarks in the December issue about the CB scene in that country. The letter comes from Mr Kevin McLean of Auckland and reads as follows:
I read with interest your comments in "Electronics Australia". While I cannot comment on the clippings from "Truth", as I did not read them, I would like to make a few observations.

While one or two Radio Inspectors here may be over-zealous in their job, I have generally found them to be helpful in the Auckland area, where most of the problems with CB are.
However, I understand that the problems we have had in Auckland are also appearing in other centres.
The CB Radio Association of NZ is the representative body for NZ CBers and the only organisation the NZPO will listen to on their behalf. They can do nothing else but abide by the radio regulations as they are and try, through negotiation, to change the regulations to the benefit of NZ CBers at large.
I personally belong to a club that is affiliated with the CBRANZ and we believe that the people do have the power to change the law - but only while operating within the law.
While many CBers would like to be able to talk overseas, the view of the majority of responsible CBers is that regulations can be changed to allow this through negotiation. But, if it is changed so that we can talk overseas on 26 MHz , we would then be encouraging law

NEW, MOLDABLE PLASTIC COAX-SEAL ${ }^{\text {® }}$

- Only material that will adhere to poly vinyl or vinyl outer coax jackets.
- Forms and seals over odd shaped and dif ficult fittings.
- Non-contaminating and non-conductive.
- Wide ambient temperature range $\left(-30^{\circ} \mathrm{F}\right.$ to $+180^{\circ} \mathrm{F}$)
- Stays flexible for years thus insuring moisture proof connections.
- Reuseable-allows you to quickly disconnect fittings and reseal them with the same material.
- A must for satellite TV-microwave work-wire antenna at solder joints-in the shack
Packaged in convenient $1 / 2^{\prime \prime} \times 60^{\prime \prime}$ roll. \$4 per roll. P. \& P. \$1
DEALER INOUIRIES WELCOME

Seals coax fittings from moisture and corrosion

COAX-SEAL . . The new space age material that is quick and simple 10 apply. Remove backing from approxmalety 6° ol plastic. Wrap outer covering toward litting. After wrapping, knead 10 lorm a smooth surface and lorce out air. EFFECTIVEFOOL PROOF-INEXPENSIVE.

Hy-Tech Distributors, Building 51, Archerfield Aerodrome, Qld., 4108 Telephone: (07) 2775624.
breaking in some other country, as we are the only country using 26 MHz ; all others are using the 27 MHz band
As for asking Australian operators who exploit the 26 MHz band to "cool it", all I can say is "thank you", as the signals from over the "pond" do cause considerable problems. We are hoping that the time will ultimately come when we will be able to have a legal QSO with our counterparts in Australia.
Kevin McLean, AK 2366.
Well, thank you for your letter, Kevin. I only wish that more CBers in NZ would put pen to paper, so that we could gain a better knowledge of events and attitudes in your country.

And From Britain

By courtesy of Ken Upton and the "Sunday Post" for November 1, 1981, I have this report from Britain:
"Car accessory shops throughout the country are preparing for an onslaught tomorrow when Citizens Band radio becomes legal.
"Some shops have been taking orders for weeks from customers eager to break on to the airwaves.
"One Clasgow shop has sold 20 sets in the last week, and has a further 47 waiting to be picked up tomorrow morning.
"With each CB radio and aerial fetching up to $£ 100$, some retailers report record takings.
"One dealer said he's unable to keep up with demand. If sales keep at their present level, he'll have exhausted his supply by the weekend. Many sets have been imported from countries where CB is already legal.
"One retailer expects the 5000 CB users in the Clasgow area will double in a year.
"But many radio 'hams' are determined not to change to the new legal frequencies. They say they've already spent hundreds of pounds on equipment and won't alter it.
"Citizen Band radio has caused a great deal of controversy since the first sets arrived in this country a few years ago.
"Many householders have had their TV reception interrupted by CB conversdtions and hospital and other paging systems suffered from interference.
"The Lord Provost of Clasgow, Dr Michael Kelly, is a CB enthusiast. He plans to have a set fitted into his RollsRoyce and claims it will make him more accessible to the public."
For once, Jan Christensen is speechless!

About the NCRA

Finally, I want to give expression to my promise to give a resume of some currently active CB organisations. At the top of the list is the NCRA.
The National Citizens Radio Association of Australia (NCRA) is the longest running CB association in Australia, and probably the best known. Founded in 1976, it quickly became a body consisting of over 300 clubs, with Divisions in each of the States, with the exception of SA and the Northern Territory.
One of its earliest achievements was the founding of the Citizens Radio Emergency Service Teams (CREST). The top executives of the NCRA were also the top executives of CREST. Since that time the two organisations have gone their own way, until they reached their present autonomous state.
Legalisation brought problems, as many clubs let their membership lapse because, to many, the fight was over. Financial problems plagued the organisation, and they still do. Because of manpower and financial difficulties, the NCRA is now controlled nationally by the National Executive and the National Council. Hard work on behalf of the executive, and the faith and support of many members ensures that the NCRA is still considered the major spokesman for the CB operators of Australia by the Department. Submissions and letters are constantly being sent to the Department, which gives careful consideration to them.
The NCRA is co-founder of the World Personal Radio Congress; has, as affiliates, the Citizens Band Radio Council of Ireland, the British Sidebanders HQ and is associated with the Citizens Radio Repeater Association and the Australian Citizens Band and Radio Association.
Membership fees are: $\$ 10$ per club registration plus $\$ 2$ per financial member per year. Individual membership is also available: $\$ 10$ per year full membership or $\$ 2$ per year Associate membership. Enquiries should be sent to NCRA, PO Box 406, FORTITUDE VALLEY, 4006, which also happens to be the postal address for correspondence in relation to this column. That is because I am the Na tional Liaison Officer for the NCRA and it saves me having to spend money getting my own PO box.

Jan Christensen

$50 \& 25$ YEARS AGO
"Electronics Australia" is one of the longest running technical publications in the world. We started as "Wireless Weekly" in August 1922 and became "Radio and Hobbies in Australia" in April 1939. The title was changed to "Radio, Television and Hobbies" in February 1955 and finally, to "Electronics Australia" in April 1965. Below we feature some items from past issues.

April 1932
High Power: The opening of 5 CK , the new relay station at Crystal Brook, South Australia, has given us the first taste of high power broadcasting.
Transmitting with 15 kilowatts in the aerial (about three or four times that of 2 FC) the station is heard here in Sydney like a local broadcaster, although situated many hundreds of miles away.

Kilocycles: Although it is not quite so impressive, Americans now prefer saying "600 centimetres" instead of "fifty thousand kilocycles" because it is easy to say; although whether a metre or a cycle is more suitable for measurements is not easy to say.

मे $\hat{\boldsymbol{y}} \hat{\mathrm{y}}$
Music: After 11 pm , music in one Stockholm house or flat must not be audible in another, according to a new bylaw made in that city.

Surgery: Electro medicine, especially high frequency surgery, has opened a new field for the modern physician. Today, high frequency surgery has saved the lives of thousands of persons.
We already know the fact that a high frequency field traversing the body produces heat in the body. This is used, for instance, in the diathermy, where a high frequency current is applied to the tissue by direct contact electrodes.

No fading: Complete absence of of static disturbances and fading, which are so troublesome in long-wave long distance reception, is noted in connection with research on the ultra-short beam-wave apparatus, according to Senator Guglielmo Marconi, who has been engaged for some time in such experiments. The very short waves are also very economical, using only 60 watts of power. Senator Marconi found that the waves will penetrate the brick walls of Italian houses with ease, while American buildings absorb them on account of the amounts of steel and iron used in their construction.

April 1957
Electronic memory: The electronic memory, a key element in modern commercial and military computers, has been reduced to unprecedented compactness and simplicity by RCA Laboratories with the development of a novel printed plate magnetic storage unit that can tuck away 256 bits of computer information in a thin wafer less than an inch square.
Linked in series to form a large-capacity memory system, the tiny plates will enable computers to store electronically more than a million bits of information in a space about the size of a shoebox, and to recall the bits in a few millionths of a second in any desired order, combination, or quantity.

Space travel decried: Enterprising scientists who were planning journeys to the moon could not have been encouraged by a pessimistic forecast during the month.
Dr Lee de Forest, one of America's most famous scientists, dismissed as impossible one of modern science's persistent dreams - travel into outer space.
Dr de Forest known as the Father of Electronics, predicted that man would never reach the moon, let alone travel by rocketship to strange worlds in distant galaxies.
He said that only his scientific imagination will ever make man a planetary migrant.
Dr de Forest invented the vacuum tube that made possible the development of modern radio broadcasting, television and radar.

No more fighter planes: Several controversial defence matters seem to have been resolved in recent months.
Some weeks ago the RAF was reported to have decided upon the last type of fighter plane it would take into service.
Defence chiefs consider that guided missiles have rendered fighters obsolete; that Britain's future menace will not come for manned bomber aircraft as in the last war.

STUDIO FORMAT

ETI 5000 STEREO CONTROL PREAMPLIFIER

There have been countless accolades exclaiming this brilliant design by Australia's top audio design engineer David Tilbrook - and with good reason.

SHEER SUPERB SOUND CLARITY
Together with noise levels that would do studio equipment proud
PART OF THE SECRET IS
the use of very fast response time "State of the art" OP amp semis, which have only become readily avallable in recent times.
As a demonstration of our faith in this classic designed preamplifier we proudly release the STUDIO FORMAT 5000PREAMP which includes some very worthwhile refinements as detailed here:-

* Gold plated RCA Jacks on all phono inputs.
* $1 \times$ pair gold plated RCA Line Plugs, supplied
* Military spec. National Semiconductor LM 394 's employed.
* Low capacitance screened cable, supplied; IC sockets provided throughout; Multicoloured led display.
* Metal film 1% resistors used throughout all audio circuitry
* Pretinned PCB's.
* Satin Black brush finished, aluminium control knobs.

FACILITIES AND SPECIFICATIONS

Inputs

Low Level - Moving coil, moving magnet 1 , moving magnet 2 .
High Level - Tuner, Aux1, Aux 2.
Tape - Tape 1, Tape 2.
Calibration - Inbuilt 400 HZ Oscillator.
Led Level Meters
Mode selection to - Source, tape 1 record level, tape 2 record level.
Range
Display
Frequency Response
Distortion \quad - Less than $.003 \%$ all inputs.
S/NRatio - Greater than 100 db (A weighted) High Level IP/S. Greater than 92 db (A weighted) Moving Magnet iP. Greater than 75 db (A weighted) Moving Coil IP.
Monltor Output - Enables comparison of record level to source levels.
DELUXE STUDIO FORMAT 5000 PREAMP KIT
K 5001
Complete kit includes all ETI specified parts plus the Studio Format Package. Full instruction booklet included.

$$
\text { SEE ETI MAGAZINE JULY' } 81 \text {-OCT. '81 FOR FULL DETAILS. }
$$

ETI 5000 STEREO MOSFET AMPLIFIER
See ETI magazine Jan. '81-April 81 . New generation mosfet power semis facilitate David Tilbrook's classic power amplifier. Listening tests prove it surpasses even the best in con. ventional amplifiers in low fatigue, high definition audio. completely uncoloured crisp sound purity.

EVEN BETTER: This beautifully engineered amp design is based principally on two identical printed circuit boards with a minimum of other wiring, thus enabling even a relative "beginner" to accomplish building this project as long as the step by step instructions are followed.
The Altronics Kit includes the DELUXE FINISH FRONT PANEL HEATSINK.

- Original specified chassis bar design case. All metal work finished satin black. Flux shorting strap transformers used to minimise hum Low leakage power supply electrolytics SPECIFICATIONS:
Power Output: 100 watts into 8 ohms x. Frequency Response: $8 \mathrm{HZ}-20 \mathrm{KHZ}+0 \mathrm{db}-.4 \mathrm{db}$. Noise: 116 db below full output. Input sensitivity: IV RMS for 100 W output.
DISTORTION: Less than $.001 \%$ at 1 KHZ and full output.
COMPLETE MOSFET AMP KIT K 5005
$\$ 289.00$

DIGITAL FREQUENCY METER See Electronics Aust. Mag. Dec. 81 -Feb. ' 82 $500 \mathrm{MHZ}, 7$ DIGIT RESOLUTION PLUS
PERIOD MEASUREMENT FEATURE

IMPORTANT NOTES

(1) This project is well within the scope of the "not so experienced" as virtually all components are contained on a single PCB
(2) ALTRONICS USE ONLY THE SPECIFIED KITS THAT DO NOT CONFORM TORIOR ORIGINAL DESIGN

- Prepunched and screened Iront panel, no drilling or filling required. Bright high efficiency 7 segment display. Frequency ranges $\begin{array}{ccc}0-10 \mathrm{MHz}, & -50 \mathrm{MHz}, 10-50 \mathrm{MHz} \text { (with optional } \\ \text { pre-scaler) } & 4 \mathrm{gating} \text { times }-01,11110\end{array}$ presonds. 4 period measuring ranges $1^{1,10,100}$ and 1000 input cycles give 0.1 us resolution and 1000 input cycles give 0.1 us resolution. 100 mv at $50 \mathrm{MHz} @ 1 \mathrm{M}$ input impedance. 00 mV at 500 MHz 95 ohms input impedance, - High accuracy typically better than $.005 \%$; count uncalibrated.

Costs a fraction of commercial counters. EXCLUSIVE ALTRONICS KIT FEATURES * IC sockets provided throughout.

Low aging $10,000 \mathrm{MHZ} \times \mathrm{TAL}$.

- Thermalloy heatsink for 5 V regulator. Quality Pactec Instrument Case with tilting bail.
K 2500 (50 MHZ version)
K 2501 Pre-scaler
(add for 500 MHZ version)

FUNCTION GENERATOR WITH DIGITAL DISPLAY

EA's new Function Generator covers the frequency range from 15 Hz to 170 kHz in three ranges with coarse and fine frequency controls. An economical 4-diglt display has been \ln corporated to eliminate dial callbration. Sine wave distortion can be trimmed to around 0.5%. See EA Aprll, 1982

K 2505
$\$ 79.50$
ALTRONICS POWER SUPPLY
BASED ON EA LM 317K PROJECT Every workshop, school and hobbylst should get one now!

- Overload and short circuit protected.
- Full voltage and current metering.
- 3-32 volt output at 1 AMP.
- Uses LM 317 K variable regulator
- Full instructions and every last part included. VALUE PLUS!
K 3200
$\$ 39.95$

DUAL TRACKING POWER

+ and - 22 V up to 2 AMPS
 and thermal runaway.
K 2507 See EA March, 1982
$\$ 86.00$

DIGITAL

THERMOMETER LCD

WESTON CAR SOUND

* Superb Japanese Engineering.
- Rugged and Reliable.
* State of the Art Electronics.

Famous LANKAR SPEAKER SYSTEMS
We are absolutely delighted with our range of LANKAR Car Sound Speaker Systems - if you've already got a set you will know what we mean - beautifully engineered, physically and acoustically. Definitely Australia's best value for money in speakers. All kits are supplied C/W mounting hardware, terminals, cable etc.

WESTON

CAR SOUND

AUTO REVERSE CASSETTE

 DECK CS100- 8 watts per channel * Quality patented tape transport mechanlsm . Fast forward and rewind All IC circultry. Frequency response $33-10 \mathrm{KHZ}$. Dimensions: $48 \mathrm{H} \times 120 \mathrm{~W} \times 165 \mathrm{D}$.

Rugged and Rallable!

C 9110
$\$ 69.50$

AM/FM CASSETTE CS500

- Quality AM/FM receiver - Sensitivity 3 UV FM, 10 UV AM * 6 watts per channel power output * $33-10 \mathrm{KHZ}$ frequency response Wow and flutter less than $.2 \%$ Output impedance 4-16 OHMS * Power source DC 13.2 V neg. ground 350 MA No. sig. to 2.5 amps. Both channels fully driven.

C 9120
$\$ 89.50$

CS4000

THE POWER HOUSE
MASSIVE 25 WATTS/CHANNEL
WITH DIGIT FREQUENCY
READOUT \& DIGITAL CLOCK

HIGH FIDELITY AM/FM CASSETTE

Super sensltive $A M / F M$ receiver with superb fidelity inbuilt amplifier. When you feel you owe it to yourself to go "top shelf" this is the one, and at our price why not anyway! DIGITAL DISPLAY gives continuous readout of signal frequency or at the flick of a switch becomes a digital clock. DX-LOCAL sensitivity switch. FREQUENCY RESPONSE 40 HZ10 KHZ . STANDARD IN-DASH MOUNTING.
C 9130
\$179.50

OVER 1,000 KITS TO CLEAR ½ PRICE!

Famous ETI Project Electronics Kits

	Normally	NOW
Continulty Tester	$\$ 4.00$	$\$ 2.00$
Heads or Talls	$\$ 3.50$	$\$ 1.75$
500 Second Timer	$\$ 4.50$	$\$ 2.25$
Morse Practice Set	$\$ 3.50$	$\$ 1.75$
Battery Saver	$\$ 3.90$	$\$ 1.95$
Buzzboard	$\$ 3.90$	$\$ 1.95$
Basic Amplifier	$\$ 5.50$	$\$ 2.75$
Temperature Alarm	$\$ 4.90$	$\$ 2.45$
Singing Moisture	$\$ 4.90$	$\$ 2.45$
Meter		
Electronic Bongos	$\$ 5.00$	$\$ 2.50$
Simple AM Tuner	$\$ 6.50$	$\$ 3.25$
Project Elect. Bk.	$\$ 4.75$	$\$ 2.40$

* ALTRONICS DIRECT IMPORT ELECTRONICS CATALOGUE

Our first edition catalogue was released with Electronics Australla Magazine March 1982. If you missed out send $\$ 1.00$ to cover packing and postage You will be amazed at the savings ALTRONICS offer in comparison to the "Heavyweights" of the Electronics Component Industry.

20 WATT TWIN CONE 5'

C 9312 $\$ 39.5$

\$2 DELIVERY AUSTRALIA WIDE We process your order the day received and despatch via Australia Post. Allow approx. 7 days from day you post order to when your recelve goods. Weight limited lokgs.
\$4 DELIVERY AUSTRALIA WIDE We process your order day received and despatch via Jetservice for delivery next day
BANKCARD HOLDERS CAN PHONE ORDER UP TO 8PM (EST) FOR NEXT DAY DELIVERY - SOUNDS INCREDIBLE DOESN'T IT? Alright you cynics just try us! Weight limit 3.3 kgs . Jetservice cannot deliver to P.O. box numbers (Australla Post would have a fit). \$10.00 HEAVY HEAVY SERVICE - AUSTRALIA. WIDE All orders over lokgs must travel on the heavy service, that is - road express. Delivery time 7 days average.

All MAIL ORDFRS: BOX 8280 PFRTH Stirling St.WA 6000

Portable Radios, Dictation Recorders, and for charging NICAD Batteries.

Product reviews, releases \& services

Trio CS-1820 20MHz Dual Trace Oscilloscope

Abstract

TRIO have a reputation for producing fine equipment and this new oscilloscope will do nothing to harm that reputation. The CS-1820 will appeal to professional or amateur alike, requiring a high quality oscilloscope. If features a delayed time base, 20 MHz bandwidth and 2 mV /division sensitivity.

Dimensions of the CS-1820 are 190(H) $\times 260(\mathrm{~W}) \times 435(\mathrm{D})$. The front panel has an uncluttered appearance with enough room between the controls for easy finger access. Vertical channel controls are located on the lower section of the front panel, under the CRT
The vertical channel conrols comprise: 5-2-1 stepped attenuators (covering a range from 5 V to $5 \mathrm{mV} /$ division), concentric vernier attenuators with indented calibrate positions, input coupling switches (AC,CND,DC), a mode selector switch ($\mathrm{CH} 1, \mathrm{CH} 2, D \cup A L$, and $A D D$), a pushbutton to invert CH 2 's display and vertical shift controls.
The vertical shift controls normally provide $\times 5$ vertical magnification when pulled out. The exception is when the stepped attenuators are in the 5 mV position. In this case pulling out the vertical shift controls switches the vertical sensitivity to 2 mV /division.
The CRT has a $95(\mathrm{H}) \times 118(\mathrm{~W})$, flat, rectangular face with an internal 8×10 division graticule etched on it. There are also $0,10,90$ and 100% markings on the CRT face to assist in determining pulse rise and fall times. A minor irritation is that there is no internal illumination of the graticule. When taking measurements off the CRT some means of highlighting the graticule makes the job easier and reduces the chance of error
Measured accuracy of the time base was $\pm 1 \%$, well within the $\pm 3 \%$ specification. A $\times 5$ time base magnifier is also provided. This had an accuracy within $\pm 2 \%$, much better than the $\pm 10 \%$ specification quoted in the handbook.
The twenty-first position on the time base switch places the CS-1820 in the $\mathrm{X}-\mathrm{Y}$ mode with CH 1 providing Y -axis deflection and CH 2 providing X-axis deflection. In this mode the CS-1820 had only 3° of phase shift between the CH 1 and CH 2 amplifiers at 300 kHz . This is a very good result and speaks highly for the vertical amplifiers in the CS-1820.
Vertical channel sensitivities were found to be within $\pm 3 \%$. Quoted bandwidth is 20 MHz but we measured band-
width to 31 MHz . For a 20 MHz oscilloscope this is excellent.
The triggering circuitry performed well, maintaining effective trigger to over 80 MHz . The usual trigger facilities are provided allowing triggering from CH 1 , CH 2 , LINE and EXT sources. Either positive or negative slopes can be chosen for triggering. The coupling between the input and the trigger circuitry can be altered between AC, LF rej, HF rej, and DC. This allows selective triggering off various components in a complex waveform.
Located on the right hand side of the CRT is the control for the delayed time
ed. This delays a selected portion of the trace allowing it to be expanded and examined in more detail.
The last controls to be mentioned are the HOLDOFF control, which assists with triggering when examining complex pulse waveforms, the POWERINTENSITY control and the FOCUS control. A small drawback with the focus control is that there is some time delay between adjusting the control and the final effect on the trace.
A minor criticism of the CS-1820 is with the location of the 2 mV position of the vertical attenuator. When pulling the vertical position control to obtain 2 mV sensitivity, it is very easy to offset the trace a small amount. This can lead to errors when taking measurements if you are not careful.
The instruction manual supplied with the CS-1820 is fairly comprehensive and contains sections on specifications,

An uncluttered appearance and a high standard of finish are combined in this new oscilloscope from Trio.

base. This is a five position switch with a range of delays from 100 ms to $1 \mu \mathrm{~s}$. A concentric vernier control varies the delay over a 10:1 range between the limits inscribed on either side of the switch position. In practice the vernier control exceeds the stated delay limits by a small amount to provide some overlap between ranges.
The delayed time base control is activated by the "delay inten'd" button situated in the row of four buttons on the right hand side of the CS-1820. With this button pushed the delay is set by the rotary DELAY TIME switch in conjunction with the vernier control. Next either the CH 1 or CH 2 buttons (or both) are push-
operation, applications and maintenance as well as providing a full circuit diagram. At $\$ 965$ (plus $171 / 2 \%$ sales tax where applicable) the CS-1820 offers very good value for money. The presentation is good, the controls are smooth and easy to use, and the unit was commendably within specifications. Probes are not included with the oscilloscope, however the manual suggests a PC-22 probe (also from Trio) which is a switchable (1:1 or 10:1) $10 \mathrm{M} \Omega$ probe.
Further information on the CS-1820 can be obtained from retailers of Trio equipment or from the Australian distributors, Parameters Pty Ltd, 41 Herbert Street, Artarmon, NSW, 2064. (J.S.)

Soanar's capacitors are smaller

The development of new manufacturing techniques by two of the world's largest capacitor manufacturers, the Elna Co Ltd and Samwha Electric Co Ltd, has resulted in significant reductions in the size of their electrolytic capacitors.
As a result, Soanar Electronics Pty Ltd is advising customers that future deliveries of Soanar type RB radial lead PCB electrolytics and Soanar type RT axial lead electrolytics could be smaller than the sizes shown in the Soanar catalog.
Electrical specifications including leakage current, temperature and voltage ratings are enhanced. Smaller size also has the advantage of less demand on board space, reduced susceptibility to vibration and easier use of automatic insertion and assembly equipment.
Soanar request that customers contact the company to obtain details of the new sizes and specifications of the capacitors before they proceed with the design and lay-out of new printed circuit boards. The address is Soanar Electronics Pty Ltd, 30 Lexton Rd, Box Hill, Vic 3128.

Digital multimeter

AWA's new DM500 digital multimeter is now available from AWA's North Ryde division and interstate agents and offices.

The new multimeter has 30 ranges measuring AC and DC voltages, and currents up to 10A. Ohms measurement, a diode and transistor checker and a continuity tester are also included.

The digital multimeter is provided with a carrying case, test prods, battery and spare fuse. A range of optional accessories such as a high frequency probe, IC clip and a test lead set are also available.
For further information contact the In strumentation Department, AWA Ltd, 422 Lane Cove Rd, North Ryde, 2113.

Full range of IC sockets from Utilux

A comprehensive range of integrated circuit sockets is now available from Utilux Pty Ltd. Parts from a single pin through to conventional dual-in-line styles and zero insertion force types can be supplied from stock.
Two types of DIL socket are offered: the Series 3406, available in standard sizes for PCB mounting, and the Series 7600 high reliability type with gold plated contact springs, which are
available in either PCB styles or wirewrap types.
Series 21600 zero insertion force sockets can also be supplied. In addition Utilux has a new range of DIN rack and panel connectors in a variety of contact plating materials and configurations, made to the German DIN specification.
For further information contact the company at 14 Commercial Rd, Kingsgrove, NSW, 2208.

Easter sample bag from Jaycar

Once again, Jaycar's Easter celebration is on, with a sample bag of goodies available for a fraction of its value.
The Jaycar sample bag contains four packs of plastic tubing, assorted knobs, resistors, radio dials, battery clips and bezels, including the unusual, such as a 2.5 mm to 5 mm plug socket connector. A Milky Bar and copies of "Hobby Electronics" are also included.
Our early prototype sample bag also contained a Phantom comic. However, the feeling at Jaycar is that the Phantom comics of late aren't quiet up to scratch,
so the company is switching to Spiderman comics, which they feel are more in keeping with their up-to-date image.
Retail value of the sample bag contents is claimed to be over $\$ 25$, but Jaycar customers can purchase it for just $\$ 6.50$. They are available from Jaycar's new store at 125 York St, Sydney (above Dick Smith Electronics). Don't go calling at the showground Commemorative Pavillion - this is strictly a Jaycar offer!

Jaycar also has available a range of push-on knobs for miniature controls, which can be supplied with coloured inserts in red, green, yellow, white, blue or grey to identify different controls, or to simply "dress-up" that new project.

New soldering aids from Royston Electronics

Royston Electronics are distributors of a wide range of manufacturing aids for the electronics industry. New products available from the company include an 80W temperature controlled desoldering tool, a range of Royal solder dipping pots and the Heller automatic axial lead forming machine.
The CT 200-1 desoldering tool features
continuously variable temperature, achieved by electronic feedback and switching, and will operate from any Royal re-work station. Provisions to prevent the tool clogging with solder include a two-stage thermal transfer assembly. The extended fitting ensures that the solder remains molten until it reaches the collection chamber.
Royal solder dipping pots are available with solder capacities of 28 g and 84 g . Various crucible shapes are available to

is go to $x t$ voa post quiesce then the next friday SERINE III ASTRAL HAVE THE IN AUSTRALA
 Don't forget our super fast road or air freight servally overnight.

 in Australia for just $\$ 7.00$. This service is no ry properties, allowremote country However, for delivery to remold Orders - for fast service 48 hours. Dick Smith Mail delivery.

MAOR
 DICK SMITH RESELLERS

Dear Customer,

Ouse often, the products we advenise are so popular they run out within a lew days. $\mathrm{O} t$. unforeseen circumstances might hold up goods so that advertised lines are not in the store by the lime the advert appears Please don't blame the store manager or stats: they cannot solve a dock strike on the other side of the world, of
even locate a shipment that has gone astray. What we are trying to say is that. it you are about to drive acıoss town to pick up a particular line at a Dick Smith store. why not give the store a ting first (addrassas/phone numbers below) just in case l Thanks Dick Smith and Staff.

DICK SMITH Electronics

MSW 145 Parramatta Road AUBURN 6580558 - T55 Terrace Level BANKSTOWN SQUARE $7074888-613$ Princes HwY BLAKEHURST 5467744 - 552 Oxford SI BONDI JUNCTION $3871444-808$ George Si BROADWAY 2113777 - 531 Piltwater Rd BROOKVALE $930441-147$ Hume Hwy GORE HILL 4395311 - 396 Lane Cove Rd NORTH RYDE 8883200 - 30 Goose St PARRAMATTA 6831133 - 125 York St SYDNEY 2903377173 Maitland Rd TIGHES HILL $611896 \cdot 263$ Keira St WOLLONGONG 283800 VIC 399 Lonsdale Si MELBOURNE $679834 \cdot 260$ Sydney Rd COBURG 3834455 - 656 Bridge Rd RICHMOND 4281614 - Dandenong Rd SPRINGVALE $5470522-205$ Princes Hwy GEELONG 786363 - Ross Smith Ave and Nemean Hwy FRANKSTON 7839144 ACT 196 Gladstone SI FYSHWICK 804944 OLD 166 Logan Rd BURANDA 3916233 - 842 Gympie Rd CHERMSIDE 596255 SA 60 Wright SI ADELAIDE 21219620435 Main North Rd ENFIELD 2606088 - Cor Main South Rd G Flagstall Rd DARLINGTON 2989877 WA Cr Contra: PO Box 321 North Hyde 2113 Phone 40218883200 St PERTH 3286944 Mall Order (02) 8883200

SHOPS OPEN Gam to 5.30 pm (Saturday: Gam till 12 noon) BRISBANE: Half hour earlier. ANY TERMS OFFERED ARE TO APPROVED APPLICANTS ONLY

POST \& PACKING CHARGES
$\begin{array}{ll}\text { ORDER VALUE } & \text { CHARGES } \\ \text { SS OO SS } 99 & \$ 120 \\ \text { S10 } 00 \text { \$24 } 99 & \$ 220\end{array}$ $\begin{array}{ll}\text { S10 } & \text { S } 24 \\ \text { SR } & \text { SN } \\ \text { St } 99 & \text { SH } 30\end{array}$ $\begin{array}{ll}\text { St } \\ \$ 5000-59999 & \text { S4.40 }\end{array}$
$\$ 10000$ or more $\$ 600$
Charges for goods sent by post in Australia only

New Products

solder dip tags, wires and small component leads. A third model operates at $360^{\circ} \mathrm{C}$ and is intended to provide efficient tinning of enamelled and copper wires.
All of the solder pots feature protective cages which are perforated to allow a free flow of air around the barrel to prevent over-heating. A heavy cast base provides stability for the pots.
Heller's System H116A axial lead forming machine will cut and form the leads of components from tiny diodes up to
0.75 W resistors. Lead dies are available from 0.5 mm to 1.2 mm sizes. The machine handles loose components via vibrating hoppers as well as component cards and bandoliers, at speeds of up to 17,000 an hour. Lead dies are easily adjusted to cut and form leads to virtually any dimension, with many different standard and U-form configurations.
Full details of all equipment mentioned is available from Royston Electronics, 27 Normanby Rd, Notting Hill, Vic 3168, or 15/59 Moxon Rd, Punchbowl, NSW 2196.

Compact $10 \mathrm{~Hz}-100 \mathrm{kHz}$ signal generator

A compact signal generator providing sine and square wave outputs from 10 Hz to 100 kHz and distortion figures of around $.02 \%$ at 1 kHz has been introduced by Philips Test \& Measuring Instruments.
Designated the PM 5109, the generator provides a choice of asymmetrical or dual floating symmetrical outputs as well as TTL level and DIN speaker outputs. Operation can be either in a low distortion or a fast setting mode.
Open circuit output is around 30 V peak to peak - around 10 V RMS - on the asymmetrical output. Both sine and square wave signals are available with stepped, calibrated attenuation of up to 60 dB with 20 dB continuous attenuation. Output impedance can be switched between 600Ω and 50Ω.
Also available from Philips Test \& Measuring Instruments is a versatile function generator with both linear and logarithmic sweep facilities. The PM

5133 provides sine, square and triangular waves from .01 Hz to 2 MHz as well as positive and negative going pulses. The logarithmic sweep ranges cover more than four decades.
Output frequency and open-circuit voltage is pushbutton selectable with indication on a $31 / 2$-digit LED display. Maximum output is 20 V peak to peak, 10 V peak for pulses, with a $\pm 5 \mathrm{~V}$ offset. Both stepped and variable attenuation is provided.
For further information contact Philips Scientific \& Industrial Equipment, 25-27 Paul Street, North Ryde, 2113.

Australia's Radio Pioneers

ctd from p21

One of the most memorable occasions of that 1938 convention was Ray Allsop's stereo demonstration - the first in Australia and only the second in the world. An audience of 2000 in Sydney's Plaza Theatre listened to an orchestra playing in the nearby Regent Theatre, the stereo components being carried by two equalised PMC landlines to a sophisticated array of loudspeakers backstage at the Plaza (even in those days the terms "woofer" and "tweeter" were in use). In addition, Allsop treated his captive audience to some specially produced short films with stereo soundtracks, including a table tennis match which "was particularly realistic in that the bounce of the ball from side to side was easily followed, both visually and aurally". It is interesting to recall that this
historic demonstration was described as "stereoscopic" sound, because it was thought that the word "stereophonic" had been copyrighted by overseas interests.
The 1938 World Radio Convention provided international recognition that Australian electronics had come of age and, as the stern lessons of history were to show, not a moment too soon. Within a few years Australia would be virtually isolated by the tides of conquest and would become the main strategic base and arsenal of the Allied war effort in the South West Pacific. When that occurred, the professional capability of the electronics industry would be taxed to the limit in producing the tools of victory on a scale that would have seemed impossible only a few years before.

ELECTRONIC TECHNICIANS

We require the services of several electronic technicians to work in our Service Department at North Ryde. The work involves repair of an enormous variety of electronic equipment in our air conditioned workshops.
Applicants should ideally possess the E\&C certificate, have had several years experience in the industry and be able to work without supervision. Salary negotiable and generous staff benefits apply. If you think that you're the person that we need, please apply in writing to:

Gary Crapp Service Manager DICK SMITH ELECTRONICS P.O. Box 321, North Ryde N.S.W. 2113.

 DSE928

PRODUCTION SUPERVISOR melbourne TO \$17,000 + CAR

A position with a future - but only for the right person.
A person who can think for themselves, who has been exposed to or has had experience in supervision and production in electronic instrumentation, including wave-soldering and PCB assembly.

You'll need to be enthusiastic and able to run our production lines and supervise. train and get on with your staff.

Through your skills and your willingness to work we would expect you to improve the efficiency of our production lines.

To be this good (or have the potential to be good) you obviously will not be a clock watcher or seat-warmer.

For further details telephone (03) 7625777 or write stating experience, age etc to -

> SCIENTIFIC ELECTRONICS, 6 HOLLOWAY DRIVE, BAYSWATER 3153 VICTORIA THE POWER SUPPLY SPECIALISTS

Department to study monitoring of emissions from satellites over Australia

The Department of Communications is looking into the possibility of monitoring electromagnetic emissions from both orbiting and geostationary satellites over Australia.

We want to monitor these emissions in order to identify sources of interference to Australia's terrestrial radio services and, in years to come, interference to our satellite services by those operated by other countries. (It may surprise readers to know that today about 66 geostationary satellites are visible from Australia, and, as well, many orbiting satellites make frequent passes over the Australian mainland.)
In addition, as a member of the International Telecommunication Union, and given our geographical position in the southern hemisphere, it is Australia's responsibility to be able to verify that radio regulations relating to space services in our region are being observed. Similarly, there is a need to define adequately power flux densities and other characteristics of satellite emissions so as to avoid unacceptable levels of interference to our radio-communications services in general.
This need will become more important in the future since it is clear that there will be more intensive sharing of frequency bands between terrestrial and space services.

The department is also investigating the overhauling of its monitoring services in general and a draft program being prepared includes satellite monitoring, a central laboratory in Canberra, and the upgrading of equipment used by our officers in the field.
We want to reduce the number of comprehensive monitoring stations which include the large antenna installations needed for receiving signals in the high frequency (HF) bands and for direction finding. Whereas historically this type of station was set up in each state, we now believe that a lesser number of strategically placed, well-equipped stations will be able to serve our international monitoring requirements and also most of our needs to monitor the use of the medium frequency (MF) and HF bands within Australia.
There are plans to provide specialised, semi-permanent and transportable monitoring facilities within the more settled areas and in the major cities to monitor the VHF and UHF bands. Some of these stations will be operated either by remote control or automatically.

DAVID REID ELECTRONICS IF YOU'RE INTO ELECTRONICS
 COME IN AND SEE US!

WE'RE A POSITIVE FORCE IN SYDNEY AND THE LARGEST ELECTRONICS DISTRIBUTOR IN NEW ZEALAND - WITH THOUSANDS OF ELECTRONIC PRODUCTS, COMPONENTS AND ACCESSORIES YOU'LL SEE THE SIGN DAVID REID ELECTRONICS LIMITED
Takapuna - Auckland City - Te Papapa - Hamilton Palmerston North - Petone Wellington Christchurch - Dunedin Sydney

CLAMP METER

MODEL YF-700

Top of the range model AC Voltage 150 V 300 V 600 V AC Current 6A 15A 60A 150A 300 A. Resistance $5 \mathrm{k} \Omega$ (Midscole 200 2)
was \$49.99
NOW ONLY
$\$ 43.55$
DSCOUNT
DISC DRIVES COMPUTERS

PRINTERS

PRIN	
ITOH 8300 PARALLEL	$\$ 668+$ TAX
ITOH 8300 SERIAL	$\$ 730+$ TAX
ITOH 1500 PARALLEL	$\$ 1515+$ TAX
(DAISYWHEEL)	
ITOH 1500 SERIAL	$\$ 1555+$ TAX
(DAISYWHEEL)	$\$ 910+$ TAX
IOH 8510 PARALLEL	$\$ 1015+$ TAX
ITOH 8510 SERIAL	
(GRAPHIC ETC)	
RITRON COMPUTER GRADE P/S	

+5 V reg 10a 16 V unreg (n |A KIT \$79 95 inc Bult and tested $\$ 9950$

ETI636 MOTHERBOARD 7 Slot Motherboard $\$ 9000$ Built and Tested $\$ 12000$ ACTIVELY TERMINATED

INTERSIL LCD $\$ 34.50$

 $31 / 2$ DIGIT PANEL METER KITSBuild a working DPM in $1 / 2$-huur with these complete evaluation kits Test these new parts for yourself with in. tersil's low cost prototyping kits complete with A/D converter and LCD display (for the 7106) or LED display for the 7107 Kits provide all matrials including PC board. for a functioning panal meter ICL7 106EV (LCD)

P.C. EDGE CONNECTORS

S100 gold plated wire wrap	$\$ 8.50$
S 100 solder tail	$\$ 6.90$
D2 Motorola bus	$\$ 8.50$
$43 / 86$ solder tail	$\$ 81.50$
$43 / 86$ gold plated wire wrap	$\$ 11.50$

10 TURN POTENTIOMETERS
slock resistance values
50R 100R 200R
500月. $1 \mathrm{~K} 2 \mathrm{~K} \quad 5 \mathrm{~K}$ 10K 20 K 50 K
100k
Spectrol model 534 "\& shaft
Price 1 - 9
$\$ 9.50$
$10+$ values mav be mixed $\$ 8.90$
Please debit my Bankcard Bankcard No.
Expiry Date
Name
Signature

cermet single TURN TRIM POT
Spectrol model 63p ACTUAL SIZE
stock values
10R. 20R. 50R. 100R. 200R, 500R. 1 K . $2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 50 \mathrm{~K}, 200 \mathrm{~K}, 500 \mathrm{~K}$.

POWER TRANSFORMERS

SPECIALLY DESIGNED FOR MICROCOMPUTERS

- Good regulation electrostatic shield
- RI 810

8 V @ $10 \mathrm{~A} \times 15 \mathrm{~V}$ @1A $\$ 26.50$

- RI 820 8V (a 20A 15V (a 1A 15 V (11 3A $\$ 36.50$
 ACTUAL SIZE

STOCK RESISTANCE VALUES 10R. 20R. 50R. 100R, 200R. 500R, 1 K . $2 \mathrm{~K}, 5 \mathrm{~K} .10 \mathrm{~K}, 20 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$. 200 K . 500K. 1M. 2M

$\mathbf{5 K}$	
$1-9$	$\$ 140$
$10-99$	$\$ 130$
100	$\$ 1.20$

$\$ 1.20$

MULTIDIALS

Dials to suit 10 T Pots
Model 21^{1} 8" dia $^{\prime \prime}$
Model $169^{\prime \prime}$ dia
Model $181^{\prime \prime} \times 175^{\prime \prime}$ dia

1M. 2 M

$1-9$	$\$ 100$
$10-99$	090
100	0.80
Values may be mixed	

DIP SWITCHES SPST		
PN	So of Switches	Price
PN	3	$\$ 160$
SD3	4	170
SO4	5	190
SD5	6	230
SD6	7	240
SD7	8	250
SD8	9	270
SD9	10	300

16 Pin Zip. Dip
11
24 Pin Zip°
24 Pin Zip ${ }^{\circ}$ Dip 11
40 Pin Zip* Dip 11
INCREDIBLE MEMORY
AND DISC DRIVE PRICES $\begin{array}{rrr}1.91025 & 25+ \\ 4.90 & 400 & 3.90 \\ 4.90 & 420 & 3.90\end{array}$ 4.90
800
750
1950 $11.001000 \quad 950$ 4116 (200nS) 4164 64K Dynamic
$1000 \quad 900 \quad 850$ M58725P $(2 \mathrm{~K} \times 8) \quad 1000 \quad 900$
$\left.\begin{array}{l}\text { Static } \\ \text { (As used in new } 64 K\end{array}\right)$ Static S100 PCB) all prices incluoe sales tax

DISK DRIVES

MPI $51 \$ 275.00$ + 17.5\% ST
MPI $51 \$ 275.00+17.5 \%$ ST
MPI $52 \$ 38500+175 \%$ ST MPI $91 \$ 415.00+175 \%$ ST MPI $92 \$ 515.00+17.5 \%$ ST

TANDON

TM100-1 \$29500 $+175 \%$ ST
TM $100-2 \$ 385.00+175 \%$ ST
TM $100-3 \$ 41500+175 \%$ ST
TM100.4 \$51500 + 175% ST

RS232 \& "D" TYPE CONNECTORS

| | RS232 ART |
| :--- | :--- | :--- | :--- | :--- |

BUILD YOUR OWN SPEAKERS WITH PHILLIPS

PART No	PRICE
ADO140TB	\$11.86
ADO16101TB	\$1695
AD01605.TB	\$1654
ADO162.T15	\$1878
ADO162.T15	\$13.03
ADO162.TB	\$13.77
AD0210-SQ8	\$32 70
AD02160-SQ8	\$36 91
AD02161.SO8	\$33 46
AD10100-W8	\$52 72
AD12100-HP8	\$85.10
AD12100-M15	\$79.11
AD12100-M8	\$79.11
AD12100.W8	\$53.99
AD12200-W8	\$7312
AD12250-W8	\$9052
AD12650.W8	\$73 12
AD2273-T8	\$5 03
AD4060.W8	\$19.06
AD5060-SQ4	\$22.05
AD5060.SQ8	\$2205
AD5060.W8	\$1759
AD5061.MB	\$17.08
AD70601.W8	\$20.40
AD70620.M8	\$2154
AD7063.M8	\$20 78
AD70630 M8	\$20 78
AD70650.W8	\$26.96
AD7066.W8	\$26 96
AD80601.W8	\$20 24
AD8061.W8	\$20 24
AD80652 W8	\$26 20
AD8066.W4	\$27 66
AD8081.M8	\$9 81
AD9710.M8	\$41.11
ADF $1600 \cdot 8$	\$19.44
ADF500-4500.8	\$1944

$\$ 1944$

DIODES		
	$10-99$	$100+$
IN4001	$6 c$	$5 c$
IN4002	$6 c$	$5 c$
IN4004	$7 c$	$6 c$
IN4148	$5 c$	$4 c$
IN5404	$30 c$	$25 c$
IN5408	$35 c$	$30 c$
IN4007	$12 c$	$11 c$

HEATSINKS
High Thermal Capacity Black Anodised

Unanodised

$\begin{array}{llllll}\mathrm{HS} 12-75 \mathrm{~mm} \\ \mathrm{HS} 13-150 \\ 220 & 190 & 160 & 125 & 120\end{array}$
$\begin{array}{rllllll}\mathrm{HS} 13-150 \mathrm{~mm} \\ 490 & 400 & 320 & 245 & 240\end{array}$

BLANK

CASSETTES

T.D.K.

TOK ADC60	1 lor \$3 60	10 lor \$2
TDK DC60	1 for \$2.10	10 tor $\$ 1800$
TDK 00C60	1 tor $\$ 3.50$	10 lor \$3100
TOK SAC6O	1 lor \$3 30	10 lor $\$ 29.00$
TDK SAXC60	1 for $\$ 570$	10 for \$46.00
TDK DCSO	1 lor \$3 05	10 lor $\$ 2100$
DK ADC 90	1 lor $\$ 350$	10 tor \$28 00
K SAC 90	1 lor 5420	10 tor \$3700
K ODC90	1 for \$4 70	10 lot \$45 00
K SAXC90	1 for \$5 50	10 tor \$49 00
TOK DC120	1 for \$450	10 lor $\$ 37.00$
K ADC12	1 lor \$540	10 lor \$46

Post \& Pack $\$ 2.50$ small kits, heavier kits add extra postage.
Prices subject to change without notice. Send 60c and SAE fór free price list and inclusion on all future mailing lists.
MAIL ORDERS: PO Box 235, Northcote, Vic 3070. Min P \& P \$1.00.
Ph: (03) 4898131.

425 HIGH STREET, NORTHCOTE 3070, MELBOURNE, VICTORIA. Ph (03) 489 8131. Telex No. 38897

Books \& Literature

World Radio \& TV Handbook

1982 WORLD RADIO \& TV HAND. BOOK, edited by Jens Frost. Thirtysixth edition published by the World Radio \& Television Handbook Company Ltd, Copenhagen, Denmark.

Having a complete library of all the Handbooks published since 1946, one can look back on the amazing growth of the publication and the complex nature of editing a Handbook which lists all the world's radio and television stations. The directory not only gives the information by continental grouping and country, but also by frequency for medium and shortwave. The 1982 Handbook (70,000 copies first edition) has all the usual operating times, frequency, power, address, program details and the like and in its reference section has lists of all the world's radio clubs, DX programs, time in all countries and a host of other features.
Over, the past two years a special 35 -page supplement "Listen to the World", which includes a receiver review
and buyers' guide, has been included. In the 1982 edition Larry Magne again tests receivers, from the professional communications receivers such as the Racal RA679 through to the semi-professional receiver such as the NRD 515 onto the Sony ICF6800 and the FRG7700. There are several interesting articles, contributed by experts in their field on such diverse subjects as "The Potential Audience for Shortwave Broadcasting" through to the latest shortwave station, WRNO New Orleans.
The Editor, Jens Frost, and Assistant Editor, Andy Sennitt, and the many collaborators throughout the world who compile the various sections of the Handbook are to be congratulated on another excellent effort. The 1982 edition will be a most valued publication on the radio listeners' bookshelf.
Stocks are available throughout Australia from leading booksellers and in New Zealand from the sole agent, Arthur Cushen, 212 Earn Street, Invercargill. (ATC)

Towards a standard computer language

TOWARDS A FORMAL DESCRIPTION OF ADA: D. Bjorner and O. N. Oest (eds). Lecture Notes in Computer Science Vol. 98. Soft covers, 622 pages, $165 \mathrm{~mm} \times 24 \mathrm{~mm}$. Published by Springer-Verlag 1981. Price $\$ 17.10$.

Sometime in 1975, the United States Department of Defence realised that it had too many programmers programming its bombs and missiles in too many different computer languages. The result was a "rapidly increasing expense of military software systems". In order to eliminate this offensive tower of Babel, the military hit upon the idea of a single, standardised programming language that could be used for all military computer systems.
The proposals for the new common language specified that it be built on a base of one of three existing languages, Pascal, Algol 68, or PL/1. All replies to the call for tenders chose to start from Pascal.
Perhaps the essential aspect of Ada is
the concept of program modules dividing the solutions to large, complex problems into smaller, more understandable components. Hence Ada introduces the notion of the "package", consisting of a program specification and a separate section which carries out the specified procedure.
Since the language is made up of a library of packages, each of which can be compiled as needed, Ada can be tailored to a wide variety of computer applications, general data processing, real-time industrial control operations and intensive scientific calculations. The elements of the language can be learned as needed. A subset of Ada corresponds very closely to Pascal, so that transition to the new language is simplified for the hosts of Defence Department programmers.
This book, the 98th Volume in the Lecture Notes in Computer Science series, is a report on the Ada project of the Technical University of Denmark, and consists of a number of papers and M.Sc
thesis projects carried out with the intention of providing a "formal definition" of Ada, and to look at some of the problems of writing and testing compilers for the language.
The book consists of three sections and an extensive appendix. Part I describes the organisation of the Danish project for the development of an Ada compiler. Part II is the formal definition of the language in symbolic logic terms, while Part III describes the design of a hypothetical computer to run the compiler. The result is a complete coverage of Ada from an academic perspective. The appendix is a reference manual for the language project, summarising the aspects of the Ada model.
Part II, the formal definition, discusses each command available at each level of the language, the parsing of each command, and the alternatives available in the construction of an Ada compiler. It is a complete treatment of the Ada language from an advanced viewpoint, and not to be recommended for the beginner,
Based on Pascal, with extensive error checking and "fail-safe" schemes, Ada is a language which requires a lot of computer memory. For this reason we are unlikely to see the full language implemented on a microcomputer, although reports from the United States indicate that certain sub-sets of the language will shortly be available there, including one which runs under $C P / M$.
Ada, by the way, is named after Augusta Ada Byron, Countess of Lovelace. Daughter of the poet Byron, her notes published in London in 1843 regarding Charles Babbage's "Analytical Engine" included a formula for solving tidal problems on the machine - essentially, the first example of a computer program.

Our review copy came direct from the Australian distributors, D. A. Book Depot Pty Ltd, 11-13 Station St, Mitcham, Vic 3132. (PV)

Display Electronics: a useful text

DISPLAY ELECTRONICS, by Ken Tracton.
Soft covers, 252 pages, $130 \times 210 \mathrm{~mm}$, well illustrated with diagrams and photos. Published 1977, by TAB Books, USA. Price $\$ 7.50$.
While this book was written a few years ago, it is now in its third printing. This is one indication that in spite of recent developments in this field, this book is still relevant and useful.
Chapter one gives a good discussion of the units of measurement of light and goes on to talk about photon emission and photoelectric effect and PN junction luminescence. Finally, lumped in at the end of this long chapter, is a section on photocells and fibre-optics.

Chapters two and three are given over to LEDs, some LED driver circuits and a sketchy discussion of opto-isolators. Chapter four is titled arrays and displays and is devoted mainly to a dicussion of seven-segment LED displays, and alphanumeric displays. There is also some discussion of multiplex drive for these displays but one would be hard put to understand this method since there are no explanatory diagrams showing the switching waveforms.
Chapter five covers new displays and photosensitive devices and begins with the oldest display device of them all, the cathode ray tube! Very briefly mentioned are flat-panel displays (mainly speculation on how it might be done) and gas discharge displays. And while this book was written some four years ago, the author must have completely ignored or been ignorant of the considerable development that was taking place even then in the area of gasdischarge and fluorescent displays by American and Japanese manufacturers.
Liquid crystal displays and their operation are described reasonably well and this section of the book could be regarded as the most relevant section of all.
Laser diodes are discussed in chapter seven but none of their typical uses (particularly in the Laser-Vision system) are envisaged. Finally chapters eight and nine have a practical bent in that the former is devoted wholly to simple projects which mainly involve LEDs while the latter chapter features some notes for designing with LEDs. There are also a number of appendices with specifications of typical LEDs and displays but these will be of little use since most of the devices listed have been superseded.
In summary, while the field of display electronics has developed considerably since this book was first published in 1977, it still must be considered useful because there are so few books covering the field
Our copy came from Dick Smith Electronics. (L.D.S.)

Recently received

ELECTRONICS FOR OCEAN TECHNOLOGY. IERE Conference Proceedings No. 51. Soft Covers, 348 pages, $207 \times 299 \mathrm{~mm}$, illustrated.
This book is the entire proceedings of an IERE-organised conference on Electronics for Ocean Technology which was held in Birmingham on September 8-10, 1981. Thirty-four Papers were presented in four sessions with category names as follows: Sensors and Instrumentation, Data Acquisition and Telemetering, Sonar Systems and Applications, and Fisheries Applications.
No price is quoted for the book but this information can be obtained from the address quoted above.

NEW BOOKS
NEW - NEW - NEW

Latest editions of some of the most popular books on the subject.

World Radio TV Handbook 1982 Edition - order now from our advance shipment Airfreight copies here now 21.95

The Radıo Amateur's Handbook - APRIL 1982 Edition Just Out! A must for the Radio Amateur and Prolessional

Reterence Data for Radio Engineers (New Edition) ITT $\$ 18.90$

Australian Amateur Operator's Handbook Postal \& Telecumminications Department Radio Amateur Callbook 1982 editions Just Out! US Listings 530 DX Listings - all other countries$\$ 3.60$

Adam Osborne Books

Introduction to Microcomputers, Osborne Vol O - Beginners Book
Vol 1 - Basic Concepts 2 nd ed
Vol 2 - Some Real Microprocessors - New Edition. Looseleal $\$ 955$
$\$ 1560$
vol 3-Some Real Support Devices - New Edition, Looseleal
6800 Programming for Logic Design
8080 Programming for Logic Design
280 Assembly Language Programming $\$ 30.00$
\$12.55 280 Programming for Logic Design $\$ 13.80$
$\$ 1140$

Computer Books

Creative Computing Vol 3-Ah1
Digital Counter Handbook - Frenzel
Discovering Computers - Gledhill
Computer Games from Kilobaud Microcom puting
RS. 80 Disk $\&$ other Mysteries - Pennington The Basic Handbook - Lien
earning Basic Fast - DeRossi
TRS. 80 BASIC - Sell-Teaching Guide Albrecht, Inman 8 Samora
TRS-80 Interlacing Book 1 - Titus
$\$ 11.55$
$\$ 11.95$
Basic programming primer - Waite \& Pardee Microconputer interlacing with the 8255 PP chip - Goldsbrough
some of the Best from Kilobaud Microcom
puting
puting
ideo,Computers - Sippl 8 Dah
6502 software gourmet guide \& cookbook
Scelbi
TEA an 8080/8085 co-resident/assembler introduction to TRS. 80 Level II Basic and Com puter Programming - Sabinski
Microcomputer Experimentation with the Motorala MEK 6800D2 - Leventhal
Bipolar Transistor. Fet \& Linear IC Circuits - Ed
Noll's SS Circuit Files Vol 1
Computer Graphics Primer - Mitchell Waite Computer Graphics with 29 Ready-10-Run Pro grams - David Chance
Digibook - A Practical Introduction to Digital Electronics - Elektor
What to do Atter you hit Return - PCC's first book of computer games

Byte Books new series on Computers:

$\begin{array}{ll}\text { Mondeb - An advanced M6800 Monitor } & \\ \text { Debugger - Peters } & \$ 7.00 \\ \text { Tiny Assembly } 6800 \text { Version } 31 \text { - Emmerichs } & \$ 12.60 \\ \text { K2FDOS - A Floppy Disk operating System for } & \\ \text { the 8080 - Welles } & \$ 27.60 \\ \text { Ciarcia's Circuit Cellar - Ciarcia } & \$ 11.20 \\ \text { Tracer - } 6800 \text { Debugging Program - Grappel } & \$ 8.40 \\ \text { Link 68 - An M6800 Linking Loader - Grap } & \\ \text { pel } & \$ 11.20 \\ \text { Byte Book of Computer Music - Morgan } & \$ 13.80 \\ \text { RA6800ML - Relocatable Macro Assembler - } & \$ 35.00 \\ \text { Hemenway } & \\ \text { Numers in Theory and Practice - Programming } & \\ \text { Techniques - Lffick } & \$ 12.55 \\ \text { Byte Book of Pascal - Liffick } & \$ 35.00 \\ \text { Build your own Z80 Computer - Steve Ciarcia } & \$ 22.05\end{array}$

Just a tew of the thousands in stock Call in or write Prices subject to fluctuation Correct at time of going to press
If the book you require is not listed below, it can be ordered from us.

Abstract

\section*{Sybex Computer} Books:

Apple Pascal Games - Hergert 8 Kalash Programming the 6502 (Vol 1) (Vol 2) 6502 Applications Books (Vol 3) 6502 Games Book (Vol 4) Basic Programs for Scientists \& Engineers CP/M Handbook (With MPiM) Don't (or How To Care For Your Computer) Easing into Pascal with UCSD Systems Fitty Basic Exercises Fitty Pascal Programs Inside Basic Games Introduction to Pascal (Including UCSD Pascal) introduction to Personal \& Business Computing Microprocessor Interfacing Techniques Microprocessors: From Chips to Systems Microprogrammed APL Implementation Pascal Handbook Pascal Programs for Scientists 8 Engineers Programming the $Z 800$ Programming the 280 Sybex Book of Pascal Games our First Compuler - A Guide to Business 8 Personal Computing

AMPQtQur Beoto

ARRL Antenna Handbook

The Radio Amateur's License Manual FM \& Repeater for the Radio Amateur Single Sideband for the Radio Amateur Ham Radio Operating Guide
Electronics Data Book
Solid State Design for the Radio Amateur ARRL Antenna Anthology
The Contest Cookbook - Zachary
The Magic of Ham Radio (History) - Swank
New Zealand ART Call Book 1981
Howard W. Sams Books

REVIEWS OF RECENT
Records \& Tapes

CLASSICAL - POPULAR - SPECIAL INTEREST

BERLOIZ REQUIEM: "Achieves a sense of expanse"

BERLIOZ - Requiem. Placido Domingo (tenor). Orchestra of Paris Chorus and Orchestra of Paris. Conducted by Daniel Barenboim. Brochure and translation of text included with two stereo discs in boxed set. DGG 2707 119.

Last month, in my review of the first digital recording of the Verdi Requiem, I commented on the spectacular clarity of the recording and the amount of detail revealed. I also mentioned that this may be self-defeating, to some extent, by removing that slight acoustic veil - for want of a better word - which hangs between orchestra and audience, in even the best concert halls and opera houses.
Think for a moment, if you can go far enough back - as I can - to the old Queen's Hall in London (destroyed in the blitz) or Covent Garden, Bayreuth's Festspielhaus, the Vienna Opera House, the Concertgebouw or others which you may care to add. In none of these does the sound of the oboe seem almost within touching distance.

Room limitations

The fact is that, however capacious your music room, it can never really recreate the effect of a work heard in a large concert hall or a giant cathedral.
Yet this performance does achieve its own form of magnificence. Perhaps this is due to the reverence with which Barenboim approaches the work, at times amounting almost to awe. Yet all is heard and enjoyed at a seemly distance for such massive resources. As such, it comes closer to the effect of a live hearing than a performance with more detailed reproduction or more "presence"
Not that the Berlioz is without this last merit. But its great virtue is that it achieves a sense of expanse to a degree that I have not heard in many other recordings. How this was captured in a recording I cannot guess.

Let me just repeat that the elusive acoustic "veil" that hangs between the orchestra and the audience contributes to the magic of concert-hall sound. I can only explain it by likening it to the glaze that the greatest of the old masters put on their otherwise finished paintings.
Please don't interpret these remarks as a heavy disparagement of the Mehta performance, which is up amongst the best, despite my reservations, as one who has spent a lifetime listening to concert performances. It's just that the Berlioz Requiem under review here escapes those criticisms.
Even so, I repeat that it is too vast a work to compress effectively - no matter how ingeniously - into the confines of a room. One is dealing with a large symphony orchestra, four small brass bands, eight sets of timpani, a chorus and various other sound-making devices; to use the composer's own language: "C'est magnifique, mais ce ne'est pas la guerre.'
At any rate you can listen to it in a comfortable ambience.
As to the performance, I covered much of what I felt in my description of Barenboim's reading as "reverent". His command over his resources is relentless but sympathetic. The almost whispered parts of the Kyrie are wonderfully effective and, importantly, quite devoid of pride.

No threat appears in the Dies Irae until the second "verse". Although this starts almost humbly, it builds and does not achieve true might until the menacing Tuba Mirum grows into a giant sound that you can still listen to without earache. There is no hint of inflation (musical). Barenboim always keeps his great forces in balance.
My only serious disappointment was in the singing of Domingo which didn't seem to belong here at all. But the French Choir was grand. In their higher registers, the women sound truly celestial. To list every virtue would overrun my space but I am impelled to

[^7]
Placido

 Domingo "didn't seem to belong here!"
mention the true supplication in the Offertorium. It goes far to atone for the Gigli-like lachrymosity Domingo sounds like he is developing, together with an unwanted amount of tremolo.
But to weigh this set by its merits will set you wondering which of the other five versions still current you might prefer. It could be any. Only one word of warning about the set under review. If you are not familiar with the text, the enunciation leaves a good deal to be desired. The red-pictured box should attract immediate attention in any display. (J.R.)

A fine performance

RAVEL - Piano Trio in A Minor.

SAINT-SAENS - Piano Trio in F. Maria de la Pau (piano), Yan Pascal Tortellier (violin) and Paul Tortellier (cello). An HMV recording released for members of the World Record Club. R 09432.
It has always puzzled me that the elegant Ravel work has never achieved the popularity of the composer's now famous and often played quartet. Let's hope the sheer merit of the performance you hear here will help to make it better received, especially as it is issued to the members of the World Record Club at its usual budget price.
Its coupling is the Saint-Saens, a composer much admired by Ravel, whose trio is very easily absorbed at first hearing, despite its many merits, while the Ravel grows on a sympathetic listener with every repetition.
I had better start right away by saying
that I have never heard a better performance of the Ravel than on this disc. The work is far from easy if you are just looking for the notes but it is played with peerless attention to nuance except in the opening bars.
There is nothing of the smart boulevardier about the performance. Indeed it is due only to the perfection of the players' technique that disguises the very deep consideration that led to this masterpiece of chamber music.
There is the flowing but constantly changing tempos of the first movement to advertise the combination's perfect rapport; the ingenuity of the following movement described as a "pantoum", which was a curious type of poem used rarely in France during the 8th century; the exquisite fading of quiet sounds into silence at the end of the third movement; a passacaglia, all the eloquence of the same movement's middle section and a finale as brilliant as anyone could desire. It is a work I can return to time and time again and still find surprises.
The Saint-Saens work precedes the period when he became dour, irritable, violently chauvinistic. He refused to play or even listen to Wagner during World War I. He also achieved an unenviable reputation for triteness and dangerous facility
The trio dates from as far back as 1863 when he was 28, and is delightfully youthful and fresh though, not unexpectedly, its workmanship is to be admired even as early as this. One appreciates this all the more when considering that it was composed 50 years before the Ravel.
Altogether a much more than ordinarily attractive disc. (J.R.)

"Escapist charm. . ."

OFFENBACH - Gaite Parisienne.
SAINT-SAENS - Dance Macabre.
DUKAS - L'Apprenti Sorcier. Orchestra National de France conducted by Lorin Maazel. CBS Stereo Masterworks Disc. SBR236016.
This collection looks about as strange as you'd find on any disc yet, unexpectedly, it all sounds very attractive. Gaite Parisienne is presented in the Rosenthal version - that used here by the de Basil Ballet Company just

READER'S DIGEST SET

GREAT ORGAN CLASSICS. Stereo, sixrecord boxed set from Reader's Digest. Also available on cassette. (Reader's Digest, Box 65 GPO, Sydney 2001).

I happened to see reference to this set in an English publication and, on inquiry, found that it was available on request from Reader's Digest Australia.
To clarify the title, it really signifies classics on the great organ. Specifically, the organs featured include the instruments at the Coventry Cathedral, Ely Cathedral, St Martin-in-the-Fields, Leeds Parish Church, Westminster Abbey, Bridlington Priory, Ampleforth Abbey, Durham Cathedral, Norwich Cathedral, Hereford Cathedral, St Paul's Cathedral and several others. In fact, the tracks add up to a virtual organ tour of England, involving not only instruments but the organists who regularly play them.
With an average of about four selections per side, the six records have titles which relate to their contents, specifically in some cases, rather vaguely in others. Just to give you an idea, here are a couple of tracks from each:
"Organ Magnificent" - Minuet and Allegro, Royal Fireworks Music (Handel), Finlandia (Sibelius); "The Romantic Organ" - Final from Grand Piece Symphonique (Franck), Nun Danket (KargElert); "J. S. Bach" - Toccata in D-Minor, Passacaglia and Fugue in C Minor; "Concert Classics" - Allegro (1st Movement) from Symphony No 6 (Widor), Litanies (J. Alain); "Cathedral Spires" Hymn Tune Prelude (Vaughn Williams), Coronation March (Bax); "Wedding Favourites" - Wedding March, Bridal Chorus, Handel's Largo, Clark's Trumpet

Voluntary, Jesu, Joy of Man's Desiring, etc.

So much for the contents, which are such as to tempt anyone with an ear for classical organ excerpts. But how do they actually sound off record?
On the Vista/Reader's Digest label, I would assume that the recordings were commissioned as a project with as much uniformity in the recording equipment as would be practical in such a wide range of venues. So, while the individual recordings have a superficially uniform sound, they also provide a basis for those who want to listen more closely to the instruments and the acoustics.
Indeed, one is left with the overall impression that there is a wealth of musical resource and of musical talent to be found in the cathedrals, the parish churches and the priories of Britain.
As for technical detail, I did not have time to listen critically to every single track but the sound is generally well balanced, with just a trace of surface prickle to be heard in some of the softer passages.
The jacket notes provided by Basil Ramsey (dated 1977) make brief reference to certain of the instruments but concentrate mainly on the composers and their music. Overall, a wealth of interest for lovers of the classical organ. (W.N.W.)
before the war I think.
In the Offenbach you have the once infamous Cancan taken from his Orpheus in the Underworld, played with vigour and sparkle.
The National French Orchestra has improved vastly since it was formed during the late de Gaulle period. Its formation was necessary because other Parisian orchestras were then sadly lacking in morale. I once attended a rehearsal of the complete orchestral works of Ravel conducted by Cluytens in the old Salle Wagram in the early 60s. Cluytens, dissatisfied with the playback of one short section made the band repeat it several times. Finally when they thought they had played it often enough they reached under their chairs and played it again with their hats on!
Cluytens - by birth a disliked Belgian though naturalised French - took the tip, closed the rehearsal and walked out
disgusted.
Maazel wins a performance of exhilarating virtuosity that might well have pleased the old general, although his interest in music was minimal except, of course, for the Marsellaise.

Offenbach's odd companions are also admirably treated. In the oncehackneyed Danse Macabre Maazel himself plays the solo violin part which, in the 1930 shellac version, was "sung" by Russian tenor Vladimir Rosing using the peculiar words "Zig a zig a zig"
The equally hackneyed L'Apprenti Sorcier is also deliciously played. It is, of course, a very much more refined work than the other two. Indeed its composer, Paul Dukas, was so ultra-refined that, on his death bed, he destroyed all the manuscripts he was dissatisfied with. If you're looking for an escapist disc of charm - and distinction, too - you won't do better than this. (J.R.)

APRIL SPECIALS

* LIMITED QUANTITIES ONLY

Transformer Prim: 240 V Sec =

120V 20VA Type 5195
$\$ 4.50$
Dual Power Supply Unit 250 V Input: Secondaries $=+170 \mathrm{~V}$ - 170 V

Transformer Prim: 240 V Sec $=$ 16.5V @ 3.6A, 11.5V @ 8A

Multicoloured 37 Core Cable with aluminium foil shield and grey PVC HD sheath.
T/F/8 240V Brown PVC flex cable
Universal Polarity Checker Type CC250
Solda-Mop desoldet Wick Light gauge
Top Cowel 42° car aerial CA-30 Jabel 3 Pole - 2 Position rotary switch
"Muffin" computer fan 240 V
"Ferguson" PLIZ/20VA/2 12V 20W Transformer
"Panther" $13.8 \mathrm{~V} / 2 \mathrm{~A}$ Power Sup. ply.
Transistors BC 237 or BC 238 10 for 75 c
'Arco" SPST Black Lever Toggle Switch
Slider Switch 1 Pole - 3 way $3 \mathrm{M} / \mathrm{M}$ Red Led 1 of 13 c 100 of $=7 \mathrm{c}$
LT 3215 Red Led array (5 Led strip)
LT 3235 Green Led array (5 Led strip)
Jabel 1 Pole - 6 Position Rotary
Switch

RADIO DESPATCH SERVICE 869 George St, Sydney 2000 Near Harris St. Phone 2110816,2110191

OSCILLOSCOPE OF THE 80s

TRIO CS1560AII

15MHz DUAL TRACE 130 mm
TRIGGERED SWEEP OSCILLOSCOPE

- BANDWIDTH DC TO 15 MHz
- SENSITIVITY 10 mV VIDIV
- SWEEP RATE $0.5 \mu \mathrm{~s} / \mathrm{DIV}$ TO 0.5 S/DIV AND XY IN 20 STEPS
- ATTENUATION 10 mV VIV TO 20V/DIV IN 11 STEPS
- TV VERTICAL/HORIZONTAL SYNC ADD/SUBTRACT MODE
PRICE: $\mathbf{\$ 5 8 0 . 0 0}$ PLUS S/TAX INCLUDING 2 PROBES.

[^8]
BUY TEXAS CALCULATORS

Ex/Tax Inc/Tax

$\mathrm{TI}-59 \ldots . .$.	224.00	255.40		
$\mathrm{TI}-58 \mathrm{c} .$.	135.00	152.36
$\mathrm{TI}-\mathrm{PC} 100 \mathrm{c}$ Printer	205.00	231.50		

TI - 55/II (New Model)
205.00231 .50
53.5359 .95
36.9641 .58
36.9641 .58
$\begin{array}{ll}32.84 & 36.95\end{array}$
$24.57 \quad 27.40$
$17.20 \quad 19.00$
69.5378 .25
$83.09 \quad 93.49$
$74.29 \quad 83.64$
$33.40 \quad 37.60$
$11.37 \quad 12.68$

MAIL ORDER CUSTOMERS

Postage Local.
 $\$ 2.50$

Postage Interstate. $\$ 3.00$

OPEN: Mon-Fri 8am to 5.30 pm . Thursday night late shopping till 8.30 pm . Saturday 8 am to 11.45 am .

BUILD YOUR FIRST TV PROJECTOR

NOW GREATER BRIGHTNESS \& SHARPNESS WITH COMPUTER DESIGNED 3 ELEMENT OPTICAL SYSTEM DEVELOPED IN U.S.A.

Lens unit ready to install in cabinet, with complete cabinet plans \& fittings. $\mathbf{S} 282$.

You can turn any room in your home into your own private Video Theatre. Here is all you need, this new powerful lens, complete set of plans, Liteguard high gain TV projection screen, a sheet of particle board, your own 34 cm colour set and a little time.
We're proud to offer an advanced single lens TV projection kit to the Australian market. Like us you'll be thrilled when you see the superb picture quality on our 1.25 m screen. Your TV projector needs no special maintenance, just very low room lighting to fully appreciate the dramatic difference of Life-Size TV viewing.

Save hundreds of dollars, build your own TV Projector. We guarantee you will be pleased with this new project, if not all money refunded in full for items purchased from this Company and returned in good order and condition within 45 days. How to get started:- Mail your order with enclosed cheque/money order to K.C. Electronics P/L. (Please PRINT your name and full address) OR if not ready to start, just send stamped self-addressed envelope for more details.
Mail to the manufacturers of this kit:K. C. ELECTRONICS PTY. LTD. 239 Scenic Drive, Merewether, N.S.W. 2291 Phone (049) 632411 Suppliers of AN equipment to Schools since 1967

Liteguard $\&$ wall mount. $\mathbf{S 1 6 9}$ Liteguard screen floor stand (optional) S49.

RECORDS \& TAPES continued

BARTOK - Sonata (1926); Improvisations on Hungarian Peasant Songs; Suite, Op 14; and Out of Doors. Murray Perahia (piano). CBS Stereo Masterworks Disc 76650.

Philip Ramey's sleeve notes sagely make a point of the fact that Bartok was just on 40 before he decided on a career as pianist/composer, only to realise that he had only scraps of his own works to introduce to the public. All he had in hand was a collection of short pieces folk songs, transcriptions, etc.
In 1926, with this deficit in mind, he composed the Piano Sonata, the Out of Doors Suite, both featured in this recital, and the First Piano Concerto which isn't. The two first mentioned should make this production novel enough to appeal to most Bartok admirers.
The opening of the Sonata is aggressively rhythmical, like the postintroductory bars of Stravinsky's Sacre. Indeed the whole of the first movement is reminiscent of the Stravinsky of the early ballets but who had then already abandoned this style in favour of neoclassicism. Yet at the same time Bartok can be felt edging himself towards neoclassical, especially in the second (slow) movement. Bartok also shared another character of Stravinsky's work - the reluctance to leave a note around which a movement is based.
A brisk rondo, obviously based on folkloric origins and made all the more effective by first class faithful sounds, closes the work satisfactorily. Perahia plays it like a demon with inexhaustible technique and changes of sonorities.
The second piece, Improvisations on Hungarian Peasant Songs, announces the theme tonally, then goes into well disguised serial style. Perahia plays it with such understanding that it is not difficult to sort out at first hearing.
The fourth movement is a tranquil

NEW TEST RECORD

HI-FI SOUND. Stereo Test Record HFS81. (From M.R. Acoustics, PO Box 165 Annerley, Qld 4103. Phone (07) 48 7598).

1 am reminded by the jacket notes that this is the third test record in the series, the earlier ones having been HFS69 and HFS75. Presumably, the figures relate to the year of release.
In presenting HFS81, the producers John Wright and Clement Brown have in mind the advanced state of modern disc technology and the obvious need for very precise cuts to check and optimise the performance of modern magnetic cartridges. In particular, they are concerned here with phasing, tracking pressure and bias adjustment. The user can rely on aural judgement, although there would be an obvious case for employing instruments, where available, to verify the observations.
In order, the test tracks on the disc are as follow: channel recognition and phasing; lateral modulation and the effect of tracking and bias setting; ditto in respect to vertical modulation

levels; channel output and balances at $1000 \mathrm{~Hz}, 5 \mathrm{~cm} / \mathrm{sec}$ amplitude; bias in relation to inner groove performance.
On side two, the first couple of tracks are concerned with the spatial effectiveness when using an ambisonic playback system - of no special relevance to an ordinary stereo installation. Then follow tracks of pink noise and white noise for subjective system evaluation. Finally, there are tracks for checking wow and flutter, pickup resonance and rumble
The purpose of each track is explained fully in the jacket notes. So, if you're an audiophile who likes to check things out - even though they sometimes leave you rather unhappy - HFS81 is available and ready to oblige! (W.N.W.)
sostenuto which produces almost a sunset effect after its predecessors.
The third suite, Out of Doors, is figurative in its programmatic form. It goes without delay into Drums and pipes, aggressively dissonant and rhythmical. The Barcarolle is placid, its chief interest being its harmonic treatment.
Musiques Nocturnes features Bartok's famous ear for tiny night sound made by insects and rustling trees, a sound which he carried with him all his life. The Chase is a realistic account of a furious hunt. I am not sure that Perahia wins all the poetry and what I can only call the microprocessing of nature in the Nocturne but he is quite at home in all the others. (J.R.)

JE T'AIME. Anthony Ventura and his orchestra. Stereo, Ariola Eurodisc, VPLI-6581. Distributed by RCA.

If you're in a mind to become all sentimental, you need only to read the first sentence in the jacket notes for this album: "Soft, slow and tender melodies - music to dream by or to cuddle up to - music that evokes memories of someone saying je t'aime - I love you."

Not surprisingly, the sixteen numbers on the disc fit the general theme, as evidenced by the contents of side 1 : When A Man Loves A Woman - Tu t'en vas - I'd Love You To Want Me - In The Ghetto - Let It Be - The Green Leaves Of Summer - Adios Amigo - Imagine.
According to the notes, Anthony Ven-

A comprehensive study of power supplies covering basic rectification, filtering, regulation and voltage multiplication, by Barry Davis, RMIT.
Explores current 'state of the art' technology, with an in-depth look at integrated voltage regulators and switched mode powersupply circuits.
All circuits shown have been tested, and provide excellent practical projects for the hobbyist. 1981. \$9.95
AVAILABLE FROM YOUR BOOKSHOP, OR, IN CASE OF DIFFICULTY, FROM:

RECORDS \& TAPES - continued

tura has no love for noisy brass and noisy electronic instruments, but that doesn't say that his arrangements are cramped. He uses a whole range of instrumental sound such that, if his formula fits your mood, you'll enjoy the album many times over.
The sound quality is excellent. (W.N.W.)
$\hat{\sim} \hat{*} \hat{\imath}$
THE PRAISES OF HIS PEOPLE. The Bill Gaither Trio - Their Best Loved Songs of Praise. Stereo. Word WSB-8838. (From Word Records Aust, 18-26 Canterbury Rd, Heathmont, Vic 3135.)
In his jacket notes, Producer Bob MacKenzie recalls that he has been associated with the Bill Gaither Trio Bill, Cloria and Danny - ever since they cut their first album in 1964.
From the outset, their aim has been to communicate the Gospel in a clear, unambiguous way, with the emphasis on sincerity, diction and melody.
In this album, sub-titled "The Early Years", they bring together a dozen of the Gospel songs, written by Bill Gaither, which have found particular acceptance over the years:
Contented - The Longer I Serve Him Even So, Lord Jesus, Come - Gentle

Shepherd - I Could Never Outlove The Lord - Joy Comes in The Morning Someday - I Will Serve Thee - Getting Used To The Family Of Cod - Jesus, We Just Want To Thank You - Let's Just Praise The Lord - Peace Shall Come.
Don't worry if the titles are not familiar. The message certainly will be, and the diction is good. But all through, in a mix of solo, duet and trio arrangements, the sound is gently rhythmic and of potential appeal to those who prefer to relax rather than to "get with it"! (W.N.W.)

iे $\dot{\sim}$ is

WITH A SONG AND A PRAYER. Harry Secombe. Stereo, Celebrity VAL 10353. Distributed through RCA.

Harry Secombe, a familiar figure on television, and a one-time member of

Master Electronics the new Practical way.

the BBC's radio "Goon Show" team, scarcely needs any further introduction. On this album his true and robust voice brings to the listener a dozen well known Cospel songs which will, equally, need no introduction to those who have a background in this kind of music:
Onward Christian Soldiers - It Is No Secret - Swing Low, Sweet Chariot Beautiful Isle Of Somewhere - All Things Bright And Beautiful - How Great Thou Art - The Battle Hymn Of The Republic - Desiderata - Whispering Hope - The Lord's My Shepherd - A Perfect Day God Be In My Head.
If these titles seems far removed from the Goon Show, Harry's brother, Rev Fred Secombe, points out in the jacket notes that, in their younger days, the brothers Secombe were choir boys but as much at home with the sound of the local Salvation Army band, as with the St Thomas church organ.
Backing from a chorus and orchestra bring some variety to the very distinctive Secombe voice, but his diction is excellent and I can imagine this album being enjoyed, no end, by those who like straight, no-nonsense renditions of these old Cospel songs. The recording quality is fine. (W.N.W.)

HIGHLIGHTS (From six new digital albums). Digital stereo, RealTime RT-307. [From Emerson Radio (Aust) Pty Ltd, 106 Belmore Rd North, Riverwood, NSW 2210. Phone (02) 534 5266.]

Most of the digital records I have encountered to date have either been of classical works or something biased in that direction. Here, by way of a change, is a sampler of RealTime jazz albums. There are six selections from six albums as follow:

"Burnin' " from RT-301, Don Menza and his "80s Big Band; "Bud Powell" from RT-304, The John Dentz Reunion Band; "That Old Feeling" from RT-303, Jack Sheldon; "Shaw Nuff" from RT-305, Freddie Hubbard; "Riverboat Shuffle" from RT-306, Wild Bill Davison \& Eddie Miller Play Hoagy Carmichael; "Gershwin Medley" from RT-302, Joe Marino Plays 28 All-Time Greatest Hits.
By the sound of the sample tracks, five out of the six albums are pretty heavy

TWO MORE AUDIOPHILE ALBUMS

DON BURROWS/ GEORGE GOLLA DUO, This Time Tassie. Cherry Pie, L-70201/2. Festival release.
This most enjoyable two-record album, from two of Australia's best known musicians, has been mastered at half speed to give a true audiophile quality to a superb live performance at Hobart's Odeon Theatre.
With half-speed mastering, which can be done here by Festival, the master tape is played back at half speed and the signals fed to a cutting lathe, also operating at half speed. The effect of so doing is to lower the frequency spectrum by a factor of two and the peak demands on the recording amplifier and cutting head by up to four times. The end result can be wider dynamic range and lower distortion.
There are sixteen tracks on the album, interspersed with very entertaining comments from Don Burrows on the composers involved, as well as the operation of an Octave Shifter used with the clarinet, where that instrument may be made to sound like a very convincing double bass to accompany Ceorge Colla on the electric guitar.
The Titles are: Brown Shoes Blues - Lagoa - What's New - Sweet Ceorgia Brown - Chico's Bar - Takeda - St Thomas - Modinha - Jazz Nocturne - Frenisi-Say It Isn't So - Saudade - Easy Street - Recuerdos - El Dorado Swedish Pastry.
Don Burrows shows his versatility by playing four different flutes, clarinet, electric clarinet, alto saxphone and percussion, while George Golla makes his usual beautiful music on an Australian-made Maton electric guitar.
My only quibble with the record would be the balance between the performers and the audience response, if you set the volume for a resonable level for the music, you nearly get blown out of your chair with the applause. Apart from this it is a superb album, complete with sticker stating "You will pay no more for this half speed mastered audiophile recording." (NJM)

BILLY JOEL, The Stranger. Audiophile Stereo CBS Mastersound 82311. [From Concept Audio Pty Ltd, 22 Wattle Rd, Brookvále, NSW 2100. (02) 938 3700].
If you are a Billy Joel fan with a deep pocket and the best of equipment you might like to sample this re-release of Billy Joel's fairly recent album, with the following nine tracks featuring Billy Joel on piano and vocals, with some additional group support.
Movin' Out - The Stranger - Just The Way You Are Scenes From An Italian Restaurant - Vienna - Only The Good Die Young - She's Always A Woman - Get It Right The First Time - Everybody Has A Dream.
Compared with ordinary records these Audiophile records certainly have a very quiet surface, extended frequency response and dynamic range, but whether they are worthy of a price tag of $\$ 22.99$ is something for you to decide yourself.
One thing, they show something of what can be achieved with the disc format that has been around for nearly a century! (NJM)

DIGITAL HIGHLIGHTS - continued

stuff, intended for dedicated jazz fans. The last track Gershwin Medley - is a very facile performance on solo piano and I suspect that it will prompt quite a few of those who hear it to seek out the full album containing other medleys from Carmichael, Ellington and Rodgers.
Technically, the sound quality is first rate and capable of bringing considerable pleasure to those who are keen on jazz. (W.N.W.)

REACH FOR RALMAR...

DECISION DIRECTORY

- TV -

Accessories; Aerials; Baluns; Cable; Fly leads; Listeners; Splitters; Tap offs

- TVIFilters

- Tag strips
- Tape-

Accessories; Head demagnetisers; Head cleaners; Maintenance kits; Splicers

- Telephone intercoms
- Terminals
- Test leads
- Tools -
- Transformers AC; Line; Microphone
- Tubing Heatshrink; Insulating; Spaghetti
- Tweeters
- Universal mixer
- UHF connectors

JUST PART OF THE RANGE! AVAILABLE AT SELECTED STORES EVERYWHERE!

[^9]
Microcomputer News\& Products

Australian Standards Association to move on computer-generated interference

Increased use of microcomputers in the home and office is not without problems. The most pressing issue to be confronted is the generation of radio frequency interference, which in some cases can make nearby communications receivers and television sets unusable.
Complaints of interference with communications equipment have been received from police and air traffic control authorities, amateur radio operators and television viewers. The interference can take the form of intermittent noise at any frequency between 1 MHz and 1000 MHz .
In general, such interference is likely to be worse for a system built up from a number of interconnected components than for an all-in-one system. Noise is generated by the high speed clock and digital logic circuits and conducted out of the computer by connecting cables to other equipment, or radiated by power cables, connecting cables or peripherals.
In the United States, the Federal Communications Commission (FCC) took action in 1979 to let limits to both radiated and conducted interference from computer equipment. From January 1981, home computers which failed to meet the FCC requirements were banned from sale within the United States.
Manufacturers found that it was not easy to meet the FCC requirements. Many well-known companies in the field
applied for waivers from the regulations in order to stay in business. However, from the beginning of this year, no more waivers will be granted.
In March, 1981 the United States put forward a proposal to CISPR, the International Special Committee on Radio Interference, aimed at setting a worldwide standard for interference from computer equipment. Since then the matter has been considered at two meetings of the international committee, and a recommendation on limits and methods of measuring interference from computers was agreed to in October, 1981.
Australia is a member of CISPR, and has kept a close watch on the progress of the recommendation through the Standards Association of Australia. Committee $T E / 3$ of the Association has studied two aspects of the problem - interference from personal computers with TV receivers in the vicinity, and interference from computers, video games and similar devices when their output is displayed on domestic television receivers.
At a recent meeting of the committee, it was agreed that an Australian standard on computer generated interference should be prepared, taking into account international proposals on the subject. Steps are now being taken to monitor and control the interference problem associated with the boom in the use of microcomputers.

Tandy computers down on the farm

Tandy Electronics has introduced a package of computer programs to help out "down on the farm". Today's farmer has to be a businessman, and like his city counterpart he is looking to computers to help manage his business. Microcomputers today are inexpensive, do not need specialised training to use, and are ideally suited to many farm management tasks including accounting, maintenance of stock records and correspondence.

Tandy's new Australian Farm Management software package sells for around $\$ 750$. In conjunction with a TRS-80 Model III microcomputer and a line printer, it provides a powerful computer system for the farmer.
The Australian Farm Management pro-
grams have been developed in conjunction with Guyangal Stud. It uses tested Tandy programs which are then personalised to each farmer's individual needs, for sheep, cattle, pigs or agricultural operations. Often called TRSFARM, the package provides the user with accurate and up to date yield, herd management and fa:m records.
It also handles taxation records and includes the Scripsit word processing program for the preparation of letters and documents of all kinds.
The Australian Farm Management package can be seen at any Tandy Computer Centre, or ordered through any one of nearly 300 Tandy stores and dealers throughout the country.

Sinclair computer sales boom

Sinclair Research, developers of the ZX80 and ZX81 computers, recently announced that sales of the ZX81 have now passed a quarter of a million worldwide. Production at the Timex Watch Corporation factory at Dundee, Scotland, has been stepped up by 50,000 a month to meet demand.

Sinclair's ZX80, precursor to the ZX81
The ZX 81 is now in use in 21 countries, while in October last year an agreement was signed with Japanese company Mitsui under which 20,000 of the small computers are to be exported to Japan this year, rising to 50,000 next year.

A machine to run all types of software?

Commodore International has improved upon its low-cost VIC 20 computer with a new model launched recently in the United States. The VIC 64 offers 64 K bytes of internal memory, in contrast to the somewhat limited capacity of the VIC 20.
News of this announcement however, has been over-shadowed for US observers by rumours of the next Commodore release - a "virtual machine" which will emulate the features of the most popular machines made by Tandy, Apple and IBM, while selling for far less - around \$US1000.

The emulator will use a 6510 microprocessor, but extra processor boards will be available to allow the machine to act as an Apple II, for example. In theory, at least, the user could plug in a board and then run software written for one of the other machines.
Very large libraries of financial, text editing and business programs already exist for the TRS-80 and the Apple II, so
the Commodore machine would have access to an extensive range of software without expensive and time-consuming program development.
There are problems with the new approach, however. Getting software from one machine to run on another is not simply a matter of plugging in a new processor board. Memory configuration, I/O addressing and disk formats are all different between, say, the Apple II and the TRS-80 Model II. In addition, Apple Computers holds a patent on the design of its disk system, quite apart from copyright problems with the actual software.
Steve Jobs, founder and chairman of Apple Computers, is not worried, "Sooner or later someone will figure out a less expensive way to build a computer that will run Apple programs, but I am sure that we will manage to compete in the same way that Sony still manages to make a profit even though other companies make turntables that will play the same records that Sony turntables will."

Laying down the laws on video terminals

The state of Maine in the US recently became the first legislature to consider a bill to make certain video display terminal health and safety measures legally binding.
The bill requires employers to provide annual eye examinations, regular maintenance of equipment, a rest period or change of tasks every two hours and literature on proper VDT use. Violators would be subject to a maximum fine of $\$ 200$.
Edith Beaulieu, who introduced the bill, says that opposition came primarily from industry, particularly banking and insurance. She says that there is "absolute evidence" that VDTs affect vision. "I contend that the industry is going to be a lot happier with this bill than they will be when someone with sore eyes pushes the wrong key on a computer somewhere."

An arithmetic processor for the STD bus

Applied Micro Technology Inc of the United States has released a fixed and floating point arithmetic processor for the STD bus. Designated the ST4402, the processor accepts commands for manipulation of 16 -bit and 32 -bit fixed point and 32 -bit floating point data values. It can perform addition, subtraction, multiplication and division operations as well as a full complement of transcendental functions.

Functions available include a full range of trigonometric calculations, logarithms and conversions from 16 -bit to 32 -bit and from fixed point to floating point formats.

Three versions of the board are available, for operation at $2 \mathrm{MHz}, 3 \mathrm{MHz}$ and 4 MHz . For more information, contact the company at PO Box 3042, Tuscon, Arizona. Arizona 85702, United States.

Versatile IMS software

IMS (International), the overseas division of Integrity Management Services Pty Ltd, has announced that the IMS range of software is now available for the Xerox 820 and the HP125 computers using CP/M.
As the Xerox and HP systems are released in Australia it is expected that the current version 3.1 software will be made available. Xerox and HewlettPackard join the growing list of systems on which the IMS software will run, including AWA, Cromenco, Archives, North Star, Intertec, Tandy and Altos.
For information contact IMS Pty Ltd, 582 St Kilda Rd, Melbourne, Vic, 3004.

DGZ80 takes off

Sales of the DGZ80 S-100 board have passed the 1000 mark.
Designed by Dave Griffiths, the DGZ80 board contains (in addition to the processor), 2K of on-board RAM, a PIO (Parallel Input/Output chip) and a Counter Timer chip. Serial and parallel interfaces are also included.
To mark the success of the board, Phil Gleeson, General Manager of Applied Technology, who market the DGZ80, presented the designer with a double size DGZ80 board. He is said to be still looking for the double sized ICs to go with it.

COMMODORE COMPUTERS

Microcomputer News \& Products

ADE gives away an Advantage

The Advantage is the newest model in the Northstar range of microcomputers. It offers a fully integrated system, with a 30 cm bit-mapped video display 64 K of RAM, A Z80A microprocessor, two quad-capacity floppy disk drives and a full featured keyboard
Full graphics capabilities are a feature of the Advantage. Software is available for producing business graphics, including pie charts, bar graphs, and three-dimensional charts.

Anderson Digital Equipment Pty Ltd are distributors of the Advantage, and when they ran a direct mail competition recently, offering an Advantage microcomputer as first prize, they were inundated with entries from all over Australia.
The lucky winner was Jim MacGill of Melbourne, a company secretary. He was presented with his prize by Jim Gallagher, General Manager of ADE.

Adaptive Electronics for the System One

Cromenco has entered the desk top computer market with the new System One computer. The System One is designed for both multi-user and single user applications, and also provides ample room for expansion.
Built around the powerful Z-80A CPU, the basic System One offers 64 K of RAM, a printer interface and dual quadcapacity 14 cm floppy disk drives which provide 780 K of storage. An eight slot S-100 card cage is included for expansion purposes.
Software available includes Cromenco's "Master" series, Writemaster and Slidemaster. Writemaster is an easy to use word processing program, while Slidemaster allows graphics and text displays to be created simply and easily. Images are created interactively using a digitising tablet and pen, then transform-

Mr MacGill (right) receives his prize from ADE's Ceneral Manager, Mr lim Gallagher.
ed, coloured and annotated for display on the computer screen.
Also available is the DBMS data base management system, allowing data to be entered and stored and reports printed out.
In addition to business oriented packages, there is a wide range of system software available from Cromenco. Currently available languages include Structured Basic, Fortran, Cobol, C, Ratfor and Lisp.
Cromenco also offers a choice of operating systems, including the company's high acclaimed CROMIX multi-user,multi-tasking operating system.
The System One (Model CS-1) is available from Adaptive Electronics Pty Ltd, 418 St Kilda Rd, Melbourne, Vic, 3004. Adaptive Electronics can also supply a comprehensive range of software, back-up service and advice.

CAC choses Facom

Facom Australia Pty Ltd has won a contract to install a computer system at Commonwealth Aircraft Corporation Ltd. The need to improve manufacturing efficiency was one reason cited for the purchase of the Facom M150F machine.

Primary function of the new computer system will be to enhance manufacturing procedures when CAC begins work on the New Tactical Fighter program, in-
cluding component manufacture, assembly and testing on both engine and airframes of the F-18 Hornet fighter. Secondary functions include handling the payroll and accounting. Manufacturing software packages and the debtors and creditors ledger systems are being applied by the Hoskyns Group Ltd. The payroll software will be supplied by MSA, while Software International will provide a general ledger.

New disk drives for Heathkit computers

Disk storage for Heath/Zenith microcomputer systems has been expanded to more than 640K bytes per 14 cm disk with two new products.
First in the range is the $\mathrm{H}-37$ high density disk drive system, which works with a new double-density disk controller board, the Z-89-37. The H-37 is available as either a single or dual disk drive.
The increased storage capacity of the $\mathrm{H}-37$ is made possible by using both sides of the diskette and doubling the density at which information is recorded. The $\mathrm{H}-37$ provides 160 tracks per diskette, in contrast to the 40 tracks provided by Heath/Zenith's single density disk systems. In addition to the increased storage capacity, the $\mathrm{H}-37$ can retrieve information up to 40% faster than previous disk drives from the company.

The $\mathrm{H}-37$ high density drive uses softsectored diskettes which are not compatible with the hard-sectored disks used previously. Conversion of programs to the new format can be done using a program included with the $\mathrm{H}-37$, or by using a program called PIP, available in both the HDOS (Heath Disk Operating System) and CP/M. Updates of both CP / M and HDOS are being provided for use with the new drives.
For further information on the new $\mathrm{H}-37$ and the complete Heath computer line, contact your nearest Warburton Franki office, or write direct to the Warburton Franki Heathkit Centre, 220 Park Street, South Melbourne, 3205.

TI-99/4 Users Groups

- TI-99/4 computer users' clubs are now active in most states. Members can take advantage of discount buying schemes, a monthly magazine, free club software, and tutorials in using their computer. For information, contact the National Coordinator, Shane Andersen, at PO Box 101. Kings Cross, NSW, 2011. 16-bit machine for the US

It has been just four years since Tandy Electronics introduced the first TRS-80 microcomputer to Australia. Since then the company has gone from strength to strength, continually adding to their range of home and business computers.
Two years after the release of the Model I, the company added the TRS-80 Model II business system, with in-built 20 cm disk drive. September 1980 saw the introduction of the TRS-80 Pocket Computer, a tiny hand-held unit with Basic. A printer and cassette interface can now be added to that machine.
Last year the Model III was introduced, a powerful one-piece computer with a variety of features and a price tag considerably below that of the Model II. This year sees the introduction of the Tandy Color Computer, a system based on the 6809 microprocessor, and providing advanced colour graphics features in an affordable package.
All of these computers, plus a huge range of printers, disk drives and other peripherals went on display at Tandy's Computerama exhibition, held around Australia during February and March.
Starting at Brisbane's Lennons Plaza Hotel on February 7 and 8, the exhibition included audio-visual presentations, hands-on demonstrations, and advisory centres for everyone from the businessman to young games players. High on the list of attractions were a fully-equipped "Computer Classroom", a sneak preview of the soon-to-bereleased TRS-80 hard disk and demonstrations of the microcomputer's role in business management, filing, accounting, planning and forecasting and word processing.

Costs of microcomputers continue to fall, while their capabilities are everexpanding. Illustrating this trend, Tandy Electronics in the United States has introduced a computer using a 16 -bit microprocessor, for around \$US4999.
Built around the Motorola 68000, the TRS-80 Model 16 is designed for office applications, and can handle three users simultaneously. Its 16 -bit processor makes it much faster than 8 -bit machines such as the Apple II, CPM systems or Tandy's TRS-80 Model II. The processor also allows the system to handle bigger, more complex computing tasks.
The computer Model 16 comes with 128 K bytes of internal memory and a 20 cm disk drive with 1.25 megabytes of storage. Memory can be expanded to a maximum of 512 K , and additional disk drives or a hard disk unit can be added.

In addition to the 16 -bit 68000, the Model 16 includes a $Z 80$ processor, so that it can be used to run programs originally written for the Model II TRS-80. The company is also offering an upgrade kit to owners of its Model II. By plugging in a new 68000 circuit board, Model II owners can have the full capabilities of the Model 16 in their existing machine.
At the same time, Tandy announced the US release of a $\$ 699$ "dumb terminal" - an expansion unit with a screen and keyboard that can be plugged into the Model 16 for second and third users.
Jean Yates, an industry analyst at consultant firm Cnostic Concepts of California, says that compatibility with the Model II will give Tandy a short term advantage, "but the most significant point is that Tandy got there first with the 68000 system"

BRIGHT STAR CRYSTALS

CRYSTAL UNITS FOR QUARTZ CRYSTAL CLOCK

Specifications, Dimensions and data sheets available on request

BULK ORDERS:

In addition to our normal range we can supply quantity orders (100 up) at very competitive prices. All we ask is 50% of cost with order balance 30 days.

DELIVERY: 5-6 weeks from receipt of Order. Ring for quote: (03) 5465076 Telex: AA 36004

BRIGHT STAR CRYSTALS

35 EILEEN RD, CLAYTON, VIC.
ALL MAIL TO: PO BOX 42 SPRINGVALE 3171

Microcomputer News \& Products

Computer Company Pty Ltd hand-held computers

Mitsubishi hand-held computer offers plug-in bubble memory cartiridges.

The Computer Company Pty Ltd will release hand-held computers from both Mitsubishi and Panasonic this month. The release is planned to coincide with the opening of the first Computer Company retail outlet in Australia later this month.
Operating on similar lines to the sewing machine franchises developed by its parent, Singer Company, The Computer Company shops nave already been highly successful in the United States.
"Of the wide range of Panasonic and Mitsubishi systems which will be available through these outlets, the two hand-held computers are very significant because of their power and capability", said Mr John Barsing, manager of franchise operations for The Computer Company.
The larger of the two computer is made by Mitsubishi. It is about the same size as a portable radio/cassette player and weighs 1.5 kg . It offers an 8 -bit microprocessor-hased system with 30 K of RAM and a one megabyte plug-in bubble memory. A full alphanumeric keyboard is included, together with a 40 character 5×7 dot matric matrix display.
The Panasonic hand-held computer measures $227 \times 30 \times 95 \mathrm{~mm}$ and weighs just 397 g . It incorporates a 6502 processor running at $1 \mathrm{MHz}, 2 \mathrm{~K}$ of RAM (expandable internally to 4 K) and 16 K of ROM. Sockets are provides for four pro-
gram capsules containing up to 64 K of programs or data. A built-in NiCd battery pack supplies power to the unit, and uninterrupted storage of all user programs and data is provided by a stand-by circuit.
An internal set of applications programs provides a four-function calculator mode, a free-form file system and editor and several other functions. In addition a range of peripherals is available, including a bus expander, a portable thermal printer, memory expansion, a moderm and terminal software, a cassette interface and a colour television interface.

New distributors for Archives computers

Archives computers and peripheral products are now being distributed by the newly formed Archives Computers (Australia). The new company is headed by Mr Cower Smith, who brought Archives to Australia for the previous distributor, CGF Electronics. The company will handle both wholesale and retail sales in Victoria and sell through a chain of 22 retailers and equipment manufacturers to secure national representation.
A recent recruiting drive has enabled
the company to set up its own in-house software customisation and support staff, and the service division was fully manned from the first day of business.
The Archives III computer, with 5.75 megabytes of hard disk storage built-in has aroused strong interest in the industrial and scientific fields, and newly added office management and accounting software is available for business applications. The Archives computer offers an extremely flexible approach for small businesses, Mr Smith says, as the basic machine can be expanded from .75 megabyte to 23 megabyte of disk storage without changes in the basic hardware.
"The 23 programmable function keys and our locally enhanced configuration of Wordstar also make the system one of the best word processors on the market today", according to Mr Smith.
For further information contact Mr Gower Smith at Archives Computers (Aust) 163 Clarendon Street, South Melbourne, Vic. 3204.

Club notes

- The Adelaide Micro User Group initially began as a TRS-80 and System-80 users group, but has expanded and diversified and now caters for a wide range of hardware and software interests. The latest special interest group is a Super-80 users' section, so if you live in the Adelaide area and are interested in the Super-80, contact Mr Rob Gillespie, 8 Teusnere Drive, Morhett Vale 5162, who is organising the Super-80 section of the Group.
The Adelaide Micro Users Group is also putting together a kit for a speech synthesiser project based on the Votrax SC01 chip. Contact the group at 36 Sturt Street, Adelaide, SA, 5000, for more information.
- The WA Compucolor /Intecolor User Group meets at the Logic Shop, 454 William Street, North Perth. They publish a newsletter, "CUWEST". The address for mail is $\mathrm{c} /-$ WAIT Computing Centre, Kent St, South Bentley, WA, 6102.

Information wanted for computer club list

Electronics Australia is currently compiling a list of microcomputer clubs and users groups throughout Australia and New Zealand. If you would like your club to appear in this listing, please send us the details as soon as possible. Information required is the name of the club, the address for contact, computer(s) used by members and the number of members (approximately). Details of special interests, club projects or other comments will also be appreciated.
Send information to "Electronics Australia", PO Box 163, Chippendale, NSW 2008. Mark the envelope "Computer club listing".

-TH OF AUSTRALIA DISCOVER THE WORLD OF THE 6809 MICROPROCESSOR

6809 COMPUTER

8212 TERMINAL
(ASS. IN AUSTRALIA)

HARDWARE DESCRIPTION

S/09 6809 Computer w/128K Memory /09 6809 Computer w/64K Memory 8212 12" Terminal w/monitor DMF 2 Disk System w/2.5m Capacity CDS-1 Winchester Hard Disk System MP-09A 6809 Process/Board (assem) D5-2 double side/double density 720KB 3809 128K Memory Expansion for S/09 MP-LA Parallel Interface MP-L2 Dual Parallel Interface MP-N Calculator Interface MP-R Eprom Programmer MP-S Serial Interface MP-64 Memory board 64K MP-S2 Dual Serial Interface MP-SX Serial Interface Expansion MP-T Interrupt Timer S-32 Universal Static Memory Card

NEW PRODUCTS SOON

DMF DISK SYSTEM 2.5M

D-5 720k
DT-5 1.3M

IPARIS RADIO ELECTRONICS -TH SOFTWARE SPEGIALIST FOR THE 68XX SERIES

MICROWARE SYSTEM CORP

OS-9 Level 1 Operating System \$195.00
OS-9 Level 2 Operating System $\$ 495.00$ Basic 09 Programming
Language $\$ 195.00$
Pascal OS-9 . $\$ 440.00$
Macro Text Editor \$ 95.00
Assembler
Debugger
\$ 95.00
Stylograph Word Processor $\quad \$ 175.00$ Cobol and C Language available soon
TECHNICAL SYSTEMS CONSULTANTS

UNIFlex Operating System UNIFlex Basic UNIFlex Pascal General Purpose Flex 6809 Exorcisor Flex 6809 SWTPC Flex GIMIX Flex
Extended Basic
$\$ 550.00$ $\$ 200.00$ $\$ 250.00$ $\$ 165.00$ $\$ 165.00$ $\$ 45.00$
\$ 99.00
\$110.00

Pascal for Flex
68000 Cross Assembler for Flex
Sort Merge Package
Text Editor
Assembler
Debug Package
Diagnostics
Text Processor
Many More Available
FRANK HOGG LABORATORY, INC

XForth

Basic Programmer Tool Kit
Extended Use Utilities Pack
Password Protection Pack
Dynasoft Pascal
Bill Payer System
Spell Test
Super Sleuth
\$ 82.50
$\$ 220.00$
$\$ 275.00$
$\$ 82.50$
\$ 55.00
\$ 55.00
$\$ 82.00$
\$ 82.50 \$ 82.50
\$165.00
$\$ 7700$
$\$ 77.00$ $\$ 99.00$ $\$ 99.00$ \$185. 00 $\$ 220.00$ $\$ 110.00$

Dataman + DBM
$\$ 220.00$
WASHINGTON COMPUTER SERVICES
6809 RMS DBM for Flex . . . $\$ 220.00$
6809 RMS DBM for UNIFlex $\quad \$ 330.00$ 6809 RMS DBM for OS-9 $\$ 275.00$

UNIVERSAL DATA RESEARCH INC
DBM 2 Flex $\$ 450.00$

DBM 2 UNIFlex $\$ 550.00$
Payroll $\$ 495.00$
Accts Receivable $\$ 49500$ Accts Payable . $\$ 495.00$ General Ledger \$495.00
talbot microsystems
Forth
$\$ 110.00$
tForth +
$\$ 275.00$

COMPUTER SYSTEM CENTRE

DYNAMITE Dissassembler
$\$ 66.00$ Many More Software Available

A VAILABLE FROM

```
PARIS RADIO ELECTRONICS
7A Burton Street, DARLINGHURST, NSW 2010
J. H. MAGRATH \& CO 208 Little Lonsdale Street, MELBOURNE, VIC 3000
TEL: (02) 3575111

THE MOST
POWERFUL S100 CP/M BASED COMPUTER IN THE WORLD

HOW CAN AN AUSTRALIAN MANUFACTURER TRULY MAKE SUCH A CLAIM? IT'S TRJE! * - ASK US WHY
 THIS COMPUTER USES OUR UNSERIAL TERMINAL TO PROVIDE A DUEL OPERATING SYSTEM WITH CP/M ENHANCEMENTS THAT MUST BE SEEN TO BE BELIEVED.

\section*{ASK FOR A DEMO OR A PAMPHLET.}

\section*{- - MLCROCOMPUTER PRODUCTS}

130 Military Road, Guildford, NSW 2161.
Phone (02) 6814966 (3 lines). Telex AA70664.

\section*{Direct}

Computer Sales)

\section*{SERVICE CONTRACTS FOR BUSINESSES}

We offer them on
Apple systems including their associated components such as
Printers - daisy wheel and dot matrix
Acoustic couplers
Corvus hard disk
Calling at your premises we will get you running within eight working hours
For your special needs we will tailor a service agreement to suit you.

\section*{CORVUS SPECIALTY}

A hard disk makes a lot of sense in many business applications and DCS has geared itself to cater for their successful installation and use. Fellow retailers ask us how we can help you handle this product.

\section*{CUSTOM DESIGN}

Utilizing our electronic design engineer we can custom design electronic circuits, particularly ones which interface the Apple to industrial equipment - again fellow retailers can use this service too.

\section*{ORDERLY DEVELOPMENT IN SEVERAL AREAS}

\section*{Attitudes to Programs and Programming}

\begin{abstract}
Do you really use your personal computer as effectively as you could? I suddenly realised the other night that I could use mine a lot more than I do, simply by changing some of my attitudes to programming. Perhaps you could do the same.
\end{abstract}

Strange, isn't it, how we humans can become so familiar with things around us that we often overlook them at the very times we could use them to advantage. Sort of not noticing the trees when you're looking for a piece of wood! With me it can happen with tools in particular, and not only that but sometimes it seems that the longer l've had a tool, the more likely I am to overlook it when it could be useful
This really struck me the other night when I was slogging through the design of an audio bandpass filter using IC opamps. Here I was performing what was virtually the same set of calculations over and over again, to find a practical combination of \(R\) and \(C\) values. I had been using only my trusty \(41 / 2\) function pocket calculator (successor to my battered old slide rule), supplemented by the inevitable writing pad and pencil.
Needless to say, progress was rather slow and frustrating. Yet 1 suddenly realised that over the other side of the room, being totally ignored, was my System-80 computer - with all the computing power to make the job one heck of a lot easier!
As soon as this realisation dawned, I set to work scratching out a simple program to perform the filter calculations I was doing. It took no more than about 10 minutes, yet using it I was able to save hours and hours with the rest of the design. The program wasn't a fancy one with a lot of frills, and it probably had a
few rough edges; but it did the job 1 wanted.
The point I'm trying to make is that it was so easy to overlook the computer when it could be used so easily to very real advantage. All that was needed was a few minutes of programming.
For what it's worth, l've drawn at least two important personal lessons from this experience. Perhaps you'll find they apply to you, too.
One is that despite my familiarity and experience with small computers, I'm obviously as guilty as anyone of overlooking their uses in practical day-to-day situations. While that's my own personal problem, in a sense, I suspect I'm not alone! Perhaps we'll all have to try and be a bit more flexible in our thinking, and not tend to see personal computers as little more than teaching tools and fancy games machines.
The other lesson is probably more interesting, as it directly relates to my/our attitudes to programs and programming. Like most people who've become involved with computers professionally, I've been trained (brainwashed?) to have a rather critical approach to programming. Unless a program is polished and refined, debugged and protected against all foreseeable operator errors, I tend to "look down my nose" at it, and not see it as a real program at all.
It's the same if a program seems inefficient in terms of coding and memory usage. I find myself not even wanting to

\[
\begin{aligned}
& W=C E N T R E ~ F R E Q U E N C Y ~ I N ~ R A D I A N S ~ \\
& B=B A N D W I D T H ~ I N ~ R A D I A N S ~ \\
& O=W / B \\
& C 1=C 2=C \\
& R 2=2 / B C \\
& R 1=R 2 / 2 A \\
& R 3=R 2\left(1 / 4 Q^{2}-2 A\right) \\
& \text { BANDPASS FILTER STAGE }
\end{aligned}
\]
try it out, until l've "tidied it up" by replacing the repetitive sections with subroutines, and so on.
Now this attitude to programming is undoubtedly the most practical and helpful in many situations, but like a lot of behavioural "rules" developed by we humans, it is all too easy for it to become fossilised into an inflexible dogma. And when that happens, it can become a liability.
I think this is what my experience with the filter calculations shows. I'm now inclined to think that in many cases, it is more efficient and effective to adopt a deliberate "ad hoc" approach to programming. To simply cobble together a quick and simple program to do the job at hand, rather than adopt the "professional" approach.
Already I can almost hear the programming theorists and academics throwing

Continued on p117
```

10 CLS:PRINT"ACTIVE BANDPASS FILTER CALCULATION":PRINT:PRINT
20 INPUT"CAPACITORS Cl \& C2 (UF)";C
30 INPUT"CENTRE FREQUENCY (HZ)";F:W=F*2*3.14159
40 INPUT"BANDWIDTH (H2)"; B: B=B*2*3.14159:Q=W/B
50 INPUT"STAGE GAIN";A:PRINT
60 R2=2*1|[6/(B*C):R1=R2/(2*A):R3=R2/(4*Q(2-2*A)
70 PRINT"R1=";R1:PRINT"R2=";R2:PRINT"R3=";R3:PRINT"Q= ";Q
80 PRINT"4Q[2=";4*Q[2;" (WHICH SHOULD EXCEED 2A, WHICH IS ";2*A;")"
90 PRINT:PRINT"ANOTHER CALCULATION? (Y=YES/N=NO):";
1\emptyset\emptyset K$=INKEY$:IFK$=""THEN1|\emptysetELSEIFK$="Y"THEN1|ELSEIFK\$<>"N"THEN1|\emptysetELSEEND

```

MUSICOLOUR IV: I have recently completed construction of your Musicolour IV using a Dick Smith kit and am very impressed with the results, especially the music initiated chaser patterns.
Having previously built a Musicolour III, I was disappointed with the amount of control available for the Musicolour section. Despite your claim that "individual channel sensitivity controls are not necessary" I feel that the addition of these controls would enable the operator better control of the final light show. In particular, I feel with most rock/disco type music the red and yellow light dominate (I'm using the colour flood lights as suggested in your article). This is probably due to the heavy bass component in this music and also the greater light output in the red and yellow ends of the spectrum from the incandescent floods.
My question is could a level control for each channel be added before the filter section and if so would a \(100 \mathrm{k} \Omega\) potentiometer (log or linear?) do? Would this spoil the rest of the circuit and if so what other measures could I take to get some individual control? (G. S., Boroko, PNG.) - While we have not tried it, the best place to install level controls would be at the outputs of the filters, with the wipers
feeding the non-inverting inputs of IC5. A value of \(100 \mathrm{k} \Omega\) would be suitable and you could use a linear or logarithmic characteristic. We point out that the main reason we did not incorporate level controls was that a larger control panel would have been required.

PLAYMASTER AM/FM STEREO TUNER: I would like some assistance with two small problems encountered while making up your Playmaster AM/FM Stereo Tuner bought in kit form from Dick Smith Pty Ltd.
Firstly, the FM frequency display cannot be adjusted to read correctly. I have tried all combinations of signal diodes as suggested but can only get a readout of 58 to 88 MHz . Secondly, the readout is very shaky or flickering on FM only, but the reception is good on FM.
Apart from these areas the tuner works fine and I would appreciate any suggestions you may be able to offer. The SFE107MA filters are colour coded blue. (T. M., Duffy, ACT.)
- To troubleshoot the FM display of your tuner, disconnect the pin 2 input to the AY-3-8112 IC and check that the display shows "189.3" (the preset frequency for the 8112). If 189.3 is not shown, the 8112 could be faulty. If 189.3

\section*{Problems with the AM/FM tuner}

PLAYMASTER AM/FM DIGITAL TUNER: I am having lots of problems with multiplex hash in the tuner. I have checked everything in the display module. Also it is lacking signal (won't pull in stations as it should; my tranny does a better job). Please help me here as it is stopping me from using a good looking piece of equipment. (M. J., Naracoorte, SA.)
- You do not indicate in your letter whether the lack of sensitivity occurs on AM, FM or both. What does the signal strength meter show when you are tuned to a station? For example, for reasonably noise-free reception on FM stereo, the signal meter should indicate " 6 " or more. If you can obtain only minimal signal indication it could be because you're feeding inadequate signal to the antenna terminals. Are you sure that you have reasonably strong signal from the antenna?

As far as the multiplex hash is concerned, are you sure that the hash is due to the readout circuitry? This can be verified by pushing both time-setting buttons together to blank the digital display. If the noise then disappears, it is due to multiplex switching of the display. Multiplex hash on FM reception can be reduced by increasing the \(220 \Omega\) resistor between the interface board and the input to the DS8629 prescaler. There is a limit to how much you can increase this resistor though, because ultimately the display will cease to read the frequency and will indicate 189.3 instead.
Multiplex hash on AM reception is generally not a problem provided the rod antenna is oriented carefully with respect to the mains cord and is picking up a reasonable signal. Again, for reasonable \(A M\) reception the signal meter should indicate " 6 " or more.
is displayed, Q14 is probably not supplying sufficient drive to the DS8629 prescaler. This situation can be cured by reducing the \(220 \Omega\) resistor from Q14.
The resistor should be reduced to the point where the display is reliable over the whole range. Do not reduce it more than necessary, otherwise multiplex hash will become a significant component of the residual noise.

AUDIO MODULE: Do you know where I can purchase the PC board, code 76A3, for your audio module in your April 1976 edition? How do I go about connecting a 9 V battery source to this unit? (C. H ., Sheffield, Tas).
- The last page of every issue of our magazine has a panel showing suppliers of PC boards. RCS Radio Pty Ltd, should be able to supply the board. As noted in the article (file \(1 / \mathrm{MA} / 51\) ) on this module, the circuit may be used with a 9 V supply provided a \(4 \Omega\) load is used. No other modifications are required.

PAVLOV'S BAGATELLE I have recently constructed the Pavlov's Bagatelle described in your August 1981 issue. On testing the operation of the electronics I struck a snag in that the operation of the dispenser solenoid was independent of the status of the timer section. In other words, the AND system for turning on Q3 did not operate correctly and the solenoid was activated every time a pulse was sent by IC4. This was cured by increasing the value of the \(1 \mathrm{k} \Omega\) resistor between pin 3 of IC4 and the base of Q3 to \(1.5 \mathrm{k} \Omega\).
You may find it worthwhile to bring the critical nature of this resistor value to the attention of other readers who may be encountering similar difficulties. (S. R., North Ryde, NSW.)
- Thank you for your letter S. R. Readers intending to build Pavlov's Bagatelle should take note.

NON STANDARD CORD: I have recently tried to use a cassette-player with a pow'er plug consisting of two round pins. This was completely useless to me, as I didn't have an adapter to suit. (The cassette itself was switchable to a 240 V power supply.)
Then a friend came along and suggested I use a jug cord as my adapter. The two round pins fits neatly into the jug end of the cord, while the other end
goes to the mains outlet. The cassette player now sits majestically in my room, connected to the power point by Mum's jug cord. (C. S., Hunter's Hill, NSW.)
- Thank you for your letter and suggestion for overcoming a non-standard power cord. Unfortunately, we regard this suggestion as unsafe. A better solution would be to remove the nonstandard two-pin plug and fit a standard three-pin mains plug.
The reason we regard this sort of connection as dangerous is that the jug plug need only slip back slightly off the pins for the 240VAC to be easily touched by the unwary. And that could be you!

CDI \& TACHOS: 1 have made a CDI ignition from the 1970 edition of your magazine. What I would like to know is do you have a device to enable me to run it off a V8 Torana so that the tacho
still works? (J.B., Hornsby, NSW).
- Generally, the tachometers fitted to most vehicles are incompatible with CDI systems. The solution is to rebuild the tachometer or to use an adapter circuit. For the record, we have not published a suitable adapter.
If you adopt the former approach, we have published an article which may be of assistance. Our Tune-up Tachometer published in October 1975 (file 3/TM/11) is compatible with CDI, although the SAK140 tachometer IC may now be difficult to obtain.
Alternatively, and some would suggest that this is the best solution, you could fit the Transistor-Assisted Ignition System described in December, 1979. This has none of the disadvantages of CDI, such as crossfiring, and is compatible with virtually all tachometers.

\section*{Mitsubishi LT-5V turntable . . . ctd from p34}
wise to touch the tone arm but once the stylus has lowered onto the record one can manually lift and lower the arm without any likelihood of damage, provided you are not hamfisted and do not drop the headshell onto the record. Indeed, this reviewer came to the conclusion that the first modification that he would make to the LT-5V, in the event of purchase, would be to add a finger lift to the headshell. The design just seems to ask for it and manual cueing is certainly a lot quicker than letting the machine do it.
The cartridge fitted to the LT-5V is an Audio-Technica AT-12E which is a moving magnet type with an elliptical diamond stylus. This has a modest output sensitivity of \(0.7 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}\) and a recommended tracking force of 1.5 g .
We were unable to check the accuracy of the tracking force adjustments on the LT-5V but, suffice to say, that when set to track at 1.5 g , the Audio-Technica cartridge performed very well on our standard tracking test discs. For example, on the W\&G 25/2434 drum test tracks, the AT12E tracked all except the highest +16 dB level, and that only with the very slightest mistracking. Similarly, on the CBS STR-110 high level sine wave tracks, the AT-12E only slightly mistracked the highest +18 dB level.
On frequency response tests, with the CBS STR-100 test disc, the cartridge did not perform quite so well. It was some 9 dB down at 20 kHz and even at frequencies between 4 kHz and 10 kHz it was about two or 3 dB down. There did not appear to be any sign of a high frequency resonance, either in the frequency response itself or in the crosstalk characteristic. And adding shunt capacitance to the loading did not alter this characteristic.

Unexpectedly, separation between channels was much better in one direction than the other, at 37 dB and 23 dB at 1 kHz . The latter figure actually meets the specification of the cartridge and while it is adequate, it is nothing to write home about. On the other hand, separation at 20 kHz was 16 dB in one direction and 20 dB in the other, which is really very good.
Square wave response of the cartridge reinforced the impression of an overdamped characteristic - it had very little in way of overshoot, negligible ringing and slightly rounded tops to the waveform. Sine waveform was typical of many moving magnet cartidges with a slewing characteristic at frequencies between 5 kHz and 12 kHz .
Sound quality of the cartridge was generally very good although there was a slight tendency to harshness in the upper midrange. Generally though, the AT-12E would have to be rated as a good all-round cartridge.
Concerning the turntable itself, while it certainly operates quietly and smoothly at all times, it did have apparent wow and flutter, particularly on constant tone signals and certain piano music. The actual test result was a fluctuating reading between \(0.1 \%\) and \(0.2 \%\) DINweighted and this appeared to arise from "hunting" in the platter speed by a few percentage points about a designated setting. This could be observed both in the stroboscope behaviour and in the readings of a frequency meter (set to 0.1 -second update times) when playing constant tones. This may have been a fault in the particular unit we tested but time did not permit us to confirm this.
Rumble was certainly low, although we

MAIL ORDER DEPARTMENT: PO BOX 254, Heidelberg, 3084.
Phone: (03) 435 3004, Monday - Saturday 1.00 pm to 6.00 pm
\begin{tabular}{|c|c|}
\hline SAMPLE OF NEW SOFTWARE TITLES FOR OHID & \\
\hline G 3 Slalom Hammuradı & \$ 795 \\
\hline G. 53 Motor Cross (Evel Knievel) & 5795 \\
\hline G 54 Scanner ( 10 levels) & \$ 6.95 \\
\hline U 12 Graphics Plotter (Creates DATA & \\
\hline Statements) & \$ 795 \\
\hline U 41 Basic Line Remover & \$ 6.95 \\
\hline 1. 32 J 4 for Series 2 (for Joysticks, etc.) & \$ 195 \\
\hline D. 3 Rockel to the moon \(\left(2^{1 / 2}\right.\) minute action display) & \$ 795 \\
\hline 16 Slimming & \$ 995 \\
\hline 17 Hangman (Spelling Game) & \$ 9.95 \\
\hline E. 18 Lile Expectancy & \$ 995 \\
\hline SAMPLE OF OHIO HARDWARE & \\
\hline H. 24 RF Modulator & \$1995 \\
\hline H 25 Power Supply Unit - 5V, 5AMP Reg & \$59 00 \\
\hline EP. 1 Pascal - \(2 \times\) EPRROM (Mothet Board) & \$39 00 \\
\hline EP. 2 Dabug (Monitor ROM + Cursor + Single Key) & \$25 00 \\
\hline SAMPLE OF OHIO BOOKS & \\
\hline 1 Hardware Catalogue (incl P \& P) & \$ 100 \\
\hline \(K \quad 2\) Sotiware Calalogue (incl P \& P) & \$1.95 \\
\hline T 1 The First Book of OSI & \(\$ 1695\) \\
\hline T 2 Aardvark Journal - Subscription & \$1095 \\
\hline Allow postage on Software: 12 items & \$ 100 \\
\hline 35 items & S 1.50 \\
\hline 6.9 items & \$ 2.00 \\
\hline 10 or more & \$ 250 \\
\hline InTELLIVISION CARTRIDGE SWAP CLUB & \\
\hline Membership (Free to our Customers) & \$20 00 \\
\hline 100\%, Submitted. Complete Based Cartridge & \$20 00 \\
\hline No "Draughts", Free P \& P & \\
\hline All prices include Sales Tax & \\
\hline Prices subject to change without notice & \\
\hline
\end{tabular}


Not only do we offer you a bigger range, we also offer a choice of finishes. Theres black with gold contacts, black with silver contacts, and silver with silver contacts.

PLUS We have right-angle male and right-angle female cable connectors. These compact right-angle connectors have a low profile, \(6 \times 45\) degree rotary main body allowing highest packing density. Your choice has never been greater

PLUS Neutrik offers a professional lockable phone jack. All 3 contacts are springloaded ( Cu Be ) and isolated. Its tough die cast housing, compatible with "D" connectors. Solder terminations. Mates with all \(1 / 4\) " 2 and 3 circuit phone plugs.


PLUS Neutrik has LNE connectors with 240 volt power offering 5 amps maximum. Fully approved by the S.E.C.

PLUS Neutrik also has male and female PC-Board, mounting connectors with both vertical and horizontal contacts.

PLUS The Neutrik series of modular components representing a unique and economical approach to assembly in-line accessories for various applications. Unified thread permits all combinations; standard 0 -ring available to fit modules to enable alignment of latching sections.

are unable to quote quantitive measurements. However, we can certainly state that the unusual configuration of the main bearing and its loading (the loading is mainly radial, with little end loading) does not appear to cause any rumble problems.
Well, what is our overall reaction to the Mitsubishi LT-5V? We have rather mixed feelings, as the foregoing review should show. On the one hand, we are (or at least this reviewer is) favourably disposed towards the general concept of a vertical format. On the other, when presented with a realisation of the
concept, we recognise that there are drawbacks in practice. Added to that, there were some specific question marks over the performance of the LT-5V.
As far as the construction, finish and presentation of the LT-5V were concerned, well, these were to the usual impeccable Japanese standard.
Further information on the LT-5V linear tracking turntable and other Mitsubishi products can be obtained from selected audio retailers or from the Australian distributors, AWA-Thorn Consumer Products Pty Ltd, 348 Victoria Road, Rydalmere, NSW 2116. (LDS)

\section*{Column 80}
up their hands in horror at the very thought. Why, I'm suggesting that people should actually lower their programming standards, rather than raise them! Next l'll be saying that you don't have to write all your programs in a properly structured language like Pascal - where will this heresy end?
Well, heresy or no, I do think that there are probably a lot of occasions when a "quick and dirty" program is by far the most practical approach. In fact l'll even venture to suggest that if you don't adopt this approach on occasion, the odds are that you won't use the computer at all, because the time and effort involved in writing a fully "professional"

\section*{. . . ctd from p113}
program will be too daunting. This certainly would have been the case with my filter calculations.
If this isn't enough already to guarantee that I'll never be able to get a job teaching programming (let alone being allowed to join the Australian Computer Society), I'm going one further. Somewhere in this column you should find a listing of the actual "quick and dirty" program that started all this - the filter calculation program - just in case some readers may be able to use it.
As you can see, it was written in plain old unstructured BASIC! Poor old Jim Rowe, he's not only a heretic but sadly behind the times as well

\section*{Vocal Canceller ...}
cancel, speak into the microphone and gradually increase the gain until your voice blends realistically.
If you now want to demonstrate your vocal talent with the speakers, bear in mind that if you turn the microphone gain up too high or put the microphone near one of the speakers, the resulting feedback is not only unpleasant to listen to but may, in extreme cases, damage the amplifier or loudspeakers.

\section*{Notes \& Errata}

PLAYMASTER 3-70L LOUDSPEAKER SYSTEM: (March 1982, File No. 1/SE/60): When is a plinth not a plinth? When it's stuck on top of the cabinet as shown in the diagram on page 39, that's when! The drawing on page 43 is correct.

\section*{ANALOG STORAGE CRO ADAPTER} (March 1981, File No. 7/C/34): The circuit diagram on page 75 shows a \(6.8 \Omega\) resistor connected from pin 3 of IC 26 to ground. This resistor should instead be shown connected to the negative rail. The PC pattern is correct. In addition, pin 10 of IC8 should be shown connected to the channel one output and pin 11 to the channel two output to comply with the Digital Storage CRO adapter circuit of the November 1980 issue.

\section*{FOR SALE}
T.T. Mod \(15 \$ 50\) ASR \(33 \$ 200\) T.D. 145. Reports Tape punches, tape, paper rolls comput paper \(\$ 8.00\) cart. Spare parts. Murphy B \(40 \$ 90.00\) S.S.T.V. Tubes \(\$ 5.00\) ea. Short wave diathermy \(\$ 70.00\). T. T spare parts New jack fields. Sell out. (02) 3313383,367 Bourke St, Darlinghurst. 2010.

2X81 GAMES: Exciting new games from UK. Fastmoving graphics in machine code. SAE to \(K\) Johnstone, 8 Cawrse St. Elizabeth Field. SA, 5113.

PRINTER: Decwriter LA36 with keyboard for send and receive Suit most computers. As new condition. White "Printer", PO Box 79, Crystal Brook, SA. 5523, or phone (086) 362314.

CB's, We convert old CB's to the new 40ch FT902DM plus \(\$ 975\) FM320 \$259 FRG7 \$275 40 ch SSB/AM CB from \(\$ 169 \mathrm{CB}\) repairs by mail. Park Disposals, 32 Park St, Sydney (02) 2647515 or ring Sam from 6pm to 9pm only (02) 4071066
AMIDON FERROMAGNETIC CORES - Large range for all receiver and transmitter applications. For data and price list send \(105 \times 220\) SAE to: R. J. \& U. S Imports, PO Box 157. Mortdale, NSW 2223.

\section*{POSITION VACANT}

A LONG ESTABLISHED FIRM operating in the Broadmeadows Victoria area has three Positions Vacant for Radio and Electronic Repair Men. Trained to Army Standards preferred.
A Trade Test will be necessary
Wages negotiable. Contact the Manager, phone (03) 358 1160, between \(8 \mathrm{am}-3.30 \mathrm{pm}\).

\section*{FOR HIRE}

MICROCOMPUTERS for rental Commodore Pets ( 8 K ) at \(\$ 25\) per week (minimum period 1 week). Software tapes and manuals included, plus Basic instruction course and book. David B. Bates Microcomputer Consultant. Ph. (02) 6308652.

\section*{BUSINESS FOR SALE}

FREEHOLD RADIO TV Refrig Elect business, good country town close to Brisbane, \(\$ 60,000\) plus stock, will neg. Don (071) 95 2766. Ahrs (071) 953821

\section*{READER SERVICE}

COMPUTER CLINIC Repairs and Service. Apple, Sorcerer, Pet, TRS80. System 80. Super 80, etc. (07) 2698573 . PO Box 68, Aspley, Brisbane, 4034.

\section*{AN INTRODUCTION TO DIEITAL ELECTRONICS}

Electronic equipment now plays an important role in almost every field of human endeavour. And every day, more and more electronic equipment is "going digital". Even professional engineers and technicians find it hard to keep pace. In order to understand new developments, you need a good grounding in basic digital concepts, and An Introduction to Digital Electronics can give you that grounding. Tens of thousands of people - engineers, technicians, students and hobbyists - have used the previous editions of this book to find out what the digital revolution is all about. The fourth edition has been updated and expanded, to make it of even greater value.
Available from "Electronics Australia", 57 Regent St. Sydney. PRICE \(\$ 4.50\) OR by mail order from "Electronics Australia". PO Box 163, Chippendale, 2008. PRICE \(\$ 5.20\).

\section*{CLASSIFIED ADVERTISERS}

To the Advertising Manager. ELECTRONICS Australia, Box 162. Beaconsfield. 2014
- Please insert the following advertisement in the first available issue.
- Tick the classification required FOR SALE \(\square\) WANTED \(\square\) FOR HIRE
\(\square\) CLUBS \(\square\) POSITION VACANT \(\square\) POSITION WANTED \(\square\) READER SERVICE
Please print in ball-point pen using capital letters only where necessary.
\(\qquad\)
\(\longrightarrow\)
\(\bar{\longrightarrow}\)

\footnotetext{
Signed
I enclose ChequeiMoney Order for \$
Addiress
being full payment for
letters at \(\$ 3.60\)
for 40 letters or part thereof (minimum 80 letters)
}

DISPLAY ADVERTS IN MARKETPLACE are available in sizes from a minimum of \(2 \mathrm{~cm} \times 1 \mathrm{col}\) rated at \(\$ 15\) for a col cm .
CLASSIFIED RATES \(\$ 3.60\) for 40 letters or part thereof an insertion payable in advance. Minimum 80 letters
Please use coupon below.
CLOSING DATE is six weeks prior to the onsale date Issues are on sale the first Wednesday of each month.

Self employed Contract Draughtsman specialising in electronic, electrical, instrumentation, broadcasting circuits and mechanical details, site plans, building layouts, PCB design and artwork (single or double sided or multi-layer). technical writing, etc. Ex supervising tech. TOCP, BOCP, 10 yrs full time drafting experience. All work executed professionally in your Adelaide office or mine. Rates, quotes, samples sent if you enclose large SASE with your enquiry to

DQ COMMUNICATIONS
PO BOX 313, MORPHETT VALE, S.A., 5162.

\section*{Fundamentals of Solid State}


Fundamentals of Solid State has been reprinted, revised and updated showing how popular it has been it provides a wealth of information on semiconductor theory and operation, delving much deeper than very elementary works but without the maths and abstract theory which make many of the more specialised texts very heavy going. It begins with atomic theory, diode types, unijunction, field effect and bipolar transistors, thryister devices, device fabrication and microcircuits. A glossary of terms and an index complete the book

Available from "Electronics Australia", 57 Regent St, Sydney. PRICE \(\$ 3.50\). OR by mail order from "Electronics Australia", PO Box 163, Chippendale, 2008. PRICE \$4.20.


\section*{CAPACITORS}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& 0.56250 \mathrm{~V} \\
& 2000 \text { MFD. VDcw } 25
\end{aligned}
\] & 40 c ea 75 c ea \\
\hline \(0.0039 \mathrm{FF}, 1500 \mathrm{~V}\) & 20c ea \\
\hline 6N8, 1500V & 20 c ea \\
\hline 0.0068 uF .1500 V & 20 c ea \\
\hline 1200PF, 400V & 10 for \$ 1 \\
\hline 0068 uF 400 V & 5 for\$1 \\
\hline 2200PF. 630V & 10 for \$1 \\
\hline \(0.47 \mathrm{UF}, 250 \mathrm{~V}\) & 10 for \$1 \\
\hline \(0.10 \mathrm{uF}\). & 5 for \$1 \\
\hline 0.082 uF .160 V & 10 for \$1 \\
\hline 26k 250V & 10 for \$1 \\
\hline 0.041 uF. 400 V & 10 for \$1 \\
\hline \(0.033 \mathrm{UF}, 250 \mathrm{~V}\) & 5 for \$1 \\
\hline 0.027 uF .100 V & 20 for \$ 1 \\
\hline 220uF. 10 V & 10 for \$1 \\
\hline \(1 \mathrm{LF}, 350 \mathrm{~V}\) & 10 for \$1 \\
\hline \(470 \mathrm{OF}, 40 \mathrm{~V}\) & 5 for \$1 \\
\hline 1000uF 16V & 25c \\
\hline 2.2 FF .200 V & 10 for \$ 1 \\
\hline 0047 UF 1500V & 50c \\
\hline 47 UF .25 V & 4 for \$ 1 \\
\hline 680uF 40V & 50c \\
\hline 22K, 100V & 20c \\
\hline 330uF, 25V & 25c \\
\hline 22 uF 200V & 30 c \\
\hline \(470 \mathrm{uF}, 40 \mathrm{~V}\) & 50c \\
\hline 680uF. 35V & 50c \\
\hline 0.015 UF. 250 V & 25c \\
\hline \(1 \mathrm{uF}, 100 \mathrm{~V}\) & 25c \\
\hline 1000uF, 16V & 50 c \\
\hline 220uF. 16V & 50c \\
\hline 2000uF. 63V & \$1 \\
\hline \(0.47 \mathrm{uF}, 400 \mathrm{~V}\) & 50c \\
\hline 680K. 250 V & 25c \\
\hline 012.250V & 25c \\
\hline 15NF. 250V & 10c \\
\hline 120K, 250V & 20c \\
\hline 10uF. 315V & 25c \\
\hline 0056.250 V & 10c \\
\hline 500 MFP 10 VOLT & 5 for \$1 \\
\hline 68uF 63V & 5 for \$1 \\
\hline
\end{tabular}

\section*{SPECIAL
TRANSISTORS}

\section*{AD 161.16
BSC 901 A \\ BSC 901
BC 548
AD 149 \\ OC9554 \\ 8D202N BD135
2NC055 \\ ELECTROS}

470 uF .25 V
400 uF .10 V
47 UF .63 V
350uF 16 V
27uF. 160 V
25uF. 63 V
22 uF .160 V
\(47 \mathrm{UF}, 200 \mathrm{~V}\)
220 uF .10 V
68uF
Circuit Diagrams supplied
CRYSTALS FOR COLOUR TV 03061 NDK
\(\$ 250\)
COLOUR INFRA RED AUDIO IRANSMITTER
FM RADIO AERIALS
SPEAKER TRANSFORMERS FOR VALVE RADIOS
\begin{tabular}{|lr|}
\hline \(5.000 \cdot 15\) ohm & \(\$ 250\) \\
\(7.000-15 \mathrm{ohm}\) & \(\$ 2.50\) \\
\(10.000-15 \mathrm{ohm}\) & \(\$ 250\) \\
\(7.000-3.5\) ohm & \(\$ 250\) \\
\hline TV Stick Rectiliers 20SC & \(\$ 1.00\) \\
\hline
\end{tabular}


\section*{SPECIAL}

100 mixed resistors, all useful
100 mixed capacitors, fresh stock

\section*{AUDIO LEADS}

35 m to \(3.5 \mathrm{~m}, 7 \mathrm{ft}\)
35 m to 65 m 7 ft
3 m , 7 If
\(6.5 \mathrm{~m}, 7\)
75 c
75 c

MICRO SWITCH

TUNING CAPS
2 and 3 gang
Min 2 gang

LOE EAAPMAN
122 PITT ROAD. NTH CURL CURL
MAIL ORDERS: BOX 156, DEE WHY, NSW. 2099. TELEPHONE 93-1848.

\section*{SUPER SPECIAL}


Sets of 3 modules include FM tuner, decoder and IF detector. Circuit diagram supplied. Can be used with amp modules

ONLY \(\mathbf{\$ 2 2}\)
P\&P \$1.00

Colour deflection boards to suit Kriesler, Philips, Pye etc \(\$ 35\).

BSR DELUX record player
11 INCH TURNTABLE CUING DEVICE, SHIELDED MOTOR MAGNETIC CARTRIDG
\(\$ 50\). BASE \& PERSPEX TOP \(\$ 22\) EXTRA


SPEAKERS 2 : INCH
FOR \$
Power Transformers 240 V 263 Windings 0.15 AMP

Pow

\section*{MAGNAVOX SPEAKERS}
\(\$ 5\)
PP NSW \(\$ 1.80\) INTERSTATE \(\$ 2.75\) WA. TAS, NT, \(\$ 4\)

CLOCK MODULES \$3



\section*{VU \& BALANCE METERS}


Stereo vu s3.00

\(12 \mathrm{Kn} \mathrm{100uA} \$ 2.00\)

SPECIAL
MAGNAVOX SPEAKERS
10 INCH WOOFER \(\$ 20\) PAIR MID.RANGE


\section*{SPECIAL}

SPEAKEA CROSSOVER NETWORKS 2WAY FREO 4 KHZ 30W 80HM

\section*{\(1 / 2\) Meg
1 Meg \\ 1 Meg
100 K}
POTS ROTARY
100K Switch
50K Double Pole Switch
7500
10K Switch

\section*{250K
50 K}

\section*{20K}
10K Min Pots

\section*{50/ohm}
\(1 / 8\) or 1 Meg Switch
\(1 / 21\) meg dual Concentric tapped at 100 K 2 meg ganged double pole switch
1.5 meg dual oanged
2 meg ganged log
meg dual ganged
25K. 50K dual ganged Concentric
double switch
200K single line
20K wire wo
dual log \(10 K\)
100K dual ganged linear pots
10K sub min log pots
250K ganged pots
25 K lin ganged pois \(\quad . . .2 . .75 \mathrm{c}\)
2 Min Transistor 450 IF KC Coils Plus 1 Min
Oscillator Coil
TV EHT Leads
\(4^{\prime} 6^{\prime \prime}\) in length
Transistor sockets \(\quad\) 50c each

\section*{MIXED SCREWS. SELF TAPP
NUTS ETC 200 \$1 PP - \(\$ 1\)}
Pick up Cartridges BSR universal type Ceramic Stereo
Diamond stylus stereo magnetic

\section*{Cable 4 Strand 5 Metros
DIODES}

\section*{OA 626}
OA 662
EM 410 C
DS 150 A.
DSY \(130 Y O\)
OA 636
HR 15
Diodes B
BY 188 DIODES BAV20 10 for \(\$ 1\)
Valve sockets 7 pin
Valve sockets 9 pin
0 OTAL
B2×79
5 for \(\$ 1^{10 \mathrm{c}} 0\)
Power transformers 240V, \(117 \mathrm{~V}, 2125 \mathrm{~V}\)
Tapps 6.3 - \(\$ 7.00\)
SPARK GAPS 500 volt 20 cents
THERMISTERS 20 cents
Transistors AD161.162. \(\$ 250\) pair
Transistors AD149
PICK UP ARMS
Mono
Inc Ceramic Cartide a Siylis TRIMPOTS
200 O
\(5 K\)
100 K
47 K
10 K
470 ohm
Minlature speaker and drive output
transformers
Special mixed tag strips . . . . . . . . . 10 for \(\$ 1\)
SPEAKER SPECIALS
5 inch in 3.8 or 15 ohms \(\$ 3\)
15 ohm 4
\(\begin{array}{llll}6 \times 9 & 150 \mathrm{hm} \\ 5 \times 7 & 15 \mathrm{hm}\end{array}\)
\(8 \times 415 \mathrm{ohm}\)
\(6 \times 415 \mathrm{ohm}\)
\(6 \times 427 \mathrm{ohm}\)
\(6 \times 327 \mathrm{hm}\)
5450 ea
\(5 \times 327 \mathrm{ohm} \quad \$ 350 \mathrm{ea}\)
\(5 \times 347\) ohm
\(6 \times 43.3 \mathrm{chm}\)
Power leads and sockets 240 volt. suit most tape recorders. radios. etc. \(\$ 1\) each
455KC If Transformers for valve radios. \$1 each. Also OSC coils. 75 cents each Aerial coils
HOR Drive 3021 transformers for
colour TV
\(1127044 \times 6\)
PILOT LIGHTS
Screw in 6 3V
Pilot
12 V

\section*{Electronics Australia Reader Service}
"Electronics Australia" provides the following services
PHOTOSTAT COPIES: \$3 per project, or \$6 where a project spreads over multiple issues (price includes postage). Requests can be handled more speedily if projects are positively identified, and if not accompanied by technical queries. We reserve the right to supply complete back issues instead of photostats, where these are available.
CHASSIS DIAGRAMS: For the few projects which require a custom metal chassis (as distinct from standard cases) dyeline plans showing dimensions are normally available. \(\$ 3\) including postage.
PC BOARD PATTERNS: High contrast, actual size transparencies: \(\$ 3\), including postage. Please specify positive or negative.
PROJECT QUERIES: Members of our technical staff are not normally available to discuss individual projects, either in person at our office. or by telephone.
REPLIES BY POST: Limited to advice concerning projects published within the last three years.

Charge \$3. We cannot provide lengthy answers, undertake special research, or discuss design changes. Nor can we provide any information on commercial equipment
OTHER QUERIES: Technical queries outside the scope of "Replies by Post" or submitted without tee may be answered in the "Information Centre" pages, at the discretion of the Editor.
COMPONENTS: We do not sell electronic components. Prices and specifications should be sought from advertisers or agents.
BACK ISSUES: Available only until our stocks are exhausted. Within six months of publication, face value plus 70 c for post and packing for each issue. Seven months and older, \(\$ 3\) (includes post and packing and storage fee).
REMITTANCES: Must be negotiable in Australia and made payable to "Electronics Australia" Where the exact charge may be in doubt, we recommend submitting an open cheque endorsed with a suitable limitation.
ADDRESS: All requests to the Assistant Editor, "Electronics Australia", Box 163, Chippendale 2008.

\section*{EA PC BOARDS AND FRONT PANELS}

Some readers have problems obtaining PC boards and front panels for projects. Many of our advertisers sell these items and their advertisements should be checked in the first instance. Failing that, below is a list of firms which produce or sell PC boards and front panels.

\section*{NSW}

Dick Smith Electronics, 125 York Street. Sydney, 2000.
Telephone 2903377
DSE also has branches and resellers throughout Australia

\section*{Electronic Agencies,}

115-117 Parramatta Road,
Concord, 2137
Telephone 7453077
Jaycar Piy Lid,
380 Sussex Street. Sydney 2000.
Telephone 2646688
Radio Despatch Service,
869 George Street.
Sydney 2000.
Telephone 2110816

RCS Radio Pty Ltd,
651 Forest Road,
Bexley, NSW 2207.
Telephone: 5873491
VIC.
Rod Irving Electronics,
425 High Street,
Northcote, 3070
Telephone 4898131.
Kalextronics,
101 Burgundy Street,
Heidelberg 3084
Telephone 7431011
Sunbury Printed Circuits,
10 Counihan Street.
Sunbury 3429.
SA
James Phototronics,
522 Grange Road,
Fulham Gardens, 5024

WA
Altronics Distributors,
105 Stirling Street,
Perth 6000.
Telephone 3281599.
Jemal Products,
8/120 Briggs Street.
Welshpool, 6106.
N.Z.

Marday Services,
PO Box 19 189,
Avondale, Auckland.
Mini Tech Manufacturing Co Ltd,
PO Box 9194 Newmarket.

Printed Circuits Limited, PO Box 4248 . Christchurch.

\section*{SUBSCRIPTION SERVICE}


Subscription Rates
\(\$ 24.50\) per year within Australia \(\$ 28.50\) per year elsewhere

Make sure you receive every copy of the magazine by ordering it from your newsagent or the publisher. For publisher subscriptions post this coupon, with your remittance to Electronics Australia Subscription Dept. John Fairfax \& Sons Ltd. GPO Box 506, Sydney 2001. Subscription will start with first available issue.

ADVERTISER ..... PAGE
AMS Systems ..... 32
Ace Radio ..... 87
Acoustic Electronic
Developments Pty Ltd ..... 112
Adaptive Electronics ..... 7
Altronic Distributors Pty Ltd ..... 90, 91
Ampec Electronics Pty Ltd ..... 41
Amtex Electronics ..... 59
Applied Technology ..... 72,73
Australian School ofElectronics, The104
Boffin Microcomputer Design \& Systems ..... 88
Bright Star Crystals ..... 109
Chapman, L. E. ..... 119
Christie Rand Pty Ltd ..... 15
Computer Country Pty Ltd ..... 24, 45
Cunningham R. H . ..... 116
D Q Communications ..... 118
Daneva Controls ..... 49
David Reid Electronics Ltd ..... 96
Defence Force, Recruiting ..... 83
Dick Smith Electronic Group 16, 17, 30, 31, 94, 95, Catalog
Direct Computer Sales ..... 112
Edible Electronics ..... 107
Electrocraft Pty Ltd ..... 23
Electronic Agencies ..... 84
Elmeasco Instruments Pty Ltd ..... 48
Hagemeyer (Aust) Pty Ltd ..... OBC
Hy Tech Distributors ..... 88
Jaycar Pty Ltd ..... \(11,50,51,62\)
K C Electronics ..... 102
Kalextronics ..... 33
Looky Video ..... 115
Marantz (Aust) Pty Ltd ..... IBC
Parameters Pty Ltd ..... facing 61
Paris Radio Electronics ..... 111
Pre-Pak Electronics ..... 25
Prentice Hall ..... 103
Q T Computer Systems ..... 118
Radio Despatch Service ..... 102
Rakon Industries ..... 84
Ralmar Agencies Pty Ltd ..... 43, 105
Rod Irving Electronics ..... 20, 57, 97
Royel International ..... 35, 75
SM Electronics81
Sanyo (Aust) Pty Ltd centre ofmagazine
Scientific Devices ..... 15
Scientific Electronics ..... 95
Software Source ..... 115
Sony (Aust) Pty Ltd ..... IFC
Standard Components ..... 43
Stotts Technical
Correspondence College ..... 67
Tandy Electronics ..... facing 60
Technical Book \& Magazines Co ..... 99
Vicom International ..... 29
Warburton Franki ..... 2
Wireless Institute of Australia ..... 85


For over twentyfive years the name Marantz has stood for the ultimate in audio engineering brilliance and fidelity

In keeping with this standard of technical excellence, the new Marantz Gold range of Cassette Decks with stunning designer element of brushed-gold finish now includes a recorder incorporating the latest in noise reduction processing.

The Marantz SD3030 Cassette Deck features the new Dolby C system to provide recordings with far less tape hiss than those made using standard Dolby B.

Unlike some other noise reduction systems, Dolby \(C\) recordings can be played back on a deck equipped with standard Dolby only without audible distortion or pumping effects.

Recording enthusiasts will be delighted by the other models in the new range.

Marantz Gold decks offer a variety of advanced features such as LED peak level meters on the SD 1030, fine bias adjustment on the SD2030, and a motorized linear skating loading system on the SD5010.

Decks shown in stack (from top): SD1030, SD3510, SD2030, SD3030 and SD5010 All decks shown with TDK Metal lapes

\footnotetext{
Dolby and Dolby Systems are trademarks of Dolby Laboratories. Inc
Copyright may exist on material you wish to record. Coppying on such material requires the permission of the owner or owners.
Distributed by MARANTZ (Australia) Pry Lid 19 Chard Road. Brookvale NSW 2100 Telephone (02) 9391900 Telex AA24121 Melbourne (03) 5442011
Brisbane (07) 446477 . Adelaide (08) 2232699 . Perth (09) 276 3706. Townsville (077) 722011
}

All feature Dolby \(B\) noise reduction, compatibility with metal tapes, soft touch controls and DC Servo motors to ensure constant tape speed and silent operation.

So, set your standards high. And your recording standards higher.

See your local stockist and listen to the future. Listen () Marantz.

Now you're listening.



The stereo headphone represents perfect stereo reproduction.

As well as receiving sound through your ears, you appear to receive sound from above your head.

This added dimension in sound is stereo.
Of course, anyone can get this sound from any good stereo radio cassette recorder if they listen through stereo headphones.

But, at JVC, we realised it was impractical to wear stereo headphones all the time.

So we invented a new kind of sound system just for our stereo radio cassette recorders.

The Biphonic System.
This exclusive system offers 3 -dimensional sound effects, so you enjoy true stereo reproduction without headphones.

If you'd like to know more about the many innovations JVC has brought to the stereo radio cassette recorder, write to us for a brochure, or call in to any JVC dealer.

Then you'll see why JVC equipment is recognised as The State of the Art.```


[^0]:    Registered by Australla Post - publication No. NBP0240.
    Printed by Magazine Printers Pty Lid. of Regent Street, Sydney and Masterprint Piy Lid of Dubbo, NSW, for Magazine Promotions, of Regent St Sydney.

    ## Editorial Office

    57 Regent St. Sydney 2008
    Phone (02) 6993622 Telex 25027
    Postal Address: PO Box 163, Chippendale, 2008.

    Advertising Offices
    Sydney - 57 Regent St. Sydney 2008
    Phone (02) 6993622 Telex 25027
    Representative Narciso (Chit) Pimentel
    Melbourne - 392 Little Collins St. Melbourne
    3000. Phone (03) 6023033

    Representative: Mark Christian.

[^1]:    Reprinted by permission from New Scientist, Vol 92 No. 1280. Copyright IPC Magazines 1981.

[^2]:    Authorised Dealers: N.S.W. Newcostle: Elektion 2000262644 Waga: Rivercom 212125. Wollongong Macelec 291455

[^3]:    AVAILABLE FROM:
    NSW Standard Components (02) 6606066 Radio Despatch Service (02) 2110191 David Reid Electronics (02) 296601 Emtronics (02) 2110531
    D. G E Systems Newcastle (049) 691625 OLD. Audiotronics ( 07 ) 447566
    E C O. Electronics (07) 3765677
    St Luciá Electronics (07) 523547
    S. A. Bee Jay Electronics (08) 3525959

[^4]:    If you have a factual and interesting story to tell about electronic servicing, write it in your own words and sent it to "The Serviceman", c/- "Electronics Australia", Box 163. Chippendale 2008. If the Serviceman uses it in his column, we will pay an appropriate fee.

[^5]:    Radio clubs and other organisations, as well as individual amateur operators, are invited to submit news and notes of their activities for inclusion in these columns. Photographs will be published when of sufficient general interest, and where space permits. All material should be sent to Pierce Healy at 69 Taylor Street, Bankstown, NSW 2200

[^6]:    Notes from readers should be sent to Arthur Cushen, 212 Earn Street, Invercargill NZ. All times are UTC (GMT). Add eight hours for WAST, 10 hours for EAST and 12 hours for NZT. In areas observing daylight time, add a further hour.

[^7]:    Keviews in this section are by Julian Russell (J.R.), Paul frolich (P.F.), Neville Williams (W.N.W.), Leo Simpson (L.D.S.), Norman Marks (N.J.M.), Greg Swain (G.S.), and Danny Hooper (D.H.)

[^8]:    All PC Boards for EA \& ETI Projects Front Panels for some 1979 and 1980 EA \& ETI projects. Black or silver-background by the Scotchcal System.

[^9]:    N.S.W. Ralmar Agencies P Ltd (02) 4396566

    Vic. Ralmar Agencies P, Lid (03) 2673028
    S.A. Charles Harwood PiLid (07) 2641118

    QLD. Olbertz International P'Lid (07) 2611513
    W.A. Bruce Ingram \& Assoc. P:Ltd (09) 3817777

    TAS. George Harvev PiLid (003) 3316533

