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Intermittent Behavior in Oscillators 

By W. A. EDSON 

Oscillators of all sorts may, for certain values of the parameters, show low- 
frequency disturbances. Usually the disturbance takes the form of a low-fre- 
quency interruption of the desired oscillation. By the method here presented 
it is possible to determine whether or not such intermittent behavior will occur 
in a given oscillator and what circuit modifications are required to promote 
stability. The intentional generation of a modulated wave by control of the low 
frequency behavior of an oscillator is also considered. Oscillators of the nega- 
tive resistance type are not considered. 

I. Introduction 

IT HAS been known for a long time that all kinds of oscillators are subject 
to the trouble variously referred to as intermittent oscillation, motor 

boating, or squegging. In conventional circuits such as the Hartley the 
phenomenon is most likely to be observed if the grid leak and grid condenser 
are abnormally large. It is found that the time constant of this combina- 
tion must be reduced as the frequency is raised and as the Q of the resonant 
circuit is decreased. At frequencies above a few hundred megacycles the 
problem of producing a practical circuit with suitable margin of stability 
is quite difficult. 

With the advent of the oscillator having automatic output control the 
problem assumed a new aspect.1-2 By application of an amplified control 
circuit a high degree of constancy of output together with low harmonic 
output is obtained. Satisfactory operation is secured, however, only when 
suitable attention is given to the characteristics of the control circuit. 

The intentional generation of pulses by means of intermittent oscillations 
of relatively high frequency has been studied to some extent, and circuits 
of this kind are employed in some television systems. Usually the high- 
frequency oscillation is limited to a small portion of the low-frequency cycle, 
the charge stored during this period being allowed to dissipate itself relatively 
slowly during the remainder of the cycle. 

In all of these circuits satisfactory performance depends upon a proper 
proportioning of elements not directly associated with the operating fre- 

1 L. B. Argimbau, "An Oscillator Having a Linear Operating Characteristic," Proc. 
I.R.E., Vol. 21, p. 14. Jan. 1933. 2 J. Groszkowski, "Oscillators with Automatic Control of the Threshold of Regenera- 
tion," Proc. I.R.E., Vol. 22, p. 145, Feb. 1934. 
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quency. When continuous oscillation is necessary it is desirable to provide 
adequate margin against intermittent operation. When intermittent opera- 
tion is desired the opposite is true. In either case an understanding of the 
same general problem is necessary. 

The present analysis applies only to oscillators of the feedback type. No 
method of extending it to cover negative resistance oscillators such as the 
Dynatron and the Transitron has been found. Relaxation oscillators as 
such are not considered here inasmuch as they are seldom affected by inter- 
mittent operation. No specific frequency limits apply but it is sometimes 
difficult at very high frequencies to achieve desirable values of the constants. 
At very low frequencies oscillators employing automatic output control are 
relatively unsuitable because their performance tends to be unduly sluggish. 

The term linear oscillator is used to indicate an oscillator in which the 
range of operation is controlled within such limits that the harmonic content 
of the output is inappreciable. 

The general equation describing a simple amplitude-modulated wave is 

V = Fo(l + m sin lirfl) sin 2irFt 

This may be taken as defining the modulation factor m, a complex number 
which is limited to magnitudes between zero and one. 

II. General Theory of Oscillation 

It is found that three separate functions are necessary and sufficient for 
the operation of an oscillator of the feedback type.3 These are indicated 
in the block diagram of Fig. 1. 

The amplifier must be provided to overcome the losses of the rest of the 
system. The power output, if any, depends upon the fact that the output 
of an amplifier is greater than the input. 

Selectivity must be provided to insure that the output has a definite 
frequency. Ordinarily a tuned circuit of relatively high Q is used although 
some excellent oscillators employ resistance-capacitance networks. The 
term filter is employed as being sufficiently general to include these extremes. 

A limiter of some form is necessary to establish the level at which sustained 
oscillations occur. In many circuits the functions of amplifier and limiter 
are performed simultaneously in the vacuum tube. In an important class 
of oscillators the limiter is a thermal device such as a tungsten lamp. In the 
Meacham circuit the functions of limiter and filter are combined in a bridge 
employing a tuned circuit and a tungsten lamp. 

To simplify the analysis it is convenient to assume that the amplifier of 
Fig. 1 is completely linear and operates with equal gain at all frequencies 

3 This topic is discussed more fullv in "Hyper and Ultra-High Frequency Engineering," 
R. I. Sarbacher, and W. A. Edson, John Wiley & Sons, Inc., 1943. 
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from zero to infinity. Similarly the filter is assumed to consist of linear 
circuit elements and to have a definite curve of loss versus frequency. Asso- 
ciated with this loss characteristic is some specific phase characteristic.4 

The limiter is assumed to have a loss which is independent of frequency but 
which is explicitly related to the input (or output) voltage. 

Although amplifiers having the ideal performance indicated are not physi- 
cally realizable there are no new or unfamiliar concepts involved. Similarly 
the performance of passive networks, such as constitute the filter, has been 
extensively studied and is well understood. It is therefore appropriate to 
devote the following section to the third function. 

FILTER 

LIMITER 

AMPLIFIER 

Fig. 1—Functional block diagram of an oscillator. 

III. Types of Limiters 

The limiters which are now in common use may be separated into four 
relatively distinct groups. 

1. Vacuum tubes in which the gain is decreased by simple overload as the 
level of oscillation rises. This is the most common form of limiter. 

2. Varistors in which the impedance depends upon the instantaneous value 
of current. Copper oxide, thyrite, and electronic diodes are examples. 

3. Thermistors in which the resistance depends upon the rms value of 
current but does not vary appreciably during any one cycle. Carbon and 
tungsten filament lamps are the most common examples. 

4. Vacuum tubes in which the gain is reduced by application of a bias 
which depends upon the level of oscillation. Usually the bias is developed 
by rectifying a portion of the output. 

The limiters of the first two groups depend for their operation upon tjpe 
generation of harmonic voltages and currents. The limiters of the second 

4 H. W. Bode, "Relations Between Attenuation and Phase in Feedback Amplifier De- 
sign," Bell Sys. Tech. Jour., Vol. 19, pp. 421-457, July 1940. 
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two groups operate with very little harmonic distortion. The output of 
oscillators employing such limiters may, therefore, be made quite free from 
harmonic voltages. Oscillators of this sort are referred to as linear because 
the tube or tubes serve as simple Class A linear amplifiers. 

IV. Criterion' of Self Modulation 

The block diagram of Fig. 1 is characterized by the fact that the separate 
elements are connected to each other in the form of an endless ring. The 
output may be assumed to come from any of the three junctions. It is this 
fact of closure which complicates the problem of oscillator study. For 
purposes of analysis it is convenient to open the loop as shown in Fig. 2. 
For this example it makes no difference where we choose to make the cut, 
but in actual circuits some caution must be exercised. This matter is dis- 

TEST 
GENERATOR Zi 22 

' FILTER 

LIMITER 

TEST 
DETECTOR AMPLIFIER 22 21 

Fig. 2—Test for self-modulation in an oscillator. 

cussed more fully later. It is also necessary to choose the impedances of the 
test generator and test detector so that the operation of the components of 
the original system is not disturbed. 

If a continuous wave of suitable voltage and frequency is supplied by the 
test generator it will be found that the terminal, voltage of the test detector 
is identical in magnitude and phase with that of the generator. In this 
condition the requirements which are fundamental to oscillators are satis- 
fied. That is, the frequency and level at which oscillation should occur if 
the circuit were closed as in Fig. 1 have been established. The net phase 
shift of the system is zero and the net gain is zero. 

Whether the oscillations so produced would be stable or interrupted is now 
determined by adding amplitude modulation of relatively low frequency and 
very small magnitude to the test generator. It is clear that this modulation 
will be transmitted through the amplifier, filter, and limiter to the test 
detector and that the phase and percentage of the modulation may both be 
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modified. By examining the transmission of a lightly modulated wave for 
various frequencies of modulation it is possible to determine whether or not 
the normal oscillation will be self modulated when the loop is closed as in 
Fig. 1. 

The carrier is held constant at the frequency F and amplitude T" for which 
the input and output are identical, and the frequency/of the modulation is 
varied from zero to infinity. In the following treatment it is assumed that 
the significant portion of the characteristic is observed for modulation fre- 
quencies small compared to F. The theory is simplified in this way without 
being seriously restricted in usefulness. The percentage of modulation must 
be held very low so as not to exceed the normal operating range of the limiter. 
The criterion is most conveniently stated in terms of the transmission of the 
modulation envelope which may be considered as a vector quantity. 

(1,0) 

Fig. 3—Nyquist diagram showing magnitude and phase of loop transmission. 
Legend: U is unstable 

C is conditionally stable 
S is absolutelv stable 

A plot of the vector ratio of output to input modulation for various fre- 
quencies is prepared as in Fig. 3. The system characterized by curve U is 
unstable and will generate a self modulated rather than a continuous wave. 
The system characterized by curve S is unconditionally stable and will be 
free from self modulation. The system characterized by curve C is condi- 
tionally stable and may generate either a continuous or an interrupted wave 
depending upon the manner in which the oscillation is started and other 
factors. 

V. Analogy of Tin; Oscillator to the Feedback Amplifier 

The behavior of oscillators of the type here considered is entirely de- 
pendent upon feedback. It is therefore appropriate to review the funda- 
mental principles which apply to feedback in general. 

In the feedback amplifier, negative feedback is applied to improve the 
linearity, stability, impedance, or frequency characteristics. Considerable 
improvements in some or all of the properties may be secured if a consider- 
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able amount of negative feedback is applied and properly controlled. Posi- 
tive feedback is sometimes used to increase gain or selectivity, but stability 
under such circumstances is poor. Any considerable amount of positive 
feedback results in oscillation. 

The criterion by which stable feedback systems are distinguished from 
unstable ones has been presented by Nyquist and verified by others.5,6 

A closed feedback system having input and output terminals is illustrated 
in Fig. 4. In Fig. 5 the loop is opened at some arbitrary point and a test 

INPUT 
o- 

AMPLIFIER OUTPUT 

FEEDBACK 
CIRCUIT 

Fig. 4—Typical feedback amplifier. 

Zl 1Z2 

TEST 
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DETECTOR 
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Fig. 5—Test for stability of feedback amplifier. 

oscillator and detector are connected. Here as in Fig. 2 certain precautions 
as to impedance are observed. The test generator must produce a pure 
sinusoidal wave of such small magnitude that no part of the tested system 
overloads and the vector ratio of the detector voltage to the generator voltage 
is observed for a large number of frequencies. The polar plot of Fig. 3 
applies directly to the feedback amplifier except that the radius vector 
represents the transmission of a simple wave rather than of an envelope. 

5 H. Nyquist, "Regeneration Theory," Bell Sys. Tech. Jour., Vol. 11, pp. 126-147, 
Jan., 1932. . „ 6 E Peterson, J. G. Kreer, & L. A. Ware, "Regeneration Theory and Experiment, 
Proc. I.R.E., Vol. 22, pp. 1191-1210, Oct., 1934. 
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The conditions of absolute and conditional stability and instability are 
exactly the same as those already given. 

It must be appreciated that Nyquist's criterion supplies no information as 
to the type or frequency of oscillations which will be generated by an unstable 
system. This is true because the analysis is limited to linear systems. The 
only information imparted is that a very small oscillation of some frequency 
will increase exponentially with time until the amplitude is limited by the 
action of some non-linear device. A small or relatively large shift of fre- 
quency may occur and the oscillation may be regular or intermittent. The 
present work extends the usefulness of Nyquist's criterion by using it in 
modified form to determine whether or not a particular unstable system 
(oscillator) has or lacks stability as to self-modulation. There is no apparent 
reason why a system lacking in both fundamental and envelope sta- 
bility might not be analyzed a third time for the stability of the 
self-modulation. 

VI. Analysis of an Oscillator having Automatic Output Control 

Figure 6 presents a simple form of feedback oscillator having a separate 
rectifier as limiter. For small amplitudes of oscillation the tube operates 
in a linear fashion with cathode self-bias. No bias is produced by the diode 
rectifier until the peak voltage in the coil Z-3 exceeds that of the bias battery 
B. All voltage in excess of this value is rectified, smoothed by the condenser 
C, and applied to the resistor r as bias. It is seen that a small percentage 
change in the output level may result in a large change in the bias. Accord- 
ingly an output which is quite stable with respect to the tube condition and 
applied voltages, except that of B, is to be expected. 

The stability of this circuit with respect to self modulation is mosL con- 
veniently tested by opening the oscillatory loop at the plate of the tube. 
In so far as the plate resistance of the tube is high with respect to that of the 
associated circuit it is not necessary to control the impedances of the test 
generator and detector extremely accurately. A block diagram equivalent 
to Fig. 6 is presented in Fig. 7. The conditions which must exist for the 
test of stability are shown in Fig. 8. In both those figures it should be noted 
that the gain control is actuated by the input, not the output, of the ampli- 
fier. It is therefore possible for a marked decrease of output voltage to 
result from a small increase of input voltage. This behavior is very different 
from that of the conventional, back-acting, automatic-volume-control 
amplifier in which the output change is in the same direction as the input 
change but of reduced magnitude. It is this difference which is the basis 
of most difficulty with amplitude controlled oscillators. 
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Fig. 6—Oscillator having automatic output control. 
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FILTER 
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Fig. 7—Block diagram of automatic output control oscillator. 
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Fig. 8—Test for modulation stability of automatic output control oscillator. 
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Filter 

The filter of Fig. 8 consists of only a single tuned circuit. Its transmission 
is readily represented in terms of the circuit Q by the familiar universal 
resonance curve. The transmission of a modulated wave through such a 
passive network is conveniently determined by separating the wave into 
its carrier and two sidebands. The carrier will be the frequency F corre- 
sponding to zero phase shift which, in this case, is also the frequency of 
maximum transmission. The sidebands will be shifted in phase by equal 

90" 

60 

30° 

1.0 f Q 2 0 1.0 _LQ, 
F 

2.0 

Fig. 9—Envelope transmission of a modulated wave through a single tuned circuit of 
selectivitv Q. 

0.5 LLQ) 
CO 

f Q 

25 1.0 
0.5 

Fig. 10—Data of Fig. 9 plotted in polar form. 

and opposite amounts and attenuated according to the frequency / by which 
they differ from the carrier. This behavior is interpreted in Fig. 9 as trans- 
mission and phase shift of the envelope. It is seen that the transmission 
approaches zero and the phase shift approaches 90° as the modulation 
frequency is indefinitely increased. The same data is presented in polar 
form in Fig. 10. Specifically Fig. 10 shows the vector ratio of the modula- 
tion factor;« of the output wave to that of the input wave for all frequencies. 
In Fig. 9 the magnitude and phase angle of the ratio are shown separately. 

Limiter 

The limiting action of the tube and diode combination is determined by 
direct circuit analysis. For very low modulating frequencies the condenser 
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Cof Fig. 6 serves only as a high-frequency by-pass; the direct voltage across r 
being the instantaneous difference between the peak voltage induced in L3 
and that of the stabilizing battery J3. For very high modulating frequencies 
the modulation as well as the carrier is by-passed by C and no modulation 
voltage appears across r. Thus the bias is constant and the output wave is 
identical with the input wave. This corresponds to an envelope transmission 
of (1, 0). For intermediate values of the modulating frequency the voltage 
developed across r varies in magnitude and phase approximately as if a 
constant current of the modulating frequency / were applied to r and C in 
parallel. 

The output of the amplifier depends not only upon the bias developed 
across r but also upon the input. For systems having a large amount of 
control the action of the bias is predominant. Thus for a low modulating 
frequency the variation of the bias overpowers the initial modulation, the 
phase of the modulation is reversed, and the percentage magnified by the 

Fig. 11—Envelope transmission of a modulated wave through controlled amplifier. 

action of the limiter. In Fig. 11 the envelope transmission is plotted in polar 
form for conditions of relatively large and relatively small amounts of control. 

The separate diagrams of Figs. 10 and 11 are combined in Fig. 12 to de- 
termine the stability of the system. For any chosen frequency / the vector 
of Fig. 10 is multiplied by the vector of Fig. 11 corresponding to the same 
frequency to locate one point of Fig. 12. The resultant vector has an angle 
which is the sum of the two component angles and a magnitude which is the 
product of the two component magnitudes. 

It is seen that the loop may be made to cross the axis considerably to the 
left of the point (1,0) if the points A and A' of the previous figures cor- 
respond to the same frequency. Sirpilarly the loop may be made to come 
very close to the point (1,0) by increasing the size of C or lowering the Q 
of the tuned circuit so that the points B and B' correspond to the same 
frequency. With the circuit elements drawn in Fig. 6 the stability margin 

0 (1,0) 

Loop Transmission 
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may be reduced to zero, but actual looping of the point (1, 0) is not indi- 
cated. Parasitic elements, not here considered, can readily affect the 
performance enough to produce instability. 

o 
f = o f=oo (1,0) 

Fig. 12—Nyquist diagram applying to Fig. 6. 

OKMKXKK) 

Fig. 13—Hartley circuit. 

VII. Analysis of the Hartley Oscillator 

The familiar Hartley Oscillator circuit is shown in Fig. 13. In this 
arrangement the tube serves as amplifier and limiter by the action of over- 
loading. Harmonic voltages and currents are produced but if the selectivity 
of the tuned circuit is high the voltage returned to the grid of the tube is 
nearly sinusoidal. 

The stability of this circuit is tested in exactly the same way as was that 
of the previous circuit. The loop is opened at the plate of the tube to 
determine the transmission of a modulated signal. If, as is usually the case, 
the coupling of the coil is close, the filter reduces to a single tuned circuit. 
The limiting action results from bias produced by rectification at the grid. 
Accordingly the block diagram of Fig. 7 is directly applicable, and the 
behavior of the filter is correctly given by Fig. 9. 

Generally the circuit operates in class "C" with high bias and large grid 
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voltage swings. If the time constant of the grid-leak-condenser combination 
is long in comparison to the period of a modulation cycle the bias will not 
be able to follow the applied voltage and the modulation of the output 
will be larger than that of the input. Moreover it is in phase with that of 
the input. When the modulating frequency is low the bias is able to follow 
the level of modulation and the output modulation is very small. Thus the 
transmission of a modulated signal is greatest at high modulating frequen- 
cies, and the modulation output is in phase with the input. Because of the 

/A \B 

o " 
ii 

0 (1.0) 

Fig. 14—Envelope transmission of a modulated wave through a grid-leak-biased Class C 
amplifier. 

f = 0~^ 
0 

f=oo'y 
k A")(1'0> B"/ 

Fig. 15—Nyquist diagram applying to Fig. 13. 

action of the grid-leak-condenser network a phase shift at intermediate 
modulating frequencies occurs. This behavior is represented in polar form 
in Fig. 14. 

The stability of the system is determined by combining in Fig. 15 the 
separate diagrams of Figs. 14 and 10. As in the previous system a 
thoroughly stable system results if the element values are such that the points 
A and A' oi Figs. 10 and 14 correspond to the same frequency. If on the 
other hand the elements are such that B and B' correspond to the same fre- 
quency the curve loops (1, 0) indicating instability. In general stability is 
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promoted by increase of the Q of the tuned circuit and by decrease of the 
time constant of the grid-leak-condenser combination. 

The circuit of Fig. 16 is of particular interest because the functions of 
amplifier, limiter, and filter are performed separately by units which are 
readily identified with their functions. The present method of analysis 
was developed in connection with this particular circuit. The output 
frequency and amplitude are both quite stable and the harmonic content 
of the output is low. 

Under operating conditions the gain of the tuned amplifier, which is 
ordinarily in the order of 40 db, is equalled by the loss of the lamp bridge. 
The lamps operate at such a temperature that their resistance is slightly 
less than that of the associated linear resistors. If the gain of the amplifiers 
is for any reason somewhat reduced, the current through the lamps decreases, 
the temperature and resistance of the lamps is reduced, and the loss through 
the bridge is reduced to the new value of amplifier gain. 

The d-c characteristic of a lamp bridge is shown in Fig. 17. A curve 
identical with Fig. 17 is observed if the measurement is made with an alter- 
nating current whose period is very short in comparison to the thermal 
time-constant of the filaments. Up to L the operation is nearly linear. In 
the region of M the output is essentially independent of the input. At N 
the bridge is nearly balanced and a small percentage change in the input 
voltage results in a large and opposite percentage change in the output. 
It is thus seen that an alternating current having a small superimposed 
modulation of low frequency will result in an output having a considerably 

VIII. The Lamp Stabilized Oscillator 

+ 

Fig. 16—Schematic diagram of lamp stabilized oscillator. 
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larger percentage modulation in the opposite phase. When the modulation 
frequency exceeds a few hundred cycles the lamps are unable to follow the 
individual cycles and the output wave is identical in form to the input. At 
intermediate modulating frequencies the transmission of a modulated wave 

■f 
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Fig. 18—Envelope transmission of a modulated wave through a lamp bridge. 
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Fig. 19—Envelope transmission of a modulated wave through two similar tuned circuits 
of selectivity Q. 

involves a phase shift. The behavior of a typical lamp bridge is presented 
in Fig. 18. 

If the Q of the grid and plate circuits are both relatively high the filter 
circuit may be taken as equivalent to two separate tuned circuits. 1 he 
transmission of each is given by Fig. 9. The combined transmission of the 
pair is given in polar form in Fig. 19. Because two tuned circuits are 

Fig. 17—D-C characteristics of a lamp bridge. 
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employed, the diagram of Fig. 19 differs markedly from that of Fig. 10. 
Specifically the phase shift corresponding to a given value of attenuation is 
greatly increased. As in previous cases the curve of over-all loop transmis- 
sion may or may not loop the point (1,0) depending upon the relative 
frequency scales. Thus if the points A and A' of Figs. 18 and 19 correspond 
to the same frequency the Nyquist diagram passes near the point (2, 0) 
indicating instability. If the points B and B' correspond to the same 
frequency the loop passes very near to the point (1,0) and instability is 
likely. 

By making the tuned circuits very selective or by reducing the thermal 
time constant of the lamp circuit the points C and C may be made to cor- 
respond to the same frequency. In this case the loop passes to the left of 
the point (1, 0) and the system is absolutely stable. The same result may 
be secured more easily by making one of the tuned circuits much more 
selective than the other. This is ordinarily accomplished by increasing the 
Q and impedance level of the grid circuit while keeping the Q and impedance 
level of the plate circuit much lower so as to provide a suitable power output 
to operate the lamp bridge. 

IX. The Varistor Stabilized Oscillator 

A circuit which differs from that of Fig. 16 only in that the lamps are 
replaced by varistors is shown in Fig. 20. At low levels of oscillation the 
impedance of the varistors is relatively high, the loss of the limiter is low 
and the amplitude of oscillation rises. At some higher level the varistor 
impedance is reduced, the bridge approaches balance to the fundamental 
frequency, and a stable condition is reached. Because the initial un- 
balance of the bridge is opposite to that of Fig. 16 a reversal of phase is 
necessary to establish oscillation. 

The stable condition reached differs from that of the lamp stabilized 
oscillator in that the varistor goes through its entire range during each high- 
frequency cycle. The lamp resistance changes by only a small amount 
during any one cycle, its resistance depending on an integration of many 
previous cycles. Two important facts arise from this difference. Har- 
monics are produced in the bridge and, in so far as the varistors face react- 
ances of these harmonic frequencies, intermodulation may produce currents 
of fundamental frequency but shifted in phase with respect to the original. 
Thus the bridge may produce a phase shift which is a function of level of the 
oscillation frequency. A degradation of frequency stability results from 
such a condition. More important to the present problem is the fact that 
all modulation frequencies are transmitted alike. A small modulation is 
reversed in phase and magnified by an amount depending upon the bridge 
balance but not upon the modulation frequency. 
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Because the limiter introduces no phase shift it follows that the envelope 
loop transmission is merely an enlarged and reversed copy of that for the 
filter. This can loop the (1,0) point only if there are at least three shunt 
elements in the filter section. That is, instability can result only if the phase 
shift of the filter system exceeds 180° for frequencies relatively near the 
operating frequency. This circuit is therefore much less likely to produce 
intermittent operation than any other circuit here considered. 

Because positive feedback is the necessary condition for the operation 
of an oscillator it is not obvious that the application of negative feedback is 
ever desirable. Actually it is frequently possible to introduce negative 
feedback into an oscillator with no loss of performance and under certain 
circumstances advantages are gained. 

The circuit of Fig. 16 serves as a convenient example. Removal of the 
cathode by-pass condenser is likely to reduce the amplifier gain by about 
6 db and to increase the stability of the gain with respect to applied voltages 
by a corresponding amount. Coincident with removal of the by-pass 
condenser the operating level drops a small amount, the bridge loss decreases 
6 db to reestablish equilibrium, and the stabilizing effect of the bridge is cut 
in half. Accordingly the over-all stability of the output with respect to 
applied voltages is unchanged. The advantages gained are that the loss 
which must be held in the bridge is reduced so that stray reactances are less 
likely to disturb the operation, and that the harmonic content of the output 
is reduced. 

Stated in a different way, the output stability of an oscillator using a non- 
feedback amplifier is limited in practice by the bridge balance which may 
be maintained. After this value of gain has been reached additional stability 

+ 

Fig. 20—Schematic diagram of varistor stabilized oscillator. 

X. Negative Feedback in Oscillators 
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may be secured by supplying increased inherent gain which is offset by 
direct negative feedback. 

XI. Design* of a Controlled Oscillator 

To clarify the material already presented and to convey some additional 
concepts an oscillator having a large amount of control will be designed. 
The block diagram is to be that of Fig. 7 and the circuit is to be similar to 
that of Fig. 6. 

It may readily be seen that the gain control must satisfy two fundamental 
requirements. It must deliver a d-c bias which increases rapidly with 
increase of the level of oscillation and it must not return any appreciable 
voltage of oscillation frequency. Otherwise the frequency will be affected 
by the elements in the control circuit as well as those in the filter, and the 
performance will be generally poor. Because of its balance a push-pull 
rectifier is helpful in meeting the latter requirement. The principal require- 
ment is achieved by amplification and by the use of a constant counter emf 
or back bias. No bias is produced until the level of oscillation exceeds some 
threshold value. Above this threshold the bias increases approximately 
volt for volt with the peak value of the signal. The same amplifier which is 
used to increase the control may be used advantageously as a buffer so 
that appreciable power outputs may be produced without degrading the 
frequency or amplitude stability. 

It will be assumed that a of 100 is available in the coil and that a fre- 
quency of one mega,cycle is to be generated. The transmission of a modu- 
lated wave in terms of the sideband displacement through such a one-circuit 
filter is shown in Fig. 21. Because the cutoff occurs very slowly it will be 
convenient to incorporate a rapid cutoff in the auxiliary filter of the gain 
control, thus avoiding an excessive phase shift at any one frequency. 

The circuit features already discussed are shown in Fig. 22. A basic 
oscillator with a single tuned coil, a buffer amplifier having little selectivity 
and therefore contributing very little to the equivalent filter section, a source 
of biasing voltage, a balanced rectifier, and an auxiliary low-pass filter are 
shown. The condenser C is only large enough to allow the rectifier to be 
driven without serious loss at one megacycle. It has relatively little effect 
upon the modulation performance. 

It is assumed that the buffer-amplifier, rectifier, etc. are so chosen that a 
modulation of very low frequency of one part per million applied at the 
plate terminal of the oscillator will result in a modulation of one part in a 
thousand returned to that point. This is equivalent to saying that the 
envelope gain is 60 db at low frequencies, and corresponds to 60 db of 
negative feedback in a conventional amplifier. 

The auxiliary filter will be designed to approxipiate the attenuation and 
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Fig. 21—Envelope transmission through tuned circuit. 
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phase characteristics shown in Fig. 23. The choice of this particular shape 
is best explained by reference to Fig. 24 which presents the over-all envelope 
loop transmission of the system. It is seen that the phase shift is relatively 
constant at 90° over a wide band of frequencies and that the gain falls off 
approximately linearly over the same band. In particular the gain becomes 
zero around 5000 cycles whereas the phase does not reach zero below 500,000 
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Fig. 24—Overall envelope transmission of Fig. 22. 
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Fig. 25—Configuration of auxiliary filter. 

cycles. In terms of Nyquist's criterion this represents a very stable system 
which is little disturbed by transient effects. A system having even greater 
stability could be achieved by beginning the cut-off at lower frequencies. 
It would then be found that the output was somewhat sluggish in reaching 
a new equilibrium after being disturbed. Such a behavior is not uncommon 
but is generally undesirable. 

Elements which give approximately the characteristics called for in Fig. 
23 are shown in Fig. 25. The peak of loss at one megacycle is contributed 
by the series resonant trap. The rest of the behavior is due to the 0.5 /xf 
condenser in combination with the associated resistors. 
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XII. Auxiliary Control of Thermally Limited Oscillators 

In the Meacham and certain other oscillator circuits a thermistor is 
associated with reactive elements in a bridge circuit which functions as both 
limiter and filter. In these circuits a large increase in the frequency stability 
is observed. This may sometimes be conveniently expressed as a magnifica- 
tion of the effective Q of the filter. 

The advantages of great frequency stability and good amplitude stability 
of these systems are accompanied by an undesirable tendency toward 
intermittent operation. The thermal constants of the thermistor are not 
readily adjustable. Moreover adjustment of the reactances to secure 
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Fig. 26—Meacham circuit with auxiliary control. 

suitable envelope stability is likely to impair the frequency or amplitude 
stability for which the circuit is chosen. 

This dilemma may be resolved by the addition of an auxiliary network 
which does not affect the envelope transmission to very low frequencies but 
does modify the behavior at higher frequencies in such a way as to promote 
the stability of the system. 

A simple circuit illustrating the principle appears in Fig. 26. It will be 
noticed that the circuit is so arranged that the average bias applied to the 
tube is only that due to the cathode resistor. The steady voltage developed 
across Ci by the rectifier is unable to affect the bias because of the blocking 
condenser Ci. Accordingly the rectifier circuit does not affect the normal 
operating condition, which is characterized by a bridge loss equal to the 
amplifier gain. The added elements come into play only if there is a tend- 
ency toward self-modulation. Then displacement currents of modulation 
frequency flow through C* in such a magnitude and phase as to modify the 
tube gain and compensate the modulation returned from the bridge. 
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The exact nature of the control which must be added is best ascertained 
by opening the circuit at the plate of the tube. The loop transmission of a 
modulation envelope may then be determined, either experimentally or 
analytically. If instability is found an auxiliary circuit must be designed 
to produce an over-all system which is stable. In general the elements of 
the auxiliary circuit are to be chosen so that the loop transmission is con- 
siderably less than unity in the region of zero phase. This is ordinarily 
accomplished by increasing the final cutoff frequency at which the over-all 
loop envelope transmission is negligible. 
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Fig. 27—Self-modulating oscillator. 

XIII. A Self Modulated Oscillator 

The previous sections have been devoted primarily to the problem of 
preventing self-modulation in oscillators. Let us now consider an oscillator 
having envelope instability. The Nyquist diagram indicates that self- 
modulation will occur and tells the approximate frequency of the envelope 
wave. More detailed analysis of the circuit is necessary to determine the 
wave form of the envelope and the manner in which its amplitude is limited. 

If a circuit is to function well as an oscillator the Nyquist diagram for the 
operating frequency must loop the (1,0) point with considerable margin. 
This is necessary so that a small loss of gain will not stop oscillation. At the 
operating level the limiter reduces the loop transmission to unity. In the 
region of (1,0) amplitude stability is favored if the rate of change of gain 
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with respect to level is high. Similarly the frequency stability is favored if 
the rate of change of phase with respect to frequency is high. 

If a circuit is to function well as a self-modulated oscillator^ the above 
conditions must be met and in addition the Nyquist diagram for the envelope 
must meet similar requirements. That is, there must be a limiter and filter 
in addition to the effective amplifier in the envelope system. 

A circuit which meets these requirements is shown in Fig. 27. It is seen 
to be similar to that of Fig. 6 but to have a more complicated low-frequency 
path. The operation is best explained in terms of the relative size of the 
various elements. The by-pass condensers Ci and C2 are comparatively 
small. The blocking condensers C3 and Ci are quite large. The choke Li 
is large. Thus these elements serve as open or short circuits but do not 
enter into the setting of either of the frequencies. 

The stability tests are carried out by opening the mesh at the plate of the 
tube. At the operating frequency, as defined by the plate coil and condenser 
the loop gain is high at low levels. Thus the fundamental conditions for 
oscillation exist. 

The next step in the analysis is to supply a signal of suitable magnitude 
and frequency to reduce the loop transmission to (1, 0). A small modula- 
tion of very low frequency is returned magnified and reversed in phase, as 
with previous systems. The phase of the envelope transmission changes 
with increase of modulating frequency until it is zero at the resonant fre- 
quency of Lb and Cb. At this frequency a considerable gain exists so that 
the Nyquist diagram for the envelope also loops the point (1,0). 

The tungsten lamp in conjunction with the other impedances of the bridge 
serves to limit the degree of self-modulation. The operating frequency may 
be set by means of Ce in conjunction with a suitable value of L6. The 
operating amplitude may be controlled by adjustment of the bias battery B. 
The frequency of the self-modulation is set by means of Ce in conjunction 
with Zb. 

XIV. Conclusions 

A method of applying known feedback theory to the problem of self- 
modulation in oscillators has been presented. Although the discussion has 
been limited to electrical circuits it is clear that the analysis is applicable 
to other systems, such as electromechanical or mechanical oscillators. 

The analysis has been applied to several familiar oscillators to illustrate 
the method and to clarify some details of their operation. A sample design 
of a bias controlled oscillator is presented to show application to new designs. 

The application of bias control to thermistor stabilized oscillators is 
described. The design of a self-modulated oscillator is undertaken to show 
how intentional modulation may be introduced and controlled. 



Evaluating the Relative Bending Strength of Crossarms 

By RICHARD C. EGGLESTON 

/"VVER a million crossarms are produced annually in the United States. 
In the open wire lines of the Bell System alone there are now about 

20 million arms in use. It is natural, therefore, that public utility engineers 
should have an interest in the strength of such an important item of outside 
plant material; and, consequently, an interest in any tool or means of evalu- 
ating the strength of such material. It is believed that the moment diagram 
is a convenient and reasonably reliable tool for estimating the loads an 
arm will support, for measuring the effect of knots of various sizes and of 
pinhole locations on arm strength, and for answering similar questions 
relating to the bending strength of crossarms under vertical loads. 

Two moment diagrams are shown in Fig. 1 for Bell System Type A cross- 
arms; and in the pages that follow are presented the method used in con- 
structing the diagrams and a discussion of their use. While the calculation 
results apply particularly to the type and quality of arm referred to, they 
would also be of value as a time saving reference in future studies that may 
be proposed relating to the strength of the same or other types of arms 
involving different knot allowances. 

The resisting moment of a beam is the product of its section modulus by 
the unit stress on the remotest fiber of the beam. The section modulus of a 
beam of uniform cross-section is constant and readily determinable. The 
section modulus, however, of a beam of nonuniform cross-section, such as a 
crossarm, varies because of the different cross-sectional shapes and dimen- 
sions involved. 

In this study the following five different shapes were recognized: 
(1) Roofed section between pinholes 
(2) Roofed pinhole section 
(3) Roofed brace bolt hole section 
(4) Rectangular pole bolt hole section 
(5) Rectangular section without bolt holes 

The dimensions of the sections investigated were as follows: 

Section of Arm 
Dimensions 

Minimum Nominal 

Roofed section, except at end of arm  
Roofed section at end of arm  

(Inches) 
3^x4^ 
3^X4 
3AX4A 

(Inches) 
31x4^ 
31 x 4^ 
3Jx4i 

23 
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Since there is little, if any, engineering interest in the strength of structural 
members of maximum size, no investigations were made of sections of 
maximum dimensions. 

GRAPH I 

GRAPH 2 

SfidP* 

20 30 40 
DISTANCE FROM CENTER OF ARM-INCHES 

r t'/ / /V y 
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/ A A/ 3 \ 'i" / \ ^ / \ ^ 2" /.A2" 

Fig. 1—Moment diagram for Type A southern pine and Douglas fir crossarms per 
Specification AT-7075: 

Graph 1—Resisting moments of arms of nominal dimensions, straight grained and free 
from knots. (Fiber stress 5000 psi). 

Graph 2—Resisting moments of arms of minimum dimensions, having maximum skint 
grain (1" in 8"), and containing knots of the maximum sizes permitted (viz., 
sizes shown at bottom of arm sketch). (Fiber stress 3250 psi) 

Graph 3—Bending moments from a load of 50 pounds at each pin position. 

Section modulus calculations were made of each shape of minimum and 
nominal size, both with and without knot's. Tests have shown that, be- 
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cause of the distortion of the grain that occurs around them, knots are fully 
as injurious to the strength of structural timbers as knot holes.1 Therefore, 
in dealing with sections containing knots, it was assumed for the purposes 
of this study that the knot extended across the section in the same manner 
as a hole having a diameter equal to the diameter of the knot. It was 
also assumed that the knot was located in, or reasonably close to, the most 
damaging position in the arm section. 

In the calculations of the section modulus of all roofed arm sections, it 
was necessary first to compute the moments of inertia of the whole or parts 
of the top segments of such sections (viz. nominal and minimum sections 
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Fig. 2—Brace bolt hole section containing a j inch knot located immediately below 
the top segment (knot and bolt hole shaded). 

between pinholes, and nominal and minimum pinhole sections). Accord- 
ingly, four such computations were made and the results used in calculating 
the section moduli of all the roofed sections investigated. The details of 
the four computations are shown in the Appendix. To insure uniformity 
in the results, the degree of precision used in these computations was con- 
siderably greater than is ordinarily employed in dealing with timber prod- 
ucts. All of the work, however, was done on a computing machine, and it 
was just about as easy to carry the operations to eight decimal places (which 
was the capacity of the machine used) as to a lesser number. As a matter 
of interest in this connection, it was found by actual trial in Computation I 
that absurd results would occur if fewer than live decimal places were used. 

For convenience, all of the section modulus calculations were made in 
tabular form. In such form the procedure employed would not be readily 

1 Pg. 6 Dept. Circular 295, U. S. Dept. of Agriculture, "Basic Grading Rules and Work- 
ing Stresses for Structural Timbers," by J. A. Newlin and R. P. A. Johnson. 
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apparent. Therefore, a sample calculation follows showing the method of 
finding the section modulus of the brace bolt hole section containing a f 
inch knot. 

Sam pie Calculation 

Referring to Fig. 2, it will be noted that the knot and bolt hole divide the section into 
three parts: the top segment {T) and two rectangular portions (Rl and R2). The moment 
of inertia (/) of such a compound section about its neutral axis (at a distance c from M-M) 
is equal to the sum of the moments of inertia (/T, IR\ and IR2) of the component parts 
T, Rl and R2 about axes through their own centers of gravity, plus the areas of the com- 
ponent parts multiplied by the squares of the distances of their own centers of gravity from 
the neutral axis of the compound section. The section modulus {S) of this section is found, 
of course, by dividing its moment of inertia by the distance (y) from the neutral axis of the 
section to the most remote fiber. 

Dimensions: 
h = 3.1875" (Width of Section) 
k = 0.7500" (Diameter of Knot) 
d = 3.7625" (See Computation I in Appendix) 

h\ = 0.7000" id - 2.125" - 0.1875" - k) 
li2 = 1.9375" (2.125" - 0.1875") 

g = 0.1330" (See Computation I) 
/ = 3.8955" {d + g) 

rl = 2.6625" (i hi + 2.3125") 
r2 = 0.96875" (| Ii2) 
D = 4.09375" (Depth of Section) 

Areas; 
T = 0.7099 sq. ins. (Sec Computation I) 

Rl = 2.2313 " (6//1) 
R2 = 6.1758 " (W/2) 

9.1170 sq. ins. 
Moments about M — M: 

Tt = 2.7654 
Rlrl = 5.9408 
R2r2 = 5.9828 

14.6890 = 9.1170 c; and hence 
c = 1.6112 

Moments of Inertia: 
IT = 0.0053 (See Computation I) 

/Rl = 0.0911 (Ml3 12) 
IR2 = 1.9319 (W/23 -J- 12) 

T{t - c)2 = 3.7043 
Rl(rl - c)2 = 2.4661 
R2(c - r2)2 = 2.5490 

I =10.7477 
y = 2.48255 (D - c) 

Section Modulus: 
S = - = 4.3293 

The same general procedure shown in this sample calculation was fol- 
lowed in dealing with the other cross-sectional shapes. For this reason, 
only the final results of the several calculations are presented; although, for 
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Table 1.—Section Modulus of Roofed Sections between Pinhales 

Knot Diameter—Inches 

No 
Knot i a i li U 2 21 3 

Calculation 1: 
(Knots located at 
top of section) 

Section Size*: 
Minimum  
End. Min  

6.86 

7.37 

5.08 
4.78 
5.50 

3.57 

3.91 

2.33 
2.13 
2.59 

1.35 

1.54 

0.64 
0.53 
0.76 

Calculation 2: 
(Knots located at 
bottom of section) 

Section Size*: 
Minimum  6.11 5.24 4.42 3.71 3.05 1.92 1.05 0.47 

Calculation J: 
(Knots located im- 
mediately below- 
top segment) 

Section Size*: 
Minimum  
End. Min  

8.03 
7.65 
8.60 

5.45 4.56 3.86 
3.65 
4.16 

3.34 2.95 2.50 2.34 2.37 

Table 2.—Section Modulus of Roofed Pinhole Sections 

Knot Diameter—Inches 

No Knot i 1 a i H 2 

Calculation 4: 
(Knots vertical) 

Section Size*: 
Minimum  
End. Min. ... 
Nominal  

4.50 
4.29 
5.11 

3.84 3.21 2.63 
2.50 
2.88 

2.25 

Calculation 5: 
(Knots horizontal) 

Section Size*: 
Minimum.... 
End. Min. ... 
Nominal  

3.63 2.96 2.40 
2.26 
2.76 

1.97 1.41 
1.33 
1.64 

1.11 

* Section Sizes: 
Minimum = 3^" x 4^" 
End. Min. = 3^" x 4" (viz. minimum at end of arm) 
Nominal = i\" x 4^" 

convenience, reference is made to the calculations by number in the pages 
that follow. These results are shown in Tables 1, 2, 3 and 4, and a brief 
discussion of the scope and use made of them follows. 
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Table 3.—Section Modulus of Boll Hole Sections 

Knot Diameter—Inches 

No 
Knot i * h * l U 14 

Calculation 6: 
Brace bolt hole 
section 

Section Size*: 
Minimum . 7. <17 6.47 5.28 4.33 3.58 2.62 
Nominal . . 8.55 4.71 2.78 

Calculation 7: 
Pole boll hole 
section 2\" Knot 3" Knot 

Section Size*: 
Minimum . 9.25 7.42 5.63 3.24 1.51 .75 
Nominal .. 9.74 6.05 3.61 1.66 .85 

* Section Sizes: 
Minimum = 3^" x 4^" 
End. Min. = 3i^" x 4" (viz. minimum at end of arm) 
Nominal = i\" x 4^" 

Table 4.—Section Modulus of Rectangular Section without Bolt Holes 
{Calculation S) 

Section Size Knot Diameter Section Modulus 

Minimum (3^j" x 4^r") (No Knot) 9.32 
i 4 8.24 
1 2 7.22 3 4 6.28 

1 5.40 
H 3.84 
2 2.54 
21 1.51 
3 .75 

Nominal (3J" x 41") (No Knot) 9.78 
i 4 8.67 
1 2 7.62 3 4 6.64 

1 5.72 
H 4.10 
2 2.74 
21 1.66 
3 .85 

Roofed Sections Between Pinholes 

As indicated in Table 1, three tabular calculations were made for roofed 
sections between pinholes. In Calculations 1, 2 and 3 it was assumed that 
the knots present were located (1) at the top, (2) at the bottom, and (3) 
immediately below the top segment of the section, respectively.. The re- 
sults relating to the 3^" x 4^" section are plotted as Curves 1, 2 and 3, 
respectively, in Fig. 3. 
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With respect to the knot positions considered, it is apparent from an exam- 
ination of the three curves (Fig. 3) that knots up to approximately U" in 
diameter are most damaging when located immediately below the roofed 
portion of the arm; and that the worst position for knots over U" in diam- 
eter is at the bottom of the arm. However, since under usual loading 
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Fig. 3—Sections between pinholes. Section modulus of crossarm sections containing knots 
of the sizes shown on the base line and located in the positions indicated. The data 

apply to sections of minimum size (3rV" x 

conditions knots at the bottom of an arm section are in compression, and 
thus would have less influence on strength than they would have on the 
tension side,2 it was felt that the strength value shown by Curve 2 may be 
ignored; and that the values shown by a smooth curve, combining the values 

2On Page 69 of U. S. Dept. of Agriculture Tech. Bui. 479, "Strength and Related 
Properties of Woods Grown in the United States" by L. J. Markwardt and T. R. C. Wilson, 
is the following statement: "Knots have approximately one-half as much effect on com 
pressive as on tensile strength." 
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of Curve 3 up to the knot point with those of Curve 1 for 1" and larger 
knots, would be the practical minimum section moduli for roofed sections 
between pinholes. Accordingly, such a smooth curve was constructed and 
is shown as Curve 2 in Fig. 4. The results of Calculations 1 and 3 for nom- 
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Fig. 4—Sections between pinholes. Section modulus of crossarm sections containing knots 
of the sizes shown on the base line and located in damaging positions. 

inal and arm-end minimum sections were also plotted, and Curves 1 and 3 
drawn for those sections. 

Roofed Pinhole Sections 

Two calculations were made for the pinhole sections: Calculation 4, in 
which the knots were assumed to be located adjacent to the pinhole in a 
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vertical position; and Calculation 5, in which the knots were assumed to be 
immediately below the top segment in a horizontal position. The results 
of these two calculations are shown in Table 2. It has heretofore been gen- 
erally assumed that in pinhole sections knots less than 1" in diameter were 
more damaging in a vertical position than in a horizontal position. The 
results of Calculations 4 and 5, however, show that the horizontal knots 
immediately below the top segment are the more damaging. In order to 
compare the effect of knots so located with the effect of knots at the extreme 
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Fig. 5—Pinhole sections. Section modulus of crossarm sections containing knots of the 
sizes shown on the base line and located in damaging positions. 

top of the section, the following two computations assumed 1" and 2" hori- 
zontal knots at the latter location: 

1" Knot at Section Top: 

hs = -02875 (3.09375)2 = 

5 = 2.9631 

2" Knot^at Section Top: 

= -92875 (2.09375)' = 

5 = 1.3571 
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As the section modulus (5) values for sections containing 1" and 2" hori- 
zontal knots located immediately below the top segment are 1.97 and 1.11, 
respectively, (Calculation 5, Table 2) it is apparent that in pinhole sections 
horizontal knots immediately below the top segment are the more dam- 
aging. The results of Calculation 5 were accordingly plotted in Fig. 5 and 
smooth curves drawn to show the section modulus for each of the three 
sections containing knots of any size. 

Roofed Brace Bolt Hole Section 

The worst position for knots in the brace bolt hole section was assumed 
to be substantially the same as in the roofed sections between pinholes; 
and in Calculation 6, the results of which are shown in Table 3, knots up to 
\\" in diameter were assumed to be so located, viz. immediately below the 
top segment. 

To check this assumption with respect to worst position, the following 
analysis was made of the minimum sections: 

Distance from top of section: 
To lop of holt hole  1.78" 
To bottom of bolt hole  2.16" 

Distance from bottom of lop segment: 
To top of bolt hole  1.45" 
To bottom of bolt hole  1.83" 

It is apparent that any knot ranging in diameter from 1.78" to 2.16", 
when located at the top of the section, would enter the bolt hole. The 
section modulus of any section containing a knot within that size range 
would be the section modulus of the remaining portion of the section, or 

—, where b is the width of the section and d the depth below the bolt hole. 
6 

Thus 

5 (minimum arm) = 3-1873 (1-9373) 1 9943 
6 

It is also evident that any knot from 1.45" to 1.83" in diameter, when 
located immediately below the top segment, would likewise enter the bolt 
hole; and that the section modulus, on this basis of knot location, would be 
the same for any section containing a knot within the size range mentioned. 
Continuing the analysis the following tests were made: 

2" Knot: 

The distance between the top segment and the bottom of the bolt hole 
of a minimum section is 1.83". Therefore, a 2" knot located immediately 



RELATIVE BENDING STRENGTH OF CROSS A RMS 33 

below the top segment would extend beyond the hole; and its effect would 
be the same as in Calculation 3 (Table 1), where the section modulus of a 
section containing a 1" knot similarly located was found to be 2.50. On 
the other hand, since a 2" knot is within the limits 1.78" and 2.16", the 
section modulus of a section containing such a knot located at its top 
would be 1.99. 

1.78" Knot: 

A knot of this size immediately below the top segment would enter the 
bolt hole since it is within the 1.45" and 1.83" limits, and the section 
modulus value associated with it would be the same as shown in the 
Calculation 6 results (Table 3) for a section containing a l^" knot, or 5 = 
2.62. But, as evident from previous discussion, the section modulus 
associated with this knot, if located at the top of the section, would be 
1.99. 

1.5" Knot: 

It can be shown that the section modulus of a section containing a knot 
of this size located at the top of the section would be 2.55; and that the 
section modulus associated with a similarly located 1" knot would be 4.55. 
The foregoing analysis for minimum sections may be summarized as 

follows: 

Knot Size 
Section Modulus 

Knot at Top Knot below Top Segment 

(Inches) (Inches3) (Inches') 
2.0 1.99 2.50 
1.78 1.99 2.62 
1.5 2.55 2.62 
1.0 4.55 3.58 

A study of this summary shows that knots and over are more dam- 
aging when located at the section top; and that knots under U" are more 
damaging when located immediately below the top segment. The section 
modulus values associated with 2\" and 3" knots would be the same as 
shown in the Calculation 1 results (Table 1). 

By a similar analysis for arms of nominal size it can be shown: 
(1) That the more damaging position for knots and under is imme- 

diately below the top segment; 
(2) That the more damaging position for any knot within the diameter 

range from 1.875" to 2.25" and all the larger knots is at the top of the 
section; 
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(3) That the section modulus associated with 1.875" to 2.25" knots would 
be 3-25(0375)' = ^ 

6 
(4) That the section modulus values associated with 2^" and 3" knots 

would be the same as shown in the Calculation 1 results (Table 1). 
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Fig. 6—Brace holt hole sections. Section modulus of crossarm sections containing knots 
of the sizes shown on the base line and located in damaging positions. 

The results of Calculation 6 (Table 3), and of the foregoing analyses, 
together with the Calculation 1 results for 24" and 3" knots, were plotted in 
Fig. 6 for both minimum and nominal sections. 
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Rectangular Pole Bolt Hole Section 
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The most damaging position for knots in the pole bolt hole section was 
assumed to be at the top of the section. They were so figured in Calcula- 

CURVE I FOR 3-±". 4^" SECTIONS 
CURVE 2 FOR 3^ . 4^" SECTIONS 
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KNOT DIAMETER-INCHES 

Fig. 7—Pole bolt hole section. Section modulus of crossarm section containing knots 
of the sizes shown on the base line and located in damaging positions. 

tion 7, the results of which are shown in Table 3 and plotted in Fig. 7 for 
both minimum and nominal arms. 
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Rectangular" Sections without Bolt Holes 

Here too the most damaging position for knots was assumed to be at the 
top of the section. In Calculation 8 the section moduli of sections contain- 
ing knots from to 3" in diameter were determined for both minimum and 
nominal sections. The results are shown in Table 4. As section modulus 
values for sections containing knots of other sizes than those shown may be 

o bd2 

found so simply by the formula for rectangular sections, 6 = —, no curves 

of the results of this calculation were drawn. 

Moment Diagrams 

From the results of this study as shown in Table 4 and in Figs. 4, 5, 6 and 
7, section modulus values for clear arms and for arms containing knots of 
various sizes may be read and multiplied by appropriate fiber stresses to 
determine the resisting moments throughout the length of such arms. For 
example, the section moduli of clear arms of nominal dimensions, and of 
arms of minimum dimensions with the maximum knots permitted under the 
current Bell System crossarm specification (AT-7075) are as follows: 

Section of Arm 

Pole bolt hole  
Brace bolt holes  
Pole pinholes  
Other pinholes in middle section3  
End pinholes  
Other pinholes in end sections3  
Unroofed part of middle section  
Roofed part of middle section  
Solid part of brace bolt hole zones4. 
Between pinholes in end sections  
Extreme ends  

Arms of nominal size Arms of minimum size with 
and free from knots maximum knots 

Section Modulus Section Modu- Diameter of 
lus Max. Knots 

9.74 5.63 J" 4 
8.55 4.33 3" J 
5.11 3.28 r 
5.11 2.38 4 
5.11 1.33 U" 
5.11 1.41 ir 
9.78 3.84 ir 
8.60 2.95 ir 
8.60 4.56 r 
8.60 2.17 2" 
8.60 2.03 2" 

These section modulus values were used in preparing the moment dia- 
grams shown in Fig. 1. The clear arm of nominal dimensions was also 
assumed to be straight grained. The fiber stress factor used for it was 5000 
psi, which is the ultimate fiber stress value that has been employed in the 
Bell System for many years for sawn southern pine and Douglas fir. The 

3 For the purposes of specifying knot limitations, crossarms under Specification AT-7075 
are divided into a middle section ( between brace bolt holes) and end sections (beyond brace 
bolt holes). , , • , , ,1 4 Where a brace bolt hole zone is less than four (4) inches from a pinhole zone, these 
zones and the portion of the arm between them are considered as a single zone. 
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fiber stress factor used in computing the resisting moments for the arm of 
minimum size with maximum slant grain and maximum knots was 3250 
psi, which is simply 5000 psi discounted 35% to allow for slant grain of 1" 
in 8", which is the maximum permitted by Specification AT-7075. A dis- 
count is, of course, unnecessary for the presence of knots, since allowance 
for their effect on strength was made in the section modulus values used. 

Since the 5000 psi value is an ultimate fiber stress and not a working 
stress, and since the arms were assumed to be made of clear, straight grained 
material, Graph 1 (Fig. 1) represents an idealized condition. The resisting 
moments shown are probably the maximum that may be expected from 
any commercial lots of southern pine or Douglas fir crossarms,5 notwith- 
standing the fact that the dimensions of some of the arms may exceed the 
nominal specified. With respect to Graph 2 (Fig. 1), the objection may be 
raised that 35% is not a sufficient discount for a I" to 8" slant of grain and 
that the 3250 psi value makes no allowance for the effect of long continued 
loading. On the other hand, the graph assumes the simultaneous occur- 
rence of the maximum knot in a most damaging position in every section 
of an arm of minimum dimensions and having the maximum slant of grain 
allowed. Since the probability of such simultaneous occurrence of these 
defects and conditions is extremely small, it is felt that the resisting moments 
of Graph 2 represent the minimum strength of any arm of the two species 
concerned that may be furnished under Specification AT-7075. 

Under the assumptions made, Graphs 1 and 2 (Fig. 1) may be regarded 
as the upper and lower limits of the bending strength of specification cross- 
arms. On the same diagram may be plotted the graph or graphs of the 
moments resulting from any given load at each pin position, or any single 
load concentrated at any point on the arm. As an illustration, Graph 3, 
showing the bending moments from a load of 50 pounds per pin, is shown 
in the diagram (Fig. 1). A load of 50 pounds per pin is calculated to be the 
load of size 165 wire coated with ice having a radial thickness of j inch in 
span lengths of 235 feet, or of wire of the same size in 100 foot spans where 
the radial thickness of the ice coating is | inch. Since Graph 3 is wholly 
below Graph 2, even" an arm of lowest specification quality would support 
the assumed loads with some margin of strength to spare. This margin or 
factor of safety, would, of course, be increased greatly if the quality of the 
arm under consideration approached the quality assumed in Graph 1. As 
previously indicated, the probability is extremely remote that any single 
arm will ever be furnished of a quality as low as assumed in Graph 2. It 

5 Graphs 1 and 2 (Fig. 1) are for southern pine and Douglas fir crossarms. It is estimated 
that the resisting moments of comparable graphs for the other woods included in Specifi- 
cation AT-7075 should be about 20% lower. 
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follows, therefore, that the average strength of any lots of southern pine or 
Douglas fir arms produced under Specification AT-7075 may be expected 
to lie well above the Graph 2 limit. 

Graph 2 and a bending moment graph for vertical loads at each pin 
position are of considerable value to the material design engineer, since the 
degree of parallelism between the two will show whether a consistent 
strength relationship exists throughout the length of the crossarm. As a 
matter of interest in this connection, moment diagrams were used as a guide 
in setting the knot limitations shown in Specification AT-7075. 

Resisting and bending moment graphs may also be used to determine the 
location of the critical section of a crossarm by noting the point of coinci- 
dence between a maximum bending moment graph and the resisting moment 
graph for a clear arm. It can be shown by such graphs that this point in all 
types of Bell System crossarms, designed for vertical loads, is located at the 
pole pinholes. If the comparison were made between a maximum bending 
moment graph and the resisting moment graph of an arm containing all of 
the maximum defects permitted, the location of the point of coincidence 
between the graphs might or might not fall at the pole pinholes, depending 
on the magnitude and location of the defects allowed. It should be noted, 
however, that for such arms the critical section locations so determined apply 
only when the arms are actually of the assumed minimum quality; and, 
since the probability of such being the case is so extremely remote, it is 
concluded that the maximum stress or critical section locations in arms of 
that quality are of academic interest only, and that for all practical purposes 
the critical section of any 3j" x A\" x 10' crossarm is located at the pole 
pinhole. 

This conclusion does not mean that every arm broken in service or under 
test will break at the pole pinhole; for, obviously, if some other section is rela- 
tively weaker because of some hidden defect which reduces its section 
modulus or its fiber strength, it will break at such section regardless of any 
mathematical determination of the break location. But the conclusion 
does mean that, generally speaking, when a crossarm breaks the break will 
occur at, or be closely related to, the pole pinholes. To check the accuracy 
of this conclusion, an examination was made of all available crossarm 
strength test data in which the break locations were recorded. The exam- 
ination revealed that, out of 258 arms tested, the breaks in 219, or 85 per 
cent, were either at, or directly related to, the pole pinholes. Six per cent 
of the breaks were located between the two pole pinholes, and 9 per cent at 
points outside the pole pinholes. 

As an illustration of another use to which such a moment diagram may be 
put, the following specific example is cited. Before the present standard 
Bell System specification for crossarms was drafted, it was decided to 
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include a new type ("W6") with 16 pin positions. It was felt that, if the 
additional pin holes in the type W6 did not unduly weaken the arm, it could 
not only replace the old type "JW" arm with 8 pin positions but also be used 
in installations where greater flexibility in wire spacings might be required. 

JW ARM RESISTING MOMENTS 
AO 

30 

?*/ vu 20 
% 

yer 

50 
W6 ARM RESISTING MOMENTS 

40 

30 

2 2 
yu 

■Vo 
yo yc 

10 2 0 3 0 4 0 50 60 
DISTANCE FROM CENTER OF ARM - INCHES 

i o o JW 

O o W6 

Fig. 8—Resisting moments and maximum bending moments for clear JW and W6 
crossarms. 

In order to obtain an estimate of the strength relationship between the two 
types, strength tests were made of 10 matched arms of each type. The test 
arms were made of air-seasoned, clear Douglas fir. The dimensions of the 
crossarm blanks were Sj" x Ij" x 20'. In selecting the 10 blanks from 
which the test arms were made, only straight grained pieces free from 
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evidence of manufacturing and other defects were chosen. Each blank 
chosen was cut into two 10' lengths, one of which was made into a JW arm 
and the other into a W6 arm, making 10 matched arms of each type. The 
tests were made on an Amsler testing machine. The average breaking load 
at the end pinholes was 1159 pounds for the JW arms and 1002 pounds for 
W6 arms. 

At the same time an estimate was made of the theoretical strength rela- 
tionship between the two types by means of the moment diagrams shown in 
Fig. 8. In this figure are shown the graphs of the resisting moments (fiber 
stress factor—5000 psi) of clear JW and clear W6 arms, together with the 
graphs of the bending moments due to the maximum loads these arms would 
withstand when the loads are concentrated at the end pinholes. These 
maximum loads were determined by dividing the moments at the points of 
coincidence between the graphs (critical pole pinhole sections) by the dis- 
tances to the end pinholes. The maximum loads, so determined, are 608 
pounds for the JW arm and 532 pounds for the W6 arm. The fact that 
these loads are low as compared with the actual breaking loads shows, of 
course, that the average ultimate fiber stress developed by these selected 
arms was considerably greater than 5000 psi, which is not surprising in view 
of their exceptionally high quality. However, so far as the information 
sought is concerned—namely, to determine not the actual strength but the 
strength relationship between the two types—the result would be the same 
regardless of the fiber stress factor used in the moment diagram. 

The ratio of the strength of the W6 arm to that of the JW arm as shown 
both by the actual strength tests and by the moment diagrams was as fol- 
lows : 

Strength Ratio W6 to JW 

- nix'oo- 

(Per cent) 

Actual strength tests 86.5 

Moment diagrams — ii x ioo = 87.5 

These ratios show a remarkably close agreement between theory and ac- 
tuality and justify the belief that the crossarm moment diagram may be 
employed to obtain reasonably accurate estimates of relative bending 
strength. 

Summary 

The results of this study may be summarized as follows: 
1. The moment diagram is a useful guide in setting specification 

limitations on defects. 
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2. It is shown that the critical section of a crossarm is located at the pole 
pinholes. The practical value of this observation is that it emphasizes the 
need for keeping the pole pinhole sections and the portion of the arm be- 
tween them reasonably free from strength reducing defects. 

3. Only by breaking tests can the actual bending strength of crossarms 
be determined. The relative bending strengths, however, of two or more 
arms of different types or quality may be estimated with sufficient accuracy 
by means of the moment diagram, regardless of the fiber stress used in its 
construction. 

4. If the fiber stress factor employed is dependable, the moment diagram 
may be used to estimate the minimum factor of safety that would obtain 
for an arm of any type or any assumed quality. In this connection, it is 
believed that the strength of Bell System crossarms is well above the mini- 
mum required to support the loads ordinarily carried. 

5. The section modulus curves of Figs. 4, 5, 6 and 7 will simplify the con- 
struction of moment diagrams for arms of the same sizes shown in the figures 
but differing with respect to type and quality. 

The uses listed lead to the general conclusion that the crossarm moment 
diagram is a convenient and reasonably reliable engineering tool. 

Computation I. Moment of Inertia of Top Segment of Minimum {3fa" x 
4^2") Section between Pinholes: 
The moment of inertia {IT) of a segment (T) with respect to an axis 

through its center of gravity and parallel to its base maybe found by the 
formula 

where //<« is the moment of inertia of the segment about the axis BB,A 
the area of the segment and .v the distance between the two axes. The 
values I bb, A and x are given by: 

APPENDIX 

IT = IBb - Ax1 

(1) 

A = ^r2 (2a — sin 2a) (2) 

x = 
3 • 3 

2 r sin a 
1 A 

(3) 
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- *b 

X D 

5 —R  

Fig. 9—Crossarm section between pinholes. 

The significance of r and a in these formulae, and of the other symbols used 
in the computations that follow will be clear from a glance at Fig. 9. 

D = 4.09375" 

b = 3.1875" 
\b = 1.59375" 
r = 4" 
r- = 16.000000 
(1/2 b)- = 2.540039 
p"- = 13.459961 
p = 3.668782" 

Sin a = = 0.39843750 
r 

a = 23° 28' 49.93" 
a = 0.40981266 radians 

la = 46° 57' 39.86" 
Sin3 a = 0.063252925 

Sin 2 a = 0.73089017 
Cos a = 0.91719548 

Sin a Cos a = 0.36544507 
d = p {D — r) = 3.7625" 
A = 0.7099 sq. ins. [Area of T by Formula (2)] 
.v = 3.8018" [By Formula (3)] 
g = x - p = 0.1330" 

I bd = 10.2654 [By Formula (1)] 
A.v- = 10.2601 

IT = 0.0053 
(Note: While the results of this and the following computations are shown 
to four decimal places, the actual work was done by machine and carried 
to eight decimal places as mentioned in the text.) 

Since the width of the section in this computation and the radius of its 
roof is the same as for the minimum 3^" x 4" section at the end of the arm, 
the top segments of the two are identical, and the only value that will differ 
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will be the depth {d) of the rectangular portion of the section, which for the 
smaller will be p -\- {D — r), or 

3.6688 + (4 - 4) = 3.6688" 

Computation II. Moment of Inertia of Top Segment of Nominal (31" x 
4ys") Section between Pinholes: 

As this computation was made in exactly the same manner as Computa- 
tion I, only the results are here shown: 

d = 3.8593" 
g = 0.1317" 

.4 = 0.7168 sq. ins 
IT = 0.0053 

Computation III. Moment of Inertia of Top Segment of Minimum (3t&" x 
4^2") Pinhole Section: 

It will be noted in Fig. 10 that the top segment is divided into four parts: 
the small segment (Tf) at the top of the pinhole, the rectangular portion 

X, 

Ri, with a width of 61 and a depth of </i, and two portions designated Tc. 
The purpose of this computation is to determine the moment of inertia of 
one of the Tc portions with respect to its gravity axis parallel to its base. 
The moment of inertia of the two Tc portions about the axis BB may be 

1 JK 
d. fir 

D 
C 

B— 

t. 
r 

\ 

3 

-B- 

— b, — 

Fig. 10—Crossarm pinhole section. 
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found by deducting the moments of inertia of Ti and Ri about this axis from 
the moment of inertia of the entire top segment about the same axis. 

D = 4.09375" Sin a = = 0.16625 
r 

bi = 1.33" a = 9° 34'11.49" 
% bi = 0.665" a = 0.16702554 radians 
r = 4.00" 2a = 19° 8' 22.98" 
r- = 16.000000 Sin3 a = 0.0045949941 
(1/2 bx)- = 0.442225 Sin 2a = 0.32787285 
pY — 15.557775 Cos a — 0.98608364 
pi = 3.9443345" Sin a Cos a = 0.16393640 

d (Computation I) = 3.7625" 
di = pl+ {D - r) - d = 0.2756" 
n = - 1 /2d\ = 3.8065" 
Area R\ = b\di = 0.3665 sq. ins. 
.4i = 0.0494 sq. ins. [Area of T\ by Formula (2)] 
.Vj = 3.9666" [By Formula (3)] 

By Computation I, IT bb =■ 10.2654 
ITibb [Formula (1)] = 0.7777 

IR\bb — + Ri>'r — 5.3126 

6.0903 

2ITcbb = 4.1751 
The moment of inertia of the 2 Tc areas with respect to the axis through 

their own centers of gravity is given by 

2ITc = 21Tcbb - 2Tcz- 

where 
2 TV is the area of the two Tc portions of the top segment and is given by 

2Tc = A - (A1 + R1) 

in which A is the area of the entire top segment as shown in Computation 
I; and 

where, by the principle of moments, 

Tx — TiXi — R\r\ 
2 27V 

in which Tx, Ti.Vi and 7?iri are the moments of the areas of F, Zh and R\, 
respectively, about the axis BB. (Tx = Ax of Computation I.) 

Thus 
27V = 0.2940 sq. ins. 

z = 3.7680" 
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As previously shown, IITcbb — 4.1751 
2Tc z- = 4.1738 

2ITc = 0.0013 
ITc = 0.0007 

D - r = 0.09375" 
2 = 3.7680" 

3.8618" 
d = 3.7625" 

g for Tc = 0.0993" 

The results of this computation apply also to the minimum 3^" x 4" pin- 
hole section at the ends of the arm. The depth {d) of the rectangular por- 
tion of the end pinhole sections will be the same as at the extreme ends of the 
arm, viz. 3.6688". 

Computation IV. Moment of Inertia of Top Segment of Nominal {3\" x 4^") 
Pinhole Section: 

Since this computation was made in the same manner as Computation 
III, only the results are here shown: 

d = 3.8593" 
g = 0.1019" 

Tc — 0.1630 sq. ins. 
ITc = 0.0008 



Mathematical Analysis of Random Noise 

BY S. O. RICE 
{Concluded from July 1944 issue) 

PART III 

STATISTICAL PROPERTIES OF RANDOM NOISE CURRENTS 

3.0 Introduction1 

In this section we use the representations of the noise currents given in 
section 2.8 to derive some statistical properties of /(/). The first six sec- 
tions are concerned with the probability distribution of /(/) and of its zeros 
and maxima. Sections 3.7 and 3.8 are concerned with the statistical prop- 
erties of the envelope of /(/). Fluctuations of integrals involving I2{t) 
are discussed in section 3.9. The probability distribution of a sine wave 
plus a noise current is given in 3.10 and in 3.11 an alternative method of 
deriving the results of Part III is mentioned. Prof. Uhlenbeck has pointed 
out that much of the material in this Part is closely connected with the 
theory of Markoff processes. Also S. Chandrasekhar hhs written a review 
of a class of physical problems which is related, in a general way, to the 
present subject." 

3.1 The Distribution of the Noise Current23 

In section 1.4 it has been shown that the distribution of a shot effect 
current approaches a normal law as the expected number of events per 
second, v, increases without limit. 

In line with the spirit of this Part, Part III, we shall use the representation 

A" 
/(/) = XI C0" C0S S'n (2.8-1) 

n= 1 

to show that /(/) is distributed according to a normal law. This is obtained 
at once when the procedure outlined in section 2.8 is followed. Since an 

and bn are distributed normally, so are an cos w„t and bn sin unt when t is 
regarded as fixed. lit) is thus the sum of 2N independent normal variates 
and consequently is itself distributed normally. 

22 Stochastic Problems in Physics and Astronomy, Rev. of Mod. Phys., Vol. 15, pp. 
1-89 (1943). 23 An interesting discussion of this subject by V. D. Landon and K. A. Norton is given 
in the I.R.E. Proc., 30 (Sept. 1942) pp. 425-429. 

46 
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The average value of /(/) as given by (2.8-1) is zero since an = £„ = 0: 

7(0 = 0 (3.1-1) 

The mean square value of 1(1) is 

/2(0 = S (<*« cos2 u„t + b2n sin2 con/) n=l 

= E ®(/.)A/ (3.1-2) n = X 

f w(f) df = m ^ }po Jo 

In writing down (3.1-2) we have made use of the fact that all the a's and ^'s 
are independent and consequently the average of any cross product is zero. 
We have also made use of 

al = b\ = w(fn)Af, fn = nAf, a'n = 2irfn 

which were given in 2.8. \J/(t) is the correlation function of I(t) and is 
related to w(f) by 

■Ar = ^(r) = [. w(f) cos I-kJt df (2.1-6) 
Jo 

as is explained in section 2.1. In this part we shall write the argument of 
\P(t) as a subscript in order to save space. 

Since we know that /(/) is normal and since we also know that its average 
is zero and its mean square value is i^o, we may write down its probability 
density function at once. Thus, the probability of I(t) being in the 
range /, / + dl is 

dI <r'2/2*0 (3.1-3) 
"V/ Impi 

This is the probability of finding the current between I and / + <// ai a 
time selected at random. Another way of saying the same thing is to state 
that (3.1-3) is the fraction of time the current spends in the range 1,1 + dl. 

In many cases it is more convenient to use the representation (2.8-6) 

IV 
I{t) = XI Cn COS (unt — Vn), c't = 2'w(fn)Af (2.8-6) 

in which <^i , •••<£„ are independent random phase angles. In order to 
deduce the normal distribution from this representation we first observe 
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that (-2.8-6) expresses /(/) as the sum of a large number of independent ran- 
dom variables 

I{t) = .Tl + a"2 + • • • + 

Xn = Cn COS (aj„/ — <pn) 

and hence that as iV /(/) becomes distributed according to a normal 
law. In order to make the limiting process definite we first choose N and 
A/ such that fVA/ = F where 

f iv{f) df < e f w(f) df 
J F JO 

where e is some arbitrarily chosen small positive quantity. We now let 
]y cc and A/ —> 0 in such a way that NAf remains equal to F. Then 

A = a;i + ^2 + • * * + xl 

B = | |3 + • • • +| xN |3 

where the bars denote averages with respect to the ^c's, t being held constant. 
If we assume that the integrals are proper, the ratio BA~m —> 0 as iV —> co, 
and consequently the central limit theorem* may be used if w{f) = 0 for 
f > F. Since we may make F as large as we please by choosing e small 
enough, we may cover as large a frequency range as we wish. For this 
reason we write in place of F. 

Now that the central limit theorem has told us that the distribution of 
/(/), as given by (2.8-6), approaches a normal law, there remains only the 
problem of finding the average and the standard deviation: 

.V   
I(t) = ^2 cn COS (cOn / — <pn) = 0 

1 
  

IHt) = S c2„ COS2 {unt - <Pn) (3.1-5) 

[ wif) df = to 
Jo 

* Section 2.10. 

= J2 2w(/n)A/ COS2 (o}„ t — ipn) 

= 2 w(/n)A/ -> [ w{f) df 1 Jo 

(3.1-4) 

= X) (2w(/„)A/)3/2| cos (co„/ — Vn) I3 

i 

4(A/)1'2 f lw<J)]"'df 
Jo 

< 
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This gives the probability density (3.1-3). Hence the two representations 
lead to the same result in thi_.case. Evidently, they will continue to lead 
to identical results as long as the central limit theorem may be used. In the 
future use of the representation (2.8-6) we shall merely assume that the 
central limit theorem may be applied to show that a normal distribution 
is approached. We shall omit the work corresponding to equations (3.1-4). 

The characteristic function for the distribution of /(/) is 

ave. eu'(t) = exp — y u2 (3.1-6) 

3.2 The Distribution of I (t) and / (/ + t) 

We require the two dimensional distribution in which the first variable 
is the noise current /(/) and the second variable is its value /(/ + r) at some 
later time r. It turns out that this distribution is normal"4, as we might 
expect from the analogy with section 3.1. The second moments of this 
distribution are 

/in = /2(/) = h = f v>{f) df 
Jo 

M22 — l/'O 
(3.2-1) 

^ = /(/)/(* + r) 

= i/v 

The expression for nn is in line with our definition (2.1-4) for the correla- 
tion function: 

h = tKr) = Limit y f /(/)/(/ + r) dt (2.1-4) 
T —»ao i ^0 

In order to get the distribution from the representation (2.8-6) we write 

h = I{t) =Ylcn COS (<*)„/ — ^n) 
1 

.V 
h = I{t + T) = ^ Cn COS (oin / — ifn -J- ajn r) 

1 
24 It seems that the first person to obtain this distribution in connection with noise was 

H. Thiede, Elec. Nadir. Tek. 13 (1936), 84-95. 
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From the central limit theorem for two dimensions it follows that h and h 
are distributed normally. As in (3.1) 

Mu = /i = 2 4-5 f v>(f) df = ^ 1 JQ 

M22 = ll = II = ^0 (3.1-2) 
,v 

Ml2 = /j/2 = 2 ave- {C0s (.Unl — <pn) COS (wn/ — (fn + WnT)} 
1 

Now the quantity within the parenthesis is 

cos2 (co„/ — fn) cos «nT — cos (uj — (fn) sin (ajn^ — ipn) sin ajnr 

" and when we take the average with respect to ipn the second term drops 
out, giving 

Ml" = 2 cn • 5 cos un r —► [ w(f) cos lirfr df = pr (3.2-3) i Jo 

where we have used un = 2irfn and the relation (2.1-6) between w{f) and^'(r). 
The probability density function for h and h may be stated. From the 

discussion of the normal law in 2.9 it is 

[po — pl] 1/2 f—^q/I — ^0/2 + 2^t/i/o"I ^ 2_4) 
2ir 1 L 2(po - Pi) J 

For a band pass filter whose range extends from/a to/t we have 
r/b 

pr = I Wo COS 2irfT df 
J/a 

sin cost — sin uar 
= Wo 

= — sin TTT^fb — fa) COS 7rr(/6 + fa) 
ITT 

2tt 
(3.2-5) 

/ po = Woifb — /a) 

where wo is the constant value of w{f) in the pass band and 

ub = Irfb (3.2-6) 

COq z= 2irfa 

According to our formula (3.2-4), h and h are independent when pT 

is zero. For the r's which make pr zero, a knowledge of Ii does not add to 
our knowledge of h . For example, suppose we have a narrow filter. Then 

pT — 0 when r = [2(fb + fa)] 1 

pT is nearly — po when r = [/& + fa] 
1 
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For the first value of r, all we know is that To is distributed about zero with 
/o = i/'o. For the second value of r I* is likely to be near — A . This is 
in line with the idea that the noise current through a narrow filter behaves 
like a sine wave of frequency h(fb + fa) (and, incidentally, whose amplitude 
fluctuates with an irregular frequency of the order of h(fb — fa)). The first 
value of r corresponds to a quarter-period of such a wave and the second 
value to a half-period. By drawing a sine wave and looking at points sepa- 
rated by quarter and half periods, the reader will see how the ideas agree. 

The characteristic function for the distribution of h and !•> is 

where n and to are given and t is chosen at random is, as we might expect, 
normal in three dimensions. The moments, from which the distribution 
may be obtained by the method of Section 2.9, are 

[-y (m2 + v) - .Mf] (3.2-7) 

The three dimensional distribution in which 

h = m 

h = I(t -\- ti) 

/a = /(/-(- TI T2) 

Mil — M22 — M33 = "At) 

M12 = '/'r1 

M23 = "Aro 

M13 = lA(ri + To) = lAn+rj 

The characteristic function for /1, /«, /a is 

ave. 

We shall use the following result. Let y be given by 

y = F(o, ,ao, aN ] x), (3.3-1) 

and let the u's be random variables. For a given set of a's, this equation 
gives a curve of y versus .v. Since the a's are random variables we shall call 
this curve a random curve. Let us select a short interval .Vi, .ti + dx, 
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and then draw a batch of a's. The probability that the curve obtained by 
putting these a's in (3.3-1) will have a zero in Xi, Xi + dx is 

dx f 1 ?? | p(0, ri; a;i) drj (3.3-2) 
J—oo 

and the expected number of zeros in the interval (xi, x?) is 

v\p{0, v', x) dri (3.3-3) 
I>£ 

In these expressions />(£, V, x) is the probability density function for the 
variables 

£ = F(fli, • • • a.v; x) 

d p (3.3-4) 

Since the a's are random variables so are £ and 77, and their distribution 
will contain x as a parameter. This is indicated by the notation p(^, r/; ;v). 

These results may be proved in much the same manner as are similar 
results for the distribution of the maxima of a random curve. This method 
of proof suffers from the restriction that the a's are required to be bounded."' 
Results equivalent to (3.3-2) and (3.3-3) have been obtained independently 
by M. Kac.26 His method of proof has the advantage of not requiring the 
a's to be bounded. 

Here we shall sketch the derivation of a closely related result: The prob- 
ability that y will pass through zero in .Vi , .Vi + dx with positive slope is 

dx [ 77^(0, 77; Xi) dt] (3.3-5) 
Jo 

We choose dx so small that the portions of all but a negligible fraction 
of the possible random curves lying in the strip (.vi, Xi + dx) may be re- 
garded as straight lines. If y = ^ at .v, and passes through zero for *1 < .v < 

U IS .Vi — s 

must be of opposite sign and 

xx -f dx, its intercept on y = 0 is .Vi - ^ where 77 is the slope. Thus * and 77 

t 
£1 < £1 — - < -fi -f dx 

V 

25 S. 0. Rice, Amer. Jour. Malik Vol. 61, pp. 409-416 (1939). However, L. A. MacColl 
has pointed out to me that a set of sufficient conditions for (3.3-5) to hold is: (a)_ />(£, 77; .v) 
is continuous with respect to (£, 77) throughout the i^-plane; and (b) that the integral 

/ p{av, 17; Xi) d-n 
Jo 

converges uniformly with respect to a in some interval —ai<a<a2, where ai and 02 
are positive. These conditions are satisfied in all the applications we shall make use of 
(3.3-5). 

26 M. Kac, Bull. Amer. Math. Soc. Vol. 49, pp. 314-320 (1943). 
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According to the statement of our problem, we are interested only in positive 
values of 77, and we therefore write our inequality as 

— r]dx<%<0 

For a given random curve i.e. for a given set of a's % and 77 have the values 
given by 

^ = F(oi, aN •, xi) 

-El 

If these values of ^ and 77 satisfy our inequality, the curve goes through zero 
in .Ti, xi + dx. The probability of this happening is27 

[ drj f d£P(£, V, Xi) = / [0 — (—77 ^)]/>(0, 77; ^ 
•'O •f—ijdx JO 

where we have made use of the fact that dx is so very small that ^ is effec- 
tively zero. The last expression is the same as (3.3-5). 

In the same way it may be shown that the probability of y passing through 
zero in .Ti, Xi dx with a negative slope is 

-dx [ vp{0, 77; xi) dri (3.3-6) 
J—CO 

Expression (3.3-2) is obtained by adding (3.3-5) and (3.3-6). 
We are now ready to apply our formulas. We let t, /(/) and play the 

roles of .v, y, and an , respectively, and use 

I(t) = Z ^ cos (o)nt - Vn), c'n = 2w(f)Af (2.8-6) 

-7 MacColl has remarked that the step from the double integral on the left hand side 
of this equation to the final result (3.3-5) may be made as follows: 
It is easily seen that the probability density we are seeking is 

I ^ C.^ 
Proceeding formally, without regard to conditions validating the analytical operations 

(for such conditions see the footnote on page 52), we have 

dAx I0 
dV f A 

V' ^ = f0 
dr1 

density is 

J Vp(0, 77; x) drj 

-jjAI 
and hence the required probability density is 
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The first step is to find the probability density function of the two random 
variables 

N 
£ = S COS (aj„ — ^n) 

"=1 (3.3-7) 
JV 

v = /'(/,) = — X) sin (co„fi — ifn) 

where the prime denotes differentiation with respect /. From section 2.10 

Mu = £2 = 

M22 = 7J2 — cnWn sin (a)n fPn) n=l 

= t, (2t/.)!W(/„)A/ 
71=1 

V f fw(J) df = 

fXu = frl = — C0S — ¥"•) sin — 

71=1 

= 0 

The expression for M22 arises from (2.1-6) by differentiation. In this expres- 
sion Vo' denotes the second derivative of ^(r) with respect to r at r = 0: 

\P"{t) = f w(f) cos 2ir/T df (3.3-8) 

Hence the probability density is 

rt+q 
L 2^0 2^0J 

(r A \-Mo] 112 , _ ^ 
Pit, V,t) =  ^  exP I n.r (3.3-9) 

where po is negative. It will be observed that the expression on the right 
is independent of /. Hence the probability of having a zero in h , h + dt, 

(3.3-10) dt 
/+■*> 

\v CO 
v/2*y d _dtv >-(0)] 

v ttL ^(0)J 

1/2 

27r 

which follows from (3.3-3), is independent of /. 
The expected number of zeros per second, which may be obtained from 

(3.3-3) by integrating (3.3-10) over an interval of one second, is 
- r« 11/2 
J fw(J)df 

i[_mr = 2 
TT L ^(0) J 

[ w(J) df 
- h 

(3.3-11) 
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For an ideal band pass filter whose pass band extends from /„ to/(, the 
expected number of zeros per second is 

'BMT 

When /„ is zero this becomes 1.155 ft, and when /„ is very nearly equal to 
/& it approaches/& + fa . 

In a recent paper M. Kac28 has given a result which, after a slight gene- 
ralization, leads to 

for the probability that the noise current will pass through the value / 
with positive slope during the interval /, t -f dt. The expected number of 
such passages per second is 

e-'-Wo ^ ji t}ie expecte(i number of zeros per second] (3.3-14) 

The expression (3.3-13) may also be derived from analogue of (3.3-5) 
obtained by replacing the zero in p(0, rj; .Vi) by y. 

In some cases the integral 

to = -Air'2 [ /«■(/) df 
Jo 

does not converge. 
An example occurs when we apply a broad band noise voltage to a re- 

sistance and condenser in series. The power spectrum of the voltage across 
the condenser is of the form 

«■(/) = (3.3-15) 

Although to is infinite, to is finite and equal to ir/2a. A straightforward 
substitution in our formula (3.3-11) gives infinity as the expected number 
of zeros per second. 

Some light is thrown on this breakdown of our formula when we consider 
a noise current consisting of two bands of noise. One band is confined to 
relatively low frequencies, and its power spectrum will be denoted by 

The other band is very narrow and is centered at the relatively high 
frequency /o. The complete power spectrum of our noise is then 

wif) = Wiif) + A'Sif - fi) 
2S On the Distribution of Values of Trigonometric Sums with Lineaxly Independent 

Frequencies, Amcr. Jour. Math., Vol. LXV, pp 609-615, (1943). 
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where the unit impulse function 5 is used to represent the very narrow band. 
The power spectrum of the narrow band is approximately the same as that 
of the wave cos lirfit. 

The integrals occurring in our formula are 

jf w(J) df = wi{f) df + A2 

= W + A2 

f w(J)f2 df — I f2wi(J) df + A2fa Jo Jo 

= [/ + A2fl 

We suppose that A and /2 are such that 

W » A2 

U « A2fl. 

Then our formula (3.3-11) gives us the expected number of zeros 

-Afr 
IT1'2 

We may give a qualitative explanation of this formula if we regard our 
noise current as composed of a small component 

h = 2mA cos Infit 

due to the narrow band superposed on a large, slowly varying component 
due to the lower band. Since the r.m.s. value of the second component is 
W112 we may assign it a representative frequency/i and write it approxi- 
mately as 

h = (2W)1/2 cos 2Trfit 

The zeros of the noise current are clustered around the zeros of the second 
wave. Near such a zero 

11 = ±(2IT)1/227r/1A/ 

where A/ is the distance from the zero. The oscillations of /j produce zeros 
when | /i | is less than the amplitude of h or when 

A > If 1/227r/i | M | 

and the interval over which zeros are produced is given by 

2A/ = ^ 
17fI 
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The number of zeros is this multiplied by 2/2. Since there are 2/i such 
intervals per second the number of zeros per second is 

- AW~ll2fi TT 

This differs from the result given by our formula by a factor of 2/t. 
This discrepancy is due to our representing the two bands by the sine waves 
Ii and lo. 

From this example we obtain the picture that when the integral for \po 
converges corresponding to A —» 0, while at the same time the integral for 

diverges, corresponding to /o —» =0 in such a way that A}i-* ^, the 
noise current behaves something like a continuous function which has no 
derivative. It seems that for physical systems the integrals will always 
converge since parasitic effects will have the effect of making w(/) tend to 
zero rapidly enough. The frequency which represents the region where 
this occurs is of the order of the frequency of the microscopic wiggles. 

So far we have been considering the formulas of this section in the most 
favorable light possible. There are experiments which indicate the possi- 
bility of the formulas breaking down in some cases. Prof. Uhlenbeck has 
pointed out that if a very broad band fluctuation current be forced29 to flow 
through a circuit consisting of a condenser, C, in parallel with a series com- 
bination of inductance, L, and resistance, R, equation (3.3-11) says that the 
expected number of zeros per second of the current, /, flowing through R 

(and L) is independent of R. It is simply -(Z,C)_1/2. The differential 
TT 

equation for I is the same as that which governs the Brownian motion of a 
mirror suspended in a gas30, the gas pressure playing the role of R. Curves 
are available for this motion and it is seen that their character depends 
greatly upon the pressure31. Unfortunately, it is difficult to tell from the 
curves whether the expected number of zeros is independent of the pressure. 
The differences between the curves for various pressures indicates that there 
may be some dependence*. 

3.4 The Distribution of Zeros 
The problem of determining the distribution function for the distance 

between two successive zeros seems to be quite difficult and apparently 
29 For example, by putting the circuit in series with a diode. 30 This problem in Brownian motion is discussed by G. E. Uhlenbeck and S. Goudsmit, 

Phys., Rev., 34 (1929), 145-151. 31 E. Kappler, Annalen d. Phys., 11 (1931) 233-256. 
* Since this was written M. Kac and H. Hurwitz have studied the problem of the ex- 

pected number of zeros using quite a different method of approach which employs the 
"shot-effect" representation (Sec. 3.11). Their results confirm the correctness of (3.3-11) 
when the integrals converge. When the integrals diverge the average number of elec- 
trons, per sec. producing the shot effect must be considered. 
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nobody has as yet given a satisfactory solution. Here we shall give some 
results which are related to the general problem and which give an idea of 
the form of the distribution for the region of small spacings between the 
zeros. 

We shall show (in the work starting with equation (3.4-12)) that the 
probability of the noise current, /, passing through zero in the interval 
r> t -j- (It with a negative slope, when it is known that / passes through zero 
at r = 0 with a positive slope, is 

£[=^T[s^]-f'r3'2[l+Bcori(_'ff)i (3'4",) 

where Mw and M-n are the cofactors of ^22 = —fa and nn-3 = —Vv in the 
matrix 

M = 
'fa 0 ir fa 
0 -t" -tr -tr 
t'r -tr -t" 0 

_fa —t'r d fa_ 

(3.4-2) 

II = — ^23] ' • 

We choose 0 < cot-1 { — II) < tt, the value tt being taken at r = 0, and the 
value 7r/2 being approached as r —> co. It should be remembered that we 
are writing the arguments of the correlation functions as subscripts, e.g., 
— yp" is really 

—^"{t) = 47r2 [ fw(J) cos lirfr df (3.3-8) 
Jo 

As r becomes larger and larger the behavior of / at r is influenced less 
and less by the fact that it goes through zero with a positive slope at r = 0. 
Hence (3.4-1) should approach the probability that, for any interval of 
length dr chosen at random, I will go through zero with a negative slope. 
Because of symmetry, this is half the probability that it will go through 
zero. Thus (3.4-1) should approach, from (3.3-10), 

ds\z^T (3.4-3) 
2Tr[_ fa J 

as T _> 00. It actually does this since M approaches a diagonal matrix 
and both M23 and II approach zero with M-a/II —> M22 —^ —fato- For a 
low pass filter cutting of! at fb (3.4-3) is 

drfbi-112 (3.4-4) 

The behavior of (3.4-1) as r —»0 is quite a bit more difficult to work out. 
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A/oo and M23 go to zero as r4, M22 — M23 as r10, and consequently H goes 
to infinity as t-1. The final result is that (3.4-1) approaches 

as r-^O, assuming \J/{4) exists. Here the superscript (4) indicates the fourth 
derivative at r = 0, 

*o4) = IfiTT4 [ fwif) dj (3.4-6) *0 

For a low pass filter cutting off at/& (3.4-5) is 

dT $0 (2irSb)2 (3-4-7) 

When (3.4-1) is applied to a low pass filter, it turns out that instead of t 
the variable 

V = 2irfbT, dtp = lirfbdr (3.4-8) 

is more convenient to handle. Thus, if we write (3.4-1) as p(<p) dtp, it fol- 
lows from (3.4-4) and (3.4-7) that 

Pif) —> 2*^/3 = ■0919 as ^ ^ 00 

(3.4-9) 

P(<p) ^ as 00 

p(tp) has been computed and plotted On Fig. 1 as a function of tp for the 
range 0 to 9. From the curve and the theory it is evident that beyond 
9 p{tp) oscillates about 0.0919 with ever decreasing amplitude. 

We may take p(tp) dtp to be the probability that I goes through zero in 
tp,tp -\- dp, when it is known that I goes through zero at ^ = 0 with a slope 
opposite to that at p. p(p) dp exceeds the probability that I goes through 
zero at <£ = 0 and m p,p -\- dp with no zeros in between. This is because 
p{fp) dp includes all curves of the latter class and in addition those which 
may have an even number of zeros between 0 and p. From this it follows 
that the curve giving the probability density of the intervals between zeros 
must be underneath the curve of p{p). 

A partial check on the curve for p{p>) may be obtained by comparing it 
with a probability density function obtained experimentally by M. E. 
Campbell for the intervals between 754 successive zeros. He passed thermal 
noise through a band pass filter, the lower cutoff being around 200 cps and 
the upper cutoff being around 3000 cps. The upper cutoff was rather grad- 
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ual and it is difficult to assign a representative value. The crosses on figure 
1 are obtained from his data when we assume that his filter behaves like a 
low pass filter with a cutoff at /b = 2850, this choice being made in order 
to make the maximum of his curve coincide with that of 

It is seen that some of the crosses lie above p{v)- This is probably due 
to the fact that the actual filter differs somewhat from the assumed low pass 
filter. 

On Fig. 1 there is also plotted a function closely related to (3.4r-l). It 
is the low pass filter form of the following: The probability of I passing 

/- D \ \ 

/ 
\ 

V 
— 183 a 

•/ 

\ \ \ \ \ 
/ \ 

\ \ 0 s 
— .091 s 

y |6 = TT/3" ' 
EXPERIMENTAL POINTS 

0 
6 e 10 12 
5)=2nfbT 

Fig. 1—Distribution of intervals between zeros—low-pass filter 
is probability of a zero in A<p when a zero is at origin. 

ygAcp is probability of a zero in Sip when a zero is at origin and slopes at zeros are of 
opposite signs. 

yB = p{ip),fb = filter cutolT, r = time between zeros. 

through zero in r, r -j- dr when it is known that I passes through zero at 
r = 0 is 

~ + H tan_I m (3-4"10) 

where the notation is the same as in (3.4-1) and — ~ < tan H < -. 

This curve should always lie above p(v) and the small difference between 
the curves out to ^ = 4 indicates that [the true distribution of zeros is given 
closely by p(<p) out to this point. 

When (3.4-1) is applied to a relatively narrow band pass filter or some 
similar device we may make some approximations and obtain an expression 
somewhat simpler than (3.4-1). As a guide we consider our usual ideal 
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band pass filter whose range extends from fa to ft. The correlation function 
is given by (3.2-5). 

tr = — sin irrifb — fa) cos irrfji, + fa) 
7rT (3.2-5) 

'Ao = Wo (/ft - fa) 

From physical considerations we know that in a narrow filter most of the 
distances between zeros will be nearly equal to 

=  1 
fb + fa 

i.e., nearly equal to the distance between the zeros of a sine wave having 
the mid-band frequency. We therefore expect (3.4-1) to have a peak very 
close to n . We also expect peaks at 3ti , 5ri etc. but we shall not consider 
these. We wish to examine the behavior of (3.4-1) near n . 

It turns out that M23 is nearly equal to M22 so that H is large and (3.4-1) 
becomes approximately 

dr f iAq T/2 M23 

2 L-^o'J [1A0 - W2 

where r is near n . 
In order to see that M-^xs nearly equal to M-n we use the expressions 

Ma = — tAo'^O — Vr) — lAolAr2 

•M28 = trito — Ar) + Ar/r' 

M22 + .M23 = (Ao — Ar)[(Ao + At)(At' " Ao') " A'2] 

= (Ao - At)[5 + C] 

Mil — A/23 = (Ao + At)[(Ao — At)(— At' — Ao') — At2] 

= (Ao + At)[- 5 + C] 

B = AoAt — AtAo' 

C = — AoAo' + ArAr — A'2 

From (3.2-5) it is seen that At may be written as 

iT = A cos /3r, /3 = Tr(Jb + fa) 

where Pn = tt and .4 is a function of r which varies slowly in comparison 
with cos pr. We see that near n , At is nearly equal to —Ao . Likewise 
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\p'T hovers around zero and i/v is nearly equal to — • Differentiating with 
respect to r gives 

i/-' = A' cos /3t — Afi sin /3r 

4," = {A" - Atf) cos Pt - 2.-1sin /3t 

4/0 = Ao — ^loiS2, ^0 = Ao 

where Ao and Ao are the values of A and its second derivative at r equal 
to zero. These lead to 

B = {AoA" — AAo) cos Pt — lAoA'PsinPr 

C = (AA" — A'2) cos2 Pt — AqAq + (Al — A)2p2 

We wish to show that C + B and C — B are of the same order of magni- 
tude. If we can do this, it follows that - M23 is much smaller than 
jVf22 ^23 since ^0 — is approximately 2^0 while \po + tn is quite small. 
Consequently we will have shown that M-x is nearly equal to M22. 

So far we have made no approximations. We now express the slowly 
varying function A as a power series in r. Since 4/o and 4/o must be zero 
for the type of functions we consider, it follows that 

A = Ao ^ Ao + • * 

A' = tAo + •• 

A" = Ao + j A^ + • • 

where we neglect all powers higher than the second. Multiplication and 
squaring gives 

A2 - At = T2AoAO 

AA- _ A'2 = AoA'o' + ^ (AoAP - Ao2) 

= A0A0 F 

AoA" - AAo = ^ (AoA? - Ao2) = F 

Since, for small r, A and A" are nearly equal to ^lo and Ao, respectively 
we see that the difference on the left is small relative to A0A0, i.e., 

| F | < < Mo^o'l 
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Our expression for B and C become approximately 

B = F cos /3t — IAqAqPt sin /3r 

C = F cos2 fir — A0A" sin2 /3r — AoAoffr2 

When r is near n , /3t is approximately tt. Hence both C B and C — B 
are approximately —AoAo t' and are of the same order of magnitude. Con- 
sequently M22 and M03 are both nearly equal and 

M23 = UC + B] 

= -AlioV 

When this expression for M23 is used our approximation to (3.4-1) gives 
us the result: If the correlation function is of the form 

tr = A cos (5t 

where A is a slowly varying function of r, the probability that the distance 
between two successive zeros lies between r and r + tfr is approximately 

dr a 
2 U + a2(r - n)2]3'2 

where a is positive and 

2 _ AoP2 
a — it 0, r 1 — — 

-AotI' p 

For our ideal band pass filter with the pass band fb — fa , 

  /?(/&+ fa)' _ 1 — V3 — — , ti = 
fb — fa fb + fa 

and the average value of | r — n | is a" . Thus 

ave. | r — ri | _ 1 _ fb — fa _ ^ band width 
Ti ori (fb -f fa) 2\/3 mid-frequency 

When the correlation function cannot be put in the form assumed above 
but still behaves like a sinusoidal wave with slowly varying amplitude we 
may use our first approximation to (3.4-1). Thus, the probability that the 
distance between two successive zeros lies between r and r + dr is approxi- 
mately 

bdr 
r.2 • 213/2 
m — vA 

when r lies near n where ri is the smallest value of r which makes \J/T 

approximately equal to —i^o. This probability is supposed to approach 
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zero rapidly as r departs from n , and h is chosen so that the integral over 
the effective region around ri is unity. 

It seems to be especially difficult to get an expression for the distribution 
of zeros for large spacing. One method, suggested by Prof. Goudsmit, is 
to amend the conditions leading to (3.4-1) by adding conditions that I be 
positive at equally spaced points along the time axis between 0 and r. 
This leads to integrals which are hard to evaluate. For one point between 
0 and r the integral is of the form (3.5-7). 

Another method of approach is to use the method of "in and exclusion" 
of zeros between 0 and r. Consider the class of curves of I having a zero 
at r = 0. Then, in theory, our methods will allow us to compute the func- 
tions />o(r), />i(r, r), piir, s, r); associated with this class where 

^o(t) dr is probability of curve having zero in dr 
p\{r, t) dr dr is probability of curve having zeros in dr and dr 
p2(r, s, t) dr dr ds is probability of curve having zeros in dr, dr, and ds 

In fact Po(t) dr is expression (3.4-10). The method of in and exclusion 
then leads to an expression for Pair) dr, the probability of having a zero 
at 0 and a zero in r, r -f dr but none between 0 and r. It is 

-Po(r) = Po{t) ^ pi(r, r) Jr + i jf jf p2(r, s, r) dr ds 

~ j] J0 I I ^
r's' T) dr ds dt + • • • 

Here again we run into difficult integrals. Incidentally, (3.4-11) may be 
checked for events occurring independently at random. Thus if v dr is 
the probability of an event happening in dr, then, if ^ is a constant and the 
events are independent, we have po , pi, pt, • • • given by v, v , v , • • • . 
From (3.4-11) we obtain the known result Po(t) = vc 

We shall now derive (3.4-1). The work is based upon a generalization of 
(3.3-5): If y is a random curve described by (3.3-1), the probability that y 
will pass through zero in .Ti, Xi + dxi with a positive slope and through 
zero in .T2, Xz -|- dx2 with a negative slope is 

/•+co r0 

—dxidxzj drji J dijoiiiVzPiO, iji, xi; 0, in, Xi) (3.4-12) 

where p(b , rn, .Vi ; &, rjz, xz) is the probability density function for the 
four random variables 

= P(fll > ^2 > ' ' ' f aN > Xi) 

(3.4-11) 
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The xi and xi play the role of parameters in (3.4-12). This result may be 
established in much the same way as (3.3-5). 

When we identify F with one of our representations, (2.8-1) or (2.8-6), 
of the noise current /(/) it is seen that p is normal in four dimensions. We 
may obtain the second moments directly from this representation, as has 
been done in the equations just below (3.3-7). The same results may be 
obtained from the definition of ^(r), and for the sake of variety we choose 
this second method. We set Xi = h , .To = h -\- t. Then 

hb = Km + r) = Pr (3.4-13) 

where primes denote differentiation with respect to the arguments. Inte- 
grating by parts: 

Jj ni + r) dm = ire + T)m]« -1 i"(t + r)m dt 

We assume that I and its derivative remains finite so that the integrated 
portion vanishes, when divided by T, in the limit. Since 

I"(l + 0 = ~ /« + T) OT- 

we have 

Vim = ~^oKr) = 

Setting r = 0 gives 

Vi = V2 = —vo 

in agreement with the value of H22 obtained from (3.3-7). In the same 
way 

^772 = Limit ^ [ I'(I + t)I(() dt = ^ pir) 
T—oo 1 Jo or 

= Pr 

^ = Limit I f I'{t)Kt + r) dt 
T—oo 1 Jo 
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where we have integrated by parts in getting • Setting r = 0 and using 
to = 0 gives 

Vl = &V2 = Q 

In order to obtain the matrix M of the second moments /Xrs in a form 
fairly symmetrical about its center we choose the 1, 2, 3, 4 order of our 
variables to be t-i, vi, vz, & ■ From equations (3.4-13) etc. it is seen that 
this choice leads to the expression (3.4-2) for M. 

When we put and & equal to zero, we obtain for the probability density 
function in (3.4-12) the expression 

M 1-1/2 

47r2 exp ^ ~2 j m | ^'^22 7^ 2^23171172 + M33 772)^ 

Because of the symmetry of M, is equal to Mzo. When, in the integral 
(3.4-12) we make the change of variable 

r M22 n1'' -M22 "i1 

X = [2lW\} y~~2[W\\ 

1/2 
772 

we obtain 

dXidxAMf* r r ^^_x2_u2+2{il23lM2n_)iij 

Jo Ja TT2 M22 

The double integral may be evaluated by (3.5-4). Let 

v = cos"-1 (- ^) = cot"1 (-»). n = MAMh - Ml,]-112 

where H is the same as that given in (3.4-2). Our expression now becomes 

dxidxz \M\312 . x , 
mY^M2,11 + n cot (_a)1 

From a property of determinants 

M22M33 — M23 = |il^| (to tr) 

Using this to eliminate | M | and dividing by 

dxi [-tol'2 

27r L to J 

which, from (3.3-10), is the probability of going through zero in .Ti, a"i + dxi 
with positive slope, gives the probability of going through zero in dx? with 
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negative slope when it is known that / goes through zero at Xi with positive 
slope: 

— r-^'TW - Mh]mul - + B cor1 (-fl)i 2r [_-io J 

This is the same as (3.4-1). 
The expression (3.4-10) is the same as the probability of I going through 

zero in dr when it is known that I goes through zero at the origin with posi- 
tive slope. This second probability may be obtained from (3.4-1) by add- 
ing the probability that / goes through dr with positive slope when it is 
known to go through zero with positive slope. Thus we must add the ex- 
pression containing the integral in which the integration in both rp and 772 
run from 0 to ». In terms of x and y this integral is 

f xdx rdyy(r^~'v 
Jo Jo 

This is equivalent to a change in the sign of M23 and hence of ff. After 
this addition we must consider 

1 + ff cot-1 (-//) + 1 - ff cor1 H 

= 2 + 1/ [cot-1 (-//)- cot"1 II] 

= 2 + //[tt - 2 cot-1 //] 

= 2(1 + // tan"1 //] 

and this leads to (3.4-10). 

3.5 Multiple Integrals 

We wish to evaluate integrals of the form 

j = f dxi 1"° dx2e-ri-2aziIa--Ti (3.5-1) 
Jo Jo 

Our method of procedure is to first reduce the exponent to the sum of 
squares by a suitable linear change of variable and then change to polar 
coordinates. This method appears to work also for triple integrals of the 
same sort, but when it is applied to a four-fold integral, the last integration 
apparently cannot be put in closed form. 

The reduction of the exponent to the sum of squares is based upon the 
transformation: If* 

xi = //iyi + liiDnyz + h3 D31 y3 + * • • + hnDntiyn 

X2 =0 + Ih D22>'2 + • * • + Dn,2y„ (3.5-2) 

A'n = 0 +0 + • • • +0 + hn Dn.ny'n 

* T. Fort, Am. Math. Monthly, 43 (1936), pp. 477-481. _ Sec also Scott and Mathews, 
Theory of Determinants, Cambridge (1904), Prob. 63, p. 276. 
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where Do = Di = an , DTtT = Dr_x, and Drs is the cofactor of asr (or 
of ari because they are equal) in DT : 

Dr = 
an au * • • air 
ai2 322 
air • • • arr 

h, = 

then, if none of the ZVs is zero, 

2 aT,XTXa = yi + y2 + • • ■ + y\ 
i 

From (3.5-2); the Jacobian d(.ri, • • • xn)/d{yi, • • • yn) is equal to D~^12. 
Applying our transformation to the exponent: 

*i = yx — aD71/2y2 

^"2 = 0 + Dz112}'? 

D-i = \ — a 

Since ;V2 runs from 0 to co so must yz. The expression for Xi shows that yi 
runs from a Dzll2y2 to °o, The integral is therefore 

J = Dzm r dyz r e-"'-"' dyv 

dyi dyz = p dp dO 

We now change to polar coordinates: 

yi = p cos 6 

yz = P sin d 

y2 > 0 gives 0 < 0 < tt 

yi ^ aDzll2y2 gives cot 6 > aDz112 

and obtain 
t.—1 nf).. 1/2 

J = Dz1'2 
* au.t a 

dO I Jo Jo 
dd I pe p2 dp 

'o 

= iDr1/2 cot-1 [aDz1'2) 

where the arc-cotangent lies between 0 and tt. This may be written in the 
simpler form 

J = ^(1 — a2)_1/2 cos-1 a = \(f csc ^ 

where 
a — cos ip, 

it being understood that 0 < <p < t. 
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Other integrals may be obtained by differentiation. Thus from 

r dx r dy e-'*-"*-2"'C09 ^ = y CSC ^ (3.5-3) 
Jo Jo 

we obtain 

£ dx jf dy xy e-'-''-1" = 1 cSc! *.(1 - ^ cot v) (3.5-4) 

By using the same transformation we may obtain 

f'dxf'dyyr-"-"-'^^^ (3.5-5) 

Of course, we may expand part of the exponential in a power series and 
integrate termwise but this leads to a series which has to be summed in each 
particular case: 

~CO .00 
I t I J " m —i2—J/2—2axi/ I dx dy x y e 

If we take -1 < R(m) < -^ -1 < R(m) < -%, the series may be 
summed when a = 1. The result stated just below equation (3.8-9) is ob- 
tained by continuing m and n analytically. 

The same methods will work when the limits are ± » . We obtain, when 
m and n are integers, 

f+co -+« 
dx I dyxnyme-x- 

oo J— co 
I/2—2X1/ COS ^ 

0, w + in odd 
/ w + w + l\ (3.5-6) 

(-Y^/Z \ 2 / V ; V (sin ip)n+m+1 

(1 — n — in 1 — cos (p\ , 
-n, -in-    ;   ), n + m even 

The hypergeometric function may also be written as 

/ ii m \ — n — m . 2 ^ 
\—2' — 2*—^;sm *) 
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By transformations of this we are led to the following expression for the 
integral 

0, n + m odd, 

(sin 2' 2 ' 2 ' COS / ' 

/(' + i)r('+5) 

m, n both even, 

— m 1 — « 3 2 
(sin ip)n+m+i C0S ^ I, 2 ' 2 »2'C0S ^ 

« odd 

As was mentioned earlier, the method used to evaluate the double inte- 
grals may also be applied to similar triple integrals. Here we state two 
results obtained in this way. 

/ dx / dy I dz exp [—.r2 — y2 — i — 2cxy — 2bzx — 2ayz\ 
Jo Jo Jo 

/ dx / dy dz yz exp [—x2 — y1 — z' — 2cxy — 2bzx — 2ayz\ 
Jn Jb Jq 

_ \/ tt r i + o — b 
8D3 |_ 1 + a 

— c a — be . . „ . ,~| 
 —172- O + /* + t - *■)! 

D\ 
(3.5-7) 

where /3 and 7 are obtained by cyclic permutation of a, b, c from 

a = cos -1 a - cb _ • -1 f Ds 11/2 

(1 - c2)1/2(l - i2)'/2 Sin [(1 - c2)(l - b2)] 

,a — be 
= COt 1/2 

L>3 

where a, /3, 7 all lie in the range 0, tt and where 

I c b 
D* = c 1 a 

b a I 
= 1 + 2 abc — a — b~ — c' 

For reference we state the integrals which arise from the definition of the 
normal distribution given in section (2.9) 

71/2 /+«> «+» f " 1 f " T 
dxi • • • j dxn exp — X) flrs -Tr -T, J = J^| ^ J 

L dxi " L dxM exp a"x'x-] - fe]' 1 

(3.5-8) 
-■itu 
Y 
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where the quadratic form is positive definite and \ a \ is its determinant. 
A m is the cofactor of am . Incidentally, these may be regarded as special 
cases of 

£ dXl •" f dXnf QrsXrX^j F brX^j 

9 [- n—l-|l/2 r-r« r® 

= LmJ L dxi dyyn~f(x + ^ (3.5-9) 

^ A ra br bg 

which is a generalization of a result given by Schlomilch.* 

3.6 Distribution of Maxima of Noise Current 

Here we shall use a result similar to those used in sections 3.3 and 3.4. Let 
y be a random curve given by (3.3-1), 

y = F(ai a# ; x). (3.3-1) 

If suitable conditions are satisfied, the probability that y has a maximum in 
the rectangle (at , at + dxi , yi, AT + dyi), dxi and dyi being of the same 
order of magnitude, is3" 

—dxidyi f p(yx,0,Mdt 
J—oo 

(3.6-1) 

and the expected number of maxima of y in a < .r < i is obtained by in- 
tegrating this expression over the range — oo < at < x, a < Xi < b. 
P(£, V, D is t'16 probability density function for the random variables 

^ = Hai, ■ 

- - (s). 

' - (S) 

, a.v ; at) 

(3.6-2) 

1=1, 

* Hohercn Analysis, Braunschweig (1879), Vol. 2, p. 494, equ. (29). 31 Am. Jour. Math., Vol. 61 (1939) 409-416. A similar problem has been studied by 
E. L. Dodd, The Length of the Cycles Which Result From the Graduation of Chance 
Elements. Ann. Math. Stat., Vol. 10 (1939) 254-264. He gives a number of references 
to the literature dealing with the fluctuations of time scries. 
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In our application of this result we replace a; and y by t and I as before. 
Then 

N 
% — I := Cn COS (c>.'n/ ifn) 

1 

V = I' 

f = I" 

where the primes denote differentiation with respect to I. According to the 
central limit theorem the distribution of r;, f approaches a normal law. 
The second moments defining this law may be obtained either from the 
above definitions of 77, f, or may be obtained from the correIation[function 
as was done in the work following equation (3.4-13). 

tr = h, v2 = —to , & = 0 

if = /'«)/"« = Limit t fT I'(t)I"(t) dt 
T—.00 i JQ 

= Limit L [I*(D - /'2(0)] = 0 
T—»oo 

if = Limit i f mi"(I) ^ 
T—co I JO 

..d2\p{T) // 
= Limit = \pQ 

t-»0 OTz 

E = Limit i it r—•on 1 Jo 

1 r7" 
= Limit ^ / /<4)(/)/(/) dt 

T—n I JO 

= 

where the superscript (4) represents the fourth derivative. The matrix If 
of the moments is thus 

M = 
>0 0 ^ r 
0 -^0 0 

bPo 0 >Ao4)J 

The determinant | M | and the cofactors of interest are 

| M | = -toihto* - to2) (3.6-3) 

Mn = —toto4\ Mm = if/Q2, M33 = —toto 
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The probability density function in (3.6-1) is 

73 

/>(/, 0, f) = (27r)-3'2\M\ 1/2 exp 

r i 
L 2 \M 

(3.6-4) 

(Mn/" + M33S'2 + 

and when this is put in (3.6-1) and the integration with respect to f per- 
formed we get 

didl™-'n\\Mr 
(3 6-5) 

+ ^K2irJ'"'w<1 + erf(2M^r)] 

for the probability of a maximum occurring in the rectangle dl dl. As is 
mentioned just below expression (3.6-1), the expected number of maxima 
in the interval h , h may be obtained by integrating (3.6-1) from h to h 
after replacing .v by /, and I from — =0 to + » after replacing y by I. When 
we use (3.6-4) it is easier to integrate with respect to I first. The expected 
number is then 

(»•-«)> 

= (fc - k) MTt" = 2ir 
h h 

2ir [sr 

Hence the expected number of maxima per second is 

2T L —^0 J 

r aw df 
Jo  

/ Mf)df -Jo 

(3.6-6) 

For a band pass filter, the expected number of maxima per second is 

{3ft-fal
m 

15 yf - ft] 
(3.6-7) 

where fb and /„ are the cut-off frequencies. Putting /a = 0 so as to get a 
low pass filter, 

1/2 
= .775/b (3.6-8) ft 
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From (3.6-8) and (3.6-5) we may obtain the probability density function 
for the maxima in the case of a low pass filter. Thus the probability that 
a maximum selected at random from the universe of maxima will lie in 

where 
I 

y ~ Vto 

i i i i 

I= OUTPUT NOISE C 
^1^= RMS VALUE OF 

y=vk 

URRENT 

P,(y) 

-2 -I 0 y I 2 3 a 

Fig. 2—Distribution of maxima of noise current. Noise through ideal low-pass filter. 
^4= dl — probability that a maximum of / selected at random lies between / and I -\-dI. 
v 

When y is large and positive (3.6-9) is given asymptotically by 

V "An 3 

If we write (3.6-9) as pi(y) dy, the probability density pi(y) of y may be 
plotted as a function of y. This plot is shown in Fig. 2. The distribution 
function P(/,„,-x < ys/po) defined by 

y 
piiy) -dy oo 

and which gives the probability that a maximum selected at random is 
less than a specified y\/\p0 = 7, is one of the four curves plotted in Fig. 4. 

If I is large and positive we may obtain an approximation from (3.6-5). 
We observe that 

Mn = ^ > 1 

I 37 | M? — to 

P(7Inax < yVto) = [ 
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so that when I is large and positive 
^-3/! 1/2/21 wI ^ e-i

2iHo 

Also, in these circumstances the 1 + erf is nearly equal to two. Thus re- 
taining only the important terms and using the definitions of the M's gives 
the approximation to (3.6-5): 

djji r -^'T'2 (3 

Impo L "Ao J 

From this it follows that the expected number of maxima per second lying 
above the line 7 = /i is approximately33 when 7i is large, 

27rL J (3.6-11) 
_ g-'i'Wo ^ i[tiie expected number of zeros of I per second] 

It is interesting to note that the approximation (3.6-11) for the expected 
number of maxima above h is the same as the exact expression (3.3-14) for 
the expected number of times I will pass through h with positive slope. 

3.7 Results on the Envelope of the Noise Current 

The noise current flowing in the output of a relatively narrow band pass 
filter has the character of a sine wave of, roughly, the midband frequency 
whose amplitude fluctuates irregularly, the rapidity of fluctuation being 
of the order of the band width. Here we study the fluctuations of the 
envelope of such a wave. 

First we define the envelope. Let /,„ be a representative midband fre- 
quency. Then if 

= 2irfm (3.7-1) 

the noise current may be represented, see (2.8-6), by 
N 

I = Cn COS {unt — Um t — ifln -{• 0)mt) 
n«=l 

= Ic cos wmt — h sin (j3mt 

where the components Ic and /„ are 
N 

Ic = ^ ] Cn COS (cOn ^ ^ ^n) 

(3.7-2) 

(3.7-3) 

I a — ^ ] Cn Sin (ci/n ^ 

33 This expression agrees with an estimate made by V. D. Landon, Proc. I. R. E., 29 
(1941), 50-55. He discusses the number of crests exceeding four times the r.m.s. value 
of I. This corresponds to /? = 16^o. 
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The envelope, R, is a function of t defined by 

£ = [/' + I2r (3.7-4) 

It follows from the central limit theorem and the definitions (3.7-3) of Ic 

and /„ that these are two normally distributed random variables. They are 
independent since IcIa = 0. They both have the same standard deviation, 
namely the square root of 

7! = 7! = 7 = f w{f) dj = (3.7-5) 
•'0 

Consequently, the probability that the point (7C, /„) lies within the ele- 
mentary rectangle dTcdIs is 

dh dl,, V 11 + III n 

wexpL (3'7"6) 

In much of the following work it is convenient to introduce another ran- 
dom variable 0 where 

Ic — R cos 0 
{Z.-i-l) 

/„ = R sm 0 

Since le and /s are random variables so are R and 0. The differentials are 
related by 

dledl, = RdQdR (3.7-8) 

and the distribution function for R and 0 is obtainable from (3.7-6) when 
the change of variables is made: 

<70 R dR _ 
27r i/'o 

e "2Wo (3.7-9) 

Since this may be expressed as a product of terms involving R only and 0 
only, R and 0 are independent random variables, 0 being uniformly dis- 
tributed over the range 0 to 27r and R having the probability density34 

R g-n2/2^0 (3.7-10) 

Expression (3.7-10) gives the probability density for the value of the en- 
velope. Like the normal law for the instantaneous value of I, it depends 
only upon the average total power 

fa = [ w{f) df 
Jo 

M See V. D. Landon and K. A. Norton, LR.E. Froc., 30 (1942), 425-429. 
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We now study the correlation between R at time t and its value at some 
later time I + r. Let the subscripts 1 and 2 refer to the times t and t + r, 
respectively. Then from (3.7-3) and the central limit theorem it follows 
that the four random variables Id , Li, la , Jsi have a four dimensional 
normal distribution. This distribution is determined by the second mo- 
ments 

~r2 t2~ T2 T2 » Id = Id = Ic2 = I s2 — yo — Mil 

I did — Ic2 7,2 — 0 
    J N 

Id Icl = Id 1.2 = 7,11 Cl COS (oJn T - C0m r) 2 n=l 

I 
    l^o 
Id Ia2 = Ic2 Ial = 77 H Cn sin (cO„ T 2 n=l 

w(/) cos 27r(/ — /m)r df = mis 

wmT) 

—> f w(/) sin 27r(/ - /m)r <// = mm 
Jo 

The moment matrix for the variables in the order Id , lai, Id , Ia2 is 

(3.7-11) 

M = 

Tpo 0 M13 MM 
0 ypQ — MM Mis 

Ml3 —MM 0 
_M14 M13 0 '/'o _ 

and from this it follows that the cofactors of the determinant | M ] are 

T/u == M22 = M33 = M44 = ^0(^0 M13 MM) 
2 2 2 (3.7-12) 

= tM, = \po — Mia — Mi4 

3/12 := 3/34 ::= 0 

3/13 = 3/04 := —Mia-d 

3/i4 = —3/23 ^ — MM^l 

| 3f | = -42 

The probability density of the four random variables is therefore 

eXP _ lA + ^ + + ll) 

— 2mi3(7I/3 + ^2/4) — 2MM(7I — ^Ta)] 
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where we have written h , Ii, h , h for Ici, /sl, . We now make 
the transformation 

/i = cos 0i h = Rz cos tfo 

/o = Ri sin 0i /4 = Rz sin 02 

and average the resulting probability density over 0i and 0" in order to get 
the probability that Ri and R* lie in dRi and dRz. It is 

R1R2dR1 dRo r2r 

Air A 
[ ddi [ ddo exp 

Jo Jo 

— — [\poRi to Ri ~ 2^13 R1R2 cos (02 — 0i) — lnu R1R2 sin (00 — 0i)] 

Since the integrand is a periodic function of 02 we may integrate from 
02 = 0i to 02 = 0i 4- 27r instead of from 0 to 27r. This integration gives the 
Bessel function, To, of the first kind with imaginary argument. The result- 
ing probability density for i?i and R2 is 

R1R2 
A 

where, from (3.7-12), 

h (~ + .ur) exp - ^ (xl + R:) (3.7-13) 

A — to ~ Vl3 

/X13 and JU14 are given by (3.7-11). Of course, Ri and R* are always positive. 
For an ideal band pass filter with cut-offs at/„ and/s we set 

/m W(S) = Wo for f* <f <fb , 

and obtain 

to = woifb - fa) 

[,b r, ,, f \ jt wo sin 7r(/6 — /u)r 
Mis = / ^0 COS 27r(/ - fm)T df =    J—L- 

Jfa ttt 
rib 

M14 
rib 

= / Wo sin 27r(/ — /Jr df = D 
J fa 

The /o term in (3.7-13), which furnishes the correlation between Ri and i?2, 
becomes 

h\ 

sin x 
Ri Ri x 

to j _ sin^ -v 
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where .t is ir{fb — fa)r. When a; is a multiple of tt, Ri and R-, are independent 
random variables. When x is zero Ri and R* are equal. Hence we may 
say, roughly, that the period of fluctuation of R is the time it takes x to in- 
crease from 0 to tt or (fb — /a)-1. This is related to the result given in the 
next section, namely that the expected number of maxima of the envelope 
is .641 (fb — fa) per second. 

3.8 Maxima of R 

Here we wish to study the distribution of the maxima of R.* Our work 
is based upon the expression, cf. (3.6-1), 

0 p(R, 0, R")R" dR" (3.8-1) 
oo 

for the probability that a maximum of R falls within the elementary rec- 
tangle dR dt. p(R, R', R") is the probability density for the three dimen- 
sional distribution of R, R', R" where the primes denote differentiation with 
respect to t. ^ 

We shall determine p{R, R', R") from the probability density of h, I, , 
l" , /,s, l'c , , which we shall denote by Xi, Xi, • • • .Te. The interchange 
of /I and l'c is suggested by the later work. It is convenient to introduce 
the notation 

K = (27r)n f w(f)(f - fm)n df 
Jo (3.8-2) 

bo = po 

where/m is the mid-band frequency, i.e., the frequency chosen in the defini- 
tion of the envelope R. bn is seen to be analogous to the derivatives of 
\P(t) at t = 0. 

From the definitions (3.7-3) of Ic and Is we obtain the second moments 

ai = l'c = ■po = bo 

^ = 7! = io 

*2 = 1? = X 7f(/n)A/47r2(/n - fm)' = b* 
i 

2 7^2 i Xb = Ic =02 
2 7m . 

X3 = Ic =04 
2 7^2 , 

a 6 = Is =04 

* Incidentally, most of the analysis of this section was originally developed in a study 
of the stability of repeaters in a loaded telephone transmission line. The envelope, K, 
was associated' with the "returned current" produced by reflections from line irregularities. 
However, the study fell short of its object and the only results which seemed worth sal- 
vaging at the time were given in reference23 cited in Section 3.3. 

-dRdt J 
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*1*2 = /,/; = EM/.WMfn - M = bi 

*4*5 = Uc = — 

*1*3 = Uc = -Zw(/)A/4T2(/n - /m)2 = 
1 

*4*6 = = —^2 

*2*3 = IbI'C = —^3 

*5*6 = I el" = ^3 

All of the other second moments are zero. 

M = 

The moment matrix M is thus 

bo h -bo 0 0 0 
b. b* — bo 0 0 0 

-b. -b3 0 0 0 
0 0 0 bo -by -62 
0 0 0 -h bi bo 
0 0 0 — bo bo bi 

The adjoint matrix is 

Bo By — So 0 0 0 
By B22 — Bo 0 0 0 

— B2 — Bo Bi 0 0 0 
0 0 0 So -By —Bi 
0 0 0 -Si S22 S3 
0 0 0 -s2 S3 Bi _ 

(bih - bl)B S22 = (hbi - bl)B 

B\ = — {b\bi — bibzjB 

B* = (M3 - b\)B 

B3 — — {bobs — bib-^B 

B, = (60J2 - (3.8-3) 

B — bobobi d- 2 bib^bs 

-b\- bob\ - bjA 

\M\ = B2 

where B is the determinant of the third order matrices in the upper left and 
lower right corners of M. 

As in the earlier work, the distribution of *1, • • • , *6 is normal in six 
dimensions. The exponent is — [2 | M | ]_ times 

Bo{x\ -f *4) -f- 25i(*i*2 — *4*5) — 2^2(*1*3 T *4*6) 

+ -^22 (*2 + *5) — 2^3 (*2*8 — *6*6) (3.8-4) 

+ -B4(*3 + *6) 
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In line with the earlier work we set 

rvi = Ic = R fos d Xi = Ia = R sin 6 

X2 = l[ = R' sin 0 + i? cos QQ' 

xi, = l'e — R' cos 0 — R sin 06' 

Xi = X = R" cos 0 - 2R' sin 00' 

- R cos 00'2 - R sin 00" 

;V6 = = R" sin 0 + 2R' cos 00' 

- R sin 00/2 + R cos 00" 

The angle 0 varies from 0 to 27r and 0' and 0" vary from - co to + =0 . By 
forming the Jacobian it may be shown that 

dx1 dx2 ■ ■ ■ dxt = R3 dR dR! dR" dO dO' dd" 

Also, the quantities in (3.8-4) are 

xl + xl = R2 x1x3 + .xvve = RR" - R26'2 

X1X2 — XiXt = i?20' xl + xl = R1' + R'O1' 

X2X3 - x&x6 = RR"d' - 2R'16' - R'Rd" - i?20'3 

xl + 4 = R"' - 2RR"6'2 + 4^,20/2 + 4^^'0'0" 

+ i?20'4 + i?2 0,/2 

The expression for p{R, 0, R") is obtained when we set these values of the 
it's in (3.8-4) and integrate the resulting probability density over the ranges 
of 0, 0', 0": 

7-)3 /•2ir *+=0 
t(R, 0, iJ") = JL- d9 de' de" (3.8-3) OTT JJ JO J—x J—x 

exp -T l.B0.R2 + IBiR'S' - 2B,{RR" - R^") 
23i 

+ B2oi?20'2 - 2B3R9'{R" - Rd'2) 

+ BiiR"2 - 2RR"6'2 + ^20'4 + ^20"2)] 

The integrations with respect to 0 and 0" may be performed at once leaving 
p{R, 0, R") expressed as a single integral which, unfortunately, appears to 
be difficult to handle. For this reason we assume that w{f) is symmetrical 
about the mid-band frequency fm . From (3.8-2), b\ and b3 are zero and 
from (3.8-3), Bi and B3 are zero. 
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With this assumption (3.8-5) yields 

p{R, 0, R") = i22(27r)~8/2^:,/2 f dd' (3.8-6) 
J—00 

cxp [BoR2 + R([Bi2 + 2B.W2 - 2BoR") + B^R" - Rd'2)2] 

The probability that a maximum occurs in the elementary rectangle dR 
dt is, from (3.8-1), p{t, R) dR dt where 

p{t, R) = -f p(R, 0, R")R" dR" (3.8-7) 
J—00 

We put (3.8-6) in this expression and make the following change of variables. 

rjl/2 R1'2 

•r = -^4- Rd'2, y = R" 
V2B V2B 

z = R = -^= R (3.8-8) 
V2Bi B V2Bi 

b = _{Bn + 2 go) 
2Bb\ 

2 BQ 2B\ b^bi a = 
2B* b\ bl 

where we have used the expressions for the /?'s obtained by setting by and 
bi to zero in (3.8-3). Thus 

i'(i'R)~iMTl'ydyl'x~Wdx (3-8-9) 

exp [ —a222 + 2bzx + 2zy — (a; + y)2] 

As was to be expected, this expression shows that p(t, R) is independent of /. 
A series for /»(/, R) may be obtained by expanding exp 2z(y + bx) and 

then integrating termwise. We use 

[' dy f dxyfyT™' = ^ r(7 + l)r((. + 1) 
J» 2'+T+!! + T + 3^ 2^+7+2 

r 

which ma}'- be evaluated by setting 

2 2 2 .2 x = p cos y = p sin (p 
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The double integral in (3.8-9) becomes 

^_a2j2 t /tt ^z) V1 nib"1 T(m + \)V{n — m + 2) 2z2 /tt (2z)" ^ ■«! 
y 2 7/! ,h 

2"TZr(^ 
(i + 5) 

CO 

^ / ,x 

"r(i + j) 

co n —a222 

= 7r2-5/2 Z , An 

where Ao = \ and 

- (^)(|) • • • On - h) A. = E ^ (»-«> + l)r, 0 < n (3.8-10) 
m=0 fftl 

An ~ (« + 1)(1 — i)-1'2 — ^ (1 — J)_3/2, « large 

The term corresponding to m = 0 in (3.8-10) is n + 1. 
We thus obtain 

-a2z2 / D„\3/2 °O '« 

^ r (| + 0 
(3.8-11) 

e""2'2 '•1/2 2 L1'2 oo n A 
= (a2 - 1)"V'2 E f " 

4\/TT OO n=0 p 

(M) 

We are interested in the expected number, iV, of maxima per second. 
From the similar work for /, it follows that N is the coefficient of dt when 
(3.8-1) is integrated with respect to R from 0 to . Thus from (3.8-7) and 

dR = ^/Wibtdz = {IboBY'-b?'-dz 

= [26o(a2 - \)]mdz 

we find 

K = J pit, R) dR 

(a2 - i-T ^Y/2 v 5/2 W n=0 

r(i + i)i 
{2a)blL \ituo/ n=o ^ 

(f+0'' 

(3.8-12) 

Equations (3.8-11) and (3.8-12) have been derived on the assumption 
that w(f) is symmetrical about /„, , i.e. the band pass filter attenuation is 
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symmetrical about the mid-band frequency. We now go a step further and 
assume an ideal band pass filter: 

w{f) = Wq fa < f < fh 

w{f) = 0 otherwise (3.8-13) 

2/m = /a + /ft 

Putting these in (3.8-2) we obtain zero for h and bz and also 

bd = M'o(/6 — fa) = to 

b2 = (fb - fa)3 

bi = ^ {fb - far 

a2 = f (3.8-14) 

b = M3 - a2) = i 

R = [2bo{a2 - l)]1/2z = l-|tAo]1/22 

fb,\112 n*j-9R2 

11 An n An 
0 1 4 6.775 
1 2.3 5 8.333 
2 3.735 6 9.9002 
3 5.238 7 11.4736 
An ~ 1.5811 n + .3953 

From (3.8-12) we find that the expected number of maxima per second 
of the envelope is 

N = .64110 {fb - fa) (3.8-15) 

assuming an ideal band pass filter. 
The distribution of the maxima of R for an ideal band pass filter may be 

obtained by placing the results of (3.8-14) in (3.8-11). This gives 
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It is convenient to define y as the ratio 

R R 

85 

y = r.m.s. I{t) ^ 
= — = (£)ll2z .1/2 Z 

'o 

where R is understood to correspond to a maximum of the envelope. Since 
the value of R corresponding to a maximum of the envelope selected at 
random is a random variable, y is also a random variable. Its probability 
density is pit(y), where 

pR(y) dy = —f) dR 
y y y 0.64110(/6 - fa) 

pniy) has been computed and is plotted as a function of y in Fig. 3. 

W) 

  

A. / \ 

1 1 
R= ENVELOPE OF OUTPUT 

NOISE CURRENT 

/ \ 
y = _5_ y /W 

/ 

\ 
l u \ 

\ 6 
7 
  

* 

Fig. 3 Distribution of maxima of envelope of noise current. Noise through ideal band- 
pass filter. 

dK = probability that a maximum of R selected at random lies between R and 
R + dR. 

The distribution function P(Rmax < yVpo) defined by 

fv 
Pniy) dy 

and which gives the probability that a maximum of the envelope selected 
at random is less than a specified value yV^o =.R, is plotted in Fig. 4 to- 
gether with other curves of the same nature. 
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\Vlien y is large, say greater than 2.5, 

pniy) 
Ci... _ 

.64110 , (/ " 1)^ 
»s/2 

P(^max < >- V'/'o) ! - y.-"1" 
.64110 

/, '// 
/ 

' // / 
/ // / 

y V / 
/ // / 

/ / 

/ /// 

/ / / ' / 

/ // / 
/ // / 

/ / v / 
/ / / / 

/ / / / 
a/ y A / 

/I 
/ / / / / 

/ / / / 

/ / / I = NOISE CURRENT - LOW PASS FILTER 
R = NOISE CURRENT ENVELOPE - 

BAND PASS FILTER 
1^(3= RMS NOISE CURRENT 

/ / / 
' / / 

/ / 
/ 

Fig. 4—Distribution of maxima _ 
A = P(I < yVJo) = probability of I being less than yy/• Similarly C = P{R < 

yx^To)- . . /— 
^ _ p(j < yV^o) = probability of random maximum of I being less than yV po ■ 

Similarly D = PiR max < yVfa). 
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The asymptotic expression for /»«(>') may be obtained from the integral 
(3.8-9) for />(/, R). Indeed, replacing the variables of integration .r, y in 
(3.8-9) by 

x' = x 

y' = x + y, 

integrating a portion of the y' integral by parts, and assuming b < 1 
(o2 > 1, by Schwarz's inequality, so that b < \ always) leads to 

/ m (bX* e~R2nu (R: A 
^ ) ^ W «Ao \h ) 

when R is large. 
If, instead of an ideal band pass filter, we assume that w(f) is given by 

= AT ^ (3.8-16) (TV ZTT 

we find that 

h = 1 

b-i = 47r~cr" 

b{ = 167r4-3(T4 

a2 = 3, 6 = 0 

An = (»+ 1) 

Some rough work indicates that the sum of the series in (3.8-12) is near 
3.97. This gives the expected number of maxima of the envelope as 

N =-2.52(t (3.8-17) 

per second. 
The pass band is determined by a. It appears difficult to compare this 

with an ideal band pass filter. If we use the fact that the filter given by 

W(/) =-«exp[-AA/,)] 

passes the same average amount of power as does an ideal band pass filter 
whose pass band is fb — fa , we have 

ft — fa = on/ 2ir 

and the expression for N becomes 1.006 (fb — fa)- 

3.9 Energy Fluctuation 

Some information regarding the statistical behavior of the random vari- 
able 

, E = f * f(l) dt (3.9-1) 
' i 
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where /(/) is a noise current and h is chosen at random, has been given in a 
recent article.35 Here we study this behavior from a somewhat different 
point of view. 

If we agree to use the representations (2.8-1) or (2.8-6) we may write, as 
in the paper, the random variable E as 

pTl2 
E = / l\t) dl (3.9-2) 

J—T/i 

where the randomness on the right is due either to the an's and bn's if (2.8-1) 
is used or to the ^n's if (2.8-6) is used. 

The average value of E is mT where, from (3.1-2), 

T/2   nTH 
E = mT = / P{t) dt = / ^(0) dt = TxPo 

Lt,\ Lm (3.9-3) 

= T f w(f) df 
Jo 

The second moment of E is 

/T12 *TI2   
dh / dhPiftPih) (3.9-4) 

7"/2 J-TI2 

If, for the time being, we set h equal to h + r, it is seen from section 3.2 
that we have an expression for the probability density of /(/i) and I{ti + t) 
and hence we may obtain the required average: 

jT/I = A r dhliTv exp ZTTA J—oo J—OO 

^ —2^-2 (toll + toll — 2^/1/2)^ 

A2 = to ~ t'r , h = I(h)j I* = ^(^1 + r) == Hk) 

The integral may be evaluated by (3.5-6) when we set 

Il = AX]/l' h=Ay\/}o 

tt = —to COS ip 

A = to sin ip 

(3.9-5) 

(3.9-6) 

15 "Filtered Thermal Noise—Fluctuation of Energy as a Function of Interval Length", 
Jour. Acous. Soc. Am., 14 (1943), 216-227. 
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Thus 

Iill = ^0(1 + 2 cos" v?) 
(3.9-7) 

= ^ + 24,1 

Incidentally, this gives an expression for the correlation function of I2(t). 
Replacing r by its value of to — ti and returning to (3,9-4), 

fT/2 * r/2 
dh dh4F{lo - /,) (3.9-8) 

r/2 J-r/2 

When we introduce oy , the standard deviation of E} and use 

we obtain 

2 ™ 2 a-r = E1 — niT 

/r/2 «T/2 
/ ^^(/z - /1) 

r/2 J-r/2 

= 4 [T(T- x)4,\X) 
Jo 

-r/2 J-r/2 
.r 

dx 
jo 

where the second line may be obtained from the lirst either by changing the 
variables of integration, as in (3.9-27), or by the method used below in 
dealing with E3. I am indebted to Prof. Kac for pointing out the advantage 
obtained by reducing the double integral to a single integral. It should be 
noted that the limits of integration — T/2, T/l in the double integral may 
be replaced by 0, T by making the change of variable t = t' — T/2 for both 
h and to. 

When we use 

Ht) = [ w(J) cos 2irfT df (2.1-6) 
Jo 

we obtain the^result stated in the paper, namely, 

4 = I wU.) ih I MA) dA [Sm/u+f$T (3-9-9) 

sin2 7r(/i -/2)r"1 

*2(Ji - hY J 
If this formula is applied to a relatively narrow band-pass filter and if 

T{fb — fa) >> 1 the contribution of the fi -f /z term may be neglected and 
we have the approximation 

2 f" js f+!* sin2 Tr(fi - f2)T 

= wlT(Jb-A) _ (3-9"10) 

= ivq mT 
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where, from (3.9-3) 

nir — ivoT(Jb — fa) (3.9-11) 

The third moment E3 may be computed in the same way. However, in 
this case it pays to introduce the characteristic function for the distribution 
of /(/i), Kti), /(fc). Since this distribution is normal its characteristic 
function is 

Average exp [fzi/i + izzlz + 123/3] 

= exp — jjy (2i + 22 + 23) + ~ ^1)2i Z2 ^ 9-12) 

+ ^{k — ^1)2123 4" ^{.k — ^2)22Zs^j 

From the definition of the characteristic function it follows that 

Mil = -coeff. of HI in ch. f. 

= i/'o + 2I/'O(I/'21 4- '/'ai + ^32) 

4" 8^21 ^31'A32 

where we have written for k), etc. When (3.9-13) is multiplied 
by dh dl2 dk , the variables integrated from 0 to T, and the above double 
integral expression for err used, we find 

(E - Ef = 2!22 jf dk i dt2 jdk ^21 ^31 ^32 ■ 

Denoting the triple integral on the right by J and differentiating, 

-=3 r dh r ih*(h - - hMT - ^ 
dT Jo Jo 

rT rr 

= 3 dx dy^ix — y)t(x)\f/(y) 
Jo Jo 

= 6 [ dx f dy\f/(x - y)\{/(x)\p(y) 
Jo Jo 

In going from the first line to the second /, and k were replaced by T — ^ and 
T — y, respectively. In going from the second to the third use was made of 
the relations symbolized by 

i dxi dy= i dxl dy + l ixl iy 

= I dxldy + i dyi ix 
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and of the fact that the integrand is symmetrical in x and y. Integrating 
dJ/dT with respect to T from 0 to Z"], using the formula 

f dT [ f(x) dx = [ (Ti — x)f(x) dx, Jo Jo Jo 

noting that J is zero when T is zero, and dropping the subscript on T\ finally 
gives 

{E — EY = 48 f dx [ dy{T — x)\f/{x)\p(y)\p(x — y). 
Jo Jo 

Ei may be treated in a similar way. It is found that 
f*T nT f*T T 

(E - EY - 3(£ - E)'2 = 3!23 / dh f dt2 [ dt3 [ ^43 
Jo Jo Jo Jo 

which may be reduced to the sum of two triple integrals. It is interesting 
to note that the expression on the left is the fourth semi-invariant of the 
random variable E and gives us a measure of the peakedness of the dis- 
tribution (kurtosis). Likewise, the second and third moments about the 
mean are the second and third semi-invariants of E. This suggests that 
possibly the higher semi-invariants may also be expressed as similar multiple 
integrals. 

So far, in this section, we have been speaking of the statistical constants 
of E. The determination of an exact expression for the probability density 
of E, in which T occurs as a parameter, seems to be quite difficult. 

When T is very small E is approximately I~{i)T. The probability that 
E lies in dE is the probability that the current lies in —7, —I —dl plus the 
probability that the current lies in 7, 7 -{- rf/: 

^ exp - 4 = UrtoET)-'" exp - — dE (3.9-14) 

where E is positive, 

7 = (1)'", dl = X-{ET)-m dE 

and T is assumed to be so small that I{t) does not change appreciably during 
an interval of length T. 

When T is very large we may divide it into a number of intervals, say n, 
each of length T/n. Let Er be the contribution of the r th interval. The 
energy E for the entire interval is then 

E = Ei Ez En 

If the sub-intervals are large enough the £r's are substantially independent 
random variables. If in addition n is large enough E is distributed nor- 
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mally, approximately. Hence when T is very large the probability that E 
lies in dE is 

dE {E - mTy- 
7= exp —  1-2 (3.9-15) 

where 

^ 2a] 

mT = T [ w(f) df 
Jo 

al = T ^ w'if) df 
Jo 

(3.9-16) 

the second relation being obtained by letting T —> in (3.9-9). The 
analogy with Campbell's theorem, section 1.2, is evident. When we deal 
with a band pass filter we may use (3.9-10) and (3.9-11). 

Consider a relatively narrow band pass filter such that we may find a T 
for which Tfa >> 2t but T(fb - fa) << -64. Thus several cycles of fre- 
quency/a are contained in T but, from (3.8-15), the envelope does not change 
appreciably during this interval. Thus throughout this interval I if) may 
be considered to be a sine wave of amplitude R. The corresponding value 
of E is approximately 

e = tt 

where the distribution of the envelope R is given by (3.7-10). From this 
it follows that the probability of E lying in dE is 

^ exp - — = — e-ElmT (3.9-17) 
i/'oT toT Wt 

when E is small but not too small. 
When we look at (3.9-14) and (3.9-17) we observe that they are of the 

form 

an+vEn 

r(w + i) 
—aE e dE (3.9-18) 

Moreover, the normal law (3.9-15), may be obtained from this by letting n 
become large. This suggests that an approximate expression for the dis- 
tribution of E is given by (3.9-18) when a and n are selected so as to give 
the values of m? and av obtained from (3.9-3) and (3.9-9). This gives 
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and if we drop the subscript T and substitute the value of a in (3.9-18) we 
get 

(mEV 
\ a2 / / niE\ (mE\ in z, n 

f(n~+T) eXp \ ? j HW' " = ^ - 1 (3-»-20) 

An idea of how this distribution behaves may be obtained from the 
following table: 

n T(fb-fa) -t.JS *.50 *.75 *.25 *■75 
*.60 *.60 

0 0 .29 .695 1.39 .415 2.00 
1 1.45 .96 1.68 2.69 .572 1.60 
2 2.4 1.73 2.67 3.94 .647 1.47 
3 3.4 2.54 3.67 5.12 .692 1.39 
5 5.4 4.22 5.67 7.42 .744 1.31 

10 10.5 8.63 10.67 13.02 .808 1.22 
24 25 21.47 24.67 28.17 .870 1.14 
48 50 44.1 48.7 53.5 .905 1.10 

where n is the exponent in (3.9-20). The column T(fb -fa) holds only for a 
narrow band pass filter and was obtained by reading the curve yA in Fig. 1 
of the above mentioned paper. The figures in this column are not very 
accurate. The next three columns give the points which divide the dis- 
tribution into four intervals of equal probability: 

^.25 = , £.28 = energy exceeded 75% of time 

^.60 = —j- , E.50 = energy exceeded 50% of time 

x.ih = —' E.n, = energy exceeded 25% of time 

The values in these columns were obtained from Pearson's table of the in- 
complete gamma function. The last two columns show how the distribu- 
tion clusters around the average value as the normal law is approached. 

For the larger values of n we expected the normal law (3.9-15) to be 
approached. Since, for this law the 25, 50, and 75 per cent points are at 
m — .675(1, in, and in + .675a we have to a first approximation 

= "=(« + i) = n/t - /„) a' 

x.26 = -2 (w — .675o-) = x.so — .675V«.EO C3-9-2!) 
a- 

X.lb = *.50 + .675\/*.50 

This agrees with the table. 
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Thiede86 has studied the mean square value of the fluctuations of the 
integral 

A(t) = J' r-(r)e-"-" dr (3.9-22) 

The reading of a hot wire ammeter through which a current I is passing is 
proportional to a is a constant of the meter. Here we study A{t) by 

2.00 AT 0 

675 - — - 
/T(fb-fal 

  0.403 AT 0 0 5 
PROBABILITY DENSITY 
(3.9-20) IS ASSUMED 

3 4 5 6 8 
T I Tk- t b 'a 

30 40 50 60 

- 

Fig. 5*—Filtered thermal noise—spread of energy fluctuation 

<i+r 
72(/) dl, h random, I is noise current. 

yi = £.75/£.60, Ji = E.n/£.60 • 
fb — fa = band width of filter. 

first obtaining its correlation function. This method of approach enables 
us to extend Thiede's results 

The distributed portion of the power spectrum of A{t) is given by (3.9- 
30). When the power spectrum w(f) of /(/) is zero except over the band 

/» <f<fb where it is Wo, the power spectrum of ^4(0 is 
IwKfh - fa - /) f q <f <f fa 

a2 + Airp 

and is zero from fb — fa up to 2fa . The spectrum from 2/a to 2/b is not zero, 
and may be obtained from (3.9-34). The mean square fluctuation of ^4(/) 
is given, in the general case, by (3.9-28) and (3.9-32). For the band pass 
case, when (/& — /a)/a is large, 

A(t) - A r '11/2 

r.m.s. 
A = r^_T I2{fb - fa)] 

0 Elcc. Nadir. Tek., 13 (1936), 84-95. This is an excellent article. 
! Note added in proof. The value of >'2 at 0 should be .415 instead of .403. 
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We start by setting t = t — u which transforms the integral for A{t) into 

A(I) = [ I\t - u)e-audu (3.9-23) 
Jo 

In order to obtain the correlation function ^l'(r) for we multiply 
by .'!(/ + r) and average over all the possible currents 

^(r) = A{t)A{t + r) 

= [ e~a" du [ e~av dv ave. + r — t) 
Jo Jo 

Just as in (3.9-4) the average in the integrand is the correlation function of 
/'(/), the argument being / + r — v — / + «= t u — v. From (3.9-7) 
it is seen that this is 

+ 2)/'2(t + n — v) 

where ^(r) is the correlation function of /(/). Hence 

^'(T) =: ^ ~f" 2 f du f dv e au \P'(t u ~ v) (3.9-24) Of" Jo Jo 

From the integral (3.9-23) for A(t) it is seen that the average value of 
A{t) is 

i ^ - (3.9-25) 
a a 

where we have used 

-Ao = m = [ iv(f) df = p 
Jo 

Using this result again, only this time applying it to A(t), gives 

A^U) = ^(0) 

= A2 + 2 j du j dv e-au-avi\u - v) 
(3.9-26) 

The double integrals may be transformed by means of the change of 
variable u + v = x, u — v = y. Then (3.9-24) becomes 

^(r) = yi" + dy j dx + dy j t/.rl e~ai+ y) 

\ y 30 (3.9-27) 
= A' +- f e-an^(T + y) + ^2(t — y)] dy a Jq 
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When we make use of the fact that ^{y) is an even function of y we see, from 
(3.9-26), that the mean square fluctuation of A{t) is 

WD - A)' = ZW - = ? /"" e-'t2(y) dy (3.9-28) OL JO 

^(r) may be expressed in terms of integrals involving the power spectrum 
?£•(/) of /(/). The work starts with (3.9-24) and is much the same as in 
going from (3.9-8) to (3.9-9). The result is 

^(r) = A I dfi f df2w{fi)w{f2) 
Jo Jo 

T cos 27r(/i + , cos 27r(/i — fyr "| 
[a2 + [2t(/i + /2)]

2 a2 + [lirifi - /2)]
2J 

It is convenient to define w(—f) for negative frequencies to be equal to 
w(f). The integration with respect to /2 may then be taken from — » to 
+ oo and we get 

*(t)=a'+idfiL rf+vhfr-%]' (3-9"29) 

The power spectrum W{f) of A{t) may be obtained by integrating ^(r): 

W{f) = 4 / ^(t) cos It/t dr 
Jo 

Let us concern ourselves with the fluctuating portion A{i) — ^4 of A(t). 
Its power spectrum Wc(f) is 

/.<» 
Wc{f) = 4 / (^(r) - A2) cos 2ir/r dr 

Jo 

The integration is simplified by using Fourier's integral formula in the form 

[ dr C df.Fifz) cos 27r(M -/2)r = |F(«) 
Jo J-oo 

We get 

Wdf) = 2 * 2/2 f <//i[w(/i)w(/ +/i) + + fi)] 
(3.9-3°) 

= 2 i 1 < 2,2 f ^(/iM/ - /l) dfl a + 47r j JLoo 

The simplicity of this result suggests that a simpler derivation may be 
found. If we attempt to use the result 

w{f) = Limit 215y) ^ (2.5-3) 
r-»oo I 
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where S{f) is given by (2.1-2) we find that we need the result 

Limit J/! f dt2e
ui/U2~ll) I2(h)I2{to) 

T->a> T Jo JO 

= 1 

+» (3.9-31) 
- /i) dfi 

where / > 0 and /(/) is a noise current with w{f) as its power spectrum. 
This may be proved by using (3.9-7) and 

o® /•+" 
8 j ^(r) cos It/t dr = J w(x)w(f — x) dx 

which is given by equation (4C-6) in Appendix 4C. 
An expression for the mean square fluctuation of A(() in terms of w(f) may 

be obtained by setting r equal to zero in (3.9-29) 

(A(() - A)2 = ^(0) - A 

•+M (3.9-32) 

-j[ dflL df2a2 I "y 1 I "J2 2 2/ r r \2 Jo J-oo a + 47r (/i - /o) 

The same result may be obtained by integrating Wc(f), (3.9-30), from 0 
to cc : 

r c - /-) (3-9-33) 

Although this differs in appearance from (3.9-32) it may be transformed 
into that expression by making use of w(—/) = w(f). 

Suppose that I(t) is the current through an ideal band pass filter so that 
w(f) is zero except in the band/,</</& where it is wo. Then, if 3/a > /&, 

(3.9-34) 
a 

' 2wl(fb -fa-f) 0 <f <fb-fa 

J w{x)w{J - x) dx = < wl{f — 2/a) 2fa < f < fb + fa 

wl(2fb-f) fb+fa<f<2fb 

and is zero outside these ranges. The power spectrum Wc(f) may be ob- 
tained immediately from (3.9-30) by dividing these values by a2 + 47r2/2. 

From (3.9-33) 

(4(0 - A)' = 2wl I 
Jo 

f b fa (fb -fa-f) df 
a2 fl- 47r2/2 

+ ^ f,l+'° IL-ALL m + wi f1 MsrA n 
0 Jifa «2 + ix2/2 Mb+fa a2 + 47r2/2 
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If an exact answer is desired the integrations may be performed. When we 
assume that ft — L <<fb +/« we may obtain approximations for the last 
two integrals. 

/ i /j\ T\2 2) fb fa 1. —1 27r(/6 fa) — A) ~ wo y — tan     
[_ tto: a 

1 I a2 + 4-7r2(/j, — fa)' . ifb — fa)' "I 
47r2 0 or a2 -f- Aiv'2{fb + /o)'J 

Furthermore, if 2x(fb — fa)/a is large we have 

UW - A)" = l(X 

and the relative r.m.s. fluctuation is 
1/2 

£
 1 b
 

:! a 
A J I2{fb-fa)\ 

r.m.s. of 

This result may also be obtained from (3.9-10) and (3.9-11) by assuming 
o: so small that the integral for A{t) may be broken into a great many in- 
tegrals each extending over an interval T. aT is assumed so small that 
e-"" is substantially constant over each interval. 

3.10 Distribution of Noise Plus Sine Wave 

Suppose we have a steady sinusoidal current 

Ip = Ip{t) = P cos (cV — <pp) (3.10-1) 

We pick times h , h , • • • at random and note the corresponding values of 
the current. How are these values distributed? Picking the times at ran- 
dom in (3.10-1) is the same, statistically, as holding t constant and picking 
the phase angles ipp at random from the range 0 to 27r. If /p be regarded as 
a random variable defined by the random variable ipp, its characteristic 
function is 

izl„ f f JzP cos <.u-„l—f) dip ave. e p — — I e v 

and its probability density is 

27r J0 (3.10-2) 

= /c(Ps) 

1 f+CO e-u,pUPz) dz=\v(P" 7;) \Iv\<P (3.10-3) 
27r ^ [ 0 ( 7p | > P 

In this case it is simpler to obtain the probability density directly from 
(3.10-1) instead of from the characteristic function. 
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Now suppose that we have a noise current IN plus a sine wave. By com- 
bining our representation (2.8-6) for IN with the idea of ipp being random 
mentioned above we are led to the representation 

1(1) = / = 7P + /„ 
M 

= P COS (cop/ — <£p) + H Cn COS (cOn t — (pn), (3.10-4) 
1 

C'n = 2wifn)Af 

where ipp and pi, • • • pm are independent random angles. 
If we note I at the random times ti ,ti • • • how are the observed values 

distributed? Since Ip and Is may be regarded as independent random 
variables and since the characteristic function for the sum of two such vari- 
ables is the product of their characteristic functions we have from (3.1-6) 
and (3.10-2) 

ave. = ave. eiz^+lK) 

T z jj \ (3.10-5) = Jo{Pz) exp ( —2" ) 

which gives the characteristic function of I. The probability density of I 
■ 37 IS 

J_ r+ dz = —I e-o-Pco*e)*nH dQ (3J0-6) 
27r J-M TrV ZTTpo Jo 

In the same way the two-dimensional probability density of (/i, I2), 
where h = 1(1) is a sine wave plus noise (3.10-4) and /2 = /(/ + r) is its 
value at a constant interval r later, may be shown to be 

(^ - ^r1/2 r _ r_ m 
«27r T 

J dd exp I (3.10-7) 
277 Jo 1 L 2(^0 - Vr)] 

where 

3(6) = \po[iIi — P cos d)1 + (Zo — P cos (d + ojpr))2] 

— 2\pTiIi — P COS d)il2 — P COS (d + CJp t)) 

The characteristic function for 7i and I2 is 

ave. e
lu'i+l112 = J^ip-^u- + f2 + 2nv cos copr) 

(3.10-8) 
X exp («2 + v2) — ypriiv^ 

37 A different derivation of this expression is given by W. R. Bennett, Jour. Aeons. Soc. 
Amer., Vol. 15, p. 165 (Jan. 1944); B.S.T.J., Vol. 23, p. 97 (Jan. 1944). 
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Sometimes the distribution of the envelope of 

I = P cos pt + IN (3.10-9) 

is of interest. Here we have replaced cop by p and have set (fp to zero. By 
the envelope we mean R{t) given by 

R\t) = i?2 = (P + Icf + ll (3.10-10) 

where U is the component of In "in phase" with cos pt and 7S is the com- 
ponent "in phase" with sin pt: 

/C = E Cn COS [(Wn — P)t — Vn] 

/3 = E Cn sin [(a)„ — p)t — <pn\ 

In = Ic cos pt — 18 sin pt 

7n = 7C = 7S = h 

Since 7C and L are distributed normally about zero with a variance of 
po, the probability densities of the variables 

x = P+ Ic 

y = Is 

are 

(27n/'o)_1/2 exp 

(2in/'o)-1/2 exp 

respectively. Setting 

x = R cos d 

y = R sin 6 

and using these distributions shows that the probability of a point (.v, y) 
lying in the ring R, R dR is 

— f exp [-4- (R2 + P2 - 2RP cos 0)1 de 

2inpo Jq L 2^0 J 
RdR f R2 + P2~\TfRP\ ,2inin 

= ^rexpL \h) (3'10"11) 

where 7o is the Bessel function with imaginary argument. 
00 gin 

7o<^ == S 22n n! n! 

(^ - P)2 

2po 

7_ 
2^0 
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and is a tabulated function. Thus (3.10-11) gives the probability density 
of the envelope R. 

The average value of R" may be obtained by multiplying (3.10-11) by Rn 

and integrating from 0 to =c. Expansion of the Bessel function and term- 
wise integration gives 

^ = W.r"r(| + i) ^(1 + 

= (2W"'!rg+l)iyi(-«;l;-Jo) (3.10-12) 

where iFi is a hypergeometric function.38 In going from the first line to 
the second we have used Kummer's first transformation of this function. 
A special case is 

^ = p2 + 2\f/o (3.10-13) 

When only noise is present, P = 0 and 

5 - W-™ = ('iT 

R2 = 2\po 

Before going further with (3.10-11) it is convenient to make the following 
change of notation 

R dR P /7 m ic\ 
^ = 717-2' dv = 7172' a = 7172 (J.IO-IS) 

WO Y0 

"a" is the ratio (sine wave amplitude)/(r.m.s. noise current). 
Instead of the random variable R we now have the random variable v whose 
probability density is 

p{v) = v exp a J Io{av) (3.10-16) 

Curves of p{v) versus v are plotted in Fig. 6 for the values 0, 1, 2, 3, 5 of a. 
Curves showing the probability that v is less than a stated amount, i.e., dis- 
tribution curves for v, are given in Fig. 7. These curves were obtained by 
integrating p{v) numerically. The following useful expression for this 
probability has been given by W. R. Bennett in some unpublished work. 

jf p(u) du = expj^-*—SQ In{av) (3.10-17) 

38 Curves of this function are given in "Tablesof Functions", Jahnke and Emde (1938), 
p. 275, and some of its properties are stated in Appendix 4C. 
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This is obtained by integration by parts using 

J n" Tn-i(au) du = un In(au)/a 

When av >> 1 but 1 << a — v, Bennett has shown that (3.10-17) 
leads to 

I pM du = (2-^) ^ exp [-(i4^-] 

1 - 
3(fl + v)'z — Av' 

8av{a — w)2 

(3.10-18) 

0.6 

_ R v — RMS I 
a=-e RMS I 

-03 

Fig. 6—Probability density of envelope R ol I(l) = P cos pi + In 

This formula may also be obtained by putting the asymptotic expansion 
(3.10-19) for p{v) in (3.10-17), integrating by parts twice, and-neglecting 
higher order terms. 

When av becomes large we may replace Io{av) by its asymptotic expres- 
sion. The expression for p(v) is then 

~(1+sL){£j'2-p[-(3-lo-l9) 

Thus when either a becomes large or v is far out on the tail of the probability 
density curve, the distribution behaves like a normal law. In terms of the 
original quantities, the normal law has an average of P and a standard devia- 
tion of xpl12. This standard deviation is the same as the standard deviation 
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of the instantaneous values of /,%•. When » 1 and a ^> | v — a | we may- 
expand the coefficient of the exponential term in (3.10-19) in powers of 

/// A 
//A / 

/ 
/ 

/ 

/// 

f/ / 

  
A^ 

JAA/ 
/%// 

A v// 
AA/ / / 

/AAAf / 

y / 
/ 

/// / 
/ 1 

d p 
#/// i / ^ RMS IN 

r /l 1(1=0 
/ / 1 

/ i r 

// / 

< 20 
H 
>- t 10 -J 
(0 < 5 tn 

0. 
0.05 

Fig. 7—Distribution function of envelope R of IU) = P cos /»/ + IN 

{y — a)/a. Integrating this expansion termwise gives, when terms of magni- 
tude less than a-3 are neglected, 

r s 1 \ v — a 
i = i + P'Ss/T 

1 
2a\/ 2t 

v — a ^ 1 + (f — 
4a 8a" 

a)2"] f (v - a)21 _jexp^__j 
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When I consists of two sine waves plus noise 

I = P cos pt-\-Q sin qt IN , (3.10-20) 

where the radian frequencies p and q are incommensurable, the probability 
density of the envelope R is 

R [ rMRrWF^MQrle-*0'2'2 dr . (3.10-21) 
Jo 

where po is I\ . When () is zero the integral may be evaluated to give 
(3.10-11). When both F and Q are zero the probability density for R 
when only noise is present is obtained. If there are three sine waves instead 
of two then another Bessel function must be placed in the integrand, and 
so on. To define R it is convenient to think of the noise as being confined 
to a relatively narrow band and the frequencies of the sine waves lying 
within, or close to, this band. As in equations (3.7-2) to (3.7-4), we refer 
all terms to a representative mid-band frequency /„, = co,„/27r by using 
equations of the type 

cos pt = cos [{p — oim)t + a)mJ] 

= cos {p — wm)/ cos uj — sin {p — com)^ sin umt. 

In this way we obtain 

V = A cos u>mt — B sin com/ = R cos {umt + 6) (3.10-22) 

where .4 and B are relatively slowly varying functions of I given by 

A = P cos {p — com)/ + Q COS {q — um)t 

"f" XI cn COS (a)n t — COm t fn) 
(3.10-23) 

B = P sin {p — wm)^ + Q sin {q — um)t 

+ XI sin {unt — Umt — <pn) 

and 

R2 = A2 + B2, i? > 0 
(3.10-24) 

tan d = B/A 

As might be expected, (3.10-21) is closely associated with the problem 
of random flights and may be obtained from Kluyver's result39 by assuming 

39 G. N. Watson, "Theory of Bessel Functions" (Cambridge, 1922), p. 420. 
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the noise to correspond to a very large number of very small random dis- 
placements. 

Another way of deriving (3.10-21) is to assume {p — um)t, {q — um)t, 
<Pi, <P2y • • -jare independent random angles. The characteristic function 
oiA, B is 

ave. = /o(PV«FT^)/o((2VtiH=^)^(^o/2)(u2+l'2) 

The probability density of .4, B is 

(U Cdu C 
VB ave. e'uA+l'rfl 

When the change of variables 

A = R cos 6 u = r cos ^ 

B = Rs'm 6 v = r sin tp 

is made the integration with respect to ^ may be performed. The double 
integral becomes 

~ f rMPr)Jo(Qr)Jo(Rr)e-(*ol2)T2 dr 
ZTT JO 

This leads directly to (3.10-21) when we observe that dAdB = RdRdQ. 
Incidentally, if 

/ = ()(1 -f k cos pt) cos qt -f- IN 

in which p << q, similar considerations show that the probability density 
of R is 

f da f rJo(Rr)Jo[Qr(l + k cos a^e'^0'2^2 dr 
ZTT Jo JO 

when a)m is taken to be q. The integration with respect to r may be per- 
formed. This relation is closely connected with (3.10-11). 

Returning now to the case in which / is the sum of two sine waves plus 
noise, we may show from (3.10-21) and 

/ Rn+lMRr)dR = 
Jo 

2n+1T 
ht) 

'"tH) 



106 BELL SYSTEM TECHNICAL JOURNAL 

that the average value of Rn is, when —2<re (w) < "■ i> 

2"'r(1 + i) rr 

•,n+i 

Rn = f r-n-lMPr)MQr)eHT*ndr 
Jo 

(3.10-25) 

(-0 

/ x co « (-f) {-*n-yy 
-'W-r(- + .)gg.V- 

It appears very probable that this result could be extended, by analytic 
continuation, to positive integer values of n. We have used the notation 

(a)o = 1, («)fc = a{a + 1) •••(« + ^ — 1) 
p* q* (3.10-26) 

1 = a/Tu' 51 = * 

and have denoted the Legendre polynomial by Pk(.z). The series converge 
for all values of P, Q, and and terminate when n is an even positive integer. 

When .v or y, or both, are large in Comparison with unity we may use the 
integral for Rl1 to obtain the asymptotic expansion, assuming Q < P so 
that y < x, 

R" ~ P" t -I'"-V'-i) (3'10-27) 

When n is an even positive integer this series terminates and gives the same 
expression as (3.10-25). When n is an odd integer the may be expressed 
in terms of the complete elliptic functions E and K of modulus y x : 

2^1(3. = ~K 

(3.10-28) 

The higher terms may be computed from 

a(l - 3)22F1(fl+ l,c+ l;l;z) = (2a- 1)(1 + 2)2^(0, a; l;z) 

+ (1 — a)»Fi{a — l,a- l;l;z) (3.10-29) 
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which is a special case of 

ab(y + 1)(13)22Fi(c + 1, i + 1; c; s) = AoFi(a, b] c;z) 

— (7 — 1) (c a)(c — ft) 2^1(0 — 1,6— l;c;z) (3.10-30) 

where y = c — a — b and 

A = (y - 1)7 + (1 - z)[(7 - l)(c - b)(b - 1) + (7 + l)a(c - a - 1)] 

Although this expression does not show it, A is really symmetrical in a 
and b. A symmetrical form may be obtained by using the expression ob- 
tained by putting s = 0 in (3.10-30). 

3.11 Shot Effect Representation 

In most of the work in this part the representations (2.8-1) or (2.8-6) 
have been used as a starting point. Here we point out that the shot effect 
representation used in Part I may also be used as a starting point. 

For example, suppose we wish to find the two dimensional distribution of 
I(/) and /(/ + t) discussed in Section 3.2. This is a special case of the distri- 
bution of the two variables 

/(/) = s h) 
k=—00 

+00 (3.11-1) 
J(t) = Z) G{t - /,) 

k=~cc 

where we now assume 

f F{t)dl = [ G(t)dt = 0 (3.11-2) 
J—CO V— CO 

in order that the average values of I and J may be zero. In fact, to get 
/(/ + r) from /(/) we set G{t) equal to F(t + r). 

The distribution of I and J may be obtained in much the same manner 
as was the distribution of I alone in section 1.4. The characteristic func- 
tion of the distribution is 

/(«, v) = ave. eiuI+ivJ 

"+00 r , (3.11-3) = exp . f [e
iu/?u)+il'G(<) - 1] dt 

J—CO 

where v is the expected number of events (electron arrivals in the shot effect) 
per second. The probability density of I and J is 

4^2/ du I dv e~l"I~tvJf(u, v) (3.11-4) 
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The semi-invariants Xm,„ are given by the generating function 

log /(w, v) = (tu)m(tv)n + o[{iu)k} {iv)k] 
m, n=l mini 

and are 

Xm.n = f Fm(t)Gn(t) dt (3.11-5) 

As ^ ^ oc the distribution of I and J approaches a two dimensional normal 
law. The approximation to this normal law may be obtained in much the 
same manner as in section 1.6. From our assumption (3.11-2) it follows 
that Xio and Xoi are zero. From the relation between the second moments 
and semi-invariants X we have 

where the notation in the subscripts of the m's differs from that of the X's, 
the change being made to bring it in line with sections 2.9 and 2.10 so that 
we may write down the normal distribution at once. 

The formulas (3.11-6) are closely related to Rowland's generalization of 
Campbell's theorem mentioned just below equation (1.5-9). 

(3.11-6) 



PART IV 

NOISE THROUGH NON-LINEAR DEVICES 

4.0 Introduction 

We shall consider two problems which concern noise passing through 
detectors or other non-linear devices. The first deals with the statistical 
properties of the output of a non-linear device, that is, with its average 
value, its fluctuation about this average and so on. The second problem 
may be stated more definitely: Given a non-linear device and an input 
consisting of noise alone, or of noise plus a signal. What is the power 
spectrum of the output? 

There does not seem to be much published material on the first problem. 
However, from conversation with other people, I have learned that it has 
been studied independently by several investigators. The same is probably 
true of the second problem although here the published material is somewhat 
more plentiful. This makes, it difficult to assign credit where credit is due. 
Much of the material given here had its origin in discussions with friends, 
especially with W. R. Bennett, J. H. Van Vleck, and David Middleton. 
Help was obtained from the recent paper37 by Bennett, and also from the 
manuscript of a forthcoming paper by Middleton. 

4.1 Low Frequency Output of a Square Law Device 

Let the output current / of the device be related to the input voltage V by 

I = aV2 (4.1-1) 

where a is a constant. When the power spectrum of V is confined to a 
relatively narrow band, the power spectrum of I consists of two portions. 
One portion clusters around twice the mid-band frequency of V and the 
other around zero frequency. We are interested in the low frequency 
portion. The current corresponding to this portion will be denoted by 
!,( , and is the current which would flow if a low pass filter were inserted 
in the output to remove the upper portion of the spectrum. It is convenient 
to divide 11( into two components: 

I tt = he + U/ (4-1-2) 
37 Loc. cit. (Section 3.10). 
40 Cruft Laboratory and the Research Laboratory of Physics, Harvard University, 

Cambridge, Mass. In the following sections references to Bennett's paper and Middle- 
ton's manuscript are made by simply giving the authors' names. 

109 
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where the subscripts stand for "total low" frequency, "direct current." 
and "low frequency," respectively. We have 

Idc = average hi — hi ("4.1-3) 

Mean Square Ii; = average (hi — he)2 = l]( — lie 

Probably the simplest method of obtaining he is to square the given ex- 
pression for V and pick out the terms independent of time. Thus if 

V = P cos pt -{■ Q cos qt + VN (4.1-4) 

we have 

h, = a (y + f + ^) W-1-5) 

IIf may also be obtained by picking out the low frequency terms. How- 
ever, here we wish to use the square law device, and the linear rectifier in the 
next section, to illustrate a general method of dealing with the statistical 
properties of the output of a non-linear device when the input voltage is 
restricted to a relatively narrow band. 

If none of the low frequency spectrum is removed by filters, 

I,t = « y (4.1-6) 

where R is the envelope of V. The probability density and the statistical 
properties of hi may be derived from this relation when the distribution 
function cf R is known.41 Before discussing these properties we shall 
establish (4.1-6). 

Equation (4.1-6) is a special case of a more general result established 
in Section 4.3. However, its truth may be seen by taking the example 

V = P cos pi + Q cos qt + VN (4.1-4) 

where/p = p/l-w and fq = q/2ir lie within, or close to, the band of the noise 
voltage Vjf. 

By using formulas of the type 

COS pt = COS [(p — (j)m)t + umt\ 
C4-1-7) 

= cos (p — com)/ cos wmt — sin (p — um)t sin 03mt 
41 When part of the low-frequency spectrum is removed, the problem becomes much 

more difficult, he may be obtained as above, but to get /Jy it is necessary to first deter- 
mine the power spectrum of I (Section 4.5) and then integrate over the appropriate por- 
tion of it. Concerning the distribution of Iff , our present knowledge tells us only that it 
lies between the one given by (4.1-6) and the normal law which it approaches when only 
a narrow portion of the low frequency spectrum is passed by the audio frequency filter 
(Section 4.3). 
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we may refer all terms to the mid-band frequency /m = Wm/2ir, as is done 
in equations (3.7-2) to (3.7-4). 

In this way we obtain 

V = A cos umt — B sin umt = R cos + 6), (4.1-8) 

where A and B are relatively slowly varying functions of t given by 

A = P COS {p — Um)t + Q COS (q — Um)t + X C0S (.Unt — Umt — ipn), 

B = P sin (p — ccm)t + Q sin {q — um)t -{- ^ c,. sin {unt — com/ — <p„) 
n 

and 
R2 = A2 + B2, R > 0 

(4.1-9) 
tan 6 = B/A. 

This definition of R has also been given in equations (3.10-22, 23, 24). 
The envelope of V is R and the output current is 

I = aTn J ^ cos {2umt + 20)1 (4.1-10) 

Since .ft is a slowly varying function of time, so is ft2. The power spectrum 
of ft2 is confined to frequencies much lower than 2/„, and consequently the 
power spectrum of ft2 cos (2co,n/ + 20) is clustered around 2f,n . Thus the 
only term in / contributing to the low frequency output is aR'/2 which is 
what we wished to show. 

We now return to the statistical properties of hi. First, consider the 
case in which V consists of noise only, V = Vn , so that the probability 
density of the envelope ft is 

- e-
B2/2*» (3.7-10) 

po 

where 

p0 = [rms Fa-]2 = K (4.1-11) 

Hence _ 
7 «ft2 

Idc — hi — 2 

= f — ~ g-«2Wo dR 
h 2 Po 

= QpO 

~ ~ o a 
I" = I'' ~ Vd° = i 4 

2,2 = a po 

~ e-*2'2*0 dR - I2
de 

(4.1-12) 
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Second, consider the case in which 

V = Fjv + P cos pt (4.1-13) 

where p/lir lies near the noise band of VN . The probability density of the 
envelope R is 

(3-i(Mi) 

From this and equations (3.10-12), (3.10-13), we find 

Uc =ccPo -h ~ (4.1-14) 

i2a = = P4 = a2 [ipl + 2PVo + j] 

I}f = fa - fc = 0i-[pQ + P-]Po (4.1-15) 

In (4.1-14) pa is the mean square value of VN and P1/! is the mean 
square value of the signal. These two equations show that Idc and the 
rms value of I(f are independent of the distribution of the noise power 
spectrum in Fa- as long as the input F is confined to a relatively narrow band. 
In other words, although this distribution does affect the power spectrum 
of the output, it does not affect the d.c. and rms Iff when po and P are given. 
That the same is also true for a large class of non-linear devices was first 
pointed out by.Middleton (see end of Section 4.9). 

When the voltage is42 

F = Vn P cos pt Q cos qt, (4.1-4) 

p q, we obtain from equation (3.10-25) 

Idc = -2R* = cc(po+j+^) 

iVt-lR* (4.1-16) 

4 = |> + P2Po + Q'Po + 

42 These results are special cases, obtained by assuming no audio frequency filter, of 
formulas given by F. C. Williams, Jour. Insl. of E. E., 80 (1937), 218-226. Williams also 
discusses the response of a linear rectifier to (4.1-4) when i5 3> Q + V^ ■ An account 
of Williams' work is given by E. B. Moullin, "Spontaneous Fluctuations of Voltage," 
Oxford (1938), Chap. 7. 
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4.2 Low Frequency Output of a Linear Rectifier 

In the case of the linear rectifier 

f 0, F < 0 
1 = (4.2-1) 

[aV, V > 0 

the low frequency output current, assuming no audio frequency filter, is 

ht = — (4.2-2) TT 

This formula, like its analogue (4.1-6) for the square law device, assumes 
that the applied signal and noise lie within a relatively narrow band. It 
may be used to compute the probability density and statistical properties 
of 11( when the corresponding information regarding the envelope R of the 
applied voltage is known. 

The truth of (4.2-2) may be seen by considering the output 7. It con- 
sists of the positive halves of the oscillations of aV. The envelope of 1 is 
the same as that of aV. However, the area under the loops of 1 is only about 
I/tt of the area under aR, this being the ratio of the area under a loop of 
sin x to the area of a rectangle of unit height and length 27r. From the 
low frequency point of view these loops of 7 merge into a current which 
varies as aR/ir. 

When V is a sine wave plus noise, 

V = Vs + P cos pt (4.1-13) 

the average value of 7is43 

'.-|5 

(4.2-3) 

where 7o, Ii are Bessel functions of imaginary argument and 

P' _ ave. sine wave power x = — = ; (4 2-4) 
2\po ave. noise power ' 

43 This result was discovered independently by several investigators, among whom we 
may mention W. R. Bennett and D. O. North. The latter has applied it to noise measure- 
ment work. He has found that the diode detector, when adapted to noise metering, is a 
great improvement over the thermocouple, and has used noise meters of this type satis- 
factorily since 1940. See D. O. North, "The Modification of Noise by Certain Non- 
Linear Devices", Paper read before I.R.E., Jan. 28, 1944. 
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\po being the average value of Vh . Equation (4.2-3) follows from the 
formulas (3.10-12) and (4B-9). When a* is large the asymptotic expansion 
(4B-3) of the iEi gives 

Similarly, the mean square value of I,( is 

^ X5 = (P! + 2^) (4.2-6) 
TT" TT" 

and the mean square value of the low frequency current Iff , excluding the 
d.c., is given by 

I If = I'd — I'dc 

When x is large we have 

and when a: = 0, 

^4^) (4-2'8) 

Curves for he are given in Figures 1, 2 and 3 of Bennett's paper. He 

also gives curves, in Fig. 4, showing //■/ versus x. These show that the 
effect of the higher order modulation terms is small when hf is computed 
by adding low frequency modulation products. 

When V consists of two sine waves plus noise, 

V = VN + P cos pt + Q cos qt, (4.1-4) 

the average value of IU is, from (3.10-25), a sort of double iFi function: 

(i)"S .1 

where 

x = £1 ■y = 4 i pk(z) = Legendre polynomial (4.2-10) 
2\po' ' 2^' 

If .v is large and y < x, we have from (3.10-27) the asymptotic expression 

h,~a-pt(4-2_ii) 

TT fc=0 \ V 
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The 2^1 may be expressed in terms of the complete elliptic functions E and 
K of modulus yll2x~112. Thus 

A ?(!-?)*, 

(3.10-28) 

and the higher terms may be computed from the recurrence relation 
(3.10-29). The first term, ^ = 0, in (4.2-11) gives Idc when the noise is 
absent.44 

The mean square value of Id is 

^ ^ [2*o + i52 + Q2] (4.2-14) 

From this expression and our expression for Idc, the rms value of the low 
frequency current, If/ , excluding the d.c., may be computed. For example, 
when the noise is small, 

/ / \ x-i (4.2-15) 

The term independent of \po gives the mean square low frequency current 
in the absence of noise. As Q goes to zero (4.2-15) approaches the leading 

• term in (4.2-7), as it should. When P = Q our formula breaks down and 
it appears that we need the asymptotic behavior of40 

In view of the questionable nature of the derivation given in Section 3.10 
of equations (4.2-9) and (4.2-11) it was thought that a numerical check on 
their equivalence would be worth while. Accordingly, the values a: = 4, 
y = 3 were used in the second series of (4.2-9). It was found that the 
largest term (about 130) in the summation occurred at /^ = 11. In all, 24 
terms were taken. The result obtained was 

—= 2.5502 
a/ 2\po 

41 See VV. R. Bennett, B.S.T.J., Vol. 12 (1933), 228-243. 43 This may be done by the method given by W. B. Ford, Asymptotic Developments, 
Univ. of Mich. Press (1936), Chap. VI. 
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For the same values of .r and y the asymptotic series (4.2-11) gave 

2.40 + 0.171 + .075 + 0.52 + •••• 

If we stop just before the smallest term we get 2.57 for the sum. If we 
include the smallest term we get 2.65. This agreement indicates that 
(4.2-11) is actually the asymptotic expansion of (4.2-9). 

When the voltage is of the form 

V = 0(1 + k cos pt) cos ql + VN 

we may use 

R- = (2^r'Jr(l + f' 
V 2/ ^ J° (4.2-16) 

iFiJT" ; 1; -y(l + k cos 9)!j d8 

where R is the envelope with respect to the frequency q/lir and y is given 
by (4.2-10). The integral may be evaluated by writing iFi as a power 
series and integrating termwise using the result 

, .xm „ I"™ - ^ W _ ^ + 1 . w _1_ 1 . fe21 i-k) 2F1 I —2"" ' T 2 I w + 1, ^ J 

i r2' 
— / (1 4- ^ cos 0)^ cos m6 dd 
27r Jo _ (4.2-17) 

= {-t)m 

2m m! 

where m is a non-negative integer, ( any number, 

(a)m = a{a + 1) • • ■ (a + w — 1), (ado = 1, and (0)o = !• 

The integral may also be evaluated in terms of the associated Legendre 
function. 

By applying the methods of Section 3.10 to (4.2-16) we are led to 

-ft2 = (?' (1 + ^} + 2,A0 

^ 7 (4.2-18) 

K ~ 0 Z - i, s; l-.t') ^ f^o s\y' 

where the asymptotic series holds when y is very large and k is not too close 
to unity. These expressions give 

li, ~ ^ (Q! I + M2 - (1 - kT1"] + • • ■) (4.2-19) 
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The reader might be tempted to associate the coefficient of in (4.2-19) 
with the continuous portion of the output power spectrum. However, this 
would not be correct. It appears that the principal contribution of the 

continuous portion of the power spectrum to I(f is cTipo/ir', just as in (4.2-7) 
when k is zero. The difference between this and the corresponding term 
in (4.2-19) seems to arise from the fact that the amplitude of the recovered 
signal is not exactly aQk/r but is modified by the presence of the noise. 
This general type of behavior might be expected on physical grounds since 
changing P, say doubling it, in (4.2-7) does not appreciably affect the l}/ 
in (4.2-7) (which is due entirely to the continuous portion of the noise 
spectrum). The modulating wave may be regarded as slowly making 
changes of this sort in P. 

4.3 Some Statistical Properties of the Output of a General 
Non-Linear Device 

Our general problem is this: Given a non-linear device whose output I is 
related to its input V by the relation 

which is discussed in Appendix 4A. Let the input V contain noise in addi- 
tion to the signal. Choose some frequency band in the output for study. 
What are the statistical properties of the current flowing in this band? 

It seems to be difficult to handle this general problem. However, it 
appears that the two following results are true. 

1, As the output band is chosen narrower and narrower the statistical 
properties of the corresponding current approach those of the random noise 
current discussed in Part III (provided no signal harmonic lies within the 
band). In particular, the instantaneous current values are distributed 
normally. 

2. When the input V is confined to a relatively narrow band the power 
spectrum of the output 1 is clustered around the 0th (d.c.), 1st, 2nd, etc. 
harmonics of the midband frequency of V. The low frequency output in- 
cluding the d.c. is 

(4A-1) 

Id = Ao(P) = — f F{iu)Jo{uR) du (4.3-11) ZTT J c 

where R is the envelope of V. 
The envelope of the «th harmonic of the output, when n > 0, is 

An{R) = - f F(iu)Jn(uR) du 
TT Jc (4.3-1) 
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The mathematical statement is 

7 = X) An{R) cos + nQ) (4.3-9) n=0 

where fm = com/(2x) is the representative mid-band frequency of V and 0 
is a relatively slowly varying phase angle. The results of Sections 4.1 
and 4.2 are special cases of this. 

Middleton's result that the noise power in each of the output bands (in 

the entire band corresponding to a given harmonic) depends only on V2
N = 

\f/0 and not on the spectrum of Fjv , where VN is the noise voltage component 
of V, may also be obtained from (4.3-9). We note that the total power 
in the wth band depends only on the mean square value of its envelope 
^4n(i?), and that the probability density of the envelope R of the input in- 
volves Fjv only through \po. 

The argument we shall use in discussing the first result is not very satis- 
factory. It r'uiisas follows. The output current I may be divided into two 
parts. One consists of sinusoidal terms due to the signal. The other con- 
sists of noise. We shall be concerned only with the latter which we shall 
call In ■ The correlation between two values of In separated by an interval 
of time approaches zero as the interval becomes large. Let r be an interval 
long enough to ensure that the two values of In are substantially 
independent. Choose an interval of time T long enough to contain many 
intervals of length r. Expand In as a Fourier series over this interval. 
We have 

, au . f lirnt , , . 2irnt 
In = ^ + W a" cos ~Y + bn sin 

'a. -ibn=l I e~"""TTM(l) dt 
1 Jo 

(4.3-2) 

Let the band chosen for study be/o — ^ to/o + ^ and let 

T (/o — 2) = Wl' r(/„ + 0=Ba (4.3-3) 

where Wi and no are integers. The number of components in the band is 
(W2 — m). We suppose ^ is such that this is small in comparison with T/r. 
The output of the band is 

J N — 
f 27m . . » • 2irnf\ - .x 

2_, cos — / + hn sin — J (4.3-4) 
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where 

a. - ibn = - fT dt 
T k (4.3-5) 

111 + n2 I n\ + ni f rp I / r rps 
11 =   — + n - —-— = /o r + (n - fo T) 

We choose tlie band so narrow that 

«2 — "i « T/t or i3r <3C 1 (4.3-6) 

This enables us to write approximately 

a* - iK = E e-"'""1™" I f" dt 

n = T/t, T being chosen to make n an integer. Suppose we do this for 
a large number of intervals of length T. Then IN{t) will differ from interval 
to interval. The set of integrals for r = 1 gives us an array of values which 
we regard as defining the distribution of a complex random variable, say 
.n . Similarly the set of integrals for r = 2 defines the distribution of a 
second random variable %%, and so on to av, . Because we have chosen r 
so large that IN{t) in any one integral is practically independent of its values 
in the other integrals we may say that Xi, Xz, ' • • aVj are independent. 

We have 

ri 
•i   -«2ir((n/T)-/o)rT fl/ij ^bril — 6 Xr 

T=1 

■7 _ -i2T((^I+i/r)-/o)rr 
^Orn+1 — 2—i 6 r 

r=l 

-i1*ari2IT)-fQ)rr 
ano — to„2 — 2-J e a-'- 

r=l 

and if nz — ??i« ri, as was assumed in (4.3-6), we may apply the central 
limit theorem to show that <?„, , 6,,,, Onj+i, • • • on2, bn„ tend to become in- 
dependent and normally distributed about zero as we let the band width 
/3 —> 0 and T —> co (and hence ri —► ) in such a way as to keep iiz — «i 
fixed. In this work we make use of the fact that IN{1) is such that the real 
and imaginary parts of :Vi, Xz, • • ■ Xr all have the same average and standard 
deviation. It is convenient to assume faT is an integer. 

Thus as the band width 0 approaches zero the band output J.v given by 
(4.3-4) may be represented in the same way, namely as (2.8-1), as was the 
random noise current studied in Part III. Hence tends to have the 
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same properties as the random noise current studied there. For example, 
the distribution of Jn tends towards a normal law. In our discussion we 
had to assume that /3r « 1. If the voltage V applied to the non-linear 
device is confined to a relatively narrow frequency band, say /& — fa , it 
appears that the interval r (chosen above so that /(/) and /(/ + r) are sub- 
stantially independent) may be taken to be of the order of l/ifb — fa)- 
In this case Jn tends to behave like a random noise current if 0/(/& — fa) is 
much smaller than unity. 

We now turn our attention to the second statement made at the begin- 
ning of this section. Let the applied voltage be confined to a relatively 
narrow band so that it may be represented by equation (4.1-8) of Section 
4.1, 

V = R cos (wj + 0), i? > 0, (4.1-8) 

where fm — w„l/(27r) is some representative frequency within the band 
and R and 0 are functions of time which vary slowly in comparison with 
cos umt. We call R the envelope of V. 

From equation (4A-1) 

/ = J_ [ F{iu)eiuR coa du (4.3-7) 
ZTT Jc 

We expand the integrand by means of 

eix C09 ^ = £ enr cos nMx) (4.3-8) 
n=0 

where eo is 1 and en is 2 when n > 0 and Jn(x) is a Bessel function. 
Thus 

00 
7 = £ ^n(^) cos (no)ml + «0) (4.3-9) 

n=0 
where 

^n(i?) = e„ /* F{iu)Jn{uR) du (4.3-10) 
ZTT Jc 

Since R is a relatively slowly varying function of time we expect the 
same to be true of 4„(i?), at least for moderately small values of n. Thus 
from (4.3-9) we see that the power spectrum of I will consist of a suc- 
cession of bands, the «th band being clustered around the frequency nfm. 
If we eliminate all of the bands except the wth by means of a filter we 
see that the output will have the envelope .4,,(7?) when « ^ 1. Taking 
n to be zero, shows that the low frequency output is simply 

A,{R) = i- f F(fu)JQ{uR) du (4.3-11) 
27r J c 
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Taking n to be one shows that the band around /,„ is given by 

Ai{R) v 

R 
(4.3-12) 

The statistical properties of the low frequency output and of the en- 
velopes of the output bands may be obtained from those of R. For ex- 
ample, the probability density of is of the form 

f(R) / (4-3-13) 
aK 

where p(R) is the probability density of R. In this expression R is con- 
sidered as a function of An . 

It should be noted that we have been assuming that all of the band 
surrounding the harmonic frequency nfm is taken. When we take only a 
portion of it, presumably the statistical properties will tend to approach 
those of a random noise current in accordance with the first statement made 
at the beginning of this section. 

When we apply (4.3-11) to the square law device we have 

w 

MR) = -Is / 
<0+> ^ du 

When we apply (4.3-11) to the linear rectifier: 

F(iu) = - —0 

i«(« = -f r ^ 2ir J-co u 

it 

A.iR) = -^ / +" ^ = ^ 
TT 

where the path of integration passes under the origin. These two results 
agree with those obtained in Section 4.1 and 4.2 from simple considerations. 
As a final example we find the low frequency output of a biased linear 
rectifier in terms of the envelope R of the applied voltage. From the table 
of F(iu) given in Appendix 4A we see that F{iu) corresponding to 

7 = 0, V < B 

I = V - B, V > B 
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is 
—iuB 

F(iu) = 

Consequently, the low frequency output is 

,|0(/J) = -± f" e-'-'WR)"-2 du 
L'K J—oo 

where the path of integration is indented downwards at the origin. When 
B > R the value of the integral is zero since then the path of integration 
may be closed in the lower half plane by an infinite semi-circle This value 
also follows at once from the physics of the problem. When —R<B<R 
we may integrate by parts and get 

A0{R) = — f e~iuB[iBJo(uR) + RJiiuR)]^1 du 
2tt J-x 

= — — + - f [5 sin uBJo(uR) + R cos uBJi(nR)]u 1 du 
2 * 0 (4.3-14) 

= — — - arc sin ^ - \/R* — B'1 

2 tt K TT 

= -R< B < R 
2 tt \ 2 2 2 R1/ 

This hypergeometric function turns up again in equation (4.7-6). Also 
in the range —R<B<R, 

dA 
dR 

0 = i .ATZ2 

1 tt y R2 

When B is negative and R < -B, the path of integration may be closed 
by an infinite semicircle in the upper half plane and the value of the integral 
is proportional to the residue of the pole at the origin: 

Ao(R) = 2*1 i-iB) 

= -B 

Thus, to summarize, the low frequency output for our linear rectifier is, 
for B > 0, (R is always positive) 

Ao{R) =0, R < B 

ft K B 1   (4.3-15) 
ylo(-R) = — - + - arc sin - s/R2 — B2, B < R 2 TT K TT 
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and for 5 <0 it is 

Ao{R) =\B\, i? < | 5 1 

A0{R) = -j-iAl + LZL' arc sin l-l-1 + - VR2 - \B\< R (4'3 16) 

A IT R TT 

where the arc sines lie between 0 and ir/2. A^R) and its first derivative 
with respect to R are continuous. 

From (4.3-15), the d.c. output current is, for 5 > 0, 

he = f T-f + - arc sin | + - VR2 - -B21 p(R} dR (4.3-15) J B \_ Z TT K TT J 

where p{R) is the probability density of the envelope of the input F, e.g., 
p{R) is of the form (3.7-10) for noise alone, and of the form (3.10-11) for 
noise plus a sine wave. Similarly, the rms value of the low frequency 
current I(f , excluding d.c., may be computed from 

I]f = I\l - lle 

where, if J5 > 0, 

Al = = f T-f + - arc sin | + - V-K2 - B*\ p(R) dR (4.3-16) J B [_ Z IT K IT J 

If V consists of a sine wave of amplitude P plus noise T'^r, so it may be 
represented as (4.1-13), and if P » rms VN , the distribution of R is 
approximately normal. If, in addition, P — B rms F.v.> 0, (4.3-15), 
(4.3-16), and (3.10-19) lead to the approximations 

he ~ + - arc sin ^ - VP2 - B- + ^ 2 TT P TT 2TT\//P- - B* 

--f+f+w- »«'> 

The second expression for he assumes P » B. When 5=0, these re- 
duce to the first terms of (4.2-5) and (4.2-7). By using a different 
method Middleton has obtained a more precise form of this result. 

Incidentally, for a given applied voltage, /dc(+) for a positive bias | B j 
is related to /do( —) for a negative bias — | 5 | by 

/dc(-) = \B\ + /dc(+) (4.3-18) 

Also r.m.s. ///(+) is equal to r.m.s. — Equation (4.3-18) follows 
from a physical argument based on the areas underneath a curve of I for 
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the two cases. Both of the above relations follow from formulas given by 
Middle ton when V is the sum of a sine wave plus noise. They may also be 
derived from (4.3-15) and (4.3-16). 

4.4 Output Power Spectrum 

The remainder of Part IV will be concerned with methods of solving the 
following problem: Given a non-linear device and an input voltage con- 
sisting of noise alone or of a signal plus noise. What is the power spectrum 
of the output? 

In some ways the answer to this problem gives us less information than 
the methods discussed in the first three sections. For example, beyond 
giving the rms value, it tells us very little about the probability density of 
the current corresponding to a given frequency band of the output. On 
the other hand, this rms value may be found (by integrating the power 
spectrum) for any band we choose to study. The methods described earlier 
depended on the input being confined to a relatively narrow band and gave 
information regarding only the entire band corresponding to a given har- 
monic (Oth, 1st, 2nd, etc.) of the input. There was no way to study the 
output when part of a band was eliminated by filters except by obtaining 
the power spectrum of some function of the envelope. 

At present there appear to be two general methods available for the 
determination of the output power spectrum each with its own advantages 
and disadvantages. First there is the direct method which has been used 
by W. R. Bennett*, F. C. Williams**, J. R. Ragazzini46 and others. The 
noise is represented as the sum of a finite number of sinusoidal components. 
The typical modulation product is computed and the output power spectrum 
is obtained by considering the density and amplitude of these products. 
The chief advantage of this method lies in its close relation to the known 
theory of modulation in non-linear circuits. Generally, the lower order 
modulation products are the only ones which contribute significantly to the 
output power and when they are known, the problem is well along towards 
solution. The main disadvantage is the labor of counting the modulation 
products falling in a given interval. However, Bennett has developed a 
method for doing this.47 

The fundamental idea of the second method is to obtain the correlation 
function for the output current. From this the output power spectrum may 
be obtained by Fourier's transform. The correlation function method and 
its variations are of more recent origin than the direct method. They have 

» Cited in Section 4.0. Also much of this writer's work on interference in broad band 
communication systems may be carried over to noise theory without any change in the 
methods used. 

** Cited in Section 4.1. 
« Proc. I.R.E. Vol. 30, pp. 277-288 (June 1942), "The Effect of Fluctuation Voltages 

on the Linear Detector." 
" B.S.T.J., Vol. 19 (1940), pp. 587-610, Appendix B. 
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been discovered independently and at about the same time, by several 
workers. In a paper read before the I.R.E., Jan. 28, 1944, D. O. North 
described results obtained by using the correlation function. J. H. Van 
Vleck and D. Middleton have been using the two variations of the method 
which we shall describe in Sections 4.7 and 4.8, since early in 1943. A 
primitive form of the method of Section 4.8 had been used by A. D. Fowler 
and the writer in some unpublished material written in 1942. Recently, 
I have learned that a method similar to the one used by Fowler and myself 
had already been used by Kurt Franz in 1941.48 

The correlation function method avoids the problem of counting the 
modulation products. However, in some cases it becomes rather unwieldy. 
Probably it is best to have both methods in mind when investigating any 
particular problem. The direct method will be illustrated by applying it 
to the square law detector. Two approaches to the correlation function 
method will then be described and applied to examples. 

4.5 Noise Through Square Law-Device 

Probably the most direct method of obtaining the power spectrum W{f) 
of I, where 

I = (xV\ (4.1-1) 

V being a noise voltage, is to square the expression 
M 

V = F.v = S cm cos {comt - <pm) (2.8-6) 
i 

in which cl, is 2w{fm)Af, um = 2irfm ,fm = mAf and <fi ,(P2, ■ • • <Pm are random 
phase angles. 

Considerable simplification of the algebra results when we replace the 
representation (2.8-6) by 

v* = If, Cne'™'-"- (4.5-1) 

Here we have added a term Co/2 so as to not have any gaps in the summation 
and have introduced the definitions 

C—m Cm 

<f—m = <rm (4.5—2) 

a = 2irAf 
18 "Die Pbertragung von Rauschspannung iiber den linearen Gleichrichter," Hoclt/r. 

ii. Eleklroakusl., June 1941. Other articles by Franz are (I am indebted to Dr. North 
for the following references) "Beitrage zur Berechnung des Verhaltnisses von Signal 
spannung zu Rauschspannung am Ausgang von Empfangern", E.N.T., 17, 215, 1940 and 
19, 285, 1942. "Die Amphtuden von Gerauschspannungen", E.N.T., 19, 166, 1942. 
The May 1944 (p. 237), issue of the Wireless Engineer contains an abstract of "The In- 
fluence of Carrier Waves on the Noise on the Far Side of Amplitude-Limiters and Linear 
Rectifiers" by Friinz and Vellat, E.N.T., Vol. 20, pp. 183-189 (Aug. 1943). 
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Squaring (4.5-1) gives the double series 
1 +00 +«) 

Tr2 _ -I V i(.m+n)at—\<pm—\<fn 
v N — Z-J Z-J cm Cn e *x  CO —CO 

4 -fco -f-ao 

4 fc=—oo n=—oo 

Suppose we wish to consider the component of V2
N of frequency/a- = kAf. 

It is seen to be 
^ +oo 

Ak COS (cot/ - tk) = o Z ck-nCn cos {kat - ^-n - ^n) (4.5-3) Z 71=—CO 

The power spectrum W{f) of / at frequency fu is a times the coefficient of 
Af in the mean square value of (4.5-3) where the average is taken over the 
.p's. Thus 

2 +oo +oo 
W {flc)Af — — 23 Cfc—n cn Ck—m Cm + —00 —00 

X ave. cos {kat — tpk-n ~ pn) cos (kat — (fk-m <fm) 

where the summations extend over in and n. Let n be fixed and consider 
those values of in which give an average different from zero. We see that 
in = n and in = k — n are two such values. The only other possibilities 
are m = —n and in = —k + n, but these lead to terms containing (except 
when « or k equal zero) three different angles, <?„ , (pu-n , and <pa+„ which 
average to zero. Using the fact that the average of cosine squared is one- 
half and that for a given n there are two such terms, we get 

2 +oo 
IF(/1)A/ = ^ E cLnCn 

+ n=—oo 

= a2 Af £ w{fk - fn)w{fn)Af 
n=—oo 

where in the last step we have used 

fk-n = (k - n)Af = fk - /„ 

and have implied, from c_n = cn , that 

w(/_„) = wi—nAf) = 1L'( fn) 

is equal to «'(/„). 
Thus, from (4.5-4), we get for the power spectrum of 1 

(4.4-5) 

W(f) = a2 J w{x)io{f — x) dx (4.5-5) 
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with the understanding that / is not zero and 

w{—x) = w{x). (4.5-6) 

The result which is obtained by using (2.8-6), involving the cosines and 
only positive values of m, is 

W{f) = a2 [ u>(x)w(/ — x) dx + 2a' f w(x)w(f + .v) dx (4.5-7) 
Jo Jo 

This contains only positive values of frequency. (4.5-5) and (4.5-7) are 
equivalent and may readily be transformed into each other. 

The first integral in (4.5-7) arises from second order modulation products 
of the sum type and the second integral from products of the difference 
type. This may be seen by writing the current as 

CO op 
I = aV' = a ^ ^2 CmCn cos (co,nt — ^m) cos (con/ — <pn) 7n=l n=l 

CO CO 
= o 2 Z) cos [(co„, — con)t - (pm + pnl (4.5-8) Z ?ii=l n=l 

+ COS [(CO,,, + 0)n)t + (pm + (pnW 

The power in the range fk ,fk + A/ is the power due to modulation products 
of the difference type, uk+( — u(., plus the power due to the modulation 
products of the sum type, uk-t + . In the first type C runs from 1 to oo 
and in the second type ( runs from 1 to ^ — 1. 

Consider the difference type first, and for the moment take both k and t 
to be fixed. The two sets m = k C, n = I and m = i, n = k -\- i are the 
only values of m and n in (4.5-8) leading to oik+l — . The two corre- 
sponding terms in (4.5-8) are equal because cos (—x) is equal to cos x. The 
average power contributed by these two terms is 

( J ck+e cA X {Average of (2 cos [(oja+z - u()t - <pk+( + <p(])2} 
V / (4.5-9) 

= h{aCk+I Cf)2 

The power contributed to fk ,fk + A/by the difference modulation products 
is obtained- by summing ( from 1 to oc : 

\ Z d+ic] = 2a2 Z w{fk+()w{f(){Af)2 

z f=l /•=! 

2a2Af f w{fk +fMf)df 
Jo 

This leads to the second term in (4.5-7). 
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Now consider the modulation products of the sum type. The terms of 
this type in (4.5-8) which give rise to the frequency w* are those for which 
m + n is equal to k. Let n be 1 then m = k — The phase of this term 
is random with respect to all the other terms except the one given by n = 
k - 1, m = 1 which has the same phase. The average power contributed 
by these two terms in (4.5-8) is, as in (4.5-9), 

KOTCiCA-I)2 

This disposes of two terms for which m + n is equal to k. Taking n to be 2 
and going through the same process gives two more. Thus-, assuming for 
the moment that k is an odd number, the power contributed to the interval 
fk ,fk + A/ by the sum modulation products is 

. (t—1)/2 < k-l i-fk 
\ S (acn Ct-nf = T S (aCnCk-S' oc'Af / w(f)w(Jk -/) df 
2 n=l ** "=1 •'0 

and this leads to the second term in (4.5-7). 
When the voltage V applied to the square law device is the sum of a noise 

voltage Fat and a sine wave: 

V = P cos pi + Vn , (4.1-13) 

we have 

F" = P2 cos2 pt + 2PT jv cos pt -\- Vn (4.5-10) 

From the two equations 

cos2 ^ -f ^ cos 2pt 

ave. F.v = 23 ^ ^ [ ^(7) df 
l 2 •'0 

we see that I, or aF2, has a dc component of 

if-+" [" M/) df (4.5-11) 2 Jo 

which agrees with (4.1-14), and a sinusoidal component 

cos 2pt (4.5-12) 

The continuous power spectrum Wdf) of the remaining portion of / may 
be computed from 

2PVn cos pt + Vl. 
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Using the representation (2.8-6) we see 
M 

2PVn cos pt = PYj cm[cos (com/ + pt - ip„) + cos {wmt — pt — ^„t)] i 

For the moment, we take p = lirrNf. The terms pertaining to frequency 
/„ = //A/ are those for which 

Um-irp= Zirfn | wm — ^ | = 27r/„ 

m -\- r = n \m — r\ = n 

m = n — r m = r A=. n 

where only positive values of m are to be taken: If n > y, then m xs n — r 
or r + If w < r, then m is r — n ox r -\- n. In either case the values 
of m are \ n — r \ and n + r. The terms of frequency/„ in 2PVN cos pt 
are therefore 

PC\n—r\ COS (2irfnt ^In—rl) "T F'Cn-i-r COS {2.Trfnt ipn+P) 

and the mean square value of this expression, the average being taken over 
the ^'s, is 

{c]n-r\ + C2
n+r) = P2 Af[w(f\ n_r|) + w{fn+r)] 

= P2 Af[w{\ fn - /p I) + Wifn +/p)] 

where/p denotes p/2ir. 
By combining this with the expression (4.5-5) which arises from 

we see that the continuous portion TFC(/) of the power spectrum of I is 

Wc{f) = a2P2[w{f -U) + wU+U)] 

r+« (4.5-13) 
+ a / w{x)w{f — rr) dx 

J—CC 

where w(—/) has the same value as w(f). 
Equation (4.5-13) has been used to compute Wc(f) as shown in Fig. 8. 

The input noise is assumed to be uniform over a band of width /3 centered at 
fp, cf. Filter c, Appendix C. By noting the area under the low frequency 
portion of the spectrum we find 

r? 
Wc{f) df = a /3wo(jP2 + /3ifo) 

Jo 

Since the mean square value of the input VN is i^o = /3k'o , it is seen that 
this equation agrees with the expression (4.1-15) for the mean square value 
of Its > tfie low frequency current, excluding the d.c. If audio frequency 
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filters cut out part of the spectrum, Wdf) may be integrated over the re- 
maining portion to give the mean square value of the corresponding output 
current. This idea is mentioned in the footnote pertaining to equation 
(4.1-6). 

If V consists of VN plus two sinusoidal voltages of incommensurable fre- 
quencies, say 

V = P cos pt + Q cos qt + Vn , 

CONTINUOUS PORTION OF OUTPUT SPECTRUM OF SQUARE LAW DEVICE 

INPUT = P COS STlfpt + NOISE 

crzwc(f) 

OUTPUT D.C,= Of{_P2/2+pw0) 

LET B w2=C 

2Pzwr 

INPUT SPECTRUM 

INPUT NOISE 

PR 
tp 

P^O 

"T" 
C/2 
..L. 

C/2 

2fp-p 

FREQUENCY 
Fig. 8 

the continuous portion Wdf) of the power spectrum of I may be shown to be 
(4.5-13) plus the additional terms 

a(f[w{f — fq) + w{f + fg)] (4.5-14) 

where/g denotes q/2T. 
When the voltage applied to the square law device (4.1-1) is 

V{t) = 0(1 + k cos pt) cos qt + Vn 

Qk Qk 
= Q cos qt + y cos (p + 9)^ + cy cos (P — Q)t + 

the resulting current contains the dc component 

I e' (1 + f) + of W(f) if (4.5-16) 

49 A complete discussion of this problem is given by L. A. MacColl in a manuscript 
being prepared for publication. 
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The sinusoidal terms of I are obtained by squaring 

<2(1 + k cos pt) cos qt 

and multiplying by a. The remaining portion of I has a continuous power 
spectrum given by 

Wc{f) = aQ' [»(/ - /„) + w(f + f,) 

+ | | ™(/ + fp+ /«) 

^ 1 (4-5~17) 

+ - — fp + fg) + - w(f + fp - fq) J 

+ a2 / w{x)iv{f — x) dx 
J—co 

where/p denotes p/2Tr and fq denotes q/2ir. 

4.6 Two Correlation Function Methods 

As mentioned in Section 4.4 these methods for determining the output 
power spectrum are based on finding the correlation function 4/(r) for the 
output current. From this the power spectrum, W(f), of the output cur- 
rent may be obtained from (2.1-5), rewritten as 

WU) = 4 f ^(r) cos IttJt dr (4.6-1) 
Jo 

It will be recalled that IF(/)A/ may be regarded as the average power which 
would be dissipated by those components of I in the band/, / + A/if / were 
to flow through a resistance of one ohm. 

The input of the non-linear device is taken to be a voltage V{t). It may, 
for example, consist of a noise voltage Fjv(0 plus sinusoidal components. 
The output is taken to be a current /(/). The non-linear device is specified 
by a relation between V{i) and lit). In this work /(/) at time t is assumed 
to be completely determined by the value of V(/) at time t. 

Two methods of obtaining 4>(t) will be described. 
(a) Integrating the two-dimensional probability density of F(/) and 

V{t + r) over the values allowed by the non-linear device. This 
method, which is especially direct when applied to noise alone through 
rectifiers, was discovered independently by Van Yleck and North. 

(b) Introducing and using the characteristic function, which for the sake 
of brevity will be abbreviated to ch. f., of the two-dimensional prob- 
ability distribution of F(/) and V{t + r). 
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4.7 Linear Detection of Noise—The Van Vleck-North Method 

The method clue to Van Vleck and North will be illustrated by using it 
to determine the output power spectrum of a linear detector when the input 
consists of noise alone. 

The linear detector is specified by 

Kl) = J0, ^ ^ 0 (4 7-1) 
m \V{t), V{t) >0, ^ ) 

which may be obtained from (4.2-1) by setting a equal to one, and the input 
voltage is 

V(t) = VN{t) (4.7-2) 

where VN(t) is a noise voltage whose correlation function is ^(r) and whose 
power spectrum is w{f). 

The correlation function T(r) is the average value of I(t)I(t + r). This 
is the same as the average value of the function 

. _ JViF2 , when both Fx, F2 > 0 ' 7 . 
W'F2)-\0, all other F's, ^ 

where we have set 

Fx = V(t) 

F2 = V(t + r) 

The two-dimensional distribution of Fx and F2 is given by (3.2-4), and 
from this it follows that the average value of any function F(Fx, F2) is 

C ^ CdV' S#exp [-m\ ^vl+*°vl- ^Fl F!)] 
(4.7-4) 

where 

\M\ = $ - 

For the linear rectifier case, where F(Fx, F2) is given by (4.7-3), the 
integral is 

^F2FxF2 exp [-^ itoVl + Wl - 2lATFxF2)] 

= 4([^-^r + 1('.
cos-i[=f']) 
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where we have used (3.5-4) to evaluate the integral. The arc cosine is 
taken to be between 0 and tt. We therefore have for the correlation func- 
tion of I(t), 

= L ([4,1 - A cos-1 (4.7-5) 

The power spectrum W(f) may be obtained from this by use of (4.6-1). 
For this purpose it is convenient to write (4.7-5) in terms of a hypergeo- 
melric function. By expanding and comparing terms it is seen that 

(4.7-6) 

= T + ? + + terms invo]ving iUtr, etc. 4 /TT 471^0 

As will be discussed more fully in Section 4.8, a constant term A' in ^(r) 
indicates a direct current component of /(/) of -4 amperes. Thus /(/) has 
a dc component equal to 

M = /-— X rms value of V{t) (4.7-7) 
LZTTJ VzTr 

This agrees with (4.2-3) when the P of that equation is set equal to zero. 
Integrals of the form 

Gn{f) = f cos Itt/t dr 
Jo 

which result when (4.7-6) is put in (4.6-1) and integrated termwise are 
discussed in Appendix 4C. From the results given there it is seen that if 
we neglect i/v and higher powers we obtain an approximation for the con- 
tinuous portion TFC(/) of W(f): 

Wc(/) = Gi(/) + ^ 

+00 (4-7-8) 
= T1+ik'A Lw{x)w{f -x) dx 

where iv(—f) is defined as iv(f). 
When VN(t) is uniform over a relatively narrow band extending from 

fa tofb so that w(f) is equal to wo in this band and is zero outside it, we may 
use the results for Filter c of Appendix 4C. The /o and 13 given there are 
related to /„ and fb by 

I - I P / - / 4- ^ 7a — yo — 2 » Jb — Jo -r 2 
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and the value of Wq taken there is the same as here and is ypo/fi. The value 
of Gzif) given there leads to the approximation, for low frequencies: 

' (4M) 

\ fb- fa) 

when 0 < / < /b - , and to Waif) = 0 for/b -/«</< /a . By setting 
P equal to zero in the curve given in Fig. 8 for TFc(0 corresponding to the 
square law detector, we see that the low frequency portion of the power 
spectrum is triangular in shape and is zero at / = /3. Thus, looking at 
(4.7-9), we see that to a first approximation the shape of the output power 
spectrum is the same for a linear detector as for a square law detector when 
the input consists of a relatively narrow band of noise. 

An approximate rms value of the low frequency output current may be 
obtained by integrating (4.7-9) 

Wc{f) df 
Jo 

_ Woifb — fa) _ h 
Stt STT 

rms low freq. current = X rms applied voltage (4.7-10) 

It is seen that this is half of the direct current. It must be kept in mind 
that (4.7-10) is an approximation because we have neglected ft and higher 
powers. The true value may be obtained from (4.2-8). It is seen that the 
coefficient (Stt)-1'2 = 0.200 should be replaced by 

= 0.209 

Wcif) for other types of band pass filters may be obtained by using the 
corresponding G's given in appendix 4C. It turns out that (4.7-10) holds 
for all three types of filters. This is a special case of Middleton's theorem, 
mentioned several times before, that the total power in any modulation 
product (it will be shown later in Section 4.9 that the term^ in (4.7-6) 
corresponds to the «th order modulation products) depends only on the 
total input power of the applied noise, not on its spectral distribution. 

4.8 The Characteristic Function Method 

As mentioned in the preceding parts, especially in connection with equa- 
tion (1.4-3), the ch. f. of a random variable a- is the average value of exp 
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{iux). This is a function of u. The ch. f. of two random variables x and 
v is the average value of exp (iux + ivy) and is a function of u and v. The 
ch. f. which we shall use here is the ch. f. of the two random variables V{t) 
and V{t + r) where T(/) is the voltage applied to the non-linear device, and 
the randomness is introduced by t being selected at random, r remaining 
fixed. We may write this characteristic function as 

g{u, v, r) = Limit ^ f exp [iuV{t) + ivV{t -b r)] dt (4.8-1) 
r-»=o I Jo 

If V{t) contains a noise voltage Fw(/), as it always does in this section, and 
if we use the representation (2.8-1) or (2.8-6) a large number of random 
parameters (an's and &„'s or <pn's) will appear in (4.8-1). In accordance 
with our use of such representations we may average over these parameters 
without changing the value of (4.8-1) and may thereby simplify the integra- 
tion. 

For example suppose 
Vit) = Vs{t) + VN{t) (4.8-2) 

where V,{t) is some regular voltage which may, e.g., consist of one or more 
sine waves. Substituting this in (4.8-1) and using the result (3.2-7) that 
the ch. f. of Fw(/) and I ,v(/ + t) is 

£.v(«, v, t) = ave, exp [iuVxit) + ivVN{t + r)] 
r , "I (4.8-3) 

= exp — y {if + ?i2) — \J/Tnv\ 

i^r = ^(t) being the correlation function of Kv(0> we obtain for the ch. f. 
of V{1) and V{t + -), 

g(« :, v, t) = exp y («" + V') — 

X Limit i [ exp liuVa(t) + ivVt(i + r)] dt ^ 
r-M 7 Jo 

= gN{n, v, r)?,(/<, v, t) 

In the last line we have used gs{u, v, r) to denote the limit in the line above: 

g,{n, v, t) = Limit ^ f exp [iuVs(l) + ivVs(t + t)] dt (4.8-5) 
T—tt 7 Jo 

The principal reason we use the ch. f. is because quite a few non-linear 
devices may be described by the integral 

/ = — f F{iH)eiVn du (4A-1) 
2ir Jr 
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where the function F{in) and the path of integration C are chosen to fit the 
device. Examples of such devices are given in Appendix 4A. The corre- 
lation function ^(r) of l{t) is given by 

dl 

w^r) dv 

^(r) = Limit ^ [ /(/)/(/ + r) 
7' —« 1 JO 

= Limit ^ [ dt f F{iu)e'"v(t) du [ F{iv)ex 

T-*<o 47r- T Jo J C Jc 

= f F(iu) du [ F(iv) dv (4.8-6) 
471- J C Jc 

1 rT 

Limit — / exp [iuV{f) + ivV(t + t)] dt 
r-Ka T Jo 

= ^ [ Fiju) du [ F{iv)g{u, v, t) dv 
477" J C J C 

This is the fundamental formula of the ch. f. method. 
When V{t) is the sum of a noise voltage and a regular voltage, as in 

(4.8-2), (4.8-6) becomes 

^(T) = J- f EM^0'2*"2 du [ F{iv)e 
Air1 J c ' J c 

-Wo/2)v2 
(4.8-7) 

e'*7"" gs(u, v, t) dv 

where gs(u, v, r) is the ch. f. of Vs(t) and Va{t + r) given by (4.8-5). This 
is a definite expression for "^(r). All that follows is devoted to the evalua- 
tion of this integral and to the evaluation of 

TLX/) == 4 f ^(r) cos lirfr dr (4.6-1) 
Jo , 

for the power spectrum of I. 
Quite often /(/) will contain dc and periodic components. It seems con- 

venient to deal with these separately since they correspond to terms in 
^(r) which cause the integral (4.6-1) for IF(/) to diverge. In fact, from 
Section 2.2 it follows that a correlation function of the form 

^I2 + y cos 2irfoT (2.2-3) 

corresponds to a current 

.4 + C cos (277/0/ - <p) (2.2-2) 



MATHEMATICAL ANALYSIS OF RANDOM NOISE 137 

where the phase angle v cannot be determined from (2.2-3) since it does not 
affect the average power. 

Consider the correlation function for V{t) = Fs(/) + VN{t) given by 
(4.8-2). It is 

LimitT f Vs(t)Vs(t + r) <// + f Fa(/)Vv(t r) d/ 
TiJo r 

J0 t ^ (4.8-8) 

+ £ V„(t)Vs(t + r)dl + Jo VM* + r) dt^ 

Since Fa(/) and VN{t) are unrelated the contributions of the second and 
third integrals vanish leaving us with the result 

Correlation function of V{t) = Correlation function of Vsif) ^ ^ 

+ Correlation function of VN{t). 

Now as r oo the correlation function of VN{t) becomes zero while that of 
Fs(/) becomes of the type (2.2-3) given above. Hence the correlation func- 
tion of the regular voltage Fs(/) may be obtained from V{t) by letting r-^ co 
and picking out the non-vanishing terms. Although we have been speaking 
of V(t), the same results hold for /(/) and this process may be used to pick 
out those parts of ^(r) which correspond to the dc and periodic components 
of 700. Thus, if we look at (4.8-7) we see that as r —> co, i/v -> 0, while the 
gs (u, v, t) corresponding to Fs(/) given by (4.8-5) remains unchanged in 
general magnitude. This last statement may be hard to see, but examina- 
tion of the cases discussed later show that it is true, at least for these cases. 
Thus the portion of T(r) corresponding to the dc and periodic components 
of 7(0 is, setting i/v = 0 in (4.8-7), 

S|>M(r) = -L f F(iu)e-(M2>u2 du [ F(iv)e-(^mv2gs(n, v, r) dv (4.8-10) 
47r- Jc J c 

where the subscript oo indicates that T^r) is that partof T(r) which does 
not vanish as r —> «=. 

We may write (4.8-9), when applied to 7(/), a^ 

T(t) = TM(r) + Tc(r) (4.8-11) 

where T^r) is the correlation function of the "continuous" portion of the 
power spectrum of I{t). 

Incidentally, the separation of T(r) into the two parts shown in (4.8-11) 
may be avoided if one is willing to use the 8(f) functions in order to interpret 
the integral in (4.6-1) as explained in Section 2.2. This method gives the 
proper dc and sinusoidal components even though (4.6-1) does not con- 
verge (because of the presence of the terms leading to 4'co(t)). 
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4.9 Noise Plus Sine Wave Applied to Non-Linear Device 

In order to illustrate the characteristic function method described in 
Section 4.8 we shall consider the case of a non-linear device specified by 

I = J- I F{iu)eiVu du (4A-1) 
27r J c 

\ 
when V consists of a noise voltage plus a sine wave: 

V(l) = P cos pt + VN{t) (4.1-13) 

As usual, Viv(0 has the power spectrum w{f) and the correlation function 
^(r). ^(r) is often written as \pT for the sake of shortness. Comparing 
(4.1-13) with (4.8-2) gives 

Vs(t) = P cos pt (4.9-1) 

Our first task is to compute the ch. f. gs{u, v, r) for the pair of random 
variables T's(0 and Vs{t + r). We do this by using the integral (4.8-5): 

i r gs{u, v, r) = Limit — / exp [iuP cos pt + ivP cos p{l -f- T)]dt 
t—X 1 Jo (4.9—2) 

= MP\/u- + v1 + 2uv cos Pt) 

where /o is a Bessel function. The integration is performed by writing 

u cos pt v cos p {t + t) = {u -P v cos pr) cos pt — v sin pT sin pt 

= Vtt2 + f2 + 2uv cos pr cos {pt + phase angle) 

and using the integral 

The correlation function for (4.1-13) has also been given in Section 3.10. 
The correlation function T(t) for /(/) may now be obtained by substi- 

tuting the above expressions in (4.8-7) 

^(T) = [ du F{iu)e-{umu"- f dv F{iv)e-{HI2)vi 

Ar-Jc j c (4.9-3) 

e~^T"vJo{P\/u- + v2 + 2uv cos pr). 

Tc0(t), the correlation function for the d.c. and periodic components of I, 
may, according to (4.8-10), be obtained from this by setting pr equal to zero. 

When we have a particular non-linear device in mind the appropriate 
F{iu) may often be obtained from Appendix 4A. For example, F{iu) for a 
linear rectifier is —u~2. Inserting this value in (4.9-3) gives a definite 
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double integral for ^(r). If there were some easy way to evaluate this in- 
tegral then everything would be fine. Unfortunately, no simple method of 
evaluation has yet been found. However, one method is available which is 
closely related to the direct method used by Bennett. It is based on the 
expansion 

ga{u, v, r) = J0(P\/«2 + ^ + 2uv cos pr) 

= en{—)nJn{Pu)Jn{Pv) cos npT (4.9-4) 
n=0 

Co = 1, €n = 2 for 11 > \ 

This expansion enables us to write the troublesome terms in (4.9-3) as 

e-*Tuv /0(/>-y/?,2 _)_ vi 2nv cos pr) 

= E E (-)"+i^ cos npr (*^tMPu)MPv) (4-9"5) 

n=0 k=0 «! 

The xirtue of this double sum is that it simplifies the integration. Thus, 
putting it in (4.9-3) and setting 

•n+k n 
hnk = — / F{m)ukJn{Pu)e-{Mn2 du (4.9-6) 

Zir J c 

gives 
00 00 . ^ 

^(t) = S h\k en COS np-r (4.9-7) n=0 fc=0 «! 

The correlation function 4'm(t) for the dc and periodic components of I 
are obtained by letting r & where \pT —> 0. Only the terms for which 
^ = 0 remain; 

CO 
^(t) = X enh

2no cos npr (4.9-8) 
n=0 

Comparing this with the known fact that the correlation function of 

^ + C cos (lirfot - <p) (2.2-2) 
is 

C2 

a2 + J cos WOT (2.2-3) 

and remembering that eo is one while en is two for n > 1 shows that 

Amplitude of dc component of / = //oo 

up (4.9-9) 
Amplitude of —^ component of 7 = 2//„o 

27r 
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Incidentally, these expressions for the amplitudes follow almost at once from 
the direct method of solution. This will be shown in connection with equa- 
tion (4.9-17). 

Since the correlation function ^(r) for the continuous portion Wdj) of 
the power spectrum for I is given by 

Tc(T) = T(t) - T„(T), (4.8-11) 

we also have 

^(r) = £ S -r; 'At h\k en cos npT (4.9-10) 
n=0 fc=l «! 

When this is substituted in 

Wdf) = 4 f 4'c(r) cos lirfr dr (4.9-11) 

we obtain 

Wrif) = t t % Hi. [& (/ - 'I) + & (/ + g)] (4.9-,2) 

where 

Gk{J) = f \pk
T cos ItvJt dr (4.9-13) 

is the function studied in Appendix 4C. (?*(/) is an even function of/. The 
double series (4.9-12) for 1TC looks rather formidable. However, when we 
are interested in a particular portion of the frequency spectrum often only 
a few terms of the series are needed. 

It has been mentioned above that the direct method of obtaining the out- 
put power spectrum is closely related to the equations just derived. We 
now study this relation. 

We start with the following result from modulation theory0 : Let the 
voltage 

V = Po COS .To + Pi COS Xi + • * * + Pn COS Xn (4.9-14) 
Xk = M ^ = 0, 1, ■ • • A', 

where the p/s are incommensurable, be applied to the device (4A-1). The 
output current is 

CO QO 
I = ^ ^ 2-4m0--m.v emo . . 

mo=0 JIW-O (4.9-lo) 

• • • €my cos niaXa cos miXi • • • cos mNxN 

50 Bennett and Rice, "Note on Methods of Computing Modulation Products," Phil. 
Mag. S.7, V. 18, pp. 422-424, Sept. 1934, and Bennett's paper cited in Section 4.0. 
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where eo = 1 and em = 2 for m > 1. When the product of the cosines is 
expressed as a sum of cosines of the angles mo xo ± Wx .fx • ■ • AzmNxN , it is 
seen that the coefficient of the typical term is Amo...mN , except when all 
the m's are zero in which case it is |-i4o...o • Thus 

|yloo---o = dc component of I 

| Amo...mN | = amplitude of component of frequency (4.9-16) 

— | mopo Az mi pi Az ''' Az mNpN ( 
27r 

For all values of the m's, 
■M n -V 

Amo...mN = - / F{iu) n Jmr{PrU) du 
TV J c r=0 

M = Wo 4" Wi -}■ 0* • • 4" 

Following Bennett's procedure, we identify V as given by (4.9-14), with 

V = P cos pi 4- VN (4.1-13) 

by setting Po = P, po = p, and representing the noise voltage VN by the sum 
of the remaining terms. Since this makes Pi, Pn all very small, Laplace's 
process indicates that in (4.9-17) we may put 

(4.9-17) 

11 /o(Pr«) = exp — (Pi 4- • • • 4" Pi) 
r=l A (4.9-18) 

_ e-^ou2/2 

We have used the fact that \po is the mean square value of VN . It follows 
from these equations that 

dc component of 7 = ^- f F{iu)Jo{Pu)e' 'l'0,2)u du ZTV J C 

Component of frequency zr = — f F{iu)J„{Pu)e 12 du 
2tv tv J c 

These results are identical with those of (4.9-9). 
The equations just derived show that h„o is to be associated with the ii'1 

harmonic of p. In much the same way it may be shown that //„!- is to be 
associated with the modulation products arising from the nh harmonic of 
p and k of the elementary sinusoidal components representing VN . We 
consider only combinations of the form pi Az pi Az po, taking k = 3 for ex- 
ample, and neglect terms of the form 3pi and 2pi Az pi. The former type 
is much more numerous, there being about N3 of them while there are only 
about N and N2, respectively, of the latter type. 
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We again take k = 3 and consider nh , Mz, Ms to be one, and Mi, ■ ■ • mn 

to be zero, corresponding to the modulation product np ± pi ± pz ± ps. 
By making the same sort of approximations as Bennett does we find 

in+3 P1P2P3 f \ T / T) \ 3 (-u2/2)^o T 
-d,i,iIiti.o,o...o — —  o— / F{tu)Jn(Pu)u e du 

tt o J C 

P1P2P3, 
= —4—^ 

Wlien any other modulation product of the form np zL pri ± p r2 ± pr3 iS 
considered we get a similar expression in which PiPzPs is replaced by 
Pn-Pro-fVa . This may be done for any value of k. The result indicates 
that hnk , and consequently also the (n, k)th terms in the double series 
(4.9-10) and (4.9-12) for Tc(t) and Wc(f), are to be associated with the 
modulation products of order («, k), the n referring to the signal and the k 
to the noise components. * 

We now may state a theorem due to Middleton regarding the total power 
in the modulation products of a given order. For a given non-linear device 
(i.e. F(iu) is given), the total power which would be dissipated by all of the 
modulation products which are of order (n, k) if I were to flow through a 
resistance of one ohm is 

*,»(()) = hi, - (4.9-19) 

The important feature of this expression is that it depends only on the r.m.s. 
value of VN and on F{iu). It depends not at all upon the spectral dis- 
tribution of the noise power in the input. 

The proof of (4.9-19) is based on the relation 

^(0) = I Wnk(.f) df 

between the total power dissipated by all the («, k) order products and the 
corresponding correlation function obtained from (4.9-7), 

This theorem has been used by Middleton to show that when the input 
is confined to a relatively narrow frequency band, so that the output spec- 
trum consists of bands, the power in each band depends only on V2

N and not 
on the spectrum of T V . 

4.10 Miscellaneous Results Obtained by Coreelation Function 
Method 

In this section a number of results which may be obtained from the theory 
given in the sections following 4.6 are given. 
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When the input to the square law device 

I = aV2 (4.1-1) 

consists of noise only, so that V = VN , the correlation function for I is 

^(r) = atyl + 2 xf/l] (4.10-1) 

where \pT is the correlation function of Tw . This may be compared with 
equation (3.9-7). When V is general, 

^(r) = ave. I(1)1(1 -f r) 

= ave. ctV2(t)V2(t + r) 

„ . . (iiif (iv)2. . . (4.10-2) 
= a" X Coefficient of 111 Power series expansion 

of ch. f. of V(l), V(t -h t) 

where we have used a known property of the characteristic function. An 
expression for the ch. f., denoted by g(u, v, r), is given by (4.8-4). For 
example, when V consists of a sine wave plus noise, (4.1-13), the ch. f. is 
obtainable from (4.9-3). Hence, 

h2 v2 

vl>(T) = Coeff. of —p in expansion of 

(4.10-3) 

a Jo{P\/u2 + f2 + 2uv cos Jr) 

X exp |^—y ("" + v) ~ 

= a2 ^ cos 2pT + 2P2pr cos pT + 2^;^ 

The first two terms give the dc and second harmonic. The last two terms 
may be used to compute TFC(/) as given by (4.5-13). 

Expressions (4.10-1) and (4.10-3) are special cases of results obtained by 
Middleton who has studied the general theory of the quadratic rectifier by 
using the Van Vleck-North method, described in Section 4.7. 

As an example to which the theory of Section 4.9 may be applied we con- 
sider the sine wave plus noise, (4.1-13), to be applied to the p-law rectifier 

/ = 0, V < 0 
(4.10-4) 

/ = V\ F > 0 

From the table in Appendix 4/1 it is seen that 

F(iu) = r(v + l)(/«)_v 1 
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and that the path of integration C runs along the real axis from — oc to co 
with a downward indentation at the origin. The integral (4.9-6) for //„* 
becomes T 

•n+fc—K—i f 
r(. + i) uk—ljn(Fu)e 

ZTT Jc 

\U-k)l2 
fj +1) 

-(i/'0/2)u2 

du 

2T (2 - k - 11 + v ^ n\ 
lFl (^1 ^ 11+11 ~X) {4A0~5) 

P 
X 2^o 

where the integration has been performed by expanding J„{Pu) in powers 
of u and using 

f e~au2 u2^1 du = ie~xi'arx sin XttFCX) 
j c 

= ^ (1 - e-
!X")r(X) (4.10-6) 

iire XtT 

axr(l - X) 

it being understood that arg u = 0 on the positive portion of C. 
From (4.9-9), the dc component of I is 

hx = M^hN'\Pi('u_x\ (4,0_7) 

2r 

1? ( v ^ \ 

which reduces to the expression (4.2-3) when i* = 1 for the linear rectifier 
(aside from the factor a). 

When the input (sine wave plus noise) is confined to a relatively narrow 
band, and when we are interested in the low frequency output, consideration 
of the modulation products suggests that we consider the difference products 
from the products of order (0, 0), (0, 2), (0, 4), • • • (1, 1), (1, 3), • • • (2, 0), 
(2, 2), • • • etc. where the typical product is of order (», k). The orders 
(0, 0) and (2, 0) give the dc and second harmonic and hence are not con- 
sidered in the computation of Wdf). Of the remaining terms, either (0, 2) 
or (1, 1) gives the greatest contribution to the series (4.9-12) and (4.9-10) 
for PFc(/)and ^(r). The remaining terms contribute less and less as n and 



MATHEMATICAL ANALYSIS OF RANDOM NOISE 145 

k increase. The low frequency portion of the continuous portion of the 
output power spectrum is ihen, from (4.9-12), 

Wdf) = 2V4G2(/) + + ••• 

+ j-, —/o) + Gi(/ + /o)] + -j h\z[Gz{f — /o) (4.10-8) 

+ Gz{f + /o)] + — — 2/o) + Gi{f + 2/o)] + • • • 

From Table 2 of Appendix 4C we may pick out the low frequency portions of 
the G's. It must be remembered that Gm{x) is an even function of x and 
that 0 < / « /o. 

As an example we take the input noise Vn to have the same w{j) and 
^(r) as Filter a, the normal law filter, of Appendix 4C, so that 

W(/) = 
(TV 27r 

and assume that the sine wave signal is at the middle of the band, giving 
p = 2r/o. Thus, from (4.10-8), for low frequencies and the normal law 
distribution of the input noise power, 

+ + LNyT* (4-10-9) 

Although we have been speaking of the f-law rectifier, equation (4.10-9) 
gives the low frequency portion of TFc(/), corresponding to a normal law 
noise power, for any non-linear device provided the proper //nt's are inserted. 

When we set v equal to one in the expression (4.10-5) for hnk we may ob- 
tain the results given by Bennett. Middleton has studied the output of a 
biased linear rectifier, when the input consists of a sine wave plus noise, and 
also the special case of the unbiased linear rectifier. He has computed the 
output for a wide range of the ratios P'/i^o, B'/lAo where B is the bias. In 
order to cover the entire range he had to derive two series for the corre- 
sponding //nit's, each series being suitable for its particular portion of the 
range. 
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A special case of (4.10-9) occurs when noise alone is applied to a linear 
rectifier. The low frequency portion of the output power spectrum is 

TIT- / x\ to ( —2)m(—2)»n 1 
Vt(/) "7 A/ mUn\ TvTS 

= fie"'2'"' + --7= (4.10-10) 
2(r L 64V2 

+ 256V3 

where we have used (4.7-6) and Table 2 of Appendix 4C. 
The correlation function of 

] 

Vs = P cos pt Q cos qt, 

where p and q are incommensurable, is 

J0{P\/vr v- Ar luv cos Pt) X JoiQy/u- + f2 + 2uv cos qr) 

From equations (4.9-16) and (4.9-17) it is seen immediately that 

hm = 1 f du (4.10-11) 
27r J c 

is the d.c. component of I when the applied voltage is 

P cos pt -\- Q cos qt + VN . (4.1-4) 

J. R. Ragazzini has obtained an approximate expression for the output 
power spectrum when the voltage 

F = F' + ^ (4.10-12) 
Fs = <3(1 + r cos pl)cos qt 

is impressed on a linear rectifier.46 In terms of our notation his expression 
for the continuous portion of the power spectrum is (for low frequencies) 

TV (f\ - 1 v f Wc^) given by e(3uation 1 (4.10-13) 1 -K-criQ1 + 2\pQ) |_(4.5-17) for square law devicej 

The a is put in the denominator to cancel the of in the expression (4.5-17). 
We take the linear rectifier to be 

= fo T < 0 (4.10-14) 
\F, 0 < F v 7 

and replace the index of modulation, k, in (4.5-17) by r. 
46 Equation (12), "The Effect of Fluctuation Voltages on the Linear Detector," Proc. 

I.R.E., V. 30, pp. 277-288 (June 1942). 
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Ragazzini's formula is quite accurate when the index of modulation r is 
small, especial!)' when y = Q2/(2\f/o) is large. To show this we put r = 0 
in (4.10-13) and obtain 

Wc(f) = + 2^o) +/) 

+« (4.10-15) 
+ J_ w{x)w{J — x) dx 

where fq = q/{2iT). This is to be compared with the low frequency por- 
tion of Wc{f) obtained by specializing (4.10-8) to obtain the output power 
spectrum of a linear rectifier when the input consists of a sine wave plus 
noise. The leading terms in (4.10-8) give 

WciJ) = h'n[w{fq —/) + w(/g +/)] 

, ,o 1 r+* , (4.10-16) 
+ «02 7 / w{x)w{f — x) dx 4 J—00 

The values of the It's appropriate to a linear rectifier are obtained by set- 
ting i' = 1 in (4.10-5) and noticing that Q now plays the role of P. 

hi = l(£)mMi;!; -y) 

*03 = (2^o)-"2iF1(i; 1; -y) (4.10-17) 

V = QV(2W 

Incidentally, the first approximation to the output of a linear rectifier 
given by (4.10-16) is interesting in its own right. Fig. 9 shows the low fre- 
quency portion of IFC(/) as computed from (4.10-16) when the input noise 
is uniformly distributed over a narrow frequency band of width /3,/g being 
the mid-band frequency, hn and //02 may be obtained from the curves 
shown in Fig. 10. In these figures P and x replace Q and y of (4.10-17) in 
order to keep the notation the same as in Fig. 8 for the square law device. 
These curves may also be obtained from equations (33) to (43) of Bennett's 
paper. 

The following values are useful for our comparison. 

When x = 0 When x is large 

hi = 0 Jm = I/tt (4.10-18) 

/'02 = (2inpo) 11' ho2 = 

The values for large x are obtained from the asymptotic expansion (45 — 3) 
given in Appendix 45. 
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LOW FREQUENCY OUTPUT OF LINEAR RECTIFIER 
APPROXIMATION -SECOND ORDER PRODUCTS ONLY 

Wc(f) 

"T 

IN PUT = V= P COS ZTTfpt + NOISE 
jo. V < 0 1 output = i = |v; v> oj1 

OUTPUT D.C. = P^n+pWoWoa 

LET 0 = ^ * = (PK0.f 4 P 2 / 

ah., w0 

T 
c 

J. 
INPUT SPECTRUM 

P/2 P 

INPUT NOISE 
r". 

-p- 

FREQUENCY 
Fig. 9 

~ TT('+4!y) 
1 
n 

_L (, !_") n 0 4x2 

/ 

/ 

// 
7" 

/   f— 

 AVC SINE WAVE POWER_ Pz 

AVE. NOISE POWER 2 p W0 

Fig. 10—Coefficients for linear detector output shown on Fig. 9 

Pli02 = AiFi(i; 1; -x) hn = \a/~ 2; -x) 

We make the first comparison between (4.10-15) and (4.10 16) by letting 
Q —> x. It is seen that both reduce to 

W,(f) = L [»(/, - /) + w(/, + /)] (4.10-19) 
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which shows that the agreement is perfect in this case. Next we let (} = 0. 
The two expressions then give 

WC(J) = —[ w{x)w(J - x) dx 
Aliry/Q J—oo 

where A = ir for Ragazzini's formula and A = 4 for (4.10-16). Thus the 
agreement is still quite good. The limiting value for (4.10-16) may also 
be obtained from (4.7-8). 

Even if the index of modulation r is not negligibly small it may be shown 
that when Q —* &> Wc(f) still approaches the value given by,(4.10-19). 
Ragazzini's formula gives a somewhat larger answer because it includes the 
additional terms, shown in (4.5-17), which contain £"/4, but this difference 
does not appear to be serious. If the Q2 + 2^0 in the denominator of (4.10- 
13) be replaced by Q' + + 2\]/o the agreement is improved. 

APPENDIX 4A 

Table of Non-linear Devices Specified by Integrals 

Quite a number of non-linear devices may be specified by integrals of the 
form 

/ = J- /" F(iu)eiVu du (4A-1) 
ZTT Jc 

where the function F{iu) and the path of integration C are chosen to fit the 
device.* The table gives examples of such devices. Some important cases 
cannot be simply represented in this form. An example is the limiter 

I = - aD, V < -D 

I = aV, —D < V < D 

I = aD, D < V (4A-2) 

which may be represented as 

2a f"0 . . . du 
I = — sin Vu sin Du — 

TT Jo U2 

(4A-3) 
„ . 2a T ivu ■ T-. du 

= —aD + — / e sin Du — 
liri J c U2 

where C runs from — gc to -f cc and is indented downward at the origin. 
This is not of the form assumed in the theory of Part IV. However it 
appears that it would not be difficult to extend the theory in the particular 
case of the limiter. 

* Reference 50 cited in Section 4.9. 
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Non-Linear Devices Specified by Integrals 

/ = — f F(iu)eiVu dn 
lit J c 

I F{iu) C Tjpe of Device 

I = aV", n integer a n\ 
(i«)n+1 

Positive Loop 
around « = 0 

nth power device 

I = a{V - BY, n 
integer 

« "! p—iuB 
(i«)n+1 

Positive Loop 
around « = 0 

nth power device 
with bias 

7 = 0, U < 0 
I = aV, 0 < F 

a _ a 
(in)2 u2 

Real u axis from 
— co to + co with 
downward in- 
dentation at 
« = 0 

Linear rectifier 
cut-off at 
F = 0 

7 = 0, V < B 
I = a{V — B)", 
V > B 
v any positive number 

aT{v + 1) —iuB 

(inY+1 

(( i/th power recti- 
fier with bias 

7 = 0, F < 0 
7 = aF, Q<V <D 
I = aD, D < V 

a(l - €-*•">) 
(in)2 

Linear rectifier 
plus limiter 

7 = o, F < 0 
I.= <p(V)i V >0 F(p) = [ e-p'vit) dl 

Jo 

u 

APPENDIX 4B 

The Function iFi(a; c; x) 

In problems concerning a sine wave plus noise the hypergeometric func- 
tion 

7- / \ i . az i_ a(0 + ^ ^ /"IP iF^a; «: 2) = 1 + Jft + c(i; + !) 21 + '- - C"3"1) 

arises. Here we state some of its properties which are of use in the theory 
of Part IV. Curves of iFi(a; c; z) are given for a = - 4, — 3.5 • • • , 3.5, 
4.0 and c = - 1.5, - .5, + .5, 1, 1.5, 2, 3, 4 in the 1938 edition, page 275, 
of "Tables of Functions", by Jahnke and Emde. A list of properties of the 
function and other references are also given. In addition to these refer- 
ences we mention E. T. Copson, Functions of a Complex Variable (Ox- 
ford, 1935), page 260. 

If c is not a negative integer or zero 

c; z) = e'iFi(c — a; C] — z). (4B-2) 



MATHEMATICAL ANALYSIS OF RANDOM NOISE 151 

When R (z) > 0 we have the asymptotic expansions 

iFi{a- c; -z) 

r(fl)2c-a |_ i!z 
— a) (2 — a)(c — 

2122" 

r(c) f c(i + a — c) 

I (1 — a)(2 — a)(c — a)(c — a + 1) 
+  2\&  + 

[l+^ 

(4B-3) 

r(c — a)za |_ llz 
a{a + 1)(1 + fl — c)(2 + a - c) 

+ 2!22 "t" 

Many of the hypergeometric functions encountered may be expressed in 
terms of Bessel functions of the first kind for imaginary argument. The 
connection may be made by means of the relation51 

iFi (v +.Y2v+liz
Sj= 2"T(v + (4B-4) 

together with the recurrence relations 

Fa+ Fa- Fc+ Fc- F 

1. a id- - c) c — 2a — z 
2. ac (c — a)z — c{a -f 2) 
3. a 1 — c c — a — 1 
4. — c —z c 
5. a — c c — 1 1 — a — 2 
6. (c — 0)2 c{c - 1) 

TT 1 1 

For example, the first recurrence relation is obtained from line 1 as follows 

aF{a + 1; c; 2) + (a - c)F(a - 1; c; s) 

+ (c- 2a - z)F{a; c; z)= 0 (4B-5) 

These six relations between the contiguous 1F1 functions are analogous to 
the 15 relations, given by Gauss, between the contiguous 2F1 hypergeometric 
functions and may be derived from these by using 

1^1(0; c-, 2) = Limit 2Fn a, b; c;y ) (4B-6) 
b-'oo \ 0/ 

A recurrence relation involving two i/'Vs of the type (4B-4) may be ob- 
tained by replacing a by a + 1 in the relation given by row four of the table 

51 G. N. Watson, "Theory of Bessel Functions" (Cambridge, 1922), p. 191. 
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and then eliminating iF^a + 1; c; z) from this relation and the one obtained 
from row 3 of the table. There results 

iFi(a; c\ z) = iFi(a; c - 1; z) + ^ F{a + 1; c + 1; z) (4B-7) 

Setting v equal to zero and one in (4B-4) and a equal to 5, c equal to 2 in 
(4B-7) gives 

1;.1(^3;Z) = 4Z-V'! A (4B-8) 

Starting with these relations the relations in the table enable us to find 
an expression for iF^n + m\ z) where n and m are integers. A number 
of these are given in Bennett's paper. In particular, using (4B-2), _ 

(4B-9) 

APPENDIX 4C 

The Power Spectrum Corresponding to ypr 

Quite often we encounter the integral 

Gn(/) == f [,/'(T)]n cos 27r/T dT (4C-1) Jo 

where ^(r) is the correlation function corresponding to the power spectrum 
w(/). From the fundamental relation between w(/) and ^(r) given by 
(2.1-5), 

Gi(f) = ^ (4C-2) 

The expression for the spectrum of the product of two functions enables us 
to write Gn(f) in terms of w(f). We shall use .the following form of this 
expression: Let Fr(/) be the spectrum of the function ^r(r) so that 

Vrir) = ^ Fr(f)e^fT df, r = l, 2 
J—00 

Fr(f) = F'Vr(.r)e-'-"'dl 
J—CO 
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Then 
.+00 (.+03 
[ <Pi(T}<p2(T)e-2iri/T dr = f F1(x)F2(/- x) dx (4C-3) v—1X5 V—00 

i.e., the spectrum of the product vi(r)^2(T) is the integral on the right. 
If i^i(r) and ip2(t) are real even functions of r, (4C-3) may be written as 

jf ^i(r)^2(r) cos Itt/t dr = ^ £ F1(x)F2(/ — dx (4C-4) 

In order to obtain G2(f) we set ^i(r) and <p2(t) equal to ^(r). We may 
then use (4C-4) since ^(r) is an even real function of r. When ^(r) is an 
even real function of r we see, from the Fourier integral for Fr(f), that Fr(f) 
must be an even real function of /. We therefore set 

2Fr(f) = w(f), r= 1,2 

and define w(/) for negative / by 

w(-f) = w(f) (4C-5) 

Equation (4C-4) then gives 

G*if) = 5 f w{x)w(f - x) dx O J—oo 

= Z f w(x)w(f — x) dx (4C-6) 8 Jo 

+ 5 i + *)dx 

where in the second equation only positive values of the argument of w(f) 
appear. 

In order to get G3(/) we set ^i(r) equal to ^(r), 2F1(f) equal to w(f), and 
<P2{t) equal to ^2(t). Then 

F2(J) = 2 f <p2{t) cos 27r/r dr 
Jo 

= 2G2(J) 

and from (4C-4) we obtain 

Gsif) =ll_ w(x)G2(f - 
x) dx 

(4C-7) 
i r+:0 r+:0 

= i6 i dx L ~dy 
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Equation (4C-7) suggests that we may write the expression for GjC/) as 

GiU) = I f w(x)Gi(/ - *) dx (4C-8) A J—co 

This is seen to be true from (4C-2) and (4C-6). In fact it appears that 

Gnif) =1 f wif - x)Gn-i(x) dx (4C-9) Z J—oo 

might be used for a step by step computation of G„(/). 
We now consider Gn(J) for the case of relatively narrow band pass filters. 

As examples we take filters whose characteristics give the following w(/)'s 
and iKt)'s 

Table 1 

Filter iu{]) for / > 0 ^•(r) 

a ,-(/-/0)2/2cr2 
tpQ e-2(ror)- cos 27r/o r 

b 
l/'o « 1 

TT a2 + (/ - /o)2 

a)(/) = Wo = i^c/iS for 

\i'oe_2ira'T' COS 2irfoT 

c 
Q 0 

fo--2<f<f* + -2 

wif) — 0 elsewhere 

sin it0t 
f/D   COS 27170 T ■K0T 

We shall refer to these filters as Filter a, Filter b, and Filter c, respectively. 
All have /o as the mid-frequency of the pass band. The constants have 
been chosen so that they all pass the same average power when a wide band 
voltage is applied: 

r" = / w{f) df = mean square value of /(/) or V{t) 
Jo 

and it is assumed that fo 'S* a, fo^> a, fo^ P so that the pass bands are 
relatively narrow. 

Expressions for G„(/) corresponding to several values of n are given in 
Table 2. When n = 1, Gi(/) is simply w(/)/4. G2(/) is obtained by set- 
ting « = 2 in the definition (4C-1) for Gn(/), squaring the ^(r)^ of Table 1, 
and using 

cos2 27r/oT = s cos Wo7" 
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The expression for G^/) given in Table 2 corresponding to Filter c is 
exact. The expressions for Filters a and b give good approximations around 
/ = 0 and/ = 2/o where G^f) is large. However, they are not exact because 
terms involving / + 2/o have been omitted. It is seen that all three Ga's 
behave in the same manner. Each has a peak symmetrical about 2/o whose 
width is twice that of the original w{f), is almost zero between 0 and 2/o, 
and rises to a peak at 0 whose height is twice that at 2/o. 

Gsif) is obtained by cubing the ^(r) given in Table 1 and using 

From the way in which the cosine terms combine with cos 27r/r in (4C-1) we 
see that GsC/), for our relatively narrow band pass filters, has peaks at /o 
and 3/o, the first peak being three times as high as the second. The ex- 
pressions given for GsC/) and Gi{f) are approximate in the same sense as are 
those for G^f). It will be observed that the coefficients within the brackets, 
for Filters a and b, are the binomial coefficients for the value of n concerned. 
Thus for n = 2, they are 2 and 1, for n = 3 they are 3 and 1, and for n = A 
they are 6, 4, and 1. 

The higher Gn(/)'s for Filters a and b may be computed in the same way. 
The integrals to be used are 

In many of our examples we are interested only in the values G„(/) for 
/ near zero, i.e., only in that peak which is at zero. It is seen-that G„(/) 
has such a peak only when n is even, this peak arising from the constant 
term in the expansion 

COS3 lirfoT = f COS lirfoT + | cos 67r/or. 

-J—, | cos 2kx + 2k cos 2(k — l)a: + 22ft-1 ^ 

+ ' ' * + ru  

cos 2{k — 2)x 

(2k) l'] 
k\k\2\ 



Abstracts of Technical Articles by Bell System Authors 

Historical Background of Electron Optics.1 C. J. Calbick. The discov- 
ery of electron optics resulted from studies of the action, upon electrons or 
other charged particles, of electric and magnetic fields employed for the 
purpose of obtaining sharply defined beams. The original Braun tube 
(1896) employed gas-focusing, as did the low-voltage cathode-ray oscil- 
loscope developed by Johnson in 1920. It was early discovered that an 
axial magnetic field could be used to concentrate the electrons into a beam, 
and this method came into wide use in the field of high-voltage cathode-ray 
oscillography. In 1927 Busch published a theoretical study of the action 
of an axially-symmetric magnetic field upon paraxial electrons, showing 
that the equation of the trajectories of the electrons was similar to that of 
the paths of light rays through an axially symmetric optical system. He 
concluded that such magnetic fields constituted lenses for electrons and pre- 
sented experimental confirmation. In 1931 Knoll and Ruska presented a 
large amount of additional experimental material and used the words "elec- 
tron optics" to describe the analog}'. In 1932 Bruche and Johannson pub- 
lished the first electron micrographs. 

The Davisson and Germer electron diffraction experiments (1927) em- 
ployed electron beams formed by electron guns consisting of a thermionic 
cathode emitting electrons which were accelerated by potentials applied to a 
series of plates containing aligned apertures. The resultant beam was 
quite divergent. Davisson and Calbick made a theoretical and experimental 
study of the forms of such beams. They concluded that the distorted elec- 
tric field in the vicinity of an aperture in a charged plate constituted a lens 
for charged particles (1931). The optical analogy was either a cylindrical 
or a spherical lens, according as the aperture was a slit or a circular hole. 
The theory was confirmed by photographing the forms of electron beams, 
and by construction of an electrostatic electron microscope whose experi- 
mental magnification agreed with the theoretical. 

Coaxial Cables and Associated Facilities.- J. J. Pilliod. (Summary of 
Talk before St. Louis Electrical Board of Trade, October 17, 1944.) Coaxial 
cables provide means of transmitting frequency bands several million cycles 
in width over a metal tube a little larger than a lead pencil, with a copper 
wire extending along its axis. Several of these tubes can be placed in a 
lead sheath. 

The frequency band transmitted over coaxial cables may be split up so as 
to provide several hundred telephone circuits or, without such division, 

1 Jour. Applied Physics, October 1944. 2 FM and Television, November 1944. 
157 
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coaxial cables will provide for broad-band transmission sendee such as is 
required for television. 

A cable is now being installed between Terre Haute and St. Louis which 
contains six coaxial tubes to provide telephone circuits, and which may, 
in the future, find use in connection with the provision of intercity television 
networks. 

The structure of the tubes used with coaxial cables consists of a central 
copper conductor within a copper tube about | in. in diameter, made from 
flat copper strip which is formed around the insulating discs. Around each 
copper tube are two steel tapes which supplement the shielding of the copper 
tube in preventing interference between tubes in close proximity. The cen- 
tral conductor is separated from the outer conductor by slotted insulating 
disks which are forced onto the wire. The cables are formed with an appro- 
priate number of these tubes along with some small gauge pairs used for 
control and operating purposes. 

In the case of underground cables buried directly in the earth, jute or plas- 
tic protective coverings are used to assist in reducing sheath corrosion. 
In some parts of the country it is essential to add a metal covering outside 
the lead sheath and the plastic or jute to protect the cables against the 
operations of ground squirrels or pocket gophers. In certain areas these 
animals have been found to carry away long sections of the jute covering 
and will chew holes in the lead sheath unless other metal protection is pro- 
vided. Copper is sometimes used for this metal covering to assist in light- 
ning protection. 

Repeaters in the coaxial system are now located at intervals of about five 
miles. Power for repeaters in the auxiliary stations is supplied from the 
adjacent main stations located at something over 50 miles at 60 cycles over 
the coaxial conductors themselves. 

Coaxial cables are in regular operation between New York and Philadel- 
phia and between Minneapolis and Stevens Point, Wisconsin, a total dis- 
tance of nearly 300 miles. A network of such cables totaling about 7,000 
route miles and including a second transcontinental cable route is being 
planned over additional routes. The requirements of the armed forces, 
general business conditions, the volume and distribution of long distance 
telephone messages, the availability of the necessary manufactured cable 
and equipment, and other factors may modify the extent of this construc- 
tion, the time of starting, and the routes which will be undertaken. 

Western Electric Recording System—U. S. Naval Photographic Science 
Laboratory.3 R. O. Strock and E. A. Dickinson. This paper describes 
the complete 35-mm film and 33| or 78 rpm. disk recording and re-recording 
equipment installed for the U. S. Navy at the Photographic Science Labora- 
tory, Anacostia, D. C. Modern design, excellent performance, and ease of 
operation are features of the installation. 

3 Jotir. Soc. Motion Picture Engineers, December 1944. 
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William A. Edson, Kansas University, B.S. 1934; M.S. 1935. Harvard 
University, D.S. 1937. Bell Telephone Laboratories, 1937-1941 and 1943-. 
Assistant Professor of Electrical Engineering 1941-1942 at Illinois Institute 
of Technology, Chicago. Prior to 1941 Dr. Edson was concerned with 
carrier telephone terminal devices. At the present time he is engaged full 
time on war projects. 

Richard C. Eggleston, Ph.B. 1909 and M.F. 1910, Yale University; 
U. S. Forest Sen-ice, 1910-1917; Pennsylvania Railroad, 1917-1920; First 
Lieutenant, Engineering Div., Ordnance Dept., World War I, 1918-1919; 
American Telephone and Telegraph Company, 1920-1927; Bell Telephone 
Laboratories, 1927-. Mr. Eggleston has been engaged chiefly with prob- 
lems relating to the strength of timber and with statistical investigations 
in the timber products field. 

S. O. Rice, B.S. in Electrical Engineering, Oregon State College, 1929; 
California Institute of Technology, 1929-30, 1934-35. Bell Telephone 
Laboratories, 1930-. Mr. Rice has been concerned with various theoretical 
investigations relating to telephone transmission theory. 
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