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When wires are close to each other as they are in cable, the mutual in- 
ductance coupling between pairs is not a simple number, constant at all fre- 
quencies. Because of the non-uniform and non-symmetrical distribution 
of current over the cross-sections of the conductors the "effective mutual 
inductance" is of the form M = Ma + jMb where both Ma and Mb vary 
with frequency. This paper discusses the results of certain measurements 
which have been made of the effective mutual inductance between straight 
wires and between cable pairs over a wide range of frequencies extending up 
to a million cycles. This is of interest in connection with crosstalk problems 
in cable carrier telephone systems. 

FOR many years it has been recognized that non-uniform distribu- 
tion of current over the cross-section of a conductor reduces the 

efficiency of transmission in either power or communication circuits. 
With direct current or with alternating current of very low frequency 
the current is distributed almost uniformly. As the frequency in- 
creases, the current distribution becomes more and more non-uniform. 

If the two conductors of a circuit are remote from each other the 
high-frequency current distribution in either conductor is practically 
symmetrical with respect to its center, the density of the current being 
lowest in the center of the conductor and highest near the surface of 
the conductor. If, however, the conductors are close together, the 
high-frequency current distribution in either conductor is unsym- 
metrical due to the proximity of the other conductor. This is known 
as the proximity effect. 

It is probably not well known that this proximity effect may have 
an important bearing on the crosstalk between communication circuits.1 

While the effect is negligible in open-wire circuits, it is quite marked in 
cable circuits. This paper describes an investigation of the influence 

1 This effect was mentioned in the Carson-Hoyt paper on " Propagation of Periodic 
Currents Over a System of Parallel Wires," in the Bell System Technical Journal of 
July, 1927. 
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of the proximity effect on crosstalk between long non-loaded cable 
circuits which are being studied in connection with the development of 
high frequency carrier systems suitable for toll telephone cables. 
More specifically, the paper covers tests made to determine the in- 
fluence of the proximity effect on the mutual inductance between 
circuits; data are given both for the case of two isolated non-twisted 
pairs and for the case of pairs in a quadded 19-gauge cable. 

In cable carrier systems it is not practicable to operate like fre- 
quency bands in opposite directions on different pairs in the same 
cable without heavy shields between the pairs. The relatively large 
level differences that may exist between pairs transmitting in opposite 
directions would result in excessive crosstalk of the near-end type. 
Like carrier frequency bands are, therefore, transmitted in the same 
direction in a cable and the crosstalk between pairs used for carrier 
systems is of the far-end type. 

It has been shown 2 that far-end crosstalk at carrier frequencies 
between long non-loaded cable pairs can be considerably reduced by 
the use of simple networks connected between the two pairs at one 
point in their length. The crosstalk balanced out by such networks is 
of the "transverse" 3 type. Crosstalk of the interaction type varies 
in a complicated way with frequency, and cannot, therefore, be annulled 
by a simple network. For any two similar circuits all the elements of 
transverse crosstalk, due to the unbalances occurring at various 
points along the line, arrive at the same time at the far end of the line. 
The crosstalk currents due to unbalances of the same type such as 
capacitance unbalances arrive in the same or opposite phase (if the 
circuits are perfectly smooth). It will be seen, therefore, that a 
properly designed network connected at one point in the line may be 
used to practically annul the far-end transverse crosstalk. In order 
to design the most effective type of network for balancing transverse 
crosstalk it is necessary to know the manner in which the crosstalk 
coupling in any elementary length varies with frequency. 

The crosstalk coupling between two pairs in an elementary length 
may be represented by a mutual admittance and a mutual impedance. 
It can be considered that the voltage between the two wires of the 
disturbing circuit drives crosstalk currents into the disturbed circuit 
through the mutual admittance. The currents in the disturbing 
circuit acting through the mutual impedance also cause crosstalk 

2 As discussed in the Clark-Kendall paper on "Carrier in Cable" in the Bell 
System Technical Journal of July, 1933. 

3 The various types of crosstalk are discussed in the paper on "Open-Wire Cross- 
talk" by A. G. Chapman in the Bell System Technical Journal of January and 
April, 1934. 
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currents. The mutual admittance is due almost entirely to capacitive 
coupling, the leakance ordinarily being negligible in its effect on cross- 
talk coupling. This capacitive coupling varies but little with fre- 
quency and its effect on crosstalk may be balanced out by means of a 
simple condenser. If the proximity effect were negligible, the mutual 
impedance would be substantially that of a simple mutual inductance 
constant with frequency. The crosstalk due to this coupling would, 
therefore, be balanceable by means of a simple inductance coil. If, 
however, the proximity effect is not negligible the mutual impedance 
is due to a complex mutual inductance both of whose components 
vary considerably with frequency. This is the case in cable circuits 
and a complex balancing unit must be designed if the complex magnetic 
coupling is to be accurately simulated. 

The mutual impedance, Zm, between two circuits is by definition 
the negative ratio of the induced series voltage 4 (e) in the disturbed 
circuit to the current (/) in the disturbing circuit. Thus, 

Since the induced voltage is proportional to the time variation of the 
magnetic field set up by the disturbing current, it is important to 
visualize how this field may be altered by changes in the distribution of 
the current, /, over the cross section of the disturbing conductor. 
Four types of current distribution will be considered and the effects 
on Zm noted. 

In order to simplify the following qualitative explanation of the 
effect of current distribution on mutual impedance it will be assumed 
that in all cases the disturbed wire is a filament. When the disturbed 
wire is finite in cross section the effect is generally similar, but more 
complicated. 

Case I—Current Concentrated in a Filamentary 
Disturbing Wire 

In the case of a wire of infinitely small cross section the magnetic 
field due to a sinusoidal current, /, induces a voltage in another 
filamentary wire located in this field as expressed by the familiar 
equation 

e = — jioMI. 

The mutual impedance is a pure reactance equal to juM, where M, 
the coefficient of mutual inductance, is a pure number and independent 
of frequency, 

4 This voltage is defined as being the negative of the value of an inserted electro- 
motive force such as to bring the total current in the disturbed circuit to zero. 
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Case II—Current Uniformly Distributed in a Solid 
Cylindrical Disturbing Wire 

Consider next the case where the total disturbing current is uni- 
formly distributed over the cross section of a solid cylindrical wire. 
Such a distribution exists exactly with direct current only, but is 
closely approximated at very low frequencies. Since the magnetic 
field outside of a conductor carrying a uniformly distributed current 
is the same as would exist if the total current were concentrated in the 
center filament, the total induced voltage in a filamentary wire located 
in this field is again equal to — juMI, where M is the same as in the 
case of two filaments similarly located in space. 

Case III—Current Symmetrically Distributed in a Solid 
Cylindrical Disturbing Wire 

The a.-c. distribution in a solid cylindrical wire is not uniform. 
However, when the wire is at a considerable distance from its return, 
the current distribution is practically symmetrical about the axis of 
the wire although its density varies from a minimum value at the center 
to a maximum value at the surface. Such a distribution is caused by 
the fact that the counter-electromotive force induced in a filament 
near the center of the wire due to the current in all of the other fila- 
ments is greater than that induced in a filament at the surface. This 
is the well-known skin effect. 

In this case the total current, /, may be considered as distributed in 
infinitely thin concentric rings in any one of which the current is the 
same in phase and magnitude at all points. Since the field outside of 
one such ring is the same as would exist if all of the ring current were 
concentrated in a filament at the center, the total field due to the sum 
of the currents in all the concentric rings is the same as would exist 
if the total current were concentrated at the center of the wire. Thus, 
the total voltage induced in a filamentary wire by the field set up 
by a symmetrically distributed current in the disturbing wire is 
again expressed by —juMI, where M is again a pure number as in 
the case of two filaments. 

Case IV—Current Unsymmetrically Distributed in a Solid 
Cylindrical Disturbing Wire 

If a solid wire and its return are placed close together, as in a cable 
pair, the a.-c. distribution is neither uniform nor symmetrical about 
the axis of the wire. In this case the magnetic field set up by the 
current in the return wire contributes to the counter-electromotive 
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force acting in each filament of the other conductor and causes a 
further redistribution of the current in that conductor over and above 
that due to the above mentioned skin effect. This additional altera- 
tion in current distribution is known as the proximity effect. 

The resultant current distribution can no longer be symmetrical 
about the axis of either wire. The current in the return wire sets up 
greater back-electromotive forces in the filaments of the other wire 
which are close to it than in the more remote filaments. These back- 
electromotive forces tend to act in opposition to those set up by the 
current in the wire itself since the current in the return wire is opposite 
in sign. Hence, the proximity of the return wire reduces the counter- 
electromotive force acting in the filaments closest to it in the other 
wire more than it does in the filaments farther away. This results in 
higher current density in the sides of the wires adjacent to each other. 

The current distribution due to the combined action of skin and 
proximity effects is shown for a pair of round copper wires in space in 
Figs. 1-A and 1-B.5 The wires are No. 19 A.W.G. and are separated a 
distance equivalent to that between wires in 19-gauge cable pairs. 
The current distribution at 56 kilocycles is shown in Fig. 1-A and at 
112 kilocycles in Fig. 1-B. It is seen that the tendency at the higher 
frequencies is for the current to concentrate on the sides of the wires 
adjacent to each other. With perfect conductors the current would 
all be on the surface of the wires and for this wire spacing would be 
distributed as shown in Fig. 1-C.6 With actual conductors this distri- 
bution is approached as the frequency increases toward the highest 
conceivable wire communication frequency. 

In addition to this unsymmetrical distribution of current with 
respect to magnitude the currents in various filaments in the conductor 
may be considerably out of phase with the current at the center. 
This phase shift may be quite unsymmetrical as indicated for three 
wire diameters in Figs. 2-A and 2-B. While similar phase shifts occur 
when only skin effect is present, such shifts are symmetrical about 
the center of the wire so that the currents at all points in a thin 
concentric ring have the same phase. Figure 2-A shows the phase 
shift at 56 kilocycles and Fig. 2-B the phase shift at 112 kilocycles. 
It is seen that the tendency at the higher frequencies is for the currents 
at different points on the surface to become in phase with each other. 
At infinite frequency the surface currents would be in phase. 

6 The current distribution and phase change at 56 and 112 kilocycles were com- 
puted from formulas given by Harvey L. Curtis in Bureau of Standards Scientific 
Paper No. 374, entitled, "An Integration Method of Deriving the Alternating 
Current Resistance and Inductance of Conductors." 

0 This distribution was calculated by Ray S. Hoyt. 
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Fig. 1—Current distribution in parallel 19-ga. wires. 

If a wire is carrying a total current, I, distributed unsymmetrically 
in phase and magnitude as in Figs. 1 and 2, the magnetic field sur- 
rounding the wire can no longer be the same as would be produced by 
the same current flowing in the center filament of the wire. The 
voltage induced in a disturbed filamentary wire located in this field 
must therefore be different from that induced by the field set up by 
any of the preceding types of current distribution in the disturbing 
wire. In each of those cases the induced voltage, e, was exactly in 



CABLE CROSSTALK 185 

75 

a 25 

UJ -25 

125 

100 

U 75 

o 
c I K0,I625 CM-w 

WIRE 
DIAMETERS = 
0.0912 CM 

A FREQUENCY= 56 KILOCYCLES PER SECOND 

V / 

\ / 
\ 

y 

f 

B FREQUENCY = 112 KILOCYCLES PER SECOND 

/ / 

A 0 
WIRE DIAMETER 

A' B B' C 0 C 
WIRE DIAMETER WIRE DIAMETER 

Fig. 2—Phase shift in parallel 19-ga. wires. 

phase quadrature with the total disturbing current, I, and the mutual 
impedance was equal to joiM, a pure imaginary. For unsymmetrical 
current distribution in the disturbing conductor, the following dis- 
cussion shows that the induced voltage can no longer be exactly in 
phase quadrature with the disturbing current and that the mutual 
impedance is complex. 

The total voltage induced in a disturbed filamentary wire by the 
total current flowing in a solid wire is the vector sum of the induced 
voltages due to all of the currents in the various filaments of the 
disturbing wire. Thus, if ii, ii, 23, • • • in are the vector currents in the 
various filaments of the disturbing wire and if Wi, ma, * • • mn are 
the corresponding coefficients of mutual inductance between each of 
these filaments and the disturbed filamentary wire, the total induced 
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voltage in the disturbed circuit is 

e = — juimiii + niiio + mais + • • • mnin). 

The mutual impedance, Zm, may therefore be written 

e + m&z + m-Ja + • • • mnin) 
Zm - -j j , 

where / = «i + ia + fa + • • • in- This is a general expression and 
holds for any type of current distribution in the disturbing conductor. 

In the case of symmetrical current distribution (Case III) all 
filamentary currents having the value ii lie in a ring concentric with 
the center of the wire. The voltage induced in a disturbed filamentary 
wire due to all the currents in one such ring is the same as if their 
total value, Ii, was concentrated in the center of the ring. This 
voltage is equal to — jwMiIi where Mi is the coefficient of mutual 
inductance between the center filament of the disturbing wire and the 
disturbed filamentary wire. The same reasoning holds for currents 
having values it, ia, • ■ • f„ and the mutual impedance may be written 

e + M2I2 + Mala + • • ■ MnIn) 
Zm - - J  j  

But Mi = Mi = Ma = • • • Mn = M since all are computed from the 
center filament in the disturbing wire to the disturbed filamentary 
wire. Then 

(/l "T -^2 + -fs + ' ' ' In) 
Zm = juM 

= juM 
I 

since Ii + I2 la + •••/„ = /. This is the same expression for Zm 
as given in the discussion on symmetrical current distribution. 

However, when the current distribution in the disturbing wire is 
unsymmetrical in phase and magnitude it is impossible to make the 
above simplifications. In the general expression 

e jw(miii + rriiii + niaia + • • • mnin) 
Zm = -1 = j  

there is no correspondingly simple way to separate the m's from the 
f's in the complex expression in brackets and the phase angle of the 
expression may be quite different from that of I. Therefore, e cannot 
be in phase quadrature with respect to I. In order to put the equation 
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for Zm in the same form as in preceding cases the bracketed expression 
may be arbitrarily rewritten as 

miii + miii + + • • • mnin = I{Ma + jMb). 
Then, 

Z M = jco{Ma + jMb) — — CO Mb jioMa, 

where the mutual inductance is now considered complex and as having 
two components such that 

M = Ma + jMb. 

The total current in the disturbing circuit acting through the com- 
ponent Mb of the mutual inductance sets up an induced voltage in the 
disturbed circuit in quadrature with the induced voltage due to Ma, 
and in the same or opposite phase as the total current in the disturbing 
circuit. Ordinarily the phase will be opposite and the actual values of 
Mb will be negative with respect to Ma- 

Both Ma and Mb vary with frequency. While the total current in 
the disturbing wire is assumed constant, the unsymmetrically dis- 
tributed currents in the various filaments change in relative magnitude 
and phase as the frequency changes. At very low frequencies the 
current is distributed nearly uniformly in phase and magnitude over 
the cross-section of the wire. The mutual inductance between this 
wire and the disturbed filamentary wire is nearly the same as the d.-c. 
value since Ma cannot be appreciably changed from the d.-c. value and 
Mb must be very nearly zero. At very high frequencies the major 
part of the current flows unsymmetrically on the surface of the dis- 
turbing wire but the filamentary surface currents are practically in 
phase with each other. This results again in a low value of Mb 
because the total induced voltage will be practically in phase quadra- 
ture with the total disturbing current. However, due to the un- 
symmetrical current distribution, the value of AIa is considerably 
altered from its d.-c. value. At intermediate frequencies the current 
distribution lies between these two extremes and produces corre- 
sponding values of Ma and Mb- Since Mb is zero for both zero and 
infinite frequency it is evident that a maximum value must be reached 
at some intermediate frequency. 

As noted at the outset of this discussion, the disturbed circuit is 
assumed to be a filament. In all practical cases the wires involved are 
finite in cross section, and the reasoning outlined above must be 
applied to each filament of the disturbed conductor in order to get 
the total effect. 
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Discussion of Test Results 

In order to study the variation with frequency of the mutual in- 
ductance between cable circuits, measurements were made on various 
combinations of pairs in a 55-foot length of No. 19 A.W.G. toll cable. 
To obtain information on the performance of the measuring apparatus, 
measurements were also made on the calculable case of two non-twisted 
pairs, six feet in length (approximately). Various separations between 
the two wires of a pair and three different wire gauges were used to 
show the change in mutual inductance for various degrees of proximity 
effect. 

The measurements were made with a "crosstalk bridge" or ad- 
mittance unbalance measuring set which permits the measurement of 
crosstalk in both phase and magnitude. Although the mutual in- 
ductance between two pairs may be determined from either near-end 
or far-end crosstalk tests, it was found that greater accuracy in Mb 
could be obtained from far-end tests. The computation of Mb from 
near-end tests involves two terms of opposite sign and of nearly the 
same magnitude. Consequently a small error in the reading of the 
crosstalk bridge may result in a considerably greater error in Mb- 

The results of the tests on the six-foot non-twisted pairs are shown 
in Figs. 3 to 9. The data cover a range of 1 to 1000 kilocycles. 

In Figs. 3 and 4 the variation with frequency of Ma and Mb is shown 

PAIR PAIR? 
o o o o 

0.075" 
-lOMh- 

NO.20 GAUGE WIRES 
76 INCH LENGTH 

Mb 

2 3 4 5 10 20 30 50 100 200 300 500 1000 
FREQUENCY IN KILOCYCLES PER SECOND 

Fig. 3—Mutual inductance between pairs of parallel wires. 
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Fig. 4—Mutual inductance between pairs of parallel wires. 

1000 

for two arrangements of pairs in a horizontal plane. In both cases the 
axial separation of the two wires of a pair was about 0.075 inch, but in 
Fig. 3 the axial separation between the nearest wires of the two pairs 
was 0.075 inch and in Fig. 4 it was 0.312 inch. The wires were No. 
20 A.W.G. cotton-covered and were pulled taut to maintain accurate 
spacing. Two plots are shown for Mb, one actual and the other after 
multiplying by — 10 to show the values more clearly. 

The above data are replotted in Fig. 5 to show the frequency varia- 
tion of Ma and Mb in terms of the values of Ma at one kilocycle. The 
fact that the frequency characteristics for the two cases are so nearly 
alike despite the difference in the magnitude of the coupling indicates 
that the effect depends primarily on the spacing between the wires 
of a pair and not so much on the relative positions of the pairs. 

The proximity effect may be reduced by separating the wires of each 
pair as shown in Fig. 6. In this case the frequency characteristic of 
Ma is nearly flat and Mb is so small that it could not be plotted on the 
same scale as Ma; the curves shown are Ma and lOOMj. A comparison 
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Fig. 5—Mutual inductance between pairs of parallel wires in terms of value for Ma 
at one kilocycle. 

of the curves of Ma and Mb in Figs. 3 and 4 with the curves of Fig. 6 
illustrates the relative importance of the proximity effect on magnetic 
crosstalk in cable pairs and in open-wire pairs. In cable pairs the 
wires are close together as in Figs. 3 and 4, while in open wire the sepa- 
ration is much greater than that shown in Fig. 6. 

The effect of wire gauge on the variation of Ma and Mb is shown in 
Figs. 7, 8, 9-A and 9-B. Two gauges of wire (No. 10 and No. 18 
A.W.G.) were used with centers located at the corners of a 0.14-inch 
square. The mutual impedance between the vertically adjacent pairs 
was measured. The corresponding values of Ma and Mb are shown in 
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Fig. 6—Mutual inductance between pairs of parallel wires. 

Fig. 7 for the 10-gauge wires and in Fig. 8 for the 18-gauge wires.7 

The values of — lO-Mfi are also plotted in Fig. 7 and — lOO-Mb in 
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Fig. 7—Mutual inductance between pairs of parallel wires. 
7 These measured values are checked very closely by values calculated by Sallie 

Pero Mead from the coniplicated theoretical considerations involved in even the 
simple case of straight wires. 
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Fig. 8 to show the shapes more clearly. A comparison of the fre- 
quency characteristics of Ma and Mh for the two wire gauges is shown 
in Figs. 9-A and 9-B in terms of the one-kilocycle value of Ma for each 
case. In Fig. 9-A the frequency scale is logarithmic and in Fig. 9-B is 
linear. As would be expected, the use of smaller wires (No. 18 gauge) 
decreases the effect of proximity on the magnetic coupling and shifts 
the frequency at which Mh reaches a maximum value. 

The results of tests on the 55-foot length of No. 19 A.W.G. quadded 
cable are shown on Figs. 10-A and 10-B. The data cover a range of 
10 to 480 kilocycles. These figures show the variation with frequency 
of the average values of Ma and Mb \n terms of the ten-kilocycle 
average value of Ma which is taken as unity. In Fig. 10-A the fre- 
quency scale is logarithmic and in Fig. 10-B it is linear. It will be seen 
that Mb is negative with respect to Ma as in the case of two pairs in 
space. As in Figs. 3, 4 and 7, curves are given both for Mb and for 
— 10.M6, the purpose of the latter curve being to show the shape of 
Mb more clearly. The value of Ma decreases with frequency, becoming 
nearly constant above 300 kilocycles at a value 22 per cent less than 
the value at 10 kilocycles. The component Mb is of negative sign 
and at 56 kilocycles reaches a maximum value which is 13.4 per cent 
of Ma at this frequency. 
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Fig. 9—Mutual inductance between pairs of parallel wires in terms of value for Ma at 
one kilocycle. 

The frequency characteristics of Ma and Mb for individual pair 
combinations are about the same as shown on Fig. 10, although there 
are occasional differences such as a positive value of Mb or a change in 
sign in Ma or Mb at some frequency. Values for pairs in the outside 
layer did not appear to be much affected by eddy currents in the 
sheath. As in the case of measurements on parallel wires in space the 
values of Ma and Mb are very small. For example, between two pairs 
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Fig. 10—Mutual inductance between cable pairs in terms of value for Ma at ten 
kilocycles. 

in the same quad the average values at 10 kilocycles are 0.056 and 
— 0.0030 microhenries. For non-adjacent pairs the values are, of 
course, much smaller. 
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Experiments with Directivity Steering 
for Fading Reduction * 

By E. BRUCE and A. C. BECK 

Short-wave fading is largely due to phase interference between multiple 
path signals of varying path length. Fortunately, stable angular differences 
usually exist between these paths at the point of reception. It is therefore 
desirable to employ antenna directivity which is "steerable" and suffi- 
ciently sharp to accept only one of the several paths in order to reduce this 
fading. 

This paper describes experiments made with a "steerable" directive 
antenna during reception of transoceanic short-wave signals. The results 
demonstrate that sharp angular discrimination is a basically sound method 
of combating fading which is due to phase interference. 

Introduction 

RAPID fading in radio communication has been recognized for some 
time as being due to the interaction of distinct components 

having different transmission times. The possibility that these com- 
ponents might arrive from slightly different directions was suggested 
by various observed facts, among which was the behavior of sharply 
directive antennas. 

It has been noticed in the past that fading was affected by the direc- 
tivity of the receiving antenna. An example is given in the oscillo- 
graph records of Fig. 1 showing observations made by the authors 
some years ago at Cliffwood, New Jersey. These illustrate a condition 
of less fading on a large "inverted vee" 1 antenna than on a small non- 
directional antenna, using telegraph signals received from station GBK 
in England. Beating the signal with a local oscillator provided the 
audio frequency which was recorded. The directive antenna output 
was recorded on the upper trace while the lower strip recorded the 
output of the substantially non-directive, comparison antenna. 

Such observations as these suggest the possibility of controlling and 
reducing fading by a systematic use of sharp directivity. The present 
paper reports some experiments in which changes in fading are cor- 
related with changes in the directive pattern of a rhombic antenna 1 

made by mechanically changing its shape. 
It may be reasoned that, where the total differences in the path 

* Published in April, 1935 issue of /. R. E. Proc. Presented at meeting of I.R.E., 
April 3, 1935. 1 E. Bruce, "Developments in Short-Wave Directive Antennas," Proc. I. R. E., 
Vol. 19, pp. 1406-1433, August, 1931; Bell Sys. Tech. Jour., October, 1931. 
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Fig. 1—Oscillographic record of carrier fading reduction. The upper trace is 
proportional to the output of a large "inverted vee" antenna, and the lower trace to 
the output of a half-wave vertical antenna when receiving station GBK on 16.6 
meters. Taken at Cliflfwood, N. J., November 16, 1927, 4:00 P.M., E. S. T. 
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lengths are small, variations can result only in the carrier and side 
bands fading in and out together or in other words "general" fading. 
In such cases, there either may or may not be appreciable angular 
separation between the multiple waves at the point of reception. How- 
ever, there is little question that, where multiple waves cause a "selec- 
tive" fade over a speech band which is, of course, a very small per- 
centage of the carrier frequency, a material path length difference must 
exist. Where this is the case, it is difficult to conceive of wave routes 
which do not possess appreciable angular separation between them at 
the place of reception. The truth of this latter point is of vital im- 
portance in this discussion. 

The hope of success in fading reduction through directivity rests on 
the possibility of a continuous, stable angular separation between the 
interfering waves during times when fading is really troublesome. 
Fortunately this possibility is reasonably existent; therefore it should 
be possible to reject all but one of the interfering paths, by means of 
sharp directivity, with a consequent reduction in selective fading. 

Tests have shown 2 that a greater degree of angular spread between 
the multiple waves exists in the incident vertical plane than in the 
horizontal plane. It might be expected, then, that such a scheme as 
that illustrated in Fig. 2 would be worth trying. Here the steep edge 

of a moderately sharp directional characteristic is moved just far 
enough into the wave cluster, assumed directively stable, to accept the 
first wave. Obviously it is possible to approach the wave cluster from 
the bottom as illustrated or we may approach the cluster from above. 

1 H. T. Friis, C. B. Feldman, and W. M. Sharpless, "The Determination of the 
Direction of Arrival of Short Radio Waves," Proc. I. R. E., Vol. 22, pp. 47-78, Janu- 
ary, 1934. 

Description of Equipment 

Fig. 2—Edge system for achieving fading reduction with 
moderate antenna directivity. 
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A primary essential in this scheme is that no minor ears of the direc- 
tive diagram be of appreciable size. 

Using this scheme, it is not necessary to discriminate completely 
against the adjacent waves for practical benefit. A discrimination of 
ten decibels between two adjacent waves of equal amplitude will 
make improbable a fade deeper than 5.7 decibels from their sum. 
Fading of this depth would be relatively unimportant for ordinary 
speech transmission. 

An edge wave may at times be much smaller in amplitude than the 
adjacent waves. The scheme under discussion may be usefully opera- 
tive even in this situation since the very smallness of the edge wave 
means that it cannot be seriously harmful. When signals are weak, 
the edge of the directive diagram should be advanced until a large am- 
plitude wave is encountered. Some fading of small depth would 
then exist. 

It was stated above that the antenna system used should have no 
minor ears of appreciable size. At the same time, the edge position of 
the major loop must be continuously adjustable. A simple method of 
meeting these requirements is that of mechanically moving the ele- 
ments of a "long-wire" antenna in space so as to alter the manner of its 
exposure to the space waves. 

Figure 3 is a rectangular plot of the incident plane directive diagram 
of a large horizontal rhombic antenna when used for GBW on 20.78 
meters. The essential antenna dimensions are indicated on that 
figure as well as the equation for the directive diagram. 

Each bracketed quantity in the directive equation of Fig. 3 is 
separately plotted on that figure together with the final resulting 
product. Factor 3, known as the "phasing" factor, exerts the greatest 
influence on the shape of the major lobe. This factor contains only 
the variables of length I and the angle 0, defined as half of the side 
interior angle. The length cannot be made easily variable but the 
angle </> can be readily adjusted. When an adjustment in is available 
for this antenna, Fig. 4 gives the directions of the major lobe maxima, 
and the first nulls, above the horizontal for a series of wave-lengths. It 
is evident that a useful degree of steering is provided without limiting 
the desirable variable wave-length features of the antenna. In all 
cases, the minor ears remain small. 

In Fig. 5 is shown a remote controlled power-winch system for 
altering the interior angles. This experimental system in slightly modi- 
fied form was in operation at Holmdel, New Jersey, for some time, 
without any antenna breakages. This was primarily possible because 
the angles of flexing were very small and copper-clad steel wire was 
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Fig. 4—Steerability, at several wave-lengths, of the horizontal rhombic antenna 
used for the fading reduction studies. The antenna element lengths were 184 meters 
and their height 19 meters. 

employed in the antenna. The power-winch was equipped with auto- 
matic safety stops at the extreme positions, also with a potentiometer 
which was coupled to the winch to permit the use of a voltmeter as an 
antenna position indicator. This position indicator was located at the 
operator's position. By using counterweights, the required size of the 
winch motor is reduced. 

The adopted system for observing selective fading required a fre- 
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Fig. 5—Mechanical layout of the steerable horizontal rhombic antenna. 

quency wobbled carrier from the transmitting station. By beating 
this frequency-wobbled carrier with a local fixed frequency, a wobbled 
audio note was obtained after detection. This audio output was im- 
pressed on the horizontal plates of a cathode ray tube, after being 
amplified by an audio amplifier. This produced a horizontal spot de- 
flection on the tube screen which was directly proportional to the 
field strength of the signal. The vertical plates had a locally adjusted 
sweep circuit voltage impressed on them to produce vertical spot de- 
flections. The sweep frequency was synchronized with the wobble 
rate so that the extreme upper and lower deflections occurred at the 
same instant as the respective upper and lower frequencies of the 
wobble. Figure 6 indicates the cathode ray picture of a signal with- 
out selective fading while that of Fig. 7 shows a severe case of selective 
fading. It is apparent that general fading was revealed by the hori- 
zontal collapse of the rectangle of Fig. 6. 

It is an interesting fact that upon the first appearance of the cathode 
ray figure, with the wobble rates employed, it is a horizontal line mov- 
ing up and down, but after a few seconds, the traced solid figure stands 
out clearly, due to the persistence of vision. 

One of the surprising results of experience with this system was 
that, at times of severe fading, eight or ten depressions were occasion- 
ally seen within a sweep of a few hundred cycles. 

For comparison purposes, there were two complete outfits, as de- 
scribed, with their cathode ray tubes mounted side by side. One outfit 
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PROPORTIONAL TO 
FIELD-STRENGTH 

 HIGH FREQUENCY 

    LOW FREQUENCY 

Fig. 6—-Cathode ray oscillograph figure for no selective fading when observed with 
wobbled carrier. 

PROPORTIONAL TO 
FIELD-STRENGTH 

  LOW FREQUENCY 
Fig. 7—Cathode ray oscillograph figure for severe selective fading when observed 

with wobbled carrier. 

operated on a simple antenna system, as a standard of comparison, 
while the second was connected to the adjustable directive antenna. 
Fig. 10 is a photograph of this apparatus. 

Other tests also going on at Holmdel, N. J., were concerned with 
the measurement of the comparative delay times and the respective 
angles of the various paths of the waves.2 To permit this, the British 
Post Office transmitter sent pulses of very short duration. At the re- 
ceiving point, a single transmitted pulse frequently appeared as several 
spaced pulses when a sweep circuit was employed. The spacing en- 
abled the measurement of the relative time delays. It was found to 

HIGH FREQUENCY 
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be the apparently invariable fact that the earlier arriving pulses are the 
lower in angle with the horizontal and are relatively stable in direction. 
These tests suggested that a somewhat similar scheme of observations 
would be useful to the present work since, if pulses were similarly 
employed, one would actually see the effect on each individual path of 
steering the antenna. 

Accordingly, cathode ray equipment was constructed employing a 

Fig. 8—Cathode raj' oscillograph pulse figures when using the circular sweep circuit. 
The circumference is traversed by the spot in twenty milliseconds. 

circular sweep system, in place of the usual linear sweep, thus making 
the entire time interval always in view. Figure 8 illustrates how the 
pulses sometimes appeared during this sweep. Since the pulses were 
always vertical, their definition was lost if permitted to slide down into 

TIME 

Fig. 9—Cathode ray oscillograph pulse figures when using the 
elliptical sweep circuit. 
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the "3 o'clock" or "9 o'clock" positions of the circle. This possibility 
was considerably reduced by employing the ellipse in Fig. 9 instead of 
the circle. For general observation purposes the ellipse was used but 
for more accurate time delay measurements the circle was employed. 

The British Post Office station transmitted pulses at intervals of 
0.02 second. In order to synchronize with them, an oscillator variable 
about 50 cycles was used to keep the pulse position stationary. A 
split-phase circuit feeding the four cathode ray plates produced the cir- 
cular or elliptical sweep. This equipment is also shown in Fig. 10. 

mtmm 
wm 

1 Mm 

Fig. 10—Cathode ray oscillographs, their amplifiers, and the sweep circuit installation. 
The meter in the center of the table is the antenna position indicator. 

Some studies of general carrier fading were made with a pair of 
magnetic counters actuated by trigger gas tubes. These fading count- 
ers were operated together with automatic recorders so as to maintain 
the same integrated average signal output. Since, in the recorder inte- 
gration, ten-second intervals elapsed between gain readjustments, the 
fading counters operated to record all quick faces, during these inter- 
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vals, which fell below the average output level by any prescribed 
amount. A photograph of this equipment is shown in Fig. 11. 

Fig. 11—Field strength recorder and fading counters used 
for fading reduction studies. 

Results 

Cathode ray tube observations of selective and also general fading 
were made on the British Post Office stations GBW and GBU using 
wobbled carrier. Whenever possible, these observations were made at 
half-hourly intervals. For record purposes, arbitrary numbers ranging 
from 0 to 4 were adopted. Zero meant very little fading (five per 
minute or less) and the most severe cases were represented by 4. These 
figures were recorded separately for the standard antenna and for the 
rhombus. The difference between the numbers assigned to each an- 
tenna gave an indication of the fading reduction accomplished. 
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Fig. 12—Selective fading severity and its reduction at the best positions of the 
rhombic antenna. Stations GBU and GBW, March and April, 1933. 

Figure 12 is a summary of results of these half-hourly observations 
made during the working hours of March and April, 1933. Disregard- 
ing the fact that portions of that figure are shaded, the total lengths 
of the vertical bars represent percentage of the total number of ob- 
servations plotted against the degree of the selective type of fading, 
observed on the comparison antenna, as indicated on the abscissas. 

During each of the above observation intervals, the rhombus was 
steered over its available range to determine the best position for re- 
duction in selective fading. Each of the vertical bars in Fig. 12 is sub- 
divided by shading into the various degrees of fading reduction obtain- 
able at the best position of the adjustable rhombus. The solid sections 
represent large selective fading reductions, the cross-hatched sections 
are fair reductions, while the unshaded portions indicate that the re- 
ductions were not of appreciable magnitude. 

Analyzing Fig. 12, the results show that 51 per cent of the readings 
gave no reduction in selective fading; however, for 35 per cent of the 
readings there was practically no selective fading to be reduced. On 
the other hand, if one disregards the rather mild and therefore rela- 
tively harmless fading cases, graded 0, 1, and 2, rhombic fading reduc- 
tions were possible 89 per cent of the remaining time, so that when 
selective fading on the comparison antenna was really troublesome, 
it is important to note that an appreciable rhombic selective fading 
reduction was nearly always accomplished. By deliberately steering 
the rhombus to a disadvantageous angle, it was possible four per cent 
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of the time to make the selective fading worse on the rhombic antenna 
than on the comparison antenna, but no case has been observed where, 
at an ordinary rhombic antenna setting, the selective fading was not 
at least equal to or less than that on the comparison antenna. 

While the cathode ray tube figures indicated some degree of general 
fading, where all frequencies fade together, it was evident that this 
type of fading is of far less importance than the selective type of 
fading, in fact it was rarely noticeable except when the selective fading 
was almost absent. 

Figure 13 is a photograph of permanent wobble records of selective 
300^ 6500J 

0.2 
650 ru 300(Vi 

TIME IN SECONDS 
Fig. 13—Oscillographic record of selective fading reduction. The upper trace is 

proportional to the output of the rhombic antenna, when the angle </> equalled 69 
degrees, and the center trace is proportional to the output of the half-wave vertical 
antenna. The lower string was idle. Wobbled carrier from station GBU, April 19, 
1933, 4:00 P.M., E. S. T. 

fading as recorded by the string oscillograph previously mentioned. 
The center string was actuated by the signals from the half-wave verti- 
cal comparison antenna while the rhombus signal was fed to the upper 
string. The third string was not utilized. The frequency wobble can 
be seen on close examination and as each small timing division is 0.01 
second, the audio frequency is recorded. The record has been marked 
at the wobbled frequency extremities. 

Figures 14, 15, and 16 are sketches of three interesting series of pulse 
patterns observed on the rhombic and comparison antennas. The 
three groups reading from left to right show the effects on the individual 
pulses of the steering of the rhombus, as indicated by the angle «^. 
The steering achieved at these angles can be seen by referring again 



208 BELL SYSTEM TECHNICAL JOURNAL 

ANGLE IN DEGREES 
18 23 29 35 18 23 29 35 18 23 29 35 

_A_J\ A A _JLJL_/LJ\_ 
HALF-WAVE VERTICAL 

4> = 690-7l0 if> = 71°- 73° (#>= 730-760 

RHOMBUS 
 A a A A  A A . . A A A A 

TIME   
Fig. 14—Pulse pattern changes with steering, March 8 and 9, 

1933. Station GCS on 33.26 meters. 

to Fig. 4, Marked over the individual pulses are the arrival angles 
above the horizontal, measured through the cooperation of co-workers. 

Figure 14 is of a test, at thirty-three meters, during a period when a 
wide angular spread of the cluster prevailed. Four narrow pulses of 
similar magnitude appear on the half-wave antenna. The progressive 
effect of suppressing the higher angle waves by steering the rhombus 
is shown. Very appreciable selective fading reductions are possible 
under such conditions. 

Figure 15 is a sketch of twenty-meter observations during a period 

ANGLE IN DEGREES 17 20 17 20 17 20 

—TV/L _f\A_ _AA_ 
HALF-WAVE VERTICAL 

4'= 690-7l0 <#>= 7l0-730 0 = 73O-76O 

RHOMBUS 

-ru_ _rv_ _j\a_ 
TIME    

Fig. 15—Pulse pattern changes with steering, April 8, 1933, 
2:00 p.m., E. S. T. Station GBW on 20.78 meters. 

when selective fading reductions were achieved at the lower angle an- 
tenna settings. The broad, flat tops of the pulses are incidentally an 
interesting contrast to those in Fig. 14. These are possibly due to an 
increased horizontal spread of wave angles. 

Figure 16 is of a case where it was possible deliberately to make the 
fading on the rhombus worse than that on the comparison antenna. 
Since the later pulse had a higher amplitude than the earlier one, 
rhombic steering by equalizing the relative amplitudes, as shown in 
the left-hand figure, made the selective fading very bad indeed. The 
opportunities for producing a result of this nature are rather rare, in 
fact in our previously mentioned wobble studies it was possible to make 
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Fig. 16—Pulse pattern changes with steering, April 8, 1933, 
2:40 p.m., E. S. T. Station GBW on 20.78 meters. 

the selective fading worse only four per cent of the total time of ob- 
servations. 

Occasionally, and in particular on twenty meters, only slight selec- 
tive fading was observed. When pulse transmissions were available 
during these times, only one major pulse could be seen. Really bad 
fading invariably occurs when multiple pulses, which are widely spaced 
in time, are observed. 

It may be evident, from the previous discussions in this paper, that 
the change in antenna output, with steering, is closely related to the 
number and spread of the waves arriving and to the selective fading 
improvements obtainable. Figure 17 shows three cases of results se- 
cured by reading relative gain changes, as shown by automatic 
recorders. 

Case 1 is typical of a closely spaced wave cluster arriving at an 
average angle of about ten degrees above the horizontal. Case 2 can be 
explained as due to a narrow wave cluster at eleven degrees plus another 
of less amplitude at eight degrees. We would ordinarily expect annoy- 
ing selective fading in such an event. Should we deal with many closely 
spaced waves having a large angular spread, very little gain change 
would be evident while steering the rhombic antenna, but selective 
fading improvements over the comparison antenna might still be pos- 
sible. 

Curve 3 is of considerable interest in that it served as one of the 
experimental checks of the theoretical directive pattern calculations. 
The change in gain with steering is so well defined that probably only 
one wave-direction existed. This belief was supported by an absence of 
noticeable fading. Independent measurements, made by an average 
angle measuring installation2 consisting of two horizontal dipoles at 
different heights which determines the average angle by the ratio of 
the respective outputs, gave the arrival angle at from eighteen to nine- 
teen degrees above the horizontal. Figure 4 indicates that a 0-angle 
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Fig. 17—Horizontal rhombic antenna output changes with steering as shown by 
automatic field strength recorders. Corrections for changes in signal level with 
time, as obtained from a half-wave vertical antenna, have been applied. 

of about 68 degrees would place a null at this angle. While the range of 
steering of the rhombic antenna in use did not permit an adjustment to 
less than about sixty-nine degrees, the trend of the curve leaves little 
doubt as to the correctness of our null point calculation. 

As might have been expected, the previously described fading 
counters for studying general carrier fading showed that reductions 
were usually obtained at the directivity positions which also gave the 
least selective fading. This type of apparatus is incapable of determin- 
ing whether general fading or selective fading conditions are affecting 
the amplitude of the fixed carrier frequency. 

Conclusion 

It is believed that the results, discussed in this paper, demonstrate 
that sharp angular discrimination is a basically sound method of com- 
bating selective fading. 



A General Theory of Electric Wave Filters * 

By H. W. BODE 

A I AHE growth of the field of electric wave filters since their original 
A discovery by Dr. G. A. Campbell shows the filtering action by no 

means inheres in any particular physical configuration. Filters have 
been built, for example, as recurrent or non-recurrent ladder structures, 
as lattices, as bridged-T's, and in a variety of combinations of trans- 
formers with ordinary elements. No general theory uniting all these 
configurations has, however, been developed. Each structure has 
been treated by methods which are primarily adapted to that con- 
figuration alone. In consequence, such questions as the relations 
between filters of different types and the possibilities of securing im- 
proved characteristics by going to a still wider variety of configura- 
tions have remained unsettled. 

The present paper is an attempt to develop a general filter theory 
independent of any particular structure, by means of which these 
questions can be answered. For the sake of a rigorous discussion, 
the term "filter" has been used to signify a four-terminal network of 
ordinary lumped elements which, when terminated in its image 
impedances, transmits freely one continuous band of real frequencies 
and attenuates all other real frequencies. Since in actual operation 
the distinction between free transmission and attenuation is always 
more or less obscured by terminal effects and parasitic dissipation, 
this definition is necessarily somewhat arbitrary. It agrees, however, 
with common usage except in its rejection of multiple band-pass filters, 
which are rarely used in practice. 

It follows from the definition that a "filter" can include only re- 
active elements. Otherwise, however, the structure considered may 
be an arbitrary four-terminal network and may include transformers as 
well as ordinary inductances and capacitances. The analysis is based 
upon a combination of the ordinary image parameter method of 
analyzing networks and the normal coordinate method familiar in the 
dynamics of vibrating systems. It is found that the conditions for 
filtering action can be expressed by means of relations between the set 
of normal coordinates of the network when it is short circuited at both 

* This paper is a summary of a recent article with the same title appearing in the 
Journal of Mathematics mid Physics of_Massachusetts Institute of Technology, Novem- 
ber, 1934. It is included largely for its value in connection with the accompanying 
paper on "Ideal Wave Filters." 
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ends and the sets obtained by open circuiting one or both ends. The 
same normal coordinate solutions also furnish convenient parameters 
in terms of which general expressions for the image parameters of 
the structure can be built up. For a band-pass filter, for example, the 
typical result is 

^ . n L Jarfln+l ' * " (1 p-\^lCj Tanh 0 = ki   , Gji • • • dp 

„ rcii ' ' ' flm—1 7+1 ■ ' ' d r 
Z, I = iKlJ   I ai ■ ■ • am ag • ■ • flr-i 

P 
where a, symbolizes a frequency factor of the form 1 — -p and 

0 — /i — /o — • • ■ — fm — fcl — fn — fn+l — ' ' ■ 
— fh — fc„ — J q " " " — /r = 00 • 

The formula? are almost exactly similar to those familiar in the theory 
of the lattice, except that the quantities/i • • • fn which are now natural 
frequencies of the network as determined under the previously de- 
scribed conditions have a different significance. As in the lattice, 
however, they fall into three groups: /i • • • fm and fq ••*/»-, which 
affect Z/ only; /„ •••/„, which affect 0 only; and the cut-offs, /Cl and 
/fj, which enter into both expressions. The formula? can be extended 
to low-pass, high-pass and all-pass structures by allowing the cut-offs 
to assume the limiting values zero and infinity respectively. 

Certain further restrictions upon the image impedance and transfer 
constant of physically realizable filters may be obtained from the con- 
sideration of another system of parameters, r\ • • • rn, defined as the 
roots of the equation tanh 0=1. They are usually of either single 
or double multiplicity. The importance of the roots depends upon 
the fact that in combination with the cut-offs they are sufficient to 
determine 0 at all frequencies. The restrictions to which they lead 
may be divided into two sets. The first affects the transfer constant 
alone and is expressed in terms of limitations on the allowable positions 
and multiplicities of the roots. The second is concerned with the 
restrictions which must be placed upon the relation between the 
transfer constant and the two image impedances. It may be expressed 
by the statement that when the transfer constant and one image 
impedance have been chosen as functions of frequency, the second 
image impedance is determined as a function of frequency to within a 
constant multiplier. The differences between the two image im- 
pedances depend only upon the roots of single multiplicity, so that if 
only double roots are involved the structure is necessarily symmetrical. 
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The second half of the paper is devoted to an interpretation of known 
filter theory in terms of these results and to an attempt to extend this 
theory until it affords a definite technique for the construction of any 
filter which the preceding analysis has shown to be physically ad- 
missible. The method followed depends upon the fact that when a 
number of filter structures with matched image impedances are con- 
nected in tandem, the roots, ri • • • rn, of the resulting filter will be the 
aggregate of the roots of all the individual units of which it is composed. 
This allows us to represent the general filter as a composite structure 
in which each constituent represents one or at most a few of the total 
number of roots. The resulting networks are very similar to the 
familiar Zobel type composite filter, especially when it is noticed that 
the various required roots can be obtained from simple prototype 
structures by transformations analogous to the w-derivation, and 
that the preceding classification into roots of single and double mul- 
tiplicity corresponds in the composite filter to a classification of the 
constituent structures into half and full-sections. 

In spite of these relations, the usual composite filter theory must be 
extended in several ways if the general filter is to be adequately 
represented. The first extension is demanded by the fact that in the 
general filter we must be able to assign one image impedance char- 
acteristic of each of the constituent sections in any form compatible 
with the preceding general equation. The required image impedances 
are not obtainable from ordinary ladder structures. When the con- 
stituent involved is a double root, or full-section, structure however, 
the required impedance can readily be realized by resorting to the 
lattice form. With half-section structures the procedure is more 
complicated. It is necessary to make use of a combination of Dr. 
Zobel's multiple w-derivation and a new transformation, described as 
an /j-derivation, which alters the impedances of ladder type half- 
sections without affecting their transfer constants. 

Similar extensions are also needed to provide the requisite variety 
of transfer constants. Roots falling within certain ranges can be 
provided by ordinary ladder structures, w-derived, in the usual way, 
with a real value of m less than one. In order to complete the list, 
however, it is also necessary to consider single sections derived with 
real values of m greater than one, which may be realized as lattices or 
as ladder structures with mutual inductance, and pairs of sections 
derived with conjugate complex values of m. By including all of these 
types of sections we can construct physical networks giving any filter 
characteristics falling within the general limitations discovered in the 
first part of the paper. 
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Aside from its purely theoretical interest, the analysis leads to two 
results of immediate practical value. The first is the introduction of 
new characteristics by the complex m and h-denved sections. The h- 
derived structures can be dismissed briefly. They are chiefly of inter- 
est for their impedance characteristics, which resemble those found in 
symmetrical lattices. They allow us, however, to extend these imped- 
ances to unsymmetrical structures and they also allow us to extend 
considerably the range of impedances, even of symmetrical structures, 
which can be realized in the ladder form. The complex m structures, 
on the other hand, are chiefly of interest for their novel phase and 
attenuation characteristics. The novel phase characteristics are par- 
ticularly important since the elementary constituents of the linear 
phase shift filters described in the accompanying paper usually turn 
out to be complex m sections. 

The second general result is an increase in our knowledge of the 
relations existing between filters of different physical configurations. 
This last point is particularly important because it allows us to convert 
filters from one type of configuration to an equivalent type which may 
be better suited for purposes of practical construction. For example, 
it allows us to convert the generaUattice filter, which is very convenient 
for theoretical purposes but is very difficult to build practically, into a 
composite of simple lattices and ordinary ladder sections. 



Ideal Wave Filters * 

By H. W. BODE and R. L. DIETZOLD 

The increasing usefulness of wave filters in the telephone plant, together 
with rising standards of quality, emphasizes the need of a systematic method 
for approximating ideal characteristics as closely as we please. By an ideal 
filter is meant a network having the properties of a distortionless transducer 
over a given frequency range and suppressing all other frequencies. A design 
method is presented whereby an arbitrarily close approximation to these 
properties may be realized in a physical network. Examples of actual 
designs illustrate the engineering features involved in the practical applica- 
tion of the theory. 

Introduction 

TN the phenomenal advance of telephone practice during the past 
-*■ twenty years, almost every step has further restricted the distortion 
which individual parts of a transmission system can be allowed to 
introduce into the signal. The extension of circuits to great distances 
made it necessary that each link pass on to the next a more faithful 
copy of the signal so that the accumulated effects of many links might 
not endanger the intelligibility. The extension of telephone circuits 
to new uses, such as the transmission of pictures and the distribution 
of broadcast programs, imposed new demands for accuracy. Each of 
these has required rising standards of performance for wave filters. 
More than anything else, however, it has been the introduction of 
carrier methods, with their comparatively large utilization of selective 
structures, which has given prominence to the problem of reducing 
the distortion from wave filters. With the increase in length and com- 
plexity of carrier systems, the problem of providing wave filters which 
will have no harmful effect upon transmission has become one of in- 
creasing importance. 

What this requires of the filters quickly appears if we recall that a 
structure which transmits all signals without distortion must (1) 
possess a characteristic impedance which is a pure resistance inde- 
pendent of frequency; (2) attenuate steady sinusoidal signals equally 
at all values of frequency: and (3) introduce a rotation in phase pro- 
portional to the frequency. In filter theory we need consider these 
requirements over only a limited band, since the signals which filters 

* The reader is referred to the preceding paper entitled " A General Theory of 
Electric Wave Filters." 
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are meant to transmit, whether voice, telegraph, or television, are of 
a specified type having energies concentrated in certain portions of the 
frequency spectrum. We can therefore say that an ideal filter is one 
which has the ideal phase, impedance and attenuation properties in 
the frequency range of the desired signal and which totally suppresses 
all other frequencies. 

The conventional ladder type filter structures which have been so 
extensively studied may be made to yield any desired suppression at 
the unwanted frequencies. In the range of wanted frequencies, 
however, they show wide departures from all three ideal properties. 
The impedance characteristic can be greatly improved by suitable 
elaboration of the filter structure itself, but to approximate uniformity 
of loss or linearity of phase shift it has been necessary to make use of 
supplementary networks of empirical design.1 

The design of such corrective networks is by no means an easy task, 
primarily because the filter characteristics for which they are supposed 
to compensate change very rapidly with frequency in certain intervals. 
Nevertheless, much has been achieved. Thus it has been found 
possible to limit reflection coefficients to 2 per cent, in contrast with 
coefficients of 50 per cent not uncommonly tolerated in the systems 
of ten years ago. Improvements in the other characteristics have 
been comparable. In modern systems variations in attenuation of a 
few hundredths of a decibel, or in phase slope of a few per cent, can 
be attained if need be. These limits, however, demand the most 
patient and skillful design, and can seldom be met unless control of a 
single one of the characteristics is especially important. Since 
amplitude equalizers introduce non-linear phase, phase correctors non- 
uniform loss, and so on, the problem becomes increasingly difficult 
when close requirements must be met in several characteristics 
simultaneously. 

By contrast, the method proposed in this paper gives the various 
characteristics simultaneously in a single network without recourse to 
auxiliary corrective structures. The method is a systematic one, 
requiring comparatively little in the way of cut and try design work. 
At the same time it preserves a measure of the flexibility of the existing 
technique, so that when considerable deviation from the ideal is 
tolerable in one or more characteristics, a corresponding economy of 
materials may be effected. 

1 The distortion problem has been discussed by several writers in this Journal. 
See, for example, S. P. Mead, "Phase Distortion and Phase Distortion Correction," 
April, 1928, p. 195; O. J. Zobel, "Distortion Correction in Electrical Circuits . . .," 
July, 1928, p. 438; C. E. Lane, "Phase Distortion in Telephone Apparatus," July, 
1930, p. 493; E. B. Payne, "Impedance Correction of Wave Filters," October, 1930, 
p. 770. 
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The discussion which follows has a two-fold objective. The first is 
purely theoretical: to demonstrate that no matter how close the limits 
of cieviation from the ideal may be set, there is a finite physical net- 
work all of whose characteristics meet these limits, except within a 
certain "transition interval" about each cut-off, which transition 
interval may also be taken as narrow as we please. This is by no 
means trivial; for it is known that no network, finite or infinite, can 
meet the ideal characteristics exactly} 

The second object is to guide the selection, from among the many 
networks which would meet the requirements of a given practical 
problem, of that one which meets them most economically. This 
part of the paper contains a number of examples, among them some 
which illustrate the use of slight empirical variations as a means of 
obtaining the highest measure of economy when wide deviations from 
the ideal are more tolerable in one respect than in others. The final 
example, which is segregated as Part III, deals with a situation met 
in picture transmission circuits, where the selectivity required is 
frequently small, but the effects of phase distortion may be very 
serious. Here a modification of the design technique leads to a filter 
which has comparatively modest selectivity but which exhibits a 
linear phase characteristic not only in the transmitting band but also 
in the range of rising attenuation. 

Part I—Theoretical Analysis 
Since linear phase shift is not available from ladder networks, the 

analysis will be based upon the more flexible lattice configuration. 
Although the lattice lends itself particularly well to the theoretical 
design problem, it is not so satisfactory for purposes of physical con- 
struction. After the paper design has been made, therefore, it will 
usually be desirable to convert it to a more suitable practical con- 
figuration. This can be done by methods described elsewhere.3 

We may greatly simplify the theoretical discussion by ignoring the 
effects of parasitic dissipation—a simplification warranted by Mayer's 
Theorem,4 which states that the attenuation resulting from dissipation 

- This proposition is due to Dr. T. C. Fry, who showed that in a transducer possess- 
ing the steady-state characteristics of an ideal filter, a signal would arrive at the 
receiving terminals before it began to be impressed on the sending terminals. As 
this is absurd, we must conclude that no such system exists. 3H. W. Bode, "A General Theory of Electric Wave Filters," M.I.T. Journal of 
Mathematics and Physics, November, 1934. A summary of this article appears in this 
issue of the Bell System Technical Journal. 4 H. F. Mayer, "Uberdie Dilmpfungvon Siebketten im Durchlassigkeitsbereich," 
E. N. T., October, 1925, p. 335. His results were later somewhat extended by Feige 
and Holtzapfel, "Dampfung und Winkelmass von Vierpolen mit geringen Verlusten," 
T. F. T., July, 1932, p. 179. Even these latter results are capable of considerable 
generalization, so as to include other characteristics of the network besides the trans- 
fer constant. 
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is proportional to the derivative of the phase characteristic. The 
realization of a linear phase shift in the transmission band therefore 
automatically carries with it the satisfaction of the requirement of 
uniform loss in this range.5 It can also be shown that the other 
characteristics of the network will not be appreciably affected by slight 
uniform dissipation. 

Moreover, it is well known that the image impedance and transfer 
constant of a lattice structure are controlled by independent param- 
eters.6 We can, therefore, dissociate the problem of providing the 
required constant image impedance in the transmission band from that 
of providing the required loss and phase characteristics.7 For the 
moment we shall fix our attention on the transfer constant. 

With these simplifications our problem reduces to that of con- 
structing a filter whose transfer constant on a non-dissipative basis 
represents a linear phase shift in the transmission band and an infinite 
loss in the attenuation bands, these being separated by narrow "transi- 
tion intervals" in the neighborhood of the cut-offs. These transition 
intervals may be taken small at pleasure, but must be assigned in 
advance to insure the physical realizability of the network. 

If the impedances of the arms of a lattice are Zx and Z„, Fig. 1, it is 
well known that the image transfer constant and the image impedance 
are given by the expressions 9 

6 Strictly speaking, a slight qualification should be placed upon this statement. 
Our process of approximating the ideal characteristics will lead to a phase shift which 
ripples about the desired linear characteristic, the number of ripples depending upon 
the number of elements used. As the number of elements is increased indefinitely, 
the linear characteristic is approximated more and more closely, but it is evidently 
not a necessary consequence of this that the slope of the ripples should approach 
constancy. We shall be able to show, however, that with the actual process used, the 
amplitude of the ripples decreases so rapidly that dB/doj approaches constancy as B 
approaches linearity. 6 This follows at once from equations (4) and (5), p. 220. 7 A method of choosing the lattice parameters to give a substantially constant 
impedance in the transmission band has in fact already been obtained by W. Cauer, 
"Siebschaltungen," V. D. I. Verlag, Berlin, 1931; or "Ein Interpolationsproblem 
mit Funktionen mit Positivem Realteil," Math. Zeit., November, 1933, p. i. An 
alternative method will eventually be developed as a by-product of the present 
analysis. 8 The extension to filters of other types is given on p. 225. 8 G. A. Campbell, "Physical Theory of the Electric Wave Filter," this Journal, 
Vol. I, No. 2, November, 1922, p. 1. 

Formulation of Requirements—Low-Pass Filters 8 

(1) 

Z/ = VzX (2) 
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Zx 

Fig. 1— The symmetrical lattice. 

The relation (1) requires for transmission, i.e., for 6 imaginary, that 
Zx and Zy differ in sign; for attenuation, i.e., for 6 real, that Zx and Zv 

be alike in sign. In the case of the low-pass filter, this amounts to 
requiring correspondence of zeros (resonances) in one arm to poles 
(anti-resonances) in the other for / < /„, and of zeros to zeros and 
poles to poles for / > /c, where fc, the cut-off, is a critical frequency 
which appears in one arm only.10 If we denote these critical fre- 
quencies by f i, ft, • • •, fr in the range below fc, and by //, ff, •••,// 
in the range above fc, and if we make use of a well-known theorem 11 

we readily find that Zx and Zy have forms similar to 12 

(3) 

10 In the basic theory given by Dr. Campbell, in the paper just referred to, it is 
shown that in general a lattice having many natural frequencies is a milti-band-pass 
filter. The extension of the theory in the manner shown above, in which separate 
parameters for the control of the transfer constant and image impedance are obtained 
by imposing special conditions on the natural frequencies, thus rendering many bands 
confluent, was discovered and exploited independently by W. Cauer and one of the 
present writers (see Cauer, " Siebschaltungen " and later papers; or H. W. Bode, U. S. 
Patent No. 1828454, also "A General Theory of Electric Wave Filters," loc. cit.). 
The published work by Dr. Cauer gives a particularly complete discussion. It ap- 
pears from a recent informal communication from Dr. Campbell to the authors, how- 
ever, that this extension was also considered by him and was described briefly in the 
Yale-Harvard Lectures on Wave Filters delivered in 1923. The lectures have unfortu- 
nately not been published. Their content, however, is similar to that given in the 
discussion above. 11 R. M. Foster, "A Reactance Theorem," this Journal, Vol. Ill, No. 2, April, 1924, 
p. 259. 12 The cut-off factor ac may appear in either the numerator or denominator of 
either form, and the line- and cross-arms may be interchanged. Otherwise the ex- 
pression is general. 

Zx = iKxf 02^1 * ■ • ar-i(icai • • • o s_i 

Zy — — * 
t 02^4 

• * * Urdl ' • • 03 

iKydlds • ■ • drd2 • • • a's_l 
flr—1^1 
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and hence that13 

■ 6 • iKx -02^4 • • ■ Or—i I tanh ^ = t x ^/-— — Vaf, (4) 
L \ A y fl id 3 • • ' ar 

Zi = jKjry<ac a* a''-1, (5) 
Ol ' ' ' Ug 

where the a's are shorthand notation for 

a,= l^L. a/ = l-L- (6) 
Ji Ji 

We shall have frequent occasion to distinguish between those critical 
frequencies of (4) which lie in the practical transmission band and 
those which lie in the transition interval. To this end we shall denote 
that interval by {/a, fa), where obviously/,i < fc < fu, and shall write 
P for the group of factors 

_ . \KX .UiUi ••• UA-I /-s 
P = t \h^f — (') \KU

J UiUa ■ • • UA 

which lie in the wanted band, and Q for the remainder 

Q = aA+' ''' a'-1 (8) 
UA+2 • ' ' Ur 

which lie in the transition band. Then, obviously, (4) becomes 

tanh^ = PQ. (9) 

Requirements on Transition Factors 

With these formula? before us, we are now prepared to attack the 
problem of meeting the double requirement of linear phase shift in 
the practical transmission band and infinite loss in the practical 
attenuation band. Expressed analytically, these requirements are 
simply 

tanh-^ = tanh i^r = i tan^, / < Ja, (10) 
2 2a la 

tanh=1, / > /w. (11) 

13 It should be noted that, except for the cut-off factor af, (4) and (5) are entirely 
independent. That is, the frequencies/i, . . . f, may be chosen as we desire, in 
order to control the transfer constant, without in any way affecting the image im- 
pedance; and //, . . ., /,' can be chosen at will without affecting 0. Similarly the 
constants ^Kj/Ky and may be chosen at will. 
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where a is a constant which determines the slope of the phase curve. 
But it is well known that 

■tjn»-/ »x/('••• 

2^2a 

If, then, in (4) we choose 

K x / K y = ir/la, 
fi = a, fz = 2a, • • •, Ja = Aa, 

so that P becomes identical with the first A terms of (12), and if in 
addition we choose our unit of frequency so that14 {A + l)a = 1, 
we readily §ee that in the transmitted range Q must equal 

Z' W, ^ ■ f<U' (13) 

(1+«)V\ (l+3a)2 

while by (9) and (11) in the attenuated range it must be given by 

L = p = M\  v U - dv, 
Q ^ 2a ( < _P\ (y_JL ' }>JB-KV 

x A2o a 

Expressed in terms of Gamma functions, (13) and (14) become 

r./iWWV1+/ 

e = Af /ilA ■ f<L; a') 
rl A IrM —-tt—— ) r2' ' 

Q! / \ 2a / \ 2a 
and 

,rM i\r
2ftiV//+1 

^ 11 —f \2a / \ 2a / \ a / . f , , 

^2a 

14 This means that we express all frequencies in terms of the first critical frequency 
of (12) which falls in the transition interval. 16 The necessary transformations may be found in Whittaker & Watson, "Modern 
Analysis," 12.13, 12.15, and 12.33. 
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Asymptotic Series for P and Q 

If we now take the logarithm of (15), and apply Stirling's formula, 
we obtain the asymptotic series 

41^r4(l/2«) ,1. m 
logQ = log8^r'(i/a) + 2 

, f (- l)r(22r - 1)5,a2-1 

r=i 2r(2r — 1) .(i +/)2'-11 (i -ir- 
(17) 

where the 5's are Bernoulli numbers. .Since Stirling's formula holds 
only for z > 0, this expansion is valid, as inspection of equation (15) 
will show, only for / < 1, but as the unit of frequency was so chosen 
that Ja < 1 </«, this includes the entire wanted band, and none of 
the attenuating range. 

If we apply a similar process to (16) we are again led to (17), except 
that now the range of validity is / > 1. But this includes the entire 
attenuating range, and none of the wanted band. 

That is, the single formula (17) represents the lacunar 18 function 
Q in both ranges in which it is well defined. 

We shall now determine the transition factors a.-i+i, <7.1+2, • • ■, ac by 
comparison of (8) with (17). If we adopt the notation 

Ja+I = 1 + Ci, /,i+2 = 1 + C2, • • •, /c = 1 + cm, (18) 

so that the c's measure, not the critical frequencies themselves, but 
their displacement from unit frequency, each factor of (8) has the 
characteristic form 

(I+O)2 (l+ry)2\ ' l-//\ 'l+//, 

whence (8) becomes 

1+^ I+^V--JI+t^WI+ c" 
0 = io f V+(vr^, 

1+^1_V1+T^ ... 1 + ^=1 1+ 
1 -f/\ 1 +// \ 1 -fj\ 1 +/. 

(19) 

where X is a constant multiplier which depends on the c's. We will 
neglect it in this analysis since it may be readily determined later from 
the condition that <2 — f when / = 0. 

16 A lacunar function is one which is well defined in several regions, but not capable 
of analytic continuation from one to the other. 
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The logarithm of Q is, of course, the sum of the logarithms of the 
individual factors of this expression. Expanding these as series of 
powers of 1/(1 —/) or 1/(1 +/), and collecting terms of like degree 
in 1/(1 — /) and 1/(1 + /), we obtain 

log <3 = 2 ,0S (1 ~ f1) 

~ 2 

+ 

2 - r2
2 + fa2 - 

3 + f3
3 - 

±2^ + 
(1 -/)2 ' (1 +/)2] 

2CJ) [d -/)3 + (1 +/)3J 

(20) 

where the sign of cm is plus or minus according as m is odd or even.17 

As the terms of (20) are similar in form to those of (17),18 we can make 
the first m terms identical. This leads to the equations 

Cl ~ Ci + C3 — 

2 - c.2 + c3
2 - 

3 - r23 + r.33 - 

4 - r24 + fa4 - 

5 - C25 + C35 - 

Cl 

C\ 

Cl 

Cl 

i 2 

± 2 cm 

±2^ 

± 2 c™ 

— 2 

= 0, 

(21) 

= 0, 

-tb^ 

whose simultaneous solution gives the desired transition factors. 
The number m of transition factors used will depend upon the desired 

approximation to ideal characteristics in the practical transmitting and 
17 When the c's are evaluated it will appear that these series are all absolutely 

convergent—so that their termwise sum correctly represents log Q—at all positive 
frequencies outside the interval (1 — Cm, 1 + cm). As the complexity of the network 
is increased, in the approach toward ideal characteristics, the interval of non-con- 
vergence closes on the reference frequency 1, and is contained by the given transition 
interval. 18 The first term of (17) does not contain/, and may therefore be neglected for the 
same reason which led us to neglect K in (19). 
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attenuating ranges and the allowable width of the transition interval. 
It can best be determined by inspection of results given later. 

The result of solving the equations (21) for the ratios Cjja for values 
of m between 1 and 5 is given in the following table. 

TABLE I 
Spacing of Transition Factors 

Number of 
Factors Ci/a tit a Ci/a Ci/a Cb/a 

1 — 0.50000 
2 — 0.14645 +0.20711 
3 -0.05032 +0.67731 +0.95526 
4 -0.01897 +0.86157 + 1.49180 + 1.72252 
5 -0.00760 +0.93809 + 1.74806 +2.30277 +2.50080 

The first of these solutions corresponds to a single frequency, the 
cut-off, in the transition interval. It follows the uniformly spaced 
critical frequencies of the practical transmission band at one-half the 
uniform spacing, a. The other solutions represent networks having, 
in addition to the cut-off, rational factors which vanish in the transi- 
tion interval. 

When these values of the c's are used in equation (8), with due regard 
for (6) and (18), the form of Q is completely determined. For example, 
the frequency pattern corresponding to the case m = 3, is illustrated 
by Fig. 2. 

h d b 

• (A-2)a (A-l)CC Aai 

TRANSMITTING BAND . 
AB <0,0025 RAD. (A >5) 

cy (*) 
.< .< 

-*Ho}— 
i + a. 

, TRANSITION 
INTERVAL 

. ATTENUATING BAND 
ATTENUATION >50DB(A35) 

Fig. 2—Location of transition factors with m = 3. 

Nature of the Approximation 

How closely we approach ideal characteristics by this method 
depends on how nearly log Q is represented by the first m terms of (17) 
and (20). In both cases the series of omitted terms can be written 
in the form 

1 1 
UH+IO!" /)».+! + (1 + /)m+1 _ 

+ Am+2a
m+2 [ + 

1 
/)m+2 (I +/)",+2 + (22) 
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where the A's are constants. In (20) this series is convergent. In 
(17) it is merely asymptotic. It is known, however, that the error 
due to ending (17) at any term is numerically less than the first 
omitted term. Since we are at present interested in small values of a, 
therefore, we can estimate the error in the approximation from the 
first term alone. 

Inspection of this term shows that the error is greatest in the vicinity 
of the transition interval, where the factor 1/(1 —/) is large. It de- 
pends upon all three of the quantities/, a and m] but by choosing 
them in the proper order there is no difficulty in showing that an 
indefinitely close approximation can be obtained. 

The transition interval must first be selected on the absolute fre- 
quency scale. It may be as small as we choose. Next, a value of m 
must be chosen. What value is used is immaterial for our present 
purposes, although it is important for later applications. Finally, 
a must be taken small enough so that all transition factors lie in the 
prescribed transition interval. Otherwise it may be varied at will. 
But by choosing it small enough, the error of approximation (22) can 
obviously be reduced without limit for any value of / outside the 
interval (/^,/b)- We may thus conclude that only considerations of 
expense and of manufacturing precision restrict the accuracy of 
approach to the ideal filter. 

For purposes of future reference approximate formulae for the 
attenuation and phase in the limiting condition are given below: 

e~A ~ ~ 2 A-+iam+X [ (l -/)"*+• + (1 +f)m+l ] ' (23) 

+ + (24) 

It will be seen that the attenuation rises monotonically as we recede 
from the transmission band while the phase curve ripples about the 
ideal straight line in a sinusoid of varying envelope. The ripples, of 
course, increase in frequency as a is diminished but since the exponent 
m + 1 is always at least 2 they flatten out so rapidly that dB/du 
approaches constancy nevertheless. We may also observe that, 
although the absolute time of delay increases indefinitely as a de- 
creases, it varies only as 1/a, whereas the precision of approximation 
can be made indefinitely great by choosing m large. 

Filters of Other Types 

While the preceding analysis has been restricted formally to low- 
pass filters, its application to filters of other transmission types is a 
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simple matter. We need merely repeat, in each transmission or 
transition interval, the rules for frequency spacing we have already 
developed. 

The method can be understood from the study of a linear phase 
shift high-pass filter. Since linear phase shift demands arithmetic 
spacing of critical frequencies in the transmission band, it is clear that 
the desired characteristic cannot be obtained over the complete 
transmission band of the high-pass filter with a finite network. This 
difficulty will, however, be ignored for the moment. A method of 
modifying the analysis to give a finite filter having a linear phase 
characteristic in a finite interval above the cut-off will be described 
later. 

We begin, then, by assigning to the transmission band of the 
structure an infinite, evenly spaced chain of critical frequencies, as in 
(13). The group of transition factors must evidently simulate the 
reciprocal of this value in the attenuation range, if the condition of 
high loss is to be realized: while in the transmission band, they must 
simulate the P of our earlier analysis if we are to obtain a linear phase 
characteristic. These conditions would be met by using for our 
transition function the reciprocal of (19), using for the c's the same 
values as before. Such a group, however, is not physically realizable 
as part of a high-pass transfer constant, since the rational factors 
would occur outside the theoretical transmission band. If, however, 
we transfer the factor (1 - p) from (13) to (14), and seek a new Q 
whose values will take the reciprocals of the old, thus altered, we 
obtain a series identical with (17) except for a change of sign in every 
term but \ log (1 — p). This change, however, reverses the sign of 
the right-hand members of (21), and therefore changes the sign of 
each c. The new solution then is the same as the original solution 
except that the factors occur in reverse order on the frequency scale. 
They can thus appropriately be combined with the remaining portion 
of the high-pass transfer constant expression. 

A linear phase shift band-pass filter can be constructed similarly. 
The groups of transition factors associated with the upper and lower 
cut-offs should follow the arrangements prescribed, respectively, for 
low-pass and high-pass filters. An illustration will be found in 
Part II. 

The Impedance Property 

It will be recalled that the problem of approximating the ideal 
transmission characteristics for each type of filter was solved only on 
the assumption that the image impedance could be adjusted to a 
nearly uniform value in the practical transmitting band. We can 
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now quickly show how the desired impedance is to be obtained. It is 
merely necessary to observe that for any filter there exists a comple- 
mentary structure with the same arrangement of critical frequencies, 
but having the transmitting and attenuating bands interchanged. 
The complementary structure is found by replacing the Zy branch of 
the original lattice by the inverse impedance Z/ = R'/Zy. When 
these are substituted in (1) and (2), the new transfer constant, 0', is 
found to be 

Thus, for any filter, the problem of adjusting the image impedance to 
the constant R In its transmitting band is the same as the problem of 
adjusting tanh 0/2 to 1 in the attenuating band of the complementary 
filter. The latter problem, however, is merely a restatement of our 
original requirement of high loss in attenuating bands and has already 
been studied for various types of filters. 

It follows from this relation that the transfer constant expressions 
which are appropriate for low-pass and band-pass filters furnish 
suitable solutions for the impedance problem in high-pass and band- 
elimination structures. We might also use our high-pass transfer 
constant expression as a low-pass impedance characteristic except for 
the difficulty previously mentioned that it requires an infinite number 
of elements. This difficulty can be avoided, however, by observing 
that by interchanging coils and condensers we can convert any low- 
pass filter into a high-pass structure having the same characteristics 
on a reciprocal frequency scale. We can thus use the finite low-pass 
solutions to obtain the required finite high-pass filter having high 
attenuation. For example, if we begin with a low-pass filter having 
three evenly spaced critical frequencies and a half spaced cut-off the 
resulting critical frequencies (including the cut-off) are in the ratio 

The device of inverting the frequency scale is, of course, not avail- 
able to produce a finite high-pass filter having linear phase shift 
throughout its transmission band since the linear phase property is 
thereby destroyed. It can be used, however, to produce a finite 
filter having linear phase shift for a limited region above its cut-off. 

and the new image impedance, Z/, 

1:7/6: 7/4 ; 7/2. 
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To see this, it is merely necessary to observe that the set of rational 
factors appearing in the low-pass image impedance expression de- 
scribed in the preceding paragraph must approximate the reciprocal 
of the cut-off factor at lower frequencies. We can therefore use such 
a set of factors to replace the upper cut-off factor of a band-pass filter, 
obtaining thereby a high-pass structure which approximates the ideal 
characteristics over a portion of the transmitting band. 

If the cut-off factor of the low-pass filter transfer constant be 
similarly replaced by rational factors, there results an all-pass "delay 
network" having a constant impedance and a phase characteristic 
linear below the original cut-off frequency. This network is of par- 
ticular interest for its relation to the classic problem of the simulation 
of a smooth line. As it stands, the network evidently simulates an 
ideal dissipationless line. To include the effects of dissipation we 
need merely add resistance and leakance to the coils and condensers in 
the proportions in which they occur in the actual line. 

Part II—Design of Practical Filters 

Thus far we have been interested primarily in demonstrating that 
an indefinitely close approximation to the ideal characteristics could be 
obtained when all restrictions with respect to economy of elements 
were removed. In practical designs, on the other hand, we wish to 
approximate the ideal characteristics only within moderate limits, and 
our interest centers upon the choice of the most economical network 
which will prove satisfactory. We must now reappraise the theory 
from this point of view. 

One question which must be examined is that of determining values 
for m and a which will result in the most economical network meeting 
a prescribed standard of performance. A second is concerned with 
the possibility of changing the nature of the approximation with 
respect either to the frequency, or to the relative emphasis laid upon 
the phase and attenuation characteristics. In many practical designs 
such changes can be obtained by slight modifications of the theoretical 
design parameters and lead to corresponding economies in the use of 
elements. In investigating both questions we must remember that 
since a is no longer necessarily small, as it was in the theoretical 
analysis, the frequency interval actually occupied by the transition 
factors may be appreciable. Consequently it becomes important to 
investigate the behavior of the network in this part of the frequency 
range with more care than was hitherto necessary. 

The variety of possible design requirements precludes the possibility 
of a thorough analytic treatment of these questions. The choice of 
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the most economical network meeting given requirements consequently 
cannot always be made without trial. The procedure may, however, 
be considerably facilitated by a study of the curves and illustrative 
material given in the sections which follow. The first two sections 
show the quantitative relations to be expected when the theoretical 
design parameters are adhered to strictly. The remaining sections 
indicate modifications obtainable by making slight changes in the 
theoretical parameters. 

Approximate Compulation of Network Characteristics 

When the frequency in which we are interested is not too close to 
the transition interval, an approximate determination of the phase and 
attenuation characteristic is most easily made from (23) and (24). 
The yl's appearing in these expressions are shown in the accompanying 
table.19 In addition to Am+i the table also supplies values of Am+2 

TABLE II 

Coefficients in Series Expansions for Approximation Errors in Phase and 
Attenuation Characteristics 

VI 1 2 3 4 5 

  
Am |-2  
Am+3  

-0.063 
-0.063 
-0.0078 

-0.044 
+0.00011 
+0.050 

-0.051 
+0.10 
-0.047 

-0.084 
+0.41 
-1.07 

-0.17 
+ 1.52 
-7.60 

and Am+3, for use if additional terms in the general expression (22) 
are desired. 

A study of equations (23) and (24) shows that, aside from the 
constant factor Am+i, each expression can be resolved into two factors 
by means of which the contributions of the various design parameters 
can be somewhat segregated. The first factor, Q!m+1, is chiefly im- 
portant in determining the effect of various choices of a and m on 

the approximation error, while the factor 

expresses the variation of the network characteristics with frequency. 
In order to facilitate design work the quantity 

- 20 'ogio (q _ jyn+1 + +/)"'+! ] 

19 In preparing the table, coefficients of corresponding terms in the series expan- 
sions for (17) and (20) have been combined, so that the coefficients as given represent 
the accumulated errors of both approximations. 

(T^Tr 

1 
(1 +/)m+1 
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Fig. 3—Chart for loss computations. 

has been computed for values of / > 1 and is shown plotted for various 
w's in Fig. 3. The approximate attenuation, in db, for any given 
values of a and m can be obtained from the chart by adding 
20(w + 1) logm 1/« to the appropriate curve. 

A similar chart for the phase characteristic is furnished by Fig. 4, 
. iso^wr 1 , 1 1 

which represents the quantity   I jj ZTfyHi + (i +/)"'+! J ' 

The values given are arithmetic, although the scale is logarithmic. 
The approximate envelope of the ripple in the phase characteristic 
about the ideal straight line can therefore be found, in degrees, by 
multiplying the chart values by q:"'+1. 

In using these charts it should be remembered that they are based 
upon the approximate formulae (23) and (24) which fail in the vicinity 
of the transition interval. The results, therefore, should always be 
checked by an exact computation.20 It should also be observed that 
in complicated filters the numerical departure of tanh 0/2 from its 
ideal value in most frequency ranges is very small. The effects of 
slight errors in calculations or of small deliberate variations in the 

20 See, for example, the comparisons in Figs. 11 and 12. 
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Fig. 4.—Chart for phase computations. 

design parameters, may therefore be correspondingly important.21 

Since slight adjustments in the design parameters will normally occur, 
these charts are chiefly of value in making preliminary estimates. 

It is apparent that the approximation error at a given frequency 
can be diminished either by increasing m or reducing a. Element for 
element, an increase in m is much the more powerful method. Since 
the total number of elements in the network is nearly proportional to 

21 A simple example is furnished by the choice of the numerical constant multiply- 
ing tanh 0/2 as a whole. It will be remembered that the constant was left undeter- 
mined in the solution for the c's. In the original equation (14) it was chosen to give 
the best characteristics in the neighborhood of / = 0. In preparing Figs. 3 and 4, 
on the other hand, it was chosen with reference to the characteristics near f = ^, 
since the error expression used in these figures vanishes at that point. The two condi- 
tions are very nearly equivalent; as we can see, for the half-spaced cut-off solution at 
least, by means of Wallis' theorem. Since they are not identical, however, a change 
from one to the other may produce a relatively large, though practically unimportant, 
effect at extreme frequencies. 
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w+(l/a) it would therefore appear that the most economical 
structure meeting given requirements will be obtained by using a large 
m in combination with a large a. This procedure is, however, re- 
stricted by two considerations. The first is chiefly theoretical. Since 
the series we have been using is merely asymptotic, the successive 
terms obtained by choosing progressively higher iris eventually grow 
larger. For ordinary values of a, however, the value of m at which 
the series begins to diverge lies beyond the range of practical interest. 
A more important limitation is the fact that as we increase the number 
of transition factors, the width of the transition interval, as measured 
in terms of a, also increases. Thus, the spread between the last uni- 
formly spaced critical frequency and the cut-off, which is a/2 for w = 1 
and about 2a for m = 3, has risen to more than 3.5a for m = 5. In 
each case a certain additional allowance is of course required for the 
region of rising attenuation beyond the cut-off. When the transition 
interval is fixed on an absolute frequency scale, therefore, the per- 
missible values of m will depend upon the choice of a. Unless the 
transition interval is unusually broad only low values of m will be of 
practical interest. 

Illustrative Characteristics 

The curves shown in Figs. 3 and 4 are not of use in the neighborhood 
of the transition interval. To supplement them, therefore, exact 
computations on a number of typical structures have been made. 
One set was obtained by choosing a = 1/12 and computing the 
characteristics corresponding to various w's. The resulting phase 
characteristics are shown by Fig. 5. Since the departures from 
linearity are too small to be noticeable when the characteristics as a 
whole are drawn, the figure shows only the departures themselves in 
terms of an envelope similar to that used for Fig. 4. The curves are 
drawn approximately as far as the last evenly spaced critical frequency 
which marks the practical limit of the range within which a high degree 
of phase linearity is to be expected. Since the curves vary rapidly 
in this vicinity, however, the fact that they are merely envelopes is 
important in determining the exact performance of the structure. 
Curves of the phase characteristics in the transition interval will be 
given later. 

The attenuation characteristics are shown by Fig. 6. As m is 
increased, the cut-off moves to successively higher frequencies because 
of the progressively broader intervals consumed by the transition 
factors. Once past the cut-off, however, the curves for large values of 
m rise more rapidly and quickly cross the others. 
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A second set of characteristics was obtained by choosing a = 1 /6 
and adding various groups of transition factors in a similar fashion. 
The results are shown by Figs. 7 and 8. The characteristics are drawn 
only for w's between 1 and 3 in this case, since with larger w's the 
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Fig. 9—Low pass filter with a = 1/4. Envelope of phase departures. 

transition interval becomes disproportionately wide in comparison 
with the practical transmission range. Still a third set, corresponding 
to a = 1/4 and m = 1 is shown by Figs. 9 and 10. 
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Fig. 10—Low pass filter with a = 1/4. Attenuation. 

As an illustration of the accuracy to be expected from the approxi- 
mate method, a comparison between the results obtained by this 
method and the exact characteristics is shown in Figs. 11 and 12 for 
the cases = 1 and m = 2 of Figs. 5 and 6. On the logarithmic 
scales used for the figures, the curves appear to be in good agreement 
almost up to the transition interval. The actual numerical de- 
partures in the vicinity of that interval, however, are quite large. 
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Image Impedance Characteristics 

In virtue of the relationship previously developed between the 
image impedance of a given filter and the transfer constant of its 
complement, the curves just given might also be used to determine 
the impedance characteristic. However, the precision required in the 
approximation of Z / to in practical filter design is much less than 
that required in the approximation of tanh 0/2 to unity. A satis- 
factory characteristic can therefore be obtained with a much smaller 
number of critical frequencies. In a low-pass filter, for example, one 
or two impedance controlling frequencies is usually sufficient. With 
such a small number of critical frequencies the analytical machinery 
we have set up is unnecessarily cumbersome. The problem can be 
solved more effectively by simple cut and try methods, or by the 
methods advanced by Cauer 7 and Zobel.22 For the sake of complete- 
ness, however, several illustrative characteristics are given in Fig, 13. 
They correspond to the choice of impedance controlling frequencies 
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Fig. 13—Typical low pass filter image impedance characteristics. 

7 "Siebschaltungen," loc. cit. 22This Journal, Apr. 1931, p. 284. Zobel's work is not stated in terms of the 
lattice parameters. A simple m-type termination (of low-pass or high-pass type) 
can be identified with a lattice image impedance having one impedance controlling 
frequency while an mm'-type termination can be identified with a lattice impedance 
having two such frequencies. The numerical values he gives can therefore readily be 
adapted to the lattice design problem. 

ni 
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shown in Table III. An illustration of the results obtainable with the 
present method using a large number of critical frequencies, is furnished 
by Fig. 14, since the curve can evidently be interpreted as a representa- 
tion oi ZjjR for a certain high-pass filter. 

TABLE III 
Impedance Controlling Frequencies Corresponding to Characteristics 

of Fig. 13 

I II III 

1.250/, 1.048/, 1.013/, 
1.448/, 1.096/, 

1.584 /, 

t.ooo 
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Fig. 14—Tanh 0/2 for low pass filter with m = 2, a = 1/12. 

Weighting the Approximation 

In the limiting case in which a is very small while m is fixed, the 
methods we have followed give the best obtainable results with respect 
to both attenuation and phase, for the errors in both characteristics 
depend upon higher order terms and become negligible as a approaches 
zero. In a practical design, for which a is finite, on the other hand, 
it will frequently be desirable to make slight adjustments in such 
parameters as the transition factors or the constant multiplier of the 
tanh 6/2 expression in order to take some account of the higher order 
terms. The effect may be either to improve both the phase and 
attenuation characteristics or, more usually, to improve one at the 
expense of the other. 

The general nature of the problem is illustrated by Fig. 14, which 

/ 

/ 
- TANH | 
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represents a sketch of tanh 0/2 corresponding to the m = 2 curve of 
Fig. 6. It will be seen that the curve rises monotonically toward the 
line unity, at which 0 = co. What we should evidently like to obtain 
by slight alterations in the design parameters is a curve which rises 
more rapidly, or perhaps one which ripples about unity. It is also 
evident that the curve approximates unity so closely that even slight 
adjustments may produce a radical effect. To take the simplest 
possibility, if the constant multiplier of tanh 0/2 is slightly increased, 
so that the curve crosses unity at a finite frequency, the appearance of 
the resulting attenuation characteristic will be greatly altered. The 
net gain in the general level of attenuation secured, however, will be 
not more than 6 db. Similar remarks might be made with respect to 
the phase characteristic. 

The relation between the phase and attenuation characteristics 
where such adjustments are made can be illustrated most easily by 
reference to the elementary half-spaced cut-off solution for the transi- 
tion factors. It will be recalled that this solution was obtained by 
equating the coefficients of the first powers of 1/(1 —/) and 1/(1 +/) 
in (17) and (20). The approximation error thus depends chiefly upon 
the succeeding term involving 1/(1 —/) and 1/(1 +/) to the second 
power. A study of the expression shows that the error makes Q too 
small in both the transmitting and attenuating ranges. If the phase 
characteristic is the more important this error can be partly com- 
pensated by slightly increasing the normal half-space between the 
cut-off and the preceding critical frequency. On the other hand, the 
attenuation will be improved if the interval between the cut-off and 
the preceding critical frequency is decreased. To a more limited 
extent, both characteristics can be improved by increasing the constant 
factor which multiplies tanh 0/2 as a whole. 

A similar study might be made of the other groups of transition 
factors, although the discussion would naturally become more com- 
plicated. In general it appears, as with the half-spaced cut-off 
solution, that the attenuation characteristic will be improved by a 
slight decrease in the spacings of the transition factors, while the phase 
characteristic will be improved if they are slightly increased. It 
should be remarked, however, that as the network becomes more 
complicated, either by a reduction in a or an increase in m, the de- 
sirable modifications in the theoretical spacings are reduced. This 
becomes evident if it is recalled that the transition factor spacings are 
proportional to a while the error is roughly proportional to a"*4"1. 
It is therefore to be expected that the appropriate modifications in the 
spacings between transition frequencies will be of the order of magni- 
tude of a'" times their original values. 
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The relationship between the phase and attenuation characteristics 
can be seen in another light if we observe that the improvement in 
attenuation which comes from the use of several transition factors is 
due essentially to a progressive decrease in the interval between 
critical frequencies as the cut-off is approached. In the final solution, 
for example, the intervals between critical frequencies are initially 
almost equal to the constant interval a. Thus in this solution, the 
interval between /a and Ja+i is 0.992q! and that between /a+i and 
Ja+z is 0.945a. As the cut-off is approached, however, the interval 
gradually decreases to about 0.2a. In the transition interval, con- 
sequently, the phase characteristic is originally almost linear and 
curves upward sharply near the cut-off. Thus if the phase requirement 
is not severe we can consider that the first part of the transition region 
falls within the practical transmitting band, thereby securing a better 
attenuation characteristic than would be possible if the spacing of 
critical frequencies in the transmitting band were strictly uniform. 
A sketch of the phase characteristics through the transition interval 
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Fig. 15—Transfer constant phase shift in the transition interval; a = 1/12. 

for the networks corresponding to Figs. 5 and 6 is shown by Fig. 15. 
The last evenly spaced critical frequency falls at 11a. 

In the extreme case when no phase requirement is imposed, it is 
reasonable to expect that the best attenuation characteristic will be 
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obtained if the progressive reduction in the spacing between critical 
frequencies extends over the complete transmission band, so that the 
phase characteristic should resemble that of familiar ladder type filter 
structures by becoming continually steeper as the cut-off is approached. 
The exact arrangement will, however, depend upon the desired type 
of best approximation to perfect suppression. If the approximation is 
to be best at frequencies most remote from the cut-off, the critical 
frequencies must be evenly spaced along an ordinary arc sine curve. 
In the Tschebycheffian type of approximations studied by Cauer, on 
the other hand, the spacing must be uniform along the arc of a certain 
sn function. 

Design of a Band-Pass Filter 

To illustrate the manner in which small modifications of the theo- 
retical frequency spacings may be employed to control the relative 
emphasis placed on the phase and attenuation characteristics, we may 
consider the design of a practical band-pass filter. Suppose that the 
practical transmitting band is the 2,250-cycle interval between 11,375 
and 13,625 c.p.s., in which the approximation of the phase charac- 
teristic to linearity is specified by the requirement that dB/du, the so- 
called "delay," deviate from its average value by less than 0.1 milli- 
second. The transition intervals are 500 c.p.s. each, beyond which 
the loss is to be not less than 50 db. 

The comparatively liberal tolerances suggest that the approximation 
furnished by w = 1 will be adequate. We notice that we can fit 10 
uniform intervals of 250 c.p.s. between 11,250 and 13,750 c.p.s., which 
locates the half-spaced cut-offs at 11,125 and 13,875 c.p.s. respectively. 
When the characteristics corresponding to this design are checked, it is 
found that the phase characteristic is rather better than required, 
while the loss characteristic is weak. 

We then turn to the solution with m = 2, making a compensating 
reduction in the number of uniform intervals. The critical frequency 
allocation for this case is shown in Table IV. This arrangement meets 

TABLE IV 
Critical Frequency Allocation for Linear Phase Shift Band-Pass Filter 

m = 1 vi = 2 Modified Limits of Required 
Linear Region 

11,125 
11,250 
11,500 

11,198 
11,289 
11,500 

11,174 
11,265 
11,500 11,375 

13,500 
13,750 
13,875 

13,500 
13,711 
13,802 

13,500 
13,735 
13,826 

13,625 
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the loss requirement with a large margin of safety, but the phase 
shift curve departs seriously from linearity near the last useful fre- 
quencies, which fall in the shortened intervals of the transition factors. 

With these two attempts as guides, a compromise frequency pattern 
which exactly suits the conditions of the problem is readily arrived at. 
In contrast to the transition factor spacings of O.SSSa and 0.353a, 
as shown by the solution for m = 2, those actually adopted are 0.94a 
and 0.375a so as to make the first transition spacing more nearly 
uniform with those in the pass-band. The indicated frequency 
pattern is shown in the third column of the table. 

As the values of these transition factors near the band edges are 
somewhat too large they lead to larger undulations of the phase 
characteristic in those regions than near the band center. The 
approximations can be rendered more uniform throughout the band 
without serious consequence to the loss characteristic by multiplying 
the tangent expression by a constant slightly smaller than unity. In 
this case the value chosen was = 0.9975. 

The final "delay" and loss characteristics, corrected for the effects 
of dissipation, are exhibited by Figs. 16 and 17. A noteworthy result 
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of modifying the theoretical spacings for the transition factors has 
been to introduce peaks of loss near the band edges. The shortened 
intervals adjoining the cut-offs produce tanh 0/2 curves which rise 
rapidly beyond these points to maxima slightly greater than unity, 
instead of approaching unity monotonically. 

Having thus located the critical frequencies, we may readily com- 
plete the design of the filter in lattice form. 

The formulation of the transfer-constant expression results in 

tanh ~ = Ki 
I-i-i 

1 - t 1--^ 1-5 
/62 

i-£ 
/l2 i-£ 

/32 /92/\ /ir 

where /„ and /& represent the cut-offs, and the other /'s intervening 
critical frequencies in order of magnitude, as shown by Table IV. 

A suitable form for the image impedance must next be obtained and 
since it is normally determined by requirements with which we are 
not now concerned, we will adopt the simplest possible expression, 
namely 

Z, = K, Vi -/v# 
if 

where Kz is determined from the condition that Z i = 600 ohms when 
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f = Via/ft. The impedance functions Zx and Zv are now readily 
found by means of (1) and (2), and with the help of Foster's formula 
the element values can be obtained. These are shown in Fig. 18. 

1-4 1-6 

La C3 C4 Cs Ce 

HO C8 
Cq 

Ll? Cio 
C|| 

f-13 
C|3 

Li = 0.0675 mh. 
Li = 0.6529 mh. 
Li = 0.1958 mh. 
Li = 0.1770 mh. 
Li = 0.1330 mh. 
Lt = 0.0404 mh. 
Li = 35.66 mh. 
Li = 0.1620 mh. 
Li = 0.2021 mh. 
Lio = 1.335 mh. 
Ln = 0.1097 mh. 
Ln = 0.1089 mh. 
Lis = 35.86 mh. 

Fig. 18- 

C\ = 3.035 mf. 
Ci = 0.2810 mf. 
Cs = 0.8622 mf. 
Ci = 0.8801 mf. 
C6 = 1.085 mf. 
Ci = 3.325 mf. 
Ci = 0.0046 mf. 
Ci = 1.182 mf. 
Ci = 0.8703 mf. 
Cio = 0.1214 mf. 
Cn = 0.9112 mf. 
C12 = 1.276 mf. 
Ci, = 0.0046 mf. 

-Band pass filter. 

This example illustrates the way in which the analysis may be 
applied to a typical problem in network design. The practical design 
would not ordinarily be complete at this point, however, since, as was 
mentioned previously, it is seldom desirable actually to construct the 
network as a single symmetrical lattice. Improved stability with 
respect to variations of the elements from their design values is 
obtained if the lattice is resolved into its components, that is, the 
elementary lattice sections which when operated in tandem have the 
same transmission properties. This question is discussed in a recent 
paper.3 Furthermore, unbalanced structures equivalent to the sym- 
metrical lattice but employing fewer elements are known,23 and expense 
can usually be reduced by resorting to one of these. 

s H. W. Bode, loc. cit. It may be interesting to observe that in the terminology 
of that paper the elementary constituents of linear phase shift filters are usually 
complex m sections. 23 A linear phase shift lattice filter cannot, of course, be constructed as a sequence 
of 11 or T sections, but equivalences in generalized bridged-T configurations exist. 
General equivalences in configurations employing ideal transformers are familiar in 
the literature. See, for example, Cauer, loc. cit., or Jaumann, E. N. T., July, 1932, 
p. 243. 
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Part III—Filters with Linear Phase Shift 
Through the Cut-off 

It was the conclusion of the theoretical discussion that any desired 
approximation to ideal filter characteristics may be obtained from a 
finite network, so long as a finite transition interval separates trans- 
mitting from attenuating bands. The transition interval can be 
taken small at pleasure, but very small transition intervals are associ- 
ated with networks of many natural frequencies and numerous 
elements. We have already seen how considerable economies in 
meeting a given attenuation requirement could be obtained if the phase 
requirement were subordinated or removed entirely. We now con- 
sider the contrary case, in which major emphasis is placed upon the 
phase characteristic of the filter. Filters of this type are of practical 
interest in picture transmission systems since instruments used in the 
reproduction of images seem to be much more sensitive to the effects 
of phase distortion than the ear. The selectivity required from filters 
used in such systems is comparatively modest, but phase linearity is 
required not only in the practical transmission band but also through 
the transition interval into the region of rising attenuation. 

In one important particular the present problem differs from those 
previously considered. In the present analysis we can no longer 
regard the adjustment of Z/ and the adjustment of 6 as independent 
problems. On the contrary, in the attenuating region the contribution 
of 0 to the phase shift is constant and we must therefore rely upon 
reflection effects to maintain the desired linear characteristic. More- 
over, near the cut-off 0 must be very carefully adjusted with respect 
to Z/ in order that the contributions to the phase shift from reflection 
and interaction effects may preserve the linearity through the transition 
band also. The added restrictions imposed by the extension of the 
phase requirement require a revision of the frequency spacings already 
found, and set limits upon the approximation to ideal characteristics 
obtainable from reactive networks of reasonable complexity. 

Use of Reflection Effects to Produce Linear Phase 
In the practical transmission band, Z / can be adjusted to approxi- 

mate R sufficiently closely to make reflection and interaction effects 
negligible. Therefore, in this range the total insertion phase is the 
same as the transfer constant phase, and, as before, is to be obtained 
from a chain of uniformly spaced critical frequencies in tanh 0/2. In 
the practical attenuating band, on the other hand, we find that the 
imaginary part of Q is either 0 or tt, while interaction effects can be 
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ignored if we assume the loss to be reasonably high. The variation of 
the phase shift with frequency must therefore be attributed to re- 
flection effects, which we can write as 

where 0r is the sum of the reflection effects at the two ends of the 
structure. 

Since Z/ is reactive in the attenuating band, the angle of the 
denominator in this equation is ± 7r/2, while that of the numerator is 
2 arctan ZijiR. Thus 

Except for the constant term, which we will consider presently, this is 
a function of precisely the type we have been considering. Hence if 
the impedance controlling factors are spaced at the same uniform 
interval that was used in the pass-band, the phase slope will be constant 
and equal in both bands. 

The transition factors—or rather, factor, since clearly we have to 
rule out the solutions for m > 1—must be determined so that these 
linear parts of the phase characteristic are joined by a chord of the 
same slope. If we suppose the transition interval to be bounded by 
the last uniformly spaced frequencies of the transfer constant and 
image impedance chains, and to contain only the cut-off factor, it is 
easily shown that it must include a net change in phase of 37r/2 radians. 
The interval must therefore contain 3/2 uniform spaces if the average 
slope is to be correct. Considerations of symmetry to be described 
later require that the cut-off be the center of the interval, which thus 
comprises two three-quarter spaces. The behavior of the several 
components of the total insertion phase is exhibited by Fig. 19, in 
which B, Br, and B, refer respectively to the phase shifts contributed 
by the transfer constant, by reflection effects, and by the interaction 
factor. The mutually annulling discontinuities of 7r/2 radians in B, 
and BT at the cut-off are noteworthy. 

The fact that this choice of parameters is sufficient as well as 
necessary to obtain the desired linearity of phase shift is not easily 
shown analytically. It can, however, be verified by direct computa- 

Br = T 2 + 2 arctan ^ (25) 

Phase Characteristics in Transition Intervals 
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Fig. 19—Transfer, reflection, and interaction phase in the transition interval. 

tion. For this purpose the customary resolution of the total insertion 
loss into transfer constant, reflections, and interaction is not very useful 
because of the indeterminacies found at the cut-off. This difficulty 
is avoided by expressing Z / and Q in terms of the lattice impedances, 
in which event 

1 + 
C = 

ZXZ, 
R2 

I ZjC . Zy 
^ R ^ R 

Zx 
R 

Zy 
R 

(26) 

where 7 is the total insertion loss. 
If iXx and iXy be written for Zx and Zy, the insertion loss and phase 

shift are given by 
XxXv - R2 

tan 3^ = 

and 
R{Xx + X,) 

c 7 = 
VCR2 + X2){R2 + X,2) 

R{Xx - Xy) 

(27) 

(28) 

Equation (27) can be used to confirm our previous choice of the 
location of the cut-off. At this frequency one of the two reactances, 
Xz and Xy, will be either resonant or anti-resonant. It is evident 
from (27) that if the phase shift is to have the desired value, 
{n + 3/4) tt, at the assumed cut-off the non-resonant impedance must 
have the magnitude R. That this value is approximated follows from 
the symmetrical spacing of transfer constant and image impedance 
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controlling frequencies with respect to the cut-off. On both sides of 
the transition interval, in the regions of uniform spacing of poles and 
zeros, the non-resonant reactance approximates R tan ivfjla or 
R cot irf12a and at the middle of each space, where irf/la is an odd 
multiple of 7r/4, is numerically equal to R. Hence, by symmetry, 
this must also be the value approximated at the middle of the non- 
uniform interval between the two chains, i.e., at the cut-off frequency. 

The argument of Part I shows that the three-quarter spacing 
between the cut-off and the chain of transfer constant controlling 
factors results in poorer approximations to phase linearity in the trans- 
mission band and to complete suppression in the attenuating band 
than would the half-spaced cut-off solution. The three-quarter 
spacing between the cut-off and the chain of impedance controlling 
frequencies also leads to less perfect uniformity of the impedance 
characteristic. This is the price we pay for the larger range of phase 
linearity. Nevertheless, the error of approximation for both 0 and 
Zi if we follow the sense of equation (22) can be shown to be 

small as we please by a suitable choice of a.24 So far as the phase and 
impedance characteristics are concerned, experience shows that satis- 
factory precision can be obtained with a moderate value of a. The 
situation with respect to the attenuation characteristic is more serious. 
As we have already seen, the best approximation in the attenuating 
band is obtained by a cut-off spacing which is, if anything, slightly 
less than, rather than slightly greater than, a/2. Furthermore, it 
appears from the above formula that with the three-quarter cut-off 
spacing, the approximation error at a given frequency in the attenu- 
ating band is proportional only to the first power of a. Hence cutting 
a in two, which substantially doubles the number of elements in the 
structure, adds but 6 db to the attenuation at this frequency. It is 
clear that a practical limit is thus set upon the suppression which can 
be provided. 

Since the attenuation of the structure is relatively low, the con- 
tribution of reflection effects to the total loss is correspondingly im- 
portant. A peak of loss occurs at each impedance controlling fre- 
quency, where the lattice impedances are zero or infinite together. 

24 It is not true that the error in dfi/du vanishes with a. However, in the following 
example, which may be taken as typical, the variation of dp/du is still only about 
1 per cent of its average value. 

Nature of the Approximation 

when a is small, and hence can be made as 
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At these frequencies the image impedance changes sign, and therefore 
also the constant term of equation (25). Thus, although the phase 
slope is uniform throughout the attenuating range, the phase charac- 
teristic itself suffers discontinuities of tt radians at each impedance 
controlling frequency. Whether the discontinuity is an increase or a 
decrease of tt radians is not distinguishable for a non-dissipative net- 
work. When parasitic dissipation is taken into account the peaks are 
finite and the phase increases or decreases according as the line- or 
cross-arm of the lattice has the smaller resistance component at the 
peak frequency. The infinite peak at this frequency, and the associ- 
aited abrupt change in phase, can evidently be restored by adding 
additional resistance to the smaller impedance so as to bring the arms 
into balance. 

This observation is of importance in considering the effect of 
dissipation on the phase shift. A counterpart of Mayer's theorem can 
be found which relates the change in phase shift resulting from uniform 
dissipation in the network elements to the slope of the loss curve. 
The formula is 

AB = — ud ^ f 
dco 

where d is the dissipation constant, and where A and B are in nepers 
and radians respectively. In the transition interval, where the slope 
of the loss curve is great, the effect of uniform parasitic dissipation may 
reduce the phase appreciably. This effect can be compensated by 
small modifications in the theoretical frequency spacings, or by the 
introduction of a lumped resistance to balance the bridge at the first 
impedance controlling frequency, according to the plan suggested 
above. 

Example 
To illustrate the performance of this sort of network, we may con- 

sider a low-pass filter containing four evenly spaced critical frequencies 
in the practical transmission band. Subsequent natural frequencies 
will then occur at 4.75q!, 5.5a, 6.5a, etc., according to the rule for three- 
quarter spacing adjacent to the cut-off. We may suppose that the 
requirement for linearity of phase shift does not extend above 7.5a, 
so that the sequence of uniformly spaced impedance controlling fre- 
quencies may be terminated after this point according to the scheme 
proposed in the case of the high-pass filter. In the frequency range of 
interest, we can replace the omitted chain of uniformly spaced fre- 
quencies by a single natural frequency at double spacing. The trans- 
fer constant and image impedance expressions can then be written as: 
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tanh2 = t2; 

1 - 
(2a)2 1 - P 

{iay 

and 
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(7.5a)2 

These equations determine Zx and Zy, the values of which may be 
used in equations (27) and (28) to calculate the performance. This is 
shown by Fig. 20, after dissipative effects have been taken into account. 
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Fig. 20—Performance of a low pass filter having linear phase through the cut-off. 

The approximation of the phase characteristic to linearity has again 
been indicated by exhibiting departures of the slope from the average. 

It is observed that the approximation obtained by the three-quarter 
spacing is as close in the transition interval from 4a to 5.5a as in the 
practical transmitting band below 4a. In practical design problems, 
the phase shift is unlikely to be of interest beyond the first or second 
reflection peak, so that the chain of impedance controlling frequencies 
might be sooner terminated. 
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The loss characteristic reveals that no very high degree of suppression 
is attained. In fact, the loss falls to about 16 db in the trough beyond 
the first reflection peak. So serious a prejudice in favor of the phase 
characteristic would render the design unsuitable for certain engineer- 
ing purposes. There are open, however, several possibilities for in- 
creasing the attenuation. Small modifications in the theoretical 
design parameters of the type which have been described, and in 
particular, slight separations of the theoretically coincident impedance 
controlling frequencies in the two arms of the lattice, enable the loss 
to be somewhat improved without much degradation of the phase 
characteristic. If very much higher attenuation is demanded, it can 
be provided by two simple structures of this type, separated by a 
resistance pad to preserve the reflection effects upon which the phase 
characteristic depends. 

Further possibilities are suggested by combination of two principles 
already developed. It has been observed that a reduction in the 
three-quarter spacing of the cut-off would improve the selectivity of 
the structure but would also unduly increase the slope of the phase 
characteristic in the transition interval. We have also seen, however, 
that the result of uniform dissipation in the network elements is to 
diminish the phase shift in this region. Hence our analysis suggests 
that we may be able to obtain the desired phase characteristic in 
conjunction with the shorter cut-off spacing necessary for high 
selectivity if we deliberately increase the dissipation in the network. 

A concomitant result of such procedure is seen to be an increase in 
the uniform loss in the transmission band, which may not always be 
desirable. Neither does the attempt to provide the phase property 
without sacrifice of high loss through the introduction of uniform 
dissipation represent the most effective attack on the problem. To 
achieve this end, resistances must be associated with the reactive 
elements of the lattice impedances in a precisely determined manner, 
not to be deduced solely from the foregoing theory of reactive net- 
works. The elaboration of the theory to include also resistive im- 
pedance elements serves to determine a filter whose attenuation 
changes continuously from a low, uniform value in the pass-band to an 
arbitrary value in the attenuation bands with linearity of phase shift 
and, in addition, the third ideal property of constant impedance. 
The general theory, however, can more appropriately form the subject 
of a subsequent paper. 

The solution of this problem completes the application of the 
methods for realizing ideal filter properties. We have seen that if all 
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the properties are of importance and the desired approximations close, 
we are led to networks which, while formally simple, involve corre- 
spondingly numerous natural frequencies. On the other hand, if the 
impedance, or the phase, or the loss property be subordinated in 
respect to the others, suitable modification of the analysis allows the 
remaining properties to be realized with simplification of the structure. 



Ultra-Short-Wave Propagation: Mobile Urban Transmission 
Characteristics * 

By C. R. BURROWS, L. E. HUNT and A. DECINO 

This paper, a sequel to one entitled "Ultra-Short-Wave Propagation," 
deals with transmission in urban areas. The experimental data were 
obtained in the City of Boston on a frequency of 34.6 megacycles per 
second by means of a specially equipped motor car for carrying the receiver 
while the transmitter was fixed or vice versa. 

Mass plots of these data show that the mean field strength vanes in- 
versely as the square of the path length which is the same variation as 
would be expected for level terrain in the absence of buildings. The same 
data are presented in the form of field strength contour maps. 

These data are interpreted on the basis of the same physical picture 
which has been established for open country. The present data preclude 
interpretation upon the basis employed by earlier investigators of ultra- 
short-wave propagation through urban areas. 

It is concluded that ultra-short-wave transmission in urban territory 
may be interpreted on the basis of transmission over level land plus the 
wave interference patterns caused by reflections from the buildings and an 
additional attenuation which on the average is independent of the length 
of the transmission path. Also, if the theoretical formula for the propaga- 
tion of ultra-short waves over level terrain is used to calculate the received 
field in urban territory, and the height of the fixed antenna is measured 
from the local roof level instead of from the ground, these data indicate 
that the field strength so calculated would be near to the mean of the actual 
received field strengths in urban territory. 

Introduction 

THIS paper is a sequel to an earlier paper, "Ultra-Short-Wave 
Propagation," 1 which dealt mainly with transmission across 

open country. In the present paper the research has been extended to 
include transmission within a built-up region. Additional problems of 
transmission within urban areas that result from man-made inter- 
ferences, such as the noise produced by automobile ignition systems, 
have been investigated. 

A specially equipped motor car was used as a mobile laboratory for 
most of this work both because of its convenience as a means of ob- 
taining transmission data and because of the importance of mobile 
communication itself. 

This paper describes general characteristics and quantitative meas- 
urements of the received signal on 34.6 megacycles. Transmission 

* Published in Electrical Engineering, January, 1935. 1 J. C. Schelleng, C. R. Burrows and E. B. Ferrell, "Ultra-Short-Wave Propaga- 
tion, Proc. I. R. E., Vol. 21, pp. 427-463, March, 1933 and Bell Sys. Tech. Jour., Vol. 
12, pp. 125-161, April, 1933. 
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phenomena were studied in both directions between a fixed location 
on a building and the mobile laboratory. 

Apparatus 

Both terminals employed vertical half-wave antennas which were 
connected to balanced circuits by means of symmetrical two-wire 
transmission lines. At the fixed locations unloaded antennas were 
used; at the mobile terminal, in order to limit their heights to eight 
feet above the ground and maintain the symmetry the antennas were 
loaded so that their lengths were reduced to about a quarter of a 
wave-length (Fig. 1). 

Fig. 1—Mobile receiving equipment. 

The transmitter consisted of an electric oscillator employing two 
75-watt tubes operating in push-pull relationship. At the fixed 
location, where ample power was available, the transmitter was capable 
of producing one ampere 2 of 100 per cent modulated carrier in its 
antenna without undue distortion. The mobile transmitter which 
used a dynamotor for tube plate supply was capable of producing the 
same current in its antenna. This corresponds to about six decibels 
less power due to the shorter antenna length. 

The measuring set was of the double detection type with balanced 
high-frequency circuits, push-pull first detector and calibrated inter- 

2 The current was measured by a Weston type 425 thermoammeter at the current 
maximum. 
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mediate frequency attenuator.3 This receiving equipment was cali- 
brated in absolute units by a method described in the appendix. 
A mechanism for recording the field strength was attached to the 
measuring set: this consisted of a roll of paper that could be driven 
either by clock-work or by the rear wheels of the truck. The position 
of the recording pen was controlled by the setting of a manually 
operated variable attenuator. Samples of the type of record obtained 
are shown in Figs. 6 and 7. 

Locations 

The radiator for the fixed transmitter was supported by a fifty-foot 
pole above the roof of a seven-story building at the corner of Berkeley 
and Stuart Streets in the business section of Boston. The building is 
about 90 feet high, making the center of the antenna about 130 feet 
above the ground. Thus, the antenna was higher than most of the 
buildings of the city though it was lower than a few buildings nearby. 

The antenna for the fixed receiver was supported by a 20-foot pole 
from the middle of the highest ridge of a gabled building making the 
center of the antenna about 80 feet above the street level. This 
building is located on the side of a slight slope in a fairly heavily 
wooded territory, on Seaverns Street near Center Street. 

Field Strength Measurements 

Transmitter at a Fixed Location 

With a current of one ampere in the half-wave antenna 4 above the 
building at Berkeley and Stuart Streets and with the receiver in the 
truck, field strength measurements were made along various routes 
throughout Boston. These data have been averaged by one-tenth- 
mile intervals when the average radial distance was less than two 
miles and by half-mile intervals for greater average distances. A plot 
of these data is shown in Fig. 2. The points lie approximately on an 
inverse-square-of-distance line with deviations ranging up to about 
± 10 db. An effort has been made to separate the points taken in 
the high building area. These points (shown as open circles) lie 
somewhat below the others with a few particularly low field strengths. 
The lowest field strengths of the business district were measured along 
the shore near Charles River Dam and near State Street on Atlantic 
Avenue. The field strengths in the business district would be expected 
to be lower because of the presence of the high buildings. The lower 

3 The set was similar to that described by Friis and Bruce, Proc. I. R. E., Vol. 14, 
pp. 507-519, August, 1926. ... 

* Since the antenna was in free space in so far as radiation resistance is concerned, 
this corresponds to a radiated power of 73 watts. 
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Fig. 2—Mass plot of field intensities measured at various distances from the 
transmitter at Berkeley and Stuart Streets in Boston. The values corresponding to 
distance less than two miles represent field strengths averaged over one-tenth mile 
intervals, while those for greater distances represent averages over one-half mile 
intervals. The open circles indicate fields in the high building area. Residential 
points outside the city limits have been enclosed in circles. 

residential field strengths correspond to the region beyond Chestnut 
Hill. 

When attempting to interpret the results of the mass plot of Fig. 2 
a natural method would be to assume transmission as in free space 
plus an additional attenuation due to the proximity of the earth and 
obstacles above the earth's surface. The simpler case of transmission 
over level terrain in the absence of obstacles will be considered first. 

It has been experimentally determined that the propagation of 
ultra-short waves over unobstructed paths follows the laws of optics 116 

so that the resultant field is composed of a well-defined reflected wave 
superposed upon a direct wave. Consequently for propagation over 
level terrain, the explanation is as follows (Fig. 3): Energy is propa- 
gated from a transmitter at ^4, at a height of hi above the ground, to a 
receiver at B, at a height of hi above the ground, both directly, as 

1 Loc. cit. 6 C. B. Feldman, "The Optical Behavior of the Ground for Short Radio Waves," 
Proc. I. R. E., Vol. 21, pp. 764-801, June, 1933. 
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represented by r\, and by reflection at G, as represented by rt, the 
distance between transmitter and receiver being represented by d. 
For the practical case where hi and ^2 are small compared with d 
the reflected wave impinges upon the ground at nearly grazing in- 
cidence, so that a negative reflection coefficient the magnitude of 
which is unity 6 for ordinary ground (not water) is obtained. This 

?777777777777777777777777Z77777777777777777ti/, 

Fig. 3. 

results in the field at B being the difference between two vectors of 
approximately equal magnitude and differing in phase by an amount 
corresponding to the difference in path lengths, and r\. For the 
case under consideration, 

r-i — ri — 2hih*ld, (1) 

and the angle between the vectors is 

27r(r2 — ri)/X = ^TvhihijXd. (2) 
8 The magnitude is more exactly 1 — 2e(Ai + h^jd^e — 1 for vertical polarization 

and 1 — 2{h\ + h^ld^e — 1 for horizontal polarization, making the corresponding 
values for the received fields, 

and 

Jjh, + htfK 
(e - IHirWW 

M^r)V1 + 
(/u + />2)2X2 

(e - l)47r2A1
2A2

s 

(a) 

(ft) 

respectively, instead of as In equation (3). When the lower of the two antennas is 
more than a couple of wave-lengths off the ground, the radicals are substantially 
unity. For the case under consideration it would be more accurate to refer to ex- 
pression (a) as the theoretical formula but lack of knowledge of the magnitude of 
the dielectric constant and antenna heights that apply would introduce unnecessary 
uncertainty if the results were referred to this formula. It might be remarked that 
neglecting the presence of buildings and referring all heights to the local street level 
the radical represents an increase of 7-12 db for vertical polarization in the cases 
under consideration. 
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Except in the immediate proximity of the transmitter this angle is 
small and the resultant field is 

E = Eoi^irhihi/Xd), (3) 

where Eo is the free space field. Since 7 

& = (4) \a 
the resultant field becomes 

E = 2407r2/^1/i2/X2d2. (5) 

Equation (5) shows that the field over level terrain is inversely pro- 
portional to the square of the distance from the source.8 

Data presented in Fig. 8 of reference 1 show that at a frequency of 
69 megacycles per second the field strength variation with distance 
follows approximately the inverse-square relationship for a range of 
from two to ninety kilometers.9 In fact, the best straight line through 
these data agrees with the numerical values obtained from equation (5) 
well within the accuracy of the experimental data. Experiments 
designed to test the validity of this equation now are being conducted 
at Deal, New Jersey and data obtained to date confirm it both as to 
absolute value and variation with terminal heights and wave-length 
for horizontal polarization within the range 2 < hi < 25, 2 < h^. <25, 
2<X<17, d = 9,420 and 26,300, all measured in meters. The 
experimental confirmation of this formula for these distances indicates 
that the effect of the earth's curvature is secondary to the negative 
reflection effect upon which this formula is based. This might be 
expected in view of the fact that both diffraction and refraction tend 
to mitigate the additional attenuation that would be caused by re- 
flection from a plane tangent to the earth's surface at the point of 
geometric reflection. 

7 If / is in amperes, d in meters, and H the effective height of the antenna, and X 
the wave-length in the same units, Eq is given in volts per meter. 8 Since distance appears in this equation only as a factor and not as an exponent, 
the reduction with distance of the field strength of ultra-short waves over level 
terrain is independent of wave-length, polarization, dielectric constant, etc., as all 
of these quantities cancel in the ratio of the field strength at one point to that at 
another. The absolute magnitude of the field strength is proportional to the fre- 
quency for the same radiated power and antenna heights. If the antenna heights are 
sufficiently low, the field is also dependent upon the polarization and ground constants 
as indicated by expressions {a) and {b) of footnote 6. 9 While undoubtedly at the greater distances the field suffers additional attenuation 
above that shown by equation (5) due to the curvature of the earth, such additional 
attenuation evidently takes place at distances beyond those employed in any of the 
authors' experiments. 
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When the propagation is through built-up areas instead of over level 
terrain the condition is more complicated. Even here, however, for 
terminals well above the tops of buildings, theoretical considerations 1 

indicate that the same explanation of direct and reflected waves is 
valid. Data presented by Jones 10 may be used as a verification for 
this explanation even for transmission over buildings. Fig. 11 of 
his paper shows that for heights between 170 and 1,500 feet the field 
is proportional to the height in accordance with equation (5). When 
the terminals are lowered within the building region, the field should 
decrease more rapidly than proportionally with the height above the 
ground. In fact, data presented in Fig. 4 indicate that with one 
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Fig. 4—Variation of field received at Berkeley and Stuart Streets with antenna 
height. Curve A shows the variation with height above the roof while Curve B 
shows the variation with height above the ground. The slope of the broken line 
indicates a linear relationship between field and height. 

1 Loc. cit. 10 L. F. Jones, "A Study of the Propagation of Wave-lengths between Three and 
Eight Meters," Proc. I. R. E., Vol. 21, pp. 439-486, March, 1933. 
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terminal above a flat roof that was approximately the same height as 
other nearby flat roofed buildings, the field strength is more nearly 
proportional to the height above the roof than to the height above the 
ground. When the terminals are lowered below the average building 
height additional complications are introduced. While this is some- 
what difficult to picture because of the irregularity of the surface 
bounding the transmitting medium 11 the main outline seems simple 
enough. Above the building level there is a tendency for the field to 
follow the simple rules that hold for transmission over level country. 
In general the field strength actually received in the street would be 
proportional to the field strength overhead but of smaller amplitude 
since it is a product of scattering. This does not imply that the street 
signal comes down vertically; it probably is the result of scattering 
from points lying in a fairly large zone about the receiver and consists 
of a multiplicity of signals traveling in inclined directions. 

Returning now to the present data on the propagation of ultra- 
short waves through urban areas, Fig. 2 shows 12 that the field strength 
is in general inversely proportional to the square of the distance from 
the transmitter. The mean curve through the data is 12 db below the 
curve for level terrain free from obstacles, plotted from equation (5) 
above, indicating the additional attenuation due to man-made 
structures. An analysis of the individual points shows that the 
reduction in field due to the obstacles (i.e., in addition to the level 
terrain attenuation) is independent of the distance so that there is no 
absorption due to the buildings in the usual meaning of the word; 
otherwise the additional attenuation would increase with the distance. 

This method of interpretation is radically different from that of 
investigators of the propagation of ultra-short waves through urban 
areas whose papers have come to the attention of the authors.13- 14-15 

They have assumed that the transmission occurs as in free space 
except for an additional attenuation through the absorbing layer of 
buildings. Such an assumption that the propagation of ultra-short 
waves is unaffected by the presence of the ground except in so far as 
the waves penetrate the absorbing layer of buildings, appears to be 

11 This surface is, of course, that formed by the ground and the walls and tops of 
buildings. . r. , o l 

12 It will be shown later that the empirical formula assumed by Schroter, Sohne- 
mann, Jones, and Muyskens and Kraus cannot be made to fit these data. 13 F. Schroter, "Zur Frage des Ultrakurzwellen-Runkfunks," E. N. T., Vol. 8, 
pp. 431-436, October, 1931. 14 K. Sohnemann, " Feldstarkemessungen im Ultrakurzwellengebiet," E. N. T., 
Vol. 8, pp. 462-467, October, 1931. 15 Henry Muyskens and John D. Kraus, "Some Characteristics of Ultra-High- 
Frequency Transmission," Proc. I. R. E., Vol. 21, pp. 1302—1316, September, 1933. 
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inconsistent with the physical picture l'5- 16'17 of ultra-short wave 
propagation which has been confirmed by basic experimental data. 

Since the inverse-square-of-distance relationship (equation 5) which 
results from this physical picture is so different from the exponential 
relationship which results from the absorption assumption of previous 
investigators, the question arises as to the possibility of reinterpreting 
their data on the basis of this physical picture. The data presented 
by Muyskens and Kraus as Fig. 2 of reference 15 has been replotted 
in Fig. 5 of the present paper on logarithmic coordinates in order to 
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Fig. 5—Attenuation curve for 5 meter transmission as replotted from paper by 

Muyskens and Kraus, Proc. I. R. E., Vol. 21, p. 1306, Sept., 1933. The straight 
heavy line shows an inverse-square of distance variation in accordance with the 
physical picture. The thin curved line isa replot of the curve presented by Muyskens 
and Kraus as representing these data by a variation according to an inverse-distance 
times an exponential factor. It is evident that these data may be interpreted equally 
well on the basis of the physical picture (heavy curve) as on the basis of the empirical 
equation assumed by Muyskens and Kraus. 

facilitate reinterpretation on the basis of this physical picture. Fig- 
ure 5 shows that it is possible to interpret their data as following an 
inverse-square-of-distance law equally as well as an inverse-distance 
law times an exponential factor.18 In this interpretation little weight 

16 Bertram Trevor and P. S. Carter, "Notes on Propagation of Waves Below 
Ten Meters in Length," Proc. I. R. E., Vol. 21, pp. 387-426, Mar., 1933. 17 Carl R. Englund, Arthur B. Crawford and William W. Mumford, "Some 
Results of a Study of Ultra-Short-Wave Transmission Phenomena," Proc. I. R. E., 
Vol. 21, pp. 464-492, March, 1933 and Bell Sys. Tech. Jour., Vol. 12, pp. 197-227, 
April, 1933. 18 Comparison of Figs. 2 and 5 on an absolute basis is difficult. The lower density 
of the buildings in Ann Arbor and the fact that the fixed antenna was located in as 
open a space as possible at the corner of the roof, combine to reduce the effect of the 
buildings in lowering the mean field strengths. Also the apparent absence of a 
measurement of the radiated power in the Ann Arbor experiments precludes the 
determination of the absolute value of the attenuation from the experimental data. 
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has been given to the points which are well below the curve, in ac- 
cordance with the view of the experimenters that these points repre- 
sent particularly unfavorable receiving locations. 

Trevor and Carter 16 have made a similar interpretation of the data 
presented by Jones 10 which shows that for the larger distances the 
field strength was inversely proportional to the square of the distance. 
If this inverse-square-of-distance curve were extended to shorter 
distances it would be found that most of the nearby points would lie 
somewhat below it. This is presumably because of the lack of favor- 
able receiving locations in the high-building area. While the empirical 
formula arrived at by Jones may represent his data satisfactorily, the 
physical picture assumed of a free space field times an absorption 
factor is untenable since it requires a radiated power approximately 
20 db below that measured. Undoubtedly, the power radiated is not 
in error by this amount, since Trevor and Carter obtained a satisfactory 
numerical check on the basis of the other picture by using the value 
of power radiated as given by Jones. 

It is possible, of course, to represent any data by an inverse-distance 
factor times an exponential factor for a limited range of distances. 
An attempt to do this with the data of Fig. 2 by making the empirical 
curve agree with the experimental inverse-square-of-distance curve at 
1 and 4 miles results in a curve that agrees well with the data between 
0.6 and 5.0 miles but is 11 and 22 db low at 0.2 and 12.0 miles, re- 
spectively. Even if these rather large discrepancies at the limits of the 
curve were neglected it would still be impossible to interpret the data 
in terms of the free space field times an exponential absorption factor, 
because of the fact that the empirical curve so determined requires a 
radiated power 35 db below that measured; this is untenable since the 
over-all uncertainty in the absolute value of the measurements is only 
a few decibels. 

It should be pointed out that each point of Fig. 2 represents the 
average field over an interval of either a tenth or a half mile depending 
upon whether the transmission path involved was less or greater than 
two miles. Within each interval the field varied by five to fifteen 
decibels because of the local wave interference pattern, as is shown by 
the samples of the graphs taken with the recorder which are presented 
in Figs. 6 and 7. Fig. 6 is an example of the record taken in the 
business district of Boston at a distance of about one and a half miles 
from the transmitter near the region A shown in Fig. 8. The maxima 
and minima are spaced very closely and differ by ten to fifteen decibels. 
This was characteristic of the type of record obtained at the shorter 
distances. At the greater distances the magnitude of the local varia- 
tions was less, as illustrated by Fig. 7, which is a sample of the record 
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Fig. 7—Portion of record showing the small variations of field strength while 
driving through the residential section of Boston at a distance of about 5 miles from 
the transmitter. 

taken at a distance of five miles (near B in Fig. 8). The change in the 
magnitude of the variations might have resulted from the fact that 
all of the data for the greater distances were taken in residential 
districts with correspondingly lower heights and densities of buildings. 

An idea of the variations to be expected from the inverse-square-of- 
distance relationship is shown by the contour map of Fig. 8. The data 
already presented will give an idea of the impossibility of showing 
much detail in such a map. Likewise it would be an almost endless 
job to make measurements on every street in a city of this size. While 
data were obtained within reasonable intervals over the area for which 
solid contours are drawn (continuous field strength records taken 
over 143 miles of street are represented by this figure), another set of 
data might result in a somewhat different looking map. The broken 
contours are not based upon field strength measurements, but are 
merely a plausible way of joining the solid contours to aid the eye of 
the reader. The two 20 db contours in the lower part of the figure 
have not been joined because of insufficient data. I he low field 
strengths along the Neponset River may be a result of local conditions 
and possibly the 20 db contours should be continued to the right along 
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an arc of more nearly constant radius. In this connection it may be 
mentioned that the field is nearly constant within the bulge of this 
contour to the southwest. 

A striking fact brought out by the map is the crowding of the 
contours in the business district. There are particular directions for 
which the attenuation is greater presumably due to the combined 
effects of high buildings, for example to the east-northeast. There are 
other directions where the field strength is higher than the average. 
Several such places were noted when salt water extended immediately 
in front of the measurement location in the direction of the transmitter. 
The closed contours in the Mystic River to the north illustrate the 
better reception over salt water as predicted by theory.1 An example 
of the records taken over bridges upon which these contours are based 
is shown in Fig. 9. (The route over which these data were taken is 

""O 0,1 02 03 0.4 0.5 06 0.7 0.8 
DISTANCE IN MILES 

Fig. 9—Portion of records showing the variation of field strength on going over water. 

indicated at C of Fig. 8.) The average increase in field when going 
over bridges was 10 db. This may be explained by the better con- 
ductivity of the water which results in a receiving directive charac- 
teristic that is more favorable to low angle reception. In some cases, 
the absence of buildings and increase in the height of the antenna due 
to the elevation of the bridge undoubtedly contributed to the greater 

Another fact that is illustrated by the map is that the effects of 
obstacles and type of terrain are in general local. For example, the 
higher field strengths beyond salt water are soon reduced to normal 
with the intravention of additional land, illustrated at D in Fig. 8. 

It was found that the field strengths along Columbus Avenue 
(indicated by E on Fig. 8) were about 10 db higher than those obtained 
on either side. This increase probably resulted from the fact that a 
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more or less unobstructed optical path existed along Columbus 
Avenue. 

While a detailed analysis of the attenuation of ultra-short waves 
over paths as complicated as those considered in this paper is im- 
possible, the known facts indicate several general characteristics that 
seem worthy of mention for further experimental investigation. The 
fact that the field was found to be approximately proportional to the 
height of the antenna above the roof level of the surrounding buildings 
(in big. 4), rather than to the height above the ground, as in the case 
of transmission over level terrain free from buildings, confirms the 
expectation that the "ground" conditions in the immediate vicinity 
of the fixed terminal would play an important part in determining the 
magnitude of the received field strength. 

It is perhaps correct to assume that for the fixed terminal the height 
to be substituted in equation (5) should be the height above the roof 
rather than the height above ground. This would reduce the "level 
terrain" curve of Fig. 2 by 10 db. 

Figures 6, 7 and 9 show marked wave interference patterns which 
indicate reflections from a multiplicity of points in the immediate 
vicinity of the mobile terminal. Besides these variations in the magni- 
tudes of the fields observed at points in close proximity to each other, 
which are undoubtedly caused by reflections from irregularities in the 
immediate vicinity of the terminal, there are the variations represented 
by the spread of the points about the mean curve (Fig. 2). That these 
variations may be attributable to conditions local to the terminal is 
indicated by the fact that the increase in field on the far side of salt 
water and the decrease in the field on the far side of hills, etc., do not 
persist at further distances. Even if the irregularities of the contours 
of Fig. 8 were removed the contours would not be concentric circles 
about the transmitter. At this stage in the development it would be 
unwise to attempt to say how much of the deviation of the contours 
from circles may be attributable to directional characteristics at the 
fixed terminal and how much may be due to the intervening terrain. 
Statistically speaking, however, it is safe to say that the additional 
attenuation attributable to deviations from level terrain such as is 
produced by the presence of buildings, is independent of the length 
of the transmission path, so that there is no absorption in the usual 
meaning of the word. Another experimental result that points to 
the possibility that the effect of the buildings is local may be deduced 
from the data presented by Jones 10 and by Trevor and Carter.""' 
The latter showed that the more distant points lie on the inverse- 
square-of-distance curve expected for transmission over level terrain 
free from buildings. The nearby points, however, lie below this 
curve, indicating that the major effect of the buildings is a local one. 
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The greatest difficulty encountered in attempting to apply the 
results of these experiments to the pre-determination of the field to be 
expected for transmission in other cities would be the interpretation 
of the method of assigning values to the heights in equation (5). 
While sufficient data are not available to establish an empirical re- 
lation, for a first estimation it seems reasonable that if the height of 
the fixed antenna were measured from the general roof level of the 
surrounding buildings and the height of the mobile antenna were 
measured from the street level, the resulting field strengths would lie 
within the range of expected values.19 

Field Strength Measurements 
Receiver at a Fixed Location 

The field strength data obtained with the receiver at Seaverns 
Street and the transmitter in the truck are shown in Fig. 10. These 
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DISTANCE FROM TRANSMITTER TO RECEIVER IN MILES 
Fig 10—Mass plot of field intensities measured with the transmitter at va"ous 

distances about the Seaverns Street location. The open circles represent fields 
averaged over one-tenth mile intervals while the solid circles represent averages over 
one-half mile intervals. 

19 This should not be expected to be true for antennas close to the roof, since the 
field-strength obviously would not go to zero when the antenna height goes through 
the roof level. Extreme caution should be used in applying these results to cities 
in which the density and uniformity of buildings differ from those of Boston When 
the topography departs greatly from that of level terrain, it would be difficult to 
infer the transmission conditions from the data here presented. 
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data may be represented also by an inverse-square-of-distance curve. 
By comparison with Fig. 2 no differences that can be attributed to the 
change in position of the fixed terminal nor the direction of transmission 
is evident. There is a small difference in the separation between the 
mean curves and the "level terrain" curves, but in both instances the 
mean curve lies very close to the level terrain curve (not shown) that 
would result from measuring the antenna height of the fixed terminal 
from the average roof level instead of from the ground. 

Most of the nearby points were taken in the park system. They 
indicate that it is not more difficult to transmit through wooded areas 
than through built-up sections. 

A field strength contour map illustrating the results obtained with 
the receiver fixed at Seaverns Street is shown in Fig. 11. The disturb- 
ing effect of hills is illustrated at several points on the map. There was 
a reduction of field when the transmitter was behind either Bussey 
Hill at A on the map or Green Hill at B, while the field was higher 
when the transmitter was between them. There was a rather deep 
minimum when the transmitter was immediately behind Parker Hill 
at C to the north, but half a mile farther away there was no noticeable 
effect. 

Effect of Obstacles 
In the course of the measurements some qualitative observations 

were made which will be summarized in this section. It was noticed 
in particular that when the receiver passed underneath an intersection 
of overhead trolley wires, the field was somewhat reduced. An 
example of this effect was observed at the intersection of Massa- 
chusetts and Huntington Avenues where the reduction was 15 db. 
At this point the maze of overhead trolley and support wires apparently 
constituted a fairly efficient screen for these waves. Observations 
made during the tests showed that sometimes the field was con- 
siderably reduced on the far side of hills as has been brought out by 
the contour maps. A large reduction in field strength resulted upon 
going behind a low hill on Saratoga Street on Breeds Island. The 
most striking example of this effect occurred with the measuring set 
at Seaverns Street and the mobile transmitter being driven from 
Huntington Avenue onto South Huntington Avenue (C of Fig. 11). 
Soon after rounding the corner at the foot of Parker Hill, which is 200 
feet high, the average field dropped about 15 db. 

The field was 20 db lower under Funeral Bridge than on either 
side of it. This is a stone and earth bridge appearing as a short 
tunnel to the road beneath it. The field was usually reduced upon 
passing underneath bridges of this general type of construction. 
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Fig. 11—Field strength contour map of Boston, Mass. Receiver located on Seayerns Street neat 
Center Street as shown by the solid circle. Frequency = 34.6 mc. Field strength in decibels above 
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A separation of the field strengths into those obtaining in the high- 
building area (indicated by open circles in Fig. 2) from those in the 
lower-building area (indicated by solid dots) shows that the attenuation 
is somewhat greater in the former. 

No effect of the elevated railway structures on the average field 
was observed. 

Noise Measurements 

For reception in the car, by far the greatest interference is that 
caused by the electrical systems of passing automobiles. Special tests 
to determine whether or not street cars produced any noise gave a 
negative result. That is, under conditions where automobile noise 
was a limitation to reception, trolley noise was unaudible. While no 
special tests were made of the noise from elevated trains, at no time 
was it found objectionable. 

With the receiver on top of the building at Berkeley and Stuart 
Streets, the predominating interfering noise was caused by an electrical 
substation next door. When the antenna was lowered approximately 
to the roof level the noise from the elevator motors and switching 
equipment in the pent house near by was well above any other noise. 
Upon raising the antenna to its proper position the elevator noise was 
reduced to a negligible amount compared with the power station noise, 
because of the combined effect of the directivity of the antenna and 
increased distance. The resulting noise was of approximately the 
same magnitude, indicating that the elevator switching noise was 
reduced by a fairly large factor in raising the antenna. This fact has 
an important bearing on reception of signals on the roofs of office 
buildings, since elevator switching noise is in general the limiting 
factor. Occasionally an automobile, started in the street below, 
would produce measurable interference. At Seaverns Street, however, 
the most objectionable noise was caused by the ignition systems of 
automobiles which were accelerating in low gear in the street below. 
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APPENDIX 

Methods of Calibrating 
In order to obtain an absolute calibration of the measuring equip- 

ment, the field strength at a distant point in space, at the same height 
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above the ground as the center of the receiving antenna, was obtained 
by a standard method of field strength measurement.20 This equip- 
ment then was removed and the truck placed in such a way that its 
antenna was always at the point where the field strength had been 
determined. By pivoting the truck about this point the horizontal 
polar diagram of the mobile receiving equipment was obtained. It is 
shown in Fig. 12. As the field was known at this point in the absence 

^ 1 
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Fig. 12—Directional characteristic in the horizontal plane of the mobile receiver. 

of the truck the attenuator settings gave a calibration of the receiving 
equipment for all directions. With this calibration as a standard, a 
comparison field generator which employed a loop radiator attached 
to the opposite side of the truck was calibrated also. The comparison 
field generator then was used throughout the test to check the calibra- 
tion of the receiver. Since the polar diagram was fairly constant on 
the right side of the truck, care always was taken to orient the truck 
in such a way that the direction of the transmitter was at the right 
side rather than the left. 

20 This method consists of comparing the unknown field with a known field 
produced by a "Standard Field Generator," which is a small compact self-contained 
oscillator. It is very carefully shielded except for a small balanced loop extending 
in a vertical plane above the shield. A thermomilliammeter is located in the loop 
at the point of low potential with respect to the shield. From the reading of the 
meter and the dimensions of the loop, the field at nearby points may be computed. 
See Proc. I. R. £., Vol. 21, pp. 430-431, March, 1933. 
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When the receiver was at Berkeley and Stuart Streets it was possible 
to employ the usual method of calibration 18 because the roof was flat. 
With the receiver at the Seaverns Street location, however, the gabled 
roof made it impractical to support the standard field generator 
opposite the midpoint of the antenna. In the latter case, accordingly, 
the constancy of the gain of the receiving equipment was depended 
upon in reducing the measurements to field strengths in absolute 
units. This lack of calibration did not introduce a large uncertainty, 
since the receiving equipment has been used over a period of years 
during which time its gain has remained constant within a few decibels. 

Two-Way Tests 

At the conclusion of this survey, actual two-way tests were made 
between a cruising car and fixed locations. For this purpose a car 
was equipped by E. B. Ferrell and R. C. Shaw 21 with an ultra-short- 
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Fig. 13—Fixed terminal transmitting equipment located at Berkeley Street. 

wave transmitter and receiver arranged for simultaneous two-way 
communication. A distinctive feature of this equipment was the use 
of a single antenna for simultaneously transmitting and receiving. 
This was made possible by the use of a suppressor circuit in the re- 
ceiver to prevent overloading of the first detector by the outgoing 
signal. With this suppressor circuit, which consisted of only a half 

21 Both of Bell Telephone Laboratories, Deal, New Jersey. 
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section of a simple band-elimination filter, it was possible to transmit 
and receive simultaneously on frequencies differing by only five 
percent. 

The equipment at the fixed transmitting location is shown in 

Fig- 13. ... u c 
The car was used for communication at distances up to about 5 

miles from the fixed transmitter and up to a little over 3 miles from the 
fixed receiver. The circuit from the moving car to the fixed receiver 
was consistently good for distances up to about two miles. 



An Application of Number Theory to the Splicing of 
Telephone Cables * 

By H. P. LAWTHER, JR. 

The consideration of a simple and practical splicing scheme for mini- 
mizing the recurrence of same-layer adjacencies among telephone circuits 
in long cables leads to a problem in Number Theory whose solution calls 
for some extension of the previous work in this field. The solutions for 
numbers not greater than 139 have been computed, and a table of these 
is included. 

SOME time ago in connection with the placing of a long telephone 
cable the writer had occasion to attempt the specification of a 

splicing scheme designed to minimize the recurrence of same-layer 
adjacencies among the telephone circuits as they threaded their way 
through successive lengths of the completed cable. The task, super- 
ficially so simple, proved to be one of most intriguing difficulty, and 
the pursuit of the solution led a confused investigator stumbling into 
the province of number theory. That speculation upon an art so 
mundane as that of telephone cable splicing should have led to a propo- 
sition in the oldest and most neglected branch of mathematics seemed 
to be especially worthy of note, for few applications so practical have 
been found. In the course of the investigation certain small ground 
apparently was covered for the first time. It was felt, therefore, that 
the story would be of passing interest alike to the mathematician and 
to the engineer. 

The present standard cables for long distance telephone service are 
manufactured as a series of concentric layers of conductor units con- 
tained within a cylindrical sheath. The conductor units are either 
pairs of quads of wires. The layers are one unit in thickness, and suc- 
cessive layers either spiral in opposite directions of rotation, or in the 
same direction but with different pitches. The feature of importance 
to this discussion is that in an unbroken length of cable any one con- 
ductor unit will experience shoulder-to-shoulder adjacency throughout 
this distance with the two conductor units lying on either side in the 
same layer, and its experience with these two conductor units will be 
unique. Cables usually are manufactured in uniform lengths of from 
750 to 1000 feet, and a longer cable is made up from a succession of such 

* Published in Amer. Math. Monthly, February, 1935. 
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lengths spliced end-to-end. At each splice point a large number of 
different splices is possible among conductor units. In general, wire- 
to-wire splices are not made, and considerable mixing up is achieved. 
For reasons which need not be given here it is considered desirable 
from the standpoint of crosstalk control that each telephone circuit 
experience the minimum amount of same-layer adjacency with every 
other telephone circuit. 

For the purposes of this discussion it will suffice at present to con- 
sider the cross-section of a cable as a simple closed sequence of N con- 
secutively adjacent units. As an example, the array presented by a 
circular picket fence would be of this character. Each conductor unit 
in a cable is identifiable, and it will be assumed that each has been 
"tagged" with one of the numbers 1, 2, 3, 4, • • •, A in such sequence 
that units bearing consecutive numbers lie adjacent—remembering 
that unit No. 1 and unit No. N also lie adjacent. While this simple 
picture of the cable cross-section is representative truly of only a single 
layer structure, still the results of a study of it may be fitted to apply 
to practical cases. Schemes for accomplishing this will suggest them- 
selved to the practical worker, and their discussion here would burden 
this presentation unduly. 

Consider now two consecutive lengths in a completed cable and focus 
attention upon a conductor unit in one of these. At the splice point 
this conductor unit may connect to any one of the conductor units in 
the second length, and the two conductor units which lie alongside the 
latter in the same layer in the second length may connect to any two of 
the N — \ remaining conductor units in the first length. As an ex- 
tended conductor unit traverses the completed cable, then, it may ex- 
perience same-layer adjacency successively with any possible combina- 
tions two at a time of the other extended conductor units, and in any 
order, sequence, or repetition of these as determined by the splicing 
scheme that is used. Since there can be but [(A — l)/2]]* totally 
different combinations two at a time of A — 1 different objects it is 
evident that [(A — l)/2] successive cable lengths is the maximum 
possible number for an extended conductor unit to traverse without 
incurring repetition of at least one of the same-layer adjacencies that 
occurred in the first of these lengths. 

Any splicing scheme that is devised for practical use must embody 
the utmost in simplicity. For this reason it is considered highly 
desirable (1) that the required results be achieved through repetition 
of the same splicing instruction at consecutive splice points, and (2) 

• The symbol [xjy] means the greatest integer not greater than xjy. 
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that this instruction follow the simplest possible system—e.g., any two 
adjacent conductor units in one length of cable shall connect to two 
conductor units having a constant separation in count in the next 
length. The exposition which follows makes no attempt to solve the 
general problem, and seeks only to establish the results which can be 
realized when the above two simplifying restrictions are imposed. At 
the conclusion is added a description of a minor and acceptable devia- 
tion from the second restriction which will enable the practical worker 
to supplement these results and achieve the maximum possibilities in a 
number of cases sufficient for his needs. The problem now will be 
formulated. 

!-► 1 
2 —> 2 
3 —> 3 
4 —» 4 
5 —> 5 
6 —> 6 

1 -> 1 
2 -> 3 
3 -> 5 
4 —> 7 
5 -> 9 
6 • 11 
7 —> 2 
8 ■ 4 
9 ■ 6 

10 ■ 8 
11 10 

Fig. 2 

1 - * 1 
2 - 4 
3 - * 7 
4 - ■* 10 
5 - -> 2 
6 - -> 5 
7 - + 8 
8 - 11 
9 - 3 

lO- 6 
ll - -> 9 

Fig. 3 

7—> 7 
8—> 8 
9 -> 9 

10 -> 10 
11 11 

Fig. 1 

The three tabulations exhibited in Figs. 1, 2, and 3 show possible 
ways of splicing two pieces of eleven-unit cable together in systematic 
fashion. The left-hand columns indicate the consecutively adjacent 
conductor units in the first or reference piece of cable (remembering 
that No. 1 and No. 11 are adjacent), and the numbers opposite in the 
right hand columns indicate the conductor units in the second piece of 
cable to which splice is made. No importance attaches to the splicing 
of unit No. 1 to unit No. 1 in each instance. This is simply one of 
eleven possible "starts," and from the point of view of this discussion 
there is no preference among these. Note that with Fig. 1 two con- 
ductor units which lie adjacent in the first piece of cable connect to 
conductor units separated by a count of one (adjacent) in the second 
piece. With Fig. 2 conductor units which lie adjacent in the first piece 
connect to conductor units separated by a count of two in the second 
piece. With Fig. 3 conductor units which lie adjacent in the first piece 
connect to conductor units separated by a count of three in the second 
piece. Splices made in accordance with the schemes of Figs. 1, 2, or 3 
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will be described as made with a "spread of one," a "spread of two," 
of a "spread of three," respectively. It is readily shown that for a 
spread number 5 to be applicable to cable of N units it is necessary and 
sufficient that s be prime relative to N. 

Figure 4 shows the splicing of six pieces of eleven-unit cable through 

1 -> 1 1 -> 1 -» 1 -> 1 
2 —> 3 —> 5 —> 9 ->6-*ll 
3 -> 5-^9^ 6 11 —> 10 
4—> 7 2 -> 3-> 5 —> 9 
5 —> 9 —> 6 —^ 11 —> 10 —> 8 
6 —> 11 —► 10 —► 8 —> 4 —» 7 
7 2 —> 3 -> 5 9 -> 6 
8 —> 4 —> 7 —» 2 —> 3 —> 5 
9 —> 6 —> 11 —> 10 —> 8 —> 4 

10 8 —» 4 —^ 7 —» 2 —^ 3 
11-^10-^ 8 —> 4 —> 7 —> 2 

Fig. 4 

the successive application of five consecutive identical splices, each 
with a spread of two. Following the "key" of the first and second 
columns, the succeeding columns are written down immediately. 
Scrutiny of the sequences of numbers appearing in the several columns 
reveals at once the fundamental properties of the spread. For a 
cable of N units these are: 

1. Successive applications of a spread of 5 for n times result in a 
spread of 5". 

2. A spread of minus s is equivalent effectively to a spread of plus s. 
3. A spread of KN + 5 (X is an integer: positive, negative, or zero) 

is the same effectively as a spread of s. 
The problem of achieving the minimum possible recurrence of same- 

layer adjacencies among conductor units through the application of 
successive similar splices in accordance with a simple spread now may 
be stated formally in the terminology and symbols of number theory. 
If N, an integer, is the number of conductor units in the cable, and if s, 
an integer prime to N, is the spread number used, then it is required to 
find a value for s for which the companion relations 

5d = ± 1 (mod N), 

^ ± 1 (mod N), b < d 

determine the largest possible integer d. 
From the foregoing introductory discussion it should be noted that 
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values for N less than 5 are of no significance to this problem. In 
the analysis which follows, therefore, no particular effort has been 
made to render the general conclusions capable of extension to these 
extreme and trivial cases. 

It is necessary at this point to recall and introduce certain working 
material. First, there is the established theorem that every positive 
integer N greater than unity can be represented in one and only one 
way in the form 

N = piaip2
a2 - ■ ■ pf, 

where pi, p2, •••,/>< are different primes and on, at, • • •, are positive 
integers. Then there is the familiar number theory function 4){N) 
which indicates the number of positive integers not greater than N and 
prime to N* If is a prime number and a is a positive integer, then 

<t>{pa) = Pa-l(P - i); 
also 

tiprpf2 ••• Ptai) = (t>(piai)-^(pr2) 4>(.Piat), 

where pi, p2, • • •, pt are different primes. 
Then there is the X-function defined in terms of the (^-function as 

follows: 
X(2a) = 0(2'') for a = 0, 1, 2, 

X(2a) =^^fora > 2, 

\(pa) = 4>{pa) for p an odd prime, 

\{2^p2a-pr • • • piat) = M, 

where M is the least common multiple of 

X(2*>), X(/>2«), \{pza*), •••, KPtat), 

2, p2, ps, • • ■. pi being different primes.f Finally, it is established that 
for two relatively prime integers 5 and N the value \(N) is the largest 
possible for the exponent m for which the relations 

sm — 1 (mod N), 

5n 1 (mod N), n < m, 

* Euler, "Novi Comm. Ac. Petrop.," 1760-61, p. 74. Carmichael, "The Theory 
of Numbers," John Wiley & Sons, Inc., 1914, pp. 30-32. Dickson, "Introduction 
to the Theory of Numbers," Univ. of Chicago Press. 1929, Chap. I. 

t Cauchy, Comptes Rendus, Paris, 1841, pp. 824-845. Carmichael, p. 53. 
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will hold, and that a value for 5 belonging to this exponent does exist.* 
Here it is convenient to consider separately numbers of the two 

classes—those for which \{N) = «/)(iV) and those for which \{N) 
< <i>{N). For numbers of the first class established theorems may be 
drawn upon to furnish a complete analysis. For numbers of the 
second class, however, it will be necessary to extend a bit beyond the 
ground covered by previous workers, and the steps will be given in 
considerable detail. This procedure coupled with the inherent com- 
plexity will render the treatment for the latter class much less compact 
and elegant than that for the former. 

Case I. \{N) = 0(iV). 

From the defined relation between the ^-function and the X-function 
it follows that numbers of the class such that 'K(N) = are con- 
fined to the values 

1, 2, 4, pa, and Ip", 

where p is an odd prime and a is a positive integer.")" For a number N 
of this class it is established that there exists a set of 0(^)(iV)) numbers 
r, such that 

(1) rMN) = j (mod iV) and 

(2) r" ^ 1 (mod N), n < X(iV) = 0(iV). 

Such a number is known as a "primitive root" of N.t From the 
properties of the primitive root r of the number N as defined by rela- 
tions (1), (2) it follows readily that 

(3) rW* = - 1 (mod N), 

(4) r" ^ ± 1 (mod N), 0 <n < <n< \(N). 

First there will be considered the companionTelations 

(5) ^ — 1 (mod N), 

(6) ^ ± 1 (mod N), b < d, 

and, from comparison with relations (3) and (4), these clearly are 
satisfied for 5 a primitive root of N and for d = \{N)/2. That no 

* Carmichael, p. 54 and pp. 61-63. 
t Carmichael, p. 71. 
j Gauss, " Disquisitiones Arithmeticae," Art. 52-55. Carmichael, pp. 65-71. 

Dickson, Sec. 17. 
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value for d greater than \{N)/2 is possible is evident immediately. 
For let a be any integer prime to N. Then for some exponent k 

rk = a (mod N) and 

aUN)n = fuw/2 = ± i (mod Ny 

Next there will be considered the companion relations 

(7) s'1 = 1 (mod N), 

(8) ^ ± 1 (mod N), b < d. 

The reasoning just above shows that d cannot be greater than \{N)/2. 
Suppose for the moment that d has this greatest possible value \{N)/2. 
Relations (7), (8) then become 

sMif)i2 = i (modiV), 

56 ^ ± 1 (modiV), b = 1,2,3, • • •, \{N)/2 — 1. 

These relations may be written 

(9) {s1'2)"") = 1 (mod N), 

(10) (s1'2)26 ^ ± 1 (mod N), 2b = 2, 4, 6, ■ • •, \(N) — 2. 

Now relations (9), (10), will be compatible with relations (1), (2), (3), 
(4) only if X(iV)/2 is an odd number, for otherwise the restrictions of 
relation (10) applying to the even numbered exponents from 2 to 
\(N) — 2 inclusive would be in conflict with relation (3). For X(iV)/2 
an odd number, then, relations (9), (10), are satisfield for 51/2 a primi- 
tive root of N. Consequently, with relations (7), (8), \(N)/2 is the 
largest possible value for the exponent d, and a value for 5 equal to the 
square of a primitive root of N permits this to be attained. 

Case II. X(7V) < 

The inquiry for this case will be divided into four parts. In general 
N = piatp2a-p3a3 • •' pi"1 where pi, pz, pz, •••, pi are different primes. 

(a) First will be considered the case where pi, pi, p3, • ■ •, pi are all 
odd primes. Then \{N) is the least common multiple of ^ipi"1), 
Mpf), Hp3a3)i *"'. MPt"')- Suppose now that the highest power of 2 
dividing any of the X's divides X(£ia<). If this same power of 2 divides 
more than one of the X's, arbitrarily select \(piai) as one of them. Then 
this power of 2 will be exactly that occurring in X(iV). Now arbitrarily 
select pj as any one of the odd primes other than pi. Then clearly 
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\{N) will also be the least common multiple of 

Kpiai), HP*"2), •••. HPi-f'-1), Kppt). 

Now take 

r = g,2 (mod pj"'), gj a primitive root of pf', 

= gk (mod pkc"'), gk a primitive root of pkak, 

^ = 1, 2, 3, •••, j - 1, j + 1, ^ 

The r thus chosen must be prime to each of the prime factors of N, 
and hence must be prime to N. Consequently it is known that 

rW> = 1 (mod N). 

Suppose that m is the smallest exponent for which the congruence 

rm = 1 (mod N) 

is true. Then it is noted that the chosen r is such that m must be a 
multiple of 

Kpiai), HP*012), •••. HPi-i"'-1), X(y,) ■ HPi+iai+1), Hpr), 

and the least multiple common to these is, of course, \{N). Therefore 
it can be written that 

rxm = ! (mocl 

r" ^ 1 (mod N), b < \{N). 

Now suppose that for some exponent ?i less than \(N) 

rn = — I (mod N). 
Then 

r2n = 1 (mod N), 

and if n is less than X(7V), 2n is less than 2X(iV) and can only be equal to 
X(iV). It would necessarily follow then that 

rx(V)/2 = _ i (mod N), 

and it would follow in turn that 

rMN)i2 = _ i (mod Pi"')- 
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However, r has been chosen such that 

rMM)l2 = (gy2)X(iV)/2 = = 1 (mod Pi"')- 

This last relation is incompatible with the one immediately above, and 
it must be concluded that the assumption 

rn = — I (mod N), n < \{N) 

is false, and that for the r that has been chosen 

r\{N) = j (mod TV), 

r6 ^ ± 1 (mod N)t b < \{N) 

and no exponent greater than X(iV) is possible. 
(b) Next will be considered the case where pi = 2, oa = 1, and 

pz, pi, ''', pt are all odd primes. Select pi as above and take pj 
different from 2. Then take 

r = 1 (mod 2), 

= g,-.2 (mod pj"'), gk a primitive root of pf', 

= gk (mod pk"k), gk a primitive root of pk
ak, 

2, 3, 4, •••, 1, j + 1, 

and the same line of reasoning may be repeated and the same con- 
clusions reached as under part (a) above. 

(c) Next will be considered the case where pi = 2, a\ = 2 and pi, 
pi, ^ are odd primes. Since X(22) = 2 take different from 2, 
and for simplicity take pj as 2. Then take 

r = 1 (mod 4), 

= gk (mod pk"k), gk a primitive root of pk
c"', 

k = 2,3,4, • • •, t 

and the same line of reasoning may be repeated and the same con- 
clusions reached as under part (a) above. 

(d) Finally will be considered the case where pi = 2, ai > 2, and 
pi, pi, ■'■, pi are all odd primes. Now 5 has the property that 

5X(2al) = 1 (mod 2*0, 

56 ^ ± 1 (mod 2*0, «! > 2, b < X(2*0. 
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So by taking 

r = 5 (mod 2ai), 

= gk (mod pkak), gk a primitive root of pk
ak, 

yfe = 2, 3, 4, • • •, / 

it is concluded immediately that 

rx(V) = i (mod N), 

r6 ^ ± 1 (mod TV), h<\{N). 

The preceding formal analysis for Case I and Case II may be 
summed up as having established the following general theorem: 

If N is a given positive integer and if s is an integer prime to N, then the 
largest possible exponent d for which the companion congruencial relations 

± 1 (mod TV), 

56 ^ ± 1 (mod TV), b < d 

will be true is X(TV)/2 for numbers such that X(TV) = ^(TV) and is X(TV) 
for numbers such that X(TV) < 0(TV), and a value for s belonging to this 
exponent in each instance does exist. 

In order to apply the foregoing results to a practical case Table I 
has been prepared. In the left-hand column appear the numbers 5 to 
139, inclusive. In the next column is listed for each number the value 
of X(TV)/2 or of X(TV), depending upon whether X(TV) = ^(TV) or X(TV) 
< (/)(TV). In the final column there is listed for each number a suitable 
value for the spread. There appears to be no advantage of one spread 
figure over another, and the listing of additional acceptable values is 
omitted in the interest of economy of space. For the numbers for 
which X(TV) = <KTV) and for which X(TV)/2 is odd care has been taken 
that the listed spread figures are primitive roots, and not the squares of 
primitive roots which were shown to be equally acceptable. This fact 
will be recalled later. 

It was shown earlier that [(TV — l)/2] successive cable lengths 
would be the maximum possible number for an extended conductor 
unit to traverse without incurring repetition of at least one of the same- 
layer adjacencies which occurred in the first of these lengths. On 
referring to Table I it is seen that only for the prime numbers is this 
maximum attainable. The prime numbers are distinguished by the 
fact that for them X(TV)/2 = (TV — l)/2, and each has been indicated 
by an asterisk. The composite numbers are seen to yield quite in- 
ferior results in general. 
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TABLE I 
For each N there is listed the value d and a value 5 for which the companion relations 

^ s ± 1 (mod N) ± 1 (mod N), b < d 
determine the largest possible integer d. 

N d s N d s N d s 

5* 2 2 50 10 3 95 36 2 
6 1 5 51 16 5 96 8 5 
7* 3 3 52 12 7 97* 48 5 
8 2 3 53* 26 2 98 21 3 
9 3 2 54 9 5 99 30 5 

10 2 3 55 20 2 100 20 3 
11* 5 2 56 6 3 101* 50 2 
12 2 5 57 18 5 102 16 5 
13* 6 2 58 14 3 103* 51 5 
14 3 3 59* 29 2 104 12 7 
15 4 2 60 4 7 105 12 2 
16 4 3 61* 30 2 106 26 3 
17* 8 3 62 15 3 107* 53 2 
18 3 5 63 6 2 108 18 5 
19* 9 2 64 16 3 109* 54 6 
20 4 3 65 12 3 110 20 3 
21 6 2 66 10 5 111 36 2 
22 5 7 67* 33 2 112 12 3 
23* 11 5 68 16 3 113* 56 3 
24 2 5 69 22 2 114 18 5 
25 10 2 70 12 3 115 44 2 
26 6 7 71* 35 7 116 28 3 
27 9 2 72 6 5 117 12 2 
28 6 5 73* 36 11 118 29 11 
29* 14 2 74 18 5 119 48 3 
30 4 7 75 20 2 120 4 7 
31* 15 3 76 18 21 121 55 2 
32 8 3 77 30 2 122 30 7 
33 10 5 78 12 7 123 40 7 
34 8 3 79* 39 3 124 30 7 
35 12 2 80 4 3 125 50 2 
36 6 . 5 81 27 2 126 6 11 
37* 18 2 82 20 7 127* 63 3 
38 9 3 83* 41 2 128 32 3 
39 12 2 84 6 5 129 42 14 
40 4 3 85 16 3 130 12 3 
41* 20 6 86 21 3 131* 65 2 
42 6 11 87 28 2 132 10 5 
43* 21 3 88 10 3 133 18 2 
44 10 3 89* 44 3 134 33 7 
45 12 2 90 12 7 135 36 2 
46 11 5 91 12 2 136 16 3 
47* 23 6 92 22 3 137* 68 3 
48 4 5 93 30 13 138 22 7 
49 21 5 94 23 5 139* 69 2 

* The asterisk indicates a prime number. 

For the benefit of the practical worker there must be described a 
slight deviation from the second simplifying restriction imposed at the 
beginning which will permit the maximum possibility to be realized if 
N is one plus a prime number. This artifice is based upon the fact 
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that for r a primitive root of a number N for which \{N) = ^(iV) and 
in particular for a prime number N 

rx(V)/2 = — i (mod N). 

This means that X(iV) /2 consecutive splices with a spread r result in a 
spread of minus one. It is readily shown that this in turn means that 
there will be two conductor units No. h and No. & + 1 in the first length 
of cable which ultimately will be extended to connect respectively to 
units No. 6 + 1 and No. h. In Fig. 4 two units No. 6 and No. 7 meet 
this requirement. To illustrate the use of this artifice it will be sup- 
posed that a cable of 12 units is to be spliced. Referring to Fig. 4. for 
guidance, the arrangement shown in Fig. 5 is set up readily. The 
first two columns indicate the splicing assignment, and the succeeding 
columns are then derived from these. The eleven units 1,2, • • •, 5, 6, 
8, 9, • • •, 11, 12 are assigned exactly in conformity with the scheme of 
Fig. 4, ignoring the break in sequence between No. 6 and No. 8. 
Unit No. 7 is then simply spliced to itself throughout. 

1 - 1 - -> 1 1 - 1 - ̂ 1 
2 - ̂  3 - -> 5 10 - -x 6- 12 
3 - + 5 - ̂  10 ^ 6- 12 - 11 
4 - 8- -> 2 -> 3 - 5 - 10 
5 - + 10 - -» 6 —> 12 - •* 11 - -> 9 
6 - 12 - ̂ 11-4 9- + 4- •> 8 
7 - ̂  7- -> 7 —> ■ 7- 7- 7 
8 - + 2 - 3 ■ 5 - ->10- 6 
9 - 4- -> 8 -> 2 - -> 3 - -> 5 

IG- 6- ̂  12 -> 11 - -> 9- ̂ 4 
ll - -> 9- + 4—> 8 - ■> 2 - ■> 3 
12 - ̂  11 - 9 —» 

Fig. 

4 - 

5 

-> 8- ■> 2 

Undoubtedly there are other equally acceptable artifices for extend- 
ing further the practical scope of the simple results. The prime num- 
bers and the prime numbers plus one constitute nearly fifty percent of 
all numbers in the range in which the practical worker is likely to be 
interested, however, and when it is borne in mind that normally he has 
latitude in his choice of N it is seen that the material here presented is 
adequate for his needs. 

The writer is indebted to Dr. D. H. Lehmer for pertinent suggestions. 
The entire treatment for the case of numbers for which X(iV) < 0(7V) 
follows a line of attack suggested by Mr. Marshall Hall, and but for his 
helpful interest this presentation would have been lacking in formal 
completeness. 
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The Nucleus, Fourth Part 

By KARL K. DARROW 

The earlier parts of this series have dealt with the charge, the mass, the 
stability or instability, and the liability to transmutation, of the atom- 
nucleus; this one deals with the two remaining properties which are ascribed 
to nuclei, to wit, magnetic moment and angular momentum. Since these 
exhibit themselves chiefly by influencing the spectra of the atoms to which 
the nuclei belong, the bulk of the article is concerned with various laws of 
atomic spectra; advantage is taken of the opportunity to describe some 
features of the electron-systems surrounding the nuclei, and to explain how 
the concept of the spinning electron enters into atomic physics. There 
follows an account of various experiments in which streams of atoms are 
deflected by inhomogeneous magnetic fields, and the laws of the deflections 
indicate the magnetic moment or the angular momentum of the nucleus or 
both. Finally there is a summary and tabulation of existing knowledge of 
these quantities. 

The Nucleus as a Quantized Vector 

T T NDER this somewhat forbidding title I propose to discuss some 
^ phenomena—mostly spectroscopic, but in certain cases magnetic 

or even chemical—which are interpreted by supposing that the nuclei 
of atoms are endowed with two vectorial qualities, magnetic moment 
and angular momentum. One may say that these nuclei are to be 
visualized, no longer simply as particles possessed of mass and charge 
alone, but as bodies—usually, as congeries of particles both charged 
and uncharged—which are in incessant rotation: the spinning of the 
mass constitutes their angular momentum, the spinning of the charge 
a perpetual circular current-flow which is equivalent to a magnet. 
Why, then, should I not have entitled this section "The Spins and 
Magnetic Moments of Nuclei"? Chiefly because it might have 
suggested, at the very outset, that nuclear spins and magnetic moments 
are observed as clearly and measured as directly, as are nuclear masses 
and charges; which in the main is not so. With only a couple of ex- 
ceptions (for magnetic moment) they are deduced from phenomena 
which certainly carry no obvious sign of their character. Indeed, 
what is called the nuclear angular momentum or the spin is distin- 
guished by a feature, which is altogether strange and foreign to angular 
momentum of ordinary wheels and gyroscopes and the other spinning 
things of daily life; and it is by virtue of this foreign and paradoxical 
feature—and not any of the familiar qualities of spinning things— 

285 
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that the concept of "spin " is a valuable addition to atom-models. This 
feature it is which is responsible for calling the nucleus a "quantized" 
vector. But I need not further justify at this point my suggestion that 
spin is a quality both strange and remote from immediate experience, 
for this will be only too evident in what is to follow. 

It is desirable to make a longish excursion through some of those 
early-known and more-or-less familiar features of spectra, which are 
explained solely by calling into account the orbital or circum-nuclear 
electrons of the atom, without taking notice of any property of the 
nucleus excepting its charge which holds those electrons together. 
This excursion will have the incidental advantage of making us aware 
of the magnetic moment and the spin of the electron, though we cannot 
pause long enough to get an adequate appreciation of the scope and 
value of this concept of the "spinning electron." It is best to simplify 
these preliminary steps as much as is conveniently possible, and 
therefore I will speak of a single spectrum only; yet not the spectrum 
of hydrogen, for this would carry simplicity rather too far. By a 
queer paradox of which we are destined to see altogether too much, 
it often happens in quantum mechanics that the seemingly-simplest 
of all cases—the ones to which one would go by choice for a start—are 
liable to a singularly-confusing complexity quaintly known as a 
"degeneracy." Let us therefore take sodium for our example. 

The sodium atom has a nuclear charge -f- lie, and eleven orbital 
electrons, of which the eleventh or "valence electron" is sharply 
contrasted with the other ten. Employing the original atom-model 
of Bohr, one visualizes the ten as describing a network of interlacing 
close-packed orbits enclosing the nucleus as in a sort of cage, while the 
eleventh darts about in some sort of a far-flung orbit which at one 
end may enter the cage, while the other end reaches far out into space 
("penetrating orbits") or alternatively an entire orbit may encircle 
the cage completely, not entering it at all ("non-penetrating orbit"). 

We now consider the major feature of the sodium spectrum—which 
indeed is the only feature of the absorption-spectrum of tranquil 
sodium vapor—a beautiful converging series of lines. All of the 
lines correspond to transitions between one and the same state, viz. the 
normal state of the sodium atom, and the various members of a 
sequence of abnormal or excited states. These are distinguished by an 
index n to which consecutive integer values are attached; and all 
together they are known as the P sequence, to distinguish them from 
other sequences of states which a fuller study of the sodium spectrum 
(not confined to the absorption-spectrum of the tranquil vapor) dis- 
closes. The terminology, of course, is a detail. What is essential is, 
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that they are all discriminated from each other by something physical, 
and yet they all have something in common which distinguishes them 
as a whole from states of other sequences. As to the nature of these 
"somethings," the original theory of Bohr is perfectly explicit. All 
the states correspond to orbits of the valence electron; the different 
P states correspond to orbits of different but definite sizes and shapes; 
what all the P orbits have in common is, a common value of the angular 
momentum of the electron revolving in its orbit. 

To repeat Bohr's argument here would be an unjustifiable use of 
time and space. Let me merely recall that when it was applied to the 
hydrogen atom, it led to several extraordinary agreements with the 
data of experiment, to which others have since been added. To some 
degree these are transferable to the sodium atom, especially since the 
electric field in which the valence-electron of the sodium atom mostly 
revolves is extremely like that in which the electron of the hydrogen 
atom always revolves {i.e., beyond the "cage" to which I referred, 
the ten electrons of the cage effectively cancel the influence of the 
portion -f lOe of the nuclear charge, leaving uncancelled only the 
field of a nuclear charge + e which is the same as the charge of a 
hydrogen nucleus). These agreements were the primary cause of the 
enormous role which angular momentum has ever since been playing 
in all atom-models. They were responsible also for the numerical 
values now assigned to angular momenta which figure in atoms; for 
according to the original theory, the orbital angular momentum of the 
P states is 2{h/2ir), and all the other values which it may take for 
states of other sequences are other small-integer-multiples of {h/2Tr); 
and while these values have since been somewhat altered without 
impairing the numerical agreements on which they rested and on 
which now the new ones rest, it remains true that all angular momenta 
occurring in atom-models are expressed as multiples of 1(^/2 t), the 
multiplying factors being integers usually smaller than ten. 

As my words have already implied, there are various types of 
angular momentum nowadays fitted into atom-models, the one already 
described—hereafter to be called the "orbital angular momentum"— 
being only one and the first. We turn now back to the principal 
series of sodium to discover why another type is required. 

Examined with a sufficiently good spectroscope, each "line" of that 
series is found to be actually a close doublet. These imply that each 
of what I have been calling the P states is actually a pair of states.1 

(The confusion introduced into language by referring to one and the 
1 That it is not the normal state which is resolved into a pair is proved by various 

facts which it is not necessary to mention here. 



288 BELL SYSTEM TECHNICAL JOURNAL 

same spectroscopic object sometimes as a line and sometimes as a 
pair or group of lines, and the corresponding confusion about states, 
are very bad impediments to clarity of exposition, but there is simply 
no way of getting around them.) Such is in fact the case. The two 
members of a pair have a common value of the index n and a common 
value of the orbital angular momentum of the valence-electron, and 
yet there must be something physical which distinguishes them. To 
leap at once to the conclusion: in the atom-model, this something is 
orientation. 

But, orientation of what with respect to what? We have as yet 
introduced only one outstanding direction, only one vector, into the 
atom-model. The outstanding direction is that of the normal to the 
orbital plane of the valence-electron; the vector is the orbital angular 
momentum. To these it is necessary to supply a second vector,—as 
it turns out, a second angular momentum. 

Since it may occur to some reader that the natural place to seek 
this angular momentum is among the electrons of the cage—that we 
should begin by assigning a net or resultant angular momentum to the 
ten electrons which we have hitherto so much neglected—I will recall 
that such was actually the first suggestion. It prevailed during the 
early twenties, and was generally accepted; but it suffered from 
certain disadvantages, which now there is no particular reason for 
retelling at length. Yet it was of the greatest assistance in preparing 
the ground and the technique for the suggestion which superseded it 
in the middle twenties, that the second angular momentum is to be 
ascribed to the electron itself; the electron is to possess, like the earth, 
not only a motion of revolution but also a motion of rotation. (As 
for the ten electrons of the cage, their angular momenta both of rota- 
tion and of revolution are so oriented as to balance one another out, 
and we have made no error in neglecting them.) 

Now there are two vectors and two directions in the model of the 
sodium atom: that of the axis of the rotating electron, and that of the 
normal to the orbit—the spin momentum and the orbital momentum. 
To speak of different orientations of the one with respect to the other 
is now sensible. But different orientations must correspond to differ- 
ent energies if they are to explain the data, since the two lines of a 
principal-series doublet are separate and distinguishable because and 
only because the two members of a pair of P-states differ in energy. 
Why should they? 

This happens to be the easiest question of the lot, or at any rate 
the one which can be answered from classical physics. The rotating 
electron is a magnet, by virtue of its whirling charge. Also it behaves 
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as though it were moving through a magnetic field, and this is not so 
easy to grasp, since we have postulated merely that it is revolving 
in the electrostatic field surrounding the nucleus and the cage of inner 
electrons. Yet if we were to shift our frame of reference and imagine, 
not the nucleus standing still and the valence-electron revolving around 
it, but the electron standing still and the nucleus revolving around 
it—then we should have no difficulty in realizing that the revolving 
nucleus, being a charge describing a closed path, and being therefore 
equivalent to a current, would produce a magnetic field. Reverting 
now to our original frame of reference, we may bring the magnetic 
field back with us, and say that the spinning electron revolves both in 
the electrostatic field aforesaid and in the magnetic field, and its 
energy is influenced by both. This is not a very sophisticated way of 
looking at the matter, and there is a tricky little relativistic detail in 
the shifting of the frame of reference, which produces an error of a 
factor 2 if disregarded; but it serves to bring out the idea. The energy 
of the valence-electron in its orbit is affected by this quasi-magnetic 
interaction due ultimately to the fact that it is a magnet moving 
through an electrostatic field; and the value of the energy depends on the 
orientation—on the angle 6 between the axis of the magnet-electron 
and the normal to the orbital plane. One now sees readily that there 
will be a minimum energy occurring when these two directions are 
parallel, and a maximum energy occurring when they are anti-parallel. 
But why then do we not find the individual P-state spread out into 
a continuous band of states corresponding to all the energy-values 
between these two extremes, and all the infinity of different orienta- 
tions between the value 0° and the value 180° of the angle 0? 

This is no question which classical physics can solve. The fact 
that the individual P-state, or what would otherwise be the individual 
P-state, is split into two instead of into an infinity—this fact implies 
that only two orientations occur in nature, are "permitted," as the 
phrase is; and this instance of quantization of direction, like all the other 
instances of quantization, is a consequence of the quantum-mechanical 
constitution of the world. More lucid instances occur when the atom 
with its electrons is immersed in an applied magnetic field of known 
intensity; that is, when sodium vapor is exposed to the measurable 
field of a large-sized magnet, and its spectrum is observed. We will 
take up some of these instances before beginning with the assignment 
of spin to the nucleus. 

When a magnetic field of moderate strength is applied to sodium 
vapor, each of the doublets of the principal series is split up into a 
pattern of several lines or "components." I can no longer say that 



290 BELL SYSTEM TECHNICAL JOURNAL 

the P-states themselves are split up into as many components as are 
the lines: that was a happy coincidence while it lasted, but it does not 
repeat itself henceforward (nor usually). From the subdivision of the 
lines it is necessary to deduce the subdivision of the initial and the 
final states of the corresponding transitions: that is a classical task of 
spectroscopy, which we may assume to have been achieved. It is 
found that the normal state of the sodium atom (not belonging to the 
P sequence) is resolved by the magnetic field into two components, 
while of each pair of states belonging to the P sequence, one is resolved 
into two and the other into four components. Incidentally, the 
separations of these components are proportional to the strength of the 
magnetic field. It appears, therefore, that the sodium atom possesses 
properties of a magnet, quantized in direction; or rather, that in 
different states it is equivalent to different magnets, since in certain 
states it has two permitted orientations in the field, while in others it 
has four. 

As might be guessed, the magnet to which the atom-as-a-whole is 
equivalent is a sort of resultant of the two magnets, spinning electron 
and "orbital magnet," which have already been separately inserted 
into the model. This quantum-mechanical resultant, however, pos- 
sesses a couple of peculiarities, into which we shall have to look rather 
carefully. To lead up to them, it is desirable to look at the two special 
cases in which (a) there is no spin and (b) there is no orbital angular 
momentum, so that the resultant reduces to a magnet of one of the 
two types. Strictly speaking, case (a) never occurs in sodium, but to 
work it out is useful, nevertheless. 

1 have spoken of the electron revolving in its orbit as being equivalent 
to an "orbital magnet": now is the time to fortify that statement by 
giving a cardinal relation between the magnetic moment of that orbital 
magnet (not now the magnetic moment due to the electron-spin!) 
and the angular momentum of that orbital motion. It is sufficient to 
work out the relation for a circular orbit. Let r stand for the radius 
of the circle, v for the speed of the electron, «(= v/lirr) for the number 
of times per second that the electron runs around the circle ;,e for the 
charge, m for the mass, p for the angular momentum of the electron, M 
for the magnetic moment of the system. The revolving electron is 
equivalent to a current2 nejc flowing in a circuit enclosing the area 
xr2; the magnetic moment of such an affair is equal to the current- 
strength times the enclosed area: 

M = (we/cjTrr2, (1) 
2 The factor c enters in because e is commonly expressed in electrostatic units, 

whereas in equation (1) the current must be expressed in electromagnetic units. 
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while for the angular momentum, we have: 

p = mvr, (2) 

and eliminating vr between (1) and (2), we get: 

M/p = e/2mc. (3) 

Here we have on the left the ratio of magnetic moment to angular 
momentum, a very important quantity for all these categories of atomic 
and subatomic magnets. It is equated to e/2mc, a value which is 
correct whenever We are dealing with the magnet constituted by the 
orbital motion (not the spin!) of an electron; this equation in fact is 
valid for any sort of an orbit described in a central field, and is one 
of the few that have survived unamended all of the stages in the evolu- 
tion of Bohr's original theory into quantum mechanics. I will rewrite 
the equation thus: 

M/p = g{el2mc), g = 1. (4) 

and this is meant to imply that for other categories of atomic and 
subatomic magnets, the ratio of the moments is not always equal to 
e/2mc, which is true. In general it is the custom to characterize 
any one of these magnets by giving its value of g. Orbital magnets, 
then, are characterized by the value unity for the g-factor. 

We next ascertain the energy which the orbital magnet possesses by 
virtue of being in the applied field H. Letting a stand for the angle 
between the direction of the field and the axis of the magnet, we find 
for the torque exerted on the magnet by the field, 

T = - MH sin a (5) 

and integrating to obtain the energy in question, 

U = fTda = MH cos a. (6) 

This we now write as follows: 

U = {MII/p)p cos a = {gell/2mc) p cos a, (7) 

and here is as good an opportunity as any to recall a well-known 
theorem of classical mechanics, fundamental in the theory of the 
gyroscope. When a torque is acting upon a rotating body, the body 
precesses around the direction of the field responsible for the torque; 
and if the torque be equal to a constant To times the sine of the angle 
between the field-direction and the axis of the rotating body, then the 
angular velocity w of the precession is equal to the ratio between To 
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and the angular momentum of the rotation.3 This ratio is the one 
enclosed in parentheses in equation (7): we may therefore write: 

U = up cos a. (8) 

The precession of which u is the angular velocity is known as the 
Larmor precession. To keep this precession in mind as a feature of the 
atom-model is usually desirable, though not constantly necessary. It 
must be supposed to occur not only when an atom is immersed in an 
extraneous magnetic field, but also when two of the subatomic magnets 
within a single atom are influencing one another. 

We have treated the (non-existent) extreme case in which there is 
nothing but the angular momentum and the magnetic moment of the 
orbital motion of a single electron to be taken account of; we turn now 
to the other extreme in which there is nothing but the spin of a single 
electron to be taken into account. Were we still confined to the 
original atom-model of Bohr, this case would be equally non-existent; 
for no electron-orbit could have a vanishing angular momentum unless 
it were a straight line passing to and fro through the nucleus, and this 
was formerly excluded as unthinkable. Quantum mechanics, how- 
ever, assigns the value zero to the angular momentum of a valence- 
electron in a state of the 5 sequence (to which the normal state of the 
sodium atom belongs). Whether the student prefers to visualize a 
straight-line "orbit" for such a case, or a spherical cloud of charge or of 
"probability-of-charge," is to some extent a matter of taste, though 
usually the latter is the better policy. For such a state, there is no 
angular momentum and there is no magnetic moment save those of the 
electron-spin itself. 

To this spin of the electron—whether isolated as in this extreme 
example, or compounded with an orbital motion into a resultant 
we are compelled by various reasons to assign the value 2(e/2mc) for 
that important ratio of magnetic moment to angular momentum. 
Otherwise expressed: the spin of the electron is characterized by the value 
2 for the g-factor. 

There is a classical argument for this assertion, based on an evalua- 
tion of the ratio in question for a sphere of homogeneous charge rotating 
about an axis passing through its centre. There is a more powerful 
quantum-mechanical argument, based on the fact that when Schroed- 
inger's fundamental equation of wave-mechanics was amended by 
Dirac to be conformable with relativity, there appeared in it a term 
attributable to a whirling charge with a g-factor of 2. Apart from 

3 Slater and Frank, "Introduction to Theoretical Physics," Chapter X. 
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this last, the strongest argument is furnished by the validity of the 
verifiable formula for the g-factors of various atoms in various states, 
which we shall presently be deriving. For, inasmuch as in nearly 
every state of an atom there are both electron-spins and electron- 
orbits, and the net magnetic moment and net angular momentum of 
the atom are sorts of resultants of these, the g-factor of the atom-as-a- 
whole varies from state to state and from one kind of atom to another 
in a remarkable fashion, which imposes a stringent test on the con- 
temporary atom-model. 

In explaining how this test is satisfied, I can no longer postpone 
specific numerical statements about the angular momenta of electron- 
orbits and electron-spins and the atoms into which these enter. 
These statements will be made confusing by the fact that to each one 
of these angular momenta it will be necessary to assign two different 
numbers. This is one of the impediments which are unavoidable in 
fitting visualizable atom-models to the results of quantum-mechanical 
theory, and which to avoid, some theorists would be willing to forego 
models altogether. 

Were it not for this impediment, I could say quite simply that in 
every P-state of the sodium atom, the valence-electron has a spin, 
with angular momentum and is moving in an orbit with 
angular momentum {h/2ir)] that as regards the two members of each 
of the aforesaid pairs of P-states, these two angular momenta are 
oriented parallel for one member and anti-parallel for the other, so that 
the net angular momentum of the atom-as-a-whole is ^{h/lir) in one 
case and %(,h/2ir) in the other; that when an atom with a net angular 
momentum of i{h/2ir) is exposed to an applied magnetic field, it 
orients itself either parallel or anti-parallel to the field, so that the 
projection of its angular momentum upon the field-direction is either 
-f 1(^/2t) or — %(h/2ir); that when an atom with a net angular 
momentum of %{h/2ir) is exposed to an applied magnetic field, it 
orients itself in one or another of four permitted ways so that the 
projection of its angular momentum upon the field-direction is either 
+ 3/2 or + 1/2 or — 1/2 or — 3/2 times hftir. 

This sort of thing is frequently said in the literature, and one must 
realize its limitations. The trouble is, that quantum mechanics 
prescribes for these angular momenta (but not for their projections on 
the field-direction!) magnitudes which differ from those which I 
have been giving. For the spin s of the electron, it substitutes 
Vl/2 •3/2(/i/27r) for %(hJ2ir); for the orbital motion I in the present case, 
it substitues Vl- 2 for the factor unity whereby (/j/2x) was multiplied; 
in the two values f and j" of angular momentum of the atom-as-a- 
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whole, it substitutes Vl/2-3/2 and V3/2-5/2 for the factors 1/2 and 3/2. 
In order that these new values of j' and/' may be resultants of s and I, 
it is necessary that the angular momenta of orbital motion and of spin 
should be neither quite parallel nor quite anti-parallel to one another— 
the two permitted values of the angle between them must differ from 
0° and 180°; and this also is admitted by quantum mechanics. The last 
two clauses of the foregoing paragraph remain, however, unchanged. 

Then why not say from the outset that the spin of the electron has 
the magnitude Vl/2 ■ 3/2(/?/27r), and that all the other angular momenta 
occurring inside an atom have the magnitudes assigned to them by 
quantum mechanics? Inertia of habit, sanctified by years of earlier 
theories, is itself a mighty obstacle: after so long a time of saying that 
the electron-spin is 1/2, the world of physics could scarcely get ac- 
customed to saying that really itis Vl/2-3/2 (in terms of h/2Tras unit). 
There is also a difficulty of printing to be considered: these numbers 
have often to be used as subscripts; it is bad enough to print 1/2 or 
3/2 as a subscript, without resorting to their quantum-mechanical 
substitutes. The most serious reason, however, is, that the original 
1/2 and 3/2 (and, of course, their analogues in the many other kinds of 
atomic states) lend themselves uniquely well to stating how many 
permitted orientations there are. Thus in the present example, I 
quoted 2 and 4 respectively as the number of permitted orientations 
in a magnetic field, of certain P states for which the angular momenta 
were designated asj{h/2Tr) and j had the values 1/2 and 3/2 respectively. 
I was reminded of those numbers by the rule that they are equal to 
(2j + 1). Had I kept in mind only the magnitudes V/Zi andVl5/4 
assigned by quantum mechanics to these angular momenta, the rule 
would not have been available. 

One should therefore keep in mind both the "marker" or "quantum- 
number" of an angular momentum, of which the foregoing 1/2 and 1 
and 3/2 are examples; and the numerical value assigned by quantum- 
mechanics to the magnitude of that angular momentum. Fortunately 
this is rendered easy by the fact that there is a general formula for the 
latter in terms of the former, with which we can now make acquaint- 
ance in the course of taking a deeper plunge into the lush notation of 
spectroscopy; as follows; 

The angular momentum of electron-spin has the quantum-number 
s and the magnitude Vs(.s + 1), and s is always equal to 1/2. 

The angular momentum of the orbital motion of an electron has the 
quantum-number I and the magnitude V/(/ + l)i and I may have the 
various values 0, 1, 2, 3 • • •. 

The angular momentum of the atom-as-a-whole has the quantum- 
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number j and the magnitude V j{j + 1); for the sodium atom j may 
have the various values 1/2, 3/2, 5/2 • • •. 

I next give the rule for compounding the last of these three angular 
momenta out of the first two, it being as I earlier said a "sort of re- 
sultant" thereof. 

Rule for compounding I and s into j. If / is greater than s, start 
with the numerical value of (/ + 5) and write down all the sequence of 
numbers spaced at unit intervals from (/ + s) to {I — s) inclusive: 
to wit (/ s), (I + s — 1), (/ + 5 — 2), • • • (/ — s). These (25 + 1) 
numbers are the permitted values of the quantum-number j. If on 
the other hand 5 is greater than I, start with the numerical value of 
(5 + I) and write down all the sequence of numbers spaced at unit 
intervals from (5 + I) to (5 — /) inclusive: to wit, (5 + /), (5 + / — 1), 
(5 + / — 2) ■ • • (5 — /). These {21 — 1) numbers are the permitted 
values of the quantum-number j. 

(It will be noticed that this rule is much more generally phrased 
than is required for the case of sodium, where s = 1/2, and it suffices 
to say thatj = 1/2 for Z = 0 and j = / ± 1/2 for / > 0. If, however, 
we were dealing with an atom having more than one valence-electron, 
5 might be replaced by a quantum-number different from 1/2—not 
because the individual electrons would have new values of spin, but 
because the spins of two or more of them would be compounded—and 
the general phrasing of the rule would then be required). And now, 
to close (temporarily) the sequence of quantum-numbers and of rules: 

Suppose the atom immersed in a magnetic field of strength H, 
parallel to the z-direction. It may then take any of several distinct 
permitted orientations, these being denoted by various values of a 
quantum-number m,-. In any such orientation the projection of the 
angular momentum of the atom-as-a-whole upon the s-direction or 
field-direction is equal to m,{h/2ir). To ascertain how many per- 
mitted orientations there are and what are the corresponding projec- 
tions, start with the numerical value of j and write down all the 
sequence of numbers spaced at unit intervals from -f j to — j, inclu- 
sive: to wit, j, j — \, j — 2, - • • — j. These (2j -f- 1) numbers are the 
permitted values of the quantum-number m,. 

We now start out upon a train of reasoning which leads to the 
remarkable verifiable formula already once alluded to, the successful- 
ness of which speaks more powerfully than any other single test for the 
Tightness of this elaborate hypothetical structure which has been 
devised for the atom. 

Note, in the first place, that the rule given above for the permitted 
orientations of the atom in the applied magnetic field is in accordance 
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with a major fact of experience: the energy-values of the atom in its 
various "magnetic levels," as I shall hereafter call them, are known 
from spectroscopy to follow upon one another in a uniform evenly- 
spaced sequence. This is just what the rule requires: for if M denotes 
the magnetic moment of the atom and 0,- the angle which it makes with 
the z-direction, the energy due to the field is equal to MH cos 0y, 
which is + 1), and this changes by uniform steps as m 
is changed from each of its permitted values to the next. 

Now recalling the importance of the ratio of magnetic moment to 
angular momentum, and noticing that M/V j{j + 1) is none other 
than this ratio, and introducing the g-factor of equation (7), and the 
precession oj of equation (8), we may write for AZ7 the energy-difference 
between one magnetic level and the next: 

AU = g{el2mc)H = w, (9) 

so that a measurement of the energy-difference or separation of two 
magnetic levels of an atom gives immediately the value of g for that 
atom. One sees at once how to make a special test of the value 2 
assigned to the g-factor of the electron-spin; for when the sodium 
atom is in any state for which / = 0, it is the spinning valence-electron 
which contributes the whole of the magnetic moment and the angular 
momentum of the atom; and when from the spectrum of sodium vapor 
in the magnetic field the value of AU is determined for these states, 
it is precisely the value 2(e/2mc)H which is found. 

To get a notion of what actually happens in the general case, it is 
best to take a sheet of paper and make a graphic composition of the 
angular momenta. These three—s, I, and j, to denote them by their 
quantum-numbers—are to be laid down as a triangle having sides of 
the lengths ^s(s + 1), + 1), and Vj(j + 1); for convenience I 
drop out the common factor h^ir for the next few lines. The cosines 
of the three angles are obtained in terms of the sides by applying the 
well-known trigonometric formula and getting three equations of which 
here is one, 

s(s + i) = 1(1 + i) + jU + i) - 2V;(/ + iWjO' + i) cos e,.(10) 

The magnetic moment of the orbital electron-motion is a vector 
parallel to I and of the length g(e/2mc)^l(l + 1), with unity put as the 
value of g. The magnetic moment of the electron-spin is a vector 
parallel to 5 and of the length g(e/2mc)^s(s + 1), with two put as the 
value of g. Owing to the inequality of these g factors, the resultant 
of the magnetic moments is not parallel to j. We could easily calcu- 
late its magnitude and direction, but they are not relevant. It is 
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to be presumed that 5 and I are constantly revolving or precessing 
around the direction of j,—the triangle aforesaid is constantly re- 
volving around its side j as a fixed axis, while retaining its size and 
shape unchanged. If we resolve the resultant angular momentum 
into a component parallel to j and another component perpendicular 
to j, the latter will be forever changing in direction and its average 
will vanish, leaving only the former as a perpetual constant. But this 
former component we can evaluate by projecting separately upon the 
^'-direction the magnetic moments associated with orbital motion and 
spin, and adding the two projections. Thus for the magnetic moment 
of the atom-as-a-whole we get an effective average which is a vector 
parallel to the angular momentum of the atom-as-a-whole, and it is of 
the magnitude: 

Ma = [V/(/ + 1) cos 01. j -I- 2Vs(s + 1) cos 6,t (H) 

(where I have restored the factor h/lir). If we work this out with the 
aid of (10) and the similar equation for cos 0,. and then divide it by 
the angular momentum (h/2Tr)^j(j + 1) and by e/2mc, we get the 
g-factor for the atom-as-a-whole—commonly denoted by g,—in terms of 
the quantum-numbers s, I and j: 

r , j(j + 1) + s(s + 1) - /(/ + 1) 
& + 2jU + 1) ' 

and this is the celebrated g-formula, which is tested by applying 
magnetic fields H to atoms, splitting their stationary states into 
clusters of levels, measuring the separation between successive levels 
of a cluster, equating it to w = g{el2mc)H, evaluating g and compar- 
ing it with the value which the right-hand member of (12) assumes 
when in it 5, / and j are given the values appropriate to the state from 
which the cluster of levels was formed. So great is the variety of 
atomic states, so great the number of different triads of values of 
s, l,j represented among them, that the study of even a single element 
like sodium produces many different checks of the validity of (12); 
and since many different elements have been studied, the total of the 
available verifications of the g-formula, and therefore of the intricate 
network of its underlying ideas, is considerably impressive. 

The temptation of going onward and onward into the details of these 
properties of the extranuclear electrons and their orbits is difficult to 
resist, but it must be overcome, for the field is practically endless. 
I must add only, that when an atom possesses two or more valence- 
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electrons, their orbital momenta Zi, li • • • are likely4 so to orient them- 
selves as to form a fixed resultant L, and their spin-momenta su 

S2 ■ • ■ are likely to orient themselves so as to form a fixed resultant 5; 
then L and 5 are likely so to orient themselves as to form a fixed 
resultant J, following in so doing the rule of page 295. Considered as 
quantum-numbers, J and 5 may have half-integer values only (1/2, 
3/2 • • •) or full-integer values only (0,1,2 • • •) according as the number 
of valence-electrons is odd or even, while L for any atom may have full- 
integer values only. The three resultants are vectors of magnitudes 
V/(/ + 1), VS(i + 1) and VL(L + 1). The g-factor associated 
with L is unity and the g-factor associated with S is two, and the 
value of g for the atom-as-a-whole is given by (12) with capital letters 
replacing the small ones; so that the g-formula is verifiable with atoms 
of all kinds, as I intimated before. A final point: one might expect 
the conplexity to go on increasing tremendously from one end to the 
other of the Periodic Table, but there is a counteraction. In all 
atoms excepting the lightest, most of the electrons have oriented their 
orbits and their spins in such a way that they have interlocked them- 
selves into groups or "closed shells" for which L is zero and 5 is zero 
and J is zero and the magnetic moment is zero, as have the ten elec- 
trons of the "cage" of the sodium atom to which I alluded. The so- 
called valence-electrons are those few which have not been locked 
into any such a cage. It is this quality which makes the Periodic 
Table periodic; but this must be left for some other place. 

We arrive at last at the nuclear moment. 
Suppose that even with these spins and these orbital motions of all 

the extra-nuclear electrons, we have not yet exhausted the internal 
angular momenta of the atom, and that the nucleus itself possesses 
one. Suppose, to be specific, that the nucleus has an angular momen- 
tum with a quantum-number I and a magnitude V/(/ + l)(/?/27r), and 
a propensity for orienting itself in distinct permitted directions with 
respect to the other angular momenta of the atom. How shall we 
detect this, and how shall we determine 7? 

It is practically necessary to be yet more specific. One could 
probably not tell a priori whether the nuclear angular momentum 
would tend to orient itself with special respect to individual electron- 
momenta, or with special respect to some resultant or in particular to 
that grand resultant of all electron-momenta which we have denoted 
by J. However, in the cases which have been successfully analyzed, it 

4 This is the description of what is known as "Russell-Saunders coupling" or 
"LS coupling"; in certain states of certain atoms, the mutual orientations of the 
vectors conform to different schemes. 
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turns out that the last condition is the one which prevails. Suppose 
then that I compounds itself with J according to the following rule, 
repeated word-for-word with appropriate changes of symbol from the 
rule for compounding s and I into j: 

Rule for compounding I and J into F. If I is greater than J, start 
with the numerical value of (/ -f J) and write down the sequence of 
numbers spaced at unit intervals from (/ -f J) to (/ — J) inclusive: 
to wit, (/ + J), (/ + / — 1), (/ + 7 — 2), • • • (/ — J). These 
(2/ + 1) numbers are the permitted values of the quantum-number 
F. If J is greater than I, start with the numerical value of (J + 1) 
and write down the sequence of numbers spaced at unit intervals from 
(7 -f I) to (7 — I) inclusive. These (2/ + 1) numbers are the per- 
mitted values of the quantum-number F. 

The quantum-number F refers to a vector of magnitude ^F{F + 1) 
(h/2ir), which has taken over from 7 the role of the angular momentum 
of the atom-as-a-whole, being the resultant of 7 and of the nuclear 
angular momentum /. 

Now if all these suppositions are correct, we may expect to find not 
individual states, but whole serried clusters of states, corresponding to 
individual values of 7. If out of the manifold term-system of an 
atom we select a state for which 7 = 1/2, one for which 7 = 3/2, one 
for which 7 = 5/2 and so on as far upward as our knowledge extends, 
we may expect on close scrutiny to find that these apparent states are 
actually clusters, each cluster comprising a number of states which for 
one or two or more of the lowest values of 7 may be equal to (27 + 1), 
but for higher values reaches and remains at a limit which we identify 
as (2/ + 1). 

What is observed with the spectroscope, though, is not the indi- 
vidual state, but the line which reveals a transition between two 
different states. What in a feeble spectroscope appears as a single 
line, and is attributed to a transition between two states with resultant 
electronic angular momenta (I fear no shorter term will serve hence- 
forth) j' and j", should in an excellent spectroscope appear as a cluster 
of lines due to transitions between the several members of two clusters 
of states. 

This again is exemplified by the principal series of sodium. As I 
said earlier, this appears in a feeble spectroscope as a series of single 
lines, each of which is resolved by a good spectroscope into a doublet. 
This structure, by the way, is called the "fine structure" of the lines; 
and this it is which indicates that the P-states of sodium are close 
pairs, and which thus invites and requires the introduction of the 
quantum-numbers j and .s- and the spin-momentum of the electron. 
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With a very good spectroscope indeed, each member of each principal- 
series doublet is in its turn resolved into a pair. This structure is 
called the "hyperfine structure" of the lines; and this it is which indi- 
cates that a still further subdivision of the states is necessary, and 
invites and requires the introduction of the quantum-numbers F and 
I and the angular momentum of the nucleus. Indeed, the concept of 
the nucleus as a quantized vector was invented or discovered (which- 
ever word the reader may prefer) during the interpretation of hyper- 
fine structure of spectrum lines. 

Hyperfine structure of lines or states (for the name is applied 
to both) is usually more crowded and compact than fine structure, 
and yet there are exceptions: the fine structure of hydrogen is much 
harder to resolve than the hyperfine of (say) the familiar mercury 
lines 2537 and 5461, which itself was called fine before the theory was 
developed. These structures, however, are generally near and often, 
it is to be suspected, beyond the utmost capacities of the most refined 
of optical instruments; whence, in many cases, extraordinary diffi- 
culties in measuring or even estimating the separations, the relative 
intensities, actually the mere number of the distinct lines forming a 
hyperfine pattern; observers of great skill will often disagree with one 
another, and judgment will often depend on a photograph taken with a 
spectroscopic instrument such as an echelon or an etalon, which looks 
totally different from the pictures obtained with gratings or prisms. 
Perhaps this last is an advantage after all, as it discourages attempts 
by the inexpert to interpret pablished photographs. Often several 
different isotopes of an element produce different patterns which 
signify different values of I, and are so nearly superposed on one another 
as to make analysis superlatively hard. Hyperfine structure is for 
the present, and quite probably will be forever, the "last frontier 
of spectroscopy. 

The task of deriving, from the hyperfine line-pattern connecting 
two states or (better) state-clusters, the hyperfine subdivision of the 
state-clusters or "hyperfine multiplets" themselves, is again an ex- 
ample of the classical function of spectroscopy, which we shall take as 
having been achieved. Actually it involves, of course, the use of 
selection-principles, themselves connected with the atom-model, but 
omitted from this article in order not to complicate it still more. 
Some confusion may be prevented if I state that in our favorite case of 
sodium, where the fine-structure splitting of the principal-series lines 
implies a splitting of the P-states only, the hyperfine splitting implies 
something more complex: it is due jointly to hyperfine structures of 
both the P-states and the normal 5-state, the latter being predominant. 
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We now consider briefly the methods of determining the quantum- 
number I of the nuclear angular momentum. 

(a) The ideal method is the one already described: investigate line- 
clusters connecting state-clusters of as many different values of J 
as there are; ascertain thus the number N of states per cluster; verify 
that N is equal to (2/ -|- 1) whenever J is less than or equal to some 
particular value Jm (say), and that it is equal to (2/m + 1) whenever 
J is equal to or greater than Jm. All this being verified, the value of I 
must be Jm. 

One seldom if ever finds such a programme as this worked out very 
fully. The difficulties seem to be that, at best, it is a lot of work to 
analyze the hyperfine-structure of even one line, let alone a great 
number; while at worst, lines connected with states of certain /-values, 
high ones especially, may be quite unobservable; also there is the 
striking fact that in a given spectrum a very few lines or even one 
alone may have their hyperfine-structures spread out so much more 
broadly than all the rest, that research is practically concentrated on 
them alone. (One hears so much about 4722 of bismuth as almost to 
have it blotted from mind that bismuth has other lines!) But of 
course if one is willing to accept without test the rule for compounding 
the vectors I and /, then it suffices to discover and analyze a state- 
cluster for which N is less than (2/ -}- 1). 

(b) The intervals between the members of a state-cluster may give a clue 
to the value of I. These intervals are of course energy-differences, and 
the fact that they exist shows that there are forces between the spin- 
ning nucleus and the system of revolving and spinning electrons which 
surrounds it. If these forces are magnetic, then they may reasonably 
be expected to vary as the sine of the angle 0/, j between the angular 
momenta of nucleus and extranuclear electron system; for either the 
magnetic moments of these two will be parallel to the respective angu- 
lar momenta, or else (by the reasoning of page 297) their non-parallel 
components will presumably change so rapidly as to be ineffective, 
leaving only the parallel components to be detectable. Comparing 
the different orientations of I and J which correspond to the several 
values of F and thus to the states of the cluster, one sees that their 
energies—or rather, the parts Wf thereof which are due to the inter- 
action—should then vary as cos dj, j: putting for which the formula 
based on (10) 

F(F+!)-/(/+!)-/(/+!). 
Wf = const- 2V/(/+iW/(J+i) (13) 



302 BELL SYSTEM TECHNICAL JOURNAL 

Insert in (13) the permitted values of F, which are (27 + l)or(2/+ 1) 
in number according as J is or is not greater than 7, and are spaced at 
unit intervals from (7 + J) downwards (page 299); call them, in order 
of descending magnitude, Fm, Fm_i, Fm_2 • ■ Form the 27 or 2J con- 
secutive first differences between the so-computed permitted values of 
Wf\ call them AWm, ATFm_,, AWm-z, ••• Then as is readily worked 
out, 

AWm : AWm-i : AWm^ • • • : : Fm ■ Fm_i : Fm_2 ■ • • 
::(7 + /):(7 + /-l):(7+/-2)--.. 

The successive energy-differences or intervals should stand to one 
another as the successive members of the chain of integers (or half- 
integers, as the case may be) stepped off at unit intervals and stretch- 
ing from (7 + J) downwards.5 

This is an interval-rule based on a specific notion of the intra-atomic 
forces (the sine-law aforesaid), and having analogues in the parts of 
atomic theory having to do with the interactions between electrons 
the extra-nuclear electrons only. If verified, it enables one to deter- 
mine (7 -f J) and therefore 7 from the analysis of a single cluster of 
states with a single value of J, even when J is smaller than 7 and the 
preceding method would fail. Much use has been made of this 
method, and there are a few cases in which a fairly accurate measure- 
ment of a chain of intervals has shown that it closely agrees with a 
chain of consecutive integers or half-integers, though more usually the 
intervals are small and the measurements rough and it is merely as- 
sumed that there is perfect agreement with that particular succession 
of half-integers or integers with which there is the nearest apparent 
agreement. 

(c) The relative intensities of the members of a line-cluster are capable 
of giving information about the quantum-numbers of the states which 
they connect, provided one adapts quantum-mechanical formulae 
developed for transitions into which the nuclear angular momentum 
does not enter. The formulae are of appalling complexity, while 
intensity-measurements, especially when one is working so near the 
limits of the possible as when hyperfine-structure is being measured, 
are notoriously liable to error. This method is probably to be classi- 
ned as by far the least reliable, for the present at any rate. 

6 The biggest interval may be that between the highest and the next-to-highest 
energy-value, or that between the lowest and the next-to-lowest; whichever case is 
realized gives a clue to the "sign" (page 318) of the magnetic moment; usually the 
former corresponds to a positive, the latter to a negative moment, but features of 
the extra-nuclear electron-system may cause this statement to be reversed. Inci- 
dentally, relative intensities of lines also have a bearing on the sign of the moment. 



CONTEMPORARY ADVANCES IN PHYSICS. XXIX 303 

{d) The phenomenon of alternating intensities in band-spectra serves 
to reveal the spins of a few kinds of nuclei, and in a very interesting and 
reliable way, but must be left for another occasion. 

There remain the methods which involve the use of a magnetic 
field in one way or another, and some of which incidentally tell most of 
what we know about the magnetic moments of nuclei, though nowhere 
near so amply or so exactly as we should like. 

First it must be said that the analogy between the vectors I and J 
on the one hand, L and ^ on the other, which thus far has been so full 
and helpful, breaks down completely when the atom is exposed to a 
magnetic field of ordinary strength. Were the analogy perfect, an 
atom in a state distinguished by the quantum-number F for its total 
angular momentum would act as a rigid spinning body and would be 
able to assume {2F -\- 1) discrete orientations in the magnetic field, 
corresponding to (2F + 1) magnetic levels. This would be true of each 
of the (2/ -f 1) or (2/ + 1) states comprised in what I have been 
calling a "cluster" with a common value of J, though the value of 
F and hence of {2F -f 1) would differ from one state to the next. 
The magnetic levels would be distributed in groups, each corresponding 
to a different value of F. The numbers in the different groups would 
be unequal. The total number for all the groups or states of the cluster 
would amount, as the reader can figure out, to the product {21 +1) 
X {2J + 1). 

It is altogether probable that this is precisely what does happen in 
magnetic fields so weak as not to separate the magnetic levels per- 
ceptibly (their separation being then, it will be recalled, proportional 
to the field-strength). Yet in fields strong enough to produce a 
measurable effect, the disposition of the magnetic levels has only one 
thing in common with this hypothetical distribution. Their total 
number is precisely {21 -f 1) {2J +1). They are, however, distrib- 
uted in (2/ + 1) groups, each consisting of {21 + 1) levels; as though 
first of all the atoms were to forget their nuclear angular momentum 
and remember only their electronic angular momentum, and were to 
orient themselves in the field in the {2J + 1) different ways which were 
prescribed for them (page 295) while the nucleus was still being neg- 
lected; and as though then they were to remember the nuclear angular 
momentum, and were to allow for it by adopting, in place of each 
separate one of the {2J + 1) very different orientations, a group of 
{21 -f 1) orientations differing only a little from it and from each 
other. 

This rather animistic idea is not very far from the model commonly 
conceived. It is supposed that in the strong magnetic field the nucleus 
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is somehow broken away from its interlocking with the system of 
extra-nuclear electrons; not in the sense that it is torn out of the 
system or that its electrostatic attraction for the electrons is sus- 
pended, but in the sense that somehow or other the rule for the com- 
pounding of I and J into various values of a resultant vector F is done 
away with. The system of electrons with its angular momentum J 
chooses among (2/ -f 1) orientations with respect to the field, just as 
if the nucleus were not there; and the nucleus chooses among (2/ + 1) 
orientations with respect to the field, just as if the electronic system 
were not there. Nucleus and electrons, I and J, are said to be "de- 
coupled" from each other; it is supposed that their angular momenta 
precess each at its own rate separately around the direction of the 
field.6 

This account suggests that the energy-values of the magnetic levels 
would be given by the various values of the expression 

MeH cos dj, h + MnH cos 0/, //, (14) 

where 6jt h and Oi, h stand for the inclinations of the angular mo- 
menta J and I with respect to the field-direction, while Me and Mn 

signify the magnetic moments of the extra-nuclear electron-system 
and of the nucleus, or, if these magnetic moments be not parallel to 
J and I respectively, then their projections upon the directions of J 
and I. The different groups of levels would then correspond to 
different permitted values of cos Qj, h, the different levels of any one 
group to different permitted values of cos dr, //. The first term, one 
might say, would determine the (2/ -f 1) separate energy-values which 
would occur if there were no angular momentum of the nucleus, while 
the second term would subdivide each of these into a group of {21 + 1) 
levels. 

It is found, however (as we shall later see) that the magnetic mo- 
ments Mn of nuclei are always so very small by comparison with those 
of extranuclear electron-systems, that the second term of (14) is 
quite negligible. We have therefore to look for some other cause for 
the observable subdivision. This cause is thought to be the force 
between the moments of the nucleus and the electron-system. We 
assumed it to be overborne by the strong field in so far as its ability to 
control the quantized directions of the angular momenta is concerned, 

6 The analogy of I and J with L and S is restored when the impressed field is very 
strong, for then L and S are similarly decoupled from one another—" Paschen-Back 
effect" as distinguished from the "Zeeman effect" which we have hitherto been con- 
sidering. Thus it is roughly correct to say that hyperfine structure reacts to a weak 
magnetic field as fine structure does to a strong one, though this statement should 
be carefully qualified if use were to be made of it. 
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but now must suppose it still to be potent enough to affect the energy 
of the atom. It adds a third term to (14) which is supposed to be of 
the form const. MeMn cos Oi, n cos Qj, n, but in any event will have 
(27 + 1) distinct values for every value of J, and is not necessarily 
(or anyhow is not known to be) too small to account for the observed 
separations between the members of each group. It therefore allows 
us to estimate I by counting the members of such groups and equating 
their number to (27 + 1), and this (when available) is one of the most 
acceptable ways of determining the angular momentum of the nucleus. 

With a spectroscope one counts, as always, not the number of 
levels but the number of lines connecting them with some other 
family of levels, and expects that the two numbers will not be the same. 
By a rare if not unique coincidence, however, they are the same: the 
selection-principle which is involved is such, that each group of 
levels produces a group of an equal number of lines, or (in other words) 
if the influence of the nucleus resolves every state of the atom in a 
magnetic field into a group of (27 + 1) different levels, then it also 
resolves every line connecting two such states into a group of (27 + 1) 
different lines. There are in the literature magnificent photographs 
of the spectrum lines of bismuth exposed to a magnetic field, each line 
under high resolution exhibiting ten components and proving the value 
9/2 for 7. 

It is, however, sometimes possible to count the levels directly, by 
sending a beam of fast-moving atoms through an inhomogeneous 
magnetic field which spreads it out into a diverging fan of smaller beams 
or pencils, each consisting exclusively of atoms having a certain 
distinctive value for the projection of the magnetic moment upon the 
field-direction. This requires a great refinement of the celebrated 
method of Gerlach and Stern, a refinement which has been achieved 
by Rabi and his school. 

We take, as usual, sodium for our example. Consider a narrow 
beam of sodium atoms, moving with uniform speed along the A--direc- 
tion into a region pervaded by a magnetic field which is parallel to the 
z-axis, and of which the magnitude 77 varies as rapidly as possible with 
z. Were it not for this variation of 77 with z, nothing would happen to 
the beam, for (to make the crudest possible picture) each atomic 
magnet would have both its north and its south pole exposed to the 
same field-strength, and one would be pushed as hard as the other was 
pulled, resulting in no net force upon the magnet and no deflection. 
But when the field varies with z and the atomic magnet is oriented 
otherwise than at right angles to the z-axis, the north and the south 
pole will be exposed to different field strengths, there will be a resulting 
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force and a resulting deflection of the flying atom. Force and deflec- 
tion will increase with the z-component of the magnetic moment of the 
atom, and atoms with different values of this component will go in 
different directions. 

First we disregard the influence of the sodium nucleus. The sodium 
atoms in experiments of this type are always in their normal state, 
for which I recall that I = 0 and j = 5: the angular momentum and the 
magnetic moment are exclusively those of the spin of the valence- 
electron. the former having quantum-number 1/2 and magnitude 
VJtF+T) {hjlTr), the latter being parallel to the former and having 
magnitude g(e/2wc) times the magnitude of the angular momentum, 
with 2 for the value of g. Having this value, the angular momentum 
of the atom may orient itself in either of the two ways which are crudely 
(page 292) called "parallel" and "antiparallel" to the field, though 
it is better (page 293) to think of the two permitted inclinations to the 
field-direction as being arc cos+ 1) and (- 5/V|(¥+l))- 
Half of the atoms are so oriented that the z-component of their mag- 
netic moment is %g(e/2mc)(h/2T), the other half so that the z-com- 
ponent has the negative of this value: the beam is split into two, 
diverging oppositely and symmetrically from the axis of x. The 
detection of this splitting is the Gerlach-Stern experiment. 

Now we suppose that the sodium nucleus has an angular momentum 
of quantum-number I, as a result of which the two orientations afore- 
said are not really two, but actually are two groups of {21 + 1) not- 
very-different orientations apiece. The problem is, to refine the 
method sufficiently to bring out the fact (if it is a fact) that each of the 
two apparent beams aforesaid is actually a close group of several, 
and to count the several. 

It is necessary to lengthen out the path of the atoms in the inhomo- 
geneous magnetic field, since the longer their exposure to the deflecting 
agent lasts, the farther the separate beams are drawn apart; this 
means magnifying the scale of the apparatus and the volume which has 
to be kept evacuated, and carrying to a very high pitch the geometrical 
accuracy of its design, since the initial not-yet-separated beam must be 
exceedingly narrow and must be shot forth in a very-exactly-adjusted 
direction from its source into the field. It is essential also to reduce 
the broad distribution-in-velocity which the atoms owe to the fact that 
they come out of a furnace (in which sodium is being vaporized) with 
the random velocities of thermal agitation appropriate to the tempera- 
ture of the furnace, and which would more than suffice to merge the 
beams which it is now desired to separate. One gathers that even at 
present it would not be possible to make the wished-for separation, 
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were it not for one more feature of the laws of the behavior of atoms 
and their internal angular momenta in the magnetic field. 

I have described at length how, in magnetic fields of the field- 
strengths customary in spectroscopy, where the angular momenta I 
and J of nucleus and electron-system are "decoupled" and orient 
themselves independently in the field, each state with a given value of 
J is converted into (2/ -f 1) groups of (2/ + 1) levels apiece. But in 
no field at all, I and / are "coupled" into a resultant F, or rather into 
one or another of several such resultants; and I mentioned that there is 
reason to suppose that, in fields very much weaker than the customary 
ones, this coupling subsists and the atom orients itself as a single 
entity in the field. I emphasized then (page 303) that different as are 
these two extremes, they have one feature in common: the total 
number of the levels corresponding to a single value of /, which at 
both extremes is {21 + 1) (2/ + 1). The practical usefulness of this 
theorem is diminished by the fact that some of these levels may have 
identical values of energy, but in the atom-model they are nevertheless 
distinct. 

One naturally guesses that as the field-strength is increased from 
"very weak" to "customary," each level of the one extreme passes 
over into a level of the other extreme, so that for any field-strength 
low, intermediate or high there are always just {21 -f 1) (2/ -f 1) of 
them. There arise then the lesser problem of ascertaining the "cor- 
relation," i.e. which level of the one extreme goes over into which of the 
other; and the greater problem of ascertaining just how, for each of 
these continuously-definite levels, the energy-value and the component 
of the magnetic moment along the field-direction—which latter de- 
termines the deflection, and which let us call Mz—vary with the field- 
strength H. Formidable theoretical articles have been written on 
both of these problems, culminating in rules for the former and formulae 
for the latter. They were worked out originally for the behavior of the 
vectors L and 5 in applied magnetic fields, but are translated into 
rules and formulae available for our present interests by simply re- 
placing these vectors with I and J and making corresponding changes 
in the g-factors.7 For such an atom as hydrogen or sodium in its 
normal state, for which / = ^, I will quote the formula from Breit 
and Rabi. 

7 Strictly one should take into account the influence of the magnetic field on the 
interrelations between L and S and on those between I and J simultaneously, but it 
usually happens that when H is increased to a magnitude which already suffices to 
decouple I and J pretty thoroughly, it is not yet great enought to do much to the 
coupling between L and S. I have spoken of this range of magnitudes as "cus- 
tomary," on the ground that it is usual in experiments on the Zeeman effect; but 
there is no good single word for qualifying it, inasmuch as it is simultaneously weak 
with respect to the (L, S) coupling and strong with respect to the (/, J) coupling. 
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We have seen that in the absence of magnetic field, the normal state 
is subdivided into two by the influence of the nuclear angular mo- 
mentum I and its coupling with J. In one of these—call it N'—the 
vectors I and J are nearly parallel, and their resultant, the angular 
momentum F of the atom-as-a-whole, has the quantum number (/ + J) 
which is (/ + i): in the weak field where the coupling is not broken, 
and the state N' maintains its identity, the number of permitted 
orientations is {2F + 1) which is (2/ -f 2). In the other—call it 
N"—the vectors I and J are nearly anti-parallel, and F has the quan- 
tum number (/ — f); in the weak field the number of permitted 
orientations is (2.F -f 1) which is 21. Adding, we get for the total 
number of magnetic levels the value (4/ + 2), which is equal to 
(27 -(- 1) (2/ + 1) as I stated. In the weak field, the different 
levels are distinguished by their values of the magnetic quantum- 
number m, which is defined by saying that the projection Fz of the 
angular momentum (of the atom-as-a-whole) on the field-direction is 
equal to m{hl2ir). The permitted values of m are (7 -f |), (7 — ^), 

(7 — f) • • •, — (7 — f), — (7 -f |). The first and the last of these 
values are attached each to a single level, belonging (in the weak 
field) to the state iV7; each of the others is attached to a pair of levels, 
one belonging to the state N' and the other to the state N". 

We know that each of these levels maintains its identity as the 
field-strength is increased, even when the coupling of 7 and J into F 
is broken down and the separate states N' and N" lose their identities. 
We wish to know how the value of M* for each level is varying as the 
field increases. Leta stand for 2w/(27 + 1); let 6 stand for the energy- 
difference between N' and N"; let g stand for the g-factor associated 
with the extra-nuclear electron-system and with the angular momentum 
/; let ^ stand for (g/b){eH/2mc){h/2ir). The formulae of Breit 
and Rabi are as follows8: 

M' - ± 2(1 + 2.:;^ (16) 

For the levels characterized by the extreme values of w(z;f2., ± (7 + ^)) 
and initially belonging exclusively to N', the first factor is equal to one 
half and the two levels are distinguished by the two choices of sign, 
and Mz is independent of field-strength. With respect to the other 
values of m, the situation is more complex and curious. A single value 
of m, say (7 — |), corresponds to two different values of Mz which are 
equal in magnitude and opposite in sign; the opposite value of m, 

8 Perhaps it is not superfluous to remark that in the factor {e/lmc), the symbol m 
always stands for electron-mass, never for magnetic quantum-number. 
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in this case — also corresponds to two different values of M, 
which are equal and opposite, and each of which at zero field-strength 
(but not for H = 0) coincides with one of the previous two. Now 
consider any two of these values pf Mz which correspond to equal and 
opposite values of m and coincide with one another at H = 0. As H is 
increased from zero, these two are altered in opposite senses, and one 
of them actually passes through zero and then reverses at its sign at a 
certain value of field-strength {m and hence a are negative, and Mz 
vanishes when x = a) while the other is shifted in the opposite sense 
and never vanishes (m and a are positive).9 We shall presently see 
(page 310) that this behavior is the basis of one of the methods of 
evaluating /. One more peculiarity of these equations must be 
stressed: the magnetic moment of the nucleus nowhere appears in 
them! This becomes evident when the field-strength is put equal to 
zero and x vanishes, for then the several values of the right-hand 
member of (16) become simply the projections, upon the field-direction, 
of the magnetic moment of the extra-nuclear electron-system. Thus 
we have the paradox that in these experiments the magnetic field gives 
us information about the nucleus by virtue of the force which it exerts 
upon the atom, and yet this force is exerted practically upon the 
electrons alone, and not to any perceptible extent upon the nucleus. 

The laws expressed in equation (16) have thus far assisted in 
three ways in the study of the nucleus: 

First, in respect to the experiment which I was describing (page 306) 
when I began on this detour: as II is decreased from what I called the 
"customary" magnitude, the {21 + 1) levels constituting each of the 
there-mentioned groups draw gradually apart—i.e. they differ more 
and more in respect of the value of the component of the magnetic 
moment along the field-direction, which is what controls the deflec- 
tion. The experiment must therefore be performed with field- 
strengths II which are sufficiently low, much lower than those cus- 
tomarily employed in the Gerlach-Stern experiment or in spectroscopy; 
and this is one of the distinctive features of the technique of Rabi and 
his school. Narrowness of the beam is all the more required, since 
dHjdz must be large enough to produce considerable deflection, and 
if both its value and the breadth of the beam in the s-direction were 
large, II could not be small in every part of the beam. The beam 
must also be made nearly homogeneous in speed, and this is done by a 

9 Exception must be made for pairs of values of Mt, both members of which corre- 
spond to m = 0 and vanish at II = 0; each member of such a pair departs farther 
and farther from zero, to equal extents in opposite senses, as H is increased from 
zero. 
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clever utilization of the law embodied in (16), for which I must refer to 
the original papers.—When the experiment was performed on sodium, 
it was found that the beam is split into eight components instead of 
merely two, proving the value 4 for the factor (2/ + 1) and the 
value 3/2 for the quantum-number of the nuclear angular momentum. 

Second, suppose an experiment done by measuring the number of 
atoms which go through the deflecting held entirely undeflected. 
These are the atoms for which Mz = 0, and in ideal conditions there 
would never be any such atoms, excepting at one of the particular 
values of field-strength for which the Mz of one (or rather, two at a 
time) of the levels mentioned on page 309 is passing through zero; in 
actual conditions one would expect the curve of the number-of- 
undeflected-atoms versus the field-strength to exhibit peaks. On 
examining equation (16) one may see that there would be one peak 
for / = 1 or 3/2, two for / = 2 or 5/2, three for / = 3 or 7/2, and 
so on.10 The number of peaks by itself thus gives a partly ambiguous 
indication, but the ambiguity can be resolved by another theorem 
deducible from (16): if we denote by IIu Ih, the abscissa} of the 
consecutive peaks, then all the intervals {Hi — /f,_i) are equal in 
any case, but the value of Ih is equal to the half or to the whole of their 
common value, according as J is a full integer or a half-integer.—The 
curve for caesium was found to display three peaks, and the second 
criterion showed that the value of / is a half-integer, therefore 7/2. 

Third, when Mz is found by measuring the deflected beams in an 
apparatus where field and field-gradient are accurately known (not a 
stringent requirement in either of the two previous cases), one may 
use equation (16) to compute b: thus determining the "hyperfine- 
structure" separation between two states without an optical measure- 
ment! This has been done with both varieties of hydrogen, the heavy 
isotope and the light, because for these very important atoms the 
separation in question is far too small to be detected by any optical 
device: the method of magnetic deflection has proved itself the superior 
of the long-established arts of spectroscopy, hitherto regarded as the 
ne plus ultra of subtlety and refinement.11 The results of these experi- 
ments are mostly quoted for their bearing on the magnetic moment 

10 Not counting the peak at H = 0 which (it is obvious) must always appear but 
has no bearing on the value of /. , ■ r , . • < 111 should, however, perhaps make exception for the most delicate of these, which 
is the derivation of hyperfine structure from observations on the resonance radiation 
produced by polarized light acting on atoms of gases in magnetic fields, and is 
practiced by Ellett and his school at the University of Iowa. The complexity of 
the theory forbids a description of the method in this place, but several values of I 
have been obtained by it. 
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of the nucleus, that vector quality of which till now next to nothing 
has been said. Little indeed can be said about it with assurance, 
but we must consider at least that little. 

I recall that the magnetic moment of the extra-nuclear electron- 
system is very simply ascertained by measuring the magnetic split- 
ting-up of the stationary states, i.e. the energy-differences between the 
different orientations of an atom in an applied magnetic field, because 
it enters directly into the formula for those energy-differences; but 
although the nucleus itself produces a further splitting-up which in its 
turn is measured, the situation is so much more complicated that these 
measurements have no interpretable bearing on the value of the 
nuclear magnetic moment. For protium and for deuterium, the two 
isotopes of hydrogen, the magnetic moment of the nucleus has been 
directly measured by a magnetic-deflection method. For all the 
other kinds of atoms we are obliged to infer it by theory from the 
measured values of the energy-differences between the states of what 
I called a cluster, which are alike in respect of I and J and differ in 
respect of the mutual inclination of these vectors. 

The theory can at least be illustrated by a quasi-classical derivation, 
though the differences between this and the quantum-mechanical 
method are not slight. One first visualizes the valence-electron as a 
charged particle running around and around its orbit, equivalent 
therefore to a steady current running around the orbit and producing a 
magnetic field at all points within the orbit and in particular at the 
point occupied by the nucleus; the nuclear magnetic moment is sub- 
jected to this field, and when it is shifted from one to another of its 
permitted orientations a certain amount of work must be done (or 
received) and constitutes the energy-difference in question. Supposing 
a circular orbit with radius r and angular momentum p, the argument 
commences like that of page 290; we have pe/2Trmr2c for the strength of 
the equivalent current, pe/mr3c for the field-strength which it pro- 
duces at the centre of the circle where the nucleus is; we conceive the 
nucleus as having a magnetic moment M parallel to its angular mo- 
mentum; we assign the quantum-number I to this angular momentum 
and the quantum-number I to that of the orbital motion of the electron, 
thus conceiving these as vectors having the magnitudes + 1) 
(h/lr) and ^1(1 + 1) (hjlir), which last is what I have been calling p. 
If we could ignore the spin of the electron, I could be replaced by 
/, and the torque exerted by the field upon the nucleus would be 
M(pe/mr3c) sin dr, j. There would be two or more permitted values 
of 9r. j corresponding to the various states of the cluster, and we 
should get the corresponding energy-values U by writing: 
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U = M(pe/mr3c) cos dr. j 
(17) 

= M(e/mc){r~3)^Iy{J~-\-~i)h|2^^ cos 0/, j 

and using expressions based on equation (13) for the cosine. Finally 
we should form the differences between the right-hand members of these 
equations, and equate them to the observed energy-differences between 
the states of the cluster, and solve for M. 

Even this formula, when applied to the data, gives values of M of the 
same order of magnitude as do the more elaborate ones; otherwise 
there would be no point in quoting it. There is, however, very much 
to be done to improve it. There is the magnetic field produced at the 
nucleus by the spin of the electron. There is the alteration required 
by relativity. There is the task of applying quantum-mechanical 
rather than quasi-classical reasoning to the postulates. The pro- 
cedure is strongly supported by the fact that it is copied from the 
argument which, in the theory of the interaction between the spin and 
the orbital angular momentum of the valence-electron, leads to a 
wonderful explanation of the fine-structure of the hydrogen spectrum. 
It is, however, certainly not perfect, since when applied to different 
states of a particular kind of atom it is likely to lead to different 
values of the nuclear magnetic moment, a result which either shows 
some of the mathematical methods of approximation to be faulty or 
else is a reductio ad absurdum of one or more of the postulates. The 
problem is in fact one of the great unmastered problems of atomic 
physics, and some believe that it is wrong to postulate that the nucleus 
can be regarded, in its interactions with the extra-nuclear electrons, 
as nothing but a simple magnet attached to a body having mass and 
charge. I shall therefore say nothing further about it, except for 
quoting the formula oftenest used in cases such as those of sodium and 
hydrogen, where the energy-difference h in question (to follow the 
notation of page 308) is that between the two members of a pair of 
states for both of which L = 0 and / = 5" = 1/2, while for one of 
them F = I — J and for the other F = 7 -f J: 

the last symbol standing for the square of the value which the Schroed- 
inger wave-function has at the nucleus, which is known exactly for 
hydrogen and approximately for other one-valence-electron atoms; 
the formula is due to Fermi. Applying this formula to the values of h 
for light and heavy hydrogen which they had ascertained by the 
magnetic-deflection method (page 310), Rabi Kellogg and Zacharias 

(18) 
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got values for the magnetic moments of proton and deuteron 12 which 
are of the order of one one-thousandth of those associated with elec- 
trons. These values are stated (for a reason which may be obvious 
but will be set forth presently) as 3.25 and as 0.75 times the quantity 
(eh/4:Trmpc), where Wp stands for the mass of the proton; the uncer- 
tainty is given as 10 percent for the former, about 25 percent for the 
latter. 

There remain the experiments whereby M was directly determined, 
for protons and for deuterons, from the force exerted by an inhomo- 
geneous magnetic field on the nuclear moment itself. One cannot use 
the bare proton for such an experiment, since owing to its charge it 
would suffer, as it flies through the magnetic field, an electrodynamic 
force and a deflection by comparison with which the others would be 
trivial. One cannot use the isolated hydrogen atom, since just as in 
the case of sodium which we considered at such length, the force ex- 
erted by the field upon the magnetic moment of its electron would 
far outweigh that exerted on the nucleus. There remains the hydrogen 
molecule, which in its normal state has the convenient feature that the 
spins of its two electrons are oriented anti-parallel (in the loose sense 
of the term) and cancel one another out, while the angular momenta 
and the magnetic moments of their orbital motions likewise vanish. 
This seems to remove all the possible competitors to the nuclear 
moments, but there arises another which does not occur in individual 
atoms: the rotation of the molecule-as-a-whole, which has an angular 
momentum and a magnetic moment. This magnetic moment, 
however, is of the same order as those of the nuclei, and its contribu- 
tion to the net magnetic moment of the nuclei can be estimated and 
subtracted from theirs. As for the nuclei, they may set themselves 
with their spins either parallel or antiparallel ;13 in the latter case their 
magnetic moments cancel one another, and observations on such 
molecules teach us only about the rotation, knowledge which is useful; 
in the other case their magnetic moments add, and the data of the 
experiment yield a value which is double the moment of the individual 
proton—or of the individual deuteron, according as the molecule is 
formed of two light atoms or two heavy atoms of hydrogen. 

12 This substitute for the names deulon and diplon, by which the nucleus of the 
H2 atom (deuterium or "heavy hydrogen") has usually been known in America and 
England respectively, was recommended at a recent meeting of the American Physical 
Society by Dr. Urey, the discoverer of deuterium. 13 This implies that nuclei conform to rules of quantization in direction relative to 
one another similar to those for electrons. This is true, and is superbly demonstrated 
by observations on band-spectra and by the chemical separation of the two kinds of 
hydrogen molecules ("ortho-hydrogen" and "para-hydrogen") here mentioned; 
but the story is much too long for this place. 
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The experiments were performed by Stern and his school. They 
are extremely delicate, owing to the excessively small value of the 
magnetic moment and hence of the deflection. Indeed, they might 
have been beyond instead of within the limits of the possible, were it 
not for two distinctive features of hydrogen: the just-mentioned doub- 
ling of the moment due to the parallelism of the spins of two nuclei, 
and the fact that a beam of slow-moving molecules can be utilized, 
because hydrogen does not have to be heated in a furnace in order to be 
vaporized, but will emerge as a molecular beam through a hole in the 
wall of a chamber no warmer, indeed very much colder, than the 
temperature of the room itself! For the magnetic moment of the 
proton, Frisch and Stern give 2.5 (eh/AirmpC) with an uncertainty of 
"at most 10 per cent"; for that of the deuteron, Estermann and Stern 
say that the value is between 0.5 and 1.0 times {ehlAirmpc). 

We now turn to the ensemble of the estimates of nuclear angular 
momenta and of magnetic moments, and the laws and rules which 
they seem to obey. 

Estimates of I have by now been made for some fifty-five elements; 
but this is not an adequate statement to make, for the nuclear angular 
momentum is one of those qualities—as I shall presently stress - 
which may vary from one isotope to another of a single element, and 
there are already several cases in which values of I have been reliably 
assigned to two or more different isotopes. The great majority are 
derived from optical analysis of hyperfine-structure; four or five 
from magnetic-deflection experiments; about ten from alternating 
intensities in band-spectra, most of these last being checked from the 
hyperfine structure of line-spectra. 

The values are of very unequal merit, some being derived inde- 
pendently and concordantly from several different properties of 
hyperfine structure (pages 301—302), some being further sustained by 
deductions from band-spectra, while others are guesses based on a few 
rough observations of intensities or intervals. The unreliability of 
these last is of a type not to be described by giving a most-probable- 
value coupled with a probable error. A critical and analytical review 
of the lot by a neutral expert is badly needed. 

The first thing which strikes the eye on viewing a tabulation is the 
immense preponderance of half-integer values of spin; but this is only 
one sign of the most important of the rules of nuclear momenta, which 
is one of the most important of the rules of nature. I recall that 
the "mass-number" A of an atom is the integer nearest to the value 
of its mass expressed in terms of one sixteenth the mass of the common- 
est oxygen atom as unit. The rule, then, is: 
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Atoms of odd mass-number have half-integer or "odd" spins; while 
among the atoms of even mass-number, two of the lightest have the full- 
integer or "even" spin of unity, while all the rest display no hyper- 
fine-structure at all and thus probably have the "even" spin-value zero 
(though we must never forget the possibility that the lack of ob- 
servable hyperfine-structure means that the magnetic moment is very 
small, the clusters of states therefore so compact that the spectroscope 
cannot resolve the hyperfine pattern, and the value of I therefore un- 
ascertainable). 

Although not every kind of atom has yet been studied, the number 
of cases on which this rule is based is already so considerable that the 
discovery of an exception would be a sensation of the first order. 
Among the most striking exemplifications of the rule are those afforded 
by elements of many isotopes. Mercury, the outstanding example, 
displays a hyperfine-structure of wondrous complexity, which has been 
very successfully interpreted by assigning the value 3/2 of I to its 
odd isotope of mass-number 201 (Hg201), the value 1/2 to its odd isotope 
Hg199, and the value zero to its four principal even isotopes Hg198, 
Hg200, Hg202 and Hg204; the lines attributed to these isotopes stand to 
one another in the intensity-ratios deduced from the relative abund- 
ances of the isotopes as measured by Aston. Cadmium has two odd 
isotopes for both of which I = 1/2, and several even ones exhibiting 
no hyperfine structure at all. Several elements have two isotopes, 
both of odd mass-number; in some of these cases both have the same 
value of /(e.g. gallium 3/2, rhenium 5/2), in other cases they differ 
(e.g. rubidium 3/2 and 5/2). The outstanding and very-certainly- 
known case of hydrogen is distinguished by the values 1/2 for the 
light and 1 for the heavy isotope. 

(It may occur to the reader that if, say, four isotopes of mercury 
display no hyperfine-structure, then everything that I have heretofore 
said implies that their spectrum-lines and levels ought to coincide 
absolutely and be indistinguishable. These are, however, slightly 
separated, owing, it is presumed, to very slight differences in the fields 
surrounding nuclei of different isotopes even when they all belong to 
the same element and have the same nuclear charge and indistinguish- 
able moments. The phenomenon, which is known as "isotope shift," 
is likely to be much studied in the theoretical physics of the near 
future). 

As we go along the list of the atoms of odd mass-number from the 
lightest to the heaviest, the value 1/2 for I appears at the start; the 
value 3/2 at mass-number 6; 5/2 at zl = 35; 7/2 at ^4 =83; 9/2 (the 
highest yet inferred) at A = 93. Further observations may change 
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these numbers somewhat, but it seems fairly assured that the higher 
values first appear later than the lower. Yet the lower and even the 
lowest appear repeatedly all through the list; for the five most massive 
atoms for which I is known, its values are 1/2 for Tl203, Tl205, and Pb207, 
9/2 for Bi209 and 3/2 for Pa231. There is no sign of a periodic variation; 
the random fashion in which the display or the lack of detectable 
hyperfine structure are sprinkled among the elements would be 
sufficient proof that it is of nuclear origin, even were there no theory. 

We recognize thus that / is a quality of nuclei which depends upon 
nuclear mass (not charge!) Moreover, everything connected with 
the concept of nuclear angular momentum—the behavior of the 
extranuclear momenta L and 5 and J of which it is an analogue, the 
nature of the phenomena which it is contrived to explain, the values of 
I deduced from these phenomena—all these things imply that / is a 
quantum-vector compounded out of the individual angular momenta 
of individual particles composing the nucleus, the quantum-numbers 
of these individual momenta being, like that of their resultant, integer 
multiples of 1/2. The very simplest model would consist, of course, 
of particles all having identical angular momenta of quantum-number 
1/2- 

Now there are two leading schemes for imagining a nucleus—let 
us say, of atomic number Z and mass-number A—as systems of 
minuter particles. According to the one, it consists of A protons and 
[A — Z) negative electrons; according to the other, of Z protons and 
(A — Z) neutrons.11 It would be correct to say that the former was 
the leading scheme until about two years ago, the latter now; but as the 
facts about nuclear momenta and nuclear magnetic moments have had 
much to do with bringing on this change of favor, I will not take it for 
granted in advance. 

If we take the nucleus to be a congeries of protons and negative 
electrons, then we are postulating a system of which all the particles 
are known to have spins of quantum-number 1/2—the simplest 
conceivable system, as I said; and we should still have in reserve the 
possibility of assigning orbital motions with orbital angular momenta 
to some or all of the particles, should it ever seem desirable. But if 
we take the nucleus to be a congeries of protons and neutrons, we are 
introducing particles of a kind for which the spin is unknown, and 
must be fixed by assumption. Since we can put 1/2 for the spin of the 
neutron, this affords little basis for choice. 

14 The fact that alpha-particles are often mentioned as constituents of nuclei is not 
in contradiction with this statement, since an alpha-particle is interpreted as 4 
protons and 2 electrons by the one scheme, 2 protons and 2 neutrons by the other. 
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It is, however, an important point—a very important point—that 
the different schemes imply different numbers of particles for a given 
nucleus: (2A — Z) by the former, and simply A by the latter. I have 
spoken of a notable rule contrasting the values of I for even mass- 
number with those for odd mass-number. Notice now that if we 
adopt the latter or proton-neutron scheme, the rule becomes: The 
quantum-number of the nuclear angular momentum is a half-integer if the 
number of particles in the nucleus is odd, and a full-integer (if ascertain- 
able at all) if that number is even. With the proton-electron scheme, 
this could not be said. 

This difference would give an advantage to the latter scheme, even 
if the model were no more specific. However, the rules for quantizing 
orientations of vectors of quantum-number 1/2 require that these 
shall set themselves either parallel or anti-parallel (in the loose sense) 
to one another. If I be built up out of such vectors, then necessarily 
an even number thereof implies a full-integer value and an odd number 
a half-integer value, and vice versa. 

This argument for the proton-neutron scheme is therefore strong, 
though perhaps not so strong as it would be, were not the basis for the 
test narrowed down by one of the curious empirical rules of the world 
of atoms: it is found that mostly iflA — Z) is even when A is even, 
and odd when A is odd. Fortunately there are some exceptions; 
the famous one is iV14, the chief isotope of nitrogen, for which it is 
certain (from alternating intensities in the band-spectrum) that / is 
full-integer (unity), whereas (2A — Z) is odd but A is even. This 
is the only case of its kind, but there are something like ten in which 
(2A — Z) is even but A is odd, and there is a hyperfine-structure 
believed to correspond to a half-integer value of 1; this seems especially 
well established for two isotopes of tin and two of mercury. Another 
and very powerful argument from alternating intensities in band- 
spectra, unfortunately too long to be expounded here, supports the 
belief that the nucleus of N14 has an even and not an odd number of 
constituent particles. On the whole it is pretty likely that any 
nucleus-model providing an even number of particles for an even mass- 
number and an odd for an odd will always be preferred to any model 
not having this feature. 

The field is now open for interpreting the observed values of 1 
by compounding proton-spins and neutron-spins (or proton-spins and 
electron-spins), and trying to find reasons for the resultants which are 
observed. It seems natural enough to have unity for the deuteron 
(proton and neutron spins parallel), zero for He4 and C12 and O16 

(spins cancelling each other two by two); but farther along the list 
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of atoms there are curiosities enough to keep theorists busy, one guesses, 
for years. I leave this for the future, and close by speaking briefly of 
the magnetic moments, which by themselves suffice to show that the 
task will not be easy. 

For the magnetic moments attributable to extra-nuclear electrons 
(or rather to their projections upon the direction of the angular mo- 
mentum corresponding), we found by theory and by experiment values 
which we wrote as g{e/2mc) ^n{n -f 1) hllir] here m stands for the 
mass of the electron; g is 1 for the orbital motion of a single electron, 
is 2 for the spin of a single electron, and has calculable values not 
greater than a very few units for the extra-nuclear electron-system as a 
whole; n is the quantum-number of the associated angular momentum, 
and is 1/2 for the spin of a single electron and has various values for 
the other cases. 

If now a proton be a simple particle with a spin 1/2, one would 
expect for its magnetic moment a value differing from that of the 
electron-spin only by the substitution of mp the proton-mass for m, 
therefore about 1840 times smaller. The actual value (page 313) 
is about three times as great as the expected one, so that the analogy 
with the electron is good enough to predict the order of magnitude, 
but is not perfect. This is as surprising a discovery as any that has 
cropped up in the last several years in the field of atomic physics, and 
shows that even the supposedly elementary particles still have mys- 
teries for us. The value for the deuteron is a good deal smaller, which 
with the proton-neutron scheme implies that the neutron has a mag- 
netic moment pointing in the opposite direction to that of the proton. 
The spins of proton and neutron must, however, be parallel, else 
their resultant could not be unity, which is the value of / for the 
deuteron. This brings up a new point: I have not yet said whether 
magnetic moment and angular momentum should be visualized as 
parallel or anti-parallel, or better, whether the component of the 
former along the direction of the latter should be taken as positive or 
negative. The qualities of the deuteron indicate that whichever is the 
case with the proton, the opposite is the case with the neutron. Ac- 
tually it is often possible to tell, from features of hyperfine-structure 
of which I have said little (cf. footnote 5, p. 302), which of the cases is 
realized for the nucleus as a whole. For the proton and the deuteron 
these features are unhappily either absent or inaccessible, and the 
question remains open. For most of the others which have been 
analyzed, the magnetic moment is said to be positive, meaning that 
it is of the sign which one expects, considering the nucleus as a whirling 
positive charge. For a few nuclei, however, it appears to be negative 
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Table of Nuclear Spins 
This tabulation is presented sous loules reserves. The values are of very different 

degrees of reliability, but it would be foolhardy for a non-specialist to grade them. 
They are collected from many sources, including tables by H. E. White (Introduction 
to Atomic Spectra, McGraw-Hill, 1934), by H. Schiller (ZS. f. Physik, 88, 323-335, 
1934), by G. Beck (unpublished) and by R. F. Bacher (unpublished), and a number of 
papers which have appeared in the last fourteen months in Die Naturwissenschaften, 
the Physical Review, and other journals. 

Values obtained by magnetic-deflection methods are marked R; those deduced 
from alternating intensities in band-spectra are labelled B; those marked H or not 
marked at all are inferred from optical observations on hyperfine-structure. Two 
values for a single mass-number signify either data compatible with both, or dis- 
cordance between two authorities. X signifies that hyperfine-structure has been 
sought but not found, which may mean that the spin is zero, but on the other hand 
may mean that the magnetic moment is too small to produce an observable spread of 
the hyperfine pattern. When a value of zero for spin is deduced from band-spectra, 
it is not subject to that doubt. 

A z Element I A Z Element I 

1 1 H 1/2 B 119 50 Sn 1/2 
2 1 H 1 B 121 51 Sb 5/2 
4 2 He 0 B 123 51 Sb 5/2, 7/2 
6 3 Li X 127 53 I 5/2, 9/2 
7 3 Li 3/2 B, H, R 129 54 Xe 1/2 
9 4 Be X 131 54 Xe 3/2 

12 6 C 0 B 133 55 Cs 7/2 R, H 
14 7 N 1 B 136 56 Ba X 
16 8 O 0 B 137 56 Ba 5/2 
19 9 F 1/2 138 56 Ba X 
20 10 Ne X 139 57 La 5/2, 7/2 
22 10 Ne X 141 59 Pr 5/2 
23 11 Na 3/2 R, H 144 62 Sa X 
27 13 A1 1/2 147 62 Sa ^ 0 
31 15 P 1/2 B 148 62 Sa X 
32 16 S X 149 62 Sa 5^ 0 
35 17 C1 5/2 B 150 62 Sa X 
39 19 K 3/2 B, R 151 63 Eu ^ 0 
41 19 K > 1/2 R 152 62 Sa 5^ 0 
40 20 Ca X 153 63 Eu 9* 0 
45 21 Sc 7/2 159 65 Tb 3/2, > 5/2 
51 23 V — 5/2 165 67 Ho 7/2, > 5/2 
55 25 Mn 5/2 169 69 Tu 1/2 
59 27 Co 7/2 175 71 Lu 5/2, > 3/2 
63 29 Cu 3/2 177 72 Hf 1/2, 3/2 
65 29 Cu 3/2 178 72 Hf X 
67 30 Zn 3/2 179 72 Hf 1/2, 3/2 
69 31 Ga 3/2 180 72 Hf X 
71 31 Ga 3/2 181 73 Ta 7/2 
75 33 As 3/2 185 75 Re 5/2 
79 35 Br 3/2, 5/2 B 187 75 Re 5/2 
81 35 Br 3/2, 5/2 B 197 79 Au 3/2 
83 36 Kr 7/2, 9/2 198 80 Hg X 
85 37 Rb 5/2 199 80 Hg 1/2 
87 37 Rb 3/2 200 80 Hg X 
87 38 Sr 3/2? 201 80 Hg 3/2 
89 39 Y 1/2 202 80 Hg X 
93 41 Cb 9/2 203 81 T1 1/2 

103 45 Rh X 204 80 Hg X 
110 47 Cd X 204 82 Pb X 
111 47 Cd 1/2 205 81 T1 1/2 
112 47 Cd X 206 82 Pb X 
113 47 Cd 1/2 207 82 Pb 1/2 
114 47 Cd X 208 82 Pb X 
116 47 Cd X 209 83 Bi 9/2 
115 49 In 9/2 231 91 Pa 3/2 
117 50 Sn 1/2 
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Table of Nuclear Magnetic Moments 
The values are expressed in terms of the unit {eh/^nmpc) customary in such tables 

(though for no very good reason) and sometimes called the "nuclear magneton." 
They are collected from the same sources as those in the Table of Nuclear Spins, and 
reduced to at most two significant figures; in cases of discrepancy, Schiller's value is 
the one usually taken. Those marked S are the ones obtained by Stern and his 
school; those marked R are obtained by Rabi and his school; those marked H or not 
at all are deduced from optical observations on hyperfine structure. I have heard 
the uncertainty of these last put at twenty per cent by one expert in the field, but 
some authorities would set it even higher. For the isotopes of hydrogen, the sign is 
unknown. 

A z Element A Z Element 

1 1 H 2.5 S 93 41 Cb 3.5 
3.2 R 111 48 Cd - 0.5 

2 1 H 0.5-1.0 S 113 48 Cd - 0.5 
0.77 R 115 49 In 5.3 

7 3 Li 3.3 H, R 117 50 Sn - 0.9 
19 9 F 2.4 119 50 Sn - 0.9 
23 11 Na 2.1 121 51 Sb 2.7 
27 13 Al 1.9 123 51 Sb 2.1 
39 19 K 0.4 H, R 129 54 Xe - 1 
45 21 Sc 3.5 133 55 Cs 2.5 
59 27 Co 2.8 137 56 Ba 1.0 
63 29 Cu 2.7 197 79 Au 0.2 
65 29 Cu 2.7 199 80 Hg 0.5 
69 31 Ga 2.1 201 80 Hg - 0.6 
71 31 Ga 2.7 203 81 T1 1.5 
75 33 As 0.9 205 81 T1 1.5 
83 36 Kr - 1.0 207 82 Pb 0.5 
85 37 Rb 1.5 209 83 Bi 3.6 
87 37 Rb 3.1 

The ratio of the magnetic moments of two isotopes of a single element may some- 
times be calculated from hyperfine-structure with less uncertainty of theory than the 
value of either moment separately. For such ratios the following values are available: 
Cu63/CuS6 = 1.00; Ga69/Ga71 = 1.27; Rb86/Rb87 = 2.04; Cdm/Cdlls = 1; 
Sn,,7/Sn11# = 1; Sblsl/Sb123 = 1.36; Hg1!,9/Hg201 = - 1.11; T1203/T1205 = 1.02. 
The experiments of Rabi's school and those of Stern's indicate a value of about four 
for the ratio of the moments of proton and deuteron; this is substantiated by L. and 
A. Farkas {Nature, 135, 372; 9 March, 1935) who measure the rates of the reactions 
whereby ortho-hydrogen and ortho-deuterium transform themselves into the para- 
forms (and reversely) in the presence of oxygen; from measurements made at three 
different temperatures they get for the ratio the three values 3.85, 4.03, 4.07, which 
agree (they say) "within the limits of the experimental error, which is less than 
five per cent." 
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(it is perhaps significant that all of these have even atomic numbers 
and odd mass-numbers).15 As for its numerical magnitude, I recall 
that the insufficiencies of the theory render the recorded values—of 
which there are some twenty-five—subject to much doubt. Such as 
they are, it is a striking fact that none of them is more than a couple of 
times as great as that of the proton, and some are a good deal smaller. 
This injures still more the scheme of constructing nucleus-models out of 
electrons and protons, for the magnetic moment of a single electron 
not compensated by some other should of itself make the nuclear 
moment enormously larger. Yet if we adopt the proton and the 
neutron as the sole constituents of nuclei for the sake of banishing 
this difficulty, it will return to haunt us so soon as we attempt to 
reduce the number of elementary particles by conceiving either the 
neutron as a proton united with a negative electron, or the proton as a 
neutron with which a positive electron is combined. 

Acknowledgments 

I am much indebted to Professor I. I. Rabi and Dr. R. F. Bacher 
for having read over the manuscript of this article and having made 
many helpful comments, and to Professors G. Beck, S. Goudsmit and 
A. E. Ruark for correspondence. 

16 Two isotopes of Cd (^4 = 111 and 113), two of Sn (117 and 119), one of Hg (201), 
one of Kr (83), one of Xe (129). 



Ferromagnetic Distortion of a Two-Frequency Wave 

By ROBERT M. KALB and WILLIAM R. BENNETT 

Frequency components are found for the ferromagnetic induction 
produced by a small magnetizing force of two incommensurable frequencies. 
Because of hysteresis the results depend intimately upon the ratios of these 
frequencies and of their amplitudes. With these ratios as criteria, two solu- 
tions are provided, adequate for most modulation problems of this character 
occurring in the field of communications. 

The development is based on Madelung's empirical propositions. From 
these are deduced the forms of complex hysteresis loops occasioned by two- 
frequency magnetomotive forces, and from the loops sinusoidal components 
of the flux wave are derived by means of Fourier's series. The various 
voltages generated in a coil by such a flux are then calculated and next 
correlated with analyses for a single applied frequency. The resulting 
changes in the impedances to the two fundamental frequencies are also 
evaluated. The most important results are given in graphs and tables. 

Experimental data on a number of specimens show close agreement with 
curves computed by the theory. 

The analysis discloses several interesting features. It is shown that 
Madelung's conclusions imply Rayleigh's law of loop similarity; as a 
consequence the parameters of a Rayleigh loop suffice to describe a complex 
loop to the extent that it conforms to Madelung's results. Hysteresis 
suppression is found not to occur at low fields, although harmonic sup- 
pression may. The generated side frequencies of the flux appear in unequal 
pairs, the lower one being the stronger in each instance. Such inequality is a 
general property ascribable to the multivaluedness of the loop. 

FOR precisely evaluating the performance of communication 
circuits containing ferromagnetic materials, methods for taking 

into account the non-linear effects of these materials are needed. To 
this end there have been devoted certain investigations of the behavior 
of such materials at the low flux densities usual in communication. 
These early disclosed that hysteresis is a governing factor for weak 
fields and led to attempts to solve the problem of its bearing on speech. 

The complexity of speech and of hysteretic phenomena has made 
desirable the use of simple testing methods, which in turn require for 
their interpretation a quantitative theory. Since tests of this sort 
are usually made with one or more sinusoidal test waves, a theory of 
single-frequency magnetic performance has already been evolved as a 
first step toward fulfilling this need. For many purposes single- 
frequency tests are inadequate, and two-frequency waves are often 
used to obtain better information bearing on the design or performance 
of communication systems. It is the purpose of the present paper to 
take a further step by furnishing the theory of magnetic behavior 
under a two-frequency force. 

322 
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The very simplicity which sometimes makes sinusoidal waves valu- 
able for analyzing or testing the non-linear properties of channels of 
communication makes such waves worthless when applied in other 
instances, and more complex test waves must then be employed. The 
harmonics produced by a sine wave furnish an index of the distorting 
properties of a system, but the side frequencies produced by two such 
waves are needed to indicate its modulating properties or to give a 
measure of the interference between carrier channels. When two 
waves are used, one may be thought of as the carrier, modulated by 
the other, whose amplitude is chosen proportionate to the square root 
of the energy in the more complex modulating wave it represents, or 
both may be thought of as component waves in the same channel, or 
as carriers in different channels, producing interference in certain other 
channels. The amplitudes of the several product frequencies then 
give a measure of the energy falling in their respective regions of the 
spectrum under actual operation. The effect of the presence of one 
fundamental upon the transmission of the other can also be ascertained. 
Increasing the complexity of the test wave by the superposition of 
additional frequencies can be seen to afford little added advantage at 
the cost of much complication, unless the character of the waves 
actually transmitted is simulated, in which case statistical methods of 
study can perhaps be applied. 

From the foregoing circumstances the utility of information per- 
taining to the application of two-frequency inputs as well as single- 
frequency inputs to non-linear circuit elements is apparent; many 
investigations have been conducted in this field to provide such 
information. When the current-voltage relation is not single-valued 
a more intricate treatment is necessary in carrying out the analysis. 
A general method of attack for double-valued characteristics has been 
provided and applied to hysteresis loops by E. Peterson 1 to determine 
the flux in ferromagnetic materials under single-frequency magnet- 
izing forces. The fundamental dependence of loop form upon wave 
shape precludes immediate extension of Peterson's results to the case 
of a multi-frequency force except for certain harmonic combinations, 
one of which he considers.2 A study of flutter effect has been published 
by Walter Deutschmann,3 who analyzed a complex loop made up of 
straight lines. Both instances serve to emphasize the desirability of 
a broader investigation of the theoretical aspects of two-frequency 
magnetization including hysteresis. While no general and rigorous 

1 B. S. T. /., Vol. 7. pp. 762-796, Oct. 1928. 5 Ibid., p. 773. 3 Wiss. Ver. a.d. Siemens-Konzern, Vol. 8, No. 2, pp. 22-44, 1929; E. N. T., Vol. 6, 
pp. 80-86, Feb. 1929. 
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method has yet been developed for handling this problem in a manner 
analogous to that applicable for a single frequency, practically im- 
portant cases are solved here by means extensible to more complicated 
ones. 

Considerations of Wave Shape and Loop Forms 

Scope of the Two-Frequency Analysis 

The envelope of a wave affords a means for classification. Waves 
whose envelopes change gradually during any oscillation form a class 
apart from those waves which have envelopes subject to abrupt 
changes. Members of each class can be segregated into those with 
envelopes nearly symmetrical with respect to the average magnetizing 
force, those with envelopes of almost uniform width, and so on. One 
of the two last-mentioned properties in a wave with a gradually 
changing envelope is essential to successful analysis by the methods 
about to be detailed. 

The cases of magnetization analyzed, which include all the two- 
frequency wave shapes that can qualify under the foregoing criterion 
of tractability to analysis, are the following: 

Case 1. The ratio between the geometric and arithmetic means of the 
amplitudes much smaller than the ratio between the sum and 
difference of the frequencies. 

Case 2. One fundamental frequency high relative to the other; the pro- 
duct of the higher frequency with its amplitude large relative to 
the product of the lower frequency with its amplitude. 

Between the two cases there exist intermediate ratios of frequencies 
and amplitudes over which the theory does not extend; however, the 
most frequent problems are usually entirely within the domain of a 
single case. The inequalities involved in the foregoing case definitions 
are not susceptible to simple explicit statement as limiting numerical 
ratios, in advance of the development of the theory. Much depends 
upon the accuracy required in predicting performance. From data 
supplied in the paper, following the theory, it is possible to determine 
the practical limitations of the mathematical treatment. 

Formation of Complex Loops 

Considering the complex hysteresis loops arising from multi-fre- 
quency magnetizing forces to be many-valued characteristics for 
determining the flux density, it is pertinent to study their formation 
and to correlate their parameters in so far as may be possible with 
those of single-frequency loops. The latter at low fields are known 
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to consist approximately of two parabolic branches, the exact shape 
of each dependent upon its point of origin. For fields confined 
somewhat below maximum permeability, the situation customarily 
obtaining in communication circuits, this representation has proved 
to be sufficiently exact to warrant the neglect of higher order terms in 
analyses. In conformity, terms of higher than second order will not 
be retained in equations used here; the development so presented can 
be extended to include them without other change in procedure. The 
induction at any point on a simple loop centered on the origin is 
expressed as a function of the instantaneous magnetizing force h by 
means of a formula developed by Peterson, 

B = (aio T auH)h ± aoz^H- — h2). (1) 

The upper sign of the double sign is used for the descending (upper) 
branch of the loop, and the lower sign for the ascending (lower) branch. 
H is the maximum magnetizing force and the coefficients are constants 
of the ferromagnetic material, determinable by single-frequency meas- 
urements. They have the following significance: aio is the initial 
permeability, du the rate of change of permeability with magnetizing 
force, and a factor of proportionality between the hysteresis loss 
and the cube of the maximum magnetizing force. The concepts in 
terms of which these parameters are defined acquire extended meanings 
for complex loops. 

In the absence of an adequate theory of ferromagnetism the question 
of whether branches of complex loops and of simple loops have similar 
forms must be answered by experiment. The steady state of retracing 
alternately the two branches of a simple loop may eventuate in a dif- 
ferent relation of B versus h than results from the first cycle; such a 
condition would mean that transient branches compose the complex 
loop, inasmuch as it is not retraced. It is also possible that the biasing 
effect of one sinusoidal component of the magnetizing force upon the 
other might cause the branches of the two types of loops to be dis- 
similar. The coefficients which specify the branches of the simple 
loop are evaluated with it centered at the origin of the B-h plane, using 
single-frequency methods, and cannot be assumed a priori to apply to 
to other situations, or to an unrepeated branch. 

According to experiments by R. Goldschmidt 4 the superposed field 
necessary to cause much change of either the shapes or axial slopes of 
loops exceeds the weak fields to which this development is limited. 
Likewise, Lord Rayleigh 5 in his original investigation found small super- 

* Zeits.f. Techn. Physik, Vol. 11, pp. 8-12, 1930. 
'Phil. MaS., Vol. 23. 1887. 
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posed fields to have no measurable effect upon the form of the loops for 
the specimens he investigated. Based upon these results, the branches 
of simple loops can be taken to be independent of their location in the 
B-h plane, and in so far as the complex magnetizing force gives rise to 
branches of simple loops, they have the same shape they would have 
in such a loop centered at the origin. 

The formation of complex loops has been determined experimentally 
by E. Madelung.6 He found that after reversing the magnetizing 
force at any point along the branch of a hysteresis loop a new curve 
is traced which, if continued, passes through the tip of the loop. A 
second reversal before the tip is reached causes another new curve to 
be traced back to the point of reversal on the original branch, which 
is followed thenceforth as if the two reversals have not occurred. The 
return to a reversal point makes all subsequent traces of the loop the 
same as if no changes of magnetizing force intervened between the 
two transits through that point. Any branch of the complex loop is 
then, in accordance with Madelung's determinations, completely 
specified by two points of reversal—the one from which it starts and 
the one through which it must pass if continued far enough; after 
passing the latter point it becomes the continuation of another branch 
similarly specified by different points of reversal. 

The foregoing principles furnish sufficient information for deducing 
the form of the branches of complex loops. If such a branch be 
extended to one of the reversal points defining it and a trace then be 
carried back to the other, the loop so formed will be retraced by 
repeating the cycle. As these repetitions can be carried on indefinitely, 
the path must comprise a simple loop, the branch of the complex loop 
forming a portion of it. Every complex loop can therefore be con- 
sidered as composed of adjoined sections of simple loops. Each 
branch of the complex loop is representable on suitably transformed 
axes by formula (1) with II taken as half the change in magnetizing 
force between the reversal points which specify the branch. In 
general, a different pair of axes will be required for each branch; they 
can subsequently be referred to a common origin. 

The application of this analysis to the complex loop discloses the 
requirement that the relation flu = 2flo2 must be true if Madelung s 
propositions are to hold, because the values of H differ for the two 
branches of a subsidiary loop. If this equality is not satisfied, the 
return to the original branch does not take place at the point of 
departure. Madelung's observations do not include this possibility, 

8 Annalen der Physik, Vol. 17, pp. 861-890, 1905. See also Handbuch der Physik, 
Vol. 15, pp. 106-107, Berlin, 1927. 
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and sufficient evidence of behavior for extending them in such circum- 
stances is not available at present. Some experiments by Lehde7 

and others indicate that subsidiary loops do not quite close at their 
junctions with the major loop and often show departures both ways 
on different parts of the same complex loop. This sort of behavior is 
not explainable by inequality between an and 2ao2 for the subsidiary 
loops, as it would cause the departure of one specimen to be always the 
same way depending upon which quantity was the larger. In all 
cases, even near saturation, Lehde's results show this departure to be 
small and the connecting branches between successive subsidiary 
loops to form approximately a simple loop. On this basis Madelung's 
results can be considered confirmed to a sufficient degree of approx- 
imation. 

The ratio an/aw, which has been taken as a measure of the validity 
of Rayleigh's relation in single-frequency theory, becomes a criterion 
of the usefulness of Madelung's propositions concerning loop form in 
multi-frequency theory. Those substances which most closely accord 
with Rayleigh's analysis can also be expected to be in best agreement 
with Madelung's results. The relation between coefficients required 
on the basis of Madelung's and Rayleigh's experiments will be used 
hereafter to simplify the analysis. The simplification will be evidenced 
by the customary nomenclature, in which 

Mo — Ctio, v = 0.02 = 2all- 

Any attempt to distinguish here between the two latter constants 
would be meaningless because beyond the scope of Madelung's em- 
pirical rules. Fortunately the constants of most commercial materials 
conform closely to the above equality. 

Types of Two-Frequency Loops 

The aspect of a hysteresis loop formed by a two-frequency wave 
changes greatly with the frequencies and their amplitudes. Different 
pairs of frequencies having equal ratios give rise to families of loops 
which are identical except as affected by eddy currents. These, for 
the purpose of this study, are supposed to be so small that the flux is 
substantially uniform over a cross-section of the magnetic circuit. If 
the two frequencies have a common source or are synchronized, the 
hysteretic phenomena are singly periodic and subject to simpler 
treatment than developed here for independent sources. 

For detailed analysis of the effects of hysteresis with two applied 
frequencies from independent sources, the phase angles of both may 

1 Rev. of Sci. Inslr., Vol. 2, pp. 16-43, Jan. 1931. 
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be taken as zero, equivalent to measuring the time from a point where 
the two components of the magnetizing force become maximum simul- 
taneously. Then 

h = P cos pt Q cos ql (2) 

is the instantaneous magnetizing force. Phase angles can be made 
arbitrary by replacing pt and qt by pt + dp and qt + dq, respectively, 
in this equation and the subsequent results. 

The configurations of complex loops can be followed by altering 
single-frequency loops to accord with the results of investigations of 
loop formation. If to a single-frequency magnetizing force a relatively 
small one of slightly lower frequency is added, the resultant is an 
oscillatory force whose peaks undulate around the value reached by 
those of the original wave. Their maximum will be the sum of the 
amplitudes of the two components and their minimum the difference. 
On a hysteresis loop (Fig. la) this means that portions between suc- 
cessive reversal points will differ slightly from one another, being 
formed approximately as if belonging to successively smaller loops 
until a minimum peak is passed, thenceforth as if belonging to suc- 
cessively larger loops, and so on cyclically. Such behavior is sketched 
in the figure. 

As the amplitude of the lower frequency component of the mag- 
netizing force is increased the undulations become more pronounced 
and the preceding picture more inexact. When both amplitudes are 
equal the envelope of the resultant magnetizing force vanishes period- 
ically and the portion of the hysteresis loop formed while this envelope 
goes from its maximum to zero is in the nature of a spiral (Fig. 1Z»), a 
similar curve being developed outwardly as the envelope increases 
again to its maximum. Provided only that successive peaks of the 
magnetizing force do not differ greatly in magnitude, each portion of 
such a loop between adjacent reversal points may be assumed to 
have the form of a branch of a single-frequency hysteresis loop having 
its point of origin coincident with that of the portion of the complex 
loop. Then the induction may be derived from the magnetizing force 
by the use of single-frequency data in accordance with the known 
manner of formation of complex loops. 

If now the amplitude of the higher frequency component be decreased 
to a relatively small value, the undulations in the envelope subside, 
and a condition similar to the original one is seen to obtain. This 
time, however, the amplitude of the lower frequency will be found to 
be the one about which these undulations occur, and the characteristic 
will again look like that in Fig. la. 
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As long as one frequency is less than twice the other the undulations 
in the peaks of the magnetizing force will be regular and gradual. If 
the higher frequency be raised to more than twice the lower, the 
undulations become more abrupt and complex, and increasingly so 
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Fig. 1—Types of hysteresis loops characteristic of a two-frequency magnetizing force. 

as it is raised still more. The complexity attendant upon the forma- 
tion of the hysteresis loops becomes greater and the simplifying artifices 
heretofore suggested no longer apply. 

When one frequency has become several times the other, the higher 
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frequency component must have one of its maxima very near each 
maximum of the lower one so that a maximum value practically equal 
to the sum of the amplitudes of the two components is reached every 
cycle of the lower one; likewise for the minima. Between these two 
extremes other reversals in the magnetizing force would be expected 
to cause the hysteresis loop to comprise additional small loops not 
necessarily closed. Experiments confirm this conjecture and indicate 
that not only for weak fields but even for fields near saturation the 
small loops nearly close and the paths between them are traced nearly 
the same as portions of a large loop. 

If the amplitude of the higher frequency component is considerably 
the larger, all the loops composing the characteristic are virtually the 
same size and shifted slightly with respect to each other on account 
of the lower frequency component. The characteristic will be that 
depicted in Fig. 1c. 

When the amplitudes of the two components are not grossly unequal, 
the hysteresis loop is of the type represented by Fig. \d. Small loops 
formed when the magnetizing force is near an extreme value are 
longer than those formed when it is near zero, aside from any effects 
of superposition, because of its different rates of change in the two 
positions. In general these loops will not occur in the same place for 
different cycles and the distances between them will be lessened by 
increasing the higher frequency. By considering the complex loop 
to consist of a major loop, such as a single frequency would generate, 
encompassing a number of minor loops, the induction may be derived 
from the magnetizing force since the form of the minor loops is known. 
When these are not too widely spaced, each may be assigned a mean 
position in a loop fixed for all time and the induction calculated there- 
from. It is evident that such an undertaking is vastly more com- 
plicated than the ones suggested heretofore and that unlike them it 
requires information in addition to that obtained from single-frequency 
measurements performed with no superposed field. 

By decreasing the amplitude of the higher frequency component of 
the magnetizing force, the amplitudes of the minor loops may be 
reduced until those in the neighborhood of zero magnetizing force 
vanish entirely. Further decrease of the same component causes more 
and more of the minor loops to disappear, so that finally only a few 
small ones remain at each end of the major loop. This condition is 
shown in Fig. le. As the wave form of the induction is only slightly 
affected by the presence of these loops, they may safely be omitted 
and the characteristic simply taken as the major loop, determined from 
single-frequency results alone. 
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The point where the minor loops first vanish and the requirement 
that they vanish at all may be readily determined. Two adjacent 
extremes of the magnetizing force approach a common value as the 
amplitude of the higher frequency component is decreased. When 
they attain this value, the slope is no longer reversed between them 
and consequently no minor loop is formed. The instantaneous mag- 
netizing force is expressed by equation (2), and in this instance p^> g_. 

The minor loops first appear where dh/dt = 0 when pt = — "2 ' 

Solved simultaneously, these equations yield 

qt = 8111-1 fg ' 

where the minor loops vanish. They reappear at an equal negative 
value of sin qt, and other intervals during which they vanish are 
apparent from symmetry. If {Pp/Qq) >1, no real solution of 
equation (3) exists, so the minor loops do not vanish anywhere. The 
appearance and non-appearance of minor loops is seen to be governed 
by the ratio of amplitudes in the same way as by the ratio of frequen- 
cies as long as the restriction on the latter is observed, and the product 
of these ratios 

= 9l 
K PP 

determines the type of hysteresis loop (Id or \e, or an intermediate 
form) obtained. 

Induction with a Two-Frequency Magnetizing Force 

General Expression for the Induction 

As a function of time, the induction for any type of loop described 
will consist of intermodulation products of the two fundamental 
frequencies. Because of the kind of symmetry the characteristic has 
these products will include only the odd orders, but because it is a 
loop, quadrature terms must be expected. The induction then will 
ultimately be in the form 

B = 11 £ [Cmn sin {nip + nq)t + dmn cos {mp + nq)t] (4) m=Q n—00 

with all even order coefficients zero. The odd order coefficients 
remain to be determined from the hysteresis loop. In doing this only 
third order products in addition to the fundamentals will be evaluated 
explicitly, as they are stronger than the higher orders and therefore 
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of most importance in measurements of distortion. Any higher order 
products would be less precisely evaluated, more numerous, and 
probably of less interest; their computation is clearly evident as an 
extension of the processes later carried out. 

The Multi-Branched Hysteresis Loop 

Under certain circumstances mentioned earlier, the portions of a 
complex loop between adjacent reversal points are representable by 

B = (mo + 2vH)h ± v{I'P - h2). (5) 

Referred to the origin of the B-h plane, the induction on such a portion 
originating at the jth reversal point from / = 0 is 

Bj — Gj + Mh — II/) — (— l)'v(h — IIj)2. (6) 

Here Hj is the magnetizing force and Gj the induction at the jth 
reversal point. The latter quantity satisfies the difference equation 

Gj = G,-! + u*{Hj - Hj-J + (- iyp{Hj - Hj.,)2, 

arrived at by evaluating the induction on the (j — l)st branch at 
the jth reversal point. Subject to the initial condition 

Go = (mo + 2vHo)Ho, 

this can be solved by the method of successive substitutions; the 
solution is 

Gj = ixqIIo + 2vHo2 + Mo I] {Hi — Hi-,) 
i=i 

+ * t {-mtp - Hi-,)2. (?) 
1=1 

The foregoing expressions define the induction everywhere on the 
complex loop. Equations (7) and (6) combined to eliminate Gj give 

Bj = Hoh + (- lyiuHjh + (- l)h{Hj2 - h2). (8) 

The problem remaining is to develop this equation into the equivalent 
of equation (4). 

The instantaneous magnetizing force is 

h = P cos pt + Q cos qt. (2) 

By a trigonometric transformation this may be put in the form 
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h = J(F + Q)2 - 4FQ 

X cos P + q t + tan" 
P — Q P — q , 
pTctan —' (9) 

which is sometimes more convenient. The envelope of the wave is 
represented by the two branches of the radical. If its magnitude does 
not change much between adjacent maxima and minima of the wave, 
these extremes lie close to the points of tangency between the wave 
and its envelope; the latter condition is the one necessary in order that 
the envelope may be used to evaluate the extreme magnetizing force Hj. 

This force acquires its values at the reversal points, which are situ- 
ated at the zeros of dh/dt. Put into a form like equation (9) by the 
same transformations as were used above, this derivative is 

jh   
— V{Pp + Qq)2 — APpQq sin2 st 

X sin rt + ten"1 ( tan (10) 

where 2r = p q, 2s = p — q. Except when k = 1, this vanishes 
only at 

j—^ tan ^ j = jr, (11) rt + tan" 

j in-tegral or null. Substituting equation (11) into equation (9) yields 
the magnetizing force at the jth reversal from / = 0: 

Hj = V(P + Q)2 — 4PQ sin2 st 
' ■ , , /1 - ^ A jtt + tan-1 i y tan j ~ tan 

X cos 
, / 1 — «■ _1' —;— tan st 

1 + K 

letting k = Q/P. Upon combining the arc tangents this becomes 

Hj = P V(1 + k)2 - 4k sin2 st 

X cos jiv — tan" 
2{k — k) tan st 

(1 + ^)(1 + k) + (1 — ^)(1 — k) tan2 st .] 
(12) 

According to equation (12) the magnetizing force and its envelope 
are tangent at reversal points provided the arc tangent is always zero. 
This it is if ^ = /c, a trivial solution. By certain choices of these two 

•parameters, however, it is possible to keep the angle between any 
reversal point and the nearest extreme of the magnetizing force from 
exceeding any prescribed limit. The maximum value of the angle in 
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equation (12) is 

/(1 - ^ ^ 
4 Va+ «(! -«) 

which can be made small by making k and k each small compared to 
unity, or each large compared to unity, or both approximately equal. 
For the previously excluded instance k = 1, this angle can be limited 
and the last condition fulfilled by keeping k nearly equal to one, as is 
obvious from the equations. So for each of these three conditions on 
the parameters, to a definite degree of approximation the envelope at 
each point of tangency becomes the magnetizing force for the nearest 
reversal point, a feature useful for the transformation of equation (8) 
into a function of time. 

Calculation of the Induction—Case 1 

The three conditions are confluent and will be seen to set the 
limiting bounds for case 1. When the fundamental frequencies lie 
close together the ratio of their amplitudes is practically unrestricted ; 
as more widely spaced frequencies are chosen it becomes necessary to 
require an increased (or diminished) amplitude ratio in order that the 
phase angle in equation (12) does not exceed the chosen limit. This 
limit must be such that the cosine of that phase angle is substantially 
unity. 

The maximum magnetizing force is thereupon 

Hj = (_ \yp V(1 + /fe)2 - Ak sin2 st. (13) 

As a periodic even function of st, H, may be expanded in a Fourier's 
series 

Hj = (- I)'(P + Q) [4"' + cos 1sl ■ (14) 

where 
**12 

V Jo 
Av = - I Vl — ifei2 sin2 XcosTjXf/X (15) 

in terms of the parameter 

2\'FQ 2yJk _ 2 VIA 
ki = (P + (2) (i + k) (i + i/k) 

which never exceeds unity and which diminishes as k is either increased 
or decreased from unity. The integral (15) reduces immediately to 
elliptic form by the substitution z = sin X. All odd order coefficients 
are zero. For the first three significant values of rj: 
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AQ — -Ei TT 

A 2 = 5
4, ,[(2 WE! - 2(1 - kflK,] 

OTTKi 
- (16) 

A 4 = ,-^[8(2 - - (16 - 16Ji! + M£i] 
lOTT^i 

Here Ki and Ei are complete elliptic integrals of the first and second 
kind, respectively, with modulus ki. 

The series (14) may be used to evaluate the variable permeability 
anywhere on the loop, for upon substitution in equation (8) reference 
to a particular branch is eliminated by the disappearance of the double 
sign on the second term. 

The square of the maximum magnetizing force needed in the final 
term of equation (8) comes directly from equation (13); to determine 
the sign of this term at any instant remains the only problem. Inter- 
pretation of (— 1)' seems simple when it is remembered to be positive 
for decreasing h and negative for increasing h, and therefore an odd 
function of time. The rate of change of the magnetizing force is 

^ = — Pp sin pt — Qq sin qt, 
at 

so it follows that 

(— l)1' = + 1, sin pt d- k sin 5/ > 0 

= — 1, sin pt d- k sin g/ < 0 

The solution may be completed by expanding this quantity in a 
Fourier's series:8 

(- 1)' = L L sin {mp + nq)t. (18) m=0 n= —00 

When m = 0 the summation is to be extended over only positive 
values of n. With this convention the coefficients are 

Amn = 2V2 f f Sin ^ + ny^dxdy ^ 

or, with the use of equation (17), 
OT+U—1 /-»7r /'C08_,(—* C03I/) 

Amn={-1) 2 ^2Jo dy Jo cos nix cos ny dx, (20) 

8W R Bennett, "New Results in the Calculation of Modulation Products," 
B. S. T. /., Vol. 12, pp. 228-243, April, 1933. 

(17) 
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where p and g are to be so assigned that k — I. Then the coefficients 
are all expressible in terms of complete elliptic integrals with modulus 
k\ these will be designated as Kz and Ez. Coefficients of even order 
vanish, while those of the first three odd orders are found to be 

. 8 „ 
Aio — —5 Ez IT 

Ao, = 4- - a - 0^2] TT K 

An= - 24,! = 4t- [(! - WE' - (! - ■" oTV K 

An = An = - 2(1 - 3irzK* 

A 30 = 4-2 K7 - WE, - 4(1 - k')K,] 

A" = 9^? [(8 - Wd - K1)*' - (8 - WEoJ 

A„ = - A„ = - 16«2 + iWE, 
- (1 - - K!)Kjk21) 

A,, = 24,, = t4vC8(2 " 

— (16 — 16K2 + K4)EZJ 

An = 24,, = [2(1 + 2K2)(1 - K2)^ 

- (2 + 3K2 - SK4)^!] 

An = - An = jLLJ [(8 + K2)(1 - K')KI - (8 - 3K2 - 2K4)£!] 

Aoo = 7^3[(43 - + l28"')^ 

, " - 4(7 - 16«t2)(l - k2)JC2] 

24,s = 4in IK128 - 168K2 + 43/c4)£2 I O IT K 

-(128 - 104k2 + 15K4)(1 - k2)Kz]. 

Negative digits of the subscripts are underscored in the coefficients 
for lower side frequencies. 

Upon putting the various quantities into equation (8) from equations 
(2), (13), (14), and (18) it thus becomes 
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B = hqP cos pt + ixqQ cos qt 

+ fP(P + (2) Z (-42m + kAim+i) cos [(w + \)p - mq~\t 
m=0 

+ vP{P + Q) Z (kA 2m + A 2111+2) COS Imp - (m + l)g]/ 

- T^P2 Z Z (.A ni+2, n - 2Amn + A m—2, n) 7/1 = —& 71 = — QO 

X sin [mp + nq2t 

~ ivQ~ Z Z (.A m, n—2 — 2A,nn + Ami n+2) 7/1 = — CO 71 = — CO 

X sin [mp + nqjt 

+ hvPQ Z Z C^m+l. n—1 Am+1, »i+l 7/1 = — CC 71 = — CO 

(22) 

+ ^4m_i. „+i — n—1) sin [mp + nq~]t. 

with the understanding that ^4,s = 0 for r < 0 and for r = 0, ^ < 0. 
The first line is the linear portion of the induction, given by a perme- 
ability constant at its initial value; the first two summations arise 
from the variation of the permeability with the maximum magnetizing 
force; the remaining terms comprise the results of distortion attrib- 
utable to hysteresis per se. The coefficients of the induction, cmn and 
dmn of equation (4), may now be evaluated by selecting the necessary 
quantities from equation (22). 

General expressions for the coefficients can be evolved in series 
known as hypergeometric functions. These are all of the type 

17/ O. . . ^ _ 1 I ^ Z . «(« + ^^(^ + 1) Z2 , P(a,/5.7,2)- 1+Tr!+  (23) 

a particular one is chosen by specifying the parameters. The coef- 
ficients needed here are 

r l'^\ r 
A = — m n TT 

r(« +1) r 
m — n 

1 
F 

(m + 

\ 2 
n n — m 

: » + 1: K2 (24) 

for m and n both positive and w + w odd, and 

r/. + l\L„ 

A„=  ^ -y-.   r F 
+ i) r 

1 v 
+ l 

7/ + 1 TJ — 1 
(25) 
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for r] even. When n is negative, the coefficient may be found by using 
the relation 

Amn= (- 1)" Amn ; (26) 

for all other values of the subscripts excluded the coefficients are zero. 
A recurrence formula for computing products of higher order is 

Amn = ~I—\2i- ! + {m-\)K)A 
m n | \ k / m—1, n—1 

— (w + w — 4)^4m_2, (27) 

with m — 2 positive. Comparison of equation (24) with equation (25) 
reveals that if in the former k is replaced by ki, 

^, = ^1.,. (28) 

so the equations (21) and the recurrence formula (27) suffice for com- 
puting all the coefficients in the series for the induction. 

Calculation of the Induction—Case 2 

For case 2 the two branches of a minor loop and an adjoined portion 
of the major loop are combined into a Fourier's series whose coefficients 
are functions of position in the major loop. By developing these 
coefficients into Fourier's series, a double series in time is obtained. 
For this case, as for the other just considered, the induction thus is 
developed in the form of equation (4) and the coefficients are deter- 
mined through the third order. 

When minor loops are formed throughout the lower frequency cycle, 
an expression for each minor loop and the portion of the major loop 
joining it to the next one is found relative to an origin at the junction 
of the major and minor loops. A succession of such loops is then 
referred to the origin of the major loop by transforming the coor- 
dinates of a typical minor loop, the transformation being a function 
of the position of the minor loop. 

Attention first will be devoted to a single high-frequency cycle 
occurring while the lower-frequency component of the magnetizing 
force is decreasing. Let the time of occurrence of the maximum in 
the higher frequency component of the magnetizing force during this 
cycle be designated by r. By restricting application to characteristics 
with sizeable minor loops, i.e. /c 1 when p > q, consistent with the 
stipulation that the minor loops do not vanish anywhere, this maximum 



FERROMAGNETIC DISTORTION OF A WAVE 339 

can be made practically coincident with the corresponding maximum 
in the magnetizing force. 

Writing 
/ = r + X, (29) 

the lower-frequency component in the vicinity is expressible by the 
Taylor's series 

Q cos qt g
2x2 g4X4 

2! + 4! 

- Q 

cos qr 

93X3 75X5 

q ~3Y+~5V 
sin qr. (30) 

Over one cycle of the higher frequency this component is very nearly 
linear, so its variation in this range is 

— 4A = — 2tkP sin qr. (31) 

Since r has been so chosen as to be an integral multiple of lir/p, when 
equations (29) and (30) are substituted in the magnetizing force given 
by equation (2) it becomes 

h = P cos p'K Q cos qr — \Qq sin gr. (32) 

Its value referred to a new set of coordinates, B', h', with their origin 
at the junction of the major and minor loops is 

h' = P(1 + cos p\) - 2Ai 1 + 
p\ 

(33) 

According to Madelung's findings previous minor loops will not 
influence the one under consideration, so its lower branch will proceed 
toward the upper tip of the major loop as indicated in Fig. 2. A 
transformation of equation (1), simplified by the use of Rayleigh's 
relation, then gives for this branch 

Bo' — noh' + vh' . 
The upper branch is 

B,' = [no + 4f(P - A)]/// - vh'2. 

(34) 

(35) 

The small portion of the major loop traversed during the last of the 
cycle may be expanded in a Taylor's series 

B' = B' (0) + h , dB1 

dh 
h'2 d2Bi 

h=hr 
+ 2! dh2 + (36) 
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/ 
K 2(P-A) + Q(l-COSqt)-^ 

2{P-^)—J 
. Q p+—P — 

-1 4A 
P+Q 

Q cos qt 

t= T X = O 
x=n T 

pA 

pcos pt + Q cos qt 

Fig. 2—Tracing of a subsidiary loop according to Madelung. 

denoting by K the value of h at h' = 0, which is 

/?r = 2A — P -f- <2 cos qr. (37) 

The upper branch of the major loop as a function of h (not h') is 

Bl= (/xo + 2vH)h + V(H* - h2) (38) 
with 

P" = P + <2- 

The expansion (36) is now found to be 

B' = {/xo + 2^[2(P - A) + <2(1 - cos qr^h' - vh'\ (39) 

Equations (34), (35), and (39) define the induction in terms of h' over 
an entire high-frequency cycle; the first is valid for — tt < p\ < 0, 
the second for 0 < < tt — ph., and the last for ir — pA < p\ < t. 
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For combining these three expressions a Fourier's series may be 
developed applicable over the entire interval — it < p\ < tt, and 
the induction expressed by this series can be referred to the central 
axes, B, h, of the major loop by including in its constant term the 
value of the induction at the junction of the major and minor loops. 
The series is 

Bi = l&o' + V cos p\ + 62' cos 2p\ + bz cos 3p\ 
+ di sin p\ + 0,2 sin 2p\ + 0.3 sin 3^X. (40) 

The coefficients are determined by the integrals 

an' = ~ f B sin np\ d{p\), hn' =— f B cos np\d(p\)} (41) 
^ —TT J—TT 

where 
B = B' + Br. 

Br is the induction at the junction of the major and minor loops, 
found by inserting equation (37) in equation (38). The resulting 
quantity together with expressions previously found for B' over various 
parts of the cycle are substituted in the integrands of equation (41), 
and the integrations are performed, using h' given by equation (33). 
AH terms of order higher than the third and those containing the 
square of the frequency ratio as a factor are rejected as they occur. 
The resulting coefficients are functions of qr both explicitly and also 
through A and pA. 

To determine pA as a function of qr, the vanishing of h' at the tip 
of the minor loop on the major loop gives an equation for use along 
the descending branch of the major loop. By equation (33) 

P(1 - cosM) = 4a( 1 -|^), 

(1 — cos pA) = {2ir — />A)/csin qr. (42) 

An approximation to the general solution can be got by transforming 
equation (42) into a quadratic algebraic equation and solving. This 
is done by means of the first two terms of the power series expansion 
for cos pA. The approximation will be best for small values of the 
angle, but very good over all its admissible range. This reduction 
gives 

(pA)2 + 2k sin qr (pA) — Attk sin qr = 0, (43) 

the roots of which are 

pA = — k sin 5T ± Vk2 sin2 qT + Attk sin qr, 
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the positive one being that sought. By expanding the quantity under 
the radical according to the binomial theorem this root reduces to 

pN= 2'^Tr Vk sin qr — k sin qr (44) 

when higher powers of k are dropped. 
The coefficients of the series then become, using the value of A 

from equation (31) and the value of pA from equation (44), 

~ bo' = noQ cos qr + 2v{2P + Q)Q cos gr + ^tt — ~ j vPQ |sin 3T 

+ 27rp<22 sin qr (1 — cos qr) + vQ2 sin2 qr, 
P 

— 2ijLoQ~sin qr — SvPQ - sin gr + -r— vP2, p p JTT 

/xoP + 2PP2, 

HoQ f sin 2r + ^ pPQ | sin qr, 
p 6 p 

40 r>r, (1 ■ 
-TrvPQism er' VTT p 

(45) 

a-i 

hA' = 0. 

2 n? • 8 p -3^0(2^ sin qT-j^vP, 

The relation (29) can be used to return equations (45) to the general 
time-coordinate. Replacing r by / — X gives 

cos qr = cos q\ cos qt + sin q\ sin qt, 

sin qr = cos q\ sin qt — sin q\ cos qt. 

As | X| never exceeds ir/p these equations can be simplified to 

cos qr = cos g/ + -f (2 sin p\ — sin 2p\) sin qt, 
P (46) 

sin or = sin qt — ^{2 sin p\ — sin 2pX) cos qt, 
P 

using the first terms of the Fourier's series for sin q\ in multiples of 
p\. Upon substitution of equation (29) trigonometric functions of 
p\ become the same functions of {pt — 2jtt) , j an integer, since r is 
defined as an even integral multiple of 2iv/p. The phase angle is 
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therefore immaterial, so p\ can be replaced by pt in equations (40) 
and (46). Combination of equations (45) and (46) with equation (40) 
results in an expression of the induction on the upper half of the 
complex loop in terms of time. 

For the lower half of the loop a mean position must be found. 
Having started with incommensurable frequencies at zero phase 
angles, the reversals at the lower tip of the major loop will occur at 

pt = 2m tt + R, 

where 0 < 7^ < 27r and all values of R within these limits are equally 
probable. The lower frequency component at the instant of reversal 
will have a time angle 

qt = {2n + l)7r + S, 

where — {q/p)ir < S < {q/p)ir and all values of 5 within the limits 
are equally probable. The expected medians of the time angles are 
therefore (2m + l)7r and (2n + l)7r for the higher and lower frequency 
components respectively. These values and the point symmetry of 
the characteristic specify that the induction during the ascendency of 
the lower-frequency component of the magnetizing force will be equal 
in magnitude and opposite in sign to the induction for the descent 
with the phase of each component increased by its expected median. 
The induction for an increasing lower-frequency component is therefore 
given by 

B^pt, ql~\ = - Bilpt + tt, g/ + x], (47) 

where the right-hand member is evaluated for a decreasing lower- 
frequency component. 

The coefficients of equation (40) may be altered accordingly to 
furnish a set for use when the lower-frequency component is increasing 
by replacing qt by (qt + x) and pt by (pt + x). In series form, then, 
the induction on the lower half of the loop is 

B-i = \b0" -f hi" cos pt + hi" cos 2pt + hz" cos Spt 
-f a/' sin pt + a-i" sin 2pt + az" sin Spt. (48) 

One pair of coefficients is necessary to specify completely the 
amplitude of each component of the induction when it is split into 
in-phase and quadrature terms harmonic in pt. Coefficients of cor- 
responding terms in equations (40) and (48) are all functions of qt, 
each series applying over one half of a lower-frequency cycle. Each 
pair of coefficients can therefore be developed into a Fourier's series 
in qt. so that the single expression 
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-S = cos pt + hi cos 2pt + 63 cos 2>pt 
+ ai sin pt + ai sin 2pl + 03 sin ipt (49) 

defines the induction everywhere. 
The coefficients of equation (49) are given by the expressions 

^=1 v-'+^+! p.' - ^-"]|0
sin

(
(

2
2r+i1))gr 

a" = j + «."]+1 

(50) 

After putting the values of the primed coefficients into the respective 
terms, changing the arguments of functions of qr to qt by using equa- 
tions (46), and expanding the result into multiple angles, there remains 
when terms beyond the third order are dropped 

B = [mo + 2vP[\P cos pt -\- rr- v[P + 3kQ[\P sin pt 
OTT 

+ Aio + 2j'( 2 k 
-r)p] 

+ T-p\ k + —K + -rx 
3 / TT2 

2 \ 4 
- 1 

Q cos qt 

PQ sin qt 

— - j/fT — 6^]/cP2 cos {2p + q)t 

kP* sin {2p + q)t 
40 T 1 _i_ 3 

~9^v[l+Tok 

+ ^[1 — 6&]/cP2 cos {2p — q)t 

kP2 sin {2p —q)t 1 40 F 1 3 

"lo^ 
32 

+ ^2 vkPQ cos {p 2q)t 

— -j- [mo + 2v{2 + 3^)P]/vP sin {p + 2q)t OTT 

32 
— 7—2 vkPQ cos {p — 2q)t O TT 

— ^ [mo + 2p{2 + 3^)P>P sin {p - 2q)l 

— ^ mok — ^ vP j P sin Zpt 

8 8 
+ p vkPQ cos Zqt — -7-z~ vQ2 sin 3qt. 

3 10 TT 

" (51) 
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Recapitulation of Principal Results 

General formulae have now been made available for calculating the 
flux density over a wide range of conditions of two-frequency mag- 
netization. For many ordinary purposes a table or graph of some of 
the results is convenient; useful ones are therefore included. 

The hypergeometric expansions in the coefficients of case 1 can be 
put to further use to examine the behavior of the induction for special 
ratios of fundamental amplitudes and frequencies. When ^ 1 and 
k <C 1 the coefficients of the several frequencies in the induction reduce 
to simple, rational, algebraic expressions of the amplitudes. These 
coefficients likewise reduce when k = I and k = 1, since 

na.P.y.n r{7 _ a)r(7 _ ^ 

Third order coefficients for case 1 with restricted parameters, and 
also those for case 2 are tabulated in the accompanying table through 
terms in the lowest power of the smaller amplitude. Underlined sub- 
scripts distinguish lower side frequencies; a bar under a digit indicates 
it is to be taken with a negative sign. 

When the ratio of amplitudes is unrestricted, graphs of the coef- 
ficients which specify the induction enable their magnitudes to be 
determined most readily. The strongest products are found to be the 
third order lower side frequencies; Fig. 3, calculated by A. G. Tynan, 
may be used to get both components of either of these. The corre- 
sponding upper side frequencies are almost as strong; their amplitudes 
can be found from the figure by virtue of the relations Cn = Cu and 
C21 = Cn, since their other components are zero. 

By interchanging P and Q and likewise p and g in either the table or 
the graphs, the subscripts are also reversed. In the table the inequal- 
ities restricting the columns are reversed thereby, since the inter- 
changed quantities are arbitrarily assignable. This procedure" does 
not extend the applicability of either case, but does permit the appli- 
cation of case 1 directly to both extremes of the amplitude ratio and 
the use of the curves to evaluate the amplitudes of both lower side 
frequencies. The scope of the table and curves given has been 
extended in this manner. A field of usefulness sufficiently extensive 
for most purposes of present-day communication is thereby achieved. 
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Fig. 3—Components of third order lower side frequencies—case 1. 
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TABLE I 

Case la 
««1 
k«l 

Case 16 
< = 1 
k = 1 

Case 1c 
«» 1 
k» 1 

Case 2 
««! 
k»K 

<"io I"" 
4 
- fPQ TT hp' 

dm [/xo + 2pP2P P [>0 + 3i'0]P [mo + 2,.P]P 

Coi -pPQ TT s'0' i"? 

dm [MO + SpP^Q h+IK (jxo + 2pQJ() [mo + 2v{2P + 0)](? 

Cm - -yQ2 
TT -rr'

pe A[Mo + 2K2P + 30>P ■ITT 

dm jKi + W PPQ 
-B"pe 

Cm - - "Q2 
TT 

128 n- 
~ JSTT7- -jr'

p° ^[mo + 2M{2P +30>P 

dm 0 0 0 32 
572^ 

Cil i'pQ 
-VP"- TT - ^ "[SP - 6(?>P 

dn vPQ 1^(1 + l/*)^2 i ^[p - 6g>p 

Cil - iH 
45 JT2 -1 vP* TT 

dn 0 0 0 -y[P- 6(2>P 

C30 
128 .P2 

2257r2 0 

dio 0 0 0 0 

Cos 0 
128 n- 

2257r2 ' -il;"0' 

dot 0 0 0 
8 PKPQ 
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Intermodulation Products 

Generated Modulation Voltages 

From the foregoing results the voltage generated in a coil of N turns 
on a closed ferromagnetic core of cross-sectional area A can be found 
by the use of 

e{t) = NA V)-*—• (52) 

Components of this voltage segregated according to frequency are of 
the type 

emn{t) = {mp + nq)NA lO-8 [_cmn cos {mp + nq)l 
— dmn sin {mp + (53) 

each proportional to its frequency and in general having two com- 
ponents in quadrature. The amplitudes of these will be designated by 

Emn' = {mp -f nq)NA lO-8 cmn, (54) 

Emn" = {mp + nq)NA 10-8rfm„. (55) 

The amplitude of their resultant is 

Emn = {mp + nq)NA 10-8Vc„in
2 + dmn\ (56) 

One component, if it greatly exceeds the other, may be taken as the 
generated distortion voltage. The various coefficients to which the 
components of the voltage are proportional have already been cal- 
culated, and also given in tabular or graphical form for specific 
instances. The relations 

_ 0.47riV/ ~ _ 0.47riV/ 
E- -l , C 7 • 

where I is the mean length of magnetic path, may be used to convert 
these results into terms of the current amplitudes I and J. Where 
r-m-s quantities are used, they will be distinguished by bars over them. 

Several features of the distortion are particularly outstanding. 
Perhaps chief among these is the dissimilarity of corresponding upper 
and lower side-frequency voltages. Inasmuch as these are products 
of a reactance modulator, they might be expected to be in the ratio of 
their frequencies, as they are found to be for one component. Often, 
however, a predominating component appears at each lower side 
frequency with no counterpart at the upper side frequency. This 
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component can be traced to the different axial slopes of the several 
branches of the loop, caused by their different points of origination. 
The slopes are fixed by the envelope of the magnetizing force; since 
this envelope is periodic in the difference of the fundamental fre- 
quencies, difference products will appear without corresponding sum 
products in the induction. Such a phenomenon is a fundamental 
property of the multivalued characteristic, and will occur wherever 
the envelope of a complex wave is instrumental in selecting the branch 
to be traversed. 

No simple yet general rule seems to embrace the behavior of the 
various products in an iron core coil as governed by the amplitudes of 
the fundamental currents. Each voltage component is proportional 
to its frequency and to the product of two amplitudes, but these often 
enter in a complicated way. For fundamental frequencies close to- 
gether all the higher order voltages vary directly with the hysteretic 
coefficient v, for widely separated frequencies the distortion may 
depend also on the permeability through its effect on the axial slope 
of the minor loops. At the extremes of the amplitude ratio certain 
products or their components are found to be independent of one of 
the fundamental currents, the stronger one in some instances. When 
case 1 is applicable the third harmonic of the weaker fundamental 
current is suppressed below the value it would have without the 
stronger current superposed, while the third harmonic of the stronger 
fundamental is affected only slightly by the presence of a second 
frequency. Perusal of the table will disclose more detailed relations. 

Distortion Measured in Coils 

Voltages calculated by the theory have been compared with meas- 
ured values for several coils using two common core materials. The 
agreement found provides a check of the theoretical predictions. 

The two third order lower side frequencies of fundamental frequen- 
cies p/lir = 760 cycles per second and q/lir = 600 cycles per second 
are plotted in Fig. 4 for a higher frequency current of ten milliamperes 
in an iron dust coil of special design. The frequencies of the products 
are 920 and 440 cycles per second. These data were taken by I. E. 
Wood and the calculations were made by A. G. Tynan. These curves 
show the product as a function of the amplitude ratio more directly 
than the curves of Fig. 3. 

Both upper and lower third order side frequencies have been meas- 
ured by A. G. Landeen. The results are given in Figs. 5 and 6 for an 
annular core of iron dust. It is so wound that the magnetizing force 
is 0.04 times the current in milliamperes. The figures show two third 
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Fig. 4—Lower side-frequency voltages in an iron dust coil. 

order products plotted against the fundamental current of higher 
frequency in each instance. For these measurements the current of 
one frequency was maintained at some fixed value and the amplitude 
of the other one varied. Both sum and difference products, but with 
different fundamental frequencies, are exhibited. The upper side 
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Fig. 5—Twenty-five kc. third order product of 9 and 7 kc., iron dust core. 
Hu = 24.5, v = 0.18, La = 4.54 mh., II = 38.9 I. 
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Fig. 6—Seventeen-kc. third order product of 13 and 9 kc., iron dust core. 
Mo = 24.5, v = 0.18, Lo = 4.54 mh., H = 38.9 7. 

frequency is the 25-kilocycle product of 9 and 7 kilocycles; the lower 
side frequency is the 17-kilocycle product of 13 and 9 kilocycles. 

Some measurements to which subcase \b is applicable are given in 
Figs. 7 and 8. Each curve gives a third order product for a permalloy 
dust core. The upper side frequency is 25 kilocycles generated by 9 
and 7 kilocycle fundamental frequencies. The lower side frequency 
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Fig. 7—Twenty-five kc. third order product of equal currents at 9 and 7 kc., permalloy 
dust core, mo = 75, v = 0.41, Lo = 5.45 mh., H = 36.0 I. 
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is 13 kilocycles from fundamental frequencies at 21 and 17 kilocycles. 
In these measurements both fundamental currents were changed simul- 
taneously so as to be kept equal throughout. The approach to 
saturation at currents above ten milliamperes is apparent on these 
curves; below, the distortion voltage is proportional to the square of 
the current. 

The measured curves are seen to agree well with the calculated ones 
in every instance, confirming theoretical values of the products within 
close limits. Eddy currents were negligible in all these coils because 
of the dust cores. The use of the formulae to determine important 
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Fig. 8—Thirtcen-kc. third order product of equal currents at 21 and 17 kc., permalloy 
dust core, /jo = 75, v = 0.41, Lo = 5.45 mh.,// = 36.0 7. 

intermodulation products from the constants of the coils therefore 
seems to be justified. 

Correlation with Single-Frequency Results 

In the single-frequency case Peterson found the resistance and 
reactance at a fundamental frequency u/2ir to be increased by 

Ai?(co, 11) = coLo — U, 
OTT no 

AX(o},TI) = 2ajLn—-IT, 
Mo 
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respectively, on account of hysteresis and variable permeability, II 
being the maximum of the applied magnetizing force. The total non- 
linear reactance is then 

X(a., II) = Xo -f AX(aj, H) ■ 
with 

Xq — ccLQ, 

the constant part, representing the reactance the coil would have if 
the permeability remained constant at its initial value. 

The distortion voltages for a two-frequency input may be written 
in terms of these non-linear impedances. With some simplication 
this is done in Table II for special cases, using equation (56) and the 
relations 

OAirNI _ OAttNJ 
I ' Q I ' 

TABLE II 
Case Id Case 16 
« « 1 « = 1 
*<30 * = i 

E12 0.960 AR(p - 2q, Q)J 0.870 AR{p - 2q, Q)J 

En 0.375 AR{p + 2q, Q)J 0.340 AR{p + 2q, Q)J 

En 1.28 AR{2p - q, Q)I 0.870 AR{2p - q, P)I 

JSji 0.500 AR{2p -f q, Q)I 0.340 AR{2p + q, P)I 

£ao 0.200 AR(ip, P)I 0.068 AR{2>p, P)I 

Eo3  — 0.068 AR(3q, Q)J 
Case 1c Case 2 
* » 1 « « 1 
«»! k»K 

En 1.28 AR{p — 2q, P)J 0.212 kX{P - 2q, 2P + 3Q)I 

En 0.500 AR{p + 2q, P)J 0.212 kX{P 2q, 2P + 3(9)7 

En 0.960 AR{2p - q, P)I 1.06 KAR{2p - q, P - 0.944(9)7 

En 0.375 AR{2p + q, P)I 1.23 KAR{2p + g, P + 2.730)7 

£30  — [0.425 kZo(37>) - 0.200 AR{ip, P)]7 

£03 0.200 AR{3p, Q)J 0.200 AP (37>, 0) / 

The general formuhe of case 1 can be similarly represented, but not 
as concisely. Besides exhibiting the connection between intermodu- 
lation products and impedance changes, this table provides a con- 
venient means for computing voltage components directly from data 
obtainable by single-frequency bridge measurements. 
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Hysteretic Impedances 

The fundamental voltages are not included in the table. For them 
each component is separately significant. The singly primed £'s are 
in phase with the corresponding magnetizing current and the doubly 
primed £'s in quadrature. Hence, the former are resistance drops 
and the latter reactance drops, defining incremental components of 
impedance analogous to those mentioned for a single-frequency input. 

For each of the fundamental frequencies the results developed previ- 
ously may be used to determine these components. They represent the 
hysteretic resistance and the hysteretic reactance to the fundamental 
at hand, specified by a subscript p or g. They are tabulated in Table 
III for the special cases considered. The total resistance of the coil 

TABLE III 
Case la Case 16 Case If Case 2 
*« 1 « = 1 0> 1 -« « 1 
k « 1 k = 1 -c» 1 k » k 

ibN v t 256 N v .t t SN " hT t SN v m t SRp Tc "i—pLol 7^— pLoJ  pLoJ v~j pLol 15 I no 45tt I no 5 I no 5 I no 

iv N V 64 A|/ 6tv N V N v T SXp --  pLJ — — — pLol  PLoJ "i T ~~ pLol 5 I no 15 I no 5 I no 5 i no 

S N v T 256 N v T 16 N v 16 N u 
ARq --j — qLol —-r — qLoI --r — qLoJ — y—gLo/ 5 / /io 45tt / A'o 15 / /io 1J L MO 

v 6tv N v r7 6A: N v Air N v . ^ N V r T \ T-\ AX,, -y- -7 qLJ TT -7 qLoJ -y -7 qLoJ -y-T gLo[2/+ Jj ' 5 I no 15 I no 5 I no 5 I no 

to either fundamental current can be calculated by adding to the value 
of AR from the table the resistance of the windings, the eddy current 
resistance, and the initial (viscosity) resistance, all evaluated for the 
frequency of the fundamental. The eddy currents must be so small 
that the flux density is substantially uniform across the cross section 
of the core. The reactance X0 of the coil can be diminished by the 
eddy current reduction factor for the fundamental frequency and 
added to the hysteretic reactance to give the net reactance of the coil 
under these conditions. 

The table is helpful in evaluating the effect of one fundamental 
current upon the other. Within the limits of the analysis, which in 
substance limits the permeability to linear variation with the field 
intensity, the hysteresis loss at any frequency is either increased or 
unchanged by the superposition of a second frequency. Nearly equal 
input currents whose frequencies do not differ greatly share equally 
the hysteresis loss. This amounts to about twice what it would if 
either fundamental flowed alone. If the frequencies differ greatly, the 
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Fig. 9—Hysteretic resistance to one current in the presence of another. 

loss to either is not affected by the other; if the amplitudes differ 
greatly, the loss to either is governed by the stronger current. In no 
case, at these weak fields, does the increased loss at one frequency 
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reduce the loss at another frequency, contrary to well established ex- 
periments at considerably higher fields, for which the hysteresis loss 
at one frequency may be reduced by superposing a magnetizing force 
at a different frequency. The inductance is the same to both funda- 
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mentals in all cases except the second, for which a small difference 
exists. The effect of a superposed alternating current is always 
apparent through an increased inductance, although sometimes the 
increase may be slight; it is determined by the larger current. 
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The influence of one fundamental current upon another has been 
termed mutual crowding. Because of the increased attenuation, and 
at times because of resulting unbalance or phase shift, crowding 
becomes important when different frequencies or bands of frequencies 
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Fig. 10b—Hysteretic inductance to one current in the presence of another. 

are transmitted simultaneously through a circuit including ferro- 
magnetic material. 

Incremental impedances for a twenty-two millihenry permalloy dust 
loading coil are given in Figs. 9 and 10. The current / had a frequency 

/ 
/ 

/ 

/ 
/ / 

1= 
6.0 

/ 
/ —- -— 

=r=r= 
/ 

/ 
/ 4.0 

y 

/ 
/ / 

/ / 

/ 
/ 

/ / s f 
2.0 

/ 
/ / 

/ 
/ s 

r''/ f / 
/ . / 

s 

■'/ 
/ 

REGIONS 
' A— / 

/ 

---/ /^\ 

/ 
/ 

/ 
/ 

/ c  MEASURED 
 CALCULATED 

/ / 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

\ 
\ 1 

1 1 1 

« 



358 BELL SYSTEM TECHNICAL JOURNAL 

of 550 cycles per second, and J 475 cycles per second. Measured and 
calculated values are plotted for comparison, with regions of appli- 
cability of the special subcases indicated. Portions of calculated curves 
falling in regions ^4 or C were computed by the two sets of formul.ne for 
subcases la and 1c, portions in the middle of region B by the formula; 
for subcase \b. The trend of the quantities measured is accurately 
portrayed by the calculations and agreement of the values is good. 

All the curves commence at those values of resistance or inductance 
which would obtain in a single-frequency case with a current having 
the magnitude of the one here superposed in fixed amount. Upon 
increasing the variable current the measured quantities show an 
increase as it begins to preponderate, and eventually they approach 
asymptotically the values they would have if it flowed alone. 

The measurements were made by L. R. Wrathall using a Maxwell 
inductance bridge with two imputs and a tuned detector. Eddy 
currents being of no consequence at the low frequencies employed, the 
chief sources of possible error are calibrations of the standards used 
and variation in the temperature of the coil during taking of the data. 
Changes in winding resistance caused by the latter are of the same 
order of magnitude as the changes in hysteretic resistance being 
observed. Precautions against both possibilities were taken. 

Conclusion 

The multiplicity of forms of complex hysteresis loops makes their 
analysis in general a complicated and difficult matter if indeed possible 
at all. Extensive experiments with two frequencies must be completed 
and the results classified according to the types of loops before an 
acceptable method of taking their form into account can be formulated. 
The parameters k and k seem to be effective quantities for denoting 
concisely a particular form of loop in many instances. 

A way of representing the behavior of complex loops more exactly 
than do Madelung's propositions is needed, and might be the fruit of 
precise experiments designed to clear up also the early closure and 
lack of closure which Lehde apparently found in minor loops. The 
tracing of complex loops is not simply cyclic, and only when a nearly 
complete magnetic cycle is executed between successive maxima in 
the magnetizing force can conditions approaching a cyclic state be 
expected to exist. Some experimental evidence of performance in 
other conditions is a present need which can perhaps be met by a 
thorough investigation of spiral characteristics. These seem to have 
been ignored entirely in the past, the literature dealing with sub- 
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sidiary loops only along a magnetization curve or a branch of a major 
loop. 

Correlation of certain magnetic phenomena to a degree not heretofore 
attainable is made possible by the preceding development. Among at 
least some of these a qualitative connection has been well recognized. 
Flutter and allied effects are known to be aspects of modulation, and 
crowding is observed to accompany non-linear distortion quite gener- 
ally. These features are related quantitatively by means of the 
theory, and are linked with their single-frequency counterparts. It 
thus becomes feasible to evaluate some of the more abstruse occurrences 
in terms of readily understandable effects simpler in nature; ultimate 
in this direction is the use of steady state results to forecast the behavior 
of transmitted speech or music. 



Abstracts of Technical Articles from Bell System Sources 

Reverberation Time and Absorption Measurements with the High- 
Speed Level Recorder.^ E. H. Bedell and K. D. Swartzel, Jr. 
It has been common in reverberation theories to neglect the effect of 
the stationary wave pattern in a room and to assume a logarithmic 
decay of the sound energy. In many cases this assumption of a 
constant decay rate is not fulfilled, and in particular it is well known 
that the decay curves as obtained with available instruments, which 
indicate either the pressure or the velocity at a point in the sound 
field, show marked fluctuations in the decay rate. The rate of decay, 
in general, varies during the decay period, from point to point in the 
room, and may depend upon the position of the sound source, and the 
location of absorbing materials. Very rapid fluctuations in the decay 
rate have commonly been averaged out by the measuring apparatus 
itself, either by making the indicating instrument sluggish in its 
action, or by measuring the average intensity over finite time intervals 
during the decay period. The slower, and perhaps more important, 
deviations from linearity in the decay curves have been either reduced, 
or averaged out, by a number of expedients. Among these are the 
use of rotating sound reflectors, or vanes, to break up the stationary 
wave pattern in the room; the use of frequency modulated, or warble, 
tones in place of a constant single frequency; moving the microphone 
to a number of positions in the room; and moving the sound source. 
Hunt has given some quantitative data on the effect of the warble tone, 
but similar data on other methods of smoothing out the decay curves 
are not available. This paper presents some data on the relative value 
of the above methods of improving the measured decay curves, and 
on the use of a motor driven rotating switch to connect in rapid 
sequence a number of microphones, placed in different parts of the 
room, into the measuring apparatus, for obtaining on a single curve a 
space average of the time decay pattern. Since many of the deviations 
from linearity in the decay curves have a "period" of 30 db or more, 
we should expect the accuracy of our values to be a function of the 
range through which the decay is measured, particularly when the 
range is not large compared to the period of the deviations. This 
effect is discussed for three values of the decay range, 30, 60 and 
90 db. 

1 Jour. Acous. Soc. Amer., January, 1935. 
360 
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Standardization of Noise Meters.2 R. G. McCurdy. A brief review 
of the present status of standardization of noise meters and measure- 
ments, and progress made to date by the technical committee on noise 
meters and noise levels of the American Standards Association. 

A Rotating Mirror Oscilloscope.2 R. F. Mallina. When studying 
sound it is sometimes useful to project the wave-form of electrical or 
acoustical phenomena on a screen. A rotating mirror in combination 
with a vibrating mirror and a light source provide a convenient means 
of showing such waves. The problem of building an instrument for 
such a purpose is comparatively simple if a small screen is used in a 
dark chamber. However, when the screen is large enough to be 
viewed by a dozen or more persons, many difficulties arise. 

The paper describes how the various parts of the apparatus may be 
coordinated in order to produce a comparatively bright, clearly defined 
wave with a small incandescent lamp in a room of average illumination. 
The vibrator used in the apparatus may be so constructed that its 
response is either inversely proportional to or independent of the 
frequency. 

Shot Effect and Thermal Agitation in an Electron Current Limited by 
Space Charge* G. L. Pearson. The space current in a thermionic 
vacuum tube is not a steady flow of electricity but is subject to minute 
irregular fluctuations. The two most fundamental causes for these 
fluctuations are the random distribution of instants of emission of the 
individual electrons and the distribution of these electrons in velocity. 
The random emission produces shot noise which may be reduced by 
the space charge surrounding the cathode, while the velocity dis- 
tribution produces thermal noise and is dependent upon the tempera- 
ture of the cathode. 

Although plausible theories of these effects have been given they 
have never been checked by accurate experiments because of the 
difficulties involved. By using two electrode tubes capable of pro- 
ducing a large space charge such measurements have now been made 
and are reported in this paper. 

Simple Theory of the Three-Electrode Vacuum Tube.2 H. A. Pidgeon. 
The physical principles upon which the operation of the three-element 
vacuum tube depends are presented in simple form and the terms 

■ Elec. Engg., January, 1935; Indus Standardization, January, 1935. 3 Jour. S.M.P.E., December, 1934. 4 Physics, January, 1935. 
5 Jour. S.M.P.E., February, 1935. 
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usually applied to the tube, its operation as an amplifier, and a simple 
approximate method for computing the power output and percentage 
of distortion are explained. 

No new material is presented in the paper although some of it is 
presented from a somewhat different point of view from that usually 
found in the literature. An effort has been made to present in reason- 
ably compact form the essential features of the subject most useful to 
engineers interested in vacuum-tube applications. 

The subjects discussed include: the portion of electron theory upon 
which the fundamental principles of vacuum-tube operation are based; 
space charge, the three-halves power law, temperature and voltage 
saturation: characteristics of the three-element tube; definition and 
physical significance of the terms plate resistance, transconductance, 
and amplification factor; dynamic characteristics, power output, and 
distortion; various means of coupling the vacuum tube to its associated 
circuits; and means for testing vacuum tubes for adequate thermionic 
emission. 

Coaxial Communication Transmission Lines.6 S. A. Schelkunoff. 
A non-mathematical discussion of the mechanism whereby energy 
may be transmitted over long distances at high frequencies by the use 
of "coaxial conductors" is presented in this paper. A coaxial system 
consists of a cylindrical conducting tube within which a smaller con- 
ductor is coaxially placed. Such conductors, which reduce interference 
and crosstalk, are applicable for the transmission of telephone, tele- 
graph, and television signals over a very wide range of frequencies. 

Some Aspects of Quality Control.1 W. A. Shewhart. The object 
of this paper is to make clear what is meant by quality in a practical 
objective way that is subject to experimental verification and to con- 
sider some aspects of the problem of control. As a basis for judging 
the quality of current product it is necessary to obtain first of all 
adequate information, in the most efficient manner, on which to 
render a judgment. This can be accomplished by providing an 
inspection specification which is distinct from the design specification. 
One specifies the quantity and kind of evidence that is required as a 
basis for judging whether or not the quality of the product will attain 
its goal; the other specifies the goal. Certain elements of uncertainty 
must be allowed for in setting the goal. The discussion closes by 
pointing out the necessity of keeping a running report or record of the 

* Elec. Engg., December, 1934. 7 Mech. Engg., December. 1934. 
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evidence used in judging the quality of current product as a part of 
any scientific plan of making use of hindsight as well as foresight in 
controlling quality. 

The Ionizing Effects of Meteors* A. M. Skellett. It is shown 
that a meteor of average velocity has enough energy to cause ioniza- 
tion of atmospheric gases by impact. Recent experimental work by 
Frische and others on collisions of ions is interpreted as supporting the 
hypothesis that meteoric collisions do result in ionization. The after- 
glow of nitrogen is considered as a possible example of the process 
by which a meteor train remains glowing for a period of minutes and 
the coincidence of the region in which such trains are generally ob- 
served and of the E region of the upper atmosphere is pointed out. 
The spectra of bright meteors, while not showing atmospheric lines, 
are shown not to be inconsistent with the above hypothesis. 

The behavior of the transatlantic short-wave radio telephone 
circuits of the American Telephone and Telegraph Company, during 
1930, 1931, and 1932, is examined for possible meteoric effects. It is 
concluded that, in general, a rather large shower is necessary to affect 
them appreciably. This was to be expected since these circuits are 
normally under a continuous bombardment by random meteors. It 
seems possible that a certain degree of the variability (rapid fading, 
etc.) of received signals over such paths is due to this bombardment. 

Results of radio pulse studies of the upper atmosphere, particularly 
by Schafer and Goodall, which are strongly suggestive of meteoric 
ionization, especially at times of special meteoric activity, are (1) 
sudden increases in ionization in the E region lasting for a period of 
minutes or less, and (2) increases of longer duration with maxima 
coincident in time with those of observed meteoric activity. Such 
tests made during the Leonid shower of November, 1932, were suc- 
cessful in correlating sudden increases in ionization in the E region 
with the visual observations of a number of bright meteors passing 
overhead. For the brightest meteor observed, the ionization increased 
to a value in excess of summer noon conditions. 

It is pointed out that meteoric showers might take place in the F 
region which would be unobservable by ordinary visual means. 

Taking into account the energy spent by the meteor in ionization, 
a mass for the brightest meteor, for which correlative data was ob- 
tained is roughly calculated to be 0.3 gram. Its estimated brightness 
was — 1 magnitude. 

The recombination coefficient at the height of the E region is calcu- 
8 Proc. I.R.E., February, 1935. 



364 BELL SYSTEM TECHNICAL JOURNAL 

lated from the rate of decrease of ionization after the passage of a 
meteor, to be less than 0.2 x 10-8 cubic centimeters per second. 

Small Sapling Method of Evaluating Wood Preservatives.^ R. E. 
Waterman and R. R. Williams. Permanence and toxicity are 
probably the most necessary characteristics of a wood preservative. 
Ease of injection, freedom from corrosive properties, cleanliness, cost, 
and the like are all important, but no material can be considered unless 
it displays a high degree of resistance to wood-destroying fungi and 
unless this toxic potency persists when the treated wood is exposed to 
the weather for long periods of time. The problem under discussion 
is that of appraisal of wood preservatives for these two characteristics 
within a reasonably short time. 

In order to expedite tests of the permanency of pole preservatives, 
use is made of groups of small pine saplings treated with the preserva- 
tive in question and set in the ground as miniature telephone poles. 
In these specimens weathering is relatively rapid on account of the 
large ratio of surface to volume, and poorly preserved material begins 
to decay in one or two years. Analyses and toxicity tests as well as 
observations of decay are made periodically. Seven years' experience 
indicates that the comparative preservative values of various salts, 
creosotes, oils, etc., may be estimated relatively cheaply, quickly, 
and with considerable reliability by this method. 

A High Speed Level Recorder for Acoustic Measurements.™ E. C. 
Wente, E. H. Bedell and K. D. Swartzel, Jr. Two quite accurate 
means for recording rapid variations in sound intensity in a form 
suitable for visual inspection have been available for a number of 
years. One of these is the phonodeik, or one of its variants, and the 
other is a combination of a microphone and an oscillograph. When 
properly designed these devices record the actual wave form of the 
sound. However, for many acoustic measurements, a knowledge of 
the wave form is of secondary interest, whereas it is important that 
one should be able to record rapidly varying mean intensities over a 
wide range of values. From a record of the wave form it is not easy 
to determine the intensity with any degree of accuracy for a range 
greater than 20 or 30 db, but in some types of acoustic measurements 
it is highly desirable that the record cover a range of at least 60 db. 
Recently several types of instruments have been built which record, 
on a logarithmic scale, the mean power of the electrical input. These 
instruments, like that described here, may be used to plot the intensity 

* Indus, and Engg. Chem. {Analytical Edition), November 15, 1934. 10 Jour. Acous. Soc. Amer., January, 1935. 
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level in db as a continuous function of either time, frequency, or any 
other variable. The adaptability of such level recorders to acoustic 
measurements depends, among other factors, upon the range and 
accuracy of the logarithmic scale, and upon the effective speed of the 
recording mechanism. This recording speed is most conveniently 
expressed in terms of the rate, in db per second, at which the recorder 
is capable of following changes in the input power. 

The level recorder described here consists essentially of an amplifier 
and rectifier, the output current of which is held at a substantially 
constant value automatically by a change in the gain of the amplifier, 
following changes in input power. The gain is varied by means of 
motor driven slide wire potentiometers graduated in logarithmic 
steps, the gain settings of which are recorded. 

Some Applications of Modern Acoustic Apparatus.11 S. K. Wolf 
and W. J. Sette. Within the past two years there have been de- 
veloped at the Bell Telephone Laboratories several electro-acoustic 
instruments designed to facilitate accurate measurement of a wide 
variety of acoustic phenomena. Three of these instruments are: an 
automatic level recorder, a crystal analyzer, and an acoustic spec- 
trometer. Some of the types of acoustic studies for which these 
modern devices are well adapted may be of general interest and hence 
specific applications made at Electrical Research Products are de- 
scribed here. These include reverberation measurements, loud speaker 
response measurements, noise analyses, piano tone analyses, and 
Studies on the singing voice. A brief description of the operating 
characteristics of the instruments is first given. 

11 Jour. Acous. Soc. Atner., January, 1935. 
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