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The Discernibility of Changes in Program Band Width* 

By D. K. GANNETT and IDEN KERNEY 

One of the factors that should be considered in determining how 
wide a transmission band is required for high fidelity broadcasting is the 
ability of people to perceive the effects of restricting the band to 
various limits, when listening to typical radio programs. - Tests are de- 
scribed in which this was directly measured. The tests were concerned 
only with the physical ability to hear the differences in band width 
and disregarded the question of the enjoyment or aesthetic apprecia- 
tion of wider bands. It is concluded that changes in band width are 
detectable about twice as readily with music as with speech; that one 
must go from 8 to 15 kc. to obtain a change as readily detected as a 
change from 5 to 8 kc.; and that both these changes, for speech, are 
just sufficient to have an even chance of being detected by listeners 
having experience in such tests. 

THE question of how wide a frequency band it is necessary to transmit 
to provide high fidelity broadcasting involves consideration of a num- 

ber of factors. Among these are the limits of hearing of the human ear, the 
spectra of program material, the aesthetic sensibilities of listeners, the effect 
of room noise in studios and homes, and the acoustic properties of rooms. 
A true engineering solution of the problem would attempt to assign nu- 
merical values to each of these factors, and then to combine them in some 
way to obtain a figure of merit versus band width. Sufficient information 
to do this in a complete and satisfactory manner is not available, however, 
and in practice the final answer is usually obtained by the exercise of judg- 
ment, bolstered by such technical data as can be found on the component 
factors. 

The first two of the above factors, the limits of hearing and the spectra 
of program material, have been separately investigated and the results pub- 
lished in the technical literature by a number of experimenters. Because of 
the intangibles involved, however, even these two sets of data cannot 
readily be combined, forgetting the other factors, with complete assurance 
that their contribution to the answer is established. The authors, there- 
fore, undertook a series of tests to measure directly their combined effect. 

* This paper is a publication, substantially without change, of a report prepared some 
time ago before work non-productive to the war effort was suspended. 
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These experiments tested the ability of critical listeners to hear changes in 
band width on direct comparison when listening to representative program 
material. The purpose of this paper is to present the data from these tests. 
Similar experiments have of course been done before. The excuse for this 
paper is that the experiments represent a complete set of data and the analy- 
sis of the data is believed to be in such form as to be useful in further con- 
sideration of the requirements of program fidelity. 

The circuit arrangements used for the tests are shown schematically in 
Fig. 1. The essential features are a source of program, a switch for con- 
necting into the circuit either of two low-pass filters, and a high-quality loud- 
speaker. Controls for adjusting levels, volume indicators, etc., are omitted 
from the diagram. The arrangements included a signal visible to the 
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Fig. 1—Arrangement for testing program band widths. 

listeners in which one of the letters, A, B, or C, could be illuminated. On a 
given test two of these letters were associated with the switch so that one 
letter was illuminated for one position and the other letter for the other 
position. The choice of letters among the three was varied more or less at 
random for different tests. Low pass filters were available to provide cut- 
offs of 3, 5, 8, 11 and 13 kc. When no filter was inserted the band was con- 
sidered to extend to 15 kc. as this was about the upper limit of transmission 
of the testing circuits and loud speaker. The lower limit of the transmitted 
band for all conditions was approximately 40 cycles. 

In conducting a test, a group of observers listened to comparisons between 
two of the available band widths, the conditions being switched every few 
seconds until a sufficient number of comparisons had been made. The, 
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conditions were unknown to the observers, being designated to them only 
by the letters in the signal. At the conclusion of the test the observers were 
asked to mark on a ballot which letter appeared to coincide with the wider 
band (not which they preferred). A series of tests consisted of comparisons 
between substantially all of the possible band widths among those available. 
There were also included in some of the series as a check, one or two tests 
in which the band width was the same for both positions of the switch. 
Ten complete series of tests were carried out, two on each of five different 
programs. 

The programs consisted of a dance orchestra, two large symphony orches- 
tras, speech from a male speaker repeating a test sentence, and a radio 
dramatic sketch. The programs, except for the spoken test sentences, 
were obtained by special arrangement over direct wire lines from the studio 
or theater in which the performance took place. The entire system from 
microphones to and including the loud-speaker had a substantially flat trans- 
mission characteristic from 40 to 15,000 cycles, with no filters in the circuit. 
The loud-speaker was of the two-unit type and was one of a number built 
for the demonstration of auditory perspective in 1933. The tests were 
conducted in the program laboratory of the Bell Telephone Laboratories 
where the acoustic noise level was about -}-30 decibels. The noise con- 
tributed by the electrical parts of the system was considerably below the 
acoustic noise. The loudness of the programs was adjusted to about unity 
reproduction, that is, to the volume that would be heard by listeners in a 
favorable position at the original performance. 

The observers were engineers having a considerable experience in tests of 
program quality. They were doubtless therefore considerably more 
critical than the average radio listener. The number of observers varied 
somewhat during the tests but averaged about sixteen. The ages of the 
observers were in the 30's and 40's so that neither very young nor very old 
ears were represented. 

The immediate outcome of the tests was some 2,000 ballots which were 
meaningless until analyzed. Before the analysis could be made, however, 
it was necessary to decide how to express the results. 

There are no familiar units to express fidelity or program quality. It was 
decided therefore to employ the very useful concept of the limen and the 
liminal unit. These terms have occasionally been applied to other subjec- 
tive data and may be roughly defined as the least change in a quantity 
which is detectable. In the present case, if the band widths being com- 
pared differ greatly, there will be a nearly unanimous agreement among the 
observers as to which is the wider. If they differ only slightly, however, 
many of the observers will vote wrongly for the narrower band and on suc- 
cessive repetitions of the test many will reverse themselves. An average of 
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a large number of votes will show a plurality for the wider band, the margin 
of choice increasing as the difference in band width is made greater. A 
significant measure of the detectable difference in band width will be taken 
to be that difference such that 75% of the observers correctly select the 
wider band and 25% wrongly select the narrower band. This difference in 
band widths will be designated one "difference limen." The sensory effect 
of a change of one difference limen will be called one "liminal unit". 

The significance of the vote of 75 to 25% is assumed to be as follows; On 
a particular test some of the observers can detect the difference between the 
conditions while the remainder will guess. Of the latter, half are likely to 
guess right and half wrong. When 25% vote wrongly they are assumed to 
be guessing and must be paired with another 25% who also guessed but 
happened to guess right. Therefore a vote of 75 to 25% is taken to indicate 
that 50% of the observers were guessing and the remainder could actually 
detect the difference. The difference limen may now be more specifically 
defined as that difference in band widths which is detectable to half the ob- 
servers. 

It may be commented that this attempt to explain the definition of "lim- 
inal unit" is perhaps over-simple. The observers themselves are frequently 
uncertain whether they are guessing or are influenced in their choice by some 
minute difference. The test could be done with a single observer, repeated 
many times to obtain the same number of observations as with a group. 
When the conditions are nearly equal he will vote about as often one way as 
the other, but as the difference between the conditions is increased he will 
vote a larger per cent of the time correctly for the wider band, just as did 
the group. When the two conditions are separated by one difference limen 
he will vote correctly 75% of the time and wrongly 25% of the time, which 
may be said, in line with the argument given earlier, to indicate that he is 
guessing half the time and can discern the difference half the time. The 
difference limen could therefore be defined as that threshold difference for 
which there is an even chance of its discernment by a listener. 

Having chosen a method of expressing the results, the analysis can now 
be attacked. The first step is to group together all tests on similar types of 
program material, and to determine for each band width comparison the 
per cent of votes for the wider and narrower band, respectively. The data 
thus obtained for music and speech are shown by the solid curves of Figs. 
2 and 3. A curve labeled 8 kc., for example, shows the per cent of the total 
votes which selected as the wider each of the other band widths to which 8 
kc. was compared. The points, although somewhat irregular, fell syste- 
matically enough to permit drawing the smooth curves with the application 
of some judgment and having due regard to the necessary symmetry be- 
tween them. (For example, the 8 kc. curve at an abscissa of 5 kc. must 
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agree with the 5 kc. curve at an abscissa of 8 kc.) A much larger volume of 
data would be needed to obtain points falling accurately on a smooth curve. 
To facilitate obtaining the best approximations, the curves were plotted 
on several kinds of coordinates, including rectangular, semi-logarithmic 
(shown in the illustrations), probability and logarithmic probability. 

The dotted curves were interpolated between the solid curves and progress 
in steps of 1 kc. The interpolation was readily accomplished with consider- 
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Figs. 2 & 3—Detectability of changes in band width. 

able accuracy. For example, points for the 10 kc. curve are obtained from 
the values of each of the solid curves corresponding to an abscissa of 10 kc. 

From these curves, the difference limens for each band width were deter- 
mined by reading directly the bands corresponding to votes of 25% and 75%. 
The bands at which these votes occur therefore by definition differ from the 
reference band by one limen. The following table gives the intervals of one 
limen as thus derived from the curves. 
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Differences in Upper Limit of Program Band in KC, Corresponding to One Limen 
Music Speech 

3— 3.6 3— 3.3 
3.3— 4— 4.8 3.4— 4— 4.8 
4.1— 5— 6 4.1— 5— 6.9 
5 —6—7.4 4.6— 6— 9.4 
5.8— 7— 9.3 5.1— 7—12.8 
6.4— 8—11 5.5— 8 
6.9— 9—12.2 5.8— 9 
7.4—10—13.4 6.2—10 
8 —11—15 6.4—11 
9.8—13 7 —13 

11 —15 7.6—15 

The difference limens are seen to vary with the frequency of cut-off, in- 
creasing as the frequency increases. Since each difference limen corre- 
sponds to a sensory effect of one liminal unit, it is obvious that the reciprocal 
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Fig. 4—Ability to detect changes in program band width. 

of the difference limen gives the rate of change of liminal units with changes 
of program band width in terms of liminal units per kilocycle. Therefore, 
curves of liminal units versus the upper limit of the program band may be 
constructed from the figures in the table. Such curves are plotted in Fig. 4. 
The actual mechanics of the process used to plot the curves was as follows, 
taking the data for "music" for illustration. The lowest frequency occur- 
ring in the table is 3 kc., and it is seen that raising the band width to 3.6 kc. 
will bring about a subjective increase of one liminal unit. Therefore, on 
an arbitrary scale, 3 kc. was plotted at 0 and 3.6 kc. at one liminal unit. 
Next a smooth curve was drawn through these points and the location of 3.3 
kc. (next line of table) was determined by interpolation. Since 4 kc. is one 
liminal unit above 3.3 kc., and 4.8 is one liminal un't above 4 kc., these points 
were plotted and the curve extended through them. By a similar process 
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the curve was extended step by step up to 15 kc. Finally, the origin was 
shifted so as to express the liminal curve with respect to 15 kc. instead of 3 
kc. 

It was mentioned above that a number of tests were introduced without 
the knowledge of the observers in which the conditions were not changed, 
the band width remaining constant while the illuminated letters were 
switched. This produced the most interesting psychological result that 
observers voted nearly two to one for the letter appearing in the right- 
hand position in the signal, on each of the sLx tests of this kind. This raises 
the question as to whether this effect impaired the results on the other tests. 

In the course of the tests, comparisons between each pair of band widths 
were presented 10 times, 6 times with music and 4 times with speech. The 
letters corresponding to the two conditions were assigned more or less at 
random from the three letters A, B, and C. Taking 11 of these groups of 
tests in which the narrower band was represented about as often by the 
right hand as by the left hand of the pair of letters chosen, the average vote 
for the right-hand letter was 51.1% and for the left-hand letter was 48.9%. 
The difference between these two figures is too small to be significant. It 
is therefore concluded that when there was a real difference, the observers 
were not measurably influenced by their slight subconscious predilection for 
the right-hand letter. It would be interesting to correlate this phenomenon 
with the right or left-handedness of the observers. This point illustrates the 
extreme care that must be taken in conducting judgment tests of this sort 
to insure that no irrelevant factors affect the statistical result. 

The curves of Fig. 4 permit drawing the following conclusions: 
1. Increases in band width can be detected up to 15 kc. for both music 

and speech. The fact that this is true for speech is rather surprising. 
However, above about 5 kc., changes in band width are twice as readily 
detectable on music as on speech. 

2. It requires an increase in band width from 8 to 15 kc. to be as readily 
detected as an increase from 5 to 8 kc., for both speech and music. 

3. The following intervals correspond to one liminal unit and are there- 
fore just discernible half of the time to the observers: 
Speech: 5 to 8 kc.; 8 to 15 kc. 
Music: 5 to 6? kc.; 6\ to 8 kc.; 8 to 11 kc.; 11 to 15 kc. 

In considering these conclusions, the fundamental assumption and limita- 
tions of the data should be borne in mind. First, the data were obtained 
from tests with a certain group of observers and on certain program mate- 
rial. Curves of somewhat different slope would doubtless be obtained with 
observers of different average age, experience, musical appreciation, etc. 
It is likely, however, that this would affect the absolute importance of the 
different intervals in liminal units rather than the relative values. As noted 
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earlier, the observers in these tests were considerably more experienced and 
critical than average radio audiences. The program material tested was 
representative of most of the programs on the air, but different results would 
be obtained with material markedly different in nature. This would prob- 
ably be particularly true of selected sound effects. Secondly, it should not 
be forgotten that the results are based only on the ability of the ear to detect 
the changes, with no weighting for factors such as aesthetic values or per- 

Table I 

Upper Frequency Limit 
Versus Unrestricted Band, Corresponding to One 

Liminal Unit 

Musical Instruments 
1. Flute  
2. Snare Drum  
3. Violin  
4. Soprano Saxophone 
5. Oboe  
6. 14 in. Cymbals  
7. Bass Clarinet  
9. Piccolo  
9. Bassoon  

10. Cello  
11. Bass Saxophone... 
12. Clarinet  
13. Trumpet  
14. Bass Viol  
15. Trombone  
16. Bass Tuba  
17. French Horn  
18. Piano  
19. Bass Drum  
20. Timpani  

Speech 
Male  
Female  

Sound Effects 
Footsteps  
Handclapping  
Key Jingling  

sonal preferences, or for the effects of room noise and other factors present 
in the practical case. Thirdly, it should be appreciated that comparison 
tests such as these are very sensitive tests, showing up differences that could 
not be detected under usual home listening conditions. 

It is of interest to compare the above results with previously published 
data. In a paper "Audible Frequency Ranges of Music, Speech and Noise,"1 

W. B. Snow gave data for 20 musical instruments, certain noises, and 
1 Jour. Acous. Soc. Amer., July 1931; Bell Sys. Tech. Jour., Oct. 1931. 

13,500 cycles 
13,000 
13,000 
12,700 
12,700 
12,000 
10,500 
10,200 
10,000 
9,800 
8,600 
8,500 
8,300 
7,800 
7,200 
6,300 
6,100 
5,600 
4,300 
3,500 

7,300 
9,200 

12,000 
15,000 
15,000 
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speech. The data showed the frequency limitations as compared with un- 
limited bands (about 15 kc.) which yielded a vote of 60 to 40%, and 80 to 
20% among a considerable number of observations. In Table I these data 
have been interpolated to determine the limits that would correspond to a 
vote of 75 to 25%, in line with the criterion assumed in this paper. In 
making the interpolation, it was assumed that the curve of per cent of ob- 
servers voting correctly for the wider band versus logarithm of the frequency 
is a straight line in the range of interest. 

Table II 

Lower Frequency Limit 
Versus Unrestricted Band, 

Corresponding to One 
Liminal Unit 

Musical Instruments 
1. Bass Viol  
2. Bass Tuba  
3. Timpani  
4. Bass Drum  
5. Bass Saxophone  
6. Bassoon  
7. Bass Clarinet  
8. Cello  
9. Snare Drum  

10. Piano  
11. Trombone  
12. French Horn  
13. Clarinet  
14. Trumpet  
15. Soprano Saxophone 
16. Violin  
17. Oboe  
18. Flute  
19. 14 in. Cymbals  
20. Piccolo ,  

Speech 
Male  
Female  

Sound Effects 
Footsteps  
Handclapping  
Key Jingling  

53 cycles 
55 
60 
72 
72 
74 
80 
83 
87 
95 

110 
125 
140 
160 
210 
230 
240 
250 
370 
510 

115 
190 

95 
135 
915 

It is difficult to interpret these data from individual instruments in terms 
of results to be expected from whole orchestras and other music as usually 
heard. However, comparing Table I with Fig. 4, it will be seen that the 
frequency limit determined from the present tests as corresponding to one 
liminal unit for music falls about one third the way down the list of instru- 
ments in the table, and the limit corresponding to two liminal units falls 
about two thirds down the table, which seems reasonable. Also the fre- 
quency limit found in the present tests to correspond to one liminal unit for 
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speech lies between the figures given in the table for male and female speech, 
which is a good check. 

The present tests did not include measurements on the lower end of the 
frequency band. However, some clue to the results that would be expected 
may be obtained from Mr. Snow's paper. Table II, derived from Mr. 
Snow's data in a manner similar to that just described, gives the lower limit 
of the frequency band corresponding to a degradation of one liminal unit 
compared with transmitting a much lower frequency. 

The frequency corresponding to one liminal unit for speech may be taken 
as the mean of the figures for male and female speech, or about 150 cycles. 
In the case of music, it may be expected that at the lower as well as the 
upper end of the frequency range one liminal unit for an orchestra should 
fall about one third the way down the list of individual instruments, and two 
liminal units about two thirds the way down the list. This would make one 
liminal unit for music correspond to about 80 cycles and two liminal units to 
about 150 cycles. This speculation leads to the interesting hypothesis 
that the relations are probably the same at the lower as at the upper end of 
the frequency scale, that is, changes in band widths are twice as readily de- 
tected for music as for speech, and that the frequency limit corresponding to 
one liminal unit for speech corresponds to two liminal units for music. 



CHAPTER V 

Use of the Etch Technique for Determining Orientation 
and Twinning in Quartz Crystals 

By G. W. WILLARD 

This paper is one of a series of papers dealing with piezoelectric circuit elements 
and their manufacture.1 Certain parts of the paper are not new or original, but 
have been added for the sake of completeness and for the convenience of the 
reader. 

5.1 Introduction 

THE manufacture of piezoelectric plates from crystalline material in- 
volves orientation problems not encountered in the fabrication of objects 

from non-crystalline materials. The reason for this is that crystalline ma- 
terials have physical properties which vary with the orientation, or direction, 
in which they are measured. Since the operating characteristics (activity, fre- 
quency, and temperature-coefficient) of the finished piezoelectric plate depend, 
not only upon the shape and dimensions of the plate, but upon the physical 
properties (electrical, elastic and thermal) of the crystalline material, the fin- 
ished piezoelectric plate must have a specific orientation with respect to the 
material as well as a specific shape and dimensions. In the case of quartz 
piezoelectric plates the orientation problem is complicated by two factors. 
First, a large portion of the available natural quartz crystals lack such 
natural faces as are required to determine accurately the structure-orienta- 
tion from the shape of the original stone. Thus the raw stones must be 
examined for structure orientation by physical instruments before even the 
first cuts may be made. Secondly, a large portion of natural quartz crystals 
are twinned, i.e. not of the same structure orientation throughout the stone. 
The boundaries of the respective, homogeneous regions are not predictable, 
and cannot be completely located in the uncut stone. Thus the processing 
of quartz involves a step by step examination for twinning boundaries and 
orientation as the raw stone is cut into sections, the sections cut into bars or 
slabs, and the bars or slabs cut into blanks. Even when using untwinned 
stones the orientation must be redetermined and corrected at each cutting 
step when making such plate types as require very exact orientation. 

The most widely used methods of determining the structure orientation 
1 See B.S.TJ., Vol. XXII: No. 2, July 1943 for Chaps. I and II; No. 3, Oct. 1943 for 

Chaps. Ill and IV. 
11 
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of quartz are: (1) by optical effects (birefringence and rotatory power), (2) 
by X-ray reflections from atomic planes, and (3) by the use of etch pits which 
are developed when the quartz surface is etched in fluorine compounds. 
Other methods are or may be used in rather special cases. For example, 
in finished plates of known orientation types, the electrical axis direction is 
distinguished from other directions by electrical polarity tests (on tension 
or compression), or a plate known to be one of several types may be tested 
in an electric circuit for activity, frequency and temperature-coefficient, to 
determine which type it is. The selective fracture characteristics of quartz 
offer another method of determining orientation. Microscopic fractures re- 
sulting from grinding a quartz surface may be used for determining orienta- 
tion. Thus unetched, ground, Z-cut surfaces of quartz give a hexagonal 
figure, when examined by pinhole illumination, which may be used to de- 
termine the approximate orientation (but not sense) of the electric axes.2 

By optical methods (see Chapter II) it is possible to determine the orienta- 
tion of a quartz body relative to only one direction of the structure, the optic 
or Z axis. Thus optical methods are limited to determining the angle be- 
tween the optic axis and a line or surface of the body (but not the rotation of 
that line or surface about the optic axis). Twinning of the "optical" vari- 
ety may be detected optically, even when located internally, but the deter- 
mination of its location in depth is approximate. 

By X-ray methods (see Chapter III) it is possible to determine the struc- 
ture orientation of a quartz body exactly and completely. However, this 
method is limited in application by the complexity of analysis, except when 
the approximate orientation is already known. Though twinning can be 
detected on the surface of the body, it is not generally feasible to explore the 
surface to locate twinning boundaries. Further, though positive or negative 
sense of angular orientation is obtainable by X-rays, this part of the complete 
determination is not reliable unless the specimen examined is known to be 
free of twinning, or unless the twinning boundary locations are known. 
Thus X-ray determinations of orientation are generally limited to deter- 
mining exact orientations in quartz bodies of approximately known orienta- 
tion (which includes the case in which only one axis is approximately known). 

The etch method of determining orientation is commonly used in con- 
junction with the optical and X-ray methods to give the information that 
those methods do not give. The etch method, as most commonly and prac- 
tically applied, does not give exact orientation angles, nor is it applied to 
specimens of entirely unknown orientation. However, when a surface of 
approximately known orientation is etched, it is possible to determine ap- 
proximately the complete orientation (including sense) of the specimen, and 
further to detect at this surface both electrical and optical twinning and to 

2 See Fig. 5.20, and further explanation at the end of Sec. 5.53. 



ETCH TECHNIQUE 13 

determine exactly the twinning boundary locations. The detection of twin- 
ning and twinning boundaries by this method has been practiced for years. 
The determination or orientation and sense of orientation has been exploited 
only more recently. At present the etch methods play an important and 
extensive role in the processing of quartz plates, not only in the routine de- 
termination of orientation, but also in the detection of twinning so that the 
most economical cutting methods may be practiced.3 

5.2 Twinning (General) 

Although the problems related to twinning are largely those of determining 
orientation of the crystal structure, the nature and prevalence of twinning in 
crystal quartz presents a special group of problems that would be absent 
were the twinning absent, and hence are separately grouped as twinning 
problems. As pointed out in Chapter IV, there are only two common types 
of twinning in the commercial quartz used for piezoelectric plates, namely, 
electrical and optical twinning. A simplifying feature of both these types 
is that the structure axes (optic axis and electric axes) of all portions of a 
single crystal are parallel each to each. However, they are not of the same 
sense, or handedness. The difference between the two types is as follows: 

In a crystal which is only ELECTRICALLY TWINNED, the crystal is 
entirely of one handedness (either right or left), but one portion is of OP- 
POSITE ELECTRICAL SENSE to another portion, i.e., the electric axes 
are of opposite sense. 

In a crystal which is only OPTICALLY TWINNED, one portion of the 
crystal is of OPPOSITE HANDEDNESS, and electrical sense, to another 
portion. This twinning (but not electrical) is detectable by optical means 
(polarized light) and is named optical twinning for this reason. 

The extent of twinning that may be present in commercial crystals is seen 
in Fig. 5.1, which shows both electrical and optical twinning boundaries at 
the top surface of some Z-cut (basal) sections of quartz (which were cut up 
for the manufacture of quartz oscillators). Though the crystals are seldom 
entirely free of twinning, they do not on the average run as badly twinned 
as here shown. These views, taken by means to be described, correspond to 
what one sees when examining an etched quartz surface by reflection from a 
strong light. 

Since untwinned finished plates must be cut entirely from one twin or 
another (not across a boundary), and since the proper sense of angular orien- 
tation of the plate is opposite for two adjacent electrical twins, the economic 
utilization of twinned quartz is a difiicuIt problem.4 It involves cutting the 

3 Etching is also used on finished plates for removing grinding debris, and for frequency 
adjustment. 4 As herein used, a hcin is one of the homogeneous, untwinned portions of a twinned 
crystal. 



14 BELL SYSTEM TECHNICAL JOURNAL 

stone into separate parts when the twins are large enough to be utilized 
separately. Further, at some stage before reaching the finished plate all 
twin portions but one must be cut away.5 

In this connection it is important to note a size and form difference be- 
tween electrical and optical twins. Fig. 5.2 shows the appearance of twin- 
ning boundaries when only ELECTRICAL TWINNING is present. Note 
that electrical twins are commonly large, hence may often be separated ap- 

y 

Fig. 5.1—Examples of ELECTRICAL and OPTICAL twinning, as exhibited at the 
etched surface of Z-cut sections. These examples are typical of an appreciable portion 
of the quartz that is cut up for quartz plates. 

proximately along a boundary and both portions utilized. Fig. 5.3 shows 
the appearance of twinning boundaries when only OPTICAL TWINNING 
is present. Since optical twins are commonly small and in the form of thin 
laminations, it is seldom possible to cut optical twins apart and use both 
parts separately. 

The conventions here used, regarding handedness and axial sense, are 

6 See Section 5.7 for the possibility of utilizing partially twinned finished plates. 
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according to those of the proposed "I. R. E. Standard."6 Figure 5.4 shows 
the relation of these conventions to the natural faces of right and left quartz, 
to the electric charges developed on compression and tension, and to the 
more common cuts of oscillator plates. Also given are the relations of 
handedness to the conoscope and the polariscope means of detecting handed- 
ness (Section 2.7, Chap. II describes these instruments). It is important to 

Fig. 5.2—Examples of ELECTRICAL twinning alone. Electrical twins are com- 
monly large, and hence may be cut apart and used individually. 

note that AT and CT plates are always cut at such an angular sense, relative 
to the Z and X axes, as to be roughly parallel to a minor pyramidal face, 
whereas the BT and DT plates are roughly parallel to a major pyramidal 
face. Thus a stone exhibiting these faces may be cut into any of these plates 

c "Proposed Standard Conventions for Expressing the Elastic and Piezoelectric Proper- 
ties of Right and Left Quartz", Proc. /. R. E., Nov. 1942, p. 495. 
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without determining the handedness and electrical sense of the stone (jf 
twinning is negligible). As will be seen later, a similar situation prevails 
when analyzing etched X-cut sections for cutting into plates. 

5.3 Nature of Etch-Pits 

When crystal quartz is etched by contact with hydrofluoric acid (or other 
etching agents) the surface of the quartz is eaten away in such a manner as 

Fig. 5.3—Examples of OPTICAL twinning alone. Optical twins are commonly small 
and interlayered, and hence may not be separated and used individually. 

to leave microscopic etch-pits (or hills). These etch-pits are formed of 
minute facets which are definitely related to the crystal structure. The form 
of these pits and the orientation of the facets may be used to determine the 
orientation of the crystal structure at the etched surface being examined. 

The general appearance of four types of etch-pits is shown in the photo- 
micrographs of Fig. 5.5. These are the pits that are developed on ground 
surfaces which are approximately parallel to the well known X-, Y-, and Z- 
cut surfaces of right hand quartz, by the action of hydrofluoric acid. It is 
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seen that the positive and negative X-surfaces produce different etch-pits, 
and are thus usable in determining electrical sense. Further, the pits on all 
surfaces have directional properties which allow them to be used for deter- 
raming the approximate directions of the axis which lie in the etched surface. 
However, to be able to determine orientations from etched surfaces of other 

✓ X 
/ LEFT HAND QUARTZ \ 

/ ^ ^ \ 
' /' \ \ 

/ RIGHT HAND QUARTZ \ 

-FX +X +x 
Y AXIS 'VAX IS 

+X (AXIS -l-Xf AXIS 
^"Z TAXIS AX 

Jo \-9^> Jo < << ',r 

ON 
COMPRESSION 

^ 0 
ON 

COMPRESSION 
4' ON ^ 

TENSION ' 
ON 

TENSION 
AT 

BT 
DT^ 1 GT 

IN CONOSCOPE : CONTRACTING RINGS 
(EYEPIECE ROT. clockwise) 
IN POLARISCOPE : ANALYZER 

ROTATED COUNTER-CLOCKWISE 

IN CONOSCOPE EXPANDING RINGS 
(EYEPIECE ROT. clockwise) 

IN POLARISCOPE; ANALYZER 
ROTATED CLOCKWISE 

Fig. 5.4—The conventions of handedness, axes, natural faces, and angular sense-of-cut 
of common oscillator plates, together with the electrical and optical rules for determining 
these characteristics in unfaced stones. 

orientations than those shown above, requires a knowledge of the appear- 
ance of the etch-pits developed on such surfaces. 

A rather complete catalog of etch-pits on all possible surfaces of quartz 
was prepared by W. L. Bond,7 using an etched sphere of quartz (Figs. 5.5, 
5.6 are from Bond). Thirty-six different types of etch-pits were obtained 
and their angular range of coverage was found (the X-, Y-, and Z- surface 

7 "Etch Figures of Quartz," Z. Kristallogr. (a) 99, 1938, pp. 488-498. 
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pits are obtained only on surfaces within 6° to 8°, from the X-, Y-, and Z- 
surfaces, respectively). Since the development of good etch pits and their 
exact appearance is considerably affected by the preparation of the surface 
for etching (fineness of grind), and by the strength of the acid and the 
length of etching time, and by the manner of illumination when viewing, the 
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Fig 5 5—Photomicrographs of etch-pits on the etched surfaces of common orientations. 

As seen the etch-pits are definitely related to the structure axes of the quartz. 

figures shown here do not represent the exact appearance of pits obtained by 
other manners of development. However, such figures are reproducible. 

The use of etch-pits to determine the orientation of a perfectly general 
surface is complicated by the fact that some different surface orientations 
give pits not readily distinguished from each other. However, for the sur- 
faces most commonly encountered in quartz plate manufacture the etch- 
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pits are quite distinctive, when well developed. Use may be made of a 
microscope or a high powered projector to view the figures. The pit out- 
lines may be aligned with lines ruled on the eye-piece or on the screen, and a 
fixed marking device may be used to mark the quartz surface with orienta- 
tion lines. Twinning may be detected by the appearance of different etch- 
pits as the specimen is moved about. For example, on an electrically 
twinned X-cut surface both X-cut views of Fig. 5.5 could be found. How- 
ever, the location and marking of twinning boundaries involves a tedious 
exploration of the surface, since only a minute portion is viewed at any one 
time. This exploration may be eliminated if the surface is first viewed by 
reflection methods where the whole surface and extent of twinning is at once 
seen (as in Fig. 5.1) and marked. 

Fig. 5.6—Etch-pits on the etched surface of a +35° AT plate, and on an analogous but 
wrong sensed —35° plate. This difference in etch-pits may be used in the manufacturing 
process to determine the right and wrong sensed regions of twinned AT slabs. 

A special case where the microscope or projector method might be em- 
ployed is in the examination of thin AT, BT, CT or DT slabs for twinning 
and sense of cut. Here the slabs are known to be cut with a reference edge 
parallel to an electric axis, and with the major faces inclined at 35° to 55° 
(depending upon the variety of slab) from the optic axis, the sense of the 
inclination being positive for the AT and CT slabs, and negative for the BT 
and DT. The effect of electrical twinning on such etched surfaces is shown 
in Fig. 5.6. The etch-pits of the good 4-35° AT-portion of the slab are easily 
distinguished from the analogous —35° (bad) portions. This difference is 
similarly distinguishable in the other cuts. 

Actually, orientation and twinning are seldom analyzed by the method 
described above, i.e. by examining their appearance in the microscope, or 
by projection on the screen. The method appears to be far less practical 
than other methods which depend upon the gross effect, of hundreds of simi- 

Z 
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lar etch-pits, in bending a light beam. By the latter methods the indi- 
vidual etch-pits are never seen, nor does their nature need to be known. 
Nevertheless, the resultant optical effect of hundreds of similar etch pits 
is as characteristic of structure orientation as the individual pits themselves. 

5.4 Optical Effect of Etch-Pits 

The gross optical effect of hundreds of similar etch-pits results from the 
fact that each of the pits has minute facets which are similarly inclined to 
those of all the other pits. Though the pits of Figs. 5.5 and 5.6 may not 
appear to be formed from groups of flat facets they are generally so regarded. 
"Curved-facets" are theoretically considered to be made up of individual 
flat-facets which are parallel to possible atomic planes (and hence may be 
given index numbers as in Chap. III). This view is the same as that taken 
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Fig. 5.7—Reflection of light from a single set of similarly oriented etch-pit facets, A, 
is like that from a single mirror, B. Reflection from all three sets of facets of a Z-cut 
section will give a three-fold etch-figure on a screen, as in C. 

with regard to natural faces, which are of course produced by essentially 
opposite effects, i.e., acid corrosion in the case of etch-pits, and growth from 
solution in the case of natural faces. Actually, many "curved-facets" 
give optical effects showing no discernible evidence of individual flat facets. 
However, the question is academic, so far as use of the pits for orientation 
purposes is concerned, for such facets are still definitely related to the crystal 
structure. 

Etch-pit facets may be used to reflect a light beam into specific patterns or 
to refract the beam on transmission through the material into similar (but 
not identical) patterns. The different basic optical means of using etch-pit 
facets are shown in Figs. 5.7, 5.8, 5.9. Included in each figure is a diagram 
of the effects obtained by illuminating an idealized Z-cut section. This 
idealized section is assumed to have only simple, equilateral, three-sided 
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pyramidal etch-pits, oriented relative to the X axes as shown in Fig. 5.5. 
The actual results obtained with Z sections are more complicated than this 
and thus indicate that the etch-pits are not exactly as idealized here. 

B 

SCREEN 

\\\ 

QUARTZ 

LENS 

SOURCE 
Fig. 5.8—Light transmitted thru a single set of etch-pit facets, A, is refracted as by a 

prism, B. The three sets of facets of a Z-cut section give a three-fold etch-figure, as in C. 
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Fig. 5.9—Light transmitted thru a pin-hole is refracted by a single set of facets, A, as 

it would be by a prism, B. A virtual image of the pin-hole P will be observed at P'. The 
etch-figure seen down in a Z-cut section is three-fold, as in C. 

5.41 The Reflection Method 

Figure 5.7 shows the reflection method, where a parallel beam of light 
striking the etched surface of a Z-section is reflected from one of the three 
sets of facets as shown in A. Each single facet reflects part of the beam by 
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ordinary reflection laws, and the whole groups of facets act similarly to a 
single mirror surface at the same angle, as in B.8 The individual facets 
being very minute and of irregular size and spacing, however, cause appre- 
ciable diffusion of the beam. The resultant effect of all three sets of facets 
is shown in C, where light passing down through a lens and a hole in the 
screen is reflected back to three spots on the screen. These three spots are 
located at equal distances from the incident beam and at 120° intervals 
around the incident beam. If the quartz section be rotated on its table the 
spots rotate around the screen correspondingly. However, lateral motion 
of the section across the table (without rotation) does not change the 
position of the spots, if the section be untwinned. If the section is twinned 
(or more exactly, if the etched surface is twinned) the three-fold figure will 
shift to a different position (angularly) on crossing a twinning boundary, 
for the etch pits are oriented differently in the two twins. If the twinning 
boundary divides the illuminating beam, then both figures appear at once, 
giving six spots instead of three. It is clear then that twinning, as well as 
orientation of the section, may be determined from the figure on the screen. 
The angular relation between the spots and the X-axes of the section will 
be considered later, where figures of actual sections are shown. 

The long used method of examining etched quartz surfaces by simple 
reflection from a bright light, may also be explained from Fig. 5.7C. If a 
spot of light on the screen is viewed along the line E, and the screen then 
removed, the light from the associted etch-pits will fall on to the eye. The 
illuminated portion of the section will appear bright. If a twinning bound- 
ary crosses the illuminating beam and one of the six reflected beams falls 
on the eye, one of the two illuminated twins will appear bright and the 
other dark. As the section is rotated, first one twin and then the other will 
appear bright, and in each case the twinning boundary is sharply defined 
over the whole region covered by the illuminating beam (the appearance of 
twinned Z-cut surfaces examined by this means is shown in Figs. 5.1, 5.2, 
5.3). Due to the greater complexity of etch-pits than here idealized, the 
reflected beams are not so sharply defined as to require exact location of the 
eye relative to the incident beam and the section. Further, when a broad 
unfocused light source is used, it is possible and convenient to detect twin- 
ning boundaries merely by holding the section in the hand and rocking it 
about in various directions until a brightness contrast is observed. Though 
the brightness contrast is usually not marked by this simple examination it 
suffices for many purposes. 

8 That the effect of a group of facets is not identically the same as that of a single mirror, 
is of more concern where lenses arc used for focusing. In this case the displacement of the 
mirror facets causes a displacement of the focus of the beam from each facet. For beams 
of small angular range this is of little importance. 
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5.42 The Transmission Method 

Figure 5.8 shows one form of the transmission method of examining Z-cut 
etched surfaces. A parallel beam of light passing normally up through the 
bottom polished surface and the top etched surface of a section will be bent 
by refraction only at the etched surface, as in A. Each facet refracts the 
light by ordinary laws of refraction, and the whole group acts similarly to a 
single refracting surface at this angle, as in B.9 The resultant effect of all 
three sets of facets is shown in C (where a lens is added for focusing the 
light beam). If the incident beam is not normal to the bottom surface 
there is an additional bending of the beam at this surface. If the incident 
surface is not polished (or rendered optically flat, with a cover glass and im- 
mersion fluid, for example) the diffusion at this surface will mask or com- 
pletely destroy the desired effect.10 

5.43 The Pinhole Transmission Method 

Figure 5.9 shows the pinhole form of the transmission method, as applied 
to the examination of Z-cut etched surfaces. Here a section with a top, 
etched surface is illuminated from below through a small hole with a wide 
angle of illumination. The light radiates upward in all directions from the 
pinhole, and in passing through the upper etched surface is refracted by a 
single set of etch facets as in A. With the eye placed above the pinhole 
(and section), certain of these rays will fall on the eye. The eye then sees a 
virtual image of the pinhole P displaced to P', elevated from the level of P, 
and along the line of the ray which enters the eye. The effect of a group of 
facets is similar to that of a single prism, as in B.11 The resultant effect of 
all three sets of facets of a Z-cut section is shown in C, where the section is 
viewed from directly above and no optical system is shown. Only the three 
virtual images of the pinhole are seen and they are located down in the quartz 
(roughly two-thirds of the way down). 

Though the desired effect is due entirely to the top, etched surface, the 
nature of the bottom surface may cause a deleterious masking effect, which 
must be considered in the design of an instrument. Due to the diffusing 
effect of irregularities in the top surface it may act somewhat as a screen upon 
which the extended light source shown in Fig. 5.9A, B may be imaged by the 
pinhole. This extraneous image occurs if the bottom surface is polished, 
and to some extent if the surface is semi-polished, strongly etched, or oily. 

9 See footnote 8. 
10 Similar optics hold if the section is illuminated from the etched side instead of the 

polished side. 
11 See footnote 8. 
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This difficulty may be entirely obviated by the introduction of a diffusion 
screen directly adjacent to the pinhole.12 

It might be noted that if it be desired to project or photograph the pin- 
hole figure, one must focus on the virtual image which lies between the top 
and bottom surfaces of the etched specimen. In the simple case dia- 
grammed in Fig. 5.10, it is assumed that the camera lens is at a distance from 
the section and directly over the section, so that the rays to the lens are essen- 
tially normal to the section. For a section of thickness T, and index of 
refraction n, the elevation E of the virtual image from the bottom surface 
of the section is given by: E/T = 1 — \/l -j- R2/T2/n. Here R is the radial 
displacement of the virtual image from the axis of the pinhole and is readily 
observed and measured. Also, R may be calculated from the thickness of" 
the quartz T, the angle d between the facets and the gross surface, and the in- 

Fig. 5.10—The elevation E of the virtual image may be calculated from the thickness 
of the etched section T, the radial displacement of the image R, and the index of refraction 
n; or from T, n, and 0, the angle between the facets and the gross surface. 

dex n, (or 6 may be calculated from T, R, n) by: R/T = tan (6 — sin-1[(sin-1 

d)/n]). Commonly, pinhole figures from quartz which is weakly to moder- 
ately etched (up to one hour in concentrated HE) have a maximum diameter 
(or double radial displacement) 2R, nearly equal to the thickness of the 
section. Since the elevation of the image, E, depends upon its displace- 
ment R, an extended virtual image is not in a single plane and cannot be 
exactly focused (the elevation is commonly about one-fourth to one-third 
of the thickness of the section). The diameter of the pin-hole must always 
be kept small compared to the thickness of the section to give sharp figures 
(and the length of the pinhole must be small compared to its diameter). 

12 The diffusion screen may be a sheet of white paper placed over the pinhole, or a piece 
of flashed glass placed under the pinhole, with the flashed side against the pinhole. In 
either case it is usually necessary to increase the light intensity by focusing a concentrated 
light source onto the pinhole with a lens. 

N 
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Choice of one of the four above methods of examining etched surfaces for 
twinning and orientation, depends upon many factors, as will be noted in the 
following section. The pinhole method is used wherever possible because of 
the simplicity of the optical system and the brilliance of the figures obtained. 

5.5 Etch-Figure Instruments 

Herein are described several instruments which have been designed for 
shop use in determining orientation and twinning of etched quartz sections 
and slabs. Their basic principles of operation are as described above. The 
nomenclature of handedness, sense of axes, sense of cuts, natural faces, etc. 
is according to Fig. 5.4, as explained at the end of Section 5.2, 

The etch-figures and reflection patterns obtained on these instruments 
vary with the preparation of the specimen (i.e. the type of grind and the type 
of etch). A complete study of these factors would include a variation of the 
grind from a very coarse grind to polishing (and include saw-cut surface), 
and a variation of the etching time from short to very long, and the strength 
and kind of etching agent. Here chosen for illustration are the simplest 
practical preparations, namely, the coarsest grind usable, and the shortest 
etching time (in hydrofluoric acid). The etch-figures are thus markedly 
different than some which have appeared in the literature. Further, the 
photographic reproduction of etch-figures on paper, is not exact due to the 
limited contrast range of the paper. Thus in the accompanying illustrations 
detail is lost in the brilliant portions of the etch-figures in order to show de- 
tails in the weaker portions, and vice-versa.13 

5.51 The Reflection Oriascope 

Fig. 5.11 shows diagrammatically a reflection "Oriascope", which may be 
used on specimens with a single flat etched surface. By the reflection prin- 
ciple of Section 5.41 figures are obtained on a viewing screen. Due to the 
relatively weak figures obtained by reflection from weakly etched surfaces, 
the viewing screen must be enclosed in a well blackened enclosure, and 
viewed through an eye chute. The screen is ruled with appropriate lines, 
relative to which the figure is aligned by turning the specimen on the table. 
The table is mounted so that when the specimen is properly oriented, the 
table may be slid to the right or left over a marking template, and marked 
through the template with appropriate lines to indicate the desired axial 
orientations of the specimen. 

When used with Z-cut sections it is necessary to have two marking 
templates, one for each handedness of the quartz, since the three-fold figures 

13 Apparent shifts in ctch-figure orientation, with etching time for example, are not 
to be considered as resulting from an orientation shift of the individual etch-pit-/ace/j, 
but as a shift in the relative areas of differently oriented facets. See Figs. 5.12 and 5.17. 
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obtained are not aligned with the electric axes of the specimen. They are 
shifted approximately 12° therefrom, and in opposite directions for the right 
and left varieties. Figure 5.11 shows a section of right quartz so positioned 
on the sliding table that the etch-figure therefrom will be properly aligned 
with three radial lines of the viewing screen. The section need not have 
natural faces as here shown. With the section so positioned the sliding table 
is moved over the right-hand marking template, and the section is marked 
with three radial lines. These lines on the section then give the approximate 
direction (within 5°) and the sense of the three electric axes of the quartz, 
positive X-outward. With left quartz the etch-figure is still aligned with 
the same lines on the viewing screen, but the section is marked through the 
left-hand marking template (the marking having the same meaning as be- 
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Fig. 5.11—The reflection ORIASCOPE as applied to determining the direction and 
sense of the X (electric) axes in Z-cut sections. After the etch-figure is aligned on the 
screen the table and sections are moved over a marking template and the section marked 
from below with axes. 

fore). The section so marked is ready for laying out the approximate cut- 
ting directions, the sense of which may be found from Fig. 5.4. The exact 
cutting directions are obtained by X-rays. It might be noted that ordi- 
narily the handedness of the section is determined in the conoscope (see 
Section 2.7, Chap. II) before examination on the oriascope. Also the twin- 
ning boundaries are previously determined by examination of the etched 
surface in a spot-light beam. 

Figure 5.12A, B show the type of etch-figures obtained on Z-cut sections 
(in each case the figure is properly aligned with the rulings on the viewing 
screen). The simpler etch-figure A is obtained on a fine ground (400 car- 
borundum) surface by a weak etch (about 10 minutes in 50% HF). Though 
the three faint spots, about 40° clockwise from the rulings (for the left-hand 
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quartz of A) may be used for determining the handedness of the section, it is 
usually considered more reliable to use the conoscope for handedness deter- 
mination. The counter-clockwise rotation of these spots in B indicates 
right-hand quartz. The more complicated etch-figure B, results from etch- 
ing a fine ground surface too long,14 or from using a coarse instead of a fine 
grind. With such figures it is difficult to know which portion of the figure 
is to be aligned with the screen rulings. Hence the sections must be fine 
ground and the etching time closely controlled. 

The obvious disadvantages of the reflection oriascope (the necessity of pre- 
determining handedness and twinning, and the requirements of fine ground 
surfaces and closely controlled etching time) are largely overcome by the 
pin-hole oriascope, later described. However, the reflection oriascope is an 

Fig. 5.12—Etch-figures obtained on the reflection oriascope with Z-cut sections (re- 
duced from 11 inches square). A is a good usable figure while B is difficult to use due to 
its complexity. 

excellent explanatory instrument for obtaining experimental etch-figures 
from surfaces of any orientation, preliminary to devising a special instru- 
ment to most advantageously utilize the reflection characteristics found. 
This fact results from the large and symmetrical screen coverage, and from 
the fact that only one etch surface is encountered by the light beam (thick- 
ness and back surface shape is of no concern). 

5.52 The Reflection Twinoriascope 

Figure 5.13 shows diagrammatically a reflection "Twinoriascope" designed 
especially for shop use in detecting and marking twinning boundaries and the 
sense of orientation in etched AT, BT, CT and DT slabs. When, for ex- 

11 It appears that excessively strong etches (hours long) again give a simple, strong, and 
reliable figure. 



28 BELL SYSTEM TECHNICAL JOURNAL 

ample, CT slabs are to be examined the tiltable mounting-table is clamped 
in the 38° position, and the slab placed crosswise on the table (X-axis normal 
to line of sight, and beveled edge as shown). Upon moving the viewing 
screen to position 1, only lamp 1 is lighted, and the slab is viewed by re- 
flected light at a preferred angle. If the slab be twinned, one portion of the 
slab will exhibit a bright sheen while the other portion is dull by contrast, 
see two examples in Fig. 5.14, Test 1. The twinning boundary is now pen- 
ciled in. The viewing screen is then shifted to position 2 which lights only 
lamp 2, and the crystal moved to right or left so that only one twin is illu- 
minated. On the screen15 will be seen an etch-figure similar to one of the 
four shown in Fig. 5.14, Test 2. If either of the two positive-cut figures are 
observed the illuminated portion of the slab is usable, since the CT plate 
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Fig. 5.13—The reflection TVVINORIASCOPE for detecting twinning (using lamp 1 

and no viewing screen, position 1) and for determining the orientation or sense-of-cut (using 
lamp 2 and the viewing screen in position 2), of AT- BT-, CT-, or DT-cut slabs. The 
"cut angle" is set for a CT slab. 

must have a positive 38° orientation. The negative-cut, "golf-club", 
figures are produced by the unusable portion of the plate. 

The same procedures are followed with the AT, BT and DT plates, in 
each case resetting the table to the proper tilt, 35°, 49° and 52°, respectively. 
The reflection view of Test 1 is the same for all cuts, and the etch-figures of 
Test 2 are nearly the same (being almost identical for the negative-cut por- 
tions of the slabs). However, in the case of AT and CT slabs the positive- 
figures represent good portions (since these are positive cuts), and in the case 
of BT and DT slabs, the negative-figures represent good portions. 

The basic principle of this instrument is as described in section 5.41. As 
here used, the two optical systems (including the eye and the slab) are so 
disposed as to obtain the best reflection-contrast in Test 1, and the most dis- 

15 An excellent screen consists of two sheets of thin sandblasted cellulose acetate. 
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tinct portion of the etch-figures in Test 2. That the observations are so 
similar for this 20° range of cuts indicates that the nature of the etch-pits 
on these cuts is very similar, (see Fig. 5.6 for the nature of the etch-pits on 
AT slabs). The angular arrangement of the Test 1 optical system makes 
use of strongly developed facets which are approximately parallel to the X- 
axis and inclined at an angle of —57.6° to the Z-axis of the quartz. Within 
experimental error these facets are parallel to the 01.2 atomic planes and 
hence are called the 01.2 facets. It is also these facets that give the enlarged 

POSITIVE-CUT FIGURES 

TEST 1 (TWINNING) 

TEST 2 (SENSE OF CUT) NEGATIVE-CUT FIGURES 
Fig. 5.14—The appearance in the twinoriascope of twinning in Test 1 (two examples) 

and of the four possible etch-figures in Test 2. The observance (in Test 2) of either of the 
positive-cut figures indicates that the illuminated portion of the slab is a positive cut, 
while either negative-cut figure indicates a negative cut. These etch-figures for a CT 
slab, are not markedly different than those for AT, BT, and DT slabs. 

head of the golf-club, negative-cut figures. The right and left handedness 
of quartz results in two figures each for the positive and the negative orien- 
tation. Though it is commonly of no interest, it is possible to determine 
from the etch-figure observed, both the handedness and the electrical sense 
of the illuminated portion of the slab. The handedness is as indicated by L 
and R in each etch-figure of Fig. 5.14, and the electric axis is ± to the right 
or left as indicated by the -f and — signs. 

Best etch-figures are obtained in the twinoriascope with fine ground (400 
carborundun) slabs which have been given a strong etch (40 minutes in 50% 
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HF). Stronger etching is not deleterious. Very strong etching gives mod- 
erately good figures with sawn or coarse ground slabs. For Test 1, alone, 
weaker etches would suffice. Under properly controlled conditions of slab 
preparation and instrument operation Test 2 might be eliminated, for 
under such conditions the negative-cut portion of the slab is bright, the 
positive-cut portion is dark. Under shop conditions this means of detecting 
sense of cut appears to be not reliable, especially with unlwinned slabs (which 
are either all bright or all dark). The addition of Test 2, however, gives 
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Fig. 5.15—The direction and sense of the electric axes of a sand-blasted and etched raw 
quartz stone may be determined by reflection of light from the 0.21 facets. These same 
facets are utilized in Test / of the twinoriascope, Figs. 5.13, 5.14. 

complete reliability, for if etch-figures are obtained the sense of cut is ob- 
vious, if no figures are obtained the slab can be returned for further etching. 

The principle of Test 1, above, has been applied by W. L. Bond to a lab- 
oratory instrument for determining the direction and sense of the X-axes in 
raw quartz stones prepared with a sand-blasted and etched surface. With 
the stone mounted rotateably about its Z-axis (previously determined by 
conoscope or inspectoscope), and a light beam properly projected onto the 
stone, reflection of the light beam to an eye piece or viewing screen will occur 
whenever the 01.2 facets come into proper angular position, see Fig. 5.15. 
The approximate direction and sense of the electric axis, or the sense of cuts 
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to be made from the stone, may be determined from these reflecting posi- 
tions of the stone, and twinning may be partially explored. Thus if the 
stone appears to be not badly twinned, it may be cut up at once into slabs 
of proper sense of cut, without previously sectioning for further examina- 
tion. 

5.53 The Pin-Hole Oriascope 

Figure 5.16 shows a "Basic Pin-Hole Oriascope" with auxiliary attach- 
ments for shop examination of etched Z-cut sections, and Fig. 5.18 the same 

-V 

Fig. 5.16—The BASIC PIN-HOLE ORIASCOPE with matching and marking arms 
for use on Z-cut sections. Twinning, and the direction and sense of the X (electric) axes 
may be determined and marked on the section. 

for X-cut sections. The optical principle of this instrument is according to 
Section 5.43. Light from a concentrated-filament lamp within the central 
ventilated housing, is projected horizontally forward by a pair of condenser 
lenses and reflected upward by a mirror in the forward housing, onto a dif- 
fusion-disk placed directly against the pin-hole.16 The latter is centrally 
located in the inclined mounting table. Etched quartz sections are placed 
over this pin-hole and viewed from above. The section may be moved 
about and examined for twinning boundaries, which are then penciled in. 

10 See footnote 12. 
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The section is then examined through the ruled window of a matching arm, 
one of which is shown in use in Fig. 5.18. The section is rotated on the table 
until the etch-figure seen in the quartz is properly aligned with the lines on 
the window. Without moving the sections, the viewing arm is replaced with 
a marking arm, one of which is shown in place in Fig. 5.16. The section is 
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Fig. 5.17—Etch-figures obtained with the pin-hole oriascope in Z-cut sections; A for a 

fine ground surface and B for a coarse grind. The relation of the etch-figures to the struc- 
ture orientation of the section is shown in C. 

marked through the template of this arm with the desired axes or cutting 
directions. 

Figure 5.17A, B shows the etch-figures obtained with the pin-hole oria- 
scope, on Z-cut sections. Figure 5.17A is for a fine ground surface (600 
carborundum) while Fig. 5.17B is for a coarse ground surface (100 carborun- 
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dum), and in both cases a moderate etch, (20 to 30 minutes in 50% HF). 
It is noted that the spiralling, outer tails of the etch-figures (as well as other 
features) denote the handedness of the quartz. Such handedness features 
are not as marked with fine ground surfaces, nor with weaker etches. The 
central triangular portion of these figures is used for alignment of the section 
with the rulings on the marking arm windows. Since this triangular figure 
is misaligned with the X-axes of the quartz by approximately 12°, and in an 
opposite sense for the two kinds of handedness, there are provided two match- 
ing arms. One is to be used for left quartz and the other for right quartz. 
The diagram of Fig. 5.17C shows the orientation arrangement of a combina- 
tion of matching windows and marking template, that results in the section 
being marked with three radial lines which correspond to the positive X-axes 
of the quartz. Though this is the most obvious manner of marking Z-cut 
sections, it is of advantage in practice to obtain a reversed marking on left- 
hand quartz (by using an oppositely ruled left-hand matching window). 
By so marking the quartz no further attention need be paid to handedness, 
see Section 2.4, Chap. II.17 In either case the relation of the various plate 
cuts to the axis markings obtained above, may be determined from Fig. 5.4. 
Since the etch-figures give only approximate orientation X-rays are used for 
the final determination. That X-rays are not used for the whole determina- 
tion is as explained in Section 5.1. 

With X-cut sections, having a coarse grind (100 carborundum) and a 
strong etch (30-45 minutes in 50% HF), the etch-figures obtained are like 
those of Fig. 5.19. Here the positive face of the section gives an entirely 
different figure than the^negative face, as would be expected from the 
nature of the etch-pits shown in Fig. 5.5. Opposite-handedness gives re- 
versed figures. The four possible figures are oriented with respect to the 
Z-axis and the major cap face direction of the section "r" as shown in Fig. 
5.19A and B. The non-parallelism of the Z-axis and the parallel sides of the 
etch-figures amounts to three to five degrees. This disposition of figures 
(relative to quartz axes) is taken into account in the design of the matching 
and marking arms shown in Fig. 5.18, and diagrammed in Fig. 5.19C. The 
etched X-cut section is rotated on the mounting table, with the central 
matching arm in position, until the long straight sides of the "parallelogram" 
figure, or the long parallel lines of the "H" figure, are parallel to the two 
parallel-lines ruled on the window of the matching-arm (the parallelogram 
figure is shown so aligned in C). The figure thus used is compared with 
the four figures sketched on this matching-arm, to determine which of the 
two marking arms is to be used for marking (note arrows giving this indi- 
cation). The proper marking arm is lowered onto the section and used to 

17 The instrument of Fig. 5.16 has a still different arrangement of matching and marking 
arms. 
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mark a long line approximately parallel to the optic axis and a short line in- 
dicating, in the case shown, the approximate direction and the sense of cut 
of a BT-plate. It is to be noted, here, that neither handedness nor elec- 
trical sense need be individually determined or considered, as such, for the 
sense of cut is directly obtained. 

The size of an etch-figure depends upon the thickness of the section being 
examined, as explained in Section 5.43. For the etch-figures here presented 
the size of the figure relative to the thickness of the section, may be estimated 

Fig. 5.18—The BASIC PIN-HOLE ORIASCOPE with matching and marking arms 
for use on X-cut sections. Twinning, and the direction of the Z axis, and the direction and 
sense of cut may be determined and marked on the section. 

from a knowledge of the ratio, N, of the total diameter of the view to the 
thickness of the section giving that view. For Fig. 5.17A and B, N = 1.3; 
for Fig. 5.19A and B, N = 2.7; for Fig. 5.20, N = 1.7; for Fig. 5.21, N = 
2.5. 

The pin-hole oriascope may be used in a variety of other ways for exam- 
ining any crystal cut with at least one etched surface. When used with 
sections as described above the bottom flat surface may be very small, just 
large enough to cover the pin-hole. However, this restricts the inspection 



ETCH TECHNIQUE 35 

to an area directly over the bottom surface. This restriction may be elim- 
inated, and no flat bottom surface need be used at all, if the bottom surface 
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Fig. 5.19—Etch-figures obtained with the pin-hole oriascope in X-cut sections. After 
an etch-figure is aligned with the rulings on the matching window, as in C, the section is 
marked thru a marking template fin this case the one on the left) with the direction of the 
Z axis and the direction of cut of the desired plate (in this case the BT). 

of the section be immersed in a transparent dish of immersion fluid (whose 
refractive index matches that of quartz) placed over the pin-hole. Here the 

» 
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size of the etch-figure depends on the whole distance from the pin-hole to the 
etched top-surface, and hence, may be made as large as desired, by raising 
the section and fluid level. Very thin sections, slabs or plates may be ex- 
amined similarly, with the bottom surface contacting the immersion fluid, 
or the plates may be wet with immersion fluid and placed on thick glass 
plates and placed over the pin-hole. In either case the top etched-surface 
must be kept dry. By this means the twinoriascope examinations described 
in Section 5.52 might be performed on the pin-hole oriascope, (a disadvan- 
tage being the necessity of using an immersion fluid). 

Usually etch-figures are obtained from flat etched surfaces whose orienta- 
tion is known within 5°. However, if the surface be 10° to 20° off-orienta- 
tion the etch-figure will be plainly distorted. If now the section be viewed 
at an angle to the normal position, or if the section be tilted in the fluid- 

A B 
Fig. 5.20—CLEAVAGE-FIGURES may also be observed on the pin-hole oriascope in 

ground but unetched specimens, in this case a Z-cut section. Here the direction of the X 
axes but not their sense (nor handedness, nor twinning) may be determined. 

bath method described above, the undistorted figure may be observed. The 
direction and amount of misorientation of the surface may be thus esti- 
mated. By provision of suitable mounts and scales the misorientation could 
be measured to 5°. 

It might be added that in some cases unetched, ground (or sawn) quartz 
surfaces give "cleavage-figures." Thus with Z-cut sections which have 
been ground, but not etched, there may be observed on the pin-hole oria- 
scope cleavage-figures like those shown in Fig. 5.20. The difference be- 
tween the two views is mainly a difference in focusing and in photographic 
reproduction. The cleavage-figure indicates that there are preferential 
cleavage planes in quartz, which are parallel to the X-axes, and correspond 
approximately to the natural cap faces. Further, there is no indicated dif- 
ference between the major and minor planes. Thus, the cleavage-figure is 

♦ 
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sL\-fold and may not be used to determine electrical sense or twinning. It 
may, however, be used to determine approximately the orientation of the 
X-axes. Cleavage-figures are seldom strong, but appear to be best with 
coarse grinding.18 

5.6 The Process of Etching Quartz 

Few factors related to the chemical process of etching quartz have been 
extensively studied. Much of the information here presented is taken from 
preliminary reports of L. Egerton of the Laboratories, who has undertaken 
an investigation of the etching process. Though the information mainly 
regards hydrofluoric acid etching, some data is given on etching with hydro- 
fluoric gas, and bifluoride mixtures. 

The reaction of quartz, which is silicon dioxide (Si02), with hydrofluoric 
acid (HE) is given by the following equations: 

Si02 + 6HF «=± SiF* + 2H20 + (2HF) <=> HsSiFe + 2H20. 

Since the hydrofluoric acid is a solution of HF gas in water, the reaction of 
the acid with quartz results in a reduction of the concentration of HF. At 
the same time there is produced silicon tetrafluoride (SiF4) which reacts 
with more HF to give fluosilicic acid (^SiFe) in solution. It is common 
practice to start with about 50% HF acid and to continue etching until the 
HF concentration is down to 20 or 25%, at which time there should also be 
a 30% to 35% concentration of H2SiF6, if all the depletion of HF were due to 
reaction with the quartz. Actually much smaller concentrations of HoSiFe 
are found, and this discrepancy is mainly due to the large continuous loss 
of HF from the solution by gassing. Further, the etching power of this used 
acid is not the same as would be obtained with a solution of 20%-25% HF 
alone in water. However, this difference is hardly noticeable except with 
weak etches. 

Through the useful life of the acid, starting with 50% HF and depleting 
to about 20% HF, practically identical etch-figures may be obtained by 
properly adjusting the etching time. Means of testing the etching power of 
the acid to determine the proper etching time are complicated by the pro- 
duction of HoSiFe in the solution, and by the irregular loss of HF by gassing. 
Further, the power of the acid to produce useable etch-figures is not the 
same as its power to remove quartz, or to etch glass, or as its concentration 
of HF or HoSiFe. For these reasons any indirect method of measuring 
etching-power must be correlated empirically with the etching-time required 
to give the desired etch-figures. 

An indirect method of testing the etching-power, developed by Dr. W. 
Hoff of Western Electric, Hawthorne, involves the etching of sand blasted 

18 Scrubbing the surface with soap, water, and brush sometimes improves the figure. 
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microscope slides for a standard length of time. The lead-glass slides be- 
come coated with a white lead-fluoride deposit to a depth dependent mainly 
upon the HF content of the acid. The optical density of this deposit is 
measured with a specially adapted photometer. The photometer readings 
are correlated with required etching-times to give the desired etch-figures; a 
different etching-time being required for different kinds of sections, slabs, 
etc. Use of this means of controlling the etching time has greatly improved 
the regularity with which good etch-figures are produced in the shop. 

Commercial hydrofluoric acid from a number of different suppliers has 
been analyzed for purity, and tested for the development of etch-figures. 
It appears that when such acids are brought to the same concentration (by 
addition of water if necessary) there is no difference in their effectiveness, 
nor are they inferior to pure reagent acid. Commonly the acid is supplied 
as 48% solutions in lead or hard rubber drums, or as 60% in steel drums 
(usually the concentration is a few per cent higher than labeled). The dif- 
ference in packaging is of no importance in the results obtained, provided 
the concentration is properly reduced. 

There are two important factors regarding the starting concentration of 
hydrofluoric acid baths. In the first place, acids stronger than 50%, though 
reacting vigorously with the quartz (and removing material rapidly), do not 
give good etch-figures. Secondly, strong acids not contained in sealed 
containers lose strength very rapidly by gassing of the HF gas. Hence un- 
used fresh acid should be kept well stoppered. Before use the acid should be 
diluted to a concentration of 45% to 50%. This may be accomplished by 
adding about ^ volume of water to one volume of 60% acid, or ^ volume of 
water to one volume of 55% acid. 

Concentrated hydrofluoric acid loses HF by gassing more rapidly than it 
loses water by evaporation. This preferential loss of HF continues until 
the HF concentration is reduced to 35% or less,19 and is not completely over- 
come by covering the bath without sealing. In fact, in practice, it appears 
that about as much HF is lost by gassing as is used in etching the quartz. 
Thus the bath should be kept as tightly covered as is practicable. 

Whereas, in the past only lead and hard rubber have been used for fabri- 
cation of acid baths and racks, it appears that for concentrations not greater 
than 50% HF, copper, nickel, and brass may be used as well (steel is inferior 
at low concentrations). Lead-tin solders may not be used, but silver solder 
is satisfactory. Thus shop acid equipment may be easily fabricated out of 
common fabricating materials.20 

19 At room temperatures there appears to be a constant-concentration mixture at some 
concentration below the 35% concentration of the constant boiling mixture, the exact 
value depending upon the temperature of the solution and the ambient humidity. 20 Polystyrene is a good material for use in fabrication of vessels for handling HF and 
its reaction products in the laboratory. 
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While agitation of the acid bath during etching does speed up the re- 
moval of quartz from the surface, it does not appear to speed up the de- 
velopment of the etch-figures here considered. However, moderate agita- 
tion does improve the uniformity of etch from one crystal to another, 
and even over the surface of single large surfaces (especially when such sur- 
faces are close together). Uniformity of etch is important in examining for 
twinning. The surfaces to be etched should never be placed in contact with 
each other, or with other surfaces, so that the acid cannot flow between them 
(the separation should be at least of an inch). 

The effect of temperature on the etching process appears to be small for 
the range of room temperatures normally encountered in practice. 

A word of caution chould be added regarding the handling of hydrofluoric 
acid and other fluorine etching materials. The dangers are of two kinds. 
First, fluorine poisoning may result from contact with any fluorine com- 
pounds, the effects of which may be cumulative. Special care should be 
taken to prevent inhalation of vapors from all etching baths containing 
fluorine. Some persons are especially sensitive to fluorine poisoning. 
Secondly, hydrofluoric acid baths, or any baths containing free HF, may pro- 
duce acid burns. Commonly such burns are attended by fluorine poisoning. 
For these reasons etching with all fluorine compounds is preferably carried 
out in ventilated hoods (with strong air suction through the door), with con- 
tinually running water for washing, and with rubber gloves, tongs, racks, 
etc. for handling the quartz. 

Etching compounds other than hydrofluoric acid have been widely used 
in etching glass, as is evidenced by the variety of formulae presented in the 
"Chemical Formulary."21 Solutions of ammonium bifluoride (NH4HF0), 
with additions of various amounts of free hydrogen fluoride, sodium bi- 
fluoride, sugar, and other materials have long been used on glass. One of 
the possible advantages of such formulae for etching quartz is the elimination 
of the dangers of acid burns and strong fumes that may be obtained with 
hydrofluoric acid (care must still be maintained to prevent fluorine poison- 
ing). A number of these formulae have been made up and tested on quartz. 
The preliminary conclusions are as follows. 

The etch-figures that may be developed by the bifluoride compounds on Z 
and X-cut sections of quartz are not the same as those developed by hydro- 
fluoric acid. The results approach each other, however, for excessively long 
etching in both cases. To obtain usable etch-figures on X-cut sections with 
the bifluoride requires considerably longer etching time than with hydro- 
fluoric acid, or an elevation of the bath temperature to about 450C. The 
addition of hydrofluoric acid to the bifluoride formulae speeds up the de- 
velopment, but partly negates the safety advantage of the bifluoride bath. 

21 Published by the Chemical Publishing Co., Brooklyn, N. V. 
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The figures produced on Z-cut surfaces are small and complex, (hardly 
usable) unless a considerable amount of free HF acid is added. Etch-figures 
here considered are those produced on the pin-hole instrument, and are us- 
able only if they have such character as will permit of their use in determin- 
ing quartz axes. Fig. 5.21 shows the type of usable etch-figure obtained on 
X-cut sections with an ammonium bifluoride and sugar solution (the sugar 
is here effective mainly in preventing creepage of the solution). It might 
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Fig 5 21—Etch-figures obtained on the pin-hole oriascope with X-cut sections which 

have been strongly etched in bifluoride mixtures, or excessively etched in hydrofluoric acid 
These etch-figures differ from those of Fig. 5.19 (for a moderate etch in hydrofluoric acid) 
but are obviously usable. 

be noted that a similar figure is obtained with hydrogen fluoride gas, and 
with excessively long etching (several hours) in hydrofluoric acid. 

When the bifluorides are used only to develop reflection contrast in the 
detection of twinning, their effectiveness appears to be about the same as 
hydrofluoric acid, under equivalent process conditions. The etching power 
of the bifluorides may be maintained nearly constant over a long period of 
use by maintaining an excess of the salt in solution, a distinct advantage 
over the acid. The metals copper, nickel, brass and stainless steel may be 
used in fabricating tanks and racks, lead and steel are inferior. 

Finished quartz surfaces are sometimes etched to remove surface debris 
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(fragments'bf quartz loosened by grinding, and grinding refuse embedded in 
microscopic surface irregularities), and to remove predetermined small 
amounts of the surface for frequency adjustment. It is common for these 
purposes to use weaker etching solutions, since very small amounts of 
quartz are to be removed. With hydrofluoric acid, weak solutions (less 
than 20% HF) have an advantage in that their concentrations are little 
reduced by exposure to the air. In fact with very weak solution the con- 
centration may increase slightly by exposure, and thus partly compensate 
for the HF lost by reaction. Weak ammonium bifluoride solutions may also 
be used, provided no deposit forming material is added. 

5.7 The Effect of Twinning in the Finished Plate 

While it is commonly considered that electrical and optical twinning are 
not allowable in a finished oscillator plate, it cannot be unconditionally 
stated that small amounts of twinning will too seriously affect the properties 
of all types of oscillator plates. The allowance of even small amounts of 
twinning in the finished plate would save quartz and simplify the processing 
procedures. Hence, consideration must be given to the factors which would 
affect the utilization of twinned material, and the effect of twinning on the 
operating characteristics of the finished plate. Consideration will first be 
given to the nature and distribution of electrical and optical twins22 in the 
raw quartz. 

The analysis of twinning in raw quartz has been carried out by the ex- 
amination of numerous, etched Z-cut surfaces. By the method to be de- 
scribed it is possible to detect the handedness, and the axial orientation and 
sense, of each homogeneous portion, twin, appearing at the etched surface 
of a twinned specimen. Both electrical and optical twins may be analyzed 
by this method. It might be added that electrical twinning boundaries 
and orientation are only detectable at an etched surface, and that while 
interior optical twinning may be detected by polarized light, its exact 
analysis is only possible at an etched surface. 

Figure 5.22 E shows the optical arrangement used for examining twinning 
in etched Z-cut sections. The sections (prepared with a fine grind and weak 
etch) were mounted on a turntable, illuminated from an elevation of about 
30° to the horizontal etched surface by a spot lamp, and viewed (or photo- 
graphed) from vertically above the section according to principles of Section 
5.41). With the section properly aligned on the table (with the predeter- 
mined electric axes parallel to the table-lines joining diametrically opposite 
fiducial marks), the table was successively turned into positions about 12° 
to the right or left of the plane of illumination and reflection (as indicated 
by the R and L marks and the index pointer). Four of these positions of 

22 See footnote 4. 
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illumination of a given section are sufficient to determine the nature of the 
four possible twins in the section. The four corresponding photographic 
views of the section have been arranged in a special manner to simplify their 
explanation. This arrangement, as shown in Fig. 5.22A, B, C and D, is 
equivalent to what would be observed if one looked down on a single, sta- 
tionary section, and illuminated the section from the four different direc- 
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Fig. 5.22—Reflection patterns of the twinned, Z-cut sections shown in Figs. 5.23, 5.24, 

5.25 and 5.26 were obtained by the means shown in E. A, B, C, and D are a key to the 
four equivalent directions of illumination of a single stationary section. 

tions shown in the figure. For each direction of illumination there is a cor- 
responding view, the outline of the section (and any cracks, chips or other 
flaws) being identically positioned in each view. However, when the four 
types of twins are present in a given section, each view will show a different 
region, or regions, of brightness. For each view, the interpretation of 
handedness and electrical sense of the bright portion of the view is according 
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to the labeling of this particular view, only. Thus if a section is entirely 
right quartz and of the electrical sense shown at A the whole surface of the 
section will appear bright in view A and dark in all other views. If a section 
is all right quartz, but partly of the electrical sense shown in A and partly 
that shown in B, then part of the surface will appear bright in A and the 
other part will be bright in B (the whole surface will be dark in C and D) 

Fig. 5.23—The four possible conditions of handedness and electrical sense in a single 
section are shown here. In each view the handedness and sense is for only the bright 
portion of that view. The a and ft regions are seen to be both of right quartz but of opposite 
electrical sense, hence electrical twins. (Flaws indicated by / are to be disregarded). 

A section containing all four possible twins would exhibit bright regions in 
each view, and a different bright region in each view. All bright regions 
would fit together to make a complete map of the surface. Only the bright 
portion of each view has the handedness and electrical sense indicated for 
that view. 

Figure 5.23 shows a Z-cut section containing twins of the four possible 
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conditions of electrical sense and handedness. The two large, bright re- 
gions a and b (appearing in views A and B respectively) are both right quartz 
but of opposite electrical-sense. Hence the surface is mainly of electrically 
twinned right quartz. The small dark regions within the borders of a 
(view A) are bright in view D. Hence these small, triangular and line re- 
gions are left quartz and of opposite electrical sense to the large region a 
containing them. They are then optical twins of the large a region. Simi- 
larly the dark regions of h (view B) are found from view C to be optical 
twins of the h region. (Flaws labeled/ are cracks, chips, etc.) If the whole 
section were cut up to make AT plates, for example, and at the proper angu- 
lar sense according to the a portion of the section, then those plates coming 
from the h region would be of wrong angular sense. Those crossing a 
boundary between the a and h regions would be of both senses, i.e., elec- 
trically twinned. Those few plates which contained some left quartz would 
be optically twinned. To make the most economical use of this section it 
should be separated, by cutting along a line approximating the a to 6 bound- 
ary, so that each half of the section may be cut at the correct sense of orien- 
tation. Even when so cut, some of the plates will contain optical twinning 
and remnants of electrical twinning. This section is typical of much of the 
raw quartz that must be used for manufacturing piezoelectric plates. 

Figure 5.24 shows a section which is mainly of left quartz as exhibited by 
the large bright c and d regions of views C and D. The large c region is 
optically-twinned to a small extent by the line regions b of view B. One of 
the d regions is badly optically twinned by the small striated a regions, as 
seen in A. Such a section would be very uneconomical to process, since 
separating the larger electrical twins is not feasible. If processed at all, it 
should probably be entirely cut according to the handedness and sense of 
the large c portion, the wrong-sensed regions and twinning being cut away 
at a later stage (after inspection of the slabs in the twinoriascope, for ex- 
ample). It might be noted that only the optical twinning could have been 
observed in the initial polarized-light, raw quartz inspection, where such a 
stone would be passed as moderately good. 

Fig. 5.25 shows an unusual section that is mainly composed of left quartz, 
regions c and d. The right quartz regions shown in view B are of both 
opposite-handedness and electrical-sense to the c region inclosing or bordering 
them. This is the common and expected conditions. The unusual condition 
is exhibited by the regions c and o, where twins of opposite-handedness 
but same electrical-sense have a common boundary. Since this boundary 
could be detected by optical means, the a and c regions might be de- 
scribed as optical-twins, of an "uncommon variety". However, by con- 
vention optical twinning has long been used to denote twinning exhibiting 
both opposite-handedness and opposite-electrical-sense (crystallographically, 
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Brazil twinning). Further, twinning exhibiting both opposite-handedness 
and same-electrical-sense, combines the crystallographic twinning laws of 
Brazil twinning and Dauphine (electrical) twinning. Hence this uncom- 
mon variety of twinning may preferably be called combined electrical and 
optical twinning, or just COMBINED TWINNING. Thus, the boundary 

Ws, 

Fig. 5.24—Regions d are electrical twins of the region c. The striated regions a are of 
opposite handedness and electrical sense to the d region enclosing them, hence optical 
twins of d. The b regions are small optical twins of c, and/are flaws. 

between the a and c twins separates combined twins. Note also that the a 
twin bounds the h twin and the b twin bounds the c twin. Thus, a and b are 
true electrical twins, and b and c are true optical twins.23 

23 It is possible that growth conditions are such that combined twinning cannot occur 
by itself, without the presence of true optical twinning and true electrical twinning. That 
is, a region of given handedness and sense can not be entirely bordered by a region of 
opposite-handedness and same-sense. 
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Figure 5.26 shows an unusual section which is mainly composed of left 
quartz, of the electrical sense shown in D, region d. The region c is an elec- 
trical twin of d. The region/ is a flaw in the quartz and is to be disregarded. 
The region a is an optical twin of d, and is uncommonly large for an optical 
twin (note: region a contains within it, two small optical twins). Since 

Fig. 5.25—Regions c are electrical twins of the adjacent d regions, a is an electrical 
twin of b, and a is also an optical twin of d. An uncommon condition of twinning is pre- 
sented by the adjacent a and c regions which are of opposite handedness but the same 
electrical sense, thus exhibiting COMBINED-TWINNING. 

optical twins are usually very small (except for the one major surrounding 
twin), it is seldom possible to cut them apart and use each twin individually. 

Figures 5.1, 5.2 and 5.3 were obtained by the means above described, and 
all sections shown in these figures (except Fig. 5.2A and C) actually ex- 
hibited both electrical and optical twinning. Thus Fig. 5.3D was obtained 
from Fig. 5.24A, and Fig. 5.2F from Fig. 5.24C, etc., by trimming the latter 
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named figures to give the sections simulated natural faces. Figures 5.2 
and 5.3 are of particular use in learning to distinguish between electrical and 
optical twinning when examining etched surfaces by reflection. Note that 
electrical twins are usually large and separated by irregular boundaries, 
Fig. 5.2. Optical twins are usually separated by straight-line boundaries 

Fig. 5.26—Since this section exhibited no bright regions (except flaws/) in view B (i.e. 
no right quartz of electrical sense B) it was not reproduced in view B. The c region is an 
electrical twin of the adjacent d region, while a is an optical twin of d. It is uncommon 
for a minor optical twin to be as large as a. 

parallel to natural faces, thus forming triangular, parallelogram, and straight 
line insets, Fig. 5.3. Optical twins (except for the one major, surrounding 
twin) are usually very small and often interlayered (with the major twin). 
Large interlayered regions are entirely unusable and hence are cut away at 
the earliest possible stage to save the labor of processing worthless material. 

Small optical twins and small electrical twins (or remnants of electrical 
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twins left after cutting electrical twins apart) may be isolated or removed in 
an intermediate or late stage of processing, where they are detected by the 
etch technique. Commonly the final rejection of material twinned in either 
way is delayed until after the final blanks are cut out. These may be 
etched and examined by reflection, one at a time under a spot lamp, and 
those showing twinning (and other imperfections) sorted out and rejected. 

Another possible method of rejecting twinning which is of sufficient 
amount to be harmful is by making electrical tests on the finished (or semi- 
finished) plates, at which time those plates failing to meet the electrical tests 
for any reason (including twinning), are rejected. While this method of 
rejection does not assure that twinning will be entirely absent from the 
accepted plates, neither does any other method assure complete absence of 
twinning. Further, except for imperfections which may affect the useful 
life of the plate, acceptance of finished oscillator plates is not illogically based 

Table I.—Constants for Plates of Correct and Incorrect Sense of Cut 

Cut, Angle Frequency Constant 
(fxd. in Kc. mm.) 

Temperature Coefficient 
(parts/lOVC.0) 

AT +35° 
(-35°) 

1670 
(2400) 

0 
(+30) 

CT +38° 
(-38°) 

3080 
(2100) 

0 
(-30) 

BT -49° 
(+49°) 

2560 
(1880) 

0 
(-55) 

DT -52° 
(+52°) . 

2060 
(2850) 

0 
(+45) 

upon their meeting the desired electrical operating characteristics, i.e., 
frequency, temperature-coefficient, activity and internal damping (all de- 
terminable by electrical tests) .2f It does not appear that twinning will affect 
the useful life of the plate. Its effect upon the electrical operating charac- 
teristics of the plate depend upon many factors. 

An important factor regarding twinning in the finished plate is that optical 
twinning introduces a less important variation in the physical properties of 
the plate than does electrical twinning. Thus, in the case of optical twinning 
alone, both portions of the plate are of the same sense of cut, though still 
being of opposite electrical sense. This may be understood from an ex- 
amination of Fig. 5.4, the second and third views taken together represent 
optical twinning. In the case of electrical twinning the two portions of the 

24 With filter plates additional operating characteristics must be met. The ratio of 
capacities (see Chap. I, Appendix A.3) is greatly affected by the opposed electrical sense 
of twinning. 
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plate are of both opposite sense of cut and opposite electrical sense, as may 
be observed from the third and fourth views of Fig. 5.4. The effect of this 
difference in sense of cut for the two types of twinning is brought out by 
Table I, which gives the approximate frequency constants and temperature 
coefficients for the common cuts of oscillator plates, together with those for 
the analogous, oppositely (and hence wrong) sensed cuts. 

In the case of a CT plate, for example, both portions of an optically twinned 
plate (cut at +38°) will be of the same +38° orientation. The plate is 
elastically the same throughout and hence should exhibit the frequency and 
low temperature-coefficient desired. However, the opposed electrical 
senses of the two portions will cause a reduction in the electrical activity. 
The amount of this reduction will depend upon the relative size of the two 
portions and upon their placement relative to the vibration nodes of the 
plate. 

On the other hand, when a CT plate is electrically twinned one portion of 
the plate will be of the correct +38° orientation while the other portion is of 
the incorrect —38° orientation. The two portions of the plate have widely 
different elastic properties, as is exhibited in the table by the different fre- 
quency constants and their respective temperature-coefficients. Resulting 
from this difference alone, the plate will exhibit operating characteristics 
(if operable at all) intermediate between the two listed in the table (usually 
near one of these two), and its activity will be reduced. The activity will 
also be reduced by the opposite electrical senses in the two portions. The 
degree to which the frequency, temperature-coefficient, and activity are 
affected, again depends upon the relative sizes of the two portions of the plate 
and their placement relative to the "nodes" of the plate. 

Thus, for equivalent proportions and placement of twinning, electrical 
twinning will cause a much greater change in the operating characteristics 
of the plate than will optical twinning.25 

A note may be inserted regarding the electrical testing of plates, some of 
which may be twinned while others may be untwinned but of incorrect sense 
of cut. As seen from Table I, untwinned plates of the correct sense of cut 
are easily distinguished from those of the incorrect sense of cut by their 
frequency. This distinction between sense of cut holds as well for plates 
containing very little twinning. The presence of appreciable twinning in 
the plate is easily distinguished by the activity of the plate. While ordinar- 
ily a plate would be electrically tested in the mode of vibration it is intended 
to be operated in, it is sometimes of advantage to test it in a different mode. 

25 In the case of the uncommon "combined-twinning" the two portions of the plate are 
of opposite sense of cut but of the same electrical sense. The effect on the operating char- 
acteristics will be like that for electrical twinning, except that the activity may not be as 
greatly reduced. 
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Thus the high-frequency mode plates (AT and BT) might be tested in their 
low frequency modes (corresponding roughly to the CT and DT modes, 
respectively). A further discussion of this matter will be found in a later 
chapter by I. E. Fair. 

5.8 Conclusions 

In the processing of quartz, consideration must be given to the nature of 
twinning and to its characteristic distribution in the raw stone. There are 
only two common types of twinning that need be considered, namely elec- 
trical twinning and (true) optical twinning ("combined-twinning" and other 
types are a rarity). Due to the characteristically large size (and the nature) 
of electrical twins, a stone must be examined for electrical twinning (by the 
etch technique) at an early stage of processing so that the electrical twins 
may be observed and cut apart before the angular cuts (AT, BT, CT, DT, 
etc. slabs, bars, or wafers) are made. Otherwise, some of the large electrical 
twins will be entirely cut up with the incorrect angular sense, and hence 
wasted. 

On the other hand optical twins are characteristically small and inter- 
layered, or small and scattered. The interlayered regions are entirely un- 
usable. Hence processing labor will be saved by inspection of the raw stones 
(by the polarized light means of Chapter IV), and of the first sections at 
least (by the etch technique) for large regions of interlayered optical twin- 
ning. 

Scattered optical twins and small electrical twins, or remnants of elec- 
trical twins which have been cut apart, may be cut away in an intermediate 
processing stage, or in a later stage plates containing such twinning may be 
separated out. In either case the etch technique may be used to detect the 
twinning. 

An alternative method of eliminating small electrical twins (or remanents 
thereof) and of small optical twins (most of which are characteristically 
very small) is by electrical tests on the finished plate. This method has 
merit in that if the twins are sufficiently small, and not disadvantageously 
placed in plate, they may not harmfully effect the desired operating charac- 
teristics of the plates. The degree of the effect depends not only upon the 
size of the twin and its location in the plate, but upon whether the twinning 
is electrical or optical; optical twinning being considerably less harmful than 
electrical twinning. The effect of the twinning further depends upon the 
type of plate being considered, i.e. its size and mode of operation, and use. 
It is probable that twinning is more tolerable in low-frequency mode oscil- 
lators (CT and DT) than in the high frequency modes (AT and BT), and of 
course more tolerable in plates of low requirements on the operating charac- 
teristics (activity, frequency and temperature-coefficient). Twinning is 
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probably least tolerable in filter plates, which have to meet very special re- 
quirements.26 Detailed experimental studies of allowable amounts of twin- 
ning are of little value since to use the results in a manufacturing process 
would require a careful inspection of each plate and a difficult classification 
into groups depending upon the variety, amount, and placement of the 
twinning. Acceptance or rejection of finished plates on the basis of their 
final electrical operating characteristics appears to be the only practical 
means of separating usably twinned plates from unusably twinned plates. 
This method of selection does not determine whether the rejected plates con- 
tain twinning or other imperfections (or are misoriented or misdimensioned) 
and is therefore of little use in analyzing the processing methods to deter- 
mine best practices. This disadvantage may be eliminated by etching the 
rejected plates and examining them for twinning (and such other imperfec- 
tions as show up best after etching). 

The effects of crystal imperfections other than twinning were discussed 
in Chapter IV, Section 4.9. 

28 See footnote 24. 



CHAPTER VI 

Modes of Motion in Quartz Crystals, the Effects of Coupling and 
Methods of Design 

By R. A. SYKES 

6.1 Introduction 

WITH the recent extended use of Quartz crystals in oscillators and 
electrical networks has come a need for a comprehensive view of the 

various types of crystal cuts. In addition there has been a need for illus- 
tration of some of the methods employed in choosing the proper cut for a 
given requirement, the manner in which quartz crystals vibrate and the basic 
principles governing the choice of a design to use certain cuts most advan- 
tageously. In particular one of the greatest problems associated with the 
recent large scale production of crystals for oscillator purposes has been that 
of obtaining crystals the activity and frequency of which would not vary to 
any large degree over a wide range in temperature. 

It is the intention of this chapter to present a physical picture of the man- 
ner in which quartz crystals vibrate in their simplest forms and then to show 
what has been learned from these simple forms that will apply to the more 
complex combinations of motion. The motion of a bar or plate is deter- 
mined almost wholly by its dimensions and the particular type of wave gen- 
erated, or frequency applied, and very little upon the driving system if the 
coupling to the driving system is small. In the case of quartz the coupling 
between the electric and mechanical system is small and hence we may study 
the motion of rods and plates without always considering the effect of changes 
due to the method of excitation (i.e., piezo-electric). However the ease of 
exciting and measuring a particular mode does depend on the piezo-electric 
constant driving it. Basically only three types of motion will be considered; 
flexural, extensional and shear. These three types of motion or combina- 
tions of these can be considered to represent most of the cases with which 
we will concern ourselves. In addition, the frequency equations will be 
given for common types of motion and the effect of coupling between various 
modes of motion. Finally the general rules relating to the dimensioning of 
oscillator plates will be presented. 

6.2 Types of Motion in Quartz Rods and Plates 

6.21 Flexural 

The motion associated with flexure will be discussed first because this is 
the type of motion that we see more commonly in nature. This motion is 

52 
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the type which presents itself in the xylophone, the chime type door bell, 
and various other vibrating reeds or bars. Fig. 6.1 shows the general type 
of motion of a bar free to vibrate in flexure. The displacement takes place 
in the direction of W and the wave is propagated along the length. A 
flexure mode is one in which the center line does not change length. The 
type of motion associated with the first order, or fundamental, of a bar free 
to vibrate on both ends is shown in Fig. 6.1 with a dotted figure superim- 

i sr. 

2 NO 

3 RD 

Fig. 6.1—Motion of a bar in free-free flexure. 

posed to show the motion in the opposite phase. The straight bar then 
would be distorted first in one direction and then in the direction of the 
dotted figure. In the case of the second mode of vibration, it will be noticed 
that it consists essentially of two of the fundamental mode types joined end 
to end. This is not strictly the case, but serves to illustrate the motion. 
The dots shown at various points on the bar show positions of zero motion 
or nodes. In the case of the fundamental mode, there are two nodes and in 
the second and third there are three and four respectively. One point of 
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interest in flexure vibration as seen in Fig. 6.1 is that the ends of the bar 
will be vibrating in the same direction for odd order modes and the motion 
of the two ends will be in opposing directions for even order modes. The 
frequency of a bar vibrating in flexure may be easily computed for low orders 
when the width is small in comparison with the length. When the width is 
appreciable other factors must be considered as will be shown later. In 
general, the flexure frequency of a bar will be the lowest frequency of 
vibration. 

In the case of a plate where we are concerned with flexural vibrations 
propagated along the length with motion in the direction of the thickness it 

is necessary to consider also the width. As noted in Fig. 6.1, our concern 
was only for a bar of small third dimension. When considering the case of a 
plate in flexure along its length and thickness, then'the third dimension must 
also be considered for more complicated types of motion. In a manner 
somewhat similar to the vibration of a bar, we can consider a plate vibrating 
in its thickness-length plane. Since a plate also has width, we must also 
consider this dimension. The simplest type of motion would be that of a 
simple flexure which would bend the plate into the shape of an arch. If 
now, the third dimension is permitted to flex, the distortion of a plate 
shown in Fig. 6.2 could be illustrated by a flexure in the t-l plane and in the 

I 

Fig. 6.2—Motion of a plate in free-free flexure. 
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w-t plane. Considering the motion of the plate as a flexure vibration along 
the length vibrating in the thickness, then we may also have a distortion 
along the width and thickness corresponding to similar or higher types of 
flexure motion. The illustration at the bottom of the figure shows a plate 
vibrating in its second order flexure along the length and thickness and the 
fourth order flexure along the width and thickness. The effect of these 
higher orders in the w-t plane is to slightly modify the frequency of the 
C-w mode. 

A thorough treatment of this type of double flexure in plates will be given 
in Chapter VIII by H. J. McSkimin. 

I 

1ST 

2ND 

3 RD 

Fig. 6.3—Motion of a bar in free-free extension. 

6.22 Extensional 

The extensional or sometimes termed longitudinal motion of a bar free 
to vibrate is shown on Fig. 6.3. This motion is somewhat simpler than the 
flexure motion and consists simply of a displacement in the direction of the 
length of the bar of a wave propagated along the length. This means that 
the first mode of vibration will be simply an expansion and contraction of all 
points with respect to the center of the bar. This motion will be along the 
length. The displacements along the bar will then be in proportion to the 
sine of the angular distance from the center. The distortion of a free bar 
in its simplest mode is then illustrated in Fig. 6.3 labeled 1st. Since the 
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motion must be dynamically balanced, a node will appear at the center of 
the bar, and the bar will grow longer and shorter as shown by the solid and 
dotted lines. In the case of the second order of motion, as shown in Fig. 
6.3, it consists essentially of two 1st order modes joined together at their 
ends and of opposite phase. That is to say, when one half of the bar is 
expanding, the other half is contracting. In the case of the 3rd mode, as 
can be seen from Fig. 6.3, the central element is contracting while the exter- 
nal elements are expanding. From this we may state generally, that for 
odd order types of motion, the extreme ends of the bar will be expanding 
or contracting in phase and for even order modes, the extreme ends will be 
expanding or contracting in opposite phase. Fig. 6.3 illustrates extensional 
motion in its simplest form. In a practical case an extension in one direction 
is accompanied by a contraction in one or both of the other two dimensions. 
This of course is due to elastic coupling and will be considered more in detail 
later. If we consider a rectangular plate it is not difficult to imagine that it 
would have three series of extensional modes of vibration due to the three 
principal dimensions. 

6.23 Shear 

The low frequency of face shear type of motion of a plate is somewhat 
more complicated than either the flexure or longitudinal and, as shown in 
Fig. 6.4, consists simply of an expansion and compression in opposite phase 
along the two diagonals of the plate. This motion is shown in Fig. 6.4 
labeled m = 1, n = 1. The two phases are shown, one a solid curve and 
the other a dotted curve to illustrate the distortion with respect to the 
original plate. One peculiarity of shear motion in plates is that it may 
break up into motions similar to its fundamental along either the length or 
the width. For example, if we take the motion associated with m = 1, 
n = 1, and superimpose two of these in opposite phase on the same plate, 
we would get the type of motion illustrated by m = 2, n = 1. In a similar 
manner, the motion may reverse its phase any number of times along either 
the length or the width. One particular case is shown for m = 6, « = 3. 
As can be seen from the case of m = 1, n = 1, the distortion is not that of a 
parallelogram as it is in the static case because here we are concerned only 
with the dynamic case. While the equation of motion of a free plate vibrat- 
ing in shear has not been completely solved, a microscopic analysis indicates 
that the actual motion of the plate edges appear to be somewhat as shown 
for the case m = 1, n = 1 when driven in this mode. 

The shear mode of motion in the case of a thin plate is somewhat different 
for the high frequency case than for the low frequency case. In the case of 
high frequency shear modes of motion in thin plates, the motion of a particle 
is at right angles to the direction of propagation which in this case would be 
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the thickness. The simplest type of motion for high frequency shear is 
shown in Fig. 6.5 where the top of the plate is displaced in the direction 
along ( with respect to the bottom of the plate. This would then be termed 
the length-thickness shear. When viewed from the edge of the plate, the 
motion is very similar to that shown in Fig. 6.4 for the case of m = 1, w = 1. 
In a manner similar to the previous case of shear the front edge of the plate 
may be divided into segments along I and along t. For example, we may get 

 1 

r- 

_ 
n-l 

Tn«2 Tl-I True 71 = 3 
Fig. 6.4—Motion of a plate in low frequency shear. 

a double shear along I with a single shear along t. This case is illustrated 
in Fig. 6.5 for w = 1, n = 2 and /> = 1. In general, m and n may assume 
any integral value. As in the case of flexure we must also consider the third 
dimension. The motion associated with the third dimension may be repre- 
sented by simple reversals of phase as before. For example, in Fig. 6.5 the 
case for m — n = \, p — 2 is shown which simply means that the high 
frequency shear on the front half of the plate is out of phase with that of the 
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back half of the plate. This discussion relates only to the case of the high 
frequency shear commonly assumed to be a single shear along the length and 
thickness of the plate. Similar statements can be made if we consider 
the high frequency shear as being along the width and thickness. 

« 1  V^' 

m -1 
n = i 
P = i 

m = i 
n = 2 
P = 1 

= 1 
n = 1 

Fig. 6.5—Motion of a plate in high frequency shear. 

6.24 Type of Motion for Some Standard Filler and Oscillator Plates 

To get a more complete picture of the applications of the various types 
of motion, we will now take specific cases. The various crystals as com- 
monly used for oscillators or filters are shown in Fig. 6.6. At the top of Fig. 
6.6 are shown the various types of shear plates with their relative position 
with respect to the crystallographic axis. 

The AT and BT plates are termed high frequency shear plates and the 
motion associated with them is that of a length-thickness shear as shown in 
Fig. 6.5. Their use is found for the control of radio frequency oscillators in 
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Fig. 6.6—Motions of typical cuts of quartz. 

the range from 1 to 10 megacycles. The AT is most useful in the lower 
range and the BT in the upper range since it has a higher frequency constant. 
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Considerable use for the A T plate has been found for filters on pilot channels 
for the coaxial telephone system. 

The CT and DT are analogous to the AT and BT but are termed low 
frequency shear plates. The motion associated with these cuts is that of a 
face shear as illustrated in Fig. 6.4. The CT and DT cuts are useful for 
both filter and oscillator applications in the frequency range from 60 kilo- 
cycles to 1000 kilocycles. Here again the DT would be most useful in the 
lower range and the CT the upper range due to the higher frequency constant 
for the CT cut. 

The GT is similar to the CT except that it is rotated by 45° about the nor- 
mal to the plate so that instead of a face shear type of motion there are two 
extensional modes similar to that shown in Fig. 6.3. These two modes are 
coupled to each other resulting in one of them having a zero temperature 
coefficient over a wide range of temperature. This crystal is most useful 
in the range from 100 kilocycles to 500 kilocycles for a primary standard of 
frequency and in filter networks having extreme phase requirements. 

The filter plates commonly called the —18° cut and 5° cut are shown with 
their relation to the crystallographic axes in the central part of Fig. 6.6. 
The —18° cut commonly used in filters employs a simple extensional motion 
along its length with small coupling to an extensional motion along its width 
and practically zero coupling to a face shear type of motion. Since the width 
is usually the order of half the length these modes are not troublesome. The 
+5° cut is useful in filter work because it has a low temperature coefficient 
and in spite of its strong coupling to the plate shear, it has been found quite 
useful in both its extensional mode and its flexure mode. The —18° cut 
is used over the frequency range from 60 kilocycles to 300 kilocycles and 
forms the basic crystal used in the channel filters of the coaxial telephone 
system. When driven in flexure the 5° cut may be made to operate as low 
as 5 kilocycles and is used in oscillator and filter circuits. 

The NT cut is shown at the bottom of Fig. 6.6 with its relation to the 
crystallographic axis. This is obtained by a rotation of -+-8.5° about the X 
axis with a second rotation of ± 60° about the resulting Y' axis. The pur- 
pose of the second rotation is to give the shear modulus a positive coefficient. 
This modulus enters into the equation for the flexure frequency and there- 
fore the effect of the second rotation is to change the temperature coefficient 
of the flexure mode from a negative value to zero. This crystal has been 
used to some extent as a low frequency oscillator. Its main purpose so far 
has been for the control of frequency modulation broadcast transmitters and 
for low frequency pilot channel filters. 

Another crystal called the MT which is cut in a manner similar to the NT 
but with angles of 8.5° and 36° respectively has been used for filter work 
where an extensionally vibrating crystal of zero temperature coefficient is 



MODES OF MOTION IN QUARTZ CRYSTALS 61 

required. The motion associated with this crystal is similar to that shown 
for the +5° cut of Fig. 6.6. The low temperature coefficient is obtained 
through coupling to, and the effects of, a shear mode of positive temperature 
coefficient. Its use has been mainly for pilot channel filters of rather 
narrow frequency bands. 

6.3 Frequency Equations for Flexurel, Extensional and 
Shear Motions 

In determining the motion and resonant frequencies of a particular type 
of vibrating system it is customary to consider an isolated type of motion in 
order that the solution shall be in a simple enough form to be practical even 
though it may not be too accurate. The more accurate type of solution 
is often so complex that its use for practical solutions might be small. Since 
any solutions so far obtained are not complete in every detail, it is usually 
necessary to resort to experimentally determined frequencies in any case, 
and the solution can only be regarded as a guide to the complete result. In 
the following treatment it will be assumed that the frequency equations are 
given for isolated modes of motion and it will be later shown which of these 
forms are coupled and the effect of the coupling. 

6.31 Flexural Resonant Frequencies 

The simplest equation relating the resonant frequencies of a rod vibrating 
in flexure is given by1 

f ™ k A 1 
f = 6-1 

where v = velocity of extensional propagation = \/Fo/p 
k = radius of gyration of cross section 
Fo = Youngs modulus 
I = length 
m = (« + l/2)7r for free-free modes 

= (« — l/2)7r for clamp-free modes (» > 1) 
n = order of mode (1, 2, 3, etc.) 

This equation holds only for the case of a long thin rod. Measurements 
of the resonant frequencies of a quartz crystal vibrating with both ends free 
has shown the above equation to be true where m is defined approximately 

7VW 
as (« -f l/2)7r provided — is less than .1. For values greater than this the 

V 
measured values are somewhat lower than that predicted. When the di- 
mension in the direction of vibration is appreciable in comparison with the 

1 Rayleigh, Theory of Sound, Vol. 1, Chapter VIII. 
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length, Mason2 has shown that it is necessary to consider the effects of rotary 
and lateral inertia. His solution leads to the same frequency equation as 
6.1 but with a different evaluation of the factor m which is obtained from the 
transcendental equations 

tan m X = K tanh mX' for even modes 

1 6-2 

tan m X = — — tanh mX' for odd modes 
A 

where 
K4 74\ 1/2 2 .2-11/2 ,, vi k \ , m k \ 

+ ^) + ~2P J 

-'"[U-JT-■JT 

Equation 6.2 holds only for the case of a rod free to vibrate on both ends. 
The case of a clamp-free rod is somewhat more complicated since it cannot be 
given by separate solutions for the even and odd modes. The interpretation 
of m given in equations 6.2 will result in the same value as before {m = 

{n i)T] for values of — less than .05 but decrease considerably for larger 

values and ultimately as the bar becomes wider the effects of rotary inertia 
result in the flexure frequency approaching the extensional mode as an 
asymptote. As stated before measurements on quartz bars vibrating in 
flexure departed from that predicted by the simple definition of m when the 

width of the bar was such that ^ > .1. By using the value of m defined by 
V 

r • , . WW 
equation 6.2 it is possible to predict the frequency for widths as great as — = 

.5. For widths greater than this, experiment shows a frequency lower than 
that predicted by equation 6.2. This then leads one to believe that the effect 
of shear plays an important part in the flexure of bars with appreciable width. 
An investigation of the effect of shear on the flexure frequencies of beams 
has been made by Jacobsen3 and his results lead to the same frequency 
equation as 6.1 and to the same transcendental equations derived by Mason 
(6.2) but with different values of X, X' and A' to account for the shearing 

2 W. P. Mason, "Electromechanical Transducers and Wave Filters," Appendix A. 
D. Van Nostrand Company, Inc. 3 Jour. Applied Mechanics, March 1938. 
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effect. These values are given by 

r" i[('+ ">'/w (4+')]' " 

-K-m,-))'-$• (4-■)]?. 

where Cj, is the shear constant in the plane of motion su is the elastic constant 
in the direction of propagation. While it is true that these values will 
result in a lower value of m than those associated with equation 6.2 and 

hence fit the actual measured results more closely for bars wider than ^ = 

.5, there is some doubt in the minds of various investigators as to the actual 
amount of correction necessary to apply to compensate for the shear. The 
solution of equation 6.2 using the constants of equation 6.3 is a lengthy 
process and could only be applied to a given orientation since the elastic 
constants vary with direction in quartz. While the results of Jacobsen's 

• IVH) work are difficult to handle for intermediate values of — where the correc- 
t 

tion of rotary and lateral inertia do not fit the measured results it does imply 
7VW 

that for large values of — that the flexure frequencies will be mainly a 
v 

function of the length alone. Therefore when we are concerned with very 
high orders of flexure in plates such as the case of high frequency A T and BT 
shear crystals we may assume the interfering modes due to flexures will be 
essentially harmonic in nature. Restating the general problem of determin- 
ing flexure frequencies in quartz rods or plates we may assume that the 
ratio of width to length is the controlling factor in deciding which method of 

attack is to be employed. For values of less than .1 equation 6.1 will 
v 

• . 11W 
give quite accurate results. For values of — up to .5 equation 6.1, using the 

values of m determined by equation 6.2 will give satisfactory results. While 
the values of m determined by using equation 6.3 will give more accurate 
results for the range .4 to .6, it is not desirable to carry it further because, 
while 6.2 does take into consideration the effect of shear it does not account 

for coupling to the shear mode of motion. Hence for values of — > .6 
L/ 
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it is best to depend upon experimental measurements if accurate results are 
a factor. 

6.32 Extensional Frequencies 

The resonant frequencies of a bar vibrating along its length, commonly 
called an extensional mode of motion is derived quite easily from the wave 
equation in one dimension and is given by 

where t = length 
Sa — elastic constant in the direction of propagation 

p = density 
n = 1, 2, 3, 4, etc. 

This is the case when the length is the greatest dimension. When we con- 
sider extensional modes along the thickness of a plate, it can be shown that 
the c constants be employed to account for the lateral inertia in the two 
directions at right angles to the direction of propagation, (provided that the 
resulting motion is nearly along the thickness direction). Hence, for thin 
plates 

As an example of the use of the above equation an X-cut bar vibrating along 
its length would result in a series of resonant frequencies defined by equation 
6.4. An X-cut plate vibrating along its thickness would result in a series of 
frequencies defined by equation 6.5. Applying the appropriate constants 

6.4 

6.5 

6.6 

and 

6.7 

This shows that although Young's Modulus is the same in the two directions 
the resulting frequency constants are different because of the conditions at 
the boundaries. 
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6.33 Shear Resonant Frequencies 

As shown in section 6.23 the low frequency face type shear mode results 
in a doubly infinite series of frequencies due to the manner in which the plate 
may break up into reversals of phase along its length and width. While 
a solution for the low frequency shear motion that satisfies the boundary 
condition of a free edge has not yet been accomplished, several approximate 
solutions for the frequencies are available. A modification of the equation 
developed by Mason4 will give results which verify experimental data. 

where p = density 
Sjj = shear modulus in (w plane 

in, n = 1, 2, 3, etc. 
I = length of plate 

w = width of plate 

The value of k so far remains experimental and for low orders of m and n 
may be assumed unity. Its use is mainly for high orders of m and n where 
Young's modulus is different in the C and w directions. Experimental data 
in the case of BT plates indicates that it should be 1.036 to account for the 
difference in velocity in the two directions. When m or n is large the velocity 

component, namely \/ — should be replaced by \/— for reasons ex- 
y psii y p • 

plained for the extensional case. Equation 6.8 holds for the case of a plate 
vibrating in low frequency shear in regions where no highly coupled exten- 
sional or flexural resonant frequencies exist. As will be shown later, these 
regions are few. By assuming the frequencies are given by these equations 
and then applying the normal correction for coupled modes, a fairly accurate 
result will be obtained. 

The high frequency case of a plate vibrating in shear is somewhat similar 
to the face shear or low frequency case with the exception that three dimen- 
sions must be considered since two arc large compared to the third (the main 
frequency controlling dimension). An experimental formula for this case 
is given by 

6-9 

where Cjj = shear modulus in plane of motion 
p = density 

(, w, I = length, width and thickness 
1 "Electrical Wave Filters Employing Quartz Crystals as Elements," W. P. Mason, 

B.S.TJ. July, 1934. 
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m, n and p represent reversals of phase along the three directions and may be 
termed overtones. The values of k and h are inserted to correct for the 
change in shear velocity resulting from a change in Young's modulus in the 
three directions. For most work with oscillator crystals where the length 
and width are large compared to the thickness, the following simplification 
of equation 6.9 is most useful. 

When high frequency shear type crystals are used in connection with selec- 
tive networks, it is necessary to make use of equation 6.9 to determine where 
the next possible pass regions will occur. 

6.34 K If eels of Rolalion About Ike Cryslallographic .4 .rex on the Resonant 
Frequencies and Coupling between Modes of Motion 

Several of the elastic constants have been used in equations expressing 
the resonant frequencies. Since most of the crystal cuts now in use arc 
rotated at some particular angle about the X crystallographic axis, it is of 
interest to know the effect of this rotation upon the elastic constants since 
they determine the resonant frequencies and the coupling between certain 
of the modes of motion. The general stress-strain equations for an aeolo- 
tropic body arc given in equation A.l of Appendix A together with their 
definitions. In the case of quartz where the axes of the finished plate arc 
aligned with the crystallographic axes the constants reduce to 7 and are 
shown in equation A.8. Examination of these equations shows that there 
are extensional and shearing strains resulting from dissimilar extensional 
and shearing stresses through the elastic constants x.-y and c.-y. This results 
in coupling between modes of motion where a so-called cross strain exists. 
These couplings may be made zero or small by proper orientation of the 
crystal plate about the X crystallographic axis. The mathematics of this 
operation is simplified by the use of matrix algebra5. Upon performing 
this operation a new set of elastic constants are obtained and are plotted 
graphically together with the piezoelectric constants on Fig. 6.7. From 
this figure we may see that the coupling resulting from the X21 constant will 
be zero if the crystal plate is orientated by —18.5° about X with respect to 
the crystallographic axis. This constant determines the coupling between 
the extensional mode along the length {V dimension) and the face shear 
mode (1 'X' dimensions). This analysis resulted in the use of the -18.5° 
cut in the channel filters of the coaxial system. Two other crystal cuts 
resulting in low coupling between different modes of motion are the .4C and 

5 "The Mathematics of the Physical Properties of Crystals," W. L. Pond, B.S.T.J., 
Jan. 1943. 

6.10 
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BC cuts. The s'b6 constant determines the coupling between the face and 
thickness shear modes. As shown in Fig. 6.7 this constant passes through 
zero at two values, namely +31° and -59° and the resulting angles have 
been termed the AC and BC cuts. These angles are very close to the AT 
and BT cuts and hence they also possess the benefits of low coupling between 
modes. In addition to making the cross coupling constants zero, a rotation 
of the crystal plate with respect to the crystallographic axes also results in a 
change in the extensional ?.nd shear elastic constants. Notice that these pass 
through maxima and minima at the zero values for the cross coupling con- 
stants. This of course affects the resonant frequencies of isolated modes. 
Changes as great as 50% increase in frequency constants may be obtained 
by choosing the proper rotations. The equations relating the elastic con- 
stants as functions of orientation are given in appendix B for more com- 
plete use. 

6.4 Coupling between Modes of Motion 

As pointed out in the previous section, the frequency equation of a given 
mode of motion will give accurate results only in the case where the mode of 
motion is isolated. This is very rarely the case since most quartz crystals in 
common use are in the form of plates where the frequency determining di- 
mension is not large in comparison with all other dimensions. Only in the 
case of a long thin rod vibrating in length-thickness flexure of the first order 
would this be true. It was also shown that the coupling between different 
modes of motion could be related to the mutual elastic constants (s.-y and c.y) 
and that some of these could be made zero by the proper choice of orientation 
of the finished crystal plate. The elastic constants s.-y and c.-y only relate to 
the coupling between the extensionals, the shears and the extensional to the 
shear. For example 523 relates to the coupling between the extensional 
modes along the V and Z axes, s56 relates to the coupling between the low 
and high frequency shear modes of a V cut plate and ^24 relates to the cou- 
pling between an extensional mode along the V axis and a shear mode in 
the VZ plane. One other important coupling condition occurs and that is 
between the flexure and the shear modes. There is at present no mathe- 
matical theory relating this form of coupling except from simple assumptions 
that may be drawn from the fact that the shear modulus enters as a control- 
ling factor in determining the frequency of a bar vibrating in flexure and from 
the similarity of the two types of motion near the boundaries. Since it is 
possible to have a definite coupling between extensional and shear modes 
there must be coupling between the extensional and flexure modes. It 
would be expected that it would be proportional to the coupling between the 
extensional and shear modes. 
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6.41 Extensional to Shear and Extensional to Flexure Coupling 

The coupling between the extensional and shear motion can best be illus- 
trated by taking the case of an .Y cut plate the length of which lies along the 
Y axis and the width along the Z axis. This is shown in Fig. 6.8 together 
with two other cases, one in which the plate is rotated about the X axis by 
—18° and the other a similar rotation but -+-18°. Also in Fig. 6.8 is shown 
an enlarged view of the change in the elastic constants and frequency con- 
stants as a function of the rotation of the plate about the electric or X axis. 
For the case of an X cut plate the strains resulting from an applied exten- 

ZV 

z 

Zz 
* Yz 

fr 7 
y 

h 
- fYy 

ii \ 
/L _   

/I 
b 

h
 

(I
S

 

li
 , :y of Zz 

■ Yu 
 — 

s'24 

•v 
S2S - '  

\ - >«- 

+18 0 -18 
ROTATION ABOUT X-AXIS IN DEGREES 

Fig. 6.8—Motion in an X cut plate for different orientation about the A' 
crystallographic axis. 

sional stress along the length according to equation A.8 would be 

xx = 5(2 Yy 

y» = snYv 

Zz = S23 Yy 

yz = s'ii Yy 

where xx is an extensional strain along the thickness 
yv a u « " « " length 

Zz " " " " " " width 
yt " a shear strain in the length-width plane 

6.11 
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If the plate is thin we may neglect the xx strain as far as its effect on the 
resonant frequencies associated with the length and width are concerned. 
From the plot of the elastic constants on Fig. 6.8 we may determine the 
strains resulting from a stress along the length of an X cut plate for various 
orientations about the X axis. In addition to the expected extension along 
the length we have for a +18° cut, a large amount of length-width or yz 

shear strain due to 524 and very little width or z* strain. For the 0° cut there 
is also large length-width or yz shear strain and a width or zz strain. In the 
case of the -18° cut the shear strain vanishes due to 524 being zero, leaving 
in addition to the expected length or y'y strain a width or zz strain. These 
relationships are more clearly shown if we plot the resonant frequencies 
resulting from the three modes of motion namely, the extensional modes 
along the length and width and the shear mode in the length-width plane 
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Fig. 6.9—Effect of rotation about the .Y axis on the resonant frequencies 
of an .V cut plate. 

A plot of measured resonances is shown in Fig. 6.9 for the above described 
three cases as a function of the change in width. The resonant frequencies 
for these three types of motion are given in section 6.3 as 

Jyv u 
, extensional along I 

P522 

A' = — A/ -^r , extensional along 2 2w Y p533 
w 

6.12 

6.13 

fv't n ,^'t/? + ^shearinteplane 
6.14 

2 V ps'U V t- 

These equations specify only the uncoupled modes and do not take into 
consideration the effect of coupling to other modes of motion. In the case 
of Fig. 6.9 it is shown that when only the width is changed the extensional 
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mode along the length (the y'y mode) is unaffected only in the case of the 
—18° cut. The effect of coupling between the extensional and shear is 
clearly shown in the case of the 0° cut by the change in the length-extensional 
frequency. This is more pronounced in the +18° case not because of more 
coupling but because the frequency constants of the two modes are more 
nearly alike as indicated in Fig. 6.8. 

The mode of motion associated with the line intersecting the extensional 
y'v mode is that due to the second length-width flexure mode. As mentioned 
before it is strongly coupled to the shear mode in the same plane. The 
coupling between this flexure and the extensional mode is directly related 
to the coupling between the shear and the extensional mode. This is borne 
out by Fig. 6.9, for in the case of the —18° cut, is zero and as can be seen 
the change in frequency of the extensional mode is very slight even when the 
flexure mode is nearly identical in frequency. 

We may state generally that the change in frequency of a particular mode 
of motion from that of its uncoupled state is dependant on two factors; 
the coupling to and the proximity to other forms of motion. This follows 
well established mathematical procedures but to solve the case just discussed 
would require the solution of a four mesh network with mutual impedances 
the values of some of which are at best only approximate. This will serve 
to illustrate that the use of formulae such as given in section 6.3 may be used 
more as a guide in establishing certain modes of motion rather than for accu- 
rate determinations of resonant frequencies. 

6.42 Flexure to Shear Coupling 

1. Low Frequency Shear 

As previously indicated there is no simple means of mathematically 
determining the coupling between flexure and shear types of motion as there 
is between the extensional and extensional to shear modes. Here we must 
base our assumptions upon observed experimental evidence and simple rea- 
soning. The relation between flexure motion and shear motion can be illus- 
trated by the figures associated with Fig. 6.10. The forces that are necessary 
to produce flexure and shear motion are shown by arrows in Fig. 6.10. 
When the two arrows point toward each other, it indicates a compression 
and when the arrows point away from each other, it indicates tension. The 
diagrams on the left of Fig. 6.10 illustrate the conditions for flexure motion 
and the diagrams on the right indicate the conditions for shear motion. 
Notice that in the case of the first flexure and the second shear that the 
forces applied to the top and bottom of the plate are similar. Also in the 
case of the second flexure and third shear, they are similar. Here again we 
have certain similarities which in this case are important to remember. 
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The motion of the ends of the plate in the case of the first flexure are similar 
to those of the second shear. In the case of the second flexure the similarity 
is observed in the case of the third shear. The end motion in the case of the 
third shear is also the same in the case of the first or any odd shear. Like- 
wise, the end motion of the first flexure is similar to the second shear or any 
even shear. We may then generalize and say that it is very likely that an 
odd order flexure would be coupled to an even shear; and also an even flexure 
would be coupled to an odd shear. 

T T 
w 

_L 

1 ST FLEXURE 2ND SHEAR 

2 ND FLEXURE 3 RO SHEAR 

ODD FLEXURE EVEN SHEAR 

EVEN FLEXURE ODD SHEAR 
Fig. 6.10—Similarities in shear and flexure motions in a bar. 

To illustrate the coupling between flexure and shear type motions, the 
frequencies of flexure and shear modes in a Z-cut quartz plate as shown in 
Fig. 6.11 have been measured. These measured frequencies are shown by 
the solid lines for various widths of the plate. It will be seen that there are 
no observed resonances following an unbroken continuous line to represent 
the shear frequency, but they are interrupted by several other frequencies 
which we must interpret as being various even modes of the flexure in the 
plane of the plate. It is clearly shown here that only even order flexures are 
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strongly coupled to the fundamental or odd shear. The strong coupling 
shown between the Xv shear and the second Xv flexure explains why the 
frequency equations given in section 6.3 for the frequency of flexure and 
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Fig. 6.11—Shear and flexure resonances in a Z-cut quartz plate. 

shear modes will not give even approximate results if applied to this case 
for a square crystal. It will be shown later that if account is taken of 
coupling, the shear mode for a square crystal of this type may be more accu- 
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rately determined. Fig. 6.12 is a more detailed representation of the 
conditions shown broadly in Fig. 6.11 except in this case an ^IC-cut quartz 
plate was used and most of the observable resonant frequencies are shown 
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Fig. 6.12—Shear and flexure resonances in an ^IC-cut quartz plate. 

li) • / 
for various values of —. The plate shear is labeled Zx shear and occurs at 

V 
the frequencies predicted by equation 6.8 except in the regions where a 
flexure in the same plane exists. This is the type of motion shown in Fig. 
6.4 for the case of m = 1, w = 1. It can be seen that as the difference 
in order of modes becomes greater the effect on the shear frequency is less 
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except where they are coexistant. We can then state generally that even 
though there is coupling between particular modes of motion, if the difference 
in order is great, the approximate frequencies may be computed as though 
they were isolated. This is more clearly shown in the case of thickness 
shear modes. The modes that are shown coupled to the face shear mode 
are Z'x flexures propagated in the direction of the length or X axis. The lower 
orders can be shown to follow the general frequency equation discussed 
• • • 10 in section 6.3 but the higher orders for a given —, it will be noticed, are regu- 

"V 
•arly spaced in frequency and show the effect of shear. The Xy flexure modes 
determined by the length and thickness are shown as nearly horizontal 
lines since only the width was changed. Since these two groups of flexure 
modes are propagated in the same direction, it would be expected that the 

difference in frequency for the same ratio of dimension ^i.e., ~ would 

be due to the differences of the shear coefficients in the two planes of motion. 
The vertical dotted line indicates the ratio of thickness to length. When 
the ratio of width to length is equal to this value it can be seen that the 
flexure modes in the width-length plane are in all cases higher than the same 
order flexures in the thickness-length plane. An examination of Fig. 6.7 
shows that for an ylC-cut crystal the shear modulus in the width-length 

plane '1S greater than that in the thickness-length plane • 

This is in agreement with the observation made above. One other generalitv 
may be drawn from the experimental data shown in Fig. 6.12. The coupling 
between flexure modes and shear modes in planes at right angles to each 
other is very small in comparison with that between modes in the same 
plane. 

As mentioned before the effect of coupling between modes of motion is 
greatest when the orders are more nearly similar. In this particular crystal 
this effect can be shown between the fundamental width-length Z'x shear and 
the second order width-length Zx flexure. This is shown in Fig. 6.13 which 
is an extension of the data shown in Fig. 6.12 for a crystal nearly square 
and shows the frequency range covered only by the second flexure and 
the fundamental plate shear. A computation of the uncoupled second flex- 
ure mode propagated along the length and the first plate shear mode are 
shown by the solid lines // and f, respectively. Inserting the appropriate 
constants the formulae of section 6.3 become 

r _ 1 /7.85 X 10" zZ' , 1C 

2ry 12 X 2.65 W X2 5 

r _ i , /TUOTIO1"0 . / 1 , 1 
2 y 2.65 ]/ X2 + Zn 
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In evaluating m, account was taken only of the rotary and lateral inertia so 
that some error is expected at the larger ratio of axes. The curve of flexure 

crosses the shear curve at — = .76, a condition which we know to be non- 
( 

compatible since these two motions are coupled. From the theory of coupled 
circuits we can determine the displacement of two uncoupled frequencies as a 
result of the coupling, through the relation 

/;.*=* ui + /? ± va;-/?)! + 4^] 6.17 
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Fig. 6.13—Effect of coupling on the plate shear and the second flexure mode in an 
4C-cut quartz plate. 

where /, = uncoupled shear frequency, 
ff = " flexure " 
k = coefficient of coupling. 

The coefficient of coupling in this case may be defined as the ratio of the 
mutual to the square root of the self compliances of the two vibrating sys- 
tems. As mentioned before no derivation has yet been made to indicate the 
relation between the coupling between these two forms of motion and the 
physical constants of the medium in which the vibration occurs. It is 
necessary to assume some coupling factor which will produce that observed 
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by experiment. Applying a coupling coefficient of 35% and computing the 
values of /i and f* from equation 6.17 the results are the dotted curves 
shown in Fig. 6.13. The observed points follow the computed values to a 
fair degree of accuracy for all frequencies below 180 kilocycles. Above this 
range there is a strong coupling to the fourth flexure and this would require 
separate consideration. Based upon these results the equation for the low 
frequency or face shear given in section 6.3 would not give the observed 
results for a nearly square plate because of the high coupling to the second 
flexure mode. For an approximately square plate, cut near the ^4C-cut 
the plate shear frequency including the effect of coupling would be given by 

where 

d= \{X + Z') 

and .849 is the factor resulting from the use of equation 6.17. For crystal 
cuts far different from the above it would be necessary to consider the flexure 
and shear as uncoupled and then apply equation 6.17 to determine the 
appropriate factor for square plates. 

2. High Frequency Shear 

The motion associated with flexure has been shown in Fig. 6.1 and in 
order to determine the frequency of higher order flexures, measurements 
were made on an ^C-cut crystal. The results of these measurements are 
shown in Fig. 6.12. The first flexure motion to be expected with this 
crystal would be a flexure in the plane of the length and width. The various 
orders of these flexures are shown by the curved lines labeled second zx 

fourth, sixth, etc., all radiating from zero frequency (Primed values of s 
and y indicate that these are not crystallographic axes). The equation 
commonly determining the frequency of flexure states that the frequency 
should be proportional to the width and inversely proportional to the 
square of the length. If this were true, these curved lines representing the 
resonances of this type flexure shown on Fig. 6.12 would then be straight 
lines. Since the actual conditions show a wide departure from this, we must 
assume that this departure is due to rotary and lateral inertia and the 
effects of shear. It will be noticed that as we progressively increase the 
order of the harmonic, that the actual frequency spacing for a given value of 
w 
- is very nearly linear instead of a square law. This point is more clearly 

seen when we examine the frequency of higher orders of the flexures in the 
length thickness or xy' plane. As shown on Fig. 6.12 these frequencies 
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labeled 6th xv, etc., change very little and are nearly horizontal straight lines. 
Here again they appear to be simple harmonics of some common low fre- 
quency. Also it will be noted that the coupling between the zx flexures and 
the z'x shear is quite appreciable and in general decreases as the difference in 
order of the two modes becomes greater. This plot of the various flexure 
frequencies tells us a great deal about the behavior of progressively higher 
order of flexure type motion. The important effect to be noticed is that for 

high orders, and a fixed ratio of -, the flexure may be treated as though it 

were harmonic so far as frequency is concerned. Some variations to this 
rule will be observed and special cases will be discussed. So far we have 
discussed the case of flexure modes of relatively low order. In the case of 
high frequency shear modes of motion, we would expect that the order of 
flexure which would interfere with this type of motion would be rather high. 

Figure 6.14 shows a plot of these flexure modes as observed in an .IT-cut 
plate. These are shown by dashed lines. The dots indicate actual meas- 
ured resonances. This figure also shows the various other resonant fre- 
quencies observed in this type of plate as discussed in section 6.2. The solid 
lines labeled mnp represent the type of shear motion shown in Fig. 6.5. 
Here again we may observe certain statements made before with respect to 
the coupling between shear and flexure type motions. Notice in this case 
that the coupling between an even order flexure and an odd order shear is 
high and increases as the orders more nearly approach each other. For 
example, the 38th flexure mode is coupled to the fundamental shear labeled 
mitiipi has very little coupling to the second order shear mtfivpi, and again 
is strongly coupled to the third shear mjizpi and correspondingly higher 
coupling to the fifth shear. When we speak of higher order shears, such as 
«2«3«6, they are not higher order in the sense of harmonics, but do differ by 
a small amount in frequency. In the case of a plate where t is not great 
compared to t, these differences will be greater. 

In actual practice in the case of AT plates, we are usually concerned 
mainly with the fundamental high frequency shear and high even order flex- 
ures along the length. This case is shown in Fig. 6.15 which gives experi- 
mental results of measurements on actual AT plates. It will be noticed 
that the flexure frequencies show a rather regular displacement as the ratio 
of the length of the plate to its thickness is changed. In this case only the 
odd order modes of shear and the even modes of flexure are shown. It will 
be observed that as the ratio of the length to thickness decreases, the cou- 
pling between these modes is quite high. This some state of affairs is illus- 
trated again in the case of the third harmonic of high frequency shear and is 
shown in Fig. 6.16. The near vertical dashed lines represent even order 
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flexure frequencies and the curve labeled W3W1 and the curve labeled W3W3 
correspond to two different values of the high frequency shear near its com- 
monly called third harmonic. 

An examination of Figs. 6.14 and 6.15 indicates that a regular pattern 
is formed of the ratios of axes at which the high frequency shear and succes- 
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Fig. 6.14—High frequency flexure and shear resonances in an /IF-cut 
quartz plate. 

sive even orders of the length-thickness flexure coincide. Rather than 
define these points on the basis of specific ratios of axes it is more convenient 
to place them on a frequency basis. Therefore we may say that for a given 
size plate there will be specific frequencies at which some mode of the flexure 
motion along the length will be the same as the high frequency thickness 
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shear. For the case oi AT plates experiment has shown these to be given by 

fxt = nXf , kilocycles 6.19 A 

where X = length of X axis in millimeters, 
nXf = order of flexure along X axis 

= 1, 2, 3, 4, etc. 

In this equation as well as those of a similar nature to follow it is assumed 
that the thickness is such as to result in the same frequency for the high 
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Fig. 6.15—High frequency flexure and shear resonances in an A T-cut quartz plate. 

frequency Xv shear mode. As shown in Fig. 6.14 only the even orders are 
strongly coupled to the fundamental thickness shear. 

The coupling between high even orders of the flexure along the X axis and 
the high frequency shear in the case of -BF-cut plates is similar to that for 
AT-cni plates. Fig. 6.17 shows the various resonant frequencies observed 
in a .BF-cut crystal as a result of changing the ratio of the length or X 
axis to the thickness or V axis. The curve mjii represents the high fre- 
quency Xv, shear. Curves mtfiz, Wi«b> and represent other 
shear modes as discussed in section 6.23 resulting from higher orders along 
the length or X axis. The dashed lines represent even order flexure modes 
along the X axis. The same regularity is observed here as in the case of the 
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AT-cnt. When placed on a frequency rather than a ratio of axis basis the 
frequencies at which flexure modes along the X axis would coincide with the 
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Fig. 6.16—High frequency flexure and shear resonances in an .-ir-cut quartz plate near the 
third harmonic shear mode. 

fundamental XV' shear mode are experimentally given by 

1818 , , 
fXf = nXf kilocycles 6.20 
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where X is given in millimeters. In this case it will be noticed also that 
only even order flexures are strongly coupled to the fundamental shear. 

The dependence of the flexure frequency on the shear coefficient can be 
seen from these two cases. The direction of propagation is the same in both 
cases (along the X axis) but the direction of particle motion is nearly at right 
angles. It would be expected then that the frequency constant would be 
highest for the case of the highest shear coefficient. Examination of equa- 
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Fig. 6.17—High frequency flexure and shear resonances in a SF-cut quartz plate. 

tions 6.19 and 6.20 shows this to be true. In addition, the change in the 
frequency constant is about the order of magnitude of the change in the 
shear modulus in the respective planes of motion. 

6.43 Coupling between Low Frequency Shear and High Frequency Shear 

From an examination of Fig. 6.7 it can be seen that the coupling between 
the low frequency shear {Z'x) and the high frequency shear Xy' is related 
by the 5b6 constant. In the AC and 5C-cuts this reduces to zero but for the 
AT and BT-cuts it has a finite small value. According to section 6.3 the 
frequencies of the plate shear modes are given by equation 6.8 but this 
holds only for the case where m and n are small. When the third dimension 
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becomes appreciable in comparison with a half wave length along w or I 
it becomes necessary to use the c constants. When considering high orders 
of the low frequency shear equation 6.8 is modified to 

6.21 
w' 

Equation 6.21 shows that high orders of the low frequency or plate shear are 
dependent upon both the length and width dimensions and it might be as- 
sumed that this would lead to very complicated results in so far as analysis 
of experimental data is concerned. The coupling between these modes and 
the high frequency shear is a result of coupling in the mechanical as well as 
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Fig. 6.18—High frequency shear resonances in an .-i F-cut plate. 

the electrical systems. The strongest coupling with reference to the length 
axis would then be for high odd orders of m and unity for n with successively 
smaller coupling for higher orders for n if the driving potential extends over 
the complete surface of the crystal. In a similar manner when considering 
high orders of plate shear along the width axis the highest coupling will 
result from unit order for m. Based on these assumptions then to a first 
approximation we can assume these modes to be functions of length and 
width alone. Equation 6.21 then reduces to 

/. =1 u' 2 y p i 

f — ^ a fiii Wu", 

~ 2 y 7 ^ 

where ns( = order of shear mode along C axis, 
nsw = order of shear mode along w axis. 

6.22 

6.23 
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These modes have been measured \n AT and -BT-cut crystals. Fig. 6.18 
shows the points at which these modes intersect the fundamental high fre- 
quency shear mode in AT-cni plates. This is the case for high orders along 
the Z' or width axis. A similar set of resonances can be shown to exist 
when the X or length axis is varied. Experiment has shown that these 
frequencies of coincidence between high order plate shear modes and the 
fundamental high frequency Xv- shear mode for the case of A T-cut plates is 
given by 

fx» = nx» kilocycles 6.24 A 

/«-« = n*'» kilocycles 6.25 Zj 

where X and Z' are given in centimeters. Only odd orders are strongly coupled 
if the crystal plate has a symmetrical contour with respect to an applied 
equipotential electrode. Upon substitution of the value of C55 for an A T-cut 
crystal in equation 6.22 there results 

fs X ^ ^ ^ = 251-0 kilocycle - cm. 6.26 

which is within 1 per cent of that found experimentally. Since Young's 
modulus is nearly the same along the X and Z' axis the value of k in equation 
6.23 is essentially unity. Fig. 6.19 shows measured values of high order Z'x 

shear modes near the high frequency AV shear mode in a -BT-cut crystal 
for various values of the width or Z' axis. More detailed measurements 
have been made of the high order Z'x plate shear modes in -BT-cut plates 
along the X axis. Fig. 6.20 shows both the shear and flexure modes along 
the X axis near the vicinity of the high frequency AV shear mode. Since the 
frequency constant for the Z'x shear modes is different from that for the AV 
flexures there are regions where, if no coupling existed, all three modes would 
be at the same frequency. It is obvious from Fig. 6.20 that this is not the 
case. Therefore, we must assume that not only are the high order Zx 

shears and A*- flexures coupled to the high frequency Xv> shear but that they 
are coupled to each other. 

While it is difficult to see from Fig. 6.20 the relative coupling of flexures 
to the AW' shear, experiment has shown the flexure modes along A to have 

A 
the greater coupling to the Ay- shear. This is true when the ratio —, is 

such that the flexure modes along A and high order Z'x shear modes along A 
have their maximum separation. When these modes approach each other 
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X 
and the XV' shear such as is shown in Fig. 6.21 at -^ = 31.35 the relative 

coupling of each to the XV' shear is about equal. This arises from the fact 
that the mutual coupling between them increases the apparent coupling 
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Fig. 6.19—High frequency shear resonances in a BT-cut plate. 
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between the AV shear and high orders of Z'x shear along A'. From this it 
would appear advisable to avoid such regions in the dimensioning of crystals 
for oscillator use over wide temperature ranges. Determination of the flex- 
ure as well as high order Zx shears then must be made in regions where 
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they are spaced so that the effect of coupling between them will not influence 
the frequency constant that is determined experimentally. These regions 
have been investigated and the result for the flexure modes is that shown 
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Fig. 6.21—Flexure resonances in a GF-cut quartz plate. 

in equation 6.20. From Fig. 6.19 the high order Z'x shears along Z' will be 
coincident with the high frequency -XV shear at frequencies given by 

166.45 
U; = nt; kilocycles 6.27 

From Fig. 6.20 high orders of the same z'x shear along X will be coincident 
with the high frequency Xy shear at frequencies given by 
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fx, = —^— nxt kilocycles 6.28 
A 

Upon substitution of the value of c[h for a jBT-cut in equation 6.22 there 
results 

/, w * 1 4 /30.3 X 1010 ... . 
ft'*-* = 2 V = 2 y  2 65  = kilocycles - cm. 

which is 3.3% greater than that observed in equation 6.28 and 1.6% greater 
than that shown in equation 6.27. The apparent difference in the observed 
shear modulus in the X and Z' directions for the BT-cnt can be explained 
from the fact that Young's modulus is quite different in the two directions 
for the BT-cnt while it is nearly the same for the .dT-cut as verified by 
equation 6.24 and 6.25. 

From the discussion in this section it can be seen that a single theory that 
would relate all the now known resonances in quartz plates together with the 
effects of coupling would be prodigous indeed. In order to reduce the design 
of quartz plates to a simple engineering basis it is necessary to take specific 
examples and investigate the region in the vicinity of the frequency to be used 
based on general theory and then apply approximations that fit the specific 
cases. 

6.5 Methods for Obtaining Isolated Modes of Motion 

6.51 GT Type Crystals 

In the case of GT type crystals the modes that cause the greatest concern 
are flexure modes in the two planes of the length and thickness and the width 
and thickness. The desired mode is that of an extensional mode along the 
width. To produce a low temperature coefficient it is also necessary that 
this mode be coupled to an extensional mode along the length, a fixed fre- 
quency difference from it. Therefore it will be necessary to prevent flexure 
modes from occurring at either of these two frequencies. Fig. 6.21 shows 
the frequency of various flexure modes that would be observed in GT-cut 
plates for different ratios of thickness to length. In the case of the GT-cut 
the elastic constants in the length and width directions are the same and 
therefore it is only necessary to determine the flexures in one plane to get a 
determination in both. From the plot of frequencies shown in Fig. 6.21, 
it would be very easy to determine the proper thickness for any given GT 
plate. Since in all practical cases there is a definite relation between the 
length and width of this type of plate, it would be necessary to examine 
the flexures in these two directions as a function of the change in thickness. 
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Fig. 6.22 shows a plot of this for the case of a GT crystal designed to operate 
at 164 kilocycles. All the information shown in this figure is obtained 
directly from Fig. 6.21. Since a change in thickness will not have any 
effect upon the length and width extensional modes of vibration and only 
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Fig. 6.22—Flexure and extensional resonances in a 164 kc GF-cut quartz plate. 

changes the flexure frequencies, it would be reasonable to suppose that some 
thickness could be obtained where no flexure along the length or width 
would be of the same frequency as the length or width extensional mode. 
Examining the curves of Fig. 6.22, we find that a thickness of .06 cm., 
.075 cm. or .085 cm. would meet these conditions. 
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6.52 BT Type Crystals 

As discussed in Section 6.4 the modes showing the greatest coupling to the 
high frequency thickness shear are of two types; high orders of Xv- flexure 
propagated along the X axis and high order Z'x shears along the X and Z' 
axes independently. Complex orders of the flexure and plate shear as illus- 
trated in Fig. 6.2 and Fig. 6.4 do cause considerable difficulty and their 
analysis calls for special treatment and is not within the scope of this text. 
For the case of the BT-oit the three primary interfering series of modes are 
given by 

. 181.8 ... . 
Jxj = —nXf kilocycles 

. 163.514 ... . , „ 
jx» — —^—Wx, kilocycles 6.30 

f 166-45 u-, i = z, «.'« kilocycles 

where X and Z' are given in centimeters and /*/ is the frequency at which 
integral orders of flexure modes along the X axis would coincide with the 
high frequency thickness shear mode. In a similar manner fxl and ft', 
relate the same conditions for integral orders of the plate shear modes. 
These equations are true only in the case where the thickness is of such a 
value as to place the high frequency thickness shear mode at the same fre- 
quency as the computed interfering mode. In most practical cases for oscil- 
lator use the electric field is applied to the crystal by means of a flat electrode 
on each side of the crystal plate. Under this condition only odd order XV' 
shear modes along the X axis are excited and hence the strongest couplings 
to the XV' flexure modes will be only for even order values of nXf in equation 
6.30. In a similar manner the greatest interference between the Xy- shear 
mode and high orders of the Zx shear modes along both X and Z' will occur 
for odd orders. Therefore the strongest interference from these modes will 
occur only for odd integers of and in equation 6.30. These assump- 
tions of only even flexures and odd shears showing appreciable coupling 
are based upon a crystal plate cut precisely along its proper axis and of 
uniform contour assembled in a holder using electrodes of uniform air gap. 
Deviations from these conditions will of course alter the ideal results de- 
pendent upon the amount and type of deviation. 

The relationships shown in equation 6.30 may be more clearly seen when 
plotted graphically. Assuming a ^T-cut crystal plate 1 centimeter square 
we may determine the frequencies at which an interfering mode will coincide 
with the high frequency shear by assigning even integers to nx} and odd 
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integers to nxa and nz-3. Fig. 6.23 shows a plot of these three types of inter- 
fering modes on a folded frequency scale covering the range from 5 to 15 
megacycles for a plate 1 centimeter square. Each abscissae covers a range of 
one megacycle with dots at three levels. The first level shows the fre- 
quencies at which successive even orders of flexure along the X axis occurs. 
The second level shows successive odd Z'x shear modes along X and the third 
level successive odd Z'x shear modes along Z'. The circles shown on the three 
levels indicate the results of actual measurements on ^T-cut crystals as 
resonating elements. It will be noticed that the circles and dots coincide 
for most frequencies, the regions of departure occur only when a high order 
shear mode and a high order flexure mode along the X axis approach each 
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Fig. 6.23—Frequencies at which the Z'z shear along A', the Z'x shear along Z' and the .Yu 
flexure along A' coincide with the high frequency Xv shear in BT-cut crystals. 

other in frequency. The reason for this is obvious from the previous dis- 
cussion on the coupling between flexure and shear modes of motion. 

The chart of Fig. 6.23 is of course not limited to a crystal 1 centimeter 
square or for that matter even a square crystal. In reality it relates the 
product of the frequency and X and Z' dimensions. For example a flexure 
mode interferes with the high frequency shear mode at a frequency of 9.45 
megacycles for a plate with X dimension equal to 1 centimeter. If the X 
and Y' dimensions were doubled the same situation would exist at one half 
the frequency. In determining the dimensions for a crystal at a given fre- 
quency we know that the product of the frequency and X dimensions as well 
as Z' dimension must not result in a frequency close to those given by the 
circles of Fig. 6.23. In addition other interfering modes as previously 
mentioned must be avoided. These at present may be determined experi- 
mentally by choosing regions on the chart clear of the known flexure and 
shear modes. 
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On the abscissae are shown certain discreet frequencies as well as frequency 
ranges which have been found to result in crystal units having no serious 
dips in activity over a wide range in temperature. These are for square 
crystals in the 18 millimeter size range and have been obtained by Mr. G. M. 
Thurston of the Bell Laboratories and Mr. F. W. Schramm of the Western 
Electric Company. It will be noted that no so-called ok regions have been 
found at the frequencies of the three principal coupled modes. 

While the use of the chart shown in Fig. 6.23 will often lead directly to 
the proper X and Z' dimensions for a given oscillator it cannot be overem- 
phasized that only the three principal interfering modes are shown and only 
the odd orders for the shears and only the even orders for the flexure modes. 
Since the even order shear modes are excited due to slight variations which 
would produce wedge shaped air gaps or quartz blanks, it is advisable to 
avoid these regions also. Complex combinations of the three principal 
modes as shown in Figs. 6.2 and 6.4 are also driven. Therefore when it is 
necessary to produce a crystal unit possessing the highest activity for a 
given area of quartz plate over an extended temperature range it is necessary 
to scan the supposed desirable regions shown in Fig. 6.23 by complete meas- 
urements on finished units of a given size and varying frequency or of con- 
stant frequency and varying size. As an illustration the region shown in 
Fig. 6.23 between 10.025 and 10.080 megacycles was determined in this 
manner with the use of crystal plates approximately 18 millimeters square. 
The use of crystals with other than square dimensions could undoubtedly 
have increased the range of this region but their use is undesirable from a 
manufacturing standpoint. Assuming that the electrodes and crystal 
holder permit a variation in size of the quartz plate from 17.20 millimeters 
to 18.20 millimeters this approved region will immediately specify the 
dimensions of crystals to cover the frequency range from 5508 to 5727 kilo- 
cycles. This also assumes crystal blanks cut to precise orientations with 
controlled contours and electrodes of uniform flatness and constant airgap. 
While the theory would indicate that the frequency range given above could 
be expanded to considerably higher values by utilizing a smaller crystal 
blank this has not been proven so far since most crystals produced by the 
Western Electric Company require large area plates to meet high activity 
requirements. 

As an illustration of the effect on the behavior of oscillators of changing 
the X and Z' dimensions of BT-cut quartz plates measurements have been 
made of the activity, in a conventional tuned plate circuit with the crystal 
connected between grid and cathode of quartz plates of constant thickness 
and varying X and Z' dimensions. Fig. 6.24 shows the effect of changing 
the X dimension of a quartz plate on its activity as an oscillator. By taking 
the product of the frequency and dimension we can determine the dimen- 
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Fig. 6.24—Effect of change in X dimension on the activity of a SF-cut quartz plate in an 
oscillating circuit. 
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Fig. 6.25—Effect of change in Z' dimension on the activity of a BF-cut quartz plate in an 
oscillating circuit. 

sions from Fig. 6.27 for this case where the Xy- flexures and Zx shears will 
interfere to produce poor characteristics. These are shown in Fig. 6.24 
for flexure modes as Xf and for the shear modes as X, and do in general cor- 
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respond to the dimensions resulting in low or no activity. This illustrates 
quite clearly the necessity for grinding the edges of plates not dimensioned 
for a specific frequency. Fig. 6.25 shows the same conditions when only 
the Z' dimension is changed. In this case the dimensions shown at regular 
intervals as Z, were derived from Fig. 6.25 as before and correspond to the 
zero activity dimensions found experimentally. It will be noticed that low 
activity regions are found halfway between the dimensions designated as 
Zg. These correspond to even orders of the Z'x shear and are the result of a 
slight wedge in the airgap. This was intentional to show the existence of 
this condition. 

Figures 6.24 and 6.25 show the necessity for avoiding certain dimensions 
for oscillator plates at specific frequencies. This can be accomplished by 
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5 

Fig. 6.26—Frequencies at which the Z'x shear along X, the Z'x shear along Z' and the Xu 
flexure along X coincide with the high frequency -Yy shear in AT-cui plates. 

individually adjusting the X and Z' dimensions by hand grinding of each 
plate or by predetermining the proper dimensions and using mass production 
methods of precise machine grinding. The advantages of predimensioned 
crystal units is the insurance of proper operation over a wide temperature 
range and uniformity of activity. The experience of most manufacturers 
of low frequency crystal units in the broadcast range and high frequency 
crystals requiring high activity over a wide temperature range has been 
that it is necessary to use specific dimensions to insure low rejects in the final 
tests. 

6.53 AT-Type Crystals 

The modes of motion encountered in the .dT-cut crystal are the same as 
that of the BT-cnt. The effects of coupling between most modes is greater 
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due to the increased piezo electric constant for this particular cut, and the 
frequency constants are different due to the change in angle with respect 
to the crystallographic axes. The three series of interfering modes as de- 
scribed for the TST-cut have been measured for this crystal and as shown 
in Section 6.4 are 

133.84 
fxf=—nx, 

254.20 , 
/« = —nz, 6.31 

254.00 
««'• 

In a manner similar to the BT case a chart has been developed of a folded 
frequency scale showing the frequencies at which even order XV' flexure 
modes propagated along X and odd order Zx shear modes along X as well as 
odd order Z'x shear modes along Z' will interfere with the high frequency 
Xy- shear mode for a crystal 1 centimeter square. This is shown in Fig. 6.26. 
Its use is the same as that described for the BT case. Insufficient experi- 
mental work has been done to indicate the relative shift in the flexure and 
shear modes along the X axis when they approach each other in frequency. 
Also, most of the use of square plates and experimental work has been con- 
fined to the -BT-cut crystals and hence no ok regions are shown for this 
chart. 

APPENDIX B 

Equation of elastic and piezoelectric constants for rotation of axes about 
the X axis, (s = sin 0; c = cos 6) 

/ 
Cn = Cn 

C22 = CnC4 + C33S4 + 2(2(744 + C\z)S2C "p 4ci45(73 

(733 = Cll54 + C33C + 2(2(744 + C^S^C — A:CuS* C 

C44 = (744 "P ((7ll ~P £33 — 4(744 2Ciz)S C 2C\\{c S ) SC 

(755 = CnC "p CfiBS2 + 2cuSC 

C66 = C4452 + (766(72 — 2cuSC 

(7x2 = CnC2 -p (7]3S2 — 2CuSC 

C13 = CnS2 -p (7l3(72 -p 2(7145(7 

CX4 = Cu{c2 — S2) "p ((712 — (713)5(7 



MODES OF MOTION IN QUARTZ CRYSTALS 9S 

<^23 = Cizifi* + SA) (cn + C33 — Ac^s2^ — 2cu{c2 s2)sc 

Cu = Ch(452 — l)c" + {CnC — C33S2 —(2C44 + C13) (c2 — 5")]5C 

C34 = — Ci4(4c2 — l)^2 + [cuS2 — C33C2 + (2^44 + Ci3)(c2 — 52)]SC 

Cb6 := CuCc2 — 52) + (cee ~ ^44)^ 
/ / // // // n 

<-16 = Cl6 — C26 = ^26 — C36 — C36 — C46 — C46 — U 
/ 

•Su — ^11 

522 = SnC4 + 53354 -(- (544 4- 25i3)52C2 4" 2Si4SC3 

^33 == •Jjl^4 4" S33C4 4~ (-*44 4" 25i3)^2C2 — 25i453C 

544 = 544 4~ 4(511 4" ■Jss — ^44 — 25i3)52C2 45i4(c2 — S )SC 

Sbb = Sue2 4" •Jee-J2 4" 45145c 

566 = 54452 4~ — 45i45C 
' 2 1 2 512 — 5i2C -p 5]35 — 5i45C 
/ 2 2 

513 = 5125 4" 5i3C 4" 5i45C 

514 = 514(C2 — 52) 4" 2(5]2 " 5l3)5C 

523 == 5i3(c4 4" 54) 4~ (5ll 4" 533 544)5 C 5i4(c 5 )SC 

524 = 5i4(452 — 1)C2 4" 12(5iiC2 — 53352) — (544 4" 25i3)(c2 — 52)]5C 

534 = —5i4(4c2 — 1)52 4" [2(5II52 — 533C") 4" (544 4" 25i3)(c2 — 52)]5C 

566 = 25i4(c2 — 52) 4" (566 — 544)5^ 
/ / / / _ / _ ' '_/_n' 

5IB = 5i6 — 526 — 526 — 535 — 536 — 546 — 546 — U 

d'n = du 

d\2 = — {dus 4~ d\ic)c 

d'\3 = {due — dus)s 

du = du(j? — 52) — 2rfii5c 

^26 = —{due 4" 2dns)c 

dw = (dus — 2d\ic)c 

dib = —{due 4" 2diis)s 

du = (dus — 2dnc)s 

d\b — d\b — dil = da = ^23 := ^24 = d31 = <^32 = '^33 = t?34 = 0 
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i 
fix = en 

«X2 = — (2^145 + enc)c 

eiz = (2ci4C — eiis)5 
' / 2 2\ ^14 — ^14(C — S ) —^ii5C 

^25 = — ifiUp + 

<526 = («14^ — ^X1C)C 

^35 = — (^X4C + 

^36 == (^X4-5 — ei\c)s 
/ / / / / / ' ' ' ' n ClB = eie = £21 ~ £22 = ^23 == ®24 = ^SX = £32 — ^33 — ^34 — u 



Response of a Linear Rectifier to Signal and Noise* 

By W. R. BENNETT 

WHEN the input to a rectifier contains both signal and noise com- 
ponents, the resultant output is a complicated non-linear function of 

signal and noise. Given the spectra of the signal and noise input waves, 
the law of rectification, and the transmission characteristics of the input 
and output circuits of the rectifier, it should, in general, be possible to 
describe the spectrum of the resultant output wave. Before discussing the 
solution of the general problem, we shall derive some results of a simpler 
nature, which do not require a consideration of the distribution of the signal 
and noise energies as functions of frequency. 

A quantity of considerable importance is the average value of the output 
amplitude. This is the quantity which would be read by a direct-current 
meter. Calculation of the average or d-c response can be performed in terms 
of the distribution of instantaneous output amplitudes in time. The dis- 
tribution of output amplitude can be computed from the distribution of 
instantaneous input amplitudes and the law of rectification. 

As an example, we shall compute the average current obtained from a 
linear rectifier when the input to the rectifier consists of a sinusoidal signal 
with random noise superposed upon it. The probability density function 
of the signal voltage is first determined, and the result given in (3). The 
corresponding probability density for the voltage of the noise is well known 
and is given in (4). The distribution of occurrence of the resultant in- 
stantaneous amplitudes of the combined noise and signal voltages is then 
computed by the rules of mathematical probability, and the result is shown 
in (7). The assumption that the rectifier is linear then leads directly to an 
integral which yields the average current obtained from the rectifier. 

Let the signal voltage, Ea, be given by 

The possible angular values of co/ are uniformly distributed throughout the 
range 0 to 2ir. The range Ea to Ea + dEa corresponds to the range of values 
of w/ comprised in the interval. 

I. Direct-Current Component of Output 

E, = Po cos co/. (1) 

£ 
arc cos —" < co/ < arc cos (2) 

* Published in Aeons. Soc. Amer. Jour., Jan., 1944. 
97 
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The angular width of this interval is {Pi — £^)-1/2rf£s. There are two such 
intervals in the range 0 < co/ < 2t. Values of Es outside the range —Po to 
P0 do not exist. Hence, the probability that the signal voltage lies in the 
interval dEs at any particular E, is given by 

mE. = ^ ^< p} 6E. (3) 

Random noise as discussed in this section may be characterized by the 
fact that the instantaneous amplitudes are normally distributed in time; that 
is, if <!>„ (z) dz is the probability that |he noise amplitude lies in the amplitude 
interval of width dz at z, 

= (4) 

where a is the root mean square noise amplitude. The mean noise power 
dissipated in unit resistance is given by W, = a2. The corresponding mean 
signal power is given by Ws = Pl/2. Let represent the probability 
density function of the instantaneous sum of the signal and noise ampli- 
tudes. Then 

$r(z)dz = dz f $g(X) $,t(z — \)d\ (5) 
•/— oo 

or 

1 fpo e-t*-"2'2'2 d\ 

*'(2) = L, (6) 

By the substitution X = P,, cos 6, we may convert the integral to the form 

$r(z) = —T ^ v2'2'2 dd (7) 
ttct V 2ir J o 

Suppose we insert a half-wave linear rectifier in series with the source of 
signal and noise, so that the current I is given in terms of the resultant 
instantaneous voltage E by 

fO, £ < 0 
/ = -! (8) 

[a£, £ > 0 

Then the average value of current flowing in the circuit is 

I = a z$T(z) dz 
Jo 

(9) 

= ^7= f zdz fre-—^de 
TTCTV ZTT Jo Jo 
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The value of this integral is shown in Appendix I to be 

I = a J^^e-w'"Wn[l0{Wj2Wn) 

+ 

(10) 

This form is particularly convenient for calculation since Watson's Theory 
of Bessel Functions, Table II, gives e~zIo{z) and e~'Ii(z) directly. 

" 1.8 _i < z 
9 1.6 

1.4 

£ 1.2 UJ 
5 

1.0 
\

 \ 

/ 

> 
/ Vrr / XiLx ABSCISSA 

RMS- NOISE INPUT 
RMS. SIGNAL INPUT 

Fig. 1—Variation of direct-current component in response of linear rectifier with ratio 
of noise input to signal input. 

Limiting forms of this equation may be expressed in terms of series in 
powers of We/Wn when the signal power is small compared with the noise 
power and in powers of W„/Ws when the noise power is small compared 
with the signal power. The ascending series for small signal is: 

'-V£[ 
1 | 1 IF. + 1(-1) (IF.)2 

+ 1( —1)(—3) (IF.)3 + 

2(1 !)2 IF„ 22(2!)2 (IF„) 

]=• \ 2 ' ' IFn y 

(11) 

23(3!)2 (IF„) 

The asymptotic series, which is available for computation when the signal 
is large, is 

aVW, 
I'"1" 114PF. ^ 2! (4IF.) (i2) ?-•[ 2! (4IF.) 

+ (— I)2-12-32 (IFn)
3 + ( —l)2, l2-32-52 (IFn)4 + ... J 

3! (4IF.) ' 4! (41F.) 

Curves of I have been plotted in three ways. Fig. 1 shows the ratio of 
1 to Iso = ccPo/tt, the average current in the absence of noise, as a function 
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of ratio of rms noise input to rms signal input. Figure 2 shows the ratio 
of I to Ino = aa/\/27r, the average current in the absence of signal, as a 
function of ratio of rms signal input to rms noise input. Figure 3 shows 

>- -I UJ Q D 
z o 

1- 1- _J 0. 3 Q- 
2 z 
< UJ 1- m 3 Q. H 

o z 
D O f 
UJ s O < cc UJ O UJ < > a. < UJ > < 

2.4 

2.0 

1.6 

1.0 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

/ / 
/ 

> A YMPTOTE 
• 

/ 
/ 

X ABSCISSA 
VTT 

' 
' 

0.6 0.8 1.0 1.2 1.4 
RMS. SIGNAL INPUT 
RMS. NOISE INPUT 

1.6 

Fig. 2—Variation of direct-current component in response of linear rectifier witli ratio 
of signal input to noise input. 

20 
18 id i/i 
16 

n U) 14 
a. 
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Q 
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8 
2 

b 
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m 

0 

// 
// 

/ 
/ 

R.M.S. ADDITION 

/ 
LINEAR RECTIFIER 

-14 -12 :10 -8 -6 -4 
NOISE INPUT POWER IN DB ABOVE SIGNAL INPUT POWER 

Fig. 3—Variation of direct-current component expressed in decibels, showing compar- 
ison between linear rectification and power addition of signal and noise. 

the increment in d-c power output in decibels as varying amounts of noise 
expressed in decibels relative to the signal are added. The correspond- 
ing result for power addition is given for comparison. 
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II. Spectrum of Output 

A much more powerful method of attack on this problem is obtained by 
the use of multiple Fourier series. In this section we shall use Fourier 
analysis to obtain not only the direct-current output of the rectifier, but 
also the spectral distribution of the sinusoidal components in the output of 
the rectifier. We represent the input spectrum by 

N 
E = Po cos pot + -Fn cos PJ (13) 

71 = 1 

This representation is more general than that given by (4) in that a frequency 
spectrum as well as an amplitude distribution is defined; it may be shown 
that the probability density for the sum of N sinusoidal waves with incom- 
mensurable frequencies approaches (4) when N is large. The first term 
represents the sinusoidal signal; the mean power which would be dissipated 
by this signal in unit resistance is 

Ws = Pl/2. (14) 

The noise is represented by a large number N of sinusoidal components with 
incommensurable frequencies (or commensurable frequencies with random 
phase angles) distributed along the frequency range /i to fa in such a way 
that the mean noise power in band width A/ is: 

2 pl=vyp\f)/2 (is) "=»(/—/i) 

Here v is the number of components per unit band width and P(f) represents 
the amplitude of a component in the neighborhood of frequency /. Note 
also that the mean total noise input power, Wn , is given by 

Wn = j' wif) d/=%l P'U) df (16) 

The linear rectifier is specified by the current-voltage relationship (8), 
which is equivalent to 

(17) 

where C is an infinite contour going from — cc to + <» with an indentation 
below the pole at the origin. We may expand / in the multiple Fourier 
series1 

1 Bennett and Rice, "Note on Methods of Computing Modulation Products," Phil. 
Mag., Sept. 1934. The present application represents an extension to N variables of the 
theory there given for two. 
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1= 2 2 X) Omonn-.-mN COSm0Xo COS miXi 
(18) 

• • • cos mN xu 

where 

Xk = pkt, k = 0,1,2, N (19) 

cos wo a:o cos mi xi - • ■ cos /WatXat dxv (20) 

2, 7 ^ 0 
(21) 

The response of the rectifier is thus seen to consist of all orders of modula- 
tion products of signal and noise. In a typical case of interest the band of 
input frequencies is relatively narrow and centered about a high frequency 
while the output band includes only low frequencies. In such a case the 
important components in the output are the beats between signal and noise 
components and between noise components. The d-c component is present 
in the output only if the pass band of the system actually includes zero 
frequency; we have already computed its value in Section I, but we will 
derive it again by the method used here as a check. 

The amplitude of the d-c component is in fact: 

on substitution of the expression for E in the integral representation of 7, 
substituting the result in (20) and interchanging the order of integration. 
When N is large, P,, is small, hence the principal contribution to the integral 
occurs near small values of z, where /0(P„2) is nearly equal to unity, since 
the product of a large number of factors, all less than unity, will be small 
indeed unless each factor is only slightly less than unity. We therefore 
replace J0{Pnz) by a function which coincides with it near s = 0 and goes 
rapidly to zero as we depart from this region. Such an approximation 
(Laplace's process2) is 

/0CP02) H MPuz) (22) 

MPnz) = (23) 

2 Watson, "Theory of Bessel Functions," p. 421. 
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which is correct for the first two terms in the Taylor series expansion near 
s = 0. Therefore, when P,, approaches zero as N approaches infinity, 

N 
a f , - S r*zt/i fa 

floo-.-o = / = WozV - 
2ir J c Z 

= - " [ (24) It J c z 

The contour integral cannot be replaced by a real integral directly because 
the integrand goes to infinity at the origin. However, since 

Mu) /i(«) d /o(«) 
n2, u du u 

J^Pz) Jx{Pz) d MPz) _ JxiPz) 1 d Jn(Pz) 

(25) 

(26) 
z- P2z2 d{Pz) Pz P2z2 P2 dz z 

we can substitute (26) in the integral and perform an integration by parts 
to give the result. 

/ = ?/■" \P'LAM + IF„/.(P0Z)1 dz 
T Jo L 2 J 

=" 1/f ^1; - w) + m ^ i^'2' ~ r.)] (27) 

by Hankel's formula.3 But it may be shown that (see Appendix II) 

A (J; 1; - «) = (28) 

xF! (1; 2; - «) = e~",! [/o (u/2) - h(u/2)] (29) 

Hence, 

i = - {uw-l2W-) + W. 

[UWj2\Vn) + /i(]ra/2IFn)] 

which is identical with the result of Section I, noting that a = v IT„ . We 
point out that a resistance-capacity coupled amplifier will not pass this 
component since there is no transmission at zero frequency. 

3 Watson, "Theory of Besscl Functions," p. 393. As pointed out by Watson, in a foot- 
note, the difficulty with singularities at the origin could be avoided by expressing Hankel's 
formula in terms of a contour integral instead of an ordinary integral along the real axis. 
This procedure would lead directly to the hypergeometric function given in (11). 
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The amplitude of the typical difference product between the signal and 
the fth noise component is 

Atn = i^ioo-.-oio-.-o 

- , ^ MPo z)Jo(Pi z)MP.2 2) • • • MPh 2) • • • MPn 2) (31) 
= -/ TT J z- 

Using the same process as before, we replace Ji{Pnz) by 

MPni) = e-p'"la (32) 

and obtain in the limit as N becomes indefinitely large 

Jl(PoZ) ^— \Vnz~/2 
A.„ f e-'""1' dz 

r Jo 3 

''f 

Relations between the \F 1 function and Rcsscl functions are discussed in 
Appendix II. 

The shape of the spectrum of the beats between Pa and the noise input 
evidently consists of the superposition of the noise spectra above and below 
p0, so that if we write w8n{f) Af for the mean energy from this source in that 
part of the filter output lying in the band of width Af at /, 

w.~(/)A/ = "-N [Wt„)2 + (ATj] (34) 

-dsn "' [d«n]pn«»Po+2T/ 

-dsn = [dgn]pn=po—2*/ 

. /SB 

,A __ a'W. \, ( W,\ , ( W'.'XT 
iwW.e LHzwJ + \2wj\ 

X [w(/o + /) + w{f0 — /)] 

(37) 

(38) 

The total noise from this source in the output of a particular filter of transfer 
admittance V(f) is obtained by integrating u-snC/OFC/V/ throughout the band 
of the filter. In the particular case in.which the original band of noise is 
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symmetrical about /„ and occupies the range/0 — /a to/o + fa and an ideal 
low pass filter cutting off at / = fa is used in the rectifier output, the 
total noise output from beats between signal and noise is 

= 2 f'° »,.(/) df = "f" e-w-'w-lh0r./2Wn) + /.(W,/2ir.)]! (39) 
Jo Air 

Next we shall calculate the spectrum of the energy resulting from beats 
between individual noise components. We write 

Ann = i doo-.■010---010---0 

Jo(Foz)Jo(Fiz) • • -JiiPrz)-- -JijP.z)-- -UPxz) 

w. 

= -/ IT j c 
dz 

c 

aPrPi r*0 T /T5 \ -Wnt
2/2 , 

= i MPoZ) (40) 

_ <*prp' P /l.l. JZlX 
2\/2rWn 1 1 \2 ' ' Wnj 

To find the resulting spectrum wnn(J)df produced at / by the resultant of 
all such components, we note that we may sum over all components by 
beating each component of the primary band with the frequency / above it 
and adding the resultant power values. The result is 

Wnnif) = 7^7 e-w'/w'll{Wt/2Wn) [ w(X)w(\ +f)dx (41) 
AttIV n •'O 

In the particular case of a flat band of energy extending from /i to f*, 

■ i W(XMX +l)dx = !fl c/T^Ti)2 dx = f\h -fJ ^' (42) 

0 < / < /2 - /l 

=a\u:~ir e'w"wn (43) 

0 < f < f-i — fi 

The total mean power of this type lying in the band 0 tofb is 

r M f/b - U) If a2jVn(J2 ~ fl~ c-
w'iwn W"^) = i W-U)if 4^-/.)= 6 (44) 

ll{W./2Wn) 
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provided fa < fa— f \. The spectrum is confined to the region 0 < f < fa — 
fi. If fa is equal to fa — fa so that the output filter passes all the noise of 
this type, we have 

- /.) = wnn = e-
w-lw*il(w.imn) (45) 

This result seems to hold approximately for a considerable range of input 
spectra. For example, if we assume that the original noise is shaped like 
an error function about/0 j i.e., 

«.(/) = (46) 

with / taken from - co to + with small error for large /„, 

f w(K)w(\ + f) dX = Wn \/a/lir (47) 
J—OO 

f df f w(x)uix -4- /•) dX = ir;/2 (48) 
JO J—M 

which is in agreement with (45). 
The output of a half-wave linear rectifier contains fundamental compon- 

ents and all even order modulation products. In general, the amplitudes 
of the higher order products are small compared with the lower order. In 
a particular problem some consideration of where the principal products 
fall in the frequency band is required. The products just considered give 
a fair approximation for the problem of detection of a radio frequency band 
of signal and noise followed by audio amplification. Contain other products 
should also be added to obtain higher accuracy. We have calculated the 
products of order zero and two; the next ones of importance are the fourth 
order, since the third order products vanish in a perfectly linear rectifier. 
The fourth order products in this case which fall in the audio band are of 
frequency 2po — pr — ps , pc-\- pq — pr — ps, and pn + p,, — pr— p«, where 
the subscripts «, q, r, s refer to the original noise component frequencies. 
The latter is, however, less important than the sixth order product 3p0 — 
p,, — pr — ps, which involves only three noise components, Expressions 
for the contributions from these products are given in Appendix III. 

Figure 4 shows computed curves for the noise produced in an audio band 
by the various components. Curve A is IF,n + IFnn and includes what are 
usually regarded as the principal contributors, the difference frequencies 
between signal and noise, and between individual noise components. Curve 
B is obtained by adding to Curve A, the contribution from the fourth order 
products 2p0 — pr — ps and po pq — pr — ps and the sixth order products 
3p0 — pq — pq — ps ■ Thus all products which include three or less noise 
fundamental components are included. The curves are plotted in terms of 
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fraction of noise power received compared to the limiting noise when the 
mean signal input power is made indefinitely large compared to the mean 
input noise power. Some experimental points given by Williams4 are shown 
for comparison. Williams gives the intercept at zero signal power as 35%; 
the theoretical value deduced here is tt/S or 39.27%. It will be noted that 
the inclusion of the higher order products improves the agreement between 
experimental and theoretical curves, even though the value of the intercept 
is unaffected by them. It shold also be stressed that our analysis applies 

1.0 

< 0.9 z o 
<0 

a UJ 0.8 ^ O s a. 
9 < Q. _l 
UJ T 0.7 
H t 
i 5 
Q ^ 0.6 

0.3 0 1 2 3 .V 4 5 6 7 6 9 10 
MEAN SIGNAL INPUT POWER 

MEAN NOISE INPUT POWER 
Fig. 4—Calculated noise power in audio band of output of linear rectifier when noise 

and signal are applied in a relatively narrow high-frequency band. The direct-current 
component is excluded. 

strictly to purely resistive networks. The conventional radio detector 
circuit (which was used by Williams), in which a condenser is shunted across 
a resistance in series with a diode, departs from the conditions here assumed 
because of the reactive element, the condenser. The customary approxima- 
tion made in treating this circuit is that the condenser has infinite impedance 
in the audio frequency range and zero impedance at the radio frequencies. 
This leads to a bias on the detector which depends on the signal. The 
methods given here may be applied, but the resulting formulas are much 
more difficult from the standpoint of numerical computation. 

A recent paper by Ragazzini5 gives an approximate solution based on 
4F. C. Williams, "The Response of Rectifiers to Fluctuation Voltages," Journal I. 

E. E., 1937, Vol. 80, pp. 218-226. 5 John Ragazzini, The Effect of Fluctuation Voltages on the Linear Detector," Proc. 
I. R. E., June 1942, Vol. 30, p. 277-288. 

/ 

r 

V A: SIGNAL-NOISE AND NOISE-NOISE COMPONENTS 
/ fax SIGNAL-(noise + noise) 
/ B: CURVE A + 1 SIGNAL - (NOISE + NOISE - NOISE) 
P 1.3X SIGNAL- (NOISE + NOISE + NOISE) 
/ O WILLIAMS' EXPERIMENTAL DATA 
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expanding the envelope of the input wave by the binomial theorem and 
retaining only the first two terms. The validity depends on the noise 
amplitude being small compared with the sum of signal and noise, and hence 
the result should agree with our solution in the neighborhood of Wn/W, = 0, 
which it does. When Wt/Wn is small, the error is appreciable. Ragazzini's 
result (Equation 15 of the paper) expressed in our notation is 

IT- 1 + IF,./IF, 

It will be seen by comparing the limiting values for TF,/TF„ = 0 with that of 
W,/Wn = oc from (49) that the intercept of the curve of Fig. 4 would be 
50% instead of our value of 39.27%. 

The. results given in the present paper have been compiled from unpub- 
lished memoranda and notes by the author extending back as far as 1935. 
Discussions with colleagues have been of great aid, and in particular ac- 
knowledgment is made to Messrs. S. O. Rice and R. Clark Jones for many 
helpful suggestions. 

APPENDIX I 

EVALUATION OF INTEGRAL FOR I 

Interchanging the order of integration in (9), we have 

7 =  7== f dd f e-('-Po C0B B)2l2Wn z dz (50) 
tt v 27rIFn Jo Jo 

By substituting z = Po cos 0 + u \/2IFn , we may evaluate the second inte- 
gral in terms of the error function, obtaining 

j = f M r  «""'(« V2iVn + P, COS 9) du TT"- Jo •'-e COS fl/V 2 1V'„ 

_ a -y/lFn r e-Po2 coa2 ei2Wn 

tt 27r Jo 

+ f erf (Po cos 0/\/2IF„) cos 0 d0 2ir Jo 

= « VjFn e-Pl/iWn I" ^-cos 29liWn dQ 
tt 27r Jo 
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4- 0^!? 
2-k 

r dV . (P0 cos d\ . 1 aPo r . a 
/ 37 erM —/ ] sm 6 \dd — —- / sin d Jo ddl \ \/2Wn' J 2ir Jo 

4 (erf dB 
\ V2Wn/ d9 \ V2Wn 

f 2ir 2ir Jo 

aW, '2l 

_ 0^\/]Vn e-w,/2Wn f -W, COS 4>/2IFb^ 

ajy, T1 ,r C09 qhw . , 
+ 2.V2Sr;Jl e (l-cos*)^ 

= a 4/^" (^(^./2W") 

+ 2; [/o(W,/2Pr„) + /1(ir./2W.)]^ (10) 

In the above we have made use of the relations: 

2 
erf 2 = —7= f e *' dz (51) 

■y it Jo 

erf 2 = e''2 (52) 
dz v TT 

f 009 ^ cos ^ = {—)m2irlm(z) (53) 
Jo 

APPENDIX II 

RELATIONS BETWEEN HYPERGEOMETRIC AND BESSEL 
FUNCTIONS 

The modulation coefficients appearing in the linear rectification of noise 
are expressible in compact form in terms of the hypergeometric function: 

j-i > x . a z . a{a -\- \) z 
.Ma;*;-*) - 1 -^-, + 7(7+1) 2! 

(54) 
_ r(c) y> r(a + Fl) /_ \m 

r(a) ^0 r(c + m)m\ K ' 

The 1F1 function is a limiting case of the more familiar Gaussian hypergeo- 
metric function 2E1 (o, 6; c; 2), viz. 

iFi(a; c, z) = Limit 2^1(0, h\ c; z/b) (55) 
6=00 

In certain special cases this function may be expressed in terms of ex- 
ponential and Bessel functions. For example, by a formula given by 
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Campbell and Foster, Fourier Integrals for Practical Application, Bell 
System Monograph B-584, p. 32 (also Watson, Theory of Bessel Functions, 
p. 191), we may show that 

if. (. + 1; 2. + 1; -2) = U-'/V (56) 

or setting v = 0 

iFiQ; 1; —2) — «_'/2 lo (z/2) (571 

which is one of the functions appearing in our work. 
We have also encountered the function 1F1 (1/2; 2; —2) which is not 

directly reducible by the above formula. The reduction may be effected 
in a number of ways. By making use of the relation obtained from (56) 
by setting f = 1, 

1f1(3/2; 3; —2) = V"!/.(j/2) (58) 

and noting that 

if.Cl/2; 2; —z) — iFi(l/2; 1; —z) 

1 ^.r(m + l/2), 1 f.r(m+l/2)^_^ 
r(l/2) £om!(m +1)! V r(l/2),£i (m!)' 

— 1 r(m + 1/2) w ,  -.m 
" r(l/2) m!(m + 1)! ZJ (59) 

2 r(w -j- 3/2) ,  
" f(l72) —o (m + 2)!w! 1 z; 

= | ^(3/2; 3; -2), 

we find that6 

.ft (1/2; 2; -Z) = r"2 [/o(Z/2)+/i(Z/2)l (60) 

It may also be verified by integrating the series directly that 

f iFi(l/2; 1; -2) dz = z,Fi(l/2; 2; -2) (61) 
Jo 

Combining this relation with (57) and (60) above, we deduce the indefinite 
integrals 

6 The relation (60) was brought to the attention of the author by Mr. R. M. Foster. 
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exIo(x) dx = xex[Io(x) — /i(x)] 

e~xIo(x) dx = .re^I/oCx) + Ii(x)] 

e'hix) dx = ex[{\ — x)h{x) + :c/i(x)] 

e~zIi{x) dx = e~T[{\. + x)Io(x) + xli(x)] 

(62) 

These integrals may be derived by differentiating the right hand members, 
and could, therefore, serve as a basis for an alternate derivation of (60). 

In addition it was noted in Eq. (11) that the constant term in the modula- 
tion spectrum could be expressed in terms of iFi (—1/2; 1; —z); from the 
equations given, it follows that we must have the relation: 

C—1/2; 1; —z) = e-nKl + z)I0W2) + zI1(z/2)] (63) 

Another interesting set of formulas which can be obtained as a by-product 
from (62) by setting x = iy is: 

Jo(y) cos y dy = y[/o(y) cos y + Ji{y) sin y\ 

Jniy) sin ydy = y[/o(y) sin y — Ji{y) cos y] 

J\ (y) cos y dy = yJi(y) cos y — Jo{y){y sin y — cos y) 
(64) 

/ 

/ 

/ 

J Ji(y) sin ydy = yJi(y) sin y + My)(y cos y — sin y) 

The hypergeometric notation is particularly convenient in determining 
series expansions for the coefficients to be used for calculation when the 
variable z is either very small or very large. For small values of z, the form 
(54) suffices; for large values of z, we may use the general asymptotic expan- 
sion formula7 for the real part of s positive: 

77 f ^ r(c) iFi(fl; c; -z) = 
r(c — a)zc iFo(a, 1 -f a — c; l/z) 

fi -u a(1 + a 

L l!z 
- c) r(g — a)za 

r(c) 

a(a + l)(l + a — c){2 + a — c) 
2!z2 ~t' 

Copson, "Functions of a Complex Variable," pp. 264-5. 

(65) 
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The series expansions required here could also be obtained from the appropri- 
ate series for Bessel functions. It will be noted, however, that the typical 
modulation coefficient can be expressed in terms of either a single jFj function 
or several Bessel functions, so that manipulations must be performed on the 
series for the latter to give the final result. The Bessel functions on the 
other hand are more convenient for numerical computations because of the 
excellent tables available. 

Reduction formulas for certain other hypergeometric functions are needed 
in evaluating the higher order products. They are: 

iFi(3/2; 1; -z) = er'/2[(l - z)h{z/2) + h{z/2)] (66) 

iFi(3/2; 2; -z) = <r"![/o(s/2) - A(«/2)l (67) 

.F.(5/2; 4; -z) = \ e"12 + l)/.(j/2) - /o(j/2)] (68) 

Derivation of these is facilitated by the use of the easily demonstrated 
relations: 

iFi{a; 1; —z) = ^ [ziFi(a; 2; —z)] (69) 

2ziFi(a; 2; — z) = ^ [z*iFi(o; 3; — z)] (70) az 

1F1{3/2; 3; - z) - ^(3/2; 2; -z) = 11F1(5/2; 4; -z) (71) 

APPENDIX III 

HIGHER ORDER PRODUCTS 

The methods described in Section II may be applied to calculate the gen- 
eral expression for the general modulation coefficient. The result is for the 
amplitude of the term cos mpol cos pnit cos pn2t • • • cos pnMt: 

m+Af 
(-)~ P^P.. ■■■ P^^/m + M -\\ (W,) 

TiWJiy-vPmi \ 2 J (Wn) (72) 

/ w + M — 1 . . — 1T»\ 
(—2—;"' + liTFrj 

The coefficient of the term cos {mpo ± ± pn2 ± • • • PnM) tis Omit divided 
by 2Jl/_1 cm . The number of terms of a particular type falling in a particular 
frequency interval can be calculated by a method previously described by 
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the author.8 Under the assumed conditions that the original noise spectrum 
is either flat throughout a limited range, or falls off like an error function, 
and that the audio amplifier passes all the difference components in question, 
we find the following results: 

2^0 - Pr- psl 

^ e-w-'w'll(W./2Wn) (73) 

po + pq — pT — pB : 
2w (74) 

Wan,™ = ^ e-w''w* [h{W./2Wn) - UWt/2Wn)]
2 

3p0 pq pT pa '• 

[(1 + MJW.)h{W./2W„) (75) 
327r 

- uw.nwjf 

This includes all beats containing not more than three noise fundamentals. 
The reductions of hypergeometric functions to exponential and Bessel func- 
tions given in Appendix II have been used in deriving the above results. 

8 Bennett, "Cross-Modulation in Multichannel Amplifiers," Bell Sys. Tech. Jour., Oct. 
1940, Vol. XIX, pp. 587-610. 



Dielectric Constants and Power Factors at Centimeter 
Wave-Lengths 

By CARL R. ENGLUND 

The theory underlying the measurement of dielectric constants and 
power factors, by means of resonant lengths of coaxial transmission 
line, is developed, apparatus used for such measurements is illustrated 
and the measurement routine described. A table of typical results is ap- 
pended together with an "X tan X" table for aid in the calculations. 

Introduction 

THERE are two instrumentalities available for measuring dielectric 
constants and power factors at centimeter wave-lengths. These are, 

coaxial conductor lines and wave guides. Which one is, for any condition, 
the more favorable one depends a great deal upon the wave-lengths used. 
Under the conditions encountered in this work the coaxial line appeared to 
have the practical superiority, down to something like 10 cms. wave-length, 
anyway. Below this, the wave guide is very manageable and has several 
advantageous features. 

When this work was begun, the most easily available and practicable 
vacuum tube which would oscillate around 20 cms. wave-length was the W. 
E. Co. 368A. This could be pushed down to something below 19 cms. 
wave-length but was undependable there and as a practical compromise 
22.5 cms. wave-length was finally chosen. Later another tube became 
available and as it could be operated down to at least 9 cms. it was used in 
the more recent work. Thus, while the bulk of the measurements made 
were at 22.5 cms. wave-length, a good share of the samples investigated 
were also measured at approximately 10 cms. wave-length. 

Any measurements made at these wave-lengths must be made in the form 
of transmission line measurements and the dielectric must be physically part 
of the coaxial line. There are various transmission line quantities definable 
and measurable, such as series impedance per unit length, shunt admit- 
tance per unit length, surge impedance, impedance transformation factor, 
voltage and current step-up factors, resonance selectivity or "Q", etc. The 
first two are measurable directly only at long wave-lengths, the last two are 
properties of space resonant line elements. Of these the "()" was the most 
advantageous in the present instance. 

114 
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"Q" Definition 

At low frequencies the resonance selectivity factor of lumped circuits is 

identified as the "Q" and is defined as It is measured by a detuning 

process. For a length of transmission line with negligible shunt conduc- 

tance losses this process gives ^ as for a coil; when this process is applied 

to complex circuits the physical embodiment of the "Q" becomes difficult to 
realize and it is preferable to define the "Q" in terms of the detuning process 
itself. This is equally true for the resonant, centimeter wave, line element 
and we proceed as follows: For this element some current or voltage ampli- 
tude, conveniently measurable, is selected and three values of it are measured 
as the line tuning is varied. This variation may be either in generator fre- 
quency for constant line length or in line length for constant generator fre- 
quency. 

Thus, for example, 

Q = , ^ , , where/a > fo > fi 
h - h 

Q =  7, where (* > (q > h 
i2 — fi 

^2 = = ^-u (1) 
* - Alo 

with Ao as the resonant amplitude. For low-loss lines the two definitions 
will give the same results in practice. Neither is ideal for second order 
accuracy since there is a variation of line constants with frequency in the 
first and a variation in total attenuation in the second. 

For practical reasons it is usually preferable to excite and observe the line 
resonance in terms of the current at one end, this end shorted. The ele- 
mentary line lengths are then the quarter and the half-wave ones, the former 
with open circuit far end, the latter with shorted far end. The latter is the 
more nearly ideal unit. In order to short effectively the input end, the in- 
put and output couplings must be made as loose as possible. As these 
couplings are reduced the observed "Q" will asymptotically approach the 
line At the present moment the line variation in length is the most 
convenient process, the chief trouble being the micrometric measurement 
of the tiny length changes involved. Thus for 10 cms wave-length and a 
half-wave coaxial line, a "Q" of 1000 involves a plunger movement of .0019 
inches. 

Theory of Measurement 

It is shown in the appendix that the "Q" of a given resonant line segment 
can be broken up into parts representing the equivalent "(Ts" of the ter- 
minal impedances and the line itself. Thus 
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Q Va VO 
(2) 

where "Q" is the actually measured quantity, Qq is the part due to the line 
itself, Qq and Qt the parts due to the near and far end terminations, respec- 
tively. 

If we now take a quarter-wave line segment, with near end shorted 
through a movable plunger and far end open, we may make two "Q" meas- 
urements without and with the far end loaded with a dielectric segment, 
and obtain 

with d' and d equal to the widths of the resonance curves halfway down in 
power. These two d's are, of course, directly measurable. 

When the line is loaded with a dielectric segment the loaded part of the 
line can be represented as an impedance connected to the unloaded re- 
mainder of the line. The effect of the loaded segment upon the unloaded 

Jz 

line (See appendix, eq. 4) appears in the form - where ^is the surge 

impedance of the unloaded line, with "Z" and "Z>" the series impedance 
and shunt admittance, respectively, for unit length of this line. If we put 

1 = 1+1 = -^- 
Q' Qq <2o V4 

iA . 
. <3 Vo Vo V/ X/4 

and 

(3) 

(4) 

we have 

'1 _ d - d' _ 
Ql~ x/4 

M + t = NZb( 

= 

(5) 

where is the measured plunger movement necessary to retune the line, 
after adding the dielectric loading, and is the length of the dielectric 
segment. 
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of ^2, Now, the power factor of "Zf" is the same as that of —, as long as 
/- 

/U - is substantially a resistance, and since 

tanh (a, + ibl) = ^ 2a< + i sin 24, 
cosh 2af + cos 2b( ' 

(6) 

we have 

power factor Z( = p.f. = ^aC (7) 
sin 2bf 

Substituting eq. (5) in (7), 

sinh Y" (^ — d') 

Pi- =   , (8) 
sin (A^ + /) 

A 

which is the power factor of the loaded line segment in terms only of meas- 
urable lengths. 

This does not complete the theory, however. We are interested in the 
power factor of the dielectric itself and it is evident that except for very 
short dielectric segments, the variation of the standing electrical field along 
the dielectric segment will result in a calculated power factor smaller than 
the true one. We also wish to determine the dielectric constant. 

The impedance of the dielectric line segment, open circuited at the far 
end, can be written as 

V? 
^ =  / 7 /-X (9) 

tanh [a + i *^ eJi 

where "a" is the attenuation per unit length and "e" is the dielectric constant. 

Hence tanh (df + ibf) = \/7 tanh + i 1 an(l 



118 BELL SYSTEM TECHNICAL JOURNAL 

an alternative expression. Now when is very small the functions of the 
angles become equal to the angles and we write, for the dielectric power fac- 
tor itself 

2at , 
P.F. = , 7=-. (11) 

47rV e 
X 

Dividing this expression by eq. (10) 
. Air-yy e t 

sin 
P.F. = p.f. 

X 2at 
4x\/e t sinh 2od 

., 47rv € ^ 
and as the last term is always very nearly unity we have, if we put —^  

4X, 

sinh ~ {d — d') . . v 

P.F. =  ^ •S4-^. (12) 
sin ~ (Af + 0 

A 

Ordinarily the "sinh" is very closely equal to the angle. 
The reactance of the dielectric segment of line is necessarily equal to the 

reactance of the part of the original line which it displaces, since space 
resonance occurs in both cases. Hence, 

A£ T t /— € t /1 -2\ 
tan tt—-— = v e tan tt—r— 

X A 

which we can rewrite to 

tt/ Af + / -s/1 t s/€ t 
— • tan tt —-— = tt —— • tan tt —— . X X X A 

[ irl AC t y — — tan tt — 

| _ we have y = X tan X. (14) 
| _ TTV'e 1 

I x 
"y" is directly determinable by measurement and this gives X from the X 

follows and P.F. is immediately 

Putting 

tan X table supplied.1 The value of e = 
X 
irt 

calculable. This completes the reduction of the observation. 
1 As no X tan X table to the necessary subdivision was available, one was calculated 

from the Hayashi tan X tables. 



X IAN X 

.00 .0000 0000 .0000 0100 .0000 0400 .0000 0900 .0000 1600 

.01 .0001 0000 .0001 2100 .0001 4401 .0001 6901 .0001 9601 

.02 .0004 0005 .0004 4106 .0004 8408 .0005 2909 .0005 7611 

.03 .0009 0027 .0009 6131 .0010 2435 .0010 8940 .0011 5645 
,04 .0016 0085 .0016 8194 .0017 6504 .0018 5014 .0019 3725 

.05 .0025 0209 .0026 0326 .0027 0644 .0028 1163 .0029 1884 

.06 .0036 0433 .0037 2662 .0038 4893 .0039 7426 .0041 0160 

.07 . .0049 0802 .0050 4949 .0051 9298 .0053'3849 .0054 8602 

.08 .0064 1369 .0066 7539 .0067 3911 .0069 0486 .0070 7264 

.09 .0081 2194 .0083 0393 .0084 8796 .0086 7402 .0088 6212 

.10 .0100 3347 .0102 3583 .0104 4023 .0106 4668 •0108 6516 

.11 .0121 4904 .0123 7185 .0125 9672 .0128 2363 .0130 5259 

.12 .0144 6962 .0147 1287 .0149 5829 .0152 0576 .0164 6529 

.13 .0169 9585 .0172 5984 .0176 2591 .0177 9404 .0180 6425 

.14 .0197 2907 .0200 1381 .0203 0063 .0205 8954 .0208 8053 

.15 .0226 7028 .0229 7589 .0232 8359 .0235 9339 .0239 0528 

.16 .0258 2071 .0261 4731 .0264 7602 .0268 0683 .0271 3975 

.17 .0291 8166 .0295 2939 .0298 7923 .0302 3120 .0306 8529 

.18 .0327 5452 .0331 2351 .0334 9464 .0338 6791 .0342 4332 

.19 .0366 4077 .0369 3119 .0373 2377 .0377 1849 .0381 1537 

.20 .0406 4201 .0409 5402 .0413 6820 .0417 8455 .0422 0307 

.21 .0447 5991 .0451 9369 .0456 2965 .0460 6780 .0466 0814 

.22 .0491 9627 .0496 5200 .0601 0992 .0605 7006 .0510 3240 

.23 .0538 5297 .0543 3084 .0548 1093 .0652 9325 .0557 7779 
.24 .0687 3201 .0592 3222 .0597 3468 .0602 3939 .0607 4634 

.25 .0638 3548 .0643 5825 .0648 8330 .0664 1061 .0659 4020 

.26 .0691 6560 .0697 1117 .0702 5903 .0708 0918 .0713 6163 

.27 .0747 2470 .0752 9329 .0758 6421 .0764 3744 .0770 1299 

.28 .0805 1521 .0811 0709 .0817 0131 .0822 9787 .0628 9679 

.29 .0866 3971 .0871 6513 .0877 7292 .0883 9308 .0890 1562 

.30 .0928 0088 .0934 4012 .0940 8176 .0947 2679 .0953 7224 

.31 .0993 0153 .0999 6488 .1006 3065 .1012 9886 .1019 6950 

.32 .1060 4461 .1067 3237 .1074 2259 .1081 1627 •1088 1041 

.33 .1130 3321 .1137 4569 .1144 6067 .1151 7814 .1158 9811 

.34 .1202 7054 .1210 0808 .1217 4816 .1224 9074 .1232 3687 

.35 .1277 6997 .1285 2292 .1292 8842 .1300 5649 .1308 2712 

.36 •1355 0503 .1362 9373 .1370 8503 .1378 7893 .1386 7544 

.37 .1435 0937 .1443 2421 .1451 4169 .1459 6180 .1467 8456 

.38 .1517 7683 .1526 1821 .1534 6325 .1543 0898 .1551 5838 

.39 .1603 1142 .1611 7973 .1620 5075 .1629 2450 .1638 0097 

.40 .1691 1729 .1700 1296 .1709 1140 .1718 1259 .1727 1657 

.41 .1781 9879 .1791 2228 .1800 4857 .1809 7767 .1819 0968 

.42 .1876 6047 .1885 1223 .1894 6684 .1904 2430 ,1913 8464 

.43 .1972 0704 .1981 8765 .1991 7097 .2001 6730 .2011 4654 

.44 .2071 4343 .2081 5321 .2091 6594 .2101 8162 .2112 0028 

.45 .2173 7478 .2184 1434 .2194 6691 .2205 0249 .2215 6110 

.46 .2279 0643 .2289 7633 .2300 4929 .2311 2532 .2322 0442 

.47 .2387 4397 .2398 4477 .2409 4869 .2420 5674 .2431 6593 

.48 .2498 9320 .2510.2560 .2521 6099 .2532 9966 .2644 4152 

.49 .2613 6019 .2626 2462 .2636 9227 .2648 6319 -2660 3736 

.50 .2731 5125 .2743 4843 .2756 4892 .2767 6273 .2779 5987 

.51 .2852 7295 .2865 0356 .2877 3756 .2889 7495 .2902 1573 

5 
,0000 2600 
.0002 2502 
.0006 2513 
.0012 2550 
.0020 2637 

.0030 2806 

.0042 3096 

.0056 3557 

.0072 4245 

.0090 6225 

.0110 6670 

.0132 8361 

.0157 0689 

.0183.3653 

.0211 7360 

.0242 1927 

.0274 7479 

.0309 4151 

.0346 2087 

.0386 1441 

.0426 2377 

.0469 5067 

.0614 9696 

.0662 6457 

.0612 6666 

.0664 7207 

.0719 1638 

.0776 9087 

.0834 9805 

.0896 4054 

.0960 2109 

.1026 4257 

.1095 0802 

.1166 2057 

.1239 8353 

.1316 0032 

.1394 7455 

.1476 0997 

.1560 1048 

.1646 8017 

.1736 2331 

.1828 4432 

.1923 4784 

.2021 3869 

.2122 2191 

.2226 0272 

.2332 8661 

.2442 7925 

.2566 8659 

.2672 1481 

.2791 6529 

.2914 5992 

6 
.0000 3600 
.0002 5602 
.0006 7615 
.0012 9656 
.0021 1749 

.0031 3928 

.0043 6234 

.0057 8716 

.0074 1429 

.0092 4442 

.0112 7827 

.0136 1668 

.0169 6056 

.0186 1088 

.0214 6876 

.0245 3536 

.0278 1193 

.0312 9985 

.0350 0056 

.0389 1561 

.0430 4664 

.0473 9640 

.0519 6373 

.0567 5358 

.0617 6702 

.0670 0621 

.0724 7343 

.0781 7107 

.0841 0166 

.0902 6783 

.0966 7234 

.1033 1809 

.1102 0810 

.1173 4554 

.1247 3373 

.1323 7610 

.1402 7628 

.1484 3802 

.1568 6527 

.1656 6211 

.1745 3283 

.1837 8188 

.1933 1391 

.2031 3377 

.2132 4651 

.2236 5738 

.2343 7189 

.2453 9573 

.2667 3487 

.2683 9607 

.2803 8415 

.2927 0752 

7 
.0000 4900 
.0002 8903 
.0007 2918 
.0013 6963 
.0022 1063 

.0032 5252 

.0044 9673 

.0059 4075 

.0075 8815 

.0094 3862 

.0114 9289 

.0137 6181 

.0162 1628 

.0188 8731 

.0217 6601 

.0248 5354 
.0281 5119 
.0316 6032 
.0353 8239 
.0393 1896 

.0434 7169 

.0478 4232 

.0524 3271 

.0572 4483 

.06221 8074 

.0675 4263 

.0730 3278 

.0787 5361 

.0847 0763 

.0908 9761 

.0973 2601 

.1039 9606 
•1109 1066 
.1180 7303 
.1264 8647 

.1331 5446 

.1410 8062 

.1492 6873 

.1577 2275 

.1664 4679 

.1754 4514 

.1847 2227 

.1942 8287 

.2041 3178 

.2142 7409 

.2247 1508 

.2354 6025 

.2465 1536 

.2678 8636 
,2695 7952 

.2816 0132 

.2939 5853 

8 
.0000 6400 
.0003 2403 
.0007 8420 
.0014 4470 
.0023 0577 

.0033 6778 

.0046 3114 

.0060 9637 

.0077 6405 

.0096 3486 

.0117 0956 

.0139 8899 

.0164 7407 

.0191 6582 

.0220 6534 

.0251 7383 

.0284 9256 

.0320 2292 

.0367 6637 

.0397 2448 

.0438 9892 

.0482 9144 

.0629 0391 

.0677 3831 

.0627 9673 

.0680 8133 

.0735 9444 

.0793 3847 

.0853 1696 

.0915 2957 

.0979 8210 

.1046 7645 

.1116 1569 

.1188 0302 

.1262 4175 

.1339 3539 

.1418 8768 

.1501 0210 

.1585 8293 

.1673 3421 

.1763 6023 

.1856 6560 

.1952 6470 

.2051 3272 

.2153 0466 

.2257 7681 

.2365 5172 

.2476 3813 

.2590 4107 

.2707 6680 

.2828 2183 

.2962 1297 

9 
.0000 8100 
.0003 6104 
.0008 4124 
.0015 2177 
.0024 0292 

.0034 8504 

.0047 6857 

.0062 6402 
,0079 4198 
.0098 3315 

.0119 2828 

.0142 2823 

.0167 3393 

.0194 4640 

.0223 6677 

.0254 9619 

.0288 3605 

.0323 8765 

.0361 5260 

.0401 3216 

.0443 2832 

.0487 4275 

.0633 7733 

.0582 3404 

.0633 1497 

.0686 2232 

.0741 6842 

.0799 2567 

.0859 2665 

.0921 6403 

.0986 4060 

.1063 6930 

.1123 2321 

.1196 3552 

.1269 9959 

.1347 1891 

.1426 9716 

.1609 3813 

.1594 4582 

.1682 2437 

.1772 7811 

.1866 1166 

.1962 2942 

.2061 3661 

.2163 3822 

.2268 3960 

.2376 4629 

.2487 6409 

.2601 9902 

.2719 5737 

.2840 4670 

.2964 7084 
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The above theory applies to the quarter wave line. This is a rather 
difficult practical one; it is best to add another quarter wave to make a half- 
wave resonator, shorted at both ends, with the dielectric positioned 
exactly in the center. From conditions of symmetry we then employ the 
above equations, taking half of our measured quantities. Or, in terms of 
the actually measured four lengths which constitute an observation on a 
half-wave line, {d-d'), t, A( and X, we have, 

P.F. = 
sinh - (d — d') . 

X sin 2X 

sin ^ (A^ + t) 
A 

2X 

ivt 
— •tan tt 
A 

M + l 
= X tan X 

6 = 
X 2 

ivt 
X 

(15) 

which are the expressions used in this work. 
In practice the dielectric plug is pushed into the half-wave line and the 

line is tuned. The line center is then calculated and the plug reset to this. 
Retiming checks the correct location. Two trials are always sufficient if the 
plug was nearly centered originally. 

There are several shortcomings affecting this theory. The Q of the un- 
loaded line depends partly on metal power loss along the line. When the 
line is shortened by the dielectric plug, part of this loss disappears and part 
is transferred to the dielectric plug. Fortunately these losses are small since 
they are metal losses at a current node, but for long dielectric plugs or plugs 
of high dielectric constant the need for correction can arise. The necessary 
calculations have not yet been reduced to a simple form. 

Again, the calculation of half-wave results by means of a quarter wave 
theory is safe only for a high () situation. It is easy to show, experimentally, 
that the maximum line shortening results when the dielectric plug is exactly 
centered in the line but the calculated power factor is not a maximum here, 
as might be expected. In the meantime, experience shows that results can 
be duplicated from day to day and at other frequencies and that over a 
reasonable range of plug thickness no change in dielectric constant and power 
factor values, greater than the unavoidable errors of measurement, is ob- 
tained. 

Description of Apparatus 

The apparatus can be divided into three parts for purposes of description. 
The high frequency generator consists of a small "relay rack" assembly, 
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including 60-cycle power panel, rectifier panel, meter and control panel and 
centimeter wave oscillator panel with coaxial conductor output jack. All 
high-frequency connectors are coaxial conductor units with plug tips. 

The measuring unit is shown in the two photographs; Fig. 1, assembled 
and Fig. 2, disassembled. Two combination input-output heads are shown 
in Fig. 2. ,These heads and tubing together with center conductor and plun- 
ger are of coin silver, mile the highest possible conductivity metal is 
desirable, pure silver is mechanically too poor for spring fingers and bearing 
surfaces and the alloy must be used. The good sliding contact properties 
of silver are preserved but the conductivity is no better than that of copper. 
Both heads are drilled, for input and output connections, flush with the 
bottom of the cylindrical cavity terminating the tubing. 

Head ^ 1, shown attached in Fig. 1 and detached in lower right-hand 
comer of Fig. 2, has a silicon crystal, mounted and insulated in a small 
cylindrical holder which carries a tiny pickup loop, one side of which is 
grounded to the cylinder. The total length of pickup conductor including 
loop and crystal "whisker" is about one centimeter and no tuning is neces- 
sary. The loop pickup can be adjusted by moving the holder in or out. 
The d-c circuit is from an insulated pin on the holder through crystal to 
apparatus body. 

The current input connection is through a coaxial plug which is tapped 
across a fraction of a tunable half-wave line. This fraction consists of a 
i" coaxial conductor terminated in a tiny feed loop; the remainder of the line 
is an ordinary coaxial with sliding plunger. The line is used, well off 
tune, as an input current amplitude control. The coupling with the cavity 
in head is adjusted by moving the feed loop in or out. 

By inverting another half-wave coaxial with feed loop, so as to put the 
crystal where the feed jack was, it is possible to use an externally mounted 
crystal as in head ^ 2. For this head the input current amplitude control 
is obtained by using, as a feeder, a short coaxial tipped with a tiny loop 
and a coaxial jack, at opposite ends. This coaxial is mounted in a spring 
clamped bearing so as to permit a rotation of the plane of the loop. All 
coaxials, except the measuring unit itself, are 72-ohm ones. 

There is no essential difference in operation between these two heads; 
they are interchangeable. However, head ^ 1 is more convenient in ma- 
nipulation, during the disassembly required to insert the dielectric sample. 
(This sample is always positioned in the piece of tubing connecting to the 
head.) 

An ordinary model 301 microammeter, low resistance, served as indicat- 
ing instrument. By replacing the crystal holder of head ^ 2 with a loop 
tipped coaxial and plug, a conventional double-detection radio receiver with 
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output meter could be used instead. The crystal type detector is by far 
the most convenient but with the power available wouldn't give workable 
outputs when bad dielectrics were to be measured. With the amplification 
available in the double detection set, any dielectric could be measured, 
while retaining the necessary attenuation between genera tor-resonator and 
resonator-receiver to keep these elements electrically independent of each 
other. 

It is necessary to maintain an electrical isolation of this sort to get a high 
apparatus Q. The equivalent Q of all good dielectrics being high, the 
measuring apparatus Q must be of the same order to give favorable meas- 
uring conditions. And, further, unless the generator-resonator coupling is 
weak, the act of varying the resonator tune will drag the generator fre- 
quency around and will also vary the generator output amplitude. 

The crystal plus microammeter required something like 80 millivolts for 
full scale deflection and this could be obtained with the present apparatus 
with couphngs giving a resonator Q of 1500, while having enough power in 
reserve to measure any of the good dielectrics. However, most of the dielec- 
trics with power factor greater than .01 were measured with the d.d. re- 
ceiver. All the 10 cm wave-length measurements were made with this re- 
ceiver. For the latter measurements a shorter tube was substituted for the 
tubes shown screwed into the two heads in the disassembly photo. 

The crystals were calibrated at 60 cycles by means of a 70-ohm \/2 
attenuation pad.2 With full scale deflection this pad was introduced and the 
new scale deflection read. This \/2 ratio was, as far as was possible to 
check, maintained in the kilo megacycle range. For calibration the ciystal 
was tapped across 4 ohms in the attenuator pad output. A 15 mf electroly- 
tic condenser was permanently connected across the meter terminals and, 
by means of a pair of switches, calibration could be checked in a few seconds, 
during a measurement run. 

The calibration process, using the d.d. set, was to adjust the output to a 
convenient meter deflection and then calibrate the meter by throwing in 3 
db in the IF attenuator. 

The resonator itself constitutes an accurate wave meter when corrected 
for the change in diameter at the moving plunger. The method of operation 
was then as follows. The plunger vernier, which allowed reading to 0.01 
cm., was set at the desired wave-length. The oscillator was then turned on 
and after it had attained temperature equilibrium, was adjusted if necessary 
to resonance at this value. This adjustment was infrequently necessary and 
always slight. The apparatus Q was then determined by traversing the 
plunger across the resonance setting by means of the micrometer. This 

2 Exact, not 3 db. 
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"mike" read to the ten-thousandth of an inch and could be estimated to 
one-fifth of this. Initially, by means of the amplitude control, the micro- 
ammeter deflection had been adjusted to the desired scale value at the reso- 
nance point. The traverse was observed between the two \/2 microam- 
meter deflections and was repeated in the opposite direction. When 
successive round trips showed consistency the value of d' was noted. The 
dielectric sample, after thickness measurement, was then introduced, cen- 
tered by cut and try and the Q traverses repeated. This gave d and, 
after noting /St, the change in plunger setting for resonance, the measure- 
ment was complete. 

During the measurement the generator had to be protected from drafts 
and, usually, it was necessary to traverse rapidly, the power line voltage not 
being stable. Settings could usually be reproduced to 1 per cent, with ade- 
quate care. A sample observation on a good dielectric is the following: 

July 28,1941 Polystyrene plate, all dimensions in cms. 

/ = 1.28 d' = .0084 X = 22.42 
M = 1.79 d = .010 P.F. = .00028, e = 2.49 

The dielectric samples were machined on a precision lathe, dimensions 
being held to .001 inch. The nominal dimensions were O.D. .640 inch, I.D. 
.174 inch. A favorable thickness, from the standpoint of ease of measure- 

in em's. Cleanliness in handling was carefully observed. ment, is lOe 
After a lapse of several days the interior bearing surfaces of the resonance 
cavity would have to be cleaned with fine French crocus cloth. The plun- 
ger bearing surfaces also had to be smoothed up, fine scratches being polished 
off. Dirt was immediately noticeable when the plunger contacted it, and 
when microscopic bits of silver were rolled up under the plunger springs 
cleaning was necessary. Otherwise no particular treatment or smoothing 
up of the contacting surfaces was required. 

A table of dielectric power factors and constants is a very desirable piece 
of information. Unfortunately, experience tends to the conclusion that 
such a table does not exist. The organic plastics in particular, are rather 
variable from sample to sample and a table of values is merely a table for 
particular specimens. Where a great number of samples are available 
"best", "worst" and "most common" values can be established. The 
accompanying list of observed values must be interpreted in the light of the 
above statements. 

As a large number of measurements of certain special materials had to 
be made, dielectrics in general were rather neglected and the tabulated 
values are more or less incidental. It was noted that for the low loss, sub- 



TABLE 1 

Material 
t P.F. 

22.5 cms. 10 cms. 22.5 cms 10 cms. 

Ceramic 
BTL F3 Mg. Silicate type.. . 5.83 .00023 

"Dielectene"  3.39 .0038 

Glass, Corning 
Gl, lead  4.30 .0049 
G8, lime, annealed  6.38 .0102 
G12, lead  6.08 .0035 
199-1  8.70 .0019 
702EJ, Pyrex  6.35 .0067 
702P  4.70 .0053 
704EO  4.42 .0033 
705BA  3.80 .00118 
707DG  4.69 4.8 .0037 .0036 

Glyptal  3.38 3.36 .030 .036 

Lucite  2.58 2.56 .0090 .0087 

Mycalex 
.0030 Red  5.91 

White  5.74 .0033 

Phenolics 
Cast specimen  4.63 .139 
Bakelite sheet   3.57 .080 

Polyethylene 
.00229 Worst  

Most common  2.26 .00060 
Best  .00031 

Polystyrene 
.00090 Worst  

Most common  2.45 .00070 
Best  [.00028 

Polyvinylcarbazole  2.87 .0040 

Rubber 
Hard, brown  2.77 .0041 
Hard, black  2.69 .0059 
Soft, black  3.15 .0058 
Resin  2.32 .0018 

Styralloy 
.0036 No. 10  2.49 

Desig. Unknown  2.49 2.50 .0019 .00105 
No. 22  2.40 .0047 

Styramic 
.00087 El689  2.55 

Tenite II  2.95 .031 

Vinylite V  2.78 2.61 .0076 .0068 

Wax 
Paraffin  2.17 .00019 
Boler  2.17 .00019 
Superla  2.26 2.26 .00019 .00015 
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stituted paraffin-type, carbon chain dielectrics no difference, greater than 
experimental error, exists between the 22.5 and 10 cm. measurements. 
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APPENDIX 

The typical ultra high-frequency transmission line can be represented as 
in Fig. 3 

Zo 

(Eodo) (Ex,1*) (EidO 
Fig. 3—Equivalent circuit of transmission line 

and the equations describing it are 

'Z cosh V DZ -t- \/ 
Ex = To 

Z( cosh \/DZ (^ — a:) + /i sinh \/DZ {t — x) 

U = V0 

(Zo + Zf) cosh VDZ I + (z,Z(/^f + /j/|) sinh ^DZ i 

cosh VDZ {I — x) + Z(^^ sinh ^DZ {t — x) 

(Zo + Z,) cosh VDZ I + (zoZ^j/l + sinh y/DZ t 

Z =E1 = 
Zx Ix V 

Z( + ^^ tanh s/DZ {(■ — x) 

.j/l + Zf tanh VDZ {t - x) 

(1) 

Eq — V o — Zo/o, Ef — Zflf 

The line constants are Z = R-\- iuL, the series impedance per unit length, 
and D = G + iuC, the shunt admittance per unit length. From these we 

have: surge impedance — = So, propagation constant = \/DZ. 
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For all lines usable as transmission devices the following approximations 
hold: , 

V^ = a + i'3 + /3 = wV/XC = ^ = y 

4/1=yl- 
i, c = i = f. k = 3X 10'" cm/sec. 

60 K K for air. 

(2) 

For the case of near-end input and output the second of equations (1) can 
be rewritten as 

1 - v° in — 

  Zr .  
cosh -%/ DZ £ + sinh v DZ I 

1/1 

—-j=^ cosh DZ t + sinh \/DZ I (3) 

y ^ 

+ /cosh a/^ sinh y/DZ t 

1/11 I/I 

If now we assume a quarter-wave line, the condition of resonance implies 

that -fy » Ivll and ^o« l/il . The condition of reasonable short- 

ening of the line (or lengthening) by the terminal reactance implies that 

X( > \ | , < | j . Hence we shall have I ^ I » ] /j/^ . 

\z°\«W-D[ 

4/1 
If we put T-— = tanh 0, we get 

/ _ Fo tanh (\/DZ / + 0) 

y/| !+ ApanhtV^ + S) W 

y 

We now make the assumption that "Zo" is a pure resistance (which is no 
limitation on the measurement to be discussed) and put 6 = af -\- ib(. 
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Then, 

Vo 

i/i 

tanh2 (a I + a^) + tan2 + b^j 

1 + —jy tanh (at + a^) 

V-c 
r zo 

+ /j + tanh (at + a^) 

V-c 

(5) 

tan' 
<¥«.) 

This expression cycles, as "t" is varied, and has its maximum or "tuned" 
value of 

"•/i/e 

+ tanli (at + df) 
for tan + b^j = 

2irt (2n + l)7r n 1 0 or — + ^ = ^ —i- » = 0,1, 

The resonant length is thus t = -^ \ ), for n = o. Note that successive 

resonances differ by a line length of the reactive termination has merely 

shortened, by the amount of the first resonant element preceding 
/TT 

it. When, therefore, we measure the "Q" of this line segment by line- 

length tuning we use ^ ^ in the Q process definition. 

The Q process now follows. Putting t = tr Az 8t where tr is the 
actual observed resonance length, we have 

2Tt , , 2'Ktr . , , 2ir8t ir , 2ir8t _ + j, = _r + j<d=__=_±_ 

Then tan + 6,) = tan (| ± 2-^) = 1 ^ and 
N ' N ^ tan —— 

A 
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I'/o I = 
1 + tanh2 {at + (if) • tan' 

lirbt 

~ ZQ 
—+ tanh {at + aj) 

2 

iv c 

+ tan' 1 + —~pf tan^ "I" a'd 

, dividing to elimi- 

i/1 

2irdt 

Forming the current values |/ox| = I/021 = 
A 

nate | /n | and discarding squares and products of small quantities in com- 
parison with unity leaves, 

tan 
2TV5C 

VK2 - 1 = 

il 

+ tanh (at + a^) 

X , 2Tr8t 
/r- T X 85^ X 

or V K2 - 1 —. = 

(6) 

85t Zo 

vi 

y + tanh {at af) 
•Lj 

which becomes our "Q" when K = \/2. 
In most practical situations the "tan" and "tanh" are equal to their 

IT 
4 

angles. For this condition Q =  . If we now put, by defini- 

l/i 

+ 0:^+0^ 

tion, Qg = (the Q of the line itself), Qo = ^ ~, we have 

i _ 1 1 1 
Q~ Q, + Qo + Qf 

(7) 

the law of Q composition relating the resultant Q to line and terminal Q's. 
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A Sampling Inspection Plan for Continuous Production} H. F. Dodge. 
This paper presents a plan of sampling inspection for a product consisting 
of individual units (parts, sub-assemblies, finished articles, etc.) manufac- 
tured in quantity by an essentially continuous process. 

The plan, applicable only to characteristics subject to non-destructive 
inspection on a Go-NoCIo basis, is intended primarily for use in process 
inspection of parts or final inspection of finished articles within a manufac- 
turing plant, where it is desired to have assurance that the percentage of 
defective units in accepted product will be held down to some prescribed low 
figure. It differs from others which have been published in that it pre- 
sumes a continuous flow of consecutive articles or consecutive lots of articles 
offered to the inspector for acceptance in the order of their production. It 
is accordingly of particular interest for products manufactured by con- 
veyor or other straight line continuous processes. 

In operation, the plan provides a corrective inspection, serving as a partial 
screen for defective units. Normally, a chosen percentage or fraction / of 
the units are inspected, but when a defective unit is disclosed by the in- 
spection it is required that an additional number of units be inspected, the 
additional number depending on how many more defective units are found. 
Hie result of such inspections is to remove some of the defective units, and 
the poorer the quality submitted to the inspector, as measured in terms of 
per cent defective, the greater will be the corrective or screening effect. The 
object of the plan is the same as that incorporated in some of the sampling 
tables already published, namely, to establish a limiting value of "average 
outgoing quality" expressed in per cent defective which will not be exceeded 
no matter what quality is submitted to the inspector. This limiting value 
of per cent defective is termed the "average outgoing quality limit (AOQL)." 

The theoretical solution treats the case of inspecting a continuous flow of 
individual units and is based on the distribution of random-order spacing of 
defective units in product whose quality is statistically controlled. Part III 
of the paper extends the application of the method to a continuous flow of 
individual lots or sub-lots of articles. 

Stability in Iligh-Frequency Oscillators.- R. A. Heising. This paper 
discusses frequency stability with change in plate voltage of high-frequency 

1 The Annals of Mathematical Statistics, September 1943. 
- Proc. I.R.E., November 1943. 
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oscillators of around 100 megacycles and shows both theoretically and experi- 
mentally that the highest stability found by many is only the result of for- 
tuitous circuit adjustment that may readily lead to the desired result in this 
frequency range. It is shown that the factor next in importance in producing 
frequency stability is a low ratio of inductance to capacitance in the fre- 
quency-determining circuit. It is also shown that a high Q contributes 
little directly to stability. A high Q is necessary with low L/C ratios to get 
oscillations but an improvement in Q alone may give poorer stability. To 
get the fullest measure of stability with low L/C and high Q calls for slight 
adjustments in the circuit and possibly the provision of loose coupling to the 
frequency-determining circuit. 

Modern Spectrochcmical Analysis* Edwin K. Jaycox. The spectro- 
graph, originally developed by the physicist, has become a most useful tool 
in the hands of the analytical chemist. Today few large analytical labora- 
tories are without one. The instrument, with its attendant accessories, 
provides a rapid method for analyzing metals, alloys, minerals, ores, liquids, 
and gases, particularly for their metallic constituents and in some cases for 
their anions. Both emission and absorption spectra are important to the 
analyst. Important applications of the spectrograph to the analytical 
problems of research and industrial organizations are discussed. 

The spectrograph did not come into general use as an analytical tool until 
the early 1920's, although Kirchhof and Bunsen saw the practicability of the 
method in 1860, when they published their paper entitled, "Chemical Anal- 
ysis by Means of Spectral Observations." During the intervening years 
only a few enthusiasts like Lockyer, Roberts, Hartley, Leonard, Pollack, 
and de Gramont, kept the art alive. In spite of their persistent efforts to 
influence chemists to use spectrographic methods, they were quite generally 
ridiculed and the value of the method was recognized by only a few workers. 

In 1922, Meggers, Kiess, and Stimson published their paper "Practical 
Spectrographic Analysis" and modern spectrochemical analysis was born. 
Under the stimulus of this paper and the backing of a high caliber scientific 
organization like the Bureau of Standards, the use of the spectrograph as an 
analytical tool increased rapidly. This is evidenced from the Index to the 
Literature on Spectrochcmical Analysis by Meggers and Scribner. In 1920, 
for example, only five papers were published concerning spectrochemical 
analysis, four of which were by de Gramont; whereas in 1930, 33 papers 
were published and in 1939, 170 papers, indicating an increasing interest in 
and use of spectrochemical analysis in industrial and research organizations. 

3 Jour. Applied Physics, December 1943. 
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Determination of Small Amounts of Arsenic, Antimony, and Tin in Lead 
and Lead AlloysA C. L. Luke. A new method for the determination of 
small amounts of arsenic, antimony, and tin in lead and lead alloys consists 
of separation of the three metals from the lead by a double co-precipitation 
with manganese dioxide, reduction of arsenic and antimony to the trivalent 
state, separation of the arsenic by distillation as chloride, titration of the 
arsenic and antimony separately by the method of Gyory, and reduction 
of tin with lead and titration with standard iodine solution. 

Determination of Total Sulfur in Rubber} C. L. Luke. A new volumetric 
method has been developed for the determination of sulfate sulfur. The 
sulfate is reduced to sulfide by treatment with hydriodic acid and the hydro- 
gen sulfide is distilled off and titrated iodometrically. The new method has 
been applied to the determination of total sulfur in natural and synthetic 
rubber. 

Machine Screws. Fastening Strengths in Various Materials} A. C. 
Millard. Although standard machine screws in the numbered sizes have 
been widely used as fastenings for many years, very little has been published 
concerning their strength of fastening in various metals and non-metals. 
Numerous articles have appeared regarding the strength of bolts and ma- 
chine screws for j in. and larger sizes, but very little, if any, published in- 
formation is available on the strength of machine-screw fastenings in the 
numbered sizes. 

The need for machine-screw fastening-strength information has increased 
recently due to the use of more compact designs and the shortage of mate- 
rials. The use of substitute materials has accentuated the lack of machine- 
fastening-strength information in making fastenings in such materials, as 
well as in the more commonly used materials. Frequently, it is desirable 
to know the load-carrying capacity of screw fastenings of various diameters, 
as well as the length of thread engagement in the weaker materials needed 
to develop either the full strength of the screw, or the strength of fastening 
required of the assembly. The purpose of this paper is to make available 
to designers the results of fastening-strength tests of machine-screw fasten- 
ings in a number of materials, which were carried out by the author at the 
Bell Telephone Laboratories, Inc. The work is by no means complete but 
is hoped that the data offered will prove to be of some use in its present form. 

4 Indus. & Engg. Chemistry, October 1943. 
i Indus. & Engg. Chemistry, September 1943. 
6 Mech. Engg. October 1943. 
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W. R. Bennett, B.S., Oregon State College, 1925; A.M., Columbia Uni- 
versity, 1928. Bell Telephone Laboratories, 1925-. Mr. Bennett has been 
engaged in the study of the electrical transmission problems of com- 
munication. 

Carl R. Englund, B.S. in Chemical Engineering, University of South 
Dakota, 1909; University of Chicago, 1910-12; Professor of Physics and 
Geology, Western Maryland College, 1912-13; Laboratory Assistant, Uni-" 
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is engaged largely in experimental work in radio communication. 
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1930. Columbia University, 1931-1933. Bell Telephone Laboratories, 
Research Department, 1930-. Mr. Sykes has been engaged in the applica- 
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elements. Other work has included the application of coaxial lines as ele- 
ments of filter networks and more recently the design and development of 
quartz crystals for radio frequency oscillators. 
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