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Introduction 

O THOSE not familiar with the design of microwave radars the exten- 
sive war use of recently developed crystal rectifiers1 in radar receiver 

frequency converters may be surprising. In the renaissance of this once 
familiar component of early radio receiving sets there have been develop- 
ments in materials, processes, and structural design leading to vastly 
improved converters through greater sensitivity, stability, and ruggedness 
of the rectifier unit. As a result of these developments a series of crystal 
rectifiers was engineered for production in large quantities to the exacting 
electrical specifications demanded by advanced microwave techniques and 
to the mechanical requirements demanded of combat equipment. 

The work on crystal rectifiers at Bell Telephone Laboratories during 
the war was a part of an extensive cooperative research and development 
program on microwave weapons. The Office of Scientific Research and 
Development, through the Radiation Laboratory at the Massachusetts 
Institute of Technology, served as the coordinating agency for work con- 
ducted at various university, government, and industrial laboratories in 
this country and as a liaison agency with British and other Allied organiza- 
tions. However, prior to the inception of this cooperative program, basic 
studies on the use of crystal rectifiers had been conducted in Bell Telephone 
Laboratories. The series of crystal rectifiers now available may thus be 
considered to be the outgrowth of work conducted in three distinct periods. 
First, in the interval from 1934 to the end of 1940, devices incorporating 
point contact rectifiers came into general use in the researches in ultra- 
high-frequency and microwave communications techniques then under 
way at the Holmdel Radio Laboratories of Bell Telephone Laboratories. 

1 A crystal rectifier is an assymmetrical, non-litiear circuit element in which the seat of 
rectification is immediately underneath a point contact applied to the surface of a semi- 
conductor. This element'is frequently called "point contact rectifier" and "crystal de- 
tector" also. In this paper these terms are considered to be synonymous. 

1 
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At that time the improvement in sensitivity of microwave receivers employ- 
ing crystal rectifiers in the frequency converters was clearly recognized, as 
were the advantages of rectifiers using silicon rather than certain well 
known minerals as the semi-conductor. In the second period, from 1941 
to 1942, the advent of important war uses for microwave devices stimulated 
increased activity in both research and development. During these years 
the pattern for the interchange of technical information on microwave 
devices through government sponsored channels was established and was 
continued through the entire period of the war. With the extensive inter- 
change of information, considerable international standardization was 
achieved. In view of the urgent equipment needs of the Armed Services 
emphasis was placed on an early standardization of designs for production. 
This resulted in the first of the modern series of rectifiers, namely, the 
ceramic cartridge design later coded through the Radio Manufacturers 
Association as type 1N21. In the third period, from 1942 to the present 
time, process and design advances accruing from intensive research and 
development made possible the coding and manufacture of an extensive 
series of rectifiers all markedly superior to the original 1N21 unit. 

It is the purpose of this paper to review the work done in Bell Telephone 
Laboratories on silicon point contact rectifiers during the three periods 
mentioned above, and to discuss briefly typical properties of the rectifiers, 
several of the more important applications and the production history. 

Crystal Rectifiers in the Early Microwave Research 

The technical need for the modern crystal rectifier arose in research on 
ultra-high frequency communications techniques. Here as the frontier 
of the technically useful portion of the radio spectrum was steadily advanced 
into the microwave region, certain limitations in conventional vacuum 
tube detectors assumed increasing importance. Fundamentally, these 
limitations resulted from the large interelectrode capacitance and the 
finite time of transit of electrons between cathode and anode within the 
tubes. At the microwave frequencies (3000 megacycles and higher), they 
became of first importance. As transit time effects are virtually absent 
in point contact rectifiers, and since the capacitance is minute, it was logical 
that the utility of these devices should again be explored for laboratory use. 

The design of the point contact rectifiers used in these researches was 
dictated largely, of course, by the needs of the laboratory. Frequently 
the rectifier housing formed an integral part of the electrical circuit design 
while other structures took the form of a replaceable resistor-like cartridge. 
A variety of structures, including the modern types, arranged in chrono- 
logical sequence, are shown in the photograph, Fig. 1. In general, the 
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principal requirements of the rectifiers for laboratory use were that the 
units be sensitive, stable chemically, mechanically, and electrically, and 
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Fig. 1—Point contact rectifier structures. 1934-1943. Approximately f actual size. 

that they be easily adjusted. Considering the known vagaries of the device's 
historical counterpart, it was considered prudent to provide in the structures 
means by which the unit could be readjusted as frequently as might prove 
necessary or desirable. 
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As the properties of various semi-conductors were known to vary widely, 
an essential part of the early work was a survey of the properties of a number 
of minerals and metalloids potentially useful as rectifier materials. There 
were examined and tested approximately 100 materials, including zincite, 
molybdenite, galena, iron pyrites, silicon carbide, and silicon. Of the 
materials investigated most were found to be unsuitable for one reason 
or another, and iron pyrites and silicon were selected as having the best 
overall characteristics. The subsequent studies were then directed toward 
improving the rectifying material, the rectifying surface, the point contact 
and the mounting structure. 

# 

Fig. 2—Rectifier inserts and contact points for use in early 3000 megacycle converters. 
Overall length of insert ^-inch approximately. 

For use at frequencies in the region of 3000 megacycles standard demount- 
able elements, consisting of rectifier "inserts" and contact points, were 
developed for use in various housings or mounting blocks, depending upon 
the particular circuit requirements. The rectifier "inserts" consisted of 
small wafers of iron pyrite or silicon, soldered to hexagonal brass studs as 
shown in Fig. 2a. In these devices the surface of the semi-conductor was 
prepared by grinding, polishing, and etching to develop good rectification 
characteristics. Our knowledge of the metallurgy of silicon had advanced 
by this time to the stage where a uniformly active rectifier surface could 
be produced and searching for active spots was not necessary. Further- 
more, it was possible to prepare inserts of a positive or negative variety, 
signifying that the easy direction of current flow was obtained with the 
silicon positive with respect to the point or vice versa. Owing to a greater 
nonlinearity of the current voltage characteristic, the n-type or negative 
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insert tended to give better performance as microwave converters while 
the p-type, or positive insert, because of greater sensitivity at low voltages, 
proved to be more useful in test equipment such as resonance indicators in 
frequency meters. In certain instances also, it was advantageous for the 
designer to be able to choose the polarity best suited to his circuit design. 
In contrast, however, to the striking uniformity obtained with the silicon 
processed in the laboratory, the pyrite inserts were very non-uniform. 
Active rectification spots on these natural mineral specimens could be 
found only by tediously searching the surface of the specimen. More- 
over, rectifiers employing the pyrite inserts showed a greater variation in 
properties with frequency than those in which silicon was used. 

In addition to providing a satisfactory semi-conductor, it was necessary 
also to develop suitable materials for use as point contacts. For this use 
metals were required which had satisfactory rectification characteristics 
with respect to silicon or pyrites and sufficient hardness so that excessive 
contact areas were not obtained at the contact pressures employed in the 
rectifier assembly. The metals finally chosen were a platinum-iridium 
alloy and tungsten, which in some cases was coated with a gold alloy. 
These were employed in the form of a fine wire spot welded to a suitable 
spring member. The spring members themselves were usually of a wedge 
shaped cantilever design and were made from coin silver to facilitate elec- 
trical connection to the spring. Several contact springs of two typical 
designs are shown in the photograph, Figs. 2b and 2c. 

A typical mounting block arranged for use with the inserts and points 
is shown in Fig. 1 (1940) and in Fig. 3. This block was so constructed that 
it could be inserted in a 70 ohm coaxial line without introducing serious 
discontinuities in the line. The contact point of the rectifier was assembled 
in the block to be electrically connected to the central conductor of the 
coaxial radio frequency input fitting, while the crystal insert screwed into 
a tapered brass pin electrically connected to the central conductor of the 
coaxial intermediate frequency and d-c output fitting. The tapered pin 
fitted tightly into a tapered hole in a supporting brass cylinder, but was 
insulated from the cylinder by a few turns of polystyrene tape several 
thousandths of an inch thick. This central pin was thus one terminal of a 
coaxial high-frequency by-pass condenser. The capacitance of this con- 
denser depended upon the general nature of the circuits in which the block 
was to be used, and was generally about 15 mmfs. The arrangement of 
the point, the crystal insert and their respective supporting members was 
such that the point contact could be made to engage the surface of the 
silicon at any spot and at the contact pressure desired and thereafter be 
clamped firmly in a fixed position by set screws. Typical direct current 
characteristics of the positive and negative silicon inserts and of pyrite 
inserts assembled and adjusted in this mounting block are shown in Fig. 4. 
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Fig. 3—Schematic diagram of one of the early crystal converter blocks. 

The inserts and points in appropriate mounting blocks were widely used 
in centimeter wave investigations prior to 1940.2 The principal laboratory 
uses were in frequency converter circuits in receivers, and as radio fre- 

1 G. C. Southworth and A. P. King, "Metal Horns as Directive Receivers of Ultra- 
Short Waves," Proc. I. R. E. v. 27, pp. 95-102, 1939; Carl R. Englund, "Dielectric Con- 
stants and Power Factors at Centimeter Wave Lengths," Bell Sys. Tech. Jour., v. 23, pp. 
114-129, 1944; Brainerd, Koehler, Reich, and Woodruff, "Ultra High Frequency Tech- 
niques," D. Van Nostrand Co., Inc., 250-4th Avenue,[New York,[1942. 
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quency instrument rectifiers. They were also used to a relatively minor 
extent in some of the early radar test equipment. Moreover, the avail- 
ability of these devices and the knowledge of their properties as microwave 
converters tended to focus attention on the potentialities of radar designs 
employing crystal rectifiers in the receiver's frequency converter. Similarly, 
the techniques established for preparation of the inserts tended to orient 
subsequent manufacturing process developments. For example, the 
methods now generally used for preparing silicon ingots, for cutting the 
rectifying element from the ingot with diamond saws, and for forming the 

10' 

10° 

in 

LL 2 UJ 

10-2 

10-3 
10-8 lO"7 ID"6 lO"5 tO"4 10-3 10*2 lO"1 

CURRENT IN AMPERES 
Fig. 4—Direct-current characteristics of silicon and iron pyrite rectifiers 

fabricated as inserts, 1939. 

back contact to the rectifying element by electroplating procedures, are 
still essentially similar to the techniques used for preparing the inserts in 
1939. As a contribution to the defense research effort, this basic informa- 
tion, with various samples and experimental assemblies, was made available 
to governmental agencies for dissemination to authorized domestic and 
foreign research establishments. 

Development of the Ceramic Type Cartridge Structure 

The block rectifier structure previously described was well adapted to 
various laboratory needs because of its flexibility, but for large scale utiliza- 
tion certain limitations are evident. Not only was it necessary that the 
parts be accurately machined, but also the adjustment of the rectifier in 
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the block structure required considerable skill. With recognition of the 
military importance of silicon crystal rectifiers, effort was intensified in 
the development of standardized structures suitable for commercial pro- 
duction. 

In the 1940-1941 period, contributions to the design of silicon crystal 
rectifiers were made by British workers as a part of their development of 
new military implements. For these projected military uses, the problem 
of replacement and interchangeability assumed added importance. The 
design trend was, therefore, towards the development of a cartridge type 
structure with the electrical adjustment fixed during manufacture, so that 
the unit could be replaced easily in the same manner as vacuum tubes. 

In the latter part of 1941 preliminary information was received in this 
country through National Defense Research Committee channels on a 
rectifier design originating in the laboratories of the British 1 homson- 
Houston Co., Ltd. A parallel development of a similar device was begun 
in various American laboratories, including the Radiation Laboratory at 
the Massachusetts Institute of Technology, and Bell Telephone Labora- 
tories. In the work at Bell Laboratories, emphasis was placed both on 
development of a structure similar to the British design and on explora- 
tion and test of various new structures which retained the features of 
socket interchangeability but which were improved mechanically and 
electrically. 

In the work on the ceramic cartridge, the external features of the British 
design were retained for reasons of mechanical standardization but a number 
of changes in process and design were made both to improve performance 
and to simplify manufacture. To mention a few, the position of the silicon 
wafer and the contact point were interchanged because measurements 
indicated that an improvement in performance could thereby be obtained. 
To obviate the necessity for searching for active spots on the surface of 
the silicon and to improve performance, fused high purity silicon was 
substituted for the "commercial" silicon then employed by the British. 
The rectifying element was cut from the ingots by diamond saws, and 
carefully polished and etched to develop optimum rectification character- 
istics. Similar improvements were made in the preparation of the point 
or "cats whisker", replacing hand operations by machine techniques. To 
protect the unit from mechanical shock and the ingress of moisture, a special 
impregnating compound was developed which was completely satisfactory 
even under conditions of rapid changes in temperature from —40° to -l-70oC. 
All such improvements were directed towards improving quality and 
establishing techniques for mass production. 

In this early work time was at a premium because of the need for prompt 
standardization of the design in order that radar system designs might in 
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turn be standardi2ed, and that manufacturing facilities might be established 
to supply adequate quantities of the device. The development and initial 
production of the device was accomplished in a short period of time. This 
was possible because process experience had been acquired in the insert 
development, and centimeter wave measurements techniques and facilities 
were then available to measure the characteristics of experimental units 
at the operating frequency. By December 1941, a pattern of manufacturing 
techniques had been established so that production by the Western Electric 
Company began shortly thereafter. This is believed to have been the 
lirst commercial production of the device in this country. 

As a result of the basic information on centimeter wave measurements 
techniques which was available from earlier microwave research at the 
Holmdel Radio Laboratory, it was possible also, at this early date, to 
propose to the Armed Services that each unit be required to pass an ac- 
ceptance test consisting of measurement of the operating characteristics 
at the intended operating frequency. This plan was adopted and standard 
test methods devised for production testing. Considering the complexity 
of centimeter wave measurements, this was an accomplishment of some 
magnitude and was of first importance to the Armed Services because it 
assured by direct measurement that each unit would be satisfactory for 
field use. 

The cartridge structure resulting from these developments and meeting 
the international dimensional standards is shown in Fig. 5. It consists 
of two metal terminals separated by an internally threaded ceramic insu- 
lator. The rectifying element itself consists of a small piece of silicon (p- 
type) soldered to the lower metal terminal or base. The contact spring or 
"cats whisker" is soldered into a cylindrical brass pin which slides freely 
into an axial hole in the upper terminal and may be locked in any desired 
position by set screws. The spring itself is made from tungsten wire of an 
appropriate size, formed into an S shape. The free end of the wire, which 
in a finished unit engages the surface of the silicon and establishes rectifica- 
tion, is formed to a cone-shaped configuration in order that the area of 
contact may be held at the desired low value. 

The silicon elements used in the rectifiers are prepared from ingots of 
fused high purity silicon. Alloying additions are made to the melt when 
required to adjust the electrical resistivity of the silicon to the value desired. 
The ingots are then cut and the silicon surfaces prepared and cut into small 
pieces approximately 0.05 inch square and 0.02 inch thick suitable for use 
in the rectifiers. The contact springs are made from tungsten wire, gold 
plated to facilitate soldering. Depending upon the application, the wires 
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may be 0.005 inch, 0.0085 inch, or 0.010 inch in diameter. After forming 
the spring to the desired shape, the tip is formed electrolytically. 

In assembling the rectifier cartridge, the two end terminals, consisting 
of the base with the silicon element soldered to it, and the top detail con- 
taining the contact spring, are threaded into the ceramic tube so that the 
free end of the spring does not engage the silicon surface. An adhesive 
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Fig. 5—Ceramic cartridge rectifier structure and parts. 
Overall length of assembled rectifier is approximately | inch. 

is employed to secure the parts firmly to the ceramic. The rectifier is then 
"adjusted" by bringing the point into engagement with the silicon surface 
and establishing optimum electrical characteristics. Finally the unit is 
impregnated with a special compound to protect it from moisture and from 
damage by mechanical shock. Units so prepared are then ready for the 
final electrical tests. 

The adjustment of the rectifier is an interesting operation for at this 
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stage in the process the rectification action is developed, and to a considerable 
degree, controlled. If the point is brought into contact with the silicon 
surface and a small compressional deflection applied to the spring, direct- 
current measurements will show a moderate rectification represented by 
the passage of more current at a given voltage in the forward direction than 
in the reverse. If the side of the unit is now tapped sharply by means of 
a small hammer, the forward current will be increased, and, at the same 
time, the reverse current decreased.3 With successive blows the reverse 
current is reduced rapidly to a constant low value while the forward current 
increases, but at a diminishing rate, until it also becomes relatively constant. 
The magnitude of the changes produced by this simple operation is rather 
surprising. The reverse current at one volt seldom decreases by less than a 
factor of 10 and frequently decreases by as much as a factor of 100, while 
the forward current at one volt increases by a factor of 10. Paralleling 
these changes are improvements in the high-frequency properties, the 
conversion loss and noise both being reduced. The tapping operation is 
not a haphazard searching for better rectifying spots, for with a given 
silicon material and mechanical assembly the reaction of each unit to tapping 
is regular, systematic and reproducible. The condition of the silicon surface 
also has a pronounced bearing on "tappability" for by modifications of 
the surface it is possible to produce, at will, materials sensitive or insensitive 
in their reaction to the tapping blows. 

In the development of the compounds for filling the rectifier, special 
problems were met. For example, storage of the units for long periods 
of time under either arctic or tropical conditions was to be expected. Also, 
for use in air-borne radars operating at high altitudes, where equipment 
might be operated after a long idle period, it was necessary that the units 
be capable of withstanding rapid heating from very low temperatures. 
The temperature range specified was from —40° to +70oC. Most organic 
materials normally solid at room temperature, as the hydrocarbon waxes, 
are completely unsuitable, as the excessive contraction which occurs at 
low temperatures is sufficient to shift the contact point and upset the precise 
adjustment of the spring. Nor are liquids satisfactory because of their 
tendency to seep from the unit. However, special gel fillers, consisting 
of a wax dispersed in a hydrocarbon oil, were devised in Bell Telephone 
Laboratories to meet the requirements, and were successfully applied by 
the leading manufacturers of crystal rectifiers in this country. Materials 
of a similar nature, though somewhat different in composition, were also 
used subsequently in Britain. Further improvements in these compounds 
have been made recently, extending the temperature range 10oC at low 

5 Southworth and Kin^r; loc. cit. 
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temperatures and about 30oC at high temperatures in response to the design 
trend towards operation of the units at higher temperatures. The units 
employing this compound may, if desired, be repeatedly heated and cooled 
rapidly between — 50oC and +100oC without damage. 

Use of the impregnating compound not only improves mechanical stability 
but prevents ingress or absorption of moisture. Increase of humidity 
would subject the unit not only to changes in electrical properties such as 
variation in the radio frequency impedance, but also to serious corrosion, 
for the galvanic couple at the junction would support rapid corrosion of the 
metal point. In fact, with condensed moisture present in unfilled units 
corrosion can be observed in 48 hours. For this reason alone, the develop- 
ment of a satisfactory filling compound was an important step in the suc- 
cessful utilization of the units by the Armed Services under diverse and 
drastic field conditions. 

Table I 
Shelf Aging Data on Silicon Crystal Rectifiers of the Ceramic Cartridge Design 

Storage Conditions 

Initial Values Values After 
Storage for 7 Months 

Conversion 
Loss 

(Medianj 
(L) 

Noise 
Ratio 

(Median) 
(Nr) 

Conversion 
Loss 

(median) 
(L) 

Noise 
Ratio 

(median) 
(Nr) 

db db db db 
750F. 65% Relative Humidity  6.8 3.9 6.7 4.3 

110oF. 95% Relative Humidity  6.9 3.9 6.9 4.3 
— 40oC  7.0 3.9 6.8 3.9 

The large improvement in stability achieved in the present device as 
compared with the older crystal detectors may be attributed to the design 
of the contact spring, correct alignment of parts in manufacture and to 
the practice of filling the cavity in the unit, with the gel developed for this 
purpose. Considering the apparently delicate construction of the device, 
the stabihty to mechanical or thermal shock achieved by these means is 
little short of spectacular. Standard tests consist of dropping the unit 
three feet to a wood surface, immersing in water, and of rapidly heating 
from —40 to 70oC. None of these tests impairs the quality of the unit. 
Similarly the unit will withstand storage for long periods of time under 
adverse conditions. Table I summarizes the results of tests on units 
which were stored for approximately one year under arctic (—40°), tropical 
(1140F—95% relative humidity), and temperate conditions. Though 
minor changes in the electrical characteristics were noted in the accelerated 
tropical test, none of the units was inoperative after this drastic treatment. 
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Development of the Shielded Rectifier Structure 

Rectifiers of the ceramic cartridge design, though manufactured in very 
large quantities and widely and successfully used in military apparatus, 
have certain well recognized limitations. For example, they may be ac- 
cidentally damaged by discharge of static electricity through the small 
point contact in the course of routine handling. If one terminal of the 
unit is held in the hand and the other terminal grounded, any charge which 
may have accumulated will be discharged through the small contact. 
Since such static charges result in potential differences of several thousand 
volts it is understandable that the unit might suffer damage from the dis- 
charge. Although damage from this cause may be avoided by following 
a few simple precautions in handling, the fact that such precautions are 
needed constitutes a disadvantage of the design. 

Certain manufacturing difficulties are also associated with the use of 
the threaded insulator. The problem of thread fit requires constant 
attention. Lack of squareness at the end of the ceramic cylinder or lack 
of concentricity in the threaded hole tends to cause an undesirable eccen- 
tricity or angularity in the assembled unit which can be minimized only by 
rigid inspection of parts and of final assemblies. At the higher frequencies 
(10,000 megacycles), uniformity in electrical properties, notably the radio 
frequency impedance, requires exceedingly close control of the internal 
mechanical dimensions. In the cartridge structure where the terminal 
connections are separated by a ceramic insulating member, the additive 
variations of the component parts make close dimensional control inherently 
difficult. 

To eliminate these difficulties the shielded structure, shown in Fig. 6, 
was developed. In this design the rectifier terminates a small coaxial 
line. The central conductor of the line, forming one terminal of the rec- 
tifier, is molded into an insulating cylinder of silica-filled bakelite, and 
has spot welded to it a 0.002-inch diameter tungsten wire spring of an 
offset C design. The free end of the spring is cone shaped. The rectifying 
element is soldered to a small brass disk. Both the disk, holding the 
rectifying element, and the bakelite cylinder, holding the point, are force- 
fits in the sleeve which forms the outer conductor of the rectifier. By 
locating the bakelite cylinder within the sleeve so that the free end of the 
central conductor is recessed in the sleeve, the unit is effectively protected 
from accidental static damage as long as the holder or socket into which 
the unit fits is so designed that the sleeve establishes electrical contact with 
the equipment at ground potential before the central conductor. The 
sleeve also shields the rectifying contact from effects of stray radiation. 

The radio frequency impedance of the shielded unit can be varied within 
certain limits by modifying the diameter of the central conductor. For 
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example, in the 1N26 unit, which was designed for use at frequencies in 
the region of 24,000 megacycles, a small metal slug fitting over the central 
conductor makes it possible to match a coaxial line having a 65-ohm surge 
impedance. For certain circumstances this modification in design is 
advantageous, while in others it is a disadvantage because the matching 
slug is effective only over a narrow range of frequencies. 

POINT ASSEMBLY 
INSULATING 

BEAD 
CENTRAL 

CONDUCTOR SILICON 
WAFER 

POINT METAL OUTER CONTACT DISC CONDUCTOR 

Fig. 6—Shielded rectifier structure and parts. Overall length of assembled rectifier is 
approximately f inch. 

The shielded structure was developed in 1942 and since it was of a sim- 
plified design with reduced hazard of static damage, it was proposed to the 
Armed Services for standardization in June of that year. However, because 
of the urgency of freezing the design of various radars and because the 
British had already standardized on the outline dimensions of the ceramic 
type cartridge, Fig. 5, the Sendees did not consider it advantageous to 
standardize the new structure when first proposed. In deference to this 
international standardization program, plans for the manufacture of this 
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structure were held in abeyance during 1942 and 1943. However, an 
opportunity for realizing the advantages inherent in the shielded design 
was afforded later in the war and a sufficient quantity of the units was pro- 
duced to demonstrate its soundness. As anticipated from the construc- 
tional features, marked uniformity of electrical properties was obtained. 

Types, Applications, and Operating Characteristics 

Various rectifier codes, engineered for specific military uses, were manu- 
factured by Western Electric Company during the war. These are listed 
in Table II. The units are designated by RMA type numbers, as 1N21, 
1N23, etc., depending upon their properties and the intended use. Letter 
suffixes, as 1N23A, 1N23B, indicate successively more stringent perform- 
ance requirements as reflected in lower allowable maxima in loss and noise 
ratio, and, usually, more stringent power proof-tests. In general, different 
codes are provided for operation in the various operating frequency ranges. 
For example, the 1N23 series is tested at 10,000 megacycles while the 1N21 
series is tested at 3,000 megacycles and the 1N25 at 1000 megacycles, 
approximately. Since higher transmitter powers are frequently employed 
at the lower frequencies, somewhat greater power handling ability is provided 
in units for operation in this range. 

One of the more important uses of silicon crystal rectifiers in military 
equipment was in the frequency converter or first detector in superheter- 
odyne radar receivers. This utilization was universal in microwave re- 
ceivers. In this application the crystal rectifier serves as the non-linear 
circuit element required to generate the difference (intermediate) frequency 
between the radio frequency signal and the local oscillator. The inter- 
mediate frequency thus obtained is then amplified and detected in conven- 
tional circuits. As the crystal rectifier is normally used at that point in 
the receiving circuit where the signal level is at its lowest value, its perform- 
ance in the converter has a direct bearing on the overall system performance. 
It was for this reason that continued improvements in the performance of 
crystal rectifiers were of such importance to the war effort. 

For the converter application, the signal-to-noise properties of the unit 
at the operating frequency, the power handling ability, and the uniformity 
of impedance are important factors. The signal-to-noise properties are 
measured as conversion loss and noise ratio. The loss, L, is the ratio of 
the available radio frequency signal input power to the available inter- 
mediate frequency output power, usually expressed in decibels. The 
noise ratio, Nr, is the ratio of crystal output noise power to thermal (KTB) 
noise power. The loss and noise ratio are fundamental properties of the 
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Fig. 7—Converter for wave guide circuits as installed in the radio frequency unit of 
the AN/APQ13 radar sj-stem. This was standard equipment in B-29 bombers for 

radar bombing and navigation. 
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converter. From these data and other circuit constants, the designer may 
calculate4 expected receiver performance. 

For operation as converters,5 crystal rectifiers are employed in suitable 
holders. These may be arranged for use with either coaxial line or wave 
guide circuits, depending upon the application. Figure 7 shows a converter 
for wave guide circuits installed in the radio frequency unit of an air-borne 
radar system. A typical converter designed for use with coaxial lines is 
shown in the photograph Fig. 8. A schematic circuit of this converter 
is shown in Fig. 9. In such circuits the best signal-to-noise ratio is realized 
when an optimum amount of beating oscillator power is supplied. The 
optimum power depends, in part, on the properties of the rectifier itself, 
and, in part, on other circuit factors as the noise figure of the intermediate 

m 

Fig. 8—Converter for use at 3000 megacycles. The crystal rectifier is located 
adjacent to its socket in the converter. 

frequency amplifier. For a well designed intermediate frequency amplifier 
with a noise figure of about 5 decibels, the optimum beating oscillator 
power is such that between 0.5 and 2.0 milliamperes of rectified current 
flows through the rectifier unit. Under these conditions and with the unit 
matched to the radio frequency line, the beating oscillator power absorbed 
by the unit is about one milliwatt. For intermediate frequency amplifiers 

* The quantities L and Nr are related to receiver performance by the relationship 
FR = L{NR - 1 + FIF) 

where Fr is the receiver noise figure and Ftp is the noise figure of the intermediate fre- 
quency amplifier. All terms are expressed as power ratios. A rigoious definition of 
receiver noise figure has been given by H. T. Friis "Noise Figures of Radio Receivers," 
Proc. I. R. E., vol. 32, pp. 419-422; July, 1944. 6 C. F. Edwards, "Microwave Converters," presented orally at the Winter Technical 
Meeting of the I. R. E., January 1946 and submitted to the I. R. E. for publication. 
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with poorer noise figures, the drive for optimum performance is higher 
than the figures cited above. Conversely, for intermediate frequency 
amplifiers with exceptionally low noise figures, optimum performance is 
obtained with lower values of beating oscillator drive. If desired, somewhat 
higher currents than 2.0 milliamperes may be employed without damage 
to the crystal. 

The impedance at the terminals of a converter using crystal rectifiers, 
both at radio and intermediate frequencies, is a function not only of the 
rectifier unit, but also of the circuit in which the unit is used and of the 

power level at which it is operated. Consequently the specification of an 
impedance for a crystal rectifier is of significance only in terms of the circuit 
in which it is measured. Since the converters used in the production testing 
of crystal rectifiers are not necessarily the same as those used in the field, 
and since in addition there are frequently several converter designs for 
the same type of unit, a specification of crystal rectifier impedance in pro- 
duction testing can do little more than select units which have the same 
impedance characteristic in the production test converter. The impedances 
at the terminals of two converters of different design but using the same 
crystal rectifier may vary by a factor of 3 or even more, with the inter- 
mediate frequency impedance generally varying more drastically than the 
radio frequency impedance. The variation is also a function of the con- 

SILICON 
RECTIFIER 

BY PASS 
CONDENSER 

I.F. OUTPUT 

Fig. 9—Schematic diagram of crystal converter. 

0 
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version loss. Crystals with large conversion losses are less susceptible 
to impedance changes from reactions in the radio frequency circuit than are 
low conversion loss units. 

The level of power to which the rectifiers can be subjected depends upon 
the way in which the power is applied. The application of an excessive 
amount of power or energy results in the electrical destruction of the unit 
by rupture of the rectifying material. Experimental evidence indicates 
that the electrical failure may be in one of three categories. The total 
energy of an applied pulse is responsible for the impairment when the 
pulse length is shorter than 10-7 seconds, the approximate thermal time 
constant of the crystal rectifier as given by both measurement and calcula- 
tion. For pulse lengths of the order of 10-6 seconds the peak power in the 
pulse is the determining factor, and for continuous wave operation the 
limitation is in the average power. 

In performance tests in manufacture all units for which burnout tolerances 
are specified are subjected to proof-tests at levels generally comparable 
with those which the unit may occasionally be expected to withstand in 
actual use, but greater than those to be employed as a design maximum. 
The power or energy is applied to the unit in one of two types of proof-test 
equipment. The multiple, long time constant (of the order of 10~6 seconds) 
pulse test is applied to simulate the plateau part of a radar pulse reaching 
the crystal through the gas discharge transmit-receive switch.6 This test 
uses an artificial line of appropriate impedance triggered at a selected 
repetition rate for a determined length of time. The power available to 
the unit is computed from the usual formula, 

4Z' 

where P is the power in watts, V is the potential in volts to which the pulse 
generator is charged, and Z is the impedance in ohms of the pulse generator. 
In general, where this test is employed, a line is used which matches the 
impedance of the unit under test at the specified voltage. 

The second type of test is the single discharge of a coaxial line through 
the unit to simulate a radar pulse spike reaching the crystal before the 
transmit-receive switch fires. The pulse length is of the order of 10-9 

second. The energy in the test spike may be computed from the relation 

E^CV\ 

where E is the energy in ergs, C the capacity of the coaxial line in farads, 
and V the potential in volts to which the line is charged. 

BA. L. Samuel, J. W. Clark, and W. W. Mumford, "The Gas Discharge Transmit- 
Receive Switch," Bell Sys. Tech. Jour., v. 25 No. 1, pp. 48-101, Jan. 1946. 
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Specification proof-test levels are, of course, not design criteria. Since 
the units are generally used in combination with protective devices, such 
as the transmit-receive switch, it is necessary to conduct tests in the circuits 
of interest to establish satisfactory operating levels. 

In general, however, the units may be expected to carry, without deteriora- 
tion, energy of the order of a third of that used in the single d-c spike proof- 
test or peak powers of a magnitude comparable with that used in the multiple 
flat-top d-c pulse proof-test. The upper limit for applied continuous wave 
signals has not been determined accurately, but, in general, rectified currents 
below 10 milliamperes are not harmful when the self bias is less than a few 
tenths of a volt. 

The service life of a crystal rectifier will depend completely upon the 
conditions under which it is operated and should be quite long when its 
ratings are not exceeded. During the war, careful engineering tests con- 
ducted on units operating as first detectors in certain radar systems revealed 
no impairment in the signal-to-noise performance after operation for several 
hundred hours. A small group of 1N21B units showed only minor impair- 
ments when operated in laboratory tests for 100 hours with pulse powers 
(3000 megacycles) up to 4 watts peak available to the unit under test. 

Another important military application of silicon crystal rectifiers was 
as low-power radio frequency rectifiers for use in wave meters or other 
items of radar test equipment. Here the rectification properties of the 
unit at the operating frequency are of primary interest. Since units which 
are satisfactory as converters also function satisfactorily as high-frequency 
rectifiers special types were not required for this application. 

Units were also used in military equipment as detectors to derive directly 
the envelope of a radio frequency signal received at low power levels. 
These signals were modulated usually in the video range. The low-level 
performance is a function of the resistance at low voltages and the direct- 
current output for a given low-power radio frequency input. These may 
be combined to derive a figure of merit which is a measure of receiver 
performance.7 

Typical direct-current characteristics of the silicon rectifiers at tempera- 
tures of —40°, 25° and 70oC are given in Fig. 10. It will be noted in these 
curves that both the forward and reverse currents are decreased by reducing 
the temperature and increased by raising the temperature. The reverse 
current changes more rapidly with temperature than the forward current, 
however, so that the rectification ratio is improved by reducing the tempera- 
ture, and impaired by raising the temperature. The data shown are for 
typical units of the converter type. It should be emphasized, however, 

7 R. Beringer, Radiation Laboratory Report No. 61-15, March 16, 1943. 
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that by changes in processing routines the direct-current characteristics 
shown in Fig. 10 may be modified in a predictable manner, particularly 
with respect to absolute values of forward current at a particular voltage. 

Modern Rectifier Processes 

When the development of the type 1N21 unit was undertaken, the scien- 
tific and engineering information at hand was insufficient to permit inten- 
tional alteration or improvement in electrical properties of the rectifier. 
In these early units, the control of the radio frequency impedance, power 
handling ability and signal-to-noise ratio left much to be desired. Within 
a short time, some improvements in performance were realized by process 
improvements such as the elimination of burrs and irregularities from the 
point contact to reduce noise. Substantial improvements were not obtained, 
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Fig. 10—Direct-current characteristics of P-type silicon crystal rectifier at 
various temperatures. 

however, until certain improved materials, processes, and techniques were 
developed. 

In the engineering development of improved crystal rectifier materials 
and processes, basic data have been acquired which make it possible to 
alter the properties of the rectifier in a predictable manner so that t! e units 
may now be engineered to the specific electrical requirements desired by 
the circuit designer in much the same manner as are modern electron tubes. 
This has led not only to improvements in performance but also to a diver- 
sification in types and applications. 

The simplified equivalent circuit for the point contact rectifier, shown 
in Fig. 11, provides a basis for consideration of the various process features. 
In Fig. 11, Cb represents the electrical capacitance at the boundary between 
the point contact and the semi-conductor, Rb the non-linear resistance at 
this boundary, and Ra is the spreading resistance of the semi-conductor 
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proper, that is the total ohmic resistance of the silicon to current through 
the point. The capacitance Co being shunted across the rectifying bound- 
ary, decreases the efficiency of the device by its by-pass action because the 
current through it would be dissipated as heat in the resistance Rs. Losses 
from this source increase rapidly with increased frequency because of the 
enhanced by-pass action. It would appear, therefore, that to improve effi- 
ciency it would be important to minimize both i?s and Cb by some method 
such as reducing the area of the rectifying contact and lowering the body 
resistance of the silicon employed. For a given silicon material, the imped- 
ances desired for reasons of circuitry and considerations of mechanical stabihty 
place a limit on the extent to which performance may be improved by 
reducing the contact area. Rs may be reduced by using silicon of lower 
resistivity, but this generally results in poorer rectification. This impair- 
ment is due apparently to some subtle change in the properties of the 
rectifying junction resulting from decreasing the specific resistance of the 
silicon material. 

RB(NON-LINEAR 
BARRIER RESISTANCE) 

Re  'VAAr ■»S 
(SPREADING RESISTANCE) 
 WV 

CB 
(BARRIER CAPACITY) 

Fig. 11—Simplified equivalent circuit of crystal rectifier. 

The answer to this apparent dilemma lies in the application of an oxidizing 
heat treatment to the surface of the semi-conductor. This process derives 
from researches conducted independently in this country and in Britain, 
though there was considerable interchange of information between various 
interested laboratories. In the oxidizing treatment, apparently the im- 
purities in the silicon which contribute to its conductivity diffuse into the 
adhering silica film, thereby depleting impurities from the surface of the 
silicon. When the oxide layer is then removed by solution in dilute hydro- 
fluoric acid, the underlying silicon layer is exposed and remains intact as 
the acid does not readily attack the silicon itself. 

Since decreasing the impurity content of a semi-conductor increases its 
resistivity, the silicon surface has higher resistivity after the oxidizing 
treatment than before. Thus by oxidation of the surface of low resistance 
silicon it is possible to secure the enhanced rectification associated with 
the high resistance surface layer, while by virtue of the lower resistivity 
of the underlying material the PR losses through Rs are reduced. 
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In actual practice the properties of the rectifier are governed by the 
resistivity of the silicon material, the contact area, and the degree of oxida- 
tion of the surface. By the controlled alteration of these factors units 
may be engineered for specific applications. The body resistance of the 
silicon is controlled by the kind and quantity of the impurities present. 
Aluminum, beryllium or boron may be added to purified silicon to reduce 
its resistivity to the desired level. Boron is especially effective for this 
purpose, the quantity added usually being less than 0.01 per cent. As little 
as 0.001 per cent has a very pronounced effect upon the electrical properties. 
The contact area is determined by the design of contact spring employed 
and the deflection applied to it in the adjustment of the rectifier. The 
degree of oxidation is controlled by the time and temperature of the treat- 
ment and the atmosphere employed. 

In the development of the present rectifier processes, certain experimental 
relationships were obtained between the performance and the contact area 
on the one hand, and the power handling ability and contact area on the 
other. These show the manner in which the processes should be changed 
to produce a desired change in properties. For example, Fig. 12 shows the 
relationship between the spring deflection applied to a unit and the conver- 
sion loss at a given frequency. The apparent contact area, (i.e., the area of 
the flattened tip of the spring in contact with the silicon surface, as measured 
microscopically) also increases with increasing spring deflection. It will be 
seen in Fig. 12 that for a given silicon material, the conversion loss at 10,000 
megacycles increases rapidly with the contact area. The curves tend to 
reach constant loss values at the higher spring deflections. It is believed 
that this may be ascribed to the fact that for a given spring size and form, 
the increment in contact area obtained by successive increments in spring 
deflection would diminish and finally become zero after the elastic limit of 
the spring is exceeded. 

The losses plotted in Fig. 12 were measured on a tuned basis, that is, the 
converter was adjusted for maximum intermediate frequency output at a 
fixed beating oscillator drive for each measurement. Were these measure- 
ments made on a fixed tuned basis, that is, with the converter initially ad- 
justed for maximum intermediate frequency output for a unit to which the 
minimum spring deflection is applied, and the units with larger deflections 
then measured without modification of the converter adjustment, even 
greater degradation in conversion loss than that shown in Fig. 12 would be 
observed. This results from the dependence of the radio frequency imped- 
ance upon the contact area. In loss measurements made on the tuned basis, 
changes in the radio frequency impedance occasioned by the changes in the 
contact area do not affect the values of mismatch loss obtained, while on the 



SILICON CRYSTAL RECTIFIERS 25 

fixed tuned basis they would result in an increase in the apparent loss be- 
cause of the mismatch of the radio frequency circuits. 

While the conversion loss is degraded by increasing the contact area, the 
power handling ability8 of the rectifiers is improved, as shown in Fig. 13. 
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Fig. 12—Relationship between spring deflection and conversion loss in 

silicon crystal rectifiers. 

This is not surprising because the larger area contact gives a wider current 
distribution and thus minimizes the localized heating effects near the con- 
tact. Generally, therefore, in the development of units for operation at a 

8 The measurement of power handling ability of crystal rectifiers by application of 
radio frequency power is complicated by the fact that the impedance of the unit under 
test varies with power level. If a unit is matched in a converter at a low-power level 
and power at a higher level is then applied, not all of the power available is absorbed by 
the unit but a portion of it is reflected (due to the change in impedance). This factor 
has been called the self protection of the unit and it necessitates the distinction between 
the power absorbed by and the power available to the unit under test. The data for 
Fig. 13 were acquired by first matching the unit in converters at low powers (about 0.3 
milliwatts CW 3000 mcs) and then exposing it for a short period to successively higher 
levels of pulse power of square wave form of 0.5 microseconds width at a repetition rate 
of 2000 pulses per second, measuring the loss and noise ratio after each power application. 
The power handling ability is then expressed as the available peak power required to 
cause a 3 db impairment in the conversion loss or the receiver noise figure. This method 
was employed because in radar receivers the units are matched for low-power levels. In 
this respect the method simulates field operating conditions, but the "spike" of radar 
pulses is absent. 

The increase in power handling ability with increasing area shown in Fig. 13 is confirmed 
by similar measurements with radio frequency pulse power with the unit matched at 
high-level powers, by direct-current tests, and by simple 60-cycle continuous wave tests. 
The magnitude of the increase depends, however, upon the particular method employed 
for measurement. 

FREQUENCY = 
10,000 MEGACYCLES 

< » unvtB. I 

UNIT C 

/L Y/ 
y 



26 BELL SYSTEM TECHNICAL JOURNAL 

given frequency, a compromise must be effected between these two impor- 
tant performance factors. Because of increased condenser by-pass action a 
smaller area must be used to obtain a given conversion loss at a higher fre- 
quency. For this reason the power handling ability of units designed for 
use at the higher frequencies is somewhat less than that of the lower-fre- 
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Fig. 13—Correlation between power handling ability measured with microsecond radio 
frequency pulses and contact area in silicon crystal rectifiers. 

quency units because emphasis has been placed upon achieving a given sig- 
nal-to-noise performance in each frequency band. 

Use of the improved materials and processes produced rather large im- 
provements in the d-c rectification ratio, conversion loss, noise, power 
handling ability, and uniformity. Typical direct-current rectification char- 
acteristics of units produced by both the old and the new processes are shown 
in Fig. 14. These curves show that reverse currents at one volt were de- 
creased by a factor of about 20 while the forward currents were increased by 
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a factor of approximately 2.5 giving a net improvement in rectification ratio 
of 50 to 1. The parallel improvement in receiver performance resulting from 
process improvements is shown in Fig. 15. A comparison in power handling 
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Fig. 14—Improvement in the direct-current rectification characteristics of 
silicon crystal rectifiers in a four-year period. 
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Fig. 15—Effect of continued improvement in the crystal rectifier on the 
microwave receiver performance. The noise figures plotted are average values. 

ability of the 3000-megacycle converter types made by the improved pro- 
cedures and the older procedures is shown in Fig. 16. 

The flexibility of the processes may be illustrated by comparison of two 
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very different units, the 1N26 and the 1N25. Though direct comparison of 
power handling ability is complicated by the fact that the burnout test 
methods employed in the development of the two codes were widely different, 
it may be stated conservatively that while the 1N26 would be damaged after 
absorbing something less than one watt peak pulse power, the 1N25 unit 
will withstand 25 watts peak or more. The 1N26 unit is, however, capable 
of satisfactory operation as a converter at a frequency of some 20 times that 
of the 1N25. These two units have been made by essentially the same pro- 
cedures, the difference in properties being principally due to modification of 
alloy composition, heat treatment, and contact area. 
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Fig. 16- -Comparison of the radio frequency power handling ability of silicon crystal 
rectifiers prepared by different processes. 

Prior to the process developments described above, in the interests of 
simplifying the field supply problem one general purpose unit, the type 1N21, 
had been made available for field use. However, it became obvious that the 
advantages of having but a single unit for field use could be retained only at a 
sacrifice in either power handling ability or high-frequency conversion loss. 
Since the higher power radar sets operated at the lower microwave 
frequencies, it seemed quite logical to employ the new processes to improve 
power handling ability at the lower microwave frequencies and to improve 
the loss and noise at the higher frequencies. A recommendation accordingly 
was made to the Sendees that different units be coded for operation at 3000 
megacycles and at 10,000 megacycles. The decision in the matter was 
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Fig. 17—Evolution of coded silicon crystal rectifiers. 
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Fig. 18—Relative annual production of silicon crystal rectifiers at the 
Western Electric Company 1942-1945. 

affirmative. The importance of this decision may be appreciated from the 
fact that it permitted the coding and manufacture of units such as the 1N21B 
and 1N28, high burnout units with improved performance at 3000 
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megacycles, and the 1N23B unit which was of such great importance 
in 10,000 megacycle radars because of its exceptionally good performance. 
From this stage in the development the diversification in types was quite 
rapid. The evolution of the coded units, of increasing power handling 
ability for a given performance level at a given frequency, and of better per- 
formance at a given frequency is graphically illustrated in Fig. 17. The 
large improvements in calculated receiver performance are again evident, 
especially when it is considered that the receiver performances given are 
for the poorest units which would pass the production test limits. 

Extent of Manufacture and Utilization 

An historical resum6 of the development of crystal rectifiers would be 
incomplete if some description were not given of the extent of their manu- 
facture and utilization. Commercial production of the rectifiers by Western 
Electric Company started in the early part of 1942 and through the war years 
increased very rapidly. Figure 18 shows the increase in annual production 
over that of the first year. By the latter part of 1944 the production rate 
was in excess of ,50,000 units monthly. Production figures, however, reveal 
only a small part of the overall story of the development. The increase in 
production rate was achieved simultaneously with marked improvements in 
sensitivity, the improvements in process techniques being reflected in manu- 
facture by the ability to deliver the higher performance units in increasing 
numbers. 

The recent experience with the silicon rectifiers has demonstrated their 
utility as non-linear circuit elements at the microwave frequencies, that they 
may be engineered to exacting requirements of both a mechanical and elec- 

. trical nature, and that they can be produced in large quantities. The defi- 
ciencies of the detector of World War I, which limited its utility and contribu- 
ted to its retrogression, have now been largely eliminated. It is a reasonable 
expectation that the device will now find an extensive application in commu- 
nications and other electrical equipment of a non-military character, at 
microwave as well as lower frequencies, where its sensitivity, low capacitance, 
freedom from aging effects, and its small size and low-power consumption 
may be employed advantageously. 
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End Plate and Side Wall Currents in Circular Cylinder 
Cavity Resonator 

By J. P. KINZER and I. G. WILSON 

Formulas are given for the calculation of the current streamlines and in- 
tensity in the walls of a circular cylindrical cavity resonator. Tables are 
given which permit the calculation to be carried out for many of the lower 
order modes. 

rx Jfix) 
The integration of j j'^x) 's discussed; the integration is carried out for 

£=1,2 and 3 and tables of the function are given. 
The current distribution for a number of modes is shown by plates and figures. 

Introduction 

In waveguides or in cavity resonators, a knowledge of the electromagnetic 
field distribution is of prime importance to the designer. Representations 
of these fields for the lower modes in rectangular, circular and elliptical 
waveguide, as well as coaxial transmission line, have frequently been de- 
scribed. 

For the most part, however, these representations have been diagram- 
matic or schematic, intended only to give a general physical picture of the 
fields. In actual designs, such as high Q cavities for use as echo boxes,1 

accurately made plates of the distributions were found necessary to handle 
adequately problems of excitation of the various modes and of mode sup- 
pression. 

One use of the charts is to determine where an exciting loop or orifice 
should be located and how the field should be oriented for maximum coup- 
ling to a particular mode. Optimum locations for both launchers and ab- 
sorbers can be found. Naturally, when attention is concentrated on a 
single mode these will be located at the maximum current density points. 
If, however, two or more modes can coexist, and only one is desired, com- 
promise locations can sometimes be found which minimize the unwanted 
phenomena. 

Also, in a cylindrical cavity resonator of high Q with diameter large com- 
pared with the operating wavelength, there are many high order modes of 
oscillation whose resonances fall within the design frequency band. Some 
of these are undesired and one of the objectives of a practical design is to 
reduce their responses to a tolerable amount. This process is termed 

1 "High Q Resonant Cavities for Microwave Testing," Wilson, Schramm, Kinzer, 
B.S.T.f., July 1946. 
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"suppression of the extraneous modes". In this process, an exact knowledge 
of the distribution of the currents in the cavity walls has been found highly 
useful. 

For example, it has been found experimentally that annular cuts in the 
end plates of the cylinder give a considerable amount of suppression to many 
types of extraneous modes with very little effect on the performance of the 
desired TE Oln mode. These cuts are narrow slits concentric with the axis 
of the cylinder and going all the way through the metallic end plates into a 
dielectric beyond.2 The physical explanation is that an annular slit cuts 
through the lines of current flow of the extraneous modes, and thereby 
interrupts the radial component of current and introduces an impedance 
which damps, or suppresses, the mode. For the TE Oln mode, the slits 

TE Modes TM Modes 

E
nd
 

Pl
at

es
 

HP = krJ'({klP) cos (Q 

TJ fhJ({klP) • pa Hg = — C r   sin W 
k\ «i p 

Ep - sin (Q 
Rip 

He = j'f (kiP) cos (6 

Hb L"^~1 hD/2 J He = T)/2) cos td cos £3 z 
> 
43 
C/3 

[sin td cos ^3 z] 

Et = Jf tyi D/2) cos td sin k3 z 
Hz = 0 

k = 
2ir 
T 

z. 2r 
h-D 

= k\ + k\ 

nir 
' ~ T 

r = mth root of J({x) = 0 for TM Modes. 

= mth root of J({%) = 0 for TE Modes. 

D = cavity diameter 

L = cavity length 
Fjg 1—Components of H vector at walls of circular cylinder cavity resonator. 

are parallel to the current streamlines and there is no such interruption; 
presumably there is a slight increase in current density alongside the slit, 

2 Similar cuts through the side wall of the cylinder in planes perpendicular to the 
:ylinder axis are also beneficial, but are more troublesome mechanically. 
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as the current formerly on the surface of the removed metal crowds over 
onto the adjacent metal, but this is a second-order effect. 

To determine the best location of such cuts, therefore, it is necessary to 
know the vector distributions of the wall currents for the various modes. 
This current vector, /, is proportional to and perpendicular to the mag- 
netic vector, //, of the field at the surface. Expressions for the components 
of the //-vector at the surfaces of the end plates and side walls are given in 
Fig. 1. 

End Plate: Contour Lines 

At the end plates, the magnitude of the //-vector at any point is given by: 

Hn- = H* + He2. (1) 

Now substitute values of Hp and He from Fig. 1 into (1); drop any constant 
factors common to Hp and He as these can be swallowed in a final propor- 
tionality constant; introduce the new variable x: 

x = hp = r (2) 

where R = D/2 = cavity radius. Thus is obtained: 

//2 = [Jf(x) cos Mf + ^ J((x) sin fd^ . (3) 

Now J( and J(, are expressed in terms of J(-i and J(+i and a further re- 
duction leads to; 

TP = {Jt- cos COY + {J(+ sin td)2 (4) 

where 

Jt- = Jt-i{x) - Jt+i{x) (5) 

and 

J(+ = J(-i{x) + J(^{x) (6) 

The formulas (4) to (6) apply to both TE and TM modes. The values 
obtained depend on r, which is different for each mode. 

When 0 = 0, / is proportional to Jf- and when 0 = tt/I f, I is proportional 
to Jt^. Relative values of I are thus easily calculated for these cases, 
once tables of J( are available. Such tables have been prepared and are 
attached. For TE modes, when 9 = 0, He = 0, and the currents are all 
in the 0 direction. For TM modes, when 0 = 0, //p = 0, and the currents 
are all in the p-direction. When 0 = w/lf, the converse holds. 

Figures 3 to 18 are a set of curves showing the relative magnitude of H 
(or I) for several of the lower order TE and TM modes. The abscissae 
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are relative radius, i.e., p/R-, the ordinates are relative magnitude referred 
to the maximum value. The drawings also give r = irD/\c for each mode, 
where Xe is the cutoff wavelength in a circular guide of diameter D. Values 
for any point of the surface of the end plate can be calculated by using these 
curves in conjunction with equation (4). 

In general, for each mode there are certain radii at which the current 
flow is entirely radial, {h =0). At these radii, which correspond to zeros 
of Jl{x) or Jl{x), the annular cuts mentioned in the introduction are quite 
effective. However, the maxima of /„ do not coincide with the zeros of 
Ib\ and a more sophisticated treatment gives the best radius as that which 
maximizes p/p2. Values of the relative radius for this last condition are 
given in Table IV. 

Contour lines of equal relative current intensity are obtained by setting 
H"1 constant in (4), which then expresses a relation between x and 0. The 
easiest and quickest way to solve (4) is graphically, by plotting H vs. x for 
different values of 0. 

End Plate: Current Streamlines 

It is easy to show that the equations of the current streamlines are given 
by the solutions of the differential equation 

In the case of the TE modes, (7) is easily solved by separation of the vari- 
ables, leading to the final result: 

in which C is a parameter whose value depends on the streamline under 
consideration. In the TE modes, the E-lines in the interior of the cavity 
also satisfy (8), hence a plot of the current streamlines in the end plate 
serves also as a plot of the E lines. 

In the case of the TM modes, (7) is not so easily solved. Separation of 
the variables leads to: 

Jl(x) cos Id = C (8) 

(9) 

The right-hand side of (9) can be reduced somewhat, yielding 

— log sin (Q = log [xJi{x) ] + J dx (10) 

but no further reduction is possible. The remaining integral represents a 
new function which must be tabulated. Its evaluation is discussed at 
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length in the Appendix, where it is denoted by Fl{x). Table II of the Ap- 
pendix gives its values (for ^=1,2 and 3) and also those of Gl{x) where 

Fi{x) = —log Gi{x) (11) 

Thus (10) becomes 

— log sin tQ = log [x Jt{x)/G({x)] + C' (12) 

and the final equation for the current streamlines is 
f 

[xJt{x)/Gt{x)] sin (e= C (13) 

where C is a parameter as before. 
It is not difficult to show that G({x)/J({x) has zeros at the zeros of J((x). 

For these values of x, sin td = 0 whatever the value of C, and all stream- 
lines converge on (or diverge from) 2tm points on the end plate. 

The flow lines of (13) are orthogonal to the family (8) and could readily 
be drawn in this manner. However, better accuracy is obtained by plotting 
(13). 

End Plate: Distributions 

The 32 attached plates show the distribution of current in the end plates 
of a circular cylinder cavity resonator for a number of modes. 

In the first set of 21, the scaling is such that the diameters of the figures 
are proportional to those of circular waveguides which would have the 
same cutoff frequency. This group is of particular interest to the wave- 
guide engineer. 

In a second group of 11, the scaling is such as to make the outside diam- 
eters of the cylinders uniform. This group is of particular interest to a 
cavity designer. 

This distribution is a vector function of position; that is, at each point in 
the end plate the surface current has a different direction of flow and a dif- 
ferent magnitude or intensity. The variation in current intensity is repre- 
sented by ten degrees of background shading. The lightest indicates re- 
gions of least current intensity and the darkest greatest intensity. The 
direction of current flow is shown by streamlines. Streamlines are lines 
such that a tangent at any point indicates the direction of current flow at 
that point. 

The modes represented are the 

TE 01, 02, 03 
TE 11, 12, 13 
TE 21, 22, 23 
TE 31, 32 

TM 01, 02, 03 
TM 11, 12, 13 
TM 21, 22 
TM 31, 32 
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in the nomenclature which has become virtually standard. In this system, 
TE denotes transverse electric modes, or modes whose electric lines lie 
in planes perpendicular to the cylinder axis; TM denotes transverse mag- 
netic modes, or modes whose magnetic lines lie in transverse planes. The 
first numerical index refers to the number of nodal diameters, or to the order 
of the Bessel function associated with the mode. The second numerical 
index refers to the number of nodal circles (counting the resonator boundary 
as one such) or to the ordinal number of a root of the Bessel function asso- 
ciated with the mode. On the end plates, the distribution does not depend 
upon the third index (number of half wavelengths along the axis of the cylin- 
der) used in the identification of resonant modes in a cylinder. This con- 
siderably simplifies the problem of presentation. The orientation of the 
field inside the cavity and hence the currents in the end plate depend on 
other things; thus the orientation of the figures is to be considered arbitrary. 

The plates also apply to the corresponding modes of propagation in a cir- 
cular waveguide as follows: The background shading represents the in- 
stantaneous relative distribution of energy across a cross section of guide. 
For TE modes, the current streamlines depict the E lines; for the TM 
modes, they depict the projection of the E lines on a plane perpendicular 
to the cylinder axis. 

Side Wall: 

The current distribution in the side walls is easily obtained from the 
field equations of Fig. 1. For TM modes, the currents are entirely longi- 
tudinal; their magnitudes vary as cos (6 cos rnrz/L. This distribution is so 
simple as not to require plotting. 

For TE modes, the situation is more complicated, since both Ht and He 
exist along the side wall. The current streamlines are given by the solu- 
tions of the differential equation 

^ = _DHe 
dd 2Ht' 

K J 

By separation of the variables, the solution is found to be 

log (C cos C6) = log cos kaz. (15) 

Contour lines of constant magnitude of the current are given by 

(2k f, \2 

sin td cos kzZj + (cos 16 sin hzf = K2. (16) 

In the above, C and K are parameters, different values of which correspond 
to different streamlines or contour lines, respectively. 
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Since both streamlines and contours are periodic in z and Q, it is not 
essential to represent more than is covered in a rectangular piece of the side 
wall corresponding to quarter periods in z and 0. These are covered in a 

L . tt-D 
length ~ along the cavity and in a distance ~ around the cavity. If 

such a piece of the surface be rolled out onto a plane it forms a rectangle 
irnD 

of proportions . 

The difficulty in depicting the side wall currents oi TE modes, as com- 
pared with the end plate currents, is now apparent. For the end plate, the 
"proportions" are fixed as being a circle. Furthermore, for a given (, as 
m increases the effect is merely to add on additional rings to the previous 
streamline and contour plots. Here, however, the proportions of the rec- 
tangle are variable, in the first place. And for a given rectangle the stream- 
lines and contours both change as t and m are varied. Another way of ex- 
pressing the same idea is that for end plates the current distribution does 
not depend upon the mode index n, and varies only in an additive way with 
the index m, whereas for the side walls the distribution depends in nearly 
equal strength on t, m and n. 

Some simplification of the situation is accomplished by introducing two 
new parameters, the "shape" and the "mode" parameters, defined by: 

vhE) I 
A = — (17) 

2fL r 

and two new variables 

Z = hz <t>= Id. (18) 

Substitution of the above, and also the expressions for k\ and h (see Fig. 
1) into (15) and (16) yields 

cos Z = C(cos ^)5 " (streamlines) (19) 

rrl   2 . "11/2 
cos Z = I . 2 ^

QS (contours). (20) 
.(52M4 sin2 <t> — cos- 0)J 

For given proportions S, one can calculate the streamlines and contours for 
various values of M. Thus a "square array" of side wall currents can be 
prepared, such as shown on Fig. 2. 

The mode parameter, Af, in the physical case takes on discrete values 
which depend on the mode. Some of its values are given in the following 
table. They all lie between 0 and 1 and there are an infinite number of 
them. 
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Value of M = t/r for TE Modes 

1 l 2 3 4 5 6 10 15 20 

m = 1 .5432 .6549 .7141 .7522 .7793 .8000 .8495 .8813 .9001 
2 .1875 .2982 .3743 .4309 .4753 .5113 .6080 .6774 
3 .1172 .2006 .2644 .3154 .3575 .3930 .4945 .5730 
4 .0854 .1519 .2057 .2506 .2888 .3219 .4209 

For any given mode in any given cavity, the values of 5 and M can be 
calculated from (17). In general, these values will not coincide with those 
which have been plotted, but by the same token, they will lie among a group 
of four combinations which have been plotted. Since the changes in dis- 
tribution are smooth, mental two-way interpolation will present no difficulty. 
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Fig. 19—TE 01 mode. 

Fig. 20—TE 02 mode. 
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Fig. 21—TE 03 mode. 

Fig. 22—TE 11 mode. 



Fig. 23—TE 12 mode. 

Fig. 24—TE 13 mode. 
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Fig. 25—TE 21 mode. 

Fig. 26—TE 22 mode. 



Fig. 27—TE 23 mode. 

Fig. 28—TE 31 mode. 
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Fig. 29—TE 32 mode. 

Fig. 30—TM 01 mode. 



Fig. 31—TM 02 mode. 

Fig. 32—TM 03 mode. 
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Fig. 33—TM 11 mode. 

Fig. 34—TM 12 mode. 
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Fig. 38—TM 31 mode. 
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Fig. 39—TM 32 mode. 
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Fig. 40—TE 11 mode. 
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Fig. 41—TE 12 mode. 
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Fig. 42—TE 13 mode. 
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Fig. 43—TE 21 mode. 
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Fig. 44—TE 22 mode. 



64 BELL SYSTEM TECHNICAL JOURNAL 

Fig. 45—TE 31 mode. 
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Fig. 46—TE 32 mode. 
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Fig. 47—TM 11 mode. 
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Fig. 48—TM 12 mode. 
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Fig. 49—TM 21 mode 
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i/m \ 

Fig. 50—TM 22 mode. 
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APPENDIX 

f 

I* J({x) 
INTEGRATION OF / ttH dx 

Jl{x) 

The discussion here is concerned only with integral values of / > 0. The 
integral is not simply expressible in terms of known (i.e., tabulated) func- 
tions, hence what amounts to a series expansion is used. The method 
follows Ludinegg1 who gives the details for ^ = 1. 

The value of the integrand at x = 0 is first discussed. For C= 7i(0) = 0 
and 7i(0) = 0.5, hence the integrand has the value zero. For ^ > 1, 
both numerator and denominator are zero, hence the value is indeterminate. 
Evaluation by {C — 1) differentiations of numerator and denominator 
separately leads to the result that the integrand (and the integral also) is 
zero at = 0 for all (. 

We now introduce a constant p( and a function ^({x) which are such 
that the following equation is satisfied, at least for a certain range of values 
of .t: 

Jt = -pt {j'c - + HJ't. (1) 

Denote the desired integral by Fl{x), i.e.: 

rx Jdx) 
w -1Md*- & 

Then substitution of (1) into (2) yields: 

Fl= +1 (3) 

For a; = 0, Jr/x^~l) is indeterminate, but evaluation by differentiating 
numerator and denominator separately {C — 1) times gives the value 
1/2^ - 1)! 

If we can now arrange matters so that 0; remains finite in the range 
(0, x), its integration can be carried out, a) by expansion into a power 
series and integration term-by-term, or, b) by numerical integration. 

Solving (1) for (pf one obtains 

(t - l)J(S 

Je + pnJi - 
H =   it   £ • (4) 

J( 

Equation (4) becomes indeterminate at x = 0, when ^ > 1. Evaluation by 
differentiating numerator and denominator separately (times shows 0/(0) = 0. 

1 Hochfrequenzlech. u. Eleklroak., V. 62, pp. 38-44, Aug. 1943. 
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At the first zero of fl (the value of x at a zero of Ji will be denoted by r), 
(f)! is held finite by choice of the value of pt. It is clear that (4) becomes 
indeterminate at a; = r, if 

L. _ __ Jf(P) /C\ 
pt TWY 

Since J( satisfies the differential equation 

j'i + -/( + a ~ iW)Jt = o (6) X 

and J({r) = 0, one has by substitution 

Vralues of p for several cases are: 

/ = 1 2 3 4 1 1 

r, = 1.841 3.054 4.201 5.318 r* = 5.331 r3 = 8.536 
pt = 1.418 1.751 2.040 2.303 1.036 1.014 

^(r)= -0.126 - 0.286 - 0.446 - 0.604 - 0.180 - 0.115 

Evaluation of 0/'(r) by the usual process2 gives: 

= — f/(r
2 -f - 20 

QtV) fyy _ py ^ ' 

Values of are given in the preceding table. 
Since $1 is finite at the origin and at the first zero of J(, it may be ex- 

panded into a Maclaurin series whose radius of convergence does not, 
however, exceed the value of x at the second zero of J(. Alternatively, 
by choosing pt to keep 0/ finite at the second (or klh) zero of Jl it may be 
expanded into a Taylor series about some point in the interval between 
the first (or {k — l)"1) and third (or {k + l)"1) zeros. Expansions about the 
origin are given in Table I. 

Unfortunately, the convergence of these power series is so slow that they 
are not very useful. Instead, equation (4) is used to calculate <i>t and 

Jcfrt dx is obtained by numerical integration. 

With pt fixed to hold 0/" finite at the first root, n , oi Jt, it is soon found 
that 0; becomes infinite at the higher roots. This is because different values 

! Substitute (6) into (4) to eliminate JJ!; differentiate numerator and denominator 
separately; use (6) to eliminate Jf] allow x —♦ r, using J'f{r) = 0 and value of pf from (7). 
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of p are required at the different roots, as shown for ^ = 1 in the table 
above. A logical extension would therefore be to make p a function of x 
such that it takes on the required values at ri, r2, rs, • ■ • . When this is 
done and p({x) is introduced into (1) and (2), one has to integrate 

and this is intractable. 
Hence p{x) is made a discontinuous function, such that p has the value 

pi corresponding to ri for values of x from zero to a point bi between rj and 
r2; the value pi corresponding to ri for values of x from to a point bi be- 
tween ri and rs; and so forth. This introduces discontinuities in <£. No 
discontinuities exist, however, in the function 

which is given in Table II. The calculations were made by Miss F. C. 
Larkey; numerical integration was according to Weddle's rule. 

Within the limits of this tabulation, then, G( and F( are now considered 
to be known functions. 

Gi = e~Ft (9) 

Table I 

Power Series Expansions of 

^i(.r) 

= —0.063813a; -0.001178*8 -0.0000358*6 - ••• 

= +0.15451*+0.01648.V-3 - 0.00580*5 - ••• 

= +0.12210* +0.00667*3 +0.00375*5 - . 

3 Unless p = b A- cJ' {b and c constants), which is not of any use. 
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Table II 

r a (x) 
Values of Fi{x) = / 777-r dx; (?i(x) = e-Fi 

Jo 1 \x' 
Fiix) 

X 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

0 . 0 0050 0201 0455 0816 1291 1887 2616 3493 4539 
1 5782 7261 9036 1.1192 1.3874 1.7336 2.2103 2.9577 4.6961 4.1846 
'2 2.7727 2.0801 1.6199 1.2775 1.0073 7864 6018 4454 3117 1970 
3 0087 0147 -0564 -1157 -1640 -2018 -2296 -2475 -2556 -2537 
4 -2416 -2188 -1845 -1377 -0769 0 +0960 2153 3646 5549 

5 8060 1.1595 1.7307 3.2014 2.3851 1.4478 9635 6373 3939 2024 
6 0470 -0812 -1879 -2768 -3506 -4111 -4594 -4966 -5233 -5398 
7 -5463 -5429 -5292 -5049 -4693 -4214 -3598 -2826 -1868 -0685 
8 +0789 2657 5107 8530 1.3992 2.7313 2.1565 1.1974 7154 3942 
1) 1562 -0300 -1802 -3034 -4053 -4897 -5590 -6150 -6591 -6921 

Giix) 

X 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

0 1.0000 9950 9801 9555 9216 8789 8280 7698 7052 6351 
1 5609 4838 4051 3265 2497 1766 1097 0519 0091 0152 
2 0625 1249 1979 2787 3652 4555 5478 6406 7322 8212 
3 9060 9854 1.0580 1.1226 1.1781 1.2236 1.2581 1.2808 1.2912 1.2888 
4 1.2733 1.2445 1.2026 1.1476 1.0799 1.0000 9085 8063 - 6945 5741 

5 4467 3136 1772 0407 0921 2351 3816 5287 6744 8168 
G 9541 1.0846 1.2067 1.3190 1.4200 1.5084 1.5831 1.6432 1.6877 1.7157 
< 1.7269 1.7209 1.6976 1.6568 1.5989 1.5241 1.4331 1.3265 1.2054 1.0709 
S 9241 7667 6001 4261 2468 0613 1157 3020 4890 6742 
9 8554 1.0304 1.1974 1.3545 1.4998 1.6318 1.7489 1.8497 1.9330 1.9978 
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Values of F^x) = f ^7^ dx; Gt{x) = e 
Jo J:\x) 
F,{x) 

X 0 .1 .2 .3 .4 .5 .6 • .7 .8 .9 

0 0 0025 0100 0226 0403 0632 0914 1251 1645 2097 
1 2612 3192 3840 4563 5365 6253 7236 8323 9528 1.0866 
2 1.2357 1.4008 1.5913 1.8061 2.0541 2.3456 2.6972 3.1380 3.7263 4.6110 
3 6.4527 6.7644 4.7528 3.8572 3.2808 2.8597 2.5316 2.2658 2.0451 1.8590 
4 1.7002 1.5641 1.4470 1.3466 1.2607 1.1881 1.1275 1.0783 1.0396 1.0112 

5 9928 9843 9858 9974 1.0196 1.0530 1.0985 1.1573 1.2311 1.3223 
fi 1.4345 1.5726 1.7447 1.9640 2.2555 2.6743 3.3910 6.5119 3.5122 2.7144 
7 2.2595 1.9432 1.7034 1.5131 1.3579 1.2294 1.1223 1.0328 .9586 .8977 
S .8490 .8115 .7846 .7679 .7612 .7645 .7779 .8020 .8372 .8845 
9 .9452 1.0212 1.1149 1.2301 1.3725 1.5512 1.7817 2.0950 2.5660 3.4864 

G2(x) 

X 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

0 1.0000 9975 9900 9777 9605 9388 9127 8824 8483 8108 
1 7701 7267 6811 6336 5848 6351 4850 4350 3856 3373 
2 2906 2459 2036 1643 1282 0958 0674 0434 0241 0099 
3 0017 0012 0086 0211 0376 0573 0795 1037 1294 1558 
4 1826 2093 2353 2601 2834 3048 3238 3402 3536 3638 

5 3705 3737 3731 3688 3607 3489 3334 3143 2920 2665 
6 2383 2075 1747 1403 1048 0690 0337 0015 0298 0662 
7 1044 1432 1821 2202 2572 2925 3255 3560 3834 4075 
s 4278 4442 4563 4640 4671 4656 4593 4484 4329 4129 
9 3886 3602 3280 2923 2535 2120 1683 1231 0768 0306 
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Values of F,(®) = f dx; Gz{,x) = e"'', 
Jo a'®/ 
^(x) 

;r 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

0 0 0017 0067 0152 0268 0420 0604 0826 1081 1373 
1 1703 2070 2476 2922 3410 3942 4518 5141 5814 6539 
2 7319 8158 9060 1.0028 1.107C 1.2192 1.3401 1.4706 1.6118 1.7650 
3 1.9321 2.1150 2.3165 2.5402 2.7908 3.0752 3.4034 3.7905 4.2624 4.8669 
4 5.7117 7.1373 16.2303 7.2383 5.8409 5.0409 4.4852 4.0643 3.7292 3.4543 
5 3.2239 3.0282 2.8605 2.7160 2.5913 2.4838 2.3914 2.3128 2.2467 2.1922 
6 2.1487 2.1156 2.0927 2.0798 2.0768 2.0838 2.1012 2.1293 2.1685 2.2208 
V 2.2864 2.3674 2.4664 2.5868 2.7340 2.9159 3.1460 3.4491 3.8790 4.5950 
8 6.9408 4.9414 4.0348 3.5348 3.1912 2.9324 2.7276 2.5608 2.4227 2.3074 
y 2.2108 2.1302 2.0637 2.0097 1.9676 1.9361 1.9147 1.9036 1.9025 1.9115 

G3(X) 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

0 1.0000 9983 9933 9849 9734 9589 9413 9208 8975 8717 
1 8434 8130 7806 7466 7110 6742 6365 5980 5591 5200 
2 4810 4423 4041 3668 3305 2955 2618 2298 1995 1712 
a 1448 1206 0986 0789 0614 0462 0333 0226 0141 0077 
4 0033 0008 0000 0007 0029 0065 0113 0172 0240 0316 

5 0398 0484 0572 0661 0749 0834 0915 0990 1057 1117 
8 1166 1206 1233 1250 1253 1244 1223 1189 1143 1085 
7 1016 0937 0849 0753 0650 0542 0430 0318 0207 0101 
8 0010 0071 0177 0292 0411 0533 0654 0772 0887 0995 
9 1096 1188 1270 1340 1398 1443 1474 1490 1492 1479 



Table III 
Bessel Functions op The First Kind 

/o(x) 

X .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

n 4-1.0 9975 9900 9776 9604 +9385 9120 8812 8463 8075 
i 4-7652 7196 6711 6201 5669 +5118 4554 3980 3400 2818 
9 4-2239 1666 1104 0555 0025 -0484 0968 1424 1850 2243 
s -2601 2921 3202 3443 3643 -3801 3918 3992 4026 4018 
4 -3971 3887 3766 3610 3423 -3205 2961 2693 2404 2097 

5 -1776 1443 1103 0758 0412 -0068 +0270 +0599 +0917 +1220 
fi + 1506 1773 2017 2238 2433 +2601 2740 2851 2931 2981 
7 +3001 2991 2951 2882 2786 +2663 2516 2346 2154 1944 
8 + 1717 1475 1222 096C 0692 +0419 0146 -0125 -0392 -0653 
9 -0903 1142 1367 1577 1768 -1939 2090 2218 2323 2403 

J^x) 

* .0 .1 .2 .3 .4 -.5 .6 .7 .8 .9 

0 +0 0499 0995 1483 1960 +2423 2867 3290 3688 4059 
1 +4401 4709 4983 5220 5419 +5579 5699 5778 5815 . 5812 
? +5767 5683 5560 5399 5202 +4971 4708 4416 4097 3754 

+3391 3009 2613 2207 1792 + 1374 0955 0538 0128 -0272 
4 -0660 1033 1386 1719 2028 -2311 2566 2791 2985 3147 

5 -3276 3371 3432 3460 3453 -3414 3343 3241 3110 2951 
6 -2767 2559 2329 2081 1816 -1538 1250 0953 0652 0349 
7 -0047 +0252 +0543 +0826 + 1096 + 1352 1592 1813 2014 2192 
8 +2346 2476 258C 2657 2708 +2731 2728 2697 2641 2559 
9 +2453 2324 2174 2004 1816 +1613 1395 1166 0928 0684 

JoSx) 

X .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

n +0 0012 0050 0112 0197 0306 0437 0588 0758 0946 
i + 1149 1366 1593 1830 2074 2321 2570 2817 3061 3299 
9 +3528 3746 3951 4139 4310 4461 4590 4696 4777 4832 
3 +4861 4862 4835 4780 4697 4586 4448 4283 4093 3879 
4 +3641 3383 3105 2811 2501 2178 1846 1506 1161 0813 

5 +0466 0121 -0217 -0547 -0867 -1173 1464 1737 1990 2221 
R -2429 2612 2769 2899 3001 3074 3119 3135 3123 3082 
7 -3014 2920 2800 2656 2490 2303 2097 1875 1638 1389 
8 -1130 0864 0593 0320 0047 +0223 0488 0745 0993 1228 
9 +1448 1653 1840 2008 2154 2279 2380 2458 2512 2542 

MX) 

X .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

0 +0 0 0002 0006 0013 0026 0044 0069 0102 0144 
1 +0196 0257 0329 0411 0505 0610 0725 0851 0988 1134 
2 +1289 1453 1623 1800 1981 2166 2353 2540 2727 2911 
3 +3091 3264 3431 3588 3734 3868 3988 4092 4180 4250 
4 +4302 4333 4344 4333 4301 4247 4171 4072 3952 3811 

5 +3648 3466 3265 3046 2811 2561 2298 2023 1738 1446 
6 +1148 0846 0543 0240 -0059 -0353 0641 0918 1185 1438 
7 -1676 1896 2099 2281 2442 2581 2696 2787 2853 2895 
8 -2911 2903 2869 2811 2730 2626 2501 2355 2190 2007 
9 -1809 1598 1374 1141 0900 0653 0403 0153 +0097 +0343 
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J*{x) 

X .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

0 +0 0 0 0 0001 0002 0003 0006 0010 0016 
1 +0025 0036 0050 0068 0091 0118 0150 0188 0232 0283 
2 +0340 0405 0476 0556 0643 0738 0840 0950 1087 1190 
3 + 1320 1456 1597 1743 1892 2044 2198 2353 2507 2661 
4 +2811 2958 3100 3236 3365 3484 3594 3693 3780 3853 

5 +3912 3956 3985 3996 3991 3967 3926 3866 3788 3691 
6 +3576 3444 3294 3128 2945 2748 2537 2313 2077 1832 
7 +1578 1317 1051 0781 0510 0238 -0031 -0297 -0557 -0810 
8 - 1054 1286 1507 1713 1903 2077 2233 2369 2485 2581 
9 -2655 2707 2736 2743 2728 2691 2633 2553 2453 2334 

J*{x) 

X .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

0 +0 0 0 0 0 0 0 0 0001 0001 
1 +0002 ^ 0004 0006 0009 0013 0018 0025 0033 0043 0055 
2 +0070 0088 0109 0134 0162 0195 0232 0274 0321 0373 
3 +0430 0493 0562 0637 0718 0804 0897 0995 1098 1207 
4 + 1321 1439 1561 1687 1816 1947 2080 2214 2347 2480 

+2611 2740 2865 2986 3101 3209 3310 3403 3486 3559 
R +3621 3671 3708 3731 3741 3736 3716 3680 3629 3562 
7 +3479 3380 3266 3137 2993 2835 2663 2478 2282 2075 
8 + 1858 1632 1399 1161 0918 0671 0424 0176 -0070 -0313 
9 -0550 0782 1005 1219 1422 1613 1790 1953 2099 2229 

J*{x) 

X .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0001 0001 0002 0002 0003 0005 0007 0009 
2 0012 0016 0021 0027 0034 0042 0052 0065 0079 0095 
3 0114 0136 0160 0188 0219 0254 0293 0336 0383 0435 
4 0491 0552 0617 0688 0763 0843 0927 1017 1111 1209 

5 1310 1416 1525 1637 1751 1868 1986 2104 2223 2341 
6 2458 2574 2686 2795 2900 2999 3093 3180 3259 3330 
7 3392 3444 3486 3516 3535 3541 3535 3516 3483 3436 
8 3376 3301 3213 3111 2996 2867 2725 2571 2406 2230 
9 2043 1847 1644 1432 1215 0993 0768 0540 0311 0082 

Ji(x) 

X .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0001 0001 0001 
2 0002 0002 0003 0004 0006 0008 0010 0013 0016 0020 
3 0025 0031 0038 0047 0056 0067 0080 0095 0112 0130 
4 0152 0176 0202 0232 0264 0300 0340 0382 0429 0479 

5 0534 0592 0654 0721 0791 0866 0945 1027 •1113 1203 
6 1296 1392 1491 1592 1696 1801 1908 2015 2122 2230 
7 2336 2441 2543 2643 2739 2832 2919 3001 3076 3145 
8 3206 3259 3303 3337 3362 3376 3379 3371 3351 3319 
9 3275 3218 3149 3068 2974 2868 2750 2620 2480 2328 
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Aix) 

X .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

n +5000 4981 4925 4832 4703 4539 4342 4112 3852 3565 
i +3251 2915 2559 2185 1798 1399 0992 0581 0169 -0241 
?. -0645 1040 1423 1792 2142 2472 2779 3060 3314 3538 
3 -3731 3891 4019 4112 4170 4194 4183 4138 4059 3948 
4 -3806 3635 3435 3210 2962 2692 2404 2100 1782 1455 

f> -1121 0782 0443 0105 +0227 +0552 0867 1168 1453 1721 
r. +1968 2192 2393 2568 2717 2838 2930 2993 3027 3032 
7 +3007 2955 2875 2769 2638 2483 2307 2110 1896 1666 
8 +1423 1169 0908 0640 0369 0098 -0171 -0435 -0692 -0940 
9 -1176 1398 1604 1792 1961 2109 2235 2338 2417 2472 

J'^x) 

X •0. .1 .2 .3 .4 .5 .6 .7 .8 .9 

0 +0 0250 0497 0739 0974 1199 1412 1610 1793 1958 
1 +2102 2226 2327 2404 2457 2485 2487 2463 2414 2339 
2 +2239 2115 1968 1799 1610 1402 1178 0938 0685 0422 
3 +0150 -0128 -0409 -0691 -0971 -1247 1516 1777 2026 2261 
4 -2481 2683 2865 3026 3165 3279 3368 3432 3469 3479 

fi -3462 3419 3349 3253 3132 2988 2821 2632 2424 2199 
6 -1957 1702 1436 1161 0879 0592 0305 0018 +0266 +0544 
7 +0814 1074 1321 1553 1769 1967 2144 2300 2434 2543 
H +2629 2689 2725 2734 2719 2679 2614 2526 2415 2283 
9 +2131 1961 1774 1572 1358 1133 0899 0659 0416 0170 

J>{x) 

X .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

0 +0 0006 0025 0056 0098 0152 0217 0291 0374 0465 
1 +0562 0665 0772 0881 0991 1102 1210 1315 1415 1508 
2 +1594 1671 1737 1792 1833 1861 1875 1873 1855 1821 
3 +1770 1703 1619 1519 1403 1271 1125 0965 0793 0609 
4 +0415 0212 0003 -0213 -0432 -0653 0874 1094 1310 1520 

5 -1723 1918 2101 2272 2429 2570 2695 2801 2889 2956 
6 -3003 3028 3031 3013 2973 2911 2828 2724 2600 2457 
7 -2296 2118 1925 1719 1500 1270 1033 0789 0540 0289 
8 -0038 +0211 +0457 +0696 +0928 + 1150 1360 1557 1739 1904 
9 +2052 2180 2288 2376 2441 2485 2507 2506 2483 2438 

Ja{X) 

X .0 .1 .2 * .3 .4 .5 .6 .7 .8 .9 

0 +0 0 0001 0003 0007 0013 0022 0034 0051 0071 
1 +0097 0126 0161 0201 0246 0296 0350 0409 0473 0539 
9 +0610 0682 0757 0833 0909 0985 1060 1133 1203 1269 
3 + 1330 1385 1434 1475 1508 1532 1545 1549 1541 1522 
4 +1.490 1447 1391 1323 1243 1150 1045 0929 0802 0665 

5 +0518 0363 0200 0030 -0145 -0324 0506 0690 0874 1057 
6 -1237 1412 1582 1745 1900 2045 2178 2299 2407 2500 
7 -2577 2638 2683 2709 2718 2708 2679 2633 2568 2485 
8 -2385 2267 2134 1986 1824 1649 1462 1265 1060 0847 
9 -0629 0408 0184 +0039 +0261 +0480 0694 0900 1098 1286 
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/i(x) 

X .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

0 +0 0 0 0 0001 0002 0003 0005 0008 
1 +0012 0018 0025 0034 0045 0058 0073 0092 0113 0137 
2 +0164 0194 0228 0265 0305 0348 0394 0443 0494 0548 
3 +0603 0660 0718 0777 0836 0895 0952 1008 1062 1113 
4 +1160 1203 1242 1274 1301 1321 1333 1338 1335 1322 

5 +1301 1270 1230 1180 1120 1050 0970 0881 0782 0675 
6 +0559 0435 0304 0166 0023 -0126 0278 0433 0591 0749 
7 -0907 1064 1217 1368 1513 1652 1783 1906 2020 2123 
8 -2215 2294 2360 2412 2449 2472 2479 2470 2446 2405 
9 -2349 2277 2190 2088 1972 1842 1700 1546 1382 1208 

X .0 .1 .2 .3 .4 .6 .7 .8 .9 

0 +0 0 0 0 0 0 0 0 0001 
1 +0001 0002 0003 0004 0006 0009 0012 0016 0021 0027 
2 +0034 0043 0053 0065 0078 0094 0111 0130 0152 0176 
3 +0202 0231 0262 0295 0331 0368 0408 0450 0493 0538 
4 +0585 0632 0680 0728 0776 0823 0870 0916 0959 1000 

5 +1039 1074 1105 1132 1155 1172 1183 1188 1187 1178 
(j +1163 1139 1108 1069 1022 0967 0904 0833 0753 0666 
7 +0572 0470 0362 0247 0127 0002 -0128 -0261 -0397 -0535 
8 -0674 0813 0952 1088 1222 1352 1478 1597 1710 1816 
9 -1912 2000 2077 2143 2198 2240 2270 2287 2290 2279 

Table IV 
Relative Radius for Maximum of p/ji 

Mode 

TE 11 .737 
12 .982 .254 
13 .993 .613 .159 
21 .894 
22 .988 .407 
23 .995 .664 .274 
31 .937 
32 .991 .491 
41 .956 
42 .993 .548 
51 .967 
61 .974 

TM 01 .901 
02 .983 .393 
03 .993 .627 .250 
11 .961 
12 .989 .525 
13 .995 .682 .362 
21 .977 
22 .992 .596 
31 .984 
32 .994 .643 
41 .988 
51 .990 
61 .992 



First and Second Order Equations for Piezoelectric 
Crystals Expressed in Tensor Form 

By W. P. MASON 

Introduction 

AEOLOTROPIC substances have been used for a wide variety of elastic 
piezoelectric, dielectric, pyroelectric, temperature expansive, piezo- 

optic and electro-optic effects. While most of these effects may be found 
treated in various publications1 there does not appear to be any integrated 
treatment of them by the tensor method which greatly simplifies the method 
of writing and manipulating the relations between fundamental quantities. 
Other short hand methods such as the matrix method2 can also be used for 
all the linear effects, but for second order effects involving tensors higher 
than rank four, tensor methods are essential. Accordingly, it is the purpose 
of this paper to present such a derivation. The notation used is that agreed 
upon by a committee of piezoelectric experts under the auspices of the Insti- 
tute of Radio Engineers. 

In the first part the definition of stress and strain are given and their inter- 
relation, the generalized Hookes law is discussed. The modifications caused 
by adiabatic conditions are considered. When electric fields, stresses, and 
temperature changes are applied, there are nine first order effects each of 
which requires a tensor to express the resulting constants. The effects are 
the elastic effect, the direct and inverse piezoelectric effects, the temperature 
expansion effect, the dielectric effect, the pyroelectric effect, the heat of 
deformation, the electrocaloric effect, and the specific heat. There are 
three relations between these nine effects. Making use of the tensor trans- 
formation of axes, the results of the symmetries existing for the 32 types of 
crystals are investigated and the possible constants are derived for these 
nine effects. 

Methods are discussed for measuring these properties for all 32 crystal 
classes. By measuring the constants of a specified number of oriented cuts 
for each crystal class, vibrating in longitudinal and shear modes, all of the 
elastic, dielectric and piezoelectric constants can be obtained. Methods 
for calculating the properties of the oriented cuts are given and for deriving 
the fundamental constants from these measurements. 

1 For example Voigt, "Lehrbuch der Kristall Physik," B. Teubner, 1910; Wooster, 
"Crystal Physics," Cambridge Press, 1938; Cady "Piezo-electricity" McGraw Hill, 1946. 2 The matrix method is well described by W. L. Bond "The Mathematics of the Physical 
Properties of Crystals," B. S. T. J., Vol. 22, pp. 1-72, 1943. 
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Second order effects are also considered. These effects (neglecting second 
order temperature effects) are elastic constants whose values depend on 
the applied stress and the electric displacement, the electrostrictive effect, 
piezoelectric constants that depend on the applied stress, the piezo-optical 
effect and the electro-optical effect. These second order equations can 
also be used to discuss the changes that occur in ferroelectric type crystals 
such as Rochelle Salt, for which between the temperature of — 180C. and 
+ 240C., a spontaneous polarization occurs along one direction in the crystal. 
This spontaneous polarization gives rise to a first order piezoelectric deforma- 
tion and to second order electrostrictive effects. It produces changes in 
the elastic constants, the piezoelectric constants and the dielectric constants. 
Some measurements have been made for Rochelle Salt evaluating these 
second order constants. 

Mueller in his theory of Rochelle Salt considers that the crystal changes 
from an orthorhombic crystal to a monoclinic crystal when it becomes 
spontaneously polarized. An alternate view developed here is that all of 
the new constants created by the spontaneous polarization are the result of 
second order effects in the orthorhombic crystal. As shown in section 7 
these produce new constants proportional to the square of the spontaneous 
polarization which are the ones existing in a monoclinic costal. On this 
view "morphic" effects are second order effects produced by the spontaneous 
polarization. 

1. Stress and Strain Relations in Aeolotropic Crystals 

I.I. Specification of Stress 

The stresses exerted on any elementary cube of material with its edges 
along the three rectangular axes X, V and Z can be specified by considering 
the stresses on each face of the cube illustrated by Fig. 1. The total stress 
acting on the face ABCD normal to the X axis can be represented by a 
resultant force X, with its center of application at the center of the face, 
plus a couple which takes account of the variation of the stress across the 
face. The force X is directed outward, since a stress is considered posi- 
tive if it exerts a tension. As the face is shrunk in size, the force X will be 
proportional to the area of the face, while the couple will vary as the cube of 
the dimension. Hence in the limit the couple can be neglected with respect 
to the force X. The stress (force per unit area) due to X can be resolved 
into three components along the three axes to which we give the designation 

FXz2 , ? UXi > TZX2 . (1) 

Here the first letter designates the direction of the stress component and the 
second letter xz denotes the second face of the cube normal to the X axis. 
Similarly for the first X face OEFG, the stress resultant can be resolved 
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into the components TXXl , TyXl , Tztj , which are oppositely directed to 
those of the second face. The remaining stress components on the other 
four faces have the designation 

Face OABE Txyi > ^ Wl } Tiy, 

CFGD Tij/2 y Tyt/2 y TzVi 
(2) 

OADG Txi, , Tv*i y Tzzy 

BCFE Tyti y TZZi. 

t: F 
i i 

B r I 1  o 1 

c 

s 
O V 

Fig. 1.—Cube showing method for specifying stresses. 

The resultant force in the X direction is obtained by summing all the forces 
with components in the X direction or 

Fx = (Trx, - r„5) dydz + — TIV2) dxdz+ {Txti - TXZi) dxdy. (3) 

But 

TXXi = -TXXi + 
T'V2 = -T'vi 

dT* 
dy + "4^ dy, TXZi = -TXZl + ^ dz 

dT* 
dz 

(4) 

and equation (3) can be written in the form 

Similarly the resultant forces in the other directions are 

(5) 

(6) 
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We call the components 

Txx, T 1 IV I Txz Tu, Tn, Tu 
Tyx, T 1 vv > Ty, = Tn, Tin , Tu 
T.,, T I ZJI ) T„ Tzu T32, T33 

(7) 

the stress components exerted on the elementary cube which tend to deform 
it. The rate of change of these stresses determines the resultant force on 
the cube. The second form of (7) is commonly used when the stresses are 
considered as a second rank tensor. 

.yx2 

'xyi 

>■ 

Txy2 

'yxi 

Fig. 2.—Shearing stresses exerted on a cube. 

It can be shown that there is a relation between 3 pairs of these compo- 
nents, namely 

Tx„ = ru = 7\ Tvt = T, (8) 

To show this consider Fig. 2 which shows the stresses tending to rotate the 
elementary cube about the Z axis. The stresses TyXi and TyXl tend to rotate 
the cube about the Z axis by producing the couple 

Tvx dx dy dz 
(9) 

The stresses 7^ and 7^, produce a couple tending to cause a rotation in 
the opposite direction so that 

h {TyX — Try) dx dy dz = couple = /coz (10) 

is the total couple tending to produce a rotation around the Z axis. 
But from dynamics, it is known that this couple is equal to the product of 
the moment of inertia of the section times the angular acceleration. This 
moment of inertia of the section is proportional to the fourth power of the 
cube edge and the angular acceleration is finite. Hence as the cube edge 
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approaches zero, the right hand side of (10) is one order smaller than the 
left hand side and hence 

TyX = Tzy . (11) 

The same argument applies to the other terms. Hence the stress com- 
ponents of (7) can be written in the symmetrical form 

TIX, T 1 xy ) Txz Tn, Tv, Tn Tx, Ts, TB 

Pxy , Tyy , Tyz = Tn, Tl2 y Tn = Tt, T2, T 4 

Txz, Pyz > T„ P13 y Tn, Tn Ky Ti, T* 

The last form is a short hand method for reducing the number of indices 
in the stress tensor. The reduced indices 1 to 6, correspond to the tensor 
indices if we replace 

11 by 1; 22 by 2; 33 by 3; 23 by 4; 13 by 5; 12 by 6. 

This last method is the most common way for writing the stresses. 

1.2 Strain Components 

The types of strain present in a body can be specified by considering two 
points P and () of a medium, and calculating their separation in the strained 
condition. Let us consider the point P at the origin of coordinates and the 
point Q having the coordinates x, y and z as shown by Fig. 3. Upon strain- 

, ,z 

x/ 

Fig. 3.—Change in length and position of a line due to strain in a solid body. 

ing the body, the points change to the positions P', Q'. In order to specify 
' the strains, we have to calculate the difference in length after straining, or 
have to evaluate the distance P'Q'-P Q. After the material has stretched 
the point P' will have the coordinates , fi, while Q' will have the 
coordinates .r + £. ; y + 12 ; z + ft ■ But the displacement is a continuous 
function of the coordinates x, y and z so that we have 
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Similarly 

. (977 . d-q . dq V2 = Vi + T-x + — y + — z 
dx dy dz 

r2 = n + |« + |y+|^ 

Hence subtracting the two lengths, we find that the increases in separation 
in the three directions are 

<^1 ^ 
s' = xax 

+ yd-y + ''d, 

S. = *p + (") v dx dy dz 

s. = 4f + /-f + 4f. dx dy dz 

The net elongation of the line in the x direction is x — and the elongation 

per unit length is — which is defined as the linear strain in the a; direction. 
dx 

We have therefore that the linear strains in the x, y and s directions are 

5 «J; S, = aA (15) 
dx dy dz 

The remaining strain coefficients are usually defined as 

Si = aI + ^] S6 = dJ + p; s. = p + p (16) dy dz dz dx dx dy 

and the rotation coefficients by the equations 

dt dq 3£ . dq d£ , 
oji = — — — , co,, = 4 — — = — — — . (17) dy dz dz dx dx dy 

Hence the relative displacement of any two points can be expressed as 

r, , {S(, — , _ (Sh-\- 03y\ 8, = xSi + y I—^—) + 2 ^—2— / 

6. = % +ys, + ' (54^) (18) 

s, = . + y p' 4-) + .53 



86 BELL SYSTEM TECH NIC A L JOURNA L 

which represents the most general type of displacement that the line P Q 
can undergo. 

As discussed in section 4 the definition of the shearing strains given by 
equation (16) does not allow them to be represented as part of a tensor. 
If however we defined the shearing strains as 

25. = 5., = (| + |) I 25.. = 5. 

= 2Su = s, = p + dJ 
(19) 

dz dx dx dy 

they can be expressed in the form of a symmetrical tensor 

Su S13 Si 
s6 

2 
Se 
2 

S]2 S22 S23 = 
Se 
2 

S2 
s4 

2 

S13 S23 ^'33 
Ss 
2 

s4 

2 
S3 

(20) 

For an element suffering a shearing strain Se = ISw only, the displace- 
ment along x is proportional to y, while the displacement along y is propor- 
tional to the x dimension. A cubic element of volume will be strained into 
a rhombic form, as shown by Fig. 4, and the cosine of the resulting angle 6 

i i 

 J 

Fig. 4.—Distortion due to a shearing strain. 

measures the shearing deformation. For an element suffering a rotation 
only, the displacement along x is proportional to y and in the negative 

y direction, while the displacement along y is in the positive x direction. 
Hence a rectangle has the displacement shown by Fig. 5, which is a pure 
rotation of the body without change of form, about the z axis. For any 
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body in equilibrium or in nonrotational vibration, the co's can be set equal 
to zero. 

The total potential energy stored in a general distortion can be calculated 
as the sum of the energies due to the distortion of the various modes. For 

example in expanding the cube in the a; direction by an amount = 

Si dx, the work done is the force times the displacement. The force wil 

Fig. 5.—A rotation'of a solid body. 

be the force Ti and will he Ti dy dz. Hence the potential energy stored in 
this distortion is 

T\dS\ dx dy dz 

For a shearing stress r6 of the type shown by Fig. 4 the displacement 
dS* dx 

diS d 
times the force T^dydz and the displacement —times the force T\dxdz 

equals the stored energy or 

AP-Ee = % {dStTa + dS^Te) dx dy dz = dSiT6 dx dy dz. 

Hence for all modes of motion the stored potential ener gy is equal to 

APE = [Pi dS! + Ti dSo + T3 dS3 + Tt dS4 + T6 dS6 

+ Pe dx dy dz. 
(21) 

1.3 Generalized Hooke's Law 

Having specified stresses and strains, we next consider the relationship 
between them. For small displacements, it is a consequence of Hooke's 
Law that the stresses are proportional to the strains. For the most un- 
symmetrical medium, this proportionality can be written in the form 
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Ti = Cii5i + C12.S2 4" CIS'S'S 4" CUSA 4- Cis^S'B 4" Ci&Se 

To = coi-S'i 4" C12S2 4" C23S3 4" ^24^4 4" CioS;, 4" ^e-Ss 

T3 = 4- C32'S'2 4" C33S3 4" ^3454 4~ Cs&Sb 4~ 

7*4 = C41-5'I 4- ^42^2 4" C431S3 4~ ^44^4 4" 5 4~ ^46^6 

Tfi = Csl-S'l 4" C52.S2 4" C53'S'3 4" C546,4 4" 4- CBB^G 

T'e = Cei^i 4~ ^62^2 4" Cess's 4" C64>S'4 4" CeavS's 4- ^ee^e 

(22) 

where Cn for example is an elastic constant expressing the proportionality 
between the in strain and the 74 stress in the absence of any other strains. 

It can be shown that the law of conservation of energy, it is a necessary 
consequence that 

This reduces the riumber of independent elastic constants for the most 
unsymmetrical medium to 21. As shown in a later section, any symmetry 
existing in the crystal will reduce the possible number of elastic constants 
and simplify the stress strain relationship of equation (22). 

Introducing the values of the stresses from (22) in the expression for the 
potential energy (21), this can be written in the form 

2PE = C11.S1 4" 2c]2'S'i5'2 4- IcizSiSb 4- 2ci4Ai4-4 4" 2ci6*SVS'5 4" 2ci6*SVS'6 

The relations (22) thus can be obtained by differentiating the potential 
energy according to the relation 

C12 = C21 and in general ca = ca . (23) 

4- C22S2 4~ 2C23S2S3 4- 2^24^4 4" 2^56 4- 2f2(>S'24'6 

4- C33.S3 4" 2C34.S3S4 4" 5 4" 

4" C4464 4" 2C46>S'44'5 4" 2cibSiSr> 

4- ^55^5 4" 2C5G556-6 

4- Cb&Sl. 

(24) 

r -dPE. 
1 dSx ' 

(25) 

It is sometimes advantageous to express the strains in terms of the stresses. 
This can be done by solving the equations (22) simultaneously for the 
strains resulting in the equations 
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■Si = + SiiTz + snTz + + ^15^5 + ^le^e 

52 = S2\T\ + S22T2 + S23T3 + SnTi + So^T 5 + 526^6 

53 = S31T1 + 532T2 + 53373 + 534^4 + 53575 + 53676 

54 = 54l7i + S42T2 + S43T3 + 54474 -f- 54575 + 54676 

St = 5517i + 56272 + 55373 + 55474 + 55575 + 55676 

St = 56l7i + SfiTo + 56373 + 56474 + 56676 + 56676 

(26) 

where 

5 a ~ (27) 

for which Ac is the determinant of the c.-y terms of (28) and Ayy the minor 
obtained by suppressing the ith and^'th column 

A = 

C\l C12 Cl3 • Cl4 Cl5 Cl6 
fl2 C22 C23 C24 C25 C26 
Cl3 ^23 C33 C34 C35 C36 
C14 C24 C34 C44 C45 C46 
Clb C2o C35 C45 ^65 CtO 
ClG C26 C36 C46 Csf C66 

(28) 

Since c.y = c,-,- it follows that 5,-y = 5y1-. The potential energy can be 
expressed in the form. 

2PE = 5II7? + 25,27472 + 25i37,i73+ 25i47i74+ 25167x76-1- 2suTIT6 

+ ^2272 + 2S23T2T3 + 2S24T2T4 + 25257O7,5 4" 252tl\T6 

4~ ^3373 4- 2S34T3T4 4" 25367375 4" 2S3tT3Tt 

4~ 54474 4" 25457475 4- 2s4f,T4Tt 

4" S toTl 4" 2556757e 

4" 566 76 . 

The relations (26) can then be derived from expressions of the type 

(29) 

■S'x = 
dPE 

S6 = 
dPE 

(30) 
dTi ' ' "u dTt 

1.4 Isothermal and Adiabatic Elastic Constants 

We have so far considered only the elastic relations that can be measured 
statically at a constant temperature. The elastic constants are then the 
isothermal constants. For a rapidly vibrating body, however, there is no 
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chance for heat to equalize and consequently the elastic constants operative 
are the adiabatic constants determined by the fact that no heat is added 
or subtracted from any elemental volume. For gases there is a marked 
difference between the adiabatic and the isothermal constants, but for 
piezoelectric crystals the difference is small and can usually be neglected. 

To investigate the relation existing we can write from the first and second 
laws of thermodynamics, the relations 

dU = [Tj dS, + r2 dSi + T3 dS3 
(31) 

d- Ti dSi + Ts dSs d- Tb tiSe] Q da 

which expresses the fact that the change in the total energy U is equal to 
the change in the potential energy plus the added heat energy dQ = Q da 
where 0 is the temperature and a the entropy. Developing the strains and 
entropy in terms of the partial differentials of the stresses and temperature, 
we have 

,c dSi , dSi ,r . dSi , 
dSl = af/71 + ar^ + mdTs 

, asi , as! asi ,n 

+ ar.dTi + 5r5 
iTi + ST5 

dT' + ae ^ 

dSe, . dS3 j- . dSi 
ds'- ^ + af:dT'+ 

, dS* 7/ti , dSe .rp I dSe ,T , dSt , 
+ aT.dT'+af/Ti + ef/T' + -eede 

(32) 

d' = mdT> + i!f/T' + mdT* 

+ wl
dT' + wi

dT' + w.dT'+red9- 

The partial derivatives of the strains with regard to the stresses are readily 
seen to be the isothermal elastic compliances. The partial derivatives of 
the strains by the temperatures are the six temperature coefficients of ex- 
pansion, or 

dSi . <35# , , 
ae =ae = (33) 

To evaluate the partial derivatives of the entropy with respect to the 
stresses we make use of the fact that C/ is a perfect differential so that 

dSi da dSt da , . 
ae ~ ari " 01' '" : ae " ar, ~ a6" ( ) 
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Finally multiplying through the last of equation (32) by 0 we can write 
them as 

5! = + sfzT, + sftTt + st6Tb + sfsT6 + «! dQ 

St = sftTi + 5?6r2 + sftTa + SitTt -f- sftT6 + SetTt + atdQ 

dQ = Q da = ©[aiTi + a^Tz + 013X3 + atTt + + ae^Vl + pCpdQ 

since 0 — is the total heat capacity of the unit volume at constant stress, 
30 

which is equal to pCp, where p is the density and Cp the heat capacity at 
constant stress per gram of the material. 

To get the adiabatic elastic constants which correspond to no heat loss 
from the element, or dQ = 0, ^0 can be eliminated from (35) giving 

Si = shTi + SizTz + S13T3 + 514T4 + S15T& + suTB + {ai/pCp) dQ 
  (36) 

= SuTi + SnTz + suTs -f- 545^4 4~ sl(,Tb + SttTt + {at/pCp) dQ 

where 

s'n = 4- - a^e- C37) pCp 

For example for quartz, the expansion coefficients are 

a, = 14.3 X 10"V°C; « = 14.3 X lO'VC; a, = 7.8 X lO'VC; 

'i4 = = a6 = 0 

The density and specific heat at constant pressure are 

p = 2.65 grams/cm3; Cp= 7.37 X 106ergs/cm3. 

Hence the only constants that differ for adiabatic and isothermal values are 

Sn = 522 5 $12; ^13; 533 - 

Taking these values as3 

s'u = 127.9 X 10~14 cm2/dyne; ^2 = -15.35 X 10~14; 

s'u = 11.0 X 10-14; 533 = 95.6 X lO-14. 

We find that the corresponding isothermal values are 

sfx = 128.2 X 10_14; sfz = -15.04 X 10~14; 

s?3 = 10.83 X 10"14; 5?3 = 95.7 X 10"14 cm2/dyne 
3 See "Quartz Crystal Applications" Bell System Technical Journal, Vol. XXII. 

No. 2, July 1943, W. P. Mason. 
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at 250C. or 298° absolute. These differences are probably smaller than 
the accuracy of the measured constants. 

If we express the stresses in terms of the strains by solving equation (35) 
simultaneously, we find for the stresses 

Ti = -f- + C13S3 + CuSi + Cis-S"5 + cfiSt — Xi dQ 

  (38) 

Tq = + CiaSz + C33S3 T- CieSi + C33S& + CmSq — Xe dQ 

where 
\ 1 1 _0 1 0 1 0 | 0 Al — OiiCu + Q?2^12 + ^3^13 + ^.1^14 + «6^16 + ^6^16 

\ 0 1 01 0i 0 1 01 O Xb — «iCi6 + octCM + QfaCsg + a4C46 + asfbe + aeCee • 

The X's represent the temperature coefficients of stress when all the strains 
are zero. The negative sign indicates that a negative stress (a compression) 
has to be applied to keep the strains zero. If we substitute equations (38) 
in the last of equations (35), the relation between increments of heat and 
temperature, we have 

dQ = Qda = GlXi-Si + Xg^ 4- Xs-Ss 4~ X,!^ 4" Xb'S'b 4~ Xo'S'b] 
(39) 

4" [pCp — Q{ol{Ki 4- 0:2X1 4~ 0:3X3 4" 0:4X4 4- qtbXb 4~ qibXb)]^. 

If we set the strains equal to zero, the size of the element does not change, 
and hence the ratio between dQ and dQ should equal p times the specific 
heat at constant volume C„. We have therefore the relation 

p[Cp — Cv] = GfaiXi 4- 0:2X2 4- 0:3X3 4~ 0:4X4 4- 0:5X6 4- asXe]. (40) 

The relation between the adiabatic and isothermal elastic constants ca 
thus becomes 

4 = 4+^. (41) pLv 

Since the difference between the adiabatic and isothermal constants is so 
small, no differentiation will be made between them in the following sections. 

2. Expression for The Elastic, Piezoelectric, Pyroelectric and 
Dielectric Relations of a Piezoelectric Crystal 

When a crystal is piezoelectric, a potential energy is stored in the crystal 
when a voltage is applied to the crystal. Hence the energy expressions of 
(31) requires additional terms to represent the increment of energy dU. 
If we employ CGS units which have so far been most widely used, as applied 
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lo piezoelectric crystals, the energy stored in any unit volume of the crystal is 

dU = Ti dSy + To dS2 + T3 dS3 + T* dSi + Tb dSb + T, dS6 

, dDi , „ dDz , „ dDz i Q . (42) 

+ £1 — + Eo—- + Es— + 0 do- 
iir Air Air 

where Ei, E* and £3 are the components of the field existing in the crystal 
and Di, A and A the components of the electric displacement. In order 
to avoid using the factor l/47r we make the substitution 

P = s. (43) 
47r 

The normal component of 8 at any bounding surface is 80 the surface charge. 
On the other hand if we employ the MKS systems of units the energy of 
any component is given by EndDn directly and in the following formulation 8 
can be replaced by D. 

There are two logical methods of writing the elastic, piezoelectric, pyro- 
electric and dielectric relations. One considers the independent variables 
as the stresses, fields, and temperature, and the dependent variables as the 
strains, displacements and entropy. The other system considers the strains, 
displacements and entropy as the fundamental independent variables and 
the stresses, fields, and temperature as the independent variables. The 
first system appears to be more fundamental for ferroelectric types of 
crystals. 

If we develop the stresses, fields, and temperature in terms of their partial 
derivatives, we can write 

= ti, ^ + ail. ^ + SI. ^ + SI. ^ 

+Si,.iSi+Si..iS'+SI.dh+Si,di' 

+f) ^+f) M obz/a.a oa/s.D 

-=SI.-+iI/-+sl/^i)0..^ 

+Si,dSs+Si,.iS>+Si,. '''i+S).,.dSi 

+S) ^+S) ^ 063 /a.a Off /S, 

(44 A) 
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£. = £. = ^-,) dS, + dSr + H') + H') is, OOi/O.ff 002/0,# OOs/D.r OOi/D.B 

++SX/5'+tX/5'+tX/& 

+ lr) '<ii3 + ^) ^ oog/s.ir aa /a,d 

£. = £,= H3) rfS, + iS2 + H3) dSs + ||3) <i5. Ooi/D.ff 002/ Z),ff (/Og/D.ff OSi/D.v 

+ ^) ^l + ||3) ^5.+ ^?) ^ + 5?) ^ 
aOg/D.ff aoe/f.o OOl/s.o O02/,S.(r 

+ f) ^ (44 B) 
063/a.o da /b.d 

<ie=||) is, +1|) « + |l) ^ +1|) is, 
dOl/D.t dOl/D.a 003/D,a 004/0.cr 

+ ^) ^B + lf) ^6 + ^) d8l + w) dh Ooe/D.ff Ooe/o.ff OOl/S.o 002/S.ff 

+ ||) rfs. + f) da. doi/a.t da/3,D 

The subscripts under the partial derivatives indicate the quantities kept 
constant. A subscript D indicates that the electric induction is held 
constant, a subscript a indicates that the entropy is held constant, while a 
subscript S indicates that the strains are held constant. 

Examining the first equation, we see that the partial derivatives of the 
stress Ti by the strains are the elastic constants c,-,- which determine the 
ratios between the stress Ti and the appropriate strain with all other strains 
equal to zero. To indicate the conditions for the partial derivatives, the 
superscripts D and a are given to the elastic constants and they are written 
Cif. The partial derivatives of the stresses by 5 = D/Ar are the piezo- 
electric constants ha which measure the increases in stress necessary to 
hold the crystal free from strain in the presence of a displacement. Since 
if the crystal tends to expand on the application of a displacement, the 
stress to keep it from expanding has to be a compression or negative stress, 
the negative sign is given to the h^j constants. As the only meaning of 
the h constants is obtained by measuring the ratio of the stress to 5 = D/Air 
at constant strains, no superscript 5 is added. However there is a difference 
between isothermal and adiabatic piezoelectric constants in general, so 
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that these piezoelectric constants are written h'j. Finally the last partial 
derivatives of the stresses by the entropy cr can be written 

ir) ^ = 5T-") 0 ^ = S tt) = iQ (45) 
oa /S.D 0 Off /S.D 0 Off /a.D 

where dQ is the added heat. We designate 1/0 times the partial derivative 
as —ySnD and note that it determines the negative stress (compression) 
necessary to put on the crystal to keep it from expanding when an increment 
of heat dQ is added to the crystal. The electric displacement is held 
constant and hence the superscripts S, and D are used. The first six equa- 
tions then can be written in the form 

Tn = Cn'lSi + CniSl + Cn'sSs + CniSi + 
(46) 

— h'nlbl ~ — h'nsds — 7^ dQ. 

To evaluate the next three equations involving the fields, we make use of 
the fact that the expression for dU in equation (42) is a perfect differential. 
As a consequence there are relations between the partial derivatives, 
namely 

dTm _ dEn. 57^ = 50 . dEn = de (47) 

d8n dSm ' da dSm ' da d8„ 

We note also that 

^ X = 4^; (4S) 
d8n /S.a 

where /3 is the so called "impermeability" matrix obtained ftom the dielectric 
matrix by means of the equation 

^n 

where A is the determinant 

A = 
fu , ei2 . tis 
fl2 , «22 =23 
flS , «23 > '33 

(49) 

(50) 

and Am'n the minor obtained by suppressing the with row and nth column. 
The partial derivatives of the fields by the entropy can be written 

T5) ^ = S X-") 9 ^ = S 7r) dQ = dQ (51) 
da /S.D 0 Off /S.D 0 Off /d D 

where qSnD is a pyroelectric constant measuring the increase in field required 
to produce a zero charge on the surface when a heat iQ is added to the 
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crystal. Since the voltage will be of opposite sign to the charge generated 
on the surface of the crystal in the absence of this counter voltage a nega- 
tive sign is given to 9^°. 

Finally the last partial derivative 

f) , e^lf) ^ = f (52) 
OCT/S.D Ooc/S.D KjOff/S.D pC v 

represents the ratio of the increase in temperature due to the added amount 
of heat dQ when the strains and electric displacements are held constant. 
It is therefore the inverse of the specific heat at constant volume and constant 
electric displacement per gram of material times the density p. Hence 
the ten equations of equation (44) can be written in the generalized forms 

Tn = C°iSl + C^'oS-i + Cn'sSs + CnfSi -f- -f- Cn'sSs 

-h'nih - h'rth - h'n353 - 7nD dQ 

Em = —h\mS\ — hlmSi — IllmSs — flimSi — IllmSf, — llfimS & + 

+ lirffA + 47r/&3 - q^D dQ (53) 

de = -e[ys{DS\ + 72,D52 + 7f,D^3 + 74,D54 + 7f'D^5 + 76 %] 

-e[9f'D5i + qS2Dh + qt'D8s] + • pL-v 

11= 1 to 6; m = 1 to 3 

If, as is usually the case with vibrating crystals the vibration occurs 
with no interchange of heat between adjacent elements dQ = 0 and the 
ten equations reduce to the usual nine given by the general forms 

Tn= cVl "f" c'iaS-l + CnS'S'a + CnA + + Cnt'S'e 

— hni^i — ft 11282 — h 71383 
(54) 

Em — hmSl fl2mE2 ^3m^3 

-j- 47r/3f,i5x + Avphidz -)- 4^^383 • 

In these equations the superscript a has been dropped since the ordinary 
constants are adiabatic. The tenth equation of (53) determines the increase 
in temperature caused by the strains and displacements in the absence of 
any flow of heat. 

If we introduce the expression of equations (53) into equation (42) the 
total energy of the crystal is per unit volume. 
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2U = cfi'Sl + IcizSiSz + 2c?3^153 + 

-j-c^'Sl + 2c^S,S3 + 2c^aS2S, + 2c^S2Sb + 2c%'S2S6 

-t-f+ 2c3i'S3Si 4- 2c3b
rSsSb + 2f36 SsSe 

-|-C44ffiS4 + 2c^b
rSiS5 4" 2^46 SiSs 

4~CBS'ISS 4" 2^56 SbSe 

4-^6 (55) 

-WhSiSi + 2ha
1->81S2 + 2/^35I53 + 2hau8lSi 4- VhrfiS, 4- 2//i65I56) 

— {2/i2i82Si + 2I12282S2 4" 2I12182S3 + 2//2482S4 4* 2112582$b 4" 2112582$e) 

— (2//3l535'l + 2I13283S2 4" 2h33^3$3 + 211^83$^ 4- 2/73B53'S'5 4" 2/;3653^"6) 

-{2y\'DSldQ + 2yS2DS2dQ + 2^S3 dQ 

4- 2y\'DSidQ 4" 2y'b'
DSbdQ 4- 2y\'DSidQ) 

4-4ir[/3ii'5i 4" 2^128182 + 2^138183 4" Pn ^2 4" 2^38283 4" 433 ^3] 

— {2qi'D8idQ + 2qt'D82dQ + 2q3'D83dQ) + rD ■ py-sy 

Equations (53) can be derived from this expression by employing the partial 
derivatives 

T -aU ■ F -aU ■ d6=VL (56) 
T"" ^ asm ■ 0 am ( , 

The other form for writing the elastic, piezoelectric, pyroelectric and di- 
electric relations is to take the strains, displacements, and entropy as the 
fundamental variables and the stresses, fields and temperature increments 
as the dependent variables. If we develop them in terms of their partial 
derivatives as was done in (44), use the relations between the partial deriva- 
tives shown in equation (57). 

d8m _ dSn cfSn _ j3cr _ d8m = da 
dfn ~ dEm ' ~dQ ~ dTn ' dO dEm 

and substitute for the partial derivatives their equivalent elastic, piezo- 
electric, pyroelectric, temperature expansions, dielectric and specific heat 
constants, there are 10 equations of the form 
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Sn = Sn'fTi + Sn'zTi + SnfTs + Sn'iT* + Sn'iTj -|- Sn'tT6 -f- d^iEi 

+ + d^tEs + ocnd& 

Sm = d<?mTx + d%mT2 + dtmT3 + (finTt + d%mT6 + d%mTt 

+ ~ Ei + e~E2 + ^ £3 + pUQ (58) 
At At At 

dQ = Q da = ©[afj'i + 012T2 + 0:3X3 + 0:4X4 -f- cusX^ + oie^el 

+ Q[piEi + P2E2 + pzEsl + pCpdQ. 

« = 1 to 6, m — 1 to 3 

The superscripts E, 6, and X indicate respectively constant field, constant 
temperature and constant stress for the measurements of the respective 
constants. It will be noted that the elastic compliance and the piezo- 
electric constants dm„ are for isothermal conditions. The aE constants are 
the temperature expansion constants measured at constant field, while the 
pT constants are the pyroelectric constants relating the ratio of 5 = D/At 
to increase in temperature dQ, measured at constant stress. Since there is 
constant stress, these constants take into account not only the "true" pyro- 
electric effect which is the ratio of 5 = D/At to the temperature at constant 
volume, but also the so called "false" pyroelectric effect of the first kind 
which is the polarization caused by the temperature expansion of the crystal. 
This appears to be a misnomer. A better designation for the two effects 
is the pyroelectric effect at constant strain and the pyroelectric effect at 
constant stress. Cp is the specific heat at constant pressure and constant 
field. 

If we substitute these equations into equation (42), the total free energy 
becomes 

-^ = E Z &nXmXn + 2 E E dloXnEo + 2 S alXjQ 
n=10"=1 n"1 (59) 

+ E E ^ + 2 S flEJO + ^ dQ. 
0=1 p=i 47r 0=1 y 

Equation (58) can then be obtained by partial derivatives of the sort 

_ d£/ _ d£/ _d2 _ dU 

Sn ~ dXn ' 8o~ dEp' d(T ~ Q ~ d{dQ) 'I 

By tensor transformations the expression for U in (59) can be shown to 
be equal to the expression for U in (55). 

The adiabatic equations holding for a rapidly vibrating crystal can be 
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obtained by setting dQ equal to zero in the last of equations (58) and elim- 
inating dQ from the other nine equations. The resulting equations are 

S,. = sE
nlTi + SI2T2 + sE

n3T3 + 

+ + ^neTe + dniEi + d^Ei + d^Ei 

8m = dlm Ti + d2m T2 + d3m T3 + dim T* (60) 

+ d6m Tb + d^ T6 + ^ £1 + ^ £2 + £3 
47r 47r 47r 

where the symbol a for adiabatic is understood and where the relations 
between the isothermal and adiabatic constants are given by 

E E £. E j.T r\ r.ff r.Q ,T ,T s~. 
E,a   pK,0     .Q C^myf f fmn   ^mn pmpn^J 
v. - . "e - "e* • 4^ " 4^ ~pCV 

Hence the piezoelectric and dielectric constants are identical for isothermal 
and adiabatic conditions provided the crystal is not pyroelectric, but differ 
if the crystal is pyroelectric. The difference between the adiabatic and 
isothermal elastic compliances was discussed in section (1.4) and was shown 
to be small. Hence the equations in the form (60) are generally used in 
discussing piezoelectric crystals. 

Two other mixed forms are also used but a discussion of them will be 
delayed until a tensor notation for piezoelectric crystals has been discussed. 
This simplifies the writing of such equations. 

3. General Properties of Tensors 

The expressions for the piezoelectric relations discussed in section 2 can 
be considerably abbreviated by expressing them in tensor form. Further- 
more, the calculation of elastic constants for rotated crystals is considerably 
simplified by the geometrical transformation laws established for tensors. 
Hence it has seemed worthwhile to express the elastic, electric, and piezo- 
electric relations of a piezoelectric crystal in tensor form. It is the purpose 
of this section to discuss the general properties of tensors applicable to 
Cartesian coordinates. 

If we have two sets of rectangular axes (Ox, Oy, Oz) and (Ox', Oy', Oz) 
having the same origin, the coordinates of any point F with respect to the 
second set are given in terms of the first set by the equations 

x' = Ax + ntiy -f- «iz 

y' = Ax -f mty + «jz (61) 

z' = Ax + mty + WsZ- 
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The quantities (/j, • • •, n^) are the cosines of the angles between the various 
axes; thus ti is the cosine of the angle between the axes Ox', and Ox] the 
cosine of the angle between Oz' and Oz, and so on. By solving the equations 
(61) simultaneously, the coordinates x, y, z can be expressed in terms of 
x', y', z' by the equations. 

.r = hx' + liy' + 

y = myx' + miy' -|- mfJ (62) 

z = n\x' + ihy' + «3s'. 

We can shorten the writing of equations (61) and (62) considerably by 
changing the notation. Instead of x, y, z let us write Xi, x?, Xa and in place 
of x', y', z' we write x\, x'a, x'a. We can now say that the coordinates with 
respect to the first system are Xi, where i may be 1, 2, 3 while those with 
respect of the second system are xj , where j = 1, 2 or 3. Then in (61) 
each coordinate x'j is expressed as the sum of three terms depending on the 
three Xi. Ea6h Xi is associated with the cosine of the angle between the 
direction of x, increasing and that of x'j increasing. Let us denote this 
cosine by a,-,-. Then we have for all values oij, 

3 
x'j = dijXi + da j Xa + OajXa = ^ aiixi ■ (63) 

t=i 

Conversely equation (62) can be written 

Xi = X an x'j (64) 
j=I 

where the a have the same value as in (63), for the same values of i a.ndj, 
since in both cases the cosine of the angle is between the values of Xi and Xj 
increasing. Such a set of three quantities involving a relation between two 
coordinate systems is called a tensor of the first rank or a vector. 

We note that each of the equations (63), (64) is really a set of three equa- 
tions. Where the suffix i or j appears on the left it is to be given in turn 
all the values 1, 2, 3 and the resulting equation is one of the set. In each 
such equation the right side is the sum of three terms obtained by giving j 
or i the values 1, 2, 3 in turn and adding. Whenever such a summation 
occurs a suffix is repeated in the expression for the general term as a, jXj. 
We make it a regular convention that whenever a suffix is repeated it is 
to be given all possible values and that the terms are to be added for all. 
Then (63) can be written simply as 

Xj = a i jx i 

the summation being automatically understood by the convention. 
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There are single quantities such as mass and distance, that are the same 
for all systems of coordinates. These are called tensors of the zero rank 
or scalars. 

Consider now two tensors of the first rank «,• and Vk . Suppose that each 
component of one is to be multiplied by each component of the other, then 
we obtain a set of nine quantities expressed by Vk , where i and k are 
independently given all the values 1, 2, 3. The components of «,• Vk with 
respect to the x] set of axes are u,- Vf, and 

u'j v'i = (c ,■ fit i) (akfk) = an ak( u iVk . (65) 

The suffixes i and k are repeated on the right. Hence (65) represents nine 
equations, each with nine terms. Each term on the right is the product 
of two factors, one of the form a. ya^, depending only on the orientation of 
the axes, and the other of the form u .Dt, representing the products of the 
components referred to the original axes. In this way the various «,• zy can 
be obtained in terms of the original nflk . But products of vectors are not 
the only quantities satisfying the rule. In general a set of nine quantities 
Wik referred to a set of axes, and transformed to another set by the rule 

=: aiiaH Wik (66) 

is called a tensor of the second rank. 
Higher orders tensors can be formed by taking the products of more 

vectors. Thus a set of n quantities that transforms like the vector product 
Xi Xj • ■ • Xp is called a tensor of rank n, where u is the number of factors. 

On the right hand side of (66) the i and k are dummy suffices; that is, 
they are given the numbers 1 to 3 and summed. It, therefore, makes no 
difference which we call i and which k so that 

Wjf = a i jakfW ik = Qk yfl i(Wk( . (67) 

Hence Wk( transforms by the same rule as w ik and hence is a tensor of the 
second rank. The importance of this is that if we have a set of quantities 

Wn Wn Wu 
li'il cCl22 ZZ'23 
tZ'31 ^'32 Zi'ss 

which we know to be a tensor of the second rank, the set of quantities 

ZC'n Z£'21 W31 
W12 W22 W32 
U'13 ^23 W33 

(68) 

(69) 

is another tensor of the second rank. Hence the sum (wik + zt'fc.) and the 
difference (wik — Wki) are also tensors of the second rank. The first of 



102 BELL SYSTEM TECHNICAL JOURNAL 

these has the property that it is unaltered by interchanging i and k and 
therefore it is called a symmetrical tensor. The second has its components 
reversed in sign when i and k are interchanged. It is therefore an antisym- 
metrical tensor. Clearly in an antisymmetric tensor the leading diagonal 
components will all be zero, i.e., those with i = k will be zero. Now since 

Wik = % {wik + Mto) + ^ {wik — Wki) (70) 

we can consider any tensor of the second rank as the sum of a symmetrical 
and an antisymmetrical tensor. Most tensors in the theory of elasticity 
are symmetrical tensors. 

The operation of putting two suffixes in a tensor equal and adding the 
terms is known as contraction of the tensor. It gives a tensor two ranks 
lower than the original one. If for instance we contract the tensor Ui Vk 
we obtain 

UiVi = Uivi + U2V2 + U3V3 (71) 

which is the scalar product of u; and Vk and hence is a tensor of zero rank. 
We wish now to derive the formulae for tensor transformation to a new 

set of axes. For a tensor of the first rank (a vector) this has been given 
by equation (61). But the direction consines A to 113 can be expressed in 
the form 

^ (72) 0X1 oy 0x2 oz 

r)r( rlrf r)?/ i 
A = f = dx 

Hence equation (61) can be expressed in the tensor form 

x'j = ^ Xi = aijXi. (73) 
dXi 

Similarly since a tensor of the second rank can be regarded as the product 
of two vectors, it can be transformed according to the equation 

/ / /dx'j \ldx, \ dx, dx, , . 

which can also be expressed in the generalized form 

dx' 
dx 

_ dx'x t 

" fox ' 
dx' 

m = — dy 
_ dx'x 
~ foi ' 

dx' 
nx = — 

dz 

II 

dy' 
dx 

_ . 
_ fox ' |

 II 
Qi

l,®
5 _ dx'i 

~ foi ' 
dy' 

W2 = -f- 
dz 

_ dx'z 
dxs 

dz' 
dx 

_ ^3 . 
_ fox ' 

dz' 
nis = — 

dy 
_ dx'3 < 

" fo2 ' 
dz' 

Ws = -r- dz 
_ dx's 

dX3 
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In general the transformation equation of a tensor of the «th rank can be 
written 

/ _ dXk'n dXk'i dXk'n Y 
Xki-k" ^ d^n 

hh-'in (76) 

4. Application of Tensor Notation to the Elastic, Piezoelectric 
and Dielectric Equations of a Crystal 

Let us consider the stress components of equation (7) 

Txx Txy T; 
Tyz Tyy Tr 
Tzx TZy T; 

from which equation (8) is derived 

Txy = Tyx ] Txz = Tzx ] Tyz = Tzy 

and designate them in the manner shown by equation (77) to correspond 
with tensor notations 

Tu T12 Tl3 
Tii Tn Tii 
Tn Tii Tii 

Tn Tu Tn 
Tu Tn Tn 
Tn Tn Tn 

(77) 

by virtue of the relations of (8). We wish to show now that the set of 9 
elements of the equation constitutes a tensor, and by virtue of the relations 
of (8) a symmetrical tensor. 

The transformation of the stress components to a new set of axes x', y', z' 
has been shown by Love4 to take the form 

T'xx = (l Tn -T m\Tyy -j- UiTzz + 2(imiTXy T 2CiiiiTxz -T 2niiniTy 
(78) 

Tx„ = liCiTxx + nhmiTyy + niiiiT zz + {hnii + hm^Txy + (A«2 + hni)Txz 

+ (Wl»2 ~l~ 1h^h)Tyz 

where A to iii are the direction cosines between the axes as specified by 
equation (61). Noting that from (72) 

, _ ■1 — a— ' 0Xi 
«3 = 

dXi 
dxi 

the first of these equations can be put in the form 

4 See "Theory of Elasticity," Love, Page 80. 
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dx'i dx'i dx! dxi 
In 'T -X— T— i 12 "T T—    1 II o.ri dX2 oxi axs 

"•*■1 i rp , dX! dX! dxi 
^ + - tektot

Tkl 

< ■ m 

, dx[ dx[ „ , fdx'A 
dXidXi 2 \dxj 

+ ^pT11 + ^T„ +(p.)' Tu 
0x3 dxi 6x3 0x2 \ axg / 

while the last equation takes the form 

/ _ dx[ dx'z dx'i 6x2 , dx'i 6x2 „ 
i \i — -x— -x— j 11 1 -x— -x— i 12 -r -— -— l is 0X1 0X1 0X1 0X2 dx\ dxz 

dx'i dx'i rp , dx'i dx'2 rp . dx'i dx'2 rp _ dx'i dx'i - 
dXi dX! 21 dX2 3X2 22 3X2 dx3 

23 dxk dXf t 

, dx'i dx'i dx'i dx'2 rp , dx'i dx'2 rp 
"T -7— -r— i 31 "T -X— ~x— .t 32 ~r -x— x— l 33 0.T3 OXi 8X3 3X2 0X3 OX3 

The general expression for any component then is 

rp'   dXi dXj — 
11 ' dxk dxi ^ 

(79) 

(80) 

(81) 

which is the transformation equation of a tensor of the second rank. Hence 
the stress components satisfy the conditions for a second rank tensor. 

The strain components 

Sxy sxz 

Syx Syy Syr 
szx Szy Szz 

do not however satisfy the conditions for a second rank tensor. This is 
shown by the transformation of strain components to a new set of axes, 
which have been shown by Love to satisfy the equations 

Six = Six 4" WlSyy 4" IllSzz 4" ^iMlSxy 4" zx 4" 

Sxy = 2tit2Sxx 4" 2niiW2Syy 4" IniHiSxt 4" (Aw2 4" t2tni)Sxy 

4- (A«2 4- n\tv)Sxz 4- (wi«2 4" MtftijSxy. 
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If, however, we take the strain components as 

c _ c _ SXy _ I /dri . d^\ t _ o _ S** 
2 21 ~ T ~ 2\dx dy)' Su " T 

c _c _SV. _l (d? dr,\ 
= 2 U + d*)' - - y - 2 ^ + aj 

(83) 

the nine components 

(83) 

will form a tensor of the second rank, as can be shown by the transformation 
equations of (82). 

The generalized Hooke's law given by equation (22) becomes 

Cijki is a fourth rank tensor. The right hand side of the equation being 
the product of a fourth rank tensor by a second rank tensor is a sixth rank 
tensor, but since it has been contracted twice by having k and t in both 
terms the resultant of the right hand side is a second rank tensor. Since 
dm is a tensor of the fourth rank it will, in general, have 81 terms, but on 
account of the symmetry of the T.y and SH tensors, there are many equiva- 
lences between the resulting elastic constants. These equivalences can be 
determined by expanding the terms of (84) and comparing with the equiva- 
lent expressions of (22). For example 

Comparing this equation with the first of (22) noting that Su — Su — 

T ij = Ci,k(Skt (84) 

Tn = Cim5i2 + Cm2^i2 + 

"F CmAi + CxuaSzi -|- ^1123^23 

4" Cuai'Sai + Cll32'5'32 + ^1133^33 • 

(85) 

5 
-y, etc., we have 
£ 

Cmi — C\i j Cms — C1121 — cio ; C1133 — cis j Cms <-1181 Ci6 , 

C1122 — C\2 ; C1123 := C1132 = C14 . 
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In a similar manner it can be shown that the elastic constants of (22) 
correspond to the tensor elastic constants ajki according to the relations 

Cll — Cim J C12 = C1122 = C22II 5 C13 = C;i33 ~ £^3311 5 ^14 := ^1123 = C1132 = 

C2311 = C32IJ = tins = C1131 = C1311 = C31111 Clfi = C1112 = C112I = C1211 = 

^2111 ; £-22 = C2222 ; £"23 := £-2233 = £"3322 ^24 = ^2223 := £"2232 :=: £"2322 =: £"3222 

C26 = C2213 =: <-2231 =: <"1322 = ^3122 ^26 = £"2212 = <:2221 = £"1222 = £"2122 £"33 = 

£3333; £34 = £3323 = £3332 = £2333 = £3233; £35 = 3313 = £3331 = £1333 = £3133; 

£30 = £3312 =: £3321 — £1233 = £2133 j £44 = £2323 = £2332 = £3223 == £3232 ; £45 = 

£2313 = £2331 = £3213 = £3231 = 1323 = 1332 = £3132 = £3123 £46 = £2312 = 

£2321 = £3212 =: £3221 = £1223 == £1232 = £2123 = £2132 J £55 = £1313 = £1331 = 

£3113 = £3131 J £66 = £1312 :=: £1321 = £3112 = £3121 =:: £1213 = £1231 = £2113 = 

£2131 ; £60 = £1212 =: £1221 = £2112 = £2121 • 

Hence there are only 21 independent constants of the 81 Cijkg constants 
which are determined from the ordinarily elastic constants d,- by replacing 

and taking all possible permutations of these constants by interchanging 
them in pairs. 

The inverse elastic equations (26) can be written in the simplified form 

By expanding these equations and comparing with equations (26) we can 
establish the relationships 

(87) 

1 by 11; 2 by 22; 3 by 33; 4 by 23; 5 by 13; 6 by 12 (88) 

Sij S i jk( Tk( • (89) 

514 _ 
^11 =: 51111 ! 512 = 51122 — 52211 J 5i3 — ^1133 — 53311 J — 5n23 — 5ii32 — 52311 — 

(90 A) 

536 
2 
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      ^44     ^45 
S3312 — S332I — ^1233 — 52133 5 — 52323 — 52332 — 53223 = 53032 J — = 52313 := 

  546 
52331 — 53213 — 53231 — 51323 — 5i332 — 53123 — 53132 — — 52312 — 52321 = 

(90 B) 
          ^55   

53212 — 53221 — 51223 — 51232 — 52123 — 52132 — 51313 = 51331 = 53113 = 

566 _ _ 
53131 J   51312 — 51321 — 53112 — 53121 — 51213 — 5i231 — 52113 — 52131 J 

568 _ _ _ _ 
  51212 — 51221 — 52112 — 52121 • 

Here again the Sijk( elastic constants are determined from the ordinary 
elastic constants Si, by replacing 

1 by 11, 2 by 22, 3 by 33, 4 by 23, 5 by 13, 6 by 12. 

However for any number 4, 5, or 6 the elastic compliance 5,-/ has to be di- 
vided by two to equal the corresponding 5 compliance, and if 4, 5 or 
6 occurs twice, the divisor has to be 4. 

The isothermal elastic compliance of equations (39) can be expressed 
in tensor form 

Sa = s%kl Tkt + cm dQ (91) 

where as before a,-,- is a tensor of the second rank having the relations to 
the ordinary coefficients of expansion 

«1 — "11 J t*2 — "22 , <*3 — <*33 , — = <*23 5 

<*3 <*6 
-y — <*13 5 y — <*12. 

The heat temperature equation of (35) is written in the simple form 

dQ = ■+■ otkl Tut 0 + pCp dQ. (92) 

By eliminating dQ from (92) and substituting in (91) the adiabatic constants 
are given in the simple form 

^ _ -o , _ ao<*kfe Sijkt 5 ijkf — . (93) 
pCp 

The combination elastic and piezoelectric equations (60) can be written 
in the tensor form 

= sUtTki + dmuEm ■ 8n = ^Em + dnk(Tkf. (94) 
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Here is a tensor of third rank and Cm* one of second rank. The dmij 
constants are related to the eighteen ordinary constants by the equations 

== d\n i — din ; dis — di — dus — d\32 J ^U3 ~ ^131 i 

(95) 

== dm = ^121 ; dzi = ^211 ; ^22 — ^222 ; d'is — dm ; — dm — dm 

^ = ^213 = ^231 ; -^r — dm = <^221 ; ^31 = ^811 J <^32 = ^322 ^33 = ^333 J 
z Zj 

= ^323 := ^332 J — ^313 = ^331 5 = ^312 = ^321 ■ 

The tensor equations (94) give a simple method of expressing the piezo- 
electric equations in an alternate form which is useful for some purposes. 
This involves relating the stress, strain, and displacement, rather than the 
applied field strength as in (94). To do this let us multiply through the 
right hand equation of (94) by the tensor 47r/3m„ , obtaining 

47r/3ln5n = tmn/Smn-Em + ^ird nkl fimn T kl (96) 

where /3m„ is a tensor of the "free" dielectric impermeability obtained from 
the determinant. 

nT 
Hmn 

whe- c A* is the determinant 

= (-1) 
(m+n) \t'1 

Am n 
A^ 

A' - 

r 1 T 
€11 €l2 €13 

T T r 
ei2 €22 €23 

T T T 
€13 €23 €33 

(97) 

(98) 

and Amn the minor obtained from this by suppressing the wth row and »th 
column. If we take the product €,L /3m„ for the three values of m, we have 
as multipliers of Ei, E2, Es, respectively 

T rtT | T aT , T oT   1 
«11 pn -r C12 PX2 "T ei3 Pl3 — 1 

€2riftri + e2
r

2^2 + 62
r3 /32

73 = 1 (99) 
T nT I T aT I T 

€31 P31 + e32 P32 + €33 = 1. 

But by virtue of equations (97) and (98) it is obvious that the value of 
each term of (99) is unity. Hence we have 

Em = 47r/3mn 5„ — (47r dnkt 0mn) Tkl. (100) 
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Since the dummy index n is summed for the values 1, 2, and 3, we can set 
the value of the terms in brackets equal to 

gmkl — 47r dnkl 0mn — ^[dlkl Pml "1~ dzkt 0m2 4" djkl Pms] (101) 

and equation (100) becomes 

~ 47r 0m n 8n gmk( ^kt • (102) 

Substituting this equation in the first equations of (94) we have 

Sij = $ijkl Tjcf. -(- gnij hn (103) 

where 

Siikt = Sijkl dmij gmkt = Sijkl 47r[/3mn dnkl dmi ]]• 

By substituting in the various values of i,j, k and ^ corresponding to the 21 
elastic constants, the difference between the constant displacement and 
constant potential elastic constants can be calculated. If equations (102) 
and (103) are expressed in terms of the S6 strains and Th---, T# 
stresses, the constants are related to the gi,- constants as are the corre- 
sponding da constants to the constants of equation (95). 

Another variation of the piezoelectric equations which is sometimes em- 
ployed is one for which the stresses are expressed in terms of the strains 
and field strength. This form can be derived directly from equations (94) 
by multiplying both sides of the first equation by the tensor Cijkl for the 
elastic constants, where these are defined in terms of the corresponding 
Si, elastic compliances by the equation 

4 = (-I)"+j,A;,7A-' (io4) 

where A is the determinant 

Sn Sl2 Sl3 5*4 
E 

•515 
B 

516 
B 

Sl2 S22 Su S2i 
B 

525 
E 

526 
E 

^13 •^23 S3Z S3i 5^5 
E 

536 
B 514 * A24 S34 E 544 5*5 54*6 

sfb 526 535 E 
545 E 

555 55*6 

Sl6 
E ■526 536 5*6 

B 
556 E 

566 

and A'ij in the minor obtained by suppressing the tth row and jth column. 
Carrying out the tensor multiplication we have 

Cijkl ^ij Cijkl Sijkl Tkl "I- dmij Cijkl E-m ■ (105) 
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As before we find that the tensor product of cf/tf sfjkt is unity for all values 
of k and I. Hence equation (105) can be written in the form 

Tut = cU Sii - Em (106) 

where cmk( is the sum 

emkt = dm i j CijkC (107) 

sumn-ed for all values of the dummy indices i and j. If we substitute the 
equation (106) in the last equation of (94) we find 

5n =^Em + emiSii (108) 
Air 

where 4,n the clamped dielectric constant is related to the free dielectric 
constant eL by the equation 

esmn = tmn - Air[dnke emkt\- (109) 

Expressed in two index piezoelectric constants involving the strainsSn• ••Sn 
and stresses 7V • • Tu the relation between the two and three index piezo- 
electric constants is given by the equation 

gll = em 012 = ^122 ; ^13 = g133 ; e14 = g123 = g132 g15 — ^113 — ^131 , 

eie = em = em ; eh = em ; e™ = 6222 ; = ^33 ; e-n = e™ = 6232 ; 

C2B = £213 = £231 ; £26 = £212 = £221 J £31 = £311 £32 = £322 5 £33 = £333 

£34 = £323 = £332; £35 = £313 — £331; £36 = £312 = £321 • 

Finally, the fourth form for expressing the piezoelectric relation is the 
one given by equation (53). Expressed in tensor form, these equations 
become 

TkC = Cijkl s 1 j — h „kt tin ; Em = AirPmn fin — I'mijSiJ (HI) 

In this equation the three index piezoelectric constants of equation (111) are 
related to the two index constants of equation (53) as the e constants of 
(110). These equations can also be derived directly from (106) and (108) 
by eliminating Em from the two equations. This substitution yields the 
additional relations 

hnkt == 'bremkC tfrnn Cijkl = Cijkl + Cmkl hmij = Cijkl (112) 

47r emk( £ n i j 0m n 

where 
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In which 

s 
en 

5 
ei2 s 

eis 
a 

en 
s 

£22 s 
e23 

« 

a 
en 

a 
e23 

a 
ess 

The four forms of the piezoelectric equations, and the relation between 
them are given in Table I. 

Table I 
Four Forms of the Elastic, Dielectric, and Piezo Electric Equations 

and their Interrelations 
Form Elastic Relation Electric Relation 

1 Sii = S*jkfTk( + dnijEm Sn = ^En + dnkeTke 

2 Sii = Ujk(Tkf + gnijSn -Em = 'iirPl.nSn " gmk(Tk( 

3 Tk( = C i j fkS ij Cm kfEm &n=~E
m+ e ni jS i j 

4 Tk( = CijkfSii — ItnkfSn Em = brptnSn - ,5 .y 

Form Relation Between 
Elastic Conslaiuj Relation Between 

Piezoelectric Constants Relation Between 
Dielectric Constants 

1 'iikt = Sfikt - dmiigmkf gmk( = ^T
mndnk( ^1 = (-1)(m+")^A<r 

2 cf. = (-IJ^^'A^/A^ tmkl = dm iiC*jkf £mn 
= eL _ Wdnktemkf) 

3 Cijkf = Cfikf + emkf'tmii Kkt = ga _ oT | Snkf.hmkC 
mn mn 4^ 

4 cf. = (— 1)(,+,)A^/AsD 
Kkt = Pin = (-l)<m+X>,S 

5. Effect of Symmetry and Orientation on the Dielectric Piezo- 
electric and Elastic Constants of Crystals 

All crystals can be divided into 32 classes depending on the type of sym- 
metry. These groups can be divided into seven general classifications 
depending on how the axes are related and furthermore all 32 classes can 
be built out of S3-mmetries based on twofold (binary) axes, threefold (trig- 
onal) axes, fourfold axes of symmetry, sixfold axes of symmetry, planes of 
reflection symmetry and combinations of axis reflection symmetry besides 
a simple symmetry through the center. Each of these types of symmetry 
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result in a reduction of the number of dielectric, piezoelectric, and clastic 
constants. 

Since the tensor equation is easily transformed to a new set of axes by 
the transformaion equations (76) this form is particularly advantageous 
for determining the reduction in elastic, piezoelectric and dielectric con- 
stants. For example consider the second rank tensors eul and a^i for the 
dielectric constant and the expansion coefficients. Ordinarily for the most 
general symmetry each tensor, since it is symmetrical, requires six inde- 
pendent coefficients. Suppose however that the X axis is an axis of twofold 
or binary symmetry, i.e., the properties along the positive Z axis are the 
same as those along the negative Z axis. If we rotate the axes 180° about 
the X axis so that + Z is changed into - Z, the direction cosines are 

(113) 

. dx'i 
'1 = tox = 1; 

dx[ 
nii = —■ 

dx. 
= 0; 

dx'i 
Wl = — 

dx. 
= 0 

. dx'i 
'i — T— ctoi 

= 0; 
dx'z 

W2 = — 
0^2 

= -i; 
dx'z 

W2 = — dx. 
= 0 

, dx', 
Li — ^— dxi 

= 0; 
dx. 

Mi = — 
OX, 

= 0; 
dx', 

n, = — 
dx. 

= -1 

The tensor transformation equations for a second rank tensor are 

, dx'i dx, 
ft; — Ti V . tkC 

dXk dxt 
(114) 

Applying (113) to (114) summing for all values of k and I for each value of 
i, and j we have the six components 

€11 — €11 ; €12 = — €12 ; €13 = — «13 5 €22 = €22 J €23 = €23 J €33 = €33 . (115) 

Since a crystal having the X axis a binary axis of symmetry must have the 
same constants for a +Z direction as for a — Z direction, this condition 
can only be satisfied by 

€12 = €13 = 0. (116) 

The same condition is true for the expansion coefficients since they form a 
second rank tensor and hence 

£*12 = ais = 0. (117) 

In a third rank tensor such as , eak , gak , hak , we similarly find that 
of the eighteen independent constants 

hm = /'IB ; //113 = /*18 ; 7*211 = 7*21 ; 7/222 = 7/22 ; 7*223 = 7*24 (118) 
7*233 = 7/23 ; 7/311 = 7/31 ; 7/322 = 7/32 5 7/323 = 7/34 ] 7/333 = 7/33 • 

are all zero. The same terms in the dm,, em,, gak tensors are also zero. 
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In a fourth rank tensor such as c ,•,*/, s applying the tensor trans- 
formation equation 

_ dx'i dx'j dx'k dx't 
Ciit' ~ Cmn" (119) 

and the condition (113) we similarly find 

C15 = Cit = C2B — C26 = ^35 = C36 — C45 — dg = 0. (120) 

If the binary axis had been the Y axis the corresponding missing terms 
can be obtained by cyclically rotating the tensor indices. The missing 
terms are for the second, third and fourth rank tensors, transformed to 
two index symbols, 

C23, €12 ; hu , hi2, his , h^ , hu , fhs, hsi, hsi, /% , fhs : 
(121) 

Cli , Cie , Cu , C26 , C34 , C36 , C4B , CBB • 

Similarly if the Z axis is the binary axis, the missing constants are 

€is, €12 ; hu , hu , his, /he, hsi, ^22, fhs , /he, ^34 , hss 
(122) 

Cu , Cm , C24, C25 , C34, Css, Cab , CBB • 

Hence a crystal of the orthorhombic bisphenoidal class or class 6, which 
has three binary axes, the X, Y and Z directions, will have the remaining 
terms, 

€11, C22, €33 ; hu , //2B, /he ; Cu , C12, Cis, C22, C23 , C33, cu , Css, c66 (123) 

with similar terms for other tensors of the same rank. Rochelle salt is a 
crystal of this class. 

If Z is a threefold axis of symmetry, the direction cosines for a set of 
axes rotated 120° clockwise about Z are, 

f dxl c dx'l O/:/: A = — = -.5 ; wi = — = -.866 ; »i = -— = 0 
OXl 8X2 5^3 

fe = = ,866 ; m, = dA= -.5; „2 = aA = o (124) 
OXi dx2 dxs 

_ _ _ dx's dx's 
A — —0; W3— — = 0; W3 = __ = l. 

0^1 dxs dxs 

Applying these relations to equations (114) for a second rank tensor, we 
find for the components 

en = .25eii-l- .433eij-|- .75 £22 ; €12 = —.433en + .25 £12+ .433 £22 

€i» = .Sfia .866e23 ; £22 = .75£1, — .433£12 -j- .25£2j (125) 

€28 = .866 £i» — .5 £2» ; £31 = £|3 . 
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. / /   
For the third and fifth equations, since we must have tu — da ; «23 — 
in order to satisfy the symmetry relation, the equations can only be satis- 
fied if 

eis = €23 = 0. (126) 

Similarly solving the first three equations simultaneously, we find 

€12 = 0; Cll = e22 • (127) 

Hence the remaining constants are 

en = 622 ; 633 . (128) 

Similarly for third and fourth rank tensors, for a crystal having Z a trigonal 
axis, the remaining terms are 

hw , hn = — hw , //13 = 0; hu , /'15, hs = — ^22 

hn = —hzi, hv>, lha = 0, Ihi = hn hn = —hu , //21 = —hn (129) 

hsi ; //32 — Ihi ; hss ; /'si = 0; //ss = 0; has = 0 

en ; C12 ; C13 ; cu ; ci6 = —^25; cie = 0 

Cl2 ; ^22 =:: ^11 j ^23 = C13 J C24 ^14 j ^26 > ^26 0 

Cis ; C2s = C\a ; C33 ; C34 = 0; C35 = 0; C36 = 0 (130) 

C14 5 C24 = ^14 j ^34 = 0; C44 , C45 0, £43 C15 

ClB = —C25 j C2B j C35 := 0) C4B =: 0; C56 C44 ) C56 C14 

Cie — 0; C26 = 0; C36 := 0; C46 = C25 ; C56 = C14 ; Cee — 2 (cii-ci2). 

If the Z axis is a trigonal axis and the X a binary axis, as it is in quartz, 
the resulting constants are obtained by combining the conditions (116), 
(118), (120) with conditions (128), (129), (130) respectively. The resulting 
second, third and fourth rank tensors have the following terms 

en ; 612 = 0; 613 = 0 

€12 = 0; €22 — en ; 623 — 0 (181) 

613 = 0; €23 = 0; ^33 

hn ; h\2 = — ^11 ; hva = 0; hu ; hn, = 0; Aie = 0 

//21 = 0; 7/22 = 0; tha — 0; //24 = 0; //2b = —hu ',hn = —hn (132) 

hai = 0; haa = 0; ^33 = 0; haa = 0; haa = 0; haa = 0 
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(133) 

en ; C12 ; C13 ; Cu ; en = 0; Cm = 0 

I12 ; C22 = cn ; C23 — C13 ; C24 = —^14 ; C26 = 0; C26 = 0 

^13 ; C23 = C13 ; C33 ; C31 = 0; C35 = 0; C36 = 0 

C14 ; C24 = — C14 ; f34 =:: 0; C44 ; C45 = 0; ^43 = 0 

^15 = 0; C25 — 0; C35 = 0; C45 = 0; C55 = C44 ; CBB = Cu 

Ci6 ^ 0; C26 =: 0; C33 = 0; ^30 = 0; C56 = Cu €33 = \ (cn-Cn). 

5.1 Second Rank Tensors for Crystal Classes 

The symmetry relations have been calculated for all classes of crystals. 
For a second rank tensor such as e,y, the following forms are required 

Triclinic Classes 1 and 2 en , en , €13 

Cl2 , <22 , «23 

fis , C23 , ess 

cu , 0 , C13 

0 , 622 , 0 

C13 , 0 , 633 

€11, 0 ,0 

0 > C221 0 (134) 

0 ,0 ,633 

en, 0 ,0 

0 , en , 0 

0 ,0 ,633 

en , 0 , 0 

0 , en , 0 

0 ,0 , en 

5.2 Third Rank Tensors of the Piezoelectric Type for the Crystal Classes 

I'll , I'll , I'n , llu , //15 , //i6 

I'll , I'll , I'l3 , /'24 , //25 , I'li 

I'si , I'il , l'33 ) I'Si , I'Sb , Il33 

Monoclinic sphenoidal, V a binary axis, Class 3 
Monoclinic domatic, F a plane of symmetry, Class 4 
Monoclinic prismatic, Center of symmetry, Class 5 

Orthorhombic 
Classes 6, 7, 8 

Tetragonal, Trigonal 
Hexagonal 
Classes 9 to 27 

Cubic 
Classes 28 to 32 

Triclinic Assymetric (Class 1) No 
Symmetry 
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Monoclinic Sphenoidal (Class 3) F is 
binary axis 

Monoclinic domatic (Class 4) Y plane 
is plane of symmetry 

Triclinic pinacoidal, (center of symmetry) /z = 0 (Class 2) 

0 ,0 ,0 , /?i4, 0 , 

^21 , ^22 , ^28 7 0 7 > 0 

0 ,0 ,0 , //34 , 0 , /?J6 

fh\ , h\2 , hli , 0 , /?1B , 0 

0 , 0 , 0 , //24 7 0 J ^28 

/'si 7 /'32 7 /'as 7 0 7 /*3B 7 0 

Monoclinic prismatic (center of symmetry) /; = 0 (Class 5) 

Orthorhombic bisphenoidal (Class 6) 0 ,0 ,0 , hu ,0 ,0 
X,F,Z binary axes „ „ _ 0 ^ ^ 

0 , 0 , 0 , 0 , 0 , h36 

0 ,0 ,0 ,0 , ZriB, 0 

0 , 0 , 0 , //24 , 0 ' , 0 

/'si 7 /'as 7 /'as 7 0 

Orthorhombic bipyramidal (center of symmetry) // = 0 (Class 8) 

0 , 0 , 0 , hu , /'l5 7 0 

Orthorhombic pyramidal (Class 7) Z 
binary, X, Y, planes of symmetry 

Tetragonal bisphenoidal (Class 9) 
Z is quaternary alternating 

Tetragonal pyramidal (Class 10) Z 
is quaternary 

Tetragonal scalenohedral (Class 11) Z 
quaternary, X and Y binary 

Tetragonal trapezohedral (Class 12) 
Z quaternary, X and F binary 

0 , 0 , 0 ,  /'l5 , /'14 7 0 

/'si 7 /'SI , 0 , 0 , 0 , /'so 

0 , 0 , 0 , /'14 , /'l6 7 0 

0 , 0 , 0 , hi*, —hu ,0 

/'si 7 /'ai 7 /'as 7 0 , 0 ,0 

0 ,0 ,0 ,/'i4,0 ,0 

0 , 0 , 0 , 0 , /'l4 , 0 

0 ,0 ,0 ,0 ,0 ,/'36 

0 ,0 ,0 ,/fi4, 0 ,0 

0 , 0 , 0 , 0 , -hu , o 

0 ,0 ,0 ,0 , 0 ,0 

(135) 
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Tetragonal bipyramidal (center of symmtery) // = 0 (Class 13) 

Ditetragonal pyramidal (Class 14) Z 0,0,0,0, //u , 0 
quaternary, X and V planes of 

• U , U , U , A/15 , u , u symmetry > i" > > 
/hi ? /hi, /hs, 0 ,0 ,0 

Ditetragonal bipyramidal (center of symmetry) // = 0 (Class 15) 

Trigonal pyramidal (Class 
16) Z trigonal axis 

/hi , /hi, 0 > ^14 , /lib —hu 
— /hi, /hi, 0 , hit, . — hu -/hi 

/hi , /hi, /hi ,0 . 0 0 

Trigonal rhombohedral (Class 17) center of symmetry, h = 0 

Trigonal trapezohedral (Class /hi , — /hi , 0 > /hi , 0 , 0 
18), Z trigonal, .Y binary 

0 , 0 , 0 ,0 , —hu , —hu 

0 . 0 ,0 ,0 , 0 , 0 

Trigonal bipyramidal (Class /hi, —hu ,0 ,0 , 0 , — ha 
19), Z trigonal, plane of 
symmetry — /hi, /hi ,0 .0 , 0 , —/hi 

0 , f) , 0 , 0 , 0 , 0 

Ditrigonal pyramidal (Class 0 , 0 ,0 ,0 , hu , — Ih* 
20) Z trigonal, T plane of 
symmetry — /hi t /hi , 0 > /hb , 0 . 0 

/hi , /hi , A33 ,0 , 0 , 0 

Ditrigonal scalenohedral (Class 21) center of symmetry, h = 

Ditrigonal bipyramidal (Class hu, — '/hi , 0 ,0 , 0 , 0 
22) Z trigonal, Z plane of sym- 
metry and V plane of symmetry 0 , 0 ,0 ,0 , 0 , — hu 

0 , 0 , 0 ,0 , 0 , 0 

Hexagonal pyramidal (Class 23) 0 , 0 , 0 . /hi , /hb 0 
Z hexagonal 

0 , 0 ,0 j hu,, — hu , 0 

/hi, /hi, /hz ,0 , 0 , 0 

Hexagonal trapezohedral (Class 0 , 0 , 0 ) ^14 , 0 , 0 
24) Z hexagonal, Y binary 

0 , 0 ,0 ,0 , — hu , 0 

0 , 0 ,0 ,0 , 0 , 0 

) 
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Hexagonal bipyramidal (Class 25) center of symmetry, /* = 0 

Dihexagonal pyramidal (Class 26) X 
hexagonal Y plane of symmetry 

0 ,0 ,0 ,0 ,/?i6,0 

0 ,0 ,0 , //ib ,0 ,0 

/'31 , /'31 , /'33 , 0 ,0 ,0 

Dihexagonal bipyramidal (Class 27) center of symmetry, A = 0 

Cubic tetrahedral-pentagonal-dedo- 
cahedral (Class 28) X, F, Z binary 

0 ,0 ,0 ,/7i4,0 ,0 

0 ,0 ,0 ,0 , /zh , 0 

0 ,0 ,0 ,0 ,0 , hu 

Cubic pentagonal-icositetetrahedral (Class 29) /; = 0 

Cubic, dyakisdodecahedral (Class 30) center of symmetry, h = 0 

Cubic, hexakistetrahedral (Class 31) 
X, F, Z quaternary alternating 

0 ,0 ,0 ,//i4,0 ,0 

0 ,0 ,0 ,0 : //u, 0 

0 ,0 ,0 ,0 ,0 ,//M 

Cubic, hexakis-octahedral (Class 32) center of symmetry, /; = 0 

This third rank tensor has been expressed in terms of two index symbols 
rather than the three index tensor symbols, since the two index symbols 
are commonly used in expressing the piezoelectric effect. The relations 
for the h and e constants are 

//,4, hih, //16 are equivalent to h,'23, /'tis, /'ti2 (136) 

in three index symbols, whereas for the d,• y and g ,•/ constants we have the 
relations 

—4 > » 'tt are equivalent to dm, d.w, ^.12 (137) 

Hence the </, relations for classes 16, 18, 19, and 22 will be somewhat dif- 
ferent than the h symbols given above. These classes will be 
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Class 16 

Class 18 

Class 19 

—dn 0 du '/is — 2^22 

— dii dii 0 </i5 —du 2dn 

dsi dzi daa 0 0 0 

dn ~dn 0 du 0 0 

0 0 0 0 —du —2^11 

0 0 0 0 0 0 

dn —dn 0 0 0 —2t/22 

— (/aa ^22 0 0 0 —2<fii 

0 0 0 0 0 0 

(138) 

Class 22 

dn -dn 0 0 0 0 

0 0 0 0 0 -2dn 

0 0 0 0 0 0 

5.3 Fourth Rank Tensors of the Elastic Type for the Crystal Classes 

Triclinic System 
(Classes 1 and 2) 21 
moduli 

Monoclinic System 
(Classes 3, 4 and 5) 12 
moduli 

cn ^12 £13 £14 £15 £16 

Cu £22 £23 £24 £25 £26 

Cl3 £23 £33 £34 £35 £36 

Cu £24 £34 £44 £45 £46 

Clb £26 £35 £45 £55 £56 

Clb £26 £36 £46 £56 £66 

Cn £12 Cl3 0 £15 0 

C\2 £22 £23 0 £26 0 

'"is £23 £33 0 £35 0 

0 0 0 £44 0 £46 

Clb £25 £35 0 £55 0 

0 0 0 £46 0 £66 

The 5 tensor is 
entirely analo- 
gous 

(139) 

The 5 tensor is 

entirely analo- 
gous 
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Rhombic System 
(Classes 6, 7 and 8) 
9 moduli 

Tetragonal system, Z 
a fourfold axis (Classes 
9, 10, 13) 7 moduli 

Tetragonal system, Z a 
fourfold axis. X a two- 
fold axis (Classes 11, 
12, 14, 15) 6 moduli 

Trigonal system, Z a 
twofold axis, (Classes 
16, 17) 7 moduli 

Cu C12 Cl3 0 0 0 The ^ tensor is 

C12 C22 C23 0 0 0 
entirely analo- 
gous 

^13 C23 C33 0 0 0 

0 0 0 Cu 0 0 

0 0 0 0 C55 0 

0 0 0 0 0 Cb6 

Cn C\2 C13 0 0 Cl6 The 5 tensor is 

Cl2 Cn Cl3 0 0 — Clfi 
entirely analo- 
gous 

Cl3 C\3 C33 0 0 0 

0 0 0 Cu 0 0 

0 0 0 0 cu 0 

Cl6 — Cie 0 0 0 ^66 

C12 Cl3 0 0 0 The i- tensor is 

Ci2 Cn C\3 0 0 0 entirely analo- 
gous 

Cl3 C13 C33 0 0 0 

0 0 0 C\\ 0 0 

0 0 0 0 Cu 0 

0 0 0 0 0 Cen 

Cll C12 Cl3 Cu — C2B 0 The s tensor is 

C12 Cn Cl3 Cu C2B 0 
analogous ex- 
cept that 546 = 

Cl3 Cl3 C33 0 0 0 2525 J ^66 = 2514 , 

Cu — Cli 0 Cu 0 C26 
566 = 2 (5II ^12) 

C25 C26 0 0 Cu Cu 

0 0 0 C25 Cu 
Cn — Cn 

2 
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Trigonal system, Z a cn Cl2 Cl3 Cx4 0 0 The s tensor is 
trigonal axis, X a 
binary axis (Classes 

C\i Cn Cl3 - ■C14 0 0 
analogous ex- 
cept that 569 = 

18, 20, 21) 6 moduli Cn Cl3 C33 0 0 0 25X4 , 599 = 

C\\ — Ci4 0 C44 0 0 
2(511 — S12) 

0 0 0 0 C44 Cl4 

0 0 0 0 C14 
cn — C12 

2 

Hexagonal system, Z a Cn Cl2 C13 0 0 0 The 5 tensor is 
sixfold axis, X a two- 
fold axis (Classes 19, 

C12 Cn C13 0 0 0 
analogous ex- 
cept 569 = 

22, 23, 24, 25, 26, 27) Cn Cl3 C33 0 0 0 2(5n — 512) 
5 moduli 

0 0 0 C44 0 0 

0 0 0 0 C44 0 

0 0 0 0 0 Cn C12 
2 

Cubic system (Classes Cn Cl2 C12 0 0 0 The 5 tensor is 
28, 29, 30, 31, 32) 3 
moduli 

Cn Cu C12 0 0 0 entirely analo- 
gous 

Cn C]2 Cn 0 0 0 

0 0 0 C44 0 0 

0 0 0 0 C44 0 

0 0 0 0 0 C44 

Isotropic bodies, 2 Cn Cl2 C12 0 0 0 The 5 tensor 
moduli 

Cl2 Cn C12 0 0 0 analogous ex- 
cept last three 

C12 Cl2 Cu 0 0 0 diagonal terms 

0 0 0 Cu C12 
2 

are 2(511 — ^12) 

0 0 0 oCl1 0 

0 0 0 0 0 Cn — C12 
2 
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5.4 Piezoelectric Equations for Rotated Axes 

Another application of the tensor equations for rotated axes is in deter- 
mining the piezoelectric equations of crystals whose length, width, and thick- 
ness do not coincide with the crystallographic axes of the crystal. Such 
oriented cuts are useful for they sometimes give properties that cannot be 
obtained with crystals lying along the crystallographic axes. Such proper- 
ties may be higher electromechanical coupling, freedom from coupling to 
undesired modes of motion, or low temperature coefficients of frequency. 
Hence in order to obtain the performance of such crystals it is necessary to 
be able to express the piezoelectric equations in a form suitable for these 
orientations. In fact in first measuring the properties of these crystals a 
series of oriented cuts is commonly used since by employing such cuts the 
resulting frequencies, and impedances can be used to calculate all the pri- 
mary constants of the crystal. 

The piezoelectric equations (111) are 

Tkl = Ciik(Sij flnkfi n J -Em = 47r/3m n llmijSij • (HI) 

The first equation is a tensor of the second rank, while the second equation is 
a tensor of the first rank. If we wish to transform these equations to another 
set of axes x', y', z', we can employ the tensor transformation equations 

, = ctej = dx^dxf 
h t dxk dxf dXk dX( 

■ [ciW'S'ii + IcuklSu + 2cnktSn + CznlSii 

+ 2(^523 + ^ ^ [h\kCh + hvtth + hkt^s] (140) dXk oxr 

Em = 47r [/3ml 5l + /3m2 ^2 + ^m3 Ss] — r—^ 
dxm dxm 

• Eli + 2/'ml2 Sl2 + 2//ml3'S'l3 + + 2hm2zSvi + /'mSl^Sa]- 

These equations express the new stresses and fields in terms of the old strains 
and displacements. To complete the transformation we need to express 
all quantities in terms of the new axes. For this purpose we employ the 
tensor equations 

dXi dxy , dx^ , 
o,y = . / . / 0,7, 0„ — / 0n ' dXi dXj oXn 

dXi 
where —* are the direction cosines between the old and new axes. It is 

OXi 
dx' d x' • 

obvious that —1 = —, and the relations can be written 
dXi oxi 
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/ = . » 1 Sxi dxi ' 

dx2   
pit = —/; ms = —/; viz = —, (142) 

d.Ti " 

dxz 
ni=^; 

Hence substituting equations (141) in equations (140) the transformation 
equations between the new and old axes become 

/ _ o dx'k dxt dXi dXj / dxl dx'( dxn , 
I kC — CijkC -7. - a ' a ' "mfcf . T r-7 On o.r^ dx-,- ox,- dXk axf oXn 

8x1 3xi 

8^1'' 
A — - ' 3X3 

8X2 8X2 

8^2'' 
W3 = 7-7 

3X3 

3X3 3X3 
3X2 ; «3 = 7—/ . 3X3 

(143) 
. as oxm dx„ ./ , dXi dXj , 

~ ^ ' n "mil ^ ^ ^ »7 • OXm OXn vXm OXi OXj 

These equations then provide means for determining the transformation of 
constants from one set of axes to another. 

As an example let us consider the case of an ADP crystal, vibrating longi- 
tudinally with its length along the xj axis, its width along the X2 axis and 
its thickness along the Xz axis, which is also the Xz axis, and determine the 
elastic, piezoelectric and dielectric constants that apply for this cut when 
xi is 0 = 45° from Xt. Under these conditions 

. dx'i dxt 0 . 8x2 8xi . 
A = — =—, = cos d] (2 = 5— = J-/ = -sin 6] dxt dxt dxt 8x2 

_ dx'z _ dxt 
h — ~ 3-7 — U 0X1 0X3 

dx'i 8x2 • 3x2 8x2 0 
Ph = t— = / = si" 3; m = - = -r—, = cos 0; 

3x2 3xi 3X2 3X2 

3X3 0X2 „ 
Ph = -Z  = —, = 0 

0X2 0X3 

(144) 

8X1 8X3 „ 3X2 3X3 
«1 = ^— = v-> = 0; "2 = T— = T—> = 0; 8x3 dxi 8x3 8x2 

8x3 dxz . n3 = T— = T—> = 1. 3X3 3X3 

Since ADP belongs to the orthorhombic bisphenoidal (Class 6), it will have 
the dielectric, piezoelectric and elastic tensors shown by equations (134), 
(135), (139). Applying equations (143) and (144) to these tensors it is 
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readily shown that the stresses for 0 = 45° are given by the equations ex- 
pressed in two index symbols 

(cfl 4" 02 + 2C6«) c' r. = -2 5. 

+ ^ 5; + 
£ 

rr' (01 + 02 — 2Cgg) c/ 
I 1 —  ^ 2 

+ ^ + lc°^ s; + 5; + (145) 

Tz = 03 Si + 03 S2 + 03 S3 

T'i = C44 S4 + /zu §2 j -Ei = —huSb + 47r[/3ii5i] 

Eg = C44 SB — hu 5i ; £2 = huSi + 47r[^ii52] 

Efl = (C" 7 ^2) Se ; Ea = ^36[Si - S2] + 4T[^8'3]. 

For a long thin longitudinally vibrating crystal all the stresses are zero 
except the stress T'i along the length of the crystal. Hence it is more ad- 
vantageous to use equations which express the strains in terms of the 
stresses since all the stresses can be set equal to zero except Ti. All the 
strains are then dependent functions of the strain Si and this only has to 
be solved for. Furthermore, since plated crystals are usually used to 
determine the properties of crystals, and the field perpendicular to a plated 
surface is zero, the only field existing in a thin crystal will be E3 if the thick- 
ness is taken along the ^3 or Z' axis. Hence the equations that express the 
strains in terms of the stresses and fields are more advantageous for calcu- 
lating the properties of longitudinally vibrating crystals. By'orienting 
such crystals with respect to the crystallographic axis, all of the elastic 
constants except the shear elastic constants can be determined. All of 
the piezoelectric and dielectric constants can be determined from measure- 
ments on oriented longitudinally vibrating crystals. 

For such measurements it is necessary to determine the appropriate 
elastic, piezoelectric, and dielectric constants for a crystal oriented in any 
direction with respect to the crystallographic axes. We assume that the 
length lies along the x'i axis, the width along the axis and the thickness 
along the x'z axis. Starting with equations of the form 

S ij = SijkgTkt + d i jmEm 

t (146) 
5„ = Em + dnklThl 

47r 
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and transforming to a rotated system of axes whose direction cosines are 
given by (142), the resulting equation becomes 

c' _ ^ dx'i dXk dx( T', J- A dXi dx^ dXm p' 
5,7 " iike dXi dx,- dxl dx'f kl ^ iim dxt dx,- dZ ^ ' 

r , / (147) 
£' Cmn dxn dxm T?' I J - d%n dXk dX( rpf 

On — — 3  7 J -E-m "t" "nfct "T T / T / kl • 47r dx„ dxm dxn dXk oXf 

All the stresses except Tu can be set equal to zero and all the fields except 
Ez vanish. Furthermore, all the strains are dependently related to . 
Hence for a thin longitudinal crystal the equation of motion becomes 

c' _ c® /dx>l dxi dXk dxi t' a- a.. 9x1 ^ dXm p' 
11 tik dxi dx,- dxi dx'x 11 t3m dXi dxj dxs m ' 

r , / (148) 
s' ^mn dxz dxm j.,/ . , dXz dXk dxi rp' 
53 " 47 dTS ^ ^ tei tei ^ • 

In terms of the two index symbols for the most general type of crystal, we 
have 

Sun = Su = + {2si2 4" sfytlmi + (25f3 + 

■+■ 2(5f4 + + 2snt\ni + + Suni\ 

+ (24 + s&mUl + 24w?«I + 2(5^ "b 

+ 24wi^i + Ssatii + 24WIWI + 24WI/I 

4" 2(4 4" 4)wiAWI 
(14:9) 

</iii = rfn = dntA 4" dutzmi 4" duCztii 4" 4- dizlzCitii 

4" d\ztittfH\ 4" diiwiztx 4" dzi^H^x 4" d^ztnziii 4" dzxWztnxiii 

4- ditfhtxni 4" distnzlimi 4" dmht\ + dzinstrfc + dsgnttii 

4" dziUtfnini 4- dzzUzlxiix 4" dz^htinix 

(33 = (11$ 4~ 2 612^^3 4" 2ei3^3»3 4" C22W3 4" 2 eJ3W3W3 4" tJswl 

Hence by cutting 18 crystals with independent direction cosines 9 elastic 
constants and 6 relations between the remaining twelve constants can be 
determined. All of the piezoelectric constants and all of the dielectric 
constants can be determined from these measurements. These constants 
can be measured by measuring the resonant and antiresonant frequencies 
and the capacity at low frequencies. The resonant frequency /« is deter- 
mined by the formula 

^ i / ^ 
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for any long thin crystal vibrating longitudinally. Hence when the density 
is known, 5u' can be calculated from the resonant frequency and the length 
of the crystal. Using the values of sfi obtained for 15 independent orienta- 
tions enough data is available to solve for the constants of the first of 
equations (149). The capacities of the different crystal orientations meas- 
ured at low frequencies determine the dielectric constant efs and six orienta- 
tions are sufficient to determine the six independent dielectric constants 
eln . The separation between resonance and antiresonance Af = fA — Jr 
determines the piezoelectric constant dn according to the formula 

A/N i/'" s;;, (151) 
* V fs V 47r 

The values of d'n measured for 18 independent orientations are sufficient 
to determine the eighteen independent piezoelectric constants. 

The remaining six elastic constants can be determined by measuring long 
thin crystals in a face shear mode of motion. Since this is a contour mode 
of motion, the equations are considerably more complicated than for a 
longitudinal mode and involve elastic constants that are not constant field 
or constant displacement constants. It can be shown5 that the fundamental 
frequency of a crystal with its length along Xi, width (frequency determining 
direction) along .To and thickness (direction of applied field) along x'a, will be 

1 / c,B i c.B | -v // c.® c,B\2 i m c.E2 
f = — Jy Ci2 f'66 ^ ^ (C22 ~~ ^66 ) + 4^26 (152) 

where the contour elastic constants are given in terms of the fundamental 
elastic constants by 

BEE2 E E E E 
c.E _ ^11^66 ■Sie . c,E _ ^12^16 ^11 ^26 . 

^22 —  -T j <-26 ~ j 

EE B2 * (1^) 
c.E ^11 ^22 ^12 

where A is the determinant 

A = 

A 

E E E 
^11 , 512 , 516 

E E E 
512 , 522 , 526 

E E E 
516 , 526 , 566 

(154) 

Since all of the constants except xfij and can be determined by measure- 
ments on longitudinal crystals and the value of {Isu + See) has been de- 

5 This is proved in a recent paper "Properties of Dipotassiura Tartrate (DKT) Crys- 
tals," Phys. Rev., Nov., 1946. 
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termined, the measurement of the lowest mode of the face shear crystal 
gives one more relation and hence the values of sfz and sfa can be uniquely 
determined. 

Similar measurements with crystals cut normal to #1 and width along X3 
and with crystals cut normal to Xz and width along Xi determine the constants 
■sf4 , sn and 5^5 , su respectively. The equivalent constants are obtained 
by adding 1 to each subscript 1, 2, 3 or 4, 5, 6 for the first crystal with the 
understanding that 3+1=1 and 6+1 =4. For the second crystal 2 
is added to each subscript. 

Finally the remaining three constants can be determined by measuring 
the face shear mode of three crystals that have their lengths along one of 
the crystallographic axes and their width (frequency determining axis) 
45° from the other two axes. 

Any symmetry existing in the crystal will cut down on the number of 
constants and hence on the number of orientations to determine the funda- 
mental constants. 

6. Temperature Effects in Crystals 

In section 2 a general expression was developed for the effects of tempera- 
ture and entropy on the constants of a crystal. Two methods were given, 
one which considers the stresses, field, and temperature differentials as the 
independent variables, and the second which considers the strains, displace- 
ments and entropy as the independent variables. In tensor form the 10 
equations for the first method take the form 

TkC = clUSa - h°nktbn - \kt dQ 

Em = — hm i jS i i + birtfm'n & n - ^ dQ (155) 

de = -exffSi, - eg^Sn + ^ pcv 

The piezoelectric relations have already been discussed for adiabatic condi- 
tions assuming that no increments of heat dQ have been added to the 
crystal. 

If now an increment of heat dQ is suddenly added to any element of the 
crystal, the first equation shows that a sudden expansive stress is generated 

proportional to the constant Xij which has to be balanced by a negative 
stress (a compression) in order that no strain or electric displacement shall 
be generated. This effect can be called the stress caloric effect. The 
second equation of (155) shows that if an increment of heat dQ is added to 
the crystal an inverse field Em has to be added if the strain and Surface 
charge are to remain unchanged. This effect may be called the field caloric 
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effect. Finally the third equation of (155) shows that there is a reciprocal 
effect in which a stress or a displacement generates a change in temperature 
even in the absence of added heat dQ. These effects can be called the strain 
temperature and charge temperature effects. 

The second form of the piezoelectric equations given by (58) are more 
familiar. In tensor form these can be written 

Sij = sffkC Tut + dmijEm + afj dO 

Sn = dlkiTu + '-P £m + pi de (156) 

dQ = 6 da = QaklTkt + QplEm + pC* dQ 

The afy are the temperature expansion coefficients measured at constant 
field. In general these are a tensor of the secjnd rank having six com- 
ponents. The constants pi are the pyroelectric constants measured at 
displacements which relate the increase in polarization or surface charge 
due to an increase in temperature. They are equal to the so-called "true" 
pyroelectric constants which are the polarizations at constant volume caused 
by an increase in tempeiature plus the "false" pyioelectric effect of the 
first kind which represents the polarization caused by a uniform temperature 
expansion of the crystal as its temperature increases by dQ. As mentioned 
previously it is more logical to call the two effects the pyroelectric effects 
at constant stress and constant strain. By eliminating the stresses from 
the first of equations (156) and substituting in the second equation it is 
readily shown that 

pi = pl — (157) 

Hence the difference between the pyroelectric effect at constant stress and 
the pyroelectric effect at constant strain is the so-called "false" pyroelectric 
effect of the first kind . 

The first term on the right side of the last equation is called the heat of 
deformation, for it represents the heat generated by the application of the 
stresses Tk(. The second term is called the electrocaloric effect and it 
represents the heat generated by the application of a field. The last term 
is p times the specific heat at constant pressure and constant field. 

The temperature expansion coefficients af,- form a tensor of the second 
rank and hence have the same components for the various crystal classes 
as do the dielectric constants shown by equation (134). 

The pyroelectric tensor pl and pi are tensors of the first rank and in 
general will have three components pi, pi, and Pi. In a similar manner 
to that used for second, third and fourth rank tensors it can be shown that 
the various crystal classes have the following components for the first rank 
tensor . 
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Class 1: components pi, p2, Pa • 
Class 3: V axis of binary symmetry, components 0, pz ,0 (158) 
Class 4: components pi, 0, ps. 
Classes 7, 10, 14, 16, 20, 23, and 26: components 0, 0, p3 ; and Classes 

2, 5, 6, 8, 9, 11, 12, 13, 15, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 30, 31, and 
32: components 0, 0, 0, i.e., p = 0. 

For a hydrostatic pressure, the stress tensor has the components 

Tn = Tw = T33 = -p = pressure; Tu = Tn = = 0 (159) 

Hence the displacement equations of (156) can be written in the form 

K = B™- ftp + plte (160) 47r 
where 

(Fnp — dQ
nnT\i + cFniiTn + 

that is the contracted tensor dnkkTkk ■ This is a tensor of the first rank 
which has the same components as the pyroelectric tensor pn for the various 
crystal classes. 

7. Second Order Effects in Piezoelectric Crystals 

We have so far considered only the conditions for which the stresses and 
fields are linear functions of the strains and electric displacements. A 
number of second order effects exist when we consider that the relations are 
not linear. Such relations are of some interest in ferroelectric crystals such 
as Rochelle salt. A ferroelectric crystal is one in which a spontaneous 
polarization exists over certain temperature ranges due to a cooperative 
effect in the crystal which lines up all of the elementary dipoles in a given 
"domain" all in one direction. Since a spontaneous polarization occurs in 
such crystals it is more advantageous to develop the equations in terms of 
the electric displacement rather than the external field. Also heat effects 
are not prominent in second order effects so that we develop the strains and 
potentials in terms of the stresses and electric displacements D. By means 
of McLaurin's theorem the first and second order terms are in tensor form 

dSn dSu . 1 f d^Sij 
Sii = dTki 

Tkt + d5n 
5n + 2! \_dTktdTqr 

TktrqT 

d^n d2Su 1 
+ 2 ^ Tkl8n + ^7^7 Mo + ' '' higher terms Ul k(OOn UOnOdQ _J 

dEm dEm 1 
■Em = Tk( + 5n + Of dTkl OOn Z! 

d2E d2E 1 
+ 2 aTStTA + KTso + ''' higher terms 

whereas before 8 = D/Att. 

f d2Em 

IdTktdTr T]clTq 
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In this equation the linear partial differentials have already been discussed 
and are given by the equations 

dSjj _ D dSjj _ dEn _ dEm 

dTk( ~ ' d5n dTn gijn ' d5n ^mn ( ^ 

where 5^^ are the elastic compliances of the crystal at constant displace- 
ment, gijn the piezoelectric constants relating strain to electric displacement 
/47r, and /3mn the dielectric "impermeability" tensor measured at constant 
stress. We designate the partial derivatives 

' dSii _ !\TD , ^ _ MJ> , 
dTktdTqr llk qT' ' 

(163) 
d _ d £„ _ 0 . d-£m 0 

d5nd5o dTyydSo y,;n," a5„d5o 

The tensors N, M, Q, and 0 are respectively tensors of rank 6, 5, 4 and 3 
whose interpretation is discussed below. Introducing these definitions 
equations (161) can be written in the form 

Sij = Tkds'ijki + vN'ijklqrTqr + M^jk(nbn\ -j" 8„[gijn -f" ^Qijno^o] 
(164) 

Em = Tk([gmk(+W°ik(nTqr + QnnJr,] + 8 n[^L + 

Written in this form the interpretation of the second order terms is obvious. 
Nljktgr represents the nonlinear changes in the elastic compliances s?y/ 
caused by the application of stress TqT. Since the product of NaktqrTqr 
represents a contracted fourth rank tensor, there is a correction term for 
each elastic compliance. The tensor M^jkU can represent either the non- 
linear correction to the elastic compliances due to an applied electric dis- 
placement Dn or it can represent the correction to the piezoelectric constant 
gijn due to the stresses Tki. By virtue of the second equation of (162), 
the second equivalence of (163) results. The fourth rank tensor |Q°yno 

represents the electrostrictive effect in a crystal for it determines the strains 
existing in a crystal which are proportional to the square of the electric 
displacement. Twice the value of the electrostrictive tensor ^Qljno , which 
appears in the second equation of (164) can be interpreted ^s the change 
in the inverse dielectric constant or "impermeability" constant. Since a 
change in dielectric constant with applied stress causes a double refraction 
of light through the crystal, this term is the source of the piezo-optical effect 
in crystals. The third rank tensor O^no represents the change in the "im- 
permeability" constant due to an electric field and hence is the source of 
the electro-optical effect in crystals. , 

These equations can also be used to discuss the changes that occur in 
ferroelectric type crystals such as Rochelle Salt when a spontaneous polariza- 
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tion occurs in the crystal. When spontaneous polarization occurs, the 
dipoles of the crystal are lined up in one direction in a given domain. For 
Rochelle salt this direction is the ±X axis of the crystal. Now the electric 
displacement Dz is equal to 

s' = t=t+p" + p'° = ESp'° (165) 

where PZQ is the electronic and atomic polarization, and P*o the dipole 
polarization The electronic and atomic polarization is determined by the 
field and hence can be combined with the field through the dielectric constant 
eo, which is the temperature independent part of the dielectric constant. 
When the crystal becomes spontaneously polarized, a field Ez will result, but 
this soon is neutralized by the flow of electrons through the surface and 
volume conductance of the crystal and in a short time Ez = 0. Hence for 
any permanent changes occurring in the crystal we can set 

8x = ^ —PxD = dipole polarization (166) 
47r 

which we will write hereafter as Pi . 
In the absence of external stresses the direct effects of spontaneous polari- 

zation arc a spontaneous set of strains introduced by the product of the 
spontaneous polarization by the piezoelectric constant, and another set 
produced by the square of the polarization times the appropriate electro- 
strictive components. For example, Rochelle salt has a spontaneous 
polarization Pi along the Xi axis between the temperatures — 180C to 
-(-240C. The curve for the spontaneous polarization as a function of 
temperature is shown by Fig. 6.'' The only piezoelectric constant causing 
a spontaneous strain will be gu/2 = gm ■ Hence the spontaneous polariza- 
tion causes a spontaneous shearing strain 

^4 = guPx = 120 X 10~8 X 760 = 9.1 X 10~4 (167^ 

if we introduce the experimentally determined values. Since Si is the 
cosine of 90° plus the angle of distortion, this would indicate that the right 
angled axes of a rhombic system would be distorted 3.1 minutes of arc. 
This is the value that should hold for any domain. For a crystal with 
several domains, the resulting distortion will be partly annulled by the 
different signs of the polarization and should be smaller. Mueller7 measured 
an angle of at 0oC for one crystal. This question has also been 

0 This has been measured by measuring the remanent polarization, when all the domains 
are lined up. See "The Dielectric Anomalies of Rochelle Salt," H. Mueller, Annals of 
the N. Y. Acad. Science, Vol. XL, Art. 5, page 338, Dec. 31, 1940. 

7 "Properties of Rochelle Salt," H. Mueller, Phys. Rev., Vol. 57, No. 9, May 1, 1940. 
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investigated by the writer and Miss E. J. Armstrong by measuring the 
temperature expansion coefficients of the V and Z axes and comparing their 
average with the expansion coefficient at 45° from these two axes. The 
difference between these two expansion coefficients measures the change 
in angle between the V and Z axes caused by the spontaneous shearing 
strains. The results are shown by Fig. 7. Above and below the ferro- 
electric region, the expansion of the 45° crystal coincides with the average 
expansion of the Y and Z axes measured from 250C as a reference tempera- 
ture. Between the Curie temperatures a difference occurs indicating that 
the Y and Z crystallographic axes are no longer at right angles. The dif- 
ference in expansion per unit length at 0oC (the maximum point) corresponds 
to 1.6 X 10-4 cm per cm. This represents an axis d istortion of 1.1 minutes 
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Fig. 6.—Spontaneous polarization in Rochelle Salt along the X axis. 

of arc. Correspondingly smaller values are found at other temperatures 
in agreement with the smaller spontaneous polarization at other tempera- 
tures. It was also found that practically the same curve resulted for either 
45° axis, indicating that the mechanical bias put on by the optometer used 
for measuring expansions introduced a bias determining the direction of the 
largest number of domains. 

The second order terms caused by the square of the spontaneous polariza- 
tion is given by the expression 

Si,- = Qi,uPi (168) 

Since Q is a fourth rank tensor the possible terms for an orthorhombic 
bisphenoidal crystal (the class for Rochelle salt) are 

Sn = Qinifi ; ^22 = QiniPi ; Sa = Qn\\P\ (169) 

i 
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In an effort to measure these effects, careful measurements have been made 
of the temperature expansions of the three axes X, Y and Z. The results 
are shown by Table II. On account of the small change in dimension from 
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Fig. 7.—Temperature expansion curve along an axis 45° between Y and Z as a 
function of temperature. 

the standard curve it is difficult to pick out the spontaneous components 
by plotting a curve. By expressing the expansion in the form of the 
equation 

^ = fl1(J
,-25) + a^T-lSf + a^T-lS)* (170) 
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Table II 
Measured Temperature Expansions for the Three Crystalographic Axes 

Temperature Expansion Expansion Expansion 

in °C. X lo-* X Axis 
Temperature 

in "C. 
x io-« Y Axis 

Temperature 
in °C. 

x io-« Z Axis 

39.6 
38.7 
35.2 

10.2 
9.46 
6.96 

+35.0 
30.3 
25.25 

4.45 
2.5 
0.2 

+34.9 
29.9 
25.05 

+4.9 
2.5 

+ .05 

30.2 
27.2 
26.2 

3.63 
1.41 
0.71 

23.9 
22.9 
19.35 

-0.42 
-0.88 
-2.4 

24.0 
19.95 
14.95 

-.5 
-2.62 
-5.11 

25.15 
24.0 
23.0 

0.06 
-0.71 
-1.39 

14.9 
10.0 
5.4 

-4.25 
-6.25 
-8.18 

+9.75 
+4.9 

0 

-7.55 
-9.9 

-12.31 

21.8 
16.0 
15.2 

-2.37 
-6.5 
-7.05 

+0.3 
-9.7 

-16.3 

-10.15 
-13.98 
-16.41 

-6.35 
-10.5 
-15.0 

-15.3 
-17.29 
-19.42 

4.9 
+0.3 
-4.7 

-14.12 
-17.28 
-20.3 

-20.85 
-25.1 
-30.3 

-17.94 
-19.22 
—20.8 

-18.0 
-23.2 
-25.1 

-20.86 
-23.08 
-23.96 

-10.7 
-15.3 
-20.7 

-24.0 
-26.6 
-30.2 

-35.0 
-39.7 
-53.2 

-22.23 
-23.54 
-27.60 

-31.1 
-35.0 
-40.0 

-26.59 
-28.28 
-30.4 

-25.7 
-30.1 
-34.7 

-32.7 
-35.2 
-37.85 

-40.7 
-45.0 
-50.5 

-41.25 
-44.0 
-47.0 

and evaluating the constants by employing temperatures outside of the 
ferroelectric range, a normal curve was established. For the X, Y, and Z 
axes these relations are 

— = 69.6 X l(r6(r-25) + 7.4 X l(r8(T-25)2 - 3.13 X 10 10(T-25)3 

L 
(.Y direction) 

— = 43.7 X 10"6(T-25) + 8.16 X 10~8(T-25)23.60 X 10"10(T-25)3 

(Y direction) 

49.4 X 10"6(r-25) + 1.555 X 10~8(r-25)2 - 2.34 X 10",0(r-25)3 

(Z direction) 

AL = 

L ' 
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The difference between the normal curves and the measured values in the 
Curie region is shown plotted by the points of Fig. 8. The solid and dashed 
curves represent curves proportional to the square of the spontaneous 
polarization and with multiplying constants adjusted to give the best fits 
for the measured points. These give values of Qnu , Qwn , C&n equal to 

Qnn = -86.5 X KT12; Q&n = +17.3 X lO"12; 

(23311 = -24.2 X lO"12 (172) 12 

Another effect noted for Rochelle salt is that some of the elastic constants 
suddenly change by small amounts at the Curie temperatures. This is a 
consequence of the tensor M^jkln, for if a spontaneous polarization P 
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Fig. 8.—Spontaneous electrostrictive strain in Rochelle Salt along the 

three crystallographic axes. 

occurs, a sudden change occurs in some of the elastic constants as can be seen 
from the first of equations (164). The second equation of (164) shows 
that this same tensor causes a nonlinear response in the piezoelectric con- 
stant. Since a change in the elastic constant is much more easily deter- 
mined than a nonlinear change in the piezoelectric constant, the first effect 
is the only one definitely determined experimentally. Since all three crys- 
tallographic axes are binary axes in Rochelle salt, it is easily shown that 
the only terms that can exist for a fifth rank tensor are terms of the types 

Mum ; M; 47+333 (173) 

with permutations and combinations of the indices. Hence when a spon- 
taneous polarization Pi occurs, the elastic constants become 

sDiikt - MD
ijk(iPi (174) 
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Comparing these with the relation of (90) we see that the spontaneous 
polarization has added the elastic constants 

{Minn ~f" Minn + M^zni + Mzni\)P\ o _ 5i4 — 

D (JhT2 2231 + Mwni + ■^23221 + Mwill) Pi 
524 2 

D {Mnzn + Mznn + Mnzn + Mnui)P i 
^34 o 

(175) 

^66 = 

(3^i2isi "H Minn + Mzmi + Mfmi 
+ M12131 + M12311 + 3/21131 + 3/2

Dl3ll)Pl 

between the two Curie points. Hence while the spontaneous polarization 
Pi exists, the resulting elastic constants are 

(176) 

^11, S12, •Sis, ^14 , 0 , 0 

^12 , S22, •S23, ^24 , 0 , 0 

^13 , S23, S33, ^34 , 0 , 0 

^14 , S2i , S34, ^44 t 0 , 0 

0 0 , 0 , 0 , •^55 > •J56 

0 , 0 , 0 , 0 , j $86 

Comparing this to equation (139) which shows the possible elastic constants 
for the various crystal classes, we see that between the two Curie points, 
the crystal is equivalent to a monoclinic sphenoidal crystal (Class 3) with 
the X axis the binary axis. Outside the Curie region the crystal becomes 
orthorhombic bisphenoidal. This interpretatiorTagrees with the tempera- 
ture expansion curves of Fig. 7. 

The sudden appearance of the polarization Pi will affect the frequency 
of a 45° X-cut crystal, for with a crystal cut normal to the X axis and with 
the length of the crystal at an angle 0 with the Y axis, the value of the 
elastic compliance 522 along the length is 

4' = sn cos4 0 + 2^24 cos3 0 sin 0 + (2^ + ^4) sin2 0 cos2 0 

4- 25^4 sin3 0 cos 0 + S33 sin4 0 

Hence for a crystal with its length 45° between the Y and Z axes, elastic 
compliance becomes 

$22 + 2(5^4 + ^23 + ^4) + ^44 + $33 'D (\ 78"\ 
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For a 45° X-cut crystal we would expect a sudden change in the value of 
s'w as the crystal becomes spontaneously polarized between the two Curie 
points due to the addition of the 524 and Su elastic compliances. Such a 
change has been observed for Rochelle salt8 as shown by Fig. 9 which shows 
the frequency constant of a nonplated crystal for which the elastic com- 
pliances sfj should hold. 
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Fig 9—Frequency constant and Q of an unplated 450X cut Rochelle Salt crystal 

plotted as a function'of temperature. 

Hence the sudden change in the elastic constant is a result of the two 
second order terms + 5"4 , which are caused by the spontaneous polariza- 
tion. The value of the sum of these two terms at the mean temperature 
of the Curie range, 30C is 

524 + 534 = 4.1 X 10 14 cm /dyne (179) 

Crystals cut normal to the Y and Z axes should not show a spontaneous 
change in their frequency characteristic since the spontaneous terms 514, 
524, 534 and 5D6 do not affect the value of Young's modulii in planes normal 
to Y and Z. Experiments on a 45° F-cut Rochelle salt crystal do not show 
a spontaneous change in frequency at the Curie temperature, although there 
is a large change in the temperature coefficient of the elastic compliance 
between the two Curie points. This is the result of third order term and is 

s "The Location of Hysteresis Phenomena in Rochelle Salt Crystals," W. P. Mason, 
Phys. Rev., Vol. 50, p. 744-750, October 15, 1940. 
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not considered here. The spontaneous 566 constant affects the shear con- 
slant iee for crystals rotated about the X axis and could be detected experi- 
mentally. No experimental values have been obtained. 

The effects of spontaneous polarization in the second equation of (164) 
are of two sorts. For an unplated crystal, a spontaneous voltage is gen- 
erated on the surface, which, however, quickly leaks off due to the surface 
and volume leakage of the crystal. The other effects are that the spon- 
taneous polarization introduces new piezoelectric constants through the 
tensor Qkfmn , changes the dielectric constants through the tensor Omno and 
introduces a stress effect on the piezoelectric constants through the tensor 
Mk/mgr ■ Since piezoelectric constants are not as accurately measured as 
elastic constants, the first effect has not been observed. The additional 
piezoelectric constants introduced by the tensor Qkfmn are shown by equa- 
tion (180) 

gn gl2 gl3 gn 0 0 

0 0 0 0 £26 £26 

0 0 0 0 £35 £30 

Since the only constants for the Rochelle salt class, the orthorhombic 
bisphenoidal, are gu , gn , gse, this shows that between the two Curie points 
the crystal becomes monoclinic sphenoidal, with the X axis being the 
binary axis. The added constants are, however, so small that the accuracy 
of measurement is not sufficient to evaluate them. From the expansion 
measurements of equation (172) and the spontaneous polarization values, 
three of them should have maximum values of 

gn = -6.6 X 10-8; g12 = +1.3 X lO"8; g13 = -1.8 X KT8 (181) 

These amount to only 6 per cent of the constant gu , and hence they are 
not easily evaluated from piezoelectric measurements. 

The effect of the tensor 0m„o is to introduce a spontaneous dielectric 
constant €23 between the Curie temperatures so that the dielectric tensor 
becomes 

ell ) 0, 0 

0, C22, «23 (182) 

0, €23, «33 

As discussed at length by Mueller9 this introduces a spontaneous bire- 
fringence for light passing through the crystal along the X, V and Z axes 
which adds to the birefringence already present. 

9 "Properties of Rochelle Salt I and IV," R/tys. Rev. 47,175 (1935); 58, 805 November 1, 
1940. 



The Biased Ideal Rectifier 

By W. R. BENNETT 

Methods of solution and specific results are given for the spectrum of the 
response of devices which have sharply defined transitions between conducting 
and non-conducting regions in their characteristics. The input wave consists 
of one or more sinusoidal components and the operating point is adjusted by bias, 
which may either be independently applied or produced by the rectified output 
itself. 

Introduction 

THE concept of an ideal rectifier gives a useful approximation for the 
analysis of many kinds of communication circuits. An ideal rectifier 

conducts in only one direction, and by use of a suitable bias may have the 
critical value of input separating non-conduction from conduction shifted 
to any arbitrary value, as illustrated in Fig. 1. A curve similar to Fig. 1 
might represent for example the current versus voltage relation of a biased 
diode. By superposing appropriate rectifying and linear characteristics 
with different conducting directions and values of bias, we may approximate 
the characteristic of an ideal limiter, Fig. 2, which gives constant response 
when the input voltage falls outside a given range. Such a curve might 
approximate the relationship between flux and magnetizing force in certain 
ferromagnetic materials, or the output current versus signal voltage in a 
negative-feedback amplifier. The abrupt transitions from non-conducting 
to conducting regions shown are not realizable in physical circuits, but the 
actual characteristics obtained in many devices are much sharper than can 
be represented adequately by a small number of terms in a power series 
or in fact by any very simple analytic function expressible in a reasonably 
small number of terms valid for both the non-conducting and conducting 
regions. 

In the typical communication problem the input is a signal which may 
be expressed in terms of one or more sinusoidal components. The output 
of the rectifier consists of modified segments of the original resultant of the 
individual components separated by regions in which the wave is zero or 
constant. We are not so much interested in the actual wave form of these 
chopped-up portions, which would be very easy to compute, as in the fre- 
quency spectrum. The reason for this is that the rectifier or limiter is 
usually followed by a frequency-selective circuit, which delivers a smoothly 
varying function of time. Knowing the spectrum of the chopped input 
to the selective network and the steady-state response as a function of 

139 
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Fig. 1.—Ideal biased linear rectifier characteristic. 
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Fig. 2.—Synthesis of limiter characteristic. 
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frequency of the network, we can calculate the output wave, which is the 
one having most practical importance. The frequency selectivity may in 
many cases be an inherent part of the rectifying or limiting action so that 
discrete separation of the non-linear and linear features may not actually 
be possible, but even then independent treatment of the two processes 
often yields valuable information. 

The formulation of the analytical problem is very simple. The standard 
theory of Fourier series may be used to obtain expressions for the amplitudes 
of the harmonics in the rectifier output in the case of a single applied fre- 
quency, or for the amplitudes of combination tones in the output when two 
or more frequencies are applied. These expressions are definite integrals 
involving nothing more complicated than trigonometric functions and the 
functions defining the conducting law of the rectifier. If we were content 
to make calculations from these integrals directly by numerical or mechanical 
methods, the complete solutions could readily be written down for a variety 
of cases covering most communication needs, and straightforward though 
often laborious computations could then be based on these to accumulate 
eventually a sufficient volume of data to make further calculations un- 
necessary. 

Such a procedure however falls short of being satisfactory to those who 
would like to know more about the functions defined by these integrals 
without making extensive numerical calculations. A question of consider- 
able interest is that of determining under what conditions the integrals may 
be evaluated in terms of tabulated functions or in terms of any other func- 
tions about which something is already known. Information of this sort 
would at least save numerical computing and could be a valuable aid in 
studying the more general aspects of the communication system of which 
the rectifier may be only one part. It is the purpose of this paper to present 
some of these relationships that have been worked out over a considerable 
period of time. These results have been found useful in a variety of prob- 
lems, such as distortion and cross-modulation in overloaded amplifiers, 
the performance of modulators and detectors, and effects of saturation in 
magnetic materials. It is hoped that their publication will not only make 
them available to more people, but also stimulate further investigations of 
the functions encountered in biased rectifier problems. 

The general forms of the integrals defining the amplitudes of harmonics 
and side frequencies when one or two frequencies are applied to a biased 
rectifier are written down in Section I. These results are based on the 
standard theory of Fourier series in one or more variables. Some general 
relationships between positive and negative bias, and between limiters and 
biased rectifiers are also set down for further reference. Some discussion is 
given of the modifications necessary when reactive elements are used in the 
circuit. 
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Section II summarizes specific results on the single-frequency biased 
rectifier case. The general expression for the amplitude of the typical 
harmonic is evaluated in terms of a hypergeometric function for the power 
law case with arbitrary exponent. 

Section III takes up the evaluation of the two-frequency modulation 
products. It is found that the integer-power-law case can be expressed in 
finite form in terms of complete elliptic integrals of the first, second, and 
third kind for almost all products. Of these the first two are available in 
tables, directly, and the third can be expressed in terms of incomplete 
integrals of the first and second kinds, of which tables also exist. No direct 
tabulation of the complete elliptic integrals of the third kind encountered 
here is known to the author. They are of the hyperbolic type in contrast 
to the circular ones more usual in dynamical problems. Imaginary values 
of the angle (3 would be required in the recently published table by Heuman . 

A few of the product amplitudes depend on an integral which has not 
been reduced to elliptic form, and which is a transcendental function of two 
variables about which little is known. Graphs calculated by numerical 
integration are included. 

The expressions in terms of elliptic integrals, while finite for any product, 
show a rather disturbing complexity when compared with the original 
integrals from which they are derived. It appears that elliptic functions 
are not the most natural ones in which the solution to our problem can be 
expressed. If we did not have the elliptic tables available, we would prefer 
to define new functions from our integrals directly, and the study of such 
functions might be an interesting and fruitful mathematical exercise. 

Solutions for more than two frequencies are theoretically possible by5 the 
same methods, although an increase of complexity occurs as the first few 
components are added. When the number of components becomes very 
large, however, limiting conditions may be evaluated which reduce the 
problem to a manageable simplicity again. The case of an infinite number 
of components uniformly spaced along an appropriate frequency range has 
been used successfully as a representation of a noise wave, and the detected 
output from signal and noise inputs thus evaluated2. The noise problem 
will not be treated in the present paper. 

1 Carl Heuman, Tables of Complete Elliptic Integrals, Jour. Math, and Physics, Vol. 
XX, No. 2, pp. 127-206, April, 1941. 2 W. R. Bennett, Response of a Linear Rectifier to Signal and Noise, Jour. Acous. boc. 
Amer., Vol. IS, pp. 164-172, Jan. 1944. 

I. The General Problem 

Let the biased rectifier characteristic, Fig. 1, be expressed by 

(1.1) 
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Then if a single frequency wave defined by 

E = P cos pi, - P < b < P, (1.2) 

is applied as input, the output contains only the tips of the wave, as shown 
in Fig. 3. It is convenient to place the restrictions on P and h given in 
Eq. (1.2). The sign of P is taken as positive since a change of phase may 
be introduced merely by shifting the origin of time and is of trivial interest. 
If the bias b were less than —P, the complete wave would fall in the con- 
ducting region and there would be no rectification. If b were greater than 

f (Pcos pt-b) 

TIME 

\ / „ s 
PCQS pt 

Fig. 3.—Response of biased rectifier to single-frequency wave. 

P, the output would be completely suppressed. Applying the theory of 
Fourier series to (1.1) and (1.2), we have the results 

/ = TV + 23 cos « pt 
l n-l 

2 [ 
(In = - tt Ja 

arc cos b/P 
f{P cos x — b) cos nx dx 

(1.3) 

(1.4) 

When two frequencies are applied, the output may be represented by a 
double Fourier series. The typical coefficient may be found by the method 
explained in an earlier paper by the author1. The problem is to obtain the 
double Fourier series expansion in .r and y of the function g{x,y) defined by: 

g(x, y) = 
0, P cos x + (? cos y < b 

f{P cos x + Q cos y — b), b < P cos a; + Q cos y 
(1.5) 

3 W. R. Bennett, New Results in the Calculation of Modulation Products, 
Vol. XII, pp. 228-243, April, 1933. 
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We substitute the special values x = pt,y = qt after obtaining the expansion. 
Let 

h = Q/P, ko = -b/P (1-6) 

The mcst general conditions of interest are comprised in the ranges: 

0 < k, < I, - 2 < ko < 2 (1.7) 

TO P 

CASE X 

CASE n 

-TT 

CASE in 

-rr 

Fig. 4.—Regions in ry-plane bounded by ko + cos a: + ki cos y = 0. 

The regions in the ry-plane in which g{x,y) does not vanish are bounded 
by the various branches of the curve: 

/^o + cos rr -f cos y = 0 (1.8) 

We need to consider only one period rectangle bounded by rr = ±7r, y = ±7r, 
since the function repeats itself at intervals of 27r in both x and y. The 
shape of the curve (1.8) within this rectangle may have three forms, which 
are depicted in Fig. 4. In Case I, ko ki > -k, ko — ki < 1, the curve 
divides into four branches which are open at both ends of the rr- and y-axes. 
In Case (2), <1, > -1, the curve has two branches open 
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at the ends of the ;y-axis. In Case (3), — 1 < < 1, < — 1, 
a single closed curve is obtained. The limits of integration must be chosen 
to fit the proper case. The Fourier series expansion of g{x,y) may be 
written: 

00 oo . 
g{x, y) = s S amn cos mx cos ny (1.9) 

m=0 n=0 

where amn is found from integrals of the form: 

Cm en f2 r2 

A = / dy / /(^ cos x -\- Q cos y — b) cos mx cos ny dx (1.10) 
TT Jyi Jij 

Here, as usual, is Neumann's discontinuous factor equal to two when m 
is not zero and unity when m is zero. The values of the limits for the dif- 
ferent cases are: 
Case I, amn = Ai Az 

I (;*;i = 0, Xj = arc cos (—— ki cos y)' 

.-li = A with limits ( 1 — 1 (i-11) 

(1.12) 

Xi = arc cos ( —cos y \ 
I (1.13) 

ya = T / 

{xi = 0, Xi = arc cos (—— ki cos y) \ 

Liinits ' n / i + (114) 

(yi = 0, ya = arc cos I - ^ j / 

For a considerable variety of rectifier functions/, the inner integration may 
be performed at once leaving the final calculation in terms of a single definite 
integral. 

A somewhat different point of view is furnished by evaluating the integral 
(1.4) for the biased single-frequency harmonic amplitude, and then replacing 
the bias by a constant plus a sine wave having the second frequency. When 
each harmonic of the first frequency is in turn expanded in a Fourier series 

yi = arc cos 

xi = 0, 

Ao = A with limits 

Case II, amn = A 

xi = 0, 
Limits 

yi = o, 

Case III, amn = A 

y2 = TT 

Xo = T 
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in the second frequency, the two-frequency modulation coefficients are ob- 
tained. Some early calculations carried out graphically in this way are 
the source of the curves plotted in Figs. 18 to 21 inclusive, for which I am 
indebted to Dr. E. Peterson. 

If reactive elements are used in the rectifier circuit, the voltage across the 
rectifying element may depart from the input wave shape applied tp the 
complete network. The solution then loses its explicit nature since the 
rectifier current is expressed in terms of input voltage components which in 
turn depend on voltage drops produced in the remainder of the network 
by the rectifier currents. Practical solutions can be worked out when 
relatively few components are important. 

I ^  BIASED RECTIFIER 
I0+Il b 1 UN.T 
— ^ Urn   

r i 

 1 I1' 101 

a 

r ^ R 

E >c c = >R Io 

EFFECTIVE BIAS ON 
RECTIFIER=b+I0R 

Fig. 5.— Biased rectifier in series with RC network. 

As an example consider the familiar case of a parallel combination of 
resistance R and capacitance C in series with the biased rectifier, Fig. 5. 
If C has negligible impedance at all frequencies of importance in the rectifier 
circuit except zero, we may assume that the voltage across R is constant and 
equal to I^R, where U is the d-c. component of the rectifier current. The 
voltage across the rectifier unit is then E — hR. The effect is a change 
in the value of bias from biob + hR. If the d-c component in the output 
is calculated for bias bhR, we obtain the value of /o in terms of i + hR, 
an implicit equation defining Jo. If this equation can be solved for h, the 
bias b + IqR can then be determined and the remaining modulation products 
calculated. 

A more important case is that of the so-called envelope detector, in which 
the impedance of the condenser is very small at all frequencies contained in 
the input signal, but is very large at frequencies comparable with the band 
width of the spectrum of the input signal. These are the usual conditions 
prevailing in the detection of audio or video signals from modulated r-f or 
i-f waves. The solution depends on writing the input signal in the form, 
of a slowly varying positive valued envelope function multiplying a rapidly 
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oscillating cosine function. That is, if the input signal can be repre- 
sented as 

E = A {t) cos<t> {t), (1.15) 

where A (/) is never negative and has a spectrum confined to the frequency 
range in which 2irfC is negligibly small compared with \./R, while cos </>(/) 
has a spectrum confined to the frequency range in which 1/7^ is negligibly 
small compared with 2irfC, we divide the components in the detector output 
into two groups, viz.: 

1. A low-frequency group I if containing all the frequencies comparable 
with those in the spectrum of A (/). The components of this group flow 
through R. 

2. A high-frequency group />,/ containing all the frequencies comparable 
to and greater than those in the spectrum of cos«/) (/). The components 
of this group flow through C and produce no voltage across R. 

The instantaneous voltage drop across R is therefore equal to Ii/R, and 
hence the bias on the rectifier is 6 IifR. If A and 0 were constants, we 
could make use of (1.3) and (1.4) to write: 

00 
hf + 1)1/ = ? + S On cos n d (1-16) 2 n=l 

2 /.arc cos [ (6+/i/R)/A ] 
an = - f(A cos, x — b — Ii/R) cos nx dx (1.17) 

TT ^0 

If A and 0 are variable, the equation still holds provided IifR < ^4 at all 
times. Assuming the latter to be true (keeping in mind the necessity of 
checking the assumption when /// is found), we note that terms of the form 
an cos n 6 consist of high frequencies modulated by low frequencies and hence 
the main portion of their spectra must be in the high-frequency range. 
Hence we must have as a good approximation when the envelope frequencies 
are well separated from the intermediate frequencies, 

i /'arc cos [(fc+/(/R)/^ ] 
hf = ^ = - \ }{A cosx — b — IifR)dx (1.18) 1 TV JQ 

This equation defines I if as a function of A, and if it is found that the 
condition 6 + h/R < A is satisfied by the resulting value of I if, the problem 
is solved. If the condition is not satisfied, a more complicated situation 
exists requiring separate consideration of the regions in which b IifR < A 
and b + h/R > A ■ 

To be specific, consider the case of a linear rectifier with forward con- 
ductance a = l/R, and write V = h/R- Then 

= x/A - (b + vy - (b + V) arc cos b-*rZ (1.19) 
K A 
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When 6 = 0 (the case of no added bias), this equation may be satisfied by 
setting 

V = cA,0 < c < 1, (1.20) 

which leads to 

^ = /j/i - 1 - arc cos c, (1.21) 

defining c as a function of Rq/R. The value of c approaches unity when 
the ratio of rectifier resistance to load resistance approaches zero and falls 
off to zero as Ro/R becomes large. The curve may be found plotted else- 
where4. This result justifies the designation of this circuit as an envelope 
detector since with the proper choice of circuit parameters the output 
voltage is proportional to the envelope of the input signal. 

The equations have been given here in terms of the actual voltage applied 
to the circuit. The results may also be used when the signal generator 
contains an internal impedance. For example, a nonreactive source inde- 
pendent of frequency may be combined with the rectifying element to give a 
new resultant characteristic. If the source impedance is a constant pure 
resistance fo throughout the frequency range of the signal input but is 
negligibly small at the frequencies of other components of appreciable size 
flowing in the detector, we assume the voltage drop in tq is rofli cos <6 (/). 
We then set n = 1 in (1.17) and replace d by (A0 — A)/ro, where Ao is 
the voltage of the source. The value of hf in terms of A from (1.18) is 
then substituted, giving an implicit relation between A and Ao • 

A further noteworthy fact that may be deduced is the relationship be- 
tween the envelope and the linearly rectified output. By straightforward 
Fourier series expansion, the positive lobes of the wave (1.15), may be 
written as: 

/E, E>0\ ri j 
£r = I I = A{t) - + - cos 0 (/) 

\ 0, £<0/ L7r 2 

_ 2 ^ ( —) cos 2w ^ 22) 
ir m=i 4w2 — 1 J 

Hence if we represent the low-frequency components of ET by £;/, we have: 

E„ = ^ (1.23) 
TT 

or 
A (/) = irEif (1.24) 

4 See, for example, the top curve of Fig. 9-25, p. 311, H. J. Reich, Theory and Applica- 
tions of Electron Tubes, McGraw-Hill, 1944. 
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Equation (1.23) expresses the fact that we may calculate the signal com- 
ponent in the output of a half-wave linear rectifier by taking I/tt times the 
envelope. Equation (1.24) shows that we may calculate the response of 
an envelope detector by taking tt times the low-frequency part of the 
Fourier series expansion of the linearly rectified input. Thus two procedures 
are in general available for either the envelope detector or linear rectifier 
solution, and in specific cases a saving of labor is possible by a proper choice 
between the two methods. The final result is of course the same, although 
there may be some difficulty in recognizing the equivalence. For example, 
the solution for linear rectification of a two-frequency wave P cos pt + Q 
cos ql was given by the author in 19333, while the solution for the envelope 
was given by Butterworth in 19295. Comparing the two expressions for 
the direct-current component, we have: 

  2p 
Eu = —\2E — (1 — k2) K], where K and E are complete elliptic integrals TT- 

of the first and second kinds with modulus k = Q/P 
  2p 
A {t) = — {1 k) Ei, where Ei is a complete elliptic intregal of the 

second kind with modulus ki = 2 \/k/{I + k). Equation (1.24) implies 
the existence of the identity 

The identity can be demonstrated by making use of Landen's transforma- 
tion in the theory of elliptic integrals. 

The expression for the harmonic amplitudes in the output of the rectifier 
can be expressed in a particularly compact form when the conducting part 
of the characteristic can be described by a power law with arbitrary ex- 
ponent. Thus in (1.4) if/(z) = az", we set X = b/P and get 

TT" 

(1 + k) El = 2E - - k2) K (1.25) 

2. Sikgle-Frequency Signal 

arc cos X 
(cos x — \)v cos nx dx 

(2.1) 

6 S. Butterworth, Apparent Demodulation of a Weak Station by a Stronger One 
Experimental Wireless, Vol. 6, pp. 619-621, Nov. 1929. 
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The equation holds for all real values of v greater than —1. The symbol 
F represents the Gaussian hypergeometric function6: 

rv U ^ , a 6 , a(a + 1) i (.6 + 1) 2 , /9 9\ F(a, b; c;z) = 1 + "f; z + c((. + !) 2j  z + ••• ^ 

The derivation of (2.1) requires a rather long succession of substitutions, 
expansions, and rearrangements, which will be omitted here. 

When v is an integer, the hypergeometric function may be expressed in 
finite algebraic form, either by performing the integration directly, or by 
making use of the formulas: 

Fiji/2, — ii/2; 1/2; z) = cos (jj, arc sin z), 
(2.3) 

sin (/x arc sin z) /l + M 1 - /i. 3 . A 
\ 2 ' 2 ' 2' Z) HZ 

together with recurrence formulas for the F-function. When v is an odd 
multiple of one half, the F-function may be expressed in terms of complete 
elliptic integrals of the first and second kind with modulus [(1 — X)/2]1/2 by 
means of the relations, 

F(h,hl\k2) =-K, 

F{-hhl-,k2) =-E, 
TT 

(2.4) 

and the recurrence formulas for the F-function. For the case of zero bias, 
we set X = 0, and apply the formula 

r (5)r C^r) 
F(a, I - a; c; 1/2) = r ^ + ^ r ^ +7^ (2-5) 

obtaining the result: 

2»r(f + i)r in m - 

tt^ r (y + 3/2) r ( 
^2 + v + 

r| 
(2 + v — 

(2.6) 

We point out that the above results may be applied not only when the 
applied signal is of the form P cos pt with P and p constants, but to signals 

0 For an account of the properties of the hypergeometric function, see Ch. XIV of 
Whittakcr and Watson, Modern Analysis, Cambridge, 1940. A discussion of elliptic 
integrals is given in Ch. XXII of the same book. 
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in which P and p are variable, provided that P is always positive. We thus 
can apply the results to detection of an ordinary amplitude-modulated wave 
or to the detection of a frequency-modulated wave after it has passed through 
a slope circuit. 

A case of considerable practical interest is that of an amplitude-modulated 
wave detected by a diode in series with a parallel combination of resistance 
R and capacitance C. The value of C is assumed to be sufficiently large so 
that the voltage across R is equal to the ao/2 component of the current 
through the diode multiplied by the resistance. This is the condition for 
envelope detection mentioned in Part 1. The diode is assumed to follow 
Child's law, which gives v = 3/2. We write 

r.v . „ _ r(s/2)(i,.,.1-x\ 
r = Mir® ; (2-7) 

where X = VjP. Note that V is a constant equal to the direct-voltage 
output if P is constant. If P varies slowly with time compared with the 
high-frequency term cos pt, V represents the slowly varying component of 
the output and hence is the recovered signal. 
But 

FVt. h 3; k1) = |2(2i2 - 1)£ + (2 - 34!)(1 - k^K] (2.8) 

where K and E are complete elliptic integrals of the first and second kind 
with modulus k. Hence 

3. = p = (1 + 3X)(1 + X) k_&e ^ 

RiV2P 

where the modulus of A' and E is VTl — X)/2. This equation defines p 
as a function of X, and hence by inversion gives X as a function of p. The 
resulting curve of X vs. p is plotted in Fig. 6 and may be designated as the 
function X = g (p). If we substitute X = V/P we then have 

V = P g {SWRa V2P) (2.10) 

This enables us to plot V as a function of P, for various values of Ra, Fig. 7. 
Since P may represent the envelope of an amplitude-modulated (or diff- 
erentiated EM) wave, and V the corresponding recovered signal output 
voltage, the curves of Fig. 7 give the complete performance of the circuit 
as an envelope detector. In general the envelope would be of form P = 
Pnti + c ^(/)], where s{l) is the signal. We may substitute this value of P 
directly in (2.10) provided the absolute value of c s{l) never exceeds unity. 
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0.8 

— 06 

0.4 

0.2 

12 16 20 24 28 32 

Fig. 6.—The Function X = g(p) defined by Eq. (2.9). 

1 1 1 

Ra= 

PCOSpt 

4 i 

0.1 

12 
P:VOLTS 

Fig. 7.—Performance of 3/2—power-law rectifier as an envelope detector with low-imped- 
ance signal generator. 

To express the output in terms of a source voltage Pq in series with an 
impedance equal to the real constant value Tq at the signal frequency and 
zero at all other frequencies, we write 

Fo - P 3aP3'2(l - 
  =«!== — 

ro (i.3; Vx) (2- ID 
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or 

P. = ^ s) P. (2.12) 

where 

3^(1 -X)2^ / 

4V2 2'3' 2 ) 
(2.13) 

= ^ V2P[2(1 - -fe2 + ^)£ - (2 - ^)(1 - k2)K]. 
Stt 

1.4 

1.2 

1.0 

o.a 

0.6 

0.4 

0.2 

0 0 3 10 15 20 25 30 35 40 
P0 IN VOLTS 

Fig. 8.—Performance of 3/2—power-law rectifier as an envelope detector with impedance 
of signal generator low except in signal band. 

By combining the curves of Fig. 7 giving V in terms of P with the above 
equations giving the relation between P and Pq, we obtain the curves of 
Figs. 8, 9, 10, giving F as a function of Pq. The curves approach linearity 
as Ra is made large. On the assumption that the curves are actually linear, 
we define the conversion loss D of the detector in db in terms of the ratio 
of maximum power available from the source to the power delivered to the 
load: 

n = 10 logrn = 10 'ogM (f)! (2-14> 

Curves of D vs rt,/R are given in Figs. 11 and 12. The optimum relation 
between ro and R when the forward resistance of the rectifier vanishes has 
long been known to be ro/R = .5. The curves show a minimum in this 

0.5 ro / R = I /2 

P. cos pt 

, _ I a P 3/2, P > 0 1 
| 0, P<Oj 

© K- E —H 
L, R> V 
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region when Ra is large. In the limit as Ra approaches infinity, we may 
show that the relation between Pa and V approaches: 

Pt = V 
(■+ 5) 

(2.15) 

. - | aP 2, P>0 I 1 1 0, P<0j 

/r = 0 
K-E-H 
L. =?= B< V 

1 
P. cos pt 

ro/R = = o 

Ra= 1.0 

30 35 15 20 25 
P„ IN VOLTS 

Fig. 9.—Performance of 3/2—power-law rectifier as an envelope detector with impedance 
of signal generator low except in signal band. 

r. / R = 0.1/ 0.5 
, _ 1 aP3'2, P> 1 o, P< 

© 
ni R5 V _ 6 

Ra = 10 rn/R = 10 
30 40 50 60 

P„ IN VOLTS 

Fig. 10.—Performance of 3/2—power-law rectifier as an envelope detector with impedance 
of signal generator low except in signal band. 

The corresponding limiting formula for D is 

D = 10 logic (2.16) 
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The minimum value of D is then found to occur at ro = R/2 and is zero 
db. We note from the curves that the minimum loss is 1.2 db when Ra = 
10 and 0.4 when Ra = 100. 

This example is intended mainly as illustrative rather than as a complete 
tabulation of possible detector solutions. The methods employed are 
sufficiently general to solve a wide variety of problems, and the specific 
evaluation process included should be sufficiently indicative of the proce- 
dures required. Cases in which various other selective networks are asso- 
ciated with the detector have been treated by Wheeler7. 

o 
? 30 

Z 20 o 
in 
£ > ,0 
8 

  Ra= 0.1 
x—x Ra= 1.0 

^jOll = VOLTS OUTPUT 

1.39 
— 

6.65 

^o/R 

Fig. 11.—Conversion loss of 3/2—power-law rectifier as envelope detector with impedance 
of signal generator low except in signal band. 

2 Q 
2 »2 
m 10 in 
3 8 
i 6 

in 4 tr 
^ 2 Z 
P. o. 

 Ra = 10 
x—x Ra = 100 

1.27= VOLTS OUTPUT 

A><l'2.5 _ 
P^10.3 

1 23456789 10 
ro/R 

Fig. 12.—Conversion loss of 3/2—power-law rectifier as envelope detector with impedance 
of signal generator low except in signal band. 

3. Two-Frequency Inputs 

The general formula for the coefficients in the two-frequency case depends 
on a double integral as indicated by (1.10). In many cases one integration 
may be performed immediately, thereby reducing the problem to a single 
definite integral which may readily be evaluated by numerical or mechanical 

7 H. A. Wheeler, Design Formulas for Diode Detectors, Proc. I. R. E., Vol. 26, pp. 
745-780, June 1938. 
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means. It appears likely in most cases that the expression of these results 
in terms of a single integral is the most advantageous form for practical 
purposes, since the integrands are relatively simple, while evaluations in 
terms of tabulated functions, where possible, often lead to complicated 
terms. Numerical evaluation of the double integral is also a possible method 
in cases where neither integration can be performed in terms of functions 
suitable for calculation. 

One integration can always be accomplished for the integer power-law 
case, since the function / {P cos x + Q cos y — i) in (1.12) then becomes a 
polynomial in cos x and cos y. Cases of most practical interest are the 
zero-power, linear, and square-law detectors, in which /(z) is proportional 
to z0, z1, and z2 respectively. The zero-power-law rectifier is also called a 
total limiter, since it limits on infinitesimally small amplitudes. We shall 
tabulate here the definite integrals for a few of the more important low-order 

coefficients. To make the listing uniform with that of our earlier work, we 
express results in terms of the coefficient Am„, which is the amplitude of the 
component of frequency mp ± nq. The coefficient Amn is half of amn when 
neither m nor w is zero. When m or n is zero, we take Amn = Omn and drop 
the component with the lower value of the ± sign. When both m and n 
are zero, we use the designation Aoo/2 for aoo, the d-c term. In the tabula- 
tions which follow we have set /(z) = az" with v taking the values of zero 
and unity. 

We first consider the biased zero-power-law rectifier or biased total 
limiter. This is the case in which the current switches from zero to a 
constant value under control of two frequencies and a bias as illustrated 
by Fig. 13. The results are applicable to saturating devices when the 
driving forces swing through a large range compared with the width of the 
linear region. It is also to be noted that the response of a zero-power-law 
rectifier may be regarded as the Fourier series expansion of the conductance 

U1 Q 3 (- 
Q- 5 < 

Fig. 13.—Response of biased total limiter to two-frequency wave. 
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of a linear rectifier under control of two carrier frequencies and a bias. 
The results may therefore be applied to general modulator pioblems based 
on the method described by Peterson and Hussey8. We may also combine 
the Fourier series with proper multiplying functions to analyze switching 
between any arbitrary forms of characteristics. We give the results for 
positive values of ko. The corresponding coefficients for — can be ob- 
tained from the relations: 

Uo _ ^   At, 

A] w + « > 0 

(3.1) 
— / \m+n+l .+ — V ) -imnj 

Here we have used plus and minus signs as superscripts to designate co- 
efficients with Jpias -f-^o and — ^o respectively. We thus obtain a reduction 
in the number of different cases to consider, since Case III consists of nega- 
tive bias values only, and these can now be expressed in terms of positive 
bias values falling in Cases I and II. It is convenient to define an angle 0 
by the relations: 

l — ^o 
arc cos (3.2) , > 1, < 1 (Case I) 

, A'o d- "C 1, ^o — k\, 1 (Case II)/ 

Zero-Power Rectifier or Total-Limiter Coefficients 
Setting^(z) = a in (1.10), 

— = 1 — f arc cos {h + cos y) dy 
la ir Je 

—0 = —2[ Vl - {ko + ki cos y)2 dy a tt J o 

Aoi = 2ki [' sin2 y dy 
a " ir2 Je Vl - {ko + ki cos y)2 

— = —„ f cos Vl — (^o + cos y)2 dy a ir- J e 

— = [ {ko + COS y) Vl - (^0 + ki cos y)2 dy 
a tt Je 

A 02 _ 2ki I" sin2 y cos y dy 
a tt2 Jg Vl — (^o + k) COS y)2 

— = f {ko + ki cos y) cos y Vl - (^o + ki cos y)2 dy 
a ir* Jg 
8 E. Peterson and L. W. Hussey, Equivalent Modulator Circuits, B. S. T. 7., Vol. 18, 

pp. 32-48, Jan.1939. 

(3.3) 

* 
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Similarly for a linear rectifier: 

A 00 
2 

= ^l° + ab 
** 

A\o 

+ ° 

I II 
A 01 II (5 fO

 1 2+
 

Amn m + w > 1 

t3.4j 

We have shown in Fig. 2 how an ideal limiting characteristic, which trans- 
mits linearly between the upper and lower limits, may be synthesized from 
two biased linear rectification characteristics. Equation (3.4) shows how 
to calculate the corresponding modulation coefficients, when the coefficients 
for bias of one sign are known. The limiter characteristic is equal to az— 
fi (z) - fi (z), where 

/z — bi, z > bA / 0, z > —bA 
fi (z) = « I ) , /2 (3) = <* I J (3.5) 

\ 0, z < 61/ \z -f- 62, z < —bij 

The expression for fi (z) may also be written: 

/z - (—bi), z > —bA 
fi (z) = a (z + bf) — aX ) (3.6) 

\ 0, z < -bi/ 

Hence the modulation coefficient .4m„ for the limiter may be expressed in 
terms of Amn (bi) and Amn (—bi) as follows: 

Amn = -Amn (h) + (-)m+nAmn (bi), m + n * \ (3.7) 

If the limiter is symmetrical (bi = bi), the even-order products vanish and 
the odd orders are doubled. The terms aP, aQ are to be added to the 
dexter of (3.7) for ^410, A 01 respectively. The odd linear-rectifier coefficients, 
when multiplied by two, thus give the modulation products in the output 
of a symmetrical limiter with maximum amplitude ko, as may be seen by 
substituting bi = bi = —ko in (3.7). For the fundamental components 
aP and aQ respectively must be subtracted from twice the dio and A 01 co- 
efficients for ^o. 

Linear Rectifier Coefficients 
D.C. 

^■/aP = ^0 -f i f [V1 — (^0 + ki cos yY 
2 ^ J(, (3.8) 

— (^0 + h cos y) arc (cos ko + ki cos y)] dy 
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Fundamentals 

Aw/aP = 1 + i- f [(^o + h cos y) \/\ - (^o + ki cos y)"1 

TT J B 

— arc cos (k0 + cos j)] dy 

Aq\/aP = ki + ^- [ [V1 — (^o + ki cos y)2 

TT J 8 

(i^o + cos y) arc cos (^o + ki cos y)] cos y dy 

Sum and Difference Products—Second Order 
P cv 

An = [(^o + ki cos y) Vl - (ko + ki cos y)2 

tt J g 

— arc cos (^o + ki cos y)] cos y dy 

Sum and Difference Products—Third Order 

(3.9) 

(3.10) 

(3.11) 

2aP 
j [1 — (ko + cos ;y)2J3/' cos y dy (3.12) An 7 2 I 

37r2 Je 

The above products are the ones usually of most interest. Others can 
readily be obtained either by direct integration or by use of recurrence 
formulas. The following set of recurrence formulas were originally derived 
by Mr. S. O. Rice for the biased linear rectifier: 

2n Amn "t- ^1 (w W 3) ^4m+ltn—1 

+ {m -\r u -\- 3),4m+iin_i + 2kqh Am+i,„ = 0 

2n Amn "T kl (jl "f" f 3) Am—l,n+l 

T ki (fi — in -\~ 3)^4m_i,n+i -j- 2koU Am—iin = 0 

2m ki Amn + {m — n — 3) /lm_i.n+i 

-p {m -fi « d- 3)Am+iin+1 -f 2kom Am,v+i = 0 

2 m ki Amn d~ (w d- n — 3) Am-i,n-i 

-p {m — n d- 3)yln,+i,n_i -f- 2kom Am,n-i — 0 

By means of these relations, all products can be expressed in terms of Aoo, 
Aio, Aoi, and An. The following specific results are tabulated: 

A 20 = K-doo — .du — 2^o-<410) 1 

1 \ (3.14) 
■402 — yc (^i-doo ~ 24ii — 2^o4oi) ■iki I 

(3.13) 
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-421 — IC^OI 10 ^0i411) 

-412 :=: -T-r- {kiA\Q — i4oi ko All) 
Ikl 

J4 30 — ko Ay) ^1^421 

-4O3 = ~ fo (^0^02 + -412) | 

(3.15) 

(3.16) 

The third-order product A21 is of considerable importance in the design 
of carrier amplifiers and radio transmitters, since the {2p — (^-product is 
the cross-product of lowest order falling back in the fundamental band when 
overload occurs. Figure 14 shows curves of .421 calculated by Mr. J. O. 
Edson from Eq. (3.12) by mechanical integration. 

We point out also that the linear-rectifier coefficients give the Fourier 
series expansion of the admittance of a biased square-law rectifier when two 
frequencies are applied. 

We shall next discuss the problem of reduction of the integrals appearing 
above to a closed form in terms of tabulated elliptic integrals9. This can 
be done for all the coefficients above except the drC for the zero-power law 
and for the d-c and two fundamentals for the linear rectifier. These contain 
the integral 

Z{ko, ki) = / arc cos (^0 + ki cos y) dy (3.17) 
J g 

which has been calculated separately and plotted in Fig. 22. When the 
arc cos teim is accompanied by cos wy as a multiplier with w 0, an integra- 
tion by parts is sufficient to reduce the integrand to a rational function of 
cos y and the radical Vl — (^0 + ^1 cos y)2, which may be reduced at once 
to a recognizable elliptic integral by the substitution 2 = cos y. It is 
found that all the integrals except that of (3.17) appearing in the results 
can be expressed as the sum of a finite number of integrals of the form: 

fees B zm fa 

1 V(1 - 2
2)[1 - m = 0' ^2' (3-18) 

By differentiating the expression z" 3 -^(l — z)2[1 — (^0 + kiz2] with 
respect to s, we may derive the recurrence formula: 

1_ 
{m — \)k\ 

+ {m - 2){kl -k\- l)Zm-2 (3.19) 

— (2m — 5)kokiZm-3 + (w — 3)(1 — kl)Zm-^ 
9 Power series expansions of coefficients such as treated here have been given by A. G. 

Tynan, Modulation Products in a Power Law Modulator, Proc. I. R. E., Vol. 21, pp. 
1203-1209, Aug. 1933. 

Zm = — — tvu t(2w - 3)kokiZm-i 
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It thus is found that the value of Zm for all values of m greater than 2 can be 
expressed in terms of Zq, Zi, and Z2. 

Eq. (3.18) maybe written in the form: 

r k\ J Zn 

zm dz 

kl Jz2 Viz — Zi) (z — Z2) (Z3 - z)(Z4 — z) 

Zi = — (1 + ko)/ki, Zo = 1 

The substitution 

Z3 - 

Zi = 

z = 

reduces the integral to 

Z., = 

(1 — ko)/ki, Case I) \ 

1, Case II / 

1, Case I ^ 

\ (1 — ko)/ki, Case II, j 

Z2(Z3 — Zi) — Zi(z3 — Z2)U 
Za — Zi — (za — Z2) w2 

— Kil •'0 / . 

du 

hV(*. -*,)(* - *0 J° V(1 - «')(! - «■«') 

where: 

Z3 — Z2 
v =   

Z3 — Zi 

2 _ (Z4 — Zl)(Z3 — 22) X 

(3.20) 

(3.21) 

(3.22J 

(3.23) 

(3.24) 

(3.25) 
(24 — Z2) (23 - Zj) 

Hence if K, E and n represent respectively complete elliptic integrals of 
the first, second, and third kinds with modulus k, and in the case of third 
kind with parameter —rj, we have immediately: 

2K (3.26) Zo = 

Z! = 

V(Zi - Z2) (Z3 - Zi) 
2[zx ^ (z2 — Zl) n] 

ki V (24 — Z2) (Z3 — Zl) 

Z2 = - / . . . z? X" + 2zi(z2 — Zi)n 
Kl \/(Z4 — 22) (Z3 — Zi) L 

2 f1 dti | 
+ (Z2 " 2l) io (1 -T,M

2)2V(T^W
2)(1 -K2^)] 

(3.27) 

(3.28) 
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To complete the evaluation of Zo, assume a relation of the following type 
with undetermined constants Ci, Ci, C», C4: 

r  du = r r du 

Jo (1 — T?"2)2 \/(l — «2) (1 — K2 W2) 1 Jo \/(1 — U2) (1 — KS«2) 

I" /\ _ k2m2 r!    

Jo y 1 — m2 i) (1 — i"2) Vci - w2) (1 — k2 «2) 

2 \/(l — 22) (1 — K2 Z2) 

+ C2 

+ C4 
1 — T/Z2 (3.29) 

Z 1.2 

Z 1.0 
-k„ 1 

y 0.8 

0.6 

0.4 

S 0.2 

-0.2 

-0,4 1.2 1.4 1.6 1.8 0,2 0.4 0.6 0-8 1.0 

RATIO OF BIAS TO LARSER FUNDAMENTAL 

Fig. 15.—Fundamentals and {2p ± q)—product from full-wave biased zero-power-law 
rectifier with ratio of applied fundamental amplitudes equal to 0.5. Fi = larger funda- 
mental, Fa = smaller fundamental, Fa = {2p ± q)—product. 

Differentiate both sides with respect to z, set 2=1, and clear fractions. 
Equating coefficients of like powers of 2 separately then gives four simul- 
taneous equations in Ci, Co, Co, C4. Solving for Cj, Co, C3 and setting z = 1 
in (3.29) gives 

du 

(1 - 7JM2)2 \/(l - «2) (1 - K2U2) 2(77 
K + 

rjE 
A — 

+ 
(277 — 3) K2 — 77(77 — 2) 

K' - 77 n] 
(3.30) 
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RATIO OF BIAS TO PUMriAMrK'TA1 

Fig. 16.—Fundamentals and {2p ± q)—product from full-wave biased zero-power-law 
rectifier with equal applied fundamental amplitudes. 

ho 

zo 

Z2 _ 

^1 
-2 

0.2 0.4 O.S 0.8 1.0 1.2 1.4 1.6 

Fig. 17.—The integral Zm with ki = 0.5. 

Since the necessary tables of IT are not available, we make use of Legendre's 
Transformation,10 which in this case gives: 

10 Legendre, Traitds des Fonctions Elliptiques, Paris, 1825-28, Vol. I, Ch. XXIII. 
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2.4 

2.0 

Aoo 
— 1.2 

0.4 

K0=l.0 

-1 

0.5 1.0 1.5 Z.0 2.5 3.0 3.5 4.0 43 
*1 

5X) 

Fig. 18.—D-c. term in linear rectifier output with two applied frequencies. 
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Fig. 19.—Smaller fundamental in biased linear rectifier output. 

n = # + 
tan 0 

VT^rfm [Km - Em] 

1/2 
</> = arc sin — 

K 
dd 

F(<t>) = [ 7/1 2 • 2fl Jo V 1 — k sin2 6 
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The functions F(^>) and E(0) are incomplete elliptic integrals of the first 
and second kinds. They are tabulated in a number of places. Fairly good 
tables, e.g. the original ones of Legendre, are needed here since the difference 
between KE(0) and EF(<f>) is relatively small. 
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Fig. 22.—Graph of the integral E (/.'o *i). 
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The values of the fundamentals and third-order sum and difference 
products for the biased zero-power-law rectifier have been calculated by the 
formulas above for the cases kx = .5 and ki= The resulting curves are 
shown in Fig. (15) and (16). The values of the auxiliary integrals Zo, Zi , 
and Zi are shown for h = .5 in Fig. (17). These integrals become infinite 
at = 1 — ki so that the formulas for the modulation coefficients become 
indeterminate at this point. The limiting values can be evaluated from 
the integrals (3.3), etc., directly in terms of elementary functions when the 
relation = 1 — is substituted, except for the S-function. 

Limiting forms of the coefficients when is small are of value in calcu- 
lating the effect of a small signal superimposed on the two sinusoidal com- 
ponents in an unbiased rectifier. By straightforward power-series expan- 
sion in K we find: 
Zero-Power-Law Rectifier, Small: 

In the above expressions, the modulus of K and E is ki. When ko = 0, 
these coefficients reduce to half the values of the full-wave unbiased zero- 
power-law coefficients, which have been tabulated in a previous publication.11 

In addition to the persons already mentioned, the writer wishes to thank 
Miss M. C. Packer, Miss J. Lever and Mrs. A. J. Shanklin for their assistance 
in the calculations of this paper. 

11 R. M. Kalb and VV. R. Bennett, Ferromagnetic Distortion of a Two-Frequency 
Wave, B. S. T. /., Vol. XIV, April 1935, Eq. (21), p. 336. 
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Properties and Uses of Thermistors—Thermally 
Sensitive Resistors* 

By J. A. BECKER, C. B. GREEN and G. L. PEARSON 

A new circuit element and control device, the thermistor or thermally sensitive 
resistor, is made of solid semiconducting materials whose resistance decreases 
about four per cent per centigrade degree. The thermistor presents interesting 
opportunities to the designer and engineer in many fields of technology for ac- 
complishing tasks more simply, economically and better thjn with available 
devices. Part I discusses the conduction mechanism in semiconductors and the 
criteria for usefulness of circuit elements made from them. The fundamental 
physical properties of thermistors, their construction, their static and dynamic 
characteristics and general principles of operation are treated. 

Part II of this paper deals with the applications of thermistors. These include : 
sensitive thermometers and temperature control elements, simple temperature 
compensators, ultrahigh frequency power meters, automatic gain controls for 
transmission systems such as the Types K2 and LI carrier telephone systems, 
voltage regulators, speech volume limiters, compressors and expandors, gas pres- 
sure gauges and flowmeters, meters for thermal conductivity determination of 
liquids, and contactless time delay devices. Thermistors with short time con- 
stants have been used as sensitive bolometers and show promise as simple com- 
pact audio-frequency oscillators, modulators and amplifiers. 

PART I—PROPERTIES OF THERMISTORS 

Introduction 

THERMISTORS, or //temally sensitive resistors, are devices made of 
solids whose electrical resistance varies rapidly with temperature. 

Even though they are only about 15 years old they have already found im- 
portant and large scale uses in the telephone plant and in military equip- 
ments. Some of these uses are as time delay devices, protective devices, 
voltage regulators, regulators in carrier systems, speech volume limiters, 
test equipment for ultra-high-frequency power, and detecting elements for 
very small radiant power. In all these applications thermistors were 
chosen because they are simple, small, rugged, have a long life, and require 
little maintenance. Because of these and other desirable properties, ther- 
mistors promise to become new circuit elements which will be used exten- 
sively in the fields of communications, radio, electrical and thermal 
instrumentation, research in physics, chemistry and biology, and war tech- 
nology. Specific types of uses which will be discussed in the second part 
of this paper include: 1) simple, sensitive and fast responding thermometers, 

* Published in Elec. Engg., November 1946. 
The authors acknowledge their indebtedness to Messrs. J. H. ScafI and H. C. Theuerer 

for furnishing samples for most of the curves in Fig. 4, and to Mr. G. K. Teal for the data 
for the lowest curve in that figure. 
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temperature compensators and temperature control devices; 2) special 
switching devices without moving contacts; 3) regulators or volume limiters; 
4) pressure gauges, flowmeters, and simple meters for measuring thermal 
conductivity in liquids and gases; 5) time delay and surge suppressors; 6) 
special oscillators, modulators and amplifiers for relatively low frequencies. 
Before these uses are discussed in detail it is desirable to present the physical 
principles which determine the properties of thermistors. 

The question naturally arises "why have devices of this kind come into 
use only recently?" The answer is that thermistors are made of semi- 
conductors and that the resistance of these can vary by factors up to a 
thousand or a million with surprisingly small amounts of certain impurities, 
with heat treatment, methods of making contact and with the treatment 
during life or use. Consequently the potential application of semiconduc- 
tors was discouraged by experiences such as the following: two or more 
units made by what appeared to be the same process would show large 
variations in their properties. Even the same unit might change its re- 
sistance by factors of two to ten by exposure to moderate temperatures or 
to the passage of current. Before semiconductors could seriously be con- 
sidered in industrial applications, it was necessary to devote a large amount 
of research and development effort to a study of the nature ol the conduc- 
tivity in semiconductors, and of the effect of impurities and heat treatment 
on this conductivity, and to methods of making reliable and permanent 
contacts to semiconductors. Even though Faraday discovered that the 
resistance of silver sulphide changed rapidly with temperature, and even 
though thousands of other semiconductors have been found to have large 
negative temperature coefficients of resistance, it has taken about a century 
of effort in physics and chemistry to give the engineering profession this 
new tool which may have an influence similar to that of the vacuum tube 
and may replace vacuum tubes in many instances. 

If thermistors are to be generally useful in industry; 
1) it should be possible to reproduce units having the same character- 

istics; 
2) it should be possible to maintain constant characteristics during use; 

the contact should be permanent and the unit should be chemically 
inert; 

3) the units should be mechanically rugged; 
4) the technique should be such that the material can be formed into 

various shapes and sizes; 
5) it should be possible to cover a wide range of resistance, temperature 

coefficient and power dissipation. 
Thermistors might be made by any method by which a semiconductor 
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could be shaped to definite dimensions and contacts applied. These meth- 
ods include: 1) melting the semiconductor, cooling and solidifying, cutting 
to size and shape; 2) evaporation; 3) heating compressed powders of semi- 
conductors to a temperature at which they sinter into a strong compact 
mass and firing on metal powder contacts. While all three processes have 
been used, the third method has been found to be most generally useful 
for mass production. This method is similar to that employed in ceramics 
or in powder metallurgy. At the sintering temperatures the powders 
recrystallize and the dimensions shrink by controlled amounts. The powder 
process makes it possible to mix two or more semiconducting oxides in 
varying proportions and obtain a homogeneous and uniform solid. It is 
thus possible to cover a considerable range of specific resistance and tern- 

i 

Fig. 1.—Thermistors made in the form of a bead, rod, disc, washer and flakes. 

perature coefficient of resistance with the same system of oxides. By 
means of the powder process it is possible to make thermistors of a great 
variety of shapes and sizes to cover a large range of resistances and power 
handling capacities. 

Figure 1 is a photograph of thermistors made in the form of beads, rods, 
discs, washers and flakes. Beads are made by stringing two platinum alloy 
wires parallel to each other with a spacing of five to ten times the wire diam- 
eter. A mass of a slurry of mixed oxides is applied to the wires. Surface 
tension draws this mass into the form of a bead. From 10 to 20 such beads 
are evenly spaced along the wires. The beads are allowed to dry and are 
heated slightly until they have sufficient strength so that the string can be 
handled. They then are passed through the sintering furnace. The oxides 
shrink onto the platinum alloy wires and make an intimate and permanent 
electrical contact. The wires then are cut to separate the individual beads. 
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The diameters of the beads range from 0.015 to 0.15 centimeters with wire 
diameters ranging from 0.0025 to 0.015 centimeters. 

Rod thermistors are made by mixing the oxides with an organic binder 
and solvent, extruding the mixture through a die, drying, cutting to length, 
heating to drive out the binder, and sintering at a high temperature. Con- 
tacts are applied by coating the ends with silver, gold, or platinum paste 
as used in the ceramic art, and heating or curing the paste at a suitable 
temperature. The diameter of the rods can ordinarily be varied from 0.080 
to 0.64 centimeter. The length can vary from 0.15 to 5 centimeters. 

Discs and washers are made in a similar way by pressing the bonded 
powders in a die. Possible disc diameters are 0.15 to 3 or 5 centimeters; 
thicknesses from 0.080 to 0.64 centimeter. 

Flakes are made by mixing the oxides with a suitable binder and solvent 
to a creamy consistency, spreading a film on a smooth glass surface, allowing 
the film to dry, removing the film, cutting it into flakes of the desired size 
and shape, and firing the flakes at the sintering temperatures on smooth 
ceramic surfaces. Contacts are applied as described above. Possible 
dimensions are: thickness, 0.001 to 0.004 centimeter; length, 0.1 to 1.0 
centimeter; width, 0.02 to 0.1 centimeter. 

In any of these forms lead wires can be attached to the contacts by solder- 
ing or by firing heavy metal pastes. The dimensional limits given above 
are those which have been found to be readily attainable. 

Ih the design of a thermistor for a specific application, the following 
characteristics should be considered: 1) Mechanical dimensions including 
those of the supports. 2) The material from which it is made and its prop- 
erties. These include the specific resistance and how it varies with tem- 
perature, the specific heat, density, and expansion coefficient. 3) The 
dissipation constant and power sensitivity. The dissipation constant is 
the watts that are dissipated in the thermistor divided by its temperature 
rise in centigrade degrees above its surroundings. The power sensitivity is 
the watts dissipated to reduce the resistance by one per cent. These con- 
stants are determined by the area and nature of the surface, the surrounding 
medium, and the thermal conductivity of the supports. 4) The heat ca- 
pacity which is determined by specific heat, dimensions, and density. 5) 
The time constant. This determines how rapidly the thermistor will heat 
or cool. If a thermistor is heated above its surroundings and then allowed 
to cool, its temperature will decrease rapidly at first and then more slowly 
until it finally reaches ambient temperature. The time constant is the time 
required for the temperature to fall 63 per cent of the way toward ambient 
temperature. The time constant in seconds is equal to the heat capacity 
in joules per centigrade degree divided by the dissipation constant in watts 
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per centigrade degree. 6) The maximum permissible power that can be 
dissipated consistent with good stability and long life, for continuous opera- 
tion, and for surges. This can be computed from the dissipation constant 
and the maximum permissible temperature rise. This and the resistance- 
temperature relation determine the maximum decrease in resistance. 

Properties of Semiconductors 

As most thermistors are made of semiconductors it is important to discuss 
the properties of the latter. A semiconductor may be defined as a substance 
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Fig. 2.—^Logarithm of specific resistance versus temperature for three thermistor ma- 
terials as compared with platinum. 

whose electrical conductivity at or near room temperature is much less than 
that of typical metals but much greater than that of typical insulators. 
While no sharp boundaries exist between these classes of conductors, one 
might say that semiconductors have specific resistances at room tempera- 
ture from 0.1 to 109 ohm centimeters. Semiconductors usually have high 
negative temperature coefficients of resistance. As the temperature is 
increased from 0oC. to 300oC., the resistance may decrease by a factor of a 
thousand. Over this same temperature range the resistance of a typical 
metal such as platinum will increase by a factor of two. Figure 2 shows 
how the logarithm of the specific resistance, p, varies with temperature, T, 
in degrees centigrade for three typical semiconductors and for platinum. 
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Curves 1 and 2 are for Materials No. 1 and No. 2 which have been exten- 
sively used to date. Material No. 1 is composed of manganese and nickel 
oxides. Material No. 2 is composed of oxides of manganese, nickel and 
cobalt. The dashed part of Curve 2 covers a region in which the resistance- 
temperature relation is not known as accurately as it is at lower tempera- 
tures. Curve 3 is an experimental curve for a mixture of iron and zinc 
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Fig. 3.—Logarithm of the specific resistance of two thermistor materials as a function 
of inverse absolute temperature. See equation (1). 

oxides in the proportions to form zinc ferrite. From Fig. 2 it is obvious 
that neither the resistance R nor log R varies linearly with T. 

Figure 3 shows plots of log p versus \/T for Materials No. 1 and No. 2. 
These do form approximate straight lines. Hence 

BIT P = Pooe or p = pot 
_ (B/r)-(B/ro) 

(1) 

where T = temperature in degrees Kelvin; pM = p when T =<*> or 1/T = 0] 
Po= p when T = To ] e = Naperian base = 2.718 and is a constant equal 
to 2.303 times the slope of the straight lines in Fig. 3. The dimensions of B 
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are Kelvin degrees or centigrade degrees; it plays the same role in equation 
(1) as does the work function in Richardson's equation for thermionic 
emission. For Material No. 1,/? = 3920C0. This corresponds to an elec- 
tron energy equivalent to 3920/11600 or 0.34 volt. 

While the curves in Fig. 3 are approximately straight, a more careful 
investigation shows that the slope increases linearly as the temperature 
increases. From this it follows that a more precise expression for p is: 

p = A T~c enlT or 

log p = log A — c log T + D/2.303T (2) 

The constant c is a small positive or negative number or zero. For Ma- 
terial No. 1, log A = 5.563, c = 2.73 and D = 3100. For a particular 
form of Material No. 2 log A = 11.514, c = 4.83 and D = 2064. 

If we define temperature coefficient of resistance, a, by the equation 

a = (1/R) (dR/dT) (3) 

it follows from equation (1) that 

a = -B/T\ (4) 

For Material No. 1 and T = 300oK, a = —3920/90,000 = —0.044. For 
platinum, a = -j-0.0037 or roughly ten times smaller than for semiconduc- 
tors and of the opposite sign. From equation (2) it follows that 

«= -{D/D- (c/T). (5) 

From equation (3) it follows that 

a = (1/2.303) {d log R/dT). (6) 

For a discussion of the nature of the conductivity in semiconductors, 
it is simpler and more convenient to consider the conductivity, tr, rather 
than the resistivity, p. 

o- = 1/p and logo- = —log p. (7) 

The characteristics of semiconductors are brought out more clearly if the 
conductivity or its logarithm are plotted as a function oi 1/T over a wide 
temperature range. Figure 4 is such a plot for a number of silicon sam- 
ples containing increasing amounts of impurity. At high temperatures 
all the samples have nearly the same conductivity. This is called the 
intrinsic conductivity since it seems to be an intrinsic property of silicon. 
At low temperatures the conductivity of different samples varies by large 
factors. In this region silicon is said to be an impurity semiconductor. 
For extremely pure silicon only intrinsic conductivity is present and the 
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resistivity obeys equation (1). As the concentration of a particular im- 
purity increases, the conductivity increases and the impurity conductivity 
predominates to higher temperatures. Some impurities are much more 
effective in increasing the conductivity than others. One hundred parts 
per million of some impurities may increase the conductivity of pure silicon 
at room temperature by a factor of 107. Other impurities may be present 
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Fig. 4.—Logarithm of the conductivity of various specimens of silicon as a function 
of inverse absolute temperature. The conductivity increases with the amount of im- 
purity. 

in 10,000 parts per million and have a small effect on the conductivity. 
Two samples may contain the same concentration of an impurity and still 
differ greatly in their low temperature conductivity; if the impurity is in 
solid solution, i.e., atomically dispersed, the effect is great; if the impurity 
is segregated in atomically large particles, the effect is small. Since heat 
treatments affect the dispersion of impurities in solids, the conductivity of 
semiconductors may frequently be altered radically by heat treatment. 
Some other semiconductors are not greatly affected by heat treatment. 
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The impurity need not even be a foreign element; in the case of oxides or 
sulphides, it can be an excess or a deficiency of oxygen tir sulphur from the 
exact stoichiometric relation. This excess or deficiency can be brought 
about by heat treatment. Figure 5 shows how the conductivity depends 
on temperature for a number of samples of cuprous oxide, CuzO, heat 

xio 

S-S 

TEMPERATURE "K 
Fig. 5.—Logarithm of the conductivity of various specimens of cuprous oxide as a 

function of inverse absolute temperature. The conductivity increases with the amount 
of excess oxygen above the stoichiometric value in CuaO. Data from reference 1. 

treated in such a way as to result in varying amounts of excess oxygen from 
zero to about one per cent.1 The greater the amount of excess oxygen the 
greater is the conductivity in the low temperature range. At high tem- 
peratures, all samples have about the same conductivity. 

Semiconductors can be classified on the basis of the carriers of the current 
into ionic, electronic, and mixed conductors. Chlorides such as NaCl and 
some sulphides are ionic semiconductors; other sulphides and a few oxides 
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such as uranium oxide are mixed semiconductors; electronic semiconductors 
include most oxides such as Fe203, NiO, carbides such as silicon 
carbide, and elements such as boron, silicon, germanium and tellurium. 
In ionic and mixed conductors, ions are transported through the solid. 
This changes the density of carriers in various regions, and thus changes 
the conductivity. Because this is undesirable, they are rarely used in mak- 
ing thermistors, and hence we will concentrate our interest on electronic 
semiconductors. 

The theoretical and experimental physicists have established that there 
are two types of electronic semiconductors which can be called N and P 
type, depending upon whether the carriers are negative electrons or are 
equivalent to positive "holes" in the filled energy band. In N type, the 
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Fig. 6.—Schematic energy level diagrams illustrating intrinsic, N and P types of semi- 
conductors. 

carriers are deflected by a magnetic field as negatively charged particles 
would be and conversely for P type. The direction of deflections is ascer- 
tained by measurement of the sign of the Hall effect. The direction of the 
thermoelectric effect also fixes the sign of the carriers. By determining 
the resistivity, Hall coefficient and thermoelectric power of a particular 
specimen at a particular temperature it is possible to determine the density 
of carriers, whether they are negative or positive, and their mobility or mean 
free path. The mobility is the mean drift velocity in a field of one volt per 
centimeter. 

The existence of these classifications is explained by the theoretical physi- 
cist2 •3 ••1 in terms of the diagrams in Fig. 6. In an intrinsic semiconductor 
at low temperatures the valence electrons completely fill all the allowable 
energy states. According to the exclusion principle only one electron can 
occupy a particular energy state in any system. In semiconductors and 
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insulators there exists a region of energy values, just above the allowed band, 
which are not allowed. The height of this unallowed band is expressed in 
equivalent electron volts, AE. Above this unallowed band there exists an 
allowed band; but at low temperatures there are no electrons in this band. 
When a field is applied across such a semiconductor, no electron can be 
accelerated, because if it were accelerated its energy would be increased to 
an energy state which is either filled or unallowed. As the temperature is 
raised some electrons acquire sufficient energy to be raised across the un- 
allowed band into the upper allowed band. These electrons can be ac- 
celerated into a slightly higher energy state by the applied field and thus 
can carry current. For every electron that is put into an "activated" 
state there is left behind a "hole" in the normally filled band. Other 
electrons having slightly lower energies can be accelerated into these holes 
by the applied field. The physicist has shown that these holes act toward 
the applied field as if they were particles having a charge equal to that of an 
electron but of opposite sign and a mass equal to or somewhat larger than 
the electronic mass. In an intrinsic semiconductor about half the con- 
ductivity is due to electrons and half due to holes. 

The quantity AE is related to B in equation (1) by: 

in which B is in centigrade degrees, A£ is in volts, e is the electronic charge 
in coulombs, k is Boltzmann's constant in joules per centigrade degree. 
The value of e/k is 11,600 so that 

The difference between metals, semiconductors, and insulators results 
from the value of A£. For metals A£ is zero or very small. For semicon- 
ductors AE is greater than about 0.1 volt but less than about 1.5 volts. 
For insulators AE is greater than about 1.5 volts. 

Some impurities with positive valencies which may be present in the semi- 
conductor may have energy states such that AEi volts equivalent energy 
can raise the valence electron of the impurity atom into the allowed con- 
duction band. See Figure 6. The electron now can take part in conduc- 
tion; the donator impurity is a positive ion which is usually bound to a par- 
ticular location and can take no part in the conductivity. These are excess 
or N type conductors. The conductivity depends on the density of dono- 
tors, AEi, and T. 

Similarly some other impurity with negative valencies may have an 
energy state A£o volts above the top of the filled band. At room tempera- 
ture or higher, an electron in the filled band may be raised in energy and 

2B = (AE) e/k (8) 

AE = E/5800. (8a) 
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accepted by the impurity which then becomes a negative ion and usually 
is immobile. However, the resulting hole can take part in the conductivity. 

In all cases represented in Fig. 6 an electron occupying a higher energy 
level than a positive ion or a hole has a certain probability that in any 
short interval of time it will drop into a lower energy state. However, dur- 
ing this same time interval there will be electrons which will be raised to a 
higher energy level by thermal agitation. When the number of electrons 
per second which are being elevated is equal to the number which are de- 
scending in energy, equilibrium prevails. The conductivity, a, is then 

a = N e Vi P e Vi (9) 

where N and P are the concentrations of electrons and holes respectively, 
e is the charge on the electron, Vi and V2 are the mobilities of electrons and 
holes respectively. 

The above picture explains the following experimental facts which other- 
wise are difficult to interpret. 1) N type oxides, such as ZnO, when heated 
in a neutral or slightly reducing atmosphere become good conductors, 
presumably because they contain excess zinc which can donate electrons. 
If they then are heated in atmospheres which are increasingly more oxidiz- 
ing their conductivity decreases until eventually they are intrinsic semi- 
conductors or insulators. 2) P type oxides, such as NiO, when heat treated 
in strongly oxidizing atmospheres are good conductors. Very likely they 
contain oxygen in excess of the stoichiometric relation and this oxygen 
accepts additional electrons. When these are heated in less oxidizing or 
neutral atmospheres they become poorer conductors, semiconductors, or 
insulators. 3) When a P type oxide is sintered with another P type oxide, 
the conductivity increases. Similarly for two N type oxides. But when a 
P type is added to an N type the conductivity decreases. 4) If a metal 
forms several oxides the one in which the metal exerts its highest valence is 
N type, while the one in which it exerts its lowest valence will be P type.5 

For several reasons it is desirable to survey the whole field of semicon- 
ductors for resistivity and temperature coefficient. One way in which this 
might be done is to draw a line in Figure 3 for each specimen. Before long 
such a figure would consist of such a maze of intersecting lines that it would 
be difficult to single out and follow any one line. The information can be 
condensed by plotting log po versus B in equation (1) for each specimen.6 

The most important characteristics of a specimen thus are represented by 
a single point and many more specimens can be surveyed in a single diagram. 
Figure 7 shows such a plot for a large number of semiconductors investi- 
gated at these Laboratories or reported in the literature. Values for po 
and B are given for T = 25 degrees centigrade. The points form a sort of 
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milky way. Semiconductors having a high po are likely to have a high 
value of B and vice versa. If a series of semiconductors have points in Fig. 
7 which fall on a straight line with a slope of 1/2.3To, they have a common 
intercept in Fig. 3 for (l/F) = 0. 
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Fig. 7.—Logarithm of the resistivity of various semiconducting materials as a func- 
tion of B in equation (1). The quantity, B, is proportional to the temperature coefficient 
of resistance as given in equation (4). 

Physical Properties of Thermistors 

One of the most interesting and useful properties of a thermistor is the 
way in which the voltage, V, across it changes as the current, I, through 
it increases. Figure 8 shows this relationship for a 0.061 centimeter diam- 
eter bead of Material No. 1 suspended in air. Each time the current is 
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changed, sufficient time is allowed for the voltage to attain a new steady- 
value. Hence this curve is called the steady state curve. For sufficiently 
small currents, the power dissipated is too small to heat the thermistor 
appreciably, and Ohm's law is followed. However, as the current assumes 
larger values, the power dissipated increases, the temperature rises above 
ambient temperature, the resistance decreases, and hence the voltage is less 
than it would have been had the resistance remained constant. At some 
current, Im , the voltage attains a maximum or peak value, Vm . Beyond 
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Fig. 8.—Static voltage-current curve for a typical thermistor. The numbers on the 
curve are the centigrade degrees rise in temperature above ambient. 

this point as the current increases the voltage decreases and the thermistor 
is said to have a negative resistance whose value is dV/dl. The numbers on 
the curve give the rise in temperature above ambient temperature in centi- 
grade degrees. 

Because currents and voltages for different thermistors cover such a 
large range of values it has been found convenient to plot log V versus log I. 
Figure 9 shows such a plot for the same data as in Fig. 8. For various points 
on the curve, the temperature rise above ambient temperature is given. 
In a log plot, a line with a slope of 45 degrees represents a constant resist- 
ance; a line with a slope of —45 degrees represents constant power. 
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For a particular thermistor, the position of the log V versus log I plot is 
shifted, as shown in Fig. 10, by changing the dissipation constant C. This 
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Fig. 9.—Logarithmic plot of static voltage-current curve for the same data as in Figure 
i. The diagonal lines give the values of resistance and power. 

B=3900 R=50,000 OHMS T=300oK 
100 

i'O 

t'O 

lO"^ 10" 
CURRENT IN AMPERES 

Fig. 10.—Logarithmic plots of voltage versus current for three values of the dissipa- 
tion constant C. These curves are calculated for the constants given in the upper part 
of the figure. 

can be done by changing the air pressure surrounding the bead, changing 
the medium, or changing the degree of thermal coupling between the thermis- 
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tor and its surroundings. The value of C for a particular thermistor in 
given surroundings can readily be determined from the V versus I curve in 
either Figs. 8 or 9. For each point, V/I is the resistance while V times I 
is IF, the watts dissipated. The resistance data are converted to tempera- 
ture from R versus T given by equation (2). A plot is then made of IF 
versus T. For thermistors in which most of the heat is conducted away, 
W will increase linearly with T, so that C is constant. For thermistors 
suspended by line wires in a vacuum, IF will increase more rapidly than pro- 
portional to T, and C will increase with T. For thermistors of ordinary 
size and shape, in still air, C/Area = 1 to 40 milliwatts per centigrade degree 
per square centimeter depending upon the size and shape factor. 

CURRENT IN AMPERES 
Fig. 11.—Logarithmic plots of voltage versus current for three values of the resistance, 

A'u, at ambient temperature. These curves arc calculated for the constants given in the 
upper part of the figure. 

The user of a thermistor may want to know how many watts can be dis- 
sipated before the resistance decreases by one per cent. This may be called 
the power sensitivity. It is equal to C/{a X 100), and amounts to about 
one to ten milliwatts per square centimeter of area in still air. Both C and 
the power sensitivity increase with air velocity. The dependence of C on 
gas pressure and velocity is the basis of the use of thermistors as manom- 
eters and as anemometers or flowmeters. Note that in Fig. 10 one curve 
can be superposed on any other by a shift along a constant resistance line. 

Figure 11 shows a family of log V versus log I curves for various values on 
i?n while B, C, and T{) are kept constant. This can be brought about by 
changing the length, width and thickness to vary Rq while the surface area 
is kept constant. If the resistance had been changed by changing the am- 
bient temperature, Tq , the resulting curves would not appear very different 

B=3900 C=5*10-4WATTS/DEG. T= 300oK 
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from those shown. Note that one curve can be superposed on any other 
curve by a shift along a constant power line. 

Figure 12 shows a family of log V versus log / curves for eight different 
values of B while C, Ro, and To are kept constant. In contrast to the curves 
in Figs. 10 and 11 in which any curve could be obtained from any other 
curve by a shift along an appropriate axis, the curves in Fig. 12 are each 
distinct. For each curve there exists a limiting ohmic resistance for 

C= 5 X10" 4WATTS/0EG. 50000 OHMS T0= 300° K 
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Fig. 12.—Logarithmic plots of voltage versus current for eight values of B in equation 

(1). These curves are calculated for the constants given in the upper part of the figure. 

currents and another for high currents. For B = 0 these two are identical. 
As B becomes larger the log of the ratio of the two limiting resistances in- 
creases proportional to B. Note also that for B > 1200 K0, the curves have 
a maximum. For large B values this maximum occurs at low powers and 
hence at low values of T — To. This follows since W — C{T — To). 
As B decreases, Vm occurs at increasingly higher powers or temperatures. 
For B < 1200 K0, no maximum exists. 

The curves in Figs. 10 to 12 have been drawn for the ideal case in which 
the resistance in series with the thermistor is zero and in which no tempera- 
ture limitations have been considered. In any actual case there is always 



PROPERTIES AND USES OF THERMISTORS 187 

some unavoidable small resistance, such as that of the leads, in series with 
the thermistor and hence the parts of the curves corresponding to low re- 
sistances may not be observable. Also at high powers the temperature may 
attain such values that something in the thermistor structure will go to 
pieces thus limiting the range of observation. These unobservable ranges 
have been indicated by dashed lines in Fig. 12. The exact location of the 
' hed portions will of course depend on how a completed thermistor is con- 
... .icted. In setting these limits consideration is given to temperature limi- 
tations beyond which aging effects might become too great. 

The curves in Figs. 9 to 12 have been computed on the basis of the follow- 
ing equations: 

R = R, e(B,T)~{BlTo) = V/I (10) 

W = C(T - To) = VI (11) 

For these curves the constants Rq , To, B, and C are specified. The values 
of temperature, Tm , power, Wm , resistance, Rm , voltage, Vm , and current, 
Im , that prevail at the maximum in the voltage current curve are given 
by the following equations in which Tm is chosen as the independent param- 
eter. By differentiating equations (10) and (11) with respect to I, putting 
the derivatives equal to zero, one obtains 

Tl = B(Tm - To) (12) 

whose solution is 

Tm = (B/2) (1 T Vl - 47VB). (13) 

The minus sign pertains to the maximum in Figs. 10 to 12 while the plus 
sign pertains to the minimum. Note that Tm depends only on B and To, 
and not on R, Ro or C. From equations (4), (10) and (11) it follows that: 

- am {Tm - To) = 1 

Wm = C(Tm - To) 

Rm = 

Vm = 

lm = 

Ro e~Tm,To = Ro t 

(1/2) {(rm - To)/T\ 
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Thus far the presentation has been limited to steady state conditions, in 
which the power supplied to the thermistor is equal to the power dissipated 
by it, and the temperature remains constant. In many cases, however, it 
is important to consider transient conditions when the temperature, and 
any quantities which are functions of temperature, vary with time. A 
simple case which will illustrate the concepts and constants involved in 
such problems is as follows: A massive thermistor is heated to about 150 to 
200 degrees centigrade by operating it well beyond the peak of its voltage 
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Fig. 13.—Cooling characteristic of a massive thermistor: log of temperature above 
ambient versus time. 

current characteristic. At time t = 0, the circuit is switched over to a con- 
stant current having a value so small that PR is always negligibly small. 
The voltage across the thermistor is then followed as a function of time. 
From this, the resistance and temperature are computed. Figure 13 shows 
a plot of log {T — Ta) versus t for a rod thermistor of Material No. 1 about 
1.2 centimeters long, 0.30 centimeter in diameter and weighing 0.380 gram. 
In any time interval At, there are C(T — Ta) At joules being dissipated. 
As a result the temperature will decrease by AT given by 

— HAT = C{T - Ta) At or {T - Ta) = -(H/C) {AT/At) (19) 
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where H = heat capacity in joules per centigrade degree. The solution of 
this equation is 

(T - To) = {T0 - Ta) e-"7 * (20) 

in which To = T when t = 0 and 

r = H/C, (21) 

where r is in seconds. It is commonly called the time constant. From 
equation (20) it follows that a plot of log {T — Ta) versus t should yield a 
straight line whose slope = — l/2.303r. If H and C vary slightly with 
temperature then r will vary slightly with T and /. The line will not be 
perfectly straight but its slope at any t ox {T — Ta) will yield the appro- 

Table I.—Values of C, t, H as Functions of T for a Thermistor of Material No. 1 
about 1.2 Centimeters Long, 0.30 Centimeters in Diameter and Weighing 0.380 Gram 

Ta = 24 degrees centigrade 

T 
Degrees Centigrade 

■ C 
Watts per C. 

degree 
T 

Seconds 
11 

Joules per C. 
degree 

h 
Joules per gram 

per C. degree 

44 
64 

0.0037 
0.0037 

76 
74 

0.28 
0.27 

0.75 
0.72 

84 
104 

0.0038 
0.0037 

71 
69 

0.27 
0.26 

0.71 
0.68 

124 
144 

0.0038 
0.0038 

68 
67 

0.26 
0.26 

0.67 
0.67 

164 
184 

0.0039 • 
0.0041 

67 
66 

0.26 
0.27 

0.69 
0.71 

204 0.0042 66 0.28 0.73 

priate r or ///C for that T. As previously described, C can be determined 
from a plot of watts dissipated versus T. For. this thermistor this curve 
became steeper at the higher temperatures so that C increased for higher 
temperatures. Table I summarizes the values of C, r, and H at various T 
for the unit in air. 

When a thermistor is heated by passing current through it, conditions 
are somewhat more involved since the PR power will be a function of time. 
At any time in the heating cycle the heat power liberated will be equal to 
the watts dissipated or C(r — Tplus watts required to raise the tem- 
perature or HdT/dl. The heat power liberated will depend on the circuit 
conditions. In a circuit like that shown in the upper corner of Figure 14, the 
current varies with time as shown by the six curves for six values of the 
battery voltage E. If a relay in the circuit operates when the current 
reaches a definite value, a considerable range of time delays can be achieved. 
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This family of curves will be modified by changes in ambient temperature 
and where rather precise time delays are required, the ambient temperature 
must be controlled or compensated. 

Since thermistors cover a wide range in size, shape, and heat conductivity 
of surrounding media, large variations in H, C, and r can be produced. 
The time constant can be varied from about one millisecond to about ten 
minutes or a millionfold. 

One very important property of a thermistor is its aging characteristic 
or how constant the resistance at a given temperature stays with use. To 
obtain a stable thermistor it is necessary to: 1) select only semiconductors 
which are pure electronic conductors; 2) select those which do not change 
chemically when exposed to the atmosphere at elevated temperatures; 
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Fig. 14.—Current versus time curves for six values of the battery voltage in the circuit 
shown in the insert. 

3) select one which is not sensitive to impurities likely to be encountered in 
manufacture or in use; 4) treat it so that the degree of dispersion of the 
critical impurities is in equilibrium or else that the approach to equilibrium 
is very slow at operating temperatures; 5) make a contact which is intimate, 
sticks tenaciously, has an expansion coefficient compatible with the semi- 
conductor, and is durable in the atmospheres to which it will be exposed; 
6) in some cases, enclose the thermistor in a thin coat of glass or material 
impervious to gases and liquids, the coat having a suitable expansion coeffi- 
cient; 7) preage the unit for several days or weeks at a temperature some- 
what higher than that to which it will be subjected. By taking these pre- 
cautions remarkably good stabilities can be attained. 

Figure 15 shows aging data taken on three-quarter inch diameter discs 
of Materials No. 1 and No. 2 with silver contacts and soldered leads. These 
discs were measured soon after production, were aged in an oven at 105 
degrees centigrade and were periodically tested at 24 degrees centigrade. 
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The percentage change in resistance over its initial value is plotted versus 
the logarithm of the time in the aging oven. It is to be noted that most of 
the aging takes place in the first day or week. If these discs were preaged 
for a week or a month and the subsequent change in resistance referred to 
the resistance after preaging, they would age only about 0.2 per cent in one 
year. In a thermistor thermometer, this change in resistance would cor- 
respond to a temperature change of 0.05 centigrade degree. Thermistors 
mounted in an evacuated tube or coated with a thin layer of glass age even 
less than those shown in the figure. For some applications such high 
stability is not essential and it is not necessary to give the thermistors special 
treatment. 
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Fig. 15.—Aging characteristics of thermistors made of Materials No. 1 and No. 2 
aged in an oven at 105oC. Per cent increase in resistance over its initial value versus 
time on a logarithmic scale. 

Thermistors have been used at higher temperatures with satisfactory aging 
characteristics. Extruded rods of Material No. 1 have been tested for stab- 
ility by treating them for two months at a temperature of 300 degrees 
centigrade. Typical units aged from 0.5 to 1.5 per cent of their initial 
resistance. Similar thermistors have been exposed alternately to tempera- 
tures of 300 degrees centigrade and —75 degrees centigrade for a total of 
700 temperature cycles, each lasting one-half hour. The resistance of typ- 
ical units changed by less than one per cent. 

In some applications of thermistors very small changes in temperature 
produce small changes in potential across the thermistor which then are 
amplified in high gain amplifiers. If at the same time the resistance is 
fluctuating randomly by as little as one part in a million, the potential 
across the thermistor will also fluctuate by a magnitude which will be 
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directly proportional to the current. This fluctuating potential is called 
noise and since it depends on the current it is called current noise. In order 
to obtain the best signal to noise ratio, it is necessary that the current noise 
at operating conditions be less than Johnson or thermal noise.7 •8 To make 
noise-free units it is necessary to pay particular attention to the raw mate- 
rials, the degree of sintering, the grain size, the method of making contact 
and any steps in the process which might result in minute surface cracks or 
fissures. 
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Fig. 16.—Logarithmic plots of voltage versus current for six values of heater curren 
in an indirectly heated thermistor. Resistance and power scales are given on the diag 
onal lines. 

All the thermistors discussed thus far were either directly heated by the 
current passing through them or by changes in ambient temperature. In 
indirectly heated thermistors, the temperature and resistance of the thermis- 
tor are controlled primarily by the power fed into a heater thermally coupled 
to it. One such form might consist of a 0.038 centimeter diameter bead of 
Material No. 2 embedded in a small cylinder of glass about 0.38 centimeter 
long and 0.076 centimeter in diameter. A small nichrome heater coil hav- 
ing a resistance of 100 ohms is wound on the glass and is fused onto it with 
more glass. Figure 16 shows a plot of log V versus log I for the bead ele- 
ment at various currents through the heater. In this way the bead resist- 
ance can be changed from 3000 ohms to about 10 ohms. Indirectly heated 
thermistors are ordinarily used where the controlled circuit must be iso- 
lated electrically from the actuating circuit, and where the power from the 
latter must be fed into a constant resistance heater. 
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PART II—USES OF THERMISTORS 

The thermistor, or thermally sensitive resistor, has probably excited more 
interest as a major electric circuit element than any other except the vacuum 
tube in the last decade. Its extreme versatility, small size and ruggedness 
were responsible for its introduction in great numbers into communications 
circuits within five years after its first application in this field. The next 
five year period spanned the war, and saw thermistors widely used in addi- 
tional important applications. The more important of these uses ranged 
from time delays and temperature controls to feed-back amplifier automatic 
gain controls, speech volume limiters and superhigh frequency power meters. 
It is surprising that such versatility can result from a temperature dependent 
resistance characteristic alone. However, this effect produces a very useful 
nonlinear volt-ampere relationship. This, together with the ability to pro- 
duce the sensitive element in a wide variety of shapes and sizes results in 
applications in diverse fields. The variables of design are many and inter- 
related, including electrical, thermal and mechanical dimensions. 

The more important uses of thermistors as indication, control and cir- 
cuit elements will be discussed, grouping the uses as they fall under the 
primary characteristics: resistance-temperature, volt-ampere, and current- 
time or dynamic relations. 

Resistance-Temperature Relations 

It has been pointed out in Part I that the temperature coefficient of elec- 
trical resistance of thermistors is negative and several times that of the or- 
dinary metals at room temperature. In Thermistor Material No. 1, which 
is commonly used, the coefficient at 25 degrees centigrade is —4.4 per cent 
per centigrade degree, or over ten times that of copper, which is -{-0.39 per 
cent per centigrade degree at the same temperature. A circuit element made 
of this thermistor material has a resistance at zero degrees centigrade which 
is nine times the resistance of the same element at 50 degrees centigrade. 
For comparison, the resistance of a copper wire at 50 degrees centigrade 
is 1.21 times its value at zero degrees centigrade. 

The resistance-temperature characteristics of thermistors suggest their 
use as sensitive thermometers, as temperature actuated controls and as 
compensators for the effects of varying ambient temperature on other ele- 
ments in electric circuits. 

Thermometry 

The application of thermistors to temperature measurement follows the 
usual principles of resistance thermometry. However, the large value of 
temperature coefficient of thermistors permits a new order of sensitivity to 
be obtained. This and the small size, simplicity and ruggedness of thermis- 
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tors adapt them to a wide variety of temperature measuring applications. 
When designed for this service, thermistor thermometers have long-time 
stability which is good for temperatures up to 300 degrees centigrade and 
excellent for more moderate temperatures. A well aged thermistor used 
in precision temperature measurements was found to be within 0.01 centi- 
grade degree of its calibration after two months use at various temperatures 
up to 100 degrees centigrade. As development proceeds, the stability of 
thermistor thermometers may be expected to approach that of precision 
platinum thermometers. Conventional bridge or other resistance measuring 
circuits are commonly employed with thermistors. As with any resistance 
thermometer, consideration must be given to keeping the measuring current 
sufficiently small so that it produces no appreciable heating in order that the 

Table II.—Temperature-Resistance Characteristic of a 
Typical Thermistor Thermometer 

Temperature Coefficients 
Temperature Resistance 

B 

— 25°C. 580,000 ohms 3780 C. deg. -6.1%/ C. deg. 
0 145,000 3850 -5.2 

25 46,000 3920 -4.4 
50 16,400 3980 -3.8 
75 6,700 4050 -3.3 

100 3,200 4120 -3.0 
150 830 4260 -2.4 
200 305 4410 -2.0 
275 100 4600 -1.5 

Dissipation constant in still air, approx  4 milliwatts/C. ckg. 
Thermal time constant in still air, approx  70 seconds 
Dimensions of thermistor, diameter approx  0.11 inch 

length approx  0.54 inch 

thermistor resistance shall be dependent upon the ambient temperature 
alone. 

Since thermistors are readily designed for higher resistance values than 
metallic resistance thermometers or thermocouples, lead resistances are 
not ordinarily bothersome. Hence the temperature sensitive element can 
be located remotely from its associated measuring circuit. This permits 
great flexibility in application, such as for instance wire line transmission 
of temperature indications to control points. 

Table II gives the characteristics of a typical thermistor thermometer. 
The dissipation constant is the ratio of the power input in watts dissipated 
in the thermistor to the resultant temperature rise in centigrade degrees. 
The time constant is the time required for the temperature of the thermistor 
to change 63 per cent of the difference between its initial value and that of 
the surroundings. As a sensitive thermometer, this thermistor with a 
simple Wheatstone bridge and a galvanometer whose sensitivity is 2 X 
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10~10 amperes per millimeter per meter will readily indicate a temperature 
change of 0.0005 centigrade degree. For comparison a precision platinum 
resistance thermometer and the required special bridge such as the Mueller 
will indicate a minimum change of 0.003 centigrade degree with a similar 
galvanometer. 

Several thermistors which have been used for thermometry are shown in 
Fig. 17. Included in the group are types which are suited to such diverse 
applications as intravenous blood thermometry and supercharger rotor 
temperature measurement. In Fig. 17, A is a tiny bead with a response 
time of less than a second in air. B is a probe type unit for use in air streams 
or liquids. C is a meteorological thermometer used in automatic radio 
transmission of weather data from free balloons. D is a rod shaped unit. 
E is a disc or pellet, adapted for use in a metal thermometer bulb. Discs 
like the one shown have been sweated to metal plates to give a low thermal 
impedance connection to the object whose temperature is to be determined. 
F is a large disc with an enveloping paint finish for use in humid surround- 
ings. The characteristics of these types are given in Table III. 

The temperature of objects which are inaccessible, in motion, or too hot 
for contact thermometry can be determined by permitting radiation from 
the object to be focussed on a suitable thermistor by means of an elliptical 
mirror. Such a thermistor may take the form of a thin flake attached to a 
solid support. Its advantages compared with the thermopile and resistance 
bolometer are its more favorable resistance value, its ruggedness, and its 
high temperature coefficient of resistance. It can be made small to reduce 
its heat capacity so as rapidly to follow changing temperatures. Flake 
thermistors have been made with time constants from one millisecond to 
one second. Since the amount of radiant power falling on the thermistor 
may be quite small, sensitive meters or vacuum tube amplifiers are required 
to measure the small changes in the flake resistance. Where rapidly vary- 
ing temperatures are not involved, thermistors with longer time constants 
and simpler circuit equipments can be utilized. 

Temperature Control 

The use of thermistors for temperature control purposes is related closely 
to their application as temperature measuring devices. In the ideal tem- 
perature sensitive control element, sensitivity to temperature change should 
be high and the resistance value at the control temperature should be the 
proper value for the control circuit used. Also the temperature rise of the 
control element due to circuit heating should be low, and the stability of 
calibration should be good. The size and shape of the sensitive element are 
dictated by several factors such as the space available, the required speed 
of response to temperature changes and the amount of power which must 
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be dissipated in the element by the control circuit to permit the arrange- 
ment to operate relays, motors or valves. 

Because of their high temperature sensitivity, thermistors have shown 
much promise as control elements. Their adaptability and their stability 
at relatively high temperatures led, for instance, to an aircraft engine con- 
trol system using a rod-shaped thermistor as the control element.9 The 

Table III.—Thermistor Thermometers 

A B C D E F 

Nominal Resistance, Ohms at 
— 250C  — — 87,500 610,000 — 13,000 

0  5,000 325,000 37,500 153,000 490 3,200 
25  2,000 100,000 18,000 48,500 175 950 

50  900 33,000 9,700 17,300 71 340 
75  460 13,000 5,500 7,100 32 145 

100  250 6,000 3,700 3,400 16 70 

150  95 1,600   870 4.5   
200  — 500 — — 1.6 — 
300  — 80 — — — — 

Temp. Coeff. a, %/C. deg. at 
250C  -3.4 -4.4 -2.8 -4.4 -3.8 -4.4 

Max. Permissible Temp., 0C.. 150 300 100 150 200 100 

Dissipation Constant, C, 
mw/C. deg. 

Still air  0.1 1 7 7 — 20 
Still water  — 7 — — — — 

Thermal Time Constant, 
Seconds 

Still air  1 30 25 60 — — 
Still water  — 4 — — — — 

Shape  Bead Probe Rod Rod Disc Disc 

Dimensions, Inches 
Diameter or Width  0.015 0.1 0.05 0.15 0.2 0.56 
Length or Thickness (less 

leads)  0.02 0.6 1.2 0.7 0.1 0.31 

thermistor, mounted in a standard one-quarter inch diameter temperature 
bulb assembly, operated at approximately 275 degrees centigrade. It was 
associated with a differential relay and control motor on the aircraft 28 
volt d-c system. The power dissipation in the thermistor was two watts. 
The resistance of a typical thermistor under these high temperature con- 
ditions remained within ±1.5 per cent over a period of months. This 
corresponds to about ± one centigrade degree variation in calibration. 
Several other related designs were developed using the same control system 
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with other thermistors designed for both higher and lower temperature 
operation. In the lower temperature applications, typical thermistors 
maintained their calibrations within a few tenths of a centigrade degree. 

In general, electron tube control circuits dissipate less power in the ther- 
mistor than relay circuits db. This results in less temperature rise in the 
thermistor and leads to a more accurate control. While the average value 
of this temperature rise can be allowed for in the design, the variations 
in different installations require individual calibration to correct the errors 
if they are large. The corrections may be different as a result of variations 
of the thermal conductivity of the surrounding media from time to time or 
from one installation to another. The greater the power dissipated in the 
thermistor the greater the absolute error in the control temperature for a 
given change in thermal conductivity. This follows from the relation 

AT = W/C (22) 

where AT is the temperature rise, W is the power dissipated and C is the dis- 
sipation constant which depends on thermal coupling to the surroundings. 
For the same reason, the temperature indicated by a resistance thermometer 
immersed in an agitated medium will depend on the rate of flow if the tem- 
perature sensitive element is operated several degrees hotter than its sur- 
roundings. 

The design of a thermistor for a ventilating duct thermostat might pro- 
ceed as follows as far as temperature rise is concerned: 

1. Determine the power dissipation. This depends upon the circuit 
selected and the required overall sensitivity. 

2. Estimate the permissible temperature rise of the thermistor, set by the 
expected variation in air speed and the required temperature control accur- 
acy. 

3. Solve Equation (22) for the dissipation constant and select a thermistor 
of appropriate design and size for this constant in the nominal air speed. 
Where more than one style of thermistor is available, the required time 
constant will determine the choice. 

Compensators 

It is a natural and obvious application of thermistors to use them to com- 
pensate for changes in resistance of electrical circuits caused by ambient 
temperature variations. A simple example is the compensation of a copper 
wire line, the resistance of which increases approximately 0.4 per cent per 
centigrade degree. A thermistor having approximately one-tenth the 
resistance of the copper, with a temperature coefficient of —4 per cent per 
centigrade degree placed in series with the line and subjected to the same 
ambient temperature, would serve to compensate it over a narrow tempera- 
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ture range. In practice however, the compensating thermistor is associated 
with parallel and sometimes series resistance, so that the combination gives 
a change in resistance closely equal and opposite to that of the circuit to be 
compensated over a wide range of temperatures. See Fig. 18. 
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Fig. 18.—Temperature compensation of a copper conductor by means of a thermistor 
network. 

A copper winding having a resistance of 1000 ohms at 25 degrees centi- 
grade can be compensated by means of a thermistor of 566 ohms at 25 
degrees centigrade in parallel with an ohmic resistance of 445 ohms as shown 
in Fig. 18. The winding with compensator has a resistance of 1250 ohms 
constant to ± 1.6 per cent over the temperature range —25 degrees centi- 
grade to +75 degrees centigrade. Over this range the copper alone varies 
from 807.5 ohms to 1192.5 ohms, or ± 19 per cent about the mean. The 
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total resistance of the circuit has been increased only 6.1 per cent at the 
upper temperature limit by the addition of a compensator. This increase 
is small because of the high temperature coefficient of the compensating 
thermistor. The characteristics of such a thermistor are so stable that the 
resistance would remain constant within less than one per cent for ten years 
if maintained at any temperature up to about 100 degrees centigrade. 
Figure 15 shows aging characteristics for typical thermistors suitable for 
use in compensators. These curves include the change which occurs during 
the seasoning period of several days at the factory, so that the aging in use 
is a fraction of the total shown. 

In many circuits which need to function to close tolerances under wide 
ambient temperature variation, the values of one or more circuit elements 
may vary undesirably with temperature. Frequently the resultant overall 
variation with temperature can be reduced by the insertion of a simple ther- 
mistor placed at an appropriate point in the circuit. This is particularly 
true if the circuit contains vacuum tube amplifiers. In this manner fre- 
quency and gain shifts in communications circuits have been cancelled and 
temperature errors prevented in the operation of devices such as electric 
meters. The change in inductance of a coil due to the variation of magnetic 
characteristics of the core material with temperature has been prevented by 
partially saturating the coil with direct current, the magnitude of which is 
directly controlled by the resistance of a thermistor imbedded in the core. 
In this way the amount of d-c magnetic flux is adjusted by the thermistor 
so that the inductance of the coil is independent of temperature. 

In designing a compensator, care must be taken to ensure exposure of the 
thermistor to the temperature affecting the element to be compensated. 
Power dissipation in the thermistor must be considered and either limited to 
a value which will not produce a significant rise in temperature above am- 
bient, or offset in the design. 

Volt-Ampere Characteristics 

The nonlinear shape of the static characteristic relating voltage, current, 
resistance and power for a typical thermistor was illustrated by Fig. 9. 
The part of the curve to the right of the voltage maximum has a negative 
slope, applicable in a large number of ways in electric circuits. The par- 
ticular characteristic shown begins with a resistance of approximately 50,000 
ohms at low power. Additional power dissipation raises the temperature 
of the thermistor element and decreases its resistance. At the voltage 
maximum the resistance is reduced to about one-third its cold value, or 
17,000 ohms, and the dissipation is 13 milliwatts. The resistance becomes 
approximately 300 ohms when the dissipation is 100 milliwatts. Such 
resistance-power characteristics have resulted in the use of thermistors as 
sensitive power measuring devices, and as automatically variable resistances 
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for such applications as output amplitude controls for oscillators and am- 
plifiers. Their nonlinear characteristics also fit thermistors for use as volt- 
age regulators, volume controls, expanders, contactless switches and remote 
control devices. To permit their use in these applications for d-c as well as 
a-c circuits, nonpolarizing semiconductors alone are employed in thermistors 
with the exception of two early types. 

Power Meter 

Thermistors have been used very extensively in the ultra and superhigh 
frequency ranges in test sets as power measuring elements. The particular 
advantages of thermistors for this use are that they can be made small in 
size, have a small electrical capacity, can be severely overloaded without 
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Fig. 19.—Power measuring thermistors with different sized beads. 

change in calibration, and can easily be calibrated with direct-current or 
low-frequency power. For this application the thermistor is used as a power 
absorbing terminating resistance in the transmission line, which may be of 
Lecher, coaxial or wave-guide form. Methods of mounting have been 
worked out which reduce the reflection of high frequency energy from the 
termination to negligible values and assure accurate measurement of the 
power over broad bands in the frequency spectrum. Conventionally, the 
thermistor is operated as one arm of a Wheatstone bridge, and is biased with 
low frequency or d-c energy to a selected operating resistance value, for 
instance 125 or 250 ohms in the absence of the power to be measured. The 
application of the power to be measured further decreases the thermistor 
resistance, the bridge becomes unbalanced and a deflection is obtained on 
the bridge meter. A full scale power indication of one milliwatt is customary 
for the test set described, although values from 0.1 milliwatt to 200 milli- 
watts have been employed using thermistors with different sized beads as 
shown in Fig. 19. 
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Continuous operation tests of these thermistors indicate very satisfactory 
stability with an indefinitely long life. A group of eight power meter ther- 
mistors, normally operated at 10 milliwatts and having a maximum rating 
cf 20 milliwatts, were operated for over 3000 hours at a power input of 30 
milliwatts. During this time the room temperature resistance remained 
within 1.5 per cent of its initial value, and the power sensitivity, which is the 
significant characteristic, changed by less than 0.5 per cent. 

When power measuring test sets are intended for use with wide ambient 
temperature variations, it is necessary to temperature compensate the ther- 
mistor. This is accomplished conventionally by the introduction of two 
other thermistors into the bridge circuit. These units are designed to be 
insensitive to bridge currents but responsive to ambient temperature. One 
of the compensators maintains the zero point and the other holds the meter 
scale calibration independent of the effect of temperature change on the 
measuring thermistor characteristics. 

Automatic Oscillator Amplitude Control 

Meacham,10 and Shepherd and Wise11 have described the use of thermis- 
tors to provide an effective method of amplitude stabilization of both low 
and high frequency oscillators. These circuits oscillate because of positive 
feedback around the vacuum tube. The feedback circuit is a bridge with 
at least one arm containing a thermistor which is heated by the oscillator 
output. Through this arrangement, the feedback depends in phase and 
magnitude upon the output, and there is one value of thermistor resistance 
which if attained would balance the bridge and cause the oscillation ampli- 
tude to vanish. Obviously this condition can never be exactly attained, 
and the operating point is just enough different to keep the bridge slightly 
unbalanced and produce a predetermined steady value of oscillation output. 
Such oscillators in which the amplitude is determined by thermistor non- 
linearity have manifold advantages over those whose amplitude is limited 
by vacuum tube nonlinearity. The harmonic content in the output is 
smaller, and the performance is much less dependent upon the individual 
vacuum tube and upon variations of the supply voltages. It is necessary 
that the thermal inertia of the thermistor be sufficient to prevent it from 
varying in resistance at the oscillation frequency. This is easily satisfied 
for all frequencies down to a small fraction of a cycle per second. Figure 20 
shows a thermistor frequently used for oscillator control together with its 
static electrical characteristic. This thermistor is satisfactory in oscillators 
for frequencies above approximately 100 cycles per second. Similar types 
have been developed with response characteristics suited to lower frequencies 
and for other resistance values and powers. 
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Where the ambient temperature sensitivity of the thermistor is dis- 
advantageous in oscillator controls, the thermistor can be compensated by 
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Fig. 20A.—An amplitude control thermistor. The glass bulb is 1.5 inches in length. 
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Fig. 20B.—Steady state characteristics of amplitude control thermistor shown in 

Figure 20A. 

thermostating it with a heater and compensating thermistor network, as 
shown in Fig. 21. 

Amplifier Automatic Gain Control 

Since the resistance of a thermistor of suitable design varies markedly 
with the power dissipated in it or in a closely associated heater, such ther- 
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mistors have proven to be very valuable as automatic gain controls, es- 
pecially for use with negative feedback amplifiers. This arrangement has 
seen extensive use in wire communication circuits for transmission level 
regulation, and has been described in some detail elsewhere.12-13•14 In 
one form, a directly heated thermistor is connected into the feedback circuit 
of the amplifier in such a way that the amount of feedback voltage is varied 
to compensate for any change in the output signal. By this arrangement, 
the gain of each amplifier in the transmission system is continually adjusted 
to correct for variations in overall loss due to weather conditions and other 
factors, so that constant transmission is obtained over the channel at all 
times. In the Type K2 carrier system now in extensive use, the system 
gain is regulated principally in this way. In this system the transmission 
loss variations due to temperature are not the same in all parts of the pass 
band. The loss is corrected at certain repeater points along the transmission 
line by two additional thermistor gain controls: slope, proportional to fre- 

Fig. 21.—Circuit employing an auxiliary disc thermistor to compensate for effect of 
varying ambient temperature on a control thermistor. 

quency, and bulge, with a maximum at one frequency. These thermistors 
are indirectly heated, with their heaters actuated by energy dependent upon 
the amplitude of the separate pilot carriers which are introduced at the send- 
ing end for the purpose. 

In this type of application, the thermistor will react to the ambient tem- 
perature to which it is exposed, as well as to the current passing through it. 
Where this is important, the reaction to ambient temperature can be elimi- 
nated by the use of a heater type thermistor as shown in Fig. 21. The 
heater is connected to an auxiliary circuit containing a temperature com- 
pensating thermistor. This circuit is so arranged that the power fed into 
the heater of the gain control thermistor is just sufficient at any ambient 
temperature to give a controlled and constant value of temperature in the 
vicinity of the gain control thermistor element. 

Another interesting form of thermistor gain control utilizes a heater 
type thermistor, with the heater .driven by the output of the amplifier and 
with the thermistor element in the input circuit, as shown in Fig. 22. In 
this arrangement the feedback is accomplished by thermal, rather than 
electrical coupling. A broad-band carrier system, Type LI, is regulated 
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with this type of thermistor. In this system a pilot frequency is supplied, 
and current of this frequency, selected by a network in the regulator, actu- 
ates the heater of the thermistor to give smooth, continuous gain control. 

By utilizing a heater thermistor of different characteristics, the circuit 
and load of Fig. 22 may be given protection against overloads. In this 
application the sensitivity and element resistance of the thermistor are 
chosen so that the thermistor element forms a shunt of high resistance 
value so as to have negligible effect on the amplifier for any normal value of 
output. However, if the output power rises to an abnormal level, the 
thermistor element becomes heated and reduced in resistance. This 
shunts the input to the amplifier and thus limits the output. Choice of a 
thermistor having a suitable time constant permits the onset of the limiting 
effect to be delayed for any period from about a second to a few minutes. 

HEATER TYPE THERMISTOR 
Fig. 22.—Thermal feedback circuit for gain control purposes. This arrangement has 

also been used as a protective circuit for overloads. 

A group of related applications for thermistors depends on their steady 
state nonlinear volt-ampere characteristic. These are the voltage regulator, 
the speech volume limiter, the compressor and the expander. The com- 
pressor and expander are devices for altering the range of signal amplitudes. 
The compressor functions to reduce the range, while the expandor increases 
it. In Fig. 23, Curve 1 is a typical thermistor static characteristic having 
negative slope to the right of the voltage maximum. Curve 2 is the charac- 
teristic of an ohmic resistance R having an equal but positive slope. Curve 
3 is the characteristic obtained if the thermistor and resistor are placed 
in series. It has an extensive segment where the voltage is almost inde- 
pendent of the current. This is the condition for a voltage regulator or 
limiter. If a larger value of resistance is used, as in Curve 4, its combination 
with the thermistor in series results in Curve 5, the compressor. In these 
uses the thermistor regulator is in shunt with the load resistance, so that 
in the circuit diagram of Fig. 23, 

AMPLIFIER LOAD 

Regulators and Limiter s 

E — E0 — Ej — IRa' (23) 

Here E is the voltage across the thermistor and resistor R, E0 is the output 
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voltage, and Ej, I and Rs are respectively the input voltage, current and 
resistance. 

If the thermistor and associated resistor are placed in series between the 
generator and load resistance, an expander is obtained, and 

E. (24) 

As the resistance R in series with the thermistor is increased, the degree of 
expansion is decreased and vice versa. 
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Fig. 23.—Characteristics of a simple thermistor voltage regulator, limiter or com- 
pressor circuit. 

The treatment thus far in this section assumes that change of operating 
point occurs slowly enough to follow along the static curves. For a suffi- 
ciently rapid change of the operating point, the latter departs from the static 
curve and tends to progress along an ohmic resistance line intersecting the 
static curve. For sufficiently rapid fluctuations, control action may then 
be derived from the resistance changes resulting from the r.m.s. power dis- 
sipated in the thermistor unit. In speech volume limiters, the thermistor 
is designed for a speed of response that will produce limiting action for the 
changes in volume which are syllabic in frequency or slower, and that will 
not follow the more rapid speech fluctuations with resulting change in wave 
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shape or nonlinear distortion. Speech volume limiters of this type can ac- 
commodate large volume changes without producing wave form distor- 
tion.13'15 

Remote Control Swiches 

The contactless switch and rheostat are natural extensions of the uses 
just discussed. The thermistor is used as an element in the circuit which is 
to be controlled, while the thermistor resistance value is in turn dependent 
upon the energy dissipated directly or indirectly in it by the controlling cir- 
cuit. By taking advantage of the nonlinearity of the static volt-ampere 
characteristic, it is possible to provide snap and lock-in action in some 
applications. 

Manometer 

Several interesting and useful applications such as vacuum gauges, gas 
analyzers, flowmeters, thermal conductivity meters and liquid level gauges 
of high sensitivity and low operating temperature are ba^ed upon the 
physical principle that the dissipation constant of the thermistor depends 
on the thermal conductivity of the medium in which it is immersed. As 
shown in Fig. 10, a change in this constant shifts the position of the static 
characteristic with respect to the axes. In these applications, the unde- 
sired response of the thermistor to the ambient temperature of the medium 
can in many cases be eliminated or reduced by introducing a second thermis- 
tor of similar characteristics into the measuring circuit. The compensating 
thermistor is subjected to the same ambient temperature, but is shielded 
from the effect being measured, such as gas pressure or flow. The two therm- 
istors can be connected into adjacent arms of a Wheatstone bridge which 
is balanced when the test effect is zero and becomes unbalanced when the 
effective thermal conductivity of the medium is increased. In gas flow 
measurements, the minimum measurable velocity is limited, as in all "hot 
wire" devices, by the convection currents produced by the heated thermistor. 

The vacuum gauge or manometer which is typical of these applications 
will be described somewhat in detail. The sensitive element of the thermis- 
tor manometer is a small glass coated bead 0.02 inch in diameter, suspended 
by two fine wire leads in a tubular bulb for attachment to the chamber whose 
gas pressure is to be measured. The volt-ampere characteristics of a typical 
laboratory model manometer are shown in Fig. 24 for air at several absolute 
pressures from 10-6 millimeters of mercury to atmospheric. The operating 
point is in general to the right of the peak of these curves. Electrically 
this element is connected into a unity ratio arm Wheatstone bridge with a 
similar but evacuated thermistor in an adjacent arm as shown in the circuit 
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schematic of Fig. 25. The air pressure calibration for such a manometer is 
also shown. The characteristic will be shifted when a gas is used having a 
thermal conductivity different from that of air. Such a manometer has 
been found to be best suited for the measurement of pressures from lO-5 

to 10 millimeters of mercury. The lower pressure limit is set by practical 
considerations such as meter sensitivity and the ability to maintain the zero 
setting for reasonable periods of time in the presence of the variations of 
supply voltage and ambient temperature. The upper pressure measure- 
ment limit is caused by the onset of saturation in the bridge unbalance 
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Fig. 24.—Characteristics of a typical thermistor manometer tube, showing the effect 
of gas pressure on the volt-ampere and resistance-power relations. 

voltage versus pressure characteristic at high pressures. This is basically 
because the mean free path of the gas molecules becomes short compared 
with the distance between the thermistor bead and the inner surface of the 
manometer bulb, so that the cooling effect becomes nearly independent of 
the pressure. 

The thermistor manometer is specially advantageous for use in gases 
which may be decomposed thermally. For this type of use, the thermistor 
element temperature can be limited to a rise of 30 centigrade degrees or 
less above ambient temperature. For ordinary applications, however, a 
temperature rise up to approximately 200 centigrade degrees in vacuum 
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permits measurement over wider ranges of pressure. Special models have 
also been made for use in corrosive gases. These expose only glass and plati- 
num alloy to the gas under test. 

Timing Devices 

The numerically greatest application for thermistors in the communication 
field has been for time delay purposes. The physical basis for this use has 
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Fig. 25.—Operating circuit and calibration for a vacuum gauge utilizing the thermistor 
of Figure 24. 

been discussed in Part I for the case of a directly heated thermistor placed 
in series with a voltage source and a load to delay the current rise after 
circuit closure. This type of operation will be termed the power driven 
time delay. 

By the use of a thermistor suited to the circuit and operating conditions, 
power driven time delays can be produced from a few milliseconds to the 
order of a few minutes. Thermistors of this sort have the advantage of 
small size, light weight, ruggedness, indefinitely long life and absence of 
contacts, moving parts, or pneumatic orifices which require maintenance 
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care. Power driven time delay thermistors 'xre best fitted for applications 
where close limits on the time interval arc not required. In some com- 
munications uses it is satisfactory to permit a six to one ratio between maxi- 
mum and minimum times as a result of the simultaneous variation from 
nominal values of all the following factors which affect the delay: operating 
voltage ± 5 per cent; ambient temperature 20 degrees centigrade to 40 
degrees centigrade; operating current of the relay ± 25 per cent; relay 
resistance rt 5 per cent; and thermistor variations such as occur from 
unit to unit of the same type. 

After a timing operation a power driven time delay thermistor should be 
allowed time to cool before a second operation. If this is not done, the 
second timing interval will be shorter than the first. The cooling period 
depends on particular circuit conditions and details of thermistor design, 
but generally is several times the working time delay. In telephone relay 
circuits requiring a timing operation soon after previous use, the thermistor 
usually is connected so that it is short circuited by the relay contacts at the 
close of the working time delay interval. This permits the thermistor to 
cool during the period when the relay is locked up. If this period is suffi- 
ciently long, the thermistor is available for use as soon as the relay drops 
out. Time delay thermistors have been operated more than half a million 
times on life test with no significant change in their timing action. 

To avoid the limitations of wide timing interval limits and extended cool- 
ing period between operations usually associated with the power driven time 
delay thermistor, a cooling time delay method of operation has been used. 
In this arrangement, two relays or the equivalent are employed and the 
thermistor is heated to a low resistance-value by passing a relatively large 
current through it for an interval short compared with the desired time 
interval. The current then is reduced automatically to a lower value and 
the thermistor cools until its resistance increases enough to reduce the cur- 
rent further and trip the working relay. This part of the operating cycle 
accounts for the greater part of the desired time interval. With this ar- 
rangement, the thermistor is available for re-use immediately after a com- 
pleted timing interval, or, as a matter of fact, after any part of it. By proper 
choice of operating currents and circuit values, wide variations of voltage 
and ambient temperature may occur with relatively little effect upon the 
time interval. The principal variable left is the cooling time of the thermis- 
tor itself. This is fixed in a given thermistor unit, but may vary from unit 
to unit, depending upon dissipation constant and thermal capacity, as 
pointed out above. 

In addition to their use as definite time delay devices, thermistors have 
been used in several related applications. Surges can be prevented from 
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operating relays or disturbing sensitive apparatus by introducing a ther- 
mistor in series with the circuit component which is to be protected. In 
case of a surge, the high initial resistance of the thermistor holds the surge 
current to a low value provided that the surge does not persist long enough 
to overcome the thermal inertia of the thermistor. The normal operating 
voltage, on the other hand, is applied long enough to lower the thermistor 
resistance to a negligible value, so that a normal operating current will flow 
after a short interval. In this way, the thermistor enables the circuit to 
distinguish between an undesired signal of short duration and a desired 
signal of longer duration even though the undesired impulse is several times 
higher in voltage than the signal. 

Oscillators, Modulators and Amplifiers 

A group of applications already explored in the laboratory but not put into 
engineering use includes oscillators, modulators and amplifiers for the low 
and audio-frequency range. If a thermistor is biased at a point on the 
negative slope portion of the steady-state volt-ampere characteristic, and 
if a small alternating voltage is then superposed on the direct voltage, a 
small alternating current will flow. If the thermistor has a small time con- 
stant, r, and if the applied frequency is low enough, the alternating volt- 
ampere characteristic will follow the steady-state curve and dV/dl will be 
negative. As the frequency of the applied a-c voltage is increased, the 
value of the negative resistance decreases. At some critical frequency, 
fc, the resistance is zero and the current is 90 degrees out of phase with 
the voltage. In the neighborhood of /c, the thermistor acts like an induc- 
tance whose value is of the order of a henry. As the frequency is increased 
beyond /c, the resistance is positive and increases steadily until it approach- 
es the d-c value when the current and voltage are in phase. The critical 
frequency is given approximately by 

fc = 1/2t. 

If r can be made as small as 5 X 10~5 seconds, fc is equal to 10,000 
cycles per second and the thermistor would have an approximately 
constant negative resistance up to half this frequency. Point contact 
thermistors having such critical frequencies or even higher have been 
made in a number of laboratories. However, none of them have been 
made with sufficient reproducibility and constancy to be useful to the 
engineer. It has been shown both theoretically and experimentally that 
any negative resistance device can be used as an oscillator, a modulator, or 
an amplifier. With further development, it seems probable that thermistors 
will be used in these fields. 
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. Summary 

The general principles of thermistor operation and examples of specific 
uses have been given to facilitate a better understanding of them, with the 
feeling that such an understanding will be the basis for increased use of this 
new circuit and control element in technology. 
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Abstracts of Technical Articles by Bell System Authors 

Capacitors—Their Use in Electronic Circuits.1 M. Brotherton. This 
book tells how to choose and use capacitors for electronic circuits. It ex- 
plains the basic factors which control the characteristics of capacitors and 
determine their proper operation. It helps to provide that broad under- 
standing of the capacitor problem which is indispensable to the efficient 
design of circuits. It tells the circuit designer what he must understand 
and consider in transforming capacitance from a circuit symbol into a practi- 
cal item of apparatus capable of meeting the growing severity of today's 
operation requirements. 

Mica Capacitors for Carrier Telephone Systems.2 A. J. Christopher 
and J. A. Kater. Silvered mica capacitors, because of their inherently 
high capacitance stability with temperature changes and with age, now are 
used widely in oscillators, networks, and other frequency determining 
circuits in the Bell Telephone System. Their use in place of the previous 
dry stack type, consisting of alternate layers of mica and foil clamped 
under high pressures, has made possible considerable manufacturing econ- 
omies in addition to improving the transmission performance of carrier 
telephone circuits. These economies are the result of their relatively simple 
unit construction and the ease of adjustment to the very close capacitance 
tolerance required. 

Visible Speech Translators with External Phosphors? Homer Dudley 
and Otto 0. Gruenz, Jr. This paper describes some experimental ap- 
paratus built to give a passing display of visible speech patterns. These 
patterns show the analysis of speech on an intensity-frequency-time basis 
and move past the reader like a printed line. The apparatus has been 
called a translator as it converts speech intended for aural perception into a 
form suitable for visual prception. The phosphor employed is not in a 
cathode-ray tube but in the open on a belt or drum. 

The Pitch, Loudness and Quality of Musical Tones (A demonstration- 
lecture introducing the new Tone Synthesizer)? Harvey Fletcher. Re- 
lations are given in this paper which show how the pitch of a musical tone 

1 Published by D. Van Nostrand Company, Inc., New York, N. Y., 1946. s Elec. Engg., Transactions Section, October 1946. 
3 Jour. Acous. Soc. Amer., July 1946. 4 Amer. Jour, of Physics, July-August 1946. 
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depends upon the frequency, the intensity and the overtone structure of the 
sound wave transmitting the tone. Similar relations are also given which 
show how the loudness and the quality depend upon these same three 
physical characteristics of the sound wave. These relationships were de- 
monstrated by using the new Tone Synthesizer. By means of this in- 
strument one is able to imitate the quality, pitch and intensity of any musi- 
cal tone and also to produce many combinations which are not now used in 
music. 

The Sound Spectrograph.5 W. Koenig, H. K. Dunn, and L. Y. Lacy. 
The sound spectrograph is a wave analyzer which produces a permanent 
visual record showing the distribution of energy in both frequency and time. 
This paper describes the operation of this device, and shows the mechanical 
arrangements and the electrical circuits in a particular model. Some of 
the problems encountered in this type of analysis are discussed, particularly 
those arising from the necessity for handling and portraying a wide range of 
component levels in a complex wave such as speech. Spectrograms are 
shown for a wide variety of sounds, including voice sounds, animal and bird 
sounds, music, frequency modulations, and miscellaneous familiar sounds. 

Geometrical Characterizations of Some Families of Dynamical Trajectories.6 

L. A. MacColl. A broad problem in differential geometry is that of 
characterizing, by a set of geometrical properties, the family of curves which 
is defined by a given system of differential equations, of a more or less 
special form. The problem has been studied especially by Kasner and his 
students, and characterizations have been obtained for various families of 
curves which are of geometrical or physical importance. However, the 
interesting problem of characterizing the family of trajectories of an electri- 
fied particle moving in a static magnetic field does not seem to have been 
considered heretofore. The present paper gives the principal results of a 
study of this problem. 

Visible Speech Cathode-Ray Translator.1 R. R. Riesz and L. Schott. A 
system has been developed whereby speech analysis patterns are made 
continuously visible on the moving luminescent screen of a special cathode- 
ray tube. The screen is a cylindrical band that rotates with the tube about 
a vertical axis. The electron beam always excites the screen in the same 
vertical plane. Because of the persistence of the screen phosphor and the 
rotation of the tube, the impressed patterns are spread out along a horizon- 

6 Jour. Acmis. Soc. Anter., July 1946. 6 Amer. Math. Soc. Transactions, July 1946. 
7 Jour. Aeons.. Soc. Amer., July 1946. 
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tal time axis so that speech over an interval of a second or more is always 
visible. The upper portion of the screen portrays a spectrum analysis and 
the lower portion a pitch analysis of the speech sounds. The frequency 
band up to 3500 cycles is divided into 12 contiguous sub-bands by filters. 
The average speech energy in the sub-bands is scanned and made to control 
the excitation of the screen by the electron beam which is swept synchro- 
nously across the screen in the vertical direction. A pitch analyzer pro- 
duces a d-c. voltage proportional to the instantaneous fundamental fre- 
quency of the speech and this controls the width of a band of luminescence 
that the electron beam produces in the lower part of the screen. The 
translator had been used in a training program to study the readability 
of visible speech patterns. 

Derivatives of Composite Functions* John Riordan. The object of 
this note is to show the relation of the Y polynomials of E. T. Bell, first to 
the formula of DiBruno for the «th derivative of a function of a function, 
then to the more general case of a function of many functions. The sub- 
ject belongs to the algebra of analysis in the sense of Menger; all that is 
asked is the relation of the derivative of the composite function to the 
derivatives of its component functions when they exist and no questions of 
analysis are examined. 

The Portrayal of Visible Speech* J. C. Steinberg and N. R. French. 
This paper discusses the objectives and requirements in the protrayal of 
visible patterns of speech from the viewpoint of their effects on the legibility 
of the patterns. The portrayal involves an intensity-frequency-time analy- 
sis of speech and the display of the results of the analysis to the eye. 
Procedures for accomplishing this are discussed in relation to information 
on the reading of print and on the characteristics of speech and its inter- 
pretation by the ear. Also methods of evaluating the legibility of the 
visible patterns are described. 

Short Survey of Japanese Radar—/.l0 Roger I. Wilkinson. The 
result of a study made immediately following the fall of Japan and recently 
made available for public information, this two-part report is designed to 
present a quick over-all evaluation of Japanese radar, its history and de- 
velopment. As the Japanese army and navy developed their radar equip- 
ment independently of each other, Part I of this article concentrates on the 
army's contributions. 

8 Amer. Math. Soc. Bulletin, August 1946. 
9 Jour. Acous. Soc. Amer., July 1946. 10 Elec. Engg., Aug.-Sept. 1946. 
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A Variation on the Gain Formula for Feedback Amlifiers for a Certain 
Driving-Impedance Configuration.11 T. W. Winternitz. An expression 
for the gain of a feedback amplifier, in which the source impedance is the 
only significant impedance across which the feedback voltage is developed, 
is derived. As examples of the use of this expression, it is then applied to 
three common circuits in order to obtain their response to a Heaviside 
unit step-voltage input. 

11 Proc. I.R.E., September 1946. 
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