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Abstract; The growing practical importance of transients and other 
non-periodic phenomena makes it desirable to simplify the application of 
the Fourier integral in particular problems of this kind and to extend 
the range of problems which can be solved in closed form by this method. 
Unless the physicist or technician is in a position to evaluate the definite 
integrals which occur, by mechanical means, he is usually entirely de- 
pendent upon the results obtained by the professional mathematician. 
To facilitate the use of the known closed form evaluations of Fourier 
integrals many of them have been compiled and tabulated in Table I. They 
are presented, however, not as definite integrals but as paired functions, one 
function being the coefficient for the cisoidal oscillation (or complex expo- 
nential) and the other function the reciprocally related coefficient for the 
unit impulse. This arrangement simplifies the table and promises to be 
most convenient in practical applications, since it is the coefficients of which 
immediate use is made, just as in the case of the Fourier series. Applica- 
tions of the tabulated coefficient pairs to 85 transient problems are given, 
together with all necessary details, in Table II. 

Introduction 

THE Fourier Integral and the Fourier series are alternative expres- 
sions of the Fourier theorem, the series being a limiting case of 

the integral and vice versa. Usually the theorem is approached 
from the side of the series, but there are also advantages in the approach 
from the integral side, which is the method followed in this paper. 
The generality and importance of the theorem is well expressed by 
Kelvin and Tait who said: "... Fourier's Theorem, which is not 
only one of the most beautiful results of modern analysis, but may 
be said to furnish an indispensable instrument in the treatment of 
nearly every recondite question in modern physics. To mention only 
sonorous vibrations, the propagation of electric signals along a tele- 
graph wire, and the conduction of heat by the earth's crust, as subjects 
in their generality intractable without it, is to give but a feeble idea 
of its importance." For any real understanding of the theorem it is 
necessary to appreciate why it is one of the most beautiful mathe- 
matical results and why it furnishes an indispensable instrument in 
physics. 

The Fourier integral is a most beautiful mathematical result because 
of the economy of means employed in obtaining a most general result. 

1 Presented September 13, 1927, in preliminary form at the International Congress 
of Telegraphy and Telephony in Commemoration of Volta. 
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One form of integral is used both to analyze and to synthesize. 
In both cases it is the product of the arbitrary function and 
the elementary sinusoidal oscillation which is integrated. This 
achieves the mathematical counterpart of spectrum analysis and 
spectrum synthesis. The functions resulting from analysis and 
synthesis stand in a mutually reciprocal relation.2 They are paired 
with each other. Either of these functions may be assigned with an 
astonishing degree of arbitrariness. Singular cases being excepted, the 
mate function is then determined uniquely and definitely by the 
integral. While the sine, cosine and complex exponential are most 
commonly used as the elementary expansion functions, an entire class 
of functions present the same fundamental relations and find applica- 
tions in the more recondite problems. 

The Fourier integral is an indispensable instrument in connection 
with physical systems in which cause and effect are linearly related 
(so that the principle of superposition holds) because it gives at once 
an explicit formal solution of general problems in terms of the solution 
for the sinusoidal case which is often readily found. This explicit 
general solution makes use of two Fourier integrals, one for the spec- 
trum analysis of the arbitrary cause and the other for the spectrum 
synthesis of the component sinusoidal solutions. No further con- 
sideration of the actual physical system is necessary after the ele- 
mentary sinusoidal solution has been obtained. This point of view 
has become a part of our general background of thought. 

Unfortunately the actual evaluation of specific Fourier integrals in 
closed form presents formidable if not insuperable difficulties. Only 
a small number of distinct general integrals have been evaluated in 
closed form in the century and more which has elapsed since the Fourier 
integral discovery was announced. Additions to the list of evaluated 
Fourier integrals can ordinarily be made only by the professional 
mathematician. Unless the physicist or technician is in a position to 
evaluate Fourier integrals by mechanical means, or is satisfied to 
employ infinite series or other infinite processes in place of the definite 
integrals, he is usually entirely dependent upon the evaluations which 
the professional mathematician has made in the past or is able to 
make for his special use. On this account, it is often desirable to so 
formulate practical problems that only evaluated Fourier integrals 
will occur. It would be well for the physicist and technician to become 
familiar with the Fourier integral evaluations which the professional 
mathematician has achieved. 

2 The fundamental importance of the Fourier integral may be associated with an 
analogy which exists between the integral and the imaginary unit, both considered 
as operators. In both cases two iterations of the operation merely change a sign 
and four iterations completely restore the original function. 
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It is the purpose of this paper to take the first steps towards the 
preparation of two tables, one giving the evaluations of Fourier 
integrals and the other giving the sinusoidal solutions for physical 
systems. Together they would reduce the practical application of 
the Fourier integral to the selection of three results from these two 
tables. Thus by means of the first table the arbitrary cause could be 
resolved into a sum of sinusoidal causes; by means of the second table 
the solutions for these sinusoidal causes could be supplied; and, 
finally, by means of the first table again, the effect of superposing 
these sinusoidal solutions could be shown, and thus the answer to the 
original problem would be given. 

The preparation of the tables calls primarily for a compilation of the 
results already obtained by pure analysis, after which new evaluations 
and new solutions should be added, in so far as is possible. No attempt 
has yet been made to completely cover the existing literature on the 
subject, which extends back over one hundred years and is extensive 
and widely scattered. But sufficient has been done to show that the 
forms of the tables which are proposed are most convenient for prac- 
tical application. 

Paired Coefficients—Terminology 

The Fourier integral theorem has been expressed in several slightly 
different forms to better adapt it for particular applications. It has 
been recognized, almost from the start, however, that the form which 
best combines mathematical simplicity and complete generality makes 
use of the exponential oscillating function ei2lTft. More recently the 
overwhelming advantage of using this oscillating function in the 
discussion of sinusoidal oscillatory systems has been generally recog- 
nized. It is, therefore, plain that this oscillating function should be 
adopted as the basic oscillation for both of the proposed tables. A 
name for this oscillation, associating it with sines and cosines, rather 
than with the real exponential function, seems desirable. The abbre- 
viation cis x for (cos x i sin .•v:) suggests that we name this function 
a cis or a cisoidal oscillation. This term is tentatively employed in 
this paper. The notation cisilirft) is also employed where it Is 
desired to use an expression which is essentially one-valued, which 
avoids the use of exponentials, or which suggests periodic oscillations 
by its connection with cosine and sine.3 

3 Since the cisoidal oscillation is simply a uniform rotation at unit distance about 
the origin in the complex plane, it may be desirable to try some compact notation 
which directly suggests this rotation; for example, ru(/f), lft, p'1 might be defined 
as the complex quantity obtained by rotating unity through ft complete turns or 
4/i quadrants. 
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In a table of Fourier integrals, every integral expression would then 
contain, in addition to the arbitrary function F{f), the same oscillat- 
ing function cis{2irft), the same integral sign with limits —00,4-00 
and the same differential df. To repeat any such group of a dozen 
characters in each of several hundred entries seems quite unnecessary. 
It is, therefore, proposed merely to tabulate the arbitrary function 
F(f) and the value G{t) for the evaluated integral expressed as a 
function of the time. The table is thereby reduced to two parallel 
columns of associated functions, one of which is employed as the 
coefficient of the elementary cisoidal function while the other is 
a function of the independent time variable. The table would, 
however, be more symmetrical if both of the associated functions 
could be regarded as coefficients of an elementary function. This 
may be done by introducing the unit impulse as an elementary func- 
tion, the impulse occurring at the epoch g at which instant it presents 
a unit area whereas its value is zero for all time before and all time 
after the epoch g. This is an essentially singular function and to 
recognize this fact it will be designated by — g) which is intended 
to emphasize the singularity. The time function may now be replaced 
in the table by the same function of the parameter g, since the time 
function G(t) is equal to the integral with respect to g between infinite 
limits of the product G(g)$$o{t — g). 

The table of Fourier integrals has now become also a table of paired 
coefficient functions. This means that if the coefficient F(f) is em- 
ployed with the cisoid, and the coefficient G(g) is employed with the 
unit impulse, and both products are summed for the entire infinite 
range of their parameters / and g, the same identical resulting time 
function is obtained.4 Taken in connection with their respective ele- 
mentary functions, the two associated coefficient functions are, there- 
fore, equivalent, alternative ways of representing a particular time 
function. This is the fundamental geometrical or physical point of 
view which is needed in connection with the practical application of 
the Fourier integral theorem. For this reason the table has been 
headed a table of Paired Coefficients; as explained above, however, 
it may equally well be considered to be a table of Fourier Integrals. 

There is another fundamental reason for placing both of the func- 
tions F{f) and G(g) on the same footing as coefficients. It is this: 

4 The use of frequency and epoch as the two parametric variables gives us many 
symmetrical formulas where, if the radian frequency were employed, an unsym- 
metrical 27r would occur. In practical applications the frequency of the coefficient 
pairs becomes the frequency which is ordinarily employed in acoustics, in^ music 
and in commercial alternating currents. The basic unit for frequency is the reciprocal 
second; the unit for epoch is the second. 
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Fourier's fundamental discovery was that the two functions may be 
transposed in the Fourier integral if the sign of one of the parameters 
is reversed. Thus, either one of the two functions constituting any 
coefficient pair may be taken as the coefficient of the cisoidal oscilla- 
tion, provided only that the proper sign is given the epoch parameter 
occurring in the other function. For this reason also both functions 
are thus quite properly regarded as coefficients. 

It is found convenient to call each coefficient of a coefficient pair 
the mate of the other coefficient, pair and mate being employed just 
as in the case of gloves. To find the mate of a glove, it is necessary to 
know all about the given glove including the fact as to whether it is 
the right or the left one of the pair. In the same way, to find the mate 
of a coefficient function, it is necessary to know not only the form of the 
function, but, in addition, whether its variable is the frequency or the 
epoch. The notation dllG{g), dUF{f) will be employed to indicate 
the mate of the particular coefficient G{g), F(f). 

We have now defined and explained the proposed terminology for 
use in the practical application of the Fourier integral theorem. 
Before proceeding to practical applications, It is desirable to become 
familiar with these coefficient pairs considered in their own right. 
We may well begin by reminding the reader of the dissimilarity be- 
tween the elementary oscillations. 

The Two Elementary Functions Contrasted 

The dissimilarity between the two elementary functions of the 
time, the cisoidal oscillation cis(27r//) and the unit Impulse ^»o(^ — g) 
is most striking. This is clearly shown by the wire models of Fig. 1 
where each function is depicted for five values of its parameter. For 
the value zero the cisoidal oscillation degenerates into an infinite 
straight line parallel to the time axis and cutting the real axis at 
x = 1. For the same value zero of its parameter g, the unit impulse is 
zero everywhere except at the origin where it has a vanishingly narrow 
loop extending to x = + <». 

For other values of the parameter, the cisoidal oscillation is always 
an infinite cylindrical helix, centered on the time axis, and passing 
through the point x = 1, while the infinite loop of the impulse 
function is displaced unchanged along the time axis to / = g. For 
positive values of the parameter /, the cisoidal oscillation is a right- 
handed helix, with pitch equal to/-1, and thus decreasing as/increases. 
For negative values of /, the pitch is the same but the helix is left- 
handed. 

Both functions have essential singularities, which are quite dif- 
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ferent both in character and in location. For the cisoidal oscillation 
the singularity is always located at / = co ; for the impulse the singu- 
larity is at / = g. 

The fundamental differences between the two elementary time 
functions adapt them for different uses. It is desirable to be in a 
position to employ first one and then the other, shifting from one to 
the other without any trouble or delay, so that at each step of a 
problem the elementary function best suited for use may be employed. 

wy A--V 

^x=1 x=1 x=1 X=1 x=1 
\ X 

f=-^ f=w f =-4- f=0 

t=^ .,2 .y 
t=o 

t=-w 

9--f g--J 3=° 94 9*1 

Fig. 1—Wire models of cisoidal oscillations cis (above) and of unit impulses 
— g) (below) for the particular values 0, ± 1/2, ± 3/2, of the parameters/and g. 

For this we require only an adequate table of pairs and a certain 
familiarity in the use of the pairs. It is desirable to acquire the habit 
of thinking of the coefficients of a pair as alternative representations 
of a curve. 

The Use of Table I for Obtaining Coefficient Pairs5 

The table is divided into nine parts. In Part 1 are given the general 
processes for deriving any coefficient mate; but such processes are to 

6 Five other closely related uses may be made of Table I as explained in the 
first footnote to that table. Operational expressions are brought within the scope 
of the table by substituting for the operator p = d/dg the particular value i2nf, 
other possible interpretations of the operator, if any, being ignored. 
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be employed only when it is necessary to start from first principles. 
All mates which have once been determined may be taken from the 
latter sections of the table with a great saving of time and energy. 
Part 2 of the table shows the elementary transformations and com- 
binations of pairs; these theorems may be employed either to extend 
a given table of coefficient pairs, or to cover a given group of coeffi- 
cients with a shorter table of specific pairs. It is assumed that anyone 
desiring to make serious use of the table will first become familiar 
with these elementary combinations and transformations; even the 
simple addition, factor and transposition theorems (201), (205), (217) 
are most useful. 

Part 3 of the table contains seven pairs, which are called key pairs 
because all specific pairs listed in the entire table may apparently be 
derived from them by specialization or by passing to a limit after any 
necessary use has been made of the elementary combinations and trans- 
formations of Part 2, amplified, as indicated, by the removal of certain 
unnecessary restrictions to real quantities. If an assigned coefficient 
is not included in Part 3 as thus generalized, then this coefficient cannot 
be found anywhere in Table I. Part 3, therefore, serves the useful 
purpose of giving a bird's-eye view of the entire table. The seven 
pairs are presumably redundant as they stand. 

For applicational purposes it is most desirable to have a table 
which lists the precise pair required; many special cases which have 
been used in practical applications may be found in Parts 4-9 of 
Table I which constitute a short classified list of particular cases. 
It is important to remember that a given coefficient should be looked 
for on the other side of the table if it is not found on its own side since 
all pairs are transposable by (217) or (218). In the tables as they 
stand, some pairs have been transposed, but this is not true in the 
majority of cases. 

Whenever an infinite process is to be employed, such as infinite 
series, integration or differentiation, the permissibility of the process 
is a question which must be answered for the particular case in hand; 
the formal result given in Table I may break down, for example, if 
either the original or the transformed pair is a singular pair. This 
general warning necessarily applies to every part of the subject of 
coefficient pairs just because it is a part of the general subject of mathe- 
matical analysis. 

It is intended that the statement of each pair in the entire table 
shall eventually include every limitation and every warning which 
the mathematical sponsors for that pair would consider necessary to 
guarantee its safe use by anyone understanding the fundamental 
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nature of coefficient pairs. A beginning has been made by specifying 
the branches of multiple-valued functions and the method of approach- 
ing limits. When this has been fully carried out, any pair may be taken 
from the table and used without the least concern as to the analytical 
methods by which the validity of the pairs has been established. Thus 
the finished table will make possible a complete separation of the 
analytical evaluation of all known Fourier integrals from their practical 
applications. 

Having now explained, in a general way, the use of Table I, it will 
be useful to consider in detail a limited number of the pairs which 
are of special practical interest. 

General Processes for Deriving the Mate 

The table is naturally headed by the two fundamental Fourier 
integrals (101), (102) because of their intrinsic importance as explicit 
and implicit definitions of coefficient mates. The chief purpose of 
the table, however, is to make it possible for the technical man to 
make the fullest use of coefficient pairs without concerning himself at 
all as to the analytical work of evaluating either of these Fourier 
integrals. Pairs (101) and (102) are thus intended to serve mainly 
as definitions for the pairs which follow. 

The statement has been made that essentially only one Fourier 
integral has been evaluated by determining the indefinite integral 
and substituting the integration limits. Whether or not this is pre- 
cisely true, the statement does illustrate the fact that the formulation 
of the Fourier integral does not in itself suggest a practical finite ana- 
lytical process for the actual evaluation of the definite integral. No 
such system of evaluating definite integrals is known. Writing down 
the Fourier integral amounts to little more than definitely formulating 
a question. 

If the coefficient F{}) is expanded as a finite or infinite series in 
powers of / (or p), the mate is given by pair (106*), and this involves 
a finite or infinite series of essentially singular functions which are 
further considered below in connection with Fig. 3. If a series 
expansion of F{f) is made in terms of any functions of / for which 
the mates are known, there is a corresponding series for the mate. 
Some of these pairs are shown as (104*)-(112). The possibility of the 
formal infinite expansion does not necessarily imply the convergence 
of the series in the case of coefficient pairs any more than in other 
general developments. 

The technical man is not ordinarily a master of infinite series, 
definite integrals or other infinite processes. It is, therefore, highly 
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desirable to give him coefficient pairs which are in closed form, that is, 
involve only a finite number of operations with known functions. 
Accordingly, the portion of the table expressible in closed form has 
seemed to be the part which should be developed first. Specific pairs 
requiring infinite series for their expression have not been included in 
this preliminary draft of Table I. The omission of these series and 
of other infinite processes does not signify any failure to appreciate 
their importance. It is intended to include specific infinite series later. 

The Elementary Transformations of Coefficient Pairs 

The simple addition theorem (201) is of the greatest practical im- 
portance. The summation may include any number of pairs; they 
may be quite unrelated, or they may be the successive terms of power 
expansions as shown in (106*)-(111*). Next to the addition theorem 
we may place the multiplication theorem (202) or (203), special cases of 
which are of great practical importance. Among these special cases 
are (206)-(211) where any coefficient is multiplied or divided by its 
parameter or by a cisoidal oscillation of its parameter. 

Any real linear substitution for the frequency and epoch parameters 
is made possible by the simple transformations (205)-(207), (214). 
The generalization of these transformations by the removal of the 
restriction to real numbers is allowable in important cases as is 
indicated by the parameters shown in square brackets with each 
pair of Part 3. 

The differentiation and integration of coefficients with respect to 
the frequency, epoch or other parameter give the important trans- 
formations (208)-(213). 

Some of the simple transformations continue to yield new results 
when they are repeated any number of times or when several trans- 
formations are combined in sequence. Pairs (216), (218)-(222) are 
examples of such combinations. All pairs in Parts 4-9 of this table 
may apparently be derived from the seven key pairs of Part 3 by means 
of these transformations employing complex parameters as indicated 
in Part 3, and passage to a limit in certain cases. 

The resolution of pairs into the four types of ^"-multiple pairs, as 
shown by pairs (223)-(225), throws considerable light on the nature 
of coefficient pairs. 

Some of the elementary properties of pairs are expressed in words 
as follows: 

Elementary Properties of Pairs 

(1) The sum or difference of pairs is a pair. Cf. pair (201). 
(2) Any constant multiple of a pair is also a pair. Cf. pair (204). 
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(3) Any linear combination of pairs is also a pair. Cf. pairs (201), 
(204). 

(4) The odd and even parts of every pair are also pairs. 
(5) If both coefficients of a pair are real, both are even. 
(6) If a pair has one real and one pure imaginary coefficient, both 

are odd. 
(7) If a coefficient is even and real, its mate is also even and real. 
(8) If a coefficient is odd and real, its mate is odd and pure imagi- 

nary, and vice versa. 
(9) If a coefficient is real, its mate has conjugate values for opposite 

values of its parameter and conversely. Cf. pair (216). 
(10) The conjugates of the coefficients of a pair are also a pair pro- 

vided the sign of either frequency / or epoch g is reversed. Cf. pair 
(215). 

(11) A pair with the signs of both frequency / and epoch g reversed 
is also a pair. Cf. pair (214). 

(12) The parameter of either coefficient may be multiplied by a 
positive real constant provided the other parameter and coefficient are 
each divided by the same constant. Cf. pair (205). 

(13) Coefficients of a pair may be interchanged if, when interchang- 
ing the parameters, the sign of one parameter, either/or g, is reversed. 
Cf. pair (217). 

(14) Any pair may be resolved uniquely into the sum of four pairs 
by pairing together: the even, real parts; the even, imaginary parts; 
the odd, real part of each coefficient with the odd, imaginary part of 
the other coefficient. 

(15) A pair may have the form (F(f), XF(g)) where the multiplier 
X is constant, if and only if X has one of the four unit values (1, i, 
— 1, — i). Such a pair is called an ^-multiple pair. Cf. pair (223). 

(16) Any ^"-multiple pair has both coefficients odd or even according 
as n is odd or even. 

(17) Any in-multiple pair with complex coefficients may be resolved 
into two in-multiple pairs with coefficients which are real or pure 
imaginary. 

(18) The coefficients of any two in-multiple pairs are orthogonal if 
the in multipliers are different. 

(19) The coefficients of any four in-multiple pairs with different in 

multipliers are linearly independent. 
(20) Any pair may be resolved uniquely into the sum of four in- 

multiple pairs; i.e., pairs of the form Fn(f), inFn{g). Cf. pair (224). 
(21) Any pair may be resolved uniquely into the sum of eight in- 

multiple pairs where Fn(f) is real or pure imaginary. Cf. pair (225) 
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Pairs Based on the Normal Error Law 

The identical pair (703), exp(— Trf2), exp(— 7rg2), is one of the 
simplest pairs and may well serve as the starting point in the considera- 
tion of specific coefficient pairs. Each coefficient is the broad impulse 
of the normal error law. It is remarkable that identical coefficients 
of this simple form should produce the same identical function when 
associated with either the cisoidal oscillation or the very different unit 
impulse. 

If the differential transformation (222), taking the upper signs, is 
applied to the normal error law pair (703), the infinite series of <£„ 
pairs (702) is obtained. Of these derived pairs, the first eight are 
written out as pairs (704)-(711). The cisoidal coefficients are alter- 
nately even and odd functions which oscillate in the neighborhood of 
the origin, each successive coefficient having an added half oscillation. 
The 4>n pair has {n -f 1) half oscillations. Beyond these oscillations, 
every coefficient in the infinite sequence decreases rapidly and asymp- 
totically to zero in both directions. The mates of these cisoidal 
coefficients are identically the same except for a constant coefficient 
which is in and thus goes cyclically through the four values, 1, it 

- 1, - i. 
The 4>n{x) functions are shown by Fig. 2. They are essentially the 

parabolic cylinder functions of order n. These coefficients may be 
used for the expansion of every function which, with its first two deriva- 
tives, is continuous for all positive and negative values of the variable 
and for which a certain integral exists. This expansion is known as 
the Gram-Charlier series, which appears in pair (112). 

Starting again with the normal law of error pair (703) in the form 
(701) and setting p = j/S/tt, and applying the differential transforma- 
tion (208) repeatedly, we obtain the infinite sequence of pairs (713) 
of which the first five are listed as pairs (714)-(718). The cisoidal 
coefficients are the successive integral powers of p multiplied by the 
normal error exponential. The impulse coefficients are essentially the 
</>„ functions multiplied by the normal error exponentials. These pair, 
are plotted in Fig. 3 for the special case /3 = a2 = 1. 

Both of the infinite series of pairs derived from the error function 
and shown in Figs. 2 and 3 are regular throughout, are nowhere infinites 
and vanish at infinity. 
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Essentially Singular Pairs for Integral Powers of the 
Parameter 

If in Fig. 3, with the value of n held fixed, we allow a to approach the 
limit 0, the cisoidal coefficient becomes pn and the impulse coefficient, 
which is compressed horizontally towards the origin and expanded 
vertically, with corresponding areas increasing as a-n, ultimately 
vanishes everywhere except at the origin where it acquires an essential 
oscillating singular point. At the limit, then, a singular pair is ob- 
tained; it will be designated as pn, §$n{g) is characterized by 
having all of its moments about the origin vanish except the nth. 
moment, which is equal to (— l)n»! The dotted graphs on the left of 
Fig. 3 show pn to the scales indicated. The curves on the right show 
■^ri(g) provided we assume that the horizontal scale is increased with a 
and the vertical scale increased inversely with an+l as a approaches the 
limit 0. Fig. 3 thus serves to picture the essentially singular function 

That is, it is sufficient if the coefficient maintains this form 
while proceeding to the limit. This form is, however, not essential. 
It is necessary only that the method of approach to the limit give the 
same set of moments. 

An alternative way of deriving the mate for the positive integral 
powers pn is by means of a linear combination of (w + 1) pairs of the 
form of (603) with parameters equal to a, 2a, Sa, (w + l)a, 
respectively, so that the first term in the power series expansion of the 
cisoidal coefficient is pn. The corresponding impulse coefficient is a 
succession of {n + 1) bands, each of width a, the first band beginning 
at epoch zero, the heights of the successive bands being equal to the 
binomial coefficients for power n divided by an+1 but alternately posi- 
tive and negative. The mth moment of this impulse coefficient is 0 
for m < n, equal to (—!)"»! for w = w, and proportional to am~n 

for m > n. Upon allowing a to approach zero, the cisoidal coefficient 
approaches pn, and the impulse coefficient approaches $$n{g), since in 
the limit the same set of moments is obtained as was found above to 
characterize the «th singularity function. This is pair (402*). 

The special cases for w = 0, 1 are of most frequent occurrence. 
They are pairs (403*), (404*). is the unit impulse since its 0th 
moment equals unity; #i is the doublet with the moment — 1 since 
its first moment is — 1. and all higher order singular functions 
are included in the series coefficients of (104*), (106*). 

Fig. 3 may be extended upward step by step from the normal error 
law pair by dividing by p on the left and integrating with respect to g 
on the right. At each step a constant of integration is introduced. 
The first two pairs thus obtained are pairs (725*) and (726*). Choos- 
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ing the integration constants so as to make the impulse coefficients 
alternately odd and even, these two pairs are as shown in Fig. 4. If 
we now allow a to approach the limit zero, a new series of pairs is 
obtained of which the first two pairs are shown dotted in Fig. 4 for 
the particular choice of integration constants there made. The general 
limiting pair is designated as p-n, §>-n(g) and it is shown with its n 
arbitrary parameters Xi, Xs, • • •, Xn as pair (410*). In some ways it 
is simpler to derive the limiting pair for negative integral powers of p 
from rational functions of p, which may be accomplished as shown by 
pair (411*). Special cases are shown by pairs (408*), (409*), (415*), 
(416*). 

w = 2 

n = 1 

-! 0 f i 

\ r 

«i 
i 

// 
yJ 

f i 
-1 0 j - 

/y' ' 

/ 

Fig. 4—Graphs for the family of pairs /)~nexp(— ira2/2), o_1Pff
-nexp( — vrgVa2), 

with the integration constants chosen so as to make the impulse coefficients alter- 
nately odd and even. The heavy curves show the cases a = 1, n = 1,2; the dotted 
curves show the limit a-*0, n = 1,2. 

The first of the series •^-i(g) is a unit step at epoch 0 from a constant 
value X — | for all negative epochs to the constant value X + ^ for all 
positive epochs. The constant X may have any value; this is a singu- 
lar case marked by the failure of the general rule that the choice of the 
cisoidal coefficient uniquely determines the impulse coefficient. This 
means that in any well set problem some other condition determines the 
value of the constant X. In some problems, for example, it is necessary 
that the epoch coefficient be an odd function, and then X vanishes. In 
other problems where either the epoch function must be zero for all 
negative epochs or on the other hand the p occurring in the cisoidal 
coefficient is actually the limit of ^ + a as a approaches zero through 
positive values, the constant X equals This limiting condition may 
arise if we assume that resistance may be ignored, as a first approxima- 
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tion, in studying actual systems which necessarily involve at least a 
small amount of dissipation. 

The mates of positive and negative integral powers of p, including 
the zero power, cannot be derived directly and definitely from the 
Fourier integral (101) without the specification of an additional 
passage to a limit. Such pairs therefore differ essentially from the 
great body of regular pairs where the choice of one coefficient com- 
pletely determines the mate. In order to permanently ear-mark these 
limiting pairs, their serial numbers in Table I bear a star. These pairs 
may be thought of as lying on the periphery of the great domain which 
includes the totality of regular pairs. 

Identical Mates and Other Simply Related Mates 

Since one of the coefficients of a pair may be assigned quite arbi- 
trarily, this choice allows us, if we so elect, to specify some relation 
between the two coefficients of a pair. We might specify that a linear 
combination \Fj{x) -f- fj-Gjix) of the two coefficients of a pair both 
taken with the parameter x is to equal an arbitrary function F{x). 
The pair (F,-, Gj) is then uniquely determined, unless X + inn = 0, 
being equal to pair (224) after each F„ has been divided by X + inn. 
Again if it is specified that one coefficient is to be the reciprocal of the 
other, a possible solution is pair (760). 

ForG 
1.0 

<?// / 

a 

/ 

^ 
-40 -0^5 0 F or g &5 i!o 

Fig. 5—Identical coefficient pairs of the form 
(1 + x-/p-)-iKi{2Trp-yll + x-/p"-)/K\{2-Kp"-), x = f or g. 

The condition that the mates shall be identically the same function 
of their parametric variables / and g is of special interest. In addition 
to the identical pairs shown on Fig. 2, w = 0, 4, 8, the table contains 
a number of identical pairs including (523), (625), (712), (761), (916). 
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The identical pair (916) divided by its value at the origin is shown 
in Fig. 5 for different real values of its parameter p. For p = + ^, 
the curve is of the exp(— irx2) or normal law of error form, and is 
identical pair (703). For p = |, the reciprocal hyperbolic cosine 
identical pair (625) is shown correctly within the width of the line, 
this being apparently a mere coincidence since pair (916) does not 
include it as a special case. Finally, for p = 0, the limiting curve 
coincides with the horizontal axis taken together with unit length of 
the positive vertical axis. This represents pair (523) divided by its 
value at the origin, which is infinite. The point to be especially noted 
is that the area under every curve of the family illustrated by Fig. 5 
is the same and equal to unity. This must hold for the limit p = 0, 
when the curve encloses no area within a finite distance of the origin. 

The identical pair l/_i |, lg_i j is of great simplicity and it occupies 
a central position among algebraic pairs. Starting with the minus 
one-half power of the parameters in both coefficients, any increase in 
the power of one parameter requires an equal decrease in the power of 
the other parameter as is illustrated, for example, by pairs (502*), 
(516*), (524). 

It is not permissible to specify any relation whatsoever between 
the two coefficients of a pair; for example, no pair exists for which one 
coefficient is twice the other. As stated above, the only multiples 
permissible are the four units 1, i, — 1, — i. For each of these four 
cases there are an infinite number of solutions. These solutions 
satisfy the integral equations given in the foot-note to pair (223). 

Practical Applications of Coefficient Pairs 

Fourier gave the first comprehensive method of finding the solution 
for transients. His method involves three steps: viz., 

I. Spectrum analysis of the cause among all frequencies. 
II. Solution for all frequencies. 

III. Spectrum synthesis of the effects for all frequencies. 

Fourier thus substituted three problems for one. With a table of 
Fourier coefficient pairs, these three steps may be made as follows: 

I. Find the mate of the cause considered as an impulse coefficient. 
II. Multiply this mate by the admittance for the system. 

III. Find the mate of this product considered as a cisoidal coefficient. 

These three steps define a perfectly definite result, since every arbi- 
trarily chosen coefficient has a mate which is unique and determinate, 
or may be made so by the specification of some suitable passage to a 
limit. 

42 
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The use of a table of pairs may also be stated in another and some- 

For any system where the principle of superposition holds, any cause 
C{t), its effect E{t) and the corresponding admittance Y{f) are con- 
nected by a relation which may be written in any one of three ways 
which explicitly express each of the three quantities in terms of the 
remaining two, as follows: 

where dllis read "mate of." 
The use of coefficient pairs may be most simply illustrated by 

reference to Figs. 3 and 4, in connection with the problem of finding 
transient currents through a perfect condenser of unit capacity due to 
impressed electromotive forces shown by each of the seven curves on 
the right considered as functions of the time. Any curve on the right 
being the cause, the next curve below it is the effect, considering Fig. 4 
to be placed above Fig. 3. In the solution the first step is to find the 
mate of the curve on the right. This is the curve on the left. This 
mate is then to be multiplied by the admittance of the system which 
is p for a unit condenser. Reference to the titles of the figures shows 
that this product is given by the next lower curve on the left. To find 
the mate of this last curve is the third step in the solution and for this 
it is merely necessary to go to the curve on the right. The three steps 
then take us from any curve on the right to the next curve below it. 
Figs. 3 and 4, taken together, are a section of an infinite sequence of 
pairs which illustrate an infinite number of possible transients in a 
perfect condenser of unit capacity. 

If, on the other hand, the system consisted of a perfect reactance 
coil of unit inductance and the impressed cause was again shown by 
any curve on the right, the effect would be shown by the next higher 
curve, assuming that the initial current at the beginning of time was 
that shown by the extreme left of the upper curve. Thus, when the 
cause is oscillating, there is one less half oscillation in the effect than in 
the cause. This is for an inductance. For a condenser, conditions 
are reversed; the effect has one more half oscillation than the cause. 

The scales of Figs. 3 and 4 may be changed to correspond to any 
value of a, the parameter which appears in the coefficients of the pairs. 

what more general way as follows; 

E(g) = 5)/r[F(/)c)/rC(g)]. 

C(g) = M r^(g)i 
L w) r 
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At the limit a = 0, the cause and effect would be the singular 
or §>_n functions. 

The curves on the right for « = 0 of Fig. 3 and w = 1 of Fig. 4 show 
that at the limit a= 0 a unit step in the voltage produces a unit impulse 
in the current through a unit condenser; on the other hand, a unit im- 
pulse applied to a unit inductance gives a current which is a unit step. 

The curves of Fig. 2 may be used to furnish another illustration of 
the use of coefficient pairs, in connection with the problem of finding 
networks in which assigned transient currents will be produced by 
assigned impressed electromotive forces. Any curve n being the 
assumed cause and the next curve («"+ 1) the assumed effect, the 
required admittance is </>n+i(/)/[«0n(/)]- This admittance is pre- 
sented by a ladder network of (w + 1) elements: perfect inductance 
coils in the series arms, perfect condensers in the shunt arms, the ladder 
starting with a shunt condenser, the values of the shunt capacities 
being equal to 2, 2n{n — I)-1, 2n(n — l)_,(w — 2)(n — 3)_1, etc., 
and the values of the series inductances being equal to (27rw)-1, 
(2irn)~1(n — l)(n — 2)-1, etc. In verifying the solution of this prob- 
lem, it is to be noticed that the mates of the curves n and (« + 1), 
regarded as impulse coefficients, are the same curves multiplied by i~n 

and i_(n+1); the quotient of the latter mate divided by the former 
mate is the admittance of the network as given above. 

On the other hand, any curve (n + 1) being the cause, the curve n 
is the effect in the reciprocally related ladder network of (n + 1) 
elements, starting with a series reactance coil, the values of the series 
inductances being equal to 2, 2n(n — I)-1, 2n(n — 1)-1(» — 2)(n — 3)-1, 
etc., and the values of the shunt capacities being equal to (27m)-1, 
(27m)-1(w — l)(w — 2)-1, etc. 

Practical Applications of Coefficient Pairs in Table II. 

In general, each of the three subsidiary problems employed by 
Fourier is unsolvable in closed form. In a strictly limited number of 
cases, however, all three problems have been solved and the final 
transient solution obtained. These solutions should be cherished and 
collected for ready reference. It is a needless waste of time to repeat 
the analytical work each time a solution is required. Except for a 
few special cases lying outside of the scope of the table, all practical 
applications of closed form coefficient pairs which were found in a 
preliminary search are included in the transient solutions of Table II. 
As it stands, the table is far from a complete list of closed form solu- 
tions, but it contains many important solutions and serves to illustrate 
the use of Table I. Table II contains 39 admittances, with references 
to 39 systems which serve to illustrate the occurrence of these admit- 
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tances. In the third, fourth and fifth columns, 85 transient solutions 
are given of which 39 are for the unit impulse, 30 for the unit step, and 
16 for the suddenly applied cisoid. 

The causes producing the transients in Table II are but three in 
number: the unit impulse, the unit step, and the suddenly applied 
cisoid; and the mates for these causes are unity, p~l and {p — £o)-1 

as is shown by pairs (403*), (415*) and (440*). Multiplying these 
three mates by the admittances and taking the mates of the products, 
we have the effects, as is stated in the headings of the last three columns 
of the table. 

To illustrate in detail the steps involved in finding a transient effect 
with the aid of Table I, consider system No. 14 of Table II with the 
cause equal to the unit step X = |. The mate of the unit 
step is p'1 by pair (415*). Multiplying this by F(/) as given in the 
second column of Table II, we have up-*{l + V^/X)-1 for the cisoidal 
coefficient. By pair (551) the mate of this is w Vx exp(Xg) erfc VXg, 
0 < g. Substituting for g the actual variable t, we have the transient 
solution as given in the fourth column and fourteenth row of Table II. 

This simple example fully illustrates the three essential steps in 
finding any transient effect when the admittance and pairs are known. 
In this example the effect was considered to be the unknown. If 
either the cause or the admittance were the unknown, the same pairs 
would be involved but the two coefficients in a pair would be used in 
the reversed sequence in all but one instance. 

There are still 32 squares of Table II left blank. It would be a 
simple matter to place series solutions or integral solutions in each of 
these squares. Thus if the impulse transient of column 3 is known, 
the other two transients are given at once in integral form by pairs 
(210) and (219); if the unit step transient of column 4 is known, the 
suddenly applied cisoidal transient is written immediately in integral 
form by the use of pair (220). The real problem is, however, either to 
find closed form solutions in terms of known functions or to show that 
this is impossible. When the failure of known functions has been 
established, we should next consider the choice of new functions so 
defined as to throw as much light as possible on the new solutions. 

Table II may be regarded as another table of coefficient pairs. 
Column 2 contains cisoidal coefficients; column 3, the mates of these 
coefficients; column 4, the mates of these coefficients when multiplied 
by p"1-, and column 5, the mates of these coefficients when multiplied 
by {p — po)~x- The corresponding pair in Table I is referred to in 
the lower left-hand corner of each square by its serial number. In a 
few cases, two or three pairs are referred to and there it is necessary 
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to add the Table I pairs together or, in the case of systems 37-39, to 
apply the two pairs in sequence. In Table II, the customary physical 
notation is adhered to because it is often of long standing and this 
necessitates some change in notation when comparing pairs in the 
two tables. 

Summary and Conclusions 

Many practical applications of the Fourier integral have been 
simplified by the compilation of Tables I and II, which give coefficient 
pairs, admittances and transient solutions. 

Minor changes in nomenclature and point of view have been intro- 
duced, all with the idea of simplifying the practical application of the 
Fourier integral, in the following ways: 

(1) Using the cisoidal oscillation and the unit impulse side by side 
as alternative elementary expansion functions. 

(2) Focusing attention upon coefficient pairs for these two ele- 
mentary functions, both coefficients of a pair representing the resolu- 
tion of the same arbitrary function. 

(3) Using the frequency and epoch as the parametric variables, in 
place of the customary radian frequency and independent time 
variable. 

(4) Employing as a coefficient any real or complex arbitrary func- 
tion which may be practically useful by regarding it, where necessary, 
as a limit approached through coefficients which form regular pairs. 

(5) Introducing the ^n(g) functions having an essential oscillating 
singularity at the origin which mate with pn, the positive integral 
powers of p. 

(6) Using a notation which greatly reduces the number of occasions 
for employing the integral symbol in applications of the Fourier 
theorem. 

Having established the inclusiveness and practical utility of the 
proposed coefficient pair method of applying the Fourier integral, we 
are now planning to critically verify the tables and make them as 
complete as is feasible. It is proposed to include eventually such 
references to the literature as may add to the interest of the tables. 
The contributions of integral equations and of the operational method 
to the present subject will also be incorporated in the tables. The 
preparation of similar tables for other elementary expansion functions, 
such as Bessel functions, is also a possibility. A comprehensive table 
might be made which would include in parallel columns the coefficient 
functions for a large number of elementary expansion functions, thus 
giving at once many alternative ways of representing particular time 
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functions. This would make it possible to shift without trouble 
from any one expansion to any other expansion of the tabulation. 

I am under great obligations to my colleagues for their contributions 
towards the preparation of this paper. I shall be grateful to any person 
who will call my attention to errors or omissions in any part of this 
paper.® 

Notation 

The following notation is employed in Table I; also in Table II, 
except as specifically restricted. 

a, b, c = positive reals. 

br rc = branch x. For each multiple-valued function, branches 
are designated in one or more different ways. When 
no branch designation is given, branch zero is to be 
understood. 

C{z) = fQ cos^TZ^dz = — C{— z). C(± oo) = ± 

cis(z) = cos 2 + s sin z = exp (iz) = e" = cisoidal oscillation if 
z = lirft. 

D,{z) = parabolic cylinder function of order v. 
Dn{z) = exp( —jz2)iJ„(2). D-i{z)= (2'7r)-^2iiiCj(jz2). 

D_i(z) = (Itt)* exp(j22) erfc(2-i2). 

erf(2) = -4= f exp(— z2)dz = — erf(— z). erf(± oo) = ±1. 
Vtt Jo 

erfc(2) = ~ f exp(— z2)dz = 1 — erf(z). 
VTT Jf 

/ = frequency; parameter for the cisoidal oscillation. 
— CO < / < 00. 

Fif) =: coefficient for cisoidal oscillation, parameter /. 
Fn(f) = coefficient of an in-multiple pair (,Fn(J), inFn{g)) in 

pairs (223)-(225). 

81 am already much indebted to M. Paul Levy for a number of suggestions 
including the expression of the general identical pair as the sum of any pair having 
even coefficients and its transposed pair. 
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g = epoch; parameter for the unit impulse. — » <g< 00. 

go<g<gi restricts the given coefficient to the indicated limits; 
outside these limits the coefficient is zero. 

G{g) = coefficient for unit impulse, parameter g. 

ffn(z) = s-s + 

= Hermite polynomial of order n. 

H,w(z) = - iz) = Bessel function of the third kind. TT 

IIr{2)(z) = - i'+lK,{iz) = Bessel function of the third kind. 
TT 

7(z) = imaginary part of z. z = i?(z) + il{z). 

7,(2) = 
j, k, I = integers greater than zero. 

Jy(z) = iz) = Bessel function of the first kind. 
K,{z) = liri^H^iiz). 

m, n = positive integers, including zero. 

dU{ ) = mate of ( ). 
p = ilirf, the imaginary radian frequency. 

r, s = reals, positive or zero. 

R{z) = real part of z. 2 = R(z) + il(z). 

^(■s) = f0sin(^irz2)dz = — S(— z). 5(± co) = ± 

S,v(x) = lim aDx
v exp(- TraV-) = ^th singularity function. 

a—* co 

3>-n(x) = ^Xi ± i ) x""1 + Xa.v"-2 H h Xn, 0 < ± a:, 

0 < n. 

I = time. — < t < <». 

y, w = integers, positive, negative or zero. 

^,3; = reals, unrestricted. 

Y = admittance of system for cisoidal oscillation. 
Y,{z) = 5i[77,(2)(z) — 77v

(l)(2)n = Bessel function of the second 
kind. 
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z = complex quantity, unrestricted. 
z = conjugate of z. 

2", br x = exp^R (log 2) + ifx arg 2], where {2x — l)7r < arg 2 
^ (2x + l)7r. 

_ ei2*wzn^ br(a: — z'). Branches (;*: + »), v = 0, ± 1, 

±2, • • • form a complete set and without repetition 
unless /z is a rational real, 

a. 0, 7, 8 = complex quantities, real parts greater than zero. 
0 = principal argument. ~ tt < 0 tt. 

H, v = complex quantities, unrestricted, 
p, o", r = complex quantities, real parts not less than zero. 

4>n(x) = expiirx^Dz" exp{—2rxl) 
= (— 2Tri)nDn(.2Trix) where Dn is the parabolic cylinder 

function of order n 

= (— 27ri)nexp(— ■KX^)Hn{2-K^x) where Hn is the Hermite 
polynomial of order n. 

\p{z) = r/(2)/r(2) = logarithmic derivate of the gamma func- 
tion. — ^(1) = Euler's constant = 0.5772- • -. 

* marks a pair as being the limit approached by 
regular pairs. 

Not Restricted 
Real Part 

^ 0 > 0 

Integers 
Reals 
Complex 

v, w 
f, g, t, x, y 
2, X, p, v 

m, n 
r, s 
P, o-, r 

j, k, I 
a, b, c 
a, 0, 7, 5 



PRACTICAL APPLICATION OF THE FOURIER INTEGRAL 663 

TABLE I 

Paired Coefficients for the Cisoidal Oscillation and the Unit Impulse 1 

Part i. General Processes for Deriving the Mate 

Pair 
No. 

Coefficient F{f) for the 
Cisoidal Oscillation 

c5s(27r//) = exp(/j/) 

Coefficient G{g) for the 
Unit Impulse 

>o(/ - g)= lim 
a—»-0 ® 

101. 

102. 

103. 

104.* 

105.* 

106.* 

107.* 

108.* 

f G(g)cis(— 2T7fg)dg 
•/ —X 

\l{p — pf) + \i{p — Pq)"1 + 
lim by 401: 

^1 TT TT "i~ ^2 — "h 
{p - pf) ' {p - poY 

\\P + ^P2 + X3/>3 + 

Xi+ X2+ Xs ^ + p p* p3 

lim by 408: 

lim by 401* 

r E(/)cis(27r/g)<// 
—X 

G 

D0 f F{f)c\s{2irfg)p-Hf 
%J— x 

cis (27r/og)[Xig)i(g) + X2^>2(g) + •••] 

cis (27r/og) ^ Xi + X2 Yj + X3 

+ X4^j+"*^, 0<i 

Xi^)i(g) + X2^)2(g) + Xs^aCg) + •• • 

Xi + X2yj + X3+ X4 + • • •, 0 <g 

lim by 408* 

U 
Pa\ 

Xo + Xi — + X2 — + 
p p2 ) 

0 < a < 1, lim by 516* 

if.1 

^ro + Xlag r(a)g 

+ X2 
1 

a(a + 1) g
2 + , 0 < g 

1 The pair for the oscillation cis (— 2irft) and the unit impulse is F(J), G(— g) which differs from the 
tabulated pair only in the sign of the epoch; similarly, for the oscillation cos (2wft) or sin {2irft) the only 
change is the substitution for G(g) of the even part of G(,g) or of the odd part of — tG(g), the pairs being 
F(/), ?[G(g) + G(— g)], or F(f), — i^[G(g) — C(— g)], respectively. Every pair in Table I may be 
thrown into the form of an evaluated Fourier integral by equating the pair after writing either 
J"00 df cis {2irfg) before the coefficient F(/) or J dg cis (— 2irfg) before the coefficient G(g). Every 
pair in Table I may also be regarded as an operational expression F{p/i2w) of the operator p = i2irf = d/dg 
with G(g) its explicit expression in g. 

* A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Pair Coefficient F{f) for the 
No. Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

109.* ^ (Xo + Xip + 'Kip'1 + • ■ •)» 

0 < a < 1, lim by 501* 
r(a)g Xi(l ~ 

1 

110.* 
rp{x°+H+*^h+x'h+"')• 

lim by 518* 

+ X2(l — a)(2 — «) + ' * * J » 0 

-i-Tx 4-X 2|+xM2 

v«L °+ 11 + ! i-3 

<g 

]■ 
0 < g 

Ul.» (Xo + \ip + ^ + X^s +■■■). 
■sp 

lim by 502 * 

112. Xo<2»o(/) + XkM/) "h ^2</,2(/) + 

1-3.5 

1 f J_ , 1-3 
V^LXo Xl2g + X2(2g)2 

- I' •<■ 

Xo^o(g) + iKi(f>i(g) + FKifaig) + • • • 

X3 frt _\3 d" 

Part 2. Elementary Combinations and Transformations 

201. F.AzF* G\ ± G2 

202.2 f1f2 f G^Giig - x)dx 
—00 

203. r F1(- x)F2{f + x)dx 
%J — QO 

G1G2 

204. KF KG 

2 From (202) or (203), with g (or/) =0, and (215) and (217) follow the important identities for the 
integrated product of two pairs of coefficients and for the integrated squared moduli of a pair of coefficients: 

r Ei(f)E2(±f)df = P Gi(g)G2(T g)dg, */ —00 V —CO 

r im= r \G2\dg, J —CO cj—GO 

f00 Fi(x)G2(x)dx = r Gi(x)Fi(x)dx. J—CO J —CO 

The symmetry of these identities is to be noted; this would not be the case if the radian frequency 
2trf were employed in place of the cyclic frequency /. 

* A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Pair 
No. 

205. 

206. 

207. 

208. 

209. 

210. 

211. 

212. 

213. 

214. 

215. 

216. 

217. 

218. 

219. 

220. 

Coefficient F{f) for the 
Cisoidal Oscillation 

F{af) 

cis(— 2Trfg0)F = e~p<">F 

PF 

D'F=kD'F 

If 
p 

r Fdp = i2ir ^ Fdf = Dp-
lF 

«/ —<00 •-'—00 

DXF 

f Fd\ = D^F 

F(-f) 

H±f) 

Hf) ± W) 

G{±f) 

G{± ip) 

F(f) 
P - po 

±  
P - Pa 

Hf) 

Coefficient G{g) for the 
Unit Impulse 

jWU 
a \a J 

cis(2irf og)G = epo0G 

G{g - go) 

D0G 

-gG 

r Gdg= 
J— 00 

D0-
lG 

— - G 
g 

DXG 

C Gd\ = D^G 
J\o 

G(-g) 

G(=F g) 

G(g) ±G{-g) 

g) 

2t \ 2* J 

ePoo j e-po0G{g)dg 
t/ —oo 

G(g) + poePoa f e~PooG{g)dg 
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TABLE I (Continued) 

Pair 
No. 

Coefficient F{f) for the 
Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

221. = Q +SD})^F - g^Da*\g*lG) = - (I + gD0)^G 

222. e^Dpie^F) = (=F 2x/ + D})VF i^e^Dpifi^G) = 2Tvg + Da)vG 

223.3 Fn{f), n = 0, 1,2, •••, 11 
where Fn(f) = iLF(f) + i2nF{ — f) 

+ i-nG(f) + inG{-m 
Fn^ = R{Fn), Fn+s = I{Fn), 

« = 0, 1, 2, 3 

inFn{g) 

224. Fo(f) + F^f) + E2(/) + F3(f) 
where Fn is as for 223. 

Fa{g) + iFiig) - Fiig) - iFiig) 

225. W) + E6(/) + Fb(f) + F7(J) 
+ iLFs{f) + FM + E9(/) + Fnim 
where Fn is as for 223. 

F4(g) - Fe(g) - F9(g) + Fn(g) 
+ i[F8(g) - Flo(g) + F5(g) - E7(g)]. 

Part 3. Key Pairs 

301. sec p', 
[y{p + X) for p, if I 
[- ^7ri?(l/7) < -R(X) < 1^(1/7)J 

§ sech^Trg) 

302. 
ry{p + p) for p, and v for a with 
UP + /3) for p J 

(2g)-a exp^ - ^ , 0<g 

303. 
?
cxp( p )I*A±)' 

[y{p + /3) for p, and for a withl 

L(^ + /3) for p J 

Ja-i(.2a^g)Ja^(2-yli), 0 <g 

304. exp(i/)2)I>_«(^); 
[Vt^ + p) for p~\ 

pLrr-'expl-fc'). 0<g 
I [a) 

The coefficients of the in-multiple pairs satisfy the following integral equations: 

A.(/) = (-!)* 2 f00 Fn{g)cos{2irJg)dg, w = 0, 2, 4, 6, 8, 10 J o 

Fnif) = (- 1)i(n~1)2J7 n = 1,3,5,7,9, 11 
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TABLE I (Continued) 

Pair 
No. 

Coefficient F{f) for the 
Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

305. 

306. 

LltP + p) for p'] 

(£2 + + 62), 

0 < R(a) < i; 
(p + p) for p, and 5 for h without the 
restriction on a. with (£ + /3) for p, 
if - i?(/3) < R{ib) < R{p) 

(2g)J«-iexp(- V2g), 0 < g 

/«-i(Wg2 - 1). Kg 

307. (p - py-^Ja-ii^2 - P2); 
1(P + x) for 

i /I - g2Va-i 

A 2 TT \ ^ 
/a-l(5Vl - g2), 

- 1 < g < 1 

Par/ 4. Rational Algebraic Functions of f. 

401.* 

402.* 

403.* 

404.* 

405.* 

406.* 

407.* 

408.* 

409.* 

pn = lim pne~1"1'111 

a—*0 

= lim ^(-D^n + DKl-^) 
^ a-^oS fe!(« -/fe + 1)!^+^ 

1 = lim 
0—0 

p = lim pe~*Pfl 

0->-O 

\p2n\ = lim Dfe-W 
p—0 

[ p2n+l | = _ iim 
0—0 

\p\. 

p-n = lim {p + /3) 
0—0 

p-n = lim {p - P) n, 
0—0 

lim by 406* 

0 < n 

0 < 71 

>n(g) = lim - Dgne~*a~t'1 

a—Qd 

'n(g) 

»o(g), unit impulse at g = 0 

#i(g), negative unit doublet at g = 0 

(- l)"^2n(g) 

(- l)n+,(2n + 1)! 
TTg-" 

TTg2 

gi-l 

(«-!)!' 

— gn_1 

0 < g 

g < 0 

* A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Pair 
No. 

410.! 

411.1 

415.: 

416.! 

421.! 

431. 

432. 

433. 

Coefficient F{f) for the 
Cisoidal Oscillation 

no—ira»/a p~n = lim p 
a—* 0 

p~n = lim I 7 2 . 

+ / Mn - 

0 < « 

{P+py 

0 < w 

■A / \k{n — k)! _ Xt(« — k)! \1 

h\{p+&y-k+i ip ~ P)n~k+l) 1' 

1= iim('i^+i±^) 
p 0—>-o \ p — $ p-yp) 

I = lim T-i 
p2 L ip 

h-\ 
- w 

I + ^ 
{P+ py 

_ 2Pfi "1 

P2- P2i 

F{f) = lim Fi(f), where Eis any proper 
a—►O 

rational fraction in p with n distinct 
poles, the degree of pole s,- being 
All pure imaginary poles in F are the 
limits of corresponding poles in Fi which 
have assigned real parts zfc a. 

1 
(p + py 

i 
(P - py' 

i 

{P2 - P2y' 

0 < M 

0 < w 

0 < w 

Coefficient G{g) for the 
Unit Impulse 

-n(g) = lim 

2{n 
+ ^2gn~2 + Xag"-3 + 
+ Xn, 0 < ± 

»-n(g) 

-i(g) = X ± 0 < ± g, unit step at 
r= 0 

»-2(g) = f Ul + Xg + /i 

E E± Wg*'-*. 

0 < ±g, ± Rizi) < 0, 
, . {Dy-yFifyp - 

where Xii (k - !)!(»,■ - k)'.  
and the upper or lowerisigns for each 
term are employed according as the real 
part of Zj (either actual or vestigial) is 
less than or greater than zero. 

1 
(n — 1) 1 g ' 

- 1 
(»-!)! 

eBog 0(7"—I 

(~1)" o-0lfl 

0 < g 

g < 0 

(w+fe —2)!|gn~fc| 
(«-1) r ti {k -1) Kn-k)\{2p)n+k~1 

(- iy\g»-i\Kn^(fi\g\) 
(n - 1)! 7r*(2/3)n~* 

« A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Pair 
No. 

Coefficient F{}) for the 
Cisoidal Oscillation 

Coefficient for the 
Unit Impulse 

438. 
1 

0 < g P + P ^ 1 

439. 
1 

g < o P-P 

440. * 
1 

lim by 415* cis (27r/og)^_i(g) 0 1 

441.* p lim by 403 * £>o(£) - pe-0", 0 < g P + P' 

442. 
1 „/,—0O 0 < g 

ip + P? ge . 

443. i 
g < o 

{P - py 
i 

ge , 

444. 1 -—(3 [ g\ 
p* - P2 2/3 

445. p 
± 0< ±g p2 - p2 

446.* 
a 

lim by 415* sin ag -^_i(g) p2 + a*' 

447.* P lim by 415* cos ag S)_i(g) 
P2 +a2' 

448. 
1 e'00 - g-"" 

0 < g 
(P + a)ip + P) a- P ' 

449. P ae-00 - Pe-00 

0 < g 
(P + a) {p + P) a — p 

450. 
1 1 „1p—0O o < g 

(P + py 
2g e » 

451. 
i 1 »0|

M 0^
 

>
 

g < 0 
(p - py 

* A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Pair 
No. 

452. 

453. 

454. 

455.^ 

456. 

457. 

458. 

459. 

Coefficient F{f) for the 
Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

1 (7 - fte-00 + (a - 7)g~gg+(^-a)g-7g 

{p + a)(^ + P){p + 7) (a - /3)(/3 - 7)(7 — a) 
0 < g 

{p + a) (^ + /3) {p + 7) 

 a/5  
+ a)(^ + /3) p 

a(^ - 7)^ag + /3(7 - «)^g 

 + 7(« - P)e 
(a - /3)(/3 - 7)(7 - a) 

0 < g 

^-r^. o<g 

PW + a^)' 

1 
{p -\- h + id) {p + b — id) 

1 

lim by 415* 2 sin2(^ag)^)_i(g) 

- sin ag e~bo, 
a 

{p — b + id) {p — b — id) 

P 

— - sin ag eba, 
a 

(^ + 6 + id) {p b — id) 

P 

cos ag — - sin ag ) e~ba, 

{p — b + id) {p — b — id) -( 
cos ag -f - sin ag ) ebo, 

a ) 

0 < g 

g < 0 

0 < g 

g < 0 

Part 5. Irrational Algebraic Functions of f. 

501.* 

502.* 

503.* 

504.* 

pn-a = lim pn-''e-P\p\j Q < R(a) < 1 
P-*0 

pn-i = |im pn-he-Pip\ 
t3-*0 

P\ 

P*. 

0 < n 

lim by 502 * 

lim by 502 * 

1 
r(a - n) r o < g 

(- l)nl-3-5 ... (2W- 1) 
(Ivr)^ 

- ^7r ig 

o < g 

0 < g 

o < g 

• A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Pair Coefficient F{f) for the 
No. Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

505.* 

506.* 

516.* 

\n 

(P + ^ 

p a = Vim (p + p)-a, 
a-*-o 

517.* p~a = p-a = Hm {p - (3)-°, 
0-*O 

lim by 503* 

lim by 820 

br 0 

br (- |) 

- 1 
4x lr3l 

1 _ , 
r(a) 

- 1 
r(a) 

518.1 

519.* 

520.* 

521. 

522. 

523. 

= lim (p -f br 0, 0 < n 
fi—*■ o 

(^)-l 

p-n-h = |im (p _ /3)-n-l) br I, 0 < w 
fl-^0 

1-3-5 ••• (2» - 1) 

a*)-* 

p-i, 

p-a, 

p-h 

l/'M 

lim by 518* 

0 < R{a) < 1 

1-3-5 (2w - 1) 

1{gh)\ 

1 _ . 

524. (/' + /3)-a, 

525. iP - /3)-a. 

526. (P + P)-K 

527. (P - 

528. (P - 0)-*, 

529. (p + /S)-^ 

530. (p + 0)l~a 

br v 

br {v - |) 

br 0 

br 5 

br 0 

br 0 

r(a)s 

(TTg)"1, 

IrM 

i 

o < g 

br 0, 0 < g 

br 0, g < 0 

(2g)n-4, br 0, 0 < g 

(2g)n-i, br 0, g < 0 

0 < g 

0 < g 

0 < g 

- 1 

e-i1ra(v+w)e-Pggx-l^ br W, 0 < g 

br W, g < 0 
r(«) 

e-^Trg)-!, 

^"(TTg)-', 

br 0, 0 < g 

br 0, g < 0 

- ^M-'CerfVfe - i =F i), 
br 0, 0 < ± g 

- (/> + 7)1 

2e- 0(g/7r)i, 

1 
Via - 1) 

br 0, 0 < g 

g-V " e-"), 0 < g 

* A star marks a pair as being the limit approached by regular pairs. 
43 
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TABLE I (Continued) 

Pair Coefficient F{f) for the 
No. Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

541. 

542. 

<p_ 

P + 1 

1 

{p + tWp 

1 
543 . i— 

1 + V/5p 

544. *  
1 + 

-L+ V- Yg-^erf V- 7g, 0< 
Vxg 

— e ^ erf V — -yg, 
V- T 

1 - i exp |erfc A/^f 
VvriS? /3 ' /3 

1 feofe) + 2g — 
Z3 IpgTJirpg 

0 < g 

0 <g 

 exp - erfc A/-, 0 < 
/32 1 

545. 
(? + T)(1 + ^P) 

546. 

547. 

548. 

549. 

(P + 7)^P + P 

V/3 

+ /3 P 

- a p + 1 - - 
\/3 p 

P + 7 

550.* 7——7= 
1 + VPP 

- 7g-Tg 

1 + ^7 
(1 - V- /37 erf V- 7g) 

1 exp (g/3) 

-JtBS Pit + Py) 
erfc Ah: 

0 < g 

^P - 
i=c-y0 ed ^l{B - y)g, 0< 

- erfc V/3g, 

-4= e-00 - erfc V/3g, 
y-wPg 

0 < g 

0 < g 

— e 00 + ^Ip — y e y'erf V(/3 - 7)g, 
Vvrg 

0 < g 

4= s.0(g) —1= 
V/3 Z3 ' Trg 

+^iexp^rfc^'?■ 0<' 

* A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Pair 
No. 

Coefficient F{f) for the 
Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

551. 
1 

-Lexp|erfc^, 0<g 
V^i + V^) 

552. ^ 76 fcrf V -vr V /3-v) 
(P + 7)(1 + 1+^7 ^ 2 ^ 

+ erfc 0 < g 
V/3(l + /37) 

553.* 
^Jp + a 

^o(g) + + /ofe)]. 

0 < g 

554.* 
1 //> + « 
p\ p 

^^"[ag/idag) + (1 + ag^o^ag)], 
0 < g 

555. 
1 Ji)[i(a _ p)gl 0 < s 

V(P + a)(^ + /3) 

556.* Vp2 + a2 
«>.(«) o < g 

g 

557. 
1 

-7"o(ag), 0 < g 
Vp2 + a2 

558. 
1 

--M(3|g|) 
TT V/32 - P2 

559.* 
Vp a 

i&o{g) + ~ e''-'I.(i»g), 0 < g 
2g Vp + Vp + a 

560. 
V p + o; 1 

P(Vp + Vp + «) P 
" ^"^"[/idag) + /o(|«g)]. 0 < g 

571. (p2 _{_ 62)-«> 0 < R{a) < 1 

* A star marks a pair as being the limit approached by regular pairs. 



674 BELL SYSTEM TECHNICAL JOURNAL 

TABLE I (Continued) 

Pair 
No. 

Coefficient F{f) for the 
Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

572. [(/> + /3)2 + r*-]-a 

m(i) 0<z 

573. - 2Uipe) 
+ 4+1(1/%)], 0 < g 

574. 
(V/> + /3+ Vp)"2' (T'e-Wl.tiPg), 0 <g 

■ylpip + /3) 

575. 
L^(P + p)2 + a2 + (/> + p)D~<1,+1 

cra+1e~'"J(ag), o < g 
■V(/> + p)2 + a2 

576. L^iP + p)2 + a*+ (p + p)]-a 
ae~'"' 
aag Mag), 0 < g 

Part 6. Exponential and Trigonometric Functions of f or /-1. 

601.* e-rp £>o(g - r) 

602.* 
g-rp 

P 
g>-i(g - r) 

603. 1 (! - e"") 
P 

1, 0 < g < a 

604. 
g-rp 

P+P 
r < g 

611. 
a 1 

% tanh ^ T 0 < ± g 
2a sin ap p 

612.* tan aP 
- 1 

2a sinh ^ 
2a 

613.* a ctn ap — — 
P 

2 ctnh^T i 0 < ± g 2a 

* A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Pair 
No. 

Coefficient F{f) for the 
Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

614. 

615. 

sin ap 

sin ftp 

616. 

sin ap 

cos ftp 

617. 

cos ap 

a sin fip 1 

618. 

619.* 

620. 

621. 

622. 

623. 

fip sin ap p ' 

cos fip 1 
p cos ap p 

cosh(a^) 

cosh {ap) 1 

P P 

cosh{ap) 

i?03) < R{a) 

ia2cosh2 — 
2a! 

1 . 7r/3 
— sin — 
2q: a: 

R{P) < R{<*) 

, TT? . irB 
cosh — + cos — 

1 7r/3 . TTg 
- cos — cosh — 
a: 2a: 2a! 

. 7rg . irB 
cosh — + cos — 

tanh ^ 
R{P) < Ri<*) —tan-1- . „ 

7r/3 tt/S 2 
2a 1 

^ > 0< ±g 
ctn — 

Za 

cos 
R{P) < R{*)  tan-1 

TT 
sinh TTg 

K^o(g + a) + ^o(g - a)] 

T h 0 < ± g < a 

1 

{p — po)cosh.{apo) p — po 

sinh.{ap) 

% cis(27r/og)[tanh(a^o) T 1], 
0 < ± g < a 

sinh(Q^) _ 1 

P ap2 2a 

— a < g < a 

0 < ± g < a 

* A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Pair Coefficient F{f) for the 
No. Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

624. 

625. 

631. 

632. 

633. 

634. 

pQ sinh(a^) 1 

p{p — ^o)sinh(a^o) P - po 

sech irf 

pa-ie-p\p\ 

e-m 

- p-ew _ - 
P P 

0-p\P\ 

635. \p\e-^ 

645.* 

651. 

sin {a\p\) 

1 exp 
+ /3 P + P 

1 1 
652 *Tpexpv 

653. {p + P) 3 exp 
P + P 

654.* 

655. 

exp 
-i) 

1 - 
peXP[ p 

656.* - 

^{cis(27r/og)[ctnh {apo) T1J — csch(apo)}, 
0 < ± g < a 

sech vg 

r(a) 
Li- g- iP)-a - (" g + tf)-] 

P 

Hi 

1 
TT P2 4" g2 

— - tan-1 - 
TT g 

Ip + Vj32 + g2 

^ 2ir(P2 + g2) 

P2 - g2 

r(P2 + g2)2 

a 
7r(a2 - g2) 

e-= cosh (2 Vpg), 
SjTg 

1 
— cosh Vg, 

VTTg 

—0g   
L-— sinh (2 Vpg), 
VTrp 

■Vg 

Jo(2 -Vg), 

^g /.(2Vg), 

0 < g 

o < g 

o < g 

0 < g 

o < g 

0 < g 

* A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Part 7. Exponential and Trigonometric Functions off-. 

Pair 
No. 

Coefficient F(f) for the 
Cisoidal Oscillation 

Coefficient G(g) for the 
Unit Impulse 

701. 

702. 

703. 

704. 

705. 

706. 

707. 

708. 

709. 

710. 

711. 

712. 

713. 

gpj* 

0n(/) = e^Dpe-w 

0 < i/,|   g-l 0s/P 

714. 

715. 

716. 

Uf) = e-t* = e-"\ 
x=f\Ar in 703-711 

0.(/) = - e-^{^x 

M) = e-il!(47r)(x2 - 1) 

^(/) = " - 3.r) 

M) = e-^fAiry-W - 6x- + 3) 

(f):Xf) = — e~lx2(47r)' (^' — 10.V3 + 15x) 

(pff) = e~lx2(47r)3(xfi — ISr1 + 45.v2 — 15) 

^.(Z) = - - 21xr> 

+ 105.x-3 — 105x) 

Uf) = - 28x-fi 

+ 21 Ox-1 - 42Ox2 + 105) 

e-'/'(47r/2 - 3)2 

pne-nfip 

e-*w 

pe-*"'2 

p-e-^2 

2-^irp 

in4>n(g) 

^o(g) = a-'"5 

^i(g) 

- ^2(2) 

- 203(g) 

04(g) 

203(g) 

- 06(g) 

- 207(g) 

08(g) 

e-T^(47rg
2 _ 3)2 

- D "e-*"2'13 = 1 

N^(V2/3)" 

Xe-i'"Hw) 

1 g-ra«/2J 

-Mg-' 
/3\'/3 

^e-"'2^(27rg2 - /3) 
/3H/3 
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TABLE I (Continued) 

Pair Coefficient F{f) tor the 
No. Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

717. 

718. 

727. 

728. 

729. 

751. 

752. 

pze~*M 2 

pie-'W 

719. pne-WJ 

720. g-jT/2 

721. pg-W 

722. p?g-W' 

723. p3g-W» 

724. p4e-i*P 

725.* 

1
 1 <o 

726.* 
P2' 

i exp (ap*) - ^ 
P P 

1 
P-Po 

exp [a(p2 - PW - 
1 

P - po 

exp (pp2 + ap), 

sin (ap2) 

cos (ap2) 

o < |p! 

- ^ e-'^pivg2 - 3/3) 

47r2 

- 127r/3g2 + 3/32) 
/S'V/S 

■yj2Dgne~2,roi = 

■sfle-2*"2 

— 4Trg-\!2e~2l'B'2 

47rA,2e-2"'5(47rg2 - 1) 

- 167r2gA/2e-2^J(47rg
2 - 3) 

167r2V2e-2"'s(167r2g4 - 247rg2 + 3) 

^-i(g) + ^ erf(gV7r//3) =F i 0 < ± g 

-2(g) + k erf(gA^) 

lir' + ^e-""s=Fi 

T ierfc -^L, 
Z\a 

0 < ± 

0< ± 

erfi + 2^oT ! | cis (27r/og) 2^_ 

i r..nr_(£±^i 
2V^ P L 4p J 

i • /g2 A 
ylVa^Va A) 

-7= sin (f + l) 
Vvra \4a 4/ 

)• 
0< ± 

* A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Pair Coefficient F{f) for the 
No. Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

753. 

754. 

755. 

sin {ap1) 

P 

cos {ap2) _ 1 

P P 

cos (ap2) 
(P - Po) cos (apQ2) p - po 

1 

756. 
sin (ap2) 

757. 
sin (ap2) _ a 

P3 P 

758. sin (ap2 + X) 

759. cos (ap2 -f X) 

760. cis [± 7r(/2 - I)] 

761. cos [7r(/2 - i)] 

762. sin [x(/2 - I)] 

;[<*)-C(A)] 

s[s(i)+c(vfc)T1]- 
0< ± 

g 
2 A fa 

cis (lirfog) r /• .ox r/ 
4cosW)rpW)erf( 

+ ^oA«a J + exp (— iapo2) erf ( —g 

/ V 2 a'— ta 

+ ^oa/ - fa ^ T 2 cos (a^o2) J , 0 < ± g 

;,in(£+i) 

+ fKi)-c(vfc)] 

+MH A 27ra / 

+g\^sin(£+i)T<1]'0<±g 

2<Tra \4a 4/ 

—7= sin ('|1 + X+^) 
2V7ra \4a 4/ 

cis [T x(g2 - I)] 

cos [x(g2 - I)] 

- sin [x(g2 - i)] 
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TABLE I (Continued) 

Part S. Other Elementary Transcendental Functions of f. 

Pair 
No. 

801. 

802. 

803. 

804. ^ 

805. 

806. 

807. 

Coefficient F(f) for the 
Cisoidal Oscillation 

exp (— a V/>) 

p exp (— a^p) 

"I [1 ~ exp (- aVp)] 

[1 - exp (- aV^)] + — 

I — exp (— aVp) 
p{p + 7) 

Vp exp ( — 

-j= exp (- aV/j) 
Np 

—exp (- aVp) + - 
apyp P 

809. 
exp (— aVp) 

1 + 

Coefficient G{g) for the 
Unit Impulse 

exp(-|)' Igy/irg 
0 <g 

0 < g 

0 < g 

+ o<, 

|^exp (- aV- 7) erfc 

^ - 7g ^ + exp (a V - 7) erfc ^ ^ 

+ V^i)]+Aerf^I-l 

-70 

27 

7 
0 < g 

0<g 

_^eX
p(_l), 

^eXP(-|) + erf2^' 0<e 

1 / a2\ 1 . + g 
4gj ^ 

Xerfca^ + 2g. 0<(: 
2Vft 

* A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Pair 
No. 

Coefficient F{f) for the 
Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

810. 
p exp (— aVp) 

1 + V/3/> 

811. 

812. 

exp (— a V/)) _ 1 

Ml + V^) P 

exp (— a^Jp) 

(P + 7)(1 + V/3M 

813. 
p exp (— a V/)) 

(P + 7)(1+V/3M 

a"-p -2{p + aV/% + 4g2 

exp(-3 4/3g2V7r/3g_ 
1 aV/3 + g f aV/3 + 2g 

— — exp  erfc  7=— , 
P- P 2 V/3g 

0 < g 

c a «+ g 
erf 2V1 -exp —0— 

XerfcgV^+2g, 0<g 
2<Pg 

exp (- aV - 7 - 7g) 
erfc 

2(l + V-/37) V2Vg 

_ + exp {<*<- y-Jg) 
) 2(1 — V— ^7) 

Xerfc(^l+v^) 
1 

1 +07 
exp 

X erfc 

aV/3 + 

P _ 

aV0 + 2g 

2^Pg 
0 < g 

7 exp (- aV - 7 - 7g) 

2(1 + V- ^7) 

XerfC^~ 

+ 

V2Vg   
- 7 exp (tW- 7 - 7g) 

2(1 - V^) 

xerfc(+i+v::T) 
aV/3 + g 

exp 
^(1 + 07) 0 

+ 1 exp (-A 
V7r0g \ 4g/ 

0 < g 

X erfc +^+11 
2V(Jg 
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TABLE I (Continued) 

Pair 
No. 

Coefficient F{f) for the 
Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

814. 
exp (— aVp) 

1 + 

815. 

816. 

exp (— a^p) 

Vp(l + V/3/>) 

Vp exp (— aV/>) 

{p + 7)(1 + ^Jp) 

817. exp (— a^p + /3) 

818. 7 exp (- a^p + ^ + «V^) - - 

;xp(^) 

orh-jg exp , _ _ 

Wg^TTg 
1 aV/3 + g + 2g 

0 < g 

1 aV/3 + g f aV^+ 2g 
— exp     erfc  ,— • 
V/3 /3 2 V/3g 

V — 7 exp (— aV— 7 ~ 7g) 

2(1 + V- /37) 

Xer'c{wg~ V_7g) 

_ V - 7 exp (a V - 7 - 7g) 

2(1 - V^y) 

><erfc(^+V^) 
«V^+ g 

V/3(l + Py) 
exp 

w f <W/5 + 2g 
X erfc =—, 

2^1 Pg 

0 < g 

0 < g 

o < g 

- exp (2a:V/3) erfc ^ V/3g + j • 

0 < g 



PRACTICAL APPLICATION OF THE FOURIER INTEGRAL 683 

TABLE I (Continued) 

Pair Coefficient F{f) for the 
No. Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

819. exp (— aVp + /3) 

P + 1 

820. Vp + /3 exp (— a^lp + /3) 

821. 
1^1 P + 1 e^p (- a^P + /3 + o;V/3) - ^ 

822. ^P + P exp (- a^p + P) 
P + y 

823. exp (— aVft + P) 

^P + P 

ij^exp (- a^p - 7 - yg) erfc ^ 

- V(/3 - 7)g^ + exp (aV/3 - y - yg) 

x erfc - 7)g)J , 0<g 

0 < g 

v^exp(-S-fe + aV0 

-i[erfc(VS-^1) 

exp (2q! V/3) erfc ^ V/3g + j • 

0 < g 

j^exp (- a^Jp - y - yg) 

><erfc(2^!_ V(3 ~ 7)«) 
- exp (aV/3 - 7 - 7g) 

x cfe ( —+ VW - Tic)] 

+iexp(-S-fe)' 0<s 

^Lexp(-fe-^), 0<£ 

+ 

V/3 - 
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TABLE I (Continued) 

Pair 
No. 

Coefficient F(f) for the 
Cisoidal Oscillation 

824. 
exp (— aVp + /3 + a:V/3) 1 

Ip p 
W|+1 

825. 
exp (— aVp + /3) 

(/>+ 7)^ + /3 

841. -^exp (- paTTI) 
a'H 

842. -^==exp (- pA'TT] - 
■v|p| 

843.* a/ 1/>1 sin (fl V /j|) 

Coefficient G{g) for the 
Unit Impulse 

-i[erfc(Vft-2^)_ 

+ exp (2aV/3) erfc ^ V/% + » 

0 < g 

—- 1 exp (- q;V/3 - 7 - 7g) 
2V/3 - 7 L 

X erfc - ^03 - 7)g^ 

— exp (a V/3 — 7 — 7g) 

X erfc + V(/3 - 7)g^j , 0<g 

^Ul [Sln 4H C( 'V^TT 1 g ( ) 

~ COS4flIS( Vffef)] 

+ v^C0S(4fiT+i) 

1 _ p2 f p 

2 -v7(7+^jexp 4(<r + ig)er c 2 V7T7g 

_ P2 

2 V7r(o- - ig) eXV 4(0- - ig) 
P 

X erfc , ! = z A<t — tg 

a I [/ a2 

2^ |g|V271iTLvOS4U| 

a1 . a? \ r { a \ 

2\g\Slnik\) \^^k\) 

+ (sini5T + 2HcosjfiT) 

xs(v!^)] 

* A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Pair 
No. 

844. 

Coefficient F{f) for the 
Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

T/Tf sin (aVT/'T) 

845. cos (a V I /> I ) c /"p| 

846. 
sin \ p\ ) e 

Vl^l 

861. 

862.* 

exp [- cAlp{p + a)] 

^ p{p + a) 

\/^ ^ exP [- C^p{p + a)] 

863.' exp [ — C^(P + a)(P + «] 

V tt 1 g I L 4 1 g 1 \V27r 1 g I / 
a2 

+ COS —^—r C 
4 Ig \ \2 '.Tv\g 

0 < ±g 

ta 

+ i 

HP- + g2) 4(/3 + ig)^HP + k) 

X exp f  —-—— 1 erf 
L 4(/3 + tg) J 

^ la 

4(/3 - ig)^HP - k) 

XeXP[-4(^)lerf
2vfN 

1 r a2 1 
i^liviB + is) exp L 4(/3 + ig) J 2i V tt + ig) 

Xerf 1 

2V/3 + ig — ig) 

X exp erf 
la 

2^(3 - ig 

(jVg* -7^, c<g 

e-l"»o(.g - c) 

+r-[vFb''(f^) 

e-^+fi)e»o(g - c) 

l(a-r/5 

c < 

2 Vg- - g" - c- 

x - rA, c < 

* A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Pair 
No. 

Coefficient F{f) for the 
Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

864.^ 
V ̂  ^ ^ exp [ - cV(p + a)(^ + /3)J 

865.* 

866. 

867. 

868. 

869. 

871.* 

872. 

881. 

891. 

exp (— cVp2 + a2) 

exp (— cy/p2 + a2) 

^p2 + a2 

exp (— a V/32 — p2) 

exp (— a V/32 — p2) 

V/32 - p2 

(■yjp2 + a2 + P)~\„ 

■yjp2 + a2 
exp ( — r^Jp2 + a2) 

cos (a V/32 — p2) 

sin (aV/32 - ^2) 

V/32 - p2 

e-K«+ft^o(g _ c) 

tan" 
^ + P 

+ /3)_or log 

,-J(a+P)ff  £ r -j===ii (— 
L Vp2 - C2 \ 

- /3 
Vg2 - c2 

X Vg2 - c2) + Jo Vg2 - , 

c < g 

3(g - c) - 
ac 

yls2 - c2 May/g2 - c2), 

/o(aVg2 - c2), 

afiKiipyJa2 + g2) 

tt Va2 + g2 

- c!), 

5^o(g + «) + ^o(g - O) 

c < 

c < 

r < g 

- f) 

2 Va2 - e2 

i/„(/3Va
2 - g2), 

, - a < g < a 

— a < g < a 

0 < g 

r(a) 
ga ^ - log g], o < g 

* A star marks a pair as being the limit approached by regular pairs. 
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TABLE I (Continued) 

Pair 
No. 

Coefficient F{f) for the 
Cisoidal Oscillation 

Coefficient G(g) for the 
Unit Impulse 

892. 

893.* 

894. 

p~a log p, 0 < R{ci) < 1 

lo& P _ iini 
log C/' + ^ 

^ + /3 

, />+ 7 
logP + ^ 

Piot) - log g _ 
r(a) r ' u ^ g 

^(1) - log g, 0 < g 

1 („-« - e-"), 0 < e 
i 

Part q. Other Transcendental Functions of f. 

901. 

902. 

911. 

912. 

913.! 

914. 

915. 

916. 

917. 

exp p- erfc p 

4expG)erfc(4) 

p^K^iap), 0 < R{a) < 1 

K^ap) 

1 r _ ij KQ[a{p + ^)] -rKoiap) = hm  , .  
P 0-+O P + P 

p^Ia-iiap) 

(/S2 - p^K^P2 - P2) 

(p2 +/2)-'Xi(2xpVp2 +P) 

^exp (- Jg2), 

-7= exp (— llg), 
VTTg 

V TT 
r(a) 

(2o)i~at(g2 - a2)*"1, 

Vg2 _ a2 ' 

cosh-1 - , 

(2o)i-0r(a2 - g2)-1, 
V7rr(a) 

kiTTlV^"^0 

0 <g 

0 < g 

a < g 

a < g 

a < g 

— a < g < a 

(p2 + g2riii:i(27rpVp2 + g2) 

exp (- pVg2 + P2) 
2(g2 + p2y 

* A star marks a pair as being the limit approached by regular pairs. 

44 
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TABLE I (Continued) 

Pair 
No. 

Coefficient F{f) for the 
Cisoidal Oscillation 

Coefficient G{g) for the 
Unit Impulse 

918. K^p]) 
2 V a2 + g2 

919. 

920. 

\p\Ki{a\p\) 

Koi^p) 

921. ^pKiia^Jp) 

2V(a2 + g2)3 

rxp("3' 

^exp(-3' 

922. 
Tp

k^p)-\ (-5) 

923. Jp exp {p^K^p-) 

924. 

925. 

iexpQ)Kiti 

iexp(-?)7"-!(;) 

exp( -f.) - 1. 

— exp (- ig2), 
V2g 

(2g)-5 exp (- 2 \f2g), 

T=/2a-i(2V2g), 
•Virg 

931. ■y/pKr+iCplKr-iCp), - f < < f 
VTrCy2" + y2") 

V2g(g2 - 4) 

0 < g 

0 < g 

0 < g 

0 < g 

0 < g 

0 < g 

, y = i(g + Vg2 - 4), 

2 <g 

932. 
i=} 

i=-i 
+ y-2") _ x 

933. ^Iv(p)Kv+i{p) 

TT Vxg(4 - g2) 

(- l)B(x2r+= + x-2o-i) 

, 3' = Kg + Vg2 - 4), 

0 < g < 2 

V2irg(4 - g2) 
X= Uz+ Vg2 - 4), 0 < g < 2 
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TABLE I (Continued) 

Pair 
No. 

934. 

935. 

936. 

981.* 

982.* 

983.* 

984.* 

985.* 

986.* 

987.* 

Coefficient E(/) for the 
Cisoidal Oscillation 

Jp ^ 7_j + I+a(/>) F-j-x+aCp) j _ 

/a—.J ( -V52 - P2 + ip) Ja-\{ V52 - ^ 

" ^a-j(^2+62 + T') 

^o(/) = - lim ^ 
Trl3—O02 + f2 

oif — fo), lim by 9815 

S>o(f - fo) + ^o(/ + /o), lim by 981= 

^o(/ - fo) - ^o(/ + fo), lim by 981= 

P-*o\ pyjp J 

'-.a) = jim (x ± , 0 < ± / 

i^U) =jim()l/l +X/ + m) <>-«" 

Coefficient G(g) for the 
Unit Impulse 

22a(g + Vg2 + 4)L 

V7rg(g2 + 4) 
0 < g 

I (4 - g2)-4/2a-i(5V4 " g2), 

- 2 < g < 2 

(g! - 4)-02a_1(6x'^4), 2<g 

cis(27r/og) 

2 cos(27r/og) 

72 sin(27r/og) 

— 727rg 

727rg 

1 
47r2g2 72 TT 

x-^o(g) 

TT-^l(g) + ^o(g) 

A star marks a pair as being the limit approached by regular pairs. 
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TABLE II—Admittances of 

No. 
Admittance Y{p) 
Illustrative System 
Cause and Effect 

Cause: Unit Impulse = ^o(/) 
Effect: c)nY(p) 

403* 

1 
Cp + G 

Y{P) " LC(p - pMp - p,) 
! [(Q., + G)e"' - (Cp2 + G)e«':, A 

Inductance L and resistance R in series 
with parallel combination of capacity C 
and conductance G. Cause: Voltage 
across terminals. Effect: Current 
through network. 

0 < / 

Pi 
P2 

- {RC -}- LG) ± A 
2LC 

= V(i?C - LG)2 - 4LC. 
448, 449 

2 Y(p) = Cp + G C&iit) + GS>o(t) 

Same as 1, except R = 0, L = 0. 
403*. 404* 

3 Y{p) = exp ^ 'Ai' + p)2 - ff2 j 
e

Xp(_^)»0((_|) 

Semi-infinite smooth line (resistance R, 
inductance L, conductance G, and capac- 
ity C per unit length). Cause: Initial 
voltage. Effect: Voltage at distance x 
from end. 

+ ™e-'"I1(az), -<t 
VZ V 

v = 

&- 
z = 

= {LC)-\ k = (L/C)*, a = R/ (2L), 
= G/(2C), p = a fi, a = a — 

V/2 — (x/v)2. 
863* 

4 = \ k -f- p -f 0" 

X exp 1^ - ^ V (/? -f p)2 - (T2 J 

Same as 3, except Effect: Current at dis- 
tance x from end. 

- < t 
V 

864* 
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and Transients in Physical Systems 

Cause: Unit Step (0, 1) 
= X = i 

Effect: 
415* 

Cause: Unit Cisoid X Unit Step (0, 1) 
= X = £ 

Effect: VniY{p)/{p - ^o)] 
440* 

1 . CP\ + G (Cpo + G)^0' (.Gpi + G)e^ 
R + G-1 ' Api 

cp2 + 0 < / 
Apt 

448, 454, 415* 

LC{p0 — pi){po — pi) A(pi — po) 

{Cp, -f G)eVtt ^ 

Mpi-Po) ' 

452, 453 

C^o(/) + G, 0 <t 

403*, 415* 

Cg)o(0 "P {Cpo + G)ePot, 0 <t 

438, 441* 
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TABLE II 

No. 
Admittance Y{p) 
Illustrative System 
Cause and Effect 

Cause: Unit Impulse 
Effect: dUYip) 

5 Y{p) = exp (- y^p + 2/3) 

Same as 3, except L = 0. 

y = x^RC. 

817 

6 Y{p) = u^ip + 2/3 exp (— y^p + 2/3) 

Same as 4, except L = 0. 

y = x^RC, u = Vc/i?. 

820 

7 

8 

exp {— y^p -\- 2$) 

u^Ip + 2/3 

Same as 3, except L = 0 and Cause: 
Initial current. 

y = x^JRC, u = -JC/R. 

WSeXP(-4(-^> 0<' 

823 

= 1 

X exp — ^ ^P(p + 2a) J 

Same as 4, except G = 0. 

+1 - «/«(«=)!.-<t £ Lz J ^ 
862* 

9 m 

Same as 3, except G = 0, .v = 0, and 
Cause: Initial current. 

+ kae~al\_I i{at) + /o(a/)|], 
0 < / 

553* 
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Continued 

Cause: Unit Step (0, 1) 
Effect: cW[F(£)/£] 

Cause: Unit Cisoid X Unit Step (0, 1) 
Effect: dn\_Y{p)l{p - £„)] 

^exp (- y^2p) erfc - 

+ exp (y V2/3) erfc ' 

0 < t 

W"1 |^exp y^2p + pa) 

Xerfc^^-.- V(2/3 + ^0)^ 

+ exp (;yV2/3 + po) 
y ■ 1/(23 + ^)/^, 

Xerfcfe + 
0 < 

818, 415* 819 

X exp (— y V2/3) erfc ^ 

- exp {y^20) erfc ^ + "^2/3/ ^ j , 

^ -'m) 

0 < / 

821, 415* 

Vt/ 

+ 

exp(_£_2^) 

W2/3 + ^0 gPo, ^ (_ ;yV2^T7o) 

X erfc - "^(2/3 + ^ 

— exp (3'V2/3 + ^0) 

X erfc ^ + V(2/3+^o)^j , 0 < / 

822 

—exp (- y V2/3) 
2?/V2/3 L 

Xerfc^^-. - — exp (yV2/3) 

X-,<fe + 

824, 415* 

V2^^, 0 < / 

  [exp (- 3'V2/3 + po) 
2MV2/3 + ^0 L 

Xerfc^^- V(2/3 + ^0)/^ 

— exp {y<2p + Po) 

X erfc + V(2/3 +/'o)^j , 0 < / 

825 

^-a7o(aZ), 
k 

861 

- < / 
v 

ke-a,l2atli{at) 

+ (1 + 2at)Ioiat)l, 0 < 

554* 
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TABLE II 

No 
Admittance Y{p) 
Illustrative System 
Cause and Effect 

Cause: Unit Impulse 
Effect: VltYip) 

10 F(p) = exp(-f 

Same as 3, except R/L = G/C. 

exp(-f)».(/-^) 

601* 

11 T//.n _ ^p + 2a 

^P + ^P + 2a 
Semi-infinite smooth line (resistance R, 
inductance L, and capacity C per unit 
length). Cause: Voltage applied through 
resistance Ro = Vl/C. Effect: Voltage 
at end of line, a = RI(2L). 

l^o(0 + — e~atIi(at)t 0 < / 

559* 

12 t//_ exp (- y^Jp) 
V{P)- i + Vp/x 

Semi-infinite smooth line (resistance R 
and capacity C per unit length). Cause: 
Voltage applied through resistance Rq. 
Effect: Voltage at distance x from end. 

y = x V^C, X = i?/(Ci?o2). 

^exp("s)_Xexp(yV': + x') 

X erfc ^ -~= + Vx/ ^ , 0</ 

809 

13 

14 

u^Jpexpi-y^p) u{y - 2/Vx) /X / y2 \ 
HP) i + 

Same as 12, except Effect: Current at 
distance x from end. 

u = VCAK. 

2t Vtt/ 'P\ At) 

-(- z<xVx exp (y Vx + X/) 

Xerfc^^+Vx*^, 0<^ 

814 

Y(P)~ MVf— 
i + Vp/x 

Same as 13, except x = 0. 

u = VcAR. 

Wx ^o(0 — + Xex' erfc Vx/j , 

0 < t 

550* 
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Continued 

Cause: Unit Step (0, 1) 
Effect: dft[Y{p)IP~\ 

Cause: Unit Cisoid X Unit Step (0, 1) 
Effect: dK[Y{p)l{p - £„)] 

"(-?)• 
exp 

602* 

*<! 
V 

exp ^ + ^o) + , 

604 
v 

1 - \e-~VM + 0 < / 

560, 415* 

erfc — exp (3'Vx + X/) 
2V/ 

t f exp (- y^po) 1^0' 

0 < t + 

V^o/X 

exp {y^po) 

erfc 

-r^Aexp(W' + w) 

Xerfc(^+^> 
0 < t 

811, 415* 812 

«Vx exp (Wx + X/) erfc ( + VxA, 
V2 V/ / 

0 < t 

^Po ePBl f exp (- y^po) 
2 L 1 + V^/X _ 

x erfc ( ^ - V7.„A - exp (y^} 
\2-yJt ) 1 - V^0/x 

Xerfc(^+^)]+r^/x 

X exp (yVx + XO erfc + Vx^, 

815 816 0 < f 

WXc*' erfc Vx/, 0 < / 
7/Vx 

551 

L /^V'erf V^- —e"0' 
l-^o/xL^X X 

+ ex' erfc Vx/j, 0 < / 

552 
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TABLE II 

No. 
Admittance Y{_p) 
Illustrative System 
Cause and Effect 

Cause: Unit Impulse 
Effect: cMY(p) 

15 V(hs Copexp(-y^p) Coiy2 — 2y/V/i — 2/ + 4m/2) /M 
np) i + v^ 

Semi-infinite smooth line (resistance R 
and capacity Cper unit length). Cause: 
Voltage applied through capacity Co- 
Effect: Current at distance x from end. 

y = x^RC, fi = C/{RCo2). 

4/2 Vtt/ 

x-'H) 

— Com2 exp (^Vm + mO 

Xerfc^^+V^^, 0</ 

810 

16 Y(p) = C'0j'-r 1 + "V^/M 

Same as 15, except x = 0. 

^*o(0 + Co(2'*-1)yFi It V tt/ 

— Cqm2^' erfc Vm/, 0 < / 

544* 

17 Y{p) 
W2n+l[V(/) + X)2 + ^ + X)]-2" 

j^e~uJin(wt), 0 < / 

575 

k^(p + X)2 + ^ 
Semi-infinite artificial line (series element: 
resistance R and inductance L; shunt 
element: conductance G and capacity C; 
R/L = G/C] mid-series termination). 
Cause: Applied voltage. Effect: Current 
in «th section. 
k = (L/C)*, \ = R/L = G/C, w = 2(LC)~*. 

18 

X (V^-f 2a+ Vp)-2" 
Semi-infinite artificial line (series element: 
resistance R] shunt element: capacity C\ 
mid-series termination). Cause: Applied 
voltage. Effect: Current in nth section, 
a = 2I(RC). 

| e-at\_In-i("t)-2In(at) -f /»+1(«/)], 
K 

0 < 

573 
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Continued 

Cause: Unit Step (0, 1) 
Effect: oW[.Y(p)lP2 

Cause: Unit Cisoid X Unit Step (0, 1) 
Effect: — ^o)] 

c°\feexp(-;s) 

- Com exp (y Vm + mO erfc , 

0 < / 

809 

iccpa e-[exp 

L i + V^ 

xerfcte~v^) 
exP(Wp„)erf / y +V^)] 

1 - V^o/m V2V/ /J 
^ /M / y\ COM 

y irtexp \ 4J 1-^o/m 

X exp (^Vm + mO erfc ' 

813 0 < / 

C0A/Z- CoM^'erfc V^, 0 < / 
> irt 

543 

CoJM+1 
CoM

/ pVo' -hAhev** y-irl 1 — /Jo/M L M M ^ M 

X erf — e*4' erfcVM^ J , 0 < / 

545 

0<l 
K 

574 
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TABLE II 

No 
Admittance Y{p) 
Illustrative System 
Cause and Effect 

Cause: Unit Impulse 
Effect: c)UY{p) 

19 Y{p) = exp {x- + 1) 
Vertical atmospheric waves, axis of a: 
vertically upwards, velocity = 1, height 
of homogeneous atmosphere = Cause 
Vertical displacement at x = 0. Effect 
Vertical displacement at time t of particle 
whose undisturbed position is x. 

M) }^' 
V/2 - X1 

x/i(V/2-*2), |*| < / 

865* 

20 t/v i.\ exp (* - |*| Vp2 + 1) 
np) 2^ + 1 
Same as 19, except Cause: Vertical force 
at * = 0. 

^/o(V/2-*2), |*| </ 

866 

21 

22 

23 

Y(P) = lyl^pKl^p) 
irr 

Flow of heat in infinite plane. Cause: 
Temperature impulse at origin, tempera- 
ture maintained zero along x-axis, except 
at origin. Effect: Temperature of point 
with coordinates (*, y) at time t. 

r = V*2 + y2. 

irfexp(~5i)' 0<' 

921 

IW = i[l -exp(-y-^)] 

Horizontal oscillations of deep viscous 
fluid, axis of y vertical, bottom plane 
y = 0, kinematic coefficient of viscosity 
= v. Cause: Applied horizontal force. 
Effect: Displacement of particle at y at 
time t, y assumed small. 

erf -^= , 0 < / 
2Nvl 

803 

YM = iK'iri) 
Water waves radiating from center in an 
unlimited sheet of uniform depth h, 
gravity constant = g. Cause: Pressure 
at the origin. Effect: Velocity potential 
at distance r, time t. c1 = gh. 

   , - < / 
2r \ r* c 

912 
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Continued 

Cause: Unit Step (0, 1) 
Effect: dK[Y{P)lp] 

Cause: Unit Cisoid X Unit Step (0, 1) 
Effect: dft[.Y(p)/{p — po)2 

Mexp(_£). o</ 

922, 415* 

yJlexp(-£)-yi 

+ {h+'hJvr 0</ 

804*. 415* 

Lep0i _ 1 eif — 
Po frj 2^1 vl 

-2T![exp(~y^?) 

X erfc ( ^ — ^Jpot ) 
V 2 Vv/ / 

+ exp(^)erfc(^+Vw)], 

805 0 < / 

i- cosh"1 

2* r c 

913* 
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TABLE II 

No. 
Admittance Y{p) 
Illustrative System 
Cause and Effect 

Cause: Unit Impulse 
Effect: dUY{p) 

24 Y(p) = 
sin [(tt - y)p~\ 

sin irp 
sin y 1 

2ir cosh x — cos y 

Flow of electricity in thin plane infinite 
strip, axis of x along lower edge of strip, 
axis of y across, width of strip = tt, upper 
edge (y = tt) maintained at zero potential. 
Cause: Potential along rr axis. Effect; 
Potential at point {x, y). 

615 

25 Hrt =cos i> - 
COS TTp 

Same as 24, except upper edge (y = tt) 
is insulated. 

1 sin |y cosh \x 
tt cosh x — cos y 

616 

26 Y{p) = exp 

Linear flow of heat in infinite solid, 
diffusivity k, axis of x in direction of flow. 
Cause: Initial temperature. Effect 
Temperature at time / at point x. 

2 VTTK/ 
exp 

(-s) 

701 

27 y(£) = cos {tp2) 

Transverse oscillations of infinite elastic 
plate; x and y axes in the plate, but all 
points with same y coordinate have same 
displacement. Cause: Initial displace- 
ment. Effect: Displacement perpen- 
dicular to plate at time t of point whose 
coordinate is x. 

sin(^+0 

752 
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Continued 

Cause: Unit Step (— I, + 5) 
Effect: &K\_Y{.p)lp] 

Cause: Unit CisoidXUnit Step ( —I, +5) 
Effect :'^i[_Y{p)l{p—pQ)'] 

1 , tanh %x 
tan-1- ! 

tt tan 

617, 415* 

1 sinh \x 
tan-1 . 1 ■ 

tt sin %y 

618, 415* 

Jerf^ 

727, 415* 

^ exp (x^o2 + poY) erf ^ + Pq^IkI^ 

728, 440* 

iWsMvb)] 

754, 415* 

| exp + itpo2) erf ^ Po^^ ^ 

+ I exp {pox — itpo2) 

X erf  hpo^l —it^j 

755, 440* 
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TABLE II 

No 
Admittance Y{p) 
Illustrative System 
Cause and Effect 

Cause1 Unit Impulse 
Effect: dllYip) 

28 _ sin m 
v'; ",n (i+i) 

Same as 27, except Cause: Initial velocity. 
♦iKvfcMvis)] 

756 

29 Y{p) = cos (Wl — p2) 

Same as 19, except Cause: Initial dis- 
placement multiplied by e~x. Effect: 
Vertical displacement multiplied by e~x 

at time t of particle whose undisturbed 
position is 

5[^o(x - 0 + + t)2 

^, t<x<t 
2 V/2 - X2 

871* 

30 
_sin (iVl - f) 

Vl - 
\J^t2 - x2), - t <x <i 

Same as 29, except Cause: Initial velocity 
multiplied by e~x. 

872 

31 Y{p) = 

Flow of electricity in infinite thin plane, 
x and y axes in the plane. Cause: Po- 
tential along x axis. Effect: Potential 
at point (:c, y). 

1 \y\ 
tt x2 + y2 

632 

32 Y{p) = cosh {atp) - at) + + at)~\ 

Transverse motion of infinite stretched 
elastic string, axis of x along equilibrium 
aosition of string, velocity of propagation 
along string = a. Cause: Initial dis- 
placement. Effect: Normal displace- 
ment of particle at rc at time t. 

619* 
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Continued 

Cause: Unit Step (—%, + f) 
Effect: dK[Y{p)lP'] 

Cause: Unit CisoidXUnit Step +|) 
Effect: 21i[_Y{p)l{P—p<i)~\ 

xc(vB)+*1';"n(s+i)] 

757, 415^ 

1 . x 
- tan"1 -j—| 

\y\ 

633, 415s 

620, 415* 

at < zk x ± %epox cosh {atpo), 
^epoz sinh {atp0), 

at < ± x 
— at < x < at 

621, 440H 

45 
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TABLE II 

No. 
Admittance Y{.p) 
Illustrative System 
Cause and Effect 

Cause: Unit Impulse 
Effect: dtlY(p) 

33 Y(p) = 
sinh (dtp) 

ap 

Same as 32, except Cause: Initial velocity. 

2a' 

622 

— at < x < at 

34 Y{p) = - cos (aV |p| )eI'lp' 
P 

Waves on deep water, axis of y vertically 
upwards, axis of x in the surface, density 
= p, gravity constant = g, y = 0. 
Cause: Initial surface-impulse along x 
axis. Effect: Velocity potential at time 
t at point {x, y). 

- y + 
la 

Trp{x'1 + y2) 4pV7r(— y + ix)m 

xe*p[-4(-;2
+J 

X erf 

+ 

la 

2 V — y -f- ix 
ia 

h = 
V27r|a:| 

= t^g- 

4p^v{— y — ix)312 

><exp[-iF^j] 

X erf 
la 

2^ - y - i ix 
845 

35 Yip) = - sin ia^\p\) 

Same as 34, except Effect: Surface eleva- 
tion at time t at point .v. 

—-—= H  
2irpx2yjg p [a; | V27rg |.r | 

X { Ccos i^irh2) — irh2 sin (^tt 
-|-[sin i^Trh2) irh2 cos i^irh 

843* 

36 np) = 
^\p\ 

Same as 34, except Cause: Initial surface 
elevation. 

2Wtt(— y ix) 

Xerf 
la 

+ 

2V— y + ix 
Vg 

2j VttC— y — ix) 

xexp[-4(- 

Xerf 
la 

2 V — "V — i: IX 
846 
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Continued 

Cause: Unit Step ( — §, + I) 
Effect: 3n\_Y{p)lp] 

Cause: UnitCisoidXUnit Step ( — 5, +|) 
Effect: F (/>)/(/>—po) J 

" ± K at <±x 

—, — at < x < at 
2a 

623, 415* 

i 1 
± epox sinh (atpo), at < ± x 

2apo 

 ffiPo1 cosh (atpo) — 1]. 
2aPo - at < x < at 

624, 440* 

T-J—f-rHsin (iTh')S{h) 
P^irg\x\ 

+ cos (%irh2)C(h)^], 0 < ± a: 

844 
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TABLE II 

No. 
Admittance Y{pi, pi) 
Illustrative System 
Cause and Effect 

Cause; Unit Impulse 
Effect: dn^n2Y{ph pi) 

37 Y(pi, pi) = cos It (pi2 + pi2)'] 

Transverse oscillations of infinite elastic 
plate, x and y axes in the plate. Cause: 
Initial displacement. Effect: Displace- 
ment perpendicular to plate at time t of 
point whose coordinates are x and y. 

1 . a;2 + y2 

-— sin  —— 
Airt At 

759, 758 

38 Y(pi, pi) = exp (- z^lpS + p22\) 

Velocity potential function in semi 
infinite incompressible fluid, x and y 
axes in surface of fluid, z extending 
down, z = 0. Cause: Velocity potential 
at surface, z = 0. Effect: Velocity po- 
tential at point (x,y,z). 

1 
27r (x2 + y2 + z2)312 

867, 919 

39 Y(Pu Pi) = 
exp (— zV Pl2 + ^2|) 1 1 

V^!2 + pi2 lir W2 -f y2 + z2 

Newtonian potential function in semi- 
infinite solid, x and y axes in face of 
solid, z extending into solid, z = 0. 
Cause: Normal potential derivative at 
surface, z = 0. Effect: Potential at 
point Oc, y, z). 

868, 918 
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Continued 

Cause: Unit Step (— I, + 5) 
Effect: pi)l{pip2)~\ 

Cause: Unit Cisoid X Unit Step (— 5. +1) 

sWvfc,Hvb) 

-"(vsHvyi 

753; 754, 415* 

1 -1 xy — tan 1 , = 
27r Z^X' + ^ + 22 

t 

x , Vx2 + y2 + s2 + ;y 
— log —  47r Vx2 + y2 + 22 — y 

. y . Vx2 + T2 + 22 + .x 
+ — log       

47r Vx2 -f" iV2 4" 32 — x 

s 4. 1 xy  tan 1 —     
27r sVx2 + y+ 22 

t 
fThis solution was obtained by double integration of the unit impulse solution, not by the 

operation indicated at the head of the column. The two pairs required for this operation nave 
not yet been found in closed form. 



Automatic Machine Gaging 

By C. W. BOBBINS 

Note: This paper discusses the advantages to be gained in certain types 
of large scale production by the substitution of automatic machine gaging 
for hand testing. For testing carbon protector blocks, a machine has been 
developed which accepts all blocks in case a certain dimension lies between 
0.0024" and 0.0032" and rejects those when the dimension is 0.0023" or 
less or 0.0033" or more. This machine will effect a saving of S8000 per 
year over the cost of hand gaging on an output of 4,500,000 blocks. The 
saving effected by another recently developed machine replacing a manual 
test is approximately $1200 a year on a production of 2,500,000 pieces, but a 
far more important consideration than this money saving is the elimination 
of an operation so monotonous that it was difficult to keep any operator on 
it for more than a brief period. The author points out that in some in- 
stances automatic machine gaging of the entire product will cost less than 
a sampling inspection in which there must be included in the direct cost of 
inspection the cost of some additional supervision and control. 

HE cost of testing and gaging parts manufactured In large 
quantities frequently warrants the construction of special ma- 

chinery for this work which may be more or less automatic in operation. 
At the Hawthorne Works of the Western Electric Company con- 
siderable study has been given to the problem during the past ten or 
twelve years and several such machines have been developed. The 
work .has recently assumed more important proportions and many 
important developments have materialized in the last two or three 

Some of these machines perform a single operation while others 
perform several operations successively. Some are automatically fed 
from a hopper; others are fed by an operator, who at the same time 
performs some visual operation. Usually each type of piece to be 
gaged forms a distinct problem, and a single paper to be most useful 
can be suggestive only as to the procedure to be followed and methods 
that may be used. To this end it seems best to describe with con- 
siderable detail some of the machines that are in successful operation. 

A single purpose gaging machine with automatic feed is shown in 
Figs. 1 and 2. The part to be tested, shown in Fig. 2 (a), is used in the 
construction of switchboard plugs. It consists of a piece of 5/32 in. 
brass tubing, 1^ in. long, having a sleeve soldered at one end and a 
plug soldered in the other. The machine applies a 50 pound test to 
the two soldered joints simultaneously. 

Within the hopper H, Fig. 1, a shaft having three slotted arms is 

years. 

Single Test Machine, Automatic Feed 

708 
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revolved slowly through the ratchet R. The slotted arms pick up the 
parts suspended in the slot by the sleeve and deliver them into the 
chute A, Figs. 1 and 2. An intermittently revolving turret B, Fig. 2, 

R- 

m 

?-p 

B 

Fig. 1 

having four notches or chucks, receives the parts from the chute and 
carries them under the plunger D, attached to the slide Du which 
carries the 50 pound weight Zb- The slide with the weight is raised 
and lowered at the proper time by the cam E acting on the roller Di 
attached to the slide. 

After the turret has carried the part to the testing position and 
stopped, the plunger D enters the tube, gradually applying the load 
(furnished by the weight Dz) to the soldered joints X and Y, Fig. 2. 
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If either joint is defective, the weight and slide will not be supported 
but will drop to the limit allowed by the cam at £1. This permits the 
wedge-shaped piece Da, mounted on the slide A. to push the far side of 
the lever F (pivoted to the base at C3) to the right. The near side of F 

,320' 

 J J_ 
1 A 1 \ 

i'-^TTir 

22" ill* 1 v " l« (1 1 X 

/I I 

(d) 

¥T 
4r0 

E2 

Ca 

kr- 

Fig. 2 

is pushed into the groove B, and when the turret turns the defective 
piece is ejected. The lever F is reset by a cam after each operation. 
If the soldering is good, the load is supported by the piece for a short 
time while the roller A is passing across the depression Ei, after which 
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the cam raises the weight, the turret turns and the piece is discharged 
into the O.K. chute after passing the lever F. 

The saving effected by the automatic machine replacing the manual 
test is approximately $1,200 per year on a production of 2,500,000 

T 

h 

G 

mm 

Fig. 3 

pieces. However, by far the more important consideration is the 
elimination of an operation that was so monotonous and tiresome as 
to make it very difficult to keep any operator on it for more than a 
brief period. 
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Multi-Test Machine, Automatic Feed 

An automatic gaging machine for applying four tests to a piece of 
telephone apparatus is shown in Fig. 3. 

The part tested, shown in Fig. 4 (a), is a heat coil used to protect 
telephone exchange equipment against excessive electrical currents 
that may accidentally come in over the line wires. It consists of a 
tiny coil wound around a copper sleeve, into the end of which sleeve is 

m-- 
-l-U  

A a A 4 
fftl 

mi 

HEAT COIL 

SPRINGS 

0.1037 tr 0,0937 
9 O 

SHOULDER 

(a) 

Fig. 4 

soldered with low melting point solder a projecting pin. An excessive 
current through the coil melts the solder, allowing a contact spring to 
press the pin into the sleeve, which movement of the contact spring 
opens the circuit. 

The machine gages the length of the pin X, the external length of 
sleeve F, tests the strength of the soldered joint and measures the 
electrical resistance of the coil for high and low limits. 

Referring to Fig. 3, there is an intermittently rotating disc D fitted 
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with twelve chucks for holding the parts to be tested and a vertically 
reciprocating turret head T which carries the gages and contact 
fixtures for making the tests. 

The hopper H, chain elevator E and feed tube F are shown in more 
detail in Fig. 5. The coils are carried up from the hopper by the 

E  

& --vT -«v 

-- -v. 

V-- 

Fig. 5 

elevator, two on each cross bar, and~drop one after the other into the 
sloping chute S. Since the parts must be right end up for testing, the 
turning device B (shown in detail in Fig. 6) is placed at the end of the 
chute to turn over those pieces that are not already right end up. 
From the turning device the parts drop into the vertical feed tube F. 
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The chucks on the intermittently rotating disc take them one at a time 
from the feed tube and carry them under the gaging heads. 

Cb 

Fig. 6 

In the first position the chuck picks a coil from the feed tube. In 
positions 2, 4, 6, 8 and 10 the coil is tested respectively for right end up, 
length of pin X, low limit of resistance, high limit of resistance and 
length of sleeve Y. At positions 3, 5, 7, 9 and 11 are located electro- 
magnets, each controlled by the testing device in the position preceding 
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it. These are for the purpose of ejecting defective parts so that if a 
part fails to meet the test at any position an electrical contact is 
closed which through the electro-magnets sets a trip at the next 
succeeding position of the chuck, and when the defective part reaches 
this position it is ejected from the chuck and through one of the tubes 
G falls into the proper compartment of the container I. At the 12th 
position the good parts are released from the chuck and fall into the 
pan K. 

A multiple lever gage for this class of work is shown in Fig. 4, which 
shows the gage for length of pin X and also tests the strength of a 

I 

Fig. 7 

soldered joint between pin A' and sleeve Y. A is the body carrying 
two sliding members B and C. B carries the gaging mechanism and 
electrical contacts. B* is a preliminary centering guide for the heat 
coil. Centering slides D, D carried in B are normally held open by 
springs (not shown). A is normally lifted in C by springs A*. Slide 
B is normally held down on A by means of spring Ai. 

As the entire gage {A, B, C, D) descends, the heat coil is centered 
approximately by 56. Then slide C is restrained by an anvil E, and as 
A continues downward the slides D, D are closed by the beveled 
surfaces CiFh, thereby centering coil and providing the gaging surface 
for the shoulder formed by the sleeve. As A continues downward, the 
gaging surfaces on D, D engage the shoulder and the pressure for 
operating the gage mechanism is transmitted from A to B through 
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spring Ai, which limits the testing pressure applied to the soldered 
joint. 

If the length of pin is within limits, the electrical circuit remains 
open and the coil passes on to the next test. If it is too short, the 
circuit is closed through lever Bs coming in contact with B4, and if too 
long the contact is made with B-0. 

If the soldered joint fails, the effect is the same as a short pin. In 
either case the tripping magnet operates and at the next position of 

Fig. 8 

the disc the^defective part is released and drops into the proper 
container. 

For testing the electrical resistance, contact is made with the coil 
terminals by the gaging machine and the resistance measurement 
proper is made by means of the apparatus shown in Figs. 7 and 8, 
which is essentially two Wheatstone resistance bridges, one for checking 
the resistance of the coil against a low limit and the other against a 
high limit. The galvanometers G, for indicating the balance of the 
bridges, each have a small rectangular, delicately pivoted coil which 
rotates between the pole piece of a strong magnet. The end of a long 
pointer attached to the coil is broadened out and contains a narrow 
slot which, in connection with a fixed slot, forms a shutter that passes 
or intercepts (depending on the position of the coil) a beam of light 
from a small lamp in the hood L passing to the photo-electric cell M. 

The photo-electric cell is connected in the circuit of a vacuum tube 
amplifier, the tubes of which are shown at V. The position of the 
small shutter on the galvanometer needle is determined by the relative 
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value of the resistance of the coil under test to that of standards 
contained in the bridge. If this resistance is too high in one case or 
too low in the other, the shutter is closed, preventing the light beam 
from reaching the photo-electric cell. This in turn through the action 

D 

M 

C 

Fig. 9 

of the vacuum tube amplifier and relays R actuates the trip on the 
machine which discharges the coil at the proper point. 

While designing this machine much attention was given to producing 
a type that could be adapted readily to the testing of other parts 
requiring several operations. 

Fig. 9 illustrates the fundamental parts of the machine. It is 
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individually driven by the motor M belted to the reducing gear R 
which is attached to the main shaft S. The turntable D is given an 
intermittent motion by a Geneva gear and the turret head T has a 
vertical reciprocating motion from the cam C on the main shaft 
through the roller E. The cams F are used for operating a series of 
electrical contacts which work in synchronism with the other parts of 
the machine controlling the sequence of testing operations and the 
disposition of parts. 

The frame is built of welded structural steel. The turntable may be 
fitted with a variety of chucks or holding fixtures and the turret with 
various forms of gages or testing apparatus. The cams and gear ratios 
may be changed to accommodate a wide range of testing requirements. 
Space is provided at K for a hopper or other feeding device. This 
type of machine is suitable for multiple tests on parts requiring special 
holding fixtures. 

Multi-Unit Testing Machine—Semi-Automatic Feed 

An entirely different type of gaging and testing machine is shown in 
Figs. 10 and 11, which, as illustrated, is equipped for testing porcelain 

Fig. 10 

protector blocks used for protecting telephone apparatus against high 
voltage electrical currents or static discharges. 

These are porcelain blocks U in. x f in. x-^ in., having a recessed 
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surface into the center of which is inserted a small carbon block having 
a face 0.0370 in. x 0.110 in., cemented in with a low melting point glass. 
The face of the carbon block is underflush with the rim of the porcelain 
block, Fig. 12 (a). 

L 

Fig. 11 

As shown in Fig. 11, the blocks are being stacked by hand in the 
top of a vertical chute from which they are automatically fed to the 
machine at the bottom, but the feeding arrangement shown separately 
in Fig. 13 is now being added. This consists of a rotating disc having 
two V-shaped grooves in the surface and above it a stationary plate 
having a spiral slot. The operator places the blocks rear side up (by 

46 
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sense of touch) against the front side of the central opening of the 
stationary plate, three blocks being shown in this position at A. The 
disc carries them into the spiral slot at B and while they are passing the 
front opening in the top plate at C they are given a visual inspection. 

0.0032| 

u 
  3" ^ 

^ 8 

0.0024" j 

(a) 

i i 

Cb) 

Fig. 12 

During the second round they are turned over by the action of the two 
V grooves in the rotating disc and the radial motion given them by the 
spiral slot, and the front face is turned up for visual inspection during 
the second passage across the front opening at D. Any with visible 
defects are picked off by hand, while the others passing on through 
the last turn of the spiral at E are fed into the machine (Fig. 10) for 
the following gaging operations: 

1. 15 lb. weight test for defective cementing. 
2. 5 lb. weight test to detect misplaced inserts. 
3. Gage height of back face of insert—minimum 0.046 in. 
4. Gage thickness of block—maximum 0.220 in. 
5. Gage thickness of block—minimum 0.205 in. 
6. Gage the underflush dimension of insert which must be maximum 

0.0032 in., minimum 0.0024 in., for at least half the area of the 
face of the carbon insert. 

7. Gage the underflush dimension for minimum 0.0024 in. over entire 
face of insert. 
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The gage for operation No. 6 has four | in. plungers {P, Fig. 15) 
arranged to make contact with the insert as shown at (6), Fig. 12, and 
the electrical contacts of the gage controlled by the plungers are 
connected to a bank of relays so that if any three or all four of the 
gage points are within the limits the block is passed, but if two or more 
are outside the limits the block is rejected. This gage, shown in Figs. 
14, 15, 16, and 17, is without pivots, the moving parts being controlled 

V--5 
**00 

K 
U: 5^ 

v.' 
^4 

A* 

Fig. 13 

by thin steel reeds as shown in Fig. 14. Fig. 15 shows a partial, and 
Fig. 16 a complete, assembly, while Fig. 17 shows the equalizing levers 
for centering the block in the gage. Using master steel gage blocks, 
the contact points are adjusted by the screws A, Fig. 16, to accept 
blocks if the underflush dimension is minimum 0.0024 in. and maximum 
0.0032 in., and reject blocks when the dimension is 0.0023 in. or less or 
0.0033 in. or more. 

The single plunger gages used for operations 2, 3, 4, 5 and 7 are also 
of the reed type and are similar to that shown in Fig. 18. These have 
a sliding electrical contact instead of a point contact, the pointer A 
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sliding on the surface of the insulated block B and making contact 
with the flush metal insert C. 

Fig. 14 

Considerable experience has been gained in the design and use of 
the reed type gages and they are proving very satisfactory for a wide 
variety of uses. They are relatively inexpensive to build, require but 

D 

\) 

Fig. 15 

little maintenance, the pressure on the gaging point may be kept low if 
desired and they are reliable in action. 
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Following each gaging operation the blocks pass between air blast 
tips A, Fig. 10, and the square tubes B marked 1 to 7 leading to 
receptacles bearing the same numbers. The electrical contact in each 
gage, which is closed by a defective block, sets a trip connected to the 
adjacent air tube so that, as the block passes, the air cock is opened for 
an instant and the defective block is blown out of the test line into the 
tube, through which it falls into the proper container. A small air 
compressor is installed as part of the machine. 

I 

Fig. 16 

The O.K. blocks pass along to the automatic packing attachment E 
(shown in more detail in Fig. 11), which places 100 of them in a box in 
layers of five each with cardboard separators between layers. The 
empty boxes are shown in the magazine F, the separators at G, and 
the filled boxes emerging at II. 

The feed table shown in Fig. 13 will be placed at the same end of the 
machine as the packing attachment and the blocks will be carried 
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from the feed tableJo'the far end of the machine by a conveyor. By 
this arrangement one operator can feed the machine, make the visual 
inspection and remove the finished packages. This machine will 
effect a saving of $8,000 per year over the cost of hand gaging methods 

Fig. 17 

on an output of 4,500,000 blocks. A similar machine is being built 
for another size of blocks. 

Each gage with its associated equipment is an independent unit as 
shown in Fig. 19. The gages are located at G, either above or below 
the working surface. Relays and other electrical apparatus at E. 
The solenoid for opening the air cock is shown at S and the air blast 
tip at T. The connection for the electrical supply for each unit is 
made with the cord and plug P. The cams C and contact springs D 
operate in synchronism with the other parts of the machine and 
control details of the gaging operation and the air blast. 
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The main shaft of the machine can be seen at A, which drives the 
disc B through worm gears. When the units are attached the pin K 
engages a slot on a disc attached to the rear of the unit shaft I. At- 
tached to the front end of the same shaft are two eccentrics TI (shown 
in Fig. 20) which operate the feeding device located just back of the 
blocks shown in the illustration, Figs. 10 and 11. 

A 

© 

Fig. 18 

The feeding mechanism (Fig. 20) is of the finger bar type consisting 
of two reciprocating bars A and B, both having the same travel. 

Fig. 20 indicates the relative position of the driving parts. Finger 
bar A is operated by a bell crank gear segment and eccentric properly 
timed to step the protector blocks to the gaging position immediately 
prior to the gaging operation. 

Feed fingers C are so located in this finger bar that the protector 
blocks are centrally located under the gage when the finger bar comes 
to rest at its forward position. 
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Fig. 20 

The finger control bar B is likewise operated by a bell crank gear 
segment and eccentric but is set with a thirty degrees lag. The effect 
of this lag is illustrated in sketches D and E which show the manner in 
which the feed fingers C are withdrawn on the return stroke of the 
finger bar. 

Economic Considhrations 

A comparison of hand versus machine gaging is given in Table I. 
In this particular case the quality of the inspection work was bettered 
approximately 100 per cent, while the cost was reduced 60 per cent. 
While this showing is rather better than the average, the tendency in 
most instances is in the same direction. 

Like the turret machine previously described, this one was designed 
with the idea of making it readily adaptable for similar work on other 
parts. The number of units and thereby the number of operations 
on a machine may be varied greatly. A unit may be quickly removed 
for adjustment or repair and easily replaced. If the conditions 
warranted, spare units could be provided and an adjusted unit put 
in the place of a defective one in fifteen or twenty minutes. 

The frame is built of welded structural steel. The machine is a 
complete unit with individual motor drive requiring only the at- 
tachment of the electric power supply. 

The unit system for the equipment provides a wide latitude in the 
choice of gaging and testing fixtures to be used and the details of 
operating them. 
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TABLE I 

Comparison of the Economic Factors on Testing of Protector Blocks by 
Machine Method and by Manual Method 

Capacity  

Cost of Equipment. 

Cost of Labor 

Cost of Power 

Floor Space. . 

Maintenance. 

Accuracy — Repeating 
results on parts that 
vary from tolerance 
limit by .0001 in  

Machine Method 

8,000,000 per year, 
1 machine at 
3,600 per hour 

1 machine at 
$10,000 

11 operators at 
$1,920 = $2,880 
per year (in- 
cluding loading) 

$40 per year 

Machine requires 
35 square feet 

Cost of mainte- 
nance at $130 
per million 
blocks = $1,040 
per year 

95% (See note 
below) 

Hand Method 

8,000,000 per year, 
9 hand gages re- 
quired 

9 gages at $150— 
$1,350 

6 operators at 
$1,920 =$11,520 
per year (in- 
cluding loading) 

0 

6 operators re- 
quire 90 square 
feet 

Cost of mainte- 
nance of 9 gages 
per year =$1,560 

45% Low degree 
of accuracy due 
to (a) plurality 
of gages, {b) plu- 
rality of oper- 
ators 

Remarks 

Machine method 
requires $8,650 
additional first 
cost, meaning an 
annual yearly 
charge, at 8%, of 
$670. 

Machine method 
gives a saving of 
$8,640 per year 
in labor costs. 

Machine method 
costs $40 a year 
additional for 
power. 

55 square feet 
saved by ma- 
chine. 

$520 saved by ma- 
chine method, 
nearly 30%. 

Degree of accuracy 
doubled. 

Note: This means that a master gage or parts that are .0001 in. outside the 
tolerance limit will be rejected, in the first case, an average of 95 times in 100 trials, 
and in the second case 45 times. Parts that are .0001 in. within the tolerance limits 
will be passed as good in the same ratios. The disposition of parts that vary more 
than .0001 in. either way from the tolerance limits would follow the normal probability 
law. The figures given do not give any indication of the very small percentage of 
defective parts that would be passed as good or good parts classed as defectives, as 
these would depend upon the relative number of defectives and the distribution of 
their variations from the tolerance limit, as well as the precision of the methods given 
above. 

The development of machine gaging has been greatly aided by the 
development of accessory parts, such as reliable indicating gages, 
chromium-plated parts, sensitive but sturdy relays, vacuum tube 
amplifiers and photo-electric cells. 
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Sampling methods or percentage inspection are applicable to parts 
that are made under conditions that may be considered approximately 
uniform or, as a statistician would say, under "a constant system of 
causes." Piece parts made in the punch press and screw machine 
are good examples of this. Many other classes of operations, partic- 
ularly those in which some part is manual, produce parts which are 
not so uniform. As the variability increases, or as the requirements 
for precision become more exacting, the possibilities of sampling inspec- 
tion become less attractive. 

In many cases the conditions and requirements are such that only 
detail inspection or gaging is satisfactory. 

In some instances automatic machine gaging of the entire output 
will cost less than a sampling system in which there must be included 
with the direct cost of inspection the cost of some additional super- 
vision and control. 

The possibilities so far as designs are concerned seem almost un- 
limited, so that the question of when to apply such methods becomes 
purely an economical one in which the number of parts to be handled, 
the difficulty, unpleasantness or tirescmeness of the operation, the 
precision required, and the cost of suitable labor become the controlling 
factors. 

Aside from the question of cost, it is often a matter of great satis- 
faction to place an objectionable hand operation on the machine and 
release the labor for more pleasant and useful work. 



Contemporary Advances in Physics, XVI 

The Classical Theory of Light, Second Part1 

By KARL K. DARROW 

MEASUREMENT of wave-lengths is the subject which we shall 
now consider. So entitled, the topic seems unpromising, as 

some dry exercise in mensuration; but in truth it is distinguished for 
beauty and variety, and implicated with the whole of modern physics. 
This is not measurement of the lengths of palpable objects, as pieces 
of lumber or cloth, which are laid alongside of a yardstick or clamped 
in the jaws of a gauge. In optics, the methods of measuring wave- 
lengths are the methods of proving that waves exist, therefore of 
testing the undulatory theory of light. One could not reasonably 
ask for evidence of light-waves more convincing than the concord of 
the values obtained for the wave-length say of sodium yellow light, 
by all the diverse instruments which act by causing interference or 
diffraction: Newton's tapering film of air between a lens and a plate, 
Fraunhofer's grid of iron wires, the tilted mirrors of Fresnel, Michelson's 
echelon, and all the many gratings and interferometers continually in 
use in laboratories and classrooms. Wave-lengths of X-rays are com- 
puted from the diffraction-patterns imposed on X-ray beams by 
intercepting crystals, and these patterns were the evidence which 
showed some fifteen years ago that the rays are of the nature of 
undulations, though it could not disprove that in some paradoxical 
way they are also of the nature of corpuscles. From similar diffraction- 
patterns imposed by crystals on electron-streams it follows that these 
also are partly of the nature of waves, and again the patterns have 
supplied the values of the wave-lengths. 

Moreover, evidence for waves and values of their lengths are 
only part of what a grating can supply. Once we are sure that we 
know the wave-length of a certain kind of light, we can send it against 
a grating and study the diffraction-pattern with the opposite intent; 
analyzing not the light but the grating, and deducing the widths and 
the spacings of the slits, if it is an alternation of slits and stops—the 
spacing and the shaping of its grooves, if it is an engraving on metal 
or glass—the arrangement of the atoms and of the electricity within 
the atoms, if it is a crystal. Therefore the methods for measuring 
wave-lengths of X-rays are also those for exploring the structures of 
solids and of the atoms of which these are composed. Remember 

1 Continued from the April, 1928, issue. 
730 



CLASSICAL THEORY OF LIGHT 731 

also that the instruments efficient in this field are the most delicate 
and accurate which have ever been made for any purpose; that they 
may be used to measure ordinary lengths and other physical quantities 
with an almost unbelievable precision; that the theory of relativity 
sprang from an experiment performed with one, and the only known 
way of measuring the diameter of a star involves the use of another. 
Surely, if this topic is not interesting, nothing in physics is interesting. 

Methods of measuring wave-length are sometimes divided into those 
which operate by interference and those which utilize diffraction. 
Though to a thorough insight the distinction is only trivial, at the out- 
set it is convenient. In an extreme example of what is specially called 
"diffraction," a single train of plane parallel waves is sifted through a 
sieve in the form of a grid or a sequence of slits; and each element of 
wave-front which passes through a slit evolves and spreads thence- 
forward according to the law of wave-propagation. Eventually—as 
a rule, in the focal plane of the lens beyond the grating—a region is 
reached where the light from the several slits intermingles; and here 
occur the variations in amplitude which disclose the waves and the 
wave-lengths. For, as I have said earlier, the eye perceives only the 
amplitude of the light-waves, and not their phase; therefore, in a 
plane-parallel beam where the phase is perpetually changing but the 
amplitude is everywhere the same, the eye receives a uniform impres- 
sion, with nothing wavelike in it; and to make such a beam reveal 
that it is undulatory, we must cause the amplitude to vary from point 
to point. This is what we accomplish by breaking the beam into 
fragments, or lacerating it with obstacles, preferably with an obstacle 
having a periodic structure of its own, which is a grating. But it may 
also be accomplished by causing two plane-parallel beams to intersect 
one another under proper conditions. The region where they overlap is 
then a region of varying amplitude—indeed, the variations are as 
great as one can imagine; for if the beams are equally intense, 
there is a succession of parallel planes of no vibration and darkness, 
which separate spaces where there is vibration and light. The widths 
of these spaces, the fringes, may be computed from the wave-length, 
and reversely the wave-lengths from the widths, very simply and 
without any knowledge of the law of wave-propagation beyond the 
familiar expression for plane waves. Therefore this method of meas- 
uring wave-lengths by causing interference of two parallel beams is 
much the easiest to grasp; but it does not differ in principle from the 
method involving a grating, for that acts by interference between the 
beams from the various slits. 
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The Diffraction Grating 

The ideal diffraction grating of theory is a sequence of equally-wide 
perfectly vacant slits, separated from one another by strips absolutely 
opaque and equal in width to one another though not necessarily to 
the slits. Actual gratings seldom resemble this picture, though Fraun- 
hofer's first—the most important instrument, I suppose, in the story 
of spectroscopy—was an approximation to it which he made by winding 
a wire around and around a pair of screws held parallel and wide apart, 
soldering it in place and cutting away the alternate strands. So were 
some of his others, composed of gold-leaf mounted on glass and 
scratched along parallel lines with a diamond. So-called reflection 
gratings would also conform with the picture, if they consisted of 
bands of perfectly smooth reflecting metal separated by absolutely 
non-reflecting bands; for then the result would be the same as if the 
light came through the reflecting strips from a virtual image of the 
source located behind. Practical reflection gratings are not usually 
very like this conception, for the entire surface of the metal block is 
ploughed up into roughly-shaped furrows. In fact one could scarcely 
define the word "grating" less generally than as a periodically-repeated 
obstruction, or better yet a periodically-repeated device for perturbing 
the free onward flow of a beam of light. 

Nevertheless the theory of the ideal grating contains most of what 
is required for the theory of the practical appliance. The reason is, 
that the action of the grating upon the light can be separated into two 
factors, each of which produces its own separate effect, each of which 
may be studied apart from the other. Commonly there is a set of 
maxima of brilliance in the diffraction-pattern; otherwise expressed, 
there are certain directions in which the intensity of the diffracted light 
is exceptionally great. From the locations of these maxima, the 
wave-length of the light is calculated. Now these locations are deter- 
mined by the spacing of the units—be they slits and bars, furrows 
and ridges on a reflecting surface, planes of atoms in a crystal, or 
what not—whereof the exact repetition in sequence constitutes the 
grating. Thus if we know that a certain grating is ruled with 1000 
"lines" to the inch, we can compute the wave-length of sodium light 
from the positions of the maxima in its diffraction-pattern, without 
knowing or caring whether the rulings are slits, grooves, triangular 
indentations, wavy ripples, or rough-bottomed troughs. If we know 
that in a crystal a certain grouping of atoms repeats itself one million 
times in a centimetre, we can calculate the wave-length of an X-ray 
beam or an electron-beam from the locations of its diffraction-maxima, 
without knowing anything about the arrangement of atoms in the 
group. 
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The contour of the rulings of a grating does, on the other hand, 
affect the relative intensities of the various diffraction-maxima and 
the details of the distribution of intensity throughout the diffraction- 
pattern. If they are grooves or troughs, their profiles in cross-section 
have influence upon the pattern; if they are slits with bars between, 
the ratio of width of slit to width of bar must be taken into 
account. In crystals the arrangement of the atoms in the groups 
controls the intensity-ratios among the diffraction-maxima and con- 
versely is deduced from observations made on these. Even the dis- 
tribution of electricity in the separate atoms of a crystal may be read 
from the details of the diffraction. These effects however can 
intrude upon the measurement of wave-lengths only in the cases— 
comparatively rare—in which some of the diffraction-maxima are 
actually blotted out, so that the uninformed observer may misinterpret 
those remaining. Except for cases such as these, one may derive the 
formula for computing the wave-length by assuming any convenient 
form of grating; and therefore we may think about a grid of slits and 
bars. 

AHc cos a 

>) 
P(a./3,>) 

Fig. 1. 

Consider then an alternation of slits of width a and bars of width b, 
occupying the plane x* = 0. A beam of plane-waves, monochromatic 
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and of the wave-length X, travelling along the x-direction in the 
positive sense, shall fall normally upon it from behind. It is our 
object to determine the amplitude of the waves in the region in front 
of the grating. Suppose for instance that we select a plane parallel 
to the grating and at the distance x in front of it, and derive the formula 
for the amplitude at any and every point (^, y, z) of this plane. This 
formula is the description of the theoretical diffraction-pattern in the 
plane in question; and the actual pattern may be observed by setting 
up a screen or a photographic plate in the corresponding place. 

We went through this process for a single aperture in the first part 
of this article; and there we found that the pattern is simpler (or, at 
least, more calculable) the farther the plane of observation is removed 
from the plane of the slit, being simplest when the two are infinitely 
far apart. To realize this case in practice we have only to set a lens 
immediately before the grating. Then, the diffraction-pattern appro- 
priate to the plane at infinity—the so-called "Fraunhofer diffraction- 
pattern"—is transposed into the focal plane of the lens, where we 
must place the photographic plate in order to record it. Naturally 
it is reduced in scale and augmented in intensity when it is thus trans- 
posed, and for this as well as other reasons we had better express it, 
not in terms of the coordinates (.-r, y, z) of the points in the focal plane, 
but in terms of the direction-cosines (a = xjr, (3 = yjr, 7 = zjr) of 
the lines drawn to these points from the origin of coordinates.1 Our 
formulae for the diffraction-pattern in the infinitely-distant plane are 
in fact naturally expressed in terms of a, (3 and 7: and the lens may 
be regarded as an agency whereby that value of amplitude, which 
otherwise would have existed infinitely far away upon the line with 
direction-cosines (a, |3, 7), is amplified by a constant factor and shifted 
inward along this line to the point where it intersects the focal plane. 

We wish, then, to determine the vibration produced by a regular 
sequence of slits, all over the plane which is either infinitely distant 
or else the focal plane of the lens, according as the lens is absent or 
present. 

Now we already have a formula for the vibration produced in that 
plane by any slit individually. It is the formula (93) of the first part 
of this article; to wit: 

5 = const. (1 + a!)[C sin {nt — mr^) — S cos {nt — mra)~\ 
,  . (1) 

= const. (1 + q;)VC2 -f- S2 sin {nt — mr^ — e). 

1 The origin should coincide both with the centre of the lens and with some 
point in the plane of the diffracting apertures. This is impracticable; but the error 
apparently does not make any trouble in practice. 
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Here the symbol 5 stands for the amplitude of the vibrating entity— 
whatever that may be—at the various points ("field-points") where 
the plane in question is intersected by the lines drawn from the origin 
with direction-cosines (a, /3, 7): the symbols n and m for 2ir times the 
frequency and Itt over the wave-length of the vibration, respectively: 
and the symbols C, S, r0 and e for various functions of (a, 7)- I" 
particular, C and S denote certain integrals extended over the slit, 
so that they involve the breadth of the slit as well as the variables 
{a, 0, 7); this last is true of e also; but ro denotes the distance from 
the origin of coordinates to the field-point, and thus involves the 
variables but not the breadth of the slit. As for the nature of the 
vibrating entity which is designated by 5, I am keeping it intentionally 
vague. Suffice it to say that 5 is something of which the phase cannot 
be detected in any known way, but the amplitude controls the intensity 
of the light; the observed intensity being, according to the classical 
theory of light, proportional to the square of the amplitude.2 

If therefore we were studying the diffraction-pattern of a single slit, 
we should be concerned only with the factor (1 + o:)\C- + S2 in 
the expression for 5. It would be short work to develop the expres- 
sions for C and S for a single rectangular aperture, finite or infinite in 
length; and having developed them, we should have solved the 
problem of the single slit; but in respect of our present purpose, it 
would be a detour. Remarkable as it may seem, the pattern of the 
single slit is only of secondary importance in determining that of a 
regular sequence of slits. When we undertake to sum up expres- 
sions such as (1) in order to compute the diffraction-pattern of such 
a sequence, we find the emphasis violently shifted. A new set of 
diffraction-maxima appear, and their positions are determined by the 
variation of the phase (nt — duq — e) from one slit to the next—in 
more general language, the variation which the phase undergoes in 
passing over one complete period of the grating-structure. Mean- 
while the influence of the coefficients C and S, and that of the breadth 
of the slit which they involve, recede into the background. Not the 
features of the individual slit, but the interval at which one follows 
another, is now the dominant factor. This is the situation fore- 
shadowed in the introductory pages. 

To bring this out, let us orient the s-axis in the plane of the grating 
so that it runs parallel to the slits, which are of width a and are sepa- 
rated by bars of width b so that the period c of the grating is equal to 
{a -\- h). The .v-axis is to run, as heretofore, perpendicular to the 
surface of the grating and through the centre of the lens, so that it 

2 Or rather to the sum of the squares of the amplitudes of several quantities, 
any one of which separately satisfies the same equations as s. 

47 
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intersects the focal plane (or the plane at infinity) at the point which 
is the centre of the diffraction-pattern. The y-axis is to lie in the plane 
of the grating perpendicular to the slits. The light comes up to the 
grating normally from behind, and therefore follows the ^-direction. 
For reasons which will presently appear, it will suffice to calculate the 
diffraction-pattern over not the entire focal plane, but only the line 
where this is intersected by the rry-plane. For any field-point on this 
line 7 = 0 and a = ■yjl — /32. 

To the total vibration at any field-point, each slit now makes a 
contribution given by the expression (1). Numbering them in order, 
we may write for the contribution of the ^th slit: 

Sk = const. (1 -f a)Ak sin vu, (2) 

in which stands for the value of VC2 + S1, and ipk for the value of 
(nt — mr0 — e), appropriate to the ^th slit. 

Now Ak has the same value for all the slits. This may be proved 
directly from the formulse 3 for C and S, or indirectly by the following 
chain of reasoning. The function sIC2 + S2 describes the diffraction- 
pattern formed by the single slit on an infinitely-distant screen, when 
there is no lens. Two similar slits a finite distance apart would 
produce two such patterns, one displaced by the same finite amount 
relatively to the other. But on the infinitely-distant screen the fringes 
and other details of the patterns are themselves infinitely broad, so 
that a finite displacement of one with respect to the other leaves them 
still practically—and, in the limit, exactly—in coincidence. This 
remains true when the patterns are transposed to the focal plane of 
the lens; those produced by a slit in one place coincide exactly with 
those which would be produced by an exactly similar slit lying any- 
where else.4 Therefore \C2 + S2 must be the same function of 
(a, /3, 7) for every slit. 

At first glance this argument seems to prove that the diffraction- 
pattern for the grating is merely that of the individual slit, multiplied 
manyfold; but that conclusion would in general be false, for we have 
not to add amplitudes but to compound vibrations with due regard to 
their relative phases. The phase <pk which figures in equation (2) 
differs from slit to slit; and if these follow one another at equal 
intervals, tpk changes from one to the next in equal steps. 

3 By operating on the expressions (presently to be derived) for C and 5 in the case 
of a rectangular aperture, one may show that, while each separately varies when the 
position of the rectangle with reference to the origin is changed, the sum of their 
squares remains the same. As any finite aperture may be regarded as a collection 
of finite or infinitesimal rectangles, the theorem is general. I am indebted to Mr. 
L. A. MacColl for working this out. 4 The practical limitation to this statement would be set by the impossibility of 
making an ideally perfect lens of indefinitely great size. 
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To prove this, and to find the magnitude of these equal steps, one 
may proceed as follows. Omitting the lens again, consider in the 
grating any two consecutive slits k and {k + 1), and on the very 
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distant screen two field-points P and P' separated by the same distance 
c as separates corresponding points of the two slits—that is, the period 
of the grating. Write down successively the formulae for the vibrations 
produced by k At P and by (^ + 1) at P'. They are, respectively: 

A sin {nt — mro — eO; A sin {nt — m/V — €fc+i). 

Since P lies in the same direction from k as P' from (fe + 1), these two 
are equal; hence: 

€.-+i - e.- = t«0o' - ro). (3) 

Here the factor (ro' - ro) on the right is the difference between the 
distances from the origin to P' and to P. In the limit when these 
distances become infinitely great, all the lines from the origin and the 
slits to P and P' become parallel and inclined to the plane of the 
grating by the angle of which the cosine is /3; and the difference be- 
tween the paths to P' and to P from the origin attains the limiting 
value c/3. Hence in the limit; 

ek+l - €k = mcfi. (4) 

This is the "step" or difference in phase between the contributions of 
successive slits to the vibration at the field-point. The expression 
looks more familiar if we put 6 for the angle between the normal to the 
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grating and the direction from the grating to the field-point, so that 
/3 = sin 0; then: 

ct+i — ft = mc sin 0 = ^ c sin 0. (5) 

Thus we have arrived at the conclusion—indeed almost self-evident— 
that the consecutive slits of the grating supply to the total vibration 
at the field-point contributions which are exactly equal in magnitude 
and follow one another at equal intervals of phase. 

Our problem therefore is to sum up the series of these contributions. 
The process is an easy one; but we shall be able to foresee the major 
feature of a diffraction-spectrum without even writing down the 
summation. For it is evident that there must be maxima of vibration- 
amplitude, maxima of diffracted intensity, at the field-points or in the 
directions where the contributions of all of the slits agree in phase— 
that is to say, differ in phase by integer multiples of It. Counting 
outward from the centre of the diffraction-pattern, or normal to the 
grating, the first of these maxima must lie in the direction for which the 
"step" in phase of equation (5) is equal to hence for this "first- 
order maximum"; 

sin 0 = X/c. (6) 

The second lies in the direction for which the step in phase is equal to 
twice It] the third in the direction for which the step is thrice 2ir\ 
and in general there is a sequence of maxima, the general formula for 
the wth of which is the celebrated "plane-grating formula": 

sin 0n = nKjc, w = 1, 2, 3, 4 • • •. (7) 

The symbol n stands customarily, and in this article henceforth shall 
stand, for the order of the maximum; from now on I will write 2ivi> 
for the quantity which before was denoted by n. 

These are the great principal maxima of the spectrum cast by a 
diffraction-grating. There are others between, but in practice they 
are inconspicuous or invisible. Those of which I have just derived the 
locating formula are the maxima from which wave-lengths are com- 
puted. Let it be emphasized again that the formula was derived 
without taking into account the ratio of slit-width to bar-width, and 
that it does not involve the width of the individual opening, but only 
the spacing between corresponding points of consecutive slits. In- 
deed, if one examines the deduction, it will be seen that really nothing 
peculiar to a slit enters into it at all. All that is preassumed is that 
the grating sends to the field-point a series of component vibrations, 
equal in amplitude and stepped off equally in phase. Such is indeed 



CLASSICAL THEORY OF LIGHT 739 

the case when the grating is a series of windows letting light through 
towards the camera, separated by walls which intercept the light. 
Such is also the case when the grating is a series of mirrors reflecting 
light towards the camera, separated by windows which let it escape 
or by absorbing surfaces which swallow it up. Such is the case when 
the instrument is a surface of metal ploughed into furrows, so that 
the reflecting-power towards any assigned direction varies from point 
to point across the furrow, and varies periodically as one moves across 
the system of furrows. Such is the case if the waves traverse or are 
reflected from all points of the grating equally, but with phase- 
retardations which vary periodically across the grating-surface. Such 
is the case when the instrument is a surface containing oscillators 
able to vibrate in unison with the incident waves and able to radiate 
new waves because of their vibration, these oscillators being evenly 
spaced or else clustered in identical groups which themselves are 
evenly spaced. Such in fact is in general the case whenever the 
"grating" is any object with a periodic structure, the details of which 
are able in any manner known or unknown to perturb the passage of 
the waves; for anything which confuses or impedes the even onward 
progress of a train of waves, whether it be a vibrator which they set 
into oscillation or merely an inert impenetrable obstacle in their way, 
becomes thereby the source of a new system of undulations. 

Wave-lengths of light therefore are determined by setting up in the 
path of the light-stream something which has a periodic structure, of 
which the period is known; locating the diffraction-maxima, if such 
there be; and using the formula (7), provided that the object is plane 
(another, which we shall eventually derive, is used if the object is 
three-dimensional and the waves travel across its structure). Location 
of one maximum would not as a rule suffice, for without further 
knowledge its order could not be identified. One must measure 
sufficiently many maxima to infer from the ratios of their values of 
sin 0 what their orders are. On the other hand, understanding of the 
precise mode and mechanism of the action of the elements of the 
grating upon the light is not required, desirable as it may be. Perhaps 
we do not properly understand how the atoms of a crystal scatter even 
X-rays; and certainly the founders of the wave-mechanics did not 
foresee that crystals scatter electron-waves. Yet Davisson and Ger- 
mer determined the wave-lengths of these latter in 1927 with the 
same equation wherewith Fraunhofer in 1821 had ascertained the 
wave-lengths of the lines of the solar spectrum—the very equation, 

X = - sin 0n, 
n 
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taking for c the spacing between consecutive lines of atoms in the 
surface-layer of the nickel crystal which diffracted the electrons, where 
Fraunhofer had taken the spacing between the wires of the grid which 
was his primitive grating. 

Next it is important to discover how distinct these maxima are; 
whether, when the amplitude of the vibration In the focal plane is 
plotted against 6, the peaks are broad and flattish or narrow and sharp. 
This too can be foretold without the labour of a complete solution of 
the problem. Taking any of the principal maxima—say, that of wth 
order, which is located at the angle 6n = arc sin (wX/c)—let us inquire 
how near to it the amplitude will sink to zero. 

Now the wth of the principal maxima is located by the condition 
that the phase of the contribution of every slit is 2mr in arrear of that 
of the slit preceding. If there are 2ilf slits altogether (it is con- 
venient to suppose the total number to be even, though whether 
it is even or odd makes no appreciable difference), then at dn the 
contribution of the last slit is {2M — l)n-2ir behind that of the 
first. Estimate now the vibration at the point in the focal plane 
—call its direction-angle (0n + A)—where the contribution of the last 
slit is {2M — !)(« + \/2M)2ir behind that of the first. It is readily 
shown that here the component vibration due to the last or 21fth slit 
is exactly equal in magnitude and opposite in phase to that which is 
produced by the il/th of the slits; and in the same way every ruling 
of one-half of the grating may be paired off with the corresponding 
ruling of the other half, their effects destroying each other pair by pair. 
At the angle (0„ + A), therefore, there is darkness; and likewise at 
the angle {dn — A'), where in the focal plane or the infinitely distant 
plane the contributions from the first and the last slit arrive with a 

The entire peak culminating in the nth principal maximum is 
consequently bounded by the directions (6n — A') and (0„ + A); and 
it is easy to see that the greater the number of rulings (the spacing 
being supposed to remain the same) the narrower and sharper is the 
peak, and the more accurately can the location of its summit and there- 
fore the wave-length be determined. Its breadth, in fact, varies 
inversely as the number of rulings or "lines." This is shown by 
writing down the formulae for the angles corresponding to the minima 
which bound it. We have: 
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whence, approximately, 

A = 2Mc = 2Mn tan dn) (8) 

so that the narrowness of the peak, as one might say, is proportional 
to the order thereof as well as to the total number of lines in the grat- 
ing.5 If the grating were infinitely wide, an unlimited sequence of 
perfectly-evenly-spaced identical units, the peaks would be infinitely 
narrow: light of a definite wave-length would be diffracted only in 
certain perfectly definite discrete directions. 

Alikeness, closeness, and multitude of rulings are therefore the 
desiderata of a grating; alikeness, because without it the first condition 
for the formation of sharp diffraction maxima would be lacking— 
closeness, so that the maxima of lower orders, the only ones sufficiently 
intense to be perceived, may be spread out widely enough for conven- 
ience of observation—multitude, so that the diffracted beams shall be 
narrow and sharp, easy to set upon and easy to discriminate from one 
another. The degree of closeness which is required depends upon the 
spectral range which is to be explored. Ordinary "optical" gratings 
ruled with a diamond on metal or on glass are acceptable throughout 
the visible spectrum and the range to which the title "ultra-violet" 
is commonly restricted, extending from the visible down to wave- 
lengths of the order of one hundred Angstroms. They are however 
too fine for the remoter infra-red, for the study of which coarse lattices 
of wire have been used; a fortiori they are much too fine for Hertzian 
or radio waves, for which it is no exaggeration to say that a colonnade 
might operate as a grating; and they are commonly considered much 
too coarse for X-rays, though during the last two or three years 
several men of science have achieved the great technical feat of forcing 
optical gratings to measure wave-lengths which formerly were thought 
accessible to crystals only. Crystals are too fine for the visible spec- 
trum, and too coarse for certain of the gamma-rays which proceed from 
the collapsing nuclei of atoms undergoing transmutation. Crystals 
with spacings of unusual width from atom-plane to atom-plane are 

6 These facts are usually expressed as statements about the "resolving power" 
of a grating; for if the incident light contains two not very different wave-lengths, 
they will form two peaks of each order not very far apart, and the possibility of 
distinguishing these two—of "resolving" them, to use the technical term—will 
depend upon the narrowness of each. If arbitrarily one says that two such peaks 
are just distinguishable when the summit of one falls upon the minimum adjacent to 
the other—in which circumstance the difference 5\ between their wave-lengths 
may readily be proved equal to the quotient of the mean of their wave-lengths, X, 
by 2Mn—then by this criterion a grating is able in its nth order to discriminate two 
adjacent lines of the spectrum, if their wave-lengths differ by more than that amount; 
and by definition the resolving power of the grating in its nth order is X/5X = 2Mn, 
the product of the number of rulings by the order. 
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chosen for work upon the longer X-rays, as optical gratings are ruled 
with lines unusually far apart for work in the near infra-red. 

The ruling of good gratings is an art; and those who have practiced 
it with conspicuous success are fewer far than those who have 
attained pre-eminence in music or in painting. Amateurs, mechanics, 
and professors figure upon the list, the first of all being Fraunhofer, 
who from a glazier's apprentice evolved into the founder of spectros- 
copy. After his gratings of wires and of scratches in a foil of gold-leaf, 
he invented the method of engraving with a diamond-point upon a 
surface of metal or of glass (he used the latter) which is followed to 
this day. He met and grappled with all the difficulties which were 
later to beset his followers, and described them in language which now 
sounds strangely modern. Then, as now, it was possible to rule tens 
of thousands of rough grooves roughly to the inch; the trouble lay, 
as still it lies, in making them identical and spacing them equally. 

Equality of spacing depends upon a screw, which is turned through 
a prearranged angle and is expected to advance through a definite 
distance carrying the future grating with it, whenever the diamond has 
completed one ruling and is waiting to begin the next. Screws as 
manufactured ax-e not good enough; and anyone who aspires to be a 
maker of gratings must first of all procure the best available, and then 
devote a long and tedious time—literally years—to making it still 
better. Primacy in the art passed to America in the eighties of the 
last century, because Rowland of Johns Hopkins developed with 
much labour a process for removing, or at least for mitigating, the 
imperfections of a screw. The greater the number of rulings to be 
laid down side by side, the longer the portion of the screw which must 
be made, as nearly as humanly possible, perfect; and Michelson has 
testified, from unrivalled experience of many years, that the time 
required for the process varies as the cube of the length of the screw 
and width of the planned-for grating. Increase of resolving-power 
thus is bought at an enormous price in patience and in perseverance. 
A research institute is as proud of a notable grating by Rowland or 
Michelson or Wood, as a picture gallery of an authentic Titian or 
Velasquez; and the promise of a new talent is not more joyfully 
received, than a rumour that someone is working to perfect a yet longer 
screw to make a yet wider grating. 

Alikeness of successive rulings depends on the endurance of the 
diamond. The ruling-engine is sequestered in a well-insulated room, 
and after the temperature has settled down to constancy is set in 
motion by some device worked from outside, and left to do its task 
in solitude. If the diamond breaks, or suffers any great change in 
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shape during the operation, the grating is good for nothing. This 
cannot be foreseen, it is not even known when it happens; to stop the 
process to see how things are going would be like digging up a seed 
to see how it is sprouting. The chance of such an accident is 
naturally greater, the more numerous the lines—another obstacle to 
the successful ruling of many-lined gratings of high resolving power. 

A grating having been completed, it is removed from the engine 
and examined, to learn not merely whether it has been impaired by 
deformations of the diamond, but how—assuming it to have escaped 
that peril—the intensities of the various diffraction-maxima of different 
orders compare with one another. This is something which, as I have 
intimated, is controlled by the shape of the groove; this is the feature 
in which the individual units of the periodic structure manifest their 
quality. One shaping might obliterate all diffraction-maxima of even 
order; another might make the maxima on one side of the normal 
to the grating-surface stand out much more prominently than their 
companions on the other; still another could concentrate most of the 
diffracted light into one single beam. The maker of the grating can- 
not foresee, or can at best foresee only in part, what distribution of 
intensities he is going to get; for he cannot control the shape of the 
diamond-point, nor find it out by examination.6 Having observed the 
distribution of intensities, however, he can deduce from it some facts 
about the shape of the grooves. This I suppose would be classified 
in most cases as useless knowledge; but the problem happens to be 
very nearly the same as that of determining the finer details of the 
arrangement of atoms in a crystal from the relative intensities of the 
various diffraction-beams which it produces when acting on an X-ray 
beam; and so I will devote a few paragraphs to it. 

We return, then, to the grating of alternate slits and bars, to deter- 
mine the influence of the ratio of slit-width to bar-width on the 
diffraction-pattern. Before making any calculations whatever, one 
striking prediction can be made directly. I have said that diffraction- 
maxima occur in every direction 6n for which 

sin dn = wX/c, n = 0, 1, 2, 3, 4 • • •, 

because in every such direction the component vibrations arrive at 
the focal plane from the various slits with identical phase. But if 
for any of these directions the component vibrations are themselves 

6 He can control the result to a slight extent by varying the pressure with which 
the diamond bears upon the plate, ruling "with a light touch" or reversely; if he 
guesses the force just right, he may approach the condition of grooves separated by 
unbitten bands of smooth metal as wide as they, which resembles the theoretical 
case of an alternation of slits and bars of equal width. 
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non-existent, evidently the maxima in question are blotted out. This 
will happen, for example, to every maximum of even order, if bars and 
slits are equally wide. For, taking the direction 02(sin 02 = 2X/c) as 
an instance: the contribution made to the total vibration by the upper 
half of each slit will be equal in magnitude and opposite in phase to 
that made by the lower half, and the total contribution of the slit will 
be zero. If in the spectrum produced by a grating the even orders are 
missing, or if—to say what would actually be noticed—the values of 
sin d for the present maxima stand in the ratios 1 : 3 : 5 : 7 • • • 
instead of 1 : 2 : 3 : 4 • • •, the inference is that the grating has been 
so ruled that over half of every period the phase of the emerging 
(transmitted or reflected) light is constant, and over the other half 
no light comes forth at all; as for instance would be the case if half 
of every period were the unmarred surface of the metal, and the 
diamond had made the other half perfectly black. The reader may 
work out for himself what it must mean if every third, or every 
fourth, or every nth of the maxima is absent. 

We return now to the expression (equation 2) for the contribution 
of a single slit or period of the grating and rewrite it, taking due account 
of our subsequently-gained knowledge that is constant and cpk 
increases by equal steps mc sin 6 = wc/3 from slit to slit: 

Sk = const. (1 + a) T sin (nl — mr0 — e0 — kmcfi). (9) 

For convenience number the slits from 0 to iV — 1, representing by 
N their total number (formerly called 2M, but now there is no reason 
for supposing it even), and locate the origin so that mr^ = eo. Gather- 
ing all the factors of the sine-function under a single symbol B, and 
writing out the expression for the summation of Sk from & = 0 to 
k = (N — 1), we find for the resultant vibration in the direction 0: 

N — l 
s = B sin {nt — kmcfi) 

= B sin nt{\ + cos a + cos 2a + • • • cos {N 

— B cos w/(sin a + sin 2a + • 

= BY,c sin nt — BYs cos nt, 

in which a stands for wc/3 and Yc and Y* for the finite series of 
cosines and sines which are indicated. 

For the amplitude of the vibration—the only thing which matters— 
we then have 

D = B VEc2 + Ys2. (11) 

- 1)^) 

• • sin (N — l)a) 
(10) 
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Now, as may easily be proved7: 

VEc2 + Ea2 = sin {%Na) : sin (|a) (12) 

so for the amplitude of the vibration in the direction 0 we have: 

j, = B
sin (Wmcsme), 

sin {%mc sin 0) 

Here we have that product of two factors which was foreshadowed in 
the early pages of this article—one factor (the second) depending on 
the periodicity of the grating, and controlling the location of the 
diffraction-maxima; the other depending on the structure of the 
individual slit or groove or atom-row, and controlling their intensity. 

The second factor displays the qualities which have already been 
deduced by simpler means, and others. It vanishes whenever %Na is 
an integer multiple of tt, except when simultaneously \a is an integer 
multiple of tt, in which exceptional cases the great principal maxima 
occur. These are not the only maxima, for between any two of them 
there are {N — \) equally-spaced minima (directions where %Na is an 
integer multiple of tt but |a is not) and between these in turn there are 
{N — 2) maxima of which the locations may be found by the usual 
method. These so-called "secondary" maxima are however faint and 
Inconspicuous, having, according to Wood, but 1/23 the intensity of 
the principal peaks, unless the grating is composed of only half-a- 
dozen lines or fewer. 

The first factor consists essentially of that function 

(1 + a) VC2 + 6^ 

mentioned in equation (1) and earlier, which describes the diffraction- 
pattern of the single slit (or groove, or atom-row). Wherever that 
diffraction-pattern has a zero of intensity—the "centre of a black 
fringe," to use the common language—the intensity in the pattern of 
the grating is likewise forced to vanish. When the slit occupies half 

7 One method is based on the fact that 2c and are respectively the real and 
imaginary parts of 2«,A'0, so that 

2c2 + 2.2 = 

Further, by a well-known formula 
A' — 1 v eika = i -f eika + (e'*a)2 + • • • (ea"a)v-i 

o 
= (1 - e''Va)/(l - eia) 

and there is a corresponding expression for e~ika, multiplying the two of which together 
and taking the square root one arrives directly at the stated result. 
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the width of the period (slit plus bar) of the grating, the first of its 
black fringes falls square upon the second-order principal maximum 
of the grating spectrum, which is obliterated. This is a new way of 
expressing the fact already mentioned, that when the slits are as wide 
as the bars the diffraction-maxima of even order are absent. 

More generally, the intensity at any of the principal maxima is 
proportional to the value of (C2 + 52) appropriate to that direction— 
proportional to the intensity, in that direction, of the diffraction- 
pattern of the single slit; and from this we can understand how, from 
the relative intensities of the maxima of various orders, it is possible 
to deduce the breadth of the slit or something about the shape of the 
groove. If we had only a single slit, and could send through it light 
of known wave-length sufficiently intense to form a measurable 
diffraction-pattern, we could trace the curve representing observed 
relation between diffracted intensity and angle 6, and compare it with 
the predicted curves for various values of slit-breadth; the actual 
width of the slit would be the value for which the agreement was 
perfect. If instead we had a multitude of such slits equally spaced, 
the observed intensities of the diffraction-maxima would supply us, 
not indeed with the entire continuous curve of intensity-versus-angle 
for the single slit, but with as many points upon that curve as there 
were principal maxima within our range of observation; and these—if 
we had two or more—would be sufficient for the comparison with the 
theoretical curve for the single slit, out of which the width would be 
deduced. From this aspect, the function of the grating is to enhance 
the intensity, at certain discrete points, of the diffraction-pattern for 
the single slit. Of course, when we are interested in the breadth of 
the single slit or the shape of the single groove, we should prefer to 
observe the entire continuous diffraction-pattern produced by one 
alone. But it may be impossible to separate one from the rest; or 
if we could isolate one, it might be too small to transmit or scatter any 
perceptible amount of light. Such is the case with atoms. 

The natural gratings which atoms form in crystals are three- 
dimensional, and to them the reasonings which are valid for plane 
gratings cannot be applied without some change; but the resemblance 
is very close. A beam of X-rays or electron-waves falling upon a 
crystal is spread out into a diffraction-pattern with strong maxima, 
of which the relative intensities depend upon the qualities of the 
individual diffracting units, the atoms or the groups of atoms which 
are repeated over and over again to form the crystal; while their 
directions depend upon the spacings between these identical groups, 
the periodicity of the crystal. From the directions of the principal 
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diffraction-beams one may determine the spacings within the crystal 
if one knows the wave-length of the waves, or the wave-length if one 
knows the spacings. From the relative intensities of the beams one 
may deduce the distribution of the atoms within the groups, or rather 
the distribution of that which scatters the waves—commonly supposed 
to be mobile negative electricity, when the scattered waves are light; 
I do not know whether anyone has yet conjectured what it is that 
scatters the electron-waves. 

The diffraction-beams proceeding from a crystal large enough to be 
manageable are very sharp, for the rows of atoms are far more numer- 
ous than the lines of the largest optical grating which can be made or 
hoped for. However, there is a limitation on their sharpness set by 
something to which an artificial grating is quite indifferent—the 
thermal agitation of the atoms, which has the same effect as though the 
widths of successive periods were variable and fluctuating. This 
effect is naturally more pronounced, the higher the temperature of the 
crystal; but the measurements show—for from the breadth of the 
diffraction-maxima it is possible to determine the mean amplitude of 
the temperature-agitation, another service of the crystal grating— 
that even at absolute zero it would not disappear, the atoms retaining 
a certain minimum amount of energy of vibration which apparently 
can never be taken from them, so long as they remain bound together 
in a crystal. 

A few words, before leaving the subject of gratings, about the 
diffraction-pattern of a multitude of gratings oriented at random. 

On an earlier page I said that, in computing the diffraction-pattern 
of a sequence of slits, we need determine it not for the entire focal 
plane, but only for a single line thereof—the line for which 7 = 0, 
which is the line of intersection of the focal plane with the plane 
running normal to the slits and containing the infinitely-distant point- 
source of the parallel waves of light. The reason can now be stated. 
If we work out the expression C2 + S- for a single long and narrow 
rectangular slit with its long sides are parallel to the s-axis, we find that 
the brighter parts of the diffraction-pattern form a long narrow band 
(criss-crossed with dark lines) with its length parallel to the y-axis 
and its breadth parallel to the z-axis. If the length of the rectangle 
grows infinitely long, the breadth of this band shrinks to zero; we 
have a single line of varying brightness parallel with the y-axis, which 
is the diffraction-pattern of the infinite slit. If instead of a single slit 
we have a regular sequence, their diffraction-pattern is still concen- 
trated upon this line; it is the pattern which has just been computed, 
a function of the single variable /3, or y, or 0; away from the line, the 
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Intensity is everywhere zero. Spectroscopists broaden this linear 
pattern in practice by using as source of light not a point, but a 
luminous line—an incandescent filament, for instance, or a slit backed 
by a flame—made parallel to the slits or rulings of the grating. Then 
the diffraction-pattern is spread into a band. If the light is mono- 
chromatic, one sees in the focal plane, at the positions of the principal 
maxima, not a sequence of brilliant points as the foregoing theory 
implies, but a sequence of brilliant lines—the lines of the spectrum. 

Instead of these lines one will obtain circles, if one uses a point-source 
of light and a mosaic of gratings all lying side by side in a single plane 
and oriented every way. Each piece of the mosaic forms its own 
linear diffraction-pattern, perpendicular to the direction of its own 
rulings; and if the pieces are numerous enough, all of these are fused 
into a single circular pattern, each of the principal maxima standing 
forth as a brilliant ring. I am not sure whether this has been done 
with plane optical gratings; but the analogous method with X-rays 
and crystals is the familiar procedure known by the names of Debye 
and Scherrer and Hull, or as the "powder method." Being a case 
of diffraction in three dimensions, it is not entirely like my imaginary 
case of a mosaic of plane gratings. The resemblance however extends 
so far, that from the broadness of the rings one may infer the size of 
the tiny crystals which make up the three-dimensional mosaic, the 
"powder"; for the smaller these are, the fewer rows of atoms each 
contains, and the wider their diffraction-maxima must be. But it 
requires very fine grinding indeed, or the dispersion of the crystals as 
a colloid in solution, to make them so small that the broadening of the 
rings is noticeable. 

What would be observed, if individual slits or apertures or atoms 
were dispersed completely at random over the plane or throughout 
space? If there were many apertures all alike and all similarly 
oriented, but with no regularity whatever in arrangement, the 
diffraction-pattern would be the same as that of any singly, though 
more intense. The water-droplets in misty air act thus in forming 
haloes. If atoms were truly spherical and could be crowded together 
into a dense mass without any regularity, the diffraction-pattern of the 
mass would be that of the individual atom, and would disclose the 
radial distribution of its scattering-power—whether that be negative 
electricity, or something else. Even if atoms are not spherical, one 
might expect to learn in this way the average distribution of scattering- 
substance over all the orientations. Experiments have been con- 
ducted for this purpose; but it is difficult to find a piece of matter in 
which the arrangement of the atoms is entirely irregular, that is, a 
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perfectly "amorphous" substance; perhaps not even liquids satisfy 
this requirement. 

Interference 

When a pair of beams of light are projected together upon a screen, 
it is usually observed that the illumination resulting from them 
jointly is the simple sum of the illuminations which each produces by 
itself when the other is shut off. One may easily go through life 
without ever once finding this rule in default. Yet by intelligent 
design it is possible to contrive conditions in which the rule does not 
prevail; and actually two rays of light directed upon the same point 
may counteract one another and cause total darkness, and two 
perfectly uniform wide beams falling together upon a surface of frosted 
glass may decorate it with a pattern of dark fringes separated by 
light, dark circles alternated with bright, black networks upon a back- 
ground of color—arabesques of shadow and light, more delicately 
shaded than anything achievable in pigment or stained glass. The 
brilliant and versatile Thomas Young, he who was the first to read the 
Egyptian hieroglyphics upon the Rosetta stone, was also the first to 
discover some of these lovely phenomena; a pair of exploits, which 
for eminence and diversity will probably never be surpassed. It 
happened that the first disclosure of the phenomena which demand the 
wave-theory of light coincided as accurately with the advent of the 
nineteenth century as the first realization of the necessity of quanta 
came at the dawn of the twentieth; for Young discovered the inter- 
ference of light in 1800. 

"Interference" is a name which Young selected; he said that in 
the conditions of his experiments beams of light interfere with one 
another. For the observer this was not, on the whole, an ill-chosen 
word, since the visible effect of the two lights conjointly is not the 
mere sum of the visible effects of each separately. True, it implies 
that the lights destroy or diminish one another, whereas in fact they 
are as likely to cooperate as to conflict, two equal beams combining 
into one of intensity as much as fourfold that of either. This is not 
serious: we are all accustomed to asing the word addition to cover 
subtraction; and here the analogy is very close. The so-called "inter- 
ference" is simply the necessary result of adding two vibrations with 
due regard to their direction and their phase. This is the method which 
was used to calculate diffraction-patterns; and in fact a diffraction- 
pattern is nothing but a special case of interference-pattern—not 
usually a simple one, for the vibrations which must be summed are 
very numerous, demanding integrations and long summations. The 
simplest interference-pattern occurs when two plane-parallel beams 
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of light of equal amplitude intersect one another; and this we will 
now consider. 

Designate by 20 the angle at which the two beams are inclined to 
one another, and draw the .r-axis to bisect it; then the two wave- 
functions are 

s' = A sin {nt — mx cos 6 — my sin 0), 
s" = A sin {nt — mx cos 0 + my sin 0) 

and their sum 8 is 

s' -f s" = s = 2^4 cos {my sin 0) sin («/ — mx cos 0). (14) 

We see immediately that this is a situation in which the wave-lheory 
of light predicts a peculiar and characteristic variation of amplitude 
from point to point in space, which can be tested in detail, and of 
which a favorably-resulting test has evidential value; whereas in 
either beam separately the amplitude is constant, and nothing is 
observable which demonstrates that there are waves. Here, in the 
region where the beams overlap, the amplitude varies sinusoidally 
between zero and the maximum value 2A; the distance between two 
consecutive loci of zero amplitude, which are planes perpendicular 
to the axis of y, being 

d = ir/m sin 0 = iX/sin 0. (15) 

The presence of a series of equally-spaced planes of darkness, their 
separation varying inversely as the sine of the angle between the 
beams, is then to be taken as evidence that light is undulatory; and 
from their separation and the angle between the beams one may 
compute the wave-length of the light. A more thorough test, made 
by measuring the distribution of light-intensity between two such 
planes, would lead (anyway it ought to lead) to the conclusion already 
known, no doubt, to all the readers of this paper: that the intensity 
of the light varies as the square of the amplitude of the waves. 

To produce this effect of interference, the two intersecting beams 
must have started from the same source of light, and at very nearly 
the same instant—that is to say, the optical paths from the source 
along the two beams to the region of overlapping must be the same 
within a few millions of wave-lengths, or a few hundreds of centimetres. 
By the wave-theory, this is easily understood. We must think that 

8 To add them thus implies that the quantity denoted by 5 is either a scalar, or 
a vector perpendicular to the a-y-plane. Since light is not adequately described by 
either assumption, we must anticipate defects in the theory, more prominent the 
larger the angle 9. In practice 9 is evidently always so small that there is no trouble 
from this source. 
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a beam of light from a flame or an arc consists of myriads of feeble 
beams each proceeding from a single atom. Each is divided—the 
methods of division are the methods of producing interference-fringes— 
and the separate parts are then caused to overlap. Each pair which 
came originally from a single atom produces a set of interference- 
fringes, and the fringes for all these pairs coincide in space. Each 
fraction of a divided beam may also interfere with a fraction of 
another, proceeding from another atom; but owing to the uncontrolled 
and uncontrollable phase-differences between the beams of a pair so 
formed, the fringes for these pairs do not coincide, and on the whole 
they efface one another. By the quantum-theory the explanation— 
not indeed of the fact that interference occurs only under these special 
conditions, but of the fact that it ever occurs at all—is not so easy. 
Indeed the fact commonly expressed by saying that light from a 
source is "coherent" with itself, has been regarded as the most difficult 
of all for the quantum-theory to explain. 

To produce interference, then, we must divide a beam of light and 
cause its parts to cross each other's paths. The simplest of the devices 
which effect this were invented by Fresnel; a pair of prisms which 
turn two portions of the beam towards one another, and a pair of 
mirrors which reflect two portions across each other's routes. A single 
mirror indeed suffices; standing acoustic waves are produced thus, 
in Kundt's tube and otherwise, with values of the angle 20 sometimes 
as great as 180°; but light-waves are so short that with so great an 
angle the distance between dark fringes would be too small to measure, 
if not indeed to perceive; and we must use the facility for expanding 
them which the factor sin d in equation (15) offers us. 

The Interferometer 
In the devices which I have thus far mentioned, the interference 

of overlapping wave-trains oblique to one another causes the formation 
of alternate zones of darkness and light in space; and the visible fringes 
are the cross-sections of these zones upon a screen set up to intersect 
them. There are however other instruments in which the overlapping 
beams are parallel to one another, the region which they occupy is 
not traversed by bands of light and shade, and a screen thrust across 
it shows uniform illumination; and yet when the eye or the camera is 
located in that region, fringes are produced upon the retina or on the 
plate by the action of the lens of either. These are not so easily under- 
stood as the earlier devices, and yet it is important to comprehend 
them, for the striking applications of interference have been made by 
means of such as these. Among them are the interferometer of Fabry 
and Perot, and that of Michelson. 

48 
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Imagine, at the outset, a pair of perfectly plane and parallel mirrors, 
onto which wave-trains of extended plane wave-fronts are falling 
from every direction. The mirrors must of course be semi-transparent, 
so that part of the light which falls first upon one—say, the upper— 
is reflected from it at once, and part goes on to meet and be reflected 
by the lower. Thus (as Fig. 3 shows more clearly than words) the 

mirrors form out of each incident wave-train a first and a second 
reflected beam, which travel back through the space above the mirrors 
in the same direction, making according to the law of reflection the 
same angle i with the normal as the incident wave-train did. In truth 
there are not merely two reflected beams derived from each incident 
one, but an infinity thereof, owing to the multiple reflections which are 
indicated in the sketch. We need not however (as I shall presently 
show) take account of more than two; by combining the second re- 
flected beam with the first we can predict the most important features 
of the interference. 

It is necessary to be somewhat more precise about the nature of the 
mirrors. As good an example as any to begin with is that of the 
"thin plate"—a slab of some transparent substance, glass for instance, 
embedded in a transparent medium which I will take to be empty 
space. The mirrors, then, are the upper and lower sides of the plate. 
Denote by /x the ratio of the speeds of light in the environing medium 
and in the substance of the plate, by i the angle of incidence of any 
wave-train and by r the angle of refraction of its transmitted part; 
then as heretofore we have 

Fig. 3. 

sin t = /x sin r. (16) 
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The ratio AoJAi of the amplitudes of the first and second reflected 
beams, and in general the ratios A n/A i of the amplitudes of any of the 
reflected beams and the first, are determined altogether by m and i. 
An important consequence of this will presently appear. One can 
however alter these ratios, e.g., by half-silvering the sides of the plate; 
and the formulae which I am about to quote may be applied to the 
case of two half-silvered mirrors facing each other in air, by setting 
M = 1- 

Isolate then in mind a single incident wave-train. Denote by i 
its angle of incidence upon the upper surface of the glass; by t the 
thickness of the plate. A wave-front of the oncoming wave-train is 
divided into two. During the time while the part which entered the 
glass is advancing to the lower side, being reflected, returning to and 
re-emerging from the upper side, the part which was first reflected goes 
on to the level EE' of Fig. 3. The emerging wave coincides with the 
first-reflected part of a new wave-front which was following along 
after the old one at the interval E'D'. In general, there is a phase- 
difference ip between these two. The condition for interference is 
ideally satisfied; two wave-fronts coincide. The amplitude A of the 
resultant light travelling away from the mirrors is obtained by the 
prior formula from the amplitudes Ai and ^.2 of the first and second 
reflected beams and their phase-difference p: 

It is now our affair to deduce the value of this difference in phase. 
This is a simple task, for the angle p, expressed in radians or in degrees, 
is 27r or 360 times the number of wave-lengths intervening between 
the wave-front DD' and the wave-front EE' which, so to speak, has 
gone on ahead leaving part of itself behind to combine with DD'. We 
have therefore only to multiply 27r/X or 360/X into the distance D'E'\ 
which distance is found 9 by very easy manipulations of trigonometry, 
aided by the equation (16), to be 2/it cos r; so that for the phase- 
difference in radians we have 

The constant po is inserted to leave room for the possibility that 
abrupt changes of phase may occur at the instant of reflection, unequal 
for the two reflecting surfaces. Experience shows that in this case of 

9 For the distance D'E' is the difference between BD' and BE'. The latter is 
evidently BD sin i, which is 2/ tan r sin i, which is l/it tan r sin r. The former is 
the distance cT traversed by light in vacuo during the time T while the beam which 
entered the glass is traversing its zigzag path BCD] this time is {nlc)BCD, which is 
2(nlc)t sec r. 

A2 = Ai? -\- An} -j- 2^41^42 cos p. (17) 

(18) 
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the plate the value x must be assigned to <po: as though the phase were 
unaltered at the first reflection, but reversed at the second. This is 
however a point of minor importance. 

The equation (18) is one of the most important in optics; we shall 
encounter it repeatedly, even so far along as in the X-ray range. 

By comparing (17) and (18) one sees that, if wave-trains of equal 
intensity fall upon a glass plate from all directions, those which depart 
In the various directions are not equally intense; their brightnesses 
depend upon their angle of reflection which is their angle of incidence, 
i. However they are not separated in space, and hence there are no 
bands of light and darkness. But if a lens be placed in the region 
above the plate, it will direct each of the beams to a separate point in 
its focal plane; and since the illumination at the point where a wave- 
train converges is proportional to the intensity of that wave-train, 
there will be fringes in that focal plane. If the lens is set with its 
axis normal to the planes of the mirrors, as when one looks straight 
at them with the eye, then the points where the wave-trains reflected 
at any angle i converge lie all upon a circle, its radius depending on i. 
The fringes are therefore circular; looking vertically down upon a thin 
plate, or photographing it with a camera pointed directly towards it, 
one sees or registers a system of concentric rings, their centre wherever 
the perpendicular dropped from the lens reaches the plate. These 
are said to be localized at infinity; but the term is not a good one, for 
the fringes are not at infinity; they are on the retina or on the camera 
film, formed by the lens in the focal plane thereof. 

The values of i for which the amplitudes of the reflected beams are 
least or greatest may be determined by differentiating (17). If we may 
neglect the variation of A2/A1 with i (as usually but not always we 
may), the result is the expected one: least intensity and blackest point 
of a fringe corresponds to a phase-difference of x or an odd-integer- 
multiple thereof, greatest intensity and brightest point of a fringe 
occurs with a phase-difference of zero or any even-integer multiple of x. 
Thus one may compute the actual size of the circular rings to be 
produced when a given lens sorts out the rays reflected by a given 
plate, and test the predictions by experiment; or rather, to say what is 
really done, one may determine the wave-length of the light by measur- 
ing the diameters of the rings and comparing them with the formulae. 
But this is not a customary way of determining wave-lengths. 

At this point it is expedient to remark that the size of the fringes is 
not affected by the presence of those third, fourth, fifth and indefinitely 
many reflected beams which I excluded from the computation. For 
the phase-difference between each of these and the one reflected once- 
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less-often is given by the first term on the right in equation (18), and 
hence is greater by 180° than that between the second and the first; 
and when i is so chosen that the second and the first are in opposite 
phase, then all the beams of higher order are in the same phase as the 
second and reinforce it, the reinforcement being just so great—in the 
case of the transparent plate—that the resultant of all these beams 
together is of the same amplitude as the first reflected beam. There- 
fore the minima, the centres of the dark fringes, are not shifted by the 
extra beams, but are rendered absolutely black. 

The width of the fringes is greater, the thinner the plate—other 
things, naturally, being left unchanged. This is the reason why one 
needs quite a thin lamina of glass to see them well, and cannot get 
them at all with a windowpane. If the thickness of the plate is 
changing continually, one sees them narrowing or widening; one sees 
also a phenomenon much more striking, the generation of rings one 
after the other out of the centre of the fringe-system—if the plate is 
growing thicker; the reverse, if it is shrinking. Glass plates capable 
of shrinking or thickening at will are not as yet available; but at 
times the former case is realized by a soap-bubble on the verge of 
dissolution. Where the soap-film is about to give way, the fringes 
rapidly dwindle and are swallowed up into the central spot of the 
interference-system, which alternately turns dark and light, and finally 
goes black just at the instant before the bubble bursts. From this final 
blackness we infer that the value r must be assigned to the constant 
i^o of equation (3). Reflection from water to air and reflection from 
air to water are accompanied by phase-changes differing from each 
other by tt, since the beams of light formed by two such reflections 
destroy each other when the reflecting surfaces are immeasurably close. 
But the bubble is too tender an instrument for practical use. The 
plate of variable thickness must be a slab of empty space between 
movable solid mirrors.* 

The interferometer of Fabry and Perot is precisely such a thing: 
two half-silvered plates of glass facing each other across a narrow gap. 
The like-named instrument of Michelson is the same in principle; 
but by ingenious use of a third reflector, the two essential mirrors are 
transposed far apart—a most valuable feature, as we shall see. The 
incident wave-trains (coming from below, in Fig. 4) are divided by a 
semi-transparent mirror C inclined at about 45° to their path, and 
the fractions are sent off at right angles to one another, along the two 

* Or else Lummer's device of a pair of wedges so proportioned, that a face of one 
may slide along a face of the other, while the two sides not in contact remain parallel 
to one another. 
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"arms" of the machine, at the ends of which they meet fully-reflecting 
surfaces A and B set normal to their courses. Reflected straight back 
along the arms, they are once more divided by the semi-transparent 

TO THE 
OBSERVER 

7 

z 

Fig/4. 

mirror, and the fractions which go towards the observer (left, in 
Fig. 4) are those which interfere. This seems complicated; but in 
essence it is not so. Everything happens as though the mirrors A 
and B were at the end of the same arm. Looking from the left 
through C, one perceives the mirror A and the virtual image in C of 
the mirror B\ and this comes to the same as though C could be 
removed, and the horizontal arm of the machine swung into coincidence 
with the vertical arm in spite of the well-known prohibition against 
two objects occupying the same place at the same time. When the 
plane of A is accurately normal to the plane of B and the semi- 
transparent surface C is properly oblique, the virtual image of B is 
accurately parallel to A ; and the observer sees circular fringes, which 
one by one emerge from a central spot or shrink down into it as either 
mirror is displaced along its arm. 

This clever device of combining one real mirror with the virtual 
image of another, to form a thin plate of which one surface is im- 
palpable, is of enormous value. One can make the virtual reflector 
go right through the real one, the fringes being swallowed up into the 
centre one after another, and then reborn in due order after the whole 
field of view goes black at the instant of coincidence. By moving one 
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of the reflectors through a chosen distance and counting the fringes 
which are born or consumed during the motion, one may evaluate the 
distance in terms of the wave-length of the light, or the wave-length 
in terms of the chosen distance, according as the one or the other is 
independently known. For, returning to equation (18) and putting 
/i = 1 (since the two surfaces of the "thin plate" are separated only 
by air) and r = 0 (since the light is normally incident), we see that <? 
is changed by 2ir when the spacing between the reflectors is changed 
by but when ^ is changed by lir, a single ring is added to or 
subtracted from the system of annular fringes; hence the total number 
of rings created or destroyed during the motion of the mirror is equal 
to twice the number of wave-lengths comprised in the distance which 
it traverses. In this way Michelson counted, as the first step in his 
determination of the length of the standard metre, the waves of the 
red cadmium line covering the distance between the two ends of an 
"intermediate standard" or elalon, about half a millimetre long. 

In practice the real and the virtual reflector are frequently not 
quite parallel with one another; and this is sometimes a convenience. 
If they intersect (another of the things which are not possible with a 
pair of real reflectors) and the lens of eye or camera is located vertically 
above the line of intersection, this line stands forth embodied as a 
fine straight black fringe—the central fringe—companioned on either 
side by a multitude of others.10 If now either of the reflectors be set 

10 Imagine a pair of mirrors inclined to one another at a very small angle ip. 
Establish a coordinate-frame such that the z-axis is the line of intersection of the 
two mirrors, the x-axis lies in the plane of either. Locate the lens of the eye or the 
camera at any point, say P; drop the perpendicular from P to the zx-plane at Pol 
let R stand lor its length, and lo for the distance between the mirrors at its foot. 
Consider the pair of reflected wave-trains arriving at P from any direction, making 
an angle i with the aforesaid perpendicular. Denote by a and 0 the projections of i 
upon the .ry-plane and the yz-plane respectively. Assume all these angles to be small. 
The pair of reflected wave-trains arise from the reflection, at first and second mirrors 
respectively, of a single primary wave-train which fell at the same angle i upon the 
mirrors at a point where the distance t between them is equal to {to + R- tan a■ tan ip); 
or, to first approximation, i = fn + Ronp. The phase-difference between them, by 
equation (3), is equal to (27r/X)2/-cos i. To first approximation we have 

cos i = \ — \i- = 1 — \ (or -h 0-). 
Hence to this approximation we have for the phase-difference: 

5 = ^- (/o + Raip){\ — hoc- + /3"). A 
Rearranging, and dropping the terms in a-0 and a/32, we get 

a- +0'1 - 2{R(p/to)oi - 2 + (X5/4n-)(2//o) = 0. 
The loci of constant phase-difference, and hence the fringes, are circles centred upon 
the line inclined at angle ao = R<p/lo to the perpendicular dropped from the lens to 
the mirrors. If this perpendicular meets the mirrors along their line of intersection, 
as assumed in the text, we have to = 0; the centre of the circles is infinitely remote, 
the fringes are straight. If then either the lens or the line of intersection is shifted 
sidewise, the fringes march sidewise and acquire a curvature.—It should be realized 
that if the wave-fronts are wide and the mirrors not perfectly parallel, there are 
fluctuations of intensity along each wave-front; it may be necessary to narrow the 
aperture of the lens in order to avoid confusion due to these. 
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into motion, the fringes march off sidewise, growing more curved as 
they go; and the number passing any fixed marker set up in the field 
of vision is the double of the number of wave-lengths comprised in the 
distance through which the mirror moves. 

Consider now for a moment what must be observed, if wave-trains 
of many wave-lengths fall upon the mirrors, instead of pure mono- 
chromatic light. Each kind of light produces its own pattern of 
fringes; but since the breadth of a fringe depends upon the wave- 
length, those of one kind cannot fall perfectly—light upon light and 
shade upon shade—upon those of another; and in most parts of the 
field of view, if not in all, the various patterns must blot one another 
out. Yet there is one exception; returning to equation (18) one sees 
that for any value of r the phase-difference $ must vary with X, 
unless t = 0—in which exceptional case ^ = vjo = 180° whatever the 
wave-length.11 When the real mirror and the virtual one coincide 
perfectly, the field of view is black, however many wave-lengths are 
contained in the incident light; and when the real mirror and the 
virtual one intersect, the line of intersection is marked with a black 
fringe. Moreover, in the neighborhood of the central fringe there is 
a brilliant display of colors. Words are too feeble to describe them, 
but there would be no great scientific advantage to be gained from a 
description; for the tint observed in any particular direction is not a 
pure prismatic hue, but results from mixture of the wave-lengths not 
completely extinguished by interference in that direction, and depends 
therefore upon the physiology of the eye. What interests us as 
physicists is the service of the central black fringe and the com- 
panioning glory of colors in marking the point and moment when the 
real and the virtual mirrors intersect or coincide. This service was 
essential in the measuring of the standard metre, a process which we 
will now examine. 

The interferometer used 'n the process is sketched as seen from 
above in Fig. 5. The mirrors M and M' are at the two extremities of 
the intermediate standard; they are made parallel with the greatest 
possible exactness, and the further is elevated above the level of the 
nearer. As for the other mirrors, D is the movable "reference" 
reflector; the purpose of N will appear directly; N' may be ignored. 

The instrument is now so adjusted that D is strictly parallel to the 
virtual image of N, and intersects that of M at a small angle. Red 
cadmium light being used, a part of the field of view is occupied by the 
circular fringes due to the cooperation of D and N and part by the 

11 Also ip is independent of X if cos r = 0, a case which may occur if we have a 
stratum of air between glass plates, and choose an angle of incidence near the angle 
of total reflection. 
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straight fringes due to that of D and M. Among these latter the 
central fringe marking the line of intersection of D with the virtual 
image of M could hardly be identified; but when the white light is 
turned on, it stands forth unique. It is made to coincide with some 

I IN' 

M'f 

D 

fiducial mark in the field of view, and the measurement commences. 
The red light being restored, the observer transfers his attention to 
the circular fringes formed by N and D, and counts them as they pass 
while he moves D along towards the virtual image of M'. Making 
occasional tests with the white light, he eventually notes the advent 
of the blaze of colours and the central black fringe which indicate the 
intersection of this image with D. When the black stripe coincides 
with the fiducial mark, the reflector D has moved through the length 
of the standard MM', and this length has been measured by the count 
of the circular fringes which meanwhile were passing by in the other 
part of the field of view. The number of waves is, of course, not as a 
rule an integer; the fractional excess may be estimated quite accurately 
in various ways. 

In the actual work, this shortest standard was about 0.4 mm. long, 
and comprised somewhat over 606 waves of red cadmium light. The 
counting of the 1212 fringes corresponding to its length was the only 
counting required; the rest of the process consisted of nine stages, 
the first of which was the type for all the others except the last. 
This second step was the comparison of the shortest standard with a 

Fig. 5. 
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second, made as accurately as possible to be twice as long; or rather, 
the shortest standard had been constructed with the deliberate aim of 
making it as nearly as possible just half so long as the second shortest. 
It was the office of the interferometer to determine how nearly this 
ideal had been attained; which was fulfilled by means of coincidences, 
detected as before through the coloured fringes. 

Returning once more to Fig. 5, let M and M' stand for the mirrors 
of the shortest standard, N and N' for those of the second shortest. 
N and N' are on a higher level than M and M', and the field of view 
may therefore be divided into quadrants, in which appear the fringes— 
if and when there are any—formed by the collaboration of D with the 
virtual images of M and M' and N and N', respectively. The observer 
then goes through the following routine: (1) D is made to intersect 
the images of M and N; (2) D is drawn back till it intersects the image 
of M'; (3) the shortest standard carrying M and M' is drawn back till 
the image of M again intersects D; (4) D is drawn back until it 
intersects the image of M'. The witness of intersection is always the 
central black fringe, appearing in the required quadrant or quadrants. 
Now if the distance NN' is exactly twice the distance MM', then when 
the observer completes the four stages of the routine D will intersect 
not only the image of M' but that of N'; at the end of stage 4 the 
central fringe will appear in each of the upper quadrants, just above the 
point where at the beginning of stage 1 it appeared in each of the lower 
quadrants. If NN' departs by a fraction of a wave from the doubled 
value of MM', the central stripe in one of the upper quadrants will 
lag by a little behind that in the other. From the lag expressed in 
terms of the fringe-width, one may compute the difference between the 
length of the second standard and the doubled length of the first, 
and so obtain the number of waves comprised in the second. Now 
the second standard is made as nearly as possible of one-half the length 
of the third, the third of the fourth, and so on up to the ninth, which 
is made as nearly as possible one-tenth of the length of the standard 
metre. From each to the next the comparison is made in the same 
way. To show the remarkable reliability of Michelson's results I 
quote the three values which he obtained by three independent meas- 
urements of twice the number of waves of red cadmium light comprised 
in the length of the ninth standard: 

310678.48, 310678.65, 310678.68. 

After this point it remained to compare the ninth standard with a 
metre-rod, and the metre-rod with The Standard Metre. Returning 
for the last time to Fig. 5, we take M and M' as the mirrors at the 



CLASSICAL THEORY OF LIGHT 761 

ends of the ninth standard. The steps are: (1) make M coincide 
with the end of the metre-rod, and D intersect the virtual image of M; 
(2) draw D back to intersect with M'; (3) draw MM' back until M 
coincides with D; (4) draw D back to intersect with M'—and so forth 
ten times altogether, until for the last time D intersects M', and M' 
is very near the far end of the metre-rod. The discrepancy is again 
a fraction of a wave-length. 

The result in which all this labour culminated was: 1,553,163.5 
wave-lengths of red cadmium light are comprised in the length of the 
standard metre. 

Such was the process of enumerating the millions of light-waves 
required to make up the length of that standard chosen for the measure- 
ments of common life, and so very ill-adapted to magnitudes of the 
scale of those in light—the distance between two scratches on the 
bar of platiniridium alloy, conserved in the vault at Breteuil with the 
care lavished upon a sacred relic. The achievement of Michelson 
was the bridging of a gap, or let me say a work of translation. Nearly 
all measurements of wave-lengths to this day are determinations of the 
ratio of one wave-length to another, as practically all measurements of 
objects an inch, a metre or a mile long are determinations of the ratios 
which they bear to metre-sticks. In dealing with tangible objects we 
use the language of the metre; in dealing with light-waves, we use 
effectively the language of another scale of measurement. Michelson 
was the first to make a supremely accurate translation from one to the 
other of these languages, so making it possible to express a measure- 
ment of either realm in the scale familiar for the other. Whether in 
addition he may be said to have replaced a standard essentially 
impermanent and transitory by one which in the nature of things is 
everywhere the same and forever immutable, is a question very likely 
never to be answered. 



Harmonic Production in Ferromagnetic Materials at Low 

Synopsis: When a multi-channel communication circuit includes a non- 
linear element sucn as a ferromagnetic core coil, distortion of the wave form 
impressed upon the circuit is produced. In terms of the single frequency 
components, this distortion is manifested in the appearance of new com- 
ponents. This distortion may give rise to the reduction of quality in any 
channel, and it may also introduce crosstalk and interference, which consists 
of new frequencies not present in the impressed wave of any channel under 
consideration, produced by independent channels. In view of the recent 
increased use of multi-channel systems, it has become necessary to in- 
vestigate the effects of this type of distortion, to determine the dependence 
of this distortion upon the properties of the magnetic materials constituting 
the cores of inductance coils and transformers, as well as upon the circuit 
impedances, and to determine those constants of core materials which are 
significant in the distorting process. 

The behavior of magnetic materials to complex waves of magnetizing 
force is ordinarily a highly involved process, so that a direct correlation 
between distortion and some of the easily measured constants of materials 
is a matter of some difficulty. It has been established experimentally, as a 
confirmation of theoretical speculations, that the third harmonic c.m.f. 
generated by a sinusoidal wave of magnetizing force may serve as an index 
of the distortion with a complex wave of magnetizing foice. This relation 
is valid for low flux densities and for frequencies at which the screening effect 
of eddy currents is not important. The paper is therefore devoted to an 
investigation of the third harmonic production in its dependence upon the 
properties of hysteresis loops. These loop constants in turn are shown to be 
deducible from AC bridge measurements on a coil of known dimensions hav- 
ing a core of the magnetic material under investigation. The loop con- 
stants for a few materials are included in the text. An analogy exists be- 
tween the treatments of hysteresis loop and of three-element vacuum tube 
characteristics which enables us to compare simplifying relations introduced 
by Rayleigh and by H. J. van der Bijl in the two cases. 

The theoretical deductions are found to be in general agreement with 
experiment, and are applied to a number of cases of practical interest. 
These include the effects of air gaps and dilution, and the choice of core 
material in third harmonic production by inductance coils and transformers. 
Finally, the amount of third harmonic current flowing out of long lines is 
deduced with both lumped and continuous loading. 

Part 1. Hysteresis Loops and their Mathematical 
Representation 

EW and improved systems of multi-channel communication which 
have come into use during the past few years have imposed 

rigorous requirements on the circuit elements constituting the com- 
municating link, and have made it necessary to investigate the degree 
of distortion which arises from the use of ferromagnetic apparatus. 
The distortion introduced may have two general effects: distortion 
of the signal in any one channel, which is usually the minor effect, 
and production of crosstalk and interference between the various 
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channels to which the non-linear element is common. Such elements 
are, in general, ferromagnetic core coils or transformers. The distor- 
tion introduced by the non-linear relation between flux density and 
magnetizing force is therefore of fundamental importance in the design 
of iron core coils and transformers which carry simultaneously a 
number of communication channels. 

The use of iron core coils and transformers In communication work 
is confined to comparatively low flux densities in contrast to the ordi- 
nary practice in power work, where operation usually occurs above the 
knee of the normal magnetization curve at a value of the order of a 
thousand times greater than that used in communication work. There 
are two main reasons for this restriction: losses are reduced, and the 
relation between flux density and magnetizing force approaches line- 
arity so that distortion is minimized. 

Under actual operating conditions in which the more important 
crosstalk effects arise, we have a complex wave of magnetizing force 
acting on the magnetic core. Non-linearity in the magnetic circuit 
gives rise to new frequencies which normally 1 are related to those 
impressed upon the circuit, being sums and differences of integral 
multiples of the originally impressed frequencies. These modulation 
products are all of odd order2 when the core is unpolarized. On 
purely theoretical grounds we would expect to find relations between 
the amplitudes of the different frequencies resulting from any one 
order of modulation. To take the third order modulation products of 
two impressed frequencies (/i, ./i-) as an example, we would expect the 
amplitudes of the harmonics 3/i and 3>}-< to be related to the amplitudes 
of the other third order products: 2/i ±/o, 2/2 ±/i. This has been 
confirmed by direct experimental test, so that we are enabled to use 
the generated third harmonic voltage as an index of the generated 
voltages corresponding to the other third order products. Accordingly, 
we shall deal in the following with the third harmonic produced by a 
sinusoidal wave of magnetizing force, and so avoid a more involved 
analysis. 

The fundamental relation in the operation of ferromagnetic appa- 
ratus is of course the relation between the flux density B and the 
magnetizing force II. In contrast to the usual behavior of circuit 
elements, the relation between the two fundamental quantities—the 
independent and the dependent variables, II and B in this case—is a 
function not only of the value of the independent variable, but is also 

1 This is true in the low flux density region. At high densities and with highly 
reactive circuits as in magnetic modulators, other frequencies are sometimes found 
which correspond to natural oscillations of the coil and circuit. 

- Bell System Technical Journal, Jan. 1928, pp. 110, 111. 
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a function of its previous history as manifested in the phenomenon 
of hysteresis. This complicates matters to an extent far greater than 
is the case with other circuit elements, and some analysis has been 
carried out in which the hysteresis loop has been replaced by the 
normal magnetization curve, or by some such single valued relation 
between the variables. For some purposes this convenient simplifica- 
tion—it cannot be called a close approximation for our present pur- 
poses—is satisfactory, while for others it does not begin to tell the story. 
Inasmuch as our aim here is to deal with the actual phenomena 
involved rather than to arrive at some arbitrary procedure for repre- 
senting the facts, we shall in the following base considerations upon 
the hysteresis loop. 

Fig. 1 will serve to illustrate the effect of previous history upon 
flux density. The main loop there, which extends between the two 

B 

—"—7+H 

   

Fig. 1 

limits of magnetizing force — H and H, is obtained when the magne- 
tizing force is varied cyclically between those two values in such a 
way that the magnetizing force has but one maximum and one mini- 
mum per cycle. In that case the B-II loop is traversed in the direction 
shown by the arrow. It is independent of frequency when the eddy- 
current losses in the iron are small, as we shall suppose them to be, 
and it is independent of the wave form of the magnetizing force so 
long as that wave form satisfies the condition we have laid down above. 
A sinusoidal magnetizing force, for example, satisfies that condition. 
When the magnetizing force contains components of such magnitude 
and phase that the wave form has multiple maxima or minima, the 
simple B-H loop no longer suffices to represent that relation, but 
auxiliary loops shown in the figure are involved. 
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Thus suppose a subsidiary maximum to exist at hi; as the magnetiz- 
ing force decreases, the flux density no longer follows the main loop 
but branches off on a subsidiary loop as indicated by the arrows. 
When the subsidiary minimum at hi is reached a new branch is started 
which completes the subsidiary loop, and which brings the magnetizing 
force back to the main loop at the point from which it originally 
diverged, and the main loop is thereafter followed until another 
maximum (or minimum as the case may be) of the magnetizing force 
wave is reached. For simplicity in the following we are going to deal 
solely with a sinusoidal wave of magnetizing force so that subsidiary 
loops are never called into play. With this understood, the relation 
between B and H is described by the simple loops of Fig. 2 over a 

certain range of magnetizing force, each loop being defined by a 
particular value of maximum magnetizing force. Each loop may be 
considered as constituted by two branches which join at the maximum 
field of the loop. 

It is clear, therefore, that with a periodic magnetizing force having 
but one maximum and one minimum per cycle, the flux density depends 
upon three properties of the magnetizing force—the maximum value, 
the instantaneous value, and the sign of dhldt, being located on the 
lower branch when dhjdt is positive, and on the upper when it is 
negative. Now it is of course evident that when a definite loop form 
is available, a numerical solution by graphical or step-by-step methods 
may be had. It is further evident that, in the case of a definite im- 
pressed magnetizing force, the B-II loop may be broken up into its 

Fig. 2 
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harmonic components, as was done by S. P. Thompson.3 Solutions 
in this form possess all the advantages and disadvantages of numerical 
ones in which any change of conditions leads to a new problem; the 
solution desired is a general one which will describe the phenomena in 
terms of coefficients characteristic of the magnetic material, and this 
type of solution is the subject of analysis in the following pages. 

Perhaps the least difficult method of arriving at an analytical 
solution without making any assumptions as to the form of the loops 
is the following. A power series for each branch of any loop is 
formulated, and the two resultant equations are combined in a trigo- 
nometric series. In this way the solutions, each one valid over but half 
the cycle, are combined to represent the relation of B to IT over the 
entire cycle. 

The flux density on each branch of the loop may be defined in 
terms of two values of magnetizing force, one the maximum value of 
magnetizing force on the particular branch with which we happen to 
be concerned and the other the instantaneous value of the magnetizing 
force on that branch. The equation for either branch may then be 
expressed as a double power series in these two variables, the instan- 
taneous magnetizing force {h) which will be expressed in gilberts/cm, 
and the maximum value of the magnetizing force (//), expressed in 
the same units; 

00 CO 
BQi, II) = E E amnJV"II\ (1) 

m=0n=0 
where 

r_ 1 dB(h,H)l 
mn- mini dh"'dI-B Jo, ^ J 

The parallelism of this representation with that for the plate current- 
grid potential curves of a three electrode thermionic tube is evident,— 
in both cases double power series are involved.4 The coefficients amn 

are derivatives which are evaluated at the point // = 0, H = 0, and 
it will be understood in (2) that these particular values are inserted 
after the derivatives have been taken, in quite the usual manner. 

There is a further interesting parallel here to the vacuum tube case 
regarding simplification of the general relation. In the case of the 
vacuum tube a simplification of the double power series due to van 
der Bijl has been employed which represents the family of tube char- 
acteristics by an equation in a single variable. This simplification 
consists in assuming the amplification factor to be constant, and the 
important point for us here is that it is equivalent to the assumption 

3 "On Hysteresis Loops and Lissajous' Figures," Phil. Mag., 1910. 1 Peterson and Evans, "Modulation in Vacuum Tubes used as Amplifiers," Bell 
System Technical Journal, July, 1927. 
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that the different branches of a family have the same form, so that by 
suitable change of plate or of grid potential the plate current-grid 
voltage curves may be superposed. A relation of precisely the same 
form in the case of magnetic hysteresis loops was stated by Lord Ray- 
leigh 5 upon examination of data obtained by a magnetometric study 
of the behavior of a single low permeability specimen. Examination 
of his data enabled Rayleigh to conclude that the branches corre- 
sponding to different loops of a family could be superposed when re- 
ferred to a common loop tip, the branches all having the same parabolic 
form within the limits of accuracy of the measurements, over the 
range of magnetizing forces involved. 

It is of course evident that even if this relation held at low fields in 
all materials it would break down at sufficiently high fields. Further, 
there is no a priori reason to expect this relation to hold for magnetic 
materials other than the one Lord Rayleigh investigated unless we 
restrict consideration to a very small range of magnetizing force. 
With these ideas in mind it seems the safer procedure to assume no 
such simple relation between the different loops of a family, however 
convenient it might be, and to treat the problem in more general terms; 
if any such simplifying relations exist they will be made apparent 
after application to definite materials. We may anticipate matters a 
bit to state at this point that certain materials seem to obey the 
relation while certain others seem to violate it within the range of 
forces involved in communication work, and further light is shed on 
the significant processes involved in harmonic production by treating 
the problem in this way.6 

General Equations for Hysteresis Branches. The equations of both 
the upper branch family and the lower branch family have the form of 
equation (1)—we may designate the upper branches by Bi and the 
lower branches by Bn—but the coefficients of the two series differ in 
general. 

In order to put the equations in shape so that they may be of 
practical utility it is now necessary to determine the coefficients of 
the expressions for Bx and Bi so that they apply to a definite loop 
family, and this is accomplished by reference to some of the more 
general properties of the loops and of the normal magnetization curve. 
These properties are as follows: 

6 "Notes on Electricity and Magnetism, III," Phil. Mag., 1887, V. 23. fi Unpublished work based on assumptions which include Rayleigh's relation was 
independently carried out by W. P. Mason of these Laboratories in 1922 and 1923. 
An account of some applications of Rayleigh's relation is to be found in an interesting 
paper by Jordan published in the Elektrische Nachrichten Technik, B. 1, H. 1, July 
1924. 

49 
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1. When both h and H are zero the flux density on either branch 
is zero. 

2. The flux density on one branch with II and h given is equal and 
opposite in sign to the flux density on the other branch corre- 
sponding to the negative of h and to the same maximum 
force II. 

3. The two branches corresponding to a definite H meet at the 
normal magnetization curve. 

The application of these properties to the power series enables us 
to deduce relations between the coefficients as demonstrated in 
Appendix 1: 

floi = ^oo := 0, 
^02 = <^20, (7) 
fl03 = — Cizi. 

We shall find it sufficient to include the third degree terms for our 
work, so that we need not investigate relations between coefficients 
of higher degree. The loop equations are simplified by utilizing (7) 
and we can make a number of interesting deductions. Thus the equa- 
tion for the normal magnetization curve is given by 

B{,H, H) = a10H + anH2 + (a12 + a3o)H3. (6a) 

In this equation a1o will be recognized as the initial permeability 
usually expressed as jhq since upon division by II we have for the 
permeability 

U = Oio -T OuH + (&12 T aso)!!2 • • •. 

According to this equation the change of permeability with magnetizing 
force is linear at sufficiently small fields. The above equations are, 
in all rigor, infinite series, but for our purposes it will be found sufficient 
to consider only coefficients of the third and lower orders,—in some 
cases the second order will suffice. 

An expression for the remanence curve of the loop family may be 
obtained by setting h equal to zero in the equation for the upper 
branch. In that case we find from (4a) 

B(0, H) = awH2 + aosIP + • • •, (8) 

hence for sufficiently small magnetizing forces the remanence increases 
as the square of the magnetizing force. 

The hysteresis loss per cycle per unit volume may also be obtained 
directly from the branch equations (4a) and (5a). The loss in ergs, w, 
is equal to the area of the hysteresis loop divided by 4x. If now we 
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consider the loop area to be built up of strips of infinitesimal width 
based on the //-axis, the height of any one of the strips is given as 

B = Bxih, H) - BnQi, H) 
and we have 

1 r" 
w=~ \ Bdh (9) 

so that, by Appendix 1, (9) may now be expressed as 

w = ^ (aozH3 + aoJI* +•••)• (10) 

It is clear, therefore, that at sufficiently low fields the hysteresis loss 
varies as the cube of the magnetizing force, and diverges when the 
field is made sufficiently large—it seems to be in general agreement 
with experimental results on ballistic loops and, as will be pointed out 
later, is verified by impedance change data under alternating excita- 
tion. In view of the remanence curve equation, (10) may be rewritten 
as 

w= ^HB(0, II). (11) 
OTT 

Various approximations have been made in the past to hysteresis loop 
forms in order to obtain convenient expressions for the hysteresis loss. 
Thus if we consider the loop as an ellipse the loss becomes 

while if we consider the loop a parallelogram the loss is 

- HBiO, H). 
TT 

Both these expressions give too large a result since the coefficient 2/3ir 
of the exact equation (11) is 0.212. 

Branch Equations for Materials Obeying Rayleigh's Relation. Ray- 
leigh's observation enables us to establish relations between the 
different coefficients involved in our development above when the 
loops of a family are similar in form. For the sake of completeness a 
derivation of these relations is given in Appendix 2; their validity 
may then be judged by test in specific cases. In the derivation we 
assume a power series expansion for one branch of the largest loop 
of a family referred to the tip, and assume that the smaller loops 
are of the same form. Then by referring the equations to the origin 
instead of to the loop tip, we arrive at the hysteresis branch equations. 
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By comparing the coefficients of this equation with those of the general 
equation (1), we can deduce relations between the coefficients. These 
are, from Equation 16 of Appendix 2, 

®oi = 0, 
O-IQ T fl02 :=:: 0, flu := 2^20, (17) 
^21 T U03 :=: 0, ^12 = ^21 := 3^30, 
040 T ^22 "b a04 — 0, OSI ^ 0-13 = 4fl40 = 60-22. 

The left column is in agreement with Equation (7), while the right 
column furnishes new relations between the coefficients. Thus the 
coefficients based on loop similarity are not inconsistent with those 
deduced under no assumptions, but the former involve additional 
relationships between coefficients which need not be satisfied in the 
general case. 

Families of hysteresis loops obtained by the usual ballistic method 
have been examined for these relationships in the case of several 
materials with the following results for coefficients up to and including 
the second degree: 

Hysteresis Loop Coefficients 

Silicon Steel 'B' Dust7 'C Dust7 

270 35.3 26.2 
2600 1.53 0.59 
1300 0.76 0.295 
967 0.65 0.29 

120 - 951 - 0.71 - 0.286 

The values tabulated were obtained by 'smoothing' data obtained 
from ballistic loops, which leaves a great deal to be desired from the 
standpoint of precision. The difference between ^02 and — 020 is an 
index of this lack of precision. The average deviation of flii/2 from 
the mean of a02 and aoo (a relation deduced on the basis of similarity) 
is small for C dust and large for silicon steel while the third order 
coefficients show much poorer results. The lack of precision in the 
original data however, is such as to leave unsettled the question of 
loop similarity for the materials tested at the fields to which the 
coefficients apply; the experimental error is too great. 

The use of ballistic methods for determining coefficients becomes 
even less satisfactory for materials with low hysteresis losses and 
cannot be used for analyses which have any aspirations to precision. 
It will be shown in the next section, however, that the significant 
coefficients enter into the impedance of a coil which employs the 
material under examination as a core, so that the desired coefficients 

7 Speed and Elmen, "Magnetic Properties of Compressed Powdered Iron," 
A. I. E. E., V. 40. 



HARMONIC PRODUCTION IN MAGNETIC MATERIALS 771 

may be obtained with the aid oi AC bridge measurements under 
appropriate conditions for which eddy currents and winding capacities 
are unimportant. These measurements are of a higher order of 
precision than those obtained by the ballistic method, and will be 
treated in detail in the next section. 

Part 2. Alternating Magnetization 

Sinusoidal Magnetizing Force. The same magnetic characteristics 
which were the subject of the investigation of the last section are 
involved in alternating magnetization when the applied field has but 
one maximum and but one minimum per cycle, and when the eddy 
losses are not great enough to introduce screening effects. As one of 
the results of that investigation, we have arrived at equations for both 
the upper and the lower branch families, so that to obtain an expression 
for the flux density valid over the entire cycle, it is now necessary to 
combine the two branches by a Fourier's series in the usual manner. 

Before doing this, however, it is necessary to express the branch 
equations for the flux density in terms of time, rather than as series of 
powers of the independent variable, the magnetizing force. To do 
this we substitute the equation for the magnetizing force 8 

h = 11 cos pt (18) 

in the branch equations (4a) and (5a) of Part 1. The result of the 
substitution is to give the upper and lower branch flux equations in 
terms of powers of cos pt, which may be expressed in terms of multiple 
angles. These two equations are then combined in a Fourier series 
which is valid over the entire cycle: 

5 = ^ + 2 (^ cos kP1 + sin kpt), £ 1=1 
in which the coefficients are given by the usual expressions, equation 
22a of Appendix 3. The coefficients 6o, bi, • • • h^k, flo, ai, • • * aik are 
found to be identically zero on account of the symmetry of the loop 
family about the origin, while the fundamental and third harmonic 
coefficients are found to be as follows: 

Oi = ^ {aoiIP + aosH3), 

hi = aioll + CufZ2 + (aio + \azo)lP, (25) 

as = — -Tr- {ao»H- + aozH3), 1 UTT 
b3 = a30H

3/4. 
8 The purely sinusoidal magnetizing force may be obtained, despite the varying 

reaction of the iron core coil, by connecting a generator through a low pass or band 
pass filter having a high impedance outside the pass band, or by connecting a pure 
sine wave generator to the coil through a high impedance. 
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Details of the derivation are given In Appendix 3. Inasmuch as we 
assume the applied field to vary as cos pi, the 6's are in phase with the 
applied field and the a's are in quadrature. The two a's, it is observed, 
are connected by a constant of proportionality (flx = — Sa^) and 
depend upon the remanence; or upon what is the same thing, the 
hysteresis loss divided by the magnetizing force. 

If we expanded the loop equations to higher powers we should find 
that ax and cease to be linearly proportional. The coefficient by 
is observed to have its first three terms identical with those of the 
normal magnetization curve, but the fourth term differs by precisely 
the amount &3- 

The voltage existing across a coil enclosing a core characterized 
by the above coefficients is 

E=nA\Q-*<^, (26) 

where n is the number of turns enclosing the core, A is the core area 
in cm2, B is the total flux density and E is the total generated potential. 
Carrying out this operation we have 

E = nA 10_8(/wii cos pt + Spas cos 3pt 
— phi sin pt — Spbs sin 3pt) (26a) 

in which the voltage components in phase with the current depend 
on the hysteresis coefficients, and the quadrature components depend 
only on the coefficients of the normal magnetization curve. The 
dependence of each of these components upon the applied field is clear 
from Equation (25). To take the two third harmonic components it 
will be observed that as starts to vary with the square, while bs starts 
to vary with the cube, of the applied field. It follows therefore that 
at sufficiently small amplitudes the third harmonic is produced by the 
as term and not by the bs term, which means that under the conditions 
noted, harmonic production is due to hysteresis and not primarily to 
permeability change. 

From the two fundamental components of voltage across the coil 
an expression for the inductance and resistance offered to the flow of 
alternating current may be deduced. The inductance, it is easy to 
see, is obtained directly from the magnetization curve,—the d.c. 
permeability of the normal magnetization curve therefore coincides 
with the a.c. permeability at small fields. The resistance may be 
obtained from the expression derived above for hysteresis loss per 
cycle per cc. If we multiply that value by the volume of iron in the 
coil, by the frequency, and by 10-7 to convert ergs to watts we have 
the loss per second, and this may be equated to the square of the 



HARMONIC PRODUCTION IN MAGNETIC MATERIALS 773 

effective fundamental current multiplied by the hysteresis resistance, or 

wfAivdlO-1 = PR,^. 

Here d is the diameter in cm, I is the peak value of the fundamental 
current, / is the frequency, and Rh is the hysteresis resistance. This 
may be solved for the hysteresis resistance in terms of the r.m.s. 
value of fundamental current /, which is at low fields, 

Rh = \.2-\0^nsAfTa02Jd\ (27) 

The hysteresis resistance at small fields thus varies linearly with the 
applied current. 

It is easy to derive the relation between the hysteresis resistance 
and the generated third harmonic voltage at low fields since they 
involve the same constants 002 and aosl from (26a) and (25) we have 
for the r.m.s. third harmonic voltage 

£3 = 3/>n^lO-8a3/V2 = 0.n-\D-ifn3Al^jd\ 

Comparison with (27) shows that 

E, = 0.6RhL (28) 

This simple relation is valuable in obtaining an idea of the harmonic 
production in a specific coil through resistance measurements, and 
more than that, it enables us to determine the coefficients significant 
in the distorting process for the material under test, so that the har- 
monic production in a coil of any dimensions enclosing the same core 
material may be calculated. The degree of precision ordinarily attain- 
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Fig. 3 

able is brought out for two materials in Fig. 3, and the agreement is 
observed to be within the experimental error in those two representa- 
tive cases. 
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These relations provide us with an expression for the ratio a 11/002 
which may be obtained from impedance measurements. It will be 
recalled that Rayleigh's relation would give this ratio the value two, 
and a.c. bridge measurements may be used to check this relation. 
The change of resistance with current is given by (27), and the change 
of reactance with current may be calculated from (25) and (26), since 
we have 

AX = a 1 \ll-pnA 10—8/ / ^2, 

= 1.42-10-8«34/Taii/d2. 

Hence if we denote Rh by Ai?, we may write 

— = 0.85 • 
^02 Axv 

The results obtained on some dust cores of different composition and 
two solid materials may be tabulated as follows: 

Material Number of Specimens O11/002 
Grade'B'Iron Dust 10 2.65 
Grade 'C' Iron Dust  1 2.63 
Permalloy Dust9'A'  3 2.10 

'B'  3 1.81 
Iron Dust No. 1  1 2.80 
Iron Dust No. 2  2 2.55 
Perminvar 10  1 3.0 
Alloy'D'  2 1.84 

The method of analysis and the results obtained above may be 
summarized as follows. Starting with the general development of 
the hysteresis branches in a double power series and making use of 
only the most fundamental experimental observations, equations have 
been derived for the normal magnetization curve, the remanence 
characteristic, and the hysteresis loss characteristic in terms of the 
original hysteresis branch coefficients by combining the equations 
for the two branches in a trigonometric series. The series for the 
normal magnetization curve is found to start with the first power of 
the magnetizing force, the remanence starts with the second power, and 
the hysteresis loss starts with the third power, the curves varying in 
accordance with their respective first terms when II is small. These 
results seem to be in general agreement with experience. For large 
values of II the shapes of the different curves depend of course upon 
the size and sign of the coefficients involved, about which nothing 
can be said until the coefficients have been evaluated from experimental 
data. 

"Shackelton and Barber, "Compressed Powdered Permalloy," A. I. E, E. Con- 
vention, February 1928. 10 Elmen, "Magnetic Properties of Perminvar," J. F. I., September 1928. 
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In the case of a sinusoidal magnetizing force the fundamental and 
third harmonic flux densities were derived with the aid of the trigono- 
metric series development. These were shown to depend in a simple 
way at low fields upon the normal magnetization and hysteresis loss 
characteristics. The in-phase fundamental voltage component de- 
pends directly upon the hysteresis loss per unit current, while the 
fundamental component in quadrature varies with the magnetization 
curve at low forces. The in-phase third harmonic varies with the 
in-phase fundamental at low forces, and the third harmonic in quadra- 
ture comes in only with larger forces in a manner which depends upon 
the magnetization characteristic. The range of forces over which our 
equations are valid depends simply upon the number of terms taken 
in the development of the branch equations, and is not necessarily 
restricted to small forces. The hysteresis loop coefficient enters into 
the impedance offered to the fundamental frequency by a coil enclosing 
the core material in question in such a way that the third harmonic 
produced may be deduced from the change of resistance with current. 
Further, the ratio of the change of reactance with current to the 
change of resistance with current may be used to provide a test of 
Rayleigh's relation, which is found to hold for some materials, while 
it is invalid for others. The precision obtainable in the evaluation of 
hysteresis loop coefficients is much greater by the a.c. bridge measure- 
ment under proper experimental conditions than by the analysis of 
ballistic loops. Incidentally attempts have been made to obtain B-H 
loops by AC methods with the aid of the Braun tube, for example,11 

but the precision attainable is not sufficiently high for our purpose. 
Complex Magnetizing Force. Our preceding analysis has furnished 

us with the fundamental voltage drop across a coil enclosing the iron 
core under consideration, together with the third harmonic voltage 
generated in the coil winding due in general partly to the non-linear 
B-II relation and partly to the effect of hysteresis. The generated 
voltages corresponding to the fifth, seventh, and higher orders are 
also calculable by the same methods but will not be specifically con- 
sidered since they are smaller than the third harmonic at low fields. 
This generated third harmonic voltage exists in its entirety across the 
coil winding only when the impedance of the external circuit is much 
higher than that of the coil at the harmonic frequency, a condition 
not usually satisfied in telephone circuits. A current of the third 
harmonic frequency then flows in the circuit, its amplitude and phase 
depending evidently upon the generated third harmonic voltage— 
that is, the coil structure and core material—as well as upon the total 

11 Peterson, Phys. Rev., Vol. 27, No. 3, p. 320. 
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circuit impedance to the third harmonic which includes that of the coil. 
We have now to determine the coil impedance to a complex magnet- 
izing force constituted by the fundamental and the third harmonic. 
It is evident at the outset that if we restrict consideration to a very 
small third harmonic, the impedance to the fundamental cannot be 
very materially altered. 

In general the fundamental and third harmonic may exist in any 
phase but for our present purpose we shall take the magnetizing force 
to be 

H = Hi cos pt -f Hz cos 3/>/, (29) 

in which the phase angle is assumed zero. This seems to be an 
arbitrary assumption, but it may be shown that the results are not 
materially different for other phase displacements, and there is some 
gain toward simplicity of treatment by taking the phase angle zero. 
The equations of Part 1 may then be carried over without change, and 
details of the analysis are given in Appendix 4. 

The ratio of the resistances to the third harmonic and to the funda- 
mental is 0.77, from the relations deduced in the appendix. Some 
experimental work has been done to test the validity of the expres- 
sions derived above for the reactance and resistance components of 
the third harmonic, the results of which are given in Fig. 4. It is seen 
that the check for the inductance to the third harmonic is very good 
but that the resistance component appears to be substantially that of 
the fundamental rather than 77 per cent of it, as the analysis indicates. 

EFFECTIVE INDUCTANCE OF A GRADE's'lRON DUST COIL TO THE THIRD HARMONIC. 

DOTTED LINE INDICATES INDUCTANCE AT 1200^ WITH SINGLE FREQUENCY INPUT 
H-.05IB 1 

2 4 6 8 10 12 14 16 
Jr MILS 

Fig. A A 
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DOTTED LINE INDICATES I200»v RESISTANCE WITH SINGLE FREQUENCY INPUT 

s s y 

s 

✓ 

EFFECTIVE RESISTANCE OF A GRADEVIRON DUST COIL TO THE THIRD HARMONIC. 
AS A FUNCTION OF FUNDAMENTAL CURRENT F'400<u 

H«.05l» I y > 

Ir MILS 
Fig. 45 

The experimental method for obtaining this result—the impedance to 
a small third harmonic in the presence of a relatively large funda- 
mental—is illustrated in Fig. 5. The method consists in measuring 
the third harmonic current by means of a current analyzer 12 for a 
number of circuit conditions in which the fundamental current is 

TO CURRENT 
ANALYZER 

HIGH Z OUTSIDE BAND 
Fig. 5 

maintained constant. The circuit is first tuned to the third harmonic 
by varying the capacity C in the third harmonic circuit, and the current 
is then measured for a series of values of the series resistance r. A 
shunt resonant circuit tuned to the fundamental is inserted in the 
third harmonic path so as to separate effectively the third harmonic 
circuit from that of the fundamental. With this precaution taken to 
avoid harmonic production in the analyzer and to maintain the funda- 
mental current constant while r and C are varied, the inductance 
to the third harmonic is obtained from the resonating capacity, and the 
resistance is determined as that value of r for which the third harmonic 
current falls to half its maximum. 

12 For details of current analysis see the paper by A. G. Landeen, 5. 5. T. J., 
April 1927. 
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Part 3. Application of the Analysis 

Air-Gaps and Dilution. Under certain conditions improvement in 
the operation of iron core coils toward freedom from harmonic pro- 
duction may be attained by inserting air-gaps in the magnetic path. 
The expressions which we have derived up to this point are valid for 
a material having the constants assigned, and the question now arises 
as to the parameters which characterize the operation of the iron core 
including air-gaps, and their relation to the parameters for the original 
core without air-gaps. With these relations given, our previous work 
may be applied to cores with air-gaps. 

In establishing the correspondence between the parameters for the 
two cases, it is instructive to use two methods—one a direct attack,1'* 
the other resting on an analogy with non-linear vacuum tube circuits.14 

We may determine the effects sought for by the direct method on 
consideration of a single branch of a hysteresis loop, which is expressed 
by equations (4a) or (5a) of Part 1, 

Bill. H) = (36) 

Now with an air-gap in the magnetic circuit, the magnetomotive force 
effective is that applied, reduced by the drop across the air-gap, or 

m' = m — p<p, 
M' = M — p4>, V ; 

in which mM, <p$ are instantaneous and maximum values, respec- 
tively, of the impressed m.m.f. and flux, and in which p represents the 
air-gap reluctance 

p = X/^4, (38) 

X being the length of air-gap and A the core cross-section. 
In order to apply (37) we re-express (36) in terms of magneto- 

motive force and flux as follows: 

M) = (39) 
r s v 

where I is the length of magnetic circuit in the iron. Equations (37) 
may now be substituted in (39) to yield 

<p{m, M) = (m - PvYW ~ P^Y' 

13 Due to Mr. H. P. Evans. 
14 See Appendix 5. 



HARMONIC PRODUCTION IN MAGNETIC MATERIALS 779 

This equation may be solved for <p by identifying coefficients when we 
substitute the solution 

<p{m, M) = 

which is equivalent to 

H) = (41) 
T 8 

Carrying out the operations, the primed coefficients are determined 
in terms of the original coefficients and the core structure as follows: 

dio' = flio ^ 1 + 

ttoz' = — ^20' := fl02 j 

an = an I (^1 + j flio ^ • 

It is clear that the effect of an air-gap is to diminish the higher 
order coefficients to a greater extent than those of lower order; no 
new coefficients are introduced. If we refer to a constant flux density, 
then the impressed force is 

if' = +^0) (43) 

and the modulation voltage becomes proportional to 

2 _ aozH2 

0-02 M r 1 
1 + ^10 

so that the harmbnic e.m.f. has been reduced in the ratio of 1 + ^ flio 

to unity, which is precisely the ratio of initial permeabilities. 
Dilution. If the magnetic material is diluted with a non-magnetic 

substance (insulation) so that the effective air-gap length is X, the 
above equations for the flux density still hold. The effective cross- 
sectional area, however, is reduced to 

= (44) 

which is ordinarily of small account compared to the other factors 
involved. 

Choice of Core Material. The ideal characteristics for a core ma- 
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terial in respect to its freedom from harmonic production may be 
determined by a consideration of the circuit problem. The third 
harmonic driving e.m.f. is obtained from the last section as 

£3 = pnAawIPIO-*, 
^ (45) 
— "02-' I » 

in which n represents the number of turns enclosing the core of area 
^4, ^ is the mean diameter of the toroidal core and "02 is the hysteresis 
coefficient. 

Suppose that we have to design a coil of fixed inductance in which 
the harmonic is to be a minimum, so that 

L = K11 ^ = const. (46) 

We proceed to the consideration of a number of special cases subject 
to condition (46). 

Case 1—L Fixed, n Variable. From (46) 

. / d \m 
11 = const. —7 , 

\bAJ 

which may be substituted in (45) to give 

E^WdWr" (47) 

Hence in a coil of fixed inductance, fixed core area, and fixed core 
diameter, minimum harmonic voltage is produced with a material 
for which c^/ju3'2 is minimum. 

Case 2—L Fixed, A Variable. From (46) 

A — const, din- n, 

which, upon insertion in (45), yields 

_ . n ao2 /ao\ 
£3=5-, (48) 

in which the modulated voltage varies linearly with 
Case 3—L Fixed, d Variable. By a similar procedure, we obtain an 

expression for the generated third harmonic voltage 

E^nAa;- ^ 

For further work we suppose the coil reactance considerably greater 
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than the circuit resistance at the fundamental frequency, and consider 
the case of an input transformer in which the secondary is practically 
open-circuited. 

Case 4—Input Transformer. In accordance with the above assump- 
tion the fundamental current through the coil is determined by the 
coil reactance x or 

r E . d 
11 —- = x n2nA ' 

Putting this in (45), we find 

E3=-U^. (50) 
nA fi- 

which is identical with Equation (49). 
In the four cases treated above it has appeared that there are three 

quantities which characterize the modulating properties of a ferromag- 
netic coil under different conditions—awjix, aoof/x3'2, a^Jir. The values 
of these ratios have been determined for a number of materials and are 
tabulated below. 

aoi/ix aos/M3'2 a oilix2 

B dust  
C dust  
Permalloy dust 16  
Perminvar 15  
Silicon Steel  

18 X 10-3 

11 
17 

2.1 
2500 

3.1 X 10-3 

2.2 
2.1 
0.1 

210 

0.52 X 10-3 

0.42 
0.24 
0.0045 

16 

These results apply only when eddy currents are negligible; as the 
frequency is raised eddy currents effectively screen the core and the 
harmonic flux is reduced to a greater extent than is the fundamental. 
This effect, as is well known, depends upon the specific resistivity of 
the core material and will not be evaluated here. 

It has been pointed out that under different circuit conditions an 
index of the modulation is given by the ratios awjix, ao-ifn312, aoilix2, 
depending upon specific conditions. For diluted materials, these ratios 
referred to the undiluted material become 

floa  ^02   ^02  

ai0 ) j flio" +jaiQSj 

and the utility of air-gaps toward the reduction of harmonic is made 
evident quantitatively in every case. 

In order to test these relations a comparison was made of the 
16 Laboratory specimens. 
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coefficients for specimens of grade "B" and grade "C" dust which 
represent different dilutions of electrolytic iron. The coefficients 
used were those tabulated in Part 1. In accordance with equations 
(42) above we may write 

flioy/^l = 26.2, aio ^ 1 = 35.3, 

au/^l + jajo)3 = 0.59, auj^+^a^ = 1.53, (51) 

ao2^(l + jaioy = 0.29, 1 + jVo j = 0.65. 

From these, we should have equality of the ratios 

0.59/1.53, 0.29/0.65, (26.2/35.3)3, 
or 

0.37, 0.45, 0.41, 

which are evidently in fair agreement. It is clear then that the 
properties of diluted materials may be calculated from the character- 
istics of the original material, at least when the process of dilution 
does not change the intrinsic properties of the magnetic material 
involved. 

Applications to Transformers. The third harmonic flux component 
may be obtained when the fundamental magnetizing force is given, 
and the latter is easily obtained in toroidal core inductance coils from 
the relation 

h = OAnild, (52) 

where both h and i refer to the fundamental frequency. In a trans- 
former, however, the net magnetizing force is obtained as the sum of 
two components, one due to the primary and the other produced by 
the secondary, so that some further investigation is required before 
the net magnetizing force in the core may be calculated in terms of the 
transformer constants and the primary current. 

Net Magnetizing Force. To obtain the net magnetizing force which 
determines uniquely the generated flux components we are required to 
obtain the primary and secondary currents {iiif), to multiply each 
current by the number of times it encircles the core, to add the two 
products, and finally to multiply the sum by 0.4/f/: 

//net = 0.4(«i*i + n-dfl/d. (53) 

To evaluate (53) then we shall solve for the primary and secondary 
fundamental currents in terms of the circuit constants and the applied 
potential. 
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The transformer circuit equations from which the currents may be 
evaluated are the familiar ones 

E = Zyii + jpMiz, /c^\ 
0 = Ziii + jpMii, 

in which we assume the transformer to be an idealized structure—the 
capacity and leakage effects of actual transformers will be assumed 
combined with the connected impedances for simplicity—they will 
therefore not be dealt with explicitly. From the second of (54) is 
obtained the relation between the two currents 

ii = — jpMii/Zt (55) 

which may be substituted in the first of (54) to give the usual expression 
for the primary current 

ii=El[Rl+PWR2+j(Xi_pWXri (56) 

An expression for the net magnetizing force in terms of i\ may be 
had putting (55) and (56) in (53) 

(57) /net ~ d \ z2 /' 

in which K represents the turns ratio: 

= (58) 

If we make the convenient assumption, which is closely approximated 
under working conditions, that the coupling is perfect (no leakage) we 
have 

pM = vXjXo (59) 

and (57) may be simplified to the form 

^. = 2^1. (60) 

This equation shows that the net magnetizing force may be obtained 
from that of the primary alone by applying the reduction factor R->lZi. 
Now in well designed transformers the winding reactances are much 
greater than the resistances to which they are connected, and in this 
case 

X\2y>R\ 2. (61) 

Applying this further simplification to (60) we have finally for the net 
50 
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magnetizing force 
0.4mi^i x 

■C* net =  2  x; ' (oOa) 

in which the reduction factor applied to the force due to the primary 
alone is seen to be the ratio of resistance to reactance in the secondary 
circuit. 

This equation with the aid of (56) may now be put in terms of the 
primary voltage—a fixed quantity—rather than in terms of the 
primary current which is variable according to the circuit resistances 
used. Applying the assumptions (59) and (61), Equation (56) may 
be written 

H = E/CRx + i?2/X
2), (56a 

which may be put in (60a) to express the net force explicitly in terms 
of the circuit constants: 

_ 0.4M ,£ / 1 
not dXi \l + RtRi/Ri 

In view of (58). When the transformer is terminated in its normal 
resistances the expression within parentheses reduces to the value one- 
half. It is of interest in this connection to compare the field here with 
that produced with the secondary open; in the latter case it is clearly 

OAniE/dXi, 

which is twice as great as the field in the properly terminated trans- 
former. This result is otherwise evident, for in the properly termi- 
nated transformer but half the generator voltage is applied across 
the primary. 

Third Harmonic. According to Equation (28) the amplitude of 
third harmonic voltage generated in a coil of n turns encircling a core 
subjected to a magnetizing force of //net gilberts/cm is 

Ez = 10-8ao2^M^-^2net (63) U TT 

and the generated primary or secondary voltage is obtained by attach- 
ing appropriate subscripts to m. Because of the coupling, the two 
circuits react on one another at the third harmonic frequency as they 
did at the fundamental frequency, and to find the two third harmonic 
currents we must go through a procedure analogous to that followed 
for the fundamentals except that here we have an independent 
generator voltage effective in each of the two windings. 

Indicating quantities referring to the third harmonic frequency 

(62) 
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by the subscripts p, s for primary and secondary circuits, respectively, 
we have the circuit equations for the third harmonic currents: 

Cp = Zpip + j3pMia, (c 4.) 
Kep = Zgi, + jSpMip, 

and by equating the two expressions for Bp we obtain a relation between 
the two currents: 

KZp—j3pM. , , 
= X. -jipMK'" (65) 

Putting ip in terms of ep, and using (59) and (61) we find 

ia = epKRp/R.Xp(l + K2RpJR.). (66) 

Suppose now that we are dealing with pure resistance loads so that 

Ri = Rp, Rz = Rs- 

We may then substitute (63) for Cp in (66) to obtain the third harmonic 
current in the secondary. 

From (63) 

8 IO-S ^ ,0.16^/ 1 \2 gp ^10 aotpniA ! _|_ K'Rt/R.,) ' (67) 

and by substitution in (66) 

• _ E2KRia . , 
/ ^i\3' 

SXjRz I 1 +K2^ 

If we consider the factor containing the resistances, 

F = —   , (69) 

it is zero for Ri/Ro zero or infinite, and reaches a maximum under the 
condition 

mk) =0- (70) 

The third harmonic secondary current is maximum when 

Now K- is fixed by the turns ratio (58), so that we may say the 
secondary third harmonic current is maximum when the primary 
resistance is made half its nominal value, or when the secondary 



786 BELL SYSTEM TECHNICAL JOURNAL 

resistance is made twice its nominal value. This is well borne out by 
Fig. 6 due to A. G. Landeen taken under conditions to which the 
above discussion applies. 

SECONDARY THIRD HARMONICAS FUNCTION OF SECONDARY LOAD RESISTANCE. 

I,r (15.000ru) 

Ri 2R2 aR, 
LOAD RESISTANCE 

Fig. 6 

At first sight the result obtained, in which the secondary harmonic 
current increases as the secondary resistance is increased for all values 
of secondary resistance below twice the nominal secondary resistance, 
seems a bit strange since the fundamental secondary current decreased 
under the same conditions. A little thought however shows that the 
increase of secondary resistance acts in two ways; first to reduce the 
harmonic current directly, and second to increase the net magnetizing 
force in the core which in turn increases the generated harmonic. 
Thus with zero secondary resistance the net magnetizing force is zero 
and no harmonic flux can be produced, while with large secondary 
loads the flux density in the core or the net magnetizing force reaches 
an asymptotic maximum so that the generated third harmonic increases 
slowly if at all while the reduction in secondary current by the re- 
sistance is continuously increasing. Under the assumptions noted 
Equation (68) is valid for any circuit condition and it will be observed 
that i, decreases with the primary resistance below the optimum point. 
The value of a. is explicitly 

* = 2.72X10-^(^1). (72) 
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in which the bracketed expression coincides with the variable factor 
in equation (45). Hence when Li is constant the choice of core 
material follows the rules laid down for inductance coils. When 
the inductance is not constant, however, the factor becomes pro- 
portional to 

a = const-;^b (73) 

with the understanding that the turns ratio, resistances and frequency 
are fixed. Thus the secondary harmonic current with a given material 
is reduced by increasing the turns and core area and reducing the 
diameter. As far as core materials go, we have for the significant ratio 
floa/M3 the values: 

The great superiority of perminvar indicated above is restricted of 
course to fields of the order of less than 0.1 gilbert/cm. above which 
it tends to become smaller; at a field of 0.7 for example the above 
factor for perminvar would be multiplied by the factor three. Perm- 
alloy dust is observed to be approximately twice as good as the iron 
dust cores. 

A very important question to answer with regard to transformer 
cores is this—what benefit can be gained as to harmonic production by 
inserting air-gaps, or by diluting the core material, leaving everything 
else unchanged. This is evidently to be answered by an investigation 
of the ratios oWm3 and a'oiln'3, the primes referring as before to the 
diluted material. These relations are given by Equation (42) in 
which n and flio are interchangeable: 

Material 
Silicon Steel  
Permalloy Dust16 

B Dust  
C Dust  
Perminvar 16  

OO'/M3 

130 X lO"4 

2.4 X 10-1 

5.3 X 10^ 
4.3 X 10-< 

0.05 X 10-4 

These permit us to evaluate a'oo/iJ-'3- 

(74) 

16 Laboratory specimens. 



788 BELL SYSTEM TECHNICAL JOURNAL 

which clearly indicates that no change is produced in the secondary 
third harmonic current by introducing air-gaps or by diluting the core 
material, the change in core area being negligible. This relation has 
been verified experimentally. 

The discussion above considers a constant potential applied to a 
transformer circuit and the relations derived are somewhat changed 
when we consider constant current or constant potential transformers. 
We seldom have to do with constant current transformers but constant 
potential transformers are met with frequently in vacuum tube circuits 
as input transformers or interstage transformers. The above discus- 
sion may be applied to this case by taking the primary generator 
resistance much lower than its nominal value—a condition, inci- 
dentally, which works toward the suppression of harmonic. 

The conclusions are also somewhat altered when we have networks 
offering different impedances to the harmonic and the fundamental. 
Thus it is evident that the third harmonic current can be eliminated 
from both primary and secondary circuits by inserting a high series im- 
pedance to the harmonic frequency, or by encircling the core with a 
winding connected to a network which has a very low impedance to the 
third harmonic and high impedance to the fundamental. Further, in 
single frequency transmission the result may be equally well obtained 
by shunting a series tuned circuit around the primary or secondary 
winding. 

Applications to Harmonic Production in Loaded Lines 

If distortion takes place at any one point of a loaded line, the amount 
of distorted current received at the far end depends upon the ampli- 
tudes of the currents producing it, and upon the line attenuation from 
the point of origin to the far end. The phase similarly depends upon 
the phase of the fundamentals, and upon the phase shift of the line. 
When we have a number of distorting sources at different points along 
the line, the net distorted output is obtained by combining vectorially 
the currents due to the individual centers of distortion, since it may 
be assumed that no interaction exists. In a uniformly loaded line 
we may think of these sources of distortion as being uniformly dis- 
tributed, but the amount of distortion introduced is, on the contrary, 
not distributed uniformly on account of the line attenuation which 
reduces the distortion generated at the far end of the line. 

It is apparent, then, that if we are to calculate the net distortion 
introduced by the line, a complete specification of the phase shift 
and attenuation is required, together with a knowledge of the law of 
production of the distortion. This last also requires a specification of 
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amplitude and phase angle in their relation to the fundamentals 
producing the distortion. 

A situation somewhat analogous to the one under discussion which 
is less involved, however, is found in the diffraction of light, in which 
the illumination at a point proceeds from a number of coherent sources 
at various distances from the point. An important difference in the 
two cases is the attenuation of the transmitting medium which is 
ordinarily small in the optical case, so that the results of the optical 
investigations cannot be taken over directly. 

In the following we propose to calculate the third harmonic output 
currents with the aid of our previously established relations. The law 
of harmonic production has been quite definitely established in the 
low frequency-low flux density range. The driving third harmonic 
voltage of frequency 3/ produced by a fundamental current of rms 
value I is given by (25) and (26a) as 

*,3 a _ _ 
E3 = 0.72 X 10-8ao2^//2 = MP} (75) 

while the phase angle of the third harmonic generated potential is 
related to that of the fundamental current by the expression 

03 = 30!. (76) 

The above data are sufficient for a solution of the problem of distortion 
in continuously loaded lines when the propagation constant is known 
as a function of frequency. 

The fundamental current at any point distant .v from the sending 
end of the continuously loaded, properly terminated line is 

/ = Ue-px, (77) 
where 

P = a Ti/3. 

The third harmonic driving e.m.f. dEs generated in a length dx of 
the line may be written with the aid of (75), (76), and (77) as 

dE* = (78) 

Writing the line impedance as Zo, the resulting current at x is 

dh = ^ (79) 

With the line parameters a function of frequency we may write for the 
propagation of third harmonic current 

h = (80) 
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The distortion at x produces a third harmonic current at the receiving 
end 

2Zo 
diz = ^TLe-(2a+^)xe-(7+/«)a-x)# (81) 

The total third harmonic current at the receiving end may now be 
obtained by integrating (81) over the length of the line I, which gives us 

MTc? (.-O+m 
- - (1 - t82) 

Inasmuch as we are concerned with the output amplitude, the above 
expression may be put in a somewhat more convenient form: 

i2 _ /t//O
2y 6-^ 

l'31 V 2Zo ] {2a - 7)2 + (3/3 - 5)2 

X [1 + e-2(2«-7)2 _ 2e-e«-r)j COc (3(3 - 8)1']. (83) 

Thus when I is zero the harmonic vanishes as it should, and as I 
increases the current passes through maxima and minima determined 
by the cosine term. If the attenuation is not very great, the maxima 
occur approximately at the line lengths 

. _ {2n — l)7r 
3/3-6 ' 

where n is a positive integer. These distances correspond to odd half 
wave-lengths, as is true of the optical case. As I is increased the 
bracketed expression approaches unity and the current falls expo- 
nentially. Before this point is reached, however, the current increases 
in certain regions as the line length is increased. The fact that in an 
actual line the parameters vary with frequency means that these 
maxima and minima will vary in position according to the frequency, 
so that a maximum for one frequency may well coincide with a mini- 
mum for another frequency. 

In the case of lumped loading, the integrations used for continuous 
loading are replaced by summations, as was done by Mason in the 
unpublished investigation previously cited.4 If the spacing between 
coils is Xi, and if we have n coils for which nx\ = y, the received third 
harmonic current at the end of a properly terminated line may be 
written 

. _ MIn2 - e-t^-r+yo^)^) 
13 2Z0 _ 1) • 

which is to be compared with (82) for the continuously loaded line. 
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Appendix 1: Simplification of Loop Equations 

From the first of the three properties mentioned we have aoo = 0, 
and from the second property 

H) = -B2i-h,H) (3) 
whence, if we write 

Bi{h, H) = clkJi + a^H 
-f- ctooW -f" dnhll -f" dooIP 
+ flso/'3 + dnWH + duliH2 + dosHz • • •, (4) 

then 
B2{h, H) = dwli — dmH 

— dwh2 + dniiH — dozH2 

+ dzoh3 — d2ih
2H + dnhlP — dozH3 • • •■ (5) 

From the third property, the two branches meet at the loop tip which 
lies on the magnetization curve for which h = H, or 

Bi{H, H) = B2{H, H). (6) 

From the two equations (4) and (5) we have by virtue of this relation 

do ill + {doQ 4" do2)Il
2 + (#21 + doz)lP = 0 

and since this relation holds for every value of H, the coefficients of 
each power of H must be zero so that 

#oi = 0 = #00) 
#02 = — #20) (^) 
#03 = — #21 • 

The findl expressions for the bmnches are then evidently obtained by 
putting (7) in (4) and (5) which become 

Bi{h, H) = dioh 
— do2h' -(- dull 11 -1- do2lP 
+ dzoh3 — dozPH + dnhlP + dozll3, (4#) 

Bofi, II) = dioh 
-j- do2h' -f- dnhll — do2H

2 

+ dzoh3 + dozh2II + dnhlP — dozIP- (5#) 

Appendix 2: Rayleigh's Relation 

If we suppose the lower branch of any loop, when referred to the tip 
of the largest loop considered, to be given by the equation 

Bi = nohi + vhi2 + \hi3 + a)/^4 (12) 
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we may refer the family of branches to the origin by the transformation 

B - B ~ f (13) JD — JJ i Jjm, 

if BmII refer the midpoint of the largest loop to the tip. Then 

Bm = noH + 2vIP + 4\H3 + 8coH4. (14) 

Putting (13) in (12) 

B + Bm = n0{h + h) + v(h + Hy + \{h + ny + o>{h + ny, 

whence, subtracting (14), 

B' = ixoh + v{h2 + 2hH - IP) + Hh3 + 3h2H + ShlP - ZIP) 
+ oj(/r' + 4/rW + 6h2IP + 4hIP - IIP), (15) 

which represents the hysteresis branch equation referred to the origin, 
on the basis of loop similarity. 

The coefficients obtained by the two methods may now be compared. 
Thus identifying coefficients of (15) with those of the general equation 

(1) 

flio :=: /XQi ] 1 = 2u, fl02 = : — v fll2 == 3X, 
Q-2O ®2i := 3X, a-os = 3X, 0.13 ~ 4(0, (16) 
O30 = X, 031 — 4cj, flo4 = — 7 o), O22 = 6OJ. 
fl40 == CO, 

Appendix 3: Alternating Magnetization, Sinusoidal 
Magnetizing Force 

The resulting expression is simplified if we make the following 
substitutions 

« = 002H2 + ao3lP = B(0, H), 
& — U10 + 0\\H + OnlP, (19) 
8 = OaoIP- 

It may be noted that a is the remanence and that /3 is an approxima- 
tion to the permeability, in fact the permeability is given as the sum 
of /3 and 5. With (18) and (19) inserted in the branch equations, then, 
we have 

Bi(H cos pi, H) = a + /3 cos pt — a cos2 pt 8 cos3 pt, 
BpH cos pt, II) = — a + /3 cos pt p a cos2 pt p 8 cos3 pt. 

For convenience we shall express these relations in terms of multiple 
angles, and we have for the equation of the upper loop family 

Bi{Ilcos pt, B) = — a/2 p {p p 38J4) cos pt — (x/2 cos2ptp 8/4cosSpt. 
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If we write 

= a/2 = {awIP + a^IP)l2, 
— Q A- -islA — r, _!_ r. T-T A- n . TT2 _L 2r,.. TT3/A 

(20) 

A = a/2 = {awIP + dosH3)/!, 
B = ft 35/4 = aio "4- djiH -|- ciioH2 -{- ia-aoH3!^, 
C = = - A, 
D = SIA = a30H

3/4, 

the final form for the loop equations is 

Bi(H cos pi, II) = A A- B17 cos pi + C cos 2pt + D cos 3pt, , . 
Boill cos pi, H) = — A + B cos pt — C cos 2pt Ar D cos 3pt. 

We are now in position to combine the two equations of (21) in a 
Fourier series valid over the entire cycle as 

B = y + Jl(.bk cos kpl A- o-k sin kpt), (22) 

where 
1 r2" 

at = - I f(pt) sin kpl d{pt), 
Jq 

i r2' 
bk = ~ I f{pt) 

^ Jo 

(22a) 

cos kpt d{pt). 

For our particular case we have, since B = Bi for the first half of the 
cycle, and B = B^ for the second: 

■jrdk = J Bi{h, II) sin kpt d(pt) + B^h, II) sin kpt d(pt), 

trbk = [ Bi{h, IT) cos kpt d{pt) + f Bi(h, H) cos kptd{pt). 
J-i, Jo 

These integrals may be simplified considerably when we take advantage 
of the fact that both Bi and B* are even functions of the time as given 
by (21). Thus 

irdk = f [Bi(//, II) — BzUi, H)2 sin kpt d{pt), 
Jo 

irbk = f [_Bi{h, H) + B2{h, il)] cos kpt dipt). 
Jo 

Referring to (21) we may then write 

dk =~ \ {A A- C cos 2pt) sin kpl dipt), 
tt Jo 

cos pt A- D cos 3pt) cos kpt dipt). = - f'iB 
TT Jo 

(23) 

17 This coefficient is not to be confounded with the general expression for flux 
density. 
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Upon integration of (23) the coefficients for the fundamental and third 
harmonic flux components are found to be as follows: 

ax = -(.4 - C/3), = 
(24) 

4M_1_3C\ h - n 
a3 = *[j + T)' b3-D' 

which, by reference to (20), may be put in terms of the branch coeffi- 
cients. 

Appendix 4—Impedance Reaction to a Small Third Harmonic 
in the Presence of a Large Fundamental 

We have for the two hysteresis branch equations from Eqs. (4a), 
(5a) 

Biih, H) = B{0, II) + Ph + y/i2 + a30h
3 + • • •, 

B2{h, H) = - B{0, H) + Ph - yh* + a3oh3 + • • •, 
(30) 

(31) 

in which 
P = aio T O'liU 4" anH2, 

y = — (ao2 4- awH). 

Putting (29) in (30) we get 

B{h, H) = A + B cos pt + C cos 2pt 4" D cos 3pi 4" F cos npt 
4- G[cos {n + \)pt + cos {n — 1)^/] 

4- /[cos {n 4- 2)pt 4- cos (w — 2)pl] (32) 

in which the coefficients have the following significance 

A = B(0, II) 4- //i27/2, F = pih 4- 3a3o//i2//3/2, 
B = PH^ 3c3O^i3/4, G = ylhHt, (33) 

C = yHi2l2, J = SasoHSIh/A. 
D = a3o/fi3/4, 

The coefficients of the Fourier Series for the output wave may 
now be obtained as before by combining the two equations (30) since 
each one is operative during one-half the cycle. There results an 
expression similar to the one obtained in the single frequency case, 
and since we have 

I = bo/l 4" 2a a sin kpt 4-2^ cos kpl 

the coefficients are evaluated from the expressions 
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A,. = - f (A + C cos 2pL + G(cos Apt + cos 2pt)) sin kpt d(pt), 
TT Jo 
? r2ir (34) 

= - I (B cos pi + (.D + F) cos 3pi 
ttJo 

+ /(cos 5pt + cos pt)) cos kpl d(pt). 

Upon integration we find 

b1 =3, b3 = F. (35) 

Comparing these two coefficients we see that at low amplitudes we 
may write 

bi = fiHi, b3 = nils, 

in which the permeability is the same to the two components, and is 
determined by the fundamental amplitude. For the dissipative 
terms we find 

ai = -04 - C/3 - 2G/5), 

I (35') 
a3 = - {A/3 - 3C/5 + 6G/35), 

TT 

but some care is required in interpreting these expressions. Inasmuch 
as we are primarily interested here in determining the dissipative 
component to a third harmonic magnetizing force of amplitude II3, 
we are required to select from a3 only those terms containing II3, 
which means the single term 2AGJ35r. The other terms take care 
of the harmonic producing properties of the core and do not affect 
the impedance to the third harmonic. The impedance term for the 
third harmonic comes down to 

24 
•7?— {a^IIiIIz + doall^Ha), 3a7r 

which may be written as 

24 ^ B{0, II) 
35ir Hi 

This may be compared with the corresponding term for the funda- 
mental given by (25). 

Appendix 5. Effect of Air-Gap by Vacuum Tube Analogy 

In the elementary treatment of non-linear two element vacuum 
tube circuits, approximate solutions are obtained in the form 

/ = /1 + /2 + •••/»», 
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where J represents the variable part of the space current on the basis 
that Jn represents the nth. approximation, but that the series converges 
rapidly so that we need consider only the first two terms to arrive at 
a substantially accurate result. The expressions derived for the first 
and second approximations are known to be 

Ji = ai£//(l + CL\R), 

J* = rfVCl + axR)\ 

where the 'a' coefficients describe the tube characteristic 

J = diV + aiu2, 

R being the external plate circuit resistance, v the tube potential, 
and E the circuit e.m.f. 

Turning now to the equations for the hysteresis loop branches, we 
have from (4a) 

B = dioh — dozh* T dnhH d- dozTP. 

Hence by the analogy between flux and current, and between reluc- 
tance and resistance, the first order terms are reduced by the factor 
1/(1 + diR) which corresponds to 1/(1 + \aio/A), and the second 
order terms are reduced by the cube of this factor, which yields the 
same results (42) as the laborious direct method. 



Airways Communication Service1 

By EDWARD B. CRAFT 

THE present development of air transport is bringing out its need 
for adequate communication in much the same manner as the 

earlier development of railway operations disclosed for that industry 
the necessity of special communication services if speed and density 
of traffic were to be obtained with safety. The electric telegraph by 
a most fortunate coincidence was available just at the time the rail- 
ways required it; and as the demand for speed became pressing the 
telephone was perfected. Today the railways of the country, in 
general, use the telegraph for administrative messages, where a written 
record is wanted, and use the telephone for despatching, where speed 
and accuracy are primary requirements. 

By another fortunate coincidence, radio appears to be available 
just at the time it is needed for communication with aircraft in flight. 
Radio in the form of either telegraph or telephone has been highly 
developed for communication between points on the surface of the 
globe. For communication between aircraft and airports it is avail- 
able in principle although not yet so well developed. During the war, 
both in this country and abroad, radio equipment of relatively crude 
design was installed in aircraft and proved of great utility. Since the 
war, radio telegraphy for aircraft has been further developed by the 
naval and military services, but radio telephony has received less 
attention, probably because of the inherent difficulties and lack of a 
pressing demand. 

Following the remarkable success of the Air Mail and the passage 
of the Air Commerce Act of 1926, we are now fairly launched into an 
era of air transport of mails, express and passengers. National Air- 
ways, laid out and equipped by the Department of Commerce under 
authority of the Air Commerce Act, already compare in extent with 
the main trunk line mileage of the railways. Scheduled flying over 
these airways goes on by night as well as by day. A commercial 
degree of reliability and safety has been reached in so far as the airplane 
and its engine are concerned and, when surprises due to bad weather 
can be eliminated, the safety of air transport should compare favorably 
with that of other forms of transportation. 

Although weather is beyond our control, meteorological science is 
able to forecast its major phenomena with a high degree of precision, 

1 Contributed to Aviation for October 1928. 
797 
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provided data describing present and past weather conditions can be 
collected from a sufficient number of places. The progress of a weather 
disturbance can be tracked and the time of its arrival at a given point 
predicted. By means of a suitable communication system weather 
reports from observers located along and near an airway can be 
collected; and it should be possible, therefore, to reduce materially 
the weather hazard of air transport. 

A full-scale meteorological experiment of this nature is now being 
conducted in California by the Weather Bureau with the cooperation 
of the Guggenheim Fund for the Promotion of Aeronautics and of the 
Pacific Telephone and Telegraph Company. Meteorologists at the 
Oakland and Los Angeles airports receive several times a day, by 
long distance telephone, weather data from observers at a large num- 
ber of selected points in the state. After an exchange of these collected 
data, these meteorologists forecast flying-weather for aviators starting 
out over the airway between these airports. The experiment will be 
continued until the value of the special weather service can be estimated. 

Since the communications problem of safe air transport presented 
features which in a number of respects were unique, it was referred 
by the Interdepartmental Committee on Aeronautical Meteorology to 
experts of the American Telephone and Telegraph Company and Bell 
Telephone Laboratories. What was desired was the collection of 
reports from a considerable number of widely distributed observers in 
a relatively short interval of time, say, from twenty observers in 
twenty minutes. Naturally, it is not commercially practicable to 
call the party desired, set up the connections, have him answer and 
give his data all in the space of one minute. However, an equivalent 
result has been obtained by evolving a special telephone procedure for 
the purpose. At the appointed time a team of long-distance telephone 
operators call up successively the listed observers. Each as he answers 
is asked to hold the line and wait his turn when the operator connects 
him to the airport meteorologist. 

It has been found by trial that the weather data can be reported 
and recorded in thirty seconds. Consequently, the list of observers 
can be readily gone through if one minute each is allowed. To the 
Los Angeles and Oakland airports about forty observers are now 
reporting weather five times a day. These collected reports are 
exchanged between airports; and airplanes starting over the airway 
are provided with a forecast of the weather they may expect enroute 
and upon arrival. 

On the basis of these forecasts, it is hoped that the pilots may be 
able to avoid bad weather by choosing an alternative route or 
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by selecting the terminal field where weather conditions are more 
propitious. Both Los Angeles and the San Francisco Bay region 
have several airports and there are two routes between them, one up 
the valley via Bakersfield, and the other the more direct line to the 
west. The experiment will be carried on for a full year and so cover 
the complete cycle of the seasons. On the basis of the demonstrated 
value of this service to the users of the airway, the matter of its con- 
tinuance or possible extension to other airways can then be decided 
by the Weather Bureau. Unfortunately, however, California weather 
is proverbially good, and the experiment will, therefore, be concerned 
mainly with local fog and visibility conditions. It is possible also 
that interests other than aeronautical may discover advantages in a 
short range forecast of local weather. If so, the value of the experi- 
ment will be correspondingly increased. 

Weather data are also being collected in the east from observers in 
New Jersey and Pennsylvania by the meteorologist at Hadley Field 
who employs a somewhat similar method of sequence operation of the 
long-distance telephone lines. 

In addition to the problem of collecting weather data, there is the 
closely related matter of distributing local weather reports and fore- 
casts between airports. This is "point-to-point service." It may be 
accomplished by a special radio-telegraph network, by commercial 
telegraph or by long-d'stance telephone, and over private or leased 
wires either by telephone or by telegraph. Local conditions, volume 
of traffic and economic considerations, in general, determine which 
type of service should be provided. 

Besides its use for weather messages, point-to-point communication 
between landing fields along an airway is desirable for following the 
progress of an airplane with its passengers and cargo. Such a 
despatching service is somewhat analogous to that of a railway and is 
a necessity if scheduled connections with trains and other aircraft are 
to be met. Also, there is the necessity of accountability for mails 
and express; for example, on departure the landing fields ahead must 
be informed not only of the fact of starting but of what mail is on 
board. Upon landing there must be a message announcing the event. 
In this way the progress of a plane can be followed by the terminal 
airports. 

Although air transport of passengers has not yet reached a large 
volume in this country, European experience indicates that we soon 
will be concerned with communication problems having to do with 
passengers' convenience and comfort. Train and bus connections, 
hotel accommodations and meals, will have to be arranged for by the 
traffic department of an air transport company. 

51 
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Point-to-point communication facilities are also required for the 
general administrative business of the airway and of the air transport 
companies. 

Along our present airways at short intervals are intermediate 
landing fields upon which planes may land when forced down by 
weather or mechanical trouble. Such landings, however, are in- 
frequent and will presumably become increasingly rare; but when a 
forced landing does take place instant communication with the nearest 
airport is urgent on account of passengers, mail, and the air transport 
company itself. Telephones are now provided at these intermediate 
fields by the Department of Commerce and kept available for such 
emergency use. The same telephones can be used, of course, for the 
routine collection of weather data by the airport meteorologist. 

On some airways communication between terminal landing fields or 
airports is now handled by radio telegraph and on others by long- 
distance telephone. Neither system is ideal for the purpose. Radio 
telegraph is slow and is often unreliable in fimes of bad static when 
weather messages become urgent. It also utilizes radio ether channels 
which are needed for communication with planes. Moreover, a 
telegraph operator must be constantly listening throughout the 
twenty-four hours even though messages come infrequently. Com- 
mercial wire telephone service on the other hand although generally 
fast and reliable provides no written record of the messages, nor does 
it economically repeat messages at such other and distant airports as 
may be interested. Weather conditions at Cleveland, for example, 
are of interest both to New York and to Chicago airports. Likewise 
the time of departure of the New York air mail from Chicago is of 
interest to all landing fields enroute. 

An ideal system which is instantaneous and reliable, repeats messages 
at all airports, is free from interference, takes up no radio channels, 
and furnishes a permanent record of all messages at all airports, is the 
telephone-typewriter service. Telephone-typewriter systems make 
possible the instantaneous transmission of communications between 
distant offices and provide simultaneously each office and any desired 
intermediate stations with typewritten copies. This service has been 
used for a good many years by the principal press associations and is 
now being extended rapidly to serve the needs of our larger business 
organizations. 

To utilize the telephone-typewriter system along an airway requires 
only the installation of keyboard transmitting apparatus and tape 
printing apparatus at terminal fields and their interconnection by a 
private or leased wire circuit. Then anyone familiar with a type- 
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writer may type a message which will appear on the tape fed auto- 
matically from the apparatus at every other connected point. The 
message is automatically and permanently recorded under the control 
of the sending station. Constant attendance or listening-in is, there- 
fore, not required: and operators at the various receiving points are 
thus free to attend to telephone calls from intermediate fields, to 
operate radio beacons and lights, and to carry on whatever duties 
may be assigned to them. 

Telephone-typewriter service has been initiated by the Department 
of Commerce at Hadley Field, at Cleveland, at Chicago and at San 
Francisco, where in each place the local radio stations, weather bureau 
offices and the airport offices are all interconnected. It is planned, 
at a later date, to equip experimentally some airway with complete 
telephone-typewriter service between airports. 

When an aviator leaves an airport he should be given information 
of the weather along the route ahead of him and a forecast of the nature 
of probable changes during the time of his flight. If general weather 
conditions are settled, or if his flight is a short one, a forecast is entirely 
adequate. However, for long flights and at times of uncertain and 
threatening weather, it is important that the pilot be continuously 
advised by radio of the weather conditions he may encounter during 
his flight. In particular, reports of the visibility and landing condi- 
tions at the airport where he expects to land and storm warnings should 
be sent him. Weather and landing advice can be broadcast from 
each airport along the airway. Provision of radio transmitters at 
airports and receiving sets in the planes will make possible a simple 
one-way system of communication and will permit any number of 
planes in the air to be advised without confusion. 

The Department of Commerce, in its program of Aids for Air 
Navigation plans to install radio-telephone transmitters at principal 
terminal fields to broadcast, to planes in flight, weather and landing 
information. In addition, there will be a radio-beacon service to 
assist pilots in finding the landing field. 

European practice, however, has not developed a broadcasting 
service along this line but has evolved a two-way system in which 
the pilot of the airplane talks with the nearest airport. Such a system 
has obvious advantages where it is desired by an air transport company 
to instruct or control rather than merely inform its aviators. The 
obvious disadvantage lies in the fact that on a single radio channel 
the airport can converse with only a single airplane at a time. On 
the London-Paris airway, it is reported, the practice has recently been 
adopted of communicating on one channel by radio telegraph with the 
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large planes which carry a radio operator and on another channel by 
radio telephone with the smaller planes. 

Two-way communication has the great and obvious merit of per- 
mitting a pilot to discuss the weather outlook with an airport meteor- 
ologist, to consider alternative landing places in view of such factors 
as his remaining fuel supply or the direction of wind, and to decide 
if necessary on a change in landing place and to be assured of arrange- 
ments there for the care of his passengers and mail. It seems reason- 
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Fig. 1. The Whippany Radio Laboratory. 

able, therefore, to predict that operators of air transport fleets will 
require two-way communication with their planes in flight, although 
taxi services and private owners without ground organization along 
the airway may, in general, be content with a public one-way broad- 
casting service. 

Whether one-way or two-way communication is desired for plane- 
to-ground use it appears that radio telephony as distinguished from 
telegraphy will be essential. Radio telegraphy requires on board the 
plane the individual attention of a special radio operator for sending 
and receiving. Although very large multi-engined passenger planes 
will certainly carry a relief pilot in flight, it is doubtful whether good 
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commercial pilots can be made into good telegraphers and vice versa. 
For long distance over-sea flights and for expeditionary purposes the 
radio telegraph has, without doubt, preponderating advantages of 
longer range with the same transmitter power and of intelligibility 
through a higher level of interfering signals and acoustic noise on 
board, aside from its convenience in communication enroute with 
surface vessels. For regular service on established airways, however, 
the telephone is undoubtedly superior. 

The perfection of facilities for communicating weather and landing 
information to planes in flight, which will enable them to operate with 
safety under relatively unfavorable meteorological conditions, will 
greatly stimulate the demand for improved aids to navigation. It 
seems to be established that flying under conditions of poor visibility, 
when landmarks are totally obscured and beacon lights are useless, 
requires some form of radio goniometry if the pilot is to find his way 
through. 

A number of systems have been proposed for this purpose. The 
London-Paris Airway is equipped with radio direction-finding equip- 
ment on the ground by means of which the position of planes can be 
determined on request. The disadvantages of this arrangement He 
mainly in its relative slowness and its lack of traffic capacity. The 
radio beacon of the type being developed by the Bureau of Standards, 
giving an equi-signal zone which can be observed by the plane, is 
free from these objections. It is, however, subject to the disadvantage 
that it indicates a straightline course which cannot always coincide 
with the airway and is of little value if detours are required to avoid 
storm centers and foggy areas. 

Another system, a recent development of the British Royal Air 
Force, employs a rotating loop transmitter at the ground station and 
indicates the bearing of the plane with respect to the transmitter by 
means of a special stop watch. This system is relatively slow but 
permits the pilot to navigate as he would if one or more beacon lights 
were visible. All of these various methods of goniometry have special 
advantages and disadvantages, and occupy more or less of the valuable 
and restricted ether space. The evolution of the system which is 
most satisfactory will be a matter of time and will require close co- 
operation on the part of all factors in the industry. 

Bell Telephone Laboratories, at its radio station at Whippany, 
New Jersey, has erected an experimental two-way radio-telephone 
system and radio beacon. In connection with this apparatus it 
utilizes a Fairchild Cabin Monoplane with Pratt and Whitney wasp 
engine. The plane has been carefully bonded and shielded and is 
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equipped with radio field-measuring apparatus of the Laboratories' 
design. With this plane exact measurements can be made at various 
altitudes under different weather conditions of the efficiency of radio 
transmission from the Whippany transmitter. In addition the plane 
carries radio transmitting and receiving sets of experimental design. 

It is, in fact, a flying radio laboratory in which the engineers may 
experiment under actual flying conditions. 

Whether a radio beacon service and a radio telephone service at 
all the various airports over the country can be made practicable is 
largely a question of available ether channels. By international 
agreement, the frequency band 285-315 kcs. (1050-950 meters) is 
reserved for radio beacons, both marine and air service. For "air 
mobile service exclusively" there is reserved the band 315-350 kcs. 
(950-850 meters) in which the 900 meter wave (333 kcs.) is reserved 
as an air service calling wave and is not to be assigned. 

Radio telephony requires a band of frequencies sufficiently wide to 
include the "side bands" of speech frequency. For distinct trans- 
mission of speech, neglecting certain requirements of musical quality, 
this might require a minimum of 6,000 cycles. In this band reserved 
for "air mobile service exclusively" there is room, therefore, for but 

Fig. 2. The Cabin Monoplane for Experiment in 
Airways Communication. 
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three telephone channels above and three below the calling wave, or a 
total of six channels. Assuming that a beacon requires a channel 
width of but 300 cycles, there are altogether for marine and airport 
use one hundred beacon channels in the band 285-315 kcs. 

h 
Be 

l 

Fig. 3. Cabin Laboratories of the Monoplane. 

The band reserved for beacons is already partly occupied by marine 
beacons, and near the coast difficulty may arise in finding clear channels 
for airport beacons. Although it is probable that, by a proper geo- 
graphical distribution of frequencies, there may be worked out without 
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undue interference an adequate beacon service we can make no 
assumption that any extra space can be found in the beacon band for 
radio telephony. 

A radio telephone system with a sufficiently powerful transmitter 
and sufficiently sensitive receiver to give reliable communication for 
100 miles will give fair communication for perhaps 200 miles, and 
its carrier wave will interfere with reception for a much greater dis- 
tance. To avoid interference due to the beating of carrier frequencies, 
airports within a few hundred miles of one another may be assigned to 
different frequency channels, but serious difficulty is at once apparent 
from a map of the National Ainvays. Within 800 miles of Chicago, 
for example, there are over fifty terminal fields or airports. It would 
seem obviously impractical to assign the available six telephone 
channels to cover the eastern and central United States without 
serious interference. By restricting power as much as possible and by 
other means yet to be devised, it may be found possible to assign the 
same wave-length to airports relatively nearer together. For the 
distribution of weather information only, however, the airways may 
well find insufficient the frequencies in the exclusive band, 315-350 
kilocycles. 

On certain main routes, air transport companies will eventually 
require two-way telephone despatching systems of their own to control 
plane movements. These systems will consist of radio stations 
situated at the various airports along the route and interconnected 
by suitable wire lines. The frequency channels required for such 
services cannot be found in the 315-350 kilocycles band which, as 
just indicated, is apparently inadequate for the public services of 
weather broadcasting from airports. Further channels in the short- 
wave region appear to be necessary. 

In the short wave region Bell Telephone Laboratories have initiated 
an additional development project. In cooperation with the Boeing 
Air Transport Company, the Laboratories have undertaken to survey 
the Chicago-San Francisco Airway and to develop a system of two- 
way telephony between planes in flight and terminal landing fields 
on this route. The Boeing Company planes and landing fields will 
be equipped with experimental radio apparatus and a joint full-scale 
experiment will be conducted during the winter of 1928-29. From 
this work it is hoped to determine for an air transport company the 
requirements for a two-way radio telephone service. The investi- 
gation will furnish the basis for offering such facilities to other air 
transport operators. 

This development of two-way radio-telephony on short waves is 
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entirely distinct from the government's program of Aids to Air 
Navigation. That service contemplates one-way radio telephony and 
direction finding on long waves. The government service is to be 
available to all flyers who equip themselves to receive it. The two- 
way system is for private communication and despatching service of 
air transport companies which wish to control their planes in flight, 
and to remain in constant communication with their pilots and 
passengers. 

Also, although not yet required, it can safely be predicted that at 
busy airports there will soon arise a need for radio means to control 
precedence in the take-off and landing of airplanes. This virtually 
amounts to traffic control and can be accomplished by low-power 
two-way radio telephone. Planes wishing to land may announce 
themselves and remain aloft until directed by the airport manager in 
the control tower to land at a designated part of the field. 

In all these present and future problems, it is the policy of the 
American Telephone and Telegraph Company and the Bell System 
to assist by developing ways and means for making available to 
commercial aviation the best possible communication service. 



Abstracts of Bell System Technical Papers Not 
Appearing in this Journal 

Influence of Carbon and Silicon Variations in Grey Cast Iron.1 D. G. 
Anderson and G. R. Bessmer. In this short article the author gives 
the results of a series of tests of grey cast irons with different carbon 
and silicon contents. Three series were run in each of which the 
silicon content was kept constant and the amount of carbon varied. 
The results indicated that with two percent silicon the carbon content 
may be reduced without materially increasing the amount of com- 
bined carbon. This results in some improvement in the physical 
properties of the iron. 

Strength-Tests of Telephone Materials.2 J. R. Townsend. Static 
tests, such as the ordinary tension or torsion tests, have fallen some- 
what into disrepute during the last ten years, the author claims, as 
the ultimate strengths obtained from them are not always indicative 
of the forces materials will withstand in actual sendee. Their place 
is being taken by repeated-stress tests in which the sample is sub- 
jected to conditions more nearly representing those met in ordinary 
service. In illustration the author mentions several tests of this class 
being applied in Bell Telephone Laboratories on cable sheath material 
and springs. 

The Reduction of Atmospheric Disturbances.3 John R. Carson. In 

the decade or so during which the problem of eliminating or at least 
reducing atmospheric disturbances has been given serious and syste- 
matic study we have learned, more or less definitely, what we can and 
cannot do in this direction. For example, we know that there are 
definite limits to what can be accomplished by frequency selection. 
We know that directional selectivity is of substantial value, particularly 
when the predominant interference comes from a direction other than 
that of the desired signal, and we can calculate pretty well the gain to 
be expected from a given design. 

The object of this note is to analyze another arrangement which 
provides for high-frequency selection plus low-frequency balancing 
after detection. The broad idea of balancing out the interference is 
old, but no general analysis of the arrangement seems to have been 
made. Furthermore the principle of balance has recently acquired 

1 "Fuels and Furnaces," Vol. VI, No. 7, pp. 957 and 972. July, 1928. 
2 " Instruments," Vol. 1, No. 7, pp. 313-315, July, 1928. 
3 Proceedings of the Institute of Radio Engineers, July, 1928, Vol. 16, No. 7, pp. 

966-975. 
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fresh interest clue to the system disclosed by Armstrong 4 in which 
high-frequency selectivity and low-frequency balancing are essential 
features. Armstrong's scheme is treated in more detail in the latter 
part of this paper. 

The conclusions of this study are entirely negative, that is, no ap- 
preciable gain is to be expected from balancing arrangements. This 
is quite in agreement with the conclusion drawn over ten years ago 
as a result of a rather extended experimental study made in the Bell 
System. In fact, as more and more schemes are analyzed and tested, 
and as the essential nature of the problem is more clearly perceived, 
we are unavoidably forced to the conclusion that static, like the poor, 
will always be with us. 

Thermostat Design for Frequency Standards.5 W. A. Marrison. 
A means for maintaining constant temperature is described in which 
those temperature variations which are essential for operation of the 
controlling element are prevented from reaching the controlled chamber 
by a wall of material especially chosen for the purpose. Such a wall 
1 cm. thick, consisting of alternate thin layers of felt and copper, 
will reduce temperature variations having a period of one minute or 
less by a factor of 10,000 to 1. 

Technical Considerations Involved in the Allocation of Short Waves; 
Frequencies between 1.5 and 30 Megacycles5 Lloyd Espenschied. 
This short paper discusses the relation between frequency and distance 
of transmission for short waves in so far as it affects allocation. A 
table is given in which the entire short-wave field from 10 to 200 meters 
is divided into three major bands each containing numerous sub- 
bands. For each sub-band the number of channels theoretically 
possible is given and also the number of channels being used at the 
present time. Factors affecting the separation of channels are also 
listed. 

Effect of Street Railway Mercury Arc Rectifiers on Communication 
Circuits.'' Charles J. Daly. This paper describes the effects ex- 
perienced on the telephone circuits from two mercury arc rectifier 
substations recently installed in Bridgeport, Conn., and shows in table 
form the relative magnitude of the interfering effects between rotating 
equipment and mercury arc rectifiers as a means of energizing the 
street railway system. The method and the type of apparatus used to 
reduce the effects experienced from the rectifiers are also described. 

4 Proceedings of Ihe Institute of Radio Engineers, Jan., 1928, Vol. 16, No. 1, p. IS. 
6 Proceedings of the I. R. E., Vol. 16, No. 7, pp. 976—980, July, 1928. 
6 Proceedings of the I. R. E., Vol. 16, No. 6, pp. 773-777, June, 1928. 
7 Journal of the A. I. E. E., Vol. XLVII, No. 7, pp. 503—506, July, 1928. 
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Compressed Powdered Permalloy—Manufacture and Magnetic Proper- 
ties.6 W. J. Shackelton and I. G. Barber. The paper gives a brief 
description of the manufacture of magnetic cores of compressed 
permalloy powder followed by information covering their magnetic 
properties with particular reference to their use in loading coils. 
Production of the powder, and its insulation, pressing and annealing, 
are discussed. Under magnetic properties, permeability, core loss, and 
modulation are treated. Curves are given illustrating the character- 
istics of interest in connection with the design and application of loading 
coils; and comparisons to corresponding characteristics of compressed 
powdered iron are made throughout. 

Thermal Agitation of Electric Charge in Conductors.* H. Nyquist. 
The electromotive force due to thermal agitation in conductors is 
calculated by means of principles in thermodynamics and statistical 
mechanics. The results obtained agree with results obtained experi- 
mentally. 

Time-Lag in Magnetization.1* Richard M. Bozorth. An in- 
vestigation has been made of the time-lag in magnetization in a 
permalloy wire to determine whether lag can be satisfactorily accounted 
for as due to eddy-currents alone or whether permalloy shows a marked 
magnetic viscosity such as has been observed by Ewing in iron wires. 
Eddy-current lag has been calculated approximately in a manner which 
takes into account the changing slope of the magnetization curve. A 
comparison of the calculated and observed magnetization-z^.-time 
curves indicates that the effect is well accounted for as eddy-current lag 
alone. The eddy-current lag has also been calculated for an iron ring, 
for which the time-lag has been reported recently in a number of papers 
by Lapp. The time-lag which he observed is satisfactorily accounted 
for as eddy-current lag instead of as magnetic viscosity as he had 
supposed. 

Thermal Agitation of Electricity in Conductors.11 J. B. Johnson. 
Statistical fluctuation of electric charge exists in all conductors, 
producing random variation of potential between the ends of the con- 
ductor. The effect of these fluctuations has been measured by a 
vacuum tube amplifier and thermocouple, and can be expressed by the 
formula I2 = (IkT/ir) J**R{u) \ F(co) |2da). I is the observed current in 
the thermocouple, k is Boltzmann's gas constant, T is the absolute 

8 Journal of the A. I. E. E., Vol. XLII, No. 6, pp. 437-440, June, 1928. 
9 Physical Review, Vol. 32, No. 1, pp. 110-113, July, 1928. 

Physical Review, Vol. 32, No. 1, pp. 124—132, July, 1928. 
11 Physical Review, Vol. 32, No. 1, pp. 97-109, July, 1928. 
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temperature of the conductor, is the real component of impedance 
of the conductor, F(co) is the transfer impedance of the amplifier, and 
a)/27r = / represents frequency. The value of Boltzmann's constant 
obtained from the measurements lies near the accepted value of this 
constant. The technical aspects of the disturbance are discussed. 
In an amplifier having a range of 5,000 cycles^and the input resistance 
R, the power equivalent of the effect is V-jR = 0.8 X 10-16 watt, 
with corresponding power for other ranges of frequency. The least 
contribution of tube noise is equivalent to that of a resistance Rc = 1.5 
X IO^'p/m, where ip is the space current in milliamperes and m is the 
effective amplification of the tube. 

The Voltage-Current Relation in Central Cathode Photoelectric Cells}- 
Thornton C. Fry and Herbert E. Ives. This paper presents a 
theoretical basis for the interpretation of the experimental results 
described in the paper which follows. It considers a source of 
photoelectrons located on the inner of two concentric spheres; 
derives the trajectory of an electron shot off at any angle with any 
speed; and then makes use of this information to compute the current 
which would be received by a small collector located anywhere on the 
outer sphere upon very general assumptions as to the directional 
distribution and velocity distribution of the photoelectrons. This 
theoretical study is followed by graphical presentation of results com- 
puted for several typical cases of special interest in connection with the 
experimental study. 

The Distribution in Direction of Photoelectrons from Alkali Metal 
Surfaces.13 Hervert E. Ives, A. R. Olpin and A. L. Johnsrud. 
An expeiimental study of the distribution in direction of photoelectrons 
emitted from alkali metal surfaces irradiated by light incident at 
various angles and polarized in different planes. The alkali metal 
surfaces used were of two sorts: (1) liquid alloys of sodium and po- 
tassium, (2) thin films of potassium or rubidium on polished platinum. 
In all cases the alkali metal surface was at the center of a large spherical 
enclosing anode, provided either with collecting tabs at various angular 
positions or with an exploring finger. It is found that the emission 
closely obeys Lambert's law, but that the ellipse by which the emission 
is represented, in polar coordinates, is more elongated normally to 
the surface for perpendicularly incident light than for obliquely, when 
the direction of the electric vector is in both cases parallel to the 
surface, and still more elongated for obliquely incident light with the 

u Physical Review, Vol. 32, No. 1, pp. 44-56, July, 1928. 
13 Physical Review, Vol. 32, No. 1, pp. 57-80, July, 1928. 
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electric vector in the plane of incidence. The distribution curves are 
all perfectly symmetrical about the normal to the surface, showing 
no tendency to follow the direction of the electric vector. 

Oscillographic Observations on the Direction of Propagation and Fading 
of Short Waves.u H. T. Friis. The short-wave transmission path is 
generally but not always located in the vertical plane through the 
transmission and receiving points. 

Direction finding depends upon determining the direction of the 
wave at the receiving point; it does not give accurate results when the 
twilight zone is in the way of the wave path. 

The angle between the earth and the direction of short-wave propa- 
gation varies continuously and the changes in this angle are much 
larger than the changes in angle of propagation in the horizontal plane. 

The observations are consistent with the view that the fading is 
mainly caused by wave interference. 

An Improved Permeameterfor Testing Magnet Steel.15 B. J. Babbitt. 
The increasing use of cobalt steel in the manufacture of permanent 
magnets has created a need for a permeameter that is capable of deter- 
mining accurately the magnetic properties of such steel in bar form. 
The common commercial permeameters are not capable of producing 
the high magnetizing forces required for this purpose. Commercial 
permeameters are chiefly of two types, the yoke type and the Burrows 
type. The latter is difficult to operate and requires an experienced 
operator for a reasonable output; it cannot be adapted to the testing 
of cobalt steel unless it is practically rebuilt throughout. The yoke 
type of permeameter may be adapted to the testing of cobalt steel by 
the use of extensions to the poles so that the distance between them 
is much less. In this way the greater part of the magnetomotive force 
is distributed over a short portion of the magnetic circuit and the mag- 
netomotive force per centimeter is correspondingly greater. The 
permeameter that is described below has been developed by the Mag- 
netic Materials Division at the Hawthorne Works of the Western 
Electric Company to overcome the chief objections common to present 
commercial permeameters. 

Corrosion of Cable Sheath in Creosoted Wood Conduit}6 R. M. Burns 
and B. A. Freed. This paper deals with the identification of a cor- 
rosion of lead cable placed in creosoted wood conduit, and with the 

14 Proceedings of the Institute of Radio Engineers, May, 1928, Vol. 16, No. 5, pp, 
658-665. 

16 Journal of the Optical Society of America and Review of Scientific Instruments 
Vol. 17, No. 1, pp. 47-58, July, 1928. 

10 Journal of the A. I. E. E., Vol. XLVII, No. 8, pp. 576-579, August, 1928. 
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determination and application of methods of allaying it. The trouble 
was experienced mainly on the Pacific Coast where, although Douglas 
fir conduit was introduced about 1911, the first case of corrosion which 
could definitely be ascribed to the creosoted conduit did not occur till 
1921. 

A search for the cause of the trouble led to making systematic anal- 
yses of the air present in the conduit and these analyses revealed the 
presence of acetic acid in sufficient amount to account for the cor- 
rosion in the presence of carbon dioxide which was also shown to be 
present. 

After much experimenting a method was developed to stop the cor- 
rosion by pumping ammonia into the ducts. Results have been very 
satisfactory and seem to indicate that a single treatment is sufficient. 

Small Samples—Acre Experimental Results.17 W. A. Shewhart and 
F. W. Winters. This article reviews briefly the Theory of Errors of 
Averages, paying particular attention to some of the most recent 
work in connection with small samples. New empirical results are 
presented showing the advantage that arises from the use of the latest 
error theory and pointing out the effect of the limitations imposed upon 
it. The information contained in this paper indicates that further 
theoretical studies are necessary in order that the application of small 
sample theory may give more accurate solutions to the problems that 
arise in practice. 

17 Journal of American Statistical Association, New Scries, No. 162 (\ol. XXIII), 
pp. 144-153, June, 1928. 
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