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SECTION 1 

Introduction 

HE use of crystals as oscillating elements and as light valves in electric 
circuits has given the mathematics of crystalline media an engineering 

importance. Soon after the first simple quartz oscillators were made it was 
noticed that some ways of cutting the block from the natural crystal gave 
lower temperature coefficients of frequency than did other ways. This led 
to studies of the change of elastic modulii with direction and temperature 
and finally to the discovery that there are directions in quartz for which the 
shear modulus does not change with temperature. 

Such computations are rather involved, and there is, in the English 
language, no general reference book on these new problems. The existing 
works were evidently not written with the idea in mind that anyone would 
ever actually do much numerical work with directional properties of crystals, 
since the methods used are not the best suited to this. The matrix algebra 
has the advantages of a symbolic algebra and is also, through the concept of 
matrix multiplication, a scheme for computing numerical results. 

As the problem of temperature coefficients of frequency involves the 
temperature coefficient of expansion, the temperature coefficient of density 
and the temperature coefficient of elastic modulii, these problems must be 
put into the language of matrix algebra so that they will fit into the general 
structure being built for more difficult problems. For this reason, after an 
introduction to the idea of linear vector functions, through consideration 
of the relation between the electric field and the induction in a crystal, and 
a hasty sketch of symmetry types found in crystals, we proceed to the 
consideration of stress and strain and their relations to each other. 

Following these, we take up piezo electricity and the converse piezo 
electric effects; these are important as they tell us the ways a crystal may be 
driven. We have not seen anywhere a general proof that the modulii of 
the converse effect are the same numbers as the modulii of the direct effect 
—to the first order of small quantities, though Lippman predicted the 
converse effect and demonstrated its magnitude to be about this; he ap- 
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parently didn't consider the general case, of six simultaneous stress com- 
ponents, six strain components, three electric field components and three 
induction components. The fact that the mentioned relation is true only 
to the first order of small quantities seems to have escaped the attention of 
some experimenters who have sought to show non-linearity of the piezo- 
electric effect by demonstrating non-linearity in the converse effect. 

As a basis for light valve problems, we handle the propagation of light 
through crystals, then the electro optic effect and the piezo optic effect. 

SECTION 2 

A Linear Vector Function 

For almost every physical constant of an isotropic medium a crystalline 
medium has several constants. For instance, a piece of glass has a co- 
efficient of thermal expansion but a crystal has many coefficients of thermal 
expansion, the coefficient depending on direction. It might be thought 
that there were no necessary relations between the coefficients in different 
directions but there are necessary relations. 

As an example of the simplifying relations between the values of physical 
constants in different directions let us consider a crystal in an electric field. 
Measurements show that the dielectric constant varies with direction in a 
crystal. If the field is not in the direction of greatest dielectric constant, 
the displacement current might veer over a little, much as a nail tries to 
follow the grain of the wood. We shall assume that for any electric field 
vector E there corresponds an electric induction vector D which may not 
coincide with E. Also we assume that the magnitude of D is proportional 
to E, that is, if E results in D, then nE results in nD. Lastly, we assume 
that if Ei results in A, A in A . . . and Em results in Dm, then £1 + A . • • 
Em results in A + A + • • • Dm. If these assumptions hold, then as any 
arbitrary field E can be expressed as the vector sum of its three components 
Ei, Ez, £3 along three arbitrary unit vectors i, j, k, the induction vector 
resulting from £ can be computed from the induction vectors resulting from 
Ei, Ez, and £3. For, let £1 result in Aii + Ai/ + Ai^, £2 result in Dui -f- 
Daj + Daik and £3 result in Dui + Aa/ + D^k, then £1 + £2 + £3 = £ 
results in the induction vector; 

D = (£iAi + EiDu EiDii)i 
+ (£iAi + EiDu -|- EzDiz)j (2.1) 
-f- (£iAi "T EiDai -j- E3D33) k 

It is seen then, that not more than 9 constants are needed to describe 
the dielectric properties of a crystal. The energy required to establish the 
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electric field is half the product of the component of the induction in the 
direction of the field and the electric field. This is, therefore: 

2W = EiDn + E2D22 + -E3-O33 + EvEsiPw -}- £>32) + EiE^Dn + D13) + 
E^iDn "f" D21) 

Considering then a condenser made from a unit cube of crystal, the charge 
is D and the energy content is W. If there is no leakage loss, the charge 

that can be drawn from the condenser is Z) = . Whence A = = 
dE dEx 

DnEx + + Ai) A + 2 (A3 + Ai) A- If, therefore, the induction 
is derivable from a potential, A2 = \ (A2 + Ai) or Dn = Ai- Similarly 
A3 = Ai and D-a = D32. By a proper choice of axes the remaining six 
As can be reduced to three. In the case of isotropic dielectrics Ai = A2 = 
As and 47rAi corresponds to k, the dielectric constant. 

SECTION 3 

The Symmetry of Crystals 

If a crystal has certain sorts of symmetry the number of constants re- 
quired to describe each property is materially reduced. For this reason 
we now turn our attention to a study of symmetry. 

In general, plotting a vector property of the medium for a crystal gives a 
complicated surface which we shall call a property surface. Each property 
surface of a homogeneous isotropic medium is a sphere. 

Because of the orderly arrangement of matter in a crystal, the property 
surfaces of crystalline media are commonly symmetrical. If a casting of a 
property surface were made it might fit into its mold in several positions. 
A property surface for quartz for example, if lifted from its mold and rotated 
through a third of a turn about the proper axis, would fit back into the mold. 
That is, quartz has a three fold axis. The natural requirement that mole- 
cules be laid down in a way economical of space limits the kinds of symmetry 
possible for crystals to axes of two fold (binary) symmetry, of three fold 
(trigonal), of four fold and of six fold symmetry, planes of reflection symme- 
try and combinations of axis-reflection symmetry, besides a simple sym- 
metry through a center. From these elements it is possible to divide all 
possible property surfaces into 32 classes. No other classes built from these 
elements could be self-consistent. 

A diagram study will prove this point. On a sphere let us mark axes of 
two fold symmetry by means of a solid boat shaped figure, three fold with a 
solid triangle, four fold with a square, six fold with a hexagon, planes of 
symmetry with a solid line (great circle) and combination axis reflection, 
by means of similar hollow figures. Finally, we shall project the sphere 
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and markings onto a plane through the center. Figures 1 to 32 is a set of 
such diagrams. Fig. 23 for instance shows a six fold axis. Fig. 1 represents 
a medium with no symmetry whatever. The cross represents a typical 
vector property, the vector piercing the sphere above the projection sheet. 
If the vector pierced below the sheet it would be marked with a circle. The 
dashed circle of Fig. 23 indicates the boundary of the sphere without im- 
plying it to be a plane of symmetry. The presence of six fold symmetry 
requires the typical vector to be shown in six places. If an axis of two fold 
symmetry is added at right angles to the six fold axis, it must appear six 
times and the typical vector must now appear twelve times, six times above 
and six times below the projection sheet. Continuing in this way we shall 
find the self-consistent classes of symmetry to be the 32 shown in the dia- 
grams. Often the symmetry of a crystal class is expressed by means of a 
formula. A center of symmetry is symbolized by the letter C, a binary 
axis by ^2, a trigonal axis by A3, a ternary axis by a six fold axis by A6, 
a plane of reflection by P, and a combination rotation reflection by the 
•combination symbols or AV In this way the symmetry formula of 
quartz for example, is SA^-As. 

SECTION 4 

Matrix Algebra 

In the solution of problems of crystal physics we are involved in the 
handling of many sets of linear simultaneous equations. As the matrix 
algebra lessens the work involved in handling sets of linear simultaneous 
equations we turn now to a study of matrix algebra. 

Several independent variables Xi, X2. . . .t„ are linearly related to several 
other independent variables yi, y2 • ■ • y™ as 

yx = "I" ^12^2 "■}"••• OlnA'n 

y2 = fl2ia"i + .. • i • 

ym — dmlXi + . • . 0.mnXn 

or briefly 

yi = it, aiixi I = i'2 "" m  
j-i 

In most all such equations as (4.1) the variable to be summed over appears 
twice in the subscripts of one side. As a convention we agree to omit the 
summation sign and sum wherever subscripts are repeated. 
Thus: y,- = is to be summed over j 
again, if Xj = hjkZk the z's being a third set of variables we have: 

yi = aubjkZk to be summed over j and k. 
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We can think of this as a special multiplication of hyperquantities a, b 
and z. If we define 

Cik = aijbjk (4.2) 

we may go from the y's to the z's directly thru y,- = c.-aZ*. We can now 
consider the "table" 

'dndn . . . fln^ 

fl21 • • • 

\dml • • • Cmn . 

as being the quantity a, and the table 

/bnb\n .... 

\Ki 

as the quantity b. 
These "tables" are called matrices. 
Going to eq. (4.2) we see that the quantity c is to be a "table," the typical 

element c,y of which is to be gotten by multiplying the ith row of a by the 
ith column of b, term by term thus: 

Cij = anbij + Oizbzj -(-... 

After a little practice it becomes almost automatic to form the yth term 
of the product of two matrices by letting the index finger of the left hand 
follow across the ith row of the left matrix while the right index finger 
follows down the jth column of the right matrix. The fingers step along in 
synchronism and at each pause the quantities under the two fingers are 
multiplied and the product added algebraically to the accumulated sum. 

The algebra of these special multiplications is not commutable, i.e. 
ab ba. 

Eq. (4.1) can be considered as a special case of eq. (4.2), in which the 
matrices x and y have one column only. In this manner a vector with 

components Xi x^ .Ta can be considered as the matrix 

If eq. (4.1) has the same number of .r's as y's we may solve (by means of 
determinants) for the x's in terms of the y's. We would then get a new set 
of equations 
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The significance of the a-1 is that the matrix product of a and a-1 is a matrix 
with ones on the major diagonal and all other terms zero. Whenever the 
product of two square matrices gives such a matrix (known as the idem- 
factor, I) they are said to be reciprocal. Only square matrices have 
reciprocals. Multiplying any matrix by the idemfactor leaves the matrix 
unchanged. We might consider, as part of our mathematical short hand, 
that eq. (4.1) was solved for .-r by multiplying through by a-1, as 

a~ly = a-1 ax = Ix = x. 

We must remember that the order must not be disturbed as the quantities 
are not commutable, and that only square matrices have reciprocals. 

The major diagonal of a square matrix is the set of terms running diagon- 
ally from the upper left to the lower right. 

A symmetrical matrix has any term M,-,- = Ma 
An anti-symmetric or skew symmetric matrix has any term Mi,- = —Ma 

for i ^ j. 

Rotation Theory 

The matrix algebra can be used to express a vector as a function of another 
vector, that is to handle such relations as exist between E and P of section 2. 

There is another important aspect of matrix multiplication, that of trans- 
forming a function from one set of axes to another. Let us assume that the 
new set of unit axes, x[ *2 and x's are merely the old ones rotated through 
angle 0 about some axis A which is a unit vector passing through the origin. 
From Fig. 33 we see that in the expression: 

' 1 '1 ' Xi = OnXi + 021^2 + 031^3 

the o,/s are the cosines of the angles between xi and the three quantities 
x'j. Conversely they are the cosines of the angles between the x/s and xi. 
Consequently, if the primed unit vectors are given in terms of the unprimed 
ones by the three equations 

/ Xj — QijXj 

then the unprimed x's are given in terms of the primed ones by the ex- 
pression: 

Xj = ajiXi 

This reversible relationship is well depicted by the table: 

Xi Xz *3 
an 012 O13 
021 O22 023 
031 032 033 
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In this direction cosine table we can "look up" the components of any unit 
vector in terms of the other system. 

The matrix a a is merely the matrix a,-,- with rows and columns inter- 
changed. an is called the conjugate of a,-,. We shall denote the conjugate 
of any matrix M by Mc. 

Obviously V is the vector sum of the 3 components (on the new system) 
of each of its 3 components on the old system. 

/anFi + aizVi + auFsX 
(F)new = ( a-1 F +    

*1- 

Fig. 33—The direction cosines of X! on X'i X'j X's. 

If the expression giving the components of V on the new system is de- 
noted by V we may write 

V = aV 

conversely V = a~l V 

Since is of unit length, the sum of the squares of its three components 
(on the primed system) is unity. 

That is 

similarly 

and 

2 2 2 
On + Ol2 + Oxs = 1 

2 2 2 
#21 + 022 023 :=:: 1 ■ 

031 + 032 + 033 = 1 

(4.3) 

Now ac can be considered as a rotation similar to the rotation a. Con- 
sequently their product aac is a similar rotation. Let us consider this 
product. 
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-l  (4.4) 

The squares of its terms must sum to zero, row by row as in (4.3) 

/ fliiflisfliaX / OllU2lfl3l\ 
| fl21a22U23 1 I Ul2fl22U32 I = 

\u3lU32U33/ \ui3U23fl33/ 

Because of the relations flu + 012 + flis = 1> etc., we see that the terms of 
the third matrix are zero for all terms not on the major diagonal. There- 
fore, aflc is an idemfactor and the reciprocal matrix of a is the same as its 
conjugate matrix. 

flc = fl 

Also x[ is of unit length, and the sum of the squares of its components on 
the unprimed system is unity. Thus we find: 

flii + U21 + flax = 1 
fll2 d- ^22 d- fl32 := 1 (4.5) 

2 1 2.2 _ * flis d~ ^23 "T fl33 — 1- 

We now introduce from vector analysis the concept of the scalar product. 
The scalar product of two vectors u and v is Uc v. It is the product of the 
lengths of the two vectors and the cosine of the angle between them. 

If we take the scalar product of *1 and *2 as expressed in the primed 
system we have, since they are mutually perpendicular: 

(flll, O12, flis) I 022 I = Oiifl21 -f- 012022 d" fl]3023 — 0 
\a-a/ 

Similarly multiplying Xz and X3 scalarly, and *3 and Xi we find: 

0llfl21 d~ Oi2fl22 d" 013023 = 0 
021031 d~ fl22032 d" 023033 ::= 0 (4.5) 
O31O11 d" 032012 d~ 033013 ::= 0 

If we multiply xi and x'z etc. as expressed on the unprimed system we get 
the relations: 

flllOi2 d" 02lfl22 d" 031032 = 0 
fll2fll3 d" 022023 d~ O32O33 := 0 (4.7) 
flisflll d~ 023021 d" 033031 ::= 0 

The vector product of two vectors u and v requires the defining of a 
special matrix, the cross matrix. 

(0 —U3 ihX 
us 0 — «i |  (4.8) 

-2/2 2/1 0/ 



MATHEMATICS OF PHYSICAL PROPERTIES OF CRYSTALS 11 

0 — O13 Oi2\ /(hi 
Ol3 0 -On 1 1 022 

— O12 On o / \a23, 

"31 
"32 
"33 

We note that this is formed by writing zeros on the major diagonal, then 
going back from the lower right corner writing Ui, and Uz around the edges. 
We then make the lower left term negative, then operate on the opposite 
side of the major diagonal so as to make the matrix skew symmetric. 

The reciprocal of any matrix m is 

<*•/ -  (4-9) 

where Ma is the ji minor of \m\. 

The cross matrix has no reciprocal as for it (4.9) becomes indeterminate. 
Since the vector product of two vectors u and v is another vector per- 

pendicular to both u and v and of a length uv sin {uv) we may write, on the 
primed system 

X 3*2 = X3 in the form 

/ —^13022 + Ol2fl23\ 
I 013021 — Oiifl23 
\ —fll202i + O11O22/ 

Matrices including vectors are equal only when their corresponding terms 
are equal. Hence, we get the relations 

031 = O12O23 — Oi3fl22 
032 = Oi3fl2i — 011023    (4.10) 
033 = 011022 — 012021 

Similarly we get the relations: 

011 = O22O33 023032 
012 = 023031 — 02ifl33 
013 = 021032 022031 11 ^ 
021 = O32O13 — 012033 
022 = 033011 — Osiflis 
023 = O31O12 — O32O11 

The 21 relations between the o.-y's allow us to complete the matrix given 
four terms. 

Several Useful Matrix Relations 
/d/d xi\ 

The del operator is the pseudo vector V = I d/d x? J (4.12) 
\d/d xj 
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It transforms upon a rotation of axes as does an ordinary vector: 

V' = aV (4.13) 

grad « = V Uc, a matrix (4.14) 

div « = Vc m, a scalar (4.15) 

curl « = V X «, a matrix (4.16) 

grad radius vector = Vp = the idemfactor (4.17) 

(abc .. .r1 = ...rW1 (4.18) 

(a5c . ..) tfi = ... ccbcac (4.19) 

/ an 0 0 0 .. A- 

0 022 0 0 ... 

1° 

0 033 
..../ 

'l/flu 0 0 
= j 0 1 / 022 0 

0 0 1/033 
,...(4.20) 

-1 = (matrix)-1 ^ ^ (Scalar times matrix) =  :— x scalar 

SECTION 5 

The Geometry of Rotations 

As a first application of the matrix algebra let us compute the a matrix 
for a few general rotations. Although we can consider a general rotation 
as one of angle <f) about the unit vector* A, it is easier to consider a general 
rotation as three successive rotations about coordinate axes. 

A study of Fig. 34 shows that for a counterclockwise rotation </> about xh 

the new components of a vector V are: 

V[ = Fx 
F2 = F2 cos 0 + Fa sin 0 
F3 = — F2 sin 0 + F3 cos $ 

whence V = aV where 

/I 0 0 \ 
c = | 0 cos 0 sin ^ 1 (5.1) 

\0 — sin 0 cos 4)/ 

* A general rotation of amount 4 about the unit axis A is given by 
a = AAe + (7 — A A?) Cos </> + Sin <£ A 

See Vector Analysis (Gibbs Wilson, Yale Press) pp. 338. 
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Similarly, for a counterclockwise rotation ^ about we have 

(cos </> 0 — sin (A 
0 1 0 )  
sin 0 0 cos (/>/ 

and for a counterclockwise rotation 0 about .T3: 

cos <t> sin 0 0N 

(5.2) 

a = I — sin 0 cos 0 0 

*3 

--A ■ - T- 
I ^ 

>-1 

v; 

Fig. 34—The relationship between the components of a vector on one coordinate 
system and on another. 

In the appendix we give the special transformations corresponding to the 
symmetry operations of the 32 crystal classes. If we have three successive 
rotations: 

x' = ax 
..//   „/„/ 

the resultant rotation is 

or 

where 

x" = a'x' 
x'" = a"x" 

t'" = a" a'ax 

x'" = Rx . 

R = a" a'a. 

(5.4) 

(5.5) 
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The I.R.E. Orientation Angles and the I.R.E. Matrix 

The Institute of Radio Engineers has proposed that, for quartz crystals, 
all orientations be given in terms of three rotations 0, 0, ^ about Xz, X2 
and x'z respectively, starting with the plate length along xi width along 
*2 and thickness along *3. (Here Xz is the z or optic axis, xi is the electric 
axis.) 
Whence, here: 

0 —sin cos 6 sin 6 cos 6 sin \p cos \I/ 
— sin 0 cos 6 R = —sin \p COS \I/ 

sin d cos d 

and carrying out the two matrix multiplications: 

X! 
cos <£ cos 6 

— sin 0 sin 0 
cos 0 

Xi 
sin 0 cos 6 

+cos 0 sin 0 

^•3 
cos 0 — sin 0 cos 0 

•cos 0 cos 0 sin 0 — sin 0 cos 0 sin 0 
■sin 0 cos 0 +cos 0 cos0 sin 0 sin 0 

cos 0 sin 0 sin 0 sin 0 cos 0 

/// 
^1 

^2 

/// 
^3 

...(5.6) 

If we denote the unit vectors along the length, width and thickness as PiPi 
and P3 respectively we have as a matrix defining the plate: 

P = Rx (5.7) 

The I.R.E. orientation system is useful to the designer of crystal plates 
because his problem is to choose such values of 0, 0, 0 as to give the plate 
certain physical properties along its length, width and thickness. The man 
who cuts the plate has a different problem, that of moving the crystal (and 
hence the Xi Xi Xz axes) about a fixed saw so that the plate cut parallel to the 
saw blade is what the designer ordered. 

Let us consider such a system as shown in Figs. 37, 38 and 39. In Fig. 
38 the crystal stands with its optic axis along Pz, its + electric axis (for 
right hand quartz) along P. Since the shop man considers clockwise rota- 
tion as positive we now rotate the crystal through angle Uz about P3 clock- 
wise, we then turn the crystal through angle Ui clockwise about Pj, and 
finally, after cutting out a slab of required thickness, we turn it clockwise 
through angle Ui about P3 to cut its length and width. 

On the plate axes Pi the crystallographic axes *1 Xz .rs are now given by 

x = rP (5.8) 
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^3 

Fig. 35—The initial position (0, 0, 0) for the I.R.E. direction angles. 

\ 

Fig. 36—The final position (<l,, 0, for the I.R.E. direction angles. 
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where 

/ cos t/j sin t/i 0 
r = I —sin Ui cos Z7i 0 

\ 0 0 " 

0\ /I Q G \ / cos s^n 0\ 
0|(o cos U2 sin Ut) ( — sin Us cos Us 0 1 
1/ \0 — sin U2 cos U2/ \ 0 0 1/ 

cos Ui cos Us ■ cos U\ sin Us sin U1 sin Us 
— sin £/i cos Us sin Us +sin U\ cos Us cos Us 

— sin Ui cos Us —sin Ui sin Us cos Ui sin Us 
— cos Ui cos Us sin Us +cos Ui cos Us cos Us 

sin Us sin Us —sin Us cos Us cos Us 

(5.9) 

U3 /*- 

Fig. 37 Fig. 38 
Fig. 37—The (0. 0, 0) position of a shop system of direction angles. 

Fig. 38—The second position of a shop system. 

From (5.8) we see that P = rx and hence, if this is to be the same plate 
the designer specified by P = Rx we must have R = r whence we may 
equate the terms of (5.6) and (5.9) to get the relations 
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cos Ui = cos 0 ox'Ui = ± 
tan Ui = cot ^  
tan Uz = cot 0 

(5.10) 

or 

Ui = \J/ 90 mr 
u2 = e 
Z/j = 0 — 90 + WTT 

PIEZOID SECTION 

E 

SHAFT 
SAW 

BLADE 

Up 

Fig. 39—Cutting the slab and trimming it to the piezoid boundaries. 
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Where n is any integer positive or negative, including zero. If we take 

Ul = yp-90 
1/2=0  (5.11) 
[/g = 0 + 90 

The matrices are consistent term by term. 

SECTION 6 

Crystalline Dielectrics 

As a first application of the matrix algebra considered as a linear vector 
function let us reconsider the problem of the crystal in an electric field. 

The relations of chapter II, equation (1) can be written in the abbreviated 
form: 

D = DijE where Dr4 = Dtr 

in accordance with the system of abbreviations adopted in the appendix. 
If we put 

47rDr, = kT, 

equation (1) can be written 

D = ^-kriE (6.1) 
47r 

In order to investigate the effects of crystal symmetry in determining 
the least number of dielectric constants that are required for a given class of 
symmetry it is desirable to find the electric induction D for any system of 
axes. Suppose that we choose a system for axes x\ , xi, X3 related to xi, 
Xi, xs through the relations: 

' i ' i ' XI = dnXl + 012*2 + Ol3*3 
*2 = 021*1 + 022*2 + 023*3  (6.2) / , I . ' 
.*3 = 031*1 + 032*2 T" 033*3 

where on is the cosine of the angle between .*1 and *1, 012 is the cosine of the 
angle between *1 and *2 etc. 

Equation (6.2) can be abbreviated to 

= ax 

where o is the matrix 
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(flu fliz fliaX 
flai 022 fl23 I 
flsi fl32 flss/ 

It is shown in the sec. 4 that any vector F = I F2 I can be written on the 
W 

new system of axes as V where V = aV, conversely V = a lV'-, a 1 is the 
matrix reciprocal to a. Since the induction D and the electric field E are 
simple vector functions they transform as the vector V, that is: 

D' = aD (6.3) 

But by (6.1) 

whence: 

or 

E' = aE (6.4) 

D = kE 
At 

aD = ~ akac aE 
At 

D' = ~ k'E'   (6.5) 
At 

k' = akac (6.6) 

We see that the form of (6.5) is the same as that of (6.1) for any set of 
axes if (6.6) is used to define the new dielectric matrix k. 

To apply this relation (6.6) to a particular crystal let us consider a tetrag- 
onal crystal (which has its properties unchanged by a rotation of 90° 
about a four fold axis). Let us choose the four fold axis as *3 and then rotate 
the axis 90° about *3. In this case 

0-10 
a = 1 

0 1 
0 0 1 and the reciprocal matrix a 1 = ( — 1 0 0 

0 1 (P 
-100 
00 L 

whence equation (6.6) becomes: 

0 1 0 
fc' = -1 0 0 

00 1 

^11 ^12 ^3l\ /o — 1 0\ / k-22 ^12 ^23^ 
^12 ^22 ^23 1 ( 1 0 0 1 = f kl2 kn ^31 
£31 #23 ^33/ \0 0 1/ \ ^23 ^31 ^33/ 
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But because of the symmetry k is unchanged by this transformation, 
hence 

k = k' 

Two matrices can be equal only if corresponding terms are equal, hence 

k\\ = ^22, ^12 = — ^12 = 0, k-a = ^3i and ^31 = ^23 

whence 

kiz = ^31 = 0. 

We are left then, with the dielectric constant matrix for the tetragonal 
bisphenoidal class: 

/kn 0 0 \ 
£ = I 0 ^1 0 ) 

\0 0 ^33/ 

Applying other transformations possible for tetragonal crystals gives no 
further simplification. 

If we go through all the symmetry transformations possible for the 32 
classes we find that cubic crystals require but one dielectric constant, hex- 
agonal, trigonal and tetragonal crystals require two constants, orthorhombic 
monoclinic and triclinic crystals require 3. 

As the triclinic class has no fixed axes or planes of symmetry the reduction 
of its 6 constants to 3 is not so obvious. It may be seen by expanding into 
ordinary xyz coordinates, that pckp = 1 is the equation of an ellipsoid, (p 
is the radius vector) where the six ^'s are the coefficients of x , y , 2 , yz, 
zx and xy respectively. If we choose the coordinate axes along the axes of 
the ellipsoid the yz, zx and xy terms drop out and only three &'s are needed. 
With triclinic crystals then, if we determine the axes of the ellipsoid, then 
choose the coordinate axes along them, only three dielectric constants are 
needed to completely specify the polarization in terms of the electric field. 
The determination of the ellipsoid axes must be made experimentally as 
there are no symmetry elements to guide us. It is possible to compute the 
positions of the axes from the 6 ^'s by solving a cubic equation. 

The values of the &'s depend on the frequency of the applied field. In 
crystals of low symmetry the ellipsoid axes for different frequencies do not 
necessarily coincide. 

Another vector quantity of interest is the polarization, P = D — E. 
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Using (1) this becomes 

P =4 (*-/)£ (6.7) 

SECTION 7 

Quadratic Forms 

Often the elements of a matrix are themselves functions of other quanti- 
ties. In order to relate the elements of one matrix with those of another by 
means of a matrix multiplication, we may make a single column matrix of 
each of them. We then wish to know how a transformation of axes changes 
the elements of this single column matrix. Consider a symmetrical matrix 
b that relates two vectors u and v. 

A transformation of axes, a, changes u and v to u' and v'. Multiplying u = 
bv through by the prefactor a we have 

To be in accord with common usage we now rearrange b according to the 
arbitrary scheme: 

u = bv. 

(7.1) 

bu] [Bi 

bji 
bu Be 

We wish to know what operation to perform on B to get B' corresponding 
to b'. If we expand b' = aba-1 it is easily seen that b' = aB where 
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2 flu 2 O12 
2 

013 2fli2 fll3 2013 On 2011012 
2 021 

2 
022 

2 
^23 2022 023 2fl23 021 2a2i O22 

2 
o-n 

2 
032 

2 
033 2032 033 2033 031 2031032 

022 033 021033 022 031 
fl21 fl31 022 O32 023 033 -1-023 032 + 023 031 + O21O32 

O12 033 O13O3I On 032 
flsiOn 032 ®12 033 Ol3 + 013 032 + 011033 +012031 

O12O23 013 021 On 022 
011021 Ol2 022 Ol3 023 + 013 022 + 011023 +O12O21 

Because we shall often need to form the a matrix from the a matrix we 
need an easily remembered mechanism for doing so. We notice that those 
are four kinds of terms in the a matrix and that the four kinds can be sepa- 
rated from each other by two center lines, one horizontal, one vertical. 
This gives us four squares of nine terms each and we can correlate each term 
of any square to a term of the a matrix by means of its position in the square. 
The terms of the upper left square are the squares of the corresponding terms 
of the a matrix. To form any term of the lower left square we cover the 
corresponding term of the a matrix with our finger and multiply the visible 
terms of that column. To form any term of the upper right square we cover 
the corresponding a term and write down double the product of the visible 
terms of that row. To form any term of the lower right square we find the 
corresponding a term, strike out that row and column and write down the 
sum of the remaining cross products. A study of the following diagram 
will help to remember these rules. 

Terms are squares 
of corresponding 

a terms 
Omission products 

doubled 

Omission products Sum of omission 
cross products 

Fig. 40 

SECTION 8 

Crystal Elasticity 

Stress 

Consider a point P in a medium acted on by forces. If a small area is 
chosen about P the medium on one side of the area exerts a force on the 
medium on the other side. The force will depend on the size of the area and 
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on the direction of its normal n. We shall choose a triangular area ds such 
that an arbitrarily chosen set of mutually perpendicular unit axes Xi, xz, 
xa pass through the vertices of the triangle. Let us consider the conditions 
of equilibrium of the tetrahedral element of volume so formed. The areas 
normal to Xi, .T2, Xz are dsi, dsz, dsz, respectively, and the forces per unit 
area acting through these faces are: 

fn 
F1 = fn 

/l3 

721 
2 = I f F3 = \f 

Any body forces (such as gravity) depend on a higher order of smallness 
(that is on the volume rather than on the area) and hence are negligible. 
Whence for equilibrium: 

But 

where I tiz I is the normal to the area ds. Whence we may write: F = fn 

\nj 
where / is the matrix 

/fiifnfn\ 
I /21 /22 /23 1 
Xfsifsifss/ 

For the body to be in rotational equilibrium the tangential forces must 
balance, hence fn = /21, fn = /31 and fzz = fa • 

Transformation of Axes 

A change of axes that transforms vectors through F' = aF changes F = 
fn to aF = afarlan so that if/' = afaT1 then F' = fn'. 

In order to relate the stress to other quantities through a matrix we wish 
to convert it into a single column matrix. We put fa = Xi , fa = Xz, 
fss = Xz, fa — fa = Xi, fa = fa = Xf, and fa = fa = Xz. 

Changing to the X representation we find 

x' = aX, (8.1) 

where a is the matrix eq. (7.2), 

Fds — Fidsi T" Fzdsz d- Fzdsz 

dsi = nids, dsz = nvds and ds3 = n3ds 
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Strain Theory 
(p\ 

If the dimensions of a body'change, a point P = \ pi ] ^ moved to /> + o-p 

AA 
where a-p = I 0-2 ]. A neighboring point ^ + m is moved by an amount 

\°J 
cTp+u given by 0^ = (Vtrc)cM + <tp . The movement oi p + u relative to 
P is a = CTp+u — (Tp = (Vo'c)cW. 

The 9 components of {Vcrjc describe the sort of movement in the neighbor- 
hood of a point; they are the strain coefficients. If the strain matrix is 
e = (Vcrc)c, a transformation x' = ax causes this to become aeac = (aVo"cac)c 
and if aV = V and acx = a' so that (rcac = a'c we have e' = (V'cre)c if 

e = aeac (8.2) 

When we arrange c as a single column matrix e we shall, following custom, 

take C4 = — + —, ^6 = etc. This has the effect of moving the 2'sof the a 
dxs dxs 

matrix to the conjugate position so that, while x transforms as x' = ax, 
e transforms as e' = a7 0. 

We shall take tensions as positive stress elements, and elongations as 
positive strain elements. The shear strain, ec = (0, 0, 0, 0, 0 e^) becomes 

upon rotating through 45° about .T3 ,e'c =^, — ^,0,0,0,0^. This shows 

that to be consistent, a positive shear strain about ^3 must mean an expan- 
sion along the line xi = X2 and an equal contraction along the line Xi — —X2 ■ 

A positive shear stress is one that tends to produce a positive shear 
strain. 

By superposing such strain elements we see that the e matrix (useful in 
displacement problems) may be formed from the e matrix (which is useful in 
stress strain relation) as 

(0l , 2^6 2^5\ 
5«6 62 ^4 1 (8.3) 

hei e3 / 

This slightly awkward relation is used solely to make the "work done in 
straining" expressible as 

2W = xce = ecX (8.4) 

If the e's were taken as equal to the e's the work would be: 21^ = + 
X262 + Xses + 2X4^4 + 2X565 + 2X566 ■ This would be awkward in some 
later problems. 
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If the scalar W is to be unaffected by a transformation a we must have 
W = ecX unaffected. If we write 

W = e^aX = eccT'X' 

we have 

W' = W = e'cX' 

if 
' -i ec = Cc Oi 

when 

e' = aj1 ee (8.5) 

This substantiates our previous statement. 

Relation Between Stress and Strain 

If the strain in an elastic body is proportioned to the stress we may write: 

ei = SnXx + 'S'12^2 + • • ■ •S'le-Xe 
= .Sa-Xi + • • • 

Where the 5"s are elastic modulii. In matrix notation: 

e = .SX  (8.6) 

Conversely X = S~le or if S~l = C 

X = Ce  (8.7) 

The C's are called elastic constants to distinguish them from the modulii S. 
As e = SX, a^e = a~x Sa~laX, and since a~le = e', (the representation 

of e on a new axis system related to the old one through the matrix a) and 
aX is X', then we may write (ac 

1e) = (ac 1Sa ^(aX) as: 

e' = S'X' where S' = cuSax (8.8) 

Similarly operating on X = Ce we find 

X' = CV where C = aCac (8.9) 

The energy required to cause the strain e is 

W = j Xrder = ^ Xrer = ^ 5r(iXrX. (8.10) 

whence, if IT is a perfect differential, 
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Similarly 

Crt = Cs (8.12) 

This reduces the constants and modulii to 21 of each. 
If a transformation is performed that is permitted by the symmetry of 

the medium the elastic modulus matrix is unaltered. The monoclinic 
system has a binary axis. If we choose this as ^3 and rotate the axes 180° 

/-I 0 0\ 
about this by means of the matrix a = I 0 — 1 0 | we have S' = 

\o 0 1/ 
ac 

lSa 1 = S. 

100 0 00 
010 0 00 
001 0 00 
000 -1 00 
000 0 -1 0 
000 0 01 

SnS. 12S13S146" i bS 16 
SuSssSzaSziSzbSw 
SisSizSasSnSsbSsb 
S liS2iS3iSuSi 5^46 
S ibS2bSSbSibS65^56 
SibS2bS5frSee 

100 0 00 
010 0 00 
001 0 00 
000 -1 00 
000 0-10 
000 0 01 

•Sii S12 "Sis —Su —Sib Sib 
512 S22 Sis Su S25 S26 
513 S23 S33 vS'34 'S'35 -Sse 

— Su —S24 —'S'34 ■S'44 S^b — 
— ^IB —Sib —Sbb Sib •S'sB —Sbb 

5l6 ^26 Sbb —Sib —Sbb Sbbr 

Equating terms, those whose signs differ in S and S' must vanish. 
Proceeding in this way through the 32 crystal classes we arrive at the 

ten following matrices that cover the elastic behaviour of all 32 classes. 

Triclinic System 
21 modulii 

5 = 

Sn S]2 S13 
S\2 S22 S23 
Sl3 S23 S33 
Su Su Sbi 
Sib ^25 Sib 
Sib *5*26 •S'36 

Su S]b Sib 
Su Sib S26 
•S'34 •S'sB Sbb 
Su Sib Sib 
Sib Sbb •S'bO 
6*46 •S'bb -See 

The C matrix is 
entirely analogous 

 (8.13) 

Monoclinic System 
X3 axis binary 
13 modulii 

5 = 

(Sn S12 S13 0 0 546 
5,o 522 523 0 0 526 
5,2 523 533 0 0 536 
0 0 0 544 545 0 
0 0 0 545 5E5 0 
5,6 526 536 0 0 566 

The C matrix is 
entirely analogous 

 (8.14) 
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Phombis System 
X3 binary 
9 modulii 

Tetragonal System 
Xa a fourfold axis 
(Classes 9, 10, 13) 
7 modulii 

5 = 

5,2 5,3 0 0 0 
5,2 522 5O3 0 0 0 
523 523 533 0 0 0 
0 0 0 S44 o 0 
0 0 0 0 5B5 0 
0 0 0 0 0 56. 

The C matrix is 
entirely analogous 

 (8-15) 

5 = 

5.1 
5.2 
5.3 
0 
0 
5,6 —5,6 0 0 0 

5.2 5,3 0 (0 5,6 
5,1 5,3 0 0 —5i6 
5.3 S33 0 0 0 
0 0 544 0 0 
0 0 0 544 0 

The C matrix is 
entirely analogous 

 (8.16) 

Tetragonal System 
X3 a fourfold axis 
a-i a twofold axis 
(Classes 11, 12, 
14, 15) 
6 modulii 

5 = 

5.1 5,2 5,3 0 0 0 
5.2 5ii 5,3 0 0 0 
5.3 5,3 533 0 0 0 
0 0 0 544 0 0 
0 0 0 0 544 0 
0 0 0 0 0 56. 

The C matrix is 
entirely analogous 

 (8-17) 

Trigonal System The C matrix 
Xa trigonal axis 5.1 5,2 5,3 5,4 — 5,5 0 is analogous 
(Classes 16, 17) 5,2 5,1 5,3 — 5l4 526 0 except that 
7 modulii „ 5,3 5,3 533 0 0 0 C46 = C26 

0 = 
5,4 -5,40 544 0 2526 Cm = Cu 

— 526 526 0 0 544 25,4 Cce — ^ 
0 0 0 2526 25,4 2(5,1 --512) (Cu — C12) 

 (8.18) 

Trigonal System 5,1 5,2 5,3 5,4 0 0 
^■3 trigonal axis 5,2 5,1 5,3 — 5i4 0 0 
^i binary (Classes 5,3 5,3 533 0 0 0 
18, 20, 21) 5 = 5,4 -5,4 0 544 0 0 
6 modulii 0 0 0 0 544 25,4 
(alpha quartz) 0 0 0 0 25,4 2(5ii -5,2) 

Hexagonal System 
Xa a sixfold axis 
a;, a twofold axis 
(Classes 19, 22, 
23, 24, 25, 26, 27) 
5 modulii 

5 = 

511 5,2 5,3 0 ,0 0 
512 5II 5,3 0 0 0 
5,3 5,3 533 0 0 _ 0 
0 0 0 544 0 0-7- 
0 0 0 0 544it-.- - 
00000' 2(5ii -5,2). 

The C matrix 
is analogous 
except that 
Cb6 = C14 
Can = 2 
(Cu — C,2) 

.  (8.19) 

The C matrix 
is analogous 
except that 
Ceo — 2 

'OCn — C12) 
 (8.20) 
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Cubic System 
Xi, *2 and X3 
fourfold axes 
3 modulii 

5 = 

The C matrix is 
entirely analogous 

(8.21) 

Isotropic bodies 
2 modulii 

S = 

The C matrix is 
analogous except 
that 
C* — h (Cu — Cu) 

 (8.22) 

5ii S12 Su 0 0 0 
Siz S11 £>12 0 0 0 
5J2 5x2 Sn 0 0 0 
0 0 0 544 0 0 
0 0 0 0 ^44 0 
0 0 0 0 0 544 

^12 ^12 0 0 0 
•S12 •Su ^12 0 0 0 
«Si2 S12 Su 0 0 0 
0 0 0 52 0 0 
0 0 0 0 52 0 
0 0 0 0 0 52 

1 52 = 2 (5u -5x2) 

Several Elastic Ratios in common use are given here for reference: 
Young's Modulus: A tension stress X divided by the component of 

X- 
strain in the direction of X, Fi = — . If the coordinate axes are chosen so 

Si 

that the stress lies along Xx, Fx = . To find the value of F in an arbi- 
"JXI 

trary direction, (9, p) find 5' for a transformation that puts X' in the di- 
rection (9, tp) 

S' = aj1 Sa'1 

Where a is taken as form (21.4). Whence we obtain: 

^ = CxstSxx + ^1^522 + ^533 + 5x52^544 + CICIsISM + Cx^x^^ee 

-f" 2Cx^XC2^2566 -f" 2cx5lC2^2546 "H 2^X51^2566 "I" 2Cx5l52526 

4" 2^x5x525x6 4" 2Cx52^l5x5 4" 2CxSx52C25l4 4" 2CxC2525l3 

4" 2^x5x525x2 4" 2^x^252523 4" 25x52^534 4~ 2CI5XC252545 

4" 2CIC252535 4" 2CI5XC252526 4" 25x^252524  (8.23) 

Rigidity Modulus: The shearing stress divided by the component of shear 
about the axis of shearing stress. For shear about xi, 

_ :Xi = 
1 (8.24) 

Its value in another directions can be found as F^ was above. 
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The hulk modulus: The change in volume per unit volume for unit hydro- 
static pressure is the bulk modulus, H. For a stress Xc = (1, 1, 1, 0, 0, 0) 

s = (Sn -f- Sn + ^31, Sn + Szz + S23, S31 -h S23 + S33, • • *) 

= (ci + €2 + fa:=:: + $22 + S33 -f- 25'i2 + 2631 + 2523) (8.25) 

This is obviously independent of the choice of axes. 

The Temperature Coefficient of the Elastic Modulii and Constants 

If 

C = C0 + th + fh1 + t3h2 + ■ • •  (8.26)* 

and 

S = 3° + th + fH1 + t3Ff + • • •  (8.27) 

(C0 and S° denote the values of the Cs and 6"s for some standard tempera- 
ture / = 0) then as the transformations are 

C = a C etc and S' = a^SoT1 or 

C = a (C0 + th + fit + t3hV •■■)ac 

and 

S' = cx71(S0 + III + fn1 + t'lf ■■■) a'1 

we see that 

C = Co1 + th' + t2hv • • • (8.28) 

y = y1 + m' + W ■■■ (8.29) 

where 

h' = ahac etc (8.30) 

H' = af'HcC1 etc (8.31) 

That is, the ^'s transform as the Cs do, and the Z7's transform as the 5's 
do. Consequently we may copy their respective forms from the C and S 
matrices for any particular crystal class. 

When the temperature coefficients of the constants or modulii are known 
in the form: 

Ca = C°,- (1 + tTCij) (8.32) 

5l7 = y',- (1 + tTSij) (8.33) 

* The n of ln denotes the «th power of the scalar t; the n of hn is merely another matrix, 
it does not mean a power. 
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we may write: 

ha = C?,rc.y (8.34) 

Ha = 8°, Ts^  ..(8.35) 

Multiplying (5) by (6) we get: 

SC = I = S°C° = S°C0 + t(S0/i + HC0) + fiSVi1 + Hh + tiC0) + • • • 

whence, for this relation to hold for all values of t: 

Soh + HC0 = Q (8.36) 

whence 

h = -C0HC° 
 (8.37) 

H = -S0hS0 

also 

S'h1 + Hh + H'C0 = 0  (8.38) 

so that 

h1 = hS0h - C0HlC0 

 (8.39) 
II1 = HCHl - S0hlS0 

From these we can compute the A's given the H's and vice versa. 

SECTION 9 

Temperature Expansion 

The change in the dimensions of a crystal caused by a temperature change 
can be considered as a strain. The shift of the terminus of a vector I 
relative to its origin is given from the strain matrix e by the equation A/ = 
tel 

Since e is symmetric a proper choice of axes makes it possible to make the 
strain per degree a diagonal matrix, 

A4i 0 0\ 
Al — tAl where .4 = 10 A* 0 1 (9.1) 

\0 0 ^3/ 

As I and Al both transform as vectors, a transformation a causes A to 
transform as 

A' = a A (T1 (9.2) 
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The elongation per unit length per degree in the direction (0, $) is 

/cos 0 sin v?, sin 0 sin <p, cos A /Ai 0 0\ /cos 0 sin v'- A 
A/0V> = 1 • • • ) ( 0 ^2 0 ) ( sin 0 sin .p • • J 

\ • • • / \0 0 Az) \cos = <p • ■/ 

whence 

Algy = Ai cos2 0 sin2 <p + A^ sin2 0 sin2 ^ + ^3 cos2 v? (9.3) 

The strain can easily be extended to a function of t and t2 as follows: 

AI = tAl + t2Bl (9.4) 

Applying the prefactor a to both sides and putting the idemfactor in 
between A and I and between B and I in the form I = a 'a we have: 

aAl = t{aA arl)al + t2{aBa~l)al or 

AI' = t A'I' A- t2B'l' where 

A'= aAa'1 B'= aBaT1  (9.5) 

SECTION 10 

Temperature Variation of the Isothermal Elastic Modulh and 
Stress Variation of the Temperature Expansion Coefficients 

We can write the isothermal elastic modulus matrix at temperature 
0 + ^ as 

Si = Si0 + tH (10.1) 

and the coefficient of temperature expansion at constant stress X as 

A = 1° + LX .(10.2) 

Let us take a unit cube of crystal about the cycle indicated in the table; 
starting with the cube in the unstressed unstrained state at absolute tem- 
perature 0: 

Operation Change 
in Stress Change in Strain Temp. 

Heat at zero stress  0 tA0 etoe + t 
Apply X isothermally  X {Si0 + tH)X 9 +1 
Cool at Const. X  0 -t{A0 + LX) 0 -H to 0 
Apply —X isothermally  -X —SioX 0 

If we sum the strain changes in this cycle to zero we have 

H = L 
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so that we may write 

5=5+ tH (10.1) 

A = 1° + HX (10.3) 

This tells us that we may determine the temperature coefficients of the 
elastic modulii by measuring the effect of stress on the temperature ex- 
pansion coefficients. 

In a similar way we find that if the isothermal elastic constant matrix at 
temp. 6 t is: 

C = ci0 + th (10.4) 

then the relation between temperature and stress at constant strain e is 

X = tB (10.5) 

where 

B = B0 + he (10,6) 

The Difference between the Specific Heats at Constant Stress and Constant 
Strain 

Writing for the specific heats at constant stress and at constant strain 
(rp and f, respectively, we can perform the following cycle: 

Operation Change 
in Stress 

Heat at zero stress.. — 

Restore zero strain 
iso thermally  - 

Cool at zero strain .. — 

Change 
in Strain 

tAc 

-IAC 

0 

Temperature 

0 to 0 -M 

0 + 1 

0 + ttad 

Work In 

^A'.CA' 

Heat Out 

—ptap 

Q 

ptav 

Equating the sum of the entropy changes to zero: 

Equating the work in to the heat out: 

{ap - O = -A0
cCA0 (10.7) 

P 
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Isothermal and Adiabatic Elastic Modulii 

Let us take a unit crystal cube at temperature 9, apply any stress X 
adiabatically, heat it to bring the temperature back to 9 at constant stress 
then release it isothermally. The cycle is analyzed in the table: 

Operation 

Ch
an

ge
 

in St
res

s 

Change in Strain Temperature Work In Heat Out Entropy 
Change 

Apply X 
adiabati- 
cally  X SaX etoe - I \XcS

aX 0 0 
Heat to 0 at 

const. X . 
Remove X 

isother- 
mally   

0 

-X 

t{A0 + HX) 

-Si0X 

e - t toe 

e 

tXc{A0 + HX) 

-\XcS
ioX 

— tp(Tp 

Q 

—tpap 

e-t/2 

Q/e 

Summing the strains to zero: 

{Si0 - = t(A0 + HX) 

If we equate the total entropy change to zero we obtain an expression 
for Q that can be substituted in the relation "work in = Heat out." This 
gives us: 

-hXc(S
io - Sa)X + tX(A0 + HX) = h ^ 

9 

and from these two expressions we derive, writing (f) for S'0 —S*: 

t — {A° + HX){A° + HX). (10.8) 
pap 

which is, to the first order of the small quantities X: 

<t> = — A0A0
C + 2EXA° (10.9) 

pa 

and since X = Ce we have also 

(A0 + 2HCe)A0 (10.10) 
par 

Whence we see that as the stress approaches zero as a limit 0 approaches 

A0 Ac. If we write similarly C>0 — C = ^ we have multiplying 
pa 

S'0 = S" + ^ by C'° = Ca -\- \// and dropping higher orders of small quan- 
tities: 

t = - Ci0 <t> Ci0 (10.11) 
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For example we have for quartz at 20° Centigrade 

293 X10' 

2.65 X 7.37 X 10° 

14.4 
14.4 
7:8 
0 
0 
0 
0 

(14.4 14.4 7.8 0 -0 0) 

■S'0 = 

3.13 3.13 1.69 0 0 0 
3.13 3.13 1.69 000 
1.69 1.69 .907 000 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

lO-15 X 

10" and as 

1298 -166 -152 -431 0 0 
-166 1298 -152 431 0 0 
-152 -152 990 0 0 0 
-431 431 0 2005 0 0 

0 0 0 0 2005 862 

0 0 0 0 862 2928 

whence (pn = Sll (1 — .00241) 

012 = Sll (1 - .0189) 

013 = ^3 (1 - .0111) 

033 = SH (1 - .000917) 

For Rochelle Salt we have: 

(h= 293 X lO-12 

1.79 X 15.5 X 10° 

59.9 
38.1 
44.8 
4 
0 
0 

(59.9 38.1 44.8 000) 

38.0 24.2 28.5 000 
24.2 15.4 18.1 000 
28.5 18.1 21.3 000 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

X 10" 
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4690 -795 - ■2180 0 0 0 
-795 3205 1691 0 0 0 

As S1'0 = 
-2180 1691 2815 0 0 0 

0 0 0 6060 0 0 
0 0 0 0 3060 0 
0 0 0 0 0 8020 

So that 

011 = 5u (1 - .0080) I CO II 

022 — ^ (1 - .0050) I Co II -I- 
033 = Sj3 (1 " .0076) 023 — ^23 (1 — 

X 10" 

(pH = Sii 

<^65 = 'S'ss 

066 — "SBe 

At the temperature of maximum piezo activity the components of 0 
for Rochelle are smaller by about 3|%. 

SECTION 11 

The Piezo-electric Effect 

Some crystals develop an electric charge when subjected to mechanical 
stresses. As far as the effect is linear it may be expressed by: 

A — duXi -|- diiXz • •' di^Xs 
A = d%\X\ + • ■ •  (11.1) 
A == dziXi + • • • ds^Xs 

or in matrix notation 

D = dX (11.2) 

where the 18 constants d^ are called piezo-electric constants, and D is the 
electric induction. 

On rotating the axes by means of a transformation a, the vector D be- 
comes D' where D' = aD. The stress transforms as X' = aX whence D = 
dX becomes D' = ada~lX' or D' = d'X' where: 

d! = ada. 1 
(11.3) 
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If transformations permitted by symmetry are performed, the d matrix 
is unchanged. Class 3 has a binary axis only, if we choose this as *3 and 
perform the transformation 

/-I 0 0\ 
fl = ( o—lO) we find: 

V 0 0 1/ 

d = 
-1 0 o\ /dn dn dn di4 die die\ 

0 -1 0 1 doi d22 diz du dzz dzz 1 
0 0 ij \dsi dzz dzz dzi dzz dzz/ 

/ '—dn —dn —dn du 
d = ( — d2i — dzz — dzz dzi 

\ \ dzi dzz dzz ~dzi ~ 

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 -1 0 0 
0 0 0 0 -1 0 
0 0 0 0 0 1 

di5 
dor, —dw 

For this to be consistent with the original d matrix the terms with conflicting 
signs must vanish. 

Applying similar analyses to each of the 32 classes we arrive at the set of 
matrices: 

Class 1 (asymmetric) /dn dn d\z du ^ib di\ 
No symmetry d = {dn dn dn du ^26 do*, j (11.01) 

ydsi dz2 dn dzi dzz dzz/ 

Class 2 (triclinic pinacoidal), center of symmetry d = 0 (11.02) 

Class 3 (monoclinic sphenoidal /0 0 0 di4 die 0 \ (sucrose) 
^3 is binary d = lo 0 0 du du 0 i (11.03) 

\d3i dzi dzz 0 0 dse/ 

Class 4 (monoclinic domatic) /dn dn djz 0 0 d^N 
^3 plane is plane of ^ = \ ^21 ^22 ^23 ^ ^ ^26 ) .04) 

symmetry \0 0 0 d34 dse 0 / 

Class 5 (monoclinic prismatic) center of symmetry, d = 0.   (11.05) 

Class 6 (Orthorhombic /0 0 0 du 0 0 \ (Rochelle) 
bisphenoidal) d = l0 0 0 0 d^z 0 j (11.06) 

*1, *2, ^3 binary \0 0 0 0 0 dze/ 

Class 7 (Orthorhombic 
Pyramidal) /0 0 0 0 die 0 

rrs binary, rri and a-2 d— (o 0 0 d24 0 Oj (11.07) 
planes of symmetry Vdsi dzz dzz 0 0 0/ 
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Class 8 (Orthorhombic bipyramidal), center of symmetry, J = 0 (11.08) 

(11.09) 
Class 9 (Tetragonal 

bisphenoidal) 
#5 is quaternary alternating 

Class 10 (Tetragonal 
pyramidal) 

;*3 is quaternary 

Class 11 (Tetragonal 
scalenohedral) 

X3 quaternary, x\ and x? 
binary 

Class 12 (Tetragonal 
trapezohedral) 

*3 quaternary, ;ri and x^ 
binary 

d = 

d = 

'0 0 0 du dn, 0 
0 0 0 — (fis du 0 

u/31 — ^31 0 0 0 dz 

'0 0 0 du du 0 
0 0 0 c?ib —du 0 

\dz\ dz\ dsz 0 0 0 

d = 

d = 

du 0 

du 
— du 0 

Class 13 (Tetragonal bipyramidal) center of symmetry, d = 0 

Class 14 (Ditetragonal 
pyramidal) 

3:3 quaternary 
and Xz planes of symmetry 

/0 0 0 0 di 6 0N 

^ = I 0 0 0 Jib 0 0 
y/si J31 J33 0 0 0/ 

Class 15 (Ditetragonal bipyramidal) center of symmetry, d = 0 

Class 16 (Trinonal 
pyramidal) 

X3 trigonal 

/ du —du 0 du Jib 2J22 
J — I —J22 J22 0 Jib —du —2Jii 

\ dzi J31 J33 0 0 0 

Class 17 (Trigonal rhombohedral) center of symmetry, J = 0 

Class 18 (Trigonal) 
trapezohedral) 

Xz trigonal, :ri binary 
J = 

Class 19 (Trigonal bipyramidal) 
.rs trigonal, x3 plane of J = 

symmetry 

Class 20 (Ditrigonal pyramidal) 
.T3 trigonal, *2 plane of J — 

symmetry 

^Jn — Jn 0 Jh 0 0 ' 
0 0 0 0 — J14 — 2Jii 

\P 0 0 0 0 0 / 

/ Jn — Jn 0 0 0 — 2d'a) 
— J22 

. 0 
J22 
0 

'000 
— J22 J22 0 

, J31 J31 J33 

0 0 0 — 2Jii 
0 0 0 0 / 

0 Jib — 2J22^ 
Jib 0 0 
0 0 0 > 

(11.10) 

(11.11) 

(11.12) 

(11.13) 

(11.14) 

11.15 

11.16) 

(11.17) 

(Quartz) 
(11.18) 

(11.19) 

(tourma- 
line) 

(11.20) 

Class 21 (Ditrigonal scalenohedral) center of symmetry, J = 0 (11.21) 
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-d 

d\h 

Class 22 (Ditrigonal 
bipyramidal) 

^3 trigonal, ^3 plane of ^={o 0 0 0 0 — 2dii j (11.22) 
symmetry 

Xi plane of symmetry 

Class 23 (Hexagonal 
pyramidal) d = | 0 0 0 dn di4 0 1 (11.23) 

Xs Hexagonal 

Class 24 (Hexagonal 
trapezohedral) d = |o 0 0 0 —du 0 J (11.24) 

^3 hexagonal, xi binary 

Class 25 (Hexagonal bipyramidal) center of symmetry, d = 0 (11.25) 

Class 26 (Dihexagonal /0 0 0 0 du, 0\ 
pyramidal) d = l0 0 0 du 0 Oj (11.26) 

a's hexagonal, Xz plane \^3i ^si d^ 0 0 0/ 

Class 27 (Dihexagonal bipyramidal) center of symmetry, d = 0 (11.27) 

Class 28 (Cubic tetrahedral- /0 0 0 dn 0 0 \ 
pentagonal-dedoca- J = l0 0 0 0 di4 0l (11.28) 
hedral) \0 0 0 0 0 du/ 

xi,X2,X3 binary 

Class 29 (Cubic pentagonal-icositetrahedral) d = 0 (11.29) 

Class 30 (Cubic, dyakisdodecahedral) center of symmetry, d = 0 (11.30) 

Class 31 (Cubic, hexakis- /0 0 0 du 0 0 \ 
tetrahedral) </ = lo 0 0 0 du (ll*dl) 

Xi,X2, X3 quaternary \0 0 0 0 0 du/ 
alternating 

Class 32 (Cubic, hexakis-octahedral) center of symmetry, d = 0 (11.32) 

Whenever a center of symmetry exists the piezo-electric property vanishes 
since a center of symmetry requires d' = (—7) dl = —d = —d'. Also 
d = 0 for the pentagonal icositetrahedral class. 

Classes 6, 11, 12, 24, 28 and 31 polarize only by shear. 
Classes 1, 3, 4, 7, 10, 14, 16, 20, 23, 26 can be polarized by hydrostatic 

pressure. As an example of this let us consider tourmaline (which is ditri- 
gonal pyramidal). For hydrostatic pressure, Xi = Xz = X3, Xi = X5 
= X6 = 0, whence from the polarization stress matrices we find, A = 0, 
Di = 0, A = (2^31 + du) X pressure. As isi = 0.75 X 10 8 and J33 = 5.8 
X 10-8 for tourmaline, we get 7.3 abcoulomlos per cm2 per dyne per cm . 
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SECTION 12 

The Converse Piezo-electric Effect 

A stress X causes an electric induction 

D = dX (11.2) 

and a strain 

e= SX (8.7) 

If the charge is allowed to leak away a further strain occurs, at constant 
stress. This is the strain that would be gotten if the stress were originally 
applied with surfaces rendered conducting: 

e0 = S0X  (12.1) 

In the first sort of stress, the work per unit volume done on the crystal by 
establishing the stress X is: 

W = $Xce = \XeSX (8.4) 

The energy stored electrically in the medium is: 

We = 2irDck~1D  (12.2) 

while the work done on a conducting crystal is: 

W0 = %XeS
0X (12.3) 

If a crystal be stressed in its insulated state by expenditure of energy W, 
the charges then absorbed by an external circuit taking up energy We , 
the strain changes from e to e0 at constant stress so that the stresses perform 
additional work 

Wa = Xc{e0 - e) = XC{S0 - S)X 

and the crystal is left containing energy W°. Whence 

W0 = W - WE +Wa (12.4) 

or: 

IXCS
0X = 1XCSX - lirDok-'D + XC{S0 - S)X 

so that: 

XC{S0 - S)X = AirDck-'D 

If we substitute D = dX we find 

XC{S0 - S)X = brXcdck~ldX 
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so that: 

S0 - S = brdck^d (12.5) 

The change in strain caused by rendering the surfaces conducting is: 

e° — e = (5° — S)X = Mck~ldX  (12.6) 

If the crystal be now insulated and the stress removed, an induction of 
opposite sign will occur and because of the assumed linear dependence of D 
on X the new induction will be equal to the negative of the previous one. 
The induction D = —dX indicates an electric field: 

E = Airk~lD = Airk-'dX  (12.7) 

Also, the strain will alter by an amount —e", where, since the action takes 
place with non-conducting surfaces: 

e" = SX 

This leaves a strain on the crystal, of amount; 

g' = _ e" = (5° - S)X (12.8) 

From (12.6), (12.7) and (12.8) it follows that: 

e' = deE (12.9) 

As the medium is in just the condition that an electric field E would put the 
unstressed medium, (12.9) is the equation of the converse piezo-electric 
effect. It is to be noted that the set of constants that relates polarization 
and stress is the conjugate of the set that relates electric field and strain. 
For convenience in notation the converse effect will be written as 

e = gE  (12.10) 

where 

g = dc (12.11) 

Rewriting (13) as a^e = (a^ga l)aE we see that 

e' = g'E' 

where 

g' = ac
lga (12.12) 
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SECTION 13 

The Converse Piezo-electric Effect as a Non-Linear Function 

If the strain of a crystal is not strictly a linear function of the electric field 
causing it we must relate the components of strain to field terms of the sec- 
ond power as well as to first power terms. That is, the equation e = gE 
(which gives the strain e in terms of the electric field E through the 18 
constants g) must be modified to include terms £,£, . All such terms are 
included in the symmetric matrix (E £c). 

A transformation a that replaces E by dcE' also replaces Ec by E'ea so 
that (E Ec) is replaced by {acE Eca), that is (E Ec) being self-conjugate, 
transforms similarly to the stress matrix. We may rearrange this as a one 
column matrix similar to the stress matrix X, as follows: 

= E  (13.1) 

We may now relate the strain to E and E through the two matrices g 
and G: 

e = gE + GE (13.2) 

If transformations permitted by the symmetry of the crystal are per- 
formed, g' must equal g and G' must equal G, this allows us to simplify the 
matrices; g is no different than before and hence vanishes for all types having 
centers of symmetry (and for the pentagonal icositetrahedral class). 

Rewriting (1) as a^e = {a^goT^aE -f- a^GaT^aE we see that 

e' = g'E' + G'E 

where 

g' = «7V 

G' = aT'Ga'1 (13.3) 

The matrix G transforms as the elastic modulii matrix does but G„ ^ 
Gji. Applying G' = acGa we arrive at the set of matrices that follow 

iEEc) = 

El 
El 

El 
E2E3 

E3E1 

EXE, 
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Triclinic (36 consts) 

Gil Gl2 G13 Gl4 Gl5 Gi6 
G21 G22 G23 G24 G26 G26 
G31 G32 G33 G34 G35 Gse 
G41 G42 G43 G44 G45 G46 
GBI Gb2 G53 GB4 GBS GBC 
Gei G62 Ggs Gc4 GOB Geo 

Orthorhombic (12 consts) 

Gil G12 G13 0 0 0 
G21 G22 G23 0 0 0 
G31 G32 G33 0 0 0 
0 0 0 G44 0 0 
0 0 0 0 GBB 0 
0 0 0 0 0 Gee 

Tetragonal Classes 11, 
12, 14, 15) (7 consts) 

Gil G12 G13 0 0 0 
G12 Gil G13 0 0 0 
G31 G31 G33 0 0 0 
0 0 0 G44 0 0 
0 0 0 0 G44 0 
0 0 0 0 0 Gee 

(13.4) 

(13.6) 

(13.8) 

Monoclinic (20 consts) 

Gil G12 G13 0 0 G13 
G21 G22 G23 0 0 G26 
G31 G32 G33 0 0 Gse 
0 0 0 G44 G4B 0 
0 0 0 G54 Gee 0 
Gei G62 Ges 0 0 Gee^ 

Tetragonal Classes 9, 10, 13) 
(10 consts) 

G12 G13 0 0 Gie 
Gn G13 0 0 Gie 
G31 G33 0 0 0 
0 0 G44 G4B 0 
0 0 —G46 G44 0 

Gei—Gei 0 0 0 Gee 

Trigonal (Classes 16, 17) 
(10 consts) 

Gn G12G13 G14—G2B 0 
G12 G11G13 —G14 G2B 0 
Gsi G31G33 0 0 0 
G41 —G41 0 C44 G4b2GB2 

-G62 Gb2 0 — G46 G442G41 
0 0 0 2G2B 2Gi42(Gii—G22) 

Gn 
G12 
G31 
0 
0 

Gn 
G12 
G31 
G41 -G41 0 
0 0 0 
0 0 0 

Trigonal (Classes 18, 20, 21) 
(8 constants) 

Gn 0 0 
0 0 
0 0 
0 0 
G44 2G4i 

2Gl4 2(Gii — G12) 

G12 G13 
Gn Gl3 —Gl4 
G31 G33 0 

G44 
0 
0 

(13.5) 

(13.7) 

(13.9) 

(13.10) 

Trigonal (Classes 19, 22) 
(6 constants) 

Also Hexagonal (Classes 23, 24, 25, 26, 27) 

Gn G12 Gis 0 0 0 
G12 Gn G13 0 0 0 
G31 Gsi G33 0 0 0 
0 0 0 G44 0 0 
0 0 0 0 G44 0 
0 0 0 0 0 2(Gn - Gn), 

(13.11) 
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Cubic (Classes 28, 29, 30, 
31 and 32) (5 Constants) 

Gn Gl2 Gi2 0 0 0 
Gl2 Gil Gl2 0 0 0 
G12 G12 Gh 0 0 0 
0 0 0 G44 o 0 
0 0 0 0 G44 0 
0 0 0 0 0 G44 

(13.12) 

Isotropic Bodies 
(2 Constants) 

G11 G12 G12 0 0 0 
G12 G11 G12 0 0 0 
G12 G12 G11 0 0 0 
0 0 0 G 0 0 
0 0 0 0 G 0 
0 0 0 0 0 G 
G = 2 (Gn — G12) 

(13.13) 

According to this analysis, all bodies suffer a change in dimensions when 
subjected to an electric field. These strains resulting from a field are 
generally much smaller than those strains e = gE present only in crystals 
lacking a center of symmetry. For example, quartz has a strain of about 
6.5 X 10-8 cms/cm/ah volt. Glass in a field of 1000 practical volts per cm 
has a strain of about 4 X 10~12, in a 100,000 volt field it has 4 X 10-8. 
Rubber in the 1000 volt field strains by about 7 X 10-8 and in the 100,000 
volt field by about 7 X 10-4. The 1st order quartz strain in these fields 
would be about 2.2 X 10-7 and 2.2 X 10~5 respectively. 

The Second Order Piezo-electric Effect 

If the induction stress relation is not strictly linear one can assume the 
induction to depend also on second order terms of the stress: 

D= dX+ p (xXe) 

where (XXC) is a single column matrix formed from the 21 elements of 
XXc and ^ is a matrix of the 63 elements pu,i. . . p^.z- 

Since X transforms as X' = aX', (XXc) transforms as X'Xc = aXXcac. 
In the same way that a was formed from a we can form a matrix a that 
transforms the single column matrix (XXc) through (XXcY = a(XXcy. 

aD = adoT1 X + a/»(a;)-1 a(XXc) or 

D' = d'X' + p'(XXc)' 

where 

d' = ada 1 and p' = ap(a)' 

The first order effect is the same as before. With the relation p' = ap 
(a)-1 we could perform the operations of symmetry permitted by the 32 
crystal classes and obtain the reduced matrices. However since a has 484 
elements we shall limit ourselves to crystals with centers of symmetry. 

As X is unchanged by an inversion through the origin, a is the idemfactor 
for this transformation and fl is —I, also (a) = I. Therefore D' = —D 
= D so that D vanishes. 
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It is to be noted that although there is a sort of reciprocity between the 
first order piezo effect and the converse effect, in that the matrices for one 
are the conjugates of the matrices of the other, there is no such reciprocity 
in the second order effects: if a center of symmetry exists no polarization 
can be brought about by stress either as a first order effect or as a second 
order effect; if a center of symmetry exists an electric field can cause a 
strain through the second order effect but not through the first order effect. 

Dielectric Constants at Constant Stress and at Constant Strain 

Let us consider a unit crystal cube, initially unstressed, unstrained and in 
zero electric field. We write kp and kv for the dielectric constant matrices 
at constant stress and constant strain, respectively, CE as the elastic con- 
stant matrix at constant electric field E, C as the same for zero field. We 
study a cycle consisting of a strain caused by application of an electric field 
E at zero stress followed by a stress applied at constant E to reduce the 
strain to zero and completed by conducting away the electric charges at 
zero strain so that the body is left in its original state. The cycle is de- 
scribed by the table: 

Operation Change 
in Stress 

Change 
in Strain 

Change in 
Displacement Current 

Change 
in Field Energy Put In 

Apply E  

Apply -e.... 

Apply —E ... 

0 - 

-CdcE 

CdcE 

dcE 

-dcE 

0 

tk'E 

1 
47r 

~E~h 

Edt'E 

Ecd CEdcE - 

Edk" - k*)E 

Eck°E 

whence C = CB \ also 

kp - kv = brdCdc (13.14) 

SECTION 14 

Pyro-Electricity 

If the electric polarization brought about by heating some kinds of crystals 
is simply a function of the uniform temperature change, that is if this 
polarization can be produced by taking the whole body quickly from the 
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uniform temperature /o to the uniform temperature Zo + / the pyro-electric 
effect could be described by the equation: 

= t (14.1) 

where p is the pyro-electric matrix. 
This can be approached in another way by considering the polarization 

as due to the uniform strain. We may hence write, since X = Ce: (i.e . 
stress matrix = elastic constant matrix times the strain matrix) 

P = dX = dCe 

where e is the strain brought about by the temperature change t. If 

/Al 0 0 

r 
a2 0 

\o 0 A 

P = tdC 

Now since d has 3 rows and the A matrix has but one column the product 
dCA has 3 rows and one column so that we may define p as dCA. 

As D oi D = tp transforms by D' = aD, so does p: 

P' = ap 

When a center of symmetry exists a permitted transformation is a = —/, 
whence p = — p' = — p so that p = 0. No pyro-electric effect (on this 
theory) could exist for a crystal with a center of symmetry. 

If a binary axis exists and is chosen as X3 we have 

-1 0 0 
0-10 P2 = P2 = -P2 

0 1 P3 

whence for this case 

P = 0 (14.2) 

If another binary axis exists at right angles to this one we find p = 0. 
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This is seen seriously to limit the number of classes showing this kind of 
pyro-electric effect. In fact we find p = 0 for classes 2, 5, 6, 8, 9, 11, 12, 
13, 15, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 30, 31 and 32. The expression 

describes the pyro-electric effect in the classes, 3, 7, 10, 14, 16, 20, 

/pi\ 
23 and 26, while the expression p = I Pa I describes class 4, and only class 

W 

1 is described by 

(14.3) 

It is to be noted then that this theory excludes many classes ordinarily 
described as pyro-electric, such crystals as quartz in Class 18 for example. 
Consequently it would seem that whether or not this effect exists we must 
seek elsewhere for the explanation of the effect in quartz. 

The effect can easily be explained as due to non-uniform temperature, 
which causes stress which in turn give rise to electric phenomena in piezo 
active crystals. For example a suddenly chilled crystal has its outer layers 
in a state of tension. This would produce just the pattern of positive and 
negative charges that one actually observes. As to whether the first effect 
exists, much argument between Lord Kelvin and others seems to have left 
the question still uncertain. 

In pyro-electric crystals we would expect to find a difference in the piezo 
constants measured isothermally or adiabatically. If a temperature 
change t causes an electric displacement D = pt the application of an electric 
field E should cause a temperature change t given by a relation such as: 

t = <pE   (14.4) 

Also the temperature coefficient of expansion, At (for a crystal with faces 
rendered conducting) would differ from the coefficient A(for a crystal with 
an insulated surface). 

If a crystal at temperature k has suddenly applied to it a field E the 
temperature rises to k + <pE and the crystal strains, because of the converse 
piezo effect, by amount e = gaE where ga is the adiabatic converse piezo 
matrix. If the field is now removed isothermally a further strain g.E 
takes place. If the faces are short-circuited and the temperature restored 
to k a further strain Aat = As<pE takes place and the crystal is then in its 

P = P2 
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initial state. Equating the sum of the strains to zero we find (ga — gi) 
E = A t<pE or 

ga - gi = A# (14.5) 

Let the initial state of a crystal be, temperature = /o, stress, strain and 
field = 0. If the (electrically insulated) crystal is heated by amount /, 
a strain Ail is caused and also an electric displacement D = pi. There now 
exists an electric field E = rirk^pl. Let this field be discharged at con- 
stant temperature, giving a further strain of giE = 47rg,^_1p/- The crystal 
is now short-circuited and if the initial temperature is restored a strain 
—A,t follows. The crystal is now in its initial state. If we equate the 
sum of the strains to zero we find: 

— ^4 = Argik^p (14.6) 

SECTION 15 

The Thermo-Electric Effect in Crystals 

It should be possible for an electric field to be set up by a temperature 
gradient. Let us assume that the vector T is the temperature gradient and 
is related to the vector field E through the matrix IT by means of the equa- 
tion: 

/riii ni2 HibX 
E = nr where 11 = I ILi 1122 ILa 1 (15.1) 

\IT31 1132 IIss/ 

Examination shows that IT transforms through 

IT = aUac (15.2) 

For Class 1 the n matrix has the 9 terms of (15.1). Class 2 has a center of 
symmetry. For a center of symmetry a = —I but a = —I causes no 
change in (15.2) so that class 2 has 9 constants. The thermo electro effect 
is not killed by the presence of a center of symmetry. The ordinary thermo- 
electric effect of metals is a case in point. 

/-i »0\ 
If X3 is a binary axis a = I 0 — 1 0 I and IT reduces to 

\ 0 0 1/ 

/nu 0 \ 
n = I iTu n22 0 J (15.3) 

\o 0 uj 

Examination shows this form to answer for classes 3 and 4 and 5. 
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If xi and xz are binary (15.3) reduces to 

/Un 0 0 \ 
11= 0 IbO J (15.4) 

\0 0 Un/ 

which described classes 6, 7 and 8. 
For Xs quarternary alternating: 

/ Un 1112 0 \ 
n = I —Hiz iiii o J (15.5) 

\ 0 0 TI33/ 

This is found to handle classes 9 and 10. If x3 is quarternary alternating 
and Xi, is binary: 

/Tin 0 0 \ 
n = 0 Jin 0 J (15.6) 

\0 0 TlJ 

which is found to cover classes 11, 12, 13, 14 and 15. For classes 16, 17, 
19, 23 and 25 11 reduces to the form (15.5). 

If X3 is trigonal and rri is binary the matrix is (15.5) which then handles 
cases 18, 20, 21, 22, 24, 26 and 27. 

For cubic crystals, not only are XiXi and X3 binary as for matrix (15.4) 
M /0 1 0\ 

but the vector 1 is an ^3, for which a = I 0 0 1 1 whence, for classes 
\l/ ' \l 0 0/ 

28, 29, 30 and 31 we find the matrix: 

Alu 0 0 \ 
n= 0 Un 0  (15.6) 

^0 0 n 11/ 

Reports of a pyro electric effect in quartz should probably be attributed 
to nonuniform heating exciting the piezo electric effect. Reports of a pyro 
electric effect in such crystals as topaz and colemanite which have a center 
of symmetry and hence cannot be piezo electric should probably be at- 
tributed to this thermo electric effect. 

SECTION 16 

The Propagation of Light in Crystalline Media 

Maxwell's equations are: 

CV X B = 4x7 

CV X E = -B 
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when C is the velocity of light in free space, E is the (vector) electric field, 
j is the induction current and B is the magnetic induction. In a crystalline 
medium the current is given by 47r; = k£ where k is the dielectric constant 
(matrix), whence: 

CV X 5 = k£ (16.1) 

CV X E = -B (16.2) 

As the divergence of the Curl is always zero: 

Vck£ = Vcj = 0 
 (16.3) 

VcB = 0 v y 

Q 
applying - to (16.1) and substituting (16.2) in the result: 

at 

-C2v XV X E = kR or 

C2(VcV - Wc) E = kE (16.4) 

We shall try as a solution: 

£ =  (16.5) 

where Eq is the vector amplitude of the electric field, i is V-i, r is the 
radius vector from the origin to any point, 9 is a constant, n is the unit 
normal (at r) of surfaces of equal phase, and co is 27r times the frequency of E. 

Substituting (16.5) in (16.4) we find: 

2 
R - nRen = ~kR (16.6) 

Examination of (16.5) shows that - is the phase velocity along n. Writ- 
2 ^ 

ing Airk~lj for R and E2 for — we have: 
r 

-1 -1 E2 
k j - njck n = —j (16.7) 

c 

This equation is independent of the absolute value of j so let us restrict j 
to being a unit vector. 

VckR = 0 = VckRQei(9ncT-at) = jcniqei{9ncr-al) 

whence jcn = 0 (16.8) 

That is, the current is always normal to the direction of propagation. 
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Multiplying (16.7) thru by the prefactor jc and cancelling the term in 
jc« we have: 

i.k-'i = ^ cfi-9) 

This tells us that the velocity is a single valued function of the direction 
of the current. 

With the idemfactor I, (16.7) may be written: 

^T1 - ^ = n{k~lj)cn 

/ , T2 N-1 

If we multiply this thru by (A: — I j we get 

j = {r1 -YllY n{k-lj),n (16.10) 

Multiplying this thru by nc and dropping the scalar factor {k^j)cn: 

--Tj'n = 0 (16.11) 

If the axes are so chosen that ^ is a diagonal matrix (16.9) and (16.11) 
become: 

= l + l + A (16.12) 
C1- «ll K22 «33 

4- ^— =0 (16.13) 

^ ~ C2 ^22 C2 ^33 C2 

Examination of (16.13) shows that (16.11) must have two values of 
F2 for each value of the vector normal n. As F2 is a single valued function 
of j there must be two distinct values oij (j' and/' say) for any particular 
«; and given n, only waves having their current vectors in the directions 
of / and j" can be propagated. A ray in the direction N but not having 
its j in one of the directions / or/' will be broken up into two components 
having their current vectors along / and/' respectively. 

If the velocity Fi corresponds to j' and Fz to /' we have by means of 
(16.10) since n' = n": 

j'j" = ». (V1 - ^ 'X (*-' - 7? 

(The quantities in the braces are scalar) 

n 
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By means of the identity 
-1 -K -1/ N -i (m — v ) = —u {u — 7))zr 

since 

the idemfactor can be multiplied into an adjacent matrix giving 

=0-0=0 

so that / and/' are mutually perpendicular. 

SECTION 17 

The Electro-Optic Effect 

The velocity of light in a crystalline medium is a single valued function 
of the unit current vector j 

 a6.n) 

where c is the velocity of light in vacuo and k is the dielectric matrix, also 
dD 

j = D where D is . 
at 

We developed the induction as a linear function of the electric field, 
deriving the relation: 

AttD = kE (6.1) 

If the induction is not a linear function of the electric field we can improve 
on eq. (6.1) by adding second order terms: 

AirDi = ka-Ei + k,2^2 + k■3-E3 + k,\E\ 4- kiiE\ -j- kizE\ 

+ \ huEiEz -(- \ huEzEi -f- . . . f hitEiEz 

or 

i-rrDi = (^,1 + hnEi 4- 5 hizEi 4- \ hhMS) EI 

4" (k ,2 4- I hnEi 4" hftEz 4" I haEz) Ez 

4- (^13 4~ 2 hxfJLi 4- 5 huEz 4- hiaEz) E3 (17.1) 
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Examination of (17.1) suggests that we might consider the k's as being 
lineraly modified by the field. Writing ^ as a single column matrix: 

K = 

^11 'K; 
^22 K2 

^33 • 

^23 
^13 

M K, 

we may write 

K = K" + hE. (17.2) 

where K0 is the dielectric matrix for vanishingly small fields. 
We can develop the modified reciprocal matrix in the same manner: 

AT1 = 

where 

^n1 kn ^13 
ki2 &22 ^23 
^13 ^23 ^33 

K' 

K = 

f^r1! 'knV 

Kt kif 
ksi 
k22 
kll 

KJ1. ki2 j 

= K~l° + zE (17.3) 

It is to be noted that K 1 is not the reciprocal of K but merely a symbol 
for the single column matrix formed from k~l in the usual way. Taking 
reciprocals of both sides of k' = akac we find {k )' = ak ac. That is, 
k'1 transforms exactly as did k. Whence, K'1 transforms exactly as K 
does, i. e. 

KT1' = a K'1 

We can rewrite (17.3) as 

a K 1 = a K 1 + (a Zdc) aE 

or 

IT1 = {K'1)' + z'E' 

z' = a Zdc  (17.4) 

In case a 1 = ac the z's transform as do the conjugates of the piezo- 
electric constants, d. Of the transformations permitted by the symmetry 
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of the 32 crystal classes only those of the trigonal and hexagonal systems 
fail to have a-1 = ac. These 12 classes must be examined individually but 
the other classes may have their z matrices copied from the corresponding 
dc matrices. 

Applying z' = azac for a rotation of 120° about .ra we find for class 16 

— 22C 213 
— Zn Z22 2i3 

0 0 233 
2 = Z41 Z51 0 

ZB1 — Z41 0 
— Z22 —Zn 0 > 

The remaining 11 classes may be derived from class 16 by operations for 
which either a 1 = ac or a center of symmetry exists. Consequently, we 
may form our z matrices from the <f(.'s in all cased if we leave out the 2's. 

The electro-optic effect can be put in terms of the polarization instead of 
the field by substituting in (17.3). 

E = Air {k—I) 1 P whence 

K'1 = FT1' + ^P  (17.5) 

where 

Conversely 
77 = 47rz(^ — I) 1 

(17.6) 

The 77 matrices transform exactly as did the z's and hence may be formed 
from the dfs but omitting the 2's. 

SECTION 18 

The Piezo-Optical Effect 

If the dielectric constants of a crystal are changed by the application of 
stress, this may be represented by: 

'-1 = {K~ly + ttZ  K' 

where the 36 constants ttu • • • Tree are stress-optical constants. 
We may then form k as 

An1 + KliXi, 
^ 1 = ( W + TTeiXi, 

\kl3 + TTe.-A",-, 

^121 + TTe.X,-, 
^22 + 7r2,X,-, 
^23 + 7r4 iXi, 

+ TTgiXA 
^231 + TiiX 
^33 + VSiX 

(18.1) 

(18.2) 
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As the velocity of a light ray of unit current vector j is given by 

F2 

jok j c2 
(16.9) 

We can, by (18.2) and (16.9), compute the change in the velocity caused 
by the stress, if we know the constants tt. 

Altering (18.1) to aK~l = aK~l° + aira^otX we see that: 

K~v = A'-1" + v'X' where tt' = ava 1 (18.3) 

The alteration of A-1 can be expressed as a function of the strain by 
substituting ce for X in (18.1). 

K'1 = K~l° + irce = A_1° + me (18.4) 

m = rc, ir = ms (18.5) 

Operating in (18.4) as we did on (18.1) we find m transforms as 

m' = amoic (18.6) 

Applying the crystal symmetry operation to these matrices shows that 
they reduce to the following 

The m matrix 
is entirely 
analogous 

 (18.7) 

Triclinic system TT 11 X12 Xl3 Xl4 X15 X16 

36 constants V2\ X22 X23 X24 X25 X26 
Trai X32 X33 X34 X36 X36 
TT41 X42 X43 X44 X45 X46 
TTBI X52 XB3 X 54 X 56 XB6 
Trei X62 X63 X64 X65 X66> 

Monoclinic system TTn X12 X13 0 0 X16 

.Ts is binary T21 X22 X23 0 0 X26 
20 constants TTSl X32 X33 0 0 X36 

0 0 0 X44 X45 0 
0 0 0 X54 XBB 0 
X61 X62 X63 0 0 X66_ 

Orthorhombic TTU Xl2 X13 0 0 0 

system #3 X21 X22 X23 0 0 0 

is binary X31 X 32 X33 0 0 0 

12 constants 0 0 0 X44 0 0 
0 0 0 0 X55 0 
0 0 0 0 0 X66, 

The m matrix 
is entirely 
analogous 

 (18-8) 

The m matrix 
is entirely 
analogous 
(Rochelle salt) 
 (18.9) 
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Tetragonal system 
X3 is a four-fold 

axis 
(Classes 9,10 

& 13) . 
9 Constants 

Tetragonal system 
xz is a four-fold axis 
Xi is a binary axis 
(Classes 11, 12, 14 & 

15) 
7 Constants 

TTn TTia TTia 0 0 TTie 
ttu TTn ttis 0 0 —TTIB 
TSI TTsi X33 0 0 0 
0 0 0 7r44 0 0 
0 0 0 0 T44 0 
ttgi — TTei 0 0 0 Tree 

The m matrix 
is entirely 
analogous 

(18.10) 

TTn 7ri2 TTia 0 0 0 
7ri2 TTll TTiz 0 0 0 
TTSl TTzi TTss 0 0 0 
0 0 0 7r44 0 0 
0 0 0 0 7r44 0 
0 0 0 0 0 Tree 

The m matrix is entirely 
analogous 

Trigonal system 
Xz is a trigonal 

axis 
(Classes 16 & 

17) 
11 Constants 

Trigonal system 
Xz is a trigonal 

axis 
.Ti is a binary axis 
(Classes 18, 20 & 

21) 
8 Constants 

7rii7ri2 7ri3 TTM 
7ri2 TTn TTia —TTM 
TTai TTai TTss 0 
7r41 7r41 0 7r44 

- 7r62 7r62 0 —7r46 
0 0 0 7r2B 

-7r25 o 
7r25 0 
0 0 
7r45 27r62 
7r44 27r4i 
Tl4 (TTn — 7ri2) 

 (18.11) 

The m matrix is analo- 
gous except that 
W46 = WB2 
Wee = W41 

WU — W12 
W66=  __ 

 (18.12) 

TTn 7ri2 TT13 TTM 0 0 
TTia TTn TTlS — TTM 0 0 
TTSI TTsi TTSS 0 0 0 
7r41 — X41 0 
0 0 0 
0 0 0 

7r44 0 0 
0 X44 2T4I 
0 TTM (TTn —T12) 

The m matrix is analo- 
gous except that 
Wee = W41 

wn - mn 
Wee —      

(quartz) 
(18.13) 

Hexagonal system 
xz is a sixfold axis 
Xi is a binary axis 
(Classes 19, 22, 23, 

24, 25, 26 & 27) 
6 Constants 

Cubic system 
3 Constants 

TTu 7ri2 TTis 0 0 0 
TTia TTll TTis 0 0 0 
TTSI Tzi TTSS 0 0 0 
0 0 0 7r44 0 0 
0 0 0 0 7r44 0 
0 0 0 0 0 (tth - TTn) 

The m matrix is ana- 
logous except that 

Wu — W12 
wee =  ^ 

 (18.14) 

TTu 7ri2 Tri2 0 0 0 
7ri2 TTU 7ri2 0 0 0 
7ri2 7ri2 TTu 0 0 0 
0 0 0 7r44 0 0 
0 0 0 0 7r44 0 
0 0 0 0 0 7r44 

The m matrix is en- 
tirely analogous 

(18.15) 
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For isotropic bodices, the tt matrix is formed by setting ttu = (ttu—tt^) 
in the tt matrix of the cubic system; the m matrix is similarly formed by 

mn — W12 
putting mu =  ^ • 

Isotropic 
bodies 

TTll Tl2 7ri2 0 0 0 
TT 12 Til T12 0 0 0 
T12 T12 Tn 0 0 0 
0 0 0 Til — T12 0 0 
0 0 0 0 Til T12 0 
0 0 0 0 0 Tu — 

The m matrix has 

mn—mn 
mn etc =   — 

 (18.16) 

SECTION 19 

Application of the Electro and Piezo Optical Effect , 

In the equations K 1 = K 1 + zE and K = K mE, etc. the K s 
are to be used in forming k~l for the equation giving the velocity of the light 

y2 o 

used namely — = Obviously then K~l should be formed from the 
C 

squares of the reciprocals of the refractive indices, the lower three members 
being zero. After applying the electric field or strain a transformation of 
coordinates may be necessary to rediagonalize, i.e. make AT = AT = 
AT1' = 0. From the rediagonalized A-1 we may write the new principle 
refractive indices by taking the reciprocals of the square roots of Ai , 
A71' and A3"1'. It should be noted that if A71' = A,-1 + A,- then 

+ A* = ^ A, (19.1) 

For a given direction of the wave normal there are two velocities, a wave 
splitting into two components traveling with different velocities. By defini- 
tion the refractive indices, and nb in a given direction are the normal 
velocities in that direction divided into the velocity of light in free space. 

Ilia • . 1 
Whence in a path length I there are — waves in one component and — 

waves in the other, where X is the wave-length in vacuum. Consequently if 
I is the thickness of the crystal along that path the two components can 
recombine after passing through the medium but they are out of phase by 

7 = i {Ma - y.b) whole waves so that the light which entered as plane polar- 
X 

ized will leave elliptically or circularly polarized, except when 27 is an integer. 
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The quantity 5 = /Ja — M6 is known as the birefringence. 

7 = Y (19-2) 

If a phase difference of -jV wave can be just detected, using a wave length of 
6000 A and a path length / = 1 cm the just detectable birefringence would 

be /? = "y = 2 X 10-6; if the path were 10 cms the detectable B would be 
I 

0.2 X 10-6. Obviously this detectable difference between refractive indices 
is much smaller than could be detected by measuring each refractive index 
and subtracting. 

It is customary to choose the coordinate system so that looking along x-i 
the very lowest refractive index is for polarization in the plane of Xi and the 
very highest for polarization in the plane of . That is, the x^ axis is the 
axis along which light should be passed to get the greatest birefringence. 

Birefringence in any Direction 

If the axes are so chosen that K is diagonal and > Ki > Ki then, 
somewhere in the plane perpendicular to x^ are two directions, the optic 
axes, along which there is a single normal velocity. These directions make* 
equal angles V with the X3 axis where 

sin F = =fc 
' rvi — A3 

or ,  (19.3) 
, /XT1 - K? 

cos v - ±y K-i _ ^ 

Also the two refractive indices Ha and Mb for a wave normal making angles gi 
and gi with these optic axes satisfy the equation: 

~2 = (ST1 + Kt) + (XT' - ST") cos - ft) 
Pa 

T = (XT1 + ST1) + (ST1 - S?1) cos (ft + ft) 
Mb 

AT1 - Ki1 

KT1 - AT1 

'at1 
- -fiT1 

whence 

2 (-■, - j.) - 
\Ma Mb/ 

2 (Mb — Ma) (Ma + Mb) 
2 2 

Ma Mb 

. = (AT1 - Ks1) cos (gi - gi) - cos (g! + g2) 

* Theory of Optics, P. Drude, pg. 320. 
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as B = nb — Ha is the birefringence we have: 

B = 
2 2 

Ma Mb 
Ma i- Mb 

By spherical trigonometry: 

{Ki1 - X?1) sin gi sin gz (19.4) 

(19.5) 
cos gi = cos V cos 0 + sin F sin d cos 

cos gz = cos V cos 0 — sin F sin 6 cos 0 

where 6 is the angle the wave normal makes with Xz and is the angle the 
plane containing the normal and X3 makes with tfj. 

From (19.5) it follows that: 
sin gi sin gz = 

(1 — cos2 F cos2 9 — sin2 F sin2 9 cos2 <£)2 

— 4 sin F cos F sin 9 cos" 9 cos 0 (19.6) 

Hence if the rediagonalized K is 

fXT10 + Ai 
XT1" + A2 
XT1" + A3 

0 

then 

B = 
2 2 

Ma Mb 
Ma — Mb 

(XT10 - XT1" + Ai - A3) - (XT10 - XT1" + Az - A3) cos2 9 
- (XT10 - XT10 + Ax - Az) sin2 0 cos2 02 - 4(Xr10 - XT1" 

+ Ax - AzKXT1' - XT1" + Az - A3) sin2 9 cos 9 cos 0. . (19.7) 

B = Bo + y (Ax A3) sin gi sin gz (3') 

For most practical purposes we may take 
22 3 

Ma Mb _ M_ 
Ma + Mb 2 

where m is some intermediate value of the refractive index.* 
2 

* Note-. It might seem that as K~l = X710 + A,- gives us /i,- = m° — ^ A,- + gMiA? • • • 

we could form the 3 principal birefringences directly from the m's instead of using (6a • ■ • e). 
From the n expressions we would get -63 = M2 — Mi ~ iO^Aj — M1A1) + f which differs 
from 66 if /X2 7^ Mi - Equation 66 is correct; the one from the m expression is an approxi- 
mation. 
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In a few special cases (18.7) may be simplified. If (</>, 0) falls along an 
optic axis gi = V — V0 and gz = V V0 whence 

[(Ax - A2) cos2 V0 - (A2 - A3) sin2 F0]. . .. (19.61) 

if 0 = 0 
2 2 

.B = /X2 — Mi + (Ax — A2) 
Ml + ^2 

(19.62) 

if 0 = 90° 

B = (Ms — Mi)(l — cos2 cf) sin2 7°) 
3 

+ ^ (Ax - A3 - (Ax - A2) cos <(>).. (19.63) 

if 0 = 0 

B = (ms - iui)(sin2 V0 - sin2 0) + y (Ai - A2 - (Ax - A3) sin 0).. (19.64) 

if 4> = 90° 

B = (M3 — Ml)(l — COS2 0 cos2 V0) 

+ y (Ax A3 — (A2 — 

The Electro Optics of Quartz 

For quartz, in the equation K 1 = K 1 zE 

Zu 0 0 0
 

0
 w 1 If £ is 

0 0 0 
Z = Z41 0 0 Zu ■— 

0 —Z41 0 
0 —zu 0 

rio 
-.-10 

Obviously the E3 component produces no effect so we shall examine the 

effects due to the components £1 and £2 separately. If £ = I 0 1 £1 

R-1 = 

KT + 2n £1 
KT1" - zii£i 

RJ1" 
Z4l£l 

0 
0 

kOy 

which can be diagonalized 

* Computed from F. Pockels data, see his Lehrbuch der Kristall-Optik, (B. G. Tuebner). 
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— Z41 Ei 
by a small rotation about Xi of amount 6 = —1 —1 giving Ai — A3 

K-1 = 

K\l + Zn Ei 
- znEi 

KJ1' 
0 
0 
0 

3 
Mi - ^ X 0.47 X lO"10^ 

and m = M! + | X 0.47 X 10"10£i 

Ms 

The greatest "added birefringence" is gotten by viewing along *3, when 
AB = 1.5443 X 0.47 X 10-10 Ei. If £1 = 104 = 1.73 X 10~6 a quantity 
detectable if the path length is about 1 cm. Viewing along X3 (the optic 
axis) is complicated by the rotation of the plane of polarization in quartz. 
Homogeneous strains have never been found to alter this rotation, but the 
rotation complicates and partly masks the birefringence phenomena. If 

M 
E = 1 1 £2 we find 

v0/ 

IT1 = 

KT1' 
*r10 

0 
— 241 £2 
-ZnEi 

Rotating the coordinate axes through 45° about £3 then applying the 
transformation 

where 

1 i 1 0 
a = 0 1 -a 

\ a 1/ 

we find: 

a = V2Z!l£! 

KTl - K 

IT1" = 

Kil + Zn £2 
-KT10 - Zn £2 

xr-lO 
£3 

0 
0 
0 

3 
Ml — "2" 2ii £2 

3 
M = Mi + y ZnEi 

Ms 
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which is identical to the /x for field along 04 , but the final axes in this case 
do not coincide with the final axes for E = E\, but again, the greatest added 
birefringence is utilized by viewing along ^3. In the second case the Nicols 
would be best set along X\ and i.e., at 45° to x'i and X2 whereas in the 
first case they would be best set at 45° to a-j and 

The strain Optics of Quartz 

iT1 = K'1" + me, 

m = 

Wn W12 W13 Wl4 0 0 W11 = .138 

W12 mn W13 — mn 0 0 W12 = .250 

W31 mzi W33 0 0 0 wia = .259 

W41 mn 0 W44 0 0 where* mu = .029 
0 0 0 0 W44 1 W41 mzi = .258 

0 0 0 0 
Wn — W12 W33 = .098 

mu 
2 mn 

mu 
= -.042 

-.0685 

If the strain is a simple tension along a:i, 

iT1 = 

K\l + Wnei 
KTl wjiti 

■K31 + W41 €1 
W41 Ci 

0 
0 

which diagonalizes, 
through a small 
transformation to: 

ir1' = 

Kfl -f- m\\ ei 

+ m^iei 
0 
0 
0 

applying 18.63 or 18.64 we find the birefringence along a*i to be: 

3 
-Bu = Ms — Mi + y (W12 — W31) ex = .0091 — .0148 ex 

Similarly the birefringence along x* is Bn — .0091 — .225 and .B13 = 
0 — .207 £i. With a strain of 10_4, which is about a tenth of the breaking 
strain, Biz would be 20.7 X 10~6, a quantity detectable in a thickness of one 
millimeter. 

The values of Bn • • • ^43 corresponding to birefringence along x* for a 
tension along Xi etc., can be computed in just the same way. But B51 • • • 
Bes require rotations of 45° about Xz to diagonalize, so the birefringences 
can be computed by setting 6 = 45° in equations (19.6). 

* Lehrbuch der Kristalloptik—F. Pockels. 
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The following table summarizes these simple strain birefringence effects, 
the rows indicating the strain and the columns the direction of light passage. 

Bo — .0148 ei Bo - .222 ci .207 61 
Bo "h .222 ^2 Bo - .0148 ej. .207 e_2 
Bo — .298 Co Bo - .298 ea 0 
Bo "h .0536 £4 Bo - .0536 64 -.107 64 

{Bo + 0 Bo + 0 -.107 es) 
CBo + 0 Bo + 0 .208 ee) 

(the parentheses indicate the 45° transformations). 
A similar table for the electro-optic effect in quartz is 

B, - .87 X 10~10£i .Bo + .87 X 10"10£i 1.74 X lO-10^ 
B0 + 0 B0+ 0 1.74 X l(r10Ei 

+ 0 .Bo + 0 0 

Since a driving voltage of Ei = 100 volts may, due to the building up of 
oscillations, cause a periodic strain of e = 10-4 in a quartz plate, it would 
seem from the foregoing that 99.99% of any birefringence change must be 
due to the mechanical effect. 

The 18° Cut Crystal 

A crystal, the thickness of which is along the electric axis, Xi, the width 
making an angle d' = 18° with the optic axis, .Vs, can be caused to oscillate 
with a simple motion along its length. (If 6' is not about 18° or 72° the 
oscillation is not a simple extension along the length, as is shown by the node 
which then lies diagonally across the crystal.) On a set of axes defined by 
the edges of the crystal block, x[ being in the direction of the thickness or 
#1, xi in the direction of the width and makes an angle 6' with x^, Xz is the 
length and makes an angle 0' with x^; on these block axes the strain is 
Rotating the axes about xi through an angle d' we find the strain expressed 
on the crystal axes to be: 

-i / e = a e = 

0 
cos2 d' 
sin2 d' 

■ sin 6' cos 0' 
0 
0 

^2 
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whence 

KT1 = KT1 + me gives us 

iTT1 + (wk cos2 d' + mis sin2 Q' — mu sin 6' cos 0')l2 
KT1 + (wu cos2 d' + W13 sin2 0' + Wu sin 6' cos 0')?? 

^_1 _ irr1" + (^31 COS2 e' + W33 sin2 e')ej. 
— {tnn cos2 0' + ^44 sin 0' cos (p')ei 

0 
0 

A small transformation removes the 4th term without altering the others to 
the first power of small quantities. 

To obtain the birefringence along the width Xa, we set 0 = 0' in equation 
(18.65): 

-S3' = Us — Mi) sin2 9' +^2 |Wl2 cos2 G' ~ mn cos4 0' + (mi3 ~ m3^ s'n4 0' 

. 2 „/ 1 + cos2 0' . 2 2 n\ ' 
— mu sin 0     — W31 sin 0 cos 0 > ea 

which, for 0' = 18° is S3 = .00087 + .20 ea 
For the birefringence along the length xa_ we set 

0 = 90° 4- 0' in (6e) giving: 
3 

S = (M3 - Ml) cos2 9' + ~ {W12 cos2 0' - W31 COS4 0' + (wi3 - Wn - maa) 

sin2 0' cos2 0' — wu sin 0' cos 0'(1 + sin2 0/)}e2 

which, for 0' = 18° is S2 = .00824 + -049 ea. 

SECTION 20 

Transverse Isotropy 

A material that has identical properties in all directions normal to a given 
line is called transversely isotropic. Any line parallel to this line may be 
considered as an axis of transverse isotropy. 

Dielectric Properties, Optical Properties, Thermal Expansion 

With respect to these, a transversely isotropic material behaves as does a 
uniaxial crystal, only two constants being needed to describe each. For 
example, the displacement current in terms of the electric field and the dielec- 
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fnV mnctant matrix is D = — kE where, if x% is the axis of transverse 

(20.1) 

Elasticity 

We must find the forms of S and C, (the elastic modulus and elastic con- 
stant matrices) that are not changed by rotations about the axis of trans- 
verse isotropy. We can simplify the work by starting with the crystal 
class that has hexagonal symmetry only. On applying the transformation 
S' = otcSa = S for arbitrary rotations about X3 we find no further simplifi- 
cation follows. Hence the 5 and C matrices can be copied from those for 
the Hexagonal Pyramidal Class. 

The Piezo-Electric Effect 

Again choosing *3 as the axis of transverse isotropy and starting with 
hexagonal symmetry about X3 we find that in order to be invariant to all 
rotations about X3 the matrix must simplify to: 

A pitch solidified in an electric field would probably exhibit this kind of 
piezo electric behaviour. It might also be expected to show an electro optic 
effect governed by a matrix like the conjugate of the above matrix. 

Transformations 

A counterclockwise rotation of the axes through an angle $ about the *1 
axis is represented by the matrices a and a as follows (where c is written for 
cos <t> and s for sin <£): 

(20.2) 

SECTION 21 

Appendix 

/I 0 0 
a = ( 0 c s 0 c s J, a 

k0 -5 cj 

'100 0 0 0 
0 c s 2sc 0 0 
0 / c2 -2sc 0 0 
0 —sc sc c—s2 0 0 
0 0 0 0 c —s 
0 0 0 0 5 c 

(21.1) 
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A counterclockwise rotation about is given by: 

c2 0 s2 0 —2sc 0 
0 1 0 0 0 0 
s2 0 c2 0 Isc 0 

(21.2) 
0 0 0 c 0 5 
sc 0 —sc 0 c2—52 0 
0 0 0 -5 0 c 

A counterclockwise rotation about X3 is given by: 

(c 5 0 
— 5 c 0 

0 0 1, ( 

c 5" 0 0 0 2C5 
52 c2 0 0 0 — 2C5 
0 0 1 0 0 0 
0 0 0 c —s 0 
0 0 0 -5 c 0 

— cs cs 0 0 0 c2—52 

2 2 

(21.3) 

In case one wants only the value of a tensor property in a given direction 
not all the elements of a and a need be used, but only a row or column. A 
special case is that of computing such a property in the direction (0, 0) 
of polar coordinates. The .Ti axis is chosen in this direction; Xz and x3 are 
not determined. Writing Ci for cos 9, c? for cos 4>, 5x for sin 6 and So for sin 0 
the required matrices are 

From these the (11) term can be computed for any tensor. 
A few special transformations needed constantly are: A rotation of 180° 

(21.4) 

about X3: 

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 -1 0 0 
0 0 0 0 -1 0 
0 0 0 0 0 1 

a -1 ac ...(21.5) 
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A rotation of 90° about X3: 

0 1 0 
a= -100 

0 0 1 

0 10 0 0 0 
10 0 0 0 0 
0 0 10 0 0 
0 0 0 0 -1 0 
0 0 0 1 0 0 
0 0 0 0 0 -1 

= «c . .(21.6) 

A reflection in the plane perpendicular to *3: 

1 0 
a = 0 1 

0 0-1 

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 -1 0 0 
0 0 0 0 -1 0 
0 0 0 0 0 1 

= ae ..(21.7) 

A cyclic interchange where & replaces xi, etc.: 
(The line making equal angles with Xi, and X3 is a three-fold axis) 

(0 0 1 0 0 0' 

a = 
0 0 1 
1 0 0 
0 1 0 

1 0 0 0 0 0 
0 1 0 0 0 0 
000001 
0 0 0 1 0 0 
000010 

= OCc (21.8) 

A cyclic interchange, where — .1:3 replaces .Ti, etc.: 
(The line making equal angles with .rj, X2, and .^3 is a six-fold axis of the 
second sort) 

0 1 0 0 0 o' 
0 0 1 0 0 0 
1 0 0 0 0 0 

"_ 0 0 0 0 1 0 
0 0 0 0 0 1 
0 0 0 1 0 oy 

A rotation of 90° about X3 combined with a reflection in the X3 plane: 

a = 
0-1 

0-1 
-1 

-1 a = ac .(21.9) 

a = 
0 1 

-1 0 
0 0 -1 

0 1 0 0 0 0 
1 0 0 0 0 0 
0 0 1 0 0 0 
0 0 0 0 1 0 
0 0 0 -1 0 0 
0 0 0 0 0 -1 

a-1 = ac .(21.10) 
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A rotation of 60° about x^: 

1 -N/3 
2 

V3 
2 
0 

5° 
0 1 

To form a 1 substitute 
— \/3 for \/3 in a. 

I0 

o i 

0 0 

0 0 0 

Vs Vs 

o 

o 

0 
1 
2 

V3 
2 

0 

0 

0 
V3 

2 
1 
2 

V3 
2 

\/3 
2 
0 

0 

0 

0 0 
4 4 

A rotation of 60° about xz combined with a reflection in a*: 

0-^ 

..(21.11) 

a = 

1^1 0 
2 2 

VI 1 o 
2 2 
0 0-1 

To form a 1 substitute 
— \/3 for -\/3 in a. 

A rotation of 120° about a*: 

1 3 
4 4 
3 1 
4 4 
0 0 

0 0 

0 0 

0 

0 - 

0 0- 

VZ V3 0 

0 0 
_ 1 V3 

2 2 
V3 _ 1 

2 . 2 

vY 
2 

V3 
2 
0 

0 

0 

..(21.12) 

0 0 - i 

a = 

1 V3 
2 

V/3 
2 -S0 

0 0 1 

To form a 1 substitute 
— V3 for V3 in a. 

1 
4 
3 
4 
0 

0 

0 

V3 
4 

io 

o i 

0 - 

0 

00 -- - 

0 0 

V3 

V3 
2 

0 
V/3 

2 
_ 1 

2 

V3' 
2 

V3 
2 
0 

0 

0 

..(21.13) 

0 0 0 -4 
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Inversion through the origin (a center of symmetry) 

a = 
-1 

0 -1 
-1 

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

= /, 
-1 a = <x, 

(21.14) 

A rotation of 180° about .-Vi: 

o = I 0 -1 0 
0 -1 

A reflection in Xi plane: 

-10 0 
0 1 0 a = 
0 0 1 

10 0 0 0 0 
0 10 0 0 0 
0 0 10 0 0 
0 0 0 1 0 0 
0 0 0 0 -1 0 
0 0 0 0 0 -1 

'1000 0 0 
0 10 0 0 0 
0 0 10 0 0 
0 0 0 1 0 0 
0 0 0 0 -1 0 
0 0 0 0 0 -1 

a 1 = ac . . . (21.15) 

-i a = a = (xc ...(21.16) 

A reflection in the Xz plane: 

1 0 0 0 0 0 
0 o\ 0 1 0 0 0 0 

10) 
a — 0 0 1 0 0 0 

0 1/ 0 0 0 -1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 -1 

= a = ac- ■ (21.17) 

In computing the electro-optic and mechanico-optic effects we need a 
transformation that will restore to diagonality a matrix that has very small 
but symmetrical off diagonal terms. This transformation we call a small 
transformation. Such a transformation has its matrix differing but slightly 
from an idemfactor. 

If 
/kn + An A12 A31 

k = I A10 ^22 T A22 A23 
\ A31 A23 ^33 + A33/ 
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we assume that it can be rediagonalized to the matrix k' by means of the 

/1 5i2 SiaX 
transformation: k' = bkb.. where 5 = I 621 1 603 1 

Vbi hi 1 / 

Since 5u 621 + §12 622 + ha ha = 0 we find that, to the first order of small 
quantities 5 ,;• = — 6y,-. 

Expanding 5^5,. to the first order of small quantities and equating the non- 
diagonal terms to zero we find that: 

. A12 . _ A23 
012 = T -j—y 023 — 7 T- 

«11 — «22 ^22 «33 
and 531 = 

^33 — 

Therefore, to the first order of small quantities A,,: 

An + An A12 A31 \ 
5=1 A12 ^22 T A22 A23 jSc- = 

\ A31 A23 ^33 + A33/ 

kn + An 0 0 > 
0 koo d- A22 0 

k 0 0 ^33 T A33/ 

where 5 = 

1 
A12 A31 

A'n — ^22 A33 — kn 
— A12 ^ A23 

1 
An - A>2 

A31 — A23 
A33 — An A22 — A33 

A 22 — A33 

1 

is the transformation 
a:' = x (21.18) 

The electro and piezo-optic effects of biaxial crystals can be handled by 
these infinitesimal transformations, but uniaxial crystals and cubic crystals 
may require finite rotations to re-diagonalize the A-1 matrix. In the 

/A 0 0\ 
case of cubic crystals we note that I 0 A A J may be diagonalized by a 

\0 A A/ 

rotation of 45° about :Vi, giving 

/A 0 0 
0 A + A 0 

\o 0 A - 

0 AoX / A 0 
A Ai J becomes 0 A 

(21.19) 

k A2 Ai A vVAf + A? 0 

upon rotation 
through angle 
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tan 1 — about X3 and diaonalizes by then rotating through 45° about .To 
Ao 

giving: 

/k + Va? + A^ 0 0 N 

k" = I 0 k 0  
\ 0 ^ - -v/Ai + As/ 

(21.20) 

The work can be handled with single column matrices K instead of using 
the square matrices k. If ^ is a diagonal single column matrix (i.e., the 
single column matrix of ia diagonal matrix), than the almost diagonal 
matrix A' + A is diagonalized by the transformation: 

1 

0 

0 

0 

-AB 

0 

1 

0 

-A4 

0 

0 

1 

A4 

0 

2A4 

2AB 2A6 
AI - A3 Ai - As 

-2A6   0  — 
As — A3 Ai — A2 

-2A4 — 2A5 

A2 — A3 Ai — A3 
— Ae — Ab 

A2 — A3 A2 — A3 

Ab 
Ai - A3 

Ab 
Ai — A2 Aj — A2 

0 

Ab 

Ab 

Ai — A2 Ai — A3 

A4 
Ai — A3 Ai — A2 

Ab 
0 

1 

A4 
Ai - A3 A2 - As 

Ai + Ai 

As T" As 

A3 + A3 

0 

0 

0 

AT - AT 

1 

A: + Ai 

Ki + As 

Ai + A3 

A4 

Ab 

Ab 

(21.21) 
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which transforms vectors as x' — 8x where 

A6 

8 = 

1 

— Ae 

As 
Kx — K2 Kx — Kz 

A4 
Kx - K, 

-A6 

Kx - Kz K* - K3 

1 

-A4 
K2 - Kz 

1 

(21.22) 

If Kx, Kz and Kz are not all different the preceding analysis falls down as 
some terms become infinite; a finite transformation is needed in this case. 
The difficulty can generally be doged by applying a 45° rotation about one 
of the axes. Sometimes the easiest solution is to rotate through an angle 
0 about a coordinate axis then solve for the value of 0 that will vanish 
certain terms. As examples of these devices we give the following: 

Kx 
Kx 
Kx 
A4 
As 
0 

Kx 
Kx 
Kx 
A4 
0 
0 

rotated through 

tan-1 — about 
As 

xz is 

rotated 45° about .Ti becomes 

Kx 
Kx + Ai 
Kx - A4 
0 
0 
0 

(21.23) 

Kx 
Kx and ro- 
Kx tated 45° 
0 about Xz 

\/ A4 + A5 is 
0 

K + Va? + Ai 
K 

K - VAf + Ai 
0 
0 
0 

. (21.24) 

D = electric induction 
E = electric field 
k = dielectric constant matrix (square) 
K = dielectric constant matrix (single column) 
a = transformation matrix for vectors 
a = transformation matrix for tensors (of stress tensor sort) 
A' = stress matrix (single column) 
e = strain matrix (square) 
e = strain matrix (single column) 
S = elastic modulus matrix 
C = elastic constant matrix 
11 = temperature change of elastic modulus matrix 
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h = temperature change of elastic constant matrix 
T3 — temperature coefficient of elastic modulus terms 
Tc = temperature coefficient of elastic constant terms 
A = temperature expansion matrix 
d = piezo-electric constant matrix 
g = inverse piezo effect matrix 
G = electro-striction matrix 
Z = electro-optic matrix 
tt = stress optic matrix 
m — strain optic matrix 
P = polarization = elec. mom. per unit vol. = surface charge per unit 

area 
P 

77 — susceptibility — 

Table of Equations 

D = — kE Air 
e = SX 
X = Ce 
S = C~l 

h = -C°HC0 

H = —S°hS° 
a/ = iai -f- tm 
D = dX 
e = gE 
g = dc 
K-i = /v"1 + ZE 
A'"1 = A'-1" + TTX 
A"1 = A-10 + me 

k — T P = — E = irE Att 
k -1 

4r 

Transformations 

The form x y z 
x' l\ mi Mi 
y' /o HI2 Ma 
3' /a m3 113 

h li I3 
is the transformation a = im m > 1113 

Hi Mo Ma 

A' = a/la-1 

D' = aD 
E' = 

= akac 
K' = a A 
X' = aA 
c' = ape 
C = aCac 
S' = 
//' = Q;//ac 
H = a.pHa~l 

ha = ChTCa 
Ha = StiTsa 
d' — (7(fa 1 

References as to Crystal Data 
1. Symmetry class—Chemische Kristallographie, Vols. I-V by Paul Groth. 
2. Properties of Quartz—The Properties of Silica by R. B. Sosman. 
3. Elastic and piezoelectric properties of quartz and rochelle salt—Electrical and Mechani- 

cal Wave Transducers by W. P. Mason. 



The Metallurgy of Fillet Wiped Soldered Joints* 

By E. E. SCHUMACHER, G. M. BOUTON, G. S. PHIPPS 

THE seriousness of the present tin scarcity has stimulated large con- 
sumers of this vital metal to develop drastic conservation measures in 

order to extend the available supplies to cover the emergency period. 
By devising new soldering methods and alloys the Bell System has contrib- 
uted a substantial share in the tin conservation effort. Fortunately, the 
changes, as far as can now be determined, have not introduced weakness 
into the soldered joints. Some of the new procedures now used were already 
in the process of development at the onset of the emergency, while others 
were devised under its stress. In some instances, the newly developed 
solders were found to be more difficult to use than the alloys previously 
available, and would not have been introduced under normal conditions. 
One major change made that previously had been under consideration will 
result in large tin savings. Unless service difficulties are encountered, this 
modification gives promise to remain after the emergency has passed. The 
change involves a reduction in the amount of solder placed on a wiped joint 
between the cable sheath and the sleeve. Instead of the customary full 
size wiped joint a wipe of fillet proportions is formed. Through this change, 
a solder saving of over 60% per joint can be realized. 

Plumbers and cable splicers have for many years joined lead pipes and 
cable sheath by a soldering process called "wiping." The name is an apt 
description of the operation. In wiping a joint the sections to be united 
are heated by pouring molten solder over their surfaces and manipulating 
the resulting semi-liquid mass by wiping with cloth pads to a well rounded 
symmetrical form such as is shown in Fig. 1. The operation requires con- 
siderable skill on the part of the splicer and close control of the solder com- 
position. At first consideration, the problem of tightness in such joints 
seems simple but experience shows that even under the best conditions the 
fissures frequently found in the solder occasionally link to form a path that 
allows leakage to occur. In the case of telephone cables not maintained 
under gas pressure, such leaks permit the entrance of water to wet the paper 
covered conductors, thereby impairing the insulation value and causing 
service interruptions. By going to an extreme and wiping off all the solder 
in excess of a fillet, it has been found that many causes of porosity are elim- 
inated. Figures 2 and 3 show cross sections of joints wiped the old and new 

* Reprinted from Metals Technology, A.I.M.E., 1943. 
73 
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Fig. 1—A conventionally wiped joint between telephone cable and sleeve (third size). 

SOLDER 

Fig. 2—A section taken from a joint wiped conventionally (magnification H X). 

SLEEVE 

1- SOLDER 

CABLE 

Fig. 3—A section taken from a joint wiped using the fillet technique (magnification IJ X). 
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ways. The saving in solder and consequently in strategic tin is evident. 
The field splicing forces find that joints are easier to make by the new 
method and are less apt to be porous. 

Several interesting metallurgical considerations which are responsible for 
the success of the fillet wipe will now be discussed briefly. Much has been 
written about the wiping process of soldering cable joints and the many re- 
quirements of a good wiping solder have been frequently listed. The suc- 
cess of the procedure here described is dependent upon a few fundamental 
characteristics of lead-tin alloys in the process of freezing which have sound 
metallurgical explanations. 

For an understanding of the defects possible in a soldered joint wiped in 
the usual manner, the simple solidification phenomena of metals may be 
considered. As is well known, molten metal in a crucible when allowed to 
cool with free circulation of air will begin freezing near the walls of the vessel 
and with a few exceptions, will end with a concave surface due to solidifica- 
tion shrinkage. Restricting the discussion to a simple lead-tin wiping solder, 
solidification progresses as follows: a lead-tin solid solution commences to 
freeze and forms a rather porous cylinder touching the crucible walls and 
extending to a height corresponding to the volume of the melt at that time; 
on further cooling, dendrites of lead-tin solid solution grow inward toward 
the center of the crucible and at the same time many tiny new crystals form 
throughout the liquid. There are thus taking place simultaneously, shrink- 
age of metal as it becomes solid, shrinkage of previously frozen solid as it 
cools, and shrinkage of the remaining liquid as the temperature drops. The 
originally solidified outer cylinder, adhering to the crucible walls remains 
essentially at its original height. The level of the semi-liquid portion nearer 
the center of the crucible continuously falls until the precipitated crystallites 
formed in the body of the melt make a loosely piled mass extending from 
the upper surface to the bottom of the crucible. Further shrinkage of the 
liquid then leaves these primary crystallites at approximately this level 
while the liquid recedes, leaving fissures between them. This can be beauti- 
fully observed by means of a binocular microscope focussed on the surface 
of a soldifying crucible of wiping solder or, on the top surface of a solidifying 
wiped joint. 

Further insight into the mechanism of wiping solder solidification may 
be gained by another simple illustration. If two solder strips are cast by 
pouring small quantities of molten solder, one on a cold iron surface, and 
the other on a cloth-covered board and both are then bent cold to produce 
specimens as shown in Fig. 4, the chill cast sample will exhibit fewer cracks 
resulting from shrinkage than the slowly cooled one. In the slowly cooled 
sample primary crystallites form throughout the solidifying mass and pack 
at a level above that which the final volume of completely solid solder 
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warrants. The sample cast on the cold plate starts to freeze at its surface 
in contact with the iron plate and, because of the rapid extraction of heat 
by the cold iron, it continues to freeze in a rapidly advancing smooth front 
until the last liquid at the top is solid. Because of the steep temperature 
gradient there is little opportunity for nucleation and dendrite formation in 
the upper liquid. The surface of this melt is therefore smooth and free 
from the fissures that are caused by the shrinkage of the eutectic away from 

Fig. 4—Bent strips illustrating the effect of variations in cooling rate on the structure 
of wiping solders are here shown. The upper strip was chill cast and shows a sound 
ductile surface. The lower strip of the same solder was slowly cooled and upon bending 
exposes fissures between the crystallites at the surface (magnification 3 X). 

the dendrites in the slowly cooled sample. Recession of the liquid in the 
slowly cooled sample leaves a multitude of shrinkage channels which, if 
they occurred at the critical portion of a wiped joint, would cause leaks. 

Another illustration may be usefuf in demonstrating the processes taking 
place in connection with joint wiping. Solder may be allowed to solidify 
in a crucible until its surface is quite firm to a probe. If, at this stage, the 
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crucible is tilted sideways to a position shown in Fig. 5 a portion of the re- 
maining eutectic may be poured out leaving spongy regions. This loss of 
eutectic is observed frequently during the formation of the old massive type 
joints which may lose several drops by drainage after the splicer has com- 
pleted his shaping operations. It is also shown by the greater number of 
pores in the top half of a joint compared to the bottom and the somewhat 
grayer surface appearance of the top. 

Fig. 5—An ingot of wiping solder which had been tilted while in the crucible before 
completely solidified. The lower lip represents eutectic drainage from the partially 
solidified mass (magnification H X). 

Although a solidification range in which quantities of liquid and solid 
metal may exist at equilibrium is an essential feature of a wiping solder, 
another factor of major importance is the nucleation rate of the alloy. Wip- 
ing solders having high nucleation rates will develop quickly a myriad of 
points or nuclei throughout the melt from which further crystallization will 
proceed, while an alloy of low nucleation rate will develop relatively few of 
these points in the same time and consequently grow fewer and larger 
crystals. The former alloy will have a texture similar to fine clay while 
the latter will behave like coarse sand and water when subjected to wiping 
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tests. In the fine clay-like texture there are more solid particles present 
than in the water-sand type of texture and therefore there is more surface 
available for the retention of the liquid in the former type of semi-solid 
mass. Drainage is thus greatly retarded with the result that porosity is 
materially lessened. The type of texture determines in a large measure the 
ease of shaping and potential porosity of a wiping solder. 

Having examined elementary forms of solidification, attention may now 
be focussed on the setting up of the wiped joint itself. In practice, the parts 
to be joined are cleaned and fluxed. Circumferential paper pasters are 
then applied to the sheath and sleeve to restrict the spread of the solder. 
The splicer then pours hot solder from a ladle over the prepared parts and 
catches the excess in a cloth held in contact with the bottom of the joint. 
The caught solder is repeatedly pushed back around the cable with a wiping 
motion to aid " tinning" or alloying and to distribute the heat. After a few 
such operations the prepared surfaces can be seen to be thoroughly wetted 
by the solder. At this stage a portion of the caught solder is mixed in the 
ladle with more hot solder and the mass which now has a clay-like consist- 
ency is poured on the joint and molded into place using cloth pads. When 
solidification has proceeded to a condition where the solder can support it- 
self in position, manipulation is stopped. From this point on, loss of heat 
takes place by conduction away from the joint by the sheath and sleeve, by 
radiation, and by air convection currents at the surface of the solder. As 
a result of this combination of heat losses final solidification takes place in 
the interior of the solder mass near the important sheath-sleeve junction. 
The action that causes pipes to form in castings draws the eutectic from the 
critical area between the sheath and the end of the sleeve. If the solder 
has the proper characteristics there will be a shell of solder which does not 
have interconnecting shrinkage cavities, drainage cavities or fissures due to 
the wiping operation and the finished joints will be gas tight. If the solder 
is unduly coarse or has insufficient liquid eutectic at the time the mass is 
too rigid to manipulate further, the resulting joint may leak. 

The new fillet wiping technique is similar to the old up to the step where 
the splicer molds the mass to shape. At this point the new technique con- 
sists in wiping the solder to a small fillet similar to that shown in Fig. 3. 
The resulting joint has much less solder and therefore much less total shrink- 
age and tendency to draw eutectic from the space between the sheath and 
sleeve. Also, at the temperature where wiping is discontinued there is in- 
sufficient volume of solder left by the fillet wiping technique to permit drain- 
age drops to accumulate and fall from the bottom of the joint. Thermal 
conduction along the sheath and sleeve cause rapid solidification of the 
solder at the joint, eliminating the possibility of drainage. Experience has 
shown a consistently high percentage of sound joints when fillet wiping is 
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rigidly practiced. During the development period of the fillet wiping tech- 
nique examination of the few fillet type wiped joints that were found to leak 
showed quantities of solder present much in excess of that required. Under 
the microscope such joints showed the tell-tale sponginess where the eutectic 
had been drawn away from the junction in the course of final solidification. 

Physical tests on joints made using the fillet wipe between sections of 
telephone cable and sleeving, have demonstrated that fillet joints similar 
in size to that shown in Fig. 2 made with 38% tin, 0.1% arsenic, balance 
lead wiping solder are stronger in tensile strength, creep and fatigue than 
the cable itself. 

The application of the new technique has gone much further toward 
saving tin than any known permissible change in the composition of solder. 
Using the old technique, a reduction of only one per cent in the nominal 
tin content of a lead-tin wiping solder resulted in widespread occurrence of 
leaky joints, indicating that little tin could be saved by a simple change in 
solder specification. This observation was to be expected since many 
studies had been conducted over the years to reduce the tin content in 
wiping solders to the minimum consistent with the production of satisfac- 
tory joints. Tin has always been much more expensive than lead and for 
large users of solder a reduction of one per cent in the tin content might 
result in savings of many thousands of dollars annually. 

While the use of the fillet wipe results in large savings in tin other avenues 
for conserving this strategic metal are available such as the substitution of 
ternary and quaternary alloys containing less tin than that required by the 
binary lead-tin wiping solders. A satisfactory alloy of this type was de- 
veloped which contains 13% tin, 23% bismuth, 0.1% arsenic, balance lead. 
Though readily available a short time ago, bismuth now has become too 
restricted to be used extensively in solders. A wiping solder is now being 
introduced into service in which, through the inclusion of a small quantity 
of antimony, it has been possible to reduce the tin content. This material 
appears suitable for fillet wiping although it requires more skill to use than 
the 38% tin, 0.1% arsenic, balance lead wiping solder. Other compositions 
may be usable that contain less than normal tin, but on the whole, the 
savings accomplished by composition modifications will be small compared 
to those produced by the new wiping technique that has been described. 

In Summation 

By virtue of its small solder volume the fillet wipe reduces tin consump- 
tion and produces joints less liable to leakage than the conventional wiped 
joints. The reasons for the success of this type of joint are based on the 
sound metallurgical principles herein described. The use of the fillet wipe 
promises to survive the period of restricted tin consumption. 



A Mathematical Theory of Linear Arrays 

By 

S. A. SCHELKUNOFF 

MATHEMATICAL theory, suitable for appraising and controlling 
directive properties of linear antenna arrays, can be based upon a 

simple modification of the usual expression for the radiation intensity of a 
system of radiating sources. The first step in this modification is closely 
analogous to the passage from the representation of instantaneous values 
of harmonically varying quantities by real numbers to a symbolic repre- 
sentation of these quantities by complex numbers. The second step con- 
sists in a substitution which identifies the radiation intensity with the 
norm1 of a polynomial in a complex variable. The complex variable itself 
represents a typical direction in space. This mathematical device permits 
tapping the resources of algebra and leads to a pictorial representation of 
the radiation intensity. 

An antenna array is a spatial distribution of antennas in which the in- 
dividual antennas are geometrically identical, similarly oriented, and 
energized at similarly situated points. The first and the last properties 
insure that the form of the current distribution is the same in all the ele- 
ments of the array and that consequently the array is composed of antennas 
with the same radiation patterns. The difference between individual ele- 
ments consists merely in the relative phases and intensities of their radiation 
fields. The second property means that the radiation patterns of the 
individual elements are similarly oriented and that consequently the radia- 
tion pattern of the array is the product of the radiation patterns of its typical 
element and the ^space faclor,\ The space factor of an array is defined as 
the radiation pattern of a similar array of non-directive elements. Hence in 
studying the effect of spatial arrangement of antennas, we may confine 
ourselves to non-directive elements and thus materially simplify the analy- 
sis. 

An array is linear if points, similarly situated on the elements, are colinear. 
In this paper we are concerned mostly with linear arrays of equispaced 
sources although in conclusion we shall have an occasion to say a few words 
about more general types. 

1 The norm of a complex number is the square of its absolute value. 
80 
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Radiation Intensity and Field Strength 

Consider a linear array of n equispaced nondirective sources (Fig. 1). 
Apart from the inverse distance factor, the instantaneous field strength of 
the array in the direction making an angle Q with the line of sources may be 
expressed as follows 

\/ $,• = Aq cos{ut + i?o) + cosipil + + ?9i) + ^2 cos {cot + 2^ + fa) 

+ * • * 4" An-2 cos{(ol + 11—2 \p + + COs{cot + «—1 ^), (1) 
r\ 

t = p( cos e - fa P = —■ 
A 

Fig. 1—A linear array of equispaced non-directive sources. If two sources are of equal 
intensity and in phase, their fields at a distant point are substantially equal in 
intensity but differ in phase by @1 cos 0 where ( cos 6 is the projection of the distance 
between the sources upon the particular spatial direction under consideration. If 
the sources arc unequal, an allowance must be made for the relative field inten- 
sities in proportion to magnitudes of the sources and the phases must be adjusted 
for the phase difference between the sources. 

In this equation: Ao , Ai, • • • An-i = 1 are the relative amplitudes of the 
elements of the array; ^ is a progressive phase delay, from left to right, be- 
tween the successive elements of the array; • fai-z, ^n-i = 0 repre- 
sent the phase deviations from the above progressive phase delay;/3 = lir/X 
is the phase constant, where X is the wavelength. The radiation intensity, 
that is the power radiated per unit solid angle, is proportional to the square 
of the amplitude of \/«!>,■. 

Forming another expression similar to (1) but with sines in the place of 
cosines, multiplying the result by i = s/ and adding it to (1), we have 

The true instantaneous value of the field strength is the real part of (2). 

= [Aoeido + Aie*****1 + A^e^"2 + ••• 
(2) 

+ An^e'"-2^"-2 + e'"-1*] eial. 
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Hence the amplitude V* of the field strength2 is the absolute value of 
(2); thus3 

/— It . 2 i i n—2 i n—1 I 
= I flo + OlZ + 022 + ' ' ■ + fln-2Z +2 | ^ 

Z = e**, \p = Qt cos 6 — d, am = Amedm. 

In this equation: do, , 02, ■ ■ * ®n-2, On-i = 1 are complex numbers repre- 
senting the relative amplitudes of the elements of the array and the phase 
deviations of these elements from a given progressive phasing. Thus if 
all the coefficients are real and positive, they represent the relative ampli- 
tudes of the elements of the array. If the algebraic sign of a particular 
coefficient is reversed, the phase of the corresponding element is changed 
by 180°; if some coefficient is multiplied by i or —i, the phase of the cor- 
responding element is respectively accelerated or delayed by 90°; and in 
general the phase acceleration is equivalent, in our scheme, to a multiplica- 
tion by a unit complex number elS. Some coefficients may be equal to zero 
and the corresponding elements of the array will be missing. In view of 
this possibility, we shall call € the "apparent" separation between the 
elements; it is the greatest common measure of actual separations. When 
the elements are equispaced the apparent separation is the actual separation. 

Thus we have the fundamental 
Theorem I: Every linear array with commensurable separations between 

the elements can be represented by a polynomial and every polynomial can be 
interpreted as a linear array? 

The total length of the array is the product of the apparent separation 
between the elements and the degree of the polynomial. The degree of the 
polynomial is one less than the "apparent" number of elements. The 
actual number of elements is at most equal to the apparent number. 

The above analytical representation of arrays is accomplished with the 
aid of the following transformation 

z = e*, ' (4) 

in which ^ cos 0 - t? is a function of the angle 9 made by the line of 
sources with a typical direction in space. Since xp is always real, the ab- 
solute value of z equals unity and z itself is always on the circumference of 
the unit circle (Fig. 2). As 6 increases from 0° (which is in a direction of the 
line of sources) to 180° (which is in the opposite direction), \p decreases and 

2 For brevity's sake, we shall call Vi itself the "field strength." 8 Equation (3) could be derived directly from the physics of the situation in the same 
manner as (1). The foregoing method of transition from (1) to (3) serves only the purpose 
of showing the relationship between a less familiar formula and a very well known one. _ 4 If the separations are not commensurable the arrays are represented by an algebraic 
function with incommensurable exponents. 
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Fig. 2—A typical direction in space is represented by a complex variable which is repre- 
sented in a complex plane by a point lying on the circumference of a circle of unit 
radius, having its center at the origin. As the angle 0 made by a typical direc- 
tion with the line of sources, increases from 0° to 180°, point z moves clockwise. 

z-1 z-1 

(A) (B) 
Fig. 3—(A) The active range of z, corresponding to 0 = pi and one-quarter wave-length 

separation between the elements. (B) The active range of z, corresponding to 
x) = p( and I = |X. 

z moves in the clockwise direction. When 6 = 0, xf/ = — d] and when 
Q = 180°, xp = —fM — d. Hence the range xp described by z is 

t = 2fit. (5) 

When the separation I between the successive elements of the array is 
equal to one-half wavelength, the range of z = 27r and as 6 varies from 0° 
to 180°, z describes a complete cycle and returns to its original position. 
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In this case there is a one-to-one correspondence between the points of the 
circumference of the unit circle and conical surfaces coaxial with the line 
of sources. Such conical surfaces, called radiation cones, are loci of direc- 
tions in which the radiation intensities are equal. If the separation between 
the elements < X/2, the range of s is smaller than lir and z describes only a 
portion of the unit circle (Fig. 3A). Finally, if ^ > X/2, then the path of z 
overlaps itself (Fig. 3B). Such a path, winding upon itself, will be called a 
Riemann circle. In this instance, one and the same point on the circle may 
correspond to several radiation cones; but if we regard different positions of 
z along its path as distinct points on the Riemann circle, then there will be 
a one-to-one correspondence between the points on the circle and the 
radiation cones. 

Since the radiation intensity is a periodic function of yp, the space factor 
of a given array will repeat itself if the separation between the elements 
is greater than one-half wavelength. 

Composition of Space Factors 

Since the product of two polynomials is a polynomial, we obtain the fol- 
lowing corollary to Theorem I 

Theorem II: There exists a linear array with a space factor equal to the 
product of the space factors of any two linear arrays. 

In other words, there is a linear array such that its radiation intensity 
in any given direction is the product of the radiation intensities in this direc- 
tion of any two given arrays. Thus we have 

= I flo + Ol2 + fl222 + • ■ • + Un-l2n_1 |, 

■\/$2 = I ^0 + + • • • + bm-iZ'"-1 I, 
— — | (o) 

\/$l -V/^>2 = I (flo + OlZ + • • • + 1) (60 + &l2 + • • • + hm-\Zm ) I 

= | flc&o + (flo^i + CL\bo)z + (0062 + O1&1 + a2bf)z + • • ■ |. 

The coefficients of the expanded product represent the amplitudes and the 
phases of the derived array. 

Naturally the process may be repeated and a linear array can be con- 
structed with its space factor equal to the product of the space factors of 
any number of linear arrays or to any power of the space factor of any array. 

For example, let us start with a pair of equal sources, represented by 

V'F = I 1 + 2 1, (7) 

and construct a linear array with the space factor equal to the square of 
(7). The field strength of the required array will be 

■\/<F = | 1 + 2 |2 = | 1 + 2z + z2 |. (8) 
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This array consists of three elements with amplitudes proportional to 1, 
2, 1. If the elements of the original couplet are one-quarter wavelength 
apart and 90° out of phase, the couplet is "unidirectional". The space 
factor of such a couplet is depicted by Curve A in Fig. 4. The space 
factor of the triplet represented by (8) is shown by Curve B. In the 
directions in which the couplet radiates half as much or a third as much 
power as in the principal direction, the triplet radiates correspondingly 
only a quarter or a ninth of the power radiated in the principal direction. 

The above considerations suggest a simple method for suppressing 
subsidiary radiation lobes. It is well known that in a uniform linear array5 

i- ^ . yT= COS [5- (1-cos e)] 
\ 
\ X i - T • VT - cos2 5 (1 - COS 0)] 
\ 
\ \ 
\ 

s 

\ \ 

\ \ s 
\ \ 
\ 
\ \ 
\ 
\ \ 

Fig. 4—Space Factors—Curve A is the space factor of a unidirectional couplet in which 
( = X/4. Curve (B) represents the space factor of an array with amplitudes pro- 
portional to 1, 2, 1. 

the difference in levels of the principal maximum of radiation and the first 
subsidiary is substantially independent of the number of elements, pro- 
vided this number is sufficiently large. Thus in the limit, the first sub- 
ordinate maximum is 13.5 decibels below the principal maximum. Con- 
sequently for the array with its space factor equal to the square of the 
space factor of the uniform array, the limiting difference in levels must 
be 26.9 decibels. 

Since the uniform array is represented by 

■\/$ = |l + Z+22-|- + 2" (9) 

6 A "uniform" array is an array made up of sources of equal strength with a uniform 
progressive phase delay. 



86 BELL SYSTEM TECHNICAL JOURNAL 

the other array is given by 

= I 1 + z + ••• + z"-1 I2 

= 1 1 + 22 + 3z2 + h nz"-1 + (n - l)zn (10) 

222"-3 + z2""2 |. 

Thus the amplitudes of the individual sources are proportional to 1, 2, 3, 
• • • n — 1, n, n — 1, ■ • • 3, 2, 1. Figure 5 depicts the effect of such 
"triangular" amplitude distribution. 

A: UNIFORM AMPLITUDE DISTRIBUTION 

7 C05(§ COS e) 
B- TRIANGULAR AMPLITUDE DISTRIBUTION 

[sin cose)]2 

^ [4 cos (§ cos e )J 
C: 1-3-6-7-6-3-1 AMPLITUDE DISTRIBUTION 

COS3^ COS B) 

^ I cos cose) 

127 C0S3(i CDS e) 
D; BINOMIAL AMPLITUDE DISTRIBUTION 

fF- SIN® (2 cos 0) 

/'y 
' \ v 

. ~>v , 160° 120" 100 60° 40° 

Fig. 5—Space Factors—(A) is for a uniform array and (B) for an array with "triangular" 
amplitude distribution. 

Evidently we could raise (9) to any given power 

Vfc = 1 1 + z + z2 + ■ • • + 2„-i jm, (U) 

This process does not change the number of separate radiation lobes. The 
so-called "binomial" distribution of amplitudes was first suggested by 
John Stone Stone.6 His scheme is a special case of (11) if we let n = 2. 
For the effect of the binomial amplitude distribution see Fig. 5. 

The relative merits of two forms for the radiation intensity as given by 
(1) and (3) can now be appraised in the light of the foregoing examples. 
Using (1), we have for the instantaneous radiation intensity of the uni- 
directional couplet 

8 U. S. Patents 1,643,323 and 1,715,433. 
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= COS + cos^co/ + icos9-i) 

= cos (jit + sin^ cos d^j . 
(12) 

By just inspecting this equation, we find no evidence for existence of a 
linear array with a space factor equal to the square of the space factor of 
the couplet. Still less obvious is the method of obtaining proper amplitude 
ratios. 

Arrays of Arrays 

The foregoing method of composition of space factors is in reality an 
analytical expression of geometric construction of "arrays of arrays". 
Consider, for instance, a pair of equiphase sources of equal strengths 

±=7 

(A) (B) 

• • 

I y .T.  1 ^ J 

(O 
Fig. 6 

(Fig. 6A). Take two such pairs as elements of an array of the same type 
(Fig. 6B). The middle sources add up to a single source of strength two. 
If the operation is repeated by taking (B) as elements of (A) or by taking 
(A) as elements of (B), then (C) is obtained; the amplitudes of (C) are 
proportional to 1, 3, 3, 1. 

Each shift of a source to the right through distance C is represented 
analytically as multiplication by z. An algebraic identity 

(ao + oiz -f 02Z2)Z = ooz + oiz2 + a^z3 (13) 

is an expression of an obvious fact that each element of an array is shifted 
through the same distance as the entire array. Similarly a given change 
in the strength and the phase of the array is achieved by making the same 
change in all its elements; this fact is expressed by the identity 

b(ao + diz + O222) = bao + bdiz + 6fl2Z2. (14) 
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In general, if an array represented by 

/(z) = Co + CLiZ + OzZ2 + • • • + fln-lZ"-1 (15) 

is taken as the element of an array given by 

F{z) = 5o + iiz + &222 + • • • + (16) 

then the resulting array of arrays is represented by 

/(z)F(z) = 6o/(z) + &iz/(z) + &222/(z) + • • • + bm^z"'-y{z). (17) 

Decomposition Theorem 

Consider now a pair of non-directive sources with strengths proportional 
to 1, —then 

Vi == I z — ' 1- (18) 

Geometrically, the complex number z - t is represented by a line drawn 
from point t to point z (Fig. 7A). Accordingly, the radiation intensity 

(A) (B) 

Fig. 7—The radiation intensity of a linear array isjepresented by the square of the product 
of the lines joining the null points of V<1> to a point s on the unit circle. 

of the pair of sources is represented by the distance between t and z. If 
vanishes for some particular direction in space, it vanishes for all direc- 
tions making the same angle with the line of sources; these directions form 
a cone of silence of the radiation system. Obviously^a radiating couplet 
has a cone of silence if and only if the null point of is in the range of z; 
in particular, there can be no cone of silence unless the null is on the unit 
circle. 

By the fundamental theorem of algebra a polynomial of degree (n — 1) 
has (n — 1) zeros (some of which may be multiple zeros) and can be fac- 
tored into (w — 1) binomials; thus 

Vs = I (z - h){z - h) ■" {z- ln-x) |. (19) 
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Each binomial represents the directive pattern of a pair of elements sepa- 
rated by distance t. Hence 

Theorem III: The space factor of a linear array of n apparent elements 
is the product of the space factors of (w — 1) virtual couplets with their null 
points at the zeros of \/<$: ti, 1%, • • • /„_i. 

Accordingly the radiation intensity of an array is equal to the square 
of the product of the distances from the null points of the array to that 
point z on the unit circle which corresponds to the chosen direction (Fig. 
7B). To each null point lying in the range of z, there corresponds one 
and only one cone of silence provided each null point is counted as many 
times as z happens to pass it in describing the complete range. 

2TT 

Fig. 8—The null points of a uniform linear array and the point s = 1 representing the 
direction of the greatest radiation divide the unit circle into equal parts. The 
hollow circles represent the null points and the solid circles the points of maximum 
radiation. 

By summing the geometric progression (9) the radiation intensity of 
a uniform array can be represented as follows 

= 
z" — 1 
z — 1 

(20) 

Hence the null points of such an array are the «-th roots of unity, ex- 
cluding z = 1. Since z is a unit complex number,7 any power of it is also 
a unit complex number. Moreover, each multiplication by z = rep- 
resents a displacement through an arc of p radians. Hence the «-th roots 

7 A unit complex number is a complex number whose absolute value is equal to unity. 
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of unity divide the circle into n equal parts (Fig. 8). Analytically we 
have 

z" — 1 = 0, tm — e n , m = 1, 2, 3, ••• n — 1, 

, 2mir . ■d 2mir 
*m ~ r' cos m ~ & w*' 

(21) 

When z = 1, \/<& is evidently a principal maximum. Other maxima 
of smaller magnitude, the so-called subordinate or subsidiary maxima, 
occur approximately half way between the null points. The general 

{¥ 

'ff - 
SIN 
n sin ^ 

0 1 2 3 4-5 6 
Ijl IN RADIANS 

Fig. 9—The field strength Vi as a function of ^ for n = 5. The principal maximum is 
reduced to unity. 

behavior of the field strength can readily be understood if we follow z 
around the unit circle. When plotted against p, \/<t> has the shape shown 
in Fig. 9. This is a universal radiation characteristic which can be inter- 
preted for any particular spacing and phasing between the elements with 
the aid of the curve for ^ + d = (it cos 0 (Fig. 10). 

It is easy to estimate the relative level of the first subordinate maximum. 
For a fairly large number of elements, the difference in levels is deter- 
mined largely by the distances of the maximum points from the nearest 
null points. The distances are approximately equal to the circular arcs 
joining the corresponding points. Since the arcs joining the first sub- 
ordinate maximum with the nearest null points are nearly half as long as 
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those for the principal maximum, the first subordinate maximum of the 
field strength is about one-quarter of the principal maximum. In other 
words, the subordinate maximum is approximately 12 decibels below the 
principal maximum. 

N - 2n cos e 

\ 
\ 

• 

\ 

\ 

\ 
O" 2 0° 4 0° 6 0" 8 0° 

V 
0° l< 0° 14 0° IE 0° 18 

\ 

\ 

\ 

Fig. 10 

A more accurate value for this difference in levels can be obtained by 
first rewriting (20) in the form 

\/<£ = 
*2 _ 

2* — 2_i 

. n\b 
sinT 

• ^ 
8111 2 

(22) 

3x and then substituting successively \f/ = 0 and \l/ = — , one for the principal 
n 

maximum and the other for the first subordinate. Accordingly we obtain 

(23) 
■\/^(O) . Stt —— = « sin — 

37r\ 2w 

\H n ) 
STT Stt 

If n is large sin is approximately equal to — and the field strength 
Aft Aft 

3 
ratio becomes — = 4.71. This ratio corresponds to the difference in 

A 
levels equal to 13.5 decibels. 
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Directivity of Arrays 

The "decomposition theorem" of the preceding section throws consider- 
able light on directive properties of arrays. The number of elements in the 
array is one greater than the number of virtual couplets. Hence to secure 
the greatest possible directivity with a given number of elements, the virtual 
couplets must be properly combined. 

Fig. 11—The null points of several three-element arrays. The spacing between the 
elements is X/4 and the progressive phase delay is r/4 (7' equals period). 

\c 

- -J | I +2 + Z*| - SIN ^ 

- / THTx zfi-e J j 

(Z + l)(Z + I) 

3 SIN 2 

COS f SIN (| -l-T; 

2 (l-t- U 

SIN 2 

COS 2 COs(l + 5) 

J\k_ 

7" 

Fig. 12—Comparison of directivity of several three-element arrays. The spacing between 
the elements is X/4; the direction of principal radiation is 0 = 0 . Curve (A) 
refers to the uniform array, (B) to an array with nulls at P and B (see Fig. 11), 
and Curve (C) refers to an array with its nulls at B and M. 

For example, the null points of a uniform array of three elements, one- 
quarter wavelength apart, are at P and Q (Fig. 11). If t? = 7r/2, the range 
of z consists of the lower half of the unit circle and principal radiation takes 
place in the direction 0=0. Evidently, the virtual couplet with its null 
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at Q is comparatively nondirective. Substituting for this couplet another 
couplet with a null at B should improve the directivity of the array. This 
is indeed the case: In Fig. 12, Curve A depicts directive properties of the 
uniform array and Curve B depicts those of an array with its nulls at P and 
B. The field strength of the second array is 

I 2*1 | | _2T, 2ITi i 
V* = l(z - *")(z+ 1)! = \z2 + (1 - e ^)z - e 3 1 

I _ -ill (24) 
= 11 + z\/3 e 6 + 22e 3 |, z = | (cos e ~ 1); 

hence the amplitudes of the elements are proportional to 1, ■\/3, 1 and the 
total progressive phase delay in the direction of maximum radiation is 
TT . TT 27r .. 
- + - = — radians. 
2 o o 

The minor lobe of the second array is substantially smaller than that of 
the first array. The major lobes, however, are equally "wide"8 although 
one lobe is somewhat sharper than the other. The width of the major lobe 
can be reduced at the expense of increasing the minor lobe by moving the 
null from P to M (Fig. 11). The effect of this change is shown by Curve 
C (Fig. 12). The corresponding field strength is9 

= | (z + f)(s + 1) 1 = | z" + (1 + f)z + * | 
, _iz , (25) 

= | 1 — f(l + i)2 — iz21 = | 1 + n/I e 4 z + e 2 z2 ,; 

hence the amplitudes are proportional to 1, \/2, 1 and the total progressive 

i J 1 . TT . TT 37r phase delay 13 2 4 = "q" " 

For arrays of six elements, one-quarter wavelength apart and with § = 
7r/2, we have Fig. 13. Curve A represents the directive characteristic of a 
uniform array, with its nulls as shown in Fig. 14A, and Curve B shows the 
directive properties of an array with its nulls equispaced on the lower half 
of the unit circle as shown in Fig. 14B. 

If the spacing between the elements is f = X/8 and if the phase delay 1? = 
7r/2, then the effect of distribution of the null points is even more pronounced 
(Figs. 15 and 16). This time z is confined to the fourth quadrant of the 
unit circle. In Fig. 15, « = 3; Curve A corresponds to an array with equal 
amplitudes in which case the nulls are equispaced on the complete unit 
circle (Fig. 17A) and Curve B corresponds to an array with its nulls equi- 

8 If the "width" of a lobe is measured by the angle of the cone of silence enclosing the 
lobe. 9 When transforming the expressions for \/4>, it is well to remember that the absolute 
value of a complex quantity does not change if this quantity is multiplied by a unit complex 
number. 
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spaced within the range of z (Fig. 17B). In Fig. 16, n = 6; Curve A repre- 
sents an array with nulls distributed evenly on the complete circle and 
Curve B represents an array with nulls evenly spaced in the range of z. 

\ 
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Fig. 13—Directive properties of 2 six-element arrays with f = X/4. Curve (A) refers to 
a uniform array and Curve (B) refers to an array with its nulls equispaced in 
the range of z. 
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Fig. 14—Disposition of null points for the arrays with directive characteristics as shown in 
Fig. 13. 

If the total length of an array is kept constant but the number of ele- 
ments is increased, the array may be made more directive; Figure 18 illus- 
trates this point. This increase in directivity can be secured only if the null 
points of the array are properly distributed within the range of z; in Fig. 18 
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Fig 15—Directive properties of three-element linear arrays with f = X/8. Curve (A) 
refers to a uniform array and Curve (B) to an array with its nulls equispaced 
in the range of s. 
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Fig. 16—Directive properties of six-element linear arrays with f = X/8. Curve (A) 
refers to a uniform array and Curve (B) to an array with its nulls equispaced 
in the range of z. 

Fig. 17- 
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'—Disposition of nulls for the arrays whose directive properties are shown in Fig. 15. 



96 BELL SYSTEM TECHNICAL JOURNAL 

the null points are evenly spaced in the range of 2, appropriate to each sep- 
aration between the elements. 

If the elements of the array are directive, the null points should be dis- 
tributed with due reference to the directive pattern of the elements in order 
that a further increase in directivity could be secured. 

\ 
0 

A: n - 2. ,1 - ^ 
B: n - 3. X ~ ^ 
C: n - 3. ^ £ \ \ N \ 
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Fig. 18—Directive properties of linear arrays with total length equal to X/4. (A), n= 2, 
I ---- X/4; (B), n = 3,1 = X/8; (C), « = 5, f = X/16. 

Multi-Dimensional Arrays 

The simplest method of constructing multi-dimensional arrays is to take a 
linear array as an element of another linear array. The axis of the second 
array may be chosen to make any angle with the axis of the first array. 
In this way only a special class of multi-dimensional arrays can be formed. 
Analytical expressions for the radiation intensities of more general arrays 
can be formulated in terms of two or more complex variables. These 
variables, however, will not be independent and a given direction in space 
will be represented by a group of related points, one point on each circle 
representing the particular complex variable. At this time we shall not be 
concerned with any developments applicable to such general multi-dimen- 
sional arrays. 

Arrays with Prescribed Space Factors 

If the minimum separation between the elements does not exceed X/2, 
it is theoretically possible to design a linear array with a space factor given 
by an arbitrary function/(^) or i7(0) of direction of radiation. Naturally 
the number of required elements will be usually infinite; with a finite number 
of elements the space factor may only be approximate. 
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Consider an array with an odd number of elements n = 2m 1. Since 
the modulus of z is unity the polynomial (3) can be divided by z without 
affecting V thus 

Vi = I oqz-"' + aiz-m+1 + a2Z-"'+2 + • • • 
, t2o) 

+ am + a^+iz + • • • + OsmZ"1 [. 

Let us now assume that the coefficients equidistant from the ends of the 
polynomial are conjugate complex; then the polynomial is real and we can 
drop the bars. Thus setting 

am = Aq , Om+k = Ak f-Sfc > ^ 0, dm—k ~ dm-{k j (27) 

where the ,4's and B's are real; we have 

a^kz" + am-kz-k = (Ak - + {Ak + iB^e-** ^ 

= 2Ak cos k\p + 2Bk sin kip. 

Consequently, (26) becomes 

V# = Yj tk{Ak cos kip + Bk sin kip), (29) i,—o 

where tk is the Neumann number.10 

If now we wish s/■!> to be a prescribed function f(\p) of the variable ip, 
we need only expand this function in a Fourier series 

V® = fii) = Y Vcipk cos kip + qk sin bp), (30) k=0 

and approximate it with any desired accuracy by means of a finite series 
(29). Once the .4's and B's are known, we calculate the a's from (27). 

It must be remembered that the real independent variable is not \p but 
6 and the directive pattern is to be assigned as a function of 6. Besides 
being dependent on 6, \p is a. function of the distance I between the succes- 
sive elements of the array. Since 0 varies from 0° to 180°, the range of ip 
is ip = 2/3C The function f{\p) is prescribed within this range. On the 
other hand the period of the expressions (29) and (30) is 27r. This means 
that if ^ > 27r, that is if i > X/2, it is impossible to obtain the desired direc- 
tive pattern with our scheme, because the pattern repeats itself automatically 
as ip increases or decreases by 27r. But if f < X/2, we have a considerable 
latitude in the design; outside the range of ip, we can supplement f(ip) by an 
arbitrary function of ip. It is only when C = \/2 that there is a unique class 
of linear arrays that will produce a directive pattern given by the first 

10 to = 1,6*; = 2 when k 0. 
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{m + 1) terms of (30). Dr. T. C. Fry of these Laboratories has suggested 
that leaving ( undetermined and fixing the number of elements, an array 
could be designed which would have the best fit to the prescribed pattern. 
In this connection, the "best fit" means the least mean square deviation 
of the approximating pattern from the given pattern. 

If is given as a function F{d) of d, then by virtue of the definition of 
t we can write 

F(g) = pfcos-' ^i-?) = m. (31) 

Let us now consider a simple example for the sake of illustrating the 
method. Let f{\p) be defined by 

/OA) = 0, 0 < IA < tt, 
\6Z) 

= 1, TT < l/' < llT. 

We shall assume that the separation between the elements is one-half 
wavelength. This makes the range of \p equal to lir. It is also seen that 
regarded as a function of 6, f{\p) retains its essential characteristic: being 
equal to zero over one-half of the range and to unity over the remaining 
half. 

Expanding (32) into a Fourier series we have 

w 12 ^(2*- W (33) 
/ TT A;=l AH — i 

Consequently 

^4o = = 0 if A ^ 0; 

Bk = 0, if A is even; (34) 

Bk — —j— , if ^ is odd. 
KIT 

Figure 19 shows several approximations to /OA) by means of a finite num- 
ber of elements. The curve Sm corresponds to an approximation by the 
finite series (29). If S* is deemed to be a sufficiently good approximation 
to the given directive pattern, then 

v? = - T 
, i 2 , A 4 i -i 6 . 8it"B 

9 7s 5 2 3 2 +z + 2 2 

„10 ^ „12 ^ „14 ^ J6 ^ n
18 

3 5 7 9 

(35) 
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The total length of this array is {n — 1) ^ = 2m ^ = 9X. All elements 
A A 

except the three central ones are separated by one wavelength since the odd 
powers of z except z9 are missing. 

End-On Arrays with Equispaced Null Points 

We now pass to a more detailed analysis of end-on arrays with null points 
equispaced on a given circular arc. 

z=t n- 

z. = t2 

z-t3 

z = I 

z-t 

Fig. 20 

For an end-on array ft — fJC and 

z — e^, = /3^(cos d — 1). (36) 

The range of z begins at z = 1 and extends clockwise to a point determined 
by ^ = —20C. Let n — 1 null points be equispaced on an arc of length \jy 
as shown in Fig. 20; the field strength is then 

■\/$ = \ (z — t){z — /2) • • • (z — f ^ 

This can be expressed as 

a, 
t = e (37) 

X sin sin ^ ("A + 
w — 1 ^ 
n — \ , 

(38) 
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The angle of the cone of silence enclosing the major radiation lobe is 
determined from 

l3({cos 0i — 1)   ; (39) 
n — i 

thus 

1 cos , sin 2 j/ 2(w * ^ . (40) 

If the arc ^ is equal to the range of z, then (40) becomes 

1 - cos 0i = 2 , sin ^ = . 1 . (41) 
M - 1 2 V« - 1 

In this case, the size of the first cone of silence is determined solely by the 
number of elements. On the other hand, if ^ = 27r —lir/n, the nulls are 
equispaced on the unit circle and we have an ordinary uniform array; then 

- 2TV X .01 . / ^ /Ar,\ j _cos(,1 = _ sm- = . (42) 

This time the size of the first cone of silence depends upon the total length 
L = {n — l)f of the array measured in wavelengths. 

When the number of elements in the first case and the total length of the 
array in the second are large, then we have approximately 

"•-m ••-"/iu- <« 

For a large n the ratio of the two cone angles is approximately 

e[ . ru 
X ' 

(44) 

For example, if (= X/8, the angle of the major lobe in the first case is one-half 
of that in the second case or one-quarter if we are to compare the solid angles. 

Equispacing the null points in the range of z not only makes the major 
lobe narrower but it also makes it sharper. Thus at the point lying halfway 
between the point of maximum radiation and the first null point, the field 
strength relative to the principal maximum is 

I . ^ ^ . {In - 3)$ 
sin . sin — 77 sin  r-. * • • sin — ry 

_ 4(w - 1) 4(w - 1) 4(n - 1) 4(w - 1) 
X _ ^ . if/ . . {n - V)yh ) 

sin ^sin  77 sin  t-. • • • sm  tt 
2{n — 1) 2{n — 1) 2{n — 1) 2{n — 1) 
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For a quarter wavelength separation between the elements ^ = ir and this 
ratio is equal to 

X = 7 1 (46) 
•\/2(w — 1) 

so that the drop in the radiation intensity becomes [10 Logio {n — 1) + 3] 
decibels. On the other hand, for a long uniform array the corresponding 
drop is independent of n and is equal to 4 decibels. 

Another consequence of equispacing the null points in the range of z 
consists in substantial suppression of subsidiary radiation lobes. The first 
subordinate maximum is situated approximately halfway between the first 

2>\L 
two null points where xf/ = —— -r ; thus the field strength there, relative 

2{n-l) 
to the principal maximum, is 

\p . if/ . 3\p . (2n — 5)\f/ 
sin T? ^ sin 77 Ti sin 77 77 • • • sin T?  

= 4(w-l) 4(w-l) 4(^-1) 4(W - 1) 
X . t . 2^ . 3$ . ^ ; 

sm  tt sin ——sin  -r • • • sin ^^ 
2(n — 1) 2(« — 1) 2(w — 1) 2{n — 1) 

For a quarter wavelength separation this field strength becomes 

sm 
y _  4(« - 1) 

2n—3 

TT 
sm 

(48) 

4(w — 1) 

/fi? 7\ • ^(w — 3)7r 
^2(« - D 4(^-1) 

When n is sufficiently large, we have approximately 

X 4(« - 1) V2(n - 1) (49) 

and the subsidiary maximum is [30 Logio (n — 1)4-5] decibels below the 
principal maximum. Each time the number of elements is doubled, the 
level of the subsidiary maximum is diminished by about 9 decibels. Thus 
an array of the type (37) with xp = 2$( has very sharp directive properties. 
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In order to find the relative amplitudes and phase deviations of the ele- 
ments of the array represented by (37), we expand into a single poly- 
nomial as follows11 

■%/<& = | (i — t 'zKi - * 2
2)... (i _ rn+Izj 

i + E (-)fc(1 ~rn+1)(1 

A--1 

i + E (-)' 

i-n+2 (1 _ /-"+*) 
(1 - /-^(i - r2)... (1 - f") 

"-1 n—1 n—k n 
{t 2 - * * ) ... (t -2 

_1 1 ^ ^ 
(/ 2 - p)(rl - t)... (t 2 _ t2) 

- t2 ) -k-Ek 
  t 2 2 (50) 

"-1 0", o? r; 
i +E (-)' 2(" ~ l) 

k—l 

. (« — 1)^ 
sin /r . (n — k)^ sin 

2(n — 1) 
e2(n-l) z* 

sin sin 

& = T — 
2{n - 1) 

2(« — 1) —2{n-\) 

e antenna 

and the amplitudes are in the ratio 

Hence the progressive phase delay from one antenna to the next is equal to 

s.n sin (» - 1)^ sill (" - 2)^ 
2{n - 1) 2(n - 1) 2(n - 1) 

sin 
2{n - 1) sin 

2(« - 1) Sin 2(« - 1) 

sin (w ~ sin (w ~ sin (w ~ 
2(n - 1) 5 n 2(n - 1) Sin 2(W - 1) 

^ 2\f/ . 3\f/ 

(51) 

1. 
sin 

2(« - 1) Sln 2(» - 1) 2(« - 1) 
sm 

The amplitudes of the elements equidistant from the ends of the array are 
equal. In the special case of an end-on array with nulls equispaced in the 
range ofz,\J/= 2$t and # = (3f] hence the progressive phase delay from one 

antenna to the next is tt — - ^ - . 
n — 1 

While (50) serves well for finding the amplitude and phase distribution in 
the individual elements of the array, another form is more general for cal- 
culating the directive properties. In order to obtain this form we set 

11 Chrystal's Algebra, Vol. 2, p. 340, (1926). 
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• ^ dn ~ 
_ Sm 2{n - 1) ''' Sin l{n - 1) 

/'O — 1, pn—l—k pk y Pk T _ fcJ, 
Sin 2(« - 1) ''' 5111 2{n - 1) (52) 

" = ^ + f + 2(^T) + 

»" (n—1) y 
divide the last expression in (50) by e 2 and combine the terms equi- 
distant from the ends. Thus we obtain 

Vi = 2 cos ^ + 2pi cos ^ 
2 (53) 

+ 2/,JcoB^i)?+ .... 

where the last term is 2£n_ 1 cos | if n is even and p^zl if « is odd- 

Let D be the maximum value of \/then the gain of the array over a 
single source is given by 

G = 10 Logio - = 10 Logio -^D  decibels, (54) 

Ihda I 
$ sin 0 dd 

where ft is the solid angle and the integration is extended over a unit sphere- 
For an end-on array with nulls equispaced in the range of z, the maximum 
radiation is in the direction ^ = 0. Thus we shall have 

D = 2 cos (5-^° + 2pi cos 

(n - 5)(po , 
+ Ipi cos     + 

(55) 

where 

ipo = + ——7 + 7r" (^d) n — i 

A convenient expression for the radiation intensity can be obtained from 
(50) by taking its norm 

^ = [/'o + p^ + p^ + • • • + pn-xe^-^ (57) 

■ \pto + pie-^ + • • • + pn-ie-^-V*]. 
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Since the set of coefficients po, pi, p2 • • • pn-i is symmetric about the cen- 
ter, we find 

<!> = 2pi cos (n — \)<p + 2{popi + pipo) cos {n — 2)<p 

+ 2(pop2 + pipi + p2po) cos (n — 3)<p 

+ 2{pop3 + pipi + pipi + Mo) cos (« - 4)^ + • • • (58) 

+ 2{popn-.2 + pipn—3 + p2pn—i + - + pn-2po) COS (p 

+ (pOpn-l + plpn—2 + p2pn—3 + " " ' + pn-ipo) • 

Since 
Jz-t ^ r<Fo 

' sin 6 d0 = ^ d(p, 
0 P' J VI 

(59) 

+ TT, = vo — 2(36 

we can write 

L 
$ sin Odd = 

'o pf 
2pl sin (« — l)^ , 2{pQpi -\- pipo) sin {n — 2)<p 

n — \ + n — 2 

+ ■ • • + {pdpn-i + plpn-2 + ' ' * + pn-lpo)<P 
]V0 

Vl 

(60) 

For an end-on array with nulls equispaced in the range of z, (60) becomes 

r 
^ sin 0 

2( —)n_1 pi . . {n - 1)136 
——-—~ sin (n — l)Bl cos  ~ 

n — 1 n — 1 

+ + f,to) s.n _ cos (« - rn 
n ~ 2 n — 1 

]■ 
+ (pO pn-l + pipn-2 4" • • • + pn-i Pa)(3 6 

Substituting in (54), we shall obtain the gain of the array. 
Similar expressions can be obtained for an end-on array in which the 

amplitudes of the individual elements are equal. Thus we have 

$ = _L [g'Xn-iW g'tn-aw _|_ • • • + ^ + 1] 

[1 + + e"2'* + 
(62) 

= — [2 cos (ii — \)p + 4 cos {n — 2)p 

4- 6 cos {n — 3)yp 4" •' * 4" 2(n — 1) cos p 4* w], 
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Fig. 21—The directive gain in decibels of a pair of sources with equal amplitudes. (A), 
the phase delay between the sources is 2ir^/X; (B), the phase delay between the 
sources is tt — 
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Fig. 22—The gain as a function of separation in wavelengths; «is the number of elements. 
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where \{/ = pf (cos 0—1). In this case D = 1 and 

f * sin ^ = 2 u + Sin2("-1^ + 2 Sin 2(" - W 
Jo rfipt I n 1 n - 2 

(63) 
+ ...+3sin2(«-3)g<+ sin 2^1 

w — o J 

When the separation between the elements is exactly an integral number 
of quarter wavelengths, (63) becomes 

r 2 
/ sin 0 J0 = - (64) 

Jo 

and consequently the gain is 

G = 10 Logic n. (65) 

Figure 21 contrasts the directive gain of a pair of sources of equal strength 
with the phase delay IttC/R (Curve A) with a directive gain of another pair 
of sources of equal strength but with the phase delay tt — 2it(/\ (Curve B). 
In one case the directive'gain diminishes with separation between the ele- 
ments and in the other it increases. Figure 22 shows the directive gain of 
three-element and four-element end-on arrays with nulls equispaced in the 
range of z. 

As the separation between the elements decreases, the directive gain of an 
end-on array with nulls equispaced in the range of z increases but the radia- 
tion intensity per ampere-meter decreases. This circumstance would be of 
no importance if we had perfect conductors at our disposal to make trans- 
mitting and receiving antennas; but in reality parasitic losses in themselves 
cannot be removed and the efficiency of an array decreases, therefore, with 
the separation between the elements. This decrease in efficiency will 
impose an upper limit on the overall gain that can be obtained with small 
antenna arrays in spite of the fact that the directive gain could be made very 
large. 

Likewise the band width diminishes as the distance between the elements 
decreases. This imposes another limitation on arrays of this type. 



Memorial to the Classical Statistics 

By KARL K. DARROW 

ONE of the most elusive and perplexing, hazy and confusing of the parts 
of theoretical physics is that which bears the name of "statistical 

mechanics".* On the principle that a tree is to be judged by its fruits, this 
must be ranked as high as the tree which bore the golden apples of the 
Hesperides; for among its fruits are the Maxwell-Boltzmann distribution- 
law, the black-body radiation law, the value of the chemical constant, the 
Fermi distribution-law for the electrons in metals, the alternating intensities 
in band-spectra—and indeed the tree might lay a valid claim to the whole of 
quantum-theory. The singular thing is that such wonderful fruits should 
have grown from, or should have been grafted upon, so badly-rooted a tree. 
To change the metaphor, one frequently feels that the superstructure is 
sustaining the foundations, and the premises are flowing from the con- 
sequences, rather than the other way about. Perhaps anyone who feels 
this way should be disqualified from writing about the subject; but on the 
present occasion, the attempt is going to be made. 

Statistical mechanics—hereinafter to be called "S.M." at times for short— 
did not of course arise from any desire to solve the problems suggested above, 
which came late. It seems to have sprung from attempts to answer older 
questions, of which the following may serve as an example. Consider a gas 
in a box, with an electric fan or something of the sort fitted inside to stir 
it up. The gas having been stirred up, the fan is stopped, leaving it in a 
state of surging and whirling about within the confines of the box. Very 
shortly, however, the surging and the whirling cease, the gas having passed 
of itself into a state of tranquillity and uniformity—uniform density, uni- 
form pressure, uniform temperature. From this state it never departs, un- 
less stirred up afresh. There is a tendency of the gas to go of itself from the 
state of surging into the state of uniformity, and no tendency at all for it to 
go from the state of uniformity back into the state of surging. This is very 
unlike the behavior of a pendulum, which having fallen from one end of the 
arc of its sweep to the middle thereof, moves on to the opposite end, re- 
traces its path and returns to its first situation. Why should the gas behave 
that other way? 

* I acknowledge with gratitude the incentive given me by Smith College to explore 
this subject, by offering me the opportunity of giving a course on statistical and chemi- 
cal physics in the spring semester of 1942. 
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For an answer to this question and others of the kind, S.M. offers the 
following statement: 

Basic Theorem of Statistical Mechanics 

A system is more likely to be found in a state of greater probability than 
in a state of lesser probability 

It may be that no reader of these lines has ever seen the basic theorem of 
S.M. set forth with such merciless candor, though in many a sober treatise 
there is an elaborate statement which when analyzed turns out to be just 
this and nothing more. Of course it is a tautological statement, and has no 
value except insofar as it may help to drive some contradictory notion out 
of the student's mind or to prepare that mind for some meaning or other 
which is not yet in the statement but may be added to it later. Actually it 
can serve both these offices. 

To be expelled from the mind of the student is first of all the idea that 
S.M. is going to give him a description of the way in which the gas proceeds 
from the surging state to the uniform. From an astronomer he may 
learn the orbit of the moon from apogee to perigee. From an authority 
on ballistics he may find the trajectory of the bullet from the muzzle of the 
gun to the bull's eye on the target. From a railroad office he may get a 
timetable showing the passage of the train from mile to mile over the rails 
from Boston to Chicago. All this sort of thing is out of the range of 
statistical mechanics! If a railroad acted like a surging gas and its time- 
table were devised in the spirit of S.M., one would go to the office and be 
told that the trains were enormously more likely to be in Boston than in 
Chicago or anywhere in between. From this one would be expected to infer 
that at any moment chosen at random the chance of finding a train anywhere 
along the line except in Boston would be practically nil—unless indeed one 
got a train and put it on the rails at Springfield, and even this would be of 
little use for getting to Chicago, since at every subsequent instant the 
train would almost certainly be in Boston. Not a very useful timetable, 
and not a very useful railroad! 

S.M. thus starts off with a renunciation. It renounces the prospect of 
telling just how the gas proceeds from the surging state to the uniform state. 
To that smooth unbroken sequence of times and places whereby the moon 
finds its way through the heavens and the bullet through the air and the 
train along the rails, there is no counterpart presented. 

This of course is a serious matter, for the smooth unbroken sequence is 
inseparably linked—or almost inseparably linked—with the notion of cause- 
and-effect, the notion of natural law, the notion of man as a being who can 
foretell the future. Mechanics harmonizes with these notions; for mech- 
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anics is the science which professes that, given the positions and momenta 
and the forces in a system of particles at 10 A.M. sharp, it can predict the 
positions and momenta of all the particles at 11 A.M. and every instant in 
between and all through the endless future. Statistical mechanics, for all 
the implications of its name, is nowhere nearly so audacious. 

Suppose the electric fan, or whatever stirring-gadget was employed, was 
stopped an instant before 10 A.M. sharp. S.M. limits itself to affirming 
that at 11 A.M. the most probable state for the gas in the container—the 
immensely most probable state, the almost-certain state—is the uniform 
state. It also says the same thing exactly for 10:15 A.M., and for 10:01 
A.M., and even for 10 A.M. sharp. If at 10 A.M. sharp the gas is in a state 
of wild and furious surging, S.M. does not deny the fact, but sees no reason 
for revising its own affirmation. If at 10:01 A.M. the gas is settling down 
but has not yet quite reached the uniform state, that again does not deter 
S.M. from standing by its assertion. Whenever a freak of chance or act of 
man may have produced one of the states which it calls improbable, S.M. 
just says "wait, and you shall have the state which I am going to talk about." 
To further questions it can only say "I know my limits"—and that is what 
its basic theorem says for it. 

If now the negative aspect of the basic theorem is sufficiently clear, we may 
address ourselves to the task of giving the theorem a positive meaning. For 
this there is but one way: the word "probability" must be replaced with 
some word or phrase or mathematical expression which does have a meaning. 
After this is done we can of course restore the word "probability" as an 
equivalent for that other word or expression. The basic theorem will then 
be tautological upon the surface only, for actually it will have the meaning 
conferred upon it by the definition of its key-word. 

Various meanings have been offered for the key-word, by various people 
who have been successful in getting useful results out of statistical mechanics. 
Until 1924 the dominant meaning was that imposed by Gibbs and Boltz- 
mann. From this meaning arises the form of S.M. which is called "the classi- 
cal statistics". (The word "statistics", by the way, is a bad but common 
abbreviation for "statistical mechanics".) This is the topic of the present 
article. In 1924 there was proposed a novel meaning for the key-word, 
which led to results sometimes agreeing with, sometimes differing from, those 
attained by the classical statistics. Where the results of the two agreed, 
they agreed with experiment also; where the results of the two disagreed, 
experiment sustained the new one. This event has left the classical statis- 
tics in a strange situation, in which one cannot exclude the possibility that 
all of its remarkable achievement is due to a happy but deceptive chance. 
The classical statistics may indeed be only a past episode in the history of 
scientific thought, and it is for this reason that I have given to the article the 
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strange and sombre title "Memorial to the Classical Statistics". Yet even 
as a past episode, it is worthy of remembrance; its didactic value may yet be 
great; and perhaps the human mind may some day stretch its powers to the 
point of conceiving the classical and the new statistics as aspects of a single 
whole, as it has lately stretched itself to the extent of uniting the wave- 
picture and the corpuscular picture of matter and of light. 

The Maxwell Statistics 

Since the main concern of S.M. is with the "most probable state", one 
sees that its principal content must be made up of assertions about that most 
probable state. Maxwell made such an assertion. He wrote down a for- 
mula for the distribution-in-velocity of the molecules of a gas. It is the 
formula now called "the Maxwell-Boltzmann distribution-law", which is so 
well known to the readers of this journal that I will not bother to write it down 
until there is actual need for having it on the page. Maxwell might have 
said bluntly: "This is the distribution which I will assume for the most 
probable state"; and having said so, left it at that. He did not leave it at 
that, and presumably he would have been dissatisfied so to leave it, as most 
of us would be. Instead, he postulated a pair of attributes for the most 
probable state, and showed that if these are the attributes, then the distri- 
bution is according to that formula. 

The attributes which Maxwell postulated are "isotropy" and "independ- 
ence". 

The former is easy enough. One assumes that in the most probable state, 
the distribution of velocities of the molecules is isotropic. Nothing can 
usefully be added to this simple statement. 

The latter is a little harder to grasp. Perhaps it can best be exhibited by 
describing a couple of imagined cases for which it would not be valid. Sup- 
pose for instance that all of the molecules have the same speed—the same 
magnitude of velocity, though their velocity-vectors be pointed in all 
directions. Let this common value of speed be denoted by V, and let any 
direction chosen at random be made the axis of x in an ordinary coordinate- 
frame. If a molecule happened to be travelling with such a velocity that 
the component thereof along the .r-axis, vx let us call it, was just equal to V, 
then it would be a certainty that v,, and vz, the y and s components of the 
velocity, were both of them zero. If a molecule happened to be travelling 
in such a way that vx was zero, then either Vy or vz or both of them would have 
to be different from zero, and the square root of the sum of the squares of 
vu and Vz would have to be equal to V. There would consequently be a 
correlation between the values of the three components, and the probable— 
nay even the possible—values of any one of them would be affected by those 
of the other two. If the molecules had a uniform distribution of speeds up 
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to a maximum value of V, there would still be a correlation of a similar 
sort, though not so marked a one: the higher the velocity-component in the 
.■v-direction, the lower would the y and the z components be likely to be. 
One could imagine distributions for which the higher the velocity-component 
in the .^-direction, the higher would the y and the z components be likely 
to be. 

The "assumption of independence" is, that in the most probable state 
there is no correlation at all. Whether the ^--component of the velocity of a 
molecule is high or low is a detail which has no influence whatever on the 
possible or the probable values of the y and the z components. Low values 
of Vy go just as well and just as abundantly with low values of vx as with high, 
and reversely. 

The Maxwell-Boltzmann law, as I said, is the distribution-law which 
conforms to both the assumption of isotropy and the assumption of inde- 
pendence. So the question arises: do those two assumptions have the 
quality of plausibility and of convincingness, which make the average per- 
son say "Surely these must be the attributes of the most probable state of a 
gas!" I do not know what result a referendum on this question would give, 
but it is my guess that most physicists would feel more satisfied with these 
than they would with the Maxwell-Boltzmann distribution-law if it were 
tossed out to them with the bare affirmation "This is assumed to be the 
attribute of the most probable state". Clearly this is how Maxwell felt, and 
there is no better guide than the intuition of a Maxwell. 

The foregoing question is something else than the question whether the 
assumptions, and the Maxwell-Boltzmann distribution-law which follows 
from them, are truly the attributes of the most probable state. It is a strange 
historical fact that not for many years after the promulgation of this famous 
law, and not till after both of its sponsors were dead, was there any proper 
test of it. The derivations of the law were exercises in abstract and un- 
renumerated thought. Nevertheless experiment—applied to thermionic 
electrons, to molecules of ordinary gases, to thermal neutrons—came at long 
last to justify Maxwell. To any who may feel that the assumption of 
independence is in itself too reasonable to require any proof, I disclose that 
in other forms of statistics this assumption is declared to be false, except as 
an approximation. 

The "Maxwell statistics" therefore consists in the main of the statement: 
The most probable slate of a gas is that in which isotropy and independence 

prevail among the velocity-vectors of the molecules. 
We now require some terminology and some notation. 
I take for granted an understanding of the terms "velocity-vector" and 

"distribution-in-velocity", these being learned by physicists out of kinetic 
theory if not out of S.M. A velocity-vector may be replaced by a point 
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which serves just as well for all of its purposes and even better for some. Let 
the velocity-components vx,Vy, and vz be laid out along the axes of a Cartesian 
coordinate-frame, and the vector for any molecule be drawn from the origin; 
the point at its tip is the point in question. Point and coordinate-frame are 
said to be "in velocity-space". Statistical mechanics prefers as a rule to 
deal with the momenta of the molecules rather than their velocities. This 
is for valid and powerful reasons, one of which is that the transition to the 
case of photons becomes much easier.1 In the case of material gases it 
makes no practical difference, since the momentum of a molecule is its 
velocity-vector multiplied by the mass of the molecule which is practically a 
constant, and every statement about the distribution-in-velocity can with 
the utmost ease be translated into a statement about the distribution-in- 
momentum and vice versa. The momentum-vector may be replaced by the 
point at its tip, having coordinates px, py and pz in a coordinate-frame in 
"momentum-space". If we consider together with these the three co- 
ordinates x, y, 2 of the molecule in ordinary space, we may say that we are 
locating the molecule in six-dimensional space. I have yet to meet someone 
who claims that he can visualize a six-dimensional space, and yet there is no 
doubt that the phrase fulfills a psychological need and has a practical value. 
The six-dimensional space of these particular six variables is called "the 
^t-space". 

It seems odd to bring in the /j-space before considering by itself the three- 
dimensional "ordinary" or "coordinate-space" in which the gas is located. 
Is there nothing to be said about the most probable distribution of the 
molecules in the coordinate-space? Well, "every schoolboy knows" that 
the state to which a gas tends and in which it remains is a state of uniform 
density. Maxwell, I think, accepted this as one of the facts behind which 
one cannot, or does not, go. For a complete statement of the Maxwell 
statistics I therefore offer the following: 

A gas is very much more likely to be in its "most probable stale" than in any 
other. The most probable state is that in which isotropy and independence pre- 
vail among the momentum-vectors, while the distribution in coordinate-space is 
uniform. 

So in the Maxwell statistics the distribution-in-momentum of the mole- 
cules is derived from assumptions ostensibly more basic, while the distri- 
bution-in-ordinary-space is simply affirmed. If a theory could be devised in 
which both were derived from assumptions apparently more basic, one would 
be likely to feel that something had been gained. Now this is a char- 
acteristic, and one of the principal virtues, of Boltzmann's theory known as 
the "Boltzmann Statistics" or as the "Classical Statistics". 

1 Another reason has to do with "Liouville's theorem," for which unfortunately I 
cannot make room without overloading this article. 
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The Boltzmann Statistics 

Boltzmann invented a way of appraising the probability of any imagined 
state of a gas, which has the following very remarkable features: 

(o) It gives so sharp a definition to the key-word "probability", that not 
only can the state of maximum probability be identified, but the ratio of 
the probabilities of any two states can be computed. 

{b) For the distribution-in-momentum of the molecules in the most 
probable state, it derives a formula identical with that which springs from 
the Maxwell statistics. This of course is why the formula is known as the 
Maxwell-Boltzmann law. 

(c) For the distribution-in-space of the molecules in the most probable 
state, it derives the uniform distribution. 

All this does not entail that the Boltzmann statistics is necessarily right. 
It does, however, lead to consequences, which it is the privilege and the 
affair of experimental physics to verify or to reject. 

I can now write down a phrase into which the Boltzmann statistics, and 
equally well those which came later, can be fitted: 

The probability of a state is the number of different ways in which the stale can 
be realized. 

This is another of those oracular sayings which acquire a meaning only 
after some meaning is given to the key-word, which is this case is ways. I 
could now rewrite the basic theorem without the word "probability", and 
so can the reader; but the only effect would be to transfer the mystery out of 
the word "probability" and into the word "way". Boltzmann, however, 
assigned a meaning to the latter word. It is this meaning which we now 
must strive to realize. 

For this purpose I propose a game of which the outfit consists of a sack, 
an enormous number N of balls, and a smaller number M of baskets. The 
game is played by reaching into the sack, drawing out the balls one after 
another, and tossing them into the baskets. All of the balls feel precisely 
alike to the hand, so that there is never the least inclination to put one aside 
and pick up another as one's hand gropes around in the sack. Nevertheless 
when one looks at the balls after they have fallen into the baskets, one sees 
that they are nicely adorned with the integer numbers running from 1 to N. 
Incidentally the baskets also are numbered. It is this numbering which 
gives point to the game. 

Someone or other—someone who might be designated as the caller, after 
the man who calls the figures of a square-dance—has prescribed a sequence 
of M numbers Ni and Ni and and so on to Nm , all of them positive 
integers and totalling up to N. A single inning of the game consists in 
drawing all of the balls out of the sack one after another, and dropping the 
first Ni which come out into the basket I, the next Ni which emerge into the 
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basket II, and so on until every one of the balls is reposing in one or another 
basket. Now along comes the umpire with pencil and pen, and he writes 
down on one sheet of his pad of paper the numbers of all the balls which are 
in basket I, and on a second sheet the numbers of all which are in II, and so 
on until he has got an inventory of the contents of all of the baskets. The 
inventory does not stale the order in which the balls in any basket were dropped 
into that basket. That order is blotted out and forgotten. The inventory 
stales which balls are in which baskets, and lets it go at that. 

This does not seem a very entertaining game, but entertainment is not 
what it is for. The present question is: how many different inventories can 
there be, consistent with that sequence of figures Ni,N2,Nz, • • ■ NM which 
the caller prescribed at the start? 

The answer is obtained in what must seem, to anyone meeting for the 
first time such a question, a strangely devious way. 

First we evaluate the whole number of different orders in which the balls 
can be drawn from the sack. This is N-factorial or iV!; for the first ball to 
emerge may be any one of the N, and the next may then be any one of the 
(iV—1) remaining, and the next may then be any one of the(N—2) remain- 
ing, and so on to the end. 

If each order corresponded to a different inventory, yV! would be our 
answer. Clearly this is so, if and only if there are as many baskets as balls 
and one ball in every basket. In all other cases i\r! is larger, and often 
colossally larger, than the number which we seek. It is necessary now to see 
that this great multitude of Nl different orders falls into groups composed of 
X orders apiece, all of those in a single group corresponding to a single 
inventory—necessary to see this, and to calculate X-, whereupon we shall 
find that X, the "number of orders per inventory", is the same for all of the 
inventories—so that the number which we seek is AH divided by this common 
value of X. 

It seems to be helpful to think of some one inventory, and of some one 
order which leads to that inventory. By a certain amount of mental effort, 
which varies from person to person, it can be seen that this particular order 
is but one among iVi! AV A^! • • • Nml different orders all leading to the 
very same inventory. For think of the Ni numbered balls which lie in the 
first of the baskets: there are N\! different orders in which they could have 
come out of the sack, and every one of these corresponds to the very same 
inventory. Think next of the Nz numbered balls which rest in the second 
basket: they might have come out of the sack in N^. different orders, without 
changing the inventory. Think now of the contents of both of these baskets 
at once. Each of the A^! orders in which the second basketful may come 
out of the sack may follow on any one of the AV orders in which it is possible 
for the first basketful to emerge. The product AT' ^"2! is therefore the total 
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number of ways in which the first (iVi + iVa) of the balls might have come 
out of the sack without changing the inventory. 

The process of proof need not be carried further. X has been evaluated. 
It bears no earmark of whatever particular inventory the student may have 
chosen to adopt at the beginning. It depends only upon the sequence of 
numbers Ah , A?2, • • •, NM fixed by the caller, which sequence I will hereafter 
term a "distribution". 

The number of inventories—or "complexions", to use a commoner word— 
for the distribution Ah, • • •, NM is therefore given by the formula, 

W = Ah/Ah! Ah! • • • Ah,! = Ah'/IIAh! (0 

The theorem to which we are advancing affirms that this number has its 
maximum value for the uniform distribution—the distribution in which the 
caller assigns the same number of balls, N/M, to each of the baskets. 

The usual argument for this statement may be put as follows: Let us 
assume the uniform distribution, with A = {N/M) balls in each basket, and 
compare its value of W with that of one of the neighboring distributions 
such as the one in which there are (A + 1) balls in the first of the baskets, 
(.4 - 1) in the second and A in each of the rest. It is not even necessary 
to get out a pencil and paper to see that W for the latter is less than W for 
the former, being in fact just A/{A + 1) times as great. The same is 
evidently true for disarrangements of the uniform distribution which involve 
more than two baskets and more than one ball per basket. The conclusion 
is clinched by the obvious fact that when all of the balls are in any one bas- 
ket, W has its least possible value, viz. unity. (To unite this formally with 
the previous statements, one must follow the mathematicians practice of 
using a symbol 0! or "zero-factorial" and giving it the value unity). 

We shall have to play this not so very entertaining game on several oc- 
casions in S.M., altering the meaning of the balls and the meaning of the 
baskets from one occasion to the next. The reader has probably guessed 
that the balls stand for the molecules. The guess is right in the classical 
statistics, wrong in the newer forms. To get at the meaning of the baskets, 
suppose the gas contained in a box of volume V, the interior of which is 
divided up by impalpable coordinate-planes into compartments or cells all 
of the same volume Vo. The baskets stand for the cells. 

Now we have the theorem that W is greatest for the uniform distribution 
of the balls in the baskets, and the assertion that the most probable state 
of a gas is the state of uniform density, all ready to be fitted together. The 
process of fitting-together is of the simplest. W is christened the "prob- 
ability" of the state described by the "distribution" Ah , A^ , ''' ATm , the 
quantities Ah now standing for the numbers of molecules in the various cells. 
Not only is the state of uniformity the most probable one by this definition, 
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but so long as the number of molecules N is many times as great as the number of 
compartments M—a condition easy to realize—those distributions which are 
markedly far from uniform have probabilities which are fantastically smaller 
than the value of W for the uniform state. 

The Boltzmann statistics manages thus to derive the assertion aforesaid— 
the assertion that the uniform distribution in ordinary space is of all the 
most probable—from a principle which (at least in appearance) is more fun- 
damental. It has indeed a couple of bothersome points—more than a couple 
perhaps, but there are two in particular which the newer statistics will at- 
tempt to assuage. One of these is the size to be assigned to the cells Fo; but 
we are borrowing trouble to think too much of that now, since whatever 
choice be made so long as N/M be large will not affect the achievement just 
cited. The other is, that one would much rather think of the molecules of a 
gas (of a single chemical kind) as being alike absolutely, than as being dis- 
tinguished one from another by a mysterious something-or-other represented 
in this theory by numbers painted on balls. In the Boltzmann statistics, 
however, the numbers must stay on the balls. 

We go over into the momentum-space, setting up a coordinate-frame and 
representing the molecules by dots, the coordinates of which are the momen- 
tum-components px, py, pz of the molecules in question. To each position of 
a dot corresponds an energy-value, equal to (l/2w) (p2

x + ^ + pi)', we will 
call it E. E vanishes at the origin, and has a constant value over any spheri- 
cal surface centered at the origin. To any distribution of the dots will cor- 
respond a specific value for the total energy of the gas. For this we need a 
symbol different from E] and as we shall have a good deal to do with thermo- 
dynamics later on, I choose the thermodynamical symbol U. The average 
energy of the molecules of the gas will then be U/N, to be denoted by U. 

The entry of E and U into the situation is of the first importance. It is in 
fact all that will save us from the highly unwanted conclusion that the most 
probable distribution in the momentum-space is the uniform one, just as it 
was in the coordinate-space. To see why it makes so great a difference is 
not altogether easy. I think that the reflections which follow may give an 
inkling of the reason. 

The momentum-space must be taken either as infinite or as finite. If we 
take it as infinite and demand a distribution of uniform density, then the 
density goes to zero and at the same time the energies of the molecules go to 
infinity, producing an impossible situation. Let us then take it as finite, 
blocking off all of the parts of it which lie beyond a certain sphere centered 
at the origin. Assume a uniform distribution within the sphere. This will 
correspond to a certain value of U. (The student may suppose, if it makes 
him happier, that the Z7-value was preassigned and the radius of the "certain 
sphere" chosen accordingly.) The IF-value of this distribution will surely 
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be greater than that for any non-uniform distribution, whether of the same 
or of a different U, confined within the sphere. However, by blocking off 

the whole of the momentum-space beyond the sphere, we have barred a 
whole lot of distributions corresponding to the same U and having some of 
their dots beyond the sphere. By no means have we proved that the W- 
value for the uniform distribution within the sphere is greater than that for 
any and all of the barred distributions. Now if we can agree that the block- 
ing-off of part of the momentum-space is a silly thing to do and unacceptable 
to Nature, the argument for the uniform distribution is spoiled, and we have 
to look for a new idea. ' :. , 

At this point it seems best to go through the mathematical process for 
finding the distribution of greatest W in the coordinate-space and the 
momentum-space, just as that process is presented in the textbooks. 

We return to equation (1) and make it a manageable one by having re- 
course to that godsend of statistical mechanics, the "Stirling approxima- 
tion", which may be written thus: 

In N\ = N In N — N + In ^/irN (2) 

This is valid only for large values of N, though writers on S.M. never seem 
to remember how large the values must be. For still larger values of N we 
can drop off the last two terms, arriving at a sort of super-Stirling approxima- 
tion which however itself is commonly called the Stirling approximation: 

\n N\ = N \n N (3) 

Putting (3) into (1), we find: 

\nW = N\nN - Z Niln A.- (4) 

Defining some quantities w, by the equations A,- = Nwi, we make this over 
into: 

In W = - A" S w,- In Wi (5) 

having availed ourselves of the obvious fact that Sif,- is equal to unity. 
We might now convert this into an equation for W, but this would be a 

waste of time and energy, since whenever W has a maximum so also will 
In W. With In W, therefore, we operate from now on. Making small varia- 
tions in the quantities N*, and making therefore small variations—call them 
8Wi—in the quantities Wi, we find in first approximation for the ensuing 
change in In W, 

6 In IF = — iV S (1 + In w,) 8 wt- (6) 
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Now we are restricting ourselves to variations in the quantities iV,- which 
leave unchanged the total number of molecules in the cells, or of balls in the 
baskets—to variations, therefore, for which 

Ni = N = constant, S 5 w,- = 0 (7) 

This restriction being introduced into (6), 8 In W proceeds to vanish if and only 
if Wi has the same value for all of the cells. Now, the vanishment of 8 In W is 
a necessary condition for having a maximum of W at the situation in ques- 
tion. I do not refer to it as a sufficient condition, because it admits of a 
minimum or of what is technically known as a "stationary" value of W in the 
situation in question. However it has already been shown, without the aid 
of the Stirling approximation, that the expression to which we are approxi- 
mating is greater for the uniform distribution than for the neighboring non- 
uniform ones. It may therefore be accepted that here we have a maximum 
of W for the uniform distribution, and have reached the old result in a new 
way; an achievement nearly useless, were it not a prelude to the performance 
in momentum-space. 

I continue to use the symbols W and N and iV,- and Wi, but now with ref- 
erence to the distribution of the representative dots in momentum-space. 
A new symbol, , shall signify the energy of a molecule in the fth cell of the 
momentum-space. We wish at all costs to avoid the conclusion that the 
stable distribution in the momentum-space is the uniform one. Boltzmann 
managed to avoid it, and his was the following way: 

Let us write, for the number of molecules in the ith cell, the expression: 

Nwi = NA exp {—BEi) (8) 

and insert it into (6). We shall find: 

8 In W = - A 2 (1 + 1il4 - BEX) Sw,. (9) 

Of the three terms on the right, two vanish for all variations in which the 
total number of molecules remains the same. The third does not—but it 
will vanish for a restricted class of these variations, to wit, those and those 
only for which the total energy of all the molecules remains the same; for 
NHWiEi is precisely that total energy. 

Some wjiters at this point ask the student to imagine a gas in a container 
being completely cut off from energy-interchange with the container-walls 
and with the whole of the outside world, and therefore being limited to the 
particular f7-value with which it started out. Others import the word "tem- 
perature" which I am desperately (and vainly) trying to keep out until I am 
ready to bring it formally into the discourse, and aver that the gas is nearly 
or quite so limited if the walls of the container have the same temperature as 
the gas itself. The student may take his choice, but must suppose that 
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under such conditions Nature rejects that distribution which so to speak is 
"stable against" every conceivable variation, and elects that peculiar distri- 
bution which is stable not against any conceivable variation but only against 
the possible ones. Perhaps this is because the uniform distribution would 
entail the consequences mentioned on page 117, or perhaps there is no sense 
in saying that it is "because" of this or "because" of that. Anyhow, the 
peculiar distribution is the one which the data sustain. 

However I have not really defined the peculiar distribution as yet, having 
merely thrown the symbols A and B into equation (8) as though they stood 
for completely disposable constants. It can readily be seen that at the 
most there can be but one disposable constant, for A and B interlinked by 
the obvious equation: 

S w,= A S exp (—BEi) = 1 (10) 

But even B is not disposable, if the total energy U and the average energy 
per molecule U are preassigned; for there is another obvious equation: 

17 = S EflVi = AX A.exp (—BE,) (11) 

What with equations (10) and (11), there is no longer anything disposable 
about the constants A and B. The peculiar distribution in the momentum- 
space is completely defined. It is the Maxwell-Boltzmann distribution-law 
obtained from the Maxwell statistics, and sometimes known as the "canoni- 
cal" distribution. 

To summarize now the Boltzmann statistics as on page 113 the Maxwell 
statistics was summarized: 

A gas is wore likely to he fowid in its wost probable state than in any other. 
The probability of a state is found by imagining it as a distribution of numbered 
molecules among cells, in the coordinate-space and in the momentum-space. 
That of any. distribution is measured by the number of inventories compatible 
therewith. By this criterion the most probable distribution in coordinate-space 
is the uniform one, and by this criterion carefully hedged about, the most probable 
distribution in momentum-space is the Maxwell-Boltzmann or canonical one. 
It is necessary to liken molecules of a single kind to numbered balls, differing in 
no way except the numbering. 

This point was reached by statistical mechanics about fifty years ago. 
Had it not been for Planck's wish and tenacious will to explain the black- 
body radiation-law, it might have been the stopping-point. 

A Helpful and Troublesome Coincidence between Two 
Different Quantities 

Let us return to the game with the sack, the balls and the basket, played 
in the manner which led to good results when applied to the molecules in the 
coordinate-space. 
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The most probable distribution is the one evoked by the caller, when he 
calls for an equal number of balls in every basket. If there are N balls and 
M baskets, this means N/M balls to each basket, and a maximum number of 
inventories which I will call Wmax. Looking back to equation (1), we see 
that ITmax is a fraction the numerator of which is iV-factonal, while the de- 
nominator is (iV/Af)-factorial raised to the power M. Taking logarithms 
and using the super-Stirling approximation, we find: 

In Wmax = N\nM (12) 

The logarithm of the probability of the most probable distribution (of num- 
bered balls in numbered baskets, or molecules in equal cells of coordinate- 
space) is equal to the logarithm of the number of baskets (cells), multiplied 
by the number of balls (molecules). 

Next suppose the caller, in a fit of uncontrollable zest for the game, calling 
in succession every one of the conceivable distributions. What is the total 
number of inventories compatible with all of them together? To sum over 
every conceivable expression of the type of (1) seems a hopeless assignment, 
but there is a short-cut to the result. 

Fix a particular order for the drawing of the balls from the sacks—it may 
as well be the very order of their numbering. The first of the balls to be 
drawn may be tossed into any one of the baskets, giving M distinct "possibil- 
ities". The second may be tossed into any one of the baskets, the same or 
another, giving in conjunction with the fate of the first M- different possibil- 
ities. The third may be tossed—but we leap to the conclusion. There 
are MN possibilities altogether, and these are the inventories. Thus the total 
number of inventories consistent with all of the distributions, which I will 
call Wtot, is a number whereof the logarithm is, 

In TFtot = N In M (13) 

But this is the same as the expression for In Trmax! 
The meaning of this strange coincidence can only be, that when N and 

N/M are both so great that the super-Stirling approximation is a good one, 
then the logarithm of the number of inventories belonging to the most prob- 
able distribution is nearly as great as the logarithm of the total number of 
inventories belonging to all of the distributions put together—so nearly as 
great, that either logarithm is a good approximation to the other. 

In the foregoing very important paragraph, I have italicized the word 
"logarithm" because if it were left out the statement would become a false 
one. The statement is not true if applied to the numbers themselves. Wtot 
is manyfold greater than IFmnx, and the ratio between the two actually in- 
creases with rising N. So does the difference between In Wtot and In Wmax 
increase with risingN, but not so fast as either by itself; wherefore the truth 
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of the statement. The student may convince himself of this by applying 
the second-degree Stirling approximation (equation 2)2. 

I have called this both a helpful and a troublesome coincidence. It may 
be deemed a helpful one, because the expression for the total number of in- 
ventories is easier to derive and easier to remember than the expression for 
the number of inventories belonging to the most probable distribution. If 
therefore one has good ground for believing (as here is the case) that the 
logarithms of the two are approximately equal, one may serenely remember 
and use In Wtot instead of In IFraax . The troublesome feature is, that some 
expositors speak of In ITtot throughout and never allude to In TTmnx, thus 
confusing the student to an extent which (if my experience is typical) may 
well be serious. I shall later dwell on the fact that In W for any distribution 
is regarded as a measure of the entropy of that distribution, and In Wmax 
therefore as a measure of the entropy of the most probable distribution. 
Some people imply that In WTot is the true measure of the entropy of the gas, 
instead of being an approximation to it. They commit no numerical error 
in so doing, but they blot out the most remarkable quality of the Boltzmann 
statistics, to wit, the clear distinction which it makes between the most prob- 
able distribution and those of lesser probability. This mistake is more 
commonly made in treating the newer statistics. Here I am not so sure 
that it is a mistake, but I think so. 

Meanings of the Word "State" 

The word "state", which turns up continually in this essay, is one of those 
words of which a proper definition is hardly less than a full description of the 
theory which employs it. When the theory changes so also does the meaning 
of the word. In the welter of statistical theories, the word "state" has 
several different meanings. In thermodynamics also it has more than one 
meaning, but one is preeminent. 

Thermodynamics usually concerns itself with gases (not to speak of li- 
quids and solids) which are in what I earlier called a "uniform" state: uniform 
density, uniform pressure, uniform temperature. For a gas of a single kind 
("kind" being a word which it is the business of chemistry to define) it is a 
fact of experience that any two of these three variables suffice to define the 
third and also all of the other variables which thermodynamics cares about. 
Of these others there are two in particular which I mention at this point, the 

2 Actually if one goes from the "most probable state" Ni = const. = N/M to the 
"next most probable" in which one ball is taken out of one of the baskets and put into 
another, the change in W is in the ratio of {N/M) to {N/M) + 1, which is practically 
no change at all when N/M is so high as is commonly taken. This shows that the state- 
ment could not be true if it were made about the numbers Wmux and PTtot rather than 
about the logarithms thereof. It certainly looks as though the statement could not be 
true even when made of the logarithms, but this is evidently one of the cases where 
"intuition" is a fallible guide. 
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energy and the entropy. This makes five altogether, and any two of the 
five suffice to determine the state,—THE STATE, the uniform state, the 
only one about which thermodynamics really knows or cares. When asked 
about what I earlier called "a surging state", thermodynamics mutters 
something to the effect that the entropy of such a state is smaller than that 
of THE STATE, and then puts an end to the conversation by refusing to 
commit itself further. Thermodynamics takes no cognizance of the molecu- 
lar structure of matter. A gas might be a continuum, for all that it knows 
or cares. 

Statistical mechanics talks about a mental image of the gas, in the form of 
a flock of dots in the coordinate-space and another flock of dots in the mo- 
mentum-space, or one may call them a single flock of dots in the /i-space. In 
Boltzmann statistics, the "state" of this image is what I have been calling 
the "distribution". The most probable state of the image—to wit, the one 
with the greatest number of inventories or complexions^—is identified with 
THE STATE of thermodynamics. All of the rest belong to the category of 
which thermodynamics would say, that the entropy is smaller than it is for 
THE STATE. But since according to S.M. they belong to a category for 
which the probability is smaller than it is for THE STATE, one sees a con- 
nection between entropy of the gas and probability of the image beginning 
to take shape. 

Now it is time to make a formal introduction of the concepts of entropy 
and temperature—the latter word having already sneaked into this article 
two or three times in spite of all my efforts to keep it out. 

Formal Entrance of Entropy and Temperature 

For a substance, meaning now a gas, of a single kind, entropy and tempera- 
ture are defined by the equation, 

dU = TdS - PdV (14) 

P stands for pressure, V for volume, and 6" for entropy. For energy I use 
the symbol U already employed in that sense—but notice that formerly it 
stood for the kinetic energy of the molecules! To use the same symbol in 
both senses implies that the energy of the gas is entirely the kinetic energy 
(of translatory motion) of the molecules. This identification turns out to be 
valid for the "monatomic" gases, which are luckily numerous and well- 
studied. To these we confine ourselves throughout this article. T stands 
for the temperature called absolute; this being the only kind of temperature 
which will ever figure in this article, the adjective henceforth is discarded. 
Density was the fifth variable in my list given above, but volume is usually 
preferred to it. To make them equally useful, the quantity of gas must be 
stated; here it will be taken as one gramme-molecule. 
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It is evident that the equation is a comparison between two states. Do 
not go astray by supposing that these are like two of the states which we 
have been considering, having the same U and V and differing in the number 
of inventories! These on the contrary are two examples of THE STATE— 
of the thermodynamic state, of the most probable state—of a gas, differing 
in the values of some at least among the five variables. The quantities dU 
and dS and dV are the differences between the I/-values and the 5-values and 
the F-values of the two states, while F and T may be taken as referring to 
either, the smallness of the difference between the two states—implied by 
the differential notation—permitting of this. 

It is also evident from my wording that the one equation is being used 
to define the two quantities 5 and T. This is unluckily no verbal slip, 
nor is it a temporary shortcut to be replaced by a royal road as the ar- 
gument proceeds. The meanings of entropy and temperature are so 
coiled up together in thermodynamics, that it is impossible to take them 
apart unmutilated. One cannot seize either by storm and then invest the 
other, at least not without the aid of statistical theory: one has to surround 
them both in a single campaign. As Eddington has vigorously written, this 
is a common thing in physics. Electric force is defined as that which acts on 
electric charge, electric charge as that which is acted upon by electric force, 
and so on. . . . Common as it may be, it is probably nowhere else so har- 
assing as in thermodynamics. There are three ways of intruding upon the 
vicious circle. 

First, to apprehend both concepts in a single mental act. This is the 
counsel of perfection. 

Second, to use a temporary definition of temperature, with the promise of 
confirming or correcting it later. The ideal-gas thermometer is the device 
used for this purpose in thermodynamics. Anyone trained in this way is 
likely to think for the rest of his life of temperature as the primary concept, 
entropy as a derived one—as indeed was the case, when thermodynamics 
started. 

Third, to produce a theory which makes a pronouncement as to the nature 
of entropy. 

This last is the major office of statistical mechanics. To those who accept 
it, entropy becomes the primary concept and temperature the derived one, 
and both are visualized by the aid of the key-word "probability" of the basic 
theorem, interpreted in some particular way. 

Old Statistical Theory of Entropy 

In the classical statistics, the entropy of a distribution is considered to be the 
logarithm of the number of inventories or complexions compatible with thatdis- 



MEMORIAL TO CLASSICAL STATISTICS 125 

Iribution, multiplied by a constant {always denoted by k) which is adjusted to 
bring about agreement with experiment: 

entropy 6" = ^ In W. (15) 

To illustrate this doctrine and to evaluate k, I now take the student back 
to the coordinate-space, where a box of volume V populated with N mole- 
cules is divided mentally into M equal cells of volume Vq , and the most 
probable distribution is characterized by the value N In M for the logarithm 
of the probability. The entropy—or no, not the entire entropy of the gas, 
but merely what I will call "the contribution of the volume of the entropy" 
and denote by 5C—is then supposed to be kN In M, or: 

.S0 = ^TVln F — kN In Fo (16) 

Reverting to the equation (14) in which the definitions of entropy and 
temperature were tangled up together, and rearranging it, we get: 

TdS = dU + PdV (17) 

Now, an "ideal gas" is defined by two attributes. First, there exists between 
its pressure and its volume and its temperature the relation P = aT/V, 
wherein a stands for a constant. Second, its energy U depends upon the 
temperature only, and not upon any other variable, in particular not upon 
the volume. Therefore we may write: 

TdS = CJT + {aT/V)dV (18) 

Cv here standing for something of which we need only know that it is a 
function of T alone. Integrating, we find: 

5 = R In F + (Junction of temperature) + constant (19) 

and lo! it is seen that the dependence of entropy on volume is precisely of 
the sort which the theory is fitted to explain. 

The next step is to adjust the value of the constant k. The constant a 
aforesaid is proportional to the amount of gas in the box, proportional there- 
fore to iV: it is the constant ratio of a to N to which k must be equated. For 
the amount of gas let us choose one gramme-molecule. Then a assumes the 
value always symbolized by R and called the "gas-constant", and N assumes 
the value usually symbolized by No and called the "Avogadro number". 
Both of these are known from experiment, and k is fixed by the equation 

k = R/N0 (20) 

The constant k is named in Boltzmann's honor, though in his time its value 
was not known because the value of No was only vaguely apprehended. 

Now we have settled what I called "the contribution of volume to en- 
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tropy". It remains to interpret the rest of the right-hand member of (19), 
which I will call "the contribution of temperature to entropy". To do this 
we must re-enter the momentum-space. 

From (15) and (5) and (8) we get, for the entropy Sm of the flock of dots 
in the momentum-space: 

Sm = — k In W = - kN Iwi In Wj 

= -kNA 2 (In ^4 — (21) 

Refreshing our memory from (10), we see that the first term of this expres- 
sion reduces to -kN hi A. Refreshin^our memory from (11), we see that 
the second term reduces to + kNBU or kBU. Referring now to one 
gramme-molecule of gas, I put R for Nk, and find: 

Sm= -R\n A + kBU (22) 

Sm is hereby given as a function of U, but a more complicated function than 
appears on the surface, since A depends upon B (equation 10) and B upon V 
(equation 11). Yet when we differentiate Sm with respect to U, and in so 
doing take account of these complications, it turns out that we might as well 
have been oblivious of them! for the result is the same as though A and B 
were constants: 

dSjdU = kB (23) 

Now the temperature, which has so often slipped into this argument in 
ways more or less surreptitious, is about to make its formal and ceremonious 
entry into the statistical picture. We turn back to equation (17), and 
deduce: 

dS/dU = 1/T (24) 

The derivative here standing on the left is the derivative of entropy with 
respect to energy under the condition of constant volume: a thermodynami- 
cist would write it (dS/dU)v. It is therefore properly to be identified with 
the derivative in (23), and we make the two identical by putting: 

B = \/kT (25) 

Now taking the entropy S to be the sum of Sc and Sm , we find: 

5 = 5C + = - inn.4 + tZ/T-f- RlnF- RlnFo (26) 

and this is to be compared with (19), the thermodynamic expression for 
entropy, which I repeat to make the comparison easier: 

S = f (Cv/T)dT + R In F + constant (27) 
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Comparing these, we see first of all that R In V appears in both, as was already 
stated. It also seems at first glance that {—RlnA + U/T) is to be identi- 
fied with the integral in (27), and that —Rln Fois to be identified with the 
constant in (27). This however is not necessarily the case, for {—Rln A -f 
U/T) may prove to include constant terms. Indeed they do; and we must 
proceed to evaluate both A and U in terms of T in order to round off the 
task. 

I recall equation (10) and write it thus: 

X/A = 2 exp {—Ei/kT) (28) 

This is a summation, to which each cell contributes one term having the 
value of E appropriate to that cell—£, for the 7th cell. Of the volumes of 
these cells I have thus far said nothing, except that all are equal. I con- 
tinue to say nothing further, but I give to their common volume the symbol 
Z/o • Let us now form the integral: 

III exp {-E/kT) dpjpydp,, E = {\/2m) {pi + pi + pi) (29) 

the range of integration extending over the whole of momentum-space. 
This integral may be described as follows. Let the momentum-space be 
divided into cells of unit volume. Each of these cells of unit volume makes a 
contribution 

exp {—E/kT) 

to the integral, E standing now for the average value of E in the cell in ques- 
tion. The integral is the sum of all of these contributions. Now let us in- 
quire how much of a contribution is made by this same cell of unit volume to 
the summation (28). This second contribution is made up of \/Hq terms, 
one for each of the cells of volume //o which occupy the cell of unit volume. 
The values Ei corresponding to these cells will not be exactly equal to the 
value E corresponding to the entire cell of unit volume; but to the degree of 
approximation which is now being used, the difference may be neglected. 
The summation (28) is then equal to l//7o times the integral (25). Now the 
value of the integral (29) is given in all tables of definite integrals, and in 
terms of our symbols it amounts to 

{lirmkT)3'2 

so we come to the conclusion: 

In ^4 = - In {2TvmkT)in + In iZo 

= -f In T - In {2Tmk)312 + In Ho (30) 
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Now we have attended to every term in (26) except the term U/T. Nearly 
every reader will remember that the average kinetic energy of an atom of a 
monatomic gas at temperature T is | kT. I therefore leave out the deriva- 
tion of this result, except for showing the student how to begin on it: the 
first step is to go back to equation (11) where an expression was given for U, 
and in that expression to replace the summation 2 £,• exp {-BE,) by 

(l/flo) times the integral J J J E exp {—BE)dpx dpv dpz. It follows that 

U/T is (3/2) Nk, which for one gramme-molecule of gas is (3/2)i?, which I 
write as R In e1'. 

The picture of entropy for a monatomic gas limned by the Boltzmann sta- 
tistics, is now completed. Entropy is the function which follows: 

S = lR\nT + R\nV + R\n (31) 
2 r 0 -ao 

The dependence on volume is correct, i.e., just the same as in the thermody- 
namic formula. The dependence on temperature is correct, for (3/2)2? is 
the value of the specific heat at constant volume per gramme-molecule of a 
gas, the quantity Cv of equation (18). The additive constant, as to the 
value of which thermodynamics says nothing, is fixed when the volumes 
Fo and Ho of the elementary cells in the ordinary space and the momentum- 
space are fixed. 

Mixtures oe Gases 

Now we will go through the mental operation which is called "considering 
a mixture" of two different monatomic gases, N' atoms of the one and N" 
atoms of the other, in the same box and (necessarily) in the same momentum- 
space. Let me denote by U' and U" , respectively, the energies of these 
two gases; and by iV,' = N'w', and N'/ = Nw'/, respectively, the numbers of 
atoms of the two kinds in the ith cell of momentum-space. 

If we seek the most probable distribution of the first gas in the momentum- 
space, making the stipulation that we will admit only such variations of the 
quantities w'i as leave N' and U' unchanged—well, of course, we get the same 
result as before, the distribution (8), with N' in place of N and (let me say) 
A' in place of A and B' in place of B. A' will depend upon B' and B' will 
depend upon U'/N'. If we do the like with the second gas, we get anew to 
the distribution (8) with N", A" and B" in place of N', A' and B'. A" will 
not be the same as A' nor will B" be the same as B', unless it happens that 
U"/N" is equal to U'/N'. There is no cause for surprise in this. In acting 
this way we are only treating each gas by itself, and have as yet done nothing 
which can be regarded as "considering a mixture". 

Let us however seek the most probable distribution of the two gases, mak- 
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ing the stipulation that we will admit only such variations of the quantities 
w'i and w" as leave N' and N" and the sum of the energies U' and U"—not how- 
ever the individual energies U' and U"—unchanged. In acting this way 
we are doing something which may be regarded as "considering a mixture", 
since we are allowing for the possibility that energy may pass from the one 
gas to the other and the other to the one. Equally well are we considering 
the case of two gases separated by a partition through which energy may 
pass, but not the atoms. Since in such a case we really ought to take into 
account the atoms and the energy of the partition also, we must appease the 
critics by providing that the partition shall be very thin. 

Choose any set of values of the quantities iV,', which is to say, any particu- 
lar distribution of the first gas; and choose any set of values of the quantities 
Ni , which is to say, any particular distribution of the second gas. Go back 
to equation (1) and put primes on all the symbols N, Ni , • on the 
right-hand side of that equation. The resulting expression gives the total 
number of inventories or complexions of the first gas. Take off the primes 
and affix double primes to each of these symbols. The resulting expression 
gives the total number of inventories or complexions of the second gas. 
Every complexion of either may coexist with any complexion of the other. 
Therefore the total number of complexions of the pair of gases is the product 
of the two expressions. It is this product which is W for the pair of gases, be 
they mixed or side-by-side. 

With use of the Stirling approximation, the logarithm of W for the pair 
is the sum of two such expressions as we have seen in (5): 

\nW = -N'Xw'i In w'i - N"Zwi In w" (32) 

and its variation is: 

6 In W = -N'2(l + In w^Swi - ^"2(1 + In w'^Sw'/ (33) 

Let us now give a trial to the tentative distribution, 

w'i = A' exp {-B'Ei), w" = A" exp {—B"EX) (34) 

On substituting this into (33) we find that if B' is unequal to B", the dis- 
tribution has a stationary value of W with respect only to such variations 
as leave the energies of the two gases separately unchanged—the result 
which we had before. If however B' and B" are the same, then W is 
stationary with respect to variations which leave the sum of the energies 
unchanged, either being allowed to gain or lose so long as the other loses or 
gains by an equal amount. Since each B is controlled by the corresponding 
U/N, the distribution (33) has a stationary value of W for variations of the 
type in question if and only if the average energy of the atoms of each gas 
is the same. Since each B controls the corresponding A, this condition of 



130 BELL SYSTEM TECHNICAL JOURNAL 

equal average energy makes the distributions of the two gases just the 
same. 

We have already seen that kB is the reciprocal of the temperature: for 
it is the reciprocal of {dU/dS)v in our statistical picture, and the definition 
of absolute temperature T is precisely that T is this derivative. The state- 
ment to which we have come is, that the most probable state of the mixture is 
the one in which T is the same for both components. It is often expressed in 
this way: classical statistics shows that for two (or more) gases in equilibrium 
with each other, the temperature must be the same. It is indeed a fact of 
experience, and a most important one, that when two systems (be they gases 
or be they not) are in thermal equilibrium, their temperatures are the same. 
This has not hitherto been mentioned, and yet we seem to have derived it. 
Quite a rabbit for the magician of the classical statistics to have pulled out 
of the hat! 

However, skeptical people who see a rabbit pulled out of a hat are inclined 
suspect that either the rabbit was in the hat beforehand, or else there is no 
rabbit. Let us inquire into the contents of the hat and see whether we can 
find the rabbit there. 

The first (and the last) question to be asked is: what is the difference be- 
tween "different" kinds of gas in the statistical picture? 

To the physicist or the chemist, different kinds of gas will be (for example) 
mercury and helium. These differ in their spectra, boiling-points, chemical 
properties, and quantities of other features. None of these features however 
appears in the theory, and therefore none of them can contribute to the 
result. The atoms also differ in mass, and for a moment this seems to be a 
difference of which the statistical picture takes account, since the letter m 
appears in some of our equations. However, it appears only in the ultimate 
equations, those such as (29) in which the distribution-in-momentum is 
expressed. It does not appear in the original form of the Maxwell-Boltz- 
mann distribution-in-energy, the form shown in equation (8). It appears in 
particular in the last term of equation (31), but not elsewhere. Apart from 
this it may be said that in the classical statistics, all gases are the same gas. 

This is a paradox, but only one of two. The other paradox is, that in 
the classical statistics two parts of the same gas are different gases. This second 
paradox arises from the numbering of the molecules, which is an essential 
feature of the classical statistics. 

Therefore in the statistical picture a mixture of N' atoms of mercury and 
N" atoms of helium is distinguished by the fact that the mercury atoms bear 
one set of integer numbers (say those from 1 to N') and the helium atoms 
another set (say those from A' + 1 to A' + A"). But if the atoms were all 
helium atoms or all mercury atoms, they would also be divisible in many 
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different ways into a set of N' atoms bearing one set of numbers and a set 
of N" atoms bearing another set of numbers. Each set would obviously 
have to have the same distribution, with the same A and the same B, as any 
other set or as the totality of all the atoms. This conclusion, which is self- 
evident in the case in which all the atoms are called "mercury", remains true 
when some of the atoms are called "mercury" and others are called "helium". 
We have done nothing but change the names of some of the atoms; we have 
not imported into our theory anything which differentiates one kind of 
atom from another kind. No wonder we have arrived at the conclusion that 
all kinds have the same distribution-in-energy, the same A, the same B and 
the same temperature! The rabbit was indeed in the hat, but it does not 
look like so much of a rabbit. 

The classical statistics therefore doesn't recognize any of the real dif- 
ferences between atoms of different kinds, except for alterations in the last 
term of (31); but it does make an artificial difference which creates the 
astonishing result, that any two samples of the same gas are different gases! 
At this point we may begin to wonder whether this peculiarity, which has 
led to so apparently brilliant a result in respect of the equality of tempera- 
tures in thermal equilibrium, might elsewhere lead us astray. It does; and 
here appears the rift in the lute of classical statistics. 

The Rift in the Lute 

Let us imagine two boxes of equal size separated by a common partition, 
each containing a gas consisting of N atoms, both gases at the same tempera- 
ture. We will baptize one gas "mercury" and the other gas "helium". 
Let an opening be made through the partition. It is known that in such a 
situation in Nature, the two gases diffuse into one another, the final and 
permanent condition being that in which the mercury and the helium are 
equally distributed between the two boxes. The process of diffusion is an 
example of what in thermodynamics is called an "irreversible" process. The 
state of uniform mixing ought to correspond to the most probable state in 
the statistical picture. But what does the statistical theory say? 

The statistical theory says nothing about diffusion and nothing about 
mixing. The statistical theory takes account of nothing but the facts that 
the mercury had at its disposal the volume V before and the volume 2V 
after the breaking of the partition, and ditto for the helium. The value V 
contains M cells {M = V/Vo) and the volume 2V contains 2M cells. The 
(approximate) probabilities of the uniform distribution are MN before and 
{2M)N after. The latter is greater than the former; the entropy goes up by 
Nk In 2 for each gas, by 2 Nk In 2 for the two of them, when the private pre- 
serve of each is thrown open to the other. This gain is what is called the 
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"entropy of mixing" though as we have seen it is really the "entropy of 
expansion". It is the alteration in the second term of the righthand member 
of (31). 

But now suppose both of the boxes hold helium. One may indeed con- 
tinue to suppose that when the partition is opened each one of the two 
samples of helium undergoes an expansion, doubling its volume. The 
entropy would then go up by 2 Nk In 2. However this looks so silly a thing 
to say that no one, I feel almost secure in affirming, has ever said it. The 
natural thing to say is, that the 2N atoms of helium distributed through 
the two boxes at uniform temperature and uniform pressure have just the 
same entropy-value whether or not the partition is broken. 

What does the classical statistics say about this situation? Its answer can 
be foretold. Since the two samples of helium are different by virtue of the 
different numberings of the two sets of atoms, the classical statistics insists 
that the entropy increase by 2Nk In 2 when the partition is broken, even 
though the gases are the same. This is indeed, if I may pervert the poem, 
"the little rift within the lute, which makes the classical statistics mute." 
The achievement of predicting the uniform distribution in ordinary space, 
the achievement of predicting the Maxwell-Boltzmann distribution-law in 
momentum-space, the achievement of providing the proper relation between 
temperature and mean kinetic energy—all of these are unsettled by this 
calamity. 

Were I writing a strictly logical article I should quit at this point. No- 
thing further can apparently be done, except to tamper with the classical, 
statistics in an effort to remove the unwanted result which has sprung forth 
to plague us. To violate the logic of the classical statistics in order to 
banish the undesired while keeping the desired results is a very questionable 
act. In theoretical physics, it is not admissible that the end justifies any 
and all means. Nevertheless so successful a feat of tampering has been 
done, that I cannot refrain from mentioning it as I close. 

Let me first express in a slightly different way the liature of the "rift". 
Compare two samples of the same gas at the same temperature, one con- 
sisting of N atoms in a volume V, the other consisting of xN atoms in a 
volume xV. That which is called entropy in thermodynamics—and there- 
fore that which is entropy, since it is the privilege of thermodynamics to 
give the definition of entropy—is x times as great for the latter as for the 
former. But that which the classical statistics calls entropy—or, as we must 
admit, miscalls entropy—is not x times as great for the latter as for the 
former. It would be, if there were x times as many atoms but just the same 
number of cells. However, there are .r times as many atoms but also x 
times as many cells into which to put them. The number of complexions is 
approximately MN in the former case and (xM)xff in the latter, M standing 
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for the number of cells in the former box. The thing miscalled entropy is 
kNlnM in the first case and {kxN\nM + ^;viVln.r) in the second case. It is 
the term fcfiVlna: which is the rift. 

Clearly we could abolish this term by allowing the volume of the cells to 
swell in the ratio *:! when going from the former case to the latter. This 
is the same as making Hq proportional to the number of atoms in the sample 
of gas which happens to be under study. Since in equation (31) the volumes 
Fo and //o (of the elementary cells in ordinary space and in momentum- 
space) are indissolubly bound together in the product F0//0, this is the same 
as making V JIa equal to some constant multiplied by the number of atoms 
under study. 

Such, if I interpret correctly, was the idea proposed by Sackur in 1912. 
While it does the task required, it is an "ad hoc" assumption of the most 
barefaced character. If the gas under study is at first divided into two 
parts by a partition and the partition is then abolished, the cells must be 
supposed to swell up at the moment when the partition vanishes.. 

We can also abolish the fatal term by going back to equation (1) for the 
number of complexions, and removing the factor iW in the numerator and 
replacing it by unity. We then have unity divided by the original de- 
nominator, which in the (most probable) case of the uniform distribution is 
{N/M)l raised to the power M, as I remarked on page 121. Using the 
super-Stirling approximation, we find that the logarithm of one fraction is 
(MnAf — iVlniV). The factor iV! which we formerly had in the numerator 
killed off the term (—NlnN), but now that we have taken it out, this term 
survives. If now we say that k times the logarithm of W/N\ shall be the 
picture of entropy in the classical statistics, then the term (—kNlnN) 
comes over into the right-hand member of (31). It may be amalgamated 
with the last term already standing there; and when this is done, we find 
Fo/Io multiplied by N exactly as Sackur put it there, and with the same 
wished-for result. 

This, if I interpret correctly, is the idea proposed in 1913 by Tetrode. It 
does the task required of it, but its drawback is that the removal of the 
factor TV! from the right-hand member of (1), a drastic piece of surgery as 
it were, violates the system of the classical statistics.3 

I was not, however, thinking merely of this achievement when on Page 
132 I spoke of "a remarkably successful feat of tampering." To show the 

3 This may seem too strong a statement. We are, after all, only asked to accept k In 
(W/N\) as our picture of entropy, instead of ilnlF; why be reluctant? But in effect, as I 
see it, we are asked first to accept k\x\Wf as our picture of entropy, / being an arbitrary 
function of N] and then we are asked so to choose/, that the dependence of k In Wf on N 
shall conform to the actual behavior of entropy. This is different from and much less 
impressive than our original procedure, which consisted in first realizing that W is the 
number of complexions, and then discovering that k In W depends on volume and on 
temperature in just the right ways for entropy. 
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magnitude of the achievement, I will rewrite equation (31) with two altera- 
tions. The first consists in replacing R with Nk, so that the expression shall 
refer not to a gramme-molecule of gas but to any number N of atoms. The 
second consists in following Tetrode by affirming that the entropy is not 
k In W, but k times the logarithm of W/N\ I follow him still further by 
using, not the super-Stirling approximation in which iV In iV is written for 
\nN!, but the better approximation in which (N IniV — iV) or {N\nN — Mne) 
is written for In iV! The result is: 

5 = (3/2)Nk [n T + Nk ]n V — Nk In N 

+ Nk In [(2Trnik3l2el2/VoHo\ (35) 

This quantity newly chosen as the picture of "entropy" depends on volume 
and on temperature in the right way, as did the other. The dependence on 
N the number of atoms is now correct, and no wonder, for the new quantity 
was chosen with that purpose. There is a fourth term in the right-hand 
member which is proportional to N, and its value is completely determined 
if the value of VoHq is fixed. The value which it takes when N is made equal 
to iVomay be called "the chemical constant"; but this name has been spoiled 
through being used with several different meanings, and should probably be 
abandoned. 

When to Foflo, the volume of the elementary cell in six-dimensional space, 
there is given the value //3—the cube of Planck's constant—the resulting 
value of the fourth term is excellently confirmed by experiments on all of the 
noble gases, and (with less precision) by experiments on many of the mona- 
tomic vapors of metallic elements. This is the achievement known as "the 
verification of the Sackur-Tetrode formula" and it is indeed a grand one. 

Anyone versed in thermodynamics will probably regard this not as a grand 
result, but as an incomprehensible one! Are we not taught in thermody- 
namics that nothing is ever measured about entropy except the diferences 
between its values under different conditions, so an additive constant like 
the one in question must drop out of every verifiable equation, and its 
value can never be found? How then can it make sense to speak of con- 
firming the value of the fourth term on the right-hand side of (35)? 

Well, actually it is a difference which is measured: the difference between 
the entropy of the gas at any convenient temperature and volume and the 
entropy of its solidified crystalline form at the absolute zero. This dif- 
ference is found to be such, that if for the entropy of the gas one puts the 
value (35) with h* substituted for Fo-ffo, then for the entropy of the crystal- 
line solid at the absolute zero one finds the value: zero. This result—this 
conclusion that the entropy of a crystal is zero at the absolute zero—is in 
itself so desirable and welcome that it is taken as the confirmation of the 
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Sackur-Tetrode formula. By "desirable and welcome" I mean that it is 
harmonious with the idea that entropy is a measure of disorder, an idea 
plausible in itself and fruitful in its applications. A chemical element per- 
fectly crystallized at the absolute zero is supposed to be the exemplar of 
supreme order, and therefore its entropy ought to be nil. But this is an 
enormous subject requiring at least one other article, and I am glad that my 
attempt at writing such an article stands already in print in the June( 1942) 
issue of this Journal. 

Here then is the astonishing history of the Classical Statistics. By a 
strangely artificial device, the numbering of atoms deemed identical, it 
arrived at the proper distributions—that is, the distributions ratified by 
experiment—in ordinary space and in momentum-space. It then proposed 
a picture of entropy partially right, yet wrong in its dependence on the 
number of atoms, and therefore fatally wrong. With another artificial and 
dubious device, it corrected itself by adopting a new picture of entropy, this 
time depending in the right way upon the number of atoms. With a third 
artificial device (the introduction of Planck's constant in a peculiar way) it 
completed the formula for entropy in a manner leading to the consequence 
that the entropies of solidified crystallized elements are zero at absolute zero. 
All of these feats and more were subsequently achieved by the New Statistics, 
in a manner which I hope to explore on a later occasion. 



Abstracts of Technical Articles by Bell System Authors 

Poles and Pole Treatment.1 Reginald H. Colley. Studies made of 
pole use and drainage on the southern pine forest have brought out that if 
the demand for poles 35-feet and longer were to continue at the present rate, 
a situation would soon develop in which these poles would be at a premium. 
It would seem wise to use as many circumference classes as possible and to 
broaden the use of poles of other species whenever it is practicable to do so. 
Successful full length treatment of red pine, lodgepole pine, western cedar 
and Douglas fir poles will help to broaden this use. 

There has been a definite trend toward greater mechanization in pole 
production. Machine shaving smooths the pole surface and accelerates 
drying. Poles with square cut roofs and slab gains are all-purpose poles, 
one design taking the place of four. New types of preservative treatment— 
greensalt, creosote-petroleum-pentachlorphenol and salt-creosote—are of 
promise and must be considered, when current restrictions are removed, in 
those cases where clean poles are mandatory. 

Interesting breaking test data are reported which show that the modulus 
of rupture of pole top sections average 90 per cent of the modulus of the 
poles as a whole, and that pole tops are sufficiently strong to meet their 
specified class breaking loads. This is of considerable importance where 
poles are guyed. 

Current groundline treatment methods, it is pointed out, should be applied 
to untreated poles in line that are worth saving at the time of inspection, as 
a part of the regular inspection procedure. 

Hearing, the Determining Factor for High-Fidelity Transmission.2 Harvey 
Fletcher. This paper gives the requirements for ideal systems for the 
transmission of speech and music. These requirements are based on: 1. 
Measurements of the threshold and frequency limits of the hearing of more 
than 500,000 people at the New York and San Francisco World's Fairs; 
2. measurements of the discomfort level of sound; 3. measurements of room 
noise in a wide variety of locations; and 4. measurements of the frequency 
limits and the maximum and minimum levels of speech, orchestral music, 
and various instruments of the orchestra. 

From this information and from judgment tests it is concluded that 
substantially complete fidelity in the transmission of orchestral music is 

1 Elec'l. Engg., Transactions Section, September 1942. 2 Proc. I. R. E., June 1942. 
136 
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obtained by use of a system having a volume range of 65 decibels and a 
frequency range from 60 to 8000 cycles per second. Substantially complete 
fidelity for the transmission of speech is obtained by a system having a 
frequency range from 100 to 7000 cycles per second and a volume range of 
40 decibels. 

Preliminary experiments comparing a single-channel system and a two- 
channel stereophonic (auditory perspective) system showed that stereo- 
phonic transmission with an upper frequency limit of 5000 cycles per second 
was preferred to single-channel transmission with an upper limit of 15,000 
cycles per second. A definite improvement was obtained in the stereo- 
phonic system by using three channels instead of two. 

A New Direct Crystal-Controlled Oscillator for Ullra-Short-Wave Fre- 
quencies? W. P. Mason and I. E. Fair. An ultra-high-frequency crystal 
oscillator is described which utilizes a mechanical harmonic of an AT or BT 
crystal. With the oscillator frequencies as high as 197 megacycles, hormon- 
ics as high as the 23rd have been excited. Taking the second electrical 
harmonic of the oscillator, frequencies as high as 300 megacycles, or 1 meter 
have been obtained. Since a mechanical harmonic is used, the crystal can be 
of a practical size to handle and adjust. The harmonic vibration of the AT 
and BT crystals have as low a temperature coefficient as the fundamental 
mode, and temperature coefficients of less than two parts per million per 
degree centigrade are easily obtained. Stability curves for this type of 
oscillator are shown and the results indicate that at 120 megacycles stabilities 
in the same order of magnitude as for ordinary crystal oscillators can be 
obtained. Without temperature or voltage control it appears likely that 
the frequency should remain constant to ± 0.0025 per cent. 

Some measurements have been made of the properties of harmonic crystals 
at high frequencies. It was found that the Q of a crystal is independent of 
the frequency but in general increases with harmonic order. The ratio of 
capacitances r of a crystal increases as the square of the harmonic order. It 
is shown that in order to obtain a positive reactance in the crystal Q > 2r. 
This relation will only be satisfied for harmonics of AT crystals less than the 
7th. As a result oscillator circuits such as the Pierce circuit cannot be used 
to drive crystals at high harmonic frequencies. A discussion of oscillator 
circuits is given and it is shown that a capacitance-bridge oscillator circuit 
with the crystal in one arm is the best type to use for high-frequency har- 
monic crystals. 

War Activities of the Bell Telephone System? Keith S. McHugh. The 
scope of the Bell System's nation-wide service is, even in peace, difficult to 

3 Proc. I. R. E., October 1942. 4 Bell Telephone Magazine, November 1942. 
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visualize in its entirety. In war, when practically every phase of the na- 
tional effort to overthrow the Axis aggressors depends in some part on swift 
communication, both the extent and the importance of the System's con- 
tributions to the winning of the conflict are beyond summarizing. In the 
past two years, numerous articles in the Bell Telephone Magazine (listed at 
the end of this article), and in the employee publications of the Associated 
Companies, have described many aspects of the System's cooperation with 
the armed forces, with industry, and with the civilian population. Now, 
nearly a year after Pearl Harbor, it seems appropriate to review both the 
System's preparations for the national emergency and the steps which it has 
taken since war became no longer a threat but a fact. To the extent that 
it is possible in limited space, this article rounds out the previous frag- 
mentary parts of the whole picture. 

The Number of Two-Terminal Series-Parallel Networks^ John Riordan 
and C. E. Shannon. This paper is concerned with the number of ways 
n abstract (electrical) elements may be connected in series-parallel arrange- 
ments and in particular with the way the number behaves for n large. After 
a proof of a generating identity for the numbers given without proof by P. 
A. MacMahon in 1892, the paper gives recurrences and schemes of computa- 
tion by means of which MacMahon's table for the numbers is extended from 
n = 10 to n = 30. The behaviour for n large is shown to be of the form 

A X" M"3'2 

with A a fixed constant and X a real number between 2 + \/2 = 3.414 
and 4 and closer to the former than the latter; indeed an approximating 
function for which X is about 3.56 agrees with the numbers within 3% over 
the range 7 to 20. These results are used to show that almost all switching 
functions of n variables require at least 

2n 

(1 _ e) -i— 6 > 0 
log2 n 

switching elements (make or break contacts) in series-parallel realization. 

The Electrical Oscillations of a Perfectly Conducting Prolate Spheroid.6 

Robert M. Ryder. The forced oscillations of a perfectly-conducting pro- 
late spheroid of eccentricity nearly unity are shown to be decomposable into 
"harmonics" corresponding to different modes of vibration, each harmonic 
being quantitatively connected with a certain portion of the impressed elec- 
tric field which drives the antenna. The harmonics contribute additively 
to the current and field of the spheroid; each offers a characteristic imped- 

6 Jour. Mathematics and Physics, August 1942. 6 Jour. Applied Physics, May 1942. 
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ance to the driving field, and the properties of the antenna are a composite 
depending upon the proportions of the various harmonics present. The 
behavior of the harmonics with frequency is discussed qualitatively; analyti- 
cal expressions obtained are useful chiefly at the resonant frequencies of the 
antenna, where the most important harmonic becomes sinusoidal in char- 
acter. 

On Radiation from Antennas.'7 S. A. Schelkunopf and C. B. Feldman. 
This paper presents some theoretical remarks and experimental data relating 
to applications of the transmission-line theory to antennas. It is empha- 
sized that the voltage, the current, and the charge are affected by radiation 
in different ways, a fact which should be considered in any adaptation of 
line equations to antennas. 

It is shown experimentally and theoretically that in an antenna of length 
equal to an integral number of half wave-lengths, which is energized at a 
current antinode, the effect of radiation on the current and the charge 
(but not on the voltage) can roughly be represented by adding to the resist- 
ance of the wires another fairly simple term. 

The Use of Secondary Electron Emission to Obtain Trigger or Relay Action A 
A. M. Skellett. The use of secondary electrons to obtain trigger action 
similar to that of a thyratron is described. An experimental tube and the 
necessary circuits by which this action is achieved are discussed. This 
combination gives the features of a triode with a relay or on and off feature, 
resulting in an amplifier, oscillator, modulator, or other vacuum tube device 
which may be turned on or off abruptly at high or low frequencies. In 
addition, it can be used to replace thyratrons in many of their circuits where 
very low impedance is not necessary and is capable of much greater speeds 
of operation in such applications. 

A New Frequency-Modulation Broadcasting Transmitter} A. A. Skene 
and N. C. Olmstead. A new frequency-modulation transmitter is de- 
scribed which uses a novel amplifier circuit permitting an unusually simple 
mechanical design and an economical vacuum-tube complement. 

The choice and design of circuit components, governed by both mechani- 
cal and electrical considerations, are discussed in detail. 

A Secondary Frequency Standard Using Regenerative Frequency-Dividing 
Circuits.™ F. R. Stansel. A secondary frequency standard is described 

7 Proc. I. R. E., November 1942. 6 Jour. Applied Physics, August 1942. 
* Proc. I. R. E., July 1942. 
10 Proc. I. R. E.t April 1942. 
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in which standard frequencies are derived from a 5-megacycle oscillator by 
a series of frequency dividers. The advantage of obtaining standard fre- 
quencies by frequency division rather than by frequency multiplication is 
pointed out and the characteristics of the regenerative frequency dividers 
used are discussed. 

Some Mechanical Aspects of Telephone Apparatus.11 J. D. Tebo and H. 
G. Mehlhouse. Part I. It is seldom realized that the vastness of the 
Bell System requires such an enormous amount of equipment and wires for 
handling the 100,000,000 calls per day made by the people in the United 
States. A total of 44,000 kinds' of apparatus involving 170,000 different 
parts are required. The crossbar switch, described in this article, is the 
specific telephone switching mechanism used in the latest dial telephone 
system. 

Of particular interest in the crossbar switch is the design of contact springs. 
These springs are essentially thin, metal beams of a rectangular cross section 
but of varying cross sectional area along their length. They are clamped 
at one end and are subject to bending as compound cantilevers. Since 
the clamping is necessarily between relatively soft insulating materials, 
the determination of the effective length of the spring in determining its 
true deflection curve required the use of unique methods. Likewise, since 
the springs are punched out of sheet stock at an angle to the grain direction 
of the material, the modulus of elasticity does not remain the same for equal 
cross sections of the same material. Consideration of these points was 
necessary in determining the strength of the magnets for operating the con- 
tact springs, as well as to insure that the stresses introduced in the springs 
would not be excessive. 

To study the motions of the various parts of the switch, both high speed 
motion pictures and the "rapid record" oscillograph were used. The oscil- 
lograph was provided with means for obtaining" shadowgrams" of the actual 
movement of parts simultaneously with the, changes in the electrical charac- 
teristics of the magnets and contacts. The use of both the camera and 
oscillograph provided valuable data for making improvements, both in 
design and operating characteristics. 

Part II. The manufacture of crossbar apparatus is accomplished on a 
product basis; that is, the entire range of manufacturing operations is segre- 
gated into one division, and practically all operations from raw material 
to the completed product are performed in this division. More than 150 
kinds of parts totaling an annual demand of 200,000,000 individual pieces 
are required to produce the crossbar switches. 

To produce these parts requires a number of special machines, tools, and 
11 Mech. Engg., May 1942 and June 1942. 
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operations. Of particular interest are the use of special progressive punch 
and die tools, coil winding, contact welding and conveyorized assembly and 
adjustment. 

Tbe use of heavy presses with large progressive punches and dies was 
necessitated by the degree of accuracy required for this grade of equipment. 
For example, the vertical unit base, weighing only | lb., is produced by a 
75,000 lb., press, using a 3,500 lb. tool. Again, since 40,000,000 contact 
springs are required annually, each of which must be attached to insulators, 
automatic presses, conveyor belts and handling devices are required. Weld- 
ing two contacts on each spring is accomplished by special welding presses 
using rolls of contact metal tape, each contact being cut off just prior to 
the welding process. A quality of less than one defective contact out of 
20,000 is maintained. 

The coils are wound in special machines in "sticks" of 5 to 7 coils with 
.0007 inch thick cellulose acetate between each layer. A wire of a gage size 
halfway between ^ 37 and 7^ 38 B & S is used on most of the coils because 
of critical capability conditions—the annual amount of wire of this size 
being 125,000 lbs. 

Assembly and adjustment of tire switches proceeds on conveyor belts 
from one end of a large room to the other—the procedure being set up in 
such a way as to create a continuous flow of completed parts for wiring into 
the large frames ready for installation in telephone exchanges. 

Regulated Rectifiers in Telephone Offices.1- D. E. Trucksess. For many 
years rectifiers of the garage type were used in converting alternating cur- 
rent to direct current for charging batteries used for communication pur- 
poses. These batteries furnish power for relay operation, for talking, and 
filament and plate supplies for repeaters. The rectifiers were of the manual- 
control type where the operator selected the charging current by means of 
tap switches or rheostats. 

With the development of the thyratron type of tube, a rectifying means 
was made available in which the grid of the rectifier tube could be used to 
control its own output current by an electronic circuit. Rectifier circuits 
were designed to maintain a constant output voltage. If a regulated recti- 
fier is connected to a battery and the constant rectifier voltage is 2.15 volts 
per cell, the load current will automatically come from the rectifier and not 
from the battery. Also the battery will draw from the rectifier sufficient 
additional current to maintain its charge. If the circuit voltage is held 
within limits of less than plus or minus one per cent, the maintenance of 
the battery is reduced and its life is extended. 

The thyratron tube differs from the vacuum tube in that the grid does 
12 Elec'l. Engg., Transactions Section, August 1942. 
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not have a continuous control of the plate current. When a positive poten- 
tial is applied to the plate, current does not flow until the magnitude of the 
negative grid voltage is reduced to the critical value, at which time the plate 
current flows, and the magnitude of the plate current depends upon the 
voltages and impedances in the circuit. The grid has no further control, 
and plate current flows until it is stopped by reducing the plate voltage 
to zero. 

Thyratron tubes use various gases and mixtures of gases. The earliest 
type used mercury vapor, but this type of tube is quite sensitive to tempera- 
ture changes. The grid characteristics are shifted materially by changes 
in the room temperature in which it is operated, arid in low temperatures 
it is almost a vacuum tube. Thyratron tubes using argon gas are not 
affected by temperature changes, but high-pressure argon tubes have a low 
inverse voltage which limits their application to low-voltage rectifiers. 
Tubes using low-pressure argon have a higher inverse voltage, but are ac- 
companied by a high arc drop which makes their efficiency low. A mixture 
of mercury vapor and argon has been found which provides the temperature- 
stable grid characteristic of the argon tube and the low arc drop of the mer- 
cury-vapor tube. This type of tube has been very successful with certain 
regulating circuits, particularly at voltages less than 60 volts. 

Five kinds of regulating circuits are used in telephone offices to hold the 
output voltage of rectifiers constant. The selection of the circuit to be used 
depends upon the magnitude of the current, d-c voltage, and type of recti- 
fying means to be used. Two forms of regulating circuits using thyratron 
tubes and one using two-element high-pressure tubes were developed. A 
fourth circuit using all vacuum tubes was adapted for telephone use. The 
fifth kind uses a negative resistance. 

In this paper a table shows the voltage and current output, type of control 
of the rectifiers, and the rectifying means that have found widespread use 
in the Bell System. 

The regulated rectifier finds its applications in telephone offices where 
constant voltage, independent of load and a-c line-voltage variations, is 
required to supply filament grid bias and plate voltage to telephone re- 
peaters. Certain measuring circuits require a regulated rectifier to supply 
a stabilized voltage. Regulated rectifiers also find applications where con- 
stant voltage is of secondary importance but an automatic power plant is 
desired for maintaining storage batteries in a fully charged condition to be 
ready to supply the power for telephone offices if the a-c power fails. A 
further compensation of regulating the voltage is the increase in life ob- 
tained from storage batteries if they are not continually being charged and 
discharged but are fully floated. 
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