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Indicial Response of Telephone Receivers 

By E. E. MOTT 

A method of analyzing telephone receiver characteristics by indicial response is 
discussed and illustrated by oscillograms. The indicial response of a telephone 
receiver is the instantaneous response of the receiver to a suddenly applied electro- 
motive force. This type of response is of particular fundamental interest 
because it furnishes a key to the solution of transient problems such as are 
involved in the response to speech waves. 

Oscillograms of indicial response, together with the more familiar steady-state 
frequency response characteristics, are shown for different types of receivers. 
The relationships existing between the two types of measurements are discussed. 

From the standpoint of most faithfully reproducing transients, indicial 
response data indicate that a receiver having a limited range of frequency response 
should have a frequency response characteristic which droops gradually rather 
than abruptly near the upper end of the range. 

Introduction 

THE use of indicial response analysis as an outgrowth of the Heaviside 
operational calculus1 has been extended to a number of different fields. 

The indicial admittance as defined by J. R. Carson2 in his analysis of the sub- 
marine cable and other transmission problems has been an effective tool in 
the study of transients. More recently, a similar type of measurement has 
been used as an indication of performance of amplifiers3, television equip-* 
ment4, and audio frequency transformers5. 

In the field of telephone receivers6 an analysis by means of impressed 
square waves has been found useful as a measure of transient response. In 
the transmission of speech, so much emphasis has been placed upon steady- 
state frequency response as an indication of performance, that it seems in 
order to consider the possible advantages of a transient method of analysis, 
as obtained by measuring the indicial response. Only recently has the 
technique of such measurement been made feasible by the improvement at 
low frequencies of amplifiers and related apparatus. 

The Indicial Response 

The indicial response of a telephone receiver may be defined as the in- 
stantaneous sound pressure generated by the receiver in a closed air chamber 
due to a suddenly-applied unit voltage. This term differs from Carson's 
indicial admittance only in that sound pressure rather than current response 
is used. The sound pressure in an air chamber of pure stiffness is a measure 
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of the volume displacement, and as such it is proportional to the transfer 
displacement admittance of the system. When we are interested in the 
charge rather than in the current, the admittance takes the form of a dis- 
placement admittance, related to the ordinary admittance by a factor of the 
frequency cj. That Carson's original equations apply to such a system with 
little if any change may be easily demonstrated. The term A{t) may be 
used to denote any of these forms of indicial admittance or indicia! response. 

The form of the applied voltage assumed is shown by Fig. 1. This form, 
defined by Heaviside as the unit function, is a function of time equal to zero 
before, and unity after the time / = 0. More properly, however, it may be 
regarded as an increment in voltage closely analogous to Isaac Newton's 
concept of infinitesimal elements of rectangular area, the summation of which 
forms the basis of the integral calculus. The successive application of small 
increments of voltage likewise forms the basis of the operational calculus, or 
more particularly, the basis of the Carson extension theorem. 

Having obtained the indicial response, either experimentally or theoreti- 
cally, we have the key to the more general problem where the applied voltage 
e{t) may be of any form, such as that of speech waves. Let e{t), Fig. 2, be 
any arbitrary voltage wave corresponding to speech7. Let a series of con- 
secutive increments of voltage, differing in time by At be applied, of such 
magnitude as to build up the form of the curve e(t). By analyzing each of 
these components in terms of the indicial admittance A (i), and synthesizing 
them again, the instantaneous sound pressure may be related to the voltage 
producing it and the indicial admittance A(t) by the Carson extension 
equation2: 

TIME AXIS 

THE UNIT FUNCTION 

Fig. 1 

The Carson Extension Theorem 

When the above integration is carried out, the term r disappears and is 
replaced by t. The above sound pressure />(/) represents the sound pressure 
generated by the receiver in a closed coupler due to an applied voltage e{t). 
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Fig. 2—Method of derivation of Carson's extension formula. 
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From the above, it is evident that the ideal form of receiver response to a 
suddenly-impressed voltage would be a copy of the unit function shown in 
Fig. 1, and that any deviation from this form will cause distortion. If the 
building blocks of the curve e{l) are undistorted, the curve itself will like- 
wise be reproduced free from distortion of wave form. Thus, the more 
closely the indicial response can be made to approach the form of the unit 
function, the more closely the receiver sound pressure p{l) will be a copy of 
any arbitrary speech wave e{t). Curve 1, Fig. 3, shows the indicial response 
of a receiver having a frequency range of 8000 cps, which comes rather close 
to this ideal. On the other hand, the further the indicial response departs 
from this ideal form, the more it will deviate from any impressed transient, 
such as speech waves. Thus curve 2, Fig. 3, corresponds to a receiver of 
narrow range, which contains resonant oscillations, and rises much later in 
time than the other receiver. 

Conversion Formulae 

The indicial response is as fundamental in character as frequency response, 
and may be converted into frequency and phase response if the proper in- 
tegrations are carried out for any particular system, as follows: 

indicia, Response „ W ^ [^^r] ^ ^ ^ 

where A (co) is the transfer admittance of the system. In order to carry out 
these conversions, certain integrations must be performed, either mechani- 
cally or theoretically. The following are conversions7 which may be used to 
carry out this process: 

A{t) = - f sin ut dco 
TT Jo OJ 

A (l) = P(0) + - f cos utdco IT JQ O) 

= f A(l) sin ut dt 
co Jo 

= f [A (l) - .4(0)] cos atf dt 
OJ Jo 

Where P(cj) and Q(u) are the real and imaginary parts of the frequency 
reponse, A (co) is expressed in terms of pressure reponse8, while the indicial 
response A (/) is expressed as an instantaneous sound pressure. The integra- 
tions are difficult to carry out, but serve to show how the two systems of 
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measurement are related, and how they may theoretically be converted one 
into the other, provided in the case of frequency response the magnitude and 
phase are both known. 

General Applications 

The use of indicial response as a tool in telephone receiver studies is par- 
ticularly adapted to the study of transients. Since all voice and sound trans- 
mission, particularly that of orchestral music, may be regarded as essentially 
a transient problem, it is appropriate that we visualize the effects on the 
complex wave forms of any distortions which may be present in the trans- 
mission apparatus. The indicial response will, in general, depart from the 
ideal square form, and the amount of this departure may be regarded as 
indicative of the relative faithfulness of wave form reproduction by ap- 
paratus having different frequency characteristics. An examination of 
these departures should therefore be helpful as a supplementary method of 
appraising the relative merits of different frequency response characteristics. 
The effect, for example, of small resonance peaks or dips upon transients 
is very forcefully shown in the form of the indicial admittance. The de- 
parture from squareness of a particular system may often be improved by 
use of the proper shape of frequency characteristic. 

The use of a closed coupler when measuring telephone receivers is par- 
ticularly adapted for such studies, because the disturbing effects of de- 
ficiencies at the low frequencies due to leakage may thus be eliminated. 
Interpretation by inspection then becomes a matter of observation of the 
various types of departures at the higher frequencies from the ideal form. 

Since listening tests do not always agree with interpretations of physical 
measurements of steady-state frequency response, it often becomes a matter 
of interest to obtain different criteria of judgment in which the weight given 
to the various frequencies may be judged by the relative effects of irregulari- 
ties in various parts of the frequency spectrum upon the indicial response. 

Apparatus and Method of Testing 

Various forms of apparatus may be used for receiver testing with square 
waves. Square-wave generator circuits have been published both for audio6 

and video3 frequency use, involving vacuum tube circuits which overload at 
low voltages. For low speeds using low-frequency waves of the order 
60 cps, a simple mercury switch operated by an oscillator gives very satis- 
factory results. 

The square-wave voltage is introduced across a small part of the resistance 
termination as shown in Fig. 4, the whole resistance termination being 
matched to the magnitude of the receiver impedance at 800 cps. The re- 
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ceiver is then operating from an idealized resistance source having an im- 
pedance which matches that of the receiver approximately, over the range 
of interest. 

The receiver is coupled acoustically to a small-diameter condenser micro- 
phone by means of a closed coupler8. The condenser microphone has a 
substantially uniform characteristic up to a frequency of 10 kc. The 
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Fig. 5—Frequency response (A) and indicial response (B) of measuring apparatus. 

microphone voltage is then amplified to the point where it can be measured 
by an oscillograph. 

Either the cathode-ray oscilloscope or a rapid-recording string oscillo- 
graph9 may be used, but in the latter case it is necessary to equalize the 
string oscillograph to a frequency of about 10 kc in order to cover the audio 
frequency range. The choice of these instruments depends somewhat upon 
whether a permanent record is desired or whether a visual indication is 
sufficient. 
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The amplifier must be compensated at low frequencies in order to main- 
tain a strictly square-wave output. The entire system characteristic is 
shown in Fig. 5 and covers a range of 1 to 10,000 cps with a substantially 
uniform frequency response. The indicial response of the system is also 
shown to be reasonably free from irregularities. Such irregularities as do 
exist are due largely to the sharp cut-off of the system at 10 kc which was 
necessitated by the limitations of the string oscillograph. 

The calculated pairs of curves for telephone receivers in Fig. 6 show the 
relations between the frequency response and the indicial response. Since 
the characteristics of receivers measured on a closed coupler of known volume 
are readily amenable to calculation if the constants of the receiver are known, 
such a procedure is often useful in predetermining the design of a receiver. 

The upper three curves, Fig. 6, are the characteristics of a moving coil 
receiver calculated for three different frequency ranges, being otherwise 
similar in shape, the curve being shifted in frequency by an arbitrary factor 
K. The effect on the indicial admittance is to shift it in time by the same 
factor without change of shape, if the plot is logarithmic as shown. In gen- 
eral, if the cut-off frequency is divided by the factor K, the corresponding 
time delay will be increased by the factor K. This is an application of a 
theorem by Carson2 that: 

frequency response, and A{t/k) is the indicial response. In other words, the 
curve may be shifted in frequency by a simple transformation and the effect 
on the indicial admittance curve is very similar except that the shift is in 
a direction opposite to the change in frecjuency, and is inversely proportional 
to the change in frequency scale. 

The second group of curves, Fig. 6, relates to the effect of damping on an 
early magnetic type of receiver, showing the freely resonant condition, a 
moderately damped, and a highly damped receiver. The curves of indicial 
response show the effects of free resonance to be very detrimental, and the 
ringing of the diaphragm is sustained over such a long period that any speech 
waves would have superposed on them a continual train of sine waves. If 
the rate of decay of these waves is increased, as shown by the damped curves, 
a noticeable improvement results. By using critical damping as in the 
highly damped curve, all oscillations can be eliminated, but the time of 
pickup is degraded and thedeparture from a square wave is somewhat greater 
than for the moderately damped condition. 

Indicial vs. Frequency Response 
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Fig. 6—Calculated indicial response versus calculated frequency response of various 
types of telephone receivers. 
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The indicial response shows more emphatically than frequency response, 
the importance of damping and the oscillations which are to be avoided, or 
reduced to a minimum. It also shows that the effect of delay is closely re- 
lated to attenuation of the higher frequencies, and that frequency of cut-off 
is inversely proportional to the time delay, for a given type of receiver circuit. 

There is a noticeable similarity between the appearance of the frequency 
response and the indicial response curves, and in many cases one curve is 
approximately the image of the other. As an example of this, the three pairs 
of linear curves show the similarity of indicial and frequency response for 
constant velocity, constant acceleration, and constant amplitude devices, 
as depicted by the three curves denoted by 1, 2, and 3 in which the three 
moving-coil instruments are assumed to be controlled by (1) a predominance 
of acoustic resistance behind the diaphragm, (2) a mass controlled system, 
and (3) a stiffness controlled system. In either case, the fundamental shape 
of the curves is such that the indicial response is the image of the frequency 
response in its general character. 

The two lower curves, Fig. 6, indicate the effect of a sharp cut-off versus 
a gradual one. In terms of indicial response, the gradual cut-off appears to 
be the better of the two, a principle which is widely accepted in television 
and telegraph transmission. 

Experimental Measurements 

The oscillographic measurements of indicial response, together with cor- 
responding frequency response measurements of telephone receivers, are 
shown in Figs. 7, 8, and 9. The oscillograms on the left, Fig. 7, show the 
type of data which constitute indicial response as compared with the more 
familiar frequency response on the right. 

Curve 1, Fig. 7, represents a moving-coil receiver similar to that calculated 
in Fig. 3, and constitutes the standard of performance which can be obtained 
by this particular system of measurement. Each division of the oscillogram 
represents .001 second, a somewhat faster film speed than is usual for the 
string oscillograph. 

Curve 2 shows the characteristics of a magnetic bipolar type of receiver 
having a frequency range of 3000 cps with a fairly sharp cut-off at this fre- 
quency. The acoustic circuits of this receiver serve to damp the resonance 
of the diaphragm and extend the range from 1600 up to 3000 cps. The 
oscillogram shows a partially damped but still somewhat oscillatory condi- 
tion which is due to the receiver. 

With all damping circuits removed, we obtain the characteristic of curve 
3, a simple diaphragm resonance, which is similar to the earlier type of re- 
ceivers of the magnetic type. Curve 2 represents a real improvement over 



144 BELL SYSTEM TECHNICAL JOURNAL 

curve 3, both as regards introduction of damping and extending the fre- 
quency range. 
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p-jg 7—Measured indlcial response versus measured frequency response of various types 
of telephone receivers and electrical filters. 

The effects of further increases in damping are shown by curves 4, 5, and 6. 
Such changes in the shape of the curve are brought about by relatively simple 
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changes of the constants of the acoustic circuits. The oscillograms indicate 
a marked improvement as regards oscillations, which is to be expected with 
increased damping. The time delay is eventually degraded with further 
increases of damping, however, and the optimum damping is a matter of 
compromise. 

+ 20 

f 15 

+ 10 
FREQUENCY RESPONSE 

/ 2 V vy + 5 

 " 

A Q. -5 

A 
INDICIAL RESPONSE ^-10 

I f) _ 

-20 

-25 

-30 

35 

40 100 1,000 
FREQUENCY (CPS.) 

Fig. 8—Three types of hearing aid receivers—frequency response and indicia! response. 

The effects of a low-frequency cut-off characteristic are shown by curves 
7, 8, and 9, Fig. 7. The absence of a d-c component makes these curves very 
difficult of interpretation. 

Curve 7, taken with the same receiver as curve 2, except with coupler 
leakage, shows a loss at low frequencies which is typical of cases where the 
receiver cap does not make a perfect seal with the ear. The effect on the 
indicial response is that of a large pulse followed by a few oscillations at the 
frequency of the leak circuit. 

Curve 8 is a similar condition except taken on a high-quality receiver 
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circuit. This also shows a similar effect. The initial pulse contains most of 
the receiver characteristic, while the curve which follows is mainly de- 
pendent on the leakage constants. 

Curve 9 is taken on a high-pass filter of the characteristic shown. It may 
be proved that this curve is the inverted image of the corresponding low-pass 
filter characteristic, of which a similar curve is shown as curve 10. 
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Fig. 9—String oscillograph characteristics—frequency response and indicial response with 

different amounts of damping. 

The curves 7, 8, and 9 show that when the low frequencies are absent, the 
indicial response becomes too difficult to interpret. We must restrict our 
measurements to systems which are ideal at the low frequencies in order to 
interpret the indicial admittance by inspection. 

Curves 10 and 11, Fig. 7, are low-pass filter characteristics, the former 
being a measured curve of a typical filter, while the latter is a calculated 
curve for an ideal filter. The two curves check reasonably well and indicate 
the effect of a very sharp cutoff as compared to those of the receivers shown 
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above. This indicates the oscillatory nature of any system having a sharp 
cutoff at the upper frequencies. 
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Figure 8 shows a group of curves of the frequency response and indicial re- 
sponse of a group of receivers used as hearing aids. Curve 1 shows a very 
efficient but resonant receiver. Curve 2 is somewhat damped but still 
contains oscillations. Curve 3 is comparatively much better than either 
of the others from an indicial response viewpoint, and has a drooping fre- 
quency response characteristic, and demonstrates the advantages of this 
form of curve. 

Figure 9 shows the effect of adding damping to the system of the string 
oscillograph when subjected to an ideal square wave. Curve 1, which has 
a virtually flat characteristic from 1 to 10,000 cps, is characterized by a 
sharp oscillatory peak in the indicial response. Curve 2 contains some oscil- 
lations, while curve 3 is substantially free from oscillations. The trend of 
these curves also shows the more faithful reproduction of transients obtained 
with a drooping frequency response. 

Figure 10 shows the response to square waves of three receivers having 
different frequency response characteristics. The low-frequency waves of 50 
cps are similar to the indicial response of the three receivers whose frequency 
characteristics are shown at the top, Fig. 10. As the frequency of these 
waves is increased to 300 cps, a noticeable departure from the square form 
is apparent in receiver No. 3. Receiver No. 2 shows a slight departure, 
while No. 1 is virtually a perfect reproduction. 

As the frequency of the square waves is increased to 500 cps, the receiver 
No. 1 still shows very little departure from the original form. Receiver No. 
2 maintains a fair approximation, while receiver No. 3 has lost all resem- 
blance to the square form. 

At a frequency of 1000 cps, only the first receiver maintains an approxi- 
mately square form. Receivers Nos. 2 and 3 have both lost their identity 
and have become practically pure sinusoids. For all higher frequencies of 
the square waves, these two receivers will exhibit practically pure sinusoidal 
forms, due to the relatively sloping character of the frequency response at 
these frequencies, and the absence of harmonics. The same will be true of 
receiver No. 1 beyond a frequency of 3000 cps. 

It will be realized, of course, that the patterns were obtained with square 
waves repeated at frequencies of 50, 300, 500 and 1000 cycles per second. 
While some speech waves approximate square waves in character such 
waves, when they occur, are repetitive only at the lower range of these fre- 
quencies. The above patterns were therefore obtained under conditions 
much more severe than are involved in the reproduction of speech waves and 
are included primarily for the purpose of illustrating the sensitivity of this 
form of analysis when applied to repeated square waves. 
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Conclusions 

To summarize these data, it seems evident that square wave analysis may 
be applied in some fields of acoustics for both theoretical and practical 
applications. 

In theory, the indicial response forms a somewhat different approach to 
the problem of obtaining the optimum characteristics of telephone receivers 
at the upper end of the frequency range. The greatest value of the square 
wave analysis lies in the fact that it gives us an entirely different conception 
of the behavior of an ideal sound system in terms of the unit function. The 
frequency response characteristic is ordinarily interpreted on the theory that 
any transient, such as an interval of conversation, may be represented by a 
Fourier series of sinusoidal frequencies of constant intensity lasting over the 
entire interval. If these equivalent component frequencies are to be repro- 
duced in their true proportions, the ideal sound system must have mathe- 
matically uniform response for all single frequencies. On the other hand, 
the indicial response characteristic is judged from the Carson extension 
theorem, which shows that the more closely this characteristic approaches 
the unit function, the more perfect will be the reproduction of any given 
transient. Thus, the unit function and the sinusoid may be used as mutually 
complementary tools of analysis to show different aspects of the same type 
of problem. 

In sound systems which are not ideal, due to inherent physical limitations, 
we tend to apply the Fourier Theorem out to a certain frequency, just as if 
it were an ideal system out to this frequency, and then beyond this fre- 
quency we do not attempt to sustain the higher frequencies. For most 
faithful reproduction of transients, it would seem that such practices might 
be altered somewhat to advantage by allowing the frequency response to 
drop off more gradually wherever it seems feasible to do so. The exact shape 
of the ideal curve under these circumstances is a matter of compromise 
between excessive delay on the one hand and excessive oscillations on the 
other. In practice, however, a fairly good picture is soon formed when 
curves such as the last in Figs. 6, 8, and 9 are found to approach the ideal 
more closely than those of other forms. Such listening tests as have been 
made tend to confirm these views, but cannot be regarded as being more 
than an indication. 

Square wave analysis is somewhat limited in its practical applications to 
cases which may be interpreted by inspection. Systems having only a single 
cutoff frequency, or in the case of an additional low-end cutoff, ratios of the 
upper and lower cutoff frequencies /2//1 of 100 or more, seem necessary to 
interpret the results by inspection. 
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The use of indicial response is not necessarily limited to any particular 
coupler or method of response measurement, since frequency response and 
indicial response are so closely related that one is a function of the other. 
The choice of a closed coupler measurement does, however, permit some in- 
terpretation of the results to be made by inspection, whereas other types of 
measurement may require laborious mathematical means to obtain an in- 
terpretation. Other types of vibration instruments, such as recorders, 
vibration pickups, crystal phonograph reproducers and carbon transmitters, 
which sustain their response down to zero frequency, should lend themselves 
to such methods of analysis. 

In conclusion, the writer wishes to acknowledge the assistance of Mr. T. J. 
Pope in connection with the oscillographic work of this paper, and to express 
his sincere appreciation. 
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CHAPTER VII 

Theoretical Analysis of Modes of Vibration for Isotropic 

Rectangular Plates Having All Surfaces Free 

By H. J. McSKIMIN 

7.1. Introduction 

The comparatively recent advent of crystal controlled oscillators and of 
wave filters employing piezoelectric elements has resulted in an extensive 
study of the ways in which plates made of elastic materials such as quartz 
or rochelle salt can vibrate. Of special interest have been the resonant 
frequencies associated with these modes of motion. As will be indicated in 
subsequent paragraphs, the general solution to the problem of greatest 
interest is quite complex, and has not been forthcoming, (i.e., as applied to 
rectangular plates completely unrestrained at all boundary surfaces). For 
this reason numerous approximate solutions have been developed which 
yield useful information in spite of their limitations. Several of these 
solutions will be discussed in the following sections. The three general 
types of modes (i.e., the extensional, shear, and flexural) will be analyzed in 
some detail. Also, as a preliminary step the formulation of the general 
problem along classical lines will be developed. 

For the most part, the solutions obtained here are limited to those for an 
isotropic body. However, such solutions provide considerable guidance 
for the modes of motion existing in an aeolotropic body such as quartz. 

7.2. Method of Analysis 

In order to set up the desired mathematical statement of our problem it 
will be necessary to consider first of all two very fundamental relationships. 
The first of these is the well known law of Newton which states that a 
force/ acting on a mass m produces an acceleration a in accordance with the 
formula 

/ = m-a 

The second relationship which we shall need is Hooke's law relating the 
strains in a body to the stresses. If forces are applied to the ends of a long 
slender rod made of an elastic material such as steel (Fig. 7.1) a certain 
amount of stretching takes place. If the forces are not too great, a linear 
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relationship between the applied stress and ensuing strain is found to exist. 
Expressed as an equation 

X — = E in which Xx is the force per unit area, 

xx is the strain per unit length, and £ is a constant known as Young's 
Modulus. (Refer to Section 7.7 for further definition of terms). 

In an analogous manner, shearing stresses applied to an elastic solid as 
shown by Fig. 7.2 produce a shearing strain such that 

— = .4, the shear modulus. 
Xy 

In general there will be contributions to a particular strain from any of 
the stresses which may happen to exist. For example, when an isotropic 

Fig. 7.1—Bar under tensional stress 

Fig. 7.2—Bar under shearing stress 

bar is stretched, there will be a contraction along the width which has been 
produced by a stress along the length. A statement of these relationships 
(known as Hooke's Law) is given by the equations of Section 7.8. 

It is now of interest to consider the conditions of equilibrium for a very 
small cube cut out of the elastic medium which in general is stressed and in 
motion. Reference to Fig. 7.3 will help to visualize the stresses which may 
exist on the faces of this cube. Since these stresses vary continuously 
within the medium, a summation of the forces acting on the cube along each 
of the major axes can be made with the use of differential calculus. From 
Newton's Law previously cited, it is apparent that any unbalance of these 
forces will result in an acceleration inversely proportional to the mass of 
our small cube. Three equations may then be derived, one for each major 
direction.1 If only simple harmonic motion is considered (i.e. all displace- 

1 Refer to "Theory of Elasticity" by S. Timoshenko or to any standard text on elasticity. 
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ments are proportional to sin co/ where co = 27r times frequency) the following 
simplified equations result. 

/ 

x 

T 

Xw / 

/ 

/ 

Fig. 7.3—Stresses acting on small cube 

dXx 

dx + 
dXy 
By + II 

r© 1 

2 — pco U 

dYy 
By + 

BXy 
Bx + 

BY, = 

Bz 
2 —pco V (7.1) 

dZt 

dz + 
BX. 
Bx + 

II — pco2 W 

Since stresses are related to strains in a very definite manner, the above 
equations may be converted into a more useful form involving only displace- 
ments. For isotrgpic media, the following results. 
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In this grouping, 

AV2u + -S = —puu 
dx 

AV2v + jB ^- = —pofv 
dy 

AV2w + 5 ^ = —puw 
dz 

r\2 ^2 n2 
= i- + i- + ^ 

dx2 dy1 dz2 

du , dv . dw 
e =   r t- + ^r- 6a: 67 dz 

(7.2) 

and ^4 and B are given in terms of the fundamental elastic constants X and 
p with A = p., B = \ -\- p.. 

An even more elegant statement of the equilibrium conditions attributable 
to Love2 follows immediately from equations 7.2, since by differentiating 
each one in turn with respect to a;, y, and z respectively, and then adding 
results, one obtains the wave equation 

(V2 + A2)e = 0 (7.3) 

where 
2 2 pw pco 

hl = = 
A + B X + 2p 

Whatever our solution may be, then, it must satisfy equation (7.3). If 
such an expression for c is found, the displacements formed in the following 
way will satisfy equations 7.2 as can be shown by direct substitution. 

1 de 1 6c 1 6c n .x 
U~~h2Tx V~ h2 dy W h2dz (") 

In addition to equations 7.2, another set of requirements will be necessary 
when any particular problem is considered. They are known as the bound- 
ary conditions, and in general are easily deduced from a knowledge of how 
the plate or bar is held. 

For a rectangular plate free on all surfaces, the boundary condition is 
simply that all surface tractions vanish. This requires certain stresses to 
become zero at the boundary as can be seen from the following expressions 
for the x, y, and z components of traction in terms of unit stresses. 

2 A E. Love, "A Treatise on the Mathematical Theory of Elasticity." 
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X = XJ -f- Xyin + Xtn 

Y = Yytn + Y,n + Xv( 

Z = + XJ + Ytin 

= 0 for free surfaces (7.5) 

{(, m, and ti are direction cosines of the normal to the surface at the point in 
question). 

The general problem is now seen to be one of finding solutions for the 
displacements u, v, and w such that both the equilibrium and boundary 
conditions are satisfied. In the following section several interesting solu- 
tions will be considered for rectangular plates having all surfaces free, this 
being the case of greatest interest in so far as this paper will be concerned. 

7.3. Extensioxal Vibrations 

One of the most useful modes of vibration of practical interest is the 
extensional, in which particle motion takes place in essentially one direction 
so as to alternately stretch and compress the elastic medium. Piezoelectric 

x = l 

Fig. 7.4—Longitudinal bar 

plates vibrating in this manner, and of the shapes shown in figures 7.4 and 
7.5 have been used extensively in wave filter and oscillator circuits. The 
approximate resonant frequencies corresponding to this type of motion are 
easily obtained by a consideration of equations 7.1 and 7.2. For the 
longitudinal bar of Fig. 7.4 the only stress that need be considered is the Xx 

extensional, all other stresses being so small that they can be neglected. 
The equilibrium equation then becomes 

or, since 

ax, 2 — = —pu u 

dn _ 1 Y 

dx E ' 

a « p 2 
dtf~ Ewu 

(7.6) 

(7.7) 
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It is easily seen that u = cos kx is a solution to this equation if ^ = ^/j/^ • 

If now the boundary condition that the stress Xx must become zero at the 
ends of the bar (i.e., x = 0, x = I - refer to Eq. (7.5)), is fulfilled, the 

Qu 
solution will be complete. At x = Q, Xx = E — will always equal zero. 

Furthermore, if ^ ^ or any whole number multiple of - the extensional 
I t 

stress will likewise reduce to zero a.t x = I. The desired solution will then 
be as follows, / being the resonant frequencies. 

u = cos 

mir /E 

" - t y P 

m = 1, 2, 3, etc. 

(7.8) 

F7 

Fig. 7.5—Thin plate 

The plate of Fig. 7.5 will now be considered. Here it can no longer be 
assumed that the Xx stress is the only one of importance. Instead, the 
displacements v and w will be considered zero and the displacement u a 
function of x only. This means that the shear stresses Xy , X2, Yz vanish, 
so that the equilibrium equations 7.2 reduce to 

or 

. d2u . „ d*u 2 
am + bW = ~p"u 

d2u —puu 
d? ~ A + B 

(7.9) 

(7.10) 

This is seen to be of the same form as equation (7.7) previously discussed, 

and will again have the solution u = cos kx with k = u ^ A + B 
The 
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boundary condition on the Xx stress will be met if ^ = — so that the 
t 

following solutions result.3 

. /p(l + 0-)(l — 2(7) / p 
u = C0S^y V-^) ^= cosw y 

„ _ - W7r j [Z (1 - *) _ wtt /X + 2/x (7.11) 
" - W - t y p'(1 + .)(1 - 2.) - - y 

w = 1, 2, 3, etc. 

It is seen that this formula for resonant frequencies is the same as given by 
P* m /J   \ 

equations 7.8, with E replaced by j- — r , so that the frequency 
(1 — 2a — a) 

constant/•/ will be somewhat higher than f-t for a long slender bar. 
It is recognized that the solutions derived above hold true only for the 

limiting cases of a long slender bar, and a very thin plate respectively. It is 
therefore of interest to trace the resonant frequencies corresponding to these 
extensional modes of vibration as departure is made from the limiting cases 
mentioned above. 

An experimental plot of the resonant frequencies of a thin plate of length t 
and width w reveals that the frequency of the longitudinal mode first 
discussed is gradually lowered as the width of the plate is increased. There 
is also another frequency corresponding to an extensional vibration along 
the width which for a very narrow plate corresponds to the second type of 
extensional mode considered in the foregoing paragraphs, except that the 
frequency constant will be slightly different because coplanar stresses are 
involved. 

As seen from Fig. 7.6, the resonant frequency curves do not cross, but 
exhibit coupling effects. This is understandable from the fact that motion 
in one direction is mechanically coupled to motion in the other as indicated 
by Poisson's ratio a. 

In order to derive expressions for the u and v displacements associated 
with the extensional mode along the length, taking into account the above 
coupling effect, the following analysis proves interesting. 

Consider the infinite isotropic strip of width b as shown by figure 7.7. 
As will be demonstrated presently, solutions can be found such that the 
equilibrium equations and the boundary conditions are precisely satisfied. 
Furthermore it will be found possible to cut a section out of this strip in 

3 If the length and width of the plate are very large in comparison to the thickness, 
the boundary conditions for the Yu and Z, stresses may be neglected without causing 
appreciable error. The quantity A -\- B has been evaluated in terms of E and a for 
purposes of comparison. 
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such a way that the boundary conditions for the cut edges are very nearly 
satisfied. The plate formed in this way may then be considered as vibrating 
at the required frequency /, which will then be the resonant frequency 
desired. 

\ 

\ 

\ 
N S.WIDTH MODE 

LENGTH MODE 

LENGTH 
Fig. 7.6—Extensional modes with mechanical coupling 

/ 

Fig. 7.7—Infinite strip 

Let displacements be arbitrarily chosen in the following way: 

u = U cos kx cos (y 

t; = F sin kx sin , 
(7.12) 
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As shown in Section 7.9, two solutions of this type will satisfy the equi- 
librium equations precisely. One corresponds to c = 0 in the wave equation 
7.3, while for the other e 0. Superposition of these two solutions and 
proper evaluation of parameters make it possible to satisfy the boundary 

conditions at the edge of the strip; namely, that at y = ± F„ = 0 and 
Zt 

Xy = 0. (Refer to equations 7.5). The following transcendental equation 
is obtained 

f / b 

2 -2/,
1/2yfe2(l - a) 

in which 

cot f. \ - k'Wl + ^ 

(7.13) 

^ = e2 - i 

0' = £!?! 
A 

(7.14) 

This equation may be solved graphically to yield values of frequency 
corresponding to given values of k. For our discussion of the length ex- 
tensional mode of vibration, the first root only will be considered. 

Fig. 7.8 shows a plot ol d-b against b-k assuming that Poisson's ratio is 

.33.4 If yfe = 1, and b = 1, for example, 6 = ^ = 1-62. 

The equations for the displacements when determined as explained in 
Section 7.9 become: 

u — TJi [cosh-344 y + .402 cos 1.278 y] cos x 

v = U] [.344 sinh .344 y -f- .315 sin 1.278 y] sin x 

All three stresses XX} Yy, and .Yy may be calculated from the above 
equations. If the length of our plate is made equal to mw, where m is an 
integer, the extensional stress Xx will equal zero regardless of y at the 
boundaries x = 0 and x = ( since Y2a sin a: = 0 when x = mr. Also it 
can be shown by calculation that Xy is so small in comparison to the exten- 
sional stresses as to be entirely negligible; hence our solution is complete. 

If ^ = it, the plate will be vibrating in its fundamental longitudinal mode. 
The distortion which results is shown by Fig. 7.9. It is seen that most of 

4 Plotted in this way, the same curve results regardless of the value of b chosen for the 
purpose of solving Eq. 7.13. 
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the motion is along the x axis, though there is a certain amount of lateral 
contraction as the plate elongates. 

The second harmonic will have the same resonant frequency if ^ = 27r, 
the third if ^ = Sir, etc. 
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Fig. 7.8—0-6 versus k-b for plate longitudinal modes = .33, k = 

Y 

Lx 

Fig. 7.9—Distortion of plate vibrating in first longitudinal mode 

In addition to harmonic modes along the length just considered there 
will be those for which the motion breaks up along the width. In general, 
the distortion of the plate may be quite complex with simultaneous variations 
along both dimensions. Similarly, for plates such as shown in Fig. 7.5 
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there will be many extensional modes which have resonant frequencies 
somewhat above those given by Eq. 7.11. Analysis of the motion shows 
that for these modes the displacement along the thickness varies periodically 
(or "breaks up") along the major dimensions of the plate. There again the 
distortion pattern of the plate may become very complex. 

7.4. Shear Vibrations 

The second class of vibrations which will now be considered is the shear. 
This type of mode is of special importance because of the fact that piezo- 
electric plates vibrating in shear are widely used for frequency control of 
oscillators. For example, the AT quartz plate which is so much in demand 
utilizes a fundamental thickness shear mode in which particle motion is 
principally at right angles to the thickness. The distortion of the plate will 
be similar to that shown in Fig. 7.2. 

A simple, yet very useful formula for the resonant frequencies associated 
with the above type of displacement has been derived on the assumption 

Fig. 7.10—Orientation of thin plate 

that the length and width of the plate are very large in comparison to the 
thickness. For the xy shear mode, the displacement « is assumed to be 
u = U cos ky, all other displacements being equal to zero. The only stress 
that need be considered then, is the Xy shear which is proportional to sin ky. 
Boundary conditions on this stress at the major surfaces of the plate are 
easily satisfied by choosing k such that Xv = 0 at y = 0 and y = t. (Refer 

to Fig. 7.10.) This will be the case if ^ where m is any integer, and 

I is the thickness of the plate. By using the simplified equilibrium equation 
as reduced from equations 7.1, a formula for the resonant frequencies is 
obtained in much the same manner as for extensional thickness modes. 

= IttJ = 
■tV: 

wz — 1,2, 3, etc. (7.16) 

In this formula the shear modulus A appears instead of Young's modulus 
as in the case of longitudinal modes. Harmonic modes are given by values 
of m greater than unity. 
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In addition to the resonant frequencies predicted by the foregoing analysis, 
there will be others corresponding to shear vibrations in which the principal 
shear stress varies periodically along the length and width of the plate. 
A formula which yields the approximate frequencies for these modes is 
developed in Section 7.9. It is shown that if the length and width are 
large in comparison to the thickness, the following expression may be used: 

- 9 r - jAi/ «2 , C66W2 c5B/>2 
^ - 2^/ - T y - /j/ cu-f + -f- + -^r (7.17) 

In this formula which has been derived for xy shears the c constants are 
the standard elastic constants for aeolotropic media. For isotropic plates 
such as have been considered up to this point 

Cn = E^~ ^ = X + 2„ 
1 — 2(r4 — <r 

and 
cm = cm = A, the shear modulus (7.18) 

Various combinations of the integers m, n, and p may be chosen, with the 
restriction that neither m nor n can equal zero. It is seen that if € and w 
are very large the formula reduces to that of Eq. 7.16 which was derived on 
precisely that basis. Also, it is seen that the more complex modes all lie 
somewhat above the fundamental shear obtained by setting m = n = \ 
and p = 0. 

Plate shear modes are also of considerable interest, particularly the one 
of lowest order. For a plate having a large ratio of length to width a formula 
similar to that given by equation 7.17 (but for two dimensions only) may 
be developed. If the plate is nearly square, however, this formula no longer 
yields sufficiently accurate values for the resonant frequencies. Coupling 
to other modes of motion5 complicates the problem so much that only 
experimental results have been of much practical consequence. Fig. 7.11 
shows in an exaggerated way the distortion of a nearly square plate vibrating 
in the first shear mode. 

7.5. Flexural Vibrations 

7.51. Plate Flexures 

One of the most studied types of vibrations has been the flexural. Perhaps 
this is true because it is the most apparent and comes within the realm of 
experience of nearly everyone. The phenomena of vibrating reeds, xylo- 
phone bars, door bell chimes, tuning forks, etc. are quite well known. 

8 It is found experimentally that odd order shears are strongly coupled to even order 
flexures; similarly, even order shears and odd order flexures are coupled. 
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Beam theory has been used quite extensively to derive the equations 
which yield the resonant frequencies and displacements for bars vibrating 
in flexure. To obtain reasonably accurate results for ratios of width to 
length approaching unity, however, the effects of lateral contraction, rotary 
inertia, and shearing forces must be considered. This leads to a rather 
complicated solution which is much more accurate than that derived by the 
use of simple beam theory only, though it is still approximate in nature. 

For two dimensional plates free on all edges a method of analysis may be 
used which is similar to that described under extensional modes. While 
it is somewhat involved it yields direct expressions for the two displacements 
w and v, so that all stresses may be calculated, and the extent to which 
boundary conditions are satisfied determined.8 

r 

 i 

Fig. 7.11—Distortion of plate in first shear mode 

Solutions for « and v are assumed to be of the form 

u = U sin Cy ccs kx 
(7.19) 

v = V cos (y sin kx 

For the infinite strip previously considered a transcendental equation is 
obtained which is the same as equation 7.13 with the exception that the 
left-hand expression is inverted. 

tan A \ —2Ci(>k2{\ - g) 

' f b {a-mi + ok2) tan li - 

(7.20) 

(Refer to Eq. 7.14 also.) 
6 This is an extension of DoerfTler's analysis used to obtain harmonic flexure frequenceis 

for plates—"Bent and Transverse Oscillations of Piezo-Electrically Excited Quartz 
Plates"—Zeitschrift Fur Physik, v. 63, July 7, 1930, p. 30. Also refer to "The Distribu- 
tion of Stress and Strain for Rectangular Isotropic Plates Vibrating in Normal Modes of 
Flexures"—New York Univ. Thesis by Author, June 1940. 
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The lowest order solution to this equation is found to correspond to 
flexure vibrations in the infinite strip. A calculation of stresses, however, 
reveals that boundary conditions cannot be satisfied properly even for the 
case of a long narrow plate. It can be shown, however, that another 
solution may be derived for the same value of frequency by letting k become 
imaginary. This simply means that the u and v displacements become 
hyperbolic functions of .x instead of sinusoidal. The two complete solutions 
for the infinite strip may then be superimposed and parameters adjusted so 
that for definite values of length corresponding to fundamental and harmonic 
modes the proper stresses reduce essentially to zero on the ends of the plate. 
For plates having a ratio of width to length less than .5, this method gives 
very accurate expressions for displacements and stresses. If only the 
resonant frequency is required, ratios up to unity and beyond (for the 
fundamental mode) may be considered. 

An example has been worked out to provide a complete picture of the 
displacements for a bar of width = I, k = I and a = .33. Use of equation 

2 
7.20 yields the quantity 0' = = -166 from which the resonant frequency 

may be obtained. Using this value of d2, one finds that k2 = —.800 also 
satisfies equation 7.20. By making the total length of the bar equal to 
4.50 the Xx extensional stress and the Xv shear stress may be made essen- 
tially zero on the ends of the plate regardless of y.7 

The following expressions for u and v are obtained: 

u = (sinh .9132 y — 1.02 sinh .9718y) sin x 

-.160 (sin .9828y - .9568 sin .9250y) sinh .8944* 
(7.21) 

v = (—1.094 cosh .9132y .9915 cosh .9718) cos x 

— .160 (.9095 cos .9828y — .990 cos .9250y) cosh .8944x 

Fig. 7.12 shows the distortion of the plate as calculated from the above 
expressions. It is seen that there will be two points at which there is no 
motion in either the x or y directions. These nodal points can be used in 
holding the plate, since it may be clamped firmly there without altering 
the displacements or resonant frequency. For the example shown, these 
nodes are positioned a distance of .211^ from the ends of the plate as com- 
pared to .224^ for a long thin bar. 

7 A graphical solution to determine I is most convenient in which parameters are 
adjusted so that Xx = 0 at x = and y = =h^; X„ = 0 at a: = and y = 0. These z z z 

2if 
stresses will remain essentially zero for all values of y if the ratio of ^ is not too great. 
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Figures 7.13 and 7.14 show the distribution of the principle stresses as a 
function of position along the length. It is seen that for the particular 

NODE NODE 

0 .1 .2 
DISPLACEMENT SCALE 

Fig. 7.12—Distortion of bar vibrating in first free-free flexure mode 
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Fig 7.13—Distribution of longitudinal stress for free-free bar vibrating in first 
flexure mode 
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Fig. 7.14—Distribution of shear stress for free-free bar vibrating in first flexure mode 

example cited, the maximum shear stress is only about one-tenth the 
maximum Xx extensional stress. Both of these stresses reduce to zero at 
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the ends of the plate as they should in order to satisfy the boundary condi- 
w 

tions. As the ratio of — is increased the shear stress becomes of greater 

importance. 

7.52. Thickness Flexures 

The final analysis to be considered in this paper is for thickness flexures 
along the width or length of a thin plate. These modes are of particular 
interest in connection with the dimensioning of quartz plates for which it is 
desirable to utilize the fundamental thickness shear mode. (AT plate, for 
example.) It is found experimentally that even ordered thickness flexures 
are coupled to this shear to such a degree that at certain ratios of dimensions 
the operation of the plate as an oscillator or filter component is impaired. 

The two-dimensional solution derived in the preceding paragraphs can 
be used to predict certain harmonic thickness flexures; however, in order to 
obtain a complete picture it is necessary to extend the theory to three 
dimensions. This has been done by the author with the following transcen- 
dental equation as a result (refer to Section 7.93). 

f , h tan h - 
—2t\(iAoL 

tan U 
b [aB{Cl + a2) + - a2] 

(7.22) 

Solutions to this equation are exact in nature for a plate of thickness b 
and of infinite extent in both the x and z directions. The quantity o2 is 
equal to the sum of the squares of k and m which appear in the expressions 
for displacements as follows: 

u — XJ /i(y) sin kx cos mz 

v = V fAy) cos kx cos mz 

w — W f iiy) cos kx sin mz 

Also in equation (7.22) 

(I = 
A 

A + B 

(1 = e2 - a2 

02 = p4 A 

(7.23) 

(7.24) 

The lowest order solution to equation (7.22) with a2 positive again cor- 
responds to flexure vibrations, as in the two dimensional case. Fig. 7.15 
shows a plot oi 6-b against a-b calculated for a = .3. 
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For reasonably high order flexures it may be reasoned that the true dis- 
placements will be very nearly the same as those for the doubly infinite 
plate as derived by the above method since the correction necessary to 
fulfill the boundary conditions will only apply very close to the edges of the 
plate. It will then be sufficient to choose values for k and m such that 

k = p- and w = — where p and q are integers. The values of a2 obtained 
I w 

in this way determine the corresponding resonant frequencies. 
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Fig. 7.15—0-6 versus a-6 for thickness flexures 

If it is desired to solve for the ordinal xy flexures, for example, m should 
be set equal to zero. The displacements in this case will be independent 
of the z dimension. When q is assigned values other than zero however, 
the resulting modes may be considered as xy flexures which vary or break 
up along the third major dimension. If q is small the resonant frequencies 
will lie only slightly higher than that of the corresponding ordinal flexure 
for which <7 = 0. 

Fig. 7.16 shows a few of the resonant frequencies as calculated for values 
of shear modulus and density corresponding to AT quartz. The effects of 
coupling to the fundamental thickness shear are shown by dotted lines for 
the 14th xy flexure. As might be expected there is similar coupling between 
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the 14th flexure which breaks up once along the z dimension and the shear 
which breaks up once along z—etc. A few of these flexures which break up 
along 2 are shown for the 16th ordinal flexure. 
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Fig. 7.16—XV thickness flexure modes for square plate 

7.6. Summary 

Three main classes or families of vibrational modes are found to exist in 
rectangular elastic plates free on all surfaces; namely, the extensional, the 
shear, and the flexural. In general, the associated displacements are 
functions of all three dimensions and may vary in such a manner as to make 
the distortion of such plates quite complex. 

For certain limiting cases, approximate solutions for the resonant fre- 
quencies and displacements (from which strains and stresses may be cal- 
culated) can be derived. Though there are a number of methods that can 
be used for specific problems, it has been found very convenient to utilize 
the classical formulation. For this reason the basis of this method has been 
discussed briefly. In essence it requires that displacements and stresses 
occurring within the elastic solid satisfy conditions of equilibrium as de- 
rived from Newton's Law. At the boundaries, certain other relations must 
be satisfied in order that conditions of clamping might be fulfilled. For 
plates entirely unrestrained the latter requires that all forces (tractions) 
acting through the free surfaces must vanish. 

For thin rectangular plates (such as quartz crystal oscillator plates) the 
modes of greatest practical consequence are plate modes, for which all 
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stresses are essentially coplanar and independent of the thickness, and 
thickness modes, for which all dimensions must be considered except in 
limiting cases. 

Because of their great utility, simplified formulae have been derived for 
the resonant frequencies associated with long, narrow bars vibrating longi- 
tudinally, thin plates with extensional motion along the thickness dimension, 
and thin plates vibrating with shearing motion at right angles to the 
thickness. 

Exact solutions for the infinite strip have been derived, and used in 
obtaining the displacements and resonant frequencies for flexural and 
longitudinal modes. Such solutions take account of the fact that the width 
of the plate may become appreciable. While limiting cases of plate shear 

w 
may be analyzed, solutions for ratios of — approaching unity have not 

proved very satisfactory. This is attributable to the fact that coupling to 
flexural modes is severe. 

Thickness flexural modes which exhibit displacement variations along 
both length and width dimensions of the plate have been analyzed by 
extending the "infinite strip" theory to three dimensions. Solutions 
obtained are fairly accurate if the harmonic order of the flexure is sufficiently 
great. 

7.7. Nomenclature 

p = density 

E = Young's modulus 

cr = Poisson's ratio 

A = Shear modulus = -73—.—r = p 
2(1 + a) 

B = 2(1 + M - 2.) = X + " £or 3 dimensi°ns 

= . —r for plane stress 
2(1 - cr) 

co = angular velocity = lirf 

e2 = p4 A 

71, v, w = displacements in x, y and s directions 

_ du . dv . dw 
€ dx dy dz 
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2 T i 52 . 52 _i_ d2 

V = Laplacan =_ + _ + - 

'V 'V 2 I ■ * } su > s unit strain components 
Xy} xMf y,j 

Xx, Yv, Zz\ . f 
v v ? unit stresses Xy , X z , Y z) 

7.8. Stress-Strain Equations for Isotropic Media 

y, = -E (F, - aX, - aZ.) 

z. = 4 (Z» - "X' - £L 

shear strain = ^ X shear stress 
A 

Xx = + A 

r, -! (.«, + < J) 

z.-i (.». + <") 

'■-"(S+S) 

>•■-''(1+1) 

For plane stress in plane 

^ (X, - o" Fy) 

y* =T: ^Yv ~ aXx^ 



X. = 

Yy = 

MODES OF VIBRATION 

E 

171 

1 - a2 

E 

(*x + ayy) 

(yu + <txx) 1 - (72 

Xy = A Xy 

7.9. Mathematical Derivations 

7.91. Longitudinal Vibrations in Two-Dimensional Plates 

As explained in the text, solutions for the infinite strip of Fig. 7.7 are 
first derived. Let 

u = U cos kx cos ly 
v = V sin kx sin ly 

(7.12) 

^ . du . dv 
where JJ and V are constant. From these expressions € = — + — can ax ay 

be obtained and substituted into the equilibrium equations 7.2. Two 
expressions as follows result after dividing 
cos kx cos lv . 

A(k' + e) {-ku 4 tv) = poi" 

Atf +1')+^ (-hU + (V) = pa; 

Subtracting the second from the first of th 

(f + f) (-kV + 

Either or both of these factors equal to ze 
V . . . 

values of — are obtained. By substitutin 

ese equations, it is seen that 

CV) = 0 (7.26) 

o will satisfy 7.26, so that two 

; back into equations (7.25), 

conditions on co2 are found. The two solutions will be 

^ with {A + B){k 

= j with A$' + ft) = 
U2 '2 

By superimposing the two solutions the 11 and v displacements now become 

u = [Ui cos A y + U2 co; A y] cos kx 

^ Ui sin hy -\- y V 
k '2 

through by the common term 

(7.25) 

+ l\) = poi 

(7.27) 

pco 

sin I2 yj si sin kx 
(7.28) 
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Using the relationships of Section 7.8, one may now calculate all stresses. 
The argument k has purposely been kept the same for both of the super- 

imposed solutions in order that boundary conditions at y = ± ^ might be 
I* 

satisfied regardless of x. 
For F„ to equal zero at the edges of the strip 

dv . du 
7- + a" TT ay ax 

This gives rise to the equation: 

b = 0 (7.29) 
W= 2 

UxUl + ak2) cos txh-- Ui[k2{X - <t)\ cos 4^ = 0 (7.30) 
z z 

Similarly, ifXj/ = 0at3'=±^ 
z 

du . dv 
dy dx ,6 = 0 (7.31) v 2 

Another relation is obtained from (7.31): 

-2/!4 Ux sin 4 ^ + U^k2 - tl) sin 4 ^ = 0 (7.32) z z 

The two equations (7.30) and (7.32) will be satisfied if the determinant 
of the coefficients of Ux and 7/2 vanishes. The following transcendental 
equation will then be obtained; values of 42 and 42 being those required 
by Eq. 7.27. 

f f b 
C0 2 _ — 244^2(1 ~ <r) 

,eb (42 - V){1\ + ah?) V-1*' 
cot 4 2 

By using either of equations (7.30) and (7.32), one may derive the relation 
between £4 and Ux provided a solution to (7.13) is found. 

—244 sin 4 ^ 
£4 = Ux  -7 (7.33) 

{tl — k2) sin 4 2 

To solve equation (7.13) assume a value for k- and plot graphically the 

right and left hand expressions as functions of 6- = —. Roots are indicated 
A 
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by the crossover points. Values of 02 corresponding to different values of 
k1 may also be found in this way and a curve plotted for 02 versus k"1, (or for 
d-b versus k-b). 

7.92, Thickness Shear Vibrations 

To obtain a formula for the approximate resonant frequencies of thickness 
W L 

shear for a plate having large ratios of — and —, one may consider the 

following displacements: 

u = U sin kx cos ty cos rz 

v = 0 (7.34) 

w = 0 

If there are no cross couplings between shear stresses or between shear 
and extensional stresses one may write:8 

du . dv . dw iTT i. e 
Xx = Cn — + C12 — + Cis — = Cn kU cos kx cos ly cos rz 

dx dy dz 

X,, = Cee I — + — ) = — Cog tU sin kx sin ty cos rz (7.35) 
\dy dx) 

= C66 ( ^ + ^ ) = —CB5 rU sin kx cos ly sin rz \dz dx) 

Substituting into the first of the equilibrium equations (7.1) and dividing 
through by common factors 

Cu k) + Cee P + c66 r2 = pw2 (7.36) 

The other two of equations (7.1) may be neglected if k and r are quite 
small so that it will only be necessary to consider equation (7.36) which 
can be solved for to2. It will be noticed that the Xy shear stress will pre- 

dominate under these restrictions on k and r. Letting k = , I = , 

and r = — («, m and p are integers) in order to satisfy the boundary condi- 
W 

tions for this stress and also for Xz, one obtains the following formula. 
(This choice of k, I, and r is also required if the shear stress is to vary in 
essentially the same manner as is experimentally observed.) 

0/ . A . AuW2 CfiBW2 CfthP^ /717x co = 27r/ = 7r/|/-y-^+^r + -^ (7.17) 

in which L and W must be much larger than T. 
8 Refer to equation (7.18) for values of c constants for isotropic case. 
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The boundary condition for the extensional stresses will not be met; 
however, they will be quite small in comparison to Xv if k is small, and may 
be neglected. 

7.93. Thickness Flexures 

Consider a three dimensional plate having a thickness b lying along the y 
direction. The following displacements are found to be of a form that can 
be made to satisfy the equilibrium equations 7.2. 

u = U sin kx sin ty cos mz 

v = V cos kx cos ty cos mz (7.37) 

w = W cos kx sin ty sin mz 

Performing the operations indicated and substituting into the equilibrium 
equations give the following result: 

A{k2 + i:2 + w2) + "^ {kV - IV A- mW) = pw2 

U 

A{k2 +f + m2)-y (kU - W + mW) = pco2 

A{k2 + ^2 + w2) + ^ {kU — IV + mW) = pw2 

W 

(7.38) 

Subtract the second and third equations of (7.38) from the first: 

Bk.Bl Bk Bm 
then u+V=0 aIld IT _ if = 0 

or 
V t , W m _ = and -=- 

(7.39) 

Putting these values back into 7.38, it is seen that the following relation- 
ship must be satisfied. 

(A + B) -M2 + w2) = pco2 (7.40) 

VI. W 
Letting — = —-j- as in (7.39), another value for — may be obtained. 

U k U 
. W 

The first and second equations of (7.38) will be satisfied for any ratio of — , 

so the 3rd equation is used. 

A{k2 A-f + m) + B (k2 A-f A- mk ? 
)- 

pco (7.41) 
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Solving for ^ , using (7.41) and first of equations (7.38) 

^ = « and (7.42) 
U k U mk 

The first ratio is the same as (7.39). For the second solution to the equilib- 
rium equations, then the following relationships exist. 

? = ^ and (7.43) 
U k U mk 

When the above are substituted back into (7.38), it is found that9 

yl(/fe2 +/2 + w2) = pa.2 (7.44) 

In a similar way, using ~ t'ie following are obtained: 

W m V _ k2 -\- m n .r\ 
U ~ 1' U H 

with A{k2 + t2 + m2) = pa.2 as before. This is the second solution for 
e = 0. 

The three different solutions may now be combined or superimposed to 
give 

u = [Ui sin Ay + U2 sin Ay + Us sin Ay] sin kx cos mz 

v = j^—f/i ^ cos Ay — cos Ay 

+ ^ ^ cos ^yj cos kx cos mz ^ ^ 

=[ 

_ m . . TT {k + A) • f Ui — sin Ay — U2 : sin Ay 
k mk 

+ LA t* sin AyJ cos kx sin mz k 

In the above equations tl = tl because of the double requirement 
of 7.44.10 

It is now possible to calculate the stresses existing at any point. It is 
desired to choose CA , Ui, and Ui in such a manner that the boundary 
conditions at the two major surfaces of the plate are satisfied. By using 
the relations given in Section 7.8, the extensional stress F„, and the two 
shear stresses Xv and Yz are calculated with the use of 7.46. They are then 

9 It should also be noticed that e = 0 for this solution. 10 h = kt = h = k 
VI l = VI2 = VI3 = VI 
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set to zero at the faces of the plate; i.e. at y = ±- . Three equations, after 
£ 

simplifying, result. 

For Fy = 0 at y = ±- 

Ui | <t5(^2 + + m) sin A ^ + A(\ sin A ^ 
] 

+ U2 ^A(l sin A - U3 ^A{k2 + m2) sin A ^ j = 0 

(7.47) 

For Xy = 0 at y = ± - 
£ 

Ul [2 A COS A ^ COS A ^ j 

+ 

(7.48) 

For F, = 0 at y = ±- 
it 

Ui ^2(im cos A ^ j + £A ^Aw - ^ (A2 + A2)^ cos A ^ j 

0 
+ Uz ^Aw — y3 {k~ + w2)^) cos A ? I- 

(7.49) 

In order for these three equations to be satisfied simultaneously a neces- 
sary condition is that the third order determinant formed by the coefficients 
of the t/'s vanish. That is, 

(aB(k2 + /1 + in) -f ^l^i) sin A ~ A(\ sin A 

j^2A cos A 

-[ 

J ^A(l sin A 

i] 
Aik2 + m2) sin A 

2Aw cos A 2 

|^2 A cos a|J 

j ^Awi — ^ (A + ^)^ cos A 

[^Am - ^ {k2 + m)^ cos A 

= 0 (7.50) 
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By dividing row 1 by cos A ^ , row 2 by cos A ^ > row ^ cos A 2 an^ 

by subtracting the elements of row 3 from those of row 2, considerable 
simplification results. 

The full expansion gives the following equation, after further simplifying 
operations are performed. 

J"{<jP(k2 + + tn2) + A(\) tan — ^ — m\ 

r -1 (7-51) 

+ 2(MA{k' + m) tan (,h- \ = 0 

It should be noticed that A has dropped out entirely. Actually A = A 
as previously explained. Also the expression 

\(,m + + i')] 

must not be zero, for in simplifying equation (7.51) it was used as a divisor. 
Equation (7.51) may be rewritten to give 

tanfl2 —2(1(3 Aijf + m) (7.52) 
b + A 4- w2) + AC\\[(l — k' m] 

tan A 2 

In the above 

{A + B) {kn- + (i + m2) = /xo2) 

A(k2 + fa + m2) = P^2J 
2 

By letting 02 = ~ and k2 + m2 = a2 equations (7.52) and (7.53) above 

(7.53) 

become 

i- 6 

1311 2 -IftfsAa' (7 22) 

rb + a) + - a'l 
tan A j 

. . r2 fl2 A 2 with A - e - « 

(I = (I = o2 - a 

Equation (7.22) represents the general solution for normal thickness 
vibrations in an isotropic plate of finite thickness extending to infinity in 
both major directions. The analogy for plates of finite dimensions is 
considered in the text. 



CHAPTER VIII 

Principles of Mounting Quartz Plates 

By R. A. SYKES 

Introduction 

IT IS the object of this chapter to show some of the fundamental consider- 
ations involved that govern the design of mountings or holders of quartz 

crystals. This discussion is restricted to the three common types, namely, 
rod or clamp type, wire type and airgap type. The development of these 
three types of mountings for applications in telephone transmission and radio 
systems has led to many and varied forms. Commercial designs of units 
for telephone uses employing these principles are described in detail in a 
later chapter. 

In chapter VI regarding the vibrations of crystals we have assumed in all 
cases that the crystal is free to vibrate. In order that this condition shall 
be fulfilled it is necessary that any mounting which supports the crystal 
shall not restrict its vibration or at most the effect shall be made as negligible 
as possible. 

8.1 Clamp Type Supports 

Of the known types of vibration it is noticed in all cases that there have 
been nodal points. These points by definition are points of zero motion and 
in all cases that we have studied appear to be single isolated points or lines of 
very small size in comparison with the total crystal area. The obvious type 
of mounting is then one which simply clamps the crystal with a very small 
area at these points or nodes. The early type of mountings for low-fre- 
quency crystals were all based on this principle and the area of the clamp was 
determined experimentally by reducing it until, with sufficient pressure to 
hold the crystal, a good Q was obtained. The first mountings consisted 
simply of two pressure points located as nearly as possible to the nodal point. 
It was apparent at first that this type of mounting allowed the crystal to 
rotate about the mounting axis and very shortly the plating or electrode 
open-circuited. With the development of the "—18 degree X-cut" crystal 
it was found that the nodal region of a longitudinally vibrating crystal was 
a nodal line and permitted the use of a knife-edged type of mounting instead 
of the single point. This type of pressure mounting was used with this 
crystal for quite a number of years in the crystal filters for carrier systems 
and is shown in Fig. 8.1. This consists mainly of four pressure edges whose 

178 
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dimensions along the length of the crystal are small and width sufficiently 
large to insure a rigid clamp. Pressure was applied by a phosphor bronze 
spring in the center of the two top pressure points. This gave a satisfactory 
mounting and also allowed the use of a divided plating necessary for the 
balanced type crystal filters. This type of mounting was used in crystals 
of relatively low frequency, for example, 60 to 150 kc. of the "—18 degree 
X-cut" type. 

With the use of higher-frequency crystals of different types of vibration 
than that described above, it has been found that this method of mounting 
has not been very satisfactory. In order to reduce the size of the mounting 
in proportion to the decreased crystal area it would be a delicate mechanical 
job and quite costly. This type of mounting could not be used for crystals 
which did not employ this type of vibration, for example the face shear type 

QUARTZ CRYSTAL 
-LTO PAPER 

PHOSPHOR BRONZE 
SPRING 

5 

XWE 

AnJE 

Fig. 8.1—Pressure mounting for extensional crystals. 

such as the CT and DT, since there is only one spot near the center which 
would permit clamping at all. 

To permit a crystal to vibrate freely the object used to support the crystal 
and maintain contact to the plated surfaces must have a very low mechanical 
impedance. At the same time it should possess sufficient rigidity that the 
complete assembly may be shocked without changing characteristics of the 
crystal as an oscillator. For example, if a rod or bar is held against a crystal 
at any point we would expect that the crystal in an oscillating condition 
would tend to generate motion in the bar and as this bar is placed closer to 
the nodal point we would expect the motion to be less. It can be seen that 
there are two objects to be accomplished in mounting a crystal: First, that 
the support must be placed as close as possible to a nodal point; and second, 
that the support shall have a very low mechanical impedance. This me- 
chanical impedance needs to be low only at or near the operating frequency 
of the crystal. One type of support which would meet this requirement is 
that of a rod in flexure a discussion of which is given in Chaper VI. In this 
case, however, we may clamp one end of the bar and allow the other end to 



180 BELL SYSTEM TECHNICAL JOURNAL 

be free to vibrate. This free end would then be in contact with the surface 
of the crystal. If the bar were clarnped and were of a length such that its 
frequency of resonance equalled that of the crystal or approximately so, it 
would require very little energy from the crystal to drive it, and any energy 
received from the crystal would be reflected from the clamped end of the bar 
and thereby kept within the vibrating system. This type of support is 
shown in Fig. 8.2, where I = length of the rod and d its diameter. The 
slightly rounded end is to allow the rod to seat firmly on the crystal surface. 
An enlarged view of Fig. 8.2 is shown in Fig. 8.3 and shows how the rod would 
vibrate. Figure 8.3A shows the type of motion for the first mode of a clamp- 

// 
y 

'/ 
t ■/ 

' , 

Fig. 8.2—Cantilever type mounting. 

A B 

Fig. 8.3—Type of motion in cantilever support mountings. 

free bar. Figure 8.3B shows the type of motion of the same bar vibrating 
in its second mode. This would indicate that for a given length of bar we 
could use it at several different frequencies by simply using higher orders of 
vibration. By using a clamp type mounting where the clamping rods are 
designed as shown in Fig. 8.2, we may now have a mounting which at the 
crystal frequency will allow the crystal to vibrate unrestricted but at the 
same time provide a very secure clamp thus preventing the crystal from 
moving about in its holder. To prevent rotation of the crystal about the 
axis of the clamped points, more than two can be used provided they are of 
the proper design. The frequency of a clamp-free rod in flexure is given 
by equation (8.1) where m now has values different than in the case of free- 
free flexure. 
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(8.1) 

where v = velocity in cm./sec. 
d = diameter in cm. 
I = length in cm. 

m = 1.875 for first mode 
= (» —l/2)7r for 2nd, 3rd, etc. 

From this we can compute the length necessary for a given rod at a given 
frequency and use this for the design of the clamping rods. This length is 
given in equation (8.2) for the case of a 100-kc crystal using phosphor bronze 
rods 1 millimeter in diameter 

This corresponds to the case of Fig. 8.3A. For the case of Fig. 8.3B, the 
length is given by 

Using this same diameter rod, if we should go to a considerably higher fre- 
quency, for example 5 megacycles, the value of I would be extremely small 
even for the case of Fig. 8.3A and would be somewhat smaller than the 
diameter of the rod. As mentioned before in Chapter VI, the simple for- 
mulae that apply in the case of flexure are only for the case of a long thin rod. 
When the length becomes equal to or less than this diameter, it is very prob- 
able that the support member should be designed as though it were vibrating 
in shear. These follow well-known rules and are only mentioned here in 
case designs for high-frequency crystals are contemplated using this method. 

The design of rod-supported crystals following this procedure has not been 
carried on to a large extent in these laboratories because, at present, the 
wire-supported crystal appears to have many advantages. A great deal 
more of the work in regard to resonating supports has been done for the 
case of the soldered lead type1. 

The theory of resonating supports involving soldered leads on crystals is 
very similar to that just discussed for the case of rods. There are two 
additional elements that we have here that are not present in the case of the 
rod, these elements being the actual solder connections that fasten the wire 

1 The presence of standing waves on the lead wires of CT crystals was found experi- 
mentally by Mr. I. E. Fair. 

= .225 cm 

I = .567 cm 

8.2 Wire Type Supports 
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to the crystal and the coupling between the crystal and wire vibrating sys- 
tems. Considerable work has been done in regard to the amount of solder 
necessary and the most desirable shape for the solder cone. The complete 
assembly of a wire support for a crystal is shown in Fig. 8.4. The shape of 
the solder cone shown in Fig. 8.4 has proved to be the most desirable and has 
been termed as "bell-shaped." This type of cone formation allows the wire 
to be twisted in handling and still not break away the top of the cone and 
form an appreciable crater. For the purposes of analysis we may then as- 
sume that the cone becomes part of the crystal and moves with it so that 
when computing the length of a wire vibrating in flexure, this length should 
be determined from the top of the cone. The amount of solder used in the 
cone since it is part of the crystal must be kept at a minimum in order that 
the constants of the crystal equivalent circuit will not be modified too much 
by it. One established fact of the effect of the solder in the cone on the 

equivalent circuit is to raise the resistance in the equivalent circuit for the 
crystal and this resistance increases considerably with an increase in tem- 
perature. The amount of solder permissible in the cone would then be 
determined by the maximum temperature at which the crystal is to be oper- 
ated and the minimum Q allowable. The type of motion that the crystal 
would generate in the support wire when oscillating is that shown in Fig. 
8.4 by the dotted line. The solder ball shown to the right of the figure acts 
as the clamp for the wire. This solder ball may be placed at any point along 
the wire corresponding to a node. The diameter of this ball need only be 
sufficient to act as a clamp. In general, this will be in proportion to the wire 
diameter. For example, at 200 kc it was necessary to use a solder ball 60 
mils in diameter on a 6.0-miI diameter phosphor bronze wire. The spacing 
between the solder ball and the head of the cone may be readily computed 
from equation (8.1). In practice, it has been found that in most all cases 
this distance is slightly greater than that given by the formula due to the 

2 

3 

Fig. 8.4—Soldered lead type mounting. 
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fact that the free end is restricted to zero slope and for a given crystal and 
support wire it should be determined experimentally using the values ob- 
tained from equation (8.1) as a guide in the design. The diameter of the 
solder ball that acts as a clamp may also be determined experimentally by 

m 
; ■ 

\ - . 

. 

i m v~ 
& Vv 

'H Le.J BM(R to mm .'l: 

Fig. 8.5—FT-241 crystal mounting. 

increasing its size until the standing waves on the wire to the right of the 
ball are sufficiently reduced. A practical application of this type of support 
is shown in Fig. 8.5. The top view shows the small wires soldered to the 
crystal as well as the solder balls that are spaced at points corresponding to 
the second node on the lead wire from the crystal. These solder balls act 
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as mechanical termination for the lead wires and also as connection to larger 
size spring wires forming the rest of the shock-proof mounting. 

Another type of wire support that has found considerable practical use 
and is superior to the straight lead and solder cone type of connection is that 
of the headed wire. This is shown in Fig. 8.6. A headed wire is similar 
to that of common pin and may be connected to the crystal by sweating the 
head to the crystal as shown. This has certain advantages over the solder 
cone in that the head of the wire being a machined part is always constant 
and the distance dy as shown in Fig. 8.6, is the same for all mountings. The 
amount of solder necessary to sweat the head to the crystal is considerably 
less than in the case of the cone and hence this type of mounting will have 
less dissipation at the higher temperatures. One other factor not men- 
tioned above is that the coupling between the vibrating system of the wire 
and the vibrating system of the crystal is considerably reduced by the use of 

r 

d 

Fig. 8.6—Headed wire type mounting. 

the headed wire. This is an important factor in reducing what may be 
termed a double system of standing waves on the wire. One standing wave 
system would result from reflections from the clamped end of the wire, while 
the other would result from reflections between the clamped wires coupled 
through the crystal. This may be reduced by a reduction of coupling be- 
tween the crystal and wire vibrating systems. 

Measurements have been madd on the effect of clamping the wire-sup- 
ported crystal at various points, on the activity and frequency of several 
different crystals used in oscillators and filters. Figure 8.7 shows the effect 
of clamping a 500-kc CT type crystal such as now used in the FT-241 holder. 
Figure 8.8 shows the same condition for a 370-kc CT crystal. It will be 
noted that in these two cases with the decrease in frequency of the crystal 
that the coupling between the wire and crystal has decreased, as shown by 
a smaller change in frequency and also, that for the lower frequency crystal 
the change in activity is modified only when the clamp is very close to a loop 
of motion on the wire. The mountings of these crystals were of the type 
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shown in Fig. 8.4 where the amount of solder in the cone equals that of a 
solder pellet 20 mils in diameter and 12 mils high. 

Figure 8.9 shows the change in frequency as a result of clamping one wire 
of a four-wire mounting of a GT-cut crystal designed for use as a filter ele- 
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Fig. 8.7—Effect on frequency and activity of clamping one lead of 500 kc. CT-cut crystal 
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Fig. 8.8—Effect on frequency and activity of clamping one lead of 370 kc. CT-cut crystal. 

ment at 164 kilocycles. This change is shown for the lower resonance at 
143 kilocycles since this mode would be more affected by clamping. The 
large deviations in frequency correspond to clamping at the loops of the wire 
as shown in Figs. 8.8 and 8.9 but the small sudden changes in frequency are a 
result of a second system of standing waves as previously described. This 
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second system of standing waves results from too much coupling between 
the crystal and the two oppositely disposed lead wires. It may be reduced 
by first placing the wires closer to the nodal point and second, using a smaller 
amount of solder in the cone to attach the lead wire to the crystal. Measure- 
ments on this same type of crystal when the above conditions were fulfilled 
showed practically no effects of secondary standing waves. It is important 
to keep the energy transmitted to the lead wires low since a soldered connec- 
tion near a loop of motion resulting from secondary standing waves on the 
wire will act as a clamp and will materially decrease the resulting Q of the 
crystal. This is probably the best reason for the use of the headed wire type 
of lead wherever practical. 
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Fig. 8.9—Effect on the frequency of lower resonances of clamping one lead of 164 kc. 
GT-cut crystal. 

8.3 Air-Gap Type Supports 

A third form of mounting for quartz crystals is that of the airgap type 
shown in Fig. 8.10 where the crystal plate is held between two flat electrodes. 
Two forms of the airgap type of mounting are shown. In Fig. 8.10A the 
crystal is free to vibrate between two flat electrodes held together to produce 
a definite airgap of thickness /. In Fig. 8.10B small lands are left on the 
corners of the electrodes to produce a uniform airgap on each side of the 
crystal as well as to clamp the crystal plate. 

This type of mounting has found its greatest use for oscillator crystals of 
the AT and BT type. The factor that determines the choice of mount is the 
ratio of length to thickness of the crystal. For example, when the length is 
less than 20 times the thickness, clamping the corners of AT and BT type 
crystals will decrease the activity in proportion to the clamping pressure. 
This is apparent from a study of the type of motion for these crystals de- 
scribed in Chapter VI. This then indicates that AT andBT type crystals 
for broadcast frequencies should employ a mounting with the crystal un- 
restricted as shown in Fig. 8.10A while the higher radio frequency crystals 
may be clamped as shown in Fig. 8.10B. The clamping pressure will be 
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dependent upon the area of the crystal, its frequency and the amount of 
activity required. One advantage of the clamped type support lies in the 
fact that many of the unwanted modes of motion are restricted or dampened 
to the extent that they will not cause serious dips in the activity character- 
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B 
Fig. 8.10—Air gap type mounting. 

A—Crystal free. 
13—Crystal clamped at corners. 
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Fig. 8.11—Equivalent circuit of a quartz crystal in an air gap type mounting. 

istic over a wide temperature range. This explains in part the necessity for 
accurate control of the length and width dimensions for crystals of low radio 
frequencies using the type of mounting shown in Fig. 8.10A. 

The effect of the airgap on the constants of the crystal equivalent circuit 
may be determined from Fig. 8.11. In Fig. 8.11 A is shown the usual crystal 
equivalent circuit in series with a capacity CA which represents the capacity 
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of the airgap. This may be reduced to the circuit of Fig. 8.1 IB where the 
constants are given by 

C = 
CA + Co 

Co 

c; = 
C\ Ci 

{Ca + Co)(Ci + C^ + Co) 

The circuit of Fig. 8.1 IB is the same form as that of the original crystal and 
therefore we may assume that the effect of the airgap is to produce a similar 
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Fig. 8.12—Effect on frequency of the air gap thickness on a 550 kc. AT-cut crystal. 

crystal of reduced capacity and reduced effective piezoelectric coupling. In 
the case of oscillatory crystals the effect of the airgap is to reduce the activity 
and decrease the range of frequency adjustment with parallel capacity. For 
filter applications the effect of the airgap is to produce narrower transmission 
bands and higher characteristic impedance. One other effect of the airgap 
results from the propagation of acoustic waves from the crystal. 

It is known that most any type of crystal in a vibrating condition will 
produce acoustic waves in air and if an object capable of reflecting these 
waves is the proper distance away, these acoustie waves may be reflected 
back to the crystal surface. The reflections from distances corresponding to 
even quarter wave-lengths will cause considerable damping while the re- 
flections from distances corresponding to odd quarter wave-lengths will 
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cause very little. The wave-length of a sound wave in air may be readily 
computed, and since we arc interested in multiples of one-quarter wave- 
length, it is desirable to determine these for a given frequency. This can 
be computed readily from equation S.3, 

H 

where v is the velocity of sound in air at room temperature and pressure and 
equals 33,000 centimeters per second. For example, a quarter of a wave- 
length at 5 megacycles is given by 

X 33,000 
4 = 4 X 5 X 1QS = ■001fiJ Cm 

which indicates that if / of Fig. 8.10 were made equal to this or odd multi- 
ples, fhere would be very little effect of the electrode on the crystal and if / 
corresponded to even multiples of a quarter wave-length, we would expect 
considerable damping. Some measurements of this effect have been made 
with a low frequency yl F-cut quartz crystal and are shown in Fig. 8.12. The 
sound wave generated by an AT-c\x\. probably results from flexure waves 
generated by the high-frequency shear wave. It will be noted that when the 
airgap is equal to even multiples of a quarter wave-length, the activity is 
considerably reduced. Further, it will be noticed that airgaps in the order 
of 1/8 of the wave-length may be used and produce very little effect. Since 
a large airgap reduces the piezoelectric coupling it is desirable to keep this 
about 1/8 of a wave-length as a maximum unless, in special cases, a reduction 
in piezoelectric coupling may be tolerated. 



The Magnetically Focused Radial Beam Vacuum Tube 

By A. M. SKELLETT 

A new type of vacuum tube is described in which a flat radial beam of elec- 
trons in a cylindrical structure may be made to rotate about the axis. Features 
of the tube are its absence of an internal focusing structure and resultant sim- 
plicity of design, its small size, its low voltages, and its high beam currents. 
The focusing of the beams and their directional control are accomplished by 
the magnetic fields in small polyphase motor stators. A time division multiplex 
signaling system for 30 channels using these tubes is briefly described. 

IT HAS long been recognized that the substitution of electron beams for 
mechanical moving parts would offer decided advantages in many applica- 

tions in the field of communications. The high voltages required for the 
usual cathode-ray type of tube and the very low currents obtainable there- 
from prevent their use in most such proposals; their complicated guns and 
their large sizes are also undesirable features. The kind of tube described 
herein has no focusing structure, is small in size, requires only low voltages, 
utilizes the cathode power efficiently, and produces beam currents of the 
same order of magnitude as the space currents of ordinary vacuum tubes. 

Figure 1 shows the elementary tube structure. It consists, in the simplest 
case, of a cylindrical cathode of the sort in common use in vacuum tubes, sur- 
rounded by a cylindrical anode structure. When this structure is made 
positive with respect to the cathode and there is no magnetic field in the 
tube, the electrons flow to the anode structure in all directions around the 
axis. When a uniform magnetic field is applied with its direction at right 
angles to the axis, the electrons are focused into two diametrically opposite 
beams as shown. The beams are parallel to the lines of force of the magnetic 
field so that if the field is rotated the beams move around with it. Thus the 
magnetic field serves both to focus the electrons and to direct the resulting 
beams to different elements of the anode structure. 

If ordinary commercial cathodes are used with anode structures an inch 
or two in diameter, 100 volts or less on the anode will draw the full space 
current for which the cathode was designed. The application of the mag- 
netic field will then focus from 85 to 90 per cent of this electron current into 
the two beams, the remaining 10 or 15 per cent being lost at the cathode due 
to an increase in the space charge which the magnetic field produces. Some 
of the smaller tubes produce beam currents of more than 5 milliamperes with 
only 50 volts on the anode structure, and in some of the tubes with larger 
cathodes beam currents of 50 milliamperes or more are easily obtainable. 
The magnetic field strengths range from 50 to 300 gauss. 

190 
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For some applications it is desirable to eliminate one of the two beams and 
this may be accomplished by substituting a uniform electrical field in the 
tube for the cylindrical one described above. The uniform field may be 
obtained by applying to the anode elements a series of potentials that vary 
according to the sine of the angle taken around the axis. The line joining 
the maximum potentials (+ and —) is maintained parallel to the magnetic 
field so that on one side of the cathode the potentials are all negative and the 

CATHODE 

ELECTRON BEAMS 

\ • > 

ANODE STRUCTURE 
Fig. 1.—Elementary tube structure showing focused beams. 

beam on that side is suppressed. The remaining beam will have somewhat 
less current than the corresponding one in the cylindrical field but the mag- 
netic field-strength required for focus is reduced. 

Cylindrical Electrical Field 

For the case of the cylindrical electric field the focus is obtained by ap- 
plying a magnetic field that is strong enough to reduce the radius of curva- 
ture of the spiral electron trajectories to a small value. There is not ob- 
tained an electron optical image of the cathode in the usual sense that for 
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each point on the cathode there is a corresponding point on the image. The 
sharpness of the image may be increased by increasing the strength of the 
magnetic field and the field required for any degree of focus is not sharply 
critical. 

Figure 2 shows a series of drawings of the various electron images that 
were obtained as the magnetic field-strength was increased in a tube having 
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Fig. 2.—Drawings of the patterns obtained with a fluorescent coating on the inside 
of the anode when the magnetic field strength is increased from zero to the focus values. 

a fluorescent coating on the inside cylinder. The cathode and anode diam- 
eters were 0.0625 and 2.5 inches, respectively, and the axial length was 2 
inches. The anode was held at 150 volts. Only one-half inch of the cathode 
length, located centrally along the axis, was coated to emit electrons. The 
image at 340 gauss appeared to be one-half inch long. In attempting to 
interpret these patterns it should be remembered that on the two sides of 
the cathode at right angles to the plane of the beam the electrons follow 
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• 

B 
Fig. 3.—Electron trajectories made visible with a small amount of gas. A.—Magnetic 

field lined up with active spots on the cathode. B.—Magnetic field at 45° with respect 
to the active spots. 

cycloid-like paths along the cathode, moving up on one side and down on the 
other. 

The photographs of Fig. 3 showing the trajectories were obtained by 
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introducing argon at a pressure of about a micron into the tube. The elec- 
trons are emitted from only two spots of active material located at the op- 
posite ends of a diameter on the cathode sleeve. In Fig. 3a the line joining 
the spots is lined up with the magnetic field and in 3b this line is at an angle 
of about 45° with respect to the field. This arrangement does not reproduce 
exactly the space charge conditions in the tube as actually used but does 
serve to give a picture of the electron paths in a qualitative sort of way. 

As shown by the patterns of Fig. 2 above a minimum strength of magnetic 
field the shape of the focus does not change greatly. An approximate equa- 
tion may be derived for the beam width in terms of the magnetic field above 
this minimum value that is useful for predicting the performance of new 
designs. The electrons that leave the cathode at right angles to the beam 
require the strongest magnetic field to keep them in focus. Now because of 
the cylindrical structure the electric field is concentrated near the cathode 
and we will assume that after leaving the vicinity of the cathode the velocity 
does not change appreciably. Setting v equal to the component of this 
velocity at right angles to the magnetic field we have that the radius r of the 
spiral path is given by the relation 

where H is the magnetic field-strength and m and e are the mass and charge 
of an electron. 

We also write 

where K is the fraction of the anode voltage corresponding to v. 
The width of the focus A is approximately equal to the cathode diameter 

D plus twice the maximum radius of curvature of the spiral paths 

where A and D are in centimeters and V is in practical volts. By substitu- 
tion in this formula we have found that the empirical constant K is about 
0.7 for the tubes that have been made to date. A minimum value for H is 
obtained, again approximately, by setting the last terra in the equation 
equal to D. 

Uniform Electric Field 

As mentioned above the uniform field is obtained by imposing potentials 
around the anode periphery varying as the sine of the angle. The cathode is 

mv 

a.= d + 6Wkv 
u 
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at a point of zero potential. In this case a real electron optical image of the 
cathode is obtained. 

Neglecting the distortion of the field in the vinicity of the cathode, the 
force equation for the electrons is 

d*x V 
mW=eR 

where V is the maximum anode potential, R is the radius of the anode struc- 
ture and x is measured in the direction of the fields. Since the acceleration 
is uniform the transit time /, neglecting space charge effects, may be obtained 
from the expression 

1/dV 
2\dt\ 

R 
Combining these equations we get 

I = 

The condition for focus is that the electrons make one revolution around the 
lines of force in time /. The angular velocity of the electrons is given by the 
well-known expression 

He 
co = — 

m 

Setting cot = 27r we get 

-■Wi' 

or in practical units 

10.6\/T II = 
R 

Since the effect of the magnetic field on the space charge has not been 
evaluated, we can only estimate the order of magnitude of the increase of 
transit time due to the space charge. On the assumption that this increase 
introduces a factor of 3/2* the above expression with space charge is 

This formula has been found to check well experimentally. 

* The factor of 3/2 is the ratio of the transit times in a plane parallel diode with and 
without space charge. See for example Millman and Seel}', "Electronics." Chapt. 7, 
p. 231. 
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These last two formulae are for the first focus. Focii will also be obtained 
for values of E equal to nH where n is an integer and equal to the number of 
electronic revolutions. Actually as the field is increased beyond that neces- 
sary for the first focus the beam does not get very badly out of focus because 
the radius of curvature of the spiral path is small and for still higher fields the 
beam remains in approximate focus for all values of H. 

In applications where the beam is rotated by means of a rotating mag- 
netic field this electrostatic field is made to turn by separating the anode 
structure into four or six elements (or groups thereof) and applying either 
two- or three-phase alternating potentials to them. 

Magnetic Field Supply 

The stator of a two-pole polyphase alterating-current motor furnishes an 
excellent magnetic field for use with these tubes. The tube is inserted in 
place of the armature and when the polyphase currents are applied the 
beams are formed and rotate at the cyclic frequency. For applications where 
the beams are not rotated continuously, a two-phase stator may be used in 
which the currents through the two windings are adjusted to be proportional 
to the sine and cosine of the desired direction angle of the beam. Per- 
manent magnets of the horseshoe design have also been found to be suitable. 

The power consumed by a stator depends on its size and the strength of the 
field it produces and on the cyclic frequency if it is used to rotate the beam. 
At low frequencies, e.g., 20 or 60 cycles, the power consumed is primarily 
that due to the copper loss. At higher frequencies the losses in the core 
material become important. For some of the smaller tubes operating at a 
low frequency, the power consumed by the stator is less than three watts. 
This stator has the regular motor windings which do not completely fill 
the slots. 

Since a polyphase source of power is not always readily available, it is 
sometimes advantageous to split single-phase power in the stator itself to 
produce the rotating field. This may be done by inserting a condenser in 
series with each winding so that the current through one phase winding lags 
by 45° and that through the other leads by an equal angle. Polyphase po- 
tentials for producing a rotating electrostatic field in the tube may then be 
taken from the windings of the stator if desired. 

Tube Design 

The particular design of tube depends on its application. The simple 
design shown in Fig. 1 has been found adequate for some purposes but more 
elaborate designs which increase the versatility of the lube are also needed. 

Figure 4 shows a tube with 30 anodes that incorporates various auxiliary 
elements. This tube is 2.25 inches in diameter. Figure 5 shows the internal 
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arrangement of the elements. Closely surrounding the cathode is a control 
grid that may be used for modulating the current density of the electron 
beams. Farther out is a cylindrical element with 30 windows that is main- 
tained positive and which by virtue of its similarity in position to the third 
element of a tetrode is called a screen. Immediately behind each window 
there is a pair of paraxial wires which because of its similarity in function 
to the fourth element of a pentode is called a suppressor grid. In back of 
each suppressor grid there is an anode. In this particular tube there are pro- 

Fig. 4.—Radial beam tube with 30 anodes and unwound stator used with it. 

jections like gear teeth on the back of the screen clement to prevent electrons, 
destined for one anode, from reaching an adjacent one. 

The control grid that is close to the cathode is biased negatively and con- 
trols the electron current in the same way that it would if the magnetic field 
were not present. The space current vs. grid potential curve is nearly 
identical for the two cases: with and without the magnetic field. The 
slight difference is due to the fact that the presence of the magnetic field 
increases the space charge near the cathode. Thus the tube may be used for 
amplification in the usual way when the electrons are focused. The pres- 
ence of this grid has no appreciable effect on the focusing of the electrons. 
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Since the screen element is in one piece there will be present two beams 
out to it. One of these may be suppressed after it has passed through the 
screen by the suppressor grids or by the anodes in the manner described below. 

These suppressor grids are generally operated at cathode potential or at 
a potential that is negative with respect to the cathode. They may be used 
for three purposes: to suppress secondaries from the anodes, to modulate 
the beam current to their particular anode, and to suppress one of the two 
beams. For the first of these functions they are biased at cathode potential. 
For the second they are biased negatively and have a modulation curve simi- 
lar to that of the suppressor grid in a pentode. Curve A of Fig. 6 shows the 
variation of beam current to one anode when the potential of the suppressor 
grid in front of it is varied. This curve is for a grid similar to the two paraxial 

Fig. 5.—Arrangement of elements in the tube shown in Figure 4. Only the operating 
beam is shown. 

wires in the tube shown in Fig. 5. For some applications a higher sup- 
pressor-anode transconductance or a lower cut-off is desirable and these may 
be obtained by welding lateral wires across this grid window to make the 
grid action more effective. Curve B of Fig. 6 was taken with the same size 
window across which laterals were welded. The table below gives the data 
for this suppressor grid with and without the lateral cross wires. 

.SUPPRESSOR GRID 

ELECTRON BEAM 

■CONTROL GRID 

INDIVIDUAL ANODE 

Transconductance (mho). 
Anode Resistance (ohms) 
Amplification Factor. . .. 
Cut-Off Voltage  

Without Laterals 
100 

30,000 
3.5 
-80 

With Laterals 
250 

64,000 
16.0 
-20 

It is apparent from these data that amplification of the signals applied to 
the individual suppressors may be readily obtained. 
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If the screen element is split to give a uniform electrostatic field to sup- 
press one beam, the beam current is only about half that of one beam of the 
cylindrical field case. This is because with the uniform electrostatic field 
the potential gradient at the cathode decreases with azimuthal angle away 
from the beam axis. If the unwanted beam is rejected by the suppressor 
grids, however, the beam current for the cylindrical case is obtained since the 
screen in this latter case supplies a cylindrical electrostatic field at the 
cathode and the unwanted beam is rejected between the screen and sup- 
pressor grids. 
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Fig. 6.—Suppressor grid characteristics. A.—Without lateral wires. B.—With lateral 
wires. 

For this case the screen is maintained at the same positive potential re- 
quired for the two-beam condition and the suppressors are so biased that 
they are beyond cut-off on one side of the tube and at or near cathode po- 
tential on the other side. If the beam is rotated the suppressors are con- 
nected to the polyphase supply in groups in the same way that the screen 
elements would be connected except that the d-c. bias above and below 
which the a-c. potentials swing is made negative at a value near cut-off for 
the suppressors. 

When one beam is suppressed either by splitting the screen or by grouping 
the suppressors, the currents to the different anodes are not all exactly the 
same. For instance, maximum current will be received by an anode back 

SCREEN 140 VOLTS 
ANODE 140 VOLTS 
GRID *24 VOLTS MAGNETIC FIELD ISO GAUSS 

-70 -60 -50 -40 -30 -20 
SUPPRESSOR GRID POTENTIAL IN VOLTS 
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of the center of one of the screen elements or one of the suppressor groups and 
a minimum current will be received by an anode back of the junction of two 
such elements or groups. If two-phase supply is used (4 elements or groups) 
the ratio of maximum to minimum anode current will be 0.707 and for three- 
phase supply this ratio will be 0.866. There will be 4 or 6 maxima, respec- 
tively, around the tube. This variation may be effectively eliminated by 
varying the individual anode load impedances or in other ways. 

The anode characteristics are similar to those of a pentode if suppressor 
grids are used and to that of a tetrode if these grids are not used. 

There is still another method of effectively eliminating one beam. This 
consists in using an odd number of anodes so that when one beam is focused 
on an anode the opposite one falls on the screen in between two anode posi- 
tions. With this type of tube the effective rotational frequency is twice 
the cyclic frequency of the rotating field, that is, all of the anodes are con- 
tacted twice (once for each beam) per revolution of the field. 

Applications 

The many possible combinations of the tube elements just described per- 
mit a variety of applications. One of the simplest and most obvious is that 
of an electronic commutator which has the advantages over the correspond- 
ing mechanical device of speed and freedom from contact trouble. There is, 
however, a practical limitation to the speed of this electronic commutator 
that is set primarily by the alternating-current losses in the stator. This 
is estimated to be in the neighborhood of 10,000 cycles per second for ordi- 
nary stator and tube designs. The highest cyclic speed for a stator that 
has been used to date was 600 cycles per second which with utilization of 
both beams gave an effective cyclic frequency of 1200 cps. 

One of the earliest systems of multiplex telegraphy was based on time 
division using mechanical rotating commutators. A small portion of the 
time of one cycle of the moving brush was allotted to each channel. The 
usefulness of this system is limited because of the faults of the mechanical 
commutators. The substitution of these electronic commutators eliminates 
these difficulties and puts the time division system on a more practical basis. 
It has an advantage over the frequency division multiplex system (carrier 
system) in that the elaborate filters of the latter are not required. 

A 30-channeI multiplex system for signaling using two of the 30 anode 
tubes described above has been successfully tested over short distances in the 
metropolitan area in New York City. The tube at the transmitter had all 
of the anodes tied together and the signal from them was sent over the line. 
The 30 input channels terminated on the suppressor grids of this tube. At 
the receiver, the input was fed to the negative grid surrounding the cathode 
and each of the anodes was connected in series with a small neon lamp for 
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an indicator. A signal on any one or signals on any group of the 30 input 
channels would actuate the corresponding lamp or lamps at the receiver. 
No amplification other than that provided by the receiver tube was needed. 

A single beam was used in each tube, the other one being rendered ineffec- 
tive in the transmitter by means of two-phase potentials applied to the 

Fig. 7.—Circular trace oscillograph of transmitted signal when 3 out of 30 channels are 
in operation. 
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Fig. 8.—Linear trace oscillograph showing transmitted signal with 3 channels in operation 
2 of which are adjacent. 

suppressors in the manner described above and in the receiver by means of 
a combination of d-c. and two-phase a-c. potentials applied to the individual 
anodes. The potential of an anode was zero when the unwanted beam 
arrived and at or near 200 volts at the time of passage of the operating beam. 
The rotational frequency of the beam was sixty cycles and since both 
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stators were tied into the same source of power, no separate synchronizing 
means was necessary. 

Figure 7 is a photograph of the cathode ray trace of the output of the 
transmitter tube when signals were being sent over three channels. A 
circular sweep circuit was used which distorted the signals somewhat. The 
shape of the pulses is shown better in Fig. 8 for which a linear sweep was 
employed. Signals were put on three channels, two of which were adja- 
cent. The double-humped top of the pulse is caused by the window in the 
screen being slightly narrower than the beam width so that as the beam 
crosses the window, the greater densities in the edges relative to the center 
give this shape. A flat-topped pulse may be obtained by making the win- 
dows wider than the beam. 

In conclusion the writer wishes to acknowledge his indebtedness to a 
number of his colleagues in the Laboratories for aid in the development of 
the tube. The 30-channel multiplex system was set up with the aid of 
Mr. W. H. T. Holden. 



Abstracts of Technical Articles by Bell System Authors 

A Modification of IIalien's Solution of the Antenna Problem} M. C. 
Gray. An alternative formula for the input impedance of a cylindrical 
antenna is derived from Hallen's integral equation. It is shown that the 
introduction of a variable parameter Z{z) in place of Hallen's 12 = log 
(4/2/a2) modifies the numerical results considerably, and leads to much 
better agreement with experimental evidence. 

Motor Systems for Motion Picture Production} A. L. Holcomb. The 
various types of motor systems and speed controls used in motion picture 
production are reviewed, evaluated, and the basic theory of operation 
described. 

Motor drive systems are a fairly simple but important element in the 
production of motion pictures, but to many people who do not have direct 
contact with this phase of activities, the number of systems in use and their 
peculiarities are very confusing. Data on most of the different types of 
motors and motor systems in use have been published, but in different places 
and at different times so that no comprehensive reference exists. This 
paper is not intended as information on new developments or as a technical 
study, but rather as a review of all the major systems with an indication of 
their fields of greatest usefulness and with comments on both their desirable 
and undesirable features. 

A Dial Switching System for Toll Calls? Howard L. Hosford. At 
Philadelphia, on the night of August 21st and the early morning hours of 
August 22, 1943, the cutover of the new ^4 System was no mere episode; 
it was one of the milestones of telephone history. Intertoll dialing in itself 
is not new but this joint project of the Bell Telephone Company of Penn- 
sylvania and the Long Lines Department is especially significant as it has 
been designed so as to extend the field of toll dialing by the operators to 
include the largest cities and joins together various types of dialing equip- 
ment. In its scope this project includes many points in an area reaching 
from Richmond, Va. to New York City and from Harrisburg, Pa. to At- 
lantic City, N. J. 

From a traffic standpoint the ^ 4 toll switching system actually comprises 
lJour. Applied Physics, January 1944. 2 Jour. S. M. P. E., January 1944. 

'3 Bell Tel. Mag., Winter 1943-44. 
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three units, the switching equipment itself which is wholly mechanical, 
together with the so-called ^ 4 and ^ 5 switchboards. The ^ 4 board is a 
cordless, key-typed call distributing board which is used in conjunction 
with the new switching system for such calls as must be given to an operator 
by offices not equipped for intertoll dialing. The operators at this board 
function as combined inward, through and tandem operators, thus eliminat- 
ing the provision of separate units to provide these particular services. In 
brief, there is no basic difference between the essential operation of the ^ 5 
board and the conventional through board where delayed traffic is handled; 
however, operators handling calls at this board must make use of the new 
switching system to obtain both the calling and called offices by dialing. 

Prior to the cutover the first trainees were given experience by handling 
some 300,000 test calls of every conceivable traffic characteristic. These 
were routed through the new system to break in the equipment and to 
shake down potential troubles. Two weeks prior to cutover a dress re- 
hearsal was held, at which time about ten per cent of the circuits were put 
through their paces. 

To provide information of value for future installations, arrangements 
were made for liberal provision of registers and meters to measure any and 
all phases of the various steps performed by the equipment. Some of these 
aids are not entirely new to telephone work but their application to toll, 
inward and through service is a departure. 

The ^4 System is running satisfactorily and both the equipment and 
the operators who use it deliver a high grade of service. Daily some 80,030 
tandem, inward and through connections formerly handled by operators 
are routed through the equipment. 

In connection with postwar planning, studies are now being made to 
determine future installations in order to take advantage of the possibilities 
of the new system. It is confidently expected that this will provide faster 
service on outward, inward and through calls and that transmission will be 
improved. These advantages should result in overall economies in outside 
plant and operating. 

Theoretical Limitation to Trans conductance in Certain Types of Vacuum 
Tubes* J. R. Pierce. The thermal-velocity distribution of thermioni- 
cally emitted electrons limits the low-frequency transconductance which 
can be attained in tubes in whose operation space charge is not important. 
A relation is developed by means of which this dependence may be evaluated 
for tubes employing electric and magnetic control. This relation is applied 
to deflection tubes with electric and magnectic control and to stopping- 

♦Proc./. R. £., December 1943. 
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potential tubes. Magnetic control is shown to be inferior to electric control 
from the point of view of band-width and gain. 

Antenna Theory and Experiment} S. A. Schelkunoff. Ihis paper 
presents: (1) a comparison between several approximate theoretical formulas 
for the input impedance of cylindrical antennas in the light of available 
experimental evidence; and (2) a discussion of the local capacitance in the 
vicinity of the input terminals, mathematical difficulties created by its 
presence, and methods of overcoming these difficulties. No exact solution 
of the antenna problem is available at present and so far it is impossible 
to set definite limits for errors which may be involved in various approxi- 
mations. For this reason in appraising these approximations one is forced 
to rely on one's judgment and on experimental evidence. It is hoped that 
this paper will aid in correlating theory and experiment to the advantage 
of both. 

6 Jour. Applied Physics, January 1944. 
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