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"The Stethophone," An Electrical Stethoscope 

USCULTATION is commonly practiced by means of the 
ordinary stethoscope, a device with which the physician is 

able to study sounds produced within the heart, lungs, or other por- 
tions of the body and to determine whether such abnormal con- 
ditions exist as are evidenced by abnormal sounds. Of particular 
importance are the characteristics of the normal heart sounds, heart 
murmurs, breathing sounds and rales.1 It is well known that the 
intensity of certain of these sounds is not in itself of fundamental 
significance, that, for example, certain very faint murmurs may 
represent serious organic lesions; hence it is of pathological im- 
portance that these sounds be heard and understood. 

Most acoustic and mechanical vibratory systems introduce dis- 
tortion by discriminating in favor of certain frequency bands. Ex- 
treme distortion may alter a sound beyond recognition. If a mod- 
erate amount of distortion is unavoidable, it may be possible to 
control it judiciously so as to give most accurate reproduction in 
the frequency region of major importance. 

From this standpoint it is of interest to consider the frequency 
characteristics of the two common types of stethoscopes shown in 
Figs. 1 and 2. The stethoscopes used in these tests were equipped 
with thick-walled soft rubber tubing such that the distance from 
the chest piece to the car pieces was approximately 55 cm. The 
characteristic of the open bell stethoscope was obtained by picking 
up sound from the surface of a piece of fresh beef and measuring 
the relative intensity of sound on a condenser transmitter2 with and 

1 The presence of any one of several types of lesions in or near the valves of the 
heart "gives rise to eddies in the blood current and thereby to the abnormal sounds 
to which we give the name murmurs." "No one of the various blowing, whistling, 
rolling rumbling or piping noises to which the term refers, sounds anything like 
a 'murmur' in the ordinary sense of the word." (R. C. Cabot—Physical Diagnosis, 
pp. 182-3. 1923.) , , , , ,, r ■ .i i 

"The term 'rales' is applied to sounds produced by the passage of air through 
bronchi (windpipes) which contain mucus or pus, or which are narrowed by swelling 
of their walls." (R. C. Cabot—Physical Diagnosis, p. 103) Rales may appear 
either as bubbling sounds, occurring singly or in showers, or as musical squeaks 
and groans. 

2 E. C. Wente, "The Sensitivity and Precision of the Electrostatic Transmitter 
for Measuring Sound Intensities," P/iys. Rev. 19, Xo. 5, p. 498, 1922. 
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without the test stethoscope inserted in the sound path. In this 
experiment, it was impracticable to set up pure vibrations in the 
human body. A piece of fresh beef was a convenient substitute and 
one which for the purposes of such physical analysis appeared satis- 
factory. 

The frequency characteristic of the open bell stethoscope is shown 

Fig. 1—The open bell stethoscope 
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Fig. 2—One type of Bowles stethoscope 

n Fig. 3, in which the "sensation value" as interpreted by the car 
s plotted in transmission units,3 TU,—convenient units used to 

3 The transmission unit used in this paper is a logarithmic function of power 
itio. The number of transmission units N corresponding to the ratio of two 
mounts of power P, and Pi is given by the relation Af=I0 logiu-pj. The power 

N 
itio corresponding to N units is therefore For example, an increase of 
0 TU signifies 10 times as much power; of 20 TU, 100 times as much power etc. 
ee W H Martin, "The Transmission Unit," Journal A. I. E. E., Vol. 43, p. 
04, 1924; B. S. T. J. Vol. 3, p. 400, 1924. 
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express relative loudness. A power ratio scale is also shown at the 
left and the power at 100 cycles is assumed equal to unity as a ref- 
erence point. 

This curve shows the relative efficiency of transmission for fre- 
quencies up to 2,000 cycles. The successive peaks are due primarily 
to resonance of the air columns and are partly determined by the 
length of the stethoscope tubing. Resonance thus increases the 
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Fig. 3—Frequency characteristic of open bell stethoscope 

efficiency of transmission at and above the fundamental peak fre- 
quency. As the frequency scale is ascended from this point, the 
transmission falls off gradually. 

In a subsequent test, the open bell and Bowles types of stethoscopes 
(Figs. 1 and 2) were compared directly with one another. For this 
test, a vigorous sound was imparted to the sternum of a patient and 
the sound was picked up over the apex of the heart. Below 150 
cycles, the Bowles stethoscope averaged approximately 15 TU less 
efficient, whereas, disregarding the somewhat different arrangement 
of the resonance peaks, between 300 and 1,000 cycles, it varied from 
5 to 10 TU more efficient than the open bell type. These features 
of the Bowles stethoscope are due to the chest piece diaphragm. 
As will be shown in another paper, much of the energy of systolic 
and diastolic murmurs is made up of frequencies between 120 and 
(560 cycles per second. Thus, concurring with observations made 



534 BELL SYSTEM TECHNICAL JOURNAL 

by Dr. R. C. Cabot,4 it is to be expected that many of the moderately 
high and high pitched murmurs can be heard more distinctly with 
the Bowles than with the open bell stethoscope. On the other hand, 
for many faint pathological sounds such as presystolic murmurs 
which are composed primarily of relatively low frequencies, the 
open bell stethoscope is more satisfactory for observation. The 
latter introduces less distortion so that with it all sounds are retained 
more nearly at their original relative intensities. These remarks 
arc, of course, confined to the particular designs of stethoscopes shown 
in Figs. 1 and 2. It should be noted that as the length of the rubber 
tubing is increased, the fundamental peak of Fig. 3 moves down- 
ward in frequency, and the transmission at higher frequencies becomes 
poorer. In order to retain the very high pitched components of 
certain heart and chest sounds, the use of long rubber tubing should, 
therefore, be avoided. 

The common stethoscope serves as a convenient means of observ- 
ing body sounds. If the available energy from a single chest piece 
is subdivided in order to supply several individuals, however, the 
sounds observed by each are much fainter. In cases where the 
sounds of pathological interest are sufficiently near the threshold 
of audibility the use of a multiplicity of observing tubes renders 
these sounds inaudible. This is often the case. 

For teaching purposes or for consultation, it is extremely desirable 
to have multiple listening units. In the past, it has been necessary 
to handle the students of large classes either singly or in small groups. 
This method naturally limits the number of cases that can be demon- 
strated and makes it impossible to give each student as much practice 
as has been found necessary for him to become familiar with the 
more obscure sounds. Aside from these factors, it has not been 
feasible for a large group to observe simultaneously with the in- 
structor the peculiarities and changes in murmurs of a transient or 
evanescent character. 

With the development of vacuum tube amplifiers, the possibilities 
of reproducing and magnifying body sounds electrically were con- 
sidered. It appeared that a device might be provided which would 
be useful not only in teaching but also in diagnosis, as an aid to 
physicians of subnormal hearing, in the reproduction of the very 
faint fetal heart sounds or even in fields beyond the scope of the 
ordinary stethoscope. 

1 R. C. Cabot, "Physicial Diagnosis," Chap. VI, 1923. 
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2. Early Development of the Electrical Stethoscope 

The earliest development work on electrical stethoscopes was 
naturally centered about the carbon transmitter and other micro- 
phonic contact devices. In 1907, Einthoven 5 made records of normal 
heart sounds and murmurs. In 1910,6 heart sounds were reproduced 
by a tuned mechanical relay consisting of a single microphonic con- 
tact and an electromagnetic element. With this device, heart sounds 
were transmitted audibly but evidently with a considerable amount 
of distortion, over a commercial telephone line in London. The 
normal heart sounds were amplified by Squier 7 for a group of physi- 
cians by means of a carbon transmitter in 1921. It is readily possible 
to amplify the fluctuations in current in a carbon microphone by 
means of vacuum tube amplifiers. However, the carbon microphone 
also introduces a certain amount of noise inherent in the use of loose 
contacts. This noise is below the threshold of audibility for the 
normal use of the microphone, as in the telephone plant, but when 
it is amplified along with the faint sounds of interest, in auscultation 
it becomes very annoying and tends to obscure these other sounds. 
This "microphone roar" contains components throughout the range 
of audible frequencies and hence cannot be eliminated. Various 
experimenters have, however, attempted to perfect such a device.8'9 

As far as we have been able to determine, such devices have not 
satisfactorily reproduced faint heart murmurs or chest sounds. 

Of the other possible types, the electromagnetic has thus far ap- 
peared to offer the greatest promise. In design, this resembles 
closely the ordinary telephone receiver. This type requires a more 
powerful amplifier than the carbon microphone but this is not a 
serious limitation. Such a combination has been used with prom- 
ising results to obtain graphical records of heart murmurs.10 The 
progress made with this type of equipment for teaching purposes has 
been outlined.11 The successful application of the electromagnetic 

®\V. Einthoven, "Die Registricrung dcr menschlichen Herztone mittels des 
Saitengalvanometers," Arch. f.d. ges. Physio/., 117:461 April 1907; " Ein dritler 
Herzton," ibid. 120:31 Oct. 1907 

6 S. G. Brown, "A Telephone Relay," Journal I. E. E. May 5, 1910. 
7 S. W. Winters, "Diagnosis by Wireless," Scient. Amer. 124:465 June, 1921. 
8 R. B. Abbott, "Eliminating Interfering Sounds in a Telephone Transmitter 

Stethoscope," Phys. Rev. 21:200 Feb., 1923. 
9 Jacobsohn, "Amplified Audibility of Heart Sounds," Berlin Letter J. .4. M. A.. 

80:493 Feb. 17, 1923. 
10 H. B. Williams, "New Method for Graphic Study of Heart Murmurs," Proc. 

Soc. Exper. Biol. and Med., 18:179 March 16, 1921. 
11 R. C. Cabot, "A Multiple Electrical Stethoscope for Teaching Purposes," 

J. A. M. A., 81:298 July 28, 1923. 
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transmitter to teaching was due largely to the work of Dr. R. C. 
Cabot and Dr. C. J. Gamble at the Massachusetts General Hospital 
where a successful multiple electrical stethoscope was first employed 
for classroom lectures in June, 1923. The equipment consisted of an 
electromagnetic transmitter provided with a special form of mouth- 
piece for picking up the body sounds, a three-stage vacuum tube 
amplifier and a distribution system to accommodate as many as 
125 students with single head receivers on which individual ordinary 
stethoscopes were held.12 

The experience gained with this equipment indicated certain 
improvements to increase the sensitivity to body sounds, and at the 
same time decrease the disturbances caused by extraneous noises. 
Greater sensitivity required a better transference of sound energy 
from the body to the transmitter. Reduced room noise required that 
we couple the transmitter as closely as possible with the human body 
and at the same time make it insensititive to sound vibrations in the 
air. A preliminary analysis with electrical filters of the frequency 
characteristics of sounds of pathological interest to the physician 
showed that these sounds were composed largely of frequencies below 
1,000 cycles. Inasmuch as the frequency characteristics of these 
various sounds are different, it has been found very useful to permit 
concentration on the sounds of interest by the use of electrical filters. 

These factors led to the development of the electrical stethoscope 
called the "stethophone" which is described in the following para- 
graphs. This development was undertaken at the request and with 
the active cooperation of Dr. H. B. Williams of the College of Physi- 
cians and Surgeons, New York, Dr. Richard C. Cabot 11 of the Massa- 
chusetts General Hospital, Boston, and Dr. C. J. Gamble 12 of the 
School of Medicine of the University of Pennsylvania, Philadelphia. 
The cooperation of these physicians permitted the instrument to be 
given practical tests at every stage of its development. 

3. General Description of the Stethophone 

The stethophone consists essentially of the following elements: 
1. An electromagnetic transmitter. 
2. A three-stage amplifier with a potentiometer control. 
3. A selected group of electric filters. 
4. A multiplicity of output receivers for observers. 

The whole is assembled in a substantial cabinet on wheels re- 
12 A detailed description of the apparatus used in this installation was presented 

in a recent paper. See Gamble and Replogle, "A Multiple Electric Stethoscope 
for Teaching," J. A. M. A., Vol. 82, p. 387, 1924. 
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sembling a "tea-wagon." It requires for its operation a six-volt 
storage battery and a 130-volt "B" battery. These are housed in 
compartments in the lower part of the cabinet. Ten jack positions 
are provided to permit this number of persons to listen simultaneously 
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Fig. 4—Circuit diagram of stethophone 

around the stethophone. All controls are conveniently placed on a 
single panel to facilitate operation. 

A schematic circuit diagram is shown in Fig. 4. 

4. Transmitter 

The transmitter employed with greatest success with the stetho- 
phone thus far is of the electro-magnetic type equipped with a special 
vibratory element which is placed in direct contact with the flesh 
of the patient. 

One of the features of the transmitter is its insensitiveness to sound 
waves in the air. Thus, the ratio of extraneous noise picked up 
by the transmitter to the body sounds is greatly reduced so that 
observations can be made with a minimum amount of interference 
from room noise. 

The transmitter construction provides efficient transfer of vibra- 
tional energy from the flesh or bony framework of the body to the 
vibratory steel element. It provides a means for coupling which 
serves as a mechanical transformer for body sound energy and avoids 
an abrupt change in the path of the waves and large attendant losses 
by reflection. The system is highly damped and minimizes the dis- 
tortion of the sounds of interest. 

Since the transmitter is a contact device, the physician may vary 
the pressure of application at will. Firm but light contact is desirable. 
The human flesh contributes damping to the vibratory system of the 
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transmitter. Undoubtedly this damping is not only variable for 
different individuals but depends upon the pressure and the nature 
of the flesh and bone structure in the vicinity of the point of applica- 
tion for any one individual. Thus the frequency characteristic of 
the transmitter is somewhat dependent on the conditions of use. 
The frequency of maximum response is slightly above 200 cycles, 
and the nature of the response-frequency curve indicates that the 
vibratory system is highly damped. A discussion of the overall 
frequency characteristic of the stethophone, including the trans- 
mitter, is given in a later section of the paper. 

It is obvious that variations in the pressure of application will 
introduce disturbing noises in the audible frequency range. Suitable 
means have, therefore, been provided to eliminate the communica- 
tion to the vibratory system of hand tremors, slight movements of 
the patient, and friction noises of the fingers on the case of the trans- 
mitter. 

Another source of extraneous noise is the rubbing of the transmitter 
cord on the clothing or on other surfaces. A stiff cord is very ob- 
jectionable from the standpoint of transmission of friction noises. 
Insulation from these noises has been provided by a very flexible 
section of cord at the transmitter end. 

5. Amplifier 

The three-stage amplifier employs one Western Electric 102-D and 
two Western Electric 101-D vacuum tubes. As shown in Fig. 4, the 
input transformer 7T connects the transmitter to the grid of the first 
tube which is coupled to the second tube through a resistance potentio- 
meter. The second and third tubes are coupled through a trans- 
former T2. The output circuit of the last tube may be connected 
to the load directly from its plate circuit for high impedance loads, 
or through an output transformer T3 for low impedance loads. I he 
plate circuit of the second tube is tuned by means of a condenser C1 
in order to retain high amplification at the low end of the frequency 
scale. 

A very flat characteristic is obtained over the range of interest, 
the maximum variation being only about 3 TU (See Fig. 5). A 
total gain of about 80 TU is provided, that is, a power amplifica- 
tion of about one hundred million times. With an amplification of 
50 TU, about the same loudness is observed in a single receiver in 
the output circuit of the stethophone as is heard by the direct use 
of the open bell stethoscope. This leaves a reserve amplification 
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of about 30 TU available for obtaining greater intensity of sounds or 
for supplying a large number of individual listening units. 

The potentiometer between the hrst and second tubes makes it 
possible to adjust the amplification in small steps, each step giving 
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Fig. 5.—Amplifier characteristics—maximum amplification 

approximately twice the energy of the preceding one. This is an 
essential element of a flexible system. 

6. Electric Filters 

An electric filter is a combination of coils and condensers capable of 
separating electrical waves characterized by a difference in frequency.13 

The three fundamental forms of fillers are commonly termed 
"low-pass," "high-pass," and "band-pass." A low-pass filter is one 
which passes currents of frequencies below a particular "cut-off 
frequency" and attenuates or weakens very greatly currents of higher 
frequencies. A high-pass filter does the opposite—attenuates below 
the cut-off frequency and passes above this frequency. A band- 
pass filter is one which passes currents of frequencies within a definite 
band fixed by two cut-off frequencies. A low-pass and a high-pass 
filter connected in series constitute one form of band-pass filter. 
For any type of filter, the sharpness of cut-off and the amount of 
attenuation can be controlled at will by suitable design constants. 

13 G. A. Campbell, "Physical Theory of Electrical Wave Filters," Be// System 
Tech. Journal, Nov.. 1922. 
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The stethophone is equipped with five filters whose cut-off fre- 
quencies are based on careful analyses of about 100 hospital cases 
ofi heart murmurs, rales and breathing sounds. These analyses 
showed that the sounds of pathological interest to the physician can 
be grouped into fairly definite frequency regions. When sounds in 
a particular range of frequencies are of immediate importance, they 
may be emphasized by suppressing sounds outside of this band. 

The frequency characteristics of the filters are shown in Fig. 6. 
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Fig. 6.—Loss characteristics of the five filters 

5000 

For convenience, the cut-off frequency has been defined as that 
frequency at which the energy is reduced to approximately 1/10 
of its original value. 

The low-pass filter with a cut-off frequency of 130 cycles is of 
primary use for reproducing the normal heart sounds and fetal heart 
sounds in cases where the rate alone is desired. Most of the energy 
of these sounds is below 100 cycles. With this filter most of the 
common interfering noises, including the sounds of the human voice, 
are excluded. 

The low-pass 400 cycle filter is particularly useful for observing 
presystolic and certain low-pitched systolic and diastolic murmurs. 

The low-pass 650 cycle filter has been found the most valuable 
of all five filters. With it, most high-pitched murmurs, low-pitched 
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rales and certain types of breathing sounds can be observed to the 
greatest advantage. 

The low-pass 1,100 cycle filter passes the higher frequency com- 
ponents of very high-pitched murmurs and high-pitched rales in a 
majority of cases. 

The high-pass 130 cycle filter serves a unique and important pur- 
pose. It may be regarded as in value second only to the low-pass 
650 cycle filter. In many cases, the loud normal sounds tend to 
mask or obscure the faint higher-pitched murmurs. The high-pass 
130 cycle filter serves to weaken greatly the normal heart sounds so 
that the murmur sounds occurring in the intervals between the 
beats appear with its use to be relatively much louder. In this 
filter, the amount of attenuation in the low frequency region has 
been made such that the residual low frequency energy and the 
higher frequency components of the normal heart sounds are just 
sufficiently audible so that the murmurs may be timed with relation 
to their positions in the cardiac cycle. This filter is also very useful 
for weakening the heart sounds when rales or pericardial friction 
sounds are to be observed in areas where the heart sounds are loud. 

The high-pass 130 cycle filter may be connected into the circuit 
jointly with any one of the low-pass filters, thus making available 
a group of band-pass filters with a lower cut-off frequency of 130 
cycles. 

7. Output Receivers 

When the stethophone is used for teaching or consultation pur- 
poses, a number of high impedance receivers are connected in parallel 
in the output circuit. Each observer is provided with a single 
receiver to which the ordinary stethoscope earpieces may be readily 

CLIP FOR ATTACHING TO CLOTHING-. 
OUTPUT RtCtlVtR— 

ff ^CORD-' 

Fig. 7—The output receiver 

attached as shown in Fig. 7. This method of transmitting sounds 
from the receiver diaphragm to the ears minimizes leakage loss of 
sound energy and serves effectively to shut out room noises and 
other annoying sounds. This result could be even better obtained 
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and with less distortion by providing the receivers with small tips 
to insert in the ears but at a greater cost for additional receivers. 
It is perhaps better to use the tubing and earpieces of the ordinary 
stethoscope as this is the equipment to which physicians are most 
accustomed and to which the student must accustom himself for 
future practice. The receiver case is provided with a spring clip 
for attachment to the clothing. This allows full freedom of both 
hands for manipulating the transmitter and the control switches of 
the amplifier, taking notes, etc. 

The impedance of the output circuit depends upon the number 
of receivers in use and, for parallel connection, decreases as the num- 
ber of receivers is increased. To care for the variable number that 
may be used at different times, the output transformer has been 
tapped and a three-way switch provided. By operating this switch, 
the apparatus can be adjusted to a load varying from 1 to GOO receivers 
with a maximum transmission loss of 2.5 TU. 

8. Frequency Characteristics of the Stethophone 

The overall frequency characteristics of the stethophone, includ- 
ing the transmitter, the amplifier, and the output receivers, are given 
in Fig. 8. Two curves are shown. The solid line curve represents 
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operating conditions when the output receivers are equipped with 
rubber tubing as in Fig. 7, and with the binaural car-pieces held in 
the cars. The peaks in this curve are due principally to the resonance 
in the air columns of the rubber tubing, and correspond to the sim- 
ilar peaks of Fig. 3 for the open bell stethoscope. In order to point 
out the effect of the stethoscope attachment of the output receiver, 
a second characteristic is shown by a dotted curve which represents 
conditions when an output receiver of the same type is held directly 
against the ear. It is noted that the stethoscope attachment in- 
creases the transmission between 150 and 500 cycles per second, 
and damps the sharp resonant peak of the receiver. 

The overall characteristic of the stethophone as employed for 
auscultation is quite similar to that of the open bell stethoscope. 
It is desirable that the body sounds as observed by the stethophone 
should appear the same as in the ordinary stethoscope, particularly 
in teaching work since the latter is used almost universally in regular 
practice. If it were deemed desirable for special purposes to avoid 
the distortion introduced by the stethoscope attachment, receivers 
with small tips to insert in the ears could be used. For such an 
arrangement, the overall characteristics could be further improved 
by using damped receivers which would practically eliminate the 
sharp peak of the dotted curve in Fig. 8. 

9. Installation for Teaching Purposes 

When the stethophone is to be used for teaching purposes a perma- 
nent wiring or distribution system should be installed with outlets 
distributed among the seats of the amphitheatre or lecture room." 
A schematic diagram of such a system is shown in Fig. 9. A dis- 
tributing pair of feeder wires, preferably shielded, is run between 
alternate rows of seals below the floor casing, or suitably sheathed 
to prevent damage. An outlet block "A" of six double contact jacks 
is mounted on the back of each third seat of alternate rows. Thus, 
one outlet block will supply six seats, three in front and three in 
back of the block. Substantial jacks should be used throughout and 
all receivers should be equipped with rugged plugs. In addition 
to furnishing jack outlets among the seats, two or three multiple 
outlet blocks may be installed at the center of the amphitheatre as 
shown at "B" for the use of guests or others on the floor of the amphi- 
theatre. The output of the stethophone can be connected to the 
distributing system of the amphitheatre at any one of these outlets. 
Switch boxes should be installed at various points as at "C" to facil- 



544 BELL SYSTEM TECHNICAL JOURNAL 

itate the localization of an accidental short circuit. If a short circuit 
should occur in any part of the system this section can thus be dis- 
connected and the balance u.sed independently. 
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Fig. 9—Wiring installation in an amphitheatre for teaching purposes 

In class room lectures, the instructor can make announcements 
to the students and point out features of particular interest in a 
convenient and somewhat novel manner without requiring the removal 
of the stethoscope tubes from their ears. The human body acts as 
a sounding board for sounds in air—that is, when words are spoken 
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in the vicinity of a patient, the flesh and bone structure vibrates to 
these sounds. This is particularly true of the areas commonly used in 
auscultation. The transmitter, resting on the flesh, will pick up 
these vibrations together with those originating in the body of the 
patient. The instructor may, therefore, talk to his students by 
directing his words at that portion of the body to which the trans- 
mitter is applied. Best results are obtained with a talking distance 
of about ten inches. During such announcements, it is essential, 

Fig. 10—Wiring installation for the rooms or the wards of a hospital 

of course, that the electrical filters be removed from the circuit in 
order that the important higher frequency components of speech 
may be transmitted to the receivers. Because of this operating 
feature, it is obviously necessary to have the patient in a reasonably 
quiet place. 

It is often desirable to reproduce in the lecture hall, the heart and 
chest sounds of confined patients too ill to be moved. For this pur- 
pose, the rooms or the wards of a hospital may be connected by a pair 
of wires to the lecture room. Such an installation is shown in Fig. 10. 
Terminal outlets are distributed throughout the rooms or the wards 
as desired and all are connected to the main feeder wires which com- 
municate with the lecture hall. It is necessary to take the stetho- 
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phone to the bedside. Long wires from the transmitter to the ampli- 
fier cannot be tolerated on account of inductive disturbances from 
neighboring telephone or other electrical circuits. If desirable, 
announcements may be made as before by talking close to the body 
of the patient under observation. In cases where exposure of a 
patient is inadvisable or where accurate statements pertaining to the 
seriousness of a disease are preferably withheld from the patient, 
announcements may be made by talking in a low tone of voice at 
about one inch distance from the transmitter itself. Reasonably 
satisfactory reproduction is obtained by this means. 

10. Other Applications 

Aside from its application to teaching purposes, the stethophone 
appears to have possibilities in fields which have not yet been thor- 
oughly studied. Further experimental investigation by the medical 
profession can alone bring out these possibilities. 

The possibility of substituting a loud speaker for the individual 
receivers in the output circuit has been investigated in a preliminary 
manner. This problem involves certain very fundamental factors 
relating to the sense of hearing which must be considered carefully. 
To a remarkable extent, the ear is capable of selective observation. 
Ordinarily we listen to sounds through a sea of noise to which we 
become so accustomed that we fail to notice it. However, when 
listening to sounds near the threshold of audibility, such as the body 
sounds under consideration, this noise may render the sounds of 
interest inaudible. In order to hear them, it therefore, becomes neces- 
sary to increase the loudness to a point well above that commonly 
observed by the physician with his stethoscope. This increase in 
loudness brings within the audible range, sound components ordi- 
narily not heard and changes the quality of the whole as judged by 
the ear. Such alteration of quality is obviously very unsatisfactory 
for diagnosis or teaching purposes. Assuming that we had available 
a perfect loud speaker, one that would transmit the very low and the 
higher frequency components of faint body sounds without distortion, 
difficulties would still be presented by the acoustic characteristics 
of the room in which the loud speaker was placed. AH rooms are 
more or less reverberant. When these sounds are reproduced by a 
good loud speaker in a small heavily damped sound-proof room, 
they appear quite natural, but such a room is seldom available prac- 
tically. None of the ordinary loud speakers with horns will transmit 
the low frequencies here of interest and would sound very un- 
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natural even with ideal room conditions. While a loud speaker has 
been used under proper acoustic conditions to reproduce faint 
pathological sounds, as murmurs and rales, this does not appear in 
general to be a practical arrangement. Most arguments, except per- 
haps that of economy, tend to favor the use of individual output 
receivers for practically all purposes where critical analysis of sounds 
is the objective. 

Fetal heart sounds as heard through the mother's abdomen are 
much fainter and require considerably higher amplification than 
adult heart sounds. Preliminary data indicate that the energy of fetal 
heart sounds is approximately only 1/50 to 1/500 of the energy of 
average normal heart sounds. The low pass 130 cycle filter is not 
only useful for suppressing the extraneous sounds and electrical 
disturbances which usually attend the use of high amplification, 
but serves most effectively to eliminate the voice sounds of the patient. 
At Sloane Hospital in New York City it has been found possible to 
reproduce clearly on a loud speaker and with a negligible amount of 
interference, fetal heart sounds which were barely audible in the 
physician's stethoscope. In these cases no interference was exper- 
ienced from the maternal heart sounds. However, even in surgical 
work where the rate of the adult or fetal heart is alone of importance, 
it is felt that the best plan is to equip an attendant with earpieces 
attached to a receiver and to make it his chief duty to observe the 
heart action. 

A very important application of the electrical stethoscope is its 
association with a recording galvanometer for making photographic 
records of heart and chest sounds. Permanent records of this sort 
might constitute a valuable addition to the history records of im- 
portant cases in large hospitals. Some excellent graphical records 
have already been made.10 It has been found that such records 
can be obtained much more easily with the stethophone, principally 
because of the part played by the electrical filters. The low-pass 
filter suppresses largely the current fluctuations caused by mechanical 
vibrations and noise at the apparatus. The high-pass 130-cyclc 
filter is also valuable for bringing out very faint murmurs. By its 
use, the amplitude of the normal heart sounds can be greatly reduced. 
When this is done, the amplitude of the faint murmur sounds may be 
magnified relatively and hence shown very nicely on the record. 

This is illustrated in the two charts of Fig. 11, which are presented 
through the courtesy of Dr. H. B. Williams. The stethophone 
records are accompanied by simultaneous electro-cardiograms (E) 
for timing the events. The first record was made with a low pass 
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650 cycle filter and the second with a band pass 130-1,100 cycle filter 
and increased amplification. The latter shows the systolic murmur 
very clearly. With the LP 650 filter, the murmur is more or less 
obscured by very low pitched sounds which may really be a part 

Low pass 650 cycle filter 

Band pass 150-1100 cycle filter 

Fig. 11—Records of a systolic murmur taken with the stethophone and a recording 
galvanometer 

of it, but certainly play a subordinate role in producing the audible 
sound. The effect of suppressing the low pitched sounds by using 
the high pass filter is more pronounced in charts of this sort for mur- 
murs which have negligible sound components below 130 cycles 
per second. 

Phonograph records of heart sounds have been made previously.14 

With the stethophone and a special electrical recorder, records of 
some 15 cases of murmurs and chest sounds have recently been made. 
The results are very encouraging. All of the characteristics of these 
sounds, such as the relative intensities of the different components 

14 F. Keiper, Letter J. A. M. A., 81:679 Aug. 25, 1923, 
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and their quality, have been retained remarkably well. The problem 
of subsequent reproduction of these records has been met satisfac- 
torily in two ways, in both of which the factor of particular concern 
is the elimination of "needle scratch" noises. First, an electromag- 
netic reproducer has been used in conjunction with the stethophone. 
In this case, low-pass fillers serve to reduce the scratching noises. 
Second, the records have been reproduced by attaching the ear- 
pieces of the ordinary physician's stethoscope to a special adapter 
used with a commercial phonograph reproducer. To reduce needle 
scratch in this case it is only necessary to introduce some form of air 
passage between the reproducer and the binaural earpieces which acts 
as a low-pass acoustic filter. The ordinary commercial phonograph 
is quite unsatisfactory for reproducing these records partly for the 
same reasons mentioned above relative to the use of loud speakers. 

Phonograph records of heart and chest sounds can be employed 
to some extent for preliminary teaching purposes and do not require 
much equipment if reproduced acoustically. No patients are required 
in this case, and the records can be accompanied by the analysis or 
diagnosis of an expert. It is suggested that phonograph records 
might be used to advantage as permanent records to follow the progress 
of disease in important cases. 

11. Summary 

A summary of the applications and limitations of a new form of 
electrical stethoscope has been given. However, the extent of its 
usefulness can be brought out only after it has been placed at the 
disposal of experienced men in the medical profession. With it, 
Heart murmurs and rfiles can be magnified and observed with greater 
clearness than with the ordinary stethoscope. Extremely faint 
sounds may be heard clearly without great acuity of hearing by 
inexperienced observers, a thing which has not hitherto been possible. 
In several instances, murmurs have been discovered with the stetho- 
phone which were not discerned initially with the ordinary stetho- 
scope although discernible after having heard them with the more 
powerful apparatus. In a few of these cases, very faint murmurs, 
although undoubtedly present could not be heard at all with the 
ordinary stethoscope. It is felt that the electrical filters have played 
an important part in such cases. These facts lead us to believe 
that the stethophone may have real value for diagnosis. 

The field of physical research of body sounds has been touched 
upon but lightly. For special purposes, an endless variety of elec- 
trical filters can be used with the stethophone. 



Mathematics in Industrial Research1 

By GEORGE A. CAMPBELL 

"Selling" Mathematics to the Industries 

HE necessity for mathematics in industry was recognized at 
least three centuries ago when Bacon said: "For many parts 

of nature can neither be invented [discovered] with sufficient sub- 
tility nor demonstrated with sufficient perspicuity nor accommo- 
dated unto use with sufficient dexterity without the aid and inter- 
vening of mathematics." Since Bacon's time only a very small 
part of nature has been "accommodated unto use," yet even this 
has given us such widely useful devices as the heat engine, the tele- 
graph, the telephone, the radio, the airplane and electric power 
transmission. It is impossible to conceive that any of these devices 
could have been developed without "the aid and intervening of 
mathematics." Present day industry is indeed compelled, in its 
persistent endeavors to meet recognized commercial needs, to make 
use of mathematics in all of the three ways pointed out by Bacon. 
The record of industrial research abundantly confirms his assertion 
that sufficient subtility in discovery, sufficient perspicuity in demon- 
stration, and sufficient dexterity in use can be achieved only with 
the aid of mathematics. 

There is throughout industry one vitally important common 
characteristic,—uncertainty. In one industry the uncertainty may 
be due to the supply of raw material, the supply of labor, the supply 
of brains or the supply of capital. In another industry the uncci"- 
tainty may be due to the activity of competitors, to fluctuating 
public demand or to the passage and subsequent interpretations of 
statutory laws. Still other industries are the playthings of the weather. 
Whatever the sources of uncertainty it is of vital importance to the 
industry to reduce to a minimum the hazards due to each of the 
uncertainties to which it is subjected. To a limited extent hazards 
may be transferred by means of insurance; but most uncertainties 
cannot be disposed of in this manner—they must be met by the 
industry individually. 

The practice of probabilities, therefore, has a place in every in- 
dustry. In fact, it occupies the first place in industrial mathematics, 
barring only the elementary arithmetical operations. It is remark- 
able how subtle arc the mathematical difficulties presented by ap- 

1 Paper read at the International Mathematical Congress, at Toronto, August 
11, 1924. 
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parently innocent problems in the theory of probability. For this 
reason, mathematicians who are entrusted with the application 
of probability to industry must have great insight and acumen. 
Even so, in applying probability to any industry, a beginning should 
be made with the simpler problems, going on by gradual steps to 
more and more complicated ones. 

Each industry has its own special mathematical problems, which 
must be considered individually in order to determine where mathe- 
matics should be applied. No industrial problem can seem much 
more hopeless, as a field for exact mathematics, than the subject 
of electricity as understood in the time of Bacon. It was then a mere 
collection of curious observations, such as the evanescent attraction 
of rubbed amber. Persistent observation and careful correlation 
have, however, brought a large domain of present day electricity 
under quantitative relations. Electricity is now preeminently a 
field for mathematics, and all advances in it are primarily through 
mathematics. 

Industrial mathematics will achieve but little unless it is under- 
taken by persons with suitable aptitudes working under favorable 
conditions, on problems which have reached the mathematical stage. 
Industrial mathematical research involves much more than the 
mechanical application of established mathematical formulas. It 
involves cooperation in determining the problems to be attacked, 
in deciding what experimental data are necessary, in obtaining these 
data, in formulating the mathematical problem, in carrying through 
the analytical and numerical work, in applying the results to the 
physical actuality and in practically testing the commercial results 
achieved. In this cooperation many individuals may be involved 
and many tentative trials may be necessary in order to determine 
the solution which best meets all of the commercial conditions. 

The cooperation must be effective; it must produce results, and 
these promptly. Mathematical deductions must be made intelli- 
gible and convincing, so that they will eventuate in action even 
when- the indications of theory are apparently contrary to practical 
experience. This is important because the most valuable theoretical 
results are often revolutionary. 

On the part of the industrial mathematician, powers of observa- 
tion, clear physical concepts, quick resourcefulness, creative imagi- 
nation and constant persistency are required. These are rare human 
qualities.. Unless industrial mathematical work is made attractive 
to men possessing these high talents, the full measure of success 
cannot be expected. Industrial mathematics must offer a career in 
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itself, since specialization is required—specialization of a type which 
eventually disqualifies most men from undertaking other lines of 
work most effectively. 

Mathematics in Electrical Communication 

In order to make the foregoing observations somewhat more spe- 
cific, I will refer to a few applications of mathematics in the industrial 
research of the Bell Telephone System. This field is selected because 
I am more familiar with it than with other industrial activities. 

Certainty of prediction is the basic requirement in the develop- 
ment and operation of the telephone system; no vital need of the 
system can be left to chance or to fortuitous development. For 
this reason, the Bell System is highly organized under research con- 
trol. The telephone situation is studied as a whole; all depart- 
ments cooperate; each problem is considered from every point of 
view. Every attempt is made to master a situation in advance 
of the necessity of action, so that the most effective and economical 
means for electrical communication may be adopted with each ex- 
pansion of the system. Much more than the immediate require- 
ments of the hour must be known; preparation for all eventualities 
must be made. Fortunately, the executives have carried out this 
program with a prophetic appreciation of the value and necessity of 
mathematics. 

The importance of the theory and practice of probabilities was 
recognized as soon as the telephone reached a thoroughly commercial 
basis. It has proved invaluable during the great expansion which 
has already carried the number of telephones in the city of New 
York to over a million. Meeting the peak load demand of the million- 
odd telephones in New York City, on a practically no-delay basis, 
with the minimum amount of equipment, is a highly complex and 
important problem. Without probability studies of the situation, 
the equipment installed at one point would be inadequate, while 
at other points it would be superabundant. The superfluous equip- 
ment would involve a waste of capital, while the inadequate equip- 
ment would mean inconvenience to the public and a loss of possible 
revenue. Equipment engineering involves a large number of prob- 
ability problems which are novel, difficult, and financially most 
important. The aggregate cost of all such studies is large, but the 
resulting saving to the telephone-using public is much greater. Satis- 
factory telephone service in metropolitan areas is as dependent upon 
applied probability as is the success of life insurance. 
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The telephonic ideal, which is the perfect reproduction of speech, 
with articulation which is indistinguishable from face-to-face con- 
versation. involves extensive and exhaustive investigations in many 
fields, in particular in mechanics, acoustics and clectromagnetism, 
since each telephonic conversation involves oscillations in the air, 
in solids and in the ether. Fortunately, the foundations of the 
mathematical theory in these three fields had been securely laid by 
the time Alexander Graham Bell effected their harmonious coopera- 
tion in his first telephone. It is impossible for us to be too well 
informed concerning the consequences of the mathematical laws in 
these three fields. 

It is characteristic of many problems encountered in industry that 
a great number of independent variables are involved, far too great 
a number for the best solution to be reached simply by trained judg- 
ment. Consider the transposition problem of the telephone system, 
which is this: on pole lines, long lines between cities, for example, 
several wires—sometimes a great number of wires—are strung along 
in close proximity. Each pair of wires receives inductive effects 
from the electric waves carried by every other pair, producing so- 
called crosstalk. To reduce such effects, the pairs of wires are trans- 
posed according to a set plan; that is, the positions of the two wires 
are interchanged, an expedient analogous to the, twisting of a pair 
of wires. It is necessary to consider not only the ideal location of 
the transpositions in each pair of wires, but also the practical irregu- 
larities which occur in the actual placing of the transpositions. One 
of the practical problems, in fact, is to determine the allowable tol- 
erances limiting the irregularities in the location of loading coils 
and transpositions, since these irregularities modify the crosstalk 
and also the transmission efficiency by an amount which must be 
determined by the laws of probability. 

Transpositions were originally introduced with complete success 
about thirty years ago, and yet at the present time this subject is 
being more actively studied than ever; this is due to the extended 
use of phantom circuits and the new uses of carrier frequencies, that 
is, high-frequency speech-carrying currents which are superposed 
on ordinary telephony. 

To illustrate the way in which problems in industrial mathematics 
become, step by step, more complex by the progressive inclusion 
of one factor after another, brief reference may be made to the loaded 
cable circuit. The first successful telephone cable circuits could be 
treated mathematically on the basis of Kelvin's simple cable dif- 
fusion theory. To allow for the ignored inductance and to deter- 
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mine the effect of added inductance, Heaviside's much more com- 
plete transmission formulas were employed somewhat later. The 
next stage was to allow for the effect of inductance which was not 
uniformly distributed, but lumped at regular intervals. Here the 
steady state solution for sinusoidal vibrations of a loaded string was 
employed, and the cutoff frequency due to internal reflections at 
the loading coils determined. But with loaded cables of great length, 
extending from New York to Chicago and beyond, the transient 
state may be of such duration as to require consideration. The 
loaded line does not transmit the impulse as a whole, but breaks it 
up by reflection and transmission at each loading coil. Therefore 
some of the impulses arrive after a few short backward reflections, 
while other impulses may travel many times the length of the line, 
due to reflections back and forth at many of the thousand loading 
coils in the circuit. The calculation of the transient state at the 
receiving end, due to the arrival of these impulses in groups, one 
after another, involved the calculation of Bessel functions up to order 
2000 and subsequent integration by an application of the principle 
of stationary phase to Fourier's integral. 

Industrial Mathematics as a Career 

It is true that the mathematician who takes up industrial work 
is not entirely free to set his own problems; the industry which 
he has chosen provides these and it demands concentration upon 
them. Such problems are often less inviting than the clear-cut, 
tractable problem which the pure mathematician is at liberty to set 
himself. Industrial problems may be most complicated to frame 
and they may admit only of approximate solution by laborious 
numerical methods. In addition to delimiting the nature of his 
problems, the imperative needs of industry set time limits for their 
solution, and the nature of industry demands a financial profit from 
industrial mathematics. But these restrictions of industry should 
not make the work less attractive. On the contrary, restrictions 
disclose the master. There is an inspiration in overcoming even the 
humblest difficulty standing in the path of progress. Restrictions, 
even in the case of the most gifted, may be beneficial in concentrating 
activities, thereby making up in depth what may seem lacking in 
breadth. 

The industrial mathematician may have a chance to attack many 
large-scale investigations which would be impossible, except under 
the patronage of industry, because of the exceptional material equip- 
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ment and widely sustained cooperation required. Some of the oppor- 
tunities offered by cheap electrical power from Niagara, by high- 
voltage electric power lines, and by large steam turbines may be 
mentioned. It is often left to the industrial mathematician to reap 
the harvest from seed sown tinder adverse circumstances by pure 
mathematicians. 

The industrial mathematician may hope to make some return for 
the debt which he owes the pure mathematician. He may introduce 
new mathematical problems, of which industry is an inexhaustible 
source. He may point out the application of pure mathematical 
results, stimulating further investigations along the same lines. 
He may assist mathematicians generally by promoting the prepara- 
tion of needed tables and by creating a commercial demand for 
calculating machines and other brain-saving devices. 

The opportunities presented by industrial mathematics are bound- 
less, because mathematics is the key to extrapolation in time, and 
industry is absolutely dependent upon prediction. The position of 
mathematicians in industry must eventually correspond with the 
importance of the function which they may perform. 

Training for Industrial Mathematics 

In industry we are concerned with mathematics not as an objective, 
but only as a tool. It follows that the required training in math- 
ematics should develop a wide acquaintance with the available 
mathematical tools and practical skill in their use. It is important 
to note the distinction between the using of tools and the making 
of tools. Under primitive conditions the workman makes his own 
tools, but in a highly organized society the tools are made by spe- 
cialists, who provide the workman with an endless variety of imple- 
ments superior to anything which he himself could make. By long 
experience the tool designer has discovered how best to adapt the 
tool to its intended use in order to economize the workman's time 
and energy as much as possible. Furthermore, the substitution of 
one tool for another with the minimum number of motions is made 
possible by the use of interchangeable parts and systematically 
arranged cabinets. 

But no complete line of mathematical tools is for sale across the 
counter; only a limited number of numerical and algebraic tables 
and a few types of calculating machines are supplied as ready-made 
tools. By far the larger part of known mathematical tools must be 
sought for in the literature of the subject, but there they may be 
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difficult to find and isolate in the form best adapted for the purpose 
in hand. What is very greatly needed at the present time is a com- 
pendium or unabridged dictionary of mathematical results concisely 
and uniformly stated, and systematically classified for convenient 
reference. What I have in mind is not a mere handbook of applied 
mathematics, but a statement of theorems and formulas and tab- 
ulated results expressed in the language of pure mathematics, and 
comparable in scope and size with the "Encyklopadie der Mathe- 
matischen Wissenschaften." Preparation of such a compendium 
would be a tremendous undertaking, but it would also be of the 
greatest value. To such a collection of tools the industrial mathe- 
matician would turn for the appropriate tool as each new problem 
arises. 

I would have the university training of the industrial mathematician 
based upon such a compendium by means of judicious sampling, 
at many points, under competent leadership. He would thus become 
familiar with his source book as a whole and thereafter turn to it 
instinctively and use it with confidence. At the present time, when 
the average text-book is held in low esteem and nothing has been 
substituted which adequately fills the gap, the student of mathe- 
matics leaves the university with a five-foot shelf of notebooks, 
together with what he carries in his head. Neither the memory 
nor the notebook is likely to be a reliable source of information when 
a particular result is needed for the first time, ten years later. It 
then becomes necessary for him to take the time to deduce the result 
from first principles, or to hunt up lecture notes, a text-book or 
original paper and waste much valuable time picking up the thread 
of the argument. The sampling to which I have referred should 
not be that of a dilletante; it should be an intensive grounding in 
the fundamental concepts and methods of mathematics, and the 
development ab initio of several well distributed branches of mathe- 
matics. 

The combination of mathematical ability with an observant mind 
is as desirable as it is rare. The university training should include 
non-mathematical courses adapted for developing the powers of 
observation, or at least an appreciation of the necessity of coopera- 
ting with others who are observant. A study of the natural sciences, 
accompanied by experimental work, should be of great value. It is 
of course, difficult to be reasonable and not ask the impossible of the 
university in the training of any specialist. We recognize that, at 
best, only a beginning can be made at the university, but this be- 
ginning should include the fundamentals and should not attempt 
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to impart details of current industrial practice. These details are 
best acquired in the industrial environment itself. Self-training in 
fundamentals, on the other hand, is much more difficult, and is not 
likely to go far, unless a start has been made under the favorable 
conditions afforded by the university. 

What I have tried to emphasize is that industry can realize its 
greatest possibilities only with the aid of mathematicians, and that 
mathematicians can find opportunities in industry worthy of their 
powers, however great those powers may be. To ensure the success 
of industrial mathematics the industry must inaugurate mathematical 
research as early as possible, so that ample time may be afforded 
for the gradual accumulation of information upon which mathematics 
may be securely based, and for deriving quantitative results before 
the necessity for commercial action arrives. The industrialist must 
also be ready to give the mathematician's conclusions a sympathetic 
trial even though they run contrary to established precedent. Above 
all, industry needs mathematicians of an especially broad type— 
men whose interests naturally extend beyond their special field, and 
who are flexible enough to cooperate with non-mathematicians. 
These industrial mathematicians must inspire confidence by their 
firm grasp of physical realities, by the relevance of their mathe- 
matics, and by the ability to present their results clearly and con- 
vincingly. 



The Building-up of Sinusoidal Currents in Long 

Periodically Loaded Lines 

By JOHN R. CARSON 

IMPORTANT information regarding the excellence of a signal 
transmission system is deducible from a knowledge of the mode 

in which sinusoidal currents "build-up" in response to suddenly 
applied sinusoidal electromotive forces, since on the character and 
duration of the "building-up" process depend the speed and fidelity 
with which the circuit transmits rapid signal fluctuations.1 The 
object of this note is to disclose and discuss general formulas and curves 
which describe the building-up phenomena, as a function of the line 
characteristics and the frequency of the applied e.m.f., in the ex- 
tremely important case of long periodically loaded lines. The formulas 
in question are approximate but give accurate engineering information 
and are applicable to all types of periodic loading under two restric- 
tions: (1) the line must be fairly long, that is, comprise at least 100 
loading sections, and (2) it must be approximately equalized, as 
regards absolute steady-state values of the received current, in the 
neighborhood of the applied frequency. Fortunately these condi- 
tions are usually satisfied in practice in those cases where the building- 
up phenomena are of practical engineering importance. Furthermore, 
the formulas to be discussed supply a means for the accurate and rapid 
comparison of different types of loading in correctly engineered lines. 

The building-up process may be precisely defined and formulated 
as follows: Suppose that an e.m.f., E cos ul, is suddenly applied, at 
reference time t=o, to a network of transfer impedance 

Z(iw) = | Z(i&j) | • exp [iS(w)]. (1) 

The resultant current, /(/), may be written as 

1{t) = \\m^\ cosM--6(w)] + ff sin M--B(aj)]], (2) 

= ^ V(l+p)2+ff2 [ cos [wt-B(o})+d], (3) 

where 
6 — tan-'Or/p). 

Evidently the functions p and a must be — 1 and o respectively for 
negative values of /, and approach the limits +1 and o as / = cc . 

1 For published discussions of the "building-up" of sinusoidal currents in loaded 
lines, see Clark, Journ. A.I.E.E., Jan., 1923, Kupfmuller, Telegraphen u. Fernsprech- 
Technik, Nov., 1923; Carson, Trans. A.I.E.E., 1919. 
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In an engineering study of the building-up process we are prin- 
cipally concerned with the envelope of the oscillations, which, by (3), 
is proportional to 

9 V(l+p)2 + cr2. 

The problem is therefore to determine the functions p and a and to 
examine the effect of the applied frequency u/Ziv and the character- 
istics of the circuit on their rale of building-up and mode of approach 
to their ultimate steady values. 

Two propositions will now be stated which cover the building-up 
process in the practically important cases. Since the line is assumed 
to be approximately equalized, as regards the absolute value of the 
received current in the neighborhood of the applied frequency a)/27r, 
the building-up process depends only on the total phase angle 
The successive derivatives of the phase angle with respect to co will 
be denoted by -B'(co), B"{ui), B"'{w), B"' (w), etc. 

Case I. and y/B"{<jT)/2\ large compared with v/-S",(w)/3!. 

The envelope of the oscillations in response to an e.m.f. E cos w/ ap- 
plied at time t = o, is proportional to 

^V(l+p)2 + f2 (4) 

where 
P = C(.v2)+5(v2), (5) 

a = C(.v2) — 5(.v2), (6) 

a-= = / . (7) 
V2B"(o>) \/2B"{o:) 

and C(x), S(x) are FresseVs Integrals to argument x. 
The envelope therefore reaches 50 per cent, of its ultimate steady value 

at time I = t = B'(lo) and its rate of building-up is inversely propor- 
tional to s/B"^). 

The curve of Fig. 1 is a plot of the envelope function ^ \/(1 +p)2+(T2 

£ 

to the argument .v and is therefore applicable to all types of loading 
and lengths of line, subject to the restrictions noted above. 

Case II. B"(w)=0\ B"' iui) O and -\/ B'" {<xi)/Z\ large compared with 

\/Biv (co)/4!. 
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The envelope of the oscillations is proportional to 

\+\£AMi't- (8) 

where A(n) is Airey's Integral2 and 

At time t = B'{u)) the envelope N has reached 1/3 of its ultimate steady 
value and its rate of building-up is inversely proportional to •%/ 

Building-Up of Sinusoidal Currents in 
Long Periodically Loaded Lines Case I 
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The curve of Fig. 2 is a plot of the envelope function « + 9 7 ^ (m)^M 

to the argument y and is therefore of general applicability under the 
circumstances where case II obtains. 

The practical value of the foregoing propositions resides in the fact 
that they enable us to calculate two important criteria of the trans- 
mission properties of the line: (1) the variation with respect to fre- 
quency of the time interval r required for the current to build-up to 

2 See Watson, Theory of Bcsscl Functions, p. 190. 
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its proximate steady-state value: and (2) its rate of building-up at 
time t = T. 

As will be seen in connection with the proof given below, the formulas 
of the foregoing propositions are approximate. Provided, however, 
that the lines to which they are applied are long and provided that the 
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applied frequency is such that the restrictions underlying either I or II 
are satisfied, their accuracy is quite sufficient for engineering pur- 
poses, such as the design of loading systems, or a study of the com- 
parative merit of different types of loading. 

Before proceeding with the mathematical proof, the formulas will 
be applied to the interesting and important case of an ideal non- 
dissipative periodically coil-loaded line of N sections in length and 
cut-off frequency udlr. For this line it is easy to show that3 

= — J— =Np'(u), 

B"'{u) = 

\/1 — w 
2N w 
C0C

2 (1-W2) V2 

2N \+2w- 
ov3 (1-W2)5/2 = Np"'(o>), 

3 The following formulas assume that the line is closer to its characteristic 
pedance. /3(w) is then the phase angle per loading section of the line. 
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where iv denotes u/uc. It follows that 

2N 1 
t' = t- 

"c \/l — iv- 

and that the oscillations build-up to the proximate steady-state in a 
time interval 4 t = 2N/wc s/l — w2 after the voltage is applied. 

Case I, it will be observed, does not hold for aj = o since B"{o) =o. 
The condition that Case I shall apply is that 

V'TW- (l-^2)1712 ^ (l-b2t£l2)1/J 

shall be substantially greater than unity. Hence Case I applies only 
when l/\/l8iV<w< 1. This however, includes the important part 
of the signalling frequency range in properly designed lines, provided 
that they are long (iV>100). 

In the range of applied frequencies, therefore, corresponding to 

l/\/ 18iV<w< 1, the current reaches 50 per cent, of its ultimate 
.... 2N 1 

steady value in a time interval — /, - after the voltage is applied 
O'c V 1 — 7C- 

and its rate of building-up at this time is proportional to 

wc (1—W2)3/4 

■\/ 4iY "v/ zu 

For the non-dissipative coil-loaded line B"(co)=o when co = o, and 
Case II applies. Consequently when w=o, the oscillations reach 1/3 
of the ultimate steady value at time t = 2N/uc, at which time their 
rate of building-up is proportional to 

3/T2~ 
Uc \ ttW" 

The foregoing formulas have been shown to be in good agreement 
with experimental results, and have been applied to the design of 
loaded lines in the Bell System. 

Mathematical Discussion 

The functions p and a of equations (2) and (3) can be formulated 
as the Fourier integrals 

4 It will be noted that this formula breaks down at co=wc or 7e = 1. 
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1 Z*00 /7\ 

TT i/Q A 
(11) 

1 Z100 tlx 

TT «/o A 

1 Z*00 ^/X 
a=- ^sin/XtCJM + CU-M] 

TT «/ 0 A 
(12) 

i z*00 ./x 
+ i / ^cos/XfPJM-P^-X)], 

TT */o A 

where 

p"(x)=cos [p(o,+x) (13) 

sinlB^+XJ-BM], (14) 

and A{(a) = l/\Z(i(j))\. 
These formulas are directly dcducible from the fact that the ap- 

plied e.m.f., defined as zero for negative values of / and E cos w/ for 
t>o} can itself be expressed as 

]• 

In the practically important case where B'(lo) is finite, it is of ad- 
vantage to introduce the transformation t' = t — B'{u), and to write: 

rd-v"n ''M^w+^(-x)i TT */o A 
(15) 

-- r^cos/'XtFJM-iy-X)]. TT JQ A 

"=- rd-v^" TT A 
(16) 

+- f^-rcos /'xiyw-by-x)], TT »/|) A 

where 

Ujv = /1("+,X) [B^+X) -BM-XB'M1, (17) /I (CO) 

F„(X) = y+)X) sin [B^+XJ-BM-XS'M]. (18) 
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The foregoing formulas for p and a are exact subject to certain 
restrictions on the impedance function Z(fco) which are satisfied in 
the case of periodically loaded lines. Their useful application to the 
problem under consideration depends, however, on the following 
approximations. 

First it will be assumed that the line is approximately equalized, as 
regards absolute value of steady state received currents in the neigh- 
borhood of the impressed frequency co/27r. By virtue of this assump- 
tion, which is more or less closely realized in practice, the ratio 
Z(a)+X)/i4(a;) may be replaced by unity in the integrals (15) and 
(16), and in equations (17) and (18). It is further assumed that the 
function 

Sfco-fX) —S(co) —X-B'foj) 

admits of power series expansion, so that 

UJ\)=cos [(W-HW+ . .], (19) 

FW(X) =sin [(/*2X)2+(/*3X)3+ . .], (20) 

where 

hn" = 60(oO. nldw" n\ K 

By virtue of the foregoing p and a are given by 

2 Z*00 dX 
p= - ^sin[A-(//3X)3-(//5X)5. .]-cos[(//2X)2+(/;4X)4+ . .], (21) 

TT i/o A 

2 T00 d\ 
v= - I -r-sin [/'X —(//aX)3—(//sX)5. .] • sin [(/z2X)2+(/?4X)4+ . .]. (22) TTI/Q A 

Now if the line is very long the integrals (11) and (12) may be 
replaced by the approximations 

2 P00 d\ 
P = - / -r-sin [/'X — (//3X)3] • cos (taX)2, (23) 

TT JO A 

2 P00 d\ 
a= - f —sin [/'X —(taX)3] ■ sin (//2X)2. (24) TT •Al A 

In other words we retain only the leading terms in the expansion 
of the function 

5(w+X)-5(w)-X5/(a)). 

The justification for this procedure depends on arguments similar to 
those underlying the Principle of Stationary Phase (see Watson, 
Theory of Bessel Functions, p. 229). Furthermore the upper limit 
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oo may be retained without serious error, even when the line cuts off 
at a frequency udliz, provided the line is sufficiently long, and the 
frequency aj/27r not too close to the cut-off frequency a)c/27r. 

The formal solutions of the infinite integrals (23) and (24) can be 
written down by virtue of the following known relations: 

f / ™ sin /'x . cos (//2X)2 = C(v2) + 5(.t2) , (25) 
TT »/() X 

9 Z100 //\ 
- / ^sin/'X-sin (/;2X)2 = C(.r2)-5(.r2), (26) 
TT i/j X 

where C(x2) and 5(»2) are Fresnel's Integrals to argument ;v2, and 
x = t'/2h2. 

9 r-00,1\ 1 py 
-f sin [/'X—(/^X)3] = — / A{y)dy (27) 
TT Jo X 6 ^0 

where ^l(y) denotes Airey's Integral (sec Watson, Theory of Bessel 
Functions) and y = (2/x)2/'i(/'//;3). 

By aid of the preceding. 

11+r]&+2i^+ ■■ + ■■!■ 1 }, (28) 

+ (29) 

where n = (113/2112). 
This is the appropriate form of solution when (ha/hz) is less than 

unity. 
On the other hand when (ha/ha) is greater than unity, the appro- 

priate form of solution is 

H1 -1* • H! ■ (30) 

where c= (~)^ (|) • 

While no thorough investigation has been made, it appears prob- 
able that for all values of the ratio ha/h*, either (28), (29) or (30), (31) 
will be convergent. However, in practice it is sufficient for present 
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purposes to deal only with the cases where hs/hz is either small or 
large compared with unity, and to use the following approximations: 

(1) (7*3Aa) small compared with unity. 

P = C(.-c2) + 5(x2), 

(r = C(x2)-5A2), 

x = {t'l2htf, 

(2) {hs/hi) large compared with unity. 

p = A^dy' 

<r = 0, 

y = (2/Tr)2/i(t' / h-j). 



Transmission Characteristics of 

Electric Wave-Filters 

By OTTO J. ZOBEL 

Synopsis: The transmission loss characteristic of a transmitting network 
as a function of frequency is an index of the network's steady-state selective 
properties. Methods of calculation heretofore employed to determine 
these characteristics for composite wave-filters are long and tedious. This 
paper gives a method for such determinations which greatly simplifies 
and shortens the calculations by the introduction of a system of charts. 
Account is taken of the effects of both wave-filter dissipation and terminal 
conditions. The method is based upon formulae containing new para- 
meters, called "image parameters," which are the natural ones to use with 
composite wave-filters. 

A detailed illustration of the use of this chart calculation method is given 
and the transmission losses so obtained are found to agree, except for dif- 
ferences which in practice are negligible, with those obtained by long direct 
computation. 

In the Appendix are derived two sets of corresponding formulae which 
are applicable to a linear transducer of the most general type, namely, an 
active, dissymmetrical one; the one set contains image parameters and 
the other set recurrent parameters. An impedance relation is found to 
exist between the four open-circuit and short-circuit impedances of a linear 
transducer even in the most general case. Reduction of these formulae to 
the more usual case of a passive linear transducer is also made, those con- 
taining the image parameters being especially applicable to the case of 
composite wave-filters. 

LECTRIC wave-filter characteristics and systematic methods 
of deriving them have been considered in previous numbers 

of this Journal.1 This paper deals with a simple and rapid method 
of calculating the steady-state transmission losses of wave-filter net- 
works over both the transmitting and attenuating frequency bands, 
including the effects of dissipation and wave-filter terminal condi- 
tions. Such transmission loss determinations are essential in showing 
the selective characteristics of these networks and serve as important 
guides in meeting given design requirements. 

General formulae for any dissymmetrical linear transducer are 
derived in terms of new parameters, called image parameters. One of 
the formulae is fundamental to the solution of the present problem 
and is particularly well adapted to calculations in composite wave- 
filter structures. These parameters of such a composite structure, 
being readily obtainable from those of its parts, are the natural 
parameters to use in this case. The formula possesses, among others, 

1 Physical Theory of the Electric Wave-Filter, G. A. Campbell, B. S. F. J., 
Nov., 1922; Theory and Design of Uniform and Composite Electric Wave-Filters, 
O. J. Zobel, B. S. t. J., Jan., 1923; Transient Oscillations in Electric Wave-Filters, 
J. R. Carson and O. J. Zobel, B. S. T. J., July, 1923. 

I. Introduction 

567 
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the advantage over other formulae and calculation methods of re- 
quiring for every alteration in a composite wave-filter only a partial 
recalculation rather than a more or less complete one. In addition, 
by its use much of the otherwise necessary calculation can be elimi- 
nated through the means of graphical representation. 

The main object of this paper is to present this chart calculation 
method of determining composite wave-filter transmission losses, 
giving its theory, the necessary charts, and an application of its use. 

Structure of Wave-Filter Networks 

The ladder type of recurrent network having physical series and 
shunt impedances 21 and 22, respectively, as shown in Fig. 1, is the 

(K,) iZ, 
 o—WV 

iZ, (K,) ^Z, 
■AAA—o—o—VW 

(K K2) 
WV 

2 Z 2Z HZ 

Fig. 1—Ladder Type Recurrent Network 

one most frequently employed for wave-filters. Also any passive 
transducer having two pairs of terminals can theoretically be reduced 
to the form of the ladder type. Hence, in what follows the ladder 
type terminology will be used understanding, however, that other 
structural types may also be included; for example, such as are deriv- 
able from the ladder type by the substitution of an equivalent trans- 
former with mutual impedance for T or n connected inductances, 
or the lattice type. The figure illustrates, from left to right, one mid- 
series section, one mid-half section (a dissymmetrical half section 
terminated at mid-series and mid-shunt points), and one mid-shunt 
section all connected so as to give a uniform structure.2 The charac- 
teristic impedances of the ladder type at mid-series and at mid-shunt 
points are A"i and Ko, respectively. 

The majority of wave-filter networks are not uniform throughout 
their length but have a composite structure designed as given in the 
paper (B. S. T. J., Jan., 1923) already mentioned. That is, the 
interior or mid-part of a composite wave-filter consists of mid-series, 

2 The same network may also be considered as made up in other ways; for example, 
two mid-series and one mid-half sections, one mid-half and two mid-shunt sections, 
or five mid-half sections. 
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mid-shunt, and mid-half sections, usually dissimilar, so connected 
serially and of such types that at any junction the terminations of 
the two adjacent types correspond to an equivalent image impedance. 
The use of dissimilar sections gives a resultant selective character- 
istic different from that possible with a uniform type. At the terminals 
of the network there need not be complete full or half sections; this 
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Fig. 2—General Composite Wave-Filter Network 

is represented in Fig. 2 by the wave-filter parts external to the mid- 
part which latter is included between terminals a and b. 

The terminations of wave-filter networks specifically considered 
in detail here include all terminations which have been found to be 
practical. In any particular class of wave-filter they are all closely 
related to the "constant k" wave-filter (ziA:22fe = ^2 = constant) of that 
class and are of the following four types,3 being designated by their 
characteristic impedances in corresponding ladder type structures. 

3 It is assumed that the reader is familiar with the terms and notation used in 
the paper, B.S.T.J., Jan., 1923. 

If ziA and 22*- are the series and shunt impedances of the "constant k" wave-filter, 
the corresponding series and shunt impedances of the mid-series "const mt k" equiva- 
lent M-type are expressible as 

Zn = mzlk, 

l-w* ,1 and Zsi = —1 Z\k-\—z>k\ 4/« m 

and of the mid-shunt "constant k" equivalent Af-type 

1 
z"=_!—| 1—' 

mZik 4/h 
< o Z'lk 1 — tn 

1 and Zn — — Zik. 

Here the condition 0<w; 5^ 1 is sufficient for a physical structure in all cases. 
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1, mid-shunt of a mid-series "constant equivalent M-type, 
{Kn{m) ); 

2, mid-series of a mid-shunt "constant equivalent M-type, 
{Kiiim) ); 

3, .v-shunt of the "constant wave-filter, {Kx-i); and 
4, ^-series of the "constant k" wave-filter, {Kx\). 

The terminations in Kii{m) and Knirn) are employed, as stated 
in a previous paper,4 when it is desirable to obtain certain selective 
characteristics and to minimize reflection losses at the important 
frequencies to be transmitted, a minimum for the latter occurring 
where m = .6 approximately. The .v-shunt "constant k" termination, 
designated by the characteristic impedance Kxi} is a "constant k" 
type termination in a shunt element, whose admittance is x times 

(.r from 0 to 1) that of a full shunt "constant k" admittance, —; 
Zik 

that is, a shunt element whose impedance is —. Similarly, the 
x 

.v-series "constant k" type termination corresponding to the charac- 
teristic impedance Kxi ends in a series element of impedance xzik- 
In the usual case where two or more wave-filter networks having 
different transmitting bands are associated together, cither termina- 
tion 1 or 2 is suitable for the unconnected terminals, while terminations 
3 and 4 are adapted to the terminals connected in series or in parallel, 
respectively. For two complementary wave-filters, thus connected, 
minimum reflection losses occur at their junction with a transmission 
line if .^ = .8 approximately. A relation between this case and termi- 
nation Kn{m) and Kii{m) has previously been pointed out, namely, 
that the series or parallel connected wave-filters have a combined 
impedance in the transmitting band of either wave-filter approxi- 
mately like that of Kvl{m) or respectively. 

Where the termination is x-shunt or x-series we shall consider that 
the mid-part of the wave-filter begins at the mid-shunt or the mid- 
series point, respectively, irrespective of whether x is greater or 
less than .5. Also the mid-part need not here necessarily begin in the 
"constant k" type, but in any wave-filter having an equivalent char- 
acteristic impedance. 

Transmission Loss 

In the design of a wave-filter network the magnitude of k for the 
corresponding "constant wave-filter has been taken equal to the 

4 B. S. T. J., Jan., 1923, page 18, gives a diagram for the non-dissipative case of 
R/KnCn) and in the transmitting band. 
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mean resistance, R, of the line with which the network is to be asso- 
ciated. If the network is closed at each end by a resistance of mag- 
nitude R, as in Fig. 2, we have not only a circuit arrangement which 
approximates more or less closely actual operating conditions,5 but 
also a simple test circuit in which to determine the transmission loss 
of the network over the desired frequency range. 

The transmission loss of a wave-filter network, defined with reference 
to Fig. 2, is the natural logarithm, with negative sign, of the ratio of the 
absolute value of the current transmitted from a source of resistance R 
to a receiving resistance R when the latter are connected through the net- 
work, to that transmitted when they are connected directly. Let E rep- 
resent the electromotive force of the source, I the current trans- 
mitted to R through the network, and E/2R that transmitted by 
direct connection. Then the transmission loss L, thus defined, is 

The unit in which L is expressed, the attenuation unit,6 is the natural 
unit to use here and from the above relations it is seen that one at- 
tenuation unit of transmission loss corresponds to an absolute value 
of current ratio of 1/c. The method of determining the transmission 
loss under various possible conditions will be presented in the next 
part of this paper. 

The principles given here are basic and apply to composite wave- 
filters having any terminations. However, in all practical cases, as 
previously stated, the terminations belong to the four types; 1, mid- 
shunt M-type; 2, mid-series il/-type: 3, x-shunt "constant and 
4, x-series "constant k," all related to the "constant k" wave-filter. 

5 It should be clearly borne in mind that the unique selective properties of a 
wave-filter of freely transmitting currents in continuous frequency bands and of 
attenuating others are those for the wave-filter terminated in its characteristic 
impedance. It is practical to have approximately such a termination in the trans- 
mitting band only, as when connecting the wave-filter to a transmission line, in 
which case the general properties still persist. Correct termination rather than 
number of sections is what brings out these properties although the degree of selec- 
tivity is naturally increased by the addition of sections. 

6 A synonym sometimes used is the Napier. One attenuation unit is equivalent 
to 9.174 "800-cycIe miles of standard cable," and to 8.686 TU. The TU (trans- 
mission unit) is that unit which designates a power ratio of 101, and the number of 
TU is ten times the common logarithm of the power ratio. 

(1) 

and 
2RI/E\. (2) 

II. Theory of Chart Calculation Method 
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These four cases will be developed in detail and equivalence relations 
for certain sets of terminal combinations shown. 

Fundamental Formula 

The formula which is general and fundamental to what follows is 
the one giving the current received through a passive transducer in 
terms of the sending electromotive force, the terminal impedances. 

Ea 

7 Vb 

Fig. 3—General Linear Transducer 

and the transfer constant7 and image impedances of the transducer. 
Referred to Fig. 3 the received current is 

h = 
2Ea \/WaWb e-r 

(3) 
iWa+Za) (PFt+Zi) (1 —W-2r) 

where 
£0= sending electromotive force, 

Zq, Z6 = sending and receiving impedances, 

r = T)+f5 = transfer constant of the transducer, 

Z), 5 = diminution constant and angular constant, defined as 
the real and imaginary parts of the transfer constant, 

Wa,Wb = image impedances of the transducer at terminals a and b> 

rai fb — current reflection coefficients at terminals a and b, 

Wa-Za 

and 

ra = 

rb = 

Wa T Za 

Wb — Zb 
Wb-\-Zb 

7 The terms transfer constant, T and image impedances, Wa and Wh, as applied 
to a dissymmetrical passive transducer, are defined in the Appendix. These three 
parameters are to be distinguished from another set, the propagation constant, Y, 
and characteristic impedances, Ka and Kb. In a symmetrical structure r = r and 
Wa = Wb=Ka=Kb. 
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Another form obtained by suitable transformation is 

j Eg VWjVb  
{WaWb+ZaZb) smhT+{WaZb+WbZa) coshT { ' 

Formula (3), derived in the Appendix with several general trans- 
ducer formulae and relations, is especially useful when applied to 
composite wave-filter networks, since, as we shall see, it contains 
the natural parameters for such structures. Upon comparing Fig. 2, 
which represents such a general network, with Fig. 3 we find that the 
two can be made to correspond exactly if the mid-part of the wave- 
filter, between terminals a and b in Fig. 2, is considered to be the trans- 
ducer of Fig. 3, and if the wave-filter terminations combined with the 
resistances R are considered to be the terminal impedances Za and Zb 
of Fig. 3. The relation between the electromotive force, E, applied in 
R and that, Eg, acting through Za depends upon the particular wave- 
filter termination at terminals a. Similarly, the relation between the 
currents, I and /6, transmitted to R and Zb, respectively, depends 
upon the termination at terminals b. 

As already stated, the mid-part of the composite wave-filter consists 
in general of mid-series, mid-shunt, and mid-half sections, properly 
combined as to their impedance relations at the junction points. 
The method of combination employed in a composite wave-filter consists 
in connecting two sections whose image impedances at their junction 
are equal. (An analogy which might be given is the matching of 
dominoes in a line by the corresponding ends, numbers referring to 
image impedances.) 

Let us assume for the moment that the mid-part, as thus made up, 
is terminated by impedances respectively equal to its image impe- 
dances. There is then an "image condition" for the impedances 
measured in the two directions not only at each of these terminal 
points but also at each junction point throughout the network; and 
in this case each section transmits under the "image condition" of 
its terminating impedances. As a result we obviously obtain the 
following properties for the mid-part. 

1. The transfer constant of the mid-part of a composite wave-filler, 
consisting of mid-series, mid-shunt, and mid-half sections, is the sum 
of the transfer constants of all the individual sections. 

2. The image impedances of the mid-part of a composite wave-filter 
are the external image impedances of the two end sections. 

In addition we have the following important relations between the 
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transfer constant and image impedances of a single section, and the 
propagation constant and mid-point characteristic impedances of the 
corresponding ladder network. 

3. The transfer constant of a symmetrical mid-series or mid-shunt 
section is equal to the propagation constant of the corresponding ladder 
type-, that of a dissymmetrical mid-half section (having mid-series and 
mid-shunt terminations) is equal to one-half the above propagation 
constant. 

4. The image impedance of a mid-point section at a mid-series or 
mid-shunt point termination is equal to the mid-series, Ki, or mid-shunt, 
Ki, characteristic impedance, respectively, of the corresponding ladder 
network. 

Formula (3) is for the present purpose superior to the well known 
formula for transmitted current (derived for comparison in the Ap- 
pendix) which contains the transducer recurrent parameters in the 
form of its propagation constant, F, and characteristic impedances, 
Ka and K/,. The reason for this is that in a dissymmetrical com- 
posite wave-filter where Ka differs from Kb, the usual case, no simple 
relations exist between these latter parameters of the transducer 
and the corresponding parameters of the individual sections com- 
prising the network. In the special case of symmetrical networks, 
however, the latter formula becomes identical with (3) which follows 
from what has already been said. 

Another method of obtaining the transmitted current, which may 
be termed the "section-by-section elimination method," consists in 
calculating by the aid of the Kirchhoff laws the current ratios and 
total impedances from section to section back through the entire 
network beginning at the receiving impedance. From the standpoint 
of time economy certain objections may be raised to the possible use 
here of this general long hand method of calculation. The method 
carries with it the determination of the phase as well as the amplitude 
of the transmitted current; but since the amplitude only is required 
in the transmission loss formula, this method does more than is 
necessary. Again, an alteration in the composite network structure 
requires a more or less complete recalculation when this method is 
employed, whereas by the application of (3) it will be found that this 
is not necessary. However, this method is useful where irregularities 
exist in the network, or where the particular method of design which 
had been followed in obtaining the composite structure cannot readily 
be found, but its impedance elements and R are known. 
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General Form of Transmission Loss Formula 

Formulae (2) and (3) corresponding to Figs. 2 and 3 may be com- 
bined. If (3) is written in the general form 

2RI/E = F, Fa Fb Fr, (5) 

we obtain with (2) 

e-L = 1 2RI/E1 = e-dWa+u+w (6) 

where the four factors comprising the current ratio 2RI/E are 

Fi = e~r = the transfer factor between terminals a and b; 

Fa ~ — the terminal factor at terminals o; (11 (1 + Z,,) E 

Fb = ^ 1'!^ \ =the terminal factor at terminals b\ (IFt+Zft) h 

Fr = -   777= the interaction factor due to repeated reflections 
1 — rarte--1 

at terminals a and h where the current reflection coefficients are 

Wa-Za . Wb-Zb 
^ Wa+Za b Wb+Zb' 

and the transmission losses corresponding to the absolute values of 
these factors are called, respectively, 

L, = the transfer loss; 

La, Lb = the terminal losses at terminals a and b] 

and Lr = the interaction loss. 

The total transmission loss is the sum of these four losses, thus, 

L=Li-\-La-\-Lb-\-Lr. (7) 

The relative importance of the three types of losses, transfer, 
terminal, and interaction, is usually in the order given. Hence, as 
a first approximation the transmission loss of a composite wave-filter 
is given by the transfer loss, L/, but the error due to the omission of 
the other losses is often considerable. A second approximation is 
obtained by including the terminal losses, La and Lb, and for many 
purposes this is sufficiently accurate. The final step for accuracy is 
the further addition of the interaction loss, Lr, whose effect on the 
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total transmission loss is usually appreciable in the transmitting band 
of a wave-filter near the critical frequencies. 

The three types of losses will now be considered separately and in 
detail. 

1. Transfer Losses 

The transfer loss, Li, is by (6) equal to D, the diminution constant, 
which is the real part of the transfer constant, T, of the wave-filter 
mid-part taken between mid-points. 

We have previously established the following: 

(1) T is the sum of the transfer constants of all the individual 
sections, i.e., T = IlTj-, and (2) the transfer constant of a mid- 
series or mid-shunt section is equal to the propagation constant, 
T =A-\-iB per full section, of the corresponding ladder type\ that 
of a mid-half section is r/2. 

Hence, to get the transfer loss we need to know only the attenuation 
constant, A, of each full mid-section, the half or whole of which forms 
a part of the composite wave-filter structure. However, since the 
interaction factor which is to be discussed later requires a knowledge 
of the phase constant, B, as well, we shall consider both parts of the 
propagation constant at this point. 

Propagation Constant of Ladder Type Network. The relation between 
the propagation constant V=A-sriB, and the series and shunt im- 
pedances, Zi and Zn, respectively, of the ladder type in Fig. 1 is known 
to be 

This applies as well to any recurrent structure if Si and correspond 
to the analytically equivalent ladder type. 

Let us introduce two variables U and V by making the substitution 

The reason for this choice is that this ratio appears frequently in 
impedance formulae. Then in non-dissipative wave-filters, where 
V=0, the transmitting bands include all frequencies at which U 
satisfies the relation 

cosh r = i + i-. Z 2 (8) 

(«) 

(10) 
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By (8) and (9) 

cosh =cosh A cos B-\-i sinh A sin B = \-\-2U-\-i2V, (II) 

whence 
cosh A cos B = \-\-2U, 

and (12) 
sinh A sin B = 2V. 

The solution of this pair of simultaneous equations leads to separate 
relations for A and B, 

/JL+2£/\2_j_ /—2F_\2_ 
I cosh A) ^ \sinh A) ' V ' 

/1 +2^/\2 

V cos B) \sin B/ " ( ^ 

and 

As is well known from (13) equal attenuation constant loci are repre- 
sented in the £/, V plane by confocal ellipses with foci at U= — l, 
V=0 and U = 0, V = 0, thus having symmetry about the [/-axis. 
The locus for A =0, the limiting case, is a straight line between the foci 
and it corresponds to the transmitting band in a non-dissipative wave- 
filter. Similarly from (14) equal phase constant loci are represented 
by confocal hyperbolas which have the same foci as above and are 
orthogonal to the equal attenuation constant ellipses. It will be 
assumed that the phase constant, B, lies between — tt and +t, which 
amounts to neglecting multiples of 27r. Then from (12) B has the 
same sign as V, so that loci in the upper half of the plane correspond 
to a positive phase constant while those in the lower half correspond 
to a negative one. 

It is possible, however, to represent all this in just the upper half 
of the plane using coordinates U and jF]. Put 

F = c | F|, (15) 

where c= dhl, the sign being that of V. The attenuation constant is 
independent of the sign of F, i.e., of c. But for the phase constant 
we get from (12) 

sin cB , (16) 
sinh A 

and 
O^CB^+tt. 

Thus, as here considered, the product cB, where ±1 has the sign of 
F, is always positive with a value less than or equal to tt. 
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Explicit formulae for A and B from (13) and (14) are 

A =sinh-,-Nf2 [i v/( U+ U2-\- V2)2+ n + (f/+ U2+V2)], (17) 
and 

cB = sin"1^ [ | VW+U^V2)2 + V2] -{U+U2+ V2)\. (18) 

The above formulae are general and applicable to any ladder type 
structure or its equivalent. 

In the case of wave-filters certain approximate formulae arc often 
useful. At frequencies in the attenuating bands away from the 
critical frequencies and the frequencies of maximum attenuation, 
and wherever V2 is negligible compared with (U-C U2) > 0, 

A =sinh_1 2VU+U2, 
and (19) 

cB = 0 or tt. 

At the critical frequencies and the frequencies of maximum attenu- 
ation, where (U-\-U2) is negligible compared with V2, 

A =cosh_,(v/M-l^+l V\), 
and (20) 

cB = cos-1 ± (\/T -f- F2 — 1 F|). 

In the latter the positive sign applies to a critical frequency at which 
U = 0, and the negative sign to one at which £/= — !. 

U and V for "Constant k" and AT-type Wave-Filters. Since the 
wave-filter structures under consideration have "constant k" or 
derived M-type terminations, the U and V variables corresponding 
to these wave-filters will always be required. Hence, formulae for 
the variables are given here, limiting them to the four lowest wave- 
filter classes generally used. 

Resistance in an inductance coil of inductance, Li, is taken into 
account by expressing the total coil impedance as 

(d+i) L&vf, 

where d, the "coil dissipation constant," is the ratio of coil resistance 
to coil reactance. The value of d is ordinarily between f/ = .004 and 
d = .04, and it does not vary rapidly with frequency. Similarly, 
dissipation in a condenser of capacity C\ can be included by expressing 
the total condenser admittance as {d'-\-i) Ci2irf, but since d' is usually 
negligible in practice it will here be omitted. 

The formulae derived from (9) arc based upon those given in this 
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Journal, Jan., 1923, pages 39 to 41, and contain the critical frequen- 
cies and frequencies of maximum attenuation. Subscripts * and 
will be used to denote the "constant k" and M-type Uand T'variables. 
The "constant k" formulae for the four classes follow. 

Low Pass. 

and (21) 

v*=<iy- 

Hi Ai Pass. 

Uk=-(Ey/(i+d?), 

and (22) 

Vk=-d(E)*/(l+d*). 

Low-and-Iligh Pass. 

/o/l ["7T+(1+'J!^i-
2]! ' 

and (23) 

Vk=d 
fofi r/o/i 

Band Pass. 

ti /i/2 r i f2 

' if-i-fi)- \-(l+d2)r- fih J' 
and (24) 

V = -rl-Ilh— F Z1/2 /" ~| 
" (/2-/i)2L(1+^)/2 /./J' 

At the mid-frequency,\//]/2i tlic point of confluency of two bands 
in the transmitting band of this wave-filter, we obtain approximately 
from (19), when d is small, 

A =2d^hh, 
iWi 

and (25) 
3 = 0. 
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The derived M-type variables of any class arc given directly in 
terms of the "constant variables of that class and the parameter 
m by the general relations 

^[ 1 + (1 - w2) W+(1 - w2)2 tV' 

and (2fi) 
m-Vk 

[1 + (1 - w2) C/APT (1 - m2)2 Vkr 

This assumes that the ilf-type has the same grade of coils and con- 
densers as its "constant k" prototype. The parameter m has a 
different formula determining its value for each class, the general 
relation being (neglecting dissipation) 

whereis a frequency of maximum attenuation of the M-type. The 
particular relations for the above four classes follow. 

Low Pass 

m 

High Pass 

Low-and-Iligh Pass 

= (28) 

= (29) 

\ 
m — — 

Band Pass 

\ 
m = 

(-DO-f) 

-f: 

H0HJ) 

(30) 

i-lih 
(31) 

2. Terminal Losses 

The general terminal losses La and Lb are determined by (G) from 
the absolute values of the terminal factors Fa and Fb, which factors 
we have assumed apply to the sending and receiving ends, respectively. 
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That either factor is dependent only upon its own type of termina- 
tion and not upon its position at the sending or receiving end, can 
readily be shown. By the reciprocal theorem the product FiFaFbFr 

is independent of the direction of current propagation, and from 
the forms of Ft and Fr the latter are also, whence the product Fa Fb is 
independent of direction. Since in addition Fa and Fb are inde- 
pendent of each other they cannot depend upon position. This is 
equivalent to the statement that the ratios Ea/E and I/h which 
any particular termination would give at the sending and receiving 
ends, respectively, are equal. It will then be sufficient to consider 
the factor for a given termination at either end, say the receiving end. 

The four terminations found practical give terminal losses which 
are reducible to two, namely, Lm and Lx now to be derived. 

Terminal Losses, Lm, with Mid-M-type Terminations. These 
terminations, already mentioned, are 

1, mid-shunt of a mid-series "constant equivalent M-type, 
{Knim) ); and 

2, mid-series of a mid-shunt "constant k" equivalent M-type, 
{Kn{m) ). 

The relations between the M-type characteristic impedances K^m) 
and ^12(777), the parameter m, and the variables Uk and Vk of the 
"constant prototype are, from formulae 8 in a previous paper 

R _Kii{m) _ ± "\/l 4- Uk + iVk ^2) 
K^im) R l + (l-7w2)(t4-HIT)" 

Since Knim) • Kti{m) = R-, Kn{m) and Ko^m) are inverse networks 
of impedance product R2. As either of these terminations is at a 
mid-point, it forms an end for the wave-filter mid-part and in the 
terminal factor Fb, arbitrarily chosen, Zb = R and ///6 = 1, leaving 

_2\/WbR 
Wb+R * (33) 

In this factor the image impedance Wb is either Knim) or 
depending upon the type of termination. By (32) the factor is the 
same for both types provided they have the same parameter m, so 

8 The radicals which occur in this and succeeding formulae are proportional to 
physical impedances with positive resistance components. Hence, in each case 
the double sign is to be interpreted such as to make the real part of the radical 
positive. 
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that we may put for either of them the single terminal loss Lm defined 
by (b) as 

_T '2\/Ki\{m)R _2-\/ K\i{m)R 
6 K^W+R' Kv^+R 

which upon the substitution of (32) gives 

L, 
(\ Vl+Uk+iVk l + (l-ffl2) 

log'\ 2 l + (l-w2) {Uk+iVk) ' ^/i+Uk+iVk 1 ^ ' 

Terminal Losses, Lx, with x-"constant k" Terminations. The 
terminations are 

3, .T-shunt of the "constant wave-filter, (/Cva): and 

4, .v-series of the "constant £" wave-filter, {Kx\)- 

The .v-shunt and x-series characteristic impedances, Kxi and Kxi, 
are related by the formulae 

R =^=
K*+^--5)^=±^i+ut+iVk±(2x-lWlh+iVk,(?5) 

Kx2 R R 

and Kx\Kxi = K ikK 2k—z ikZik = R2, 

where Kzk and Kik arc the mid-shunt and mid-series values corre- 
sponding to x = .5. With either termination Kxi or Kxi it is assumed 
that the mid-part of the wave-filter begins at the mid-point, i.e., at 
the position corresponding to Kok or Kik, respectively, even when x 
is less than .5. In the latter case an impedance is theoretically added 
which is sufficient to "build-out" the wave-filter to the mid-point, 
and an equal impedance is similarly subtracted from the terminal 
impedance. 

For termination 3, that is KX2, the elements of factor Fb in (6) 
have the values 

Wb = K2k, 

Zb=Z2kR/{z2k + {x-.5)R), (36) 

and I/Ib
=Z2k/{z2k-\-{x — -tyR)- 

For termination 4, Kxi, they are 

Wb = Klk, 

Zb = R+ix-.5)z1k, (37) 

and I/Ib = l. 
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The substitution of (3G) or (37) in Fb gives an identical result, as 
shown by relations (35), provided x is the same in both. A single 
terminal loss Lx may then apply to either, which is defined from (6) as 

2^{R>/K,k)R 2VK^R 
R2

/KX2-\-R Kxi-\-R 
e~Lz = 

giving by (35) 

£, = log,(!j 1 ± Vl + Ut+iVk ± (2x— \)Vuk+iV^ ■ . (38) 

A comparison of (34) and (38) shows that when m = \ and x = .5, 
Lm=Lx as should be the case. 

3. Interaction Losses 

The interaction loss defined in (6) is expressible in its general form as 

Lr = log,. | 1 — rarbe-2T [. (39) 

It depends not only upon the transfer constant T, including both 
diminution and angular constants, but also upon the complex reflec- 
tion coefficients, ra and at the two ends. That is, it is a function 
both of the internal structure and of the terminations of the wave- 
filter. For this reason its determination offers the most complexity 
of all the three types of losses and, in fact, requires a knowledge of 
the transfer loss. On the other hand, it is usually the least important 
part of the total transmission loss and may usually be omitted except 
at frequencies within a transmitting band and near a critical frequency. 

The transfer constant T = D-\-iS is given by the relations and 
formulae developed when considering the transfer loss. 

The multiplication of the reflection coefficients and the square of 
the transfer factor is simplified to a problem in addition by expressing 
each of these coefficients in the exponential form, 

ra=e-Ga-iHat 

and 
rb = e-Gb-iHkm 

Then, putting rarbe-'lT = e~p-iQt 

Lr = \ loge (l+e-2P —2c~p cos Q), (40) 

where P = Ga-\-Gb-\-2D, 

and Q = Ha+Hb+2S. 
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The subscripts, as before, merely refer to the terminations. The G 
and H expressions which correspond to the reflection coefficient with 
each of the four particular types of terminations, 1, 2, 3, and 4, follow. 

Reflection Coefficients, rmi and rm\, with Mid-M-type Terminations. 
For termination 1 arbitrarily assumed at h we have Wb=Kii{m) 
and Zr = R. Introducing for this case the subscript m2, signifying 
Jlf-type and mid-shunt, it follows by (6) and (32) that 

Ku{m)—R 
K„(m)+R' 

and its equivalent 

e-c--B-=r^i+{i-'n'KUt+,.Vt, ± vi+u.+m ' (41) 

With termination 2, Wb=Ki2(ni) and Zb = R, so that by (32) the 
corresponding coefficient rmi becomes 

or 
I'm 1 C m2, 

(42) 
g—Gml—iHm\ —£~Gm2 ~ iH m2 _ 

Since —l = e~',r, 
Gml = Gmn, 

and (43) 
Tim 1 = • 

Reflection Coefficients, rX2 and rxi, with x-"constant k" Terminations. 
In the case of the x-shunt termination 3, KX2, relations (36) give 

K2k-Z2kR/{Z2k + {x- .5)R) 
^ KvkArZikR/{z2k-\-{x —-tyR) 

Introducing (35) this is 

_\±(2x-\WUk+iVk-t±\/l + Uk+iVk) (44) 

' l±Vx-l)^uk+iVk±^/\ + Uk+iVk 

The x-series termination 4, Kxi, has a coefficient rxi determined 
by (37) which is related to rX2 through (35) as 

rxi= -rX2. (45) 

It follows from the corresponding exponential expressions that 

Gxi = Gxi, 
and (46) 

Hxi = HX2-\-ir. 
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(47) 

Hence, the two members of each pair of reflection coefficients, rmi, rmi, 
and rX2, rxi, differ only in sign so that their G's are the same but their 
ITs differ by tt. 

4. Wave-Filter Structures Having Equivalent Transmission Losses 

There are six groups of possible wave-filter networks involving 
the four terminations above, each group of which is made up of pairs 
having equivalent current ratios 2RI/E and hence equivalent trans- 
mission losses. By (5) this means that the members of such a pair 
have products for their four factors, FiFaFbFr, which are equal. It 
may readily be shown from preceding relations that these groups, 
represented symbolically by brackets enclosing the transfer constants 
of their mid-parts and the terminations, are the following: 

(a) [T, Kn{m), Kn(m,)] = [T, Kn{m), K^m')], 
{b) [T, Kn(.m), Kio(m')] = [T, Kyflm), 

(c) \T, Kiflm), Kx2\ =[T, KM, KxX\, 
{d) [T, KM, Kxl\ =[T, KM, Kxil 

{e) [T, Kxi, Kflo] =[T, Kxl, KxG], 
(/) [T,Kx2,Kx\] =[T, Kx1, Kx'zl 

This symbolic representation in (c), for example, means that a 
composite wave-filter whose mid-part has a transfer constant, T, 
and whose terminations are those designated by K2i{m) and KX2, 
will give the same current ratio 2RI/E as another wave-filter whose 
mid-part has the same transfer constant, T, but whose terminations 
are those designated by Kiflm) and Kxl where m and x are respectively 
the same in both networks. 

III. Charts for Determining Transmission Losses 

The accompanying charts apply to the three groups of transmission 
losses, transfer, terminal, and interaction, and are derived from the 
general formulae already given. The curves represent constant 
parameter loci for A, cB, Lm, Lx, Gm2, dim-,, Gx2, cHX2, and Lr as 
functions of several variables and include the most practical range; 
where further extension is required the original formulae may be 
consulted. The U and V variables for the ladder type of recurrent 
network (or its equivalent) which form the basis of this chart calcu- 
lation method arc to be found as a function of frequency, in the general 
case from formula (9), 

2I/422= U-fiV, 
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and in the lower class "constant and M-typc wave-filters from 
formulae (21) to (31). Owing to the large number of intermediate 
equations which it was necessary to obtain before direct computa- 
tions could suitably be made for the charts, these equations will not 
be given here, but only a brief designation of the resulting charts 
together with the approximations involved, if any. 

The units employed throughout are the attenuation unit and the 
radian. The former unit applies to A, D, Lm, Lx, Gmi, Gxz, P, Lr 

and L, and the latter unit to B, S, Hm2, 11x2 and Q. 

Transfer Loss 

This is determined through the propagation constant, F =A-\-iB. 

Charts 1, 2, and 3.—A and cB in and about transmitting band] 
c = ± 1 has the sign of V. 

Chart 4.—A in attenuating band-, 
V2 negligible compared with (t/+ U2) >0. 

Chart 5.—A at maximum attenuation-, 
{U-fU2) negligible compared with V2. 

Terminal Losses, Lm and Lx 

Chart G.—Lm in transmitting band-, 
Vk neglected. 

Chart 7.—Lm at critical f requency, 
Uk=-l. 

Chart 8.—Lm in attenuating band-, 
Vk neglected. 

Chart 9.—Lm at maximum attenuation of M-type] 

Chart 10.—Lx in transmitting band-, 
Vk neglected. 

Chart 11.—Lx at critical frequency, 
Uk=-1. 

Chart 12.—Lx in attenuating band; 
Vk neglected. 
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Reflection Coefficients 

Note that 

~ Cm2j 

and nmi=Hmo+Tr] 

also that 

Gxi —Gxi, 

and Hx\ = lixi + tt. 

Chart 13.—Gmo and II,,,2 in transmitting hand-, 
Vk neglected. 

Chart 14.—G„,o and cHm2 at critical frequency, 
Uk = — I and c = ± 1 has the sign of Vk- 

Chart 15.—Gm2 and cHm2 in attenuating band; 
Vk neglected. 

Chart 16.—GX2 and cllxi in transmitting band; 
Vk neglected and c = i 1 has the sign of Vk- 

Chart 17.—Gxi and cHxi at critical frequency; 
Uk=-l. 

Chart 18.—Gxi and cHxi in attenuating band; 
Vk neglected. 

Interaction Loss, Lr 

Note that T = DJriS = transfer constant of mid-part of wave-filter: 

P = Ga + Gb+2D, 

and Q=IIa-\-IIb-\-^S, 

where a and b refer to the terminations. 

Chart 19.—Lr as a function of P and Q. 
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IV. Illustrative Application of the Method 

In the following illustration a small number of band pass wave- 
liller sections having different characteristics is chosen purposely 
so as to allow an appreciable interaction factor and the use of all the 
charts. 

The mid-part of the composite wave-filter is made up of one mid- 
series section of type VI\ and one mid-half section of M-type IV\, 
the designations being those of a previous paper. The termination 
at one end is made Kx\ by adding (.v —.5)sifc in series with type VI\ 
and at the other is as is diagrammatically represented at the 
top of Fig. 4. The values of all the parameters were chosen as follows: 

R = (100 ohms, .v = .80, 

fx = 4,000-, M-type, = 8,000-, 

/. = 7.000-, 

and r/ = .OI (assumed constant for computation purposes). 
With these values the magnitudes and locations of inductances and 

capacities are as shown in the center of Fig. 4, where the series imped- 
ance parts have been merged together. 

The variables Uk and Vk for the "constant £" band pass wave- 
filler as well as Um, Vm, and m of the 47-type are given by formulae 
(24), (26), and (31). In the 3-element type VIi 

jr i ;T7- _ 1 —(///l)2 i -j (//A)2 Mo^ 
Ul+l Vl ~(/2//i)

2-i+ C/V/i)2- i" (48) 

These variables have been computed in the present case for fre- 
quencies on both sides of the transmitting band and are tabulated 
below. The other tables including that of transmission losses are based 
upon this table and the charts. 

The next to the last, and the last columns give the total trans- 
mission losses as obtained by this chart method and by direct network 
computation, respectively. Comparison shows that there is a very 
satisfactory agreement between them, the differences at all fre- 
quencies being negligible in practice. The greatest differences of 
approximately .05 attenuation units at frequencies 3750 and 7500 
cycles per second, just outside (he transmitling band, can readily 
be explained as due to the omission of dissipation in the two terminal 
loss factors and the reflection coefficients. The transmission loss is 
shown graphically at the bottom of Fig. 4. 

It is believed that the use ol this chart method will result in con- 
siderable time economy with calculations of this kind. 
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TABLE I 

U and V Variables 

f 
Cycles/sec. 

"Constant k" Type VL Af-type, m = .7454 

um Vm uk vh Uy Ei 

1000 -81.0 -.870 .455 .0003 1.29 - .0004 
1500 -32.7 -.385 .417 .0007 1.34 - .0012 
2000 -16.0 -.213 .364 .0012 1.45 - .0032 
2500 - 8.41 -.132 .296 .0019 1.71 - .0098 
3000 - 4.46 -.0868 .212 .0027 2.53 - . 050 
3250 - 3.20 -.0707 .165 .0032 4.21 - .220 
3500 - 2.25 -.0575 .114 .0037 .36 -48.9 
3750 - 1.53 - .0463 .0586 .0042 -2.67 - .253 
4000 - 1.00 -.0367 0 .0049 - .997 - .0659 
4250 - .607 -.0282 - .0625 .0055 - .461 - .0293 
4500 - .329 -.0205 - .129 .0061 - .214 - .0156 
5292 .00031 0 - .364 .0085 .00017 0 
6500 - .534 .0263 - .796 .0128 - .389 .0252 
6750 - .752 .0315 - .897 .0138 - .627 .0395 
7000 - 1.00 .0367 -1.00 .0148 - .998 .0659 
7500 - 1.58 .0470 -1.22 .0170 -2.90 .290 
8000 - 2.25 .0575 -1.46 .0194 .85 48.9 
8500 - 3.01 .0682 -1.70 .0219 4.92 .329 
9000 -3.85 .0792 -1.97 .0246 3.00 .0866 

10000 -5.76 . 102 -2.55 .0303 2.05 .0234 
11000 -7.94 .127 -3.18 .0367 1.75 .0110 
12000 -10.4 .154 -3.88 .0436 1.60 .0065 

TABLE II 
Transfer Constants 

Mid-series Mid-half Mid-part of 

/ 
Cycles/sec. 

Type VL Af-type I V\ Wave-filter 

7",= A i -fiBi II MI
- 

'S
 ,+7B,„) T = Tl + T, = D +75 

1000 1.26   .97 — 2.23 — 
1500 1.21 — .99 — 2.20 — 
2000 1.14 — 1.02 — 2.16 —■ 
2500 1.04 — 1.08 — 2.12 — 
3000 .89 — 1.23 — 2.12 — 
3250 .79 — 1.46 — 2.25 — 
3500 .66 — 2.64 — 3.30 — 
3750 .480 -N .02 1.077 -71,51 1.557 -71.49 
4000 .100 +i .10 .181 -71.39 .281 -71.29 
4250 .025 -H .51 .029 -7 .75 .054 -7 .24 
4500 .019 -H .73 .019 -7 .48 .038 +7 .25 
5292 .018 -HI. 30 .013 +7 0 .031 +71.30 
6500 .032 +/2.20 .026 +7 .67 .058 + 72.87 
6750 .043 +72.48 .040 +7 .92 .083 + 73,40 
7000 .173 +72.97 .181 +71.39 .354 +74.36 
7500 .910 +73.10 1.125 +71.51 2.035 +74.61 
8000 1.27 — 2.64 — 3.91 — 
8500 1.52 — 1.53 — 3.05 — 
9000 1.74 — 1.31 — 3.05 — 

10000 2.09 — 1.15 — 3.24 — 
11000 2.36 — 1.09 — 3.45 — 
12000 2.59 1.06 3.65 
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TABLE III 

Reflection Coefficients and Interaction Factor 

f 
C ycles/sec. 

.Y = .80 m = .7454 
P <3 

6"xi Hxl Gm2 ITm'l 

3750 .58 2.18 0 — 2.31 3.69 -3.11 
4000 .30 3.06 .49 — .50 1.35 - .02 
4250 1 .04 3. 75 2.58 0 3.73 3,27 
4500 1 .57 4.04 3.85 0 5.50 4.54 
5292 CO — OO — OO 

8.19 6500 1.17 2.45 2.90 0 4.19 
6750 .78 2.67 1.92 0 2.87 9.47 
7000 .30 3.22 ,49 .50 1.50 12.44 
7500 .60 4.14 0 2.39 4.67 15.75 

TABLE IV 

Transmission Losses 

/ 
Cycles/sec. 

Transfer Terminal Interaction Total =L 

L, Lm L, ZLj Network 
L, Computation 

1000 2.23 .88 .02 — 3.13 3.13 
1500 2.20 .65 -.18 — 2.67 2.68 
2000 2.16 .48 -.30 — 2.34 2.35 
2500 2.12 .33 -.35 — 2.10 2.11 
3000 2.12 .19 -.25 — 2.06 2.08 
3250 2.25 .12 -.01 — 2.36 2.37 
3500 3.30 .06 1.21 — 4.57 4.59 
3750 1.557 .042 - .190 ,025 1.434 1.487 
4000 .281 .443 .082 - . 300 .506 .508 
4250 .054 .067 .004 .024 .149 .154 
4500 .038 .023 .001 .001 .063 .068 
5292 .031 .000 .000 ,000 .031 .036 
6500 .058 .052 .003 .005 .118 .127 
6750 .083 .118 ,011 .055 .267 .276 
7000 .354 .443 .082 - .250 .629 .632 
7500 2.035 .038 -.150 .009 1.932 1.987 
8000 3.91 .06 1.21 — 5.18 5.19 
8500 3.05 .11 .06 — 3.22 3.24 
9000 3.05 . 16 -.18 — 3.03 3.05 

10000 3.24 .24 -.31 — 3.17 3.18 
11000 3.45 .31 -.34 — 3.42 3.43 
12000 3.65 .38 -.33 3.70 3.70 
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Fig. 4—Transmission Loss of Composite Band Pass Wave-Filter 
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APPENDIX 

Derivation of Linear Transducer Formulae 

The formula used in the text for a dissymmetrical composite wave- 
filter structure contains the image parameters 9 and is a special case 
of a general formula which is applicable to any linear transducer, 
active or passive. This general formula is derived here together 
with other useful ones. 

A linear transducer will be defined as an electrical network which 
has two input and two output terminals and a structure such that so 
far as these terminals are concerned the currents are linear functions 
of the potential differences and therefore the principle of superposi- 
tion holds. The structure may contain sources as well as sinks of 
energy: that is, the transducer may be active or passive. In the 
most general case, that of an active dissymmetrical linear transducer, 
four independent parameters are necessary to specify its electrical 
properties. Two sets of such parameters will be considered in deriv- 
ing corresponding formulae, the image parameters and the recurrent 
parameters. 

I. Image Parameters 

1. General Linear Transducer. The parameters in this case are 
defined with reference to the single transducer in Fig. 3. Let the 
terminal impedances in this figure be so chosen that the impedances 
in the two directions from terminals a are equal, that is, the latter 
impedances are the "image" of each other, and at the same time a 
similar "image condition" holds with reference to terminals h. With 
the transducer so terminated, its directional transfer constants are here 
defined as TIIh = \og<-{III/h) when transmitting from terminals a to 
terminals b, and 7T, = log,.(/6//a) when transmitting from terminals b 
to terminals a. The image impedance Wa of the transducer is the 
impedance across terminals a in either direction, and the image im- 
pedance Wt is similarly defined at terminals b. In general, Tab and 
Tb„ are different, as are also W,, and Wi,. 

The transducer is now to be terminated by the general impedances 
Za and Zb with an electromotive force £„ applied in series with Z0. 

"The relations among five other distinct sets of parameters for a transducer 
(such as a passive one) which can be specified by three complex parameters were 
given by G. A. Campbell in Cisoidal Oscillations, Trans. A. I. E. E., Vol. XXX. 
Part II, Fable I, p. 885, 1911. The different sets correspond to the four normal 
networks designated as the T, the IT, the transformer, and the artificial line, and 
to the simple circuit one-point and two-point impedances. A sixth set, one-point 
and two-point admittances, was used in Appendix I of my paper in the B. S. T. ]., 
Jan. 1923. 
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It is desired to obtain, among others, expressions for the sending end 
and receiving end currents /„ and h which contain the image para- 
meters. 

Each terminal impedance will be considered as equivalent to the 
image impedance at that end plus another impedance whose potential 
drop is to be replaced in the usual manner by an equal opposing 
electromotive force. In effect this equivalent electromotive force 
substitution reduces the system to one in which the transducer is 
terminated by its image impedances and in which determinate electro- 
motive forces are acting at both ends. From this viewpoint, the total 
effective electromotive forces acting at the ends a and b of the trans- 
ducer terminated by its image impedances Wa and Wb are, respectively, 

£u + (fFa-ZQ)/u, 
and 

{Wb-Zb)Ib. 

Superposing the currents due to these electromotive forces at both 
ends we may write the current expressions immediately from the 
definitions of the parameters involved. 

Thus 

T _£„ + (IF0-Za)/0 (Wb — Zb)A n 
Ja~ 2Wa ^ 2Wb 

and 
, Ka-\-{Wa — Za) I a _j- , , ( WT Zb)Ib 
76 = 2Wa 6 a 2Wb ■ 

Their solution gives the explicit formulae 10 

Ea (1 +rbe-'-T"h+rba)) 
1 ~ ITfl+Za (I — rarbe~(Tab+rba)y 

and 
T _ Ea i\-\-rb)e-Tah 

Jb ~ Wa+Za (1 - rarbez(Znh+T'",)y 

where ra and rb, the current reflection coefficients at terminalsa and b, 
are 

Wa-Za 
ra Wa + Za' 

and 
Wb-Zb 

Wb+Zb 
rb - 

10 These formula; may also be derived synthetically by the current reflection 
method. 
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Although the transducer has four independent parameters, it will 
be seen that the sending end current involves but three effective trans- 
ducer parameters, the sum {Tab+Tba), Wa, and Wi,. As a result, 
the four one-point impedance measurements which can be made upon 
the transducer itself, the open-circuit and short-circuit driving-point 
impedances at both ends, must have a relation between them. Let 
Xa and ¥„ denote the driving-point impedances across terminals a 
when terminals b are open-circuited and short-circuited, respectively. 
Then if in (51) Za=0 and terminals b are open-circuited by putting 
Zh = oo , the impedance at terminals a, the open-circuit impedance, is 

Xa=^ = Wa coth h{Tab+ Tba). (52) 
I a 

Similarly for the short-circuit impedance, when Za=0 and Zb = 0, 

Ya = Wa tanh \{Tab-\-Tba). (53) 

For the other end we get by interchanging subscripts 

Xb=Wb coth \{Tab+Tba), (54) 
and 

Yh = Wb tanh |(ra6-bTV). (55) 

These give the necessary relation as 

Ya ~ Yb- (56) 

Hence, in the most general linear transducer the ratio of the open-circuit 
to short-circuit impedances at one end is equal to the corresponding ratio 
at the other end. 

Other important derived formulae are 

Tab+ TV = 2 tanh-iJXl = 2 tanh-1 ' (57) 
\ A« \ Xb 

Wa = VxJV, (58) 

Wb = VxJf, (59) 

Wa - Wb = V{Xa-Xb) {Ya- Yb), (60) 

WaWb = XaYb=XbYa. (61) 
and 

Thus the open-circuit and short-circuit impedance measurements 
determine the sum of the directional transfer constants and both of 
the image impedances. 
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To obtain the separate values of Tab and Tba, it is necessary to 
make at least one two-point measurement, as seen from the formula 
for I,, which contains four distinct transducer parameters. For 
example, to find T„b perhaps the simplest method is to terminate 
with the image impedance at terminals b, whence 

Tab = log,(/„//(,), where Zb = W,,. (62) 

The constant Tim is the difference between the sum (Tab+Tba), 
obtained from (57), and Tab] it may also be determined by a two- 
point measurement similar to the above for transmission in the oppo- 
site direction. 

For some purposes it is convenient to have formulae involving the 
potential differences Va and Vb across the two pairs of terminals, 
rather than the terminal impedances Za and Zb and the series applied 
electromotive force £u. Such formulae in combination with the 
above can be used to advantage in determining the currents and 
potential differences at points within a composite transducer. They 
are derived readily by making the substitutions in the above, 

Eg-Vg 
^ll j I 

and (63) 
Zb=Vb/Ib. 

For current transmission from terminals a to terminals b 

Vb/er^-e-T'-" r T . Vbfel°l'-e-Ih"\ 
V 2 ) + Wb\ 2 ) 

and (6-+) 

Also, 
/ cTha ^ - r,./, ya ,eThn — e- T„h ^ 

= 2 J "IFA 2 )' 

and (66) 

v^v^{Ci±fU) -uwb[f^AN). 

Interchanging I he subscripts and 
in (64) will also lead to (65). 

2. Passive Linear Transducer. 
here one relation exists between 

changing the signs of the currents 

Since the reciprocal theorem holds 
the'four parameters leaving three 
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independent ones. This relation is given directly by the theorem 
in the case where Zl, = W,t and Zb=Wb, the equivalent transfer 
currents being 

'i ah f* 1 ba 

2Wa
=Twrb (6(5) 

Although any three of these parameters might be assumed as inde- 
pendent, it is convenient to take as the independent parameters 
T, Wa, and Wb, where 

1'= D-\-iS = ^{Tab-\- '] ba) (b7) 

is thus defined for the passive transducer as the transfer constant. The 
transfer constant is the arithmetic mean of the Two directional transfer 
constants. The real and imaginary parts of T, namely D and S, will 
be called the diminution constant and the angular constant to distin- 
guish them from the attenuation constant and the phase constant 
of the ordinary propagation constant to which they reduce in the case 
of a symmetrical transducer. Then these parameters are given by 
the formulae 

r la,,!; N M-hw* 

Wa = VXaZ,, (68) 
and 

Wb = VXbYb, 

and are completely determined by the open-circuit and short-circuit 
driving-point impedances. 

With these parameters the current formulae become 

Ea (l+r6e-27') 
J a — Wa+Za il-rarbe 2T)' 

and 
Ea j Wa (l + rb)e-r 

Wa + Za \ Wb (l-rarbe-2T)' h = \l ttt yf' (69) a ^ 

2 EaVWaWb e-T 

{Wa+Za){Wb+Zb){l-rarbe-2r)' 

the latter being the one used in the text. Other forms are 

Ea(Zb sinh T + Wb coshT) 
a ~ (Wa Wb+ZaZb) sinh T+ (WaZh + WbZa) cosh T' 

and   ("9) 
  Ea\/WaWb  

b {WaWb+ZaZb) sm\xT+{WaZb+WbZa) coshT 
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Introducing the potential differences, for current transmission from 
terminals a to terminals b 

Also, 

/a —/fc.. cosh T H sinh T, 
> Wa VWaWb 

and (71) 

Va = Vo-yJ -||r cosh 7'+IbX^ WaWb sinh 7'. 

/. =/nAl-iii cosh T " sinh 7\ lb la\ Wb VWaWb 

and * (72) 

Vb=Vayj ^ cosh T -TaVwJVb Sinh T. 

II. Recurrent Parameters 

1. General Linear Transducer. Here four parameters 11 of the 
transducer in Pig. 3 are defined in terms of its properties when it is 
one section of an infinite recurrent structure which is made up of 
identical sections, similarly oriented. With such terminal condi- 
tions for the transducer, its directional propagation constants are 
defined as follows: ra6 = loge {la/h) when transmitting from terminals 
a to terminals b, and r/)a=logc {h/Ia) when transmitting from termi- 
nals b to terminals a. The characteristic impedance Ka is the im- 
pedance across terminals a in the direction from a to b, and the char- 
acteristic impedance Kb is similarly defined for the impedance across 
terminals b in the opposite direction. 

Terminating the transducer by the general impedances Za and Zt 
and applying an electromotive force Ea in series with Za, ic current 
formulae containing the recurrent parameters may be defived in a 
manner analogous to that used with the image parameters. In this 
case the total effective electromotive forces acting at the ends a and b 
of the transducer terminated by its characteristic impedances Kb 
and Ka are, respectively, 

Ea-\-{Kb — Za)Ia, 
and (73) 

{Ka-Zb)Ib. 
11 These parameters may also be designated in the general case as those of a 

generalized artificial line. 
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Hence, 
_ Ea (l+p6<;-(l'"''+r'",)) 

In  'Ka+Za {\-papbe-v*+^y 

and (74) 
x Ea {l+pb)e-l'ab 

lb Ka+Za (l-pflp66-(ra6+rta)). 

where the current reflection coefficients at terminals a and h are 

Kb-Za 
K.+Z,' 

and 
Ka-Zb 

pb = Kb+Zb 

Ka 
Kb 

Introducing the open-circuit and short-circuit driving-point im- 
pedances Xa, Xb and Fa, Yb of the transducer it follows that 

  „ , , WiX.-Xtf + ^XaVt + XiYa) ra6 + rba = 2 tanh 1 Xa+Xb ' ^ ' 

| =±-[V{Xa-Xbr+2{XaYb+XbYa)±(Xa-Xb)]l (76) 

Ka-Kb = Xa-Xb< (77) 

and 
KaKb = XaYb = XbYa. (78) 

Any three of these measured impedances are sufficient, because 
of relation (56), to obtain the sum (ra6 + r6a), Ka, and Kb. 

A directional propagation constant may be obtained separately 
from one two-point measurement; thus 

ra6 = loge {la/lb), where Zb=Ka. (79) 

The current and potential difference at one pair of terminals in 
terms of those at the other are given by the following. 

For current transmission from terminals a to terminals b 

(Kte^+K^- \ Vi _ ria) 

'I Xa+Xi )+K. + KA h 

and (80) 
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Also, 
r T fKaeVha+Kbe-rah\ Va , r , 
I>=H K,+Kt Js+K/'*-' "i- 

and (81) 
/Kbe^+Kae-1'"^ KaKb . _ , 

Vt= H Ka+Kb ) ' "K^+Kt(<! —e 

2. Passive Linear Transducer. Because of the reciprocal theorem 
the directional propagation constants become equal giving a single 
propagation constant, 

V=A+iB = Tab = Tba, (82) 

which is obtainable from the general formula (75). Here A is the 
attenuation constant and B is the phase constant. 

The current formulae become 

_ _ Ea (l + p6g-
21') 

la  
Ka-\-Za (1 —PaP&C-21)' 

and (83) 

Ea (l+pfc)^-1' 
h = Ka + Za (1 —PaP^e 2r)' 

In the other form they are 

j _.£„[( —Xo-)-A),-|-2.Zb)sinhr + (Xa+Xt)coshr] 
a"[(2(XaX6+ZflZt) - (Ka-Kb){Za-Zb)) sinhr' 

+(xa+Xt) (za+z6)coshr] 
and (84) 

Ea(Ka+Kb) 1,.= 
[C2{KaKb+ZaZb) - (Ka - Kb) (Za - Zt)) sinhr 

+ {Ka+Kb){Za+Zb) coshr] 

Introducing the terminal potential differences, when transmitting 
from terminals a to terminals b 

Ia = h ^cosh r-^a
+^ sinh 2 sinh T, 

and (85) 

Va= Fi(cosh r+^'^'sinh r) +ItAAt±2 sinh T; 



TRANSMISSION CHARACTERISTICS OP WAVE-FILTERS 619 

and at the other terminals 

//, = /,, (cosh 1'+"^'" ^'sinh r) — ^ " 2 sinh V, 
\ A „ + A i, J K„+Kb 

and (86) 

Vb = V„ (cosh r-"sinh r) - la L
K"Kr' 2 sinh T. 

\ Ka+Kb / K„+Kb 

Comparison shows that the general formulae for the currents /„ 
and lb given by (51) and (74) in terms of the two sets of parameters 
are of the same functional form involving their respective reflection 
coefficients; the latter are of slightly different functional forms. This 
similarity is what one expects when deriving the formulae synthetically 
by the current reflection method. 

In all cases by (61) and (78) 

IT,i Wb = KaKb ■ (87) 

The sum {Tab+Tba), Wa, and Wb of any transducer are obviously 
also equal to the propagation constant and respective characteristic 
impedances of the two symmetrical transducers which can individually 
be formed with two such identical transducers. 

If Tab=Tba, the reciprocal theorem holds only when Wa — Wb, 
for which case the transducer is symmetrical. On the other hand if 
Tab = IV;, this theorem holds irrespective of the values of Ka and Kb. 
In each of these cases which satisfies the theorem the transducer may 
be active or passive. 

In an electrically symmetrical transducer, whether active or passive, 
two parameters specify its properties 
where 

Tab = Tba — 1 ab Tba, 
and (88) 

Wa = Wb=Ka=Kb, 

in which case the corresponding formulae are identical in the para- 
meters. Structural symmetry is not necessary here as may be seen, 
for example, in the case of a composite wave-filter made up of differ- 
ent mid-series sections whose characteristic impedances are equivalent. 

In a passive dissymmetrical transducer the formulae containing 
hyperbolic functions are of simpler form with the parameters T, Wa, 
and Wb than with the parameters T, Ka, and Kb. The image para- 
meter formulae are readily applicable where the transducer is made 
up of parts whose image impedances at the junctions are equivalent, 
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as in the present case of a composite wave-filter. Simple relations 
exist here between these parameters of the transducer and of its parts, 
as shown in the text, which is not true with the other parameters. 
The recurrent parameter formulae, on the other hand, apply more 
naturally when dealing with a succession of identical dissymmetrical 
sections, or of different dissymmetrical sections whose characteristic 
impedances in one direction are equivalent, in which cases the propa- 
gation constant of the transducer is equal to the sum of the progaga- 
tion constants of the parts. In conclusion, it is seen that the set of 
parameters most suitable for use in any case depends upon the par- 
ticular structure of the transducer. 



Some Contemporary Advances in Physics—V 

By KARL K. DARROW 

Electricity in Solids 

IN considering such topics as the flow of electricity through solids 
and the outflow of electricity across their boundaries, we have to 

forego the assistance of the great system of laws, models, and word- 
pictures which constitutes the contemporary theory of the structure 
of the atom. This imposing and truly powerful theory, which now- 
adays seems to bulk larger than all of the rest of physics, is after all 
limited to certain restricted fields; it deals successfully with par- 
ticular properties of isolated atoms, and also with certain qualities 
of atoms which seem to be localized in their inner regions; but it avails 
little or nothing in the study of the behavior of liquids and solids. 
Much of the present-day theory of electrical conduction in solids is 
based only on the very simplest assumptions as to the nature of the 
atoms of which they are built, some would even remain valid under 
the old-fashioned ideas of continuous electrical fluids; and profoundly 
as we may believe that solids are built of atoms resembling Bohr's 
famous model, it is highly doubtful whether that model has ever 
helped to interpret a single one of the phenomena of conduction or 
done more than to provide a new language for old ideas. 

We have first to make the distinction between the substances in 
which atoms migrate along the path of the flowing current and ap- 
parently carry the moving charge, and the substances in which the 
atoms stand still while the current flows past them. It is universally 
conceded that elements, and likewise the alloys of metals and a num- 
ber of solid compounds, belong to the latter class; whatever it is that 
carries the current flows through and past the substance, leaving it 
at the end as it was at the beginning. Weber said in 1858, "In the 
metals there are electrically-charged particles as well as atoms; some 
of the former are freely mobile and others vibrate about the atoms; 
they are the cause of the conduction of electricity and of heat, and of 
magnetic phenomena as well." Considering that in Weber's day 
electricity had never been observed apart from ponderable matter 
and electrons were unknown, this is entitled to rank as a daring 
anticipation. 

Next we have to distinguish between conduction by metals and 
conduction by non-metallic elements. Strictly we should begin by 
defining a "metal"; but this task had better be left to the chemists, 
as being really their affair; and they have found it no easy affair to 

621 
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set up a definition by which every element can be confidently assigned 
to one class or to the other. In fact there is a tendency to begin by 
defining metallic conduction, and then define metals as the elements 
which display it! The difficulty, as usual, is to make the definition 
sharp enough to decide a few intermediate or transitional cases. 
Anyone even slightly acquainted with chemistiy or physics would 
instantly recognize as metals the elements in the first column of 
the Periodic Table, and those at the bottom of the table in all the 
columns; and as non-metals, with the same ease, the elements in the 
topmost row of the table and down the right-hand side. The first 
element of every column after the first two is non-metallic, and the 
non-metallic character advances farther and farther down the 
columns as one proceeds across the Table from left to right. One 
might say that the elements which are not metals occupy the north- 
east sector of the Table, and the debatable ones cross in a diagonal 
band from northwest to southeast. The elements which are gases 
under the usual circumstances of temperature and pressure are 
extreme instances of non-metals; but some of the definitely non- 
metallic elements, and all of the debatable ones, are solid or liquid 
under the usual conditions. 

Very little could be said about the elements which under ordinary 
conditions are gases, for very little is known about the manner in 
which they conduct electricity when liquefied or frozen. Probably 
the reason is that the experimental conditions would be unusually 
difficult, and the substances probably very bad conductors; it is not 
easy to imagine solid hydrogen moulded into a cylinder, drawn into 
a wire, clamped or sealed between electrodes, or filled into a sheath 
less conductive than the hydrogen itself. The difficulties may not 
be insuperable; but they have not been generally overcome. 

As for the solid elements which are definitely not metals, or which 
belong to the debatable group, there is an abundance of data in 
print, and yet not nearly so much as we need. In general their re- 
sistances are tremendously greater than the resistances of metals; 
"tremendously" for once is not an extravagant word, for the con- 
ductivities of the elements are spread over a sweeping range of orders 
of magnitude which few if any other qualities of theirs can rival. 
The mass of the heaviest known atom differs from the mass of the 
lightest only by a factor of 240; the densities of the solidified elements, 
their compressibilities, their other mechanical and thermal proper- 
lies range over not more than one or two, at the most three orders of 
magnitude; even the energy required to extract the innermost electron 
of an atom rises by a factor of only 105 in passing from the first to 
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the last element of the series; but the conductivity of silver stands 
to the conductivity of sulphur in the ratio 1021. The distance from 
the sun to the nearest star is some 1018 cm.; we see that a sheet of 
sulphur a thousandth of an inch thick would ofifer more of an obstacle 
to the passage of electricity than a cable of silver of the same diameter, 
extending from the earth to Alpha Centauri. The variations of 
conducting-power from element to element are thus as fantastically 
great as the variations in scale from the world of common life to the 
world of interstellar spaces. The conductivities of the metals, how- 
ever, are confined within a narrow fraction of this range; it is between 
the metals and the non-metals, and between one non-metallic element 
and another, that the leaps are surprisingly great. 

In general, too, the resistance of a non-metallic element decreases 
as its temperature is raised; the curve of resistance versus tempera- 
ture (I shall often call it characteristic, henceforward) slants down- 
ward, the derivative and the temperature-coefficient of resistance 
are negative. Near room-temperature this is the usual behavior, 
but not always over the entire accessible range; of some elements it 
is observed that the resistance declines less rapidly as the temperature 
is raised, the curve is concave upward; eventually the decline ceases, 
the resistance passes through a minimum value at a certain char- 
acteristic temperature, and thereafter increases with the temperature 
as the resistances of metals do. At least one element of the debatable 
class (germanium) exhibits a characteristic curve that slants upward 
instead of downward at room-temperatures; but when the curve is 
followed towards lower temperatures, it too is found to be concave 
upward with a minimum of resistance below—100° C. This suggests 
that for all of the non-metals the resistance-temperature curve may 
be a loop bulging downward, with a minimum at a certain temperature 
that varies from element to element: on this generalization one of 
the contemporary theories is founded. 

These rules can be illustrated by mentioning briefly the behavior 
of the non-metallic elements one by one. Beginning at the foot 
of the procession of elements, we pass over hydrogen (no data), lithium 
and beryllium (metals), and commence with boron. Boron has a very 
high resistance at room temperature, which drops a hundredfold 
when it is heated to 180° C. and ten-million-fold when it is raised to 
a red heat. On carhon a tremendous amount of work has been done, 
which unfortunately largely goes to show that the word "carbon" 
usually signifies a framework of carbon atoms packed with occluded 
gases, organic compounds, and impurities of divers kinds, which no 
known mode of treatment avails to expel entirely, although almost 
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anything which is done to the substance alters its constitution enough 
to affect its resistance. (We shall later see that the situation with 
many of the metals is almost as bad.) Most of the experiments 
reveal a steady decline of resistance as the temperature is raised, 
whether the sample used be amorphous or crystalline (graphitic) 
and whatever its history; but Noyes recently traced several very 
concordant curves for several samples of graphite (all however of 
the same provenience) showing a minimum of resistance near 800° C. 
Diamonds have exceedingly high resistances, which fall when they 
are heated. 

Passing over four gases and three metals, we come next to silicon', 
the curve traced by Koenigsberger shows the resistance descending 
as the temperature is increased, until at a certain critical temperature 
it leaps sharply upward; from the new high value it descends again 
as the silicon is further warmed, only to make a second upward jump; 
from this second maximum it drops steadily away, at least as far as 
the highest temperature attained in the experiment. This illustrates 
another perplexing property of some elements; they have several 
distinct "allotropic" forms, each of them more or less stable over a 
distinct range of temperature which may or may not overlap with the 
ranges of the others; each must be regarded, so far as its conducting- 
powcr is concerned, as a distinct element. In some instances the 
several forms of an element are vividly contrasted in appearance and 
in general behavior; such is the case with phosphorus, all of the forms 
of which have high resistances, but little is known about their trends 
with temperature. In other cases the anomalous changes of temper- 
ature with resistance are not accompanied by other striking changes; 
and there is a tendency to explain any deviation from an expected 
trend—such as, for example, a maximum in a resistance-temperature 
curVe—by saying that the substance is gradually changing from one 
form into another. 

Sulphur is the extreme case of high resistance. I know of no data 
for scandium, which is to be regretted, as there is some reason from 
general atomic theory for supposing that this element stands at a 
turning-point of the Periodic Table. Titanium, like silicon, has 
several modifications, in some of which the characteristic rises while 
in others it descends. Germanium has been studied lately by Bidwell; 
it is the element mentioned above which displays a minimum of 
resistance at — 1160C. Arsenic resembles the metals. Selenium in 
the dark has an extremely high resistance; its character when il- 
luminated is too much of a subject to be discussed in this place. 
Zirconium was found, at least by one observer, to display a minimum 
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of resistance at 70° C., though in conductivity it compares favorably 
with the accepted metals. Antimony, although ranked among the 
metals, is usually to be found among the exceptions to any rules laid 
down for them; the same can be said of bismuth. Tellurium is an 
outstanding instance of an element with two modifications, and a 
sample taken at random is likely to be a mixture of them in un- 
predictable proportions, which change when it is heated; the char- 
acteristics are correspondingly crooked, and rarely agree. Iodine 
has a very high resistance. 

Comparing the metals as a group with the non-metals, the first 
striking rule is that their conductivities are much higher and rather 
close together: from silver (the most conductive of all substances at 
room-temperature), to bismuth, the most resistant of the elements 
commonly accepted as metals, the conducting-power descends in the 
relatively small ratio of 75 to 1. The next and familiar rule is, that 
increasing temperature and increasing resistance always go together; 
the characteristic always slants upward to the right, the derivative 
and the temperature-coefficient of resistance are positive. It is 
customary to say that the resistance is always approximately pro- 
portional to the temperature, and that the temperature-coefficient 
of resistance always has approximately the one universal value, 
which is the value of the temperature-coefficient of volume of an 
ideal gas at constant pressure (or its temperature-coefficient of pres- 
sure at constant volume). That is to say, when the temperature of a 
piece of metal is increased by a given amount, its resistance increases 
approximately in the same proportion as would the pressure of a 
fixed quantity of an ideal gas, enclosed in a non-expanding container 
and raised from the same initial to the same final temperature as the 
metal. Were these statements literally true, all the resistance- 
temperature curves for metals would be straight lines intersecting the 
axis of temperatures at absolute zero. But the second statement 
cannot even be considered a good approximation, unless one is willing 
to confer the title "good approximation" on a numerical value .00365 
which is expected to agree with a set of observed values which ranges 
upwards to .0058 (potassium) and .0063 (iron). (I refrain from giv- 
ing a lower limit for the range, for a reason which will presently be 
made clear.) Also the characteristic curves are not rigorously 
straight lines, although it is not unreasonable to call some of them 
approximately straight, when one considers how wide is the interval 
of temperature over which some of them have been traced. In 
some cases a quadratic term added to the linear expression, resulting 
in a formula R = Ro+at-\-bt,2 is sufficient to express the data. Usually, 
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but not always, the extra coefficient b is positive: the characteristic 
is concave upward. "Usually but not always" is a phrase much 
in demand when one is laying down rules for conducting bodies. 
In this case metals of the platinum triad furnish the exceptions. 
In other instances cubic terms must be added to the formulae, and 
in still others even these arc inadequate. One of the longest charac- 
teristics ever traced, the one determined by Worthing and Forsythe 
for tungsten from 1400° to 3250° C., conforms to the equation 
R = const. r12. 

All these details about values of resistances and shapes of resistance- 
temperature curves are sedate and commonplace enough; but there 
is one quite extraordinary phenomenon in this field, one of the strange 
discontinuities which appear here and there in the theatre of nature 
and contribute more of dramatic interest to the spectacle than any 
amount of smooth correlations between continuous variables. Ex- 
tensions of the characteristics downwards toward the absolute zero 
have to follow upon improvements in the art of producing and main- 
taining very low temperatures; and for the last twenty years the 
advances in this art have been made in the Cryogenic Laboratory 
of the University of Leyden, and there the curves have been extended 
downwards step by step as additional ranges of cold were made 
accessible. The temperatures down to 14° K. attained with liquefied 
hydrogen did not affect the resistances of metals in any very startling 
way, although the characteristics are generally more sharply curved 
there than at ordinary temperatures; but when with the aid of liquefied 
helium Kamerlingh Onnes penetrated to within five degrees of the 
absolute zero, something astonishing took place. 

Kamerlingh Onnes had been experimenting with platinum wire, 
and he had found that over the interval of temperatures newly made 
available, the interval from 4.3° to 1.5° K. (a small range when meas- 
ured in degrees, but a great one when considered in terms of the dis- 
tance between its lower limit and the absolute zero) the resistance of 
the wire did not change. This he thought might mean that the proper 
resistance of the metal had become exceedingly small, leaving as 
the chief component of the observed resistance a term unaffected by 
temperature and due possibly to some such thing as discontinuities in 
the wire, for example between the platinum and bits of impurities 
mixed into it. To have a purer metal he replaced the platinum by 
repeatedly-distilled mercury. It was contained in a slender glass 
capillary tube, forming so fine a filament that the resistance at room- 
temperature was rather considerable: in one specified instance, 173 
ohms. When he lowered this filament of mercury to the temperature 
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of frozen helium, at a certain point the resistance suddenly vanished. 
Literally it vanished; the word is justified, for the value to which it 
had dropped was, if not truly zero, at all events not so much as one 
five-billionth of its value at room-temperature, and not so much as 
one ten-millionth of its value just before, at about 4.1° K., it suddenly 
disappeared. The mercury had altogether lost what had always 
seemed to be as inseparable a quality of matter as its inertia or its 
weight. 

A few other elements were later found to share this property; 
tin, of which the resistance vanishes at 3.78°; lead, having its thres- 
hold-temperature at 7.2°; thallium, at 2.3°. Three of these four are 
consecutive in the procession of elements. Other elements were 
definitely found not to become "supra-conductive" within the ac- 
cessible range: gold, cadmium, platinum, copper and iron. In the 
vicinity of the absolute zero each of these metals has a constant 
resistance independent of temperature. This as I mentioned was 
interpreted to mean that these metals, or at least these samples, 
behaved thus because they were impure—that impurities prevented 
the vanishing of resistance—but since mercury contaminated in- 
tentionally with gold or with cadmium was found to become supra- 
conductive, and tin amalgam likewise, it has become necessary to 
save this interpretation, if at all, by assuming that in the five specified 
metals the impurities coalesce with the metal in some particular way. 
It is interesting to note that the threshold-temperature of tin amalgam 
lies above that of either of its components—at 4.29° K., to be com- 
pared with the 4.1° of mercury and the 3.78° of tin. These thres- 
holds are not entirely independent of circumstances; they diminish 
when a large current-density is used, and also when a magnetic field 
is applied, possibly from the same reason in both cases. 

A number of fantastic things could happen in a world from which 
electrical resistance had vanished, and one of them was actually 
realized by Kamerlingh Onnes within the compass of his helium- 
cooled chamber, when a current of three hundred and twenty amperes 
flowed for half-an-hour around and around a leaden ring with no 
applied E.M.F. whatever to maintain it, and did not lose as much as 
one one-hundredth of its initial strength. In another experiment 
a current of forty-nine amperes flowed for an hour around a coil of 
lead wire of a thousand turns, wound upon a brass tube, and did not 
lose quite one per cent, of the intensity with which it had been started 
by removing a magnet of which the field had interlaced the coil. 
At this rate it would have taken over four days for the current to 
drop to the 1/eth part of its initial value, if the coil could have been 
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kept cold so long. This corresponds to a resistance lower than 
3.10_7 ohms; the resistance of the coil at room-temperature was 
734 ohms. Few discoveries in physics can have been so exciting as 
this one, and further news from Leyden is awaited with keen antici- 
pation. Until the present liquefied helium has been made nowhere 
else, but from now on the process will be carried on at Toronto also. 

Pressure affects the resistance of a metal much less than tempera- 
ture; that is to say, doubling the hydrostatic pressure upon a metal 
makes no perceptible difference with its resistance if the initial pres- 
sure is one atmosphere or less, and usually alters it only by a few per 
cent, if the intial pressure amounts to thousands of atmosphere. The 
art of applying enormous pressures under controllable conditions has 
been developed furthest by Bridgman in the Physical Laboratory 
of Harvard University, which through his work holds the same unique 
rank in high-pressure investigations as Kamfrlingh Onnes' laboratory 
at Leyden in low-temperature research. The highest pressure which 
Bridgman has applied to metals during resistance-measurements 
exceeds 12,()()() kg/cm-, which amounts practically to twelve thousand 
atmospheres. No one has ever applied temperatures twelve thousand 
times as great as room-temperature, nor even four thousand times 
as great as the lowest accessible temperature; but when the pressure 
is altered in this enormous ratio the resistance changes only by a few 
per cent. The volume likewise changes by only a small fraction, 
which rather suggests that it is the change in closeness of packing 
of atoms rather than the creation of intense internal stresses which is 
responsible for the change in conductivity: however, there is no close 
correlation between relative change in volume and relative change 
in resistance: sometimes the two are of opposite signs. Usually, but 
not always, the conductivity increases with the pressure; as if squeez- 
ing the atoms together facilitated the flow of electricity across the 
metal. The rule applies to thirty-five elements, distributed as 
follows in the Periodic Table: in the first column, 11 Na, 19 K, 29 Cu, 
47 Ag, 79 An; second column, 12 Mg, 30 Zn, 48 Cd, 80 Hg; third, 
13A1, 31 Ga, 49 In, 81 Tl; fourth, 6C, 22 Ti, 40 Zr, 50 Sn, 82 Pb; 
fifth, 15 P, 33 As, 73 Ta; sixth, 42 Mo, 52 Te, 74 W, 92 U; seventh, 53 I; 
eighth, 20 Fe, 27 Co, 28 Ni, 45 Rh, 40 Pd, 77 Ir, 78 Pt; rare earths, 57 
La, 00 Nd. Several of the non-metallic elements are found in the list. 
The exceptions are the five curiously assorted metals 3 lithium, 20 
calcium, 38 strontium, 51 antimony, 83 bismuth—five elements 
distributed over three columns of the Periodic Table, each of which 
contains several other elements which conform to the rule. One 
modification of 55 caesium belongs under the rule, another. among 
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the exceptions. This illustrates how the behavior of metals in con- 
ducting electricity is liable to cut across the classification of the 
Periodic System, which controls nearly all of the properties of elements 
except those that vary uniformly from one element to the next all 
along the series. 

As for the magnitude of the effect, the resistances of most metals 
are decreased through less than 10% by applying a pressure of ten 
thousand atmospheres, some only through one or two per cent.; 
but the decrease is 40% for sodium, 70% for potassium, 70%, also 
for the "debatable" element tellurium, and 07% for black phos- 
phorus; bismuth gains about 25% in resistance and antimony about 
10%,. The curves representing resistance as function of pressure 
are somewhat curved, but not greatly so; however the curvature 
frequently varies along the curve to such an extent that a two-constant 
formula is not sufficient to express the data. It is an interesting 
fact that the percentage by which a given pressure changes the re- 
sistance of a metal is approximately independent of its temperature, 
and consequently the percentage by which a given rise in temperature 
changes the resistance is approximately independent of the pressure; 
so that the combined effects of a pressure-change A/j and a temperature- 
change A?' on a metal change its resistance from R,, to R,, (l+f/Ap) 
(l+MT). 

Tension, which is equivalent to negative pressure acting along a 
particular direction (there is no way of applying a negative hydro- 
static pressure) results in lengthening the metal along one direction, 
shortening it along all directions perpendicular to that one, and 
dilating it as a whole. Most of the information about what it does 
to electrical resistance is owed to Bridgman. Usually, but not always, 
tension increases the resistance to current-flow along the direction 
of the stress. The exceptions are bismuth and strontium. Com- 
paring the data about the effects of pressure and of tension, we see that 
Bi and Sr are exceptions to the common rules for both, while Li, Ca 
and Sb are exceptions to the usual rule for pressure but not to the 
usual rule for tension. This helps to show why it is so difficult to 
set up a thoroughly satisfactory theory of conduction in metals. 

By melting a substance its density can be altered without altering 
cither its temperature or its pressure; of course, the balance of inter- 
atomic forces is also altered in some mysterious but very potent way. 
Melting a solid usually brings about a decrease in density; the solid 
sinks in the liquid; but there are exceptions (bismuth, antimony, 
gallium). The conductivity always changes in the same sense as the 
density; hence for most metals the solid is more conductive than the 
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liquid, but bismuth, antimony, and gallium have greater resistances 
frozen than molten. This is one of the few rules in this field to which 
no exceptions have yet been discovered. The observed values of the 
ratio (resistance of liquid), (resistance of solid), when tabulated and 
examined, show a tendency to cluster about values which are ratios 
of simple integers, such as 2:1, 1:3, 1 A. It would probably require 
a careful and expert analysis to show whether this tendency is more 
pronounced than a quite random distribution might reasonably be 
expected to display. Mercury has the highest ratio of all, 4:1. 

Other agencies which are harder to measure or control may have 
distressingly great effects on the conductivity of a metal. The various 
metallurgical processes, annealing, cold-working and the rest, affect 
the resistance; sometimes the sign of the change can be explained by 
saying that the process has caused the many small crystals forming 
the metal to fuse into a few large ones, diminishing the resistance 
offered by the intercrystalline partitions; sometimes this explanation 
fails to work. Impurities may have a serious effect; for example 
Bridgman remarks of bismuth that "a fraction of a per cent, of lead 
or tin may change the temperature-coefficient from positive to nega- 
tive and increase the specific resistance severalfold." Often im- 
purities betray themselves by an abnormally low temperature-coeffi- 
cient of the metal; this means that the absolute rate of increase is 
unusually small compared to the value of the resistance itself. This 
is so generally the case that a value of temperature-coefficient which 
(at 0° C.) is much below, say, .004 is usually taken to mean that the 
sample of metal under investigation is impure; and the "standard" 
values for individual metals set down in tables have often taken 
sudden jumps upward, when better-purified samples became avail- 
able for measurements. For this reason I laid more stress, in a 
preceding paragraph, on the values which far exceed .00365 rather 
than the values which fall far below it. A metal contaminated by 
a small admixture of another metal may be regarded as the limiting 
case of an alloy. There is an enormous literature of the electrical 
behaviour of alloys, and some of the results can be extended to this 
limiting case. It is found, for example, that if two metals A and B 
form mixed crystals with one another, an alloy formed by mixing a 
small percentage or a fraction of one per cent of A into B, has a sur- 
prisingly greater resistance than 5; and vice versa. The temperature- 
coefficient of the alloy is on the other hand much smaller than that 
of the metal, and may even be negative. Thus, although an alloy 
of this type may seem to be as thoroughgoing a metal as cither of the 
pure elements of which it is made, it has a thoroughly anomalous 
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electrical behaviour; and the alloys as a whole, instead of assisting us 
to understand conduction in metals, contribute generously to the 
already abundant supply of difficulties. It remains to be seen whether 
the measurements upon single crystals of metals, which arc being 
published at a steadily-increasing rate, are going to clarify the sit- 
uation or increase the perplexity. 

While I have left unmentioned a large number of the phenomena 
which a theory of conduction must be required to explain, the few 
which I have described will give quite an adequate basis for begin- 
ning a discussion of some of the extant theories. It must be conceded 
at once that the situation is bad. Perhaps there is some set of assump- 
tions or of postulates by which the whole chaotic crowd of phenomena 
can be unified into a harmonious system; but if so, no one has yet 
formulated it. The theories, such as they are, may be divided into 
two groups: theories in which the electrons are supposed to move 
freely within the atoms and be stopped when they reach an inter- 
space, and theories in which the electrons are assumed to move freely 
within the interspaces and be stopped when they collide with atoms. 
Those of the first kind start out with the advantage of being better 
adapted to the usual effect of pressure on resistance; most metals 
become more conductive when compressed, as if conduction were 
assisted by squeezing the atoms closer together. Still the oldest, 
the best-known, and the most highly elaborated of all the theories 
belongs to the second kind. This is the one formally known as the 
electron theory of metallic conduction, or more briefly as the electron 
theory of metals, and quite commonly as the "classical" theory of 
conduction (it does not take an idea so long to become "classical" 
in physics as it does in the arts). Founded by Riecke and by Drude 
in the closing years of the last century, it was developed by Lorentz and 
has since been worked over by Planck, Wien, Bohr, and other savants 
of the first eminence. Its popularity is largely due, I suspect, to the 
fact that it can be formulated with great if specious exactness: that is 
to say, as soon as a few definite assumptions are made (such as the 
simple, if implausible, assumptions that the atoms are big elastic 
spheres and the electrons little ones), numercial consequences can be 
calculated with any degree of precision. In this respect most of the 
competing theories are sadly defective. Two or three of the numerical 
deductions made from simple auxiliary assumptions have agreed 
rather well with experimental data; and they have contributed to 
the feeling that there must be some kernel of truth in the mathematics, 
even if not in the physics of the thing, although it breaks down in so 
many other comparisons with experiment. 
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Fundamentally the theory is very simple, and has not been helped 
to any great extent by the more sophisticated mathematics which its 
emendators have introduced into it. What is observed in electrical 
conduction is this: when a potential-difference is established across 
a piece of metal, the electrons do not fall freely clear across it and 
emerge at the positive end with all the kinetic energy which the P.D. 
should have communicated to them; they ooze gradually through the 
metal, heating it as they go along and emerging with no unusual 
amount of energy, as if they had rubbed along through the metal 
like heavy particles dropping at constant speed through a gas. "Rub- 
bing along" being a concept foreign to the atomic scale, we have to 
interpret that each electron falls freely through a small distance, 
collides with something to which it gives up the energy acquired from 
the field during its fall, falls again across another short distance, 
gives up its new quota in another collision, and so forth from side to 
side of the metal. Furthermore the energy which it gives up at each 
stoppage must find its way directly or indirectly into the heat of the 
metal, i.e., into thermal agitation of its atoms. Representing by T 
the time-interval between two consecutive collisions, by E the field- 
strength in the metal, by e and m the charge and mass of the electron, 
by U the average kinetic energy acquired by the electron from the 
field in its free fall between two collisions, we have 

U=\ {eE T'/m)-m. (1) 

If there are n electrons in unit cube of the metal, and each is stopped 
1/7" times in unit time, the rate at which heat appears in the unit 
cube is nU/T\ but this rate is by definition the product of the con- 
ductivity ct by the square of the fieldstrength E, hence 

cr — h ne-Tjm (2) 

The same equation (2) can be reached, if one prefers to think of 
conductivity as the ratio of current-density to fieldstrength, by con- 
sidering that during each free fall, the field augments the speed of 
each electron in the direction of the field-vector by the amount eET/m, 
which on the average is lost at the collision terminating the fall; so 
that the result is as if the field imprinted a constant drift-speed equal 
to \eE/m upon all the electrons. Multiplying by ve to get the current- 
densitv and dividing by E to get the conductivity, we arrive again 
at (2).' 

Equation (2) is the fundamental equation of the electron theory of 
conduction, and indeed of most of the other theories. Let us begin 
by trying the supposition that the electrons are at rest until the field 
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is applied, and are brought to a full stop at each collision. Represent 
by / (he average distance traversed between collisions. The pro- 

posed assumption leads to T = '\/ 1ml/eE. The conductivity therefore 
would depend on the fieldstrength, which would violate Ohm's law. 
Ohm's law being rigorously valid except under extreme conditions 
(Bridgman found the first slight deviations from it, in gold and silver, 
at current-densities of the order of 10fi amps/cm-) we have to discard 
the idea. The lesson is, that the electrons must be supposed to be 
normally in motion at speeds enormously greater than the speed 
imparted by the field during a free fall. Let u stand for the natural 
average speed of the electrons; we have T =l/u, and 

(j = \neH/mu, (3) 

provided always that it/peET/m. 
This condition is abundantly fulfilled if we make the obvious and 

appealing assumption that the electrons are moving with the same 
average kinetic energy as atoms of a gas at the same temperature; 
in fact, if the free path I is no longer than the average distance be- 
tween atom-centres, the deviations from Ohm's law should not appear 
even under such extreme circumstances as those of Bridgman's ex- ' 
periments. Making therefore this assumption, which in symbols is 

hmC- = -^kT, we find 

t-i nl m ^ — 2 /  7=^- O/ ■s/'Jtkm \/ T 

Not much attention should be paid to the numerical factor, which would 
be slightly different if we should assume Maxwell's law of distribution 
for the velocities of the electrons; the essential factor is the last one, 
nl/-s/T . Examining (4) in the light of the fact that the conductivity 

of most metals decreases distinctly more rapidly than l/\/T = in fact, 
as rapidly as l/Tor still more so—as the temperature increases, we 
see that the product nl will have to be supposed to vary with temper- 
ature. It seems natural to suppose that I depends altogether on the 
distance between adjacent atoms, which varies comparatively little 
with temperature, and anyway varies in the wrong direction for the 
purpose of the theory; so that the burden of accounting for the pro- 
portionality of a to the first or a higher power of \/T must be laid 
upon n. 

Now it has occurred to a number of people that the free electrons 
are dissociated from the atoms, and the number of free electrons 
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is veil by ihe degree of dissociation, which in (urn should vary 
with the (emperalure in a manner prescriherl altogether by the amount 
of work necessary to remove an electron from an atom into the 
(presumed) interspace where it plays about freely, but we should 
certainly expect that this work would be positive, as it is for the 
extraction of electrons from free atoms; in which case the degree of 
dissociation and the number of free electrons should increase with 
temperature. The theory is therefore adapted to explain a resistance 
which decreases steadily with increasing temperature, as do the 
resistances of some non-metallic elements; it is adapted to explain 
a resistance which at first diminishes and then, as the temperature 
increases further, goes through a minimum and rises, for the decrease 

in the factor / v 7" finally predominates over the increase in the factor 
it is not adapted to explain a resistance increasing with temperature 

over the whole range, as do those of the metals. One might assume 
that the work of extracting an electron from an atom inside the 
metal is negative. This is essentially the alternative embraced by 
Waterman, who postulates that the work in question is a function of 
temperature, of the form W=Wo — cT% f>(). For metals W,, is to 
be chosen negative or zero, so that W shall be negative throughout; 
for non-metallic elements Wa is to be given some positive value, so 
that If shall change in sign at some point in the temperature-range. 
This unusual theory must be judged by its effectiveness; that it 
should reduce conduction in all elements, metallic and non-metallic 
alike, to a phenomenon of a single type is a feature appealing strongly 
in its favor; but Noycs' curves of resistance versus temperature for 
graphite did not agree with its demands in a satisfactory manner. 

The assumption underlying (4) has however involved us in a col- 
lateral difficulty. If we believe that the u free electrons per cc. of 

the metal have an average energy ~-£7' and a total kinetic energy 

— nk'T, we are certainly forced to admit that when the unit cube of 

metal is heated through 1° the electrons must take their share nk 

of the heat imparted to it; but the specific heat of most metals is 
such that it seems that the atoms must take it all and leave none 
over for the electrons. If we evade this difficulty by assuming // 
to be quite small compared with the number of atoms per cc.. a few 
per cent, of it or less, we lose certain numerical agreements which 
will be mentioned later, and we have also to make / quite large, 
amounting to several times the distance between adjacent atoms; 
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yet all the tendency of modern atomic theory is to make it seem likely 
that the atoms fill almost the whole space within the metal. 

Another way to avoid the difficulty with the specific heats consists 
in assuming that the high natural speed with which the electrons 
fly about is altogether independent of temperature; the burden of 
making a as expressed in (3) vary in the proper manner with temper- 
ature is then laid upon /, which, Wien suggested, should be supposed 
to vary inversely as the amplitude of vibration of the atoms that 
is, a free electron collides with an atom only if and when it is in vibra- 
tion, and the chance of a collision increases with the amplitude of the 
vibration. The variation of resistance with pressure may then be 
explained, so far as the usual sign goes, by saying that when an ordi- 
nary metal is compressed the amplitude of oscillation of its atoms 
diminishes, though the temperature remain the same; the frequency 
of oscillation must then vary inversely as the amplitude, to keep 
the average energy of oscillation constant; there is some reason for 
expecting this to happen. Bridgman's theory somewhat resembles 
this one, except that the electrons are supposed to glide through the 
atoms and collide with the gaps; gaps between atoms are compara- 
tively unusual, and occur chiefly when two atoms are vibrating with 
great amplitudes in opposite senses, so that the variation of con- 
ductivity with pressure again has the proper sign. But to explain 
the behavior of the three metals of which the resistance increases with 
pressure and with tension, Bridgman went back to the idea that in 
these the electrons glide through the interspaces. 

As I have given only the phenomena of conduction which the 
electron-theory explains with difficulty, 1 must in justice mention 
the ones on which its reputation chiefly depends. In the first place 
it is a theory of thermal conduction as well as electrical conduction; 
the electrons in the hotter part of a metal maintained at an uneven 
temperature are assumed to have a greater average energy than the 
electrons in the cooler part, so that they diffuse down the temperature- 
gradient and realize a convection-current of heat. The theory leads 
to as definite a numerical value of the one conductivity as of the 
other, and the ratio of electrical to thermal conductivity is predicted as 

a universal constant for all metals, multiplied into the absolute tem- 
perature, and devoid of the quantities n and I which have caused us 
so much trouble. This is one of the predictions which is nearly 
enough true to be impressive; the ratio X/tr7 does indeed vary sur- 

(5) 
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prisingly little over a wide range of metals at room-temperature and 
over a fairly wide range of temperatures for each of many metals. 
It is usually somewhat larger than the predicted value (5); but this 
can be conveniently explained by saying that there must be an addi- 
tional mechanism for transmitting heat, something in the nature of 
the elasticity of the substance, which superposes its conducting- 
power upon the conducting-power of the electrons, and so inflates 
the numerator of the ratio in (5). The reason for supposing such an 
extra mechanism is primarily that there must be some such mechan- 
ism to perform the thermal conduction in substances which are 
electrical insulators. No element conducts heat as badly as sulphur 
and boron conduct electricity; and if we imagine a special elastic 
mechanism for conducting heat in boron and sulphur, we can hardly 
deny it to copper and silver. Bridgman found that for six metals 
out of eleven tested, the thermal conductivity decreased when high 
pressure was applied, although the electrical conductivity increased. 
We must hope to find an explanation for this anomaly in the behaviour 
of the elastic mechanism; likewise an explanation for the deviations 
from (5) which occur at high and at low temperatures. In theories 
such as the one mentioned over Wien's name in the last paragraph, 
in which the average vis viva of the electrons is supposed not to vary 
from a hotter place in a metal to a cooler place, we have to lay the 
entire burden of thermal conduction upon the elastic mechanism. 
This makes it difficult to explain the universal relation (5). 

Another striking feature of the theory is that Lorentz succeeded 
in deducing the Rayleigh-Jeans radiation-law from it. He obtained 
from it an expression for E, the radiant emissivity of a thin stratum 
of metal, as a function of temperature T of the metal and wavelength 
X of the radiation; another for A, the absorbing-power of the metal, 
likewise a function of T and X; divided the first by the second, 
and obtained a definite quotient. By Kirchhoff's thermodynamic 
laws, E/A is equal to Eo, the radiant emissivity of a perfectly black 
body. The expression deduced by Rayleigh and by Jeans for Eu 

and the expression deduced by Lorentz for E/A arc identical. Lorentz 
assumed that the collisions of the electrons with the atoms (or what- 
ever it is they collide with) are very short in duration compared with 
the intervals of free unaccelerated flight from one collision to the 
next, and that the speeds of the electrons are distributed according 
to Maxwell's law about the mean value corresponding to the mean 
energy 'ikT/2. He also made certain assumptions which restrict 
the validity of his expression for E/A to radiations of great wave- 
length; the Rayleigh-Jeans expression for Eo is restricted in exactly 
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the same way. At least as much, it seems, should be demanded 
from any theory of conduclion offered in competition with the "clas- 
sical" one. 

The conception of free electrons in metals also gives a beautiful 
qualitative explanation of the thermoelectric effects, although un- 
fortunately it does not do very well as a quantitative theory. If 
in two metals at a certain temperature the densities of free electrons 
are different—«i free electrons per cc. in one and n* in the other— 
and these two metals are brought into contact with one another, 
electrons will How from the one where the density is greater into the 
one where it is less; and this How will continue until arrested by a 
counter-electromotive-force V, of which the equilibrium-value can 
be shown, in any one of a variety of ways, to be 

hT 
V=—ln{n\lth) e 

Such an electromotive force would account for the Peltier effect; 
and conversely, if the theory were correct, measurements of the 
Peltier effect between two metals at a given temperature and pres- 
sure would give the ratio between the densities of free electrons in 
the two metals under the specihcd conditions. Such data, combined 
with data on conductivity interpreted by such an equation as (4), 
should give information about the free paths /i and 1% in the metals. 
The Thomson effect is more difficult to deal with, as thermal equi- 
librium does not prevail; however it can be seen that there will be 
a counter E.M.F. in an unevenly-heated metal. Measurements on 
the Peltier and Thomson coefficients for many metals, over wide 
ranges of tempeiature and pressure, would be very valuable; but 
they are so extremely hard to make even under the best of conditions, 
that the outlook for obtaining a really extensive set is unpromising. 
Possibly there is a better chance with the indirect method (detei min- 
ing the first and second derivatives of the curve of thermal electro- 
motive force versus temperature). Such data of the Thomson effect 
as exist are not helpful to the simple theory. 

Another phenomenon which lends itself very readily to explana- 
tion by the theory, and so contributes a certain amount of support 
to it, is the thermionic effect—the spontaneous outflow of electrons 
through the surfaces of hot metals. (But carbon likewise exhibits 
it very efficiently, and we must beware of formulating any theory of 
it which reposes on specific properties of metals not shared by carbon!) 
To interpret the thermionic effect only one new feature need be added 
to the theory, and this a feature which in fact was all the time latent 
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in it—the idea that there is a certain fixed potential-difference between 
the interior of a metal and the region outside of it, resulting in a 
potential-drop localized in a thin stratum at the surface, which an 
electron within the metal must surmount in order to escape from 
the metal into a contiguous vacuum. Such a potential-drop would 
for instance result from a "double layer" along the surface of the 
metal, a sheet of positive charges within and a sheet of negative 
charges opposite, parallel, and close to the positive sheet on the 
outside. It has been pointed out that, since probably half of the 
orbital electrons belonging to the atoms at the frontier of a metal 
lie outside the plane containing the nuclei of these atoms, they with 
the nuclei constitute a sort of double-layer; it has also been suggested 
that after a certain number of electrons issue from the metal, they 
are held as an electron-atmosphere above it by the forces due to the 
distribution of residual positive charge within the metal (Kelvin's 
electrical-image conception), and the electron-atmosphere with the 
positive surface-charge together form a double-layer. However we 
may conceive this double-layer, it is obvious that if we postulate 
free electrons within the metal, we must also postulate a barrier 
in the shape of an opposing potential-drop between the metal and 
the exterior world to keep the electrons from wandering away. 

Designate this potential-drop by b, so that eh is the energy which 
an electron must give up in traversing it from inside to outside. 
Assume further (disregarding the old specific-heat difficulty) that 
the velocities of the electrons inside the metal are distributed iso- 
tropically in direction, and according to Maxwell's distribution-law 

in speed, with the mean kinetic energy-^rkT appropriate to the tern- 
£ 

perature T of the metal. Imagine the metal surface to occupy the 
plane .y = 0, metal to the left and vacuum to the right. Consider 
the electrons which come from within the metal and strike unit area 
of the boundary in unit time; those of them which have velocities 
of which the .r-componenl lies between n and u+(ln are in number 
equal to 

nn 
dl =   - e 2kTdu, (6) 

■\/2irkT/ni 

n meaning as heretofore the number of electrons per unit volume of 
metal. The total number which strike unit area of the boundary 
from within is equal to the integral of this expression from ?/=0 to 
u=*>, which is 

Io = n\/kT/2wm. (7) 
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Those which escape are those for which \mu2 exceeds eb\ we obtain 

the number of them by integrating (6) from u = \/2eb/m to m = 00 , 
and find 

Ie = ny/kT/Zirm e"(8) 

This, supposing n and b to be independent of temperature, is Rich- 
ardson's well-known formula for the saturation-current from a hot 
body as function of temperature. All of the multitudinous obser- 
vations agree with it; but this does not mean so much as might be 
thought, for the experts inform us that all the data, no matter how 
accurately taken, would agree quite as well with a formula in which 
7", or T2, or even 7'°, stood in the place of the factor Ty2 by which 
the exponential is multiplied. Incidentally this would permit us to 
make n vary as some small power of temperature, such as the inverse 
square root, if we chose to make the resistance-temperature relation 
in (4) agree with experiment at such a price. Or if we assume n 
independent of temperature, we can calculate it from measurements 
on thermionic saturation-currents. The measurements usually give 
for n values of the order of magnitude of the number of atoms per unit 
volume. 

What is more definitely significant is, that the velocities of the 
emerging electrons are actually distributed in a manner compatible 
with the assumptions made. Let us enquire how many of the electrons 
issuing from unit area of the metal have velocities of which the x- 
component lies between u and ii-\-du. These are the very same 
electrons which struck the surface from within, having velocities of 
which the x-component lay between u' and n'■{■du'\ u' and du' being 
related to u and n+du by the equations: 

^miC+eb = hn{n')-, u'du' = udu. (9) 

The number of these electrons is by (fi) 

lff , (10) 
■\/2Trkl /m 

which by virtue of the relations (9) reduces to 

rb 
e~M- 

nu 

x/ 2irkT/m 
e ZkTdu, lTi'' 

which is identical with (6) except for a constant factor; which means 
in turn that the distribution-function of the emerging electrons is 
identical with the distribution-function of the internal electrons, 
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being in fact the Maxwell distribution-function with the same mean 

3 
kinetic energy—kT. The argument as given proves the point only 

z 

for the distribution in the velocity-component n; but the distribu- 
tion-functions in v and w, the velocity-components parallel to the 
boundary of the metal, are unaffected by the double-layer, since v 
and w for any particular electron are unaffected by the passage 
through it; and since it is the essential feature of the Maxwell dis- 
tribution-law that the distributions in v and w are identical for each 
and every value of n, the conclusion follows as stated. Nevertheless 
it does sound paradoxical. 

This conclusion has been verified repeatedly by experiment. 
Richardson began by simulating the simple mathematical conditions 
of infinite plane electrodes as closely as practicable; he inserted a 
small flat incandescent surface in an aperture in the middle of a large 
flat cold plate, charged the two to the same potential, and placed op- 
posite and parallel to them a large flat collecting-electrode. Charging 
this latter to various potentials V inferior to the potential of the emit- 
ting surface, he plotted the electron-current which it received as func- 
tion of V) this is the distribution-function of the speed u of equation 
(6) and the following equations translated into terms of the correspond- 
ing kinetic energy h mu- as independent variable. To ascertain the 
distribution-functions in v and w he isolated a small area of the collec- 
ing-elcctrode, moved it to and fro in a plane parallel to the plane of the 
emitting surface, and measured the current into it in its various posi- 
tions. Many measurements have since been made upon the currents 
into cylindrical collectors from hot wires stretched along the axes of 
the cylinders; it is somewhat more difficult to write out the formula 
for the expected relation between current and retarding-potential, but 
the experimental conditions are much more under the experimenter's 
control. All these investigations have confirmed the theorem, except 
a single discordant one which was later explained away; the strongest 
verification is furnished by the experiments of Germer, whose pre- 
cautions of preparation and accuracy of measurements far surpassed 
everything that had gone before. 

The evidence thus is quite favorable to the idea of an electron- 
gas within the metal with its electrons moving with velocities as 
prescribed by Maxwell's distribution-law, and kept from diffusing 
away by a double-layer covering the surface. Other evidence for 
the existence of a double-layer is furnished by the photoelectric- 
effect and by the existence of contact-potential-differences. When 
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light of frequency p falls upon a metal, electrons emerge from it with 
velocities which are distributed in a manner quite distinct from 
Maxwell's distribution and have nothing to do with the temperature 
of the metal. The kinetic energies of some of the electrons attain a 
certain upper limit W,„, but none surpasses it; W,,, is a linear function 
of v given by the equation 

Wm = hP-P} (12) 

h being Planck's constant, P a positive constant characteristic of the 
metal. This is an exceedingly strong intimation that each of the 
emerging electrons, while still inside the metal, suddenly absorbed 
a quantum of energy hv from the light and departed with it, giving 
up a fixed quantity P in passing through the surface. (Those which 
issue with energies clearly less than Wm can be supposed to have 
started distinctly beneath the surface and to have lost additional 
energy in struggling through the metal to it). Translating P into 
potential-drop, we see that it represents the potential-difference or 
the "strength" of the surface double layer. It may be determined 
by measuring Wm for light of various frequencies, plotting it against 
frequency, and extrapolating the resulting straight line to its inter- 
section with the axis of frequencies. Or it may, in principle, be 
determined by plotting the photoelectric current as a function of 
frequency, and extrapolating the curve to its intersection with the 
axis of frequencies, where no electrons escape and the photosensitive- 
ness ceases; but curves are not so easy to extrapolate as straight lines, 
and there are some anomalous results which are still unexplained. 

It would seem an easy matter to measure the strength of the double- 
layer by both photoelectric and thermionic methods upon a single 
substance. But it is rather difficult; for one reason, the substances 
for which the photoelectric currents are easy to produce and measure 
are precisely the metals upon which good thermionic measurements 
are next to impossible, and vice versa. The best photoelectric meas- 
urements have been made upon the alkali metals, which are very 
sensitive to visible light; but they cannot be formed into wires, and 
volatilize furiously when heated enough to produce an important 
thermionic effect, filling the evacuated tube with dense vapors which 
ruin the accuracy of the measurements. The best thermionic measure- 
ments have been made upon platinum and tungsten, which are not 
sensitive at all to visible light, and begin to be sensitive far out in 
the ultraviolet where experiments with radiation are difficult. Imr- 
thermore there is the capital difficulty that the photoelectric measure- 
ments must be confined to temperatures where the thermionic current 
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is imperceptible; if one were to irradiate an incandescent tungsten 
filament the extra current of photoelectrons would be too small to 
notice. If we assume outright that P does not vary greatly from 
room-temperature up to the temperatures of incandescence, and 
therefore compare photoelectric data upon cool metals with thermionic 
data upon the same metals when hot, we find that there is a fairly 
good agreement. Values of the thermionic constant b between 4 and 5 
volts correspond to photoelectric sensitiveness commencing between 
3,100 and 2,500 Angstrom units, and this correctly describes the 
behavior of several of the heavy high-melting-point metals: photo- 
electric sensitiveness extending well up into the visible spectrum, 
such as the alkali metals display, corresponds to values of P/e of the 
order of 2 volts and lower, and such values are indicated by the 
thermionic experiments made upon sodium and potassium by Richard- 
son under the inevitably bad conditions. 

Contact-potential-difference, one of the longest known of all elec- 
trical phenomena—Volta discovered it—agrees admirably with this 
interpretation of the photoelectric constant P. Imagine (hat we have 
pieces of two metals, potassium and silver for example, which are 
drawn out and welded together at one end, and at their other ends 
are spread out into plates and face one another across a vacuous 
space. We know that the opposing faces behave as if they were at 
Essentially different potentials, the potential-difference V between 
them being characteristic of the two metals and independent of the 
size or separation of the opposing faces. Yet this potential-difference 
V is not equal to, is indeed usually much greater than the potential- 
difference between the interiors of the metal across the welded joint, 
which is deduced from the Peltier effect. The only way to resolve 
the contradiction is to assume that it is the region just outside the 
potassium which differs by V from the region just outside the silver; 
the metals themselves are at nearly the same potential, but there is 
a double-layer at the surface of each which establishes a fixed potential- 
drop between it and the vacuum. Representing by P\/e and by P-i/e 
the voltage-drops at these two double-layers, by M the potential- 
difference between the interiors of the metals as inferred from the 
Peltier effect, by V the potential-difference between the regions just 
outside the metals which we identify with the contact potential 
difference, we find 

P.1
!e-Pl'e=V+M (13) 

in which M is so small compared with the other terms that hence- 
forth we will leave it out 
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Now imagine that light of a high frequency Vo falls upon the potas- 
sium; it elicits electrons of which the maximum energy at emergence 
is hv0-Pu these highest-speed electrons arrive at the silver plate 
with energy {hvo — P\/e—V), having had to overcome the additional 
potential-drop V in passing from the region just outside the potassium 
to the region just outside the silver. (The reader can make the changes 
in language required if V happens to be of the sign corresponding to 
a potential-rise). From (13) we see that this energy of arrival is 
equal to {hv0—P^/e)—an expression from which Pi, the only quantity 
characterizing the irradiated metal, has fallen out! Therefore the 
electrons arrive at the silver plate with the same maximum speed, 
whether the irradiated metal be potassium, sodium, silver, or any 
other metal! (unless we hit upon a metal for which hvo<Pi/e, in which 
case we shall never get any at all). 

This experiment is usually performed by putting a battery between 
the silver and the irradiated metal, and adjusting its E.M.F. until 
the fastest electrons are just turned back before reaching the silver; 
this is known as "determining the stopping potential." If our inter- 
pretation of contact-potential-difference is correct, the stopping- 
potential must be independent of the irradiated metal, and depend 
only on the material of which the collecting-electrode is made; further, 
the difference between the stopping-potentials observed with two 
different metals as collecting-electrodes should be equal to their 
contact potential difference. These predictions have been verified 
in several sets of experiments, notably by Richardson and Compton. 
Millikan developed the interesting theoretical consequences which 
they suggest. There should be similar relations involving thermionic 
currents; observations confirming them have been made, but not so 
extensively published; they are more difficult to make with accuracy 
because the thermionic electrons have no definite recognizable maxi- 
mum velocity. 

We seem to have marshalled a formidable amount of evidence in 
favor of the electron-theory of conduction with the associated idea 
of the surface double-layer. Yet it would be misleading not to point 
out that an equation quite as satisfactory as (8) in representing the 
thermionic current as function of temperature can be deduced by 
reasoning in an entirely different fashion from entirely different 
postulates. This, the thermodynamical method of speculating about 
the thermionic effect, was originated by H. A. Wilson; it consists 
essentially in assuming a thoroughgoing analogy between the outflow 
of electrons from a hot metal and the evaporation of molecules from 
a solid or a liquid. We know that if an evacuated chamber is partly 
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filled with liquid water or solid CaCOa, the remaining space inside 
the chamber is quickly pervaded with HoO or CO2 molecules com- 
posing a gas, its pressure and density being determined absolutely 
by the temperature T. We infer that if an evacuated chamber, 
with its walls made of some insulating substance, contains a piece of 
metal and is heated to a high temperature, the whole evacuated 
space will be pervaded with electrons composing a gas, its pressure 
p and density n being determined absolutely by the temperature 
of the system, T. We must assume that the electron-gas outside 
the metal conforms to the ideal-gas law 

and we shall also presently assume that its specific heats have the 
values characteristic of monatomic ideal gases, 

I use n to represent the number of electrons per unit volume of the 
gas, as the number within the metal no longer enters in any way 
into the reasoning; N to represent the number in a gramme-mole- 
cule (Avogadro's constant). These are the only assumptions which 
involve a kinetic theory in any way. 

Imagine now a wire of which one end projects into an evacuated 
chamber of the sort described, maintained at T, and the other into 
another such chamber maintained at T+dT. We consider a process 
which consists of increasing the volume of the first chamber by just 
enough to require N additional electrons to come out of the wire 
to fill the additional space, and simultaneously decreasing the volume 
of the second chamber by just enough to crowd N electrons into 
the wire; so that in effect N electrons are transferred from the one 
chamber to the other through a wire of which the two ends are at 
temperatures T-\-dT and T. This process will be carried on re- 
versibly. Designate by L the heat which must be imparted to the 
metal at T, to remove one electron from it under the circumstances 
of the experiment: by sdT the heat which is absorbed when one 
electron is transferred through the metal from a point where the 
temperature is T to a point where the temperature is T-\-dT. s is 
the coefficient of the Thomson effect, referred to a single electron 
instead of a coulomb. L contains a term kT, which corresponds 
to the mechanical work done in forcing back the walls of the chamber 
to make place for the evaporated electron-gas. Subtracting it we 

p = nkT (14) 

Cv = ^Nk, Cp = ~Nk. (15) 
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obtain (L—kT), to be called eb, as the actual energy expended in 
putting the electron across the boundary of the metal.* 

In the process which I have just described, the input oj heat con- 
sists of the following terms: NL which goes to extract the N electrons 

from the metal in the first chamber, — N^L which is liberated 

when N electrons condense into the metal in the second chamber, 
and -NsdT which is absorbed by the electrons in travelling through 
the wire. The output of work is NkT during the expansion of the first 
chamber, -NkT-NkdT during the contraction of the second cham- 
ber. The input of entropy is NL/T during the evaporation in the 

first chamber, -n[l/T+ during the condensation in the 

second chamber, and (-Ns/T)dT during the flow of electrons through 
the wire. 

We now complete the cycle by changing the pressure and tem- 
perature of the gramme-molecule of electron-gas in the first chamber 
from p, T to p-\-dp, T-\-dT, after which it becomes equivalent with 
the gramme-molecule in the second chamber at the beginning of 
the process. Calculated in the usual way—isothermal contraction 
at T from p to p+dp, isobaric expansion at p+dp from T to T+dT 

—we find: input of heat, ^-NkdT-NkT[d{ln p)/dT]dT\ output of £ 
5 

work, NkdT-NkT{d{fn p)Idr\dT•, input of entropy,-^{Nk/T)dT- 

Nk[d{ln p)/dT\dT. 

The two processes together constitute a complete reversible cycle. 
We therefore equate the sum of the inputs of entropy to zero, and 
obtain : 

e<t> d4> 5 d{lnp)_n 
f-edl-~s+2k~kT~dT~~a W 

and equate the difference of the inputs of heat and the outputs of 
work to zero, which gives: 

-e^s+f^O (17) 

* This definition suggests a thermal method of measuring L, which has several 
times been put into practice. The experiments are difficult and the data must 
be corrected for many influences, but the best results indicate that {L—kT) is ap- 
proximately equal to eh of (8). The data of Darisson and Germer indicate a slight 
difference, which may be an important test of suggested theories of conduction. 
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and combine the equations into 

(18) 

which integrated, yields 

p = A Te (19) 

We still have to make the bridge between this formula, which 
relates to the pressure of the electron-gas in equilibrium with the 
metal, and the quantity actually observed, which is the saturation- 
current out of the metal surface in an accelerating field. In the 
equilibrium-state, the number of electrons which issue from the 
metal is equal to the number which, coming from the external electron- 
gas, strike its boundary and do not rebound. This is indisputable; 
to make it useful we have to make two new assumptions: one, that 
(he number of electrons which issue from the metal is the same in an 
accelerating field as in the equilibrium-state: the other, that no 
electrons rebound from the surface. The first assumption had to be 
made in the preceding deduction—that is, we had to assume tacitly 
that the uncompensated outflow of electrons through the surface of 
the metal did not appreciably distort the Maxwell distribution within; 
the second is a drawback peculiar to the thermodynamic method. 
Accepting these two assumptions along with all their predecessors, we 
finally reach the expression for the number of electrons emitted per 
unit area per unit time from the surface of the hot metal: 

This is the equation for the thermionic saturation-current attained 
by the thermodynamical reasoning. 

Let us finally try some hypotheses about the variation of $ with 
temperature: for a first one, the hypothesis «/> = constant. The 
general equation becomes 

which is perfectly identical with (8) which was deduced from the 
electron-theory with the additional assumption of a double-layer 
independent of temperature. We cannot however freely make an 
assumption like this, for our equation (17) shows that an assumption 
about ilcp/dl' implies, and conversely is implied by, an assumption 

I = CT*e (20) 

I = Cr-ie-Fr, (21) 
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about the value of the Thomson coefficient s. In making </> inde- 
pendent of temperature we in effect assumed that the Thomson 

3 ■ 
coefficient has the value 5 = —^ (per electron), which happens to be 

precisely the value demanded (and vainly demanded) by the electron- 
theory of conduction. If on the other hand we choose to accept 
from the experiments the fact that 5 is extremely small compared to 

~k, the equation (16) compels us to set 
£ 

(22) 

Inserting this into (19) we obtain 

I=CT-e~Tf, (23) 

which is commonly known as the TMaw, and Is at the moment the 
favorite way of expressing the variation of thermionic current with 
temperature. As I said earlier, experiment is thus far powerless to 
distinguish between (8), (20) and (22). 

This brief and superficial sketch of the thermodynamic argument 
is meant partly to familiarize the reader with the T2 formula, and 
partly to show that the observations upon the dependence of ther- 
mionic current-on temperature do not necessarily sustain the parti- 
cular type of theory which has figured most in these pages, as against 
its rivals actual or conceivable. Of course it would be unjustifiable 
to say that any argument of the thermodynamical type is ipso facto 
stronger than any argument based on a physical model. It may be 
true that the laws of thermodynamics are valid everywhere without 
exception; but it is certainly true that in any particular case it is 
extremely difficult to feel sure just how they should be applied to 
arrive at absolutely binding conclusions. In this case, for instance, 
we have assumed as both possible and reversible a process which 
no one has ever carried through, and no one, in all likelihood, ever 
will; and in the course of analyzing the transfers of energy between 
the system and the external world in this imagined process, we have 
classified some as transfers of heat and some as transfers of mechan- 
ical work, and possibly ignored yet others, so that the analysis re- 
quires careful thought and has in fact been made in different ways 
by different authorities. There is for example the problem of the 
allowance to be made for work done in transferring the electrons 
from place to place against electromotive forces, which might or 
might not be nil when summed around the complete cycle; H. A. 
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Wilson has recently made a specific assumption regarding these. 
For still further subtleties Bridgman's theoretical articles may be 
consulted. I must however add that an extension of the thermo- 
dynamical argument, with the assistance of Nernst's "third law of 
thermodynamics," leads to the conclusion that the constant C of 
equation (23) should have for all elements, if not indeed for all sub- 
stances, the same universal value, calculable in terms of certain 
universal constants. There is some evidence that this may be true 
for emission from pure elements. Were it so, the result would be 
of fundamental importance; but another article almost as long as 
this one would be required to explain it properly. 

The general tone and character of this article will probably leave 
the final impression that the electrical behaviour of solids is an utterly 
confused and chaotic department of physics, a hopeless entangle- 
ment of incongruous rules diversified by numberless exceptions. 
I fear that this impression—except perhaps for the hopelessness of 
the situation—is substantially the correct one. In fact this pres- 
entation has put the state of affairs in rather too favorable a light, 
for I have passed over a number of the perplexities. I have scarcely 
mentioned the thermoelectric effects, or spoken of the complexities 
of the photoelectric effect, or of the emission of electrons from metals 
which are bombarded by other electrons or by ionized atoms; and I 
have not mentioned at all the galvanomagnetic and thermomagnetic 
effects, the most baffling and bewildering of all. In fact it seems 
only too probable that if one should succeed in erecting a theory by 
which all the phenomena I have described could be brought into 
one coherent system, some galvanomagnetic effect would be lying 
in wait for it to bring it to the dust. Clairaut is said to have been 
saddened by feeling that Newton had discovered all the laws of 
celestial mechanics, leaving nothing for men born after him to do 
except to improve the methods of calculation. Ambitious students 
of physics who, through too exclusive a study of the radiations from 
atoms, may have come to feel in the same way about Bohr, should 
find consolation in contemplating the present status of the Theory 
of Conduction in Solids. 
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Theorems Regarding the Driving-Point Impedance 

of Two-Mesh Circuits* 

By RONALD M. FOSTER 

Synopsis: The necessary and sufficient conditions that a driving-point 
impedance be realizable by means of a two-mesh circuit consisting of re- 
sistances, capacities, and inductances are stated in terms of the four roots 
and four poles (including the poles at zero and infinity) of the impedance. 
The roots and the poles are the time coefficients for the free oscillations of 
the circuit with the driving branch closed and opened, respectively. For 
assigned values of the roots, the poles are restricted to a certain domain, 
which is illustrated by figures for several typical cases; the case of real 
poles which are not continuously transformable into complex poles is of 
special interest. All driving-point impedances satisfying the general 
conditions can be realized by any one of eleven networks, each consisting 
of two resistances, two capacities, and two self-inductances with mutual 
inductance between them; these are the only networks without superfluous 
elements by which the entire range of possible impedances can be realized; 
the three remaining networks of this type give special cases only. For 
each of these eleven networks, formulas are given for the calculation of the 
values of the elements from the assigned values of the roots and poles. 

1. Statement of Results 

THE object of (his paper is, first, to determine the necessary and 
sufficient conditions that a driving-point impedance 1 be realizable 

by means of a two-mesh circuit consisting of resistances, capacities, 
and inductances, and second, to determine the networks 2 realizing 
any specified driving-point impedance staisfying these conditions. 

These necessary and sufficient conditions are stated in the form of 
the following theorem: 

Theorem I. Any driving'point impedance S of a two-mesh circuit 
consisting of resistances, capacities, and inductances is a function of 
the time coefficient \=ip of the form 

c_ „(X —a;i)(X —aoKX —"sKX —om) 
X(X —/32)(X —03) (la) 

QoX"1 To iX^-f-OoX" TosX-f-o-i 
= W+W+^X ' (lb) 

* Presented by title at the International Mathematical Congress at Toronto> 
August 11-16, 1924, as "Two-mesh Electric Circuits realizing any specified Driving- 
point Impedance." 

1 The driving-point impedance of a circuit is the ratio of an impressed electro- 
motive force at a point in a branch of the circuit to the resulting current at the same 
point. 

2 The networks considered in this paper consist of any arrangement of resistances, 
capacities, and inductances with two accessible terminals such that, if the two 
terminals are short-circuited, the resulting circuit has two independent meshes. 
Thus the impedance measured between the terminals of the network is the same 
as the driving-point impedance of the corresponding two-mesh circuit. Throughout 
the paper this distinction will be made in the use of the terms "network" and 
"circuit." 

651 
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where H>0, ai + ao^O, aio^^O, q:3+«4^0, 
/3O+/33<0, ^2/33>0, (2) 

and 6i2(fl32 — 4a 4^) + bo2[{a2 — d)- — 4aoa4]+632(ai2 — 4aofi) 
-26i&2lfl3(a2-^)-2aia4]-26i&3[aia3-2rf(a2-rf)l 
— 26263[ai(a2 —^) —2aoa3l = 0, (3) 

for all values of d>0, provided 
— aihfl-\-aih'1bi — dbfi>0, (4) 

— aoi32+(a2 —^)&3&i —a46i2>0, (5) 

— dbf'-fadyibo — ao&22 —0, (6) 

and, conversely, any impedance S of the form (1) satisfying these condi- 
tions (2)-(6) can he realized as the driving-point impedance of a two- 
mesh circuit consisting of resistances, capacities, and inductances. 

Theorem I thus gives the most general form of this type of im- 
pedance, showing that it is a rational function of the time coefficient, 
completely determined, except for a constant factor, by assigning 
four roots and two poles, in addition to the poles at zero and infinity, 
subject to certain conditions. The assigned roots and poles are the 
time coefficients for the free oscillations of the circuit with the driving 
branch closed and opened, respectively. That is, the roots and poles 
correspond to the resonant and anti-resonant points of the impedance. 

The conditions are as follows: The real part of each root and pole 
is negative or zero; the roots and poles occur in pairs of real or con- 
jugate complex quantities; certain additional restrictions must be 
satisfied, as stated in terms of the symmetric functions of the roots 
and poles by formulas (3)-(6). 

By virtue of these restrictions, the pair of poles, for assigned values 
of the two pairs of roots, is limited to a certain domain of values. 
This domain is conveniently illustrated by plotting, in the upper half 
of the complex plane, the locus of one pole, the other pole being its 
conjugate. For real poles, a device is used to indicate pairs of points 
on the real axis. Figs. 3-5 show the domain of the poles, plotted 
in this manner, for several typical cases. 

Provided the roots are not all real, this domain consists of a con- 
nected region of values, so that it is possible to pass from one pair 
of poles to any other pair satisfying the same conditions by a con- 
tinuous transformation. In the case of four real roots, however, the 
domain consists, in general, of two non-connected regions, as illus- 
trated in Fig. 5. Under these circumstances there is a region of real 
poles which are not continuously transformable into complex poles. 

The networks realizing any specified driving-point impedance are 
3 All electrical oscillations considered in this paper are of the form eA', where the 

time coefficient \ = ip may have any value, real or complex. 
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determined by the arrangement and magnitudes of the elements, as 
given by the following theorem: 

Theorem II. All driving-point impedances satisfying the necessary 
and sufficient conditions, as stated in Theorem I, can be realized by any 
one of the eleven networks shown by Fig. 1, upon assigning to the elements 
of each network the values given by Table I. These eleven networks are 
the only networks without superfluous elements by which the entire range 
of possible impedances can be realized. 

By Theorem II, any network obtained from a two-mesh circuit 
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Fig. 1—Networks realizing any driving-point impedance of a two-mesh circuil 
consisting of resistances, capacities, self-inductances, and mutual inductances 
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consisting of resistances, capacities, and inductances can he replaced, 
in so far as the impedance between terminals is concerned, by any 
one of the eleven networks shown by Fig. 1, upon assigning the proper 
values to the elements. Each of these networks consists of two 
resistances, two capacities, and two self-inductances with mutual 
inductance between them. 

Each of these eleven networks realizes impedances with arbitrarily 
assigned roots and with poles anywhere in the entire domain of pos- 
sibilities, subject to the general conditions stated in Theorem I. 
Special cases of these networks realize, for arbitrarily assigned roots, 
only critical lines and points in the domain. All these special cases 
are listed in Table III, with a specification of the lines or points in 
the domain realizable by each, as illustrated by Figs. 4 and 5. 

Certain limited regions of the domain can be realized by networks 
which contain no mutual inductance and which are not special cases 
of the networks given by Theorem II. These networks are given 
by the following theorem : 

Theorem III. Any driving-point impedance of a two-mesh circuit 
consisting of resistances, capacities, and self-inductances can be realized 
by at least three and not more than five of the twelve networks shown by 
Fig. 2, upon assigning to the elements of each network the values given 
by Table 11. These twelve networks are the only networks without mutual 
inductance and without superfluous elements by which any impedance 
can, in general, be realized. 

These twelve networks, taken together, cover that portion of the 
domain realizable without mutual inductance. Networks with mutual 
inductance are needed in order to cover the entire domain. These 
twelve are the only networks, without superfluous elements, realizing 
limited regions in the domain. Each of these networks consists of two 
resistances, two capacities, two self-inductances, and one additional 
resistance, capacity, or self-inductance. The twelve networks, with 
their special cases, are all listed in Table III, with a specification of 
the regions, lines, or points realizable by each. 

In addition to the specific formulas for the networks of Figs. 1 and 2, 
it is convenient to have general formulas for the computation of all 
networks meeting the given conditions, including those networks 
with superfluous elements as well as all special cases. The most 
general two-mesh circuit is shown by Fig. (i; accordingly, the most 
general network under consideration is that shown by Fig. 7. Formulas 
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for the computation of the elements of this general network can be 
stated in the form of the following theorem: 

Theorem IV. Any driving-point impedance satisfying the neces- 
sary and sufficient conditions, as stated in Theorem I, can be realized 
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Fig. 2—Networks without mutual inductance realizing any driving-point impedance 
of a two-mesh circuit consisting of resistances, capacities, and self-inductances. 
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by any network of the form of Fig. 7, provided the elements of the network 
satisfy the following relations: 

LfLf+LfLf+LULf = a0k\ (7) 

R1R2-\-RlR3+R2R3=dk\ (8) 

D1D2+DlD3+D2D3 = aik
2, (9) 

L2'+L3' = b,k\ (10) 

R2+R3 = b2k\ (11) 

D2+D3 = b3k*} (12) 

R2D3-R3D2=±k\-aibf+aM3-db3*yi*, (13) 

D2L3' - D3W = ±k3[- aob3
2+(a2 - d^.by - a A2]1'2, (14) 

L2
,R3-L3

,R2=±k3{-db1
2+a1byb2-a0b2,2)1/2, (15) 

where D1 = Cr\ Do = Co_-\ D, = C3-\ (16) 

and Li = Lif-M i2-\-M\3-\-M23, (17) 

L2=L2-\-Mi2 — M\3—M23, (18) 

L 3' = L 3 - Jkf 12+Mi 3 -1/23, (19) 

the positive directions in Fig. 7 all being assigned arbitrarily to the right. 
The signs of (13)-(15) are chosen so as to satisfy the identity 

{R2D3 - R3D2) {U+U) + {DoLf - DzLf) {R2+R3) 
+ {L2R3 — L3'R2) {Dof-Df) = 0. (20) 

The value of d is given by equation (3), which may be written in the form 

d'-{b'f — 46163) — 2d{2aibi2 -\-a2b2
2 4- 2ao632 — a3b\b2 — 2a2bib3 — o 16263) 

+ [a 326 r + (a22 — 4aoO 4) 622+a fb 3
2 — 2{a2a3 — 2aia i)b\b2 — 2a\a3b\b 3 

— 2{aia2 — 2aQa3)b2b3\ = 0. (21) 

The parameter k may have any real value other than zero. 
In these formulas the value of k is independent of the impedance, 

but can be chosen so as to give particular forms of the network. If 
the necessary and sufficient conditions as stated by Theorem I are 
satisfied, the values of the elements given by these formulas are 
positive or zero, and the values of the inductances satisfy the usual 
restrictions. The formulas of Tables I and II, for example, can all 
be computed by means of Theorem IV. 

2. The Driving-Point Impedance of a Two-Mesh Circuit 

Previous investigations of the two-mesh circuit have been directed, 
for the most part, toward the determination of the free periods (reso- 
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nant frequencies and associated damping constants) of the circuit 
from the known values of the elements. This problem is intimately 
related to the determination of the driving-point impedance of the 
circuit, since the free periods of the circuit can be found by setting 
the driving-point impedance in any one mesh equal to zero.4 By 
this method the free periods are found as the roots of an equation of 
the fourth degree,5 the exact solution of which involves, in general, 
cumbersome formulas. In order to obtain formulas which are better 
adapted to numerical computation, various approximations are 
usually made.6 

This electrical problem of the free oscillations of a circuit is formally 
the same as the dynamical problem of the small oscillations of a 
system about a position of equilibrium. The determination of the 
free periods of a circuit can be made directly from the solution of this 
dynamical problem.7 

The first part of this paper treats a much more general problem 
than the determination of the driving-point impedance of a particular 
circuit from the given values of the elements, namely, the determina- 
tion of the entire range of possibilities, together with the inherent 
limitations, of such an impedance. The method employed is to find 
the general form of the impedance as a function of the time coefficient, 
and then to investigate the restrictions which must be satisfied by a 
function of this character in order that it may represent an impedance 
realizable by means of a circuit consisting of resistances, capacities, 
and inductances. In the present paper, this investigation is limited 
to the driving-point impedance of a two-mesh circuit; the driving- 
point impedance of an w-mesh circuit will be treated in a future paper. 

The driving-point impedance of any circuit containing no resistances 
has been investigated in a previous paper,8 where it has been shown 
that any such impedance is a pure reactance with a number of resonant 
and anti-resonant frequencies which alternate with each other, and 

4 G. A. Campbell, Transactions of the A. I. E. E., 30, 1911, pages 873-909. 
5 An exhaustive discussion of this fourth degree equation has been given by J. 

Sommer, Annalen der Physik, fourth series, 58, 1919, pages 375-392. 
0 For typical methods of solution see the papers of L. Cohen, Bulletin of the Bureau 

of Standards, 5, 1908-9, pages 511-541; B. Macku, Jahrbuch der drahtlosen Tele- 
graphic und Telephonic, 1, 1909, pages 251-293; V. Bush, Proceedings of the I. R. E., 
5, 1917, pages 363-382. 

7 Representative investigations of this dynamical problem are those of Lord 
Rayleigh, Proceedings of the London Mathematical Society, 4, 1873, pages 357-368, 
Philosophical Magazine, fifth series, 21, 1886, pages 369-381, and sixth series, 3, 
1902, pages 97-117 ("Scientific Papers," I, 170-181, II, 475-485, and V, 8-26); 
E. J. Routh, "Advanced Rigid Dynamics," sixth edition, 1905, pages 232-243; 
A. G. Webster, "Dynamics," second edition, 1912, pages 157-164. 

8 R. M. Foster, Bell System Technical Journal, 3, 1924, pages 259-267. 
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that any such impedance may be realized by a network consisting 
of a number of simple resonant elements (inductance and capacity 
in series) in parallel or a number of simple anti-resonant elements 
(inductance and capacity in parallel) in series. 

With resistances added to the circuit, the impedance is, in general, 
complex; that is, it has both resistance and reactance components. 
For a two-mesh circuit the impedance is expressed as a function of 
the time coefficient by Theorem I. 

Formula (1) gives the driving-point impedance of a two-mesh circuit 
for any electrical oscillation of the form eA', where the time coefficient 
X may have any value, real or complex. The time coefficients for 
the free oscillations of the circuit with the driving branch closed are 
the roots of the numerator (ai, ao, aa, oa), as given by (la); the free 
periods of the circuit with the driving branch opened are the roots 
of the denominator (fo, fo), that is, the poles of the impedance func- 
tion. For a complex value of the time coefficient, X = Xi+/X2, Xi is 
the damping factor and X2 is the frequency multiplied by 27r. 

The two forms of formula (1) are equivalent, but each has its 
special advantages. Sometimes one, sometimes the other, form is 
more convenient; they will be used interchangeably throughout the 
paper. 

Formula (la) gives the impedance directly in terms of the roots and 
poles. Formula (lb) gives the impedance in terms of the symmetric 
functions of the roots and poles, with the addition of an arbitrary 
factor. Thus, without changing the impedance, all the coefficients 
of the numerator and denominator of (lb) may be multiplied by the 
same constant factor having any value other than zero. Formulas 
stated in terms of the coefficients of (lb) are in homogeneous and 
symmetrical form, and have the added advantage of involving real 
quantities only. 

The special case of one root equal to zero is obtained by setting 
ai=0 in (la) and a.i = 0 in (lb). For one root infinite, however, 
in (la) it is necessary to set ai = co and i? = 0, with the provision that 
Max be finite: whereas in (lb) it is simply necessary to set ao = 0. 

It is sometimes convenient to add the notation /3i=() and /3.i = co, 
corresponding to the poles at zero and infinity. In formula (lb) the 
corresponding addition to the notation consists of the coefficients 
60 =0 and &4 = 0. 

By the general restrictions (2) the constant H is positive or zero, 
and the roots and poles are arranged in three pairs, (ai, ao), (as, a*), 
and 032, /3.-i), each pair being the roots of a quadratic equation with 
positive real coefficients. Thus each pair of the roots and poles is 



DRIVING-POINT IMPEDANCE OP TWO-MESH CIRCUITS 659 

either a pair of conjugate complex quantities or a pair of real quan- 
tities, with the added provision that the real part of each root and 
pole is negative or zero. 

Stated in terms of (lb), these general restrictions (2) require all the 
coefficients to be real and to have the same sign. Throughout this 
paper these signs will always be taken positive; thus all the as and 
//s are positive or zero. In order to provide that the real part of 
each root be negative or zero, the coefficients of the numerator must 
satisfy the additional requirement 

— a 4012+a — aoa a2 ^ 0, (22) 

and also ao2 —daofl-J^O. (2^) 

The second condition (23) is satisfied automatically by virtue of the 
first condition (22), unless both ai and aa are zero; in that case (23) 
is required. These are precisely the necessary and sufficient condi- 
tions that the numerator of (lb) be factorable into two real quadratic 
factors with positive coefficients. 

In addition to the general restrictions (2) upon the individual roots 
and poles, there are certain additional conditions which must be 
satisfied by all the roots and poles together. These conditions are 
more conveniently stated in terms of the coefficients by prescribing 
a certain domain of values of the eight coefficients (ao, au a2, 03, ai, 
bu 62, 63) such that the coefficients of any driving-point impedance 
of a two-mesh circuit lie in this domain, and, conversely, any set of 
values in this domain can be realized as the coefficients of a driving- 
point impedance of a two-mesh circuit. 

By a realizable circuit is understood a circuit consisting of resist- 
ances, capacities, and self-inductances, with positive or zero values, 
together with mutual inductances with values such that every prin- 
cipal minor of the determinant of the inductances is positive or zero. 
In the case of two self-inductances with mutual inductance between 
them, this reduces to the well known condition LiL*-M->0. 

The domain is defined analytically by formulas (3)-(6), in terms 
of a parameter d. This parameter is intimately related to the resist- 
ances in the circuit, as will be shown later. In order that this domain 
may contain real values, the following relation must be satisfied: 

— d*-\-2(i-id- — {aiaa+<i-r — -l<iH'0)d + (—<0(ii2+«—a,,a.-r) >(), (24) 

or in equivalent form, 

- 1^ - «o(« 1 + «2) («3 + )][d- a0{a, + 0:3) («•> + ou) 1 
[rf —ao(aiT"«4)(«2 + «3)1^0. (2o) 
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Provided there is one pair of conjugate complex roots of the numerator 
of the impedance, on and 0:2, the value of d is restricted to the range 
from zero to the smallest real root of (24), that is, 

"^ao(«i + «2)(«3-f-a4)- (26) 

In the case of four real roots, ai> a2^a3^«4i the parameter d is 
restricted to the values 

()<^/<a(,(afi + a2)(«3 + a4), ] 
1 \^A) 

rtn(ai + «3)(«2 + «4) —d <«o(«i+«4)(a2 + «3)- 1 

Thus there are, in general, two distinct ranges for the value of d in 
this case. The corresponding domain of values of the roots and poles 
consists of two non-connected regions, so that it is impossible to pass 
by a continuous transformation from a set of values in one region to 
a set in the other. 

Formulas (3)-(6) are symmetrical in three different respects, since 
they remain unaltered upon interchanging certain pairs of elements, 
which may be any one of the three following sets: 

(a) hy and b-,, do and d, a3 and (a-> — d), 1 

(b) by and 63, flo and ay, ay and a^, r (28) 

(c) &2 and bs, 0.4 and d, ay and {az — d). I 

These three sets correspond to interchanging resistances and in- 
ductances, inductances and capacities, and resistances and capacities, 
respectively. 

Since d is always positive or zero, formulas (4)-(6) lead to simple 
necessary conditions, namely, 

0363 —a4&o>0, (29) 

— a^p+ao&i&s—flo&32S:0, (30) 

ayby—aobo^iO. (31) 

The first and third of these conditions are conveniently interpreted 
in terms of the roots and poles: the sum of the reciprocals of the poles 
is algebraically greater than or equal to the sum of the reciprocals 
of the roots; and the sum of the poles is algebraically greater than 
or'equal to the sum of the roots. 

3. Domain of Polfs for Assigned Roots 

The conditions (2)-((5) define a domain of values for the roots and 
poles without distinguishing in any way those roots and poles which 
may be chosen independently. For many purposes it is convenient 
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to specialize the problem to the extent of assigning definite values 
to the roots, subject, of course, to the restrictions (2), and then to 
investigate the domain of the poles which can be associated with these 
assigned roots. 

For the mathematical analysis of the problem it is convenient to 
assign values of the coefficients ao . . . . ai, subject to the restrictions 
stated in the preceding section, and then to plot the domain for the 
coefficients hi, bo, b-.u—treating the latter as homogeneous coordinates 9 

in the plane, with x = bo/bi and y = 63/61- 
With this method of representation, equation (3) is, for any fixed 

value of d, the equation of a conic. Considering d as a variable para- 
meter, (3) represents a one-parameter family of conics. Each curve 
of this family is tangent to the four lines 

<*/61 + ajbz+63 = 0, (.7 = 1, 2, 3, 4). (32) 

These lines are real lines in the plane if, and only if, the corresponding 
roots are real. They are all tangent to the parabola 

602-46x63 = 0. (33) 

which is the limiting case of the conic (3) as d becomes infinite. This 
parabola is a critical curve for the poles; every point in the plane above 
the parabola corresponds to a pair of conjugate complex poles, every 
point below the curve to a pair of real and distinct poles, and every 
point on the curve to a pair of real and equal poles. 

The complete family of conics, that is, the set of curves for all real 
values of d, might be defined as the family of conics tangent to these 
four lines, which are the four lines tangent to the critical parabola 
(33) corresponding to the four roots of the impedance. 

Not all the curves of this family lie in the domain of poles, however, 
since the conditions (4)-(6) must also be satisfied. For any fixed 
value of d, each of the three equations (4)-(6) is a degenerate conic, 
that is, a pair of straight lines. The six lines defined by these condi- 
tions are all tangent to the conic (3) corresponding to this same value 
of d. The inequalities (4)-(6) thus demand, in general, that the 
domain of poles lie within the area bounded by these six lines. Thus 
only those conics of the family (3) which are real ellipses, or their 
limiting cases, lie within the domain. 

The condition that the conic (3) be an ellipse is precisely the neces- 
sary restriction on the value of d already stated, formula (24). Ellipses 
are obtained for all negative values of d, but these are not in the 

For some purposes the other choices of .v and y might he used; tin's choice is more 
convenient here inasmuch as —.v is the sum and y the product of the poles. 
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domain, since by the conditions of the electrical problem d must be 
positive or zero. Ellipses for values of d from zero up to the smallest 
real root of the equation (24) are in the domain. If the roots of the 
impedance are all complex, equation (24) has three real roots, and 
thus there is a range of values of d from the second to the third root, 
arranged in the order of magnitude, for which the curves are ellipses, 
but these ellipses are imaginary, that is, there are no real points on 
them; thus there is only the one range of d which gives points in the 
domain. If two roots of the impedance are real and two complex, 
equation (24) has only the one real root, and thus there is only the 
one range of d. If all four roots of the impedance are real, however, 
equation (24) has again three real roots, and both ranges of d give 
real ellipses. In this case the two sets of ellipses are separate and 
distinct. 

For the limiting values of d, that is, for the roots of equation (24), 
the corresponding conic (3) degenerates into a pair of coincident 
straight lines. Only those segments of these lines which satisfy the 
corresponding inequalities (4)-(6) are in the domain. Such segments 
arc the limiting cases of the real ellipses for values of d above or below 
the critical values, as the case may be. 

The domain of poles, plotted in terms of the coefficients in the 
manner described, consists of that domain covered by these real 
ellipses for d>0, a domain bounded by the envelope of the curves. 
The env elopeconsists of the conic for d = () and the four lines (32). 
For the case of four complex roots of the impedance, therefore, the 
domain consists simply of the region bounded by the ellipse (3) for 
d = 0. For two complex and two real roots, the domain consists of 
the region bounded by the ellipse with the addition of the corner 
bounded by the ellipse and the two tangent lines to the ellipse cor- 
responding to the two real roots, hor four real roots, the domain 
consists of the region bounded by the ellipse together with the two 
corners bounded by the ellipse and the tangent lines, one by the 
two lines corresponding to the two smallest roots and the other the 
two largest roots; and a second region consisting of the quadrilateral 
bounded by the four tangent lines. 

All points in the domain lying on or above the critical parabola 
lie on a single curve of the family of conics composing the domain, 
points below the parabola on two curves of the family. The corner 
regions and the quadrilateral are entirely below the critical parabola. 
Where there is a corner region, the ellipse goes below the parabola, 
otherwise not. 

The foregoing discussion has all been for the general case of un- 
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rcslricted roots. For special cases of zero, pure imaginary, or infinite 
roots, the corresponding domains are the limiting cases of the general 
domain, described above. Such limiting cases may reduce to a single 
segment or to a region bounded in part by the line at infinity. The 
homogeneous coordinates employed are very useful in dealing with 
these special cases. 

4. Figures Illustrating the Domain of Poles 

The preceding section presented a discussion of the domain of the 
poles associated with any four assigned roots, the domain being 
plotted in terms of the coefficients of the denominator of the impe- 
dance, that is, in terms of symmetric functions of the poles. In order 
to show the mutual relations between the actual values of the roots 
and the poles, it is convenient to plot, in the upper half of the complex 
plane, the domain of one pole, the other pole being its conjugate. 
This provides a complete representation for the case of complex poles. 
In order to include the domain of real poles, an auxiliary graph can 
be provided to indicate pairs of points on the real axis. 

The mathematical analysis for this form of representation can be 
obtained from that of the preceding section by substituting = 
— bi/b\ and $i(i[\ = b-i/b\. For complex poles, ft* = k+M' and ^3 = u — iv, 
this transformation from the x, y plane to the u, v plane is simply 
2ii = —x and n2+v- = y. Thus a conic in the .r, y plane becomes, in 
general, a curve of the fourth degree in the u, v plane. The analysis 
of the curves obtained in the u, v plane is not so simple as in the other 
plane, but there is a decided advantage in the interpretation of the 
results in this plane, since the coordinate it, the real part of the pole, 
corresponds to the damping factor, and the coordinate v, the im- 
aginary part of the pole, corresponds to the frequency factor. 

In the complex plane, the necessary conditions (29)-(31) require 
the domain of complex poles to lie entirely within the region bounded 
by the vertical axis, a vertical line to the left of the axis, two circles 
about the origin as center, and a circle through the origin with its 
center on the real axis. Furthermore, the boundary curve of the 
domain must be tangent to each of these lines and circles, since the 
corresponding conic (3) for d = 0 is tangent to the corresponding 
lines (4)-(6) for rf = 0. 

For the special case of one root a positive pure imaginary, the 
second root being its conjugate, the domain in the upper half of the 
complex plane reduces merely to the points on an arc of a circle with 
its center on the real axis. If the third root is complex with a posi- 
tive imaginary part, the fourth root being its conjugate, the domain 
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is the circular arc extending from the first root to (he third root. 
For a pure imaginary value of the third root the radius of the circle 
becomes infinite, and the domain is the segment of the vertical axis 
between the first and third roots. This is precisely the result already 
obtained for the resistanceless circuit. 

For the limiting case of the third root real, with the fourth root 
equal to it, the domain is the circular arc extending from the root on 
the imaginary axis to the double root on the real axis. When the 
third and fourth roots are real and distinct, the domain is the circular 
arc from the first root to the point on the real axis midway between 
the two real roots. The complete domain also includes real poles in 
the segment between the two real roots, equally spaced about the 
midpoint of the segment. 

This case of one pair of roots on the axis of imaginaries is illus- 
trated by Fig. 3a, with the first root fixed at the point a, and the 
third root lying on any one of the family of circular arcs drawn through 
a, the fourth root being its conjugate; or the third and fourth roots 
lying on the real axis equally spaced about the end-point of one of 
the arcs. 

Starting with one pair of roots on the axis of imaginaries, it is inter, 
esling to investigate the changes made in the domain by moving this 
pair of roots off the axis. The domain broadens out into a region 
lying about the circular arc, as shown by Fig. 3b for four typical cases. 
The first case is for the third root also near the axis (q:i= — 0.5-H3, 
a3= _ 0.5-H9): and the second case is for the third root some distance 
from the axis (0:1= —0.1+«3, q;3=—5+^8). The third section of 
Fig. 3b shows the domain when the third and fourth roots are real 
and equal (0;!= —0.1-H3, q!3 = «4=—9); in this case the region has 
a cusp at this double root. The fourth section shows the domain 
of complex poles when the third and fourth roots are real and dis- 
tinct (ai=-0.1-H3, 0:3 = — 6, a4=—10); in this case the region of 
complex poles terminates along a segment of the real axis lying in 
the interval between the two real roots, there is also a domain of real 
poles which is not shown. 

It is interesting to note that, when both pairs of roots are near 
the axis of imaginaries, that is, for small damping, the frequency factor 
of the pole may always be taken outside the range of the frequency 
factors of the roots; whereas for zero damping the pole must lie 
between the roots, as noted above. 

Fig. 3c shows the domain of the poles for two pairs of equal roots. 
If the first and third roots are equal, the second and fourth roots 
being their conjugates and thus also equal, the domain is bounded 
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liy a circle tangent to the vertical axis with its center vertically above 
the double root. If, for example, the double root describes a circle 
about the origin through the point a on the vertical axis, the corre- 
sponding circle is tangent to the vertical axis at a. Thus in Hg. 3c, 
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Fig. 3—Domain of the poles of the driving-point impedance of a two-mesh circuit 
with (a ) one pair of roots on the axis of imaginaries, (b* one pair of roots near the 
axis of imaginaries, (c) two pairs of equal roots, and (d) two pairs of roots with 

equal angles. 

for double roots at Ai, Bu C1} the corresponding domain is bounded 
by the circles A, B, C, respectively. The centers of these circles are 
all on the horizontal line through a, and the double roots are selected 
so as to space the centers uniformly. If all four roots are real and 
equal, the domain is bounded by a circle D tangent to the vertical 
axis at a and to the horizontal axis at this fourfold root Di. If the 
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roots arc all real and equal in pairs the domain is bounded by a circle 
E, tangent to the vertical axis and passing through the two double 
roots, E\ and £3, and by the reflection of this circle in the real axis. 
Thus the domain has cusps at the double roots. For two pairs of 
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Fig, 4—Domain of the poles of the driving-point impedance of a two-mesh circuit 
with two pairs of complex roots, showing the portions of the domain realizable by 

each network listed in Table III. 

equal roots, whether real or complex, the distance Oa is the geo- 
metrical mean value of all four roots. 

Another kind of special case is shown by Fig. 3d, the case of two 
pairs of roots with equal angles. The first and third roots are on 
a line with the origin, so that the second and fourth roots, being 
their conjugateb are also on a line with the origin. Fig. 3d shows 

■ the boundary curves {A ... E) for five sets of roots {Ai, At. . . E\, £3) 
satisfying these conditions and with the same absolute values of the 
roots in each set, so that the roots lie on two circles about the origin. 
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The fifth set of roots {E\, E?) has a domain of the same type as the 
corresponding set of roots on Fig. .'ic, since this set. being on the real 
axis, is a double set. The sixth curve F is (he boundary of the domain 
for four real roots so chosen that F\F^ — E\- and F-<F\ = EJL. This is 
the same type of domain as will be described later under Fig. 5. The 
curves of Fig. 3d are all tangent to the vertical axis at the same point 
a; for each of these sets of roots the distance Oa is the geometrical 
mean value of all four roots. 

The general case of four complex roots is illustrated by Fig. 4 for 
the numerical values ai=—1+rlO, a:o=—1—*10, 0:3= — 2+zT5, 
oc\ = —2 —*15. For all complex roots the poles must also be complex; 
the pole with positive imaginary part must lie in the region bounded 
by the curve F = ri + rod-. . . . + r7. This curve is tangent to the 
vertical axis at the point a, and tangent to a vertical line at the left 
at the point d. The largest absolute value of any point in the domain 
occurs at the point c, and the smallest at /; these two points are the 
points of tangency of the curve T with circles about the origin as 
center. The curve F is tangent at the point c to a circle through 
the origin having its center on the real axis. The coordinates of 
these points are all given in Table V. 

The general case of four real roots is illustrated by Fig. 5 for the 
numerical values ai=—1, q:o=—2, 0:3=—5, a\=—1. The domain 
of complex poles is bounded by the curve F, with the critical points 
defined and labeled as in Fig. 4. The domain of complex poles is 
bounded in part by two segments on the real axis, one lying in the 
interval between oil and a*, the other between <*3 and oa. Approxi- 
mately, these segments are from —1.13 to —1.93 and from —5.13 
to —6.70, for this numerical example. The points on these segments 
are in the domain of poles, corresponding to double real poles. The 
domain of real poles is shown by the graph below the axis, each point 
of this graph representing two real values, the two points on the real 
axis reached by following the ±45° lines through the point. The 
domain of real poles is bounded by the continuation of the curve F 
and the tangent lines corresponding to the four roots. This gives 
two corners associated with the two segments on the real axis, and 
an isolated rectangle. Corresponding to the points in the rectangle, 
one pole may be chosen anywhere in the range from to ao, and 
the second pole anywhere in the range from as to a^. Both poles 
may be chosen in the range from ai to ao, or in the range from as to 
aj, with certain restrictions as shown by the figure, since the curve F 
cuts off the points of the triangles. The two corners and the rectangle 
are shown by Fig. 5a on a larger scale, with greater accuracy. 
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In some respects, ihe case illustrated by Fig. 5 is the most general 
ease, from which all other cases can be obtained by a continuous trans- 
formation of the roots. Two of the adjacent real roots may be brought 
together to a single double root; the corresponding boundary curve 
then shrinks to a cusp at this point on the real axis, and the rectangle 

/2 

g 
if 'e 

fern 92 f *3 <*.j\ 
-5 -7 -6 

\/\/ 

Fig. 5—Domain of the poles of the driving-point impedance of a two-mesh circuit 
with four real roots, showing the portions of the domain realizable by each network 

listed in Table III. 
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in the auxiliary diagram narrows down to a single line segment. 
Then if the other two real roots are brought together, the boundary 
curve has a second cusp and the domain in the auxiliary diagram 
shrinks to a single isolated point. If, now, one of the pairs of equal 
real roots is separated into a pair of conjugate imaginary roots, the 

A 

'i 

I-9 
K> 

/ 
/ 9 

L 
\0 zj 
// /8

r2 

9-4 

Fig. 5a—Domain of real poles of Fig. 5, on larger scale. 

corresponding cusp is rounded off away from the axis, and the point 
in the auxiliary diagram vanishes. When the other pair of equal real 
roots separates into conjugate complex roots, the case illustrated 
by Fig. 4 is obtained. As one pair of complex roots approaches the 
imaginary axis, the domain narrows until, for one pair of roots on the 
vertical axis, the domain shrinks to a circular arc as illustrated by 
Fig. 3a. This sort of transformation may be followed through in 
different ways in order to obtain any desired distribution of the roots. 

The complete domains are unique, that is, any one domain is given 
by only one set of roots. 

Every domain includes the points corresponding to the roots for 
which the domain is defined. For these points, that is, for a pole 
coinciding with a root, the impedance expression has a common factor 
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in numerator and denominator. When both poles coincide with roots 
the corresponding impedance expression can he obtained by means 
of a one-mesh circuit. 

5. Two-Mesh Circuits and Associated Networks 

The second object of this paper is the determination of the networks 
realizing any specified driving-point impedance which satisfies the 
conditions established in the first part of the paper. It is neces- 
sary to find the number, character, and arrangement of the elements 
in these networks, as well as to find the values of these elements. 

Thus the problem met in this investigation differs from the usual 
network problem in that it calls for the determination of the elements 
of a network which has a certain specified impedance, instead of 
calling for the determination of the impedance of a network which 
has certain specified elements. 

The most general two-mesh circuit has three branches connected 
in parallel, each branch containing resistance, capacity, and self- 

L, R( C, 

 vwv—ih 

m12 

Li Rz Cz 
—vwv—if- 

^ M23 

-nM^ WW IH 

1-3 R3 C3 

Fig. 6—Most general two-mesh circuit consisting of resistances, capacities, and 
inductances. 

inductance, with mutual inductance between each pair of branches, 
as shown by Fig. 6. 

The most general network under consideration is, therefore, the 
network obtained by opening one branch of this two-mesh circuit, 
as shown by Fig. 7. All the networks considered are special cases 
of this general network, obtained by making a sufficient number of 
the elements either zero or infinite. If, in particular, all the elements 
in one branch are replaced by a short circuit, the network splits up 
into two separate sections connected essentially only by mutual in- 
ductance, as shown by Fig. 7a. 
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It is convenient to limit this investigation to the determination of 
those networks which, without superfluous elements, realize any 
driving-point impedance having arbitrarily assigned roots. A net- 
work is considered to have superfluous elements if there exist other 

Fig. 7—Most general network obtained by opening one branch of a two-mesh circuit 

networks with fewer elements which, individually or collectively, 
realize the same range of possible impedances. Impedances with 
zero, pure imaginary, or infinite roots can be realized by the limiting 
cases of these networks. 

A network realizing an impedance with arbitrarily assigned roots 
must consist of at least five elements,—one resistance, two capacities, 

Fig. 7a—Special case of Fig. 7, obtained by replacing the elements of one branch 
by a short circuit 

and two self-inductances, in order that the numerator of the impedance 
expression (lb) may contain odd powers of X, a constant term, and a 
term in X4, respectively. 

Since the general expression for the driving-point impedance con- 
tains essentially seven constants which may be assigned arbitrarily, 
subject to the restrictions already established, it is to be expected 
that the entire range of possible impedances can be realized by one 
or more networks consisting of seven elements only. This proves 
to be the case. Hence all networks with more than seven elements 

K>l Lz Rz Cz 

Li Ki 
o—^OTT^-WWHI- Mza —o 

M13 k&Xl/—VWHH 

L3 R3 C3 
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contain superfluous elements. It is also to be expected that one 
additional condition must be satisfied by the roots and poles in order 
that an impedance may be realized by a six-element network, and two 
additional conditions for a five-element network. 

Accordingly, a census has been made of all networks consisting of 
not more than seven elements, each network containing at least one 
resistance, two capacities, and two self-inductances. This census 
is shown by Table III. 

Each two-mesh circuit meeting these requirements as to the number 
of elements is represented in symbolical form in I able III. 1 he 
letters L, R, and C, printed in the first, second, or third lines of the 
symbol, indicate the presence of self-inductance, resistance, and 
capacity in the first, second, or third branches of the circuit, respec- 
tively. The letter M is printed in the two lines of the symbol cor- 
responding to the two branches which are connected by a mutual 
inductance. Thus the first circuit in the table is represented by the 
symbol 

LRCM 
L CM 
L 

which indicates self-inductance, resistance, and capacity in the first 
branch, self-inductance and capacity in the second branch, and self- 
inductance in the third branch, with mutual inductance between the 
first two branches. 

Three networks, in general, are obtained from each of these circuits 
by opening each of the three branches. If two of these branches are 
alike, only two distinct networks are obtained. If one branch of 
a circuit is a short-circuit, there being no elements assigned to that 
branch, the network obtained by opening one of the other branches 
is of the type shown by Fig. 7a; if the short-circuited branch is opened, 
the network consists simply of the parallel combination of the other 
two branches. 

With circuits represented in this symbolical manner, there is, oppo- 
site each line of the symbol, a reference to the domain of poles indi- 
cating the portion of the domain realizable by the network obtained 
by opening the corresponding branch. Two like branches in a circuit 
are bracketed together with a single reference mark, since they each 
give the same network. The entire domain is indicated by the 
boundary curve of the domain by T, this being divided into seven 
segments, Ti, IV . . . , r7; ten critical lines in the domain by the 
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numbers 1, 2, . . . , 10; and seven critical points by the letters a, 
as illustrated by Figs. 4 and 5. 

Networks with superfluous elements are indicated by placing 
parentheses around the corresponding reference mark, single paren- 
theses for one superfluous element and double parentheses for two. 
In order that a seven-element network may contain no superfluous 
elements it must give the entire domain or a region in it, a six-element 
network a critical line, and a five-element network a critical point. 

That is, an impedance with arbitrarily assigned roots, and with a 
pole chosen arbitrarily in the domain corresponding to these assigned 
roots, can be realized with the minimum number of elements only 
by a seven-element network. If the pole is chosen so as to satisfy 
one additional condition, namely, chosen at a point on one of the 
critical lines of the domain (including the boundary curve), the 
impedance can be realized by the six-element network giving that 
line. If the pole is chosen so as to satisfy two additional conditions, 
namely, chosen at one of the critical points, the impedance can be 
realized by the corresponding five-element network. 

The conditions for the critical lines and for the critical points are 
given by Tables IV and V, respectively, in terms of the coefficients 
of the impedance. 

TABLE IV 
Critical Lines 

T. alb]-L(4aifl4 — luta^bxh-. — 2(i 1036163 — (4ao04 —02)67 + (4ao03 — 20102)6^+0163 = 0. 

1. (8a 104 — 4020304+03)61 — (160004 + 2010304 —40204+0203)6162 
+ (8000,304 —4aifl204+aia3)6i63 + (8aoa304—4010204+0103)6162 
— 6(0003 — 0104)616263 — (8000104—4ao02fl3 +0103)6163 
— (ooflj-a ia4)6'2-(8ao0i04-4000203+0103)6263 +(16aoa4+ 200O1O3 
-40002+0102)6263 —(8aoa3—4000102+01)63 = 0. 

2. 2o 46,6263 - 036,63 - 046^+036563 - o 26263+a 16] = 0. 

3. 036] —o 26162 — 016163+a 16165 + 200616263 0067 = 0. 

4. 046^6. —036163+016163 — 006263 =0. 

5. 03046162+036163+(0304—oj) 6162 — (o 104—0203) 616263 
— 2a 1O36163 — a 1O46162+0103616263+ (0003 — 0102)616263 
+o 16163 + o no 467 — o oO 36 763+a oO >6763 — OoO 16263 = 0. 

6. 03346162—036163—02046162 —(0104 —0203)616263 + 2o 1o36565 
+O1O46162 — o 1O3616263 + (00O3—o 102)616263 — a 56163 — 000462 
+00036363 — (OoO 2—a?) 6263—Oofl 16263 = 0. 

7. 03O46162 — 036163—02046162 + (0104+0203)616263 — 2o 1036165 
+01046162— a 1O3616263 +(0003+0102)616.63— 016163— 000462 
+00036263 —00006263 +00016263 = 0. 
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8. (8a 1O4 — 4a 20304+03)61 — (80004 + 2010304 — 40204+0203)6162 
+ (4090304+01O3—4a 10204)6163 + (2000304+0103 4010204)6163 
— (4oo0 204 - 60104)616263 + (40,^ ,04 -0,03) 6163 - (0003 - 4000204 
— 0104)6163 —(80 oO 104+a 103)6^6363+ (2o0a 103+010 2)616263 
— o ,6163 — 2ooO 1046163 +(20^04+ 2ooO 103)616363 
— (0003 + 2000102)616363 + 2000 1616263+0(

2/(463 — 0^136363 
+OoO26363 — OoO 16363 = 0. 

9. O3O46162 — 20304616263+036163 — O2O46163 + (0104+2020304)616363 
— (2010304+0203)616.63-(4000301-0103)6163+0,046163 
— (2O0O4 + 2fl 10304)616363+ (8000304+0103)616363 
+ (4oofl204 —60005)616263 — (4floflia4 —4ooa .03+0103)616! 
— 000463 + 20003046363 - (4000204+0003 - 0104)6363 
— (2floaifl4 -"iouO 203+0103)6763 + (80504+2000103— 40003+0102)6263 
— (80^03-4000102+01)63 = 0. 

10. 03046162+036,63—036163 - 2a 10304616263 - 3o 1O3616! 
+ (40004 — 0304+0203)65;63+ (4000304+30105—0303)656363 
— (0003 — 0^04)616.63+301036163 ^ 2 
— (400O3O4 — 2oi02fl4+o 103)6163 — (4oofl 104+30503 — aia3)6i6!65 
+2O0O1O3616263—016163 + (0005 — 0104)63 + (4000104 2000203 
+ 0103)6363 — (40(2,04 —0003+0102)6363 +o!6363 —00016263 = 0. 

TABLE V 
Critical Points 

Coordinates 

Point 
62 
6. 

h. 
6i 

a 0 as 
Oi 

6 oooi+0^04—0,0203 
00(0104 —0203) 

000304+010204—0203 
00(0104—0203) 

c 01 20o03 — 0)02 
-ao 2floVa2 —40004 

2~(a2+ Vo|—ayi,) 

,1 0. 
Oo 

0102—OoOs 
OoOi 

05 0304 
O2O3—OiOi OoOj — OiOi 

J 
Oi | 2O0O3—0,02 

-ao 2aoVai-4aoa4 
5^(02- Vo| —4000,) 

R 0003+0104—010203 04(0003 —0102) 
OoOifli+000203—fliflo 000104+000203 — 0101 
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These critical lines and points are illustrated, for numerical cases, 
by Figs. 4 and 5. The graph showing the domain of real poles in 
Fig. 5 is inaccurate to the extent that the critical lines have been 
spread somewhat apart from each other in order to show the sequence 
in which they occur. The actual curves are shown accurately drawn 
and on a larger scale in Fig. 5a. Even on this scale, Curve 2 cannot 
be distinguished from the side of the rectangle. 

The diagrams for the domain of complex poles, as illustrated by 
Figs. 4 and 5, are approximately symmetrical with respect to the inter- 
changing of inductances and capacities, with corresponding inter- 
changes in all the curves and formulas. Thus b and g correspond, 
c and /, d and e, 2 and 3, 5 and 6, 8 and 9, on and ou, a-i and a;t; while 
a, 1, 4, 7, and 10 remain unchanged. In the domain of real poles shown 
by Fig. 5, this symmetry does not appear. The explanation of this 
apparent discrepancy is as follows: Upon interchanging inductances 
and capacities, the values of the roots are changed to their reciprocals. 
Thus Fig. 5 is symmetrical with the corresponding figure drawn for 
the case of roots equal to —1, —1/2, —1/5, and —1/7, and thus 
symmetrical with the figure drawn for roots at —7, —7/2, —7/5. 
and —1, since the relative distribution of the roots is the same. This 
set of roots differs not very considerably from the original set of 
roots, in reverse order. In the main, therefore, the two figures may 
be expected to be approximately the same, that is, the original figure 
symmetrical with itself. In the rectangle, however, very small 
numerical changes in the constants make relatively large changes in 
the curves; so it is not surprising to find a lack of symmetry here. 
If the roots are assigned so that the product of two roots is equal to 
the product of the other two, there will be true symmetry in the 
corresponding diagram. 

Table III lists 38 circuits, giving a total of 102 networks. Of these 
networks, three are essentially the equivalent of networks obtained 
from a one-mesh circuit, one realizes only those impedances which 
have one pair of pure imaginary roots, and, of (he 98 remaining, 41 
have superfluous elements. This leaves a total of 57 networks, of 
which 11 realize the entire domain as given by Theorem II, 12 realize 
regions in the domain as given by Theorem III, 23 realize critical lines 
in the domain, and 11 realize critical points. 

The eleven networks of Theorem II are included in the first column 
of Table III and shown in detail by Fig. 1. Formulas for the com- 
putation of their elements are given by Table I. Thus the values 
of these elements can be computed directly in terms of the coefficients 
of the impedance expression as stated in the form (lb). The following 
method of computation is convenient:—First compute d as the root 
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of the quadratic equation (21), which is repeated at the bottom 
of the table. Then find c by subtracting this value of d from a2. Next 
compute 7"i, 7\., and T^, assigning signs so that the identity b\l\ 
-\-b*T*-\-hzTz = ft is satisfied: this is possible since the equation for 
d was obtained by rationalizing this relation among the 7"s. There 
are. in general, two sets of signs for which this identity is satisfied; 
it is immaterial which set is chosen since the signs of all the 7"s may 
be changed without changing the values of any of the elements. 
Then compute Ui, Ui, and Ui, assigning positive values to each of 
these. With the values of all these quantities determined, the values 
of the elements of the networks can be calculated directly from the 
formulas given in the body of the table. If this solution turns out to 
be impossible, that is, if the value of an element is found to be nega- 
tive or complex or if the value of a mutual inductance is found to be 
greater than the square root of the product of the associated self- 
inductances, it means that the conditions upon the roots and poles 
are not satisfied. If the conditions established in the first part of 
this paper are satisfied, the solution is possible. 

These formulas give all the special cases of the eleven networks 
automatically, that is, the values of the appropriate elements will 
turn out to be zero or infinite, as the case may be. Since each of these 
eleven networks covers the entire domain, they are all mutually 
equivalent at all frequencies. These are the only networks without 
superfluous elements which cover the entire domain, that is, any net- 
work covering the entire domain must be one of these eleven or a 
network obtained from one of these by introducing additional ele- 
ments. Each of the eleven contains just seven elements; thus the 
prediction that a seven-element network would cover the entire 
domain is verified. The three remaining networks of this same type, 
one from Circuit (j and two from Circuit 9 of Table III give special 
cases only, in the sense that each of these can realize only those im- 
pedances which have a pole lying on Line 2; thus each of these three 
contains a superfluous element, since all the points on Line 2 can be 
realized by six-element networks, as shown in the fourth column of 
the table. 

Network 1 of Fig. 1 is of particular interest since it consists simply 
of two branches in parallel, each containing resistance, capacity, and 
self-inductance, with mutual inductance between them.10 By Theorem 
II, this network can be made equivalent to any network whatsoever 
obtained from a two-mesh circuit. 

l0 It will be shown in a subsequent paper that any driving-point impedance of an 
w-mesh circuit can be realized by a network of n branches in parallel, each branch 
containing resistance, capacity, and self-inductance, with mutual inductance between 
each pair of branches. 
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The twelve networks of Theorem III are included in the second 
column of Table III and shown in detail by Fig. 2. Formulas for the 
computation of their elements are given by Table II. The values of the 
elements can be computed by the same rule as that given above for 
Table I. 

Each of these twelve networks realizes those impedances which 
have poles lying in a certain restricted area or region of the entire 
domain of possibilities, as indicated for each network in the table by 
a specification of the boundary curves of the area. For each par- 
ticular impedance in the domain various sets of these twelve networks 
are mutually equivalent. Some points in the domain cannot be 
realized by networks without mutual inductance. Of the remaining 
points, each is realizable, in general, by at least three, and by not 
more than five, of these twelve networks. This region of the domain 
which is realizable without mutual inductance is covered, with no 
overlapping, by each of the four following sets of networks: 13, 17, 
and 21; 13, 18, and 22; 14, 17, and 23; 15, 19, and 21; the numbers 
refer to the networks of Fig. 2. 

That portion of the domain which cannot be realized by networks 
without mutual inductance comprises the three regions bounded by 
Fi and 5, Fj and 7, and T7 and 6, respectively, as illustrated by Figs. 
4 and 5. 

The third and fourth columns of Table III show a total of 23 net- 
works, each with six elements, realizing lines in the domain. Of 
these, eleven are derived as special cases of the networks of both 
Figs. 1 and 2, six as special cases of Fig. 1 but not of Fig. 2, and six 
as special cases of Fig. 2 alone. The fifth column of the table shows 
the eleven networks, each with five elements, realizing points in the 
domain. 

6. Formulas for Calculation of General Network 

Formulas for the calculation of the values of the elements of the 
general network of Fig. 7 are given in Theorem IV. These are given 
in the form of nine equations (7)-(lo), inclusive, involving the twelve 
elements of the network and two parameters, d and k. The para- 
meter d, however, is fixed by the impedance, since the left-hand mem- 
bers of equations (13)-(15) satisfy the identity (20). Upon sub- 
stituting the right-hand members in the identity and rationalizing, 
equation (21) is obtained, this being a quadratic equation in d with 
coefficients which are functions of the known coefficients of the im- 
pedance. Since d is fixed in this way, there are essentially eight 
equations in thirteen variables,—the twelve elements and the arbi- 
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trary parameter k. In general, therefore, five of the elements may 
be specified, or five relations among the elements; whereupon the 
equations can be solved. Thus it is to be expected that a seven- 
element network will realize, in general, any specified driving-point 
impedance. 

This method of solution is best illustrated by considering a par- 
ticular case. Take, for example, the derivation of the formulas for 
Network 1 of Fig. 1, as given by Table I. This is the special case of 
the general network of Fig. 7 obtained by making Lx = R\ = Cvx = M\-> 
= M 1,1 = 0. Substituting these values, together with the notation of 
Table I, equations (7)-(15) become 

R2R3 =dkr, 
DiD3 = aik'1, 

Lo+Lz — 2M23 = bik2, 
R.2+R3 = b2k-, 
Dn_+D3 = b3kn-, 

R2D3-R3D2=Tlk
3, 

DiLz - DzL* - (Lb - D3)M23 = Tok3, 
URz -L3R2 - {R* - R2)M.23 = T3k

3. 

Eliminating R*, R3, D*, and D3 from the second, third, fifth, sixth, 
and seventh of these equations, the value of k is found to be equal to 
± Ui/T],. Knowing the value of k, the equations may then be solved 
for the seven elements, obtaining the results given in Table I. The 
two sign choices for k in this example correspond to the possibility of 
interchanging branches 2 and 3 in the network. The values given in 
Table I are computed for k taken with the negative sign. 

In the general solution, the parameter d is obtained from the 
quadratic equation (21). The explicit solution of this equation is 

. 2aibi2-\-aob2- + 2anb3
2—a3b\b2 — la^bxbz — aibobsdzVA /qi\ 

d=  (34) 

where 
A2 = afbl

i-\-aoaib->l+(id1b:il - asUib^b-i - (2a2^ — a3
2)bi3b3 — a iaxbd)A 

— aod^bAbu — (2a(la2 — a i2)bib3
3 — a0aib2b3

3 

-Ffl2®4^i^22~F (®22"F 2Qofli — 2aia3)bi'lb3
2-\-(io(i2b2~b3' 

+ (Saiai—aza^b^bvbs — (4aoai — a]a3)bibAb3 

+ (3aoa3—aia2)blb2b3
2, (35) 

= <7o':(«l25l + a:i62 + 53) (oi22bi-\-CX2b2-\-b3) 
(a3

2bi-\-ct3b2-{-b3}(oci2bi-\-o!ib2-\-b3), (36) 
= ajbi^ai — ^2) (on — Pz) ("2 — Pi) ("2 — Pi) 

(a3 — P2)(oi3 — P3)(ax — P2)(ai — P3). (37) 
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In the case of real and distinct poles, formula (34) gives, in general, 
two positive values of d satisfying the necessary conditions (4)-(6), 
and thus two solutions for any particular network. For complex 
poles, only one such value of d is obtained, and there is thus a unique 
solution in each case. For real and equal poles, 6o2 —46i&3 = 0, and so 
formula (34) does not apply directly; in this case, however, (21) 
reduces to a linear equation in d, so that the solution can be readily 
found. 

An obvious necessary condition for a solution is that A2>0, for 
otherwise the value of d would be complex. This condition is satisfied 
for any choice of poles provided there is not an odd number of real 
roots lying between two real poles. Thus for the case of all complex 
roots or for the case of complex poles with any choice of roots this 
condition is automatically satisfied. It is interesting to note that 
an impedance expression with poles failing to satisfy this condition 
cannot be realized by any network with positive or negative resist- 
ances, capacities, and inductances; it can be realized only by a net- 
work with elements having complex values. 

7. Networks with Negative Resistances 

If negative resistances are allowed in the two-mesh circuit, the only 
change necessary in the statement of the results of this investigation, 
as given in Theorems I-IV, is the removal of the restrictions on + ao ^0, 
as+oM^O, and d>0. This removes the restriction of 
the real part of each root and pole to negative or zero values. The 
removal of the restriction on d adds to the domain of poles, considered 
in the x, y plane, all the ellipses of the family — 0° <d<0, thus filling 
out the region above the critical parabola (33), together with the 
corners in the case of real roots. In the u, v plane the domain com- 
prises the entire upper half of the complex plane and, in the auxiliary 
diagram, the complete triangular corners and the rectangle, with the 
provision that the rectangle is not included in the case of two roots 
positive and two negative. 

By means of a two-mesh circuit employing negative resistances, 
any impedance expression of the form (1) can be realized, with roots 
arbitrarily assigned in conjugate pairs or in real pairs, subject only 
to the condition that the number of positive roots is even, and with 
any pair of complex poles or with a pair of real poles lying anywhere 
in the ranges from the first to the second real roots and from the third 
to the fourth real roots, arranged in order of magnitude, subject only 
to the condition that both poles must be positive or both negative. 
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The network diagrams and all the formulas for the calculation of 
the elements remain unchanged. 

8. Mathematical Proof 

The circuits treated in this investigation are special cases of the 
general circuit which has any number of terminals m connected in 
pairs by m(w —1)/2 branches, each of which consists of a self-induct- 
ance, a resistance, and a capacity in series, with mutual inductance 
between each pair of branches. The only restrictions imposed are 
those inherent in all electrical circuits, namely, that the magnetic 
energy, the dissipation, and the electric energy are each positive for 
any possible distribution of currents in the branches. Circuits with 
any arrangement of elements in series or in parallel or in separated 
meshes can be derived as limiting cases of this general circuit by- 
making a sufficient number of the inductances, resistances, and capaci- 
ties either zero or infinite. 

This general circuit connecting ?n terminals or branch-points has 
« = (w —1) {m - 2)/2 degrees of freedom, that is, n independent 
meshes. The discriminant11 of the circuit is the determinant A 
having the element Zjk in the jth row and kth column, Zjk being the 
mutual impedance between meshes j and k (self-impedance when 
j = k), the determinant including n independent meshes of the circuit. 

The driving-point impedance in the gth mesh is equal to the 
ratio A/Agg, where Agg is the cofactor of the element in the gth 
row and gth column of the determinant A. In general, the cofactor 
of the product of the elements located at the intersection of rows 
j, q, s, . . . with columns k, r, I respectively, will be denoted by 
Ajk.qr.sl. . .• 

The determinant A for the general circuit described above is of 
order n with the element 

Zjk = iLjkp-p Rjk + (iCjkp)~l (38) 

where L,*, Rjk, and Cjk are the inductance, the resistance, and .the 
capacity, respectively, common to the two meshes j and k. The 
inductance Ljk includes, therefore, the self-inductances of the branches 
common to the two meshes together with the mutual inductances 
connecting each branch of one mesh with each branch of the other 
mesh. The determinant is symmetrical, that is Zjk = Zkj, since 
Ljk = Lkj, Rjk = Rkj, and Cjk = Ckj. 

11 A complete discussion of the solution of circuits by means of determinants has 
been given by G. A. Campbell, /or. cil., pages 883-886. 
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These coefficients Ljk, Rjk, and Cjk are subject to the energy con- 
ditions stated above, namely, that the magnetic energy, the dissipa- 
tion, and the electric energy, 

2 n n n n j n n j 
~2 2 2 Ljkijikt ^ ^ Rjkijik, and — ^ J ijdt | ikdt, (39) 

j=i k=\ j=lk=l 

respectively, are each positive for any possible distribution of the 
currents {ij, ik, . . .) in the branches of the circuits.12 In other words, 
the coefficients Ljk, Rjk, and 1 /Cjk are subject to the condition that 
the three quadratic forms of which these are the coefficients must be 
positive for all real values of the variables. All the principal minors 
of the determinants 

Tn T12 . • . L\n 

Lzi Z<22 • • • Lzn 

Lni Lr L, 

Rn Rl2 • • ■ Rln 

R21 R22 • • • Rin 

Rnl Rn2 . . . R tin 

and 

1 1 . . 1 
C11 C12 Ci„ 

1 1 . . 1 
C21 C22 C'>n 

1 1 . i 
Cnl C„2 • • cnn 

(40) 

are positive or zero by virtue of this condition.13 This same condi- 
tion holds for the inductances if the coefficients Ljk apply to branches 
instead of meshes. 

By expanding the determinants in the numerator and denominator 
of the expression for the driving-point impedance given above, we find 

A _ao(^»"+fli(^»"~1+a2(^»"~2+- • •+a2»-i(fp)~"+1+Q2»(^»~" 
gq~ bi(ip)n-1-\-b2(ip)n-2+. . .+b2„-i(ip)-"+l Sq~A ~ (41) 

12 For a recent statement of the energy conditions in this form see L. Bouthillon, 
Revue Generate de I'Electricite, II, 1922, pages 656-661. 

13 A necessary and sufficient condition that the real quadratic form in n variables 

2 2 fijkxj\-k j=lk=I 
(«>*:= Ofa), 

be positive for all real values of the variables is that each of the n determinants, 

flu, 
Oil fll2 
O21 022 

On O12 • • a In 
021 Oo; . • «2» 

Orel On2 • • aHn 
be positive. For a proof of this see, for example, H. Hancock, "Theory of Maxima 
and Minima," 1917, pages 82-91. 
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Upon substituting \ = ip, multiplying numerator and denominator 
by X", and dropping the subscript g, formula (41) becomes 

_floX2"-(-aiX2"_1-|-02X2"_2-f-. . .+a2«-iX+a2H 
/>1X2"-1+62X2«-2 + . . .+62,,—iX 

which may be taken as the most general form of a driving-point 
impedance. This formula, therefore, gives the impedance of the 
circuit for any electrical oscillations of the form eM, where X may 
have any value, real or complex. Formula (42) may be written in the 
alternative form 

.,(X —ai)(X —q:o)(X —as) • • • (^~«2m-I)(X — a2„) 
X(X —/3o)(X —^3) • • • (X —^2„_i) • (43) 

Thus there are 2n roots of S, regarded as a function of X, which are 
the 2n resonant points of the circuit. There are also 2n poles of S, 
which are the 2n anti-resonant points of the circuit, namely, zero, 
infinity, and the 2m —2 resonant points of the circuit obtained by 
opening the branch in which the driving-point impedance is measured. 

Upon setting w = 2 in equations (43) and (42), formulas (la) and 
(lb) are obtained, respectively. 

From the fact that the coefficients Ljk,Rjk, and 1 /Cjk satisfy the 
quadratic form conditions (39), it can be shown mathematically 
that the coefficients an, cq, . . . , a^, of (42) are all positive and that 
the roots ai, ao, . . . , ai,, of (43) have negative real parts.14 This 
can also be shown from the fact that the free oscillations of the circuit 
are of the forms e"', eAi/, . . ., e*'"'. Thus the roots occur in pairs 
each of which has negative real values or conjugate complex values 
with negative real parts. 

The same restrictions hold for the coefficients bu bn, , bo„_i 
and the poles /So. /Ss, . . . , p2„-i since the denominator of S, with the 
exception of the factor X", is also the discriminant of a circuit. Thus 
the general restrictions (2) are obtained. 

In order to obtain the necessary and sufficient conditions that a 
function of the type (lb) represent a driving-point impedance realiz- 
able by a two-mesh circuit, set this function equal to the impedance 
of the most general two-mesh circuit and investigate the conditions 
which must hold upon the coefficients in order that the two forms 
may be equivalent. 

"The mathematical work is identical with the mathematics of the corresponding 
dynamical problem. A detailed proof is given by A. G. Webster, loc. cit. 
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Ln L12 i Rn i?,2 On 0,2 
, and 

L12 L22 ' Rv2 R>-1 O12 O22 
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The discriminant of the most general two-mesh circuit is of the form 

LuX+i?u+i>uX -^i^X-f-i^iaT-OisX 1 

LioX + ^io+^.oX-', L22X + i?22+022X-1 

where the three sets of coefficients, using Djk instead of l/Cjk, are 
subject to the restriction that the three determinants 

(45) 

are all positive or zero, as well as Ln, Rn, and Du- This condition 
requires L22, R™, and -D22 also to be positive or zero. 

The most general driving-point impedance of a two-mesh circuit 
may be taken as the impedance in the first mesh of the circuit definea 
by the discriminant (44). Set A/An equal to the value of 5 given 
by (lb). Expanding into polynomials in X, and equating coefficients 
of the numerators and denominators of the two expressions, the 
following relations are obtained: 

LiiLi* — Lh = aok2, 
L 1 \R,11~\~ LllRll — —R 12-^12 = d\k', 

LnDwA- LzzDnA- RuRw — 2L 12.D 12 — i??-. = atk2, 
R\ l^22_l_RilDw — 2i?]2^12 

DnD™ — Dl, = aik-, 
L12= h\k~, 
Rvl = b-,k-, 
Dn = b*k\ 

(4(ij 
(47) 
(48) 
(49) 
(50) 
(51) 
(52) 
(53) 

Introduce the notation 

(54) 
where k has any real value other than zero. 

RnRn-R:i. = dk-, 

where d is positive or zero. Then, using (46), (54), and (50), eliminate 
Lu, -ftn, and Dn from equations (47)-(49), obtaining 

(L12-R22 - /.22-K12)2 = k9-(-dLl2+aiL™R22 - auRl), (55) 
(Z),2L22 - D^LnY = ife2l - 00^22+ (a 2 - ^) ^22^22 - a.LQ. (56) 
{RnDoo - R-^DxA- = A'2(-diRit+asRvDo* - dDfr). (57) 

Using (51)-(53), eliminate L2i, R-n. and D22 from the right-hand 
members of (55)-(57); extract the square root; rearrange the order 
of the equations, obtaining 

i? 12.022 —-K22-012= ±A3( —+ —rf5:t
2)1''2, (58) 

012L22 — O22O12 — ± A3[ —flo632"t_(tt2 —^)^3&i — (59) 
L|2i?22-L22i?i2=±^(-^1

2+a15,&2-flo522)l/2. (00) 
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Thus conditions (4)-((i) are obtained directly from (.F)8)-(60). The 
left-hand members of (58)-((i()) satisfy the identity 

(i?I2^22 - i?22Z5I2)L22+ (Z)I2L22 - D^Ln)R22 
— L22R12) D22== 0. (61) 

Substituting (51)-(53) and (58)-(60) in this identity (61), and rational- 
izing, equation (3) and its equivalent (21) are obtained. 

For the general network of Fig. 7, 

Ln = Ly'+LS, Ll2 = L2', L22 = L2' + L,', i 

= TR2, RIO — Rn, Roo = RO-\-R2, (62) 

Dn=Dx+Do, D12== D 2, Do2 = 

where L/, L2', and LJ are defined by (17)-(19). For this set of con- 
stants, branch 2 is made the branch common to the two meshes; the 
choice of branch 3 as the common branch would not affect the final 
formulas. Substituting these values (62) in (46), (54), (50)-(53), 
and (58)-(60), equations (7)-(15) are obtained directly. 

Thus Theorems I and IV are completely proved. Theorems II 
and III are verified by the actual formulas for the elements given in 
Tables I and II, and by the census of networks presented in Table III. 

I am indebted to Dr. George A. Campbell for inspiring the writing 
of this paper and for specific advice upon many points, and to Miss 
Frances Thorndike for the preparation of the tables and figures. 
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