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Introduction 

RADAR proved to be one of the most important technical achieve- 
ments of World War II. It has many sources, some as far back 

as the nineteenth century, yet its rapid wartime growth was the result 
of military necessity. This development will continue, for radar has 
increasing applications in a peacetime world. 

In this paper we will discuss an indispensable part of radar—the 
antenna. In a radar system the antenna function is two-fold. It 
both projects into space each transmitted radar pulse, and collects from 
space each received reflected signal. Usually but not always a single 
antenna performs both functions. 

The effectiveness of a radar is influenced decisively by the nature and 
quality of its antenna. The greatest range at which the radar can de- 
tect a target, the accuracy with which the direction to the target can be 
determined and the degree with which the target can be discriminated 
from its background or other targets all depend to a large extent on 
electrical properties of the antenna. The angular sector which the 
ai#enna can mechanically or electrically scan is the sector from which 
the radar can provide information. The scanning rate determines the 
frequency with which a tactical or navigational situation can be ex- 
amined. 
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Radar antennas are as numerous in kind as radars. The unique 
character and particular functions of a radar are often most clearly 
evident in the design of its antenna. Antennas must be designed for 
viewing planes from the ground, the ground from planes and planes 
from other planes. They must see ships from the shore, from the air, 
from other ships, and from submarines. In modern warfare any 
tactical situation may require one or several radars and each radar must 
have one or more antennas. 

Radar waves are almost exclusively in the centimeter or microwave 
region, yet even the basic microwave techniques are relatively new to 
the radio art. Radar demanded antenna gains and directivities far 
greater than those previously employed. Special military situations 
required antennas with beam shapes and scanning characteristics never 
imagined by communication engineers. 

It is natural that war should have turned our efforts so strongly in 
the direction of radar. But that these efforts were so richly and quickly 
rewarded was due in large part to the firm technical foundations that 
had been laid in the period immediately preceeding the war. When, 
for the common good, all privately held technical information was 
poured into one pool, all ingredients of radar, and of radar antennas in 
particular, were found to be present. 

A significant contribution of the Bell System to this fund of technical 
knowledge was its familiarity with microwave techniques. Though 
Hertz himself had performed radio experiments in the present micro- 
wave region, continuous wave techniques remained for decades at longer 
wavelengths. However, because of its interest in new communication 
channels and broader bands the Bell System has throughout the past 
thirty years vigorously pushed continuous wave techniques toward the 
direction of shorter waves. By the middle nineteen-thirties members 
of the Radio Research Department of the Bell Laboratories were work- 
ing within the centimeter region. 

Several aspects of this research and development appear now as 
particularly important. In the first place it is obvious that knowledge 
of how to generate and transmit microwaves is an essential factor in 
radar. Many lower frequency oscillator and transmission line tech- 
niques are inapplicable in the microwave region. The Bell Laboratories 
has been constantly concerned with the development of generators 
which would work at higher and higher frequencies. Its broad famil- 
iarity with coaxial cable problems and in particular its pioneering work 
with waveguides provided the answers to many radar antenna problems. 

Another telling factor was the emphasis placed upon measurement. 
Only through measurements can the planners and designers of equip- 
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ment hope to evaluate performance, to chose between alternatives or to 
see the directions of improvement. Measuring techniques employing 
double detection receivers and intermediate frequency amplifiers had 
long been in use at the Holmdel Radio Laboratory. By employing 
these techniques radar engineers were able to make more sensitive and 
accurate measurements than would have been possible with single de- 
tection. 

Antennas are as old as radio. Radar antennas though different in 
form are identical in principle with those used by Hertz and Marconi. 
Consequently experience with communication antennas provided a 
valuable background for radar antenna design. As an example of the 
importance of this background it can be recalled that a series of experi- 

Fig. 1—An Electromagnetic Horn. 

ments with short wave antennas for Transatlantic radio telephone 
service had culminated in 1936 in a scanning array of rhombic antennas. 
The essential principles of this array were later applied to shipborne 
fire control antenna which was remarkable and valuable because of the 
early date at which it incorporated modern rapid scanning features. 

In addition to the antenna arts which arose directly out of communi- 
cation problems at lower frequencies some research specifically on micro- 
wave antennas was under way before the war. Early workers in wave- 
guides noticed that an open ended waveguide will radiate directly into 
space. It is not surprising therefore that these workers developed the 
electromagnetic horn, which is essentially a waveguide tapered out to 
an aperture (Fig. 1). 

One of the first used and simplest radio antennas is the dipole (Fig. 
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2). Current oscillating in the dipole generates electromagnetic waves 
which travel out with the velocity of light. A single dipole is fairly 
non-directive and consequently produces a relatively weak field at 
a distance. When the wave-length is short the field of a dipole in a 

Fig. 2—A Microwave Dipole. 

Fig. 3—A Dipole Fed Paraboloid. 

chosen direction can be increased many times by introducing a re- 
flector which directs or 'focusses' the energy. 

In communication antennas the focussing reflector is most com- 
monly a reflecting wire array. Even at an early date in radar the wave- 
length was so short that 'optical' reflectors could be used. These were 
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sometimes paraboloids similar to those used in searchlights (Fig. 3). 
Sometimes they were parabolic cylinders as in the Mark III, an early 
shipborne fire control radar developed at the Whippany Radio Labora- 
tory. 

From these relatively simple roots, the communication antenna, the 
electromagnetic horn and the optical reflector, radar antennas were 
developed tremendously during the war. That this development in 
the Bell Laboratories was so well able to meet demands placed on it was 
due in large part to the solid foundation of experience possessed by the 
Research and Development groups of the Laboratories. Free inter- 
change of individuals and information between the Laboratories and 
other groups, both in the United States and Great Britain, also con- 
tributed greatly to the success of radar antenna development. 

Because of its accelerated wartime expansion the present radar an- 
tenna field is immense. It is still growing. It would be impossible 
for any single individual or group to master all details of this field, yet 
its broad outline can be grasped without difficulty. 

The purpose of this paper is two-fold, both to provide a general dis- 
cussion of radar antennas and to summarize the results of radar antenna 
research and development at the Bell Laboratories. Part I is a dis- 
cussion of the basic electrical principles which concern radar antennas. 
In Part II we will outline the most common methods of radar antenna 
construction. Practical military antennas developed by the Bell 
Laboratories will be described in Part III. 

The reader who is interested in general familiarity with the over all re- 
sult rather than with technical features of design may proceed directly 
from this part to Part III. 

PART I 

ELECTRICAL PRINCIPLES 

1. General 

Radar antenna design depends basically on the same broad principles 
which underlie any other engineering design. The radar antenna designer 
can afford to neglect no aspect of his problem which has a bearing on the 
final product. Mechanical, chemical, and manufacturing considerations 
are among those which must be taken into account. 

It is the electrical character of the antenna, however, which is connected 
most directly with the radar performance. In addition it is through atten- 
tion to the electrical design problems that the greatest number of novel 
antennas have been introduced and it is from the electrical viewpoint that 
the new techniques can best be understood. 

An antenna is an electromagnetic device and as such can be understood 
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through the application of electromagnetic theory. Maxwell's equations 
provide a general and accurate foundation for antenna theory. They are 
the governing authority to which the antenna designer may refer directly 
when problems of a fundamental or baffling nature must be solved. 

It is usually impracticable to obtain theoretically exact and simple solu- 
tions to useful antenna problems by applying Maxwell's Equations directly. 
We can, however, use them to derive simpler useful theories. These 
theories provide us with powerful analytical tools. 

Lumped circuit theory is a tool of this sort which is of immense practical 
importance to electrical and radio engineers. As the frequency becomes 
higher the approximations on which lumped circuit theory is based become 
inaccurate and engineers find that they must consider distributed in- 
ductances and capacitances. The realm of transmission line theory has 
been invaded. 

Transmission line theory is of the utmost importance in radar antenna 
design. In the first place the microwave energy must be brought to the 
antenna terminals over a transmission line. This feed line is usually a 
coaxial or a wave-guide. It must not break down under the voltage which 
accompanies a transmitted pulse. It must be as nearly lossless and reflec- 
tionless as possible and it must be matched properly to the antenna terminals. 

The importance of a good understanding of transmission line theory does 
not end at the antenna terminals. In any. antenna the energy to be trans- 
mitted must be distributed in the antenna structure in such a way that the 
desired radiation characteristics will be obtained. This may be done with 
transmission lines, in which case the importance of transmission line theory 
is obvious. It may be done by 'optical' methods. If so, certain trans- 
mission line concepts and methods will still be useful. 

While it is true that transmission line theory is important it is not nec- 
essary to give a treatment of it in this paper. Adequate theoretical dis- 
cussions can be found elsewhere in several sources.1 It is enough at this 
point to indicate the need for a practical understanding of transmission line 
principles, a need which will be particularly evident in Part II, Methods 
of Antenna Construction. 

We may, if we like, think of the whole radar transmission problem in 
terms of transmission line theory. The antenna then appears as a trans- 
former between the feed line and transmission modes in free space. We 
cannot, however, apply this picture to details with much effectiveness unless 
we have some understanding of radiation. 

In the sections to follow we shall deal with some theoretical aspects of 
radiation. We shall begin with a discussion of fundamental transmission 

1 See, for example, S. A. Schelkunoff, Electromagnetic Waves, D. Van Nostrand Co., 
Inc., 1943, in particular, Chapters VII and VIII, or F. E. Terman, Radio Engineer's Hand- 
book, McGraw-Hill Book Co., Inc., 1943, Section 3. 
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principles. This discussion is applicable to all antennas regardless of how 
they are made or used. When applied to radar antennas it deals chiefly 
with those properties of the antenna which affect the radar range. 

Almost all microwave radar antennas are large when measured in wave- 
lengths. When used as transmitting antennas they produce desired radia- 
tion characteristics by distributing the transmitted energy over an area or 
'wave front'. The relationships between the phase and amplitude of elec- 
trical intensity in this wave front and the radiation characteristics of the 
antenna are predicted by wave front analysis. Wave front analysis is 
essentially the optical theory of diffraction. Although approximate it 
applies excellently to the majority of radar antenna radiation problems. 
We shall discuss wave front analysis in Section 3. 

2. Transmission Principles 

2.1 Gain and Effective Area of an Antenna 

An extremely important property of any radar antenna is its ability to 
project a signal to a distant target. The gain of the antenna is a number 
which provides a quantitative measure of this ability. Another important 
property of a radar antenna is its ability to collect reflected power which 
is returning from a distant target. The efective area of the antenna is a 
quantitative measure of this ability. In this section these two quantities 
will be defined, and a simple relation between them will be derived. Their 
importance to radar range will be established. 
Definition of Gain. When power is fed into the terminals of an antenna 
some of it will be lost in heat and some will be radiated. The gain G of 
the antenna can be defined as the ratio 

G = P/Po (1) 

where P is the power flow per unit area in the plane linearly polarized elec- 
tromagnetic wave which the antenna causes in a distant region usually in 
the direction of maximum radiation and Po is the power flow per unit area 
which would have been produced if all the power fed into the terminals 
had been radiated equally in all directions in space. 
Definition of Efective Area. When a plane linearly polarized electromag- 
netic wave is incident on the receiving antenna, received power PR will be 
available at the terminals of the antenna. The effective area of the antenna 
is defined, by the equation 

A = PR/P' (2) 

where P' is the power per unit area in the incident wave. In other words 
the received power is equal to the power flow through an area that is equal 
to the effective area of the antenna. 
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2.2 Relationship 'behvkefi Gain and Effective Area 

Figure 4 shows a radio circuit in free space made up of a transmitting 
antenna T and a receiving antenna R. If the transmitted power Ft had 

TRANSMITTING 
ANTENNA RECEIVING 

ANTENNA 

Fig. 4—Radio Circuit in Free Space. 

been radiated equally in all directions, the power flow per unit area at the 
receiving antenna would be 

(3) 

Definition (1) gives, therefore, for the power flow per unit area at the 
receiving antenna 

and definition (2) gives for the received power 

Ps = PA' = P-& & 
From the law of reciprocity it follows that the same power is transferred if 
the transmitting and receiving roles are reversed. By (5) it is thus evident 
that 

G T A ft — GR A T 

or 

GT/ AT = Gr/A H (6) 

Equation (6) shows that the ratio of the gain and effective area has the 
same constant value for all antennas at a given frequency. It is necessary, 
therefore, to calculate this ratio only for a simple and well known antenna 
such as a small dipole or uniform current element. 

2.3 The Ratio G/A for a Small Current Element 

In Fig. 5 are given formulas2 in M.K.S. units for the free space radiation 
from a small current element with no heat loss. We have assumed that 

■ See S. A. Schelkunoff, Electromagnetic Waves, D. Van Nostrand Co., Inc., 1943, p. 133 
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Fig. 5—Free Space Radiation from a Small Current Element with Uniform Current 
Amperes over its Entire Length. 

this element is centered at the origin of a rectangular coordinate system 
and that it lies along the Z axis. At a large distance r from the element 
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the maximum power flow per unit area occurs in a direction normal to it and 
is given by 

_ 3W watts . 
n"lx Srr2 meter2 ( ^ 

where W is the total radiated power. If W had been radiated equally 
in all directions the power flow per unit area would be 

p _ W_ watts 
0 Ittt2 meters2 

It follows that the gain of the small current element is 

Gdi.pu, = = 1.5 (9) 
JO 

The effective area of the dipole will now be calculated. When it is used 
to receive a plane linearly polarized electromagnetic wave, the available 
output power is equal to the induced voltage squared divided by four times 
the radiation resistance. Thus 

Pb = Watts (10) 
4/vrad 

where E is the effective value of the electric field of the wave, t is the length 
of the current element and RTad is the radiation resistance of the current 

element. From Fig. 5 we see that i?rad = ohms. Since the power 
A" 

flow per unit area is equal to the electric field squared divided by the im- 
E2 

pedance of free space, in other words Pq = -r— we have 
I/Utt 

■^dipoie = § = meter2 (11) 
■To ott 

We combine formulas (9) and (11) to find that 

C'dipole   ^TT ^ 
-4111 pole 

Since, as proved in 2.2 this ratio is the same for all antennas, it follows that 
for any antenna 
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2.4 The General Transmission Formula 

Transmission loss between transmitter and receiver through the radio 
circuit shown in Fig. 4 was given by equation (5). By substituting the 
relation (12) into (5) we can obtain the simple free space transmission 
formula: 

Pb = Ft watts (13) 

Although this formula applies to free space only it is believed to be as useful 
in radio engineering as Ohm's law is in circuit engineering. 

2.5 The Reradiation Formula 

One further relation, the radar reflection formula is of particular interest. 
Consider the situation illustrated in Fig. 6. Let Pr be the power radiated 

REFLECTING OBJECT 
( A 5;PROJECTED AREA IN 

DIRECTION OF RADAR) 
RADAR _ A-r G T,^T 

TRANSMITTER 

RECEIVER 
AR,GR 

Fig. 6—Radar with Separate Receiving and Transmitting Antennas. 

from an antenna with effective area A r, As the area of a reflecting object at 
distance d from the antenna and Pr the power received by an antenna of 

effective area Ar. By equation (13) the power strikingis ^ 3 . If 

this power were reradiated equally in all directions the reflected power flow 

at the receiving antenna would be but since the average reradiation 

is larger toward the receiving antenna, the power flow per unit area there is 

usually K PtA tA3 where K*> 1. It follows from (2) that 
47nPX2 

_ vPTAtARAS /j.-V 
Pr- K 4xX2^ U ; 

Formula (14) shows clearly why the use of large and efficient antennas will 
greatly increase the radar range. 

Formula (14) applies to free space only. Application to other conditions 
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may require corrections for the effect of the "ground", and for the effect 
of the transmission medium, which are beyond the scope of this paper. 

2.6 The Plane, Linearly Polarized Electromagnetic Wave 

In the foregoing sections we have referred several times to 'plane, linearly 
polarized electromagnetic waves'. These waves occur so commonly in 
antenna theory and practice that it is worth while to discuss them further 
here. 

Some properties of linearly polarized, plane electromagnetic waves are 
illustrated in Fig. 7. At any point in the wave there is an electric field and 
a magnetic field. These fields are vectorial in nature and are at right 
angles to each other and to the direction of propagation. It is customary 
to give the magnitude of the electric field only. 

If we use the M.K.S. system of units the magnitudes of the fields are 
expressed in familiar units. Electric intensity appears as volts per meter 
and magnetic intensity as amperes per meter. The ratio of electric to 
magnetic intensity has a value of 1207r or about 377 ohms. This is the 
'impedance' of free space. The power flow per unit area is expressed in 
watts per square meter. We see, therefore, that the electromagnetic wave 
is a means for carrying energy not entirely unlike a familiar two wire line 
or a coaxial cable. 

Electromagnetic waves are generated when oscillating currents flow in 
conductors. We could generate a plane linearly polarized electromagnetic 
wave with a uniphase current sheet consisting of a network of fine wires 
backed up with a conducting reflector as shown in Fig. 7. This wave could 
be absorbed by a plane resistance sheet with a resistivity of 377 ohms, also 
backed up by a conducting sheet. The perfectly conducting reflecting 
sheets put infinite impedances in parallel with the current sheet and the 
resistance sheet, since each of these reflecting sheets has a zero impedance 
at a spacing of a quarter wavelength. 

A perfectly plane electromagnetic wave can exist only under certain ideal 
conditions. It must be either infinite in extent or bounded appropriately 
by perfect electric and magnetic conductors. Nevertheless thinking in 
terms of plane electromagnetic waves is common and extremely useful. In 
the first place the waves produced over a small region at a great distance 
from any radiator are essentially plane. Arguments concerning receiving 
antennas therefore generally assume that the incident waves are plane. In 
the second place an antenna which has dimensions of many wavelengths can 
be analyzed with considerable profit on the basis of the assumption that it 
transmits by producing a nearly plane electromagnetic wave across its 
aperture. This method of analysis can be applied to the majority of micro- 
wave radar antennas, and will be discussed in the following sections. 
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3. Wave Front Analysis 

The fundamental design question is "How to get what we want?" In 
a radar antenna we want specified radiation characteristics; gain, pattern 
and polarization. Electromagnetic theory tells us that if all electric and 
magnetic currents in an antenna are known its radiation characteristics 
may be derived with the help of Maxwell's Equations. However, the es- 
sence of electromagnetic theory insofar as it is of use to the radar antenna 

WAVE GENERATOR 

REFLECTING 
SHEET 

4 

CURRENT 
SHEET 

WAVE RECEIVER 
REFLECTING 

SHEET 
RESISTANCE 

SHEET 

1 

- I 2TT 
A MAGNETIC INTENSITY = H =Ie 

ELECTRIC INTENSITY = E = I20n H 

L AMPERES 
METER 

VOLTS 

POWER FLOW = P - EH WAT TS METER 
METER 

CURRENT DENSITY- I 
RESISTIVITY =R = I201T O.HMS 

Fig. 7—Linearly Polarized Plane Electromagnetic Waves. 

designer can usually be expressed in a simpler, more easily visualized and 
thus more useful form. This simpler method we call wave front analysis. 

In a transmitting microwave antenna the power to be radiated is used to 
produce currents in antenna elements which are distributed in space. This 
distribution is usually over an area, it may be discrete as with a dipole array 
or it may be continuous as in an electromagnetic horn or paraboloid. These 
currents generate an advancing electromagnetic wave over the aperture of 
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the antenna. The amplitude, phase and polarization of the electric intensity 
in portions of the wave are determined by the currents in the antenna and 
thus by the details of the antenna structure. This advancing wave can be 
called the 'wave front' of the antenna. 

When the wave front of an antenna is known its radiation characteristics 
may be calculated. Each portion of the wave front can be regarded as a 
secondary or 'Huygens' source of known electric intensity, phase and polari- 
zation. At any other point in space the electric intensity, phase and polari- 
zation due to a Huygens source can be obtained through a simple expression 
given in the next section. The radiation characteristics of the antenna can 
be found by adding or integrating the effects due to all Huygens sources of 
the wave front. 

This procedure is based on the assumption that* the antenna is transmit- 
ting. A basic law of reciprocity assures us that the receiving gain and radia- 
tion characteristics of the antenna will be identical with the transmitting 
ones when only linear elements are involved. 

This resolution of an antenna wave front into an array of secondary 
sources can be justified within certain limitations on the basis of the induc- 
tion theorem of electromagnetic theory.3 These limitations are discussed in 
a qualitative way in section 3.13. 

3.1 The Huygens Source 

Consider an elementary Huygens source of electric intensity Eopolarized 
parallel to the .Y axis with area dS in the YF plane (Fig. 8). This can be 
thought of as an element of area dS of a wave front of a linearly polarized 
plane electromagnetic wave which is advancing in the positive z direction.3 

From Maxwell's Equations we can determine the field at any point of space 
due to this Huygens Source. The components of electric field, are found 
to be 

Er =0 

Ee = <C,(2T/X)r(l + cos 0) cos 0 

E# = e-,(2,r'X)r(1 + cos 0) sin tp 
l\r 

where X is the wavelength. . 
We see at once that this represents a vector whose absolute magnitude 

at all points of space is given by 

l-El = ^(1 + msfl). (16) 

3 S. A. SchclkunolT, Loc. Cit., Chap. 9. 
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E dS 
Here --— is an amplitude factor which depends on the wavelength, intensity 

X 
and area of the elementary source and 1/r is an amplitude factor which 
specifies the variation of field with distance. (1 + cos 0) is an amplitude 
factor which shows that the directional pattern of the elementary source is a 
cardioid with maximum radiation in the direction of propagation and no 
radiation in the reverse direction. 

When we use the properties of the Huygens source in analyzing a micro- 

A  
/ ^ 

/ 

DIRECTION OF 
PROPAGATION 

\ / 
d s 

Fig. 8—The Huygens Source. 

wave antenna we are usually concerned principally with radiation in or near 
the direction of propagation. For such radiation Equation 16 takes a par- 
ticularly simple form in Cartesian Coordinates 

Ex ^ i ^ e-iV''»r. E ^ 0; E2 = 0. 
\r 

(17) 

This represents an electric vector nearly parallel to the electric vector of the 

source. The amplitude is given by the factor 
EpdS 

Xr 
and the phase by the 
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factor i e ,(2,r/X)r. With this equation as a basis we will now proceed to 
study some relevant matters concerning radar antennas. 

3.2 Gain and Effective Area of an Ideal Antenna 

On the basis of (17) we can now determine the gain of an ideal antenna of 
area S {S y> X2). This antenna is assumed to be free of heat loss and to 
transmit by generating an advancing wave which is uniform in phase and 
amplitude in the XY plane. Let the electric intensity in the wave front of 

AREA= S 

/o E0 

Fig. 9—An Ideal Antenna. 

the ideal antenna be Eq polarized parallel to the X axis (Fig. 9). The trans- 
mitted power Ft is equal to the power flow through ^ and is given by 

Ft = iC5- (1« 

At a point Q on the Z axis the electric intensity is obtained by adding the 
effects of all the Huygens sources in S. If the distance of Q from 0 is sc 
great that 

r = d + A 
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where A is a negligibly small fraction of a wavelength for every point on A" 
then we see from (17) that the electric vector at Q is given by 

Ex = f i <r,H2T/X)r = ie-i{-tMd ; £„ = 0; £. = 0. (19) 
Js \r Ao 

The power flow per unit area at Q is therefore 

_ 1 ElS2 _ PtS 
1207r \W XW 

Po the power flow per unit area at Q when power is radiated isotropically 
from 0 is found by assuming that Pt is spread evenly over the surface of a 
sphere of radius d. 

Po = (20) And2 

The gain of a lossless, uniphase, uniamplitude, linearly polarized antenna 
is, by the definition of equation 1, the ratio of 19 and 20. 

G- = p4/^=i4- (21) 

It follows from 12 that the effective area of the ideal antenna is 

A = S (22) 

In other words in this ideal antenna the effective area is equal to the actual 
area. This is a result which might have been obtained by more direct 
arguments. 

3.3 Gain and Effective Area of an Antenna with Aperture in a Plane and with 
Arbitrary Phase and Amplitude 

Let us consider an antenna with a wave front in the XY plane which has 
a known phase and amplitude variation. Let the electric intensity in the 
wave front be 

E{x, y) = E.a(x, (23) 

polarized parallel to the x axis. The radiated power is equal to the power 
flow through S and is given by 

_ £o J a2(x, y) dS 
Ptaa = J '' (24) 

120x 

The input power to the antenna is 

fr Pt= PtJL (25) 
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where L is a loss factor (< 1). At a point Q on the Z axis the electric inten- 
sity is obtained by adding the effects of all the Huygens sources in S. If 
OQ is as great as in the above derivation for the gain of an ideal antenna then 
we see from 17 that the electric intensity at Q is 

i(,2rl\)d 
Ex = t 

. e 
\d 

Eo f a(x, y)ei*(x-v)dS-, Ev =();& = 0. 

The power flow per unit area at Q is given by 

P = 120*- ' Ex 

(26) 

(27) 

and Po the power flow per unit area at Q when PT is radiated isotropically 
is given by equation (3). 

The power gain of the antenna, by definition 1 is therefore 

■M) 
/ Pt _ ^irL 

1207r / 4^/2 _ 'W 

[ a(x, y)ei*{x'v)dS 
Js 

J aix, y) dS 

The gain expressed in db is given by 

Gdi = 10 log io G 

We combine 12 and 28 to obtain 

A = L 
^ a{x, y)e <t>(x,v) dS 

(28) 

(29) 

(30) 

£ a'{x, y) dS 

a formula for the effective area of the antenna. 

3.4 The Significance of the Pattern of a Radar Antenna 

The accuracy with which a radar can determine the directions to a target 
depends upon the beam widths of the radar antenna. The ability of the 
radar to separate a target from its background or distinguish it from other 
targets depends upon the beam widths and the minor lobes of the radar 
antenna. The efficiency with which the radar uses the available power to 
view a given region of space depends on the beam shape of the antenna. 
These quantities characterize the antenna pattern. In the following sec- 
tions means for the calculation of antenna patterns in terms of wave front 
theory will be developed, and some illustrations will be given. 
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3.5 Pattern in Terms of Antenna Wave Front 

If the relative phase and amplitude in a wave front are given by 

E{x, y) = a{x, y)e"i'(x'v) (31) 

the relative phase and amplitude at a distant point Q not necessarily on the 
Z axis (Fig. 10) in the important case where the angle QOZ between the 
direction of propagation and the direction to the point is small, is given from 
(17) by adding the contributions at Q due to all parts of the wave front. 
This gives 

EQ = ^ f e-^'e^'^aix, y) dS. 
Ad Js 

(32) 

ANTENNA WAVE 
FRONT 

-r 

y / i 
i j 

/ / 
/ / 

l / 
i / 

A 

Fig. 10—Geometry of Pattern Analysis. 

The quantity r in (32) is the distance from any point P with coordinates a?, 
in the .YF, plane to the point Q (Fig. 10). Simple trigonometry shows 

that when OQ is very large 

r — d — x sin a — y sin (3 (33) 

where d is the distance OQ, a is the angle ZOQ' between OZ and OQ' the 
projection of OQ on the XZ plane and /3 is similarly the angle ZOQ". The 
substitution of 33 into 32 gives 

—»(2ir/X)d 
E0 = 

t e 
\d Jsj 

(34) 
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In most practical cases this equation can be simplified by the assumptions 

0O, y) = 0'O) + 0" {y) 

a{x, y) = 

from which it follows that 

\Eq\ = F{d)F{a)F(p) (35) 

where F{d) is an amplitude factor which does not depend on angle, 

F{a) = I ei(2TMxaiDa+^'Ma,(x)dx (36) 

is a directional factor which depends only on the angle a and not on the angle 
0 or d, and F(0) similarly depends on 0 but not on a or d. The pattern of 
an antenna can be calculated with the help of the simple integrals as in 36, 
and illustrations of such calculations will be given in the following sections. 

3.6 Pattern of an Ideal Rectangular Antenna 

Let the wave front be that of an ideal rectangular antenna of dimensions 
a, b; with linear polarization and uniform phase and amplitude. The dimen- 
sions a and b can be placed parallel to the X and Y axes respectively as 
sketched in Fig. 9. Equation 36 then gives 

F(a) = r C
<(2T/X)l8ina dx = a ^ (37) 

./-a/2 0 

, , tt a sin a 
where 0 = —  . 

Similarly 

, tt sin /3 
where 0 =     

A 

The pattern of the ideal rectangular aperture, in other words the distribution 
of electrical field in angle is thus given approximately by 

(39) 
0 0 

The function is plotted in Fig. 11. It is perhaps the most useful 
■ 0 

function of antenna theory, not because ideal antennas as defined above are 
particularly desirable in practice but because they provide a simple stand- 

F{0) = b 
sin 0' (38) 
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ard with which more useful but more complex antennas can profitably be 
compared. 

3.7 Effect on Pattern of Amplitude Taper 

The pattern which results from an ideal wave front has undesirably 
v 

high minor lobes for most radar applications. These minor lobes will be 
reduced if the wave front of constant amplitude is replaced by one which 
retains a constant phase but has a rounded or 'tapered' amplitude dis- 
tribution. 

1.0 
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Fig. 11—Pattern of Ideal Rectangular Antenna. 

If such an amplitude taper is represented analytically by the function 

a'ix) = C: + C2 cos — 
a 

(40) 

then equation (36) is readily integrable. To integrate it we utilize the 
identity 

ttx e 
cos — = 

a 

-Kirz/a 
+ e 

—iirr/a 

upon which the integral becomes the sum of three simple integrals of the 
form 

fa/2 

■a/2 
eikxdx = a 

. ka 
sinT 

ka 
y 

(41) 
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We therefore obtain 

^ sin i// . Cn 
F(a) = aCi + 0 y 

sin (^p + ^ sin (j/ - 
(42) 

The patterns resulting from two possible tapers are given by substi- 
tuting Ci = 0, Ca = 1 and Ci = 1/3, Ca = 2/3 in (42). These patterns are 

sin ex 
evidently calculable in terms of the known function -y • They are plotted 

in Figs. 12 and 13. 
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Fig. 12—Pattern of Tapered Rectangular Antenna. 

It will be observed that minor lobe suppression through tapering is ob- 
tained at the expense of beam broadening. In addition to this the gain is 
reduced by tapering, as could have been calculated from 28. These unde- 
sirable effects must be contended with in any practical antenna design. 
The choice of taper must be made on the basis of the most desirable com- 
promise between the conflicting factors. 

3.8 Effect on Pattern of Linear Phase Variation 

If we assume a constant amplitude and a linear phase variation 

= —k\X 
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over an aperture —a/2 < rr < a/2 then 36 becomes a simple integral of 
the form (41) and we obtain 

. sin \p" . ... Trfl . kia 
J (a) = a J where ^ = — sin a — — (43) 

i/- A 2 

The physical interpretation 0^(43) is simply that the pattern is identical to 
the pattern of an antenna with constant amplitude and uniform phase but 
rotated through an angle 6 where 

i.o 
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Fig. 13—Pattern of Tapered Rectangular Antenna. 

Simple examination shows that the new direction of the radiation maximum 
is at right angles to a uniphase surface, as we would intuitively expect. This 
phenomenon has particular relevance to the design of scanning antennas. 

3.9 Effect on Pattern of Square Law Phase Variation 

If we assume a constant amplitude and a square law phase variation 

<h'{x) = — &2.V2 

over the aperture a/2 < x < a/2 then the substitution 

27r 
1 

X~h 

sin a 
X + 

2k 2 _ 
(44) 
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reduces (36) to the form 

fw = f c-..v dx C45) 

Equation (45) can be evaluated with the help of Fresnel's Integrals 

J cos X2 dX, J sin X2 dX 
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Fig. 14—Patterns of Rectangular Apertures with Square Law Phase Variation. 

which are tabulated4, or from Cornu's Spiral which is a convenient graphical 
representation of the Fresnel Integrals. 

Typical computed patterns for apertures with square law phase variations 
are plotted in Fig. 14. These theoretical curves can be applied to the fol- 
lowing important practical problems. 

(1) The pattern of an electromagnetic horn. 
4 For numerical values of Fresnel's Integrals and a plot of Cornu's Spiral see Jahnke 

and Emde, Tables of Functions B. G. Teubner, Leipzig, 1933, or Dover Publications, New 
York City, 1943. ' ' 
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(2) The defocussing of a reflector or lens due to improper placing of the 
primary feed. 

(3) The defocussing of a zoned reflector or lens due to operation at a fre- 
quency off mid-band. 

In addition to providing distant patterns of apertures with curved wave 
fronts (44) provides theoretical 'close in' patterns of antennas with plane 
wave fronts. This arises from the simple fact that a plane aperture appears 
as a curved aperture to close in points. The degree of curvature depends 
on the distance and can be evaluated by extremely simple geometrical con- 
siderations. When this has been done we find that Fig. 14 represents the 
so-called Fresnel diffraction field. 

With this interpretation of square law variation of the aperture we can 
examine several additional useful problems. We can for instance justify 
the commonly used relation 

for the minimum permissible distance of the field source from an experi- 
mental antenna test site. This distance produces an effective phase curva- 
ture of X/16. We can examine optical antenna systems employing large 
primary feeds, in particular those employing parabolic cylinders illuminated 
by line sources. 

3.10 Effect on Pattern of Cubic Phase Variation 

If we assume a constant amplitude and a cubic phase variation <h'{x) = 
— klx* over the aperture from—a/2 < x < a/2 then equation (36) becomes 

from which it follows that (46) can be integrated since it reduces to a sum of 
three terms each of which can be integrated. 

Typical computed patterns for apertures with cubic phase variation are 
plotted in Figs. 15 and 16. Cubic phase distortions are found in practice 
when reflectors or lenses are illuminated by primary feeds which are off axis 
either because of inaccurate alignment or because beam lobing or scanning 
through feed motion is desired. The beam distortion due to cubic phase 
variation is known in optics as 'coma' and the increased unsymmetrical lobe 
which is particularly evident in Fig. 16 is commonly called a 'coma lobe'. 

If k\xz < ^ then it is a fairly good approximation to write 

(46) 

~\-ik\x'-kEf+ ■■■ 
£ 

(47) 
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Fig. 15—Pattern of Rectangular Antenna with Cubic Phase Variation. 
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Fig. 16—Pattern of Rectangular Antenna with Cubic Phase Variation. 

3.11 Two General Methods 

In sections 3.7 and 3.8 we integrated (36) by expressing a'CtOc'* (x) asasum 
of terms of the form Since a'{x)c")' <"r) for finite amplitudes in a finite 
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aperture can always be expressed as a Fourier sum of this form this solution 
can in principle always be found. 

Alternatively in section 3.10 the integral was evaluated as a sum of inte- 

grals of the general type j x"e,kz dx. Since a'{x)e't' 00 for finite amplitudes 

in a finite aperture can always be expressed in terms of a power series, 
this solution can also in principle always be found. 

3.12 Arrays 

When the aperture consists of an array of component or unit apertures 
the evaluation of (36) must be made in part through a summation. When all 
of the elementary apertures are alike this summation can be reduced to the 
determination of an 'Array Factor'. The pattern of the array is given by 
multiplying the array factor by the pattern of a single unit. 

The pattern of an array of identical units spaced equally at distances some- 
what less than a wavelength can be proved to be usually almost equivalent 
to the pattern of a continuous wave front with the same average energy 
density and phase in each region. 

3.13 Limitations to Antenna Wave Front Analysis 

Through the analysis of antenna characteristics by means of wave front 
theory as based on equation (17) we have been able to demonstrate some of 
the fundamental theoretical principles of antenna design. The use of this 
simple approach is justified fully by its relative simplicity and by its applica- 
bility to the majority of radar antennas. Nevertheless it cannot always be 
used. It will certainly be inaccurate or inapplicable in the following cases: 

(1) When any dimension of the aperture is of the order of a wavelength 
or smaller (as in many primary feeds). 

(2) Where large variations in the amplitude or phase in the aperture occur 
in distances which are of the order of a wavelength or smaller (as in 
dipole arrays). 

(3) Where the antenna to be considered does not act essentially through 
the generation of a plane wave front (as in an end fire antenna or a 
cosecant antenna). 

When the wave front analysis breaks down alternative satisfactory ap- 
proaches based on Maxwell's equation are sometimes but not always fruit- 
ful. Literature on more classical antenna theory is available in a variety of 
sources. For much fundamental and relevant theoretical work the reader 
is referred to Schelkunoff.5 

6 S. A. Schelkunoff, Loc. Cit. 
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4. Application of General Principles 

In the foregoing sections we have provided some discussion of what hap- 
pens to a radar signal from the time that the pulse enters the antenna on 
transmission until the time that the reflected signal leaves the antenna on 
reception. We have for convenience divided the principles which chiefly 
concern us into three groups, transmission line theory, transmission prin- 
ciples and wave front theory. 

With the aid of transmission line theory we can examine problems con- 
cerning locally guided or controlled energy. The details of the problems of 
antenna construction, such as those to be discussed in Part II frequently 
demand a grasp of transmission line theory. With it we can study local 
losses, due to resistance or leakage, which affect the gain of the antenna. 
We can examine reflection problems and their effect on the match of the 
antenna. Special antennas, such as those employing phase shifters or trans- 
mission between parallel conducting plates, introduce many special prob- 
lems which lie wholly or partly in the transmission line field. 

An understanding of the principles which govern transmission through 
free space aids us in comprehending the radar antenna field as a whole. 
Through a general understanding of antenna gains and effective areas we 
are better equipped to judge their significance in particular cases, and to 
evaluate and control the effects of particular methods of construction on 
them. 

Wave front theory provides us with a powerful method of analysis through 
which we can connect the radiation characteristics produced by a given 
antenna with the radiating currents in the antenna. Through it we can 
examine theoretical questions concerning beam widths and shape, unwanted 
radiation and gain. 

An understanding of theory is necessary to the radar antenna designer, 
but it is by no means sufficient. It is easy to attach too much importance 
to theoretical examination and speculation while neglecting physical facts 
which can 'make or break' an antenna design. Theory alone provides no 
substitute for the practical 'know how' of antenna construction. It cannot 
do away with the necessity for careful experiment and measurement. Least 
of all can it replace the inventiveness and aggressive originality through 
which new problems are solved and new techniques are developed. 

PART II|.. ■ 

METHODS OF ANTENNA CONSTRUCTION 

5. General . 

Techniques are essential to technical accomplishment. An understanding 
of general principles alone is not enough. The designing engineer must have 
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at his disposal or develop practical methods which can produce the results 
he requires. The effectiveness and simplicity of these methods are fair 
measures of the degree of technical development. 

The study of methods of radar antenna construction is the study of the 
means by which radar antenna requirements are met. In a broader sense 
this includes an examination of mechanical structures, of the metals and 
plastics from which antennas are made, of the processes by which they are 
assembled, and of the finishes by which they are protected from their envi- 
ronment. It might include a study of practical installation and maintenance 
procedures. But these matters, which like the rest of Radar have unfolded 
widely during the war, are beyond the scope of this paper. An adequate 
discussion of them would have to be based on hundreds of technical reports 
and instruction manuals and on thousands of manufacturing drawings. The 
account of methods which is to follow will therefore be restricted to a dis- 
cussion, usually from the electrical point of view, of the more useful and 
common radar antenna configurations. 

6. Classification of Methods 

During the history of radar, short as it is, many methods of antenna con- 
struction have been devised. To understand the details of all of these 
methods and the diverse applications of each is a task that lies beyond the 
ability of any single individual. Nevertheless most of the methods fall into 
one or another of a limited collection of groups or classifications. We can 
grasp most of what is generally important through a study of these groups. 

In order to provide a basis for classification we will review briefly, from a 
transmitting standpoint, the action of an antenna. Any antenna is in a 
sense a transformer between a transmission line and free space. More 
explicitly, it is a device which accepts energy incident at its terminals, and 
converts it into an advancing electromagnetic wave with prescribed ampli- 
tude, phase and polarization over an area. In order to do this the antenna 
must have some kind of energy distributing system, some means of amplitude 
control and some means of phase control. The distributed energy must be 
suitably controlled in phase, amplitude and polarization. 

All antennas perform these functions, but different antennas perform 
them by different means. Through an examination of the means by which 
they are performed and the differences between them we are enabled to 
classify methods of antenna construction. 

To distribute energy over its aperture an antenna can use a branching 
system of transmission lines. When this is done the antenna is an array. 
Arrays are particularly common in the short wave communication bands, 
but somewhat less common in the microwave radar bands. In a somewhat 
simpler method the antenna distributes energy over an area by radiating it 
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from an initial source or 'primary feed'. This distribution can occur in 
both dimensions at once, as from a point source. Alternatively the energy 
can be radiated from a primary source but be constrained to lie between 
parallel conducting plates so that it is at first distributed only over a long 
narrow aperture or 'line source'. Distribution over the other dimension 
occurs only after radiation from the line source. 

In order to control the amplitude across the aperture of an array antenna 
we must design the branching junctions so that the desired power division 
occurs in each one. When the energy is distributed by radiation from a 
primary source we must control the amplitude by selecting the proper pri- 
mary feed directivity. 

We can control the phase of an array antenna by choosing properly the 
lengths of the branching lines. Alternatively we can insert appropriate 
phase changers in the lines. 

When the energy is distributed by primary feeds, methods resembling 
those of optics can be used to control phase. The radiation from a point 
source is spherical in character. It can be 'focussed' into a plane wave by 
means of a paraboloidal reflector or by a spherical lens. The radiation from 
a point source between parallel plates or from a uniphase line source is 
cylindrical in character. It can be focussed by a parabolic cylinder or a 
cylindrical lens. 

In Table A we have indicated a possible classification of methods of radar 
antenna construction. This classification is based on the differences dis- 
cussed in the foregoing paragraphs. 

Table A 
Classification of Methods of Radar Antenna Construction 
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7. Basic Design Formulation 

Certain design factors are common to almost all radar antennas. Because 
of their importance it would be well to consider these factors in a general 
way before proceeding with a study of particular antenna techniques. 

Almost every radar antenna, regardless of how it is made, has a well de- 
fined aperture or wave front. Through wave front analysis we can often 
examine the connections between the Huygens sources in the antenna aper- 
ture and the radiation characteristics of the antenna. We can, in other 
words, use wave front analysis to study the fundamental antenna design 
factors, provided the analysis does not violate one of the conditions of 
section 3.13. 

7.1 Dimensions oj the Aperture 

The dimensions of the aperture of a properly designed antenna are related 
to its gain by simple and general approximate relations. If the aperture is 
Uniphase and has an amplitude distribution that is not too far from constant 
the relation 

^ 47rA 
XT 

is useful in connecting the gain of an antenna with the area of its aperture. 
The effective area is related to the area of the aperture by the equation 

A = VS 

where 77 is an efficiency factor. In principle rj could have any value but in 
practice for microwave antennas 77 has always been less than one. Its value 
for most uniphase and tapered amplitude antennas is between 0.4 and 0.7. 
In special cases, e.g. for cosecant antennas or for some scanners its value 
may be less than 0.4. 

The necessary dimensions for the aperture may be determined from the 
required beam widths in two perpendicular directions. Beam widths are 
usually specified as half power widths, that is by the number of degrees 
between directions for which the one way response is 3 db below the maxi- 
mum response. Figure 11 shows that for an ideal rectangular antenna with 

uniform phase, polarization and amplitude 0^/2= 51 - degrees where ap/* = CL 
half power width in degrees, a = aperture dimension and X = wavelength. 

The relation ap/2 = 65 - degrees is more nearly correct for the majority of 
d 

practical antennas with round or elliptical apertures and with uniform phase 
and reasonably tapered amplitudes. 
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7.2 Amplitude Distribution 

Except where special, in particular cosecant, patterns are desired the 
principle factors affecting amplitude distribution are efficiency and required 
minor lobe level. The amplitude distribution or taper of an ideal uniphase 
rectangular wave front affects the minor lobe level as indicated by Figures 11, 
12 and 13. Practical antennas tend to fall somewhat below this ideal picture 
because of non-uniform phase and because of variations from the ideal 
amplitude distribution due to discontinuities in the aperture and undesired 
leakage or spillover of energy. Nevertheless a commonly used rule of thumb 
is that minor lobes 20 db or more below the peak radiation level are tolerable 
and will not be exceeded with a rounded amplitude taper of 10 or 12 db. 

7.3 Phase Control 

Uniphase wave fronts are used whenever a simple pattern with prescribed 
gain, beam widths and minor lobes is to be obtained with minimum aperture 
dimensions. When special results are desired such as cosecant patterns or 
scanning beams the phase must be varied in special ways. 

Mechanical tolerances in the antenna structure make it impossible to hold 
phases precisely to the desired values. The accuracy with which the phases 
can be held constant in practice varies with the technique, the antenna size 
and the wave length. Undesired phase variations increase the minor lobes 
and reduce the gain of an antenna. The extent to which phase variations 
can be expected to reduce the gain is indicated in Fig. 17. 

8. Parabolic Antennas 

The headlights of a car or the searchlights of an antiaircraft battery use 
reflectors to produce beams of light. Similarly the majority of radar anten- 
nas employ reflectors to focus beams of microwave energy. These reflectors 
may be exactly or approximately parabolic or they may have special shapes 
to produce special patterns. If they are parabolic they may be paraboloids 
which are illuminated by point sources and focus in both directions, or they 
may be parabolic cylinders which focus in only one direction. If they are 
parabolic cylinders they may be illuminated by line sources or they may be 
confined between parallel conducting plates and illuminated by point sources 
to produce line sources. 

8.1 Control of Phase 

A simple and natural way to distribute energy smoothly in space is to 
radiate it from a relatively nondirectional 'primary' source such as a dipole 
array or an open ended wave guide. This energy will be formed into a direc- 
tive beam if a reflector is introduced to bring it to a plane area or wave front 
with constant phase. If the primary source is effectively a point as far as 
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phase is concerned, that is if the radiated energy has the same phase for all 
points which are the same distance from a given point, then the reflector 
should be parabolic. This can be proved by simple geometrical means. 

In Fig. 18 let the point source S coincide with the point x = f, y = 0 
of a coordinate system and let the uniphase wave front coincide with the 
line x = f. Let us assume that one point O of the reflector is at the origin. 
Then it can be shown that any other point of the reflector must lie on the 
curve 

y- = 4Jx 

SQUARE PHASE VARIATIONS 

SAW TOOTH PHASE VARIATIONS 

20 40 60 80 
(})= MAXIMUM PHASE VARIATION IN DEGREES 

Fig. 17—Loss due to Phase Variation in Antenna Wave Front. 

This is a parabola with focus at/, o and focal length/. 
The derivation based on Fig. 18 is two dimensional and therefore in 

principle applies as it stands only to line source antennas employing para- 
bolic cylinders bounded by parallel conducting planes (Fig. 24 and 25). If 
Fig. 18 is rotated about the X axis the parabola generates a paraboloid of 
revolution (Fig. 3). This paraboloid focusses energy spreading spherically 
from the point source at S in such a way that a uniphase wave front over a 
plane area is produced. Alternatively Fig. 18 can be translated in the Z 
direction perpendicular to the XY plane. The parabola then generates a 



RADA R ANTENNAS 253 

parabolic cylinder and the point source S generates a line source at the focal 
line of the parabolic cylinder (Fig. 19). The energy spreading cylindrically 
from the line source is focussed by the parabolic cylinder in such a way that 
a uniphase wave front over a plane area is again produced. Parabolic 
cylinders and paraboloids are both used commonly in radar antenna practice. 

In the discussion so far it has been assumed that the primary source is 
effectively a point source and that the reflector is exactly parabolic. If the 
primary source is not effectively a point source, in other words if it produces 
waves which are not purely spherical, then the reflector must be distorted 
from the parabolic shape if it is to produce perfect phase correction. When 
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Fig. 18—Parabola. 
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this occurs the correct reflector shape is sometimes specified on the basis of 
an experimental determination of phase. 

8.2 Control of Amplitude 

When a primary source is used to illuminate a parabolic reflector there 
are two factors which affect the amplitude of the resulting wave front. One 
of these is of course the amplitude pattern of the primary source. The other 
is the geometrical or space attenuation factor which is different for different 
parts of the wave front. In most practical antennas each of these factors 
tends to taper the amplitude so that it is less at the edges of the antenna 
than it is in the central region. The effective area of the antenna is reduced 
by this taper. 

In any finite parabolic antenna some of the energy radiated by the primary 
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source will fail to strike the reflector. The effective area must also be re- 
duced by the loss of this 'spill-over' energy. 

The maximum effective area for a parabolic antenna is obtained by design- 
ing the primary feed to obtain the best compromise between loss due to 
taper and loss due to spill-over. It has been shown theoretically that this 
best compromise generally occurs when the amplitude taper across the 
aperture is about 10 or 12 db and that in the neighborhood of the optimum 
the efficiency is not too critically dependent on the taper. 

This theoretical result is well justified by experience and has been applied 
to the majority of practical parabolic antennas. It applies both when the 
reflector is paraboloidal so that taper in both directions must be considered 

and when the reflector is a parabolic cylinder with only a single direction 
of taper. It is a fortunate by-product of a 10 or 12 db taper that it is gen- 
erally sufficient to produce satisfactory minor lobe suppression. 

8.3 Choice of Configuration 

We have shown how a simple beam can be obtained through the use of a 
paraboloidal reflector with a point source or alternatively through the use 
of a reflecting parabolic cylinder and a line source. The line source itself 
can be produced with the help of a parabolic cylinder bounded by parallel 
conducting plates. We will now outline certain practical considerations. 
These considerations may determine which of the two reflector types will be 

8 C. C. Cutler, Parabolic Antenna Design for Microwaves, paper to be published in Proc. 
of the I. R. E. 
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Fig. 19—A Parabolic Cylinder with Line Feed. 
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used for a particular job. They may help in choosing a focal length and in 
determining which finite portion of a theoretically infinite parabolic curve 
should be used. Finally they may assist in determining whether reflector 
technique is really the best for the purpose at hand or whether we could do 
better with a lens or an array. 

In designing a parabolic antenna it must obviously be decided at an early 
stage whether a paraboloid or one or more parabolic cylinders are to be 
employed. This choice must be based on a number of mechanical and elec- 
trical considerations. Paraboloids are more common in the radar art than 
parabolic cylinders and are probably to be preferred, yet a categorical a 
priori judgment is dangerous. It will perhaps be helpful to compare the 
two alternatives by the simple procedure of enumerating some features in 
which each is usually preferable to the other. 
Paraboloidal antennas 

(a) are simpler electrically, since point sources are simpler than line 
sources. 

(b) are usually lighter. 
(c) are more efficient. 
(d) have better patterns in the desired polarization. 
(e) are more appropriate for conical lobing or spiral scanning. 

Antennas employing parabolic cylinders 
(a) are simpler mechanically since only singly curved surfaces are 

required. 

(b) have separate electrical control in two perpendicular directions. 
This last advantage of parabolic cylinders is important in special antennas, 

many of which will be described in later sections. It is useful where an- 
tennas with very large aspect ratios (ratio of dimensions of the aperture in 
two perpendicular directions) are desired. It is highly desirable where con- 
trol in one direction is to be achieved through some special means, as in 
cosecant antennas, or in antennas which scan in one direction only. 

Let us suppose that we have selected the aperture dimensions and have 
decided whether the reflector is to be paraboloidal or cylindrical. The 
reflector is not yet completely determined for we are still free in principle to 
use any portion of a parabolic surface of any focal length. In order to 
obtain economy in physical size the focal length is generally made between 
0.6a and 0.25a where 'a' is the aperture. For the same reason a section of 
the reflecting surface which is located symmetrically about the vertex is 
often chosen (Figures 3 and 19). 

When a symmetrically located section of the reflector is used certain diffi- 
culties are introduced. These difficulties, if serious enough so that their 
removal justifies some increase in size can be bypassed through the use of an 
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offset section as shown in Fig. 20. We can comment on these difficulties as 
follows: 

1. The presence of the feed in the path of the reflected energy causes a 
region of low intensity or 'shadow' in the wave front. The effect of 
this shadow on the antenna pattern depends on the size and shape of 
the feed and on the characteristics of the portion of the wave front 
where it is located. Its effect is to subtract from the undisturbed 
pattern a 'shadow pattern' component which is broad in angle. This 
decreases the gain and increases the minor lobes as indicated in Fig. 21.7 

2. Return of reflected energy into the feed introduces a standing wave 
of impedance mismatch in the feed line which is constant in amplitude 
but varies rapidly in phase as the frequency is varied. A mismatch at 
the feed which cancels the standing wave at one frequency will add to 
it at another frequency. A mismatch which will compensate over a 
band can be introduced by placing a raised plate of proper dimensions 
at the vertex of the reflector as indicated in Fig. 22, but such a plate 
produces a harmful effect on the pattern. In an antenna which must 
operate over a broad band it is consequently usually better to match 

7 Figures 21, 22, and 23 are taken from C. C. Cutler, loc. cit. 
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Fig. 20—Offset Parabolic Section. 
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Fig. 22—Apex Matching Plate for Improving the Impedance Properties of a Parabola. 
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the feed to space and accept the residual standing wave, or if this is 
too great to use an offset section of the parabolic surface. 

8.4 Feeds for Paraboloids 

We have seen that an antenna with good wave front characteristics and 
consequently with a good beam and pattern can be constructed by illu- 
minating a reflecting paraboloid with a properly designed feed placed at its 
focus. In this section we will examine the characteristics which the feed 
should have and some of the ways in which feeds are made in practice. 

A feed for a paraboloid should 
a. be appropriate to the transmission line with which it is fed. This is 

sometimes a coaxial line but more commonly a waveguide. 
b. Provide an impedance match to this feed line. This match should 

usually be obtained in the absence of the reflector but sometimes, for 
narrow band antennas, with the reflector present. 

c. have a satisfactory phase characteristic. For a paraboloid the feed 
should be, as far as phase is concerned, a true point source radiating 
spherical waves. As discussed at the end of 8.1, if the wave front is 
not accurately spherical, a compensating correction in the reflector can 
be made. 

d. have a satisfactory amplitude characteristic. According to 8.2 this 
means that the feed should have a major radiation lobe with its maxi- 
mum striking the center of the reflector, its intensity decreasing 
smoothly to a value about 8 to 10 db below the maximum in the direc- 
tion of the reflector boundaries and remaining small for all directions 
which do not strike the reflector. 

e. have a polarization characteristic which is such that the electric vec- 
tors in the reflected wave front will all be polarized in the same di- 
rection. 

"f. not disturb seriously the radiation characteristics of the antenna as a 
whole. The shadow effect of the feed, the feed line and the necessary 
mechanical supports must be small or absent. Primary radiation from 
the feed which does not strike the reflector or reflected energy which 
strikes the feed or associated structure and is then reradiated must be 
far enough down or so controlled that the antenna pattern is as 
required. 

In addition to the electrical requirements for a paraboloid feed it must of 
course be so designed that all other engineering requirements are met, it 
must be firmly supported in the required position, must be connected to the 
antenna feed line in a satisfactory manner, must sometimes be furnished with 
an air tight or water tight seal, and so forth. 
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From the foregoing it is evident that a feed for a paraboloid is in itself a 
small relatively non-directive antenna. Its directivity is somewhat less 
than that obtained with an ordinary short wave array. It is therefore not 
surprising that dipole arrays are sometimes used in practice to feed 
paraboloids. 

A simple dipole or half wave doublet can in itself be used to feed a parabo- 
loid, but it is inefficient because of its inadequate directivity. It is prefer- 
able and more common to use an array in which only one doublet is excited 
directly and which contains a reflector system consisting of another doublet 
or a reflecting surface which is excited parasitically. 

Dipole feeds although useful in practice have poor polarization charac- 
teristics and although natural when a coaxial antenna feed line is used are 
less convenient when the feed line is a waveguide. Since waveguides are 
more common in the microwave radar bands it is to be expected that wave- 
guide feeds would be preferred in the majority of paraboloidal antennas. 

The most easily constructed waveguide feed is simply an open ended 
waveguide. It is easy to permit a standard round or rectangular waveguide 
transmitting the dominant mode to radiate out into space toward the parabo- 
loid. It will do this naturally with desirable phase, polarization and ampli- 
tude characteristics. It is purely coincidental, however, when this results 
in optimum amplitude characteristics. It is usually necessary to obtain 
these by tapering the feed line to form a waveguide aperture of the required 
size and shape. The aperture required may be smaller than a standard 
waveguide cross section so that its directivity will be less. In this case it 
may be necessary to 'load' it with dielectric material so that the power can 
be transmitted. It may be greater, in which case it is sometimes called an 
'electromagnetic horn'. It may be greater in one dimension and less in the 
other, as when a paraboloidal section of large aspect ratio is to be illuminated. 

If a single open ended waveguide or electromagnetic horn is used to feed 
a section of the paraboloid which includes the vertex, the waveguide feed 
line must partially block the reflected wave in order to be connected to the 
feed. To avoid this difficulty several rear waveguide feeds have been used. 
In this type of feed the waveguide passes through the vertex of the parabo- 
loid and serves to support the feed at the focus. The energy can be caused 
to radiate back towards the reflector in any one of several ways, some of 
which involve reflecting rings or plates or parasitically excited doublets. 
The 'Cutler' feed8 is perhaps the most successful and common rear feed. It 
operates by radiating the energy back towards the paraboloid through two 
apertures located and excited as shown in Fig. 23. 

8 C. C. Cutler, Loc. Cit. 



260 BELL SYSTEM TECHNICAL JOURNAL 

8.5 Parabolic Cylinders between Parallel Plates 

In 8.0 we saw that parabolic cylinders may be illuminated by line sources 
or that they may be confined between parallel plates and illuminated by 
point sources to produce line sources. In either of these two cases the char- 
acteristics which the feed should have are specified accurately by the con- 
ditions stated at the beginning of 8.4 for paraboloidal feeds with the excep- 
tions that condition c must be reworded so that it applies to cylindrical 
rather than to spherical optics. 

We will first consider parabolic cylinders bounded by parallel plates 
because in doing so we describe in passing one form of feed for unbounded 
parabolic cylinders. Two forms of transmission between parallel plates 
are used in practice. 

a. The transverse electromagnetic (TEM) mode in which the electric 
vector is perpendicular to the plates. This is simply a slice of the 
familiar free space wave and can be propagated regardless of the spacing 
between the plates. It is the only mode that can travel between the 
plates if they are separated less than half a wavelength. Its velocity 
of propagation is independent of plate spacing. 

b. The TEoi mode in which the electric vector is parallel to the plates. 
This mode is similar to the dominant mode in a rectangular waveguide 
and differs from it only in that it is not bounded by planes perpen- 
dicular to the electric vector. It can be transmitted only if the plate 
spacing is greater than half a wavelength, is the only parallel mode 
that can exist if the spacing is under a wavelength and is the only sym- 
metrical parallel mode that can exist if the plate spacing is under three 

_L 

Fig. 23—Dual Aperture Rear Feed Horn. 
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halves of a wavelength. Its phase velocity is determined by the plate 
spacing in a manner given by the familiar waveguide formula 

where V is the velocity of light, e is the dielectric constant relative to 
free space of the medium between the plates, X is the wavelength in 
air and 'a' is the plate spacing. 

The TEM mode between parallel plates can be generated by extending 
the central conductor of a coaxial perpendicularly into or through the wave 
space and backing it up with a reflecting cylinder as indicated in Fig. 24. 

Fig. 24—Parabolic Cylinder Bounded by Parallel Plates. Probe Feed. 

Alternatively this mode can be generated as indicated by Fig. 25 by a wave- 
guide aperture with the proper polarization. 

The TEqi mode, when used, is usually generated by a rectangular wave- 
guide aperture set between the plates with proper polarization as indicated 
in Fig. 25. Care must be taken that only the desired mode is produced. 
The TEM mode will be unexcited if only the desired polarization is present 
in the feed. The next parallel mode is unsymmetrical and therefore even 
if it can be transmitted will be unexcited if the feed is placed symmetrically 
with respect to the two plates. 

Parallel plate antennas as shown in figures 24 and 25 are useful where 
particularly large aspect ratios are required. The aperture dimension per- 
pendicular to the plates is equal to the plate spacing and therefore small. 
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It can be increased somewhat by the addition of flares. The other dimen- 
sion can easily be made large. 

Fig. 25—-Parabolic Cylinder Bounded by Parallel Plates. Wave Guide Feed. 

m 

Fig. 26.—Experimental 7' x 32' Antenna. 

8.6 Line Sources for Parabolic Cylinders 

A line source for a parabolic cylinder is physically an antenna with a long 
narrow aperture. Any means for obtaining such an aperture can be used in 
producing a line source. Parallel plate systems as described in 8.5 have 
been used as line sources in several radar antennas. The large {!' x 32') 
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experimental antenna shown in Fig. 26 was one of the first to illustrate the 
practicality of this design. 

The horizontal pattern of the T x 32' antenna is plotted in Fig. 27. The 
horizontal beam width is seen to be of the order of 0.7 degrees. 

The antenna illustrated in Fig. 26 is interesting in another way for it is a 
good example of a type of experimental construction which was extremely 
useful in wartime antenna development. Research and development engi- 
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Fig. 27—T x 32' Antenna, Horizontal Pattern. 

neers found that they could often save months by constructing initial 
models of wood. Upon completion of a wooden model electrically im- 
portant surfaces were covered with metal foil or were sprayed or painted 
with metal. Thus, where tolerances permitted, the carpenter shop could 
replace the relatively slow machine shop. 

Another form of parallel plate line feed results when a plastic lens is placed 
between parallel plates and used as the focussing element. A linear array 
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of elements excited with the proper phase and amplitude can also be , 
used. Some discussion of alternative approaches will appear in the section 
on scanning techniques. 

8.7 Tolerances in Parabolic Antennas 

The question of tolerances will always arise in practice. Ideal dimensions 
are only approximated, never reached. The ease of obtaining the required 
accuracy is an important engineering factor. 

The tolerances in paraboloidal antennas or in parabolic cylinders illu- 
minated by line sources can be divided into three general classes: 

(a) Tolerances on reflecting surfaces. 
(b) Tolerances on spacial relationships of feed and reflector. 
(c) Tolerances on the feed. 
When the actual reflector departs from the ideal parabolic curve deviations 

in the phase will result. These will tend to reduce the gain and increase the 
minor lobes. The effects of such deviations on the gain can be estimated 
with the help of Fig. 17. We should recall that an error of a in the reflector 
surface will produce an error of about 2(t in the phase front. Based on this 
kind of argument and on experience reflector tolerances are generally set in 

practice to about ± ^ or ± depending on the amount of beam deteriora- 

tion that can be permitted. 
In Fig. 28 are compared some electrical characteristics of two paraboloidal 

antennas, one employing a precisely constructed paraboloidal searchlight 
mirror and the other a carefully constructed wooden paraboloidal reflector 
with the same nominal contour. This comparison is revealing for it shows 
the harm that can be done even by small defects in the reflector surface. 
Although the two patterns are almost identical in the vicinity of the main 
beam, the general minor lobe level of the wooden reflector remains higher 
at large angles and its gain is less. 

It must not, however, be assumed that a solid reflecting surface is neces- 
sary to insure excellent results. Any reflecting surface which reflects all 
or most of the power is satisfactory provided that it is properly located. Per- 
forated reflectors, reflectors of woven material and reflectors consisting of 
gratings with less than half wavelength spacing are commonly used in radar 
antenna practice. These reflectors tend to reduce weight, wind or water 
resistance and visibility. Many of them will be described in Part III of 
this paper. 

The feed of a parabolic reflector should be located so that its phase center 
coincides with the focus of the reflector. If it is located at an incorrect dis- 
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tance from the vertex a circular curvature of phase results and the system 
is said to be 'defocussed' (Sec. 3.9). As the feed is moved off the axis of 
the reflector the first effect is a shifting of the beam due to a linear variation 
of the phase (Sec. 3.8). For greater distances off axis a cubic component of 
phase error becomes effective (Sec. 3.10). Phase error, whether circular, 
cubic or more complex, results in a reduction in gain and usually in an in- 
crease of minor lobes. Although the effects of given amounts of phase curva- 
ture on the radiation characteristics of an antenna can be estimated by theo- 
retical means, it is usually easier and quicker to find them experimentally. 
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Fig. 28—Effect of Small Inaccuracies in Reflector. 

The tolerances on the feed itself appear in various forms, many of which 
can be examined with the aid of transmission line theory and most of which 
are too detailed for discussion in this paper. It is generally true here also 
that experiment is a more effective guide than theory. 

Experience has shown that when parallel plate systems are used, either 
as complete antennas or as line feeds for other elements, tolerances on the 
parallel conducting plates must be considered carefully. It is obvious that 
when the TEox mode is used the plate spacing must be held closely, since 
the phase velocity is related to the spacing. This spacing can be controlled 
through the use of metallic spacers perpendicular to the plates. These 
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spacers, if small enough in cross section, do not disturb things unduly. 
The velocity of the TEM mode is, on the other hand, almost independent of 
the plate spacing. This mode is, however, more likely to cause trouble by 
leaks through joints and cracks in the plates. 

At visible wavelengths lenses have, in the past, been far more common 
than in the microwave region, due chiefly to the absence of satisfactory lens 
materials. A solid lens of glass or plastic with a diameter of several feet is a 
massive and unwieldy object. By zoning, which will be discussed below, 
these difficulties can be reduced but they still remain. 

A new lens technique, particularly effective in the microwave region was 
developed by the Bell Laboratories during the war." It is evident that any 
material in which the phase velocity is different from that of free space can 
be used to make a phase correcting lens. The material which is used in this 
new technique is essentially a stack of equally spaced metal plates parallel 
to the electric vector of the wave front and to the direction of propagation. 
Lenses made from this material are called 'Metal Plate Lenses'. 

When the spacing between neighboring plates is between X/2 and X only 
one mode with electric vector parallel to the plates can be transmitted. 
This is the TEoi mode for which the phase velocity is given in Sec. 8.5. 
When the medium between the plates is air this equation can be converted 
into the expression - • .... 

for the effective index of refraction. Here X is the wavelength in air and a 
is the plate spacing. 

As a varies between X/2 and X, N varies as indicated in Fig. 29. In the 
neighborhood of o = X, fV is not far from 1 and as a approaches X/2, N ap- 
proaches 0. Since N is always less than 1 we see that there is an essential 
difference between metal plate lenses and glass or plastic lenses for which N 
is always greater than 1. This difference is seen in the fact that a glass lens 
corrects phases by slowing down a travelling wave front, while a metal lens 
operates in the reverse direction by speeding it up. This means that a 
convergent lens with a real focus must be thinner in the center than the 
edge, the opposite of a convergent optical lens (Fig. 30). 

Unless the value of N is considerably different from 1 it is evident that 
very thick lens sections must be used to produce useful phase corrections. 
For this reason values of 'a' not far from X/2 should be chosen. On the other 
hand values of 'a' too close to X/2 would cause undesirably large reflections 

• W. E. Kock, "Metal Lens Antennas", Proc. I. R. E., Nov., 1946. 

9. Metal Plate Lenses 
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from the lens surfaces and impose severe restrictions on the accuracy of plate 
spacings. The compromises that have been used in practice are N = 0.5 
for which a = 0.577X and N = 0.6 for which a = 0.625X. 

Even with N = 0.5 or 0.6 lenses become thick unless inconveniently Ion? 
focal distances are used. Thick lenses are undesirable not only because they 
occupy more space and are heavier but also because the plate spacing must 
be held to a higher degree of accuracy if the phase correction is to be as 

PLATE SPACING 
Fig. 29—Variation of Effective Index of Refraction with Plate Spacing in a Metal 

Plate Lens. 

required. To get around these difficulties the technique of zoning is used. 
Zoning makes use of the fact that if the phase of an electromagnetic vector 

is increased or decreased by any number of complete cycles the effect of the 
vector is unchanged. When applied to a metal plate lens antenna this 
means simply that wherever the phase correction due to a portion of the 
lens is greater than a wavelength this correction can be reduced by some 
integral number of wavelengths such that the residual phase correction is 
under one wavelength. If this is done it is evident that no portion of the 
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lens needs to correct the phase by more than one wavelength. It follows 
that no portion of the lens need to be thicker than X/(l - N). 

(Q) 

V V 
FEED 

Fig. 30—Comparison of Dielectric and Metal Plate Lenses. 
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Fig. 31—Comparison of Unzoned and Zoned Metal Plate Lenses. 

A cross section of a typical metal plate lens before and after zoning is 
illustrated in Fig. 31. This figure shows clearly why zoning reduces con- 
siderably the size and mass of a lens. 
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Zoning is not without disadvantages. One disadvantage is obviously 
that a zoned lens which is designed for one frequency will not necessarily 
work well at other frequencies. It is in principle possible to design a broad 
band zoned metal plate lens corresponding to the color compensated lenses 
used in good cameras. So far, however, this has not been necessary since 
band characteristics of simple lenses have been adequate. 

Another difficulty that zoning introduces is due to the boundary regions 
between the zones. The wave front in this region is influenced partly by 
one zone and partly by the other and may as a result have undesirable phase 
and amplitude characteristics. This becomes serious only if especially short 
focal distances are used. 

9.1 Lens Antenna Configurations 

Any of the configurations which are possible with parabolic reflectors have 
their analogues when metal plate lenses are used. Circular lenses illumi- 
nated by point sources and cylindrical lenses illuminated by line sources are 
not only theoretically possible but have been built and used. Since a lens 
has two surfaces there is actually somewhat more freedom in lens design 
than in reflector design. Metal Plate Lenses have usually been designed 
with one surface flat, but the possibility of controlling both surfaces is 
emerging as a useful design factor where special requirements must be met. 

Feeds for lenses should fulfill most of the same requirements as feeds for 
reflectors. We find a difference in size in lens feeds in that they must gen- 
erally be more directive because of greater ratios of focal length to aperture. 
A difference in kind occurs because the feed is located behind the lens where 
none of the focussed energy can enter the feed or be disturbed by it. As a 
result some matching and pattern problems which arise in parabolic antennas 
are automatically absent when lenses are used. 

In choosing a design for a lens antenna system with a given aperture one 
must compromise between the large size which is necessary when a long focal 
length is used and the more zones which result if the focal length is made 
short. Most metal plate lenses so far constructed have had focal lengths 
somewhere between 0.5 and 1.0 times the greatest aperture dimension. 

9.2 Tolerances in Metal Plate Lenses 

It is not difficult to see that phase errors resulting from small displace- 
ments or distortions of a metal plate lens are much less serious than those 
due to comparable distortions of a reflector surface. This follows from the 
fact that the lens operates on a wave which passes through it. If a portion 
of the lens is displaced slightly in the direction of propagation it is still 
operating on roughly the same portion of the wave front and gives it the 
same phase correction. If a portion of a reflector were displaced in the 
same way the error in the wave front would be of the order of twice the 
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displacement. Quantitative arguments show that less severe tolerances 
apply to all major structural dimensions of a metal lens antenna. 

It is true of course that the dimensions of individual portions of the metal 
lens must be held with some accuracy. The metal plate spacing determines 
the effective index of refraction of the lens material. Where N = 0.5 it is 
customary to require that this be held to ±X/75, and where N = 0.6 to 
±X/50. The thickness of the lens in a given region is less critical, and must 

be held to ± 7777^—77 where it is desired to hold the phase front to ±X/16. 16 fl — TV; 
Fig. 32 illustrates clearly the drastic way in which the location of a lens 

can be altered without seriously affecting the pattern. It shows, inci- 
dentally, how a lens may behave well when used as the focussing element 
in a moving feed scanning antenna. 
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Fig. 32—Effect on Pattern of Lens Tilting. 

9.3 Advantages of Metal Plate Lenses 

On the basis of the above discussion we can see that metal plate lenses 
have certain considerable advantages. The most important of these is 
perhaps found in the practical matter of tolerances. It is a comparatively 
simple matter to hold dimensions of small objects to close tolerances but 
quite another thing to hold dimensions of large objects closely under the 
conditions of modern warfare. This advantage emerges with increasing 
importance as the wavelength is reduced. 

Metal plate lenses have contributed a great degree of flexibility to radar 
antenna art. When they are used two surfaces rather than one may be 
controlled, and the dielectric constant can be varied within wide limits. 
Independent control in the two polarizations may be applied. We can con- 
fidently expect that they will become increasingly popular in the radar field. 

10. Cosecant Antennas 

One of the earliest uses of radar was for early warning against aircraft. 
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The skies were searched for possible attackers with antennas which rotated 
continuously in azimuth. An equally important but later use appeared 
with the advent of great bombing attacks. Bombing radars 'painted' maps 
of the ground which permitted navigation and bombing during night and 
under even the worst weather conditions. In these radars also the antennas 
were rotated in azimuth, either continuously through 360° or back and forth 
through sectors. 

The majority of radars designed to perform these functions provided verti- 
cal coverage by means of a special vertical pattern rather than a vertical 
scan. It can easily be seen that such a pattern would have to be 'special.' 
If we assume, for example, that a bombing plane is flying at an altitude of 
10.000 feet, then the radar range must be 10,000 csc 60° = 11,500 feet if a 
target on the ground at a bomb release angle of 60° from the horizontal is to 
be seen. Such a range would by no means be enough to pick up the target 
at say 10° in time to prepare for bombing, for then a range of 10,000 csc 
10° = 57,600 feet would be required. This range is far more than is neces- 
sary for the 60° angle. It appears then that in the most efficient design the 
radar range and therefore the radar antenna gain, must be different in dif- 
ferent directions. 

The required variation of gain with vertical direction could be specified 
in any one of several ways. It seems natural to specify that a given ground 
target should produce a constant signal as the plane flies towards it at a con- 
stant altitude. Neglecting the directivity of the target this will occur if the 
amplitude response of the antenna is given by £ = E0csc6. This same con- 
dition will apply by reciprocity to an early warning radar antenna on the 
ground which is required to obtain the same response at all ranges from a 
plane which is flying in at a constant altitude. 

This condition is not alone sufficient to specify completely the vertical pat- 
tern of an antenna. For one thing it can obviously not be followed when 
6 = 0, for this would require infinite gain in this direction. Therefore a 
lower limit to the value of 9 for which the condition is valid must be set. In 
addition an upper limit less than 90° is specified whenever requirements per- 
mit, since control at high angles is especially difficult. When the limits have 
been set it still remains to specify the magnitude of the constant Eq. This 
can be done by specifying the range in one particular direction. This speci- 
fication must of course be consistent with all the factors that determine gain, 
including the reduction due to the required vertical spread of the pattern. 

10.1 Cosecant Antennas based on the Paraboloid 

It is evident that the standard paraboloidal antennas so far discussed will 
not produce cosecant patterns. These patterns being unsymmetrical will 
result only if the wave front phase and amplitude are especially controlled. 
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On the other hand, because paraboloidal antennas are simple and common 
it is natural that many cosecant designs should be based on them. These 
designs can be classified into two groups, those in which the reflector is 
modified and those in which the feed is modified. 

Some early cosecant antennas were made by introducing discontinuities 
in paraboloidal reflectors as illustrated in Fig. 33. These controlled the 
radiation more or less as desired over the desired cosecant pattern but pro- 

Fig. 33—Some Cosecant Antennas Based on the Paraboloid (Cosecant Energy Down- 
ward). 

duced rather serious minor lobes elsewhere. This difficulty can be overcome 
through the use of a continuously distorted surface as illustrated in Fig. 34. 
This reflector, first used at the Radiation Laboratories, is a normal parabo- 
loid in the lower part whereas the upper part is the surface that would be 
obtained by rotating the parabola through the vertex of the upper part about 
its focal point. 

Several types of feed have been used in combination with paraboloids to 
produce cosecant patterns. These are usually arrays which operate on the 
principle that each element is a feed which contributes principally to one 

NORMAL 
PARABOLOID 

PARABOLOIt 
SURFACE 
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region of the vertical pattern. The elements may be dipoles or waveguide 
apertures fed directly through the antenna feed line or they may be reflectors 
which reradiate reflected energy originating from a single primary source. 
No matter how excited they must be properly controlled in phase, amplitude 
and directivity. 

Cosecant antennas based on the paraboloid are common and can some- 
times fulfill all requirements with complete satisfaction. Nevertheless they 

Fig. 34—Barrel Cosecant Antenna (Cosecant Energy Downward). 

suffer from certain disadvantages. The most serious of these is that they 
lack resolution at high vertical angles, that is the beam is wider horizontally 
at high angles. This is to be expected for reasons of phase alone, for a 
paraboloidal reflector is, after all, designed to focus in only one direction. If 
phase difficulties were completely absent however, azimuthal resolution at 
high angles would still be destroyed because of cross polarized components of 
radiation. These components arise naturally from doubly curved reflectors, 
even simple paraboloids. They are sometimes overlooked when antennas 
are measured in a one way circuit with a linearly polarized test field, but 
must obviously be considered in radar antennas. 
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10.2 Cylindrical Cosecant Antennas 

Harmful cross polarized radiation is produced by doubly curved reflectors. 
This radiation is difficult to control and therefore undesirable where a closely 
controlled cosecant characteristic at high angles is required. Although not 
at first evident, it seems natural now to bypass polarization difficulties 
through the use of singly curved cylindrical reflectors. These reflectors if 
illuminated with a line source of closely controlled linear polarization provide 
a beam which is linearly polarized. This beam has also in azimuth approxi- 
mately the directivity of the line source at all vertical angles. It is thus 
superior in two significant respects to cosecant beams produced by doubly 
curved reflecting surfaces. 

A cylindrical cosecant antenna consists of a cylindrical reflector illumi- 
nated by a line source. Part of the cylinder is almost parabolic and con- 
tributes chiefly to the strong part of the beam which lies closest to the hori- 
zontal. This part is merged continuously into a region which departs 
considerably from the parabolic and contributes chiefly to the radiation at 
higher angles. 

Although wave front principles can be used and certainly must not be 
violated, the principles of geometrical optics have been particularly effective 
in the determination of cosecant reflector shapes. The detailed application 
of these principles will not be discussed here. While applying the geo- 
metrical principles the designer must be sure that the over-all size and con- 
figuration of the antenna can produce the results he wants. He must design 
a line source with the desired polarization and horizontal pattern and a 
vertical pattern which fits in with the cosecant design. In addition he must 
take particular care to reduce sources of pattern distortion to a level at 
which they cannot interfere significantly with the lowest level of the cose- 
cant 'tail'. 

11. Losing 

In many of the tactical situations of modern war radar can be used to 
provide fire control information. Radar by its nature determines range and 
microwave radar with its narrow well defined beams is a natural instrument 
for finding directions to a target, whether the missile to be sent to that 
target is a shell, a torpedo or a bomb. In fire control radar, as opposed to 
search or navigational radar, two properties of the antenna deserve par- 
ticular attention. These are the accuracy and the rale with which direc- 
tion to a target can be measured. 

Lobing is a means which utilizes to the fullest extent the accuracy avail- 
able from a given antenna aperture and which increases, usually as far as 
is desired, the rate at which this information is provided and corrected. 
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A lobing antenna which is to provide information concerning one angle only, 
azimuth for example, is capable of producing two beams, one at a time, 
and of switching rapidly from one to the other. This process is called 
Lobe Switching. The two beams are nearly coincident, differing in direction 
by about one beam width. When the signals from the two beams are com- 
pared, they will be equal only if the target lies on the bisector between the 
beams (Fig. 35). The two signals can be compared visually on an indicator 
screen of the radar or they can be compared electrically and fed directly 
into circuits which control the direction of fire. 
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Fig. 35—Lobe Switching. 

When two perpendicular directions are to be determined, such as the 
elevation and azimuth required by an anti-aircraft battery, four or in prin- 
ciple three discrete beams can be used. Radar antennas designed for solid 
angle coverage more commonly, however, produce a single beam which ro- 
tates rapidly and continuously around a small cone. This rotation is 
known as conical lobing. A comparison of amplitudes in a vertical plane 
can then be used to give the elevation of the target and a similar comparison 
in a horizontal plane to give its azimuth. Here too the electrical signals 
can be compared visually on an indicator screen, but an electrical comparison 
will provide continuous data which can be used to aim the guns and at the 
same lime to cause the radar antenna to follow the target automatically. 

11.1 Lobe Switching 

Two methods of lobe switching are common. In one of these the lobing 
antenna is an array of two equally excited elements. Each of these ele- 
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ments occupies one half of the final antenna aperture, and provides a Uni- 
phase front across this half. If the two elements were excited with the same 
phase the radiation maximum of the resulting antenna beam would occur 
in a direction at right angles to the combined phase front. If the phase of 
one element is made to lag behind that of the other by a small amount, 
60° say, the phase of the combined aperture will of course be discontinuous 
with a step in the middle. This discontinuous phase front will approximate 
with a small error, a uniphase wave front which is tilted somewhat with 
respect to the wave fronts of the elements. The phase shift will there- 
fore result in a slight shift of the beam away from the normal direction. 
When the phase shift is reversed the beam shift will be reversed. Two 
properly designed elementary antennas in combination with a means for 
rapidly changing the phase will therefore constitute a lobe switching an- 
tenna. Such an antenna is described more in detail in Sec. 14.6. 

Another method of lobe switching is more natural for antennas based 
on optical principles. In this method two identical feeds are placed side 
by side in the focal region of the reflector. When one of these feeds illu- 
minates the reflector a beam is produced which is slightly off the normal 
axial direction. Illumination by the other feed produces a second beam 
which is equally displaced in the opposite direction. The lobe of the an- 
tenna switches rapidly when the two feeds are activated alternately in rapid 
succession. The antenna must use some form of rapid switching appropri- 
ate to the antenna feed line. In several applications switches are used 
which depend on the rapid tuning and detuning of resonant cavities or 
irises. 

11.2 Conical Lobing 

A conically lobing antenna produces a beam which nutates rapidly about 
a fixed axial direction. This is usually accomplished by rotating or nutat- 
ing an antenna feed in a small circle about the focus in the focal plane of a 
paraboloid or lens. This antenna feed can be a spinning asymmetrical 
dipole or a rotating or nutating waveguide aperture. It can result in a 
beam with linear polarization which rotates as the feed rotates, or prefer- 
ably in a beam for which the polarization remains parallel to a fixed direction. 
The beam itself must be nearly circularly symmetric so that the radar re- 
sponse from a target in the axial direction will not vary with the lobing. 
The reflector or lens aperture is consequently usually circular. 

When the antenna is small it is sometimes easier to leave the feed fixed 
and to produce the lobing by moving the reflector. 

12. RAPID SCANNING 

A lobing radar can provide range and angular information concerning 
a single target rapidly and accurately but these things are not always enough. 
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It is sometimes necessary to obtain accurate and rapid information from 
all regions within an agular sector. It may be necessary to watch a certain 
region of space almost continuously in order to be sure of picking up fast 
moving targets such as planes. To accomplish any of these ends we must 
use a rapid scanning radar. A rapid scanning radar antenna produces a 
beam which scans continuously through an angular sector. The beam may 
sweep in azimuth or elevation alone or it may sweep in both directions to 
cover a solid angle. An azimuth or elevation scan may be sinusoidal or it 
may occur linearly and repeat in a sawtooth fashion. Solid angle scanning 
may follow a spiral or flower leaf pattern or it might be a combination of two 
one way scans. A combination of scanning in one direction and lobing in 
the other is sometimes used. 

Scanning antennas must, unfortunately, be constructed in obedience to 
the same principles which regulate ordinary antennas. The same attention 
to phase, amplitude, polarization and losses is necessary if comparable 
results are to be obtained. When scanning requirements are added to 
these ordinary ones new problems are created and old ones made more 
difficult. 

An antenna in order to scan in any specified manner must act to produce 
a wave front which has a constant phase in a plane which is always normal 
to the required beam direction. This can be done in several different ways. 
The simplest of these, electrically, is to rotate a fixed beam antenna as a 
whole in the required fashion. This can be called mechanical scanning. 
Alternatively an antenna array can be scanned if it is made up of suitable 
elements and the relative phases of these elements can be varied appro- 
priately. This can be called array scanning. Thirdly, optical scanning 
can be produced by moving either the feed or the focussing element of a 
suitably designed optical antenna. 

12.1 Mechanical Scanning 

Electrical complexities of other types of rapid scanners are such that it 
is probably not going too far to say that the required scan should be accom- 
plished by mechanical means wherever it is at all practical. This applies 
to radar antenna scans which occur at a slow or medium rate. Search 
antennas, whether they rotate continuously through 360° or back and forth 
over a sector are scanners in a sense but the scan is usually slow enough to 
be performed by rotating the antenna structure as a whole. As the scan 
becomes more rapid, mechanical problems become more severe and elec- 
trically scanning antennas appear more attractive. 

Mechanical ingenuity has during the war extended the range in which 
mechanical scanners are used. One important and eminently practical 
mechanical rapid scanner, the 'rocking horse' is now in common use (Fig. 
36). This antenna is electrically a paraboloid of elliptical aperture illu- 
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minated by a horn feed, a combination which produces excellent electrical 
characteristics. The paraboloid and feed combination is made structurally 
strong and is pivoted to permit rotational oscillation in a horizontal plane. 
It is forced to oscillate by a rigid crank rod which is in turn driven by an 
eccentric crank on a shaft. The shaft is belt driven by an electric motor and 
its rotational rate is held nearly constant by a flywheel. The mechanical 
arrangement described so far would oscillate rotationally in an approxi- 
mately sinusoidal fashion. Since every action has an equal and opposite 
reaction it would, however, react by producing an oscillatory torque on its 

Fig. 36—Experimental Rocking Horse Antenna. 

mounting. Since the antenna is large and the oscillation rapid this would 
produce a severe and undesirable vibration. To get around this difficulty 
an opposite and balancing rotating moment is introduced into the mechan- 
ical system. This appears in the form of a pivoted and weighted rod which 
is driven from the same eccentric crank by another and almost parallel 
crank arm. 

Although not theoretically perfect the rotational 'dynamic' balancing 
described permits the antenna to scan without serious vibration. One form 
of this antenna will be described in a later section. 

12.2 Array Scanning 

During our discussion of general principles in Part II, we saw that an 
antenna wave front can be synthesized by assembling an array of radiating 
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elements and distributing power to it through an appropriate transmission 
line network. If the radiation characteristics of the array are to be as de- 
sired the electrical drive of each element must have a specified phase and 
amplitude. In addition each element must in itself have a satisfactory 
characteristic and the elements must have a proper spacial relationship to 
each other. 

Such array antennas have been extremely useful in the 'short wave' bands 
where wavelengths and antenna sizes are many times larger than at most 
radar wavelengths but for fixed beam radar antennas they have been largely 
superceded by the simpler optical antennas. Where a rapidly scanning 
beam is desired, however, they possess certain advantages which were put 
to excellent use in the war. These advantages spring from the possibility 
of scanning the beam of an array through the introduction of rapidly vary- 
ing phase changes in its transmission line distributing system. 

Let us first examine certain basic conditions that must be fulfilled if an 
array antenna is to provide a satisfactory scan. The pattern of any array 
is merely the sum of the patterns of its elements taking due account of 
phase, amplitude and spacial relationships. If all elements are alike and 
are spaced equally along a straight line it is not difficult to show that a 
mathematical expression for the pattern can be obtained in the form of a 
product of a factor which gives the pattern of a single element and an array 
factor. The array factor is an expression for the pattern of an array of 
elements each of which radiates equally in all directions. Since each of the 
elements is fixed in direction it is only through control of the array factor 
that the scan can be obtained. • 

If we excite all points of a continuous aperture with equal phase and a 
smoothly tapered amplitude the aperture produces a beam with desirable 
characteristics at right angles to itself and no comparable radiation else- 
where. Similarly if we excite all elements of an array of identical equally 
spaced circularly radiating elements with equal phase and a smoothly 
tapered amplitude the array will produce a beam with desirable charac- 
teristics at right angles to itself. It will also produce a beam in any other 
direction for which waves from the elements can add up to produce a wave 
front. Such other directions will exist whenever the array spacing is 
greater than one wavelength. 

In order to see this more clearly let us examine Fig. 37, where line XX' 
represents an array of elements. From each element to the line AA' is a 
constant distance, so AA' is obviously parallel to a wave front when the 
elements are excited with equal phase. If we can find a line BB' to which 
the distance from each element is exactly one wavelength more or less than 
from its immediate neighbors then it too is parallel to a wavefront, for 
energy reaching it from any element of the array will have the same phase 
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except for an integral number of cycles. The same will apply to a line CC, 
to which the distance from each element is exactly two wave lengths more or 
less than from its immediate neighbors, or to any other line where this dif- 
ference is any integral number of wavelengths. 

Now in no radar antenna do we desire two or more beams for they will 
result in loss of gain and probably in target confusion. The array must 
therefore be designed so that for all positions of scan all beams except one 
will be suppressed. This will automatically occur if the array spacing is 
somewhat less than one wavelength. If the array spacing is greater than 
one wavelength these extra beams will appear in the array factor; they 
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Fig. 37—Some Possible Wave Fronts of an Array of Elements Spaced 2.75 A. 

must therefore be suppressed by the pattern of a single element. The pat- 
tern of an element must in other words, have no significant components 
in any direction where an extra beam can occur. 

Where elements with only side fire directivity are spaced more than a 
wavelength apart in a scanning array it is almost impossible to obtain 
adequate extra lobe suppression. If these elements are spaced by the 
minimum amount, that is by exactly the dimensions of their apertures and 
all radiate in phase they may indeed just manage to produce a desirable 
beam. A little analysis shows however that an appreciable phase variation 
from element to element, even though linear, will introduce a serious ex- 
tra lobe. To get around this difficulty elements with some end fire direc- 
tivity must be used. 
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A simple end fire element, and one that has been used in practice, is the 
'polyrod' (Fig. 38). A polyrod, is as its name implies, a rod of polystyrene. 
This rod, if inserte'd into the open end of a waveguide, and if properly pro- 
portioned and tapered, will radiate energy entering from the waveguide 
from points which are distributed continuously along its length. If the 

l'"ig. 38—A Polyrod. 
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Fig. 39.—Experimental Polyrod Array. 

wave in the polyrod travels approximately with free space velocity it will 
produce a radiation maximum in the direction of its axis. The radia- 
tion pattern of the polyrod will have a shape which is characteristic of end 
fire arrays, narrower and flatter topped than the pattern of a side fire array 
which occupies the same lateral dimension. This elementary pattern can 
be fitted in well with the array factor of a scanning array. 

Such a scanning array is shown in Fig. 39 and will be described in 
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greater detail in section 14.8. Each element of this array consists of a fixed 
vertical array of three polyrods. This elementary array provides the re- 
quired vertical pattern and has appropriate horizontal characteristics. 
Fourteen of these elements are arranged in a horizontal array with a spacing 
between neighbors of about two wavelengths. Energy is distributed among 
the elements with a system of branching waveguides. Thirteen rotary phase 
changers are inserted strategically in the distributing system. Each phase 
change is rotating continuously and shifts the phase linearly from 0° to 
360° twice for each revolution. As the phase changers rotate the array 
produces a beam which sweeps repeatedly linearly and continuously across 
the scanning sector. 

When elements of a scanning array are spaced considerably less than one 
wavelength it is a very simple matter to obtain a suitable elementary 
pattern, for the array factor itself has only a single beam. This advantage 
is offset by the greater number of elements and the consequent greater com- 
plexity of distributing and phase shifting equipment. In one useful type of 
scanning antenna however distributing and phase shifting is accomplished 
in a particularly simple manner. Here the distributing system is merely a 
waveguide which can transmit only the dominant mode. The wide dimen- 
sion of the guide is varied to produce the phase'shifts required for scanning. 
The elements are dipoles. The center conductor of each dipole protrudes 
just enough into the guide to pick up the required amount of energy. 

It is evident from the above discussion that such a waveguide fed dipole 
array will produce a single beam in the normal direction only if the dipoles 
are all fed in phase and are spaced less than a wavelength. It is therefore 
not satisfactory to obtain constant phase excitation by tapping the dipoles 
into the guide at successive guide wavelengths for these are greater than 
free space wavelengths. Consequently the dipoles are tapped in at suc- 
cessive half wavelengths in the guide and reversed successively in polarity 
to compensate for the successive phase reversals due to their spacing. 

This type of array provides a line source which can be scanned by moving 
the guide walls. In order to leave these mechanically free suitable wave 
trapping slots are provided along the length of the array. 

A practical antenna of this type will be described in Sec. 16.3. 

12.3 Optical Scanning 

With a camera or telescope all parts of an angular sector or field are viewed 
simultaneously. We would like to do the same thing by radar means, but 
since this so far appears impossible we do the next best thing by looking 
at the parts of the field in rapid succession. Nevertheless certain points of 
similarity appear. These points are emphasized by a survey of the fixed 
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beam antenna field for there we find optical instruments in abundance, 
parabolic reflectors and even lenses. 

It is not a very big step to proceed from an examination of optical systems 
to the suggestion that a scanning antenna can be provided by moving a 
feed over the focal plane of a reflector. Nevertheless experience shows 
that this will not be especially profitable unless done with due caution. 
The first effect of moving the feed away from the focus in the focal plane of 
a paraboloid is indeed a beam shift but before this process has gone far a 
third order curvature of the phase front is produced and is accompanied 
by a serious deterioration in the pattern and reduction in gain. This 
difficulty or aberration is well known in classical optical theory and is called 
coma. Coma is typified by patterns such as the one shown in Fig. 16. 
It is the first obstacle in the path of the engineer who wishes to design a 
good moving feed scanning antenna. 

Coma is not an insuperable obstacle however. Its removal can be 
accomplished by the application of a very simple geometrical principle. 
This principle can be stated as follows: "The condition for the absence of 
coma is that each part of the focussing reflector or lens should be located on 
a circle with center at the focus." 

This condition can be regarded as a statement of the spacial relation- 
ship required between the feed and all parts of the focussing element. It 
is a condition which insures that the phase front will remain nearly linear 
when the feed is moved in the focal plane. It can be applied approximately 
whether the focussing element is a reflector or a lens and to optical systems 
which scan in both directions as well as those which scan in one direction. 

Coma is usually the most serious aberration to be reckoned with in a 
scanning optical system, but it is by no means the only one. Any defect 
in the phase and amplitude characteristic which arises when the feed is 
moved can cause trouble and must be eliminated or reduced until it is toler- 
able. Another defect in phase which arises is 'defocussing'. Defocussing 
is a square law curvature of phase and arises when the feed is placed at an 
improper distance from the reflector or lens. Its effect may be as shown 
in Fig. 14. It can in principle always be corrected by moving the feed in a 
correctly chosen arc, but this is not always consistent with other require- 
ments on the system. In addition to troubles in phase an improper ampli- 
tude across the aperture of the antenna will arise when the feed is trans- 
lated unless proper rotation accompanies this motion. 

To combat the imperfections in an optical scanning system we can 
choose over-all dimensions in such a way that they will be lessened. Thus 
it is generally true that an increase in focal length or a decrease in aperture 
will increase the scanning capabilities of an optical system. This alone 
is usually not enough, however, we must also employ the degrees of free- 
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dom available to us in the designing of the focussing element and the feed 
motion to improve the performance. If the degrees of freedom are not 
enough we must, if we insist on an optical solution introduce more. This 
could in principle result in microwave lenses similar to the four and five 
element glass lenses found in good cameras, but such complication has not 
as yet been necessary in the radar antenna art. 

Since military release has not been obtained as this article goes to press 
we must omit any detailed discussion of optically scanning radar antenna 
techniques. 

PART III 

MILITARY RADAR ANTENNAS DEVELOPED BY THE 
BELL LABORATORIES 

13. General 

In the final part of this paper we will describe in a brief fashion the 
end products of radar antenna technology, manufactured radar antennas. 
Without these final practical exhibits the foregoing discussion of principles 
and methods might appear academic. By including them we' hope to 
illustrate in a concrete fashion the rather general discussion of Parts I 
and II. 

The list of manufactured antennas will be limited in several ways. Severe 
but obviously essential are the limitations of military security. In addition 
we will restrict the list to antennas developed by the Bell Laboratories. In 
cases where invention or fundamental research was accomplished elsewhere 
due credit will be given. Finally the list will include only antennas manu- 
factured by contract. This last limitation excludes many experimental 
antennas, some initiated by the Laboratories and some by the armed forces. 

It is worthwhile to begin with an account of the processes by which these 
antennas were brought into production. The initiating force was of course 
military necessity. The initial human steps were taken sometimes by 
members of the armed forces who had definite needs in mind and sometimes 
by members of the Laboratories who had solutions to what they believed 
to be military needs. 

With a definite job in mind conferences between military and Laboratories 
personnel were necessary. Some of these dealt with legal or financial 
matters, others were principally technical. In the technical conferences 
it was necessary at an early date to bring military requirements and tech- 
nical possibilities in line. 

As a result of the conferences a program of research and development was 
often undertaken by the Laboratories. An initial contract was signed which 
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called for the delivery of technical information, and sometimes for manu- 
facturing drawings and one or more completed models. Usually the 
antenna was designed and manufactured as part of a complete radar sys- 
tem, sometimes the contract called for an antenna alone. 

After preliminary work had been undertaken the status of the job was 
reviewed from time to time. If preliminary results and current military 
requirements warranted a manufacturing contract was eventually drawn 
up and signed by Western Electric and the contracting government agency. 
This contract called for delivery of manufactured radars or antennas ac- 
cording to a predetermined schedule. 

Research and development groups of the Laboratories cooperated in war 
as in peace to solve technical problems and accomplish technical tasks. 
Under the pressure of war the two functions often overlapped and seemed 
to merge, yet the basic differences usually remained. 

Members of the Research Department, working in New York and at the 
Deal and Holmdel Radio Laboratories in New Jersey were concerned chiefly 
with electrical design. It was their duty to understand fully electrical 
principles and to invent and develop improved methods of meeting mili- 
tary requirements. During the war it was usually their responsibility to 
prescribe on the basis of theory and experiment the electrical dimensions 
of each new radar antenna. 

A new and difficult requirement presented to the Research Department 
was sometimes the cause of an almost personal competition between alter- 
native schemes for meeting it. Some of these schemes were soon eliminated 
by their own weight, others were carried side by side far along the road to 
production. Even those that lost one race might reappear in another 
as a natural winner. 

In the Development Groups working in New York and in the greatly 
expanded Whippany Radio Laboratory activity was directed towards coor- 
dination of all radar components, towards the establishment of a sound, 
well integrated mechanical and electrical design for each component and 
towards the tremendous task of preparing all information necessary for 
manufacture. It was the job of these groups also to help the manufacturer 
past the unavoidable snarls and bottlenecks which appeared in the first 
stages of production. In addition development personnel frequently 
tested early production models, sometimes in cooperation with the armed 
forces. 

As we have intimated, research and development were indistinguishable 
at times during the war. Members of the research department often found 
themselves in factories and sometimes in aircraft and warships. Develop- 
ment personnel faced and solved research problems, and worked closely 
with research groups. 
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For several years when pressure was high the effort was intense; at times 
feverish. Judging by military results it was highly effective. Some of the 
material results of this effort are described in the following pages. 

14. Naval Shipeorne Radar Antennas 

14.1 The SE Antenna10 

Very early in the war, the Navy requested the design of a simple search 
radar system for small vessels, to be manufactured as quickly as possible 
in order to fill the gap between design and production of the more complex 
search systems then in process of development. The proposed system was 
to be small and simple, to permit its use on vessels which otherwise would 
be unable to carry radar equipment because of size or power supply capabil- 
ity. This class of vessel included PT boats and landing craft. 

The antenna designed for the SE system is housed as shown in Fig. 40. 
It was adapted for mounting on the top or side of a small ship's mast, and 
is rotated in azimuth by a mechanical drive, hand operated. The para- 
boloid reflector is 42 inches wide, 20 inches high, and is illuminated by a 
circular aperture 2.9 inches in diameter. In the interests of simplicity, the 
polarization of the radiated beam was permitted to vary with rotation of 
the antenna. 

The SE antenna was operated at 9.8 cm, and fed by 1| x 3 rectangular 
waveguide. At the antenna base, a taper section converted from the 
rectangular waveguide to 3" round guide, through a rotating joint directly 
to the feed opening. 

Characteristics of the SE antenna are given below: 

Wavelength 9.7 to 10.3 cm 
Reflector 42" W x 20" H 
Gain 25 db 
Horizontal Beam Width 6° 
Vertical Beam Width 12°, varying somewhat with polarization 
Standing Wave 9.7tol0.0cm 4.0 db 

10.0 to 10.3 cm 6.0 db 

14.2 The SL Radar Antenna11 

The SL radar is a simple marine search radar developed by Bell Tele- 
phone Laboratories for the Bureau of Ships. During the war, over 
1000 of these radars were produced by the Western Electric Company and 
installed on Navy vessels of various categories. The principal field for 
installation was destroyer escort craft ("DE"s). Figure 41 shows an SL 
antenna installation aboard a DE. The antenna is covered, for wind and 

10 Written by R. J. Phillips. 11 Written by H. T. Budenbom. 
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weather protection, in a housing which can transmit 10 cm radiation. 
Visible also is the waveguide run down the mast to the r.f. unit. 

The SL radar provides a simple non-stabilized PPI (Plan Position 
Indicator) display. The antenna is driven by a synchronous motor at 
18 rpm. Horizontal polarization is used to minimize sea clutter. The 

Fig. 40—SE Antenna. 

radiating structure, shown in Figure 42, consists of a 20" sector of a 42" 
paraboloid. The resulting larger beam width in the vertical plane is pro- 
vided in order to improve the stability of the pattern under conditions of 
ship roll. Figure 43 illustrates the path of the transmitted wave from the 
SL r.f. unit to the antenna. It also illustrates the manner in which horizon- 
tally polarized radiation is obtained. The diagram shows the position of 
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Fig. 42—SL Antenna. 
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the electric force vector in traversing the waveguide run. The path from 
the r.f. unit is in rectangular guide (TEi, o mode) through the right angle 
bend, to the base of the rotary joint. A transducer which forms the base 
portion of the joint converts to the TMoi mode in circular pipe. For this 
mode, the electric field has radial symmetry, much as though the wave- 
guide were a coaxial line of vanishingly small inner conductor diameter. 

PIPE CONTAINING 
SPIRAL SEPTUM 

TE, 

INDICATES DIRECTION 
OF ELECTRIC VECTOR. 
INDICATES VECTOR 
LIES ± TO PLANE OF 
PAPER. 

REFLECTOR 

TE, 

TM 

TE 10 

1 ROTARY JOINT 
J AND CHOKE 

R.F UNIT 

Fig. 43—SL Radar Antenna—Wave Guide Path. 

The energy passes the rotary joint in this mode; choke labyrinths are pro- 
vided at the joint to minimize radio frequency leakage. The energy then 
flows through another transducer, from TMm mode back to TEm mode. 
The lower horizontal portion of the feed pipe immediately tapers to round 
guide, the mode being now TEn. Next the energy transverses a 90° elbow, 
which is a standard 90° pipe casting, and enters the vertical section im- 
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mediately below the feed aperture. The E vector is in the plane of the 
paper at this point. However, the ensuing vertical section is fitted with a 
spiral septum. This gradually rotates the plane of polarization until at 
the top of this pipe the E vector is perpendicular to the plane of the paper. 
Thus, after transversing another 90° pipe bend, the energy emerges horizon- 
tally polarized, to feed the main reflector. 

Specific electrical characteristics of the SL antenna are; 

Polarization—Horizontal 
Horizontal Half Power Beamwidth—6° 
Vertical Half Power Beamwidth—12° 
Gain—about 22 db. 

14.3 The SJ Submarine Radar Antenna 

It had long been expected that one of the early offensive weapons of the 
war would be the submarine. It was therefore natural that early in the 
history of radar the need for practical submarine radars was felt. The 
principal components of this need were twofold, to provide warning of ap- 
proaching enemies and to obtain torpedo fire control data. The SJ Sub- 
marine Radar was the first to be designed principally for the torpedo fire 
control function. 

Work on the SJ system was under way considerably before Pearl Harbor. 
When this work was initiated the advantages of lobing fire control systems 
were clearly recognized, but no lobing antennas appropriate for submarine 
use had been developed. Requirements on such an antenna were ob- 
viously severe, for in addition to fulfilling fairly stringent electrical con- 
ditions, it would have to withstand very large forces due to water resistance 
and pressure. 

The difficulties evident at the outset of the work were overcome by an 
ingenious adaptation of the simple waveguide feed. It was recognized 
that a shift of the feed in the focal plane of a reflector would cause a beam 
shift. Why not, then, use two waveguide feeds side by side to produce the 
two nearly coincident beams required in a lobing antenna? When this was 
tried it was found to work as expected. 

It remained to devise a means of switching from one waveguide feed to 
the other with the desired rapidity. This in itself was no simple problem, 
but was solved by applying principles learned through work on waveguide 
filters. The switch at first employed was essentially a branching filter 
at the junction of the single antenna feed line and the line to each feed aper- 
ture. Both branches of this filter were carefully tuned to the same fre- 
quency, that of the radar. The switching was performed by the insertion 
of small rapidly rotating pins successively into the resonant cavities of the 
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two filters (Fig. 44). Presence of the pins in one of the filters detuned it 
and therefore prevented power from flowing through it. Rotation of the 
pins accordingly produced switching as desired. 

In a later modification of this switch the same general principles were 
used but resonant irises rather than resonant cavities were employed. 

The SJ Submarine Radar was in use at a comparatively early date in the 
war and saw much service with the Pacific submarine fleet. Despite some 
early doubts, submarine commanders were soon convinced of its powers. 

SWITCH UNIT 
CHAMBERS 

DETUNING 
PINS 

Vi.Vv 

Fig. 44—The SJ Tuned Cavity Switch. 

It is believed that in the majority of cases it replaced the periscope as the 
principle fire control instrument. In addition it served as a valuable and 
unprecedented aid to navigation. 

It is interesting and relevant to quote from two letters to Laboratories 
engineers concerning the SJ. One dated October 3, 1943, from the radar 
officer of a submarine stated that there were twenty "setting sun" flags 
painted on the conning tower and asked the engineer to "let your mind dwell 
on the fact that you helped to put more than 50% of those flags there". 
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The commander of another submarine wrote in a similar vein, "You can 
rest assured that we don't regard your gear as a bushy-brain space taker, 
but a very essential part of our armament". 

lik- 
k 

. 
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Fig. 45—The SJ Submarine Radar Antenna. 

Figure 45 is a photograph of an SJ antenna. Its principal electrical 
characteristics are as follows: 

Gain > 19 db 
Horizontal Half Power Beamwidth 8° 
Vertical Half Power Beamwidth 18° 
Vertical Beam Character—Some upward radiation 
Lobe Switching Beam Separation—approximately 5° 
Gain reduction at beam cross-over < 1 db 
Polarization—Horizontal 
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14.4 The Modified SJ/Mark 27 Radar A ntenna 
The .SJ antenna described above performed a remarkable and timely fire 

control job as a lobing antenna but was found to be unsatisfactory when 
rotated continuously to produce a Plan Position Indicator (PPI) presenta- 
tion. In the PPI method of presentation range and angle are presented as 
radius and angle on the oscilloscope screen. Consequently a realistic map 
of the strategic situation is produced. This map is easily spoiled by false 
signals due to large minor lobes of the antenna. 

Since it had been established that the PPI picture was valuable for 
navigation and warning as well as for target selection it was decided to 
modify the antenna in a way that would reduce these undesirably high minor 
lobes. These were evidently due principally to the shadowing effect of the 
massively built double primary feed. Accordingly a new reflector was de- 
signed which in combination with a slightly modified feed provided a much 
improved pattern. 

The new reflector was different in configuration principally in that it was 
a partially offset section of a paraboloid. The reflector surface was also 
markedly different in character since it was built as a grating rather than a 
solid surface. This reduced water drag on the antenna. In addition 
thfe grating was less visible at a distance, an advantage that is obviously 
appreciable when the antenna is the only object above the water. 

This modified antenna was used not only on submarines as part of the 
SJ-1 radar but also on surface vessels as the Mark 27 Radar Antenna. 
Figure 46 shows one of these antennas. Its electrical characteristics are 
as follows: 

Gain > 20 db 
Horizontal Half Power Beamwidth = 8° 
Vertical Half Power Beamwidth =17° 
Vertical Beam Character—Some upward radiation 
Lobe Switching Beam Separation—approximately 5° 
Gain reduction at beam cross-over < 1 db 
Polarization—Horizontal 

14.5 The SH and Mark 16 Antenna12 

The antennas designed for the SH and Mark 16 Radar Equipments are 
practically identical. The SH system was a shipborne combined fire con- 
trol and search system, and the Mark 16 its land based counterpart was used 
by the Marine Corps for directing shore batteries. 

These systems operated at 9.8 cm. The requirement that the system, 
operate as a fire control as well as a search system imposed some rather 
stringent mechanical requirements on the antenna. For search purposes, 
the antenna was rotated at 180 rpm, and indications were presented on a 
plan position indicator. For fire control data, slow, accurately controlled 
motion was required. Bearing accuracy is attained by lobe switching in 

12 Written by R. J. Philipps. 
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much the same manner as in the SJ and SJ-1 antennas previously described. 
The antenna is illustrated in Fig. 47. With the SH system, the unit 

is mast mounted; for the Mark 16, the unit is mounted atop a 50 foot steel 

Fig. 46—The SJ-l/Mark 27 Submarine Radar Antenna. 

tower which can be erected in a few hours with a minimum of personnel. 
The electrical characteristics are as follows: 

Gain—21. db 
Reflector Dimensions 30" W x 20" H 
Horizontal beam width—7.5° 
Vertical beam width—12° 
Lobe separation—5° approximately 
Loss in gain at lobe crossover—1 db approximately 
Scan—(1) 360°, at 180 rpm for PPI operation 

(2) 360°, at approximately 1 rpm for accurate azimuth readings, with lobe 
switching 
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SH systems were most successfully used in invasion operations in the 
Aleutians. They were installed on landing craft, and the use of the high 
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Fig. 47—SH Antenna. 

speed scan enabled the craft to check constantly their relative positions 
in the dense fogs encountered during the landing operations. 
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14.6 Antennas for Early Fire Control Radars13 

The first radars to be produced in quantity for fire control on riival ves- 
sels were the Mark 1, Mark 3 and Mark 4 (originally designated FA, FC 
and FD). These radars were used to obtain the position of the target with 
sufficient accuracy to permit computation of the firing data required by the 
guns. The first two (Mark 1 and Mark 3) were used against enemy surface 
targets while the Mark 4 Radar was a dual purpose system for use against 
both surface and aircraft targets. These radars were described in detail 
in an earlier issue." However, photographs of the antennas and per- 
tinent information on the antenna characteristics are repeated herein for 
the sake of completeness. (See Table B and Figures 48, 49 and 50.) 

Table B 

Radar 

Mark 1 Mark 3 Mark 4 

Dimensions 6'x6' 3's 12' 6' x 6' 6' x V 

Operating Frequency 
Beam Width in Degrees 
(Between half power points 

one way.) 
Azimuth 
Elevation 

Antenna Gain 
Beam Shift in Degrees 

Azimuth 
Elevation 

500 or 700 MC 

12° 
14° 
22 db 

0° 
0° 

680-7 

6° 
30° 
22 db 

±1.5° 
0° 

10 MC 

12° 
14° 
22 db 

±3° 
0° 

680-720 MC 

12° 
12° 

22.5 db. 

±3° 
±3° 

An antenna quite similar to the Mark 3, 6 ft. x 6 ft. antenna, was also 
used on Radio Set SCR-296 for the Army. This equipment was similar to 
the Mark 3 in operating characteristics but was designed mechanically for 
fixed installations at shore points for the direction of coast artillery gun 
fire. For these installations the antenna was mounted on an amplidyne 
controlled turntable located on a high steel tower. The entire antenna and 
turntable was housed within a cylindrical wooden structure resembling a 
water tower. Equipments of this type were used as a part of the coastal 
defense system of the United States, Hawaiian Islands, Aleutian Islands 
and Panama. 

13 Written by W. H. C. Higgins. r „ • 
Wi Early Fire Control Radars for Naval Vessels," W. C. Tinus and W. H. C. Higgins, 
B. S. T. J. 
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14.7 A Shipborne Anti-Aircraft Fire Control Antenna16 

A Shipborne Anti-Aircraft Fire Control Antenna is shown in Fig. 51. 
This antenna consists of two main horizontal cylindrical parabolas in each 
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Fig. 48—Mark 1 Antenna. 

of which two groups of four half-wave dipoles are mounted with their axes 
in a horizontal line at the focus of the parabolic reflectors. The four groups 
of dipoles are connected by coaxial lines on the back of the anfenna to a lobe 

15 Written by C. A. Warren. 
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switcher, which is a motor driven capacitor that has a single rotor plate and 
four stator plates, one for each group of dipoles. The phase shift intro- 
duced into the four feed lines by the lobe switching mechanism causes the 
antenna beam to be "lobed" or successively shifted to the right, up, left 
and down as the rotor of the capacitor turns through 360 degrees. 

Mounted centrally on the front of the antenna at the junction of the two 
parabolic antennas is a smaller auxiliary antenna consisting of two dipole 
elements and a parabolic reflector, the purpose of which is to reduce the 
minor lobes that are present in the main antenna beam. The auxiliary 

Fig. 49—Mark 3 Radar Antenna on Battleship New Jersey. 

antenna beam is not lobe switched and is sufficiently broad in both the 
horizontal and vertical planes to overlap both the main antenna beam and 
the first minor lobes. The auxiliary antenna feed is so designed that its 
field is in phase with the field of the main beam of the main antenna. This 
causes the feed of the auxiliary antenna to "add" to the field of the main 
antenna in the region of its main beam, but to subtract from the field in the 
region of its first minor lobes. This occurs because the phase of the first 
minor lobes differs by 180 degrees from that of the main beam. As a result, 
the field of the main beam is increased and the first minor lobes are greatly 
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reduced. By reducing these minor lobes to a low value, the region around 
the main beam is free of lobes, thus greatly reducing the possibility of false 
tracking due to "cross overs" between the main beam and the minor lobes. 

14.8 The Poly rod Fire Control Antenna 

The Polyrod Fire Control antenna is an array scanner employing essen- 
tially the same principles as those used in the multiple unitsteerable antenna 
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Fig. 50—Mark 4 Radar Antenna on Battleship Tennessee. 

system (MUSA) developed before the war for short-wave transatlantic 
telephony. Some of these principles have been discussed in Sec. 12.2. 
That they could be applied with such success in the microwave region was 
due to a firm grounding in waveguide techniques, to the invention of the 
polyrod antenna and the rotary phase changer, and especially to excellent 
technical work on the part of research, development and production person- 
nel. It is perhaps one of the most remarkable achievements of wartime. 
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radar that the polyrod antenna emerged to fill the rapid scanning need a 
early and as well developed as it did. 

The Polyrod Fire Control antenna is a horizontal array of fourteen identi- 
cal fixed elements, each element being a vertical array of three polyrods. 
Energy is distributed to the elements through a waveguide manifold. The 
phase of each element is controlled and changed to produce the desired scan 
by means of thirteen rotary phase changers. These phase shifters are 
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LINE 

Fig. 51.—Shipbome Anti-Aircraft Fire Control Antenna 

geared together and driven synchronously. Figure 52 is a schematic 
diagram of the waveguide and phase changer circuits. 

Figure 39 shows an experimental polyrod antenna under test at Holmdel. 
Figure 53 is another view of the Polyrod antenna. 

14.9 The Rocking Horse Tire Control Antenna 

It was long recognized that an important direction of Radar develop- 
ment lay towards shorter waves. This is particularly true for fire 
control antennas where narrow, easily controlled beams rather than great 
ranges are needed. The Polyrod antenna had pretty thoroughly demon- 



302 BELL SYSTEM TECHNICAL JOURNAL 

strated the value of rapid scanning, yet the problem of producing a rapid 
scanning higher frequency antenna of nearly equal dimensions was a new 
and different one. 

Several possible solutions to this problem were known. The array 
technique applied so effectively to the polyrod antenna could have been 
applied here also, but only at the expense of many more elements and 
greater complexity. 

After much preliminary work it was finally concluded that a mechanically 
scanning antenna, the "rocking horse," provided the best solution to the 
higher frequency scanning problem. This solution is practical and relatively 
simple. 

- DELAY EQUALIZING 
WAVE GUIDE LENGTHS 

UNIT ANTENNAS 
(VERTICAL POLYROD TRIDENTS) 

RPS RPS RPS RPS RPS RPS 

RPS 

RRS RPS RPS RPS RPS RPS 

WAVE GUIDE 
DISTRIBUTING MANIPOLD 

WITH ROTARY PHASE CHANGERS 
(720° PHASE CHANGE PER REV.) INPUT 

Fig. 52.—Schematic Diagram of Polyrod Fire Control Antenna. 

The operation of the rocking horse is described in Sec. 12.1. It is essen- 
tially a carefully designed and firmly built paraboloidal antenna which 
oscillates rapidly through the scanning sector. Its oscillation is dynamically 
balanced to eliminate undesirable vibration. 

Figure 54 is a photograph of a production model of the rocking horse 
antenna. 

14.10 The Mark 19 Radar Antenna16 

In Anti-aircraft Fire Control Radar Systems for Heavy Machine Guns 
it is necessary to employ a highly directive antenna and to obtain continu- 
ous rapid comparison of the received signals on a number of beam positions 

16 Sections 14.10, 14.11 and 14.12 were written by F. E. Nimmcke. 
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as discussed in Section 11.2. Such an antenna is also required to obtain 
the high angular precision for anti-aircraft fire control. These require- 
ments are achieved by the use of a conical scanning system. The beam 
from the antenna describes a narrow cone and the deviation of the axis 
of the cone from the line of sight to the target can be determined and meas- 
ured by the phase difference between the amplitude modulated received 
signal and the frequency of the reference generator associated with the 

£^l 

Fig. 54.—Rocking Horse Fire Control Antenna. 

antenna. This information is presented to the pointer-trainer at the direc- 
tor in the form of a wandering dot on an oscilloscope. 

The antennas described in sections 14.10,14.11 and 14.12 were all designed 
by the Bell Laboratories as anti-aircraft fire control radar systems, particu- 
larly for directing heavy machine guns. They were designed for use on all 
types of Naval surface warships. 

In Radar Equipment Mark 19, the first system to be associated with the 
control of 1.1 inch and 40 mm anti-aircraft machine guns, the antenna was 
designed for operation in the 10 cm region. This antenna consisted of a 
spinning half dipole with a coaxial transmission line feed. The antenna 
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was driven by 115-volt, 60 cycle, single phase motor to which was coupled 
a two-phase reference voltage generator. The motor rotated at approxi- 
mately 1800 rpm which resulted in a scanning rate of 30 cycles per second. 
This antenna was used with a 24-inch spun steel parabolic reflector which 
provided, at the 3 db point, a beam width of approximately 11° and a beam 
shift of 8.5° making a total beam width of approximately 20° when scan- 
ning. The minor lobes were down more than 17 db (one way) from the 
maximum; and the gain of this antenna was 21 db. This antenna assembly 
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Fig. 55—Mark 19 Antenna. 

was integral with a transmitter-receiver (Fig. 55) which was mounted on 
the associated gun director. Consequently, the size of the reflector was 
limited by requirements for unobstructed vision for the operators in the 
director. As a matter of fact, for this type of radar system serious con- 
sideration must be given to the size and weight of the antenna and asso- 
ciated components. 

14.11 The Mark 28 Radar Antenna 

The beam from the antenna used in Radar Equipment Mark 19 was 
relatively broad and to improve target resolution, the diameter of the 
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reflector for the antenna in Mark 28 was approximately doubled. The 
Mark 28 is a 10 cm system and employs a conical scanning antenna similar 
to that described for Mark 19. The essential difference is that the spun 
steel parabolic reflector is 45 inches in diameter which provides a beam 
width of approximately 6.5° and a beam shift of 4.5° making a total of 11°. 

:,.ri 

Fig. 56—Mark 28 Antenna Mounted on 40 MM Gun. 

The minor lobes are down more than 17 db (one way) from the maximum; 
and the gain of this antenna is 26 db. It was found necessary to perforate 
the reflector of this dimension in order to reduce deflection caused by gun 
blast and by wind drag on the antenna assembly. The antenna assembly 
for Radar Equipment Mark 28 is shown in Fig. 56. This assembly is 
shown mounted on a 40 mm Gun. 
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14.12 A 3 CM Anti-Aircraft Radar Antenna. 

To obtain greater discrimination between a given target and other targets, 
or between a target and its surroundings, the wavelength was reduced to 
the 3 cm region. An antenna for this wavelength was designed to employ 
the conical scan principle. In this case the parabolic reflector was 30 inches 
in diameter and transmitted a beam approximately 3° wide at the 3db point 
with a beam shift of 1.5° making a total of 4.5° with the antenna scanning. 
The minor lobes are down more than 22 db (one way) from the maximum; 
and the gain of this antenna is 35 db. 

In the 3 cm system in which a Cutler feed was used, the axis of the beam 
was rotated in an orbit by "nutation" about the mechanical axis of the 
antenna. This was accomplished by passing circular waveguide through 
the hollow shaft of the driving motor. The rear end of the feed (choke 
coupling end) was fixed in a ball pivot while the center (near the reflector) 
was off set the proper amount to develop the required beam shift. This 
off set was produced by a rotating eccentric driven by the motor. The 
latter was a 440 volt, 60 cycle, 3 phase motor rotating at approximately 1800 
rpm which resulted in a scanning rate of 30 cycles per second. The two- 
phase reference voltage generator was integral with the driving motor. 

It was found necessary at these radio frequencies to use a cast aluminum 
reflector and to machine the reflecting surface to close tolerances in order to 
attain the consistency in beam width and beam direction required for 
accurate pointing. An antenna assembly for the 3 cm anti-aircraft radar 
is shown in Fig. 57. 

15. Land Based Radar Antennas 

15.1 The SCR-545 Radar "Search" and "Track" Antennas11 

The SCR-545 Radar Set was developed at the Army's request to meet 
the urgent need for a radar set to detect aircraft and provide accurate tar- 
get tracking data for the direction of anti-aircraft guns. 

This use required that a narrow beam tracking antenna be employed to 
achieve the necessary tracking accuracy, furthermore, a narrow beam 
antenna suitable for accurate tracking has a very limited field of view and 
requires additional facilities for target acquisition. This was provided by 
the search antenna which has a relatively large field of view and is provided 
with facilities for centering the target in its field of view. These two an- 
tennas are integrated into a single mechanical structure and both radar axes 
coincide. 

The "Search" antenna operates in the 200 mc band and is com- 
17 Section 15.1 was written by A. L. Robinson. 
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posed of an array of 16 quarter wave dipoles spaced 0.1 wave-length 
in front of a flat metal reflector. All feed system lines and impedance 
matching devices are made up of coaxial transmission line seel ions. The 
array is divided into four quarters, each being fed from the lobe switching 
mechanism. This division is required to permit lobe switching in both 
horizontal and vertical planes. The function of the lobe switching mecha- 
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Fig. 57.—3CM Anti-Aircraft Radar Antenna. 

nism is to introduce a particular phase shift in the excitation of the elements 
of one half of the antenna with respect to the other half. The theory of 
this type of lobe switching is discussed in section 11.1. The antenna beam 
spends approximately one quarter of a lobing cycle in each one of the four 
lobe positions. Each of the four lobe positions has the same radiated field 
intensity along the antenna axis and therefore when a target is on axis 
equal signals will be received from all four lobe positions. 
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The "Track" antenna operates in the 10 cm. region and consists of a reflec- 
tor which is a parabola or revolution, 57 inches in diameter, illuminated by a 
source of energy emerging from a round waveguide in the lobing mechanism. 
Conical lobing is achieved by rotating the source of energy around the 
parabola axis in the focal plane of the parabola. Conical lobing is discussed 
in section 11.2. The round waveguide forming the source is filled with a 
specially shaped polystyrene core to control the illumination of the para Jola 
and to seal the feed system against the weather. The radio frequency power 
is fed through coaxial transmission line to a coaxial-waveguide transition 
which is attached to the lobing mechanism. 

The "Search" and "Track" antenna lobing mechanisms are synchronized 
and driven by a common motor. 

The radio frequency power for both antennas is transmitted through a 
single specially constructed coaxial transmission line to the common antenna 
structure, where a coaxial transmission line filter separates the power for 
each antenna. 

Figure 58 is a photograph of a production model of the SCR-545 Radar 
Set. The principal electrical characteristics of the antennas are tabulated 
below: 

Antennas 

Search Track 

Gain 14.5 db 30 db 
Horizontal Beamwidth 23.5° 5° 
Vertical Beamwidth 25.5° 5° 
Polarization Horizontal Vertical 
Type of Lobing Lobe switching Conical lobing 
Angle between lobe positions 10° 3° 
Lobing rate 60 cycles/sec. 60 cycles/sec. 

The SCR-545 played an important part in the Italian campaign, particu- 
larly in helping to secure the Anzlo Beach Head area, as well as combating 
the "V" bombs in Belgium. However the majority of SCR-545 equip- 
ments were sent to the Pacific Theater of Operations and played an im- 
portant part in operations on Leyte, Saipan, Iwo Jima, and Okinawa. 

15.2 The AN/TPS-1A Portable Search Anlenna19, 

In order to provide early warning information for advanced units, a light 
weight, readily transportable radar was designed under Signal Corps contract. 

18 Written by R. E. Crane. 



310 BELL SYSTEM TECHNICAL JOURNAL 



RADAR ANTENNAS 311 

The objective was to obtain as long range early warning as possible with 
moderate accurracy of location. Emphasis was placed on detection of low 
flying planes. 

The objectives for the set indicated that the antenna should be built 
as large as reasonable and placed as high as reasonable for a portable set. 
Some latitude in choice of frequency was permitted at first. For rugged- 
ness and reliability reasons which seemed controlling at the time, the fre- 
quency was pushed as high as possible with vacuum tube detectors and 
R.F. amplifiers. This was finally set at 1080 mc. 

The antenna as finally produced was 15 ft. in width and 4 ft. in height" 
The reflecting surface was paraboloidal. The mouth of the feed horn was 
approximately at the focus of the generating parabola. The feedhorn 
was excited by a probe consisting of the inner conductor of the coaxial 
transmission line extended through the side of the horn and suitably shaped. 
To reduce side lobes and back radiation the feedhorn was dimensioned to 
taper the illumination so that it was reduced about 10 db in the horizontal 
and vertical planes at the edges of the reflector. Dimensions of probe and 
exact location of feed, etc. were determined empirically to secure acceptable 
impedance over the frequency band needed. This band, covered by spot 
frequency magnetrons, was approximately ±2.5% from mid frequency. 

Figure 59 shows the antenna in place on top of the set. 

Fig. 59—AN/TPS-1A Antenna. 
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The characteristics of this antenna are summarized below: 

Gain 
Horizontal Half Power Beamwidth 
Vertical Half Power Beamwidth 

27.3 db. 
4.4° 

12.6° 

Vertical Beam Characteristic 
Polarization 
Impedance (SWR over ±2.5% 

Symmetrical 
Horizontal 

<4.0 db 
band) 

16. Airborne Radar Antennas 

16.1 The AN/APS-4 Antenna'* 

AN/APS-4 was designed to provide the Navy's carrier-based planes 
with a high performance high resolution radar for search against surface 
and airborne targets, navigation and interception of enemy planes under 
conditions of fog and darkness. For this service, weight was an all im- 
portant consideration and throughout a production schedule that by V-J 
day was approaching 15,000 units, changes to reduce weight were con- 
stantly being introduced. In late production the antenna was responsible 
for 19 lbs. out of a total equipment weight of 164 lbs. The military require- 
ments called for a scan covering 150° in azimuth ahead of the plane and 30° 
above and below the horizontal plane in elevation. To meet this require- 
ment a Cutler feed and a parabolic reflector of 6.3" focal length and 141" 
diameter was selected. Scanning in azimuth was performed by oscillating 
reflector and feed through the required 150° while elevation scan was per- 
formed by tilting the reflector. Beam pattern was good for all tilt angles. 
In early flight tests the altitude line on the B scope due to reflection from 
the sea beneath was found to be a serious detriment to the performance of 
the set. To reduce this, a feed with elongated slots designed for an elliptical 
reflector was tried and found to give an improvement even when used with 
the approximately round reflector. The elliptical reflector was also tried, 
but did not improve the performance sufficiently to justify the increased 
size. 

As will be noted in Fig. 60, the course of the mechanical development 
brought the horizontal pivot of the reflector to the form of small ears pro- 
jecting through the parabola. No appreciable deterioration of the beam 
pattern due to this unorthodox expedient was noted. 

The equipment as a whole was built into a bomb-shaped container hung 
in the bomb rack on the underside of the wing. Various accidents resulted 
in this container being torn off the wing in a crash landing in water or 
dropped on the deck of the carrier. After these mishaps, the equipment 
was frequently found to be in good working order with little or no repair 
required. 

19 Written by F. C. Willis. 
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Gain 28 db 
Beamwidth 6° approx. circular 
Polarization Horizontal 
Scan Mechanical 
Scanning Sector—Azimuth 150° 
Scanning Sector—Elevation 60° 
Scanning Rate one per sec. 
Total weight 19 lbs. 

?• 

i 

Fig. 60—AN/APS-4 Antenna. 

16.2 The SCR-520, SCR-7I7 and SCR-720 Antennas1* 

The antenna shown in Fig. ol is typical of the type used with the SCR-520 
and SCR-720 aircraft interception (night fighter) airborne radar equip- 
ment, as well as the SCR-717 sea search and anti-submarine airborne radar 
equipment. The parabolic reflector is 29 inches in diameter and produces a 
radiation beam about 10° wide. The absolute gain is approximately 25 
db. RF energy is supplied to a pressurized emitter through a pressurized 
transmission line system which includes a rotary joint located on the ver- 

20 Written by J. F. Morrison. 
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tical axis and a tilt joint on the horizontal axis. Either vertical or hori- 
zontal polarization can be used by rotating the mounting position of the 
emitter. Vertical polarization is preferred for aircraft interception "work 
and horizontal polarization is preferred for sea search work. 

Nn 

V 
^3 

Fig. 61—SCR-520 Antenna. 

For aircraft interception the military services desired to scan rapidly a 
large solid angle forward of the pursuing airplane, i.e. 90° right and left, 15° 
below and 50° above the line of flight. The data is presented to the opera- 
tor in the form of both "B" and "C" presentations and for this purpose 
potentiometer data take-offs are provided on the antenna. The reflector 
is spun on a vertical axis at a rate of 360 rpm and at the same time it is 
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made to nod up and down about its horizontal axis by controllable amounts 
up to a total of 65° and at a rate of 30° per second. 

In the sea search SCR-717 equipment, selsyn azimuth position data take- 
offs are provided which drive a PPI type of indicator presentation. The 
rotational speed about the vertical axis in this case is either 8 or 20 rpm 
as selected by the operator. The reflector can also be tilted about its 
horizontal axis above or below the line of flight as desired by the operator. 

It will be noted that the emitter moves with the reflector and accordingly 
it is always located at the focal point throughout all orientations of the 
antenna. 

16.3 The AN/APQ-7 Radar Bombsight Antenna1 

Early experience in the use of bombing-through-overcast radar equip- 
ment indicated that a severe limitation in performance was to be expected 
as the result of the inadequate resolution offered by the then available air- 
borne radar equipments. This lack of resolution accounted for gross errors 
in bombing where the target area was not ideal from a radar standpoint. 

To meet this increased resolution requirement in range, the transmitted 
pulse width was shortened considerably. In attempting to increase the 
azimuthal resolution, higher frequencies of transmission were employed. 
This enabled an improvement in azimuthal resolution without resorting to 
larger radiating structures, a most important consideration on modern 
high speed military aircraft. 

To extend the size of the radiating structure without penalizing the air- 
craft performance, the use of a linear scanning array which would exhibit 
high azimuthal resolution was considered. This array was originally con- 
ceived in a form suitable to mount within the existing aircraft wing and 
transmit through the leading edge. As development proceeded, the restric- 
tions imposed on the antenna structure as well as the aircraft wing design 
resulted in the linear array scanner being housed in an appropriate separate 
air foil and attached to the aircraft fuselage (Fig. 62). 

The above study resulted in the development of the AN/APQ-7 radar 
equipment, operating at the X-band of frequencies.22 This equipment 
provided facilities for radar navigation and bombing. 

The AN/APQ-7 antenna consisted of an array of 250 dipole structures 
spaced at | wavelength intervals and energized by means of coupling probes 
extending into a variable width waveguide. The vertical pattern was 
arranged to exhibit a modified csc2 distribution by means of accurately 
shaped "flaps" attached to the assembly. 

31 Written by L. W. Morrison. . 
" A large part of the antenna development was carried out at the M. I. T. Radiation 

Laboratory. 
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L. 

ANTENNA AIRFOIL ASSEMBLY 
Fig. 62—AN/APQ-7 Antenna Mounted on B24 Bomber. 
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Fig. 63—AN/APQ-7 Antenna. Left—Contracted Wave Guide Assembly. Right- 
Expanded Wave Guide Assembly. 

The scanning of the beam is accomplished by varying the width of the 
feed waveguide. This is accomplished by means of a motor driven actuated 
cam which drives a push rod extending along the waveguide assembly back 
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and forth. Toggle arms are attached to this push rod at frequently spaced 
intervals which provides the motion for varying the width of the waveguide 
while assuring precise parallelism of the side walls throughout its length 
(Fig. 63). 

The normal range of horizontal scanning exhibited by this linear array, 
extends from a line perpendicular to the array to 30° in the direction of the 
feed. By alternately feeding each end, a total scanning range of ±30° 
from the perpendicular is achieved. Appropriate circuits to synchronize 
the indicator for this range are included. 

The use of alternate end feed on the AN/APQ-7 antenna requires that 
the amount of energy fed to the individual dipoles is somewhat less than if a 
single end feed is employed. 

The AN/APQ-7 antenna is 16^ feet in length and weighs 180 pounds 
exclusive of air foil housing. 

The following data applies; 

Gain = 32.5 db 
Horizontal beamwidth = 0.4° 
Vertical beam characteristic = modified csc2 

Scan—Array scanning 
Scanning Sector—± 30° Horizontal 
Scanning Rate = 450/second 
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Probability Functions for the Modulus and Angle of the 
Normal Complex Variate 

By RAY S. HOYT 

This paper deals mainly with various 'distribution functions' and 'cumulative 
distribution functions' pertaining to the modulus and to the angle of the 'normal' 
complex variate, for the case where the mean value of this variate is zero. ^ Also, 
for auxiliary uses chiefly, the distribution function pertaining to the reciprocal 
of the modulus is included. For all of these various probability functions the 
paper derives convenient general formulas, and for four of the functions it supplies 
comprehensive sets of curves; furthur, it gives a table of computed values of the 
cumulative distribution function for the modulus, serving to verify the values 
computed by a different method in an earlier paper by the same author.1 

Introduction 

IN THE solution of problems relating to alternating current networks 
and transmission systems by means of the usual complex quantity 

method, any deviation of any quantity from its reference value is naturally 
a complex quantity, in general. If, further, the deviation is of a random 
nature and hence is variable in a random sense, then it constitutes a 'complex 
random variable,' or a 'complex variate,' the word 'variate' here meaning 
the same as 'random variable' (or 'chance variable'—though, on the whole, 
'random variable' seems preferable to 'chance variable' and is more widely 
used). 

Although a complex variate may be regarded formally as a single ana- 
lytical entity, denotable by a single letter (as Z), nevertheless it has two 
analytical constituents, or components: for instance, its real and imaginary 
constituents (X and 7); also, its modulus and amplitude {\Z\ and 0). 
Correspondingly, a complex variate can be represented geometrically by 
a single geometrical entity, namely a plane vector, but this, in turn, has 
two geometrical components, or constituents: for instance, its two rec- 
tangular components {X and Y); also, its two polar components, radius 
vector and vectorial angle (R = \ Z \ and 0). 

This paper deals mainly with the modulus and the angle of the complex 
variate,2 which are often of greater theoretical interest and practical im- 

1" Probability Theory and Telephone Transmission Engineering," Bell System Tech- 
nical Journal, January 1933, which will hereafter be referred to merely as the "1933 
paper". 2 Throughout the paper, I have used the term 'complex variate' for any 2-dimensional 
variate, because of the nature of the contemplated applications indicated in the first 
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portance than the real and imaginary constituents. The modulus variate 
and the angle variate, individually and jointly, are of considerable the- 
oretical interest; while the modulus variate is also of very considerable 
practical importance, and the angle variate may conceivably become of 
some practical importance. 

The paper is concerned chiefly with the 'distribution functions'3 and the 
'cumulative distribution functions' pertaining to the modulus (Sections 3 
and 5) and to the angle (Sections 6 and 7) of the 'normal' complex variate, 
for the case where the mean value of this variate is zero. The distribution 
function for the reciprocal of the modulus is also included (Section 4). 

The term 'probability function' is used in this paper generically to include 
'distribution function' and 'cumulative distribution function.' 

To avoid all except short digressions, some of the derivation work has 
been placed in appendices, of which there are four. These may be found 
of some intrinsic interest, besides facihtating the understanding of the 
paper. 

1. Distribution Function and Cumulative Distribution Function 
in General: Definitions, Terminology, Notation, Relations, 

and Formulas 

The present section constitutes a generic basis for the rest of the paper. 
Let r denote any complex variate, and let p and a denote any pair of 

real quantities determining r and determined by r. (For instance, p and 
a might be the real and imaginary components of r, or they might be the 
modulus and angle of r.) Geometrically, p and a may be pictured as gen- 
eral curvilinear coordinates in a plane, as indicated by Fig. 1.1. 

Let r' denote the unknown value of a random sample consisting of a 
single r-variate, and p' and a' the corresponding unknown values of the 
constituents of t'. 

Further, let G(p, a) denote the 'areal probability density' at any point 
p,a in the p,(r-plane, so that G{p,a)dA gives the probability that r' falls 
in a differential area dA containing the point r; and so that the integral of 

paragraph of the Introduction, and also because the present paper is a sort of sequel to 
my 1933 paper, where the term'complex variate' (or rather, 'complex chance-variable') 
was used throughout since there it seemed clearly to be the best term, on account of the 
field of applications contemplated and the specific applications given as illustrations. 
However, for wider usage the term' bivariate' might be preferred because of its prevalence 
in the field of Mathematical Statistics; and therefore the paper should be read with this 
alternative in view. 3 The term' distribution function' is used with the same meaning in this paper as in 
my 1933 paper, although there the term 'probability law' was used much more frequently 
than'distribution function,' but with the same meaning. 



320 BELL SYSTEM TECHNICAL JOURNAL 

G{p,a)dA over the entire p,(r-plane is equal to unity, corresponding to 
certainty. 

For the sake of subsequent needs of a formal nature, it will now be as- 
sumed that G{p,(t) = 0 at all points p,a outside of the pi, P2, ffi, 02 quad- 
rilateral region in the p,(r-plane, Fig. 1.1, bounded by arcs of the four heavy 
curves, for which p has the values pi and P2 and a the values ai and 0-2, 
with pi and <7i regarded, for convenience, as being less than po and a? respec- 
tively. Further, G(p,(r) will be assumed to be continuous inside of this 

quadrilateral region, and to be non-infinite on its boundary. Hence, for 
probability purposes, it will suffice to deal with the open inequalities 

which pertain to this quadrilateral region excluding its boundary; and thus 
it will not be necessary to deal with the closed inequalities pi ^ p ^ P2 
and (Ti ^ a ^ 02, which include the boundary.4 

4 The matters dealt with generically in this paragraph may be illustrated by the fol- 
lowing two important particular cases, which occur further on, namely: 

POLAR COORDINATES: p=\t\ = R, * = 9 = angle of r. Then p, = /q = 0, 
Pi = Ri = 00, (u = 0i = 0, 0-2 = 02 = Ztt, whence (1.1) and (1.2) become 0 < /? < « 
and 0 < 0 < 2ir, respectively. 

RECTANGULAR COORDINATES: p = Re r = x, tr = Im r = y. Then p, = ic, = 
— 00 , p2 = .r2 = 00, <ri = yi = — «=, 0-2 = y2 = ■*>, whence (1.1) and (1.2) become — =0 < 
.t < 00 and — ■»_< y < «>, respectively. 

Pi 
Fig. 1.1—Diagram of general curvilinear coordinates. 

Pi < p < po, (1.1) (Tj < cr < (72 , (1.2) 
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A generic quadrilateral region contained within the quadrilateral region 
Pi, P2, ffi, in Fig. 1.1 is the one bounded by arcs of the dashed curves 
Pa, pi, 03 , om , where pa < pa and 0-3 < 0-4. Here, as in the preceding 
paragraph, it will evidently suffice to deal with open inequalities. 

Referring to Fig. 1.1, the probability functions with which this paper 
will chiefly deal are certain particular cases of the probability functions 
P(p, o"), jP(p I 0-34) and Q{pm , 0-34) occurring on the right sides of the follow- 
ing three equations respectively: 

p{p < p' < p + (/p, a < ff' < tr + dcr) = P{p,<r)dpd(X, (1.3) 

/»(p < p' < p + dp, 0-3 < o' < 0-4) = P{p | (T34)dp, (1.4) 

Pips < p < p\, a* < a' < 0-4) = (Kpsi . (1.5) 

These equations serve to define the above-mentioned probability functions 
occurring on the right sides in terms of the probabilities denoted by the 
left sides, each expression p{ ) on the left side denoting the probability 
of the pair of inequalities within the parentheses.5 Inspection of these 
equations shows that: P{p,<t) is the 'distribution function' for p and a 
jointly; P(p | (T34) is a 'distribution function' for p individually, with the 
understanding that tr' is restricted to the range az-io-ai ; Q(p34 ,"'34) is a 
'cumulative distribution function' for p and a jointly. 

Since the left sides of (1.3), (1.4) and (1.5) are necessarily positive, the 
right sides must be also. Hence, as all of the probability functions occur- 
ring in the right sides are of course desired to be positive, the differentials 
dp and da must be taken as positive, if we are to avoid writing \ dp | and 
| rfo-1 in place of dp and da respectively. 

Returning to (1.3), it is seen that, stated in words, P{p,a) is such that 
P{p,a)dpda gives the probability that the unknown values p' and a' of 
the constituents of the unknown value / of a random sample consisting 
of a single r-variate lie respectively in the differential intervals dp and da 
containing the constituent values p and a respectively. Thus, unless 
dpda is the differential element of area, P{p,a) is not equal to the 'areal 
probability density,' G(p,o-), defined in the fourth paragraph of this section. 
In general, if E is such that Eipda is the differential element of area, then 
P(p, o") = EG(p, a). (An illustration is afforded incidentally by Appendix A.) 

P{p,a), defined by (1.3), is the basic 'probability function,' in the sense 
that the others can be expressed in terms of it, by integration. Thus 

6 Thus /> in />( ) may be read 'probability that' or 'probability of.' 
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P(p 1 an) and P{a ] psO, defined respectively by (1.4) and by the correlative 
of (1.4), can be expressed as 'single integrals,' as follows6: 

P{p\an)= f P(p,a) da, (1.6) P(o-) P34) = [ P(p,a) dp. (1.7) 

Q(p34, 0-34), defined by (1.5), can be expressed as a 'double integral,' funda- 
mentally; but, for purposes of analysis and of evaluation, this will be replaced 
by its two equivalent 'repeated integrals': 

Qipu, vsd = f ^ P(p,a) rfdj dP = I P(p,o-)^pj^, (1.8) 

the set of integration limits being the same in both repeated integrals 
because these limits are constants, as indicated by Fig. 1.1. On account 
of (1.6) and (1.7) respectively, (1.8) can evidently be written formally 
as two single integrals: 

QW, (T34) = f P(p I 034) dp = [ P{a | P34) da, (1.9) •'ITJ 

but implicitly these are repeated integrals unless the single integrations in 
(1.6) and (1.7) can be executed, in which case the integrals in (1.9) will 
actually be single integrals, and these will be quite unlike each other in 
form, being integrals with respect to p and a respectively—though of course 
yielding a common expression in case the indicated integrations can be 
executed. 

The particular cases of (1.4) and (1.5) with which this paper will chiefly 
deal are the following three: 

p(p < p < p -\- dp, a\ < a' < a-i) = P(p \ ai?) dp = P (p) dp, (1.10) 

p{p\ < p' < p, a\ < a' < az) = Q(< p,avt) = Q{p), (l-H) 

p(j) < p' < pi, a\ < a' < as) = Q(> p,an) = (7*(p). (1-12) 

"The single-integral formulation in (1.6) can be written down directly by mere inspec- 
tion of the left side of (1.4). Alternatively, (1.6) can be obtained by representing the left 
side of (1.4) by a repeated integral, as follows: 

r-p+dp r r"* ~] r f* ~j 
P{p\<r3i)dp = j P{p,a)da^dp= P(p, ajdo* J dp, 

whence (1.6); the last equality in the above chain equation in this footnote evidently px+dx 
results from the fact that, in general, / }{x)dx = }{x)dx, since each side of this equa- 

* X 
tion represents dA, the diiTerential element of area under the graph of fix) from a; to 
x + dx. 
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In each of these three equations the very abbreviated notation at the ex- 
treme right will be used wherever the function is being dealt with exten- 
sively, as in the various succeeding sections. Such notation will not seem 
unduly abbreviated nor arbitrary if the following considerations are noted: 
In (1.10), ai2 corresponds to the entire effective range of tr, so that F(p | 0-12) 
is the 'principal' distribution function for p. Similarly, in (1.11), Q(< p,oi2) 
is the 'principal' cumultive distribution function for p. In (1.12), the star 
indicates that Q*(p) is the 'complementary' cumulative distribution func- 
tion, since Q(p) -f- Q*(p) = Q(pi2, 0-12) = 1, unity being taken as the measure 
of certainty, of course. 

For occasional use in succeeding sections, the defining equations for 
the probability functions pertaining to four other particular cases will 
be set down here: 

p(p < p' < p + </p, (Ti < a' < a) = P(p 1 < a) dp, (1.13) 

p(p < p' < p dp, a < a' < a*) = P{p 1 > a) dp, (1.14) 

p{pi < p' < p, (Ti < a' < a) = Q{< p, < a), (1-15) 

p{p < p' < P2, ffi < ff' < tr) = Q{> p, < a). (1-16) 

It may be noted that (1.13) and (1.14) are mutually supplementary, in the 
sense that their sum is (1.10). Similarly, (1.15) and (1.16) are mutually 
supplementary, in the sense that their sum is (3(pi?,< cr) = (?(< tr-Pia), 
which is the correlative of (1.11). 

This section will be concluded with the following three simple trans- 
formation relations (1.17), (1.18) and (1.19), which will be needed further 
on. They pertain to the probability functions on the right sides of equa- 
tions (1.3), (1.4) and (1.5) respectively, h and k denote any positive real 
constants, the restriction to positive values serving to simplify matters 
without being too restrictive for the needs of this paper. 

PQtp, ka) = 1 P(p,(r), (1.17) 

P(hp\kcT3i) = ^P(p\ *34), (1.18) 

Q{hpsi, kau) = Q{pu,azi). (1-19) 

Each of the three formulas (1.17), (1.18), (1.19) can be rather easily 
derived in at least two ways that are very different from each other. One 
way depends on probability inequality relations of the sort 

p{t<l'<t-\-dt) = p[gt<gt' <gt+d[gt]), (1.20) 

p(,h<t'<U) = p{gk<gt'<gh), (1.21) 
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where t stands generically for p and for a, and g is any positive real constant, 
standing generically for h and for k; (1.20) and (1.21) are easily seen to be 
true by imagining every variate in the universe of the /-variates to be 
multiplied by g, thereby obtaining a universe of (gO-variates. A second 
way of deriving each of the three formulas (1.17), (1.18), (1.19) depends on 
general integral relations of the sort 

/'/(') <" = 1 /" /W d(sl) = - /"/(-) A- (1-22) Ja g J 0" g Jaa \g/ 

A third way, which is distantly related to the second way, depends on the 
use of the Jacobian for changing the variables in any double integral; thus, 

P(p,(r) = 

FM 

the first equality in (1.23) depending on the fact that the two sets of vari- 
ables and of differentials have corresponding values and hence are so re- 
lated that 

/>(p<p'<p+<fp, (r<a'<a+da) = /»(X<X/<X+</X, n<p'<n+(Ifi), (1.24) 

whence 

P(p,(t) | dpda | = -P(X,p) | d\dp. |. 

2. The Normal Complex Variate and Its Chief Probability Functions 

The 'normal' complex variate may be defined in various equivalent ways. 
Here, a given complex variate z = x iy will be defined as being 'normal' 
if it is possible to choose in the plane of the scatter diagram of z a pair of 
rectangular axes, u and v, such that the distribution function7 Piu,v) 
for the given complex variate with respect to these axes can be written in 
the form8 

• PM = dj, " k.' 5]= p(u)p(v)- C2-1) 

We shall call w = u iv the 'modified' complex variate, as it represents 
the value of the given complex variate z = x + iy when the latter is referred 
to the «,f-axes; P{u) and P{v) are respectively the individual distribution 
functions for the u and v components of the modified complex variate; and 

7 Defined by equation (1.3) on setting p = u and a = v. 8 This equation is (12) of my 1933 paper. It can be easily verified that the (double) 
integral of (2.1) taken over the entire «, n-plane is equal to unity. 

dXdp. 
dpda 

d(X,/x) 
d(p,a) 

= 1 
d(p.o-) (1.23) 
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Su and Sv are distribution parameters called the 'standard deviations' of 
u and v respectively. If I stands for u and for v generically, then 

p(i)-= (2-2) si ~ [JPO (2.3) 

From the viewpoint of the scatter diagram, the distribution function 
P(u,v) is, in general, equal to the 'areal probability density' at the point 
u,v in the plane of the scatter diagram, so that the probability of falling 
in a differential element of area dA containing the point u,v is equal to 
P(u,v)dA; similarly, P{u) and P(v) are equal to the component probability 
densities. In particular, the probability density is 'normal' when P(u,v) 
is given by (2.1). 

Geometrically, equation (2.1) evidently represents a surface, the normal 
'probability surface,' situated above the u, f-plane; and P{u, v) is the ordinate 
from any point u,v in the u,r-plane to the probability surface. 

The M,v-axes described above will be recognized as being the 'principal 
central axes,' namely that pair of rectangular axs which have their origin 
at the 'center' of the scatter diagram of z = x + iy and hence at the center 
of the scatter diagram of u> = u + iv, so that iD = 0, and are so oriented, 
in the scatter diagram that uv = 0 (whereas 2^0 and xy 9^0, \n general). 

In equation (2.1), which has been adopted above as the analytical basis 
for defining the 'normal' complex variate, the distribution parameters are 
Su and Sv ; and they occur symmetrically there, which is evidently natural 
and is desirable for purposes of definition. Henceforth, however, it will be 
preferable to adopt as the distribution parameters the quantities S and b 
defined by the pair of equations9 

52 = 5* + Si, (2.4) bS2 = Si - Si, (2.5) 

whence 

= - sl = i - GV^)2 

Sl + Sl 1 + (SV/Su)2' { * 

From (2.4), S is seen to be a sort of 'resultant standard deviation.' The 
last form of (2.6) shows clearly that the total possible range of b is 

— 1 ^ ^ 1, corresponding to ^ Sv/Su ^ 0. 

The pair of simultaneous equations (2.4) and (2.5) give 

2Sl = (l+6)52, (2.7) 2Sl = (l-b)S\ (2.8) 

which will be used below in deriving (2.11). 
9 Equations (2.4) and (2.6) are respectively (14) and (13) of my 1933 paper. 
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With the purpose of reducing the number of parameters by 1 and of 
dealing with variables that are dimensionless, we shall henceforth deal 
with the 'reduced' modified variate W = U + iV defined by the equation 

W = w/S = u/S + iv/S = Z7 -f iF. (2.9) 

Thus we shall be directly concerned with the scatter diagram oi W = 
U -\- iV instead of with that oiw = u -\r iv. 

The distribution function P{U,V) for the rectangular components U 
and V of any complex variate W = U -\- iV is defined by (1.3) on setting 
p = U and a = V ] thus, 

P{U,V)dUdV = pilKU'CJ+dU^KV'KV+dV). (2.10) 

When the given variate s = x+ iy is normal, so that the modified variate 
w = « + in is normal, as represented by (2.1), then, since 5 is a mere con- 
stant, the reduced modified variate W — U + iV defined by (2.9) will 
evidently be normal also, though of course with a different distribution 
parameter. Its distribution function P{U,V) is found to have the formula1 

ww = exp[ - rf-6 - = pwpW' v-n) 

where P(JJ) and PiV) are the component distribution functions: 

p{v) = vOT ^ 

pw = v^ht)6X1 

These three distribution functions each contain only one distribution 
parameter, namely 6; moreover, the variables U = u/S and V = v/S are 
dimensionless. 

The distribution function P{R,6) for the polar components R and 9 of 
any complex variate W = R{co& 6 i sin 6) is defined by (1.3) on setting 
p = R and a = 6; thus 

P{R,e)dRde = p{R<R'<R+dR, 9<e'<9+de). (2.14) 

For the case where W is 'normal,' it is shown in Appendix A that 

P{R,d) = exp[^r^2 (1 - & cos 20) J (2.15) 

= exp[ —L(1 - 6 cos 20)], (2.16) 
TT 

10 This formula can be obtained from (2.1) by means of (2.7), (2.8), (2.9) and (1.17) 
after specializing (1.17) by the substitutions p = u, a = v and It = k = 1/5. It is (16) 
of my 1933 paper, but was given there without proof. 

[-if-J. 

[- .^l- ■ <■■»> 
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where 

L = Ry(\-V). (2.17) 

In P(R,d) it will evidently suffice to deal with values of 0 in the first 
quadrant, because of symmetry of the scatter diagram. 

The fact that P(R,6) depends on 6 as a parameter when W is 'normal' 
may be indicated explicitly by employing the fuller symbol P(R,e-,b) 
when desired; thus the former symbol is here an abbreviation for the latter. 

In P{R,6) = P(R, Q\b) it will suffice to deal with only positive values of 
b, that is, with (whereas the total possible range of b is — 
For (2.15) shows that changing b io —b has the same effect as changing 20 
to t±20, or 0 to 7r/2±0; that is, P{R,0; —b) = P{R, 7r/2±0; b). 

Seven formulas which will find considerable use subsequently are obtain- 
able from the integrals corresponding to equations (1.13) to (1.16), by setting 
p = R and cr = 0 or else p = 6 and a = R, whichever is appropriate, and 
thereafter substituting for P{R,d) the expression given by (2.16), and 
lastly executing the indicated integrations wherever they appear possible.11 

The resulting formulas are as follows: 

P{R | < 0) = exp(—Z,) [ exp(WL cos 26) d6, 
TT ■/() 

of a i / __ Vl — i2 1 - exp[—Z,( 1 b cos 20)] P{0\ <R)   1 _i.cos20 ' 

P(6 \ > R) = "v/l ~ &2 exp[-Z,(l - b cos io)] 
27r I — b cos 26 

Q(< R, < 0) = I £ exp(-L) jf exp(bL cos 20) doj dR (2.21) 

= Vl - P f" 1 - exp[-£(l - b cos 20)] 
2ir Jo I - b cos 26 ' K ' 

Q(> R, < 0) = J exp( —Z,) J exp(bLcos,20) d0~^dR (2.23) 

Vl - i2 / t\ fe exp(bL cos 20) Jn 0.. 
=   exp( —Z,) / 1

HV , ~dQ. (2.24) 27r Jo \ — b cos 26 

Formulas (2.21) to (2.24) are obtainable also by substituting (2.18) to 
(2.20) into the appropriate particular forms of (1.9). 

When a 0-range of integration is 0-to-9(7r/2), where q = 1, 2, 3 or 4, this 
11 Except that in (2.22) the part 1/(1 — b cos 20) is integrable, as found in Sec. 7, 

equations (7.6) and (7.7). 

(2.18) 

(2.19) 

(2.20) 
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range can be reduced to 0-to-7r/2 provided the resulting integral is mul- 
tiplied by g; that is, 

r«(W2) /-WZ 
F{e)dQ = q F(e)de, (2.25) 

Jo Jo 

because of symmetry of the scatter diagram. 

3. The Distribution Function for the Modulus 

The distribution function P{R \ d12) = P{R) for the modulus R of any 
complex variate W = RicosO + f sin 0) is defined by equation (1.10) on 
setting p = R, a = 0, a\ = 0i = O and to = 02 — 27r; thus 

P{R)dR = p{R<R'<R+dR, O<0'<27r). (3.1) 

An integral formula for P{R) is immediately obtainable from (1.6) by 
setting p = R, a = 6, Go = ai = Qi — Q aud Oi = ao = 62 = 27r; thus 

r2' 
P{R) = / P(R,d) de. (3.2) 

Jo 

The rest of this section deals with the case where W = R(cos 0 + i sin 0) 
is 'normal.' Since this case depends on 6 as a parameter, P(7?) is here an 
abbreviation for P(R-, b). A formula for P{R-, b) can be obtained by sub- 
stituting P{R, 0) from (2.15) into (3.2) and executing the indicated integra- 
tion by means of the known Bessel function formula 

/ etcpG? cos \f/) dp = x/oG?), (3.3) 
Jo 

/„( ) being the so-called 'modified Bessel function of the first kind,' of 
order zero.12 The resulting formula is found to be13 

2R f -.R2 1T r t>R2 1 
p&i v = ^Lr^J7o Li - i2J • ( 5 

This can also be obtained as a particular case of the more general formula 
(2.18) by setting 0 = 2x in the upper limit of integration and then apply- 
ing (3.3). 

In P{R-,b) it will suffice to deal with positive values of b, that is, with 
O^gl, as (3.4) shows that P(R; —b) = P{R]b). 

12 It may be recalled that /0(s) = Mis), and in general that In{z)_ = i-nJ„(iz). 
In the list of references on Bessel functions, on the last page of this paper, the modified 

Bessel function' is treated in Ref. 2, p. 20; Ref. 3, p. 102; Ref. 4, p. 41; Ref. 1, p. 77. 
Regarding formula (3.3), see Ref. 1, p. 181, Eq. (4), f = 0; Ref. 1, p. 19, Eq. (9), fourth 

expression, v = 0; Ref. 2, p. 46, Eq. (10), n = 0; Ref. 3, p. 164, Eq. 103, n = 0. 

"This formula was given in its cumulative forms, J F(R; b)dR, as formulas (51-A) 

and (53-A) of the unpublished Appendix A to my 1933 paper. 



PROBABILITY FUNCTIONS FOR COMPLEX VARIATP 329 

It will often be advantageous to express PR-t & in terms of b attd one or 
the other of the auxiliary variables L and T defined by the equations 

p2 AP2 

L = (3-5) :r = 6£ = r^- (3-6) 

Formula (3.4) thereby becomes, respectively, 

P{R-,b) = 2y/L exp(-Z,)7o(6L), (3.7) 

P(R-Jb) = 2^1 exp[^'] h{T). (3.8) 

Formula (3.8) will often be preferable to (3.7) because the argument of 
the Bessel function in (3.8) is a single quantity, T. 

Because tables of h){X) are much less easily interpolated than tables of 
Mq{X) defined by the equation 

Mo(X) = exp(-X)7o(X), (3.9) 

extensive tables of which have been published,14 it is natural, at least for 
computational purposes, to write (3.4) in the form 

2R f -R1 1 V hR? " 
P(R'b) = Hrrd Mo (3.10) 

For use in equation (3.16), it is convenient to define here a function 
Mi{X) by the equation 

M^X) = exp(— X)Ii{X), (3.11) 

corresponding to (3.9) defining Mo{X). Mi(X) has the similar property 
that it is much more easily interpolated than is /i(X); and extensive tables 
of MiiX) are constituent parts of the tables in Ref. 1 and Ref. 6. 

The quantity bR2/{l — b2} = T, which occurs in (3.4) and (3.8) as the 
argument of /o( ), and in (3.10) as the argument of Mo{ ), evidently 
ranges from 0 to <*. when R ranges from 0 to °o and also when b ranges 
from 0 to 1. Formula (3.10) is suitable for computational purposes for all 
values of the above-mentioned argument bR2/{\ — b2) = T not exceeding 
the largest values of X in the above-cited tables in Ref. 1 and Ref. 6. For 
larger values of the argument, and partiularly for dealing with the limiting 

» Ref. 1, Table II (p. 698-713), for X = 0 to 16 by .02. Ref. 6, Table VIII (p. 272- 
283), for X = 5 to 10 by .01, and 10 to 20 by 0.1. Each of these references conveniently 
includes a table of exp(.Y) whereby values of h{X) can be readily and accurately evalu- 
ated if desired. Values of /o(A') so obtained would enable formulas (3.4), (3.7) and (3.8) 
of the present paper to be used with high accuracy without any diflicult interpolations, 
since the table of exp(X) is easily interpolated by utilizing the identity exp(Xi + Xt) = 
exp(Xi) expOYj). 
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case where the argument becomes infinite, formula (310)—and hence (3.4)— 
may be advantageously written in the form 

2 . T -R2 "I f 6722 1 , s 

« = vo expLr+-d L^J ■ (3-,2) 

where 

A'oOT = V2^x ^{-X)h{X) = (3.13) 

an extensive table of which has been published.15 The natural suitability 
of the function Nq{X) for dealing with large values of X is evident from 
the structure of the asymptotic series for No{X), for sufficiently large values 
of X, which runs as follows:16 

iVo(X) ~ 1 + + 21(8X)a + 31 (8X)s + • ■ ' > (3-14) 

whence it is evident that 

Xo(<*) = 1. (3.15) 

For use in Appendix C, it is convenient to define here a function Ni{X) 
by the equation17 

Nx{X) = y/lirX exp(—X)/i(X) = V^XM^X), (3.16) 

corresponding to (3.13) defining No(X), with M](X) defined by (3.11). 
The asymptotic series for Xi(X), which will be needed in Appendix C. is18 

Ni(X) ^1-3 [Y\8X + 2!(8X)2 + 11(8X7" + ' (3"17) 

whence it is evident that 

NM = 1. (3.18) 

When b is very nearly but not exactly equal to unity, so that 

bF2 R2 R2 

(3.19) 
I - I - b* 2(1 — b)' 

it is seen from (3.4) that P{R]b) is, to a very close approximation, a function 
16 Ref. 7, pp. 45-72, for X = 10 to 50 by 0.1, 50 to 200 by 1, 200 to 1000 by 10, and 

for various larger values of X. 18 Ref. 1, p. 203, with (v, m) defined on p. 198; Ref. 5, p. 366; Ref. 2, p. 58; Ref. 3, p. 
163, Eq. 84; Ref. 4, pp. 48, 84. 17 Ni{X) is tabulated along with No{X) in Ref. 7 already cited in connection with equa- 
tion (3.13). 18 Ref. 1, p. 203, with (y, m) defined on p. 198; Ref. 5, p. 366; Ref. 2, p. 58; Ref. 3, p. 
163, Eq. 84. 
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of only a single quantity, which may be any one of the three very nearly 
equal expressions in (3.19)—but the last of them is evidently the simplest. 

Fig. 3.1 gives curves of P(R;b), with the variable R ranging continuously 
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0.6 
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0.6 
O.'J 

0=0.4 
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0.8 
b=m 

0.2 0.4 0.6 O.a 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 
MODULUS,R 

Fig. 3.1—Distribution function for the modulus (i? = 0 to 2.8). 

from 0 to 2.8 and the parameter b ranging by steps from 0 to 1 inclusive, 
which is the complete range of positive b. Fig. 3.2 gives rfn enlargement 
(along the i?-axis) of the portion of Fig. 3.1 between i? = 0 and R = 0.4, 
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DISTRIBUTION FUNCTION, P(R;b) 

Fig. 3.2—Distribution function for the modulus (R = 0 to 0.4). 
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and includes therein curves for a considerable number of additional values 
of b between 0.9 and 1 so chosen as to show clearly how, with b increasing 
toward 1, the curves approach the curve for Z» = 1 as a limiting particular" 
curve; or, conversely, how the curve for i = 1 constitutes a limiting par- 
ticular curve—which, incidentally, will be found to be a natural and con- 
venient reference curve. This curve, for i = 1, will be considered more 
fully a little further on, because it is a limiting particular curve and be- 
cause of its resulting peculiarity at .ft = 0, the curve for = 1 having at 
ft = 0 a projection, or spur, situated in the P{R]b) axis and extending from 
0.7979 to 0.9376 therein (as shown a little further on). 

The formulas and curves for ^ = 0 and 6=1, being of especial interest 
and importance, will be considered before the remaining curves of the set. 

For the case 6 = 0, formula (3.4) evidently reduces immediately to 

ft(ft;0) = 2ft exp (-ft2). (3.20) 

This case, 6 = 0, is that degenerate particular case in which the equiprob- 
ability curves in the scatter diagram of the complex variate, instead of 
being ellipses (concentric), are merely circles, as noted in my 1933 paper, 
near the bottom of p. 44 thereof (p. 10 of reprint). 

For the case 6=1, the formula for the entire curve of ft(ft; 6) = ft(ft;l), 
except only the part at ft = 0, can be obtained by merely setting 6=1 
in19 (3.12) as this, on account of (3.15), thereby reduces immediately to 

2 f ft2! 
jP/(^; ^ = 2 J' (R * ^ (3,21) 

/"(ft;!) denoting the value of ft(ft;6) when 6=1 but ft 5^ 0, the restriction 
ft 5^ 0 being necessary because the quantity ft2/(l — 62) in (3.12)—and in 
(3.4)—does not have a definite value when 6 = 1 if ft = 0. Thus, in Figs. 
3.1 and 3.2, the curve of ft'(ft;l) is that part of the curve for 6 = 1 which 
does not include any point in the ft (ft; 6) axis (where ft = 0) but extends 
rightward from that axis toward ft = -f-00. The curve of P'{R;1) is the 
'effective' part of the curve of ft(ft;l), in the sense that the area under the 
former is equal to that under the latter, since the part of the curve of 
P(R',\) at ft = 0 can have no area under it. 

ft(();l) denoting (by convention) the value, or values, of ft(ft;6) when 
ft = 0 and 6=1, that is, the value, or values, of ft(ft;l) when ft = 0, it 
is seen, from consideration of the curves of ft(ft;6) in Figs. 3.1 and 3.2 when 
6 approaches 1 and ultimately becomes equal to 1, that the curve of ft(0;l) 
consists of all points in the vertical straight line segment extending upward 
in the ft(ft;6) axis, from the origin to a height 0.9376 [= Max ft(ft;l)],20 

19 Use of (3.12) instead of (3.4), which is transformable into (3.12), avoids the indefinite 
expression .0. m which would result directly from setting 6 = 1 in (3.4). 20 As shown near the end of Appendix B, Max P{R',l) is situated at = 0 and is 
equal to 0.9376. 
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together with all points in the straight line segment extending downward 
from the point at 0.9376 to the point at 0.7979 [= 2/ y/lir = P'{R\\) for 
r = 0+]. The curve of P(0; 1), because it has no area under it, is the 
'non-effective' part of the curve of P{R\\)- 

Starting at the origin of coordinates, where i? = 0, the complete curve 
of P{R\\) consists of the curve of P(0;1), described in the preceding para- 
graph, in sequence with the curve of P'{R\\}, given by (3.21). Thus the 
complete curve of P(i?;l) is the locus of a tracing point moving as follows: 
Starting at the origin of coordinates, the tracing point first ascends in the 
P{R\ b) axis to a height (K9376 [= MaxP(^;l)]; second, descends from 
0.9376 to 0.7979 [= 2/ \/27r = P'(P;1) for R = 0+]; and, third, moves 
rightward along the graph of P'(P;1) = l] toward R= + ™. The locus 
of all of the points thus traversed by the tracing point is the complete 
curve21 of P(P;1). 

In addition to being the principal part ('effective' part) of the curve of 
P(P;1), the curve of P'(P;1), whose formula is (3.21), has a further impor- 
tant significance. For the right side of (3.21), except for the factor 2, will 
be recognized as being the expression for the well-known 1-dimensional 
'normal' law; the presence of the factor 2 is accounted for by the fact that 
the variable R = 1 P ] can have only posiive values and yet the area under 
the curve must be equal to unity. This case, b = 1, is that degenerate 
particular case in which the equiprobability curves, instead of being ellipses, 
are superposed straight line segments, so that the resulting probability 
density' is not constant but varies in accordance with the 1-dimensional 
'normal' law (for real variates), as noted in my 1933 paper, at the top of p. 45 
thereof (p. 11 of reprint). 

All of the curves of P(P;&), where 0^6^ 1, pass through the origin, 
the curve of P(P;1) [b = 1] being no exception, since the part P(0;1) passes 
through the origin. 

Formula (3.12), supplemented by (3.15), shows that P(P; ft) = 0 at 
R = co ■, and this is in accord with the consideration that the total area 
under the curve of P{R,b) must be finite (equal to unity). 

Since P[R-,b) = 0 at P = 0 and at P = ^ every curve of P(P;6) must 
have a maximum value situated somewhere between P = 0 and P = 
as confirmed by Figs. 3.1 and 3.2. These figures show that when b increases 
from 0 to 1 the maximum value increases throughout but the value of P 
where it is located decreases throughout. 

The maxima of the function P(P;6) and of its curves (Figs. 3.1 and 3.2) 
are of considerable theoretical interest and of some practical importance. 

" The presence, in the curve of P{R-t 1), of the vertical projection, or spur, situated in 
the P(.K; b) axis and extending from 0.7979 to 0.9376 therein, is somewhat remindful 
(qualitatively) of the' Gibbs phenomenon' in the representation of discontinuous periodic 
functions by Fourier series. 
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The cases Z» = 0 and 6=1 will be dealt with first, and then the general 
case (6 = b). 

For the case 6 = 0 it is easily found by differentiating (3.20) that P{R\h) = 
0) is a maximum ati? = 1/ \/2 = 0.7071 and hence that its maximum 

value is -v/^ exp (—1/2) = 0.8578, agreeing with the curve for 6 = 0 in 
Fig. 3.1. 

For the case 6=1, which is a limiting particular case, the maximum 
value of P(R]b) = P(/?;l) apparently cannot be found driectly and simply, 
as will be realized from the preceding discussion of this case. Near the 
end of Appendix B, it is shown that the maximum value of -P(i?;l) occurs at 
J? = 0 (as would be expected) and is equal to 0.9376. This is the maximum 
value of the part P(0;1 of P(P;1). The remaining part of P(P;1), namely 
P'(P;1), whose formula is (3.21), is seen from direct inspection of that 
formula to have a right-hand maximum value at P = 0+, whence this 
maximum value is l/y/lir = 0.7979. 

For the general case when 6 has any fixed value within its possible positive 
range (0^6^ 1), it is apparently not possible to obtain an explicit expression 
(in closed form) either for the value of R at which P(P;6) has its maximum 
value or for the maximum value of P(P;6); and hence it is not possible to 
make explicit computations of these quantities for use in plotting curves of 
them, versus 6, of which they will evidently be functions. However, as 
shown in Appendix B, these desired curves can be exactly computed, in an 
indirect manner, by temporarily taking 6 as the dependent variable and 
taking T, defined by (3.6), as an intermediate independent variable. For 
let Rc denote the critical value of P, that is, the value of P at which P(P;6) 
has its maximum value; and let Tc denote the corresponding value of T, 
whence, by (3.6), 

Pc= 6P2
c/(l-6

2). (3.22) 
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Then, computed by means of the formulas derived in Appendix B, Fig. 3.3 
gives a curve of Rc and a curve of Max P{R\b), each versus b. Since the 
curve of Rc cannot be read accurately at 6 ^ 1, there is included also a 
curve of Rc/y/1 — b"1, from which Rc can be accurately and easily com- 
puted for any value of b\ incidentally, the curve of Rc/y/1 — 62 is simul- 
taneously a curve of VTc/b, on account of (3.22). From Fig. 3.3 it is 
seen that Rc varies greatly with b but that Max Pr-i varies only a little, 
as also is seen from inspection of Figs. 3.1 and 3.2 giving curves of P{R-,b) 
as function of R with b as parameter. 

In Fig. 3.3, the curve of Rc shows that for 6 = 1 the maximum of P(R]b) 
occurs at 7? = 0; and the curve of Max P{R-,b) shows that Max P(^;l) ~ 
0.94, agreeing to two significant figures with the value 0.9376 found near 
the end of Appendix B. 

4. The Distribution Function for the Reciprocal of the Modulus 

At first, let R denote any real variate, and P{R) its distribution function. 
Also let r denote the reciprocal of R, so that r = 1/7?; and let P(r) denote 
the distribution function for r. Then -- 

P{r) = R2P{R) = P{R)/r2. (4.1) 

If P{R) depends on any parameters, P(r) will evidently depend on the 
same parameters. 

The rest of this section deals with the case where W = 7?(cos 0 + i sin 0) 
is 'normal.' Since this case depends on ft as a parameter, P{R) and P{r) 
are here abbreviations for P{R-,b) and Pfrjft) respectively. 

As P{R',b) has the distribution function given by (3.4), the distribution 
function for r will be 

p(r;>) = exp[(i - Iv] h [d -W]' (4-2) 

obtained from the right side of (3.4) by changing 7? to 1/r and multiplying 
22 For if r and R denote any two real variates that are functionally related, say F{r, R) 

= 0, and if dr and dR are corresponding small increments, then evidently 

P{t) \dr\ = P{R) | dR | whence 

In particular, if r = l/R, whence F = r — l/R, then (4.1) results immediately. 
For a somewhat different and more detailed treatment of change of the variable in 

distribution functions, see Thorton C. Fry, "Probability and its Engineering Uses," 
1928, pp. 153-155. (Cases of more than one variate are treated on pp. 155-174 of the 
same reference.) 

Pir) dR dF/dr 
PiR) dr bF/dR 
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the result by 1/r2, in accordance with (4.1). Evidently P(r;—b) 

= P{r-b). 
By means of (4.1), formulas (3.7) and (3.8) give, respectively, 

Pir-b) = 2(l — b2)L312 exp{—L)Io{bL), (4.3) 

P(r-,b) = 2(1 - b2) [Ij2 exp[—MT), (4.4) 

wherein L and T are defined by (3.5) and (3.6) respectively, but will now 
be written in the equivalent forms 

L = (i - vy' (4"5) T = bL = (i - b2y' •(4,6) 

which are evidently more suitable for the present section. 
A few particular cases that are especially important will be dealt with 

in the following brief paragraph, ending with equation (4.8). 
For the two extreme values of r, namely 0 and x, P{r;b) is zero for all 

values of b in the b-range (O^i^l). 

When b = 0, 

P{r-,b) = P(r;0) = ^expf—(4.7) 

i>M) = P(r;l) = ^ A exp[^1] . (4.8) 

Fig. 4.1 gives curves of P(r-,b), with the variable r ranging continuously 
from 0 to 1.4 and the parameter b ranging by steps from 0 to 1; however, 
in the r-range where r is less than about 0.6, alternate curves had to be 
omitted to avoid undue crowding. Fig. 4.2 gives an enlargement of the 
section betwen r = 0.2 and r = 0.5, and includes therein the curves that 
had to be omitted from Fig. 4.1. 

In Fig. 4.1 it will be noted that with the scale there used for P(r]b) the 
values of P{r;b) are too small to be even delectable for values of r less 
than about 0.25. Even in the enlargement supplied by Fig. 4.2, the values 
of P{r\b) are not detectable for r less than about 0.2. 

The curves of P{r\b) in Figs. 4.1 and 4.2 would have had to be computed 
from the lengthy formula (4.2)—or its equivalents—except for the fact 
that curves of P{R-,b) had already been computed in the preceding section 
of the paper. The last circumstance enabled the P{r\b) curves to be 
obtained from the P{R-,b) curves by means of the very simple relation (4.1). 

It will be observed that each curve of P{r]b) [Fig. 4.1] has a maximum 

When 6 = 1, 
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ordinate, whose value and location depend on b. When b increases from 
0 to 1, the maximum ordinate decreases throughout but the value of r where 
it is located remains nearly constant, at about 0.82, until b becomes about 
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Fig. 4.1—Distribution function for the reciprocal of the modulus (r = 0 to 1.4). 

0.7, after which the location of the maximum value moves rather rapidly 
to about 0.71 for b = 1. 

For the cases 6 = 0 and 6 = 1, it is easily found, by differentiating (4.7) 
and (4.8), that the maximum ordinates are located at r = \/2/3 = 0.8165 
and at r = l/-\/2 = 0.7071 respectively; and hence, by (4.7) and (4.8), 
that the values of these maximum ordinates are (3 V3/2 exp (—3/2) = 
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0.8198 and (4/\/27r) exp (—1) = 0.5871 respectively. These results for 
the cases b = 0 and 6=1 agree with the corresponding curves in Fig. 4.1. 

n /o O/Q. 
o/\ 

0/(0 

0.20 

Fig. 4.2 
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0.44 

—Distribution function for the reciprocal of the modulus (r = 0.2 

0.48 

to 0.5). 

For the general case where b has any fixed value in the 6-range (0^6^ 1), 
it is apparently not possible to obtain an explicit expression (in closed form) 
either for the value of r at which P(r;b) has its maximum value or for the 
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maximum value of P(r-,b). However, as shown in Appendix C, curves of 
these quantities versus b can be computed, in an indirect manner, by 
temporarily taking b as the dependent variable and taking T, defined by 
(4.6), as an intermediate independent variable. For let rc denote the 
critical value of r, that is, the value of r at which P(r;b) has its maximum 
value; and let Tc denote the corresponding value of T, whence, by (4.6), 

Te = b/{l-b*)rl (4.9) 

Then, computed by means of the formulas derived in Appendix C, Fig. 4.3 
gives a curve of rc and a curve of Max P{r-,b), each versus b. From these 
curves it is seen that rc and Max P(r;6) do not vary greatly with b, as also 
is seen from inspection of Fig. 4.1 giving curves of P{r\b) as function of r 
with b as parameter. 

3 O 
^ 0.8 
y- 
z o O 0.6 UJ 
s 
O 0.4 
<n z o 0.2 
O z 

Fig. 4.3—Functions relating to the maxima of the distribution function for the reciprocal 
of the modulus. 

5. The Cumulative Distribution Function for the Modulus 

The cumulative distribution function Q(<R,6i2) = Q{R) for the 
modulus R of any complex variate W = .ft(cos 0 + i sin d) is defined by 
equation (1.11) on setting p = R, a = 6, pi = Ri = 0, ixi = di = 0 and 

= 2ir] thus 

^(ie) = />(O<^'<^,O<0'<27r). (5.1) 

Similarly, from (1.12), the complementary cumulative distribution function 
Q{>R,di2) = Q*{R) is defined by the equation 

Q*{R) = p(R<R' < cc, 0<6'<2ir). (5.2) 

Q*{R) is usually more convenient than Q{R) for use in engineering ap- 
plications, because it is usually more convenient to deal with the relatively 

Tc 

MAX '(rlbT 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0,8 0.9 PARAMETER.b 
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small probability of exceeding a preassigned rather large value of R than to 
deal with the corresponding rather large probability (nearly equal to 
unity) of being less than the preassigned value of R. 

A 'double integral' for Q{R), in the fortn of two 'repeated integrals,' 
can be written down directly by inspection of the /»( ) expression in 
(5.1) or by specialization of (1.8); thus 

Q{R) = j[ PM de] di? = jf P{R,Q) d/? J dd. (5.3) 

Evidently these can be written formally as two 'single integrals,' 

Q{R) = [ P(R) dR = [ P(6l < R) dd, (5.4) 
Jo Jo 

by means of the distribution functions P(R) = P(R \ On) and P(0\ <R) 
given by the formulas 

P(R) = [ P(R,0) dO, (5.5) P{0\ <R) = r P(R,0)dR. (5.6) 
JQ JO 

(5.5) is the same as (3.2). (5.6) is a special case of (1.6), and the left side 
of (5.6) is a special case of P{p \ <a) defined by (1.13). 

Similarly, from (5.2), we arrive at the following formulas corresponding 
to (5.3), (5.4), (5.5), and (5.6) respectively: 

Q*(R) = £ jjf P{R,0) dO^dR = fo" P(R,0) di? J dO, (5.7) 

Q*{R) = [ P{R) dR= I P{0\> R) dO, (5.8) 
Jh JO 

P(R) = f P{R,0) dO, (5.9) P(0 \ > R) = f P(R,0) dR. (5.10) 
''O J K 

The rest of this section deals with the case where W = i?(cos 0 i sin 0) 
is 'normal.'23 Since this case depends on 6 as a parameter, Q(R) and Q*(R) 
are here abbreviations for Q{R-,b) and Q*{R]b) respectively. 

A natural and convenient way for deriving formulas for Q(R) is afforded 
by the general formula (5.4) together with the auxiliary general formulas 
(5.5) and (5.6), beginning with the two latter. 

For the 'normal' case, P{R,0) is given by (2.15). When this is sub- 
stituted into (5.5) and (5.6), it is found that each of the indicated integra- 

23 For the 'normal' case, the cumulative distribution function was treated in a very 
different manner in my 1933 paper and its unpublished Appendix A. That paper included 
applications to two important practical problems, and its unpublished Appendix C treated 
a third such problem. (The unpublished appendices, A, B and C, are mentioned in foot- 
note 3 of the 1933 paper.) 
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tions can be executed, giving the two previously obtained formulas (3.4) 
and (2.19) for P{R) = iW) and P(0 1 <R) respectively. When these 
are substituted into (5.4), there result two types of single-integral formulas 
for Q{R)-. A primary type, involving an indicated integration as to R-, and 
a secondary type, involving an indicated integration as to Q. Formulas 
of these two types for Q{R) will now be derived. 

An integral formula of the primary type for Q{R) = Q{R\h) can be ob- 
tained by substituting P{R) = P{R-,b) from (3.4) into the first integral in 
(5.4), giving 

= 21 exp [r=T!]/o [rMdx- (5-11) 

This can also be obtained as a particular case of the more general formula 
(2.21) by setting 6 = 27r in the upper limit of integration and then apply- 
ing • • ui • J . 

In (5.11), X is used instead of R as the integration variable in order to 
avoid any possible confusion with R as an integration limit. Thus the 
integrand is a function of X with b as a parameter. Evidently Q{R-,b) = 
Q(R]-b). Formula (5.11) is evidently suitable for evaluation of (3(22) by 
numerical integration.24 

By suitably changing the variable in (5.11), we arrive at the following 
various additional formulas, which, though equivalent to (5.11), are very 
different as regards the integrand and the limits of integration. As previ- 
ously, L denotes i?2/(l —62). 

«R) = vr=p I exp[i^Vlh [r=M(5-12) 

Q(R) = Vl - b2 [ exp(-X) Io(bX) dX, (5.13) 

Q{R) = iVl - b2 [ exp(-LX) I0(bLX) dX, (5.14) Jo 

Q(R) = Vl - b2 [ Io(b log X) dX. (5.15) 
•'expl—D 

These four additional formulas are of some theoretical interest, but ap- 
parently they are less suitable than (5.11) for numerical integration with 
respect to R. A formula differing slightly from (5.11) could evidently be 
obtained by taking X/Vl - b2 as a new variable, and hence R/^/l — b2 

as the upper limit of integration. 
Corresponding formulas for Q*{R) = Q*(R]b) can of course be obtained 

from the preceding formulas (5.11) to (5.15) inclusive for <3(7?) = Q{R-,b) 
14 In this connection, Appendix D may be of interest. 
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by merely changing the integration limits correspondingly—for instance, 
in (5.11), from 0, Rto R, « ; in (5.13), from 0, Lto L, oo; and so on. How- 
ever, the first four formulas for Q*{R) so obtained would suffer the disad- 
vantage of each having an infinite limit of integration, rendering those 
formulas unsatisfactory for numerical integration purposes. This difficulty 
can be avoided by making the substitution R= 1/V in each of those formulas 
for Q*{R). The resulting formulas are the following five, corresponding to 
(5.11) to (5.15) respectively:24 

e'(s) = VT=T* r ^ exp[r^h [i^J ^ (5-,6) 

Q*(R) = VT=11" h cxp[r^]7" [r^] (5-17) 

QHR) = i exp[ - 1] /. [1] a, (5.18) 

Q*(R) = jf I expF — ^j h [y] A, (5,19) 

  pexpC-L) 
Q*(R) = Vl - b2 h{b log X) d\. (5.20) 

As a check on (5.16), it is obtainable from (4.2) by integrating the latter 
as to r. 

For purposes of evaluation by numerical integration, formulas (5.11) 
to (5.15) inclusive may evidently differ greatly as regards the amount of 
labor involved and the numerical precision practically attainable. In 
each of these formulas except (5.14) the integrand contains only one param- 
eter, b, while the integration range involves either R or L = R2/{\ — b2). 
In (5.14) the integrand contains two independent parameters, b and L, 
while the integration range is a mere constant, 0-to-l. Similar statements 
apply to formulas (5.16) to (5.20) inclusive. 

A partial check on any formula for Q(R) can be applied by setting R = cc 1 

since CK1^) should be equal to unity (representing certainty). If, for 
instance, this procedure is applied to formula (5.13), the right side is tound 
to reduce to unity by aid of the known relation25 

r i 
/ exp ( —^X) JoiBX) d\ = — (5.21) 

Jo \A42 + B2 

together with /o(^X) = Jo(iB\). 
An integral formula of the secondary type for Q*(R) = Q*{R-,b) can be 

obtained by substituting (2.20) into the last integral in (5.8), utilizing (2.25), 
a Ref. 1, p. 384, Eq. (1); Ref. 2, p. 65, Eq. (2); Ref. 4, p. 58, Eq. (4.5). 
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changing the variable of integration by the substitution 6 = 0/2, and 
rearranging; thus it is found that26 

Q'{R) = ^^7 f C0S ^ (5-22) 
tt exp L Jq 1 — o cos 0 

This formula can also be obtained as a particular case of the more general 
formula (2.24) by setting 0 = 27r in the upper limit of integration, utilizing 
(2.25), and changing the variable of integration by the substitution 0 = 
0/2. 

Two partial checks orr any general formula for Q{R) = Q{R\b) or for 
Q*{R) = Q*{R-,b) can be applied by setting 6 = 0 and 0=1, and comparing 
the resulting particular formulas with those obtained by integrating the 
formulas for P(-K;0) and P\R-,1) obtained in Section 3, namely formulas 
(3.20) and (3.21) there. It is thus found that 

Q*(R-,0) = exp(-S!) = [ P(.R;0)dR, (5.23) 
J K 

1) = 2fefexp[- t]= l"p'{R-'«dR- (5-24) 

It will be recalled that the quantity between braces in (5.24) is extensively 
tabulated, and that it is sometimes called the 'normal probability integral.' 

Several of the above general formulas for Q(R) = p{R'<R) and for 
()*(i?) = p{R'>R) are closely connected with my 1933 paper.27 Indeed, 
formulas (5.11), (5.14), (5.16), (5.19) and (5.22) above are the same as 
(53-A), (56-A), (52-A), (55-A) and (22-A), respectively, of the unpublished 
Appendix A to the 1933 paper; and (5.12), (5.13), (5.15), (5.17), (5.18) and 
(5.20) above were derived in the same connection, although they were not 
included in the Appendix A. 

Formula (5.22) was employed in the unpublished Appendix A of the 1933 
paper, being (22-A) there, as a basis for deriving two very different kinds 
of series type formulas for computing the values of p{R'>R) = Q*{R) 
underlying the values of pb,o{R'>R) constituting Table I (facing Fig. 8) 
in that paper.28 

26 This formula, (5.22), was derived by me in a somewhat different manner in the un- 
published Appendix A to my 1933 paper. Later I found that an equivalent formula, 
easily transformable into (5.22), had been given by Bravais as formula (51) in his classical 
paper "Analyse mathdmatique sur les probabilit6s des erreurs de situation d'un point," 
published in Memoires de 1'Academic Royale des Sciences de ITnstitut de France, 2nd 
series, vol. IX, 1846, pp. 255-332. (This is available in the Public Library of New York 
City, for instance.) , ■ , , 27 There the abbreviated symbols p{R' < R) and p{R' > R) were used with the same 
meanings as the complete symbols on the right sides of equations (5.1) and (5.2), respec- 
tively, of the present paper. _ ... 28 Each of the two kinds of series type formulas comprised a finite portion of a con- 
vergent series plus an exact remainder term consisting of a definite integral. In the 
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In the present paper, formulas (5.11) and (5.16) have been used for numer- 
ical evaluation of Q{R) = p{R' <R) and of Q*{R) = p(R'>R) by numerical 
integration (employing 'Simpson's one-third rule'), aided by some of the 
considerations set forth in Appendix D. However, only a moderate number 
of values of these quantities have been thus evaluated—merely enough to 
afford a fairly comprehensive check on Table I of my 1933 paper, by means 
of a sample consisting of 60 values (about 26%) distributed in a somewhat 
representative manner over that table. These new values of (?*(./?) = 
p{R'>R) = 1 — Q(R) are presented in Table 5.1 (at the end of this section) 
in such a way as to facilitate comparison with the old values, namely those 
in the 1933 paper. Thus, for any fixed value of R in Table 5.1, there are 
two horizontal rows of computed values of Q*{R), the first row (top row) 
coming from the 1933 paper, and the second row coming from the present 
paper. The third row of each set of four rows gives the deviations of the 
second row from the first row; and the fourth row expresses these deviations 
as percentages of the values in the first row. 

In the first row of any set of four rows, any value represents Q*{R) = 
Pb{R'>R) obtained, in accordance with Eq. (22) of my 1933 paper, by 
adding exp {—R2) to pb,o(R'>R) given in Table I there. In the second 
row of a set, any value represents Q*(R) = 1 — Q(R) as computed by for- 
mula (5.11) or (5.16) of the present paper: more specifically, the values for 
R = 0.2, 0.4, 0.6 and 0.8 were computed by (5.11); and the values for 
R — 1.6 and R = 2hy (5.16), taking r = 1/1.6 = 0.625 and r — 1/2 = 0.5 
respectively.29 

In the 1933 paper, the values of pb(R'>R) = Q*(R;b) for £ = 0 and for 
6=1 were omitted as being unnecessary there because their values could 
be easily obtained from the simple exact formulas to which the general 
formulas there reduced, for 6 = 0 and 6=1. Those reduced formulas 
were the same as (5.23) and (5.24) of the present paper, except that (5.24) 
gives ()(2?;1) instead of giving ()*(i?;l) = 1 — (>(i?;l). The values obtained 
from these two formulas, exact to the number of significant figures here 
retained, are given in Table 5.1 at the intersections of the first row of each 
set of four rows with the columns 6 = 0 and 6=1. Therefore in these two 
columns the deviations (in the third row of each set of four rows) are devia- 
tions from exact values; the values in the second row of each set are, as 

use of such a formula for numerical computations, the expansion producing the con- 
vergent series was carried far enough to insure that the remainder definite integral would 
be relatively small, though usually not negligible; and then this remainder definite integral 
was evaluated sufficiently accurately by numerical integration. 20 In the work of numerical integration, 'Simpson's one-third rule' was employed for 
R = 0.2, 0.4, 0.6, 0.8 and 2. For R = 1.6, so that r = 1/1.6 = 0.625, 'Simpson's one- 
third rule' was employed up to r = 0.620, and the ' trapezoidal rule' from r = 0.620 to 
r = 0.625. 
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already stated, those obtained by the methods of the present paper, employ- 
ing numerical integration. 

From detailed inspection of Table 5.1 it will presumably be considered 
that the agreement between the two sets of values of Q*{R]b) = pb{R'>R) 
is to be regarded as satisfactory, at least from the practical viewpoint, the 
largest deviation being less than one per cent (for R = 0.8, b = 0.9). 

Table 5.1 
Values of Q*{R) = p(.R' > R) 

b  
R 

0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1.00 

0.2 .9608 .9590 .9574 .9550 .9516 .9463 .9372 .9168 .8930 .84148 
« .9623 .9605 .9590 .9567 .9528 .9473 .9387 .9206 .8925 .84124 
<( .0015 .0015 .0016 .0017 .0012 .0010 .0015 .0038 -.0005 -.00024 
a .16 .16 .17 .18 .13 .11 .16 .41 -.06 -.03 

0.4 .8521 .8462 .8410 .8335 . 8228 .8071 .7830 .7420 .7127 .68916 
.8537 .8477 .8427 .8351 .8240 .8081 .7841 .7459 .7125 .68897 

a .0016 .0015 .0017 .0016 ,0012 .0010 .0011 .0039 -.0002 -.00019 
a .19 .18 .20 .19 .15 .12 .14 .53 -.03 -.03 

0.6 .6977 .6880 .6799 .6686 .6531 .6324 .6055 .5721 .5578 .54851 
.6992 .6892 .6814 .6698 .6540 .6334 .6065 .5764 .5572 .54831 

11 .0015 .0012 .0015 .0012 .0009 .0010 .0010 .0043 -.0006 -.00020 
11 .22 .17 .22 .18 .14 .16 .17 .75 -.11 -.04 

0.8 .5273 .5167 .5081 .4969 .4826 .4656 .4477 .4316 .4261 .42371 
.5290 .5183 .5099 .4982 .4840 .4672 .4488 .4357 .4266 .42355 

11 .0017 .0016 .0018 .0013 .0014 .0016 .0011 .0041 .0005 -.00016 
" .32 .31 .35 .26 ,29 .34 .25 .95 .12 -.04 

1.6 .07730 .07986 .08207 .08522 .0891 .0938 .0990 .1042 .1070 .10960 
.07727 .07988 .08210 .08536 .0892 .0938 .0989 .1042 .1069 .10958 

11 -.00003 .00002 .00003 .00014 .0001 .0000 -.0001 .0000 -.0001 -.00002 
" -.04 .03 .04 .16 .11 .00 -.10 .00 -.09 -.02 

2.0 .01832 .02153 .02394 .02681 .0301 .0337 .0375 .0414 .0435 .04550 
.01823 .02145 .02383 .02685 .0302 .0338 .0376 .0415 .0436 .04552 

11 -.00009 -.00008 -.00011 .00004 .0001 .0001 .0001 .0001 .0001 .00002 
a -.49 -.37 -.46 .15 .33 .30 .27 .24 .23 .04 

6. The Distribution Function For The Angle 

The distribution function P(0 [ Rn) = P{d) for the angle d of any complex 
variate W = P(cos 0-H sin 0) is detined by equation (1.10) on setting 
p = 9, a = R, ai = Ri = Q and a2 = R* = co; thus 

P{6)dd = ^(0<0,<0+^0, 0<P'<co). (6.1) 

An integral formula for P(0) is immediately obtainable from (1.6) by 
setting p = 0, c = i?, ffs = or = R\ = 0 and ct = 02 = R2 — 00 J thus 

P(0) = f P(R, 0) dR. (6.2) 
Jo 
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The rest of this section deals with the case where W = i?(cos 6 -\- i sin 0) 
is 'normal.' Since this case depends on 6 as a parameter, P{d) is here an 
abbreviation for P{Q\b). 

A formula for P(0;6) = P{Q) can be obtained by substituting P{R,d) 
from (2.15) into (6.2) and executing the indicated integration, which can 
be easily accomplished. The resulting formula is found to be 

(6-3) 

This formula can also be obtained as a particular case of either of the 
more general formulas (2.19) and (2.20) by setting R = qo in (2.19) or 
.ft = 0 in (2.20); also by adding (2.19) to (2.20) and then utilizing (1.10). 

In P{e) = P{0-,b) it will evidently suffice to deal with values of 6 in the 
first quadrant, because of symmetry of the scatter diagram. 

In P{d]b) it will suffice to deal with only positive values of b, as (6.3) 
shows that changing b to —b has the same effect as changing 26 to7r±26, 
or 6 to 7r/2±6; that is, P(d-, — b) = P(ir/2±d]b). 

Fig. 6.1 gives curves of P{d]b), computed from (6.3), as function of 6 
with b as parameter, for the ranges30 0^6^90° and 0^6^ 1. 

The curves in Fig. 6.1 indicate that P{0\b) is a maximum at 6 = 0° and 
a minimum at 6 = 90°. These indications are verified by formula (6.3), 
as this formula shows that: 

Max P{e-,h) = P(0°;6) = L , (6.4) 

Min P(«;6) = .P(90°;6) = L ■ (6-5) 
+ b 

Thence 

Min iW)/Max P{e-b) = (l-6)/(l+6), (6.6) 

TWVMax ft(0;&) = ft(6;6)/ft(0o;6) = (l-ft)/(l-6 cos 26). (6.7) 

The curves in Fig. 6.1 indicate also that P(d-,b) is independent of 6 in 
the case 6 = 0. This is verified by formula (6.3), as this formula shows that 

ft(6;0) = 1/2t. (6.8) 

Thence (6.3) can be written 

P(6;6)/ft(6;0) = (Vl - 62)/(l-6 cos 26). (6.9) 
30 Beginning here, 0 will usually be expressed in degrees instead of radians, for prac- 

tical convenience. 
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By setting cos 20 = 0 in (6.3), so that Q = 45°, it is found that 

(Vr^)/2x = P(45O;0), (6.10) 

■f? _ (VjnWm® r~<0 o> S odo'dddddd d d 0 

DISTRIBUTION FUNCTION, P(9;b) 

Fig. 6.1—Distribution function for the angle. 

whence (6.3) can be written 

P{e-b)/P{AS0-,b) = 1/(1-6 cos 20). (6.11) 
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^ 7 •t - 

z 
z 

^3 - 

REDUCED DISTRIBUTION FUNCTION, P{e; b)/MAX P(e;b) 
Fig. 6.2—Reduced distribution function for the angle. 



350 BELL SYSTEM TECHNICAL JOURNAL 

In the case 6=1, the curves in Fig. 6.1 suggest, by limiting considera- 
tions, that -P(0;1) is zero for all 6 except 6 = 0°, and that P(0;1) is infinite 
for 6 = 0°. These conclusions are verified by formula (6.3), as this formula 
shows that: 

P(6;l) = 0 for Oo<0<18Oo; P(0;1) = co for 0 = 0°, 180°. 

The curves in Fig. 6.1, though having the advantage of directly rep- 
resenting P(0;6) as function of 0 with b as parameter, are somewhat trouble- 
some to use because of their numerous crossings of each other. This 
difficulty is not present in Fig. 6.2, which gives curves of P(0;6)/Max 
P(0;6), obtained by dividing the ordinates P(0;6) of the curves in Fig. 6.1 
by the respective maximum ordinates of those curves, as given by (6.4), 
so that the equation of the curves in Fig. 6.2 is formula (6.7). 

7. The Cumulative Distribution Function for the Angle 

The cumulative distribution function Q(<6,R]2) = Q{d) for the angle 0 
of any complex variate W = P(cos 0 + i sin 0) is defined by equation 
(1.11) on setting p = 6, a — R, pi — 0i = 0, or = Pi = 0 and 02 — Ri — 00 ; 
thus 

0(0) = ^(O<0'<0,O<P/<co). (7.1) 

A 'double integral' for Q(0), in the form of two 'repeated integrals,' can 
be written down directly by inspection of the />( ) expression in (7.1) 
or by specialization of (1.8); thus 

0(0) = P(P, 0) dpj = j[ [j[ P{R, e) <70j dR. (7.2) 

Evidently these can be written formally as two 'single integrals,' 

0(0) J f6p(e) dd = f P(P I < 0) dR, (7.3) 
[Jo Jo 

by means of the distribution functions P(0) = P(0 j P]2) and P(P | <0) 
given by the formulas 

P(0) = f P(P, 0) dR, (7.4) P(P 1 < 0) = [ P(P, 0) <70. (7.5) 
Jo •'o 

(7.4) is the same as (6.2). (7.5) is a special case of (1.6), and the left side 
of (7.5) is a special case of P(p 1 <a) defined by (1.13). 

The rest of this section deals with the case where W = P(cos 0 -j- 7 sin 0) 
is 'normal.' Since this case depends on 6 as a parameter, 0(0) is here an 
abbreviation for Q{Q',b). 

A natural and convenient way for deriving formulas for 0(0) is afforded 
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by the general formula (7.3) together with the auxiliary general formulas 
(7.4) and (7.5), beginning with the two latter. 

It will be convenient to dispose of (7.5) before dealing with (7.4), as (7.5) 
turns out to be the less useful. For when P(R,9) given by (2.16) is sub- 
stituted into (7.5), the indicated integration cannot be executed in general, 
as (7.5) becomes (2.18), wherin the indicated integration can be executed 
only for certain special values of the integration limit 6—by means of the 
special Bessel function formula (3.3). 

When P{R,d) given by (2.15), which is equivalent to (2.16) used above, 
is substituted into (7.4), it is found that the indicated integration can be 
executed, giving the previously obtained formula (6.3) for P{d) = P{0\b). 

A 0-integral formula for Q{0) = Q{9\b) can be obtained by substituting 
P{d) = P[d-,b) from (6.3) into the first integral in (7.3), giving 

me- b) = vTEI2 f" de = f9 d<t> 
^ 27r i 1 - b cos 26 Air l 1 - b cos (b 

This formula can also be obtained as a particular case of the more general 
formulas (2.22) and (2.24) by setting = oo in (2.22) or R = 0 in (2.24); 
also by adding (2.22) to (2.24) and then utilizing (1.11). 

The integral in (7.6) is of well-known form, and the indicated integration 
can be executed, yielding the following two equivalent formulas for ()(0;6): 

e(e; b) =L tan 

-i, (7-7) 
1 -if cos 26 — b \ 

hr | C0S [l - b cos 20J |" 47r 

In Q{6-,b) it will evidently suffice to deal with values of 0 in the first quad- 
rant, because of symmetry of the scatter diagram, and the resulting fact 
that Q{n 90°) = n/4, where n = 1, 2, 3 or 4. 

In Q{6-,b) it will suffice to deal with positive values of b, as (7.7) shows 
that31 

Q(6; -b) = \-Q{l±e;b)\. 

Fig. 7.1 gives curves of Q{d;b) = Q(d) computed from (7.7), as function 
of 0 with b as parameter, for the ranges 0^0^90° and 0^6^ 1. 

Consideration of the scatter diagram of W or of its cquiprobability curves, 
which are concentric similar ellipses, affords several partial checks on the 
curves in Fig. 7.1 and on formula (7.7) from which they were plotted. 

31 This relation can also be derived geometrically from the fact that the scatter dia- 
gram for —0 is obtainable by merely rotating that for b through 90°, as shown by (2.6), 
or (2.7) and (2.8), or (2.11). 
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V 

CUMULATIVE DISTRIBUTION FUNCTION, Q(e;b) 
Fig. 7.1—Cumulative distribution function for the angle. 

Thus, the fact that the curve for i = 0 is a straight line, whose equation is 

(2(0 ;0) = e/l-w = 07360°, {b = 0), 

corresponds to the fact that for 6 = 0 the equiprobability curves are circles. 
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The fact that the curve for 6 = 1 is the straight line = 1/4 = 0.25 
corresponds to the fact that for A = 1 the scatter diagram has degenerated 
to be merely a straight line coinciding with the real axis, so that no point 
outside of this line makes any contribution to 

The fact that, at 0 = 90°, Q{Q\b) = Q{9Q0\b) has for all b the value 1/4 = 
0.25 corresponds to the fact that the area of a quadrant of the scatter 
diagram is one-fourth the area of the entire scatter diagram. Hence 
()(360o;6) = 4()(90o;6) = 1, which is evidently correct. 
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APPENDIX A 

Derivation of Formula (2.15) for P{R,d) 

(2.15) will here be derived from (2.11) by utilizing the fact that the 'areal 
probability density', G, at any fixed point in the scatter diagram must be 
independent of the system of coordinates; for G dA gives the probability 
of falling in any differential element of area dA, and this probability must 
evidently be independent of the shape of dA (assuming that all linear dimen- 
sions of dA are differential, of course). Thus, indicating the element of 
area by an underline, we have, in rectangular coordinates, 

GdUdV = P{U,V)dUdV, (Al) whence G = P{U,V). (A2) 

In polar coordinates, 

GRdOdR = P(R,9)dRde, (A3) whence G = P(R,d)/R. (A4) 

Comparing these two expressions for G shows that3" 

P(R,d) = RP(U,V). (A5) 

Thus, a formula for P{R,6) can be obtained from (2.11) by merelv multiply- 
ing both sides of that formula by R. However, in the resulting formula it 
will remain to express U and V in terms of R and 6, by means of the relations 

U = R cos 6, (A6) V = R sin 6. (A7) 

The final result, after a simple reduction, is (2.15), which is thus proved. 

APPENDIX B 

Formulas of the Curves in Fig. 3.3 

As in equation (3.22), Rc will here denote the critical value of R, that is, 
the value of R at which P{R) = P{R]b) has its maximum value; and Tc 

32 Formula (AS) can be easily verified by the entirely different method which utilizes 
(1.23). 
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will denote the corresponding value of T, whence Tc is given in terms of 
Rc and b by (3.22). 

A formula for dP{R)/dR could of course be obtained directly from (3.4) 
but it will be found preferable to obtain it indirectly from the less cumber- 
some formula (3.8) containing the auxiliary variable T defined by (3.6). 
Evidently, since b does not depend on R} 

dP{R) _ dP{R) dT _ 2bR dP{R) 
~~dR dT dR \ - b2 dT 

(Bl) 

Thus, since the factor 2W?/(l-62) cannot vanish for any value of R (except 
R = 0), the only critical value of R must be that corresponding to the value 
of T at which dP{R)/dT vanishes, namely Tc, since Tc has been defined 
to be the value of T corresponding to Rc. (Incidentally, equation (Bl) 
shows that Tc is equal to the value of T at which P{R) is an extremum 
when P{R) is regarded as a function of T.) From (3.22), 

(B2) Rc T c 
1- b2 b 

Evidently Tc and Rc must ultimately be functions of only b. The next 
paragraph deals with Tc, which evidently has to be known before Rc can 
be evaluated. 

From (3.8) it is found that, since dh{T)/dT = Ii{T), 

= p(i?)r_L + -ii. (B3) 
dT [2^ + loiT) bj 

Hence, since P{R) does not vanish for any value of R (except ^ = 0 and 
R = 00), Tc will be a root of the conditional equation obtained by equating 
to zero the expression in brackets in (B3). This conditional equation is 
transcendental in Tc and apparently has no closed form of explicit solution 
for Tc ; and its solution by successive approximation, or otherwise, would 
likely be rather slow and laborious. However, the bracket expression in 
(B3) shows that b can be immediately expressed explicitly in terms of Tc 
by the equation 

h 2Tc fB4) 
" 1 + 2TcI1{Tc)/UTC) ' 

For some purposes, the following two equations, each equivalent to (B4), 
will be found more convenient: 

TP-\ + T^y (B5) 

Tc = 1/2 
b 1 - bh(Tc)/h{Tc) ' 

(B6) 
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On account of (B2), the right sides of (B5) and (B6) are equal not only to 
Tc/b but also to i?2

c/(l —Z»2). 
Since the utilization of formulas (B4), (B5) and (B6) for computing the 

curves in Fig. 3.3 will involve taking Zc as the independent variable and 
assigning to it a set of chosen numerical values, the natural first step is to 
find approximately the range of Tc corresponding to the 6-range, O^^l, 
in order to be able to choose only useful values of Tc. This step will be 
taken in the next paragraph. 

Equation (B6) shows that Tc/b =1/2 when 6 = 0, and hence that Tc = Q 
when 6 = 0; and this last is verified by (B4). The other end-value of the 
Tc-range, namely the value of Ze for 6 = 1, cannot be found explicitly 
and exactly. However, rough values of limits between which it must lie 
can be found fairly easily as follows: To begin with, each of the equations 
(B5) and (B6) shows that Zc^ 6/2, for all values of 6 in 0^6^ 1; in par- 
ticular, Tc > 1/2 when 6 = 1. An upper limit for Tc for any value of 
6 can be found from (B5) by utilizing the power series expressions for 
I\{Tc) and Iq{Tc), whereby it is found that 

= •& y. ' (B7) where H = 1 - ^ < 1. (B8) 

On substituting (B7) into (B5) and then solving for Tc in terms of 6 and 
H, it is found that 

Tc = 6/(1 + Vl - 562). (B9) 

On account of (B8), (B9) shows that 

Tc < 6/(1 + Vn^T2), (BIO) 

whence, in particular, Zc<l when 6=1. By successive approximation 
or otherwise, it can now be rather quickly found that, when 6 = 1, Zc = 
0.79 (to two significant figures).33 

From the preceding paragraph, it is seen that, when 6 ranges from 0 to 1, 
Tc ranges from 0 to about 0.79; Tc/b ranges from 0.5 to about 0.79; and, 
on account of (B2), Rc ranges from -s/O.S = 0.707 down to 0. 

The curves in Fig. 3.3 are constructed with the aid of the formulas and 
methods of this appendix as follows: First, a set of values of Zc is chosen, 
ranging from 0 to 0.79 and slightly larger. Second, for each such chosen 
Zc the right side of (B5) is computed, thereby evaluating Tc/b and also 
i?c/(l-62), these two quantities being equal by (B2). Third, the cor- 
responding value of 6 is found by dividing Zc by Zc/6; less easily, it could 

33 Because of the special importance oi b = 1 in other connections, Tc ior b = 1 was 
later evaluated to four significant figures and found to be Tc = 0.7900; thence, by sub- 
stituting this value of T into (3.8), along with Z» = 1, it was found that Max. 
= 0.9376, which occurs at 7? = i2c = 0, by (B2). 
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be found by substituting Tc into (B4). Fourth, from Tc/h the value of 
\/Tc/b is found, and thereby the value of Rc/y/1 — £2 and thence Rc ■ 
Finally, Max. P(i?;6) is computed by inserting the critical values into any 
of the various (equivalent) formulas for P{R;b), namely (3.4), (3.7), (3.8), 
(3.10) or (3.12). 

APPENDIX C 

Fomulas of the Curves in Fig. 4.3 

The first six equations of this appendix are given without derivation 
and almost without any comments because they correspond exactly and 
simply to the first six equations, respectively, of Appendix B. Beginning 
with the second paragraph of the present appendix, the close correspondence 
ceases. 

dP{r) dPir) dT _ -2b dP(r) 
dr dT dr (1 - Vy dT 

(CD 

1 Tc 

(1 - b2)rl b ' 
(C2) 

i 
I 

i-H |>C5 
I +
 

1 
1 

T" II 

I
f
s

 

(C3) 

2Tc 
3 + 2Tc Ii{Tc)/h{Te) 

(C4) 

Tc 3 UTc) 
b 2 h{Tc) ' 

(C5) 

Tc 3/2 
b 1 - bh{Tc)/UTc) 

(C6) 

The bracketed expression in (C3) is seen to be obtainable from that in (B3) 
by merely changing T to T/3 wherever T does not occur as the argument 
of a function; hence the three equations following (C3) are obtainable from 
the three equations following (B3) by correspondingly changing Tc to 
Tc/3. (In this appendix, as in Section 4, small c is purposely used as a 
subscript to indicate a 'critical' value, whereas in Section 3 and in Appendix 
B, capital C is used for that purpose.) 

For use below, it will here be noted that 

h{Tc)/h{Tc) = Ni{Tc)/N^Te), ■ (C7) 

as will be seen by dividing (3.16) by (3.13). On account of (3.17) and (3.14), 
(C7) shows that for large values of Tc the right side of (C7) is equal to 1 
as a first approximation, and to 1 — l/2rc as a second approximation; 
thus, for large Tc, 
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h{Te)/h{Tc) = i - 1/2r, = 1. (C8) 

The first step toward computing the curves in Fig. 4.3 is to find approxi- 
mately the TV range corresponding to the 6-range, 0^6^ 1. This is done 
in the course of the next four paragraphs. 

When 6=0, equation (C6) shows that Tc/b = 3/2 and hence thai 
Tc = 0; or, what is equivalent, b/Tc = 2/3 and hence \/Tc = oo (since 
b = 0). 

When 6 = 1, T,, = oo, as can be easily verified from equation (C4), 
(C5) or (C6) by utilizing (C8). 

Thus, from the two preceding paragraphs, it is seen that, when b ranges 
from 0 to 1, 6/rc ranges from 2/3 to 0; Tc/b from 3/2 to oo; and Tc from 
0 to oo. 

Since Tc = ^ when 6=1, the choosing of a set of finite values of Tc 

will necessitate an approximate formula for computing Te for values of 
6 nearly equal to 1, which means for very large values of T. Such a formula 
is easily obtainable from (C5) by utilizing the approximation 1 — 1/2rc 

in (C8), whereby it is found that, for large TC} 

As examples, these approximate formulas give: When 6 = 0.99, Tc ~ 99, 
b/Te = 0.01; when 6 = 0.9, Tc ~ 9, b/Tc ~ 0.1. It will be found that 
even in the second example the results are pretty good approximations. 

The curves in Fig. 4.3 are constructed with the aid of the formulas and 
methods of this appendix as follows: First, a set of values of Tc is chosen, 
ranging from 0 to about 100 (the latter figure corresponding approximately 
to 6 = 0.99). Second, for each such chosen Tc the right side of (C5) is 
computed, thereby evaluating TJb and also 1/(1 —62)rc, these two quan- 
tities being equal by (C2). Third, the corresponding value of 6 is found 
by dividing Tc by rc/6; less easily, it could be found by substituting Tc 

into (C4). Fourth, from Tc/b the value of \/rc/6 is found, and thereby 
the value of l/rc -x/l — 62 and thence rc. Finally, Max P(r-,b) is computed 
by inserting the critical values into any of the (equivalent) formulas for 
P(r;6), namely (4.2), (4.3) or (4.4). 

Some Simple General Considerations Regarding the Evaluation of 
Cumulative Distribution Functions by Numerical Integration 

This appendix gives some simple general considerations and relations 
that may sometimes facilitate and render more accurate the evaluation 
of cumulative distribution functions by numerical integration. 

Tc = 6/(1-6), (C9) b/Tc =1-6. (C10) 

APPENDIX D 
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Some of these considerations and relations have found application in 
Section 5 in the evaluation of the cumulative distribution function for the 
modulus R= 1 W |. For this reason, the variate in the present section 
will be denoted by R, though without thereby restricting R to denote the 
modulus; rather, R will here denote any positive real variate, though it 
should preferably be a 'reduced' variate, so as to be dimensionless, as in 
equation (2.9). The restriction of R to positive values is imposed because 
it is strongly conducive to simplicity and brevity of treatment, without 
constituting an ultimate limitation. The reciprocal of R will be denoted 
by r, as previously.34 

We may wish to evaluate numerically the cumulative distribution func- 
tion p{R'<R) = Q{R) or p{R!>R) = Q\R) or both. Since these are not 
independent, their sum being equal to unity, the evaluation of either one 
determines the other, theoretically. However, when the evaluated one is 
nearly equal to unity, the remaining one may perhaps not be evaluable 
with sufficient accuracy (percentagewise) by subtracting the evaluated one 
from unity. Then it would presumably be advantageous to introduce 
for auxiliary purposes the variable r = \/R, since evidently 

Thus, if p(R'>R), in (Dl), is small compared to unity, it is presumably 
evaluable with higher accuracy percentagewise by dealing with p{r'<r) 
than with 1 — p{R'<R). Incidentally, after p(r'<r) has been evaluated, 
it might be used in (D2) to arrive at a still more accurate value of p{R'<R) 
than had originally been obtained directly by numerical integration. 

Assuming that we have a plot (or a table) of the distribution function 
P(R), we can evidently evaluate 

directly by numerical integration, provided the plot is sufficiently extensive 
to include R0; if not, we can, by (D2), resort to 

assuming that a sufficiently extensive plot (or table) of P{r) is available 
and applying numerical integration to it. 

Even if the plot of P{R) used in (D3) is sufficiently extensive to include 
34 The restriction of R, and hence of r, to positive values is seen to be absent from equa- 

tions (Dl), (D2), (D5) and (D6) but present in (D3), (D4), (D7) and (D8). 

p{R'>R) = p{l/R'<l/R) = piP <t), 

p{R'<R) = p(r'>r) = 1 - p{P <r). 

(Dl) 

(D2) 

r 
p{R'<R*) = 1 - p{r' <r0) = 1 - / P(r)dr, (D4) Jo 
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i?0, so that (D3) could be evaluated, it might be that (D4) would result 
in greater accuracy; this would presumably be the case when p{R'<F?) 
is nearly equal to unity. 

Evidently an evaluation of 

p{R'>R*) = f P{R)dR (D5) 
J rO 

directly by numerical integration would be less satisfactory than the evalua- 
tion of p{R' <R0) in the preceding paragraph. For, due to the presence 
of the infinite limit in the integral in (D5), the plot of P(R) would have to 
be carried to a large enough value of R so that the integral from there to 
would be known to be negligible. This difficulty can be avoided by start- 
ing with the relation 

p(R'>R0) = 1 - p{R'<R0) (D6) 

and substituting therein the value of p{R' <R0) given by (D3) or (D4), 
resulting respectively in the following two formulas: 

rR0 

p(R'>R0) = 1 - / P{R)dR, (D7) 
Jo 

rr0 

p{R'>R0) = p(r' <r0) = / P(r)dr, (D8) 
Jo 

the integrals in which are evidently suitable for evaluation by numerical 
integration, none of the integration limits being infinite. If p{R'>R0) 
is small compared to unity, (D8) would presumably be more accurate 
(percentagewise) than (D7). If the plot of P(R) is not sufficiently exten- 
sive to include R0, (D7) evidently could not be used; but, instead, (D8) 
could be used if the plot of P(r) were sufficiently extensive to include r0. 
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Spectrum Analysis of Pulse Modulated Waves 

By J. C. LOZIER 

The problem here is to find the frequency spectrum produced by the simul- 
taneous application of a number of frequencies to various forms of amplitude 
limiters or switches. The method of solution presented here is to first resolve the 
output wave into a series of rectangular waves or pulses and then to combine the 
spectrum of the individual pulses by vectorial means to find the spectrum of the 
output. The rectangular wave shape was chosen here as the basic unit in order to 
make the method easy to apply to pulse modulators. 

Introduction 

The rapidly expanding use of pulse modulation1 in its various forms is 
bound to make the frequency spectrum of pulse modulated waves a subject 
of increasing practical importance. The purpose of this paper is to show 
how to determine the frequency spectrum of these waves by methods based 
as far as possible on physical rather than mathematical considerations. The 
physical approach is used in an attempt to maintain throughout the analysis 
a picture of the way in which the various factors contribute to a given result. 
To further this objective the fundamentals involved are reviewed from the 
same point of view. 

The method is used here to analyze two distinct types of pulse modulation, 
namely, pulse position and pulse width modulation.2 These two cases are 
especially important for illustrative purposes because their spectra can be 
tied back to more familiar methods of modulation. Thus it will be shown 
that, as the ratio of the pulse rate to the signal frequency becomes large, 
pulse position modulation becomes a phase modulation of the various carrier 
frequencies that form the frequency spectrum of the unmodulated pulse 
wave, and pulse width modulation becomes a form of amplitude modulation 
of its equivalent carriers. The analysis also shows certain interesting input- 
output relationships that may be obtained from such modulators, treating 
them as straight transmission elements at the signal frequency. 

These relationships are of more than theoretical interest. The pulse 
position modulator has already been used as phase or frequency modulator 
to good advantage.3 The use of a pulse width modulator as an amplifier is 

1 E. M. Deloraine and E. Labin, "Pulse Time Modulation", Electrical Communications, 
Vol. 22, No. 2, pp. 91-98, Dec. 1944; H. S. Black "AN-TRC-6 A Microwave Relay Sys- 
tem", Bell Labs. Record, V. 33, pp. 445-463, Dec. 1945. 2 By pulse position modulation is meant that form of pulse modulation in which the 
length of each pulse is kept fixed but its position in time is shifted by the modulation, and 
by pulse width modulation that form in which the length of each pulse varies with the 
modulation but the center of each pulse is not shifted in position. 3L. R. Wrathall, "Frequency Modulation by Non-linear Coils", Bell Labs. Record, 
Vol. 23, pp. 445-463, Dec. 1945. 
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another practical application, of which the self oscillating or hunting servo- 
mechanism is an example. 

The quantitative analysis of such systems depends on the ratio of the 
pulse repetition rate to the signal frequency. When this ratio is low, the 
solution can be obtained by a method shown here for resolving the modulated 
waves into selected groups of effectively unmodulated components. This 
technique is powerful since it can be done by graphical means whenever the 
complexity of either the system or the signal warrants it. When the ratio of 
pulse rate to signal frequency becomes high enough, such methods are no 
longer practical. However, under these conditions other methods become 
available, especially in cases like those mentioned above where the spectrum 
of the modulation approaches one of the more familiar forms. An important 
example of this occurs in the case of the pulse position modulator where, as 
the spectrum approaches that of phase modulated waves, the solution can 
often be found by the conventional Bessel's function technique used in 
analyzing phase and frequency modulators. 

The method proposed here for obtaining the spectrum analysis of pulse 
modulated waves is based on the use of the magnitude-time characteristic 
of the single pulse and its frequency spectrum as a pair of interchangeable 
building blocks, so that the analysis will develop this relationship. Before 
doing this the elementary theory of spectrum analysis will be reviewed 

Review of the Elementary Theory of Spectrum Analysis 

A complex wave may be represented in two ways. One way is by its 
magnitude at each instant of time. The other way is by its frequency 
spectrum, that is, by the various sinusoidal components that go to make up 
the wave. The two representations are interchangeable. 

The transformation from a given frequency spectrum to the corresponding 
magnitude vs. time function is straight-forward, for it is apparent that the 
various components in the frequency spectrum must add up to the desired 
magnitude-time function. The necessary additions may be difficult to 
make in some cases but they are not hard to understand. 

The reverse process of finding the frequency spectrum when the magni- 
tude-time characteristic is given is more involved, though using Fourier anal- 
ysis, the problem can generally be formulated readily enough. Furthermore 
the mathematical procedures involved can be interpreted physically in 
broad terms by modulation theory. However, these procedures become 
more difficult to perform, and the physical relationships more obscure, as the 
wave form under analysis becomes more complex. This is particularly 
true when general or informative solutions rather than specific answers are 
required. Pulse modulated waves are sufficiently new and complex to give 
such difficulties. 
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The process of finding the frequency spectrum of a complex wave from its 
magnitude-time function has a simple mathematical basis. It depends on 
the fact that the square of a sinusoidal wave has a positive average value 
over any interval of time, whereas the product of two sinusoidal waves of 
different frequencies will average zero over a properly chosen interval of 
time.4 

In theory then, as the magnitude-time function of a complex wave is the 
sum of all the components of the frequency spectrum, we have only to mul- 
tiply this magnitude-time function by a sinusoidal wave of the desired 
frequency and then average the product over the proper time interval to 
find the component of the spectrum at this frequency.6 

One physical interpretation of this procedure can be given in terms of 
modulation theory. The product of the magnitude-time function with a 
sinusoidal wave will produce the beat or sum and difference frequencies be- 
tween the frequency of the sinusoid and each component of the frequency 
spectrum. Thus, if the spectrum contains the same frequency, a zero beat 
or dc term is produced, and this term may be evaluated by averaging the 
product over an interval that is of the proper length to make all the ac 
components vanish. 

The application of this principle for spectrum analysis is simple when the 
magnitude of the wave in question is a periodic function of time. The very 
fact that the wave is periodic is sufficient proof that the only frequencies 
that can be present in the wave are those corresponding to the basic repeti- 
tion rate and its harmonics. Thus the frequency spectrum is confined to 
these specific frequencies and so it takes the form of a Fourier series. Know- 
ing that the possible frequencies are restricted in this way, the problem of 
finding the frequency spectrum of a complex periodic wave is reduced to one 
of performing the above averaging process at each possible frequency. The 
period of the envelope of the Complex Wave is the proper time interval for 
averaging, and the integral formulation for obtaining this average is that 
for determining the coefficients in a Fourier series. 

The principle holds equally well when the magnitude-time function is non- 
periodic, but the concept is complicated by the fact that the frequency 
spectrum in such cases is transformed from one having a discrete number of 
components of harmonically related frequencies to one having a continuous- 
band of frequencies.6 Such spectra contain infinite numbers of sinusoidal 

4 The proper time interval is generally some integral multiple of the period correspond- 
ing to the difference in frequency of the two sinusoid waves. 8 In practice it is generally necessary to multiply by both sine and cosine functions 
because of possible phase differences. 

6 One exception to this statement is the fact that any wave made up of two or more 
incommensurate frequencies is nonperiodic. Yet such waves will have a discrete spectrum 
if the number of components is finite. This incommensurate case is neglected throughout 
the discussion. 
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components, each of infinitesimal amplitude and so close together in fre- 
quency as to cover the entire frequency range uniformly. 

The continuous band type of frequency spectrum is just as characteristic 
of non-periodic waves as the discrete spectrum is of periodic waves. This 
can be shown as a logical extension of the Fourier series representation of 
periodic waves. The transition from a frequency spectrum consisting of a 
series of discrete frequencies to one consisting of a continuous band of fre- 
quencies can be made by treating the non-periodic function as a periodic 
function in which the period is allowed to become very large. As the period 
approaches infinity the fundamental recurrence rate approaches zero, so 
that the harmonics merge into a continuous band of frequencies. 

This does not of course change the basic realtionship between the fre- 
quency spectrum of a wave and its magnitude-time function. The mag- 
nitude-time function is still the sum of the components of the frequency 
spectrum. Also the frequency spectrum can still be obtained frequency by 
frequency, by averaging the product of the magnitude-time function and a 
unit sinusoid at each frequency. However, the actual transformations 
in the case of the non-periodic functions require summations over infinite 
bands of frequencies and over infinite periods of time and so fall into the 
realm of the Fourier and similar integral transforms. 

However, in any case the problem of spectrum analysis reduces to an 
averaging process. The process can be performed by mathematical inte- 
gration in all cases where a satisfactory analytical expression for the mag- 
nitude-time function is available. Fourier analysis provides a very powerful 
technique for setting up the necessary integrals in such cases. 

This averaging process can also be done graphically. It is apparent from 
the theory that if the product of the magnitude-time function and the 
sinusoid is sampled at a sufficient number of points, spaced uniformly over 
the proper time interval, then the average of the samples gives the desired 
value. This technique is fully treated elsewhere7 so that it will not be con- 
sidered in detail here. However, use will be made of it in a qualitative way 
to augment the physical picture. 

Non-Linear Aspects 

The use of the frequency spectrum in transmission studies is generally 
limited to cases where the system in question is linear; that is, where the 
transmission is independent of the amplitude of the signal. However, the 
same techniques can still be used on systems employing successive linear 
and non-linear components, in cases where the transmission through the 
non-linear elements is independent of frequency. Under these conditions, 
the magnitude-time representation of the wave can be used in computing 

7 Whittaker and Robinson, Calculus of Observations. 
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the transmission over each non-linear section, where the transmission is 
dependent only on the amplitude, and the frequency spectrum used over 
each linear section, where the transmission is dependent only on the fre- 
quency. This a technique can be used on most pulse modulating systems 
because such non-linear elements as the modulators and limiters generally 
encountered are substantially independent of frequency. 

Frequency Spectrum of the Single Pulse 

The single pulse is a non-periodic function of time and so has a continuous 
frequency spectrum. In this case the Fourier transforms are simple. They 
are derived in Appendix A. Figure 1 gives a graphical representation of 
the magnitude-time function and the frequency spectrum of the pulse. 
The expressions are general and hold for pulses of any length or amplitude. 

It is instructive to note that the frequency spectrum in this case can be 
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Fig. 1—Magnitude time and frequency spectrum representations of a single pulse. 

determined by using the graphical technique mentioned previously. For 
example, consider the product of the magnitude-time function of the single 
pulse with a sinusoidal wave of given frequency and unit amplitude, so 
arranged in phase that its peak coincides with the center of the pulse. 
Theoretically the average of this product taken over the infinite period will 
give the relative magnitude of the component in the frequency spectrum 
of the pulse having the same frequency as the sinusoidal wave. In this 
case however, the average need only be taken over the length of the pulse, 
since the product vanishes everywhere else. Thus at very low frequencies, 
where the period of the sinusoidal wave is very much greater than the length 
of the pulse, the average is proportional to 2EL where E is the amplitude 
and 2L the length of the pulse. Then as the frequency increases, the average 
of the product, and hence the relative amplitude of the component in the 
spectrum, will first decrease. For the particular frequency such that the 
length of the pulse is one half the period, the relative amplitude will have 
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2/2 . . 
fallen to 2EL X ~ ~ being the average value of a half wave of unit amph 

tt \7r 

tude^. Similarly when the frequency is such that the length of the pulse 

is a full wavelength, the average will vanish, and when the pulse length is 
one and a half times the wavelength, the average is negative, having two 
negative and one positive half waves over the length of the pulse, and the 

2 
relative magnitude is 2EL X r-. These products are shown graphically 

OTT 
on Fig. 2. Since these amplitudes correspond to those given in Fig. 1, 
for the spectrum components at/ = /o = 1/4Z,, 2/o, and 3/o, it is apparent 
that the spectrum could be determined in this way. 
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Fig. 2—Graphical derivation of spectrum of single pulse by averaging product of pulse 
with sinusoidal waves of various frequencies. 

Basic Technique 

In the analysis presented here, the single pulse and its spectrum will be 
used in such a way that the need for individual integral transforms for each 
complex wave form under study is avoided. The theory is simple. 

A complex wave form may be approximated to any desired accuracy by a 
series of pulses, varying with respect to time in length, in amplitude, and 
in position. Now the spectra of these individual pulses are already known. 
Therefore, to find the frequency spectrum of the complex wave in question, 
it is necessary only to combine properly the spectra of the various pulses 
representing the complex wave. 

Thus the process is theoretically complete. The procedure is first to 
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break down the given complex wave into a series of single pulses. Next 
the spectrum of each pulse is determined separately. Then the spectrum 
of the complex wave is obtained by combining the spectra of the various 
single pulses involved. One of the things to be demonstrated here is that it 
is perfectly feasible in many cases to perform these summations graphically, 
even though basically it does involvfe the handling of spectra each containing 
an infinite number of frequency components. 

There are other wave forms that could be used as the fundamental build- 
ing block instead of the single pulse. The unit step function is one possi- 
bility, since it is used in transient analysis for a similar purpose. However, 
the single pulse has obvious advantages when the complex wave to be ana- 
lyzed is itself a series of pulses, as in pulse modulation. Again it would be 
nice to be able to choose as the fundamental unit a wave that has a discrete 
rather than a continuous band frequency spectrum, but it seems that any 
wave flexible enough to make a satisfactory building unit is inherently non- 
periodic and so has a continuous frequency spectrum. However the fact 
that the fundamental units have continuous spectra does not of itself compli- 
cate the results. If for example, the wave to be analyzed is periodic, the 
sum of the spectra of the various pulses must reduce to a discrete frequency 
spectrum. In the cases of interest here, when the pulse train under analysis 
is repetitive, combinations of identical pulses will be found to occur with the 
same fundamental period, and generally the first step in the summation of 
such spectra is to group the series of pulses into periodic waves with discrete 
spectra. 

Manipulations of Single Pulses 

In its use, the single pulse may be varied in amplitude, in length, and in 
position with respect to time. These changes have independent effects on 
the frequency spectrum. A variation in the amplitude of a pulse does not 
change its spectrum, except to increase proportionately the magnitudes of 
all components. A change in position of a pulse with time does not change 
the amplitude vs. frequency characteristic of the spectrum, but it does 
shift the phase of each component by an amount proportional to the product 
of the frequency and the time interval through which the pulse was shifted. 
A change in the length of a pulse will change the shape of the amplitude vs. 
frequency characteristic of the spectrum. Figure 3 shows this effect. How- 
ever, if the center point of the pulse is not shifted in time, the relative phases 
of the components are not affected by such changes in length. 

The single pulse can also be modulated to aid in the resolution of more 
complicated wave forms. This process is based on the use of the pulse as a 
function having a value of unity over a chosen time interval and a value of 
zero at all other times. Thus, to show a part of a sinusoidal wave, we need 



SPECTRUM ANALYSIS OF WAVES 367 

only multiply this wave by a pulse of the correct length and proper phase 
with respect to the sinusoid to show only the desired piece of the wave. In 
this simple case it is not difficult to derive the spectrum because what are 
produced are the sum and the difference products of the modulating fre- 
quency with the spectrum of the pulse. This gives two single pulse spectra 
shifted up and down in frequency by the frequency of the modulation. An 
example of this is shown in Fig. 4, where the spectrum of a single half c>cle 
is determined. 

Pulse Position Modulation 

For the first example, a simple form of pulse position modulation will be 
analyzed. The pulse train in this case is made up of pulses spaced T second? 
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Fig. 3—Change in frequency spectrum with pulse length. 

apart and the width of each pulse is a very small part of the spacing T. 
Such a pulse train is shown on Fig. 5. The pulse train is modulated by ad- 
vancing or retarding the position (time of occurance) of the pulses by an 
amount proportional to the instantaneous amplitude of the signal at sampled 
instants T seconds apart. Figure 5 also shows the signal, in this case a sine 
wave of frequency I/IOT, and the resulting modulated pulse train. The 

ating sine wave is assumed to shift the position 
gth and the amplitude of the pulses are the same 
is type of modulation. 

peak amplitude of the modu 
of apulseby 1/47. Thelen 
since neither is affected in tli 

The first step in the analysis is to determine the spectrum of the pulse 
train before modulation. I^ach pulse contributes a spectrum of the form 
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shown on Fig 1. Now the phase of each component in such a spectrum 
is so arranged that the spectrum forms a series of cosine terms all of which 
have zero phase angle at the center of the pulse. From successive pulses T 

0.5 

0.2 

O.I 

^ 0.5 
o 

8 0.2 

SPECTRUM OF 
SINGLE PULSE 

0) 
UJ o D 
_1 Q. 2 4 

\ 

ST 
• TIME '.t- 

\ 

\ 

V. ^1 

N 
MODULATION 

PRODUCTS 
/ 

/ ( \ 
\ \ \ \ 

\ DIFFE 
\ TEF 

RENCE 
MS \ SUM TERMS 

\ 
jr 

/ / / / 
/

 

> -o.t 
< 0.4 RESULTANT 

SPECTRUM 
0.3 

0.2 
1/2 SUM + 

1/2 DIFFERENCE 
-L 0 L TIME.t—» 

-0.1 
FREQUENCY, f. IN TERMS OF C (WHERE C = j-) 

Fig. 4—Determination of spectrum of single half sine wave by modulation of single pulse 
spectrum with cos 2vct. 

seconds apart, the component at any given frequency will have the same 
amplitudes, but the relative phases will be 2irfT radians apart. It is appar- 
ent that frequencies for which lirfT is 2x or some multiple of 27r radians 
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apart, the contributions from all pulses add in phase. These are the fre- 

quencies nc, where n = 1,2,3 and c = —. It is also apparent that at fre- 

quencies for which the phase differences between the components are not an 
exact multiple of 27r radians apart, the contributions from enough pulses 
must be spread in phase over an effective range of 0 to 27r radians in such a 
way as to cancel one another. For example, take the particular frequency 
for which the difference in phase between pulses is 361° instead of 360°. 
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unmodulated pulse trains. 

The contribution from each preceding pulse will be effectively advanced in 
phase 1° with respect to its successor, so that the contributions from pulses 
180 periods apart will be exactly 180° out of phase. Therefore over a 
sufficient number of pulses, the net contribution is zero. 

The spectrum of the unmodulated pulse train is thus made up of a dc 
term plus harmonics of the frequency C = \/T. The dc term is the average, 
and therefore is equal to £ X 2L/T, where E is the magnitude of the pulse. 
All of the other components have the same relative magnitudes that they have 
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in the single pulse spectrum. This gives a spectrum like that shown on 
Fig. 6. Figure 6 also shows for comparative purposes the spectrum of the 
subsidiary pulse wave consisting of every 6th pulse. 

Thus in the unmodulated case, the pulses have a uniform recurrence rate 
and the resultant spectrum, found by adding those of the individual pulses, 
reduces to a train of discrete frequencies comprised only of the harmonics of 
the recurrence rate of the pulses. The fundamental frequency, correspond- 
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ing to the recurrence rate, and its harmonics will be called the carrier fre- 
quencies of the pulse train. The effect of modulating the pulse train is to 
modulate each of these carriers, producing sidebands of the signal about 
them. 

When the pulse train is position modulated, the pulses are shifted in posi- 
tion by an amount AT, corresponding to the instantaneous amplitudes of 
the modulating function. The spectrum of each pulse is unchanged, since 
the pulse length remains constant. However, components of successive 
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pulses at the carrier frequency c and its harmonics will no longer add directly, 
because of the phase shifts that accompany the change in position. This 
phase shift is equal to AT, the shift in position, times the radian frequency 
of the component in question. 

However, when the signal function is periodic, each pulse will have the 
same shift in position as any other pulse that occurs at the same relative 
instant in a later modulating cycle. Furthermore, when the carrier fre- 
quency is an exact multiple of the signal frequency i.e., c = nv, there will 
be a pulse recurring at the same relative instant in each cycle of v. Under 
these conditions, the pulse position modulated wave can be broken down into 
a group of unmodulated waves, each being made up of that series of pulses 
that recur at a given part of each modulating cycle, as shown in Fig. 5. 
These subsidiary waves are effectively unmodulated because, as each pulse 
recurs at the same instant in the modulating cycle, they are shifted to the 
same extent and hence will be uniformly spaced. This uniform spacing 
between pulses in a given wave is equal by definition to the period of the 
modulating function, and there will be as many of these unmodulated pulse 
trains as there are pulses in a single cycle. Thus, if c = nv, there will be n 
such pulse trains. 

The reason for grouping the pulses into these unmodulated pulse tains is 
that unmodulated periodic trains have spectra of discrete frequencies. Since 
the pulse widths are all equal, and since the spacing between pulses is the 
same for each wave, the spectra of these unmodulated waves will all be 
identical. Furthermore, these spectra will be the same as that of the 
original carrier wave of pulses before modulation, except for two factors. 
First, the fundamental frequency is now i), corresponding to the modulating 
period, so that there are n times as many components as before. Secondly 

the amplitudes are reduced by the factor - because there is only one pulse 

in these new waves to every n pulses in the original wave. Thus, instead 
of having a spectrum made up of the carrier frequency and its harmonics, 
we now have one made up of harmonics of v. Since c = nv, such frequencies 
as c, c, rt i', c ± 2v, etc., are included. An example of the spectra of both 
the subsidiary and original pulse waves is shown on Fig. 6, for the case 
where n = 6. 

Thus the problem of finding the spectrum of such a pulse position modu- 
lated wave is reduced by this procedure to adding up the n equal components 
at each of the frequencies of interest, such as c and c ± v, allowing for the 
phase difference between components corresponding to the position of one 
pulse with respect to that of the other n-l pulses in one modulating cycle. 
As an example, suppose n = 10 and the frequency to be computed is c + f. 
Now c + ^ is 10% higher in frequency than c. Thus in the unmodulated 
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case, when the n pulses are equally spaced, they are 360° apart at c and 
consequently 360° + 36 or 396° at c + v. Therefore in the unmodulated 
case, each component would be advanced in phase 36° with respect to the 
previous one, so that the diagram of the 10 components would form the 
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Fig. 7—Vector pattern of subsidiary pulse components. 

vector pattern shown on Fig. 7A. The successive components are numbered 
1 to 10. The sum in this unmodulated case is of course zero. 

Now the effect of modulation is to shift the relative phases of these compo- 
nents by an amount determined by the shift in position of the corresponding 
pulses. When these relative phase shifts are such as to spoil the can- 
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cellation of the 10 components, a net component of this frequency is pro- 
duced in the frequency spectrum of the pulse wave. Taking the example 
shown in Fig. 5, the 10 components in Fig. 7A would be shifted to the posi- 
tions shown in Fig. 7B. These shifts in relative phase are determined in the 
following way. Figure 5 shows that the number 1 pulse is retarded an 
amount ATi equal to 15% of T, the normal spacing between pulses. Thus 
at the carrier frequency c, the phase shift between the component from this 
retarded pulse and the reference pulse is 15% more than 360° or 414°. 
Thus the component at the carrier frequency c from the first subsidiary 
pulse train is shifted 54° from its unmodulated position. 

At c -f- zs since the frequency is 10% higher, the net shift is 10% more than 
at c or 59.5°. Thus the number 1 component on the vector diagram of 
Fig. 7B is rotated 59.5° clockwise from its unmodulated position shown on 
Fig. 7A. 

Similarly pulses 2 and 3 are each shifted in position by equal amounts, 
AT2 and ATs. These shifts in position give 85° phase shift at the carrier 
frequency. Hence components 2 and 3 at c -H are each rotated 10% more 
or 93.5° from their respective unmodulated reference positions shown on 
Fig. 12A. Component number 4 is shifted 59.5° clockwise just as number 1. 
Component 6 and 9 are also shifted 59.5° each, but in this case the modulat- 
ing function has the reverse polarity so that the components are rotated 
counterclockwise. Similarly components 7 and 8 are rotated 93.5° 
counterclockwise. 

The sum of these components in the vector diagram of Fig. 7B gives a 
resultant that is negative with respect to the reference direction and the 
magnitude that is 58% of the reference magnitude, where the reference mag- 
nitude and direction are those for the carrier c with no modulation. 

This gives the relative magnitude and phase of the c+v term produced by 
pulse position modulation for the case where the modulating function is a 
sine wave of frequency v = c/10 with a peak amplitude just large enough to 
shift a pulse by 1/4 of T, where T is the spacing between unmodulated pulses. 
A shift of this magnitude will be defined here as 50% modulation on the 
basis that 100% modulation should be l/2r, the maximum displacement 
1 hat can be used without possible interference between pulses. 

In the same way the other component frequencies in the spectrum such as 
c,c — 7;,c±2i;, etc., have been computed for the above case of 50% modulation, 
and for other peak amplitudes of the modulating sine wave giving 25%, 
70% and 100% modulation. In all cases the frequency of the modulating 
function was held at zj = c/10. This information is plotted on Fig. 8, show- 
ing v, c and the various components of the frequency spectrum that represent 
the sidebands about the carrier frequency c, as a function of the peak % 
modulation. 
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The above solution assumed a special case where c was an exact multiple 
of v. The purpose of this assumption was to simplify the problem to the 
extent that the periodicity of the modulated wave would be the same as 
that of the modulating function. There are two other possible cases. For 
one, the ratio of c to y could be such that a pulse would occur at the same 
instant of the modulating period only once every so many periods. The 
actual periodicity of the modulated pulse wave would be reduced accordingly 
because it would make the same number of periods of the modulating func- 
tion before the modulated pulse train is repeated. This is a result of the 
fact that pulse modulation provides for a discrete sampling rather than a 
continuous measure of the modulating wave. The technique of spectrum 
analysis demonstrated above is just as applicable to this case as it was to the 
simpler one. However, there will be comparatively more terms to be 
handled. The other possible case is the one where c and v are incommen- 
surate.8 In this case, the resulting modulated wave is non-periodic. How- 
ever, on the basis that the spectrum is practically always a continuous 
function of the signal frequency, this case has received no special attention 
here. 

At frequencies for which c is very much greater than v, so that the number 
of component pulse trains becomes too numerous to handle conveniently in 
the above fashion, the sidebands about each carrier or harmonic of the 
switching frequency can be computed by the standard methods for phase 
modulation, as the next section will demonstrate. This result follows 
directly from the theorem that as the carrier frequency c becomes large with 
respect to v, pulse position modulation merges into a linear phase modulation 
of each of the carriers. 

Pulse Position Modulation vs Phase Modulation 

When a pulse, in a pulse position modulated wave, is shifted by 1/2 the 
spacing between pulses (100% modulation) it is apparent from the previous 
discussion that the component of the carrier in the frequency spectrum of the 
pulse is shifted by 180°. Therefore to compare the spectrum of a pulse 
position modulated wave like that on Fig. 8 with the equivalent spectrum of 
a phase modulated wave, what is needed is Fig. 9, showing the frequency 
spectrum of a phase modulated wave of the form Cos{ct — k sin vt) as a func- 
tion of k for values of ^ up to tt radians or 180°. The computation of the 
frequency spectrum of such a phase modulated wave has been adequately 
covered elsewhere and all that is done here is to give the brief development 
shown in appendix B. 

8 Mr. W. R. Bennett has pointed out that this incommensurate case is the general one. 
It requires a double Fourier series, which reduces to a single series when the signal and 
carrier frequencies are commensurate. This analysis is based on the single Fourier series. 
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A comparison of the spectra on Figs. 8 and 9 shows that the sidebands 
have the same general pattern. However comparative sidebands are not 
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Fig. 8—Spectrum of pulse position modulated wave for case where the carrier frequency 
C is 10 times the signal frequency v. 

quite equal in the two cases. In fact comparable upper and lower side- 
bands in the case of the pulse modulated wave shown on Fig. 8 are not 



376 BELL SYSTEM TECHNICAL JOURNAL 

equal in absolute magnitude to each other. This lack of symmetry is due 
to the fact that c is only 10 times v. 
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One way of proving this is to go through the process of computing the 
c —v term in this pulse modulated wave just as the c-\-v term was computed 
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earlier. Sincethefrequency c — vis 10% less thane, the unmodulated pattern 
of the 10 subsidiary components, as shown on Fig. 7C, is the mirror image of 
that for c + w in 7A, for the first component is now 360° less 10% or 324°, 
and subsequent components are each retarded 36° with respect to the pre- 
vious one. When the pulse train is modulated the effect is similar to the 
case for c + v and, for the same per cent modulation, the Vector pattern 
of Fig. 7D is formed. The resultant in this case differs from that of 7B 
in sign as well as in magnitude. The difference in sign comes from the fact 
that, since component 1 in 7A corresponds to component 9 in 7C and com- 
ponent 2 in 7A to component 8 etc., the modulation in thecaseof c — rotates 
these corresponding components in opposite directions. The difference in 
magnitude is due to the fact that since c — ris an appreciabley lower fre- 
quency than c + f in this case (approx. 20%), the phase shift corresponding 
to a given shift in pulse position is proportionately less. Thus the corre- 
sponding Vector components are not shifted the same number of degrees. 
Thus the absolute magnitudes of c + f and c — v are not equal in this case. 

It is apparent that this difference in magnitudes of c + i" and c — f be- 
comes smaller as the carrier frequency c becomes larger with respect to v. 
In the limiting case of c very much greater than v, c + v and c — v would 
each be shifted the same number of degrees as c itself. If this more or less 
compromise shift of c is used to compute the c Az v, c Az 2v, and c ± 3^ terms, 
then the resulting frequency spectrum is that of the phase modulated carrier 
on Fig. 9. 

The higher harmonics of c in the pulse position wave are similarly phase 
modulated and the interesting point is that 2c is modulated through twice as 
many degrees phase shift and 3c 3 times as many degrees, etc. Thus a 
single pulse position modulator could be designed to produce a harmonic of 
c with almost any desired degree of phase modulation. This is a useful 
method for obtaining a phase modulated wave, or with a 6 db per octave 
predistortion of the signal, a frequency modulated wave. 

Figure 8 also shows a term in v itself, which has been neglected so far in 
the discussion. It is apparent that the components at v contributed by the 
10 subsidiary unmodulated waves must form the same kind of vector pattern 
as those of c + z' in Fig. 7. However, in this case c + zj is eleven times v in 
frequency, so that the components of v are rotated only one eleventh as 
much for a given pulse diplacement. Thus the magnitude of v at 100% 
modulation is equal to that of c + v at approximately 9% modulation. For 
different frequency ratios of c to v the relationship of the v term to c + z will 
vary, and it is apparent that for c very much greater than z, the z term will 
vanish. The relationship is such that the amplitude of the z component out 
of the modulator at a given per cent modulation is directly proportional to 
its own frequency v for all frequencies less than approximately one quarter 
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of c, and the phase is 90° with respect to the input. Thus the modulator 
puts out a signal component that is the derivative of the input signal. 

To summarize the case of pulse position modulation, the frequency spec- 
trum may be determined by the methods based on subdividing the modu- 
lated pulse train into a series of unmodulated ones when the ratio of c to w 
is small, and by treating each harmonic of the carrier as a phase modulated 
wave of the form Cos n {ct + 0), where 6 is the modulating function, when the 
ratio of c to t) is large. In the case treated here, the modulating function was 
a simple sinusoidal wave. Of course the analysis holds for more complicated 
wave shapes having frequency spectra of their own. In this event however 
the restriction on the relative magnitudes of the frequencies v and c should 
be taken as one on c and the highest frequency in the modulating spectrum. 
The complexity of the modulating function does not affect the analysis when 
it is done by this technique of subdividing the pulse train, since all that need 
be known is how much each pulse is shifted, and this can be done graphically. 
The analysis given here has neglected the length of the individual pulses. 
This was done when it was assumed that the individual contributions from 
the various pulse trains had the same amplitude at all frequencies. For any 
finite pulse width, the relative magnitudes of the various components must 

Stfl oc • 
be modified by the    factor of the single pulse, as shown on Fig. 6. 

s - 
As mentioned in the introduction, a complex wave could be analyzed by 

multiplying its magnitude-time characteristic by unit sinusoids at each 
frequency in question, sampling the product at a sufficient number of points 
uniformly spaced over a cycle of the envelope of the complex wave, and then 
averaging the values of the product thus obtained. This technique is par- 
ticularly applicable to the analysis of pulse position modulated waves since, 
by taking the centers of the pulses of the modulated wave as the sampling 
instants, it is possible, with a finite number of samples (same as the number of 
pulses) to get the same results as though a very much greater number of 
uniformly spaced samples were taken. The interesting thing to note here 
is that the actual computations that would be involved in applying this 
sampling method of analysis to a pulse position modulated wave are almost 
identically the same calculations as required by the technique of resolving 
the pulse train into unmodulated subsidiary pulse trains used here. 

Pulse Width Modulation 

Pulse Width Modulation as defined here could also be termed "pure" 
pulse length modulation. The pulse train in the reference or unmodulated 
condition is a recurrent square wave, and the lengths of the pulses will be 
varied by the modulation without changing the position of the centers of 
the pulses. The term "pure" pulse length modulation is applicable to this 
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special case where the phase relationship between spectra of adjacent pulses 
does not change with modulation because the centers of the pulses are not 
shifted by the modulation. The conventional form of pulse length modula- 
tion, where one end of the pulse is fixed in position, combines both this 
pulse width modulation and the pulse position modulation previously ana- 
lyzed. The interest in this case of pulse width modulation arose in con- 
nection with the analysis of "hunting'' servomechanisms, and the analysis 
provides a basis for a general solution of the response of a two-position 
switch or ideal limiter to various forms of applied voltages. 

Since the unmodulated wave is a square wave with pulses of length 2L 
recurring at intervals of T = AL, it has the familiar square wave spectrum 
including a d-c term, a fundamental term or carrier of frequency c = l/T, a 
3rd harmonic with a negative amplitude 1/3 that of the fundamental, etc. 
Figure 10 shows clearly that this spectrum is the sum of single pulses of 
width 2L spaced T = AL seconds apart. In the summation, all frequencies 
cancel except harmonics of c and, since they all add directly in phase, the 
component frequencies in the resultant spectrum have the same relative 
amplitudes as they have in one single pulse. 

When this pulse train is modulated, the width of each pulse becomes 
2{L + AL), where the magnitude of AL depends in some specified way on the 
magnitude of thhe modulating function at the instant corresponding to the 
center of the pulse. For simplicity, the case will be taken where AL is 
proportional to the magnitude of the modulating function. For 100% 
modulation, AL will be assumed to vary from —L to +Z,. Figure 3 shows 
how the relative amplitude of the components of the frequency spectrum of 
a pulse vary for 3 different values of AL , along with the equation that gov- 
erns these amplitudes. 

If the modufating function has a periodicity v such that c = 10i', then 
every 10th pulse, recurring at the same instant in each modulating cycle, 
will be widened to the same extent and so can be formed into a subsidiary 
unmodulated pulse train, as was done on Fig. 5 for the pulse position 
modulated wave. 

Again vector diagrams like those in Fig. 7 may be formed showing the 
contribution of each of these subsidiary pulse trains at various frequencies 
such as c, c + v and c — v. When the waves are unmodulated, the vector 
diagrams for the same frequencies will be the same as those for the pulse 
position modulated case, except for the absolute amplitudes of the com- 
ponents, as long as c = lOr in each case. When the pulse width system is 
modulated, however, the modulation does not rotate the individual vector 
components as in the pulse position case since the spacing between pulses is 
not changed. What the pulse width modulation does is to change the 
length of the individual component vectors exactly as it does in the case of 
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the single pulses shown on Fig. 3. This change of magnitude, of course, can 
spoil the cancellation of the ten unmodulated components at some frequency 
like c 2v just as effectively as rotating them did in the case of the pulse 
position modulated wave, thus producing a spectrum component at that 
frequency. 

As an example, the case will be taken where the modulating function is a 
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sinusoid of frequency v. Then the change in width with modulation is 
given by the formula 

AL u ■ , — = k sin vl. 
J-j 

Since c = 10z', the successive subsidiary pulse trains will be modulated an 

amount= ^sin^27r-^as m takes on the values from 1 to 10. Thus 

the spectra of these subsidiary pulse trains with pulses of length 2(L + 



SPECTRUM ANALYSIS OF WAVES 381 

AI„,) recurring every \/v seconds will be a Fourier series of harmonics of v. 
The amplitude of the nth term of this series will be 

2E • fTTwr , , . /2irm\~\ 
B- = 10^smITL 5m VirjJ_ ■ 

This expression may be found from appendix C, equation (5a). Combining 
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Fig. 11—Spectrum of pulse width modulated wave for case where carrier frequency C is 
10 times the signal frequency v. 

the 10 such components at each frequency, as shown on Fig. 7 for the case 
of the pulse position modulated wave, the spectrum for this case of Pulse 
Width Modulation on Fig. 11 is produced. This spectrum is comparable 
to that on Fig. 8 for the pulse position modulated case. 

Pulse Width vs Amplitude Modulation 

That pulse width modulation is a form of amplitude modulation of the 
carriers of the unmodulated pulse train is shown mathematically by Equa- 
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Fig. 12—Response of ideal limiter to simultaneously applied isosceles triangle wave and 
sine wave inputs, k is the ratio of the peak amplitudes of sinusoidal and triangular 

waves at the input. 

tion (8) in Appendix C, where the spectrum is developed as a Fourier series 
in harmonics of the pulse rate c with the modulation affecting only the 
amplitude of the coefficients. 

This mathematical analysis is continued in Appendix D where the fre- 
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quency spectrum is determined for AL = k sin vl. The spectrum thus 
computed is shown in Fig. 12. L 

An example of this type of pulse modulator is given by a two position 
switch or ideal limiter when the signal to be modulated is applied simul- 
taneously to the limiter with an isosceles triangle wave as carrier. The 
carrier should have a higher peak amplitude than the signal and a recurrence 
rate based on the desired carrier frequency. Figure 12 is arranged to show 
the output spectrum for such a limiter in terms of k, when k is the ratio 
of the peak amplitudes of the sinusoidal signal and triangular carrier wave 
inputs. 

A comparison of this spectrum with that on Fig. 11 shows that the 
two spectra have almost the same form, c and v have the same amplitude 
characteristics in each case. The c Azlv and 2c ±v terms have differences 
that are like those found before in comparing the pulse position modulated 
wave on Fig. 8 and the phase modulated carrier on Fig. 9. As in that case, 
when c becomes very much greater than v the differences vanish. 

Application of Pulse Width Modulator 

Practical interest in this case lies in the fact that the signal is present 
in the output spectrum with a linear characteristic that makes such a 
modulator a linear amplifier. The "on-off" or "hunting" servomechanism 
is based on a modified form of such an amplifier in which the carrier is sup- 
plied by the self oscillation of the system. The term modified form is used 
because the self oscillations in general are more nearly sinusoidal than 
triangular in form and so do not give a linear change in pulse length over 
as wide a range of input amplitudes as does a triangular carrier. No 
attempt will be made to analyze such a system here since it has been handled 
elsewhere.9 However the above method is applicable to such problems 
regardless of the shape of the carrier or the signal. 

Other Forms of Pulse Modulation 

Another form of pulse modulation of interest is that of pulse length modu- 
lation in which either the start or the end of each pulse is fixed, so that the 
centers of the pulses vary in position with the length. This is a combination 
of both the pulse position and the pulse width modulations described above 
and can be analyzed by a combination of the methods developed. 

These same methods are also applicable to the analysis of frequency and 
phase modulated waves after they have been put through a limiter, as they 
generally are before detection. 

5 See L. A. Macall, "The Fundamental Theory of Servomechanisms" D. Van Nostrand 
Company, 1945. 
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APPENDIX A 

Fourier Transforms For Single Pulse 

The amplitude g{J) of the component of frequency/ in the spectrum of the 
Complex Magnitude-time function e{l) is given by the d-c component of the 
Modulation products of e{l) and cos lirfl, found by averaging the product 
over the period of the complex wave. 

Thus, for non-periodic waves, where the period is from — oo to -p «, the 
amplitude of the spectrum at / is 

g(f) = f e(t) cos 2irjt dl. (1) 
J—cc 

For the single pulse, where e{l) = E for —L<1 < L and e(l) = 0 for all 
other values of /, equation (1) reduces to 

g(f) ^ f E cos 2irft dt. (2) 

Integrating, 

or 

g(/) ^ ^ sin 2irft 

g(f) ^ — sin 2irfL. (3) 
TVj 

Equation (3) is the expression for g{f) plotted on Fig. 1. 
Similarly, in the case of the single pulse, each increment in frequency dj 

contributes a factor proportional to g{f) cos 2irft df to the composition of 
e{l), so that 

e(t) = j g(f) cos 2 it ft df. (4) 

Substituting in (4) the expression loTg(f) given by equation (3), this becomes 

e(t) ^ cos 2irft df. (5) 
TT J-co J 

APPENDIX B 

Frequency Spectrum Of Phase Modulated Wave 

The Phase Modulated Wave in this case is given by 
cos {d - k sin vt) = cos (d) cos (k sin vt) + sin (d) sin (k sin vt) 

Now cos (d) cos {k sin d) = Jo (k) cos (d) 
+ Jo (k) cos {c — 2 v) t 
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+ J2 {k) cos {c 2v) t -\- • • • 
and sin {cl) sin {k sin ct) = J\ {k) cos {c — v) t 

— Ji (k) cos (c + u) / 
+ J3 (k) cos (c — 3v) t 
— J3 (k) cos (c + 3i') / + • • • 

cos (ct — k sin vt) = Jo (k) cos (ct) 
-f Ji (k) cos (c — t1) t 
— Ji (k) cos (c v) t 
+ Jn (k) cos (c — 2v) t 
d- J2 (k) cos (c + 2v) t 
+ J3 (k) cos (c — 3ii) t 
— J3 (k) cos (c + 3») / + • • • 

APPENDIX C 

In this Appendix the spectrum of a train of rectangular pulses of length 
2(L + AL) recurring every T seconds, will be found from the spectrum of a 
single pulse of this train. 

For the single pulse at any frequency/, 

g(J)&-.s.m2T}(L + M). (1) 
*•/ 

For a series of such pulses recurring with a spacing T = l/c, then the sum of 
spectra of the individual pulses form a Fourier series of harmonics of c. Thus 

e(l) = Ao + ^2 An cos 2irnct, (2) 
n=l 

where An is the sum of an infinite number (one from each pulse) of infinitesi- 
mal terms g(nc) and g(—nc), shown in (1). Thus 

An ^ 22 — sin 2Trnc(L + AT) (3) 
irnc 

Now to put an absolute value to the amplitudes g(/) shown in equation (1), 
it is necessary to average them over the recurrence period of the single pulse, 
making them infinitesimals. However, in the train of pulses recurring 
every T = \/c seconds, the amplitude of An can be determined by averaging 
the terms in (1) over an interval T. Then 

2 F 
An =  — sin 2Tnc(L + AT). (4) 

trncT 

When T = 4L = l/c, (4) reduce to 
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For the example taken in the text, when the pulse train was subdivided 
into 10 subsiding pulse trains, the period T = \/v = 10/c = 40Z,. Thus in 
this case, the Fourier coefficients of the harmonics of v are 

2E. . irn /. . AL\ 
= iffim8111 T \ 

(5a) 

The expression for .4,, in equation (5) can be put in simpler form by using 
the formula for the sin of the sum of two angles. In this way, we get 

irn K?H¥¥)+"(?HT¥)]- I® 

Now, for n odd, sin ^ alternately assumes the value ± 1 and cos ^ vanishes, 

and for n even, cos alternately assumes the value ±1 and sin ^ 

vanishes. The A o term, being the d-c average of the pulse train, is given by 

(7) E/2(L + M) = Er +ALy 

If the pulse train is transformed by shifting the zero so that it alternates 
between ±E/2 instead of 0 and E, the first term in equation (7) vanishes 
and (2) becomes, from (6) & (7), 

e{l) = Ao + Jli cos 2ircl 
+ Az cos 27r 2cl + • 

Where 

A, 
- f (¥) 

2E (ir A/A 
= V C0S \2 -l) 

. 2E . 
Az = — sin tt 

2ir 

2E Sir 
S C<B T 

(¥) 

(¥) 

(8) 

etc. 

APPENDIX D 

The purpose of this section is to compute the spectrum of. the carrier given 
. AL 

by equation (8) in Appendix C as their amplitudes vary with — = ^ sin vl. 
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For the d-c term, 

2 L 

For the fundamental or c term, 

. EAL E , . , 
An = -—■ = - k sin vt. 

IE /tt L . \ 
^li cos Zircl = — cos I sin vt ] cos lircl 

TT \2 / 

Using the Bessel's expansion of cos (2 sin 6), we get, 

Mk) cos 27rc 

A i cos 2irct = — 
27r 

-\-J2ik) cos 27r(c — 2v)t 

■i-Jiik) cos 27r(c + 2v)l 

+ ■ •• etc. 

In a similar fashion, the other terms can also be computed, giving the 
spectrum shown on Fig. 12, where Jo(k) becomes the amplitude of c, Jzik) 
the amplitude of either c -j- 2vorc — 2v, etc. . . 



Abstracts of Technical Articles by Bell System Authors 

Commercial Broadcasting Pioneer. The WEAF Experiment: 1922-1926} 
William Peck Banning. WEAF, the radio call letters which for nearly a 
quarter of a century designated a broadcasting station famous for its 
pioneering achievements, ceased last November to have its old significance. 
WNBC are the new call letters. This book is an excellent record of the 
four years during which this station was the experimental radio broad- 
casting medium of the American Telephone and Telegraph Company. 

The author indicates that the WEAF experiment aided the development 
of radio broadcasting in three ways: 

First, in the scientific and technological field. 
Second, in the emphasis of a high standard for radio programs. 
Third, in determining the means whereby radio broadcasting could 

support itself. 
When TF.ZL4F changed hands from the American Telephone and Telegraph 

Company to new ownership, public reaction to almost every type of broad- 
cast had been tested, network broadcasting had been established and the 
economic basis upon which nationwide broadcasting now rests had been 
founded. A trail had been blazed that thereafter could be followed without 
hesitation. 

In so far as radio broadcasting is concerned, this book is a significant 
chapter in communication history. 

A Multichannel Microwave Radio Relay System.2 H. S. Black, J. W. 
Beyer, T. J. Grieser, F. A. Polkinghorn. An 8-channel microwave 
relay system is described. Known to the Army and Navy as AN/TRC-6, 
the system uses radio frequencies approaching 5,000 megacycles. At 
these frequencies, there is a complete absence of static and most man-made 
interference. The waves are concentrated into a sharp beam and do not 
travel along the earth much beyond seeing distances. Other systems 
using the same frequencies can be operated in the near vicinity. The 
transmitter power is only one four-millionth as great as would be required 
with nondirectional antennas. The distance between sets is limited but 
by using intermediate repeaters communications are extended readily to 
longer distances. Short pulses of microwave power carry the intelligence 
of the eight messages utilizing pulse position modulation to modulate the 

1 Published by Harvard University Press, Cambridge, Massachusetts, 1946. 2 Elec. Engg., Trans. Sec., December 1946. 
388 
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pulses and time division to multiplex the channels. The eight message 
circuits which each AN/TRC-6 system provides are high-grade telephone 
circuits and can be used for signaling, dialing, facsimile, picture transmission, 
or multichannel voice frequency telegraph. Two-way voice transmission 
over radio links totaling 1,600 miles, and one-way over 3,200 miles have 
been accomplished successfully in demonstrations. 

Further Observations of the Angle of Arrival of Microwaves? A. B. 
Crawford and William M. Sharpless. Microwave propagation measure- 
ments made in the summer of 1945 are described. This work, a continua- 
tion of the 1944 work reported elsewhere in this issue of the Proceedings of 
the I.R.E. and Waves and Electrons, was characterized by the use of an 
antenna with a beam width of 0.12 degree for angle-of-arrival measurements 
and by observations of multiple-path transmission. 

The Effect of Non-Uniform Wall Distributions of Absorbing Material on the 
Acoustics of Rooms? Herman Feshbach and Cyril M. Harris. The 
acoustics of rectangular rooms, whose walls have been covered by the non- 
uniform application of absorbing materials, is treated theoretically. Using 
appropriate Green's functions a general integral equation for the pressure 
distribution on the walls is derived. These equations show immediately 
that it is necessary to know only the pressure distribution on the treated 
surfaces to predict completely the acoustical properties of the room, such 
as the resonant frequencies, the decay constants, and the spatial pressure 
distribution. The integral equation is solved approximately using (1) 
perturbation method, and (2) approximate reduction of the integral equation 
to an equivalent transmission line. Criteria giving the range of validity of 
these approximations are derived. It was found useful to introduce a new 
concept, that of "effective admittance," to express the results for the resonant 
frequency and absorption for then the amount of computation is reduced 
and the accuracy of the results is increased. The absorption of a patch of 
material was found as a function of the position of the absorbing material 
and was checked experimentally for a convenient case, an absorbing strip 
mounted on the otherwise hard walls of a rectangular room. Particular 
attention is given to the case where the acoustic material is applied in the 
form of strips. The results may then be expressed in series which converge 
very rapidly and are, therefore, amenable to numerical calculation. Ap- 
proximate formulas are obtained which permit estimates of the diffusion 
of sound in a non-uniformly covered room. In agreement with experience, 
these equations show that diffusion increases with frequency and with the 

3 Proc. I.R.E. and Waves and Electrons, November 1946. 4 Jour. Aeons. Soc. America, October 1946. 
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number of nodes on the treated walls. The "interaction effect" of one 
strip on another is shown to decrease with an increase of the number of 
nodes. The results are then applied to the case of ducts with non-uniform 
distribution of absorbing material on its walls. Results are given which 
permit the calculation of the attenuation per unit length of duct. The 
methods of this paper hold for any distribution of absorbing material and 
also if the admittance is a function of angle of incidence. 

High Current Electron Guns.5 L. M. Field. This paper presents a 
survey of some of the problems and methods which arise in dealing with 
the design of high current and high current-density electron guns. A 
discussion of the general limitations on all electron gun designs is followed 
by discussion of single and multiple potential guns using electrostatic fields 
only. A further discussion of guns using combined electrostatic and mag- 
netic fields and their limitations, advantages, and some possible design 
procedures follows. 

Reflection of Sound Signals in the Troposphere.5 G. W. Oilman, H. B. 
Coxhead, and F. H. Willis. Experiments directed toward the detection 
of non-homogeneities in the first few hundred feet of the atmosphere were 
carried out with a low power sonic "radar." The device has been named 
the sodar. Trains of audiofrequency sound waves were launched vertically 
upward from the ground, and echoes of sufficient magnitude to be displayed 
on an oscilloscope were found. Strong displays tended to accompany 
strong temperature inversions. During these periods, transmission on a 
microwave radio path along which the sodar was located tended to be 
disturbed by fading. In addition, relatively strong echoes were received 
when the atmosphere was in a state of considerable turbulence. There was 
a well-defined fine-weather diurnal characteristic. The strength of the 
echoes was such as to lead to the conclusion that a more complicated distribu- 
tion of boundaries -than those measured by ordinary meteorological methods 
is required in the physical picture of the lower troposphere. 

A Cathode-Ray Tube for Viewing Continuous Patterns.7 J. B. Johnson. 
A cathode-ray tube is described in which the screen of persistent phosphor 
is laid on a cylindrical portion of the glass. A stationary magnetic field 
bends the electron beam on to the screen, while rotation of the tube produces 
the time axis. When the beam is deflected and modulated, a continuous 
pattern may be viewed on the screen. 

6 Rev. Mod. Phys., July 1946. 6 Jour. Acous. Soc. Amer., October 1946. 7 Jour. A pplied Physics, November 1946. 
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The Molecular Beam Magnetic Resonance Method. The Radiofrequency 
Spectra of Atoms and Molecules} J. B. M. Kellogg and S. Millman. A 
new method known as the "Magnetic Resonance Method" which makes 
possible accurate spectroscopy in the low frequency range ordinarily known 
as the "radiofrequency" range was announced in 1938 by Rabi, Zacharias, 
Millman, and Kusch (R6, R5). This method reverses the ordinary pro- 
cedures of spectroscopy and instead of analyzing the radiation emitted by 
atoms or molecules analyzes the energy changes produced by the radiation 
in the atomic system itself. Recognition of the energy changes is accom- 
plished by means of a molecular beam apparatus. The experiment was 
first announced as a new method for the determination of nuclear magnetic 
moments, but it was immediately apparent that its scope was not limited 
to the measurement of these quantities only. It is the purpose of this 
article to summarize the more important of those successes which the 
method has to date achieved. 

Metal-Lens Antennas} Winston E. Kock. A new type of antenna is 
described which utilizes the optical properties of radio waves. It consists 
of a number of conducting plates of proper shape and spacing and is, in 
effect, a lens, the focusing action of which is due to the high phase velocity 
of a wave passing between the plates. Its field of usefulness extends from 
the very short waves up to wavelengths of perhaps five meters or more. 
The paper discusses the properties of this antenna, methods of construction, 
and applications. 

Underwater Noise Due to Marine Life}0 Donald P. Loye. The wide- 
spread use of underwater acoustical devices during the recent war made 
it necessary to obtain precise information concerning ambient noise condi- 
tions in the sea. Investigations of this subject soon led to the discovery 
that fish and other marine life, hitherto generally classified with the voiceless 
giraffe in noisefnaking ability, have long been given credit for a virtue they 
by no means always practice. Certain species, most notably the croaker 
and the snapping-shrimp, are capable of producing noise which, in air, 
would compare favorably with that of a moderately busy boiler factory. 
This paper describes some of the experiments which traced these noises to 
their source and presents acoustical data on the character and magnitude 
of the disturbances. 

Elastic, Piezoelectric, and Dielectric Properties of Sodium Chlorate and 
Sodium Brornate}1 W. P. Mason. The elastic, piezoelectric, and di- 

8 Rev. Mod. Rhys., July 1946. 9 Proc. I.R.E. and Waves and Electrons, November 1946. 19 Jour. A cons. Soc. America, October 1946. 
11 Phys. Rev., October 1 and 15, 1946. 
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electric constants of sodium chlorate (NaClOs) and sodium bromate 
(NaBrOs) have been measured over a wide temperature range. The value 
of the piezoelectric constant at room temperature is somewhat larger than 
that found by Pockels. The value of the Poisson's ratio was found to be 
positive and equal to 0.23 in contrast to Voigt's measured value of —0.51. 
At high temperatures the dielectric and piezoelectric constants increase 
and indicate the presence of a transformation point which occurs at a 
temperature slightly larger than the melting point. A large dipole piezo- 
electric constant (ratio of lattice distortion to dipole polarization) results 
for these crystals but the electromechanical coupling factor is small because 
the dipole polarization is small compared to the electronic and ionic polariza- 
tion and little of the applied electrical energy goes into orienting the dipoles. 

Pa per Capacitors Containing Chlorinated Impregnants. Effects of S ulfur.1- 
D. A. McLean, L. Egerton, and C. C. Houtz. Sulfur is an effective 
stabilizer for paper capacitors containing chlorinated aromatics, in the 
presence of both tin foil and aluminum foil electrodes. Sulfur has unique 
beneficial effects on power factor which are especially marked when tin 
foil electrodes are used. The value of R (Equation 4) can be used as an 
index of ionic conductivity in the impregnating compound. Diagnostic 
power factor measurements on impregnated paper are best made at low 
voltages. Electron diffraction studies give results in line with the previously 
published theory of stabilization. Several previous findings are reaffirmed: 
(a) the importance of all components of the capacitor in determining its 
initial properties and aging characteristics, (b) the superiority of kraft 
paper over linen, and (c) widely different behavior of capacitors employing 
different electrode metals. 

A New Bridge Photo-Ceil Employing a Photo-Conductive Effect in Silicon. 
Some Properties of High Purity Silicon.13 G. K. Teal, J. R. Fisher, and 
A. W. Treptow. A pure photo-conductive effect was found in pyrolytically 
deposited and vaporized silicon films. An apparatus is described for 
making bridge type photo-cells by reaction of silicon tetrachloride and 
hydrogen gases at ceramic or quartz surfaces at high temperatures. The 
maximum photo-sensitivity occurs at 8400-8600A with considerable re- 
sponse in the visible region of the spectrum. The sensitivity of the cell 
appears about equivalent to that of the selenium bridge and its stability 
and speed of response are far better. For pyrolytic films on porcelain there 
are three distinct regions in the conductivity as a function of temperature. 
At low temperatures the electronic conductivity is given by the expression 

12 Indus. & Engg. Chemistry, November 1946. 13 Jour. Applied Physics, November 1946. 
» 
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a — AJ{T)exp—{E/2kT), At temperatures between 2270C and a higher 
temperature of 400-500oC a = Aexp—{E/2kT), where E lies between 0.3 
and 0.8 ev; and at high temperatures a = Aexp—{E/2kT), where E = 1.12 
ev. The value 1.12 ev represents the separation of the conducting and 
non-conducting bands in silicon. The long wave limit of the optical absorp- 
tion of silicon was found to lie at approximately 10,500A (1.18 ev). The 
data lead to the conclusion that the same electron bands are concerned in 
the photoelectric, optical, and thermal processes and that the low values 
of specific conductances found (1.8X 10-5 ohm-1 cm-1) are caused by the 
high purity of the silicon rather than by its polycrystalline structure. 

Non-Uniform Transmission Lines and Reflection CoefficientsL. R. 
Walker and N. Wax. A first-order differential equation for the voltage 
reflection coefficient of a non-uniform line is obtained and it is shown how 
this equation may be used to calculate the resonant wave-lengths of tapered 
lines. 

11 Jour. A pplied Physics, December 1946. 
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