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Equivalent Circuits of Linear Active Four-Terminal Networks* 

HE art of equivalent network representation has grown very con- 
siderably since its inception by Dr. G. A. Campbell. In his paper 

"Cissoidal Oscillations" which was published in 1911 he proved that any 
passive network made up of a finite number of invariable elements and hav- 
ing one pair of input terminals and one pair of output terminals is externally 
equivalent to an unsymmetrical T or IT network. From this modest be- 
ginning the field of applications of the equivalent circuit concept has steadily 
expanded so that by now the whole field of linear passive circuit theory has 
been subjected to equivalent circuit interpretation. 

With the advent of the thermionic vacuum tube amplifier, linear active 
network theory had to be considered and almost immediately the attempt 
was made to obtain an equivalent circuit whose performance would depict 
the linear characteristic of the tube. The equivalent circuit art has also, 
in recent years, been used to describe the performance of certain classes of 
non-linear devices, such as mixers, and further applications in this field will 
no doubt be made. 

Equivalent circuit concepts have played an important part in electrical 

* This paper appears substantially as it was originally prepared some years ago as a 
technical memorandum for internal distribution within Bell Telephone Laboratories. 
Its publication is rendered timely by the applicability to the recently announced transis- 
tor devices. Present experience indicates, in fact, that the configuration of Fig. 13 
furnishes the most useful equivalent four-pole network for the transistor. 

Mr. J. A. Morton has called my attention to an early paper in this field by Strecker and 
Feldtkeller (E.N.T. Vol. 6, page 93, 1929) in which the general theory of active networks 
has been well developed. However, the early state of the then prevailing art prevented the 
full demonstration of the power of the method and of course precluded the possibility of 
application to modern devices. This paper enlarges the general theory and makes logical 
applications of the method to modern devices. Since the appearance of the Strecker- 
Feldtkeller paper several other papers touching upon this subject have appeared. How- 
ever, no attempt at giving a complete bibliography will be made, except to call attention 
to the contributions of Prof. M. J. O. Strutt, who also has adopted the four-pole point of 
view. 

The I.R.E. Electron Tube Committee has adopted the four-pole viewpoint and has 
proposed methods of tests for experimentally determining the four-pole parameters of elec- 
tron tubes. This material will be published in the new I.R.E. standards on electron 
tubes. 
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engineering, particularly in communication engineering. One might almost 
say that a problem is not solved unless an equivalent circuit has been found 
whose performance will exhibit some of the characteristics of the actual 
problem. This need for circuit concepts reflects a desire to make the 
phenomena more alive and subject to physical interpretation, for it is true 
that equivalent circuit concepts have greatly contributed towards physical 
interpretation of analytical expressions. A problem may very well be 
studied without recourse to the equivalent circuit concept and a correct 
answer obtained, yet the development of an equivalent circuit adds greatly 
to the complete interpretation of the physical phenomena. 

In this paper we shall be concerned only with linear a-c amplifier operation 
where the term linear indicates that the analytical expressions connecting 
currents and voltages are linear, that is, involve only the first power of any 
instantaneous current or its derivative. We shall further restrict our atten- 
tion to the usual mode of four-terminal amplifier operation in which one pair 
of terminals is associated with the signal to be amplified and the other pair 
with the amplified signal. The equivalent a-c circuit of such a transducer 
will require the development and interpretation of the linear relations 
connecting the a-c currents and voltages at the input terminals with corre- 
sponding quantities at the output terminals. At this point we can logically 
postulate that the important formal difference between an active and a 
passive four-pole lies in that the law of reciprocity no longer can be assumed 
to hold for the active network. Since passive four-poles require three inde- 
pendent parameters for their complete specification the active four-pole 
will require at least one additional parameter. 

In the practical applications we shall be principally concerned with the 
various triode four-pole connections. A short review of the various stages 
involved in deriving the newer forms of equivalent triode circuits will there- 
fore be considered prior to the introduction of generalized concepts. Such 
a review is in the main concerned with the effect of frequency upon the 
early forms of the equivalent triode circuit. 

In the review we shall confine ourselves to the usual grounded cathode 
mode of operation since it is only in recent times that grounded grid and 
grounded plate operation have come into use. This distinction is, however, 
not necessary and is introduced solely for simplicity- 

The conventional notation as well as the positive current directions are 
indicated on Fig. 1 for a general four-pole N. It is assumed here that termi- 
nals 1 are the available input and terminals 2 the available output terminals. 
This choice of current direction appears to the writer to be the most con- 
venient to use when the four-pole is energized at the input terminals 1 only. 

Consider, now, a grounded triode operated at such a low frequency that 
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all displacement or capacity currents can be disregarded, and let it first be 
supposed that the grid is negatively polarized with respect to the cathode so 
that grid current is absent. This represents the most primitive form of 
operation, governed by a law which has been termed ''The equivalent-plate- 
circuit Theorem."1 With reference to the assumed current direction this 
theorem may be expressed by saying that the application of the voltage Vi to 
the grid is equivalent, so far as phenomena in the plate circuit are concerned, 
to the application of the voltage —/jI 'i in series with a resistance rp , where 
/j is the amplification factor and rp the internal plate resistance. The 

© 

Fig. 1—Current-voltage relations for a general four-pole. 
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Fig. 2—Equivalent circuit of a negative grid triode at low frequencies. 

equivalent circuit for this mode of operation is thus as shown in Fig. 2, where 
the input terminals 1 are represented by the grid G and the cathode C and 
the output terminals by the anode P and the cathode C. In terms of analy- 
sis the circuit is described by the two equations 

/, = 0 

■ p 1 1 = Iorp + 1 2 
(1) 

Equations (1) and their associated circuit Fig. 2 are expressions of the 
fact that in any closed loop the voltages must be in equilibrium. 

By a slight rearrangement of (1) a network representation based on current 
1 Chaffee, "Theory of Thermionic Vacuum Tubes," page 192. 
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equilibrium may be obtained. For this purpose (1) is written as 

/i = 0 

h = - - V1 --V2 

(2) 

The corresponding network representation is as shown in Fig. 3, where the 
energizing source in the plate circuit consists of a constant current generator 

M 
of strength — — Fi impressed across the output terminals 2. 
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Fig. 3—Equivalent circuit of a negative grid triode at low frequencies. 
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Fig. 4—Equivalent circuit of a positive grid triode at low frequencies. 

Let us now consider a further step and assume that the grid is positive so 
that grid current is also flowing. In regard to the grid circuit there is a 
theorem called the "Equivalent-grid-circuit Theorem" which is exactly 
similar to the corresponding plate circuit theorem. The theorem says that 
the a-c grid current can be calculated by assuming that an e.m.f. /x„ Fa 
acts in series with a resistance r„ where is the reflex factor and ra the 
internal grid resistance. In symbols and by using the notation of Fig. 1 
this is expressed by: 

Fx = mo V2 + h r0 (3) 

By combining the two theorems the equivalent circuit of Fig. 4 results. 
Again by writing (3) as 

h = - Fx — — Fa rn rn 
(4) 

a corresponding network based upon current equilibrium may be found. 
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It is well to note that this general low-frequency case is governed by the 
two simultaneous equations 

/i = - Ti - -0 l'2 r„ r„ 

h = -- Vi - - v2 rP rT 

which are of the general form 

I\ = jSn 1 i + ^12 1 2 

II = /321 I 1 + 1 2 

where 

(5) 

(6) 

— 
Tn 

fi2\ — —  fi22 
r,, 

Fo 
rn 

(7) 

The network of Fig. 4 is thus a possible form of circuit interpretation of 
(5) or (6). It may also be observed that (6) represents at least formally 
the most general formulation of the linear active four-pole so that even at 
very low frequencies the general four-pole point of view might be useful. 

Several observations may now be made. In the first place it should be 
noted that these networks are not based on any study of the internal action 
of the tube, but rather on the purely formal mathematical process of dif- 
ferentiating the two functional relations which express the broad fact that 
plate and grid currents are some unspecified linear continuous functions of 
the grid and plate potentials in the neighborhood of the operating point. 

In the second place it may be observed that the network of Fig. 4 repre- 
sents in a sense two separate networks interacting with each other by means 
of voltage or current generators. This method of equivalent circuit repre- 
sentation is the result of separate interpretation of the equivalent plate and 
grid circuit theorems. As a corollary it follows that such a four-pole equiva- 
lence involves at least two generators within the network in order to take the 
effect of interaction into account. 

We may say that the networks discussed were satisfactory so long as the 
frequency was low enough to allow displacement currents to be disregarded. 
With the operation of circuits at higher frequencies (up to the order of 106 cps, 
say) it became necessary to take the internal tube capacitances into account. 
This was done by the superposition of a capacity network as shown in Fig. 
5. It is interesting as well as instructive to formulate this network transi- 
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tion in analytical terms. The transition rests upon the physical fact that the 
total current entering or leaving an electrode is the sum of conduction and 

-r-Cpc IV2 Jvi Cgc 
^qv2 ^ v, (ru 

Co 

I-'ig. 5—Equivalent circuit of a positive grid triode at moderately low frequencies. 
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gp 
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Fig. 6—Parasitic triode network. 

(8) 

displacement current. The network for the displacement currents is passive 
and is shown on Fig. 6. For this network: 

l[ = + PnVz 

Ii = —PwV i + P22V2 

where l'i is input and It the output displacement current. The coefficients 
appearing have the values 

/3U = iu(Cgc + Cgp) 

/3i2 = —iuCgp 

022 = io}(Cpc "h Cgp) 

The potentials appearing in (8) are the same as those which occur in the 
conduction current equations (5), this being the physical condition which 
also must be satisfied. By adding (5) and (8) and by letting /1 and 12 
mean total currents we get: 

(9) 

/l = + MCgc + Cgp)J I'l — + ico Cgpj T2 

h = |^— ^T" — "I" Cgp)~^ V2 

(10) 
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These equations are again of the form 

fl — ^11 I 1 + /3l2 V2 

h = 021 Vi -(- 022 V 2 
(H) 

where now 

011 = — + luiCgc + Cgp) 
r0 

(12) 

021 — — — UcCl 
rv p 

022 = — I ^(.Cpc + Cgp) 
p 

The network interpretation of Fig. 5 is consistent with (10) and so does, 
in fact, constitute a possible network representation. 

From (12) the relation 

is obtained. The thing to emphasize is that this sum is independent of the 
passive feedback admittance and that it is a constant independent of fre- 
quency within the range considered. It is, moreover, a quantity which 
only is correlated with the conduction currents in the tube. For lack of a 
better name the sum (13) will be referred to as "the effective transconduct- 
ance." It will play an important role in the later discussion. 

As still higher frequencies (above 10' cps) were employed it necame neces- 
sary to take into account lead effects, usually in the form of self and mutual 
inductances, and by incorporating them in the network of Fig. 5 a slightly 
more involved circuit was obtained. This more general network is still 
determined by equations of the form (11), for adding the new network ele- 
ments merely means that linear transformations are applied to the potentials 
Vi and F2 with the result that a new set of /3-coe;bcients is obtained, the 
new set being merely of somewhat more complicated form than the first. 

With the utilization of frequencies so high that the electron transit times 
became comparable with the period of the applied signal, further complica- 
tions arose and the equivalent network idea was put to a severe test. In 

(13) 



600 BELL SYSTEM TECHNICAL JOURNAL 

this development we may distinguish between two methods of approach. 
In one the attempt was made to modify the low-frequency network of Fig. 
5 to include transit time effects to a first order of approximation.2 The 
second approach differed in that attention was directed only toward the 
electron stream itself, while the circuit elements connecting the stream with 
the physically available terminals were grouped together with the external 
circuit elements.3 The latter approach represented a particularly useful 
one from a physical point of view and it also extended the use of basic circuit 
elements to include the general diode impedance as a new circuit element 
complete in itself. However, even in this latest approach the four-pole 
point of view was not adopted, with consequent loss of generality and unity 
in viewpoint. Moreover, the fact that only the electron stream itself was 
considered caused some confusion. 

With this brief review of the development of equivalent circuit representa- 
tion of vacuum tube amplifiers in mind we turn now to the main body of the 
paper in which a more general treatment of the problem is considered. It 
will be shown, in the coming sections, how it is possible to lump all the 
factors involved in vacuum tube amplifiers, i.e., physical circuit parameter 
and internal electronic effects involving the electron transit time, into a 
single coordinated picture with an equivalent circuit representation of the 
overall effect. 

Equivalent Circuit Representation oe Active Linear Four-Pole 
Pole Equations 

Whenever the response of a general transducer is related in a linear manner 
to the stimulus, the transducer behavior is described by two linear relations. 
Although we are primarily concerned with electromagnetic transducers the 
concepts to be used are of broader utility and may, for example, also be 
applied to mechanical and electromechanical transducers. 

There are various ways in which the behavior of the four-pole may be 
expressed analytically. The form expressing current equilibrium has al- 
ready been given and it may well serve as a starting point for the following 
discussion: 

Thus we have: 

2 F. B. Llewellyn, "Electron-Inertia Effects," Cambridge University Press, 1941. 3 F. B. Llewellyn and L. C. Peterson, Interpretation of Ultra-High Frequency Tube 
Performance in Terms of Equivalent Networks, Proceedings of the National Electronics 
Conference, 1944. 

Ii = /3iiFi + fiuVi 

li — ^21F i "T @22 F2 
(14) 
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as expressions for current equilibrium at any frequency. The four param- 
eters /3 which appear have simple physical meanings, and it is seen that 

/3ii is the input admittance with output shorted 

—Pn is the output admittance with input shorted 

—/?i2 is the feedback admittance with input shorted 

fti is the transfer admittance with output shorted. 

Before proceeding to the network representations of (14) it seems well 
to state briefly some of the reasons which almost force one to adopt the four- 
pole point of view when dealing with vacuum tubes in the higher frequency 
range. 

There are the pedagogical reasons that classical methods long employed 
for passive networks are merely extended into the realm of active networks, 
thus providing unity in viewpoints. 

The basic analysis involving the four-pole parameters for a particular 
transducer needs to be performed only once and, once obtained, all problems 
involving terminal impedances may, in any particular case, be solved in a 
routine manner. 

There are also further practical reasons. We saw above that with in- 
crease in frequency the classical equivalent network had to be modified to a 
considerable extent in order to include the parasitic elements. This poses 
a serious problem for the tube designer, whose task it is to estimate the tube 
performance between known terminations. Such a task based upon the 
modified classical circuit becomes very difficult and cumbersome. More- 
over, it is also difficult to segregate and measure the parasitic elements. 
Hence it appears that one could gain much if design parameters could be 
developed capable of reflecting parasitic and transit time effects. Finally, 
it is desirable to develop equivalent circuits with a minimum number of 
parameters bearing simple relationships to quantities which can be measured 
directly. 

These general desires arising from the practical needs of the tube designer 
can be satisfied if tube behavior is specified by means of four-pole parameters. 

All in all the four-pole point of view can be made to satisfy the logical 
needs of integrated concepts as well as the practical needs of simplicity in 
the specification of tube performance. 

After this brief presentation of the argument for the four-pole point of 
view, the network representation of (14) will now be considered. 

Stated in broadest terms: we are seeking a network representation by 
considering the two equations as a single unit and not by the trivial considera 
tion of each equation by itself. 
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We need, to begin with, the well-known network representation of a 
passive four-pole. Equation (14) has, then, the form 

h = PuVi + PisVo ^ 

Ii = —fiviVi 4" @22 V2 j 

and one equivalent circuit representation is that given by the 11 network 
having the element values shown in Fig. 7. If so desired the IT network 
can of course also be transferred into an equivalent T network. 

~/3|2 
o o 

Ai+Aa -(/322-y3(2) 

Fig. 7—Equivalent circuit of a passive four-pole. 

-/3,Z (/3|2+/32l)Vt| 

Fig. 8—Equivalent circuit of an active four-pole; current impressed at the output. 

Now write (14) as 

Ii = @nVi + @i2V2 j 

h — —@viVi + /322E2 + {@12 + @2\)Vi\ 
(16) 

Whence it is seen by a comparison with (15) that the network representation 
of the active four-pole differs from the passive one merely by the presence 
of the impressed current (@12 r @21) Vi. A possible network representation 
of the general active four-pole is thus as shown on Fig. 8. 

An immediate application may be illuminating. Consider, for example, 
the triode operated with positive grid, with interelectrode capacitances 
taken into account. The four-pole equations are given by (11) and (12) 
and the classical network is that of Fig. 5. From (12) and Fig. 8 we get the 
network of Fig. 9. It may be observed that, while in Fig. 5 the source and 
source-free constituents are intermingled, this is not the case in Fig. 9 
where, on the contrary, a clear demarcation is present between such con- 
stituents. 
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In regard to the general network of Fig. 8 it may be noted that the 
network is composed of two parts. One part obeys the reciprocal law and is 
represented by a IT (or T) network and is consequently specified by three 
parameters. The other part is merely an impressed current controlled by 
the input potential Fx. From the fact that the IT (or T) network obeys the 

Jv, CgC_p <r^(i-^g) ^ 1 Mq 
^ Cp Cg 

Fig. 9—Equivalent circuit of a positive grid triodc at moderately low frequencies; 
current impressed at the output. 

j(y3l2+/321)" 

V, (Au-fizi) -(/322+/32l) 

Fig. 10—Equivalent circuit of an active four-pole; current impressed at the input. 

'-r I —uid  

Jv, (yh -p a_Li|j_cpc Jv2 

Fig. 11—Equivalent circuit of a positive grid triode at moderately low frequencies; 
current impressed at the input. 

reciprocal law, the conclusion does not follow that it in general behaves as a 
passive network. The element values may, for example, be negative, and 
Bode's integral relations may not necessarily be true for this network. 

It should further be noted that the network representation holds for all 
frequencies. The effect of frequency will be that the admittances in the 
network change and in changing they will, for example, reflect effects due to 
parasitics and electron transit time. 



604 BELL SYSTEM TECHNICAL JOURNAL 

We next observe that the network of Fig. 8 is not unique; in other words 
it is not the only possible network. To see this it need merely be observed 
that from the group of four independent /3 parameters in (15) there are 
several ways in which a subgroup may be selected containing only three of 
them. For example the "passive part" of the network in Fig. 8 was con- 
structed from the three parameters /Sn, £12 and $>2 • But this is evidently not 
the only choice. Moreover, the impressed force was taken to be voltage- 
controlled but this again does not represent the only possibility. 

In general it follows that the "passive part" of the network will reflect 
at least three properties of the complete network. In Fig. 8, for example, 
the "passive part" reproduces faithfully the two short-circuit driving-point 
admittances and the feedback admittance of the complete network. 

Finally it is well to observe that only one driving force is needed in the 
general network formulation. 

With this background of the general ideas involved let us now further 
explore some of the possibilities suggested as to other "passive network" 
constituents. Let us, for example, use /Su, fe and ftx for the "passive part". 
We then write (14) as 

and from (17) the network representation of Fig. 10 follows. In addition 
this network differs from that of Fig. 8, in that the impressed current appears 
on the input side and that it is controlled by the output rather than by the 
input voltage. As an illustration consider again the triode operated with 
positive grid. The equivalent network is now as shown in Fig. 11. 

Now let it be supposed that the impressed force be current rather than 
voltage-controlled. We then first transform (14) into 

h = /3iiFi — PnVz + (/3i2 + ftx)^ 

h = feFi + P-aVi 

(18) 

and then rewrite (18) as 

(19) 
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It can be shown that the network representation of Fig. 12 is consistent with 
(19). This network representation suffers from two obvious disadvantages. 
One is that the "passive network" is determined by only one short-circuit 
driving-point admittance of the complete network. The other short-circuit 
driving-point admittance of the "passive part" appears to be unrelated to 
any simple admittance which may be found from measurements at the 
output terminals of the complete network. The second disadvantage is 
that the coefficient of the current in the impressed force is of a complicated 
nature, since a driving-point admittance enters. Moreover, a closer 
investigation shows that in this network representation the "passive part" 
besides preserving the driving-point admittance and the feedback ad- 
mittance/3i2, also preserves the quantity — jd^Anof the complete 
network. 

-A Aa +/3z\ 
At 

Ai+Aa -(/^22 Aa 
Aa •''Aai +Ai 

Ai 

Fig. 12—Equivalent circuit of an active four-pole; current impressed at the output. 

By proceeding from (19) in a way similar to that used in (17) the network 
in Fig. 12 transforms into another in which the impressed force appears on 
the input side. Many other networks can also be found. 

The networks discussed were based on (14), which expressed the fact of 
current equilibrium and leads rather naturally to IT networks together with 
an impressed current source. On the other hand, starting with the four- 
pole equations which express voltage equilibrium, one encounters T networks 
together with impressed electromotive forces. These networks must now 
also be considered. In regard to the details involved in their derivation we 
may be very brief since the methods are similar to those already employed. 

The four-pole equations expressing voltage equilibrium may be written 
as 

Vi — Znli Zi^j 

V-2 = Zoyh + Z22/o 
(20) 

where current and voltage directions are assumed to be taken in accordance 
with the conventions of Fig. 1. 
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The four parameters Z are of simple physical significance and it follows 
that: 

Zn is the input impedance with output open 

-Z-n is the output impedance with input open 

— Zio is the feedback impedance with input open 

Z21 is the transfer impedance with output open. 

The relations between the /3's and the Z's are given by the expressions: 

where 

We have also 

021 — ~ 
Z21 

022 = ^ Az 

Az = 
Zn 

Z21 

Z12 

Z22 

(21) 

(22) 

where 

Az — 
Ad 

Aff = 
011 012 

021 022 

(23) 

(24) 

Applying now to (20) the transformations which led to the networks of 
Figs. 9, 10 and 12, we get the networks of Figs. 13, 14 and 15. 

The "passive part" of the network in Fig. 13 reproduces the two open 
circuit impedances Zn and Z22 as well as the feedback impedance Z12 of the 
complete network. 

The network in Fig. 14 differs from that of Fig. 13 because of the use of the 
transfer impedance Z21 in the "passive part" with the result that the im- 
pressed current appears on the input side. 
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The "passive part" in Fig. 15, finally, preserves the open-circuit imped- 
ance Zn, the feedback impedance Z12 and the determinant Ax of the com- 
plete network. This network shows incidentally a close resemblance to one 
already published.3 

(Z(2 + Zsi) I, 

Z.. + Z, 

-Zt2 

-(z22-zl2) 

Fig. 13—Equivalent circuit of an active four-pole; voltage impressed in series with the 
output. 

-(z,2+z2l) I2 

Zn-Zj 

V. 

-(Z22 + Z2,) 

Fig. 14—Equivalent circuit of an active four-pole; voltage impressed in series with the 
[nput. 

 ^ 
Zn+Z, 

-Z, 
- Z22-Z, Z2| + Z,2 + Z(, 

v2 

Fig. 15—Equivalent circuit of an active four-pole; voltage impressed in series with the 
output. 

It is well to emphasize that, while all the complete networks are equiva- 
lent, this is not true for the "passive parts." In fact from their derivation 
it follows that none are equivalent. Specific circumstances may make it 
desirable to perform transformations on the passive parts. For example, 
it might be more convenient to work with a II than with a T network. Such 
transformations are of course perfectly legitimate and raise the question of 
choice of equivalent networks. A few remarks on this subject may be 

3 hoc. cit. 
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appropriate, since the choice is not quite a matter of indifference. Broadly- 
speaking, the choice will depend upon the relative advantages of nodal and 
mesh analysis and in most practical situations the former has proved 
to be the more convenient of the two. One cannot, however, be too dog- 
matic in this regard. Consider the networks of Figs. 8 and 13. Suppose, 
for example, that parasitic elements appearing as a passive IT network had 
to be superimposed. It is then more conventient to use Fig. 8, not only on 
account of the ease with which this may be done, but also on account of 
the fact that the effective transadmittance /3i2 + foi is invariant with respect 
to such a superposition. If, on the other hand, parasitic elements appear 
as series elements (lead inductances for example) the network of Fig. 13 
might be more convenient since the effective transimpedance Zv. + Zn 
now remains invariant. 

It is also desirable to choose an equivalent network whose elements are 
capable of being determined by simple measurements; from this considera- 
tion the network on Fig. 8 is of distinct advantage. 

Application to Triodes 

The preceding section was primarily directed towards the development 
of possible forms of network representations of the general four-pole equa- 
tions. In this section one of these forms, namely that given in Fig. 8, will 
be used to represent the three modes of triode operation. Depending upon 
which electrode is at a-c ground potential, we may distinguish between the 
following methods of operation: 

1. Grounded cathode operation. 

2. Grounded grid operation. 

3. Grounded plate operation. 

The schematic diagrams, together with assumed voltage and current 
directions for these modes, are shown on Figs. 16, 17 and 18 respectively. 

With a given set of available terminals the first step in obtaining the 
networks consists in calculating the four-pole parameters with respect to 
these terminals. It will be assumed that the coupling circuits have been 
designed with such efficiency that lead effects can be disregarded, so that the 
available terminals actually coincide with anode, grid and cathode. This 
set of available terminals brings us as close to the electron stream as it is 
physically possible to attain and it represents the ideal towards which design 
tends. 

It is beyond the scope of this paper to consider the details involved in the 
calculations of the four-pole parameters. The basic tools needed are the 
result of a study of the dynamics of the electron stream, which started from 
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fundamentals,4 and some familiarity with this work is assumed on the part 
of the reader. Concerning these tools two reservations need be made. In 
the first place the tools apply to planar rather than to cylindrical structures. 
Since, however, there is a decided tendency toward planar structures, 
especially in the high-frequency field, because of a desire for uniform electron 
streams, this limitation does not seem serious. In the second place the tools 
are also subject to the limitation of a single-valued velocity electron stream. 

is -OP 

Go- 

vry 

Jv2 

-oC Co 

Fig. 16—Vurrent-voltage relations for the grounded cathode triode. 
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iV2 

■og 
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Fig. 17—Current-voltage relations for the grounded grid triode. 
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Fig. 18—Current-voltage relations for the grounded plate triode. 

This, again, is not too serious, since one of the aims in present high-frequency 
tube design is to produce as uniform a stream as possible. Nevertheless, 
the effects produced by multiple velocities are important to know. Studies 
along such lines have been made by Mr. Frank Gray of these Laboratories. 

The operating conditions of the triode are assumed to be quite general. 
There are, for example, no restrictions placed upon frequency and space 
charge and the grid may, moreover, have either positive or negative d-c 
potential with respect to the cathode. 

4 F. B. Llewellyn and L. C. Peterson, "Vacuum Tube Networks," Proceedings of the 
I.R.E., March, 1944. 
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With current and voltage directions as in Figs. 16, 17 and 18, the follow- 
ing Tables I, II and III list the four-pole parameters for the three modes of 
triode operation in both and Z forms. 

Table I 
Four-Pole Parameters for Grounded Cathode Triode 

3Ti + 321 + 322 
0U = 

£21 = 

D 

321 "H 322 
D 

011 012 

021 022 

„ _ y™ 
D 

022 = — 

311 322 
D 

. 3ii 322 "I  
 M 

D 

Z3 = 1 + 311 + 321 + 322 
M322 

1 
— + 
311 

1 
^322 

Z12 = 
1 

311 

- + 
311 

321 
Z22 fi 

311 322 l_3il 

Z11 Zl2 1 D 

Z21 Z22 yu 322 

— + - + —1 
322 311 322J 

Az = 

/i = amplication factor. 

The y admittance coefficients appearing in the above tables were fully 
explained and discussed in the paper on Vacuum Tube Networks, to which 
reference has already been made. Suffice it here to say that yu is the 
admittance of the diode coinciding with cathode and equivalent grid plane 
and y22 the admittance of the diode coinciding with the equivalent grid plane 
and the anode and finally y^i the transadmittance between these fictitious 
diodes. The admittance yu depends upon the d-c conditions between cath- 
ode and grid and upon the transit angle for this region alone. The diode 
admittance y22 depends in a similar manner upon the d-c space charge 
conditions in the grid-anode region as well as upon the transit angle for this 
region alone. For the small degree of space charge which usually exists 
between grid and plate of most triodes, y-n can be represented by a simple 
capacitance. The transadmittance y2i can be resolved into two factors, the 
first of which depends only upon the transit angle between cathode and 
grid, and the second only upon the transit angle between grid and anode. 
In the paper on vacuum tube networks all these admittances were plotted 



Table II 
Four-Pole Parameters for Grounded Grid Triode 
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Table 111 
Four-Pole Parameters for Grounded Plate Triode 
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graphically, showing both phase and magnitude, and this paper is referred 
to for details.4 

Tables I, II and III, in conjunction with Figs. 8, 13 and 15, allow us to 
derive the equivalent networks of Figs. 19, 20 and 21. 

We must now undertake a discussion of the results given in the tables as 
well as of the networks which were derived from them. 

y^v.i 
D '1 

Iv, yn+yz. 
yaa 
o Mn 

MO h 

(a) 
Wgl I 

yiiy22 ' 

^922 i 
yn 

1 . 921 
922 9.1922 

(b) 

KV, 

V, ^922 V I 921 
922 ^922 y22 + Mlt 

v2 

(C) K = 921 

Fig. 19 (a, b, c)—Three forms of equivalent circuits of the grounded cathode triodc 
valid at all frequencies. 

Initially, it is well to emphasize again that the four-pole parameters and 
the corresponding networks are different but equivalent ways through which 
the triode signal behavior becomes completely specified for all conditions of 
space charge and for all frequencies. 

Secondly, there are certain general relations which should be noted. We 
observe, first, that the determinants ^ and Az are invariants for the dif- 
ferent modes of triode operation, and with exception of phase reversals this 

4Loc. cit. 
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is also the case for the effective transadmittance /3i2 + fai as well as for the 
effective transimpedance Zu + Z21 . On the other hand, the quantity 

Z21     , which appears in the network of Fig. 15 and which represents 
Zn 

the driving force per unit input voltage, is invariant (except for reversal in 
phase) only for grounded grid and grounded cathode operation. Several 

Mil 
D 

Mii 
MO 

D v2 

(a) 
Wat 

1 
yn 1 

^22 

ynyaa 

I 
yaa 

,V2 

V, 

(b) 

KV. 

y h t . 
^Uaa 

i(3t 
yai 

Waa ^y2aLJ22 + Mli M 

(c) k = -Wai 
yaa+j^i 

Va 

Fig. 20 (a, b, c)—Three forms of equivalent circuits of the grounded grid triode valid 
at all frequencies. 

admittance and impedance relations may also be pointed out. For example, 
the input short-circuit driving-point admittance /3u is equal for grounded 
cathode and grounded plate operation and the same is true for the output 
short-circuit driving-point admittances for grounded cathode and 
grounded grid operation. Moreover, it is also seen that the input short- 
circuit driving-point admittance /3ii for grounded grid operation is equal to 
the output driving-point admittance (in for grounded plate operation. A 
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similar set of reciprocal relations between the open-circuit driving-point 
impedances is also present. 

In regard to the networks it may first be observed that, since they were 
derived from parameters upon which no restrictions had been placed on 
either frequency or space charge, they are also generally valid. In passive 
circuit theory one is accustomed to the use of only the three basic elements 

D 

y.t+ya. 
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i yz. 
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M yas yit Uaa 

1 +. ^2' 
yaa yl(y22 
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y.. yaa KV. 
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yaa y.i yaa 

I 
y., 

I+ ' <1 _y| 
tI yaa y.. yaz 

(C) K = - ya. 

Fig. 21 (a, b, c)—Three forms of equivalent circuits of the grounded plate triode valid 
at all frequencies. 

of resistance, inductance and capacitance. For the networks now under 
consideration other quantities also need to be included. However, as 
normally operated there is usually complete space-charge in the cathode-grid 
region and a very small amount of space charge in the grid-plate region. 
Under such circumstances the admittance yw is a simple capacitance and the 
amplification factor is a real number. The admittances yu and yn , on 
the other hand, do not allow accepted circuit interpretation to be made, 
except in the range of moderately low frequencies when electron transit 
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time is taken into account only to a first order of approximation. It is 
believed that, in general, these admittances should be considered complete 
by themselves as new admittance elements, and, as already remarked, their 
values in magnitude and phase may be found in the paper on vacuum tube 
networks to which repeated reference has been made. 

As a further property of the networks, consider the expressions for the 
/3's in Tables I, II and III. It is observed that each /3,-y of a set of /3's con- 
tains a common term, suggesting that the networks might be broken up into 
at least two elementary constituents. The same observation applies to 
each of the three sets of Z's. In Table I, for example, it is seen that this 
constant term is represented by y-n/D. The network of Fig. 19a can thus 
be thought of as arising from the superposition of two networks, one of which 
is determined by the parameters 

o' _ + >'21 ft. g— 

r' - y21 
hi - 2 

012 — 0 

0k = P21k nD 

(25) 

and the other by the parameters 

a" _ >22 ft. - -g 

o" _ >22 02! " "p 

012 

022 

>2_? 
' D 

>22 
D 

(26) 

The admittance coefficients given by (25) correspond to the perfectly uni- 
lateral active network shown in Fig. 22a, while the admittance coefficients 
in (26) correspond to the "passive" network in Fig. 22b. The two element- 
ary constituents thus take the general forms of these networks. It should 
be noticed that these two network constituents are unrelated to the fact 
that the total current entering the complete network is the sum of conduction 
and displacement current. 

Corresponding to the Z's other elementary constituents are obtained, with 
general forms as shown on Figs. 23a and 23b. 

These elementary constituents are merely reflections of certain mathe- 
matical identities. For example, the networks in Fig. 22 depend upon the 
matrix identity 

011012 011 + 012 0 — 012012 
= + 

021022 021 + 012 022 — 012 — 012012 
(27) 
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while those in Fig. 23 depend upon a corresponding identity. The identity 
(27) expresses the fact that the general "/3-network" can be considered as 
arising from the parallel connections of the two networks in Fig. 24. 

v, 

D I 

Wn-'-ya! yit 
D M D Jv2 I V, 

y^ 
D 

(a) (t>) 

Fig. 22 (a, b)—Elementary constituents of Fig. 19a. 

. + Wzi 
ysz yu yzz 

——-^-o 
^ i, 

yn y22 ' i 
yu 

(a) (b) 
Fig. 23 (a, b)—Elementary constituents of Fig. 19b. 

V, 

(Az +/32!) vi | 

(Al+/3|2) -(/322~>3I2) 

-/3(2 

Jv2 Jv, Jv2 

(a) (b) 

Fig. 24 (a, b)—Elementary constituents of Fig. 8. 

There is at present a tendency towards grid designs of very fine mesh. 
Such a grid design results in a very large value of the amplification factor 
and, for many purposes, sufficient accuracy may be obtained by disregarding 

terms containing - as a factor. Under these conditions the network for 

grounded cathode operation reduces to an L-network, that for grounded 
grid operation to a unilateral network transmitting in the direction from grid 
to plate only, while the cathode follower network remains essentially un- 
changed. 



Table IV 
Four-Pole Parameters for Grounded Cathode Triode in the Range of 

Moderately Low Frequencies 
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Table V 
Four-Pole Parameters for Grounded Grid Triode in the Range of 

Moderately Low Frequencies 
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In the foregoing, the behavior of an active four-pole has been described 
either in terms of four-pole parameters or in terms of elements of an equiva- 
lent circuit. The particular four-pole parameters, which are of customary- 
use in communication engineering, are the so-called image parameters, but 
they have usually been used only in connection with passive four-poles. 
They may, however, also be used in the more general vacuum tube four-pole 
now under discussion, but whether their employment would be of practical 

Table VI 
Four-Pole Parameters for Grounded Plate Triode in the Range of 

Moderately Low Frequencies 
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value is a matter which engineering experience will decide. In any case 
their use would be limited to vacuum tubes in which appreciable interaction 
between input and output terminals is present. From a practical standpoint 
this means that their usefulness would be mainly found in connection with 
triodes. 

Triode Networks at Moderately Low Frequencies 

The networks discussed in the preceding section were of general validity 
in respect to both operating conditions and frequency and it was mentioned 
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that the efforts of trying to interpret the "passive" parts of the networks 
in the form of lumped passive circuit elements had, in general, met with not 
too much success. In this section attention will be given to the range of 
moderately low frequencies where usual circuit interpretation is possible. 
The operating conditions are assumed to be the usual ones with complete 
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1 

1 / 4 .V2 \ 
1 + -(1 + -.-/) M \ 3.C! / 

Fig. 25—Equivalent circuit of grounded cathode triode at moderatel}' high frequencies. 

space charge in the cathode-grid region, and negligible space charge in the 
grid-plate region. Also it will be assumed that the grid is at negative d-c 
potential with respect to the cathode. 

The first step is to expand the /3 coefficients in series with transit angles 
retained only to first or possibly to second orders. As the detailed computa- 
tions are lengthy only the final result will be given. These are presented in 
Tables IV, V and VI. 
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Fig. 26—Equivalent circuit of grounded grid triode at moderately high frequencies. 

In these tables the symbols have the following meanings: 
go = static conductance of the diode formed by the cathode and equivalent 

grid-plane, 
yu = low frequency amplification factor. 
#1 = cathode-grid distance in cm. 
X2 = grid-anode distance in cm. 
Ci = cold capacitance between cathode and equivalent grid plane 
C2 = cold capacitance between anode and equivalent grid plane. 
01 = electron transit angle between cathode and equivalent grid plane. 

It is most simply calculated from 

9, = 2^ 
go 

02 = electron transit angle between anode and equivalent grid plane. 
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Fig. 27—Equivalent circuit of grounded plate triode at moderately high frequencies. 
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It may be calculated from 

UjlXo 
V/2ri{\/VDl + -\/VDo 

where rj = 107 — = 1.76 X 1015 

in 
Vu\= equivalent d-c grid potential 
VD2 = anode d-c potential 

F = 22 02 2VV^ + 5 /02Y VF^+ SVV^ 
9 01 VvZ + 3 \dj VFm + VvD2 

f = , 1 02 V^Frn + 2VF^ 

 2 0X VFm + VFxxo 

^ = VFDi + 2\/Vm 

Vf7i + Vv^ 
With the aid of these tables and Fig. 8 the equivalent circuits on Figs. 25, 

26 and 27 are obtained. The networks are all of the resistance-capacity 
type. It may be noted that, in some of the branches, negative conductance 
or negative capacitance appears. However, as seen from the external tube 
terminals they are swamped by corresponding positive elements. 

The viewpoints presented in this paper have been used by the writer over 
a number of years. They have been given experimental application by 
Mr. J. A. Morton, who is principally responsible for their introduction and 
use in the studies in these Laboratories of electron tubes in the microwave 
regions. 

With this, our investigation comes to a close. Much has been omitted, 
particularly in the field of applications, but it is nevertheless hoped the funda- 
mental approach, as well as the networks given, may prove to be useful in 
practical applications. The questions of noise and of optimum noise figure 
design have also been left out of consideration. Mr. J. A. Morton and the 
writer plan to discuss these problems in a forthcoming paper. 

The writer is pleased to acknowledge his indebtedness to Messrs. R. K. 
Potter, J. A. Morton, and R. M. Ryder, who have encouraged this work 
and urged its publication; and to Mr. W. E. Kirkpatrick for constructively 
critical scrutiny of the original technical memorandum. 



A Mathematical Theory of Communication 

By C. E. SHANNON 

{Concluded from July 19-IS issue) 

PART III: MATHEMATICAL PRELIMINARIES 

In this final installment of the paper we consider the case where the 
signals or the messages or botli are continuously variable, in contrast with 
the discrete nature assumed until now. To a considerable extent the con- 
tinuous case can be obtained through a limiting process from the discrete 
case by dividing the continuum of messages and signals into a large but finite 
number of small regions and calculating the various parameters involved on 
a discrete basis. As the size of the regions is decreased these parameters in 
general approach as limits the proper values for the continuous case. There 
are, however, a few new effects that appear and also a general change of 
emphasis in the direction of specialization of the general results to particu- 
lar cases. 

We will not attempt, in the continuous case, to obtain our results with 
the greatest generality, or with the extreme rigor of pure mathematics, since 
this would involve a great deal of abstract measure theory and would ob- 
scure the main thread of the analysis. A preliminary study, however, indi- 
cates that the theory can be formulated in a completely axiomatic and 
rigorous manner which includes both the continuous and discrete cases and 
many others. The occasional liberties taken with limiting processes in the 
present analysis can be justified in all cases of practical interest. 

18. Sets and Ensembles of Functions 

We shall have to deal in the continuous case with sets of functions and 
ensembles of functions. A set of functions, as the name implies, is merely a 
class or collection of functions, generally of one variable, time. It can be 
specified by giving an explicit representation of the various functions in the 
set, or implicitly by giving a property which functions in the set possess and 
others do not. Some examples are: 
1. The set of functions: 

fe(l) = sin (/ + 0). 

Each particular value of 0 determines a particular function in the set. 
62.1 
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2. The set of all functions of time containing no frequencies over W cycles 
per second. 

3. The set of all functions limited in band to W and in amplitude to A. 
4. The set of all English speech signals as functions of time. 

An ensemble of functions is a set of functions together with a probability 
measure whereby we may determine the probability of a function in the 
set having certain properties.1 For example with the set, 

/e(/) = sin {1 + Q), 

we may give a probability distribution for 6, P{6). The set then becomes 
an ensemble. 

Some further examples of ensembles of functions are: 
1. A finite set of functions Jk{t) {k = 1, 2, • ■ • , «) with the probability of 

fk being pk. 
2. A finite dimensional family of functions 

/(ax, 0:2, 

with a probability distribution for the parameters a, : 

p{ai 

For example we could consider the ensemble defined by 

11 
f(ai , • ■ • ,an ,61 , • ,6n;i) = £ an sin n(o)l + 0J n -xl 

with the amplitudes di distributed normally and independently, and the 
phrases 0,- distributed uniformly (from 0 to 2ir) and independently. 

3. The ensemble 

„ .\ sin - n) 
f(a'' ^ ir{2Wt - n) 

with the Oi normal and independent all with the same standard deviation 
VA. This is a representation of "white" noise, band-limited to the band 
from 0 to W cycles per second and with average power A.2 

1 In mathematical terminology the functions belong to a measure space whose total 
measure is unity. 2 This representation can be used as a definition of band limited white noise. It has 
certain advantages in that it involves fewer limiting operations than do definitions that 
have been used in the past. The name "white noise," already firmly intrenched in the 
literature, is perhaps somewhat unfortunate. In optics white light means either any 
continuous spectrum as contrasted with a point spectrum, or a spectrum which is flat with 
wavelength (which is not the same as a spectrum flat with frequency). 
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4. Let points be distributed on the I axis according to a Poisson distribu- 
tion. At each selected point the function/(/) is placed and the different 
functions added, giving the ensemble 

£ /(/ + h) 
k=—oo 

where the Ik are the points of the Poisson distribution. This ensemble 
can be considered as a type of impulse or shot noise where all the impulses 
are identical. 

5. The set of English speech functions with the probability measure given 
by the frequency of occurrence in ordinary use. 

An ensemble of functions /„(/) is slalionary if the same ensemble results 
when all functions are shifted any fixed amount in time. The ensemble 

/e(/) = sin (/ + Q) 

is stationary if 6 distributed uniformly from 0 to 2tv. If we shift each func- 
tion by h we obtain 

+ M = sin (/ + h + 0) 

= sin (/ + v) 

with ip distributed uniformly from 0 to Itt. Each function has changed 
but the ensemble as a whole is invariant under the translation. The other 
examples given above are also stationary. 

An ensemble is ergodic if it is stationary, and there is no subset of the func- 
tions in the set with a probability different from 0 and 1 which is stationary. 
The ensemble 

sin (/ + 0) 

is ergodic. No subset of these functions of probability 9^0, 1 is transformed 
into itself under all time translations. On the other hand the ensemble 

a sin (/ + 0) 

with a distributed normally and 0 uniform is stationary but not ergodic. 
The subset of these functions with a between 0 and 1 for example is 
stationary. 

Of the examples given, 3 and 4 are ergodic, and 5 may perhaps be con- 
sidered so. If an ensemble is ergodic we may say roughly that each func- 
tion in the set is typical of the ensemble. More precisely it is known that 
with an ergodic ensemble an average of any statistic over the ensemble is 
equal (with probability 1) to an average over all the time translations of a 
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particular function in the set.3 Roughly speaking, each function can be ex- 
pected, as time progresses, to go through, with the proper frequency, all the 
convolutions of any of the functions in the set. 

Just as we may perform various operations on numbers or functions to 
obtain new numbers or functions, we can perform operations on ensembles 
to obtain new ensembles. Suppose, for example, we have an ensemble of 
functions/„(/) and an operator T which gives for each function/„(/) a result 

ga{l) = Tfa{t) 

Probability measure is defined for the set ga{i) by means of that for the set 
fa{l). The probability of a certain subset of the ga{l) functions is equal 
to that of the subset of the/a(/) functions which produce members of the 
given subset of g functions under the operation T. Physically this corre- 
sponds to passing the ensemble through some device, for example, a filter, 
a rectifier or a modulator. The output functions of the device form the 
ensemble ga(0- 

A device or operator T will be called invariant if shifting the input merely 
shifts the output, i.e., if 

ga(0 = Tfa{i) 

implies 

ga(t + /i) = Tfa{l + h) 

for all/a(0 and all fi . It is easily shown (see appendix 1) that if T is in- 
variant and the input ensemble is stationary then the output ensemble is 
stationary. Likewise if the input is ergodic the output will also be ergodic. 

A filter or a rectifier is invariant under all time translations. The opera- 
tion of modulation is not since the carrier phase gives a certain time struc- 
ture. However, modulation is invariant under all translations which are 
multiples of the period of the carrier. 

Wiener has pointed out the intimate relation between the invariance of 
physical devices under time translations and Fourier theory."1 He has 

3 This is the famous ergodic theorem or rather one aspect of this theorem which was 
proved is somewhat different formulations bj' Birkhoff, von Neumann, and Koopman, and 
subsequently generalized by Wiener, Hopf, Hurewicz and others. The literature on ergodic 
theory is quite extensive and the reader is referred to the papers of these writers for pre- 
cise and general formulations; e.g., E. Hopf "Ergodentheorie" Ergebnisse der Mathematic 
und ihrer Grenzgebiete, Vol. 5, "On Causality Statistics and Probability" Journal of 
Mathematics and Physics, Vol. XIII, No. 1, 1934; N. Wciner "The Ergodic Theorem" 
Duke Mathematical Journal, Vol. 5, 1939. 4 Communication theory is heavily indebted to Wiener for much of its basic philosophy 
and theory. His classic NDRC report "The Interpolation, Extrapolation, and Smoothing 
of Stationary Time Series," to appear soon in book form, contains the first clear-cut 
formulation of communication theory as a statistical problem, the study of operations 
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shown, in fact, that if a device is linear as well as invariant Fourier analysis 
is then the appropriate mathematical tool for dealing with the problem. 

An ensemble of functions is the appropriate mathematical representation 
of the messages produced by a continuous source (for example speech), of 
the signals produced by a transmitter, and of the perturbing noise. Com- 
munication theory is properly concerned, as has been emphasized by Wiener, 
not with operations on particular functions, but with operations on en- 
sembles of functions. A communication system is designed not for a par- 
ticular speech function and still less for a sine wave, but for the ensemble of 
speech functions. 

19. Band Limited Ensembles of Functions 

If a function of time /(/) is limited to the band from 0 to W cycles per 
second it is completely determined by giving its ordinates at a series of dis- 

crete points spaced ^ seconds apart in the manner indicated by the follow- 

ing result.0 

Theorem 13: Let /(/) contain no frequencies over W. 

In this expansion /(/) is represented as a sum of orthogonal functions. 
The coefficients A',, of the various terms can be considered as coordinates in 
an infinite dimensional "function space." In this space each function cor- 
responds to precisely one point and each point to one function. 

A function can be considered to be substantially limited to a time T if all 
the ordinates Xn outside this interval of time are zero. In this case all but 
2TW of the coordinates will be zero. Thus functions limited to a band W 
and duration T correspond to points in a space of 2TW dimensions. 

A subset of the functions of band IF and duration T corresponds to a re- 
gion in this space. For example, the functions whose total energy is less 

on time series. This work, although chiefly concerned with the linear prediction and 
filtering problem, is an important collateral reference in connection with the present paper. 
We may also refer here to Wiener's forthcoming book "Cybernetics" dealing with the 
general problems of communication and control. 

5 For a proof of this theorem and further discussion see the author's paper "Communi- 
cation in the Presence of Noise" to be published in the Proceedings of the Institute of Radio 
Engineers. 

Then 

r/A _ V v sin - n) 
J{) ~ " Tr(2Wl — n) 

where 
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than or equal to E correspond to points in a 2TW dimensional sphere with 
radius r = y/lWE. 

An ensemble of functions of limited duration and band will be represented 
by a probability distribution p{xi • • • #„) in the corresponding n dimensional 
space. If the ensemble is not limited in time we can consider the 2TW co- 
ordinates in a given interval T to represent substantially the part of the 
function in the interval T and the probability distribution p{xi, • • • , xn) 
to give the statistical structure of the ensemble for intervals of that duration. 

20. Entropy of a Continuous Distribution 

The entropy of a discrete set of probabilities pi, • - • p,i has been defined as: 

n = -X) pi log pi. 

In an analogous manner we define the entropy of a continuous distribution 
with the density distribution function p{x) by: 

H = — J p{x) log p{x) dx 

With an n dimensional distribution p{xi, • • • , xn) we have 

H = _ / ■ ■ ■ / p(xi ■ ■ ■ l0g • ,Xn) dxi - ■ • dxn . 

If we have two arguments x and y (which may themselves be multi-dimen- 
sional) the joint and conditional entropies of p(x, y) are given by 

H{x, y) = -JJ p{x, y) log p(x, y) dx dy 

and 

nx(y) = -Jf P(x' 3') log dx dy 

Hy(x) = -// p(x, y) log dx dy 

where 

p{x) = J p(x, y) dy 

p(y) = J p{x, y) dx. 

The entropy of continuous distributions have most (but not all) of the 
properties of the discrete case. In particular we have the following: 
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1. If .r is limited to a certain volume v in its space, then H{x) is a maximum 

and equal to log v when p{x) is constant in the volume. 

2. With any two variables x, y we have 

H{x, y) < H(x) + H(y) 

with equality if (and only if) x and y are independent, i.e., p(x, y) = p{x) 
p(y) (apart possibly from a set of points of probability zero). 

3. Consider a generalized averaging operation of the following type: 

p'(y) = J a(x, y)p(x) dx 

with , 

J a(x, y) dx = J a(x, y) dy = 1, a(x, y) > 0. 

Then the entropy of the averaged distribution p'(y) is equal to or greater 
than that of the original distribution p(x). 

4. We have 

Hix, y) = H{x) + Hx{y) = H{y) + Hv{x) 

and 
Hx{y) < H{y). 

5. Let p{:x) be a one-dimensional distribution. The form of p{x) giving a 
maximum entropy subject to the condition that the standard deviation 
of x be fixed at cr is gaussian. To show this we must maximize 

H{x) = - J p(x) log p(x) dx 

with 

a2 = f p(x)x2 dx and ^ = f P(x) ^x 

as constraints. This requires, by the calculus of variations, maximizing 

J l-p(x) log p(x) Xp(x)x2 + np{x)\ dx. 

The condition for this is 

— 1 — log p(x) + \x2 fx — 0 

and consequently (adjusting the constants to satisfy the constraints) 

• f \ ^ -(12/2^2) 
p{x)=VT^e 
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Similarly in n dimensions, suppose the second order moments of 
p{x\, • • • , .vn) are fixed at A: 

A, — f f ) ' ' " ) -^n) dXi ' • ■ (lxn . 

Then the maximum entropy occurs (by a similar calculation) when 
p(xi, • • ■ , x„) is the n dimensional gaussian distribution with the second 
order moments A . 

6. The entropy of a one-dimensional gaussian distribution whose standard 
deviation is cr is given by 

H(x) = log "v/2Trea. 

This is calculated as follows: 

PM= V2i'e 

2 
-log p(x) = log \/27r(7 + ^:2 

nix) = - f p(x) log Pix) dx 

= J pix) log y/ltrtydx-\- J pix) ^ 
.2 

d x 
2a2 

2 
= log V^TT 0" + 

= log -^2^ o- + log a/c 

= log \/27reo-. 

Similarly the n dimensional gaussian distribution with associated 
quadratic form a,-, is given by 

Pix,, ■ ■ • . X.) = (^2 exp (- ^Xa.jXiXj) 

and the entropy can be calculated as 

H = log (27re)"/" j a,-y 

where | an \ is the determinant whose elements are an. 
7. If :r is limited to a half line ipix) = 0 for < 0) and the first moment of 

x is fixed at a: 

a = / pix)x dx, 
Jo 
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then the maximum entropy occurs when 

. / \ 1 —(x/a) p{x) = - e 
a 

and is equal to log ea. 
8. There is one important difference between the continuous and discrete 

entropies. In the discrete case the entropy measures in an absolute 
way the randomness of the chance variable. In the continuous case the 
measurement is relative to the coordinate system. If we change coordinates 
the entropy will in general change. In fact if we change to coordinates 
yi • • • yn the new entropy is given by 

//(y) = / ■ • " / ■ • • Xn)j ^ log p{xi ■ ■ • xn)J dyx - • • dyn 

where J is the Jacobian of the coordinate transformation. On ex- 

panding the logarithm and changing variables to .Vi • • • a*„ , we obtain: 

//(y) = H{x) - f ••• J P(xi, • ■ ■ , xn) log J (^j dxx ■ ■ • dxn . 

Thus the new entropy is the old entropy less the expected logarithm of 
the Jacobian. In the continuous case the entropy can be considered a 
measure of randomness relative to an assumed standard, namely the co- 
ordinate system chosen with each small volume element dxi ■ ■ • dxn given 
equal weight. When we change the coordinate system the entropy in 
the new system measures the randomness when equal volume elements 
dyi • ■ ■ dyn in the new system are given equal weight. 

In spite of this dependence on the coordinate system the entropy 
concept is as important in the continuous case as the discrete case. This 
is due to the fact that the derived concepts of information rate and 
channel capacity depend on the difference of two entropies and this 
difference docs not depend on the coordinate frame, each of the two terms 
being changed by the same amount. 

The entropy of a continuous distribution can be negative. The scale 
of measurements sets an arbitrary zero corresponding to a uniform dis- 
tribution over a unit volume. A distribution which is more confined than 
this has less entropy and will be negative. The rates and capacities will, 
however, always be non-negative. 

9. A particular case of changing coordinates is the linear transformation 

yj = H an Xi. 
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In this case the Jacobian is simply the determinant | a,-,- | 1 and 

H{y) = H{x) + log | an \. 

In the case of a rotation of coordinates (or any measure preserving trans- 
formation) / = 1 and B{y) = H{x). 

21. Entropy of an Ensemble of Functions 

Consider an ergodic ensemble of functions limited to a certain band of 
width W cycles per second. Let 

Pfa • • • Xn) 

be the density distribution function for amplitudes Xi • • • xn at n successive 
sample points. We define the entropy of the ensemble per degree of free- 
dom by 

H' = -Lim - f ■ f p(xl ■ xn) log pfa , • • ■ , xn) dxi ■ • • dxn . 
n—*00 % " * 

We may also define an entropy H per second by dividing, not by n, but by 
the time T in seconds for n samples. Since n = 2TW, H' = 2WH. 

With white thermal noise p is gaussian and we have 

H' = log V/2ireN, 

II = W log 2TveN. 

For a given average power N, white noise has the maximum possible 
entropy. This follows from the maximizing properties of the Gaussian 
distribution noted above. 

The entropy for a continuous stochastic process has many properties 
analogous to that for discrete processes. In the discrete case the entropy 
was related to the logarithm of the probability of long sequences, and to the 
number of reasonably probable sequences of long length. In the continuous 
case it is related in a similar fashion to the logarithm of the probability 
density for a long series of samples, and the volume of reasonably high prob- 
ability in the function space. 

More precisely, if we assume p{xi ■ ■ • .v,,) continuous in all the #,• for all n, 
then for sufficiently large n 

llsii-i?'! <J 
n 

for all choices of (at , ■ • • , £n) apart from a set whose total probability is 
less than 5, with 5 and e arbitrarily small. This follows from the ergodic 
property if we divide the space into a large number of small cells. 
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The relation of // to volume can be stated as follows: Under the same as- 
sumptions consider the n dimensional space corresponding to p{x\ , ■ • ■ , Sn). 
Let Vn{q) be the smallest volume in this space which includes in its interior 
a total probability q. Then 

Limlogr-W = //' 
(I—»oo II 

provided q does not equal 0 or 1. 
These results show that for large n there is a rather well-defined volume (at 

least in the logarithmic sense) of high probability, and that within this 
volume the probability density is relatively uniform (again in the logarithmic 
sense). 

In the white noise case the distribution function is given by 

Since this depends only on Zx] the surfaces of equal probability density 
are spheres and the entire distribution has spherical symmetry. The region 
of high probability is a sphere of radius \/nN- As n —> oo the probability 

1 
of being outside a sphere of radius \/n{N -f- e) approaches zero and - times 

u 
the logarithm of the volume of the sphere approaches log \/IrreN. 

In the continuous case it is convenient to work not with the entropy H of 
an ensemble but with a derived quantity which we will call the entropy 
power. This is defined as the power in a white noise limited to the same 
band as the original ensemble and having the same entropy. In other words 
if //' is the entropy of an ensemble its entropy power is 

Nx = exp 2E'. \ 
lire 

In the geometrical picture this amounts to measuring the high probability 
volume by the squared radius of a sphere having the same volume. Since 
white noise has the maximum entropy for a given power, the entropy power 
of any noise is less than or equal to its actual power, 

21. Entropy Loss in Linear Filters 

Theorem 14: If an ensemble having an entropy Hi per degree of freedom 
in band W is passed through a filter with characteristic T(/) the output 
ensemble has an entropy 

H, = # i + l£log|F(/)frf/. 
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The operation of the filter is essentially a linear transformation of co- 
ordinates. If we think of the different frequency components as the original 
coordinate system, the new frequency components are merely the old ones 
multiplied by factors. The coordinate transformation matrix is thus es- 

TABLE I 

GAIN 
ENTROPY 

POWER 
FACTOR 

ENTROPY 
POWER GAIN 
IN DECIBELS 

IMPULSE RESPONSE 

1 

\-a) > 

0 CO I 

1 
e2 -8.68 SIN27rt 

(m)2 

1 

1 -cuz > 

0 CO 1 

(f)4 -5.32 „ f SIN t cost! 
It3 t2 J 

1 

CO 1 

0.384 -4.15 . [cost-) cost . SINt] 

0 

L t4 2t2 t3 J 

1 

1 CO 1 

(if -2.66 n Ji (t) 

0 

2 t 

1 

0 CO 
\ 

I 

t 
e2a -e.ee er —by j^cos (i-ajt-cos tj 

sentially diagonalized in terms of these coordinates. The Jacohian of the 
transformation is (for n sine and n cosine components) 

/ = fl i K(/.) r »=i 
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where the /, are equally spaced through the band W. This becomes in 
the limit 

exp w Llog''2 

Since ./ is constant its average value is this same quantity and applying the 
theorem on the change of entropy with a change of coordinates, the result 
follows. We may also phrase it in terms of the entropy power. Thus if 
the entropy power of the first ensemble is A7i that of the second is 

Nl exp iT L log ''2<^' 

The final entropy power is the initial entropy power multiplied by the geo- 
metric mean gain of the filter. If the gain is measured in db, then the 
output entropy power will be increased by the arithmetic mean db gain 
over W. 

In Table I the entropy power loss has been calculated (and also expressed 
in db) for a number of ideal gain characteristics. The impulsive responses 
of these filters are also given for W = 2ir, with phase assumed to be 0. 

The entropy loss for many other cases can be obtained from these results. 

For example the entropy power factor ^ for the first case also applies to any 

gain characteristic obtained from 1 — w by a measure preserving transforma- 
tion of the cj axis. In particular a linearly increasing gain G(aj) = co, or a 
"saw tooth" characteristic between 0 and 1 have the same entropy loss. 

The reciprocal gain has the reciprocal factor. Thus - has the factor e2. CO 
Raising the gain to any power raises the factor to this power. 

22. Entropy of the Sum of Two Ensembles 

If we have two ensembles of functions /«(/) and g^l) we can form a new 
ensemble by "addition." Suppose the first ensemble has the probability 
density function p(xi, • • • , .vn) and the second ^(.ri, ■ • ■ , .x-„). Then the 
density function for the sum is given by the convolution: 

K-Ti > 'x") = f j 

■ </(-vi - yi, ,Xn - yn) dyl ,dy2,---, dyn. 

Physically this corresponds to adding the noises or signals represented by 
the original ensembles of functions. 
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The following result is derived in Appendix 6. 
Theorem 15: Let the average power of two ensembles be Ni and and 

let their entropy powers be iVi and Nt. Then the entropy power of the 
sum, Ns, is bounded by 

Ai + iV2 < As < Ax + iV2. 

White Gaussian noise has the peculiar property that it can absorb any 
other noise or signal ensemble which may be added to it with a resultant 
entropy power approximately equal to the sum of the white noise power and 
the signal power (measured from the average signal value, which is normally 
zero), provided the signal power is small, in a certain sense, compared to 
the noise. 

Consider the function space associated with these ensembles having n 
dimensions. The white noise corresponds to a spherical Gaussian distribu- 
tion in this space. The signal ensemble corresponds to another probability 
distribution, not necessarily Gaussian or spherical. Let the second moments 
of this distribution about its center of gravity be fl.-,-. That is, if 
p(xi ,•••,«„) is the density distribution function 

ai}- = f " ' f P(xi ~ «')(*; — «>) dxi, , dxn 

where the a,- are the coordinates of the center of gravity. Now a,-,- is a posi- 
tive definite quadratic form, and we can rotate our coordinate system to 
align it with the principal directions of this form.# a,-,- is then reduced to 
diagonal form ba. We require that each bu be small compared to N, the 
squared radius of the spherical distribution. 

In this case the convolution of the noise and signal produce a Gaussian 
distribution whose corresponding quadratic form is 

N + bu. 

The entropy power of this distribution is 

[n(Af + 4.,)]"" 

or approximately 

= mn + 26,i(A)n-1]1/n 

= N + - Xbu . 
n 

The last term is the signal power, while the first is the noise power. 
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PART IV: THE CONTINUOUS CHANNEL 

23. The Capacity of a Continuous Channel 

In a continuous channel the input or transmitted signals will be con- 
tinuous functions of time /(/) belonging to a certain set, and the output or 
received signals will be perturbed versions of these. We will consider only 
the case where both transmitted and received signals are limited to a certain 
band W. They can then be specified, for a time T, by 2TW numbers, and 
their statistical structure by finite dimensional distribution functions. 
Thus the statistics of the transmitted signal will be determined by 

P{xx, • ■ • , xn) = P(x) 

and those of the noise by the conditional probability distribution 

Pxl.---.xn(yi, • •, }'n) = Pxiy). 

The rate of transmission of information for a continuous channel is defined 
in a way analogous to that for a discrete channel, namely 

R = H(x) - Hy(x) 

where H(x) is the entropy of the input and Hy(x) the equivocation. The 
channel capacity C is defined as the maximum of R when we vary the input 
over all possible ensembles. This means that in a finite dimensional ap- 
proximation we must vary P(x) = P(xi ,•■•,#„) and maximize 

- J P(x) log P(x) dx + f f P(x, y) log dx dy- 

This can be written 

IIp(x'y) log mmdx iy 

using the fact that j j P(x, y) log P(x) dx dy = j P(x) log P(x) dx. The 

channel capacity is thus expressed 

c = ^ f IIp(x'y) log mmdx iy- 

It is obvious in this form that R and C are independent of the coordinate 
P{x, y) 

system since the numerator and denominator in log will be multi- 6 P{x)P{y) 
plied by the same factors when x and y are transformed in any one to one 
way. This integral expression for C is more general than H{x) — Hy{x). 
Properly interpreted (see Appendix 7) it will always exist while H(x) — Hv(x) 
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may assume an indeterminate form oo — co in some cases. This occurs, for 
example, if x is limited to a surface of fewer dimensions than n in its n dimen- 
sional approximation. 

If the logarithmic base used in computing H{x) and Hv{x) is two then C 
is the maximum number of binary digits that can be sent per second over the 
channel with arbitrarily small equivocation, just as in the discrete case. 
This can be seen physically by dividing the space of signals into a large num- 
ber of small cells, sufficiently small so that the probability density Px(y) 
of signal x being perturbed to point y is substantially constant over a cell 
(either of a: or y). If the cells are considered as distinct points the situation 
is essentially the same as a discrete channel and the proofs used there will 
apply. But it is clear physically that this quantizing of the volume into 
individual points cannot in any practical situation alter the final answer 
significantly, provided the regions are sufficiently small. Thus the capacity 
will be the limit of the capacities for the discrete subdivisions and this is 
just the continuous capacity defined above. 

On the mathematical side it can be shown first (see Appendix 7) that if u 
is the message, x is the signal, y is the received signal (perturbed by noise) 
and v the recovered message then 

H{x) - Hy{x) > H(u) - IIM 

regardless of what operations are performed on u to obtain x or on y to obtain 
v. Thus no matter how we encode the binary digits to obtain the signal, or 
how we decode the received signal to recover the message, the discrete rate 
for the binary digits does not exceed the channel capacity we have defined. 
On the other hand, it is possible under very general conditions to find a 
coding system for transmitting binary digits at the rate C with as small an 
equivocation or frequency of errors as desired. This is true, for example, if, 
when we take a finite dimensional approximating space for the signal func- 
tions, P{pc, y) is continuous in both x and y except at a set of points of prob- 
ability zero. 

An important special case occurs when the noise is added to the signal 
and is independent of it (in the probability sense). Then Pxiy) is a function 
only of the difference n = (y — :r), 

Px(y) = Q(y - -f) 

and we can assign a definite entropy to the noise (independent of the sta- 
tistics of the signal), namely the entropy of the distribution Q(n). This 
entropy will be denoted by H{n). 

Theorem 16: If the signal and noise are independent and the received 
signal is the sum of the transmitted signal and the noise then the rate of 
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transmission is 

R= H(y) - Hiii) 

i.e., the entropy of the received signal less the entropy of the noise. The 
channel capacity is 

C = Max Hiy) - //(»). 
P(x) 

We have, since y = .r + n: 

H (v, y) = H(x, »). 

Expanding the left side and using the fact that x and n are independent 

Hiy) + Hvix) = H{x) + Hin). 

Hence 

R = Hix) - Hyix) = Hiy) - Hin). 

Since Hin) is independent of Fix), maximizing R requires maximizing 
Hiy), the entropy of the received signal. If there are certain constraints on 
the ensemble of transmitted signals, the entropy of the received signal must 
be maximized subject to these constraints. 

24. Channel Capacity with an Average Power Limitation 

A simple application of Theorem 16 is the case where the noise is a white 
thermal noise and the transmitted signals are limited to a certain average 
power P. Then the received signals have an average power P -\- N where 
N is the average noise power. The maximum entropy for the received sig- 
nals occurs when they also form a white noise ensemble since this is the 
greatest possible entropy for a power P + N and can be obtained by a 
suitable choice of the ensemble of transmitted signals, namely if they form a 
white noise ensemble of power P. The entropy (per second) of the re- 
ceived ensemble is then 

Hiy) = IE log lireiP + N), 

and the noise entropy is 

Hin) = IE log lireN. 

The channel capacity is 

c = my) - HM = iriog^t^. 

Summarizing we have the following: 
Theorem 17: The capacity of a channel of band IE' perturbed by white 
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thermal noise of power N when the average transmitter power is P is given by 

P + N 
C = W log 

N 

This means of course that by sufficiently involved encoding systems we 
P N . 

can transmit binary digits at the rate W log2 —^— bits per second, with 

arbitrarily small frequency of errors. It is not possible to transmit at a 
higher rate by any encoding system without a definite positive frequency of 
errors. 

To approximate this limiting rate of transmission the transmitted signals 
must approximate, in statistical properties, a white noise.6 A system which 
approaches the ideal rate may be described as follows: Let M = 2' samples 
of white noise be constructed each of duration T. These are assigned 
binary numbers from 0 to (M — 1). At the transmitter the message se- 
quences are broken up into groups of 5 and for each group the corresponding 
noise sample is transmitted as the signal. At the receiver the M samples are 
known and the actual received signal (perturbed by noise) is compared with 
each of them. The sample which has the least R.M.S. discrepancy from the 
received signal is chosen as the transmitted signal and the corresponding 
binary number reconstructed. This process amounts to choosing the most 
probable {a posteriori) signal. The number M of noise samples used will 
depend on the tolerable frequency e of errors, but for almost all selections of 
samples we have 

T . T . log M{e, T) .... P + A 
Lim Lim 5 ^ ' = W log —, 
e_0 r-»oo I 

so that no matter how small e is chosen, we can, by taking T sufficiently 

N 
P -\- N 

large, transmit as near as we wish to TW log ——— binary digits in the 

time T. 
p j- N 

Formulas similar to C = W log —..— for the white noise case have 0 N 
been developed independently by several other writers, although with some- 
what different interpretations. We may mention the work of N. Wiener,7 

W. G. Tuller,8 and H. Sullivan in this connection. 
In the case of an arbitrary perturbing noise (not necessarily white thermal 

noise) it does not appear that the maximizing problem involved in deter- 
6 This and other properties of the white noise case are discussed from the geometrical 

point of view in "Communication in the Presence of Noise," loc. cit. 7 "Cybernetics," loc. cit. 
8 Sc. D. thesis, Department of Electrical Engineering, M.I.T., 1948. 
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mining the channel capacity C can be solved explicitly. However, upper 
and lower bounds can be set for C in terms of the average noise power N 
and the noise entropy power i\ri. These bounds are sufficiently close to- 
gether in most practical cases to furnish a satisfactory solution to the 
problem. 

Theorem 18: The capacity of a channel of band W perturbed by an arbi- 
trary noise is bounded by the inequalities 

w i ^ tt/ i + -/V 
g log —ivP 

where 
F = average transmitter power 
N = average noise power 
Ni = entropy power of the noise. 
Here again the average power of the perturbed signals will be P + iV. 

The maximum entropy for this power would occur if the received signal 
were white noise and would be W log 2Tre(P + iV). It may not be possible 
to achieve this; i.e. there may not be any ensemble of transmitted signals 
which, added to the perturbing noise, produce a white thermal noise at the 
receiver, but at least this sets an upper bound to H(y). We have, therefore 

C = max H(y) — H(n) 

< W log 27re(P + AO - W log lireNx. 

This is the upper limit given in the theorem. The lower limit can be ob- 
tained by considering the rate if we make the transmitted signal a white 
noise, of power P. In this case the entropy power of the received signal 
must be at least as great as that of a white noise of power P + AO since we 
have shown in a previous theorem that the entropy power of the sum of two 
ensembles is greater than or equal to the sum of the individual entropy 
powers. Hence 

max H(y) > IV log 27rc(P + AO) 

and 

C > W log 27rc(P + AO) - W log lireNi 

P + AO = W log 
AO 

As P increases, the upper and lower bounds approach each other, so we 
have as an asymptotic rate 

TT/ i P + N 
w log -W 
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If the noise is itself white, N = Ni and the result reduces to the formula 
proved previously: 

C = W log (l + 

If the noise is Gaussian but with a spectrum which is not necessarily flat, 
Ni is the geometric mean of the noise power over the various frequencies in 
the band W. Thus 

Ni = exp ~ £ log N{ f) df 

where N(f) is the noise power at frequency /. 
Theorem 19: If we set the capacity for a given transmitter power P 

equal to 
^ TT,, P + N -T) 
C = W\og ^  

then rj is monotonic decreasing as P increases and approaches 0 as a limit. 
Suppose that for a given power Pi the channel capacity is 

Pi + iV - 
W log 

Ni 

This means that the best signal distribution, say p(x), when added to the 
noise distribution q(x), gives a received distribution r(y) whose entropy 
power is (Pi + Ar — -qi)- Let us increase the power to Pi + AP by adding 
a white noise of power AP to the signal. The entropy of the received signal 
is now at least 

H(y) = W log 2ire(Pi + jV — 771 + AP) 

by application of the theorem on the minimum entropy power of a sum. 
Hence, since we can attain the H indicated, the entropy of the maximizing 
distribution must be at least as great and 77 must be monotonic decreasing. 
To show that 77 —> 0 as P —^ cc consider a signal which is a white noise with 
a large P. Whatever the perturbing noise, the received signal will be 
approximately a white noise, if P is sufficiently large, in the sense of having 
an entropy power approaching P + N. 

25. The Channel Capacity with a Peak Power Limitation 

In some applications the transmitter is limited not by the average power 
output but by the peak instantaneous power. The problem of calculating 
the channel capacity is then that of maximizing (by variation of the ensemble 
of transmitted symbols) 

H(y) - H(n) 
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subject to the constraint that all the functions /(/) in the ensemble be less 
than or equal to y/S, say, for all I. A constraint of this type does not work 
out as well mathematically as the average power limitation. The most we 

have obtained for this case is a lower bound valid for all —, an "asymptotic" 

/ 5 \ .5 
upper band (valid for large — 1 and an asymptotic value of C for small. 

Theorem 20: The channel capacity C for a band W perturbed by white 
thermal noise of power N is bounded by 

where S is the peak allowed transmitter power. For sufficiently large ^ 

- S + N 
c < W log   (1 + e) 

where e is arbitrarily small. As ^ > 0 (and provided the band W starts 

at 0) 

C -> W log (l + I 

We wish to maximize the entropy of the received signal. If ^ is large 

this will occur very nearly when we maximize the entropy of the trans- 
mitted ensemble. 

The asymptotic upper bound is obtained by relaxing the conditions on 
the ensemble. Let us suppose that the power is limited to ^ not at every 
instant of time, but only at the sample points. The maximum entropy of 
the transmitted ensemble under these weakened conditions is certainly 
greater than or equal to that under the original conditions. This altered 
problem can be solved easily. The maximum entropy occurs if the different 
samples are independent and have a distribution function which is constant 
from — y/S to + The entropy can be calculated as 

11" log 4S. 

The received signal will then have an entropy less than 

IF log (45 + 27reiV)(l + t) 
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with e —> 0 as — —> <» and the channel capacity is obtained by subtracting 

the entropy of the white noise, W log ItreN 

- S + N 
W log (45 + 2ireN}{\ -\- t) — W log {IttcN) = W log ^  (1 + e). 

This is the desired upper bound to the channel capacity. 
To obtain a lower bound consider the same ensemble of functions. Let 

these functions be passed through an ideal filter with a triangular transfer 
characteristic. The gain is to be unity at frequency 0 and decline linearly 
down to gain 0 at frequency W. We first show that the output functions 
of the filter have a peak power limitation 5 at all times (not just the sample 

points). First we note that a pulse going into the filter produces ZirW t 

1 sin2 irWt 
2 (irWl)2 

in the output. This function is never negative. The input function (in 
the general case) can be thought of as the sum of a series of shifted functions 

sin 27rPIT 
a 2-rrlVt 

where a, the amplitude of the sample, is not greater than -y/S. Hence the 
output is the sum of shifted functions of the non-negative form above with 
the same coefficients. These functions being non-negative, the greatest 
positive value for any I is obtained when all the coefficients a have their 
maximum positive values, i.e. In this case the input function was a 
constant of amplitude \/S and since the filter has unit gain for D.C., the 
output is the same. Hence the output ensemble has a peak power S. 

The entropy of the output ensemble can be calculated from that of the 
input ensemble by using the theorem dealing with such a situation. The 
output entropy is equal to the input entropy plus the geometrical mean 
gain of the filter; 

flog^flog^V- 

Hence the output entropy is 

W log 45 - 2W = W log -= 
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and the channel capacity is greater than 

11/ i 2 5 
0g ttc8 N 

S 
We now wish to show that, for small — (peak signal power over average 

white noise power), the channel capacity is approximately 

C = W log (l + |) ■ 

More precisely C/W log ^1 + ^ ^ 1 as ^ 0. Since the average signal 

5 
power P is less than or equal to the peak 5, it follows that for all — 

c<w\oe(i + ^j<w\og(i + ~y 

Therefore, if we can find an ensemble of functions such that they correspond 

to a rate nearly W log ^1 + and are limited to band W and peak S the 

result will be proved. Consider the ensemble of functions of the following 
type. A series of / samples have the same value, either +v/5' or -Vs. 
then the next / samples have the same value, etc. The value for a series 
is chosen at random, probability | for + \/S and ^ for — VS If this 
ensemble be passed through a filter with triangular gain characteristic (unit 
gain at D.C.), the output is peak limited to ±S. Furthermore the average 
power is nearly S and can be made to approach this by taking t sufficiently 
large. The entropy of the sum of this and the thermal noise can be found 
by applying the theorem on the sum of a noise and a small signal. This 
theorem will apply if 

A S 
^'n 

5 
is sufficiently small. This can be insured by taking — small enough (after 

I is chosen). The entropy power will be 5 + A7 to as close an approximation 
as desired, and hence the rate of transmission as near as we wish to 
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PART V: THE RATE FOR A CONTINUOUS SOURCE 

26. Fidelity Evaluation Functions 

In the case of a discrete source of information we were able to determine a 
definite rate of generating information, namely the entropy of the under- 
lying stochastic process. With a continuous source the situation is con- 
siderably more involved. In the first place a continuously variable quantity 
can assume an infinite number of values and requires, therefore, an infinite 
number of binary digits for exact specification. This means that to transmit 
the output of a continuous source with exact recovery at the receiving point 
requires, in general, a channel of infinite capacity (in bits per second). 
Since, ordinarily, channels have a certain amount of noise, and therefore a 
finite capacity, exact transmission is impossible. 

This, however, evades the real issue. Practically, we are not interested 
in exact transmission when we have a continuous source, but only in trans- 
mission to within a certain tolerance. The question is, can we assign a 
definite rate to a continuous source when we require only a certain fidelity 
of recovery, measured in a suitable way. Of course, as the fidelity require- 
ments are increased the rate will increase. It will be shown that we can, in 
very general cases, define such a rate, having the property that it is possible, 
by properly encoding the information, to transmit it over a channel whose 
capacity is equal to the rate in question, and satisfy the fidelity requirements. 
A channel of smaller capacity is insufficient. 

It is first necessary to give a general mathematical formulation of the idea 
of fidelity of transmission. Consider the set of messages of a long duration, 
say T seconds. The source is described by giving the probability density, 
in the associated space, that the source will select the message in question 
P(.r). A given communication system is described (from the external point 
of view) by giving the conditional probability Px{y) that if message .r is 
produced by the source the recovered message at the receiving point will 
be y. The system as a whole (including source and transmission system) 
is described by the probability function P{x, y) of having message x and 
final output y. If this function is known, the complete characteristics of 
the system from the point of view of fidelity are known. Any evaluation 
of fidelity must correspond mathematically to an operation applied to 
P{x, y). This operation must at least have the properties of a simple order- 
ing of systems; i.e. it must be possible to say of two systems represented by 
Pi{x, y) and Pi(x, y) that, according to our fidelity criterion, either (1) the 
first has higher fidelity, (2) the second has higher fidelity, or (3) they have 
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equal fidelity. This means that a criterion of fidelity can be represented by 
a numerically valued function: 

whose argument ranges over possible probability functions IJ{x, y). 
We will now show that under very general and reasonable assumptions 

the function v(F(x, y)) can be written in a seemingly much more specialized 
form, namely as an average of a function p(x, y) over the set of possible values 
of x and y: 

To obtain this we need only assume (1) that the source and system are 
ergodic so that a very long sample will be, with probability nearly 1, typical 
of the ensemble, and (2) that the evaluation is "reasonable" in the sense 
that it is possible, by observing a typical input and output Xi and yi, to 
form a tentative evaluation on the basis of these samples; and if these 
samples are increased in duration the tentative evaluation will, with proba- 
bility 1, approach the exact evaluation based on a full knowledge of P(x, y). 
Let the tentative evaluation be p(x, y). Then the function p{x, y) ap- 
proaches (as T —» ») a constant for almost all (.v, y) which are in the high 
probability region corresponding to the system: 

p(.T, y) —► v(F(x, y)) 

and we may also write 

This establishes the desired result. 
The function p(.v, y) has the general nature of a "distance" between x 

and y.'1 It measures how bad it is (according to our fidelity criterion) to 
receive y when .v is transmitted. The general result given above can be 
restated as follows: Any reasonable evaluation can be represented as an 
average of a distance function over the set of messages and recovered mes- 
sages .v and y weighted according to the probability P(x, y) of getting the 
pair in question, provided the duration T of the messages be taken suffi- 
ciently large. 

9 It is not a "metric" in the strict sense, however, since in general it does not satisfy 
either p(x, y) = p(y, .r) or p(.v, y) + p(y, z) > p{x, z). 

v{P{x, y)) 

since 
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The following are simple examples of evaluation functions: 
1. R.M.S. Criterion. 

v = (*(/) - y{l)f 

In this very commonly used criterion of fidelity the distance function 
p(.r, y) is (apart from a constant factor) the square of the ordinary 
euclidean distance between the points .r and y in the associated function 
space. 

p{x, y) = i jf [»(#) - y(/)]2 dl 

2. Frequency weighted R.M.S. criterion. More generally one can apply 
different weights to the different frequency components before using an 
R.M.S. measure of fidelity. This is equivalent to passing the difference 
x{t) — y{t) through a shaping filter and then determining the average 
power in the output. Thus let 

e{l) = x{t) - y(j) 

and 

/(/) = [ e(T)k(t - r) dt J—00 

then 

p(^, y) = f f0 M dL 

3. Absolute error criterion. 

y) = f I I~ yW I di 

4. The structure of the ear and brain determine implicitly an evaluation, or 
rather a number of evaluations, appropriate in the case of speech or music 
transmission. There is, for example, an "intelligibility" criterion in 
which p(x, y) is equal to the relative frequency of incorrectly interpreted 
words when message x(l) is received as y(l). Although we cannot give 
an explicit representation of p(x, y) in these cases it could, in principle, 
be determined by sufficient experimentation. Some of its properties 
follow from well-known experimental results in hearing, e.g., the ear is 
relatively insensitive to phase and the sensitivity to amplitude and fre- 
quency is roughly logarithmic. 

5. The discrete case can be considered as a specialization in which we have 
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tacitly assumed an evaluation based on the frequency of errors. The 
function p{x, y) is then defined as the number of symbols in the sequence 
y differing from the corresponding symbols in x divided by the total num- 
ber of symbols in x. 

27. The Rate for a Source Relative to a Fidelity Evaluation 

We are now in a position to define a rate of generating information for a 
continuous source. We are given P(x) for the source and an evaluation v 
determined by a distance function p(x, y) which will be assumed continuous 
in both .v and y. With a particular system P(x, y) the quality is measured by 

v = JJ p(x> y) p(x> 3') dx dy 

Furthermore the rate of flow of binary digits corresponding to P{x, y) is 

We define the rate R\ of generating information for a given quality fli of 
reproduction to be the minimum of R when we keep v fixed at fli and vary 
Px{y). That is: 

= ^ //p{x'y) los mm ^iy 

subject to the constraint: 

i'1 = JJ P(x,y)p(x,y)dxdy. 

This means that we consider, in effect, all the communication systems that 
might be used and that transmit with the required fidelity. The rate of 
transmission in bits per second is calculated for each one and we choose that 
having the least rate. This latter rate is the rate we assign the source for 
the fidelity in question. 

The justification of this definition lies in the following result: 
Theorem 21: If a source has a rate Ri for a valuation i'i it is possible to 

encode the output of the source and transmit it over a channel of capacity C 
with fidelity as near Vi as desired provided Ri < C. This is not possible 
if Ri > C. 

The last statement in the theorem follows immediately from the definition 
of Ri and previous results. If it were not true we could transmit more than 
C bits per second over a channel of capacity C. The first part of the theorem 
is proved by a method analogous to that used for Theorem 11. We may, in 
the first place, divide the {x, y) space into a large number of small cells and 
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represent the situation as a discrete case. This will not change the evalua- 
tion function by more than an arbitrarily small amount (when the cells are 
very small) because of the continuity assumed for p{x, y). Suppose that 
P\(a*, y) is the particular system which minimizes the rate and gives Ri . We 
choose from the high probability y's a set at random containing 

^(R, + e)r 

members where e —> 0 as T —> =o. With large T each chosen point will be 
connected by a high probability line (as in Fig. 10) to a set of ;x-'s. A calcu- 
lation similar to that used in proving Theorem 11 shows that with large T 
almost all .\-'s are covered by the fans from the chosen y points for almost 
all choices of the y's. The communication system to be used operates as 
follows: The selected points are assigned binary numbers. When a message 
v is originated it will (with probability approaching 1 as T —> oo) lie within 
one at least of the fans. The corresponding binary number is transmitted 
(or one of them chosen arbitrarily if there are several) over the channel by 
suitable coding means to give a small probability of error. Since R\ < C 
this is possible. At the receiving point the corresponding y is reconstructed 
and used as the recovered message. 

The evaluation v[ for this system can be made arbitrarily close to Vi by 
taking T sufficiently large. This is due to the fact that for each long sample 
of message x{l) and recovered message y(/) the evaluation approaches V\ 
(with probability 1). 

It is interesting to note that, in this system, the noise in the recovered 
message is actually produced by a kind of general quantizing at the trans- 
mitter and is not produced by the noise in the channel. It is more or less 
analogous to the quantizing noise in P.C.M. 

28. The Calculation of Rates 

The definition of the rate is similar in many respects to the definition of 
channel capacity. In the former 

s = S IfHx'y) log mmdx dy 

with P(x) and t'i = JJ P(x, y)p(x, y) dx dy fixed. In the latter 

c = ^ IIp(x-y) log mm)dx dy 

with Px(y) fixed and possibly one or more other constraints (e.g., an average 
power limitation) of the form K — ff P{x, y) X(.\-, y) dx dy. 
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A partial solution of the general maximizing problem for determining the 
rate of a source can be given. Using Lagrange's method we consider 

// [.(-v, y) log M -P(.v, y)p(x, y) + v{x)P{x, y)] dx dy 

The variational equation (when we take the first variation on P{x, y)) 
leads to 

Py{x) = Bix) e^p(x'v) 

where X is determined to give the required fidelity and B{x) is chosen to 
satisfy 

I B(x)e-Xp(x-V) dx = 1 

This shows that, with best encoding, the conditional probability of a cer- 
tain cause for various received y, Pv(x) will decline exponentially with the 
distance function p(:v, y) between the x and y is question. 

In the special case where the distance function p(.v, y) depends only on the 
(vector) difference between x and y, 

p{x, y) = p(x - y) 

we have 

I dx = 1. 

Hence B(x) is constant, say a, and 

Pv(x) = ae-Xp<x-v) 

Unfortunately these formal solutions are difficult to evaluate in particular 
cases and seem to be of little value. In fact, the actual calculation of rates 
has been carried out in only a few very simple cases. 

If the distance function p(.v, y) is the mean square discrepancy between 
x and y and the message ensemble is white noise, the rate can be determined. 
In that case we have 

P = Min lB(x) — //„(*)] = II(x) — Max JIv(x) 

with JV = (x — y)2. But the Max ffv(x) occurs when y — x is a white noise, 
and is equal to IFi log 27rc Ar where TFi is the bandwidth of the message en- 
semble. Therefore 

P = IFi log IvreQ — IFi log IweA1 

where Q is the average message power. This proves the following: 
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Theorem 22: The rate for a white noise source of power Q and band Wi 
relative to an R.M.S. measure of fidelity is 

R = Wi log Q 

where N is the allowed mean square error between original and recovered 
messages. 

More generally with any message source we can obtain inequalities bound- 
ing the rate relative to a mean square error criterion. 

Theorem 23: The rate for any source of band Wi is bounded by 

Wilog^ <R< Wilogl 

where Q is the average power of the source, Qi its entropy power and N the 
allowed mean square error. 

The lower bound follows from the fact that the max Hy(x) for a given 
{x — y)2 = N occurs in the white noise case. The upper bound results if we 
place the points (used in the proof of Theorem 21) not in the best way but 
at random in a sphere of radius -y/Q — N- 
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APPENDIX 5 

Let Si be any measurable subset of the g ensemble, and S2 the subset of 
the / ensemble which gives under the operation T. Then 

Si = TS2. 

Let Hx be the operator which shifts all functions in a set by the time X. 
Then 

H^S! = H^TS* = THxSo 

since T is invariant and therefore commutes with Hx. Hence if w[5j is the 
probability measure of the set S 

m[HxSi] = m[THxS2] = m[HxS2\ 

= wLSa] = m\Si] 
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where the second equality is by definition of measure in the g space the 
third since the/ ensemble is stationary, and the last by definition of g meas- 
ure again. 

To prove that the ergodic property is preserved under invariant operations, 
let Si be a subset of the g ensemble which is invariant under H*, and let St 
be the set of all functions / which transform into Si. Then 

if Si = ifTS* = TlfS. = Si 

so that HxSi is included in for all X. Now, since 

w[//\So] = m\Si\ 

this implies 

nxSo = Si 

for all X with miSi] 5^ 0, 1. This contradiction shows that .Si does not exist. 

APPENDIX 6 

The upper bound, Na < Ni + , is due to the fact that the maximum 
possible entropy for a power Ni + No occurs when we have a white noise of 
this power. In this case the entropy power is Ni + Ni. 

To obtain the lower bound, suppose we have two distributions in n dimen- 
sions p(xi) and q(xi) with entropy powers Ni and No. What form should 
p and q have to minimize the entropy power Na of their convolution r(x,): 

fxi) = J piyjqixi - yi) dyi. 

The entropy Ha of r is given by 

Ha = - j r(xi) log r(.Tt) dxi. 

We wish to minimize this subject to the constraints 

Ih = — f p{xt) log p(xi) dxi 

Ha = - j q(xi) log q(xi) dx^ . 

We consider then 

U = - j [r(.v) log r(x) + \p(x) log p(x) + nq(x) log q{x)\ dx 

8U = - f [\l + log r{x)]8r{x) + X[1 + log p(x)]8p{x) 

+ /i[l + log q{x)8q(x)]] dx. 
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If p{x) is varied at a particular argument .r, = Si, the variation in r(.r) is 

br{x) = q{xi - s,) 

and 

hU = — J q(xi — Si) log r(xi) dxi — X log pisi) = 0 

and similarly when q is varied. Hence the conditions for a minimum are 

J q(xi - Si) log r(xi) = -X log p(si) 

I p(xi - Si) log r(.r.) = log q{si). 

If we multiply the first by p{si) and the second by q{si) and integrate with 
respect to s we obtain 

H3 = -X Hx 

Hs = —/j. 

or solving for X and m and replacing in the equations 

Hi J q(xi - Si) log r(xi) dxi = —H3 log p(si) 

Hi j p(xi - Si) log r(xi) dxi = -HA log p{si). 

Now suppose p{xi) and </(*,) are normal 
| a |n/2 

p{xt) = exP _ h^AijXiXj 

15 • • I"'2 

qi.xt) = \ " ' exp - IZBaXiXj. 
(Ztt) /2 

Then r(x,) will also be normal with quadratic form C,/. If the inverses of 
these forms are a,-,-, ha, c,/ then 

Cij = fl.-y + btj. 

We wish to show that these functions satisfy the minimizing conditions if 
and only if a,, = A7>,; and thus give the minimum H3 under the constraints. 
First we have 

log r{xi) = | log ] Cn | - ^CijXiXj 

J q(xi - Si) log r(xi) = ^ log ~ | C., 1 - - ^2Ci; 6.7. 
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This should equal 

(y f ? log | d l7 I - //i \_Z lir 

which requires A ,7 = -- C,/. 
ih 

In this case A ,7 = — 5,/ and both equations reduce to identities. 

APPENDIX 7 

The following will indicate a more general and more rigorous approach to 
the central definitions of communication theory. Consider a probability 
measure space whose elements are ordered pairs (.v, y). The variables x, y 
are to be identified as the possible transmitted and received signals of some 
long duration T. Let us call the set of all points whose x belongs to a subset 
6'i of x points the strip over Si, and similarly the set whose y belongs to S2 
the strip over So. We divide x and y into a collection of non-overlapping 
measurable subsets .Y, and T, approximate to the rate of transmission R by 

v _ 1 V i' \ 1 , Yi) 
1 - r ? ( ^ g PiXiW F,) 

where 

P{Xi) is the probability measure of the strip over X, 
P{Y,) is the probability measure of the strip over F,- 

P{Xi, I,) is the probability measure of the intersection of the strips. 

A further subdivision can never decrease Ri. For let Xi be divided into 
Xi = X[ + Xi and let 

P{Yi) = a P{Xi) = b + c 

PiX'i) = b P{X[, Yi) = d 

P(Xi) = c P(Xi, Yi) - e 

P(Xh TO = d + e 

Then in the sum we have replaced (for the Ari, Fj intersection) 

(d + e) log y ."X" d Iog 4 + g loS ~ * 
a{b + c) ab ac 

It is easily shown that with the limitation we have on b, c, d, e, 

'' e" 

CC 

d+e. dd 

~ ¥ ce 
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and consequently the sum is increased. Thus the various possible subdivi- 
sions form a directed set, with R monotonic increasing with refinement of 
the subdivision. We may define R unambiguously as the least upper bound 
for the Ri and write it 

This integral, understood in the above sense, includes both the continuous 
and discrete cases and of course many others which cannot be represented 
in either form. It is trivial in this formulation that if x and n are in one-to- 
one correspondence, the rate from u to y is equal to that from x to y. If v 
is any function of y (not necessarily with an inverse) then the rate from x to 
y is greater than or equal to that from x to v since, in the calculation of the 
approximations, the subdivisions of y are essentially a finer subdivision of 
those for v. More generally if y and v are related not functionally but 
statistically, i.e., we have a probability measure space (y, v), then R(x, v) < 
R(x, y). This means that any operation applied to the received signal, even 
though it involves statistical elements, does not increase R. 

Another notion which should be defined precisely in an abstract formu- 
lation of the theory is that of "dimension rate," that is the average number 
of dimensions required per second to specify a member of an ensemble. In 
the band limited case 2W numbers per second are sufficient. A general 
definition can be framed as follows. Let/a(/) be an ensemble of functions 
and let p?[/«(/),//?(/)] be a metric measuring the "distance" from /„ to 
over the time T (for example the R.M.S. discrepancy over this interval.) 
Let N(e, 5, T) be the least number of elements / which can be chosen such 
that all elements of the ensemble apart from a set of measure 5 are within 
the distance e of at least one of those chosen. Thus we are covering the 
space to within e apart from a set of small measure 5. We define the di- 
mension rate X for the ensemble by the triple limit 

This is a generalization of the measure type definitions of dimension in 
topology, and agrees with the intuitive dimension rate for simple ensembles 
where the desired result is obvious. 

X = Lim 
5_o t-.o •/•-.« T log e 



Transients in Mechanical Systems 

By J. T. MULLER 

Introduction 

A study of the response of an electrical network or system to the input 
of transients in the form of short-duration pulses is an accepted method of 
analysis of the network. By comparing the input and the output, conclu- 
sions may be drawn as to the respective merit of the various components. 

Until recently similar procedures were only of academic interest with 
mechanical systems. However, the tests for mechanical ruggedness, which 
are required of electronic gear in order to pass specifications for the armed 
forces, are an example of the application of transients to a mechanical sys- 
tem. These tests are known as High Impact Shock Tests. 

A basic part of an electrical system is a damped resonant network consist- 
ing of an inductance, a capacitance and a resistance. A mass, a spring and 
a friction device is the equivalent mechanical network called a simple me- 
chanical system and a combination of such networks is a general mechanical 
system. It is, of course, advantageous to keep the mechanical system as 
simple as possible without detracting from the general usefulness of the 
results obtained. 

The problems here considered are pertinent to a system which is essen- 
tially made up of a supporting structure or table and a resilient mounting 
array bearing the equipment (e.g. electronic gear) which is vulnerable to 
shock. (See Fig. 1.) 

A shock is the physical manifestation of the transfer of mechanical energy 
from one body to another during an extremely short interval of time. The 
order of magnitude of the time interval is milliseconds and quite frequently 
fractions of a millisecond. 

The system is excited by administering large spurts of mechanical energy 
to the supporting table. The manner in which this energy is supplied to the 
base and the way it is dissipated through the system are the subjects of this 
paper. 

The energy transfer to the supporting table is accomplished by the use 
of huge hammers which strike the anvil with controllable speeds. The 
action is assumed to be similar to that of an explosion, particularly to an 
underwater explosion at close range or a near-miss. As to the real compar- 
ison between the two, the reader is referred to the various manuscripts 
published by the Bureau of Ships. This particular phase of the subject is 

657 
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considered outside the scope of this paper, except for the following brief 
statement: 

Both actions fit the definition of shock stated above and the difference be- 
tween the two is one of size and not of kind. 

Shocks are transients and are conveniently treated by a branch of mathe- 
matics which is adapted to the solution of problems of this kind; viz, the 
Laplace Transforms, and the reader is referred to Gardner and Barnes, 
"Transients in Linear Systems." The nomenclature used here is identical 
to that of those authors. 

The manuscript consists of two parts: In the first, the energy transfer to 
the base is considered. We are dealing here with rigid bodies; consequently 
with very small transient displacements and very large forces. These are 
usually referred to as impact forces or impulses and four such functions of 
force and time are discussed. Displacements with associated velocities re- 
sult from the action of impulses on the base. 

The second part deals with the effect of these displacements on the shock- 
mounted equipment. Although the mathematical procedure is identical to 
the first part, here we deal with a function of displacement and time. There 
is no specific name for such a relationship but a suggestive term is "whip." 
However, the pulse functions represented are the same as those of the force 
and time function. 

It is assumed that the displacement-time pulse is independent of the subse- 
quent motion of the mass. 

In considering any kind of shock problem we have the following funda- 
mental considerations: 

EQUIPMENT 
{MASS,m) 

RESILIENT 
^ MOUNTING ARRAY 

(STIFFNESS,k) 

r 

Fig. 1—Schematic layout of shock machine. 
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First, we shall want to know the magnitude of the shock present in the 
base or supporting structure; this will be called the "excitation." 

Second, the behavior of the resilient medium interposed between the 
shock-producing base and the equipment. It is sometimes expressed as the 
coupling. We shall use the term transmission. 

Third, the resulting disturbance of the equipment caused by the trans- 
mitted shock, which we will call the response. 

The three functions do not exist independently, but are mathematically 
related. For a clearer understanding of shock phenomena it is perhaps 
helpful to fix in one's mind the idea that the response of a system is com- 
pletely dependent upon the transmission function. 

To use an electrical analogue, the voltage ei (/) impressed upon a system 
produces an output voltage e* (/) which is completely defined by the trans- 
mission function. For instance, if this transmission function represents a 
filter of some kind with given boundaries, then it is to be expected that the 
response of e^ (/) is completely changed outside these limits and could even 
be zero. The same train of thought will hold for mechanical systems. Here 
the transmission function is mostly represented by the stiffness or the com- 
pliance. For a completely rigid medium the stiffness would be infinite and 
the input and output would be alike; in other words, a force applied to the 
base would appear at the equipment. This is a theoretical case because no 
material is perfectly rigid. Though some materials are more rigid than 
others they will all give if the force applied is big enough. Now the forces 
associated with a shock are almost always of considerable magnitude so that 
the stiffness of a material becomes significant. 

As the stiffness diminishes the response changes and may appear to be 
quite different from the input. As far as the transmissibility of forces is 
concerned, the reader is reminded that a force is always accompanied by a 
reaction. The forces which put the base into motion cannot be transmitted 
by a soft material like rubber, unless it is compressed to extremely high 
values, and thus produce an equally large reactive force. 

PART I 

Analysis of The Excitation of the Base 

By recording the motions of the base, we obtain time-displacement curves 
as shown in Fig. 2. The method of recording has been done by means of 
high-speed motion pictures (at the Whippany testing laboratory using a 
Fastex) and by using strain gages (at the Annapolis Engineering Experiment 
Station). 

The test equipments are fundamentally mechanical impact producing 
machines. For technical details and description of the machines the reader 
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is referred to the various test specifications by the Bureau of Ships (as, for 
example, Spec. 40T9). 

The characteristic of an impact is the transfer of mechanical energy from 
one mass to another in a relatively short time. The corresponding force as 
function of time is called an impulse, henceforth indicated as F(/). A study 
of the pulse functions has suggested some probable theoretical shapes of F{l) 
which could cover a wide variety of conditions. These pulse functions will 
be used for force-time functions as well as displacement-time-functions and 
it will be shown that the results are surprisingly similar. 

We will let these pulses operate on the base with mass mi and calculate and 
plot the resulting time displacement curves. Since an impulse is associated 

2 
with energy transfer, it must be a function of -y. From the point of view 

h- Z LU 

It 
Q. <n 
Q 

TIME  » -»! k-2 MILLISECONDS 
Fig. 2—Time displacement record of medium high impact machine. 

of shock action, the final velocity v is extremely important, for it is this 
velocity which will determine the displacement and acceleration of the 
shock-mounted equipment. 

To distinguish the various applications of the pulse functions, the follow- 
ing notations are adopted: 

fit) represents any functions of 1, without reference to its dimensional 
magnitude. The transform of /(/) is indicated by Fis). 

xil) represents a function of / when it is a displacement of the ma:s m 
only. The transform is indicated by X{s). 

xiit) represents a function of I when it is a displacement of the base (with 
mass mf) only. The transform is indicated by Xifc). 

F{t) represents a function of t when it is a force applied to the base. The 
transform is indicated by Fo(j). 

Since xiit) and Fit) are input functions, they may be represented by the 
same type pulse, in which case the transforms are alike, i.e., Fis) = Xiis) — 
Fois). 

Figure 3A, a rectangular pulse, is the simplest form. 
Figure 3B is a triangular pulse,/(/), reaching a peak and returning to zero 

in a linear manner. 
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Figure 3C consists of one-half cycle of a sine wave. 
Figure 3D is a cosine pulse of one-cycle duration and is shifted along the F 

axis an amount equal to the amplitude. 
These are the pulses to be used in the problems under consideration. 
If they represent a force as it varies with time then it is said that F(/) 

represents a particular pulse. The Laplace transform of F{t) is given as 
Fv{s), Fq{s) being some function in the complex domain. It is outside the 
scope of this paper to prove or 5how the mathematical technique in ob- 
taining the transforms which produce Fo(s). We will present them here for 
future reference. 

—b-l 

A A A 

1 1 1 1 1 1 1 
a 

i i i i i i i 

« 2b »j 
TIME = 

2 77" J 
^0 

Fig. 3—Four pulses. 

The Laplace transform for a very short pulse is 

F{s) = Ar (1.01) 

and is a pulse which has a finite area but the time interval of which is 
approaching zero. 

For a square pulse with finite time interval and magnitude a (hereafter 
referred to as pulse amplitude) it is 

F(s) = a 1 ~ e 65 (1.02) 
s 

For a triangular pulse 

^ (-; 1 (io3) 

For a sine pulse 

Hs) = (1 + (104) 
•S2 + 
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For a shifted cosine pulse 

fW = (i - r'"'-) ' (i.05) 

Suppose we let an impulse, and to take a specific example, a triangular 
impulse, operate on a mass m\. We have 

F = Wiflo (1.06) 

in which 

F = F{t) = force in lbs. 

mi — mass in slugs 

flo = .fi = acceleration in ft/sec' 

Let iilxi(l)] = Xi(s) = Xi 
then 

xi] = mX X1(s) 

the .!£' transform of a triangular pulse F(t) is 

—bi \ 2 

b ( ^ 

Substituting 

awt)] = T\——)2 = Fo{s) (1-07) 

Al vnb 52 
. i (^j 

The inverse transform is 

.r'KW] = ««) = 
l_mib s- \ 

-l>a \ 2n — e 
(1.08) 

The solution of 1.09 

= — tTC - "(l - i) + (/ ~ 2'') «(< - 26) j , (1.10) mi b\_6 6 6 J 

After the impulse is over, i.e., for values of / > 2b, 1.10 becomes 

.ri(/) =-h{t- b) (1.11) 
Ml 
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and the final velocity is 

— b. (1.12) 
'"i 

which represents the area of the impulse divided by the mass. 
Similarly we find for the very short square impulse 

.r, = t (1.13) 
MM 

For the square impulse of finite time interval b 

(U4) 
M/i 

For the sine impulse 

•Vi = 
MM^n 

For the shifted cosine impulse 

air 
mmojo 

- 0 - f) Mc^o \ 
(1.15) 

-) Wn/ 
(1-16) 

The velocity is the term preceding the term in parenthesis. 
In the five examples mentioned, we find that this velocity is proportional 

to the area of the impulse curve and inversely proportional to the mass. All 

expressions contain the factor — and, since a is the maximum force present, 

this expression represents the maximum acceleration and it is this value 
which is so frequently mentioned when discussing the actions on the shock 
table. 

For instance, from tecords we have determined approximate values for 
the time interval during which the energy transfer from hammer to the table 
takes place. The high-speed motion pictures are taken at the rate of 4,000 
to 5,000 frames per second, which means an average elapsed time of .22 
milliseconds or 220 microseconds. The energy transfer occurs within this 
time interval, because the rate of increase of the displacement from frame 

1 
to frame is constant. The exposure time of one frame is ^oqq secon^ or^ 

microseconds. If the anvil moved within this time there would be evidence 
of blurring. Since we have been unable to detect any blurring, we may state 
that transfer is less than 220^s yet more than 80|iS. 

Let us assume it to be 100/is. That means a pulse width of lb = lOO/^s. 
(See Fig. 3.) 
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If 

— = flo = acceleration, 
mi 

then 

ab , 
v = — = ano 

nh 

For a 2000-ft. pound shock the table speed v is approximately 7 ft./sec. 
Substituting, we find for Co or the acceleration 

7 = ao X .00005 

or a0 = 140.000 ft./sec.2 

a0 = 4400 "g"s 

This is about the order of magnitude which the accelerometers have 
recorded. 

The important conclusion we draw from this is that the acceleration and 
its time interval combine to produce a velocity of the base which is a com- 
plete criterion of the severity of the shock administered. 

In the example just cited the weight of the table is approximately 800 lbs., 
and the force 4400 x 800 = 3,250,000 lbs. The result is, then, that a tri- 
angular impulse of 3,520,000 lbs. magnitude and a duration of lOO/xs operat- 
ing on a table of 800 lbs., imparts to that table a velocity of 7 ft./sec. 

PART II 

Analysis of the Response 

In Part I the origin of the motion of the base has been treated. This mo- 
tion of the base can now be represented by a pulse or a displacement as a 
function of time. To distinguish the displacement-time function from the 
force-time function, we have already suggested the name Whip. Obviously 
some of the pulse shapes which were used to represent impulses are not suit- 
able as whips. For instance, the square pulse as whip could not exist, since 
this would suppose an infinite velocity. 

The triangular whip is observed in the medium-high-impact shock ma- 
chine. The sine whip may be taken to represent approximately the output 
of the light-high-impact machine. 

The shifted cosine whip is sometimes used in the motion of cams of auto- 
matic equipment. 

The problem of shock response is now reduced to the behavior of a mass 
and spring system when the base motion is represented by a whip. 
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Triangular whip (Fig. 3b). The Laplace transform of this pulse is 

The differential equation for a simple harmonic system is 

mx + = 0 (1) 

or 

— + X = 0. (2) 

If we let the whip operate on this system, then 

— + x = f(t) = xiit) (3) 
O)2 

in which xiil) represents the displacement of the whip as a function of time. 

Let £[»(/)] = ■X'(-s) 

and 

£[xiit)] = £[/(/)] = Fis) = Xlis) 

then 

£[x] = s2Xis) - sfiO) " f\0) 

By definition the initial conditions are zero, so that 

£[*] = 52X(.) (4) 

The Laplace transform of equation (3) is then 

4 2f(s) + X(s) = £[/(i)] = XiW 

or 
( 2 . S + CO 

xis) = Xiis). (5) 
\ CO' / 

Now 

Substituting and rearranging, 
2 /. -68\2 

«.) = -" (6) 
s2 + co2 b \ s J 
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This is the transform equation. To find x we use the inverse Laplace 
transform and the solution of (7) is 

2 flCO 
~ T 

+ (^-Cjn"U^2b))^-2b)]' 

(7) 

The expression n{t — b) simply means that the term to which it is attached 
is zero for all values oi I < b. 

Let us now consider what this solution consists of. 
There are apparently three terms which take effect at successive intervals. 
The initial whip can be considered to consist of three different displace- 

ments starting at successive times 0, b and 2b. With the displacement of 
the base there is a corresponding displacement of the mass m. After the 
time b the second term or displacement takes hold and an associated dis- 
placement of mass m except that the initial conditions are the end conditions 
of the first displacement. After the time 2b the third displacement enters 
and the final result is the displacement-time pulse or whip. To make the 
problem somewhat simpler we introduce the following modifications: 

1°. Because the motion is a simple harmonic of known frequency after 
the whip has passed we will only consider the maximum amplitude. 

2°. Only the displacement-time function of the mass m during the pulse 
interval will be examined. 

3°. The dimensional magnitudes of the motion of mass m will be expressed 
as ratios of those of the pulse. 
If a is the maximum amplitude of the whip, and To = 2b its time interval 
(usually expressed in milliseconds), then we define 
X 
—=6 Amplitude ratio of pulse displacement and response of mass m dur- 
a ing pulse interval only. 
To 2b 2b ub at i i / f . * 
— = — = —  — ip Natural frequency oj mass m expressed as a 

"Tr/o) ^ ratio of the pulse length. 

Elapsed lime expressed as a ratio of the pulse length. 1 
T ~ 2b 

X & = NNN Ratio of maximum amplitude to pulse displacement after pulse 

interval. 
Substituting these values in equation (7) and rearranging we obtain 

j = 2. - Sin - 2 ((2t - 1) - siD ^2r - 1)) M(2T - 1) 
■K(f> \ TTip / 

(8) 

+ (2(r - t) - ^ ^ - 1) 
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This looks somewhat complicated, but we can simplify by omitting the last 
term, because we are only considering values of 5 during the pulse interval. 

• S = 2r - Sin 2-^r ~ 2 ((2r — 1) — „(2r - 1) (9) 
tt*^ \ rip / 

A plot of this equation for various values of ip is shown in Fig. 4. It is seen 
that 8 becomes a maximum when <p is approx. .9 and r is then .75. The dis- 
placement is approximately 1.5 times the peak displacement of the whip. 

After the whip has passed, or when r > 1, the transient has disappeared 
and a steady-state condition exists. Since the system under consideration 
is a simple harmonic system, the steady state is a harmonic motion of fre- 
quency w, with an amplitude to be obtained from equation (8). Indicating 
the dimensionless values of the amplitude by 8a when r > 1, equation 8 may 
be written 

5„ = 2T - - 

(10) 
r > 1 

sin 2<ptt _ 2 ((2t — 1) — s'n <p(2r ~ ^ 
Tip \ Tip 

+ (2(r - 1) - 81,1 ~ l)) 

After developing (10) and rearranging we obtain 

2(1 — cos tp) . . 
8a =   — Sin Tipilr — 1). (11) 

Tip 

The maximum amplitude is 

A = 
2(1 (12) 

Tip 

A plot of equation (12) is shown in Fig. 5. Before considering the action of 
this whip in terms of what it does to the system, we shall take a brief look at 
the analysis of the two other whips; viz., the sine whip and shifted cosine 
whip (see Fig. 3). 

Sine Whip 

We have again equation (3). 

-0 + v = /(I) = Xi{t) CO- 

and equation (5) 

(L+^) xw = f W 
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From 1.04 

F{s) = "2 
(IWo 

. | 2 5+0)0 

Substituting (13) in (5) we obtain 

aoroio 

2 (1 + e-"'-). 

VIA 0 /i I 
A(s) = (S

! +.')(/ + 4)(1 + 6 )- 

(13) 

(14) 

/ 
\ 

/ 
\ 

/ 
\ 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
PULSE LENGTH (INTERVAL) _ , 

NATURAL PERIOD OF SYSTEM 
Fig. 5—Maximum amplitude as a function of frequency ratio-steady state tri- 

angular whip. 

The inverse transform gives us 

floro)o 
X = CO — COo 

f/l . 1 . \ /I . . TT. 
( — sin coo/ — - sin co/ I + I " sin coo (/ — ""J 

_\C0(| CO / \COo COO 

— - sin co (/ — —)) u (/ — —)1 (15) 
CO 0)0 / 0)0 J 

and dividing this into two parts again, the transient and the steady state, 
wp find for the transient, 

aorcoo f1 . 1.1 
-o — sin coo/ — - Bin co/ 
-*0 L^o " J co — a'o 

and substituting the dimensionless quantities 

TT/oio 
5 = ^ a T 

and 

we find 

5 = 

tt/coq 

4/ / . 
4<+ - 1 (,S1 sin ttt — — sin liripr 

2(p ) 
(16) 
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A plot of this equation as a family of curves for various values of (p is shown 
in Fig. 6. It is noted that, in general, this group of curves resembles those 
of Fig. 4 of the triangular whip. 
The steady state is 

<za)2con f 1 . 1 . 
x = ~2 2 — sin a'o / — -sin ut 

CO — a'o L'1-'!) CO (17) 

1 . TT 1 . TT T1 

+ - sin coo (/ — —) — -"sin co (/ — - } 
COo COo CO COq 

and, in dimensionless quantities or expressed as a ratio of the pulse dimen- 
sions, we obtain 

5n = i -^2 coz Sln 27r^(T — !)■ (18) 

From (18) it follows that the maximum amplitude of the steady state is 

- - ^ 

A plot of this curve is shown in Fig. 7. 

Shifted Cosine Whip. 

The shifted cosine whip produces results of a similar nature. We have 
seen that the transform equation for this whip is (1.05) 

(1 " (20) 

Using equations (3) and (5) and transferring to dimensionless quantities, in 
which 

- — 5 ^tt/UQ _ _ _ / _ coo / 
(l ' T ^ coo' 2ir/un 27r 

we obtain 

1 
^ =: m S—tt ( cos lirpT — p cos 27rT 2 Or - 1) \ 

(21) 

— cos lirpir — l)»(r — p cos 27r(T — l)7/(r 

Since we are interested only in the transient displacement, (21) becomes 

(1 — cos 27r^r) — — cos 27rr) , 
i =  2(1-*')   (22) 

A family of curves showing b for various values of is shown in Fig. 8. 
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The steady state after the transient is (from Eq. 21) 

da = ^ 2'—— ( cos 2ir<pT — ip2 cos 27rr 

— cos InpiT — \) -\- ip2 cos 27r(r — 1) 

which reduces to 

sin rip . , . 
da =   sin (ZnpT — rip). 

1 - <p2 (23) 

i,2 

0 8 

< 0.4 

4 0 4.5 0 0.5 1.0 1.5 2,0 2.5 3.0 
PULSE LENGTH (INTERVAL) _ . 

NATURAL PERIOD OF SYSTEM " P 

Fig. 7—Maximum amplitude as a function of frequency ration-steady state sine whip. 

The maximum amplitude is 

A = 
sin rep 
n^p2 (24) 

a plot of which is shown in Fig. 9. 

Practical Considerations 

Let us now consider the action of these various whips in terms of what 
they do to the system. The designer of shockmounts is primarily interested 
in the displacement across the mount or the relative displacement of base 
and mass. 

In Fig. 10 the relative transient displacements for four systems are shown 
when subjected to a triangular whip. The natural frequencies are .4, 1.0, 
1.5, and 2 times the frequency of the whip. From this it appears that the 
maximum relative displacement is approximately equal to the maximum 
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whip displacement. It is also observed that the large relative displacements 
occur when the frequency of the system is smaller than the pulse frequency. 

After the transient has passed, the relative steady-state displacement, 
which is of course equal to the absolute, obtains large values too. 

From Fig. 5 we note that a maximum of 1.5 is reached for the triangular 
whip and up to 1.7 times for the sine whip (see Fig. 7) at a frequency of 
approximately f of the whip. Apparently even larger displacements 
across the mount occur after the transient has disappeared. 

This is illustrated in Fig. 11 for the same systems as in Fig. 10. 
As v increases, which means if the frequency of the system increases with 

respect to the pulse frequency, the displacements across the mounts diminish, 

2.0 

t 1 2 

< 04 — 

1.5 2.0 2.5 3.0 3.3 
pulse length (interval) _ . 

NATURAL PERIOD OF SYSTEM 
Fig. 9—Maximum amplitude as a function of frequency ratio-steady state shifted 

cosine whip. 

while on the other hand the acceleration increases as will be shown later (- ee 
equation 39). 

From this it seems advantageous to select a natural period of the system 
at least twice that of the pulse frequency. 

The relative displacements are limited by practical considerations, such 
as available space between cabinets and bulk head, cable connections, per- 
sonnel safety and others. 

In the design of Bell Telephone Laboratories radar equipment, the rela- 
tive displacement has been held to one-half inch, and the natural frequency 
in the neighborhood of 35 to 40 cycles per second or a period of 25 to 30 m.s. 

The average of the heaviest shock administered to this type of equipment 
has a peak amplitude of 1.5 inch and a time interval of approximately 60 m.s. 

From Fig. 5, we find that under these conditions a maximum relative dis- 
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Fig 10—Transient time displacement curves across the mount for various values of ^ 
triangular whip. 
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Fig. 11—Steady state time displacement curves across the mount. Triangular whip. 
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placement of .42 times the peak pulse amplitude or approximately f inch 
may be expected. 

Taking into consideration that the shock mount has been designed with a 
certain amount of damping, it is thus possible to hold the relative displace- 
ment within the boundaries of its shock-absorbing capacity. 

WEIGHT 
(MASS.m) 

OJ UJ 
2 ^ 

SPRING 
(STIFFNESS.k) DAMPING S? 

TIME 

BASE 1 

f MASS.m] ) 

Fig. 12—System with damping. 

Viscous Damping 

The fundamental differential equation for a system with damping is (see 
Fig. 12). 

.i: + 2(x -f oT.r = 0 

If we let a whip operate on this system we obtain 

.i: + 2(x -+- or.v = uxi{t) 

(25) 

(26) 

However, the sudden displacement of the base also produces an acceleration 
of the mass proportional to the velocity. If .Vi(/) is the displacement then 
.ri(/) may be represented to be the velocity and 2(xi{t) the acceleration. We 
have, then, for the completed equation 

x + 2fx + or.v = uxiil) + 2fxi(l) 

In the Laplacian terminology, if 

*i(0 = Hs) 

(27) 
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then 

xi{t) = sF{s) (initial value being zero) 

The Laplace transform of equation (27) is 

X(s) = , + 2'* ^ F(s). (28) 
S2 + 2(S + w2 

The solution of (28) is made easier if it is written in the form 

= (29) 

in which 

a — ( and a2 + /32 = w2. 

Subjecting this system to a triangular whip, of which the Laplace trans- 
form is 

we have 

the solution of which involves two transform pairs. The inverse transform 
gives us a solution of the transient as well as the steady state. It has been 
mentioned before that the steady state produces the maximum displace- 
ments across the mount; therefore it will be considered in more detail. We 
find that the steady state solution is 

-bs\2 — e 

xa(t) = ^ e— ^ —sin 0/ -|- 2eab sin /3(/ — h) — e2al' sin /3(/ — 26)^ (31) 

Which simplifies to 

xa(t) = ~ I VW+V) sin (01 - 0) (32) 
P o 

Using dimensionless quantities 

f a j s 
77 = — = — ana — = Oa 

co o: a 

and the substitution 

Vl - r = 7, 
we find that 

b0 — buy = iripy 
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Equation (32) may now be expressed as 

679 

in which 

and 

5a = — \/(A2 + B2) sin (coy/ — 9) at > 2rjTip (33) 
ircp 

ID 
tan 6 = — 

A 

^4 = — 1 + le1"* cos 7r^7 — COS lircpy 

B = 2e^ sin ircpy — e'1'"'' sin 2x^7 

< 1.6 

< oe 

1.5 2.0 2.5 3.0 
PULSE LENGTH (INTERVAL) 

3.5 4.5 

7 
al = - { tan 1 - + tan 1 ~ 

v A 

(34) 

(35) 

/ 
\ WITHOUT 
\ DAMPING 

/ 
WITH DAMPING 

- 0-5) 

L / 
5.0 

NATURAL PERIOD OF SYSTEM 
Fig. 13—Effect of damping on steady state amplitude for triangular whip. 

From equation (33) we obtain the maximum displacement 
—at 

A = \/A2 B2 al > 2r]Trip (36) 
irtp 

in which 

r, / , -v , «\ 
al > Qtjtttp 

In Fig. 13 a plot of equation (36) is shown for tj = .5. This indicates that 
the peak value of A is .24 as compared to 1.48 when no damping is present. 

Accelerations 

The transient accelerations of the mass m during the whip action and the 
subsequent steady state may be found by examining the acceleration during 
the first part of a triangular whip. Designating the velocity of displacement 
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of the whip by v the expression for x may be formed from equation (7) by 
setting I < b. 

ao? (I sin wA , , ^ 
x = -b\ls-^r)' t<b (37) 

and, since 7 = » 
b 

V 
x = vt — — sin ut (38) 

CJ) 

whence 

x = vw sin 0)1 

and the maximum acceleration is 

Ao — vu (39) 

Let 

— = Xo then X0 = 1 
VO) 

By proceeding in a similar manner with the next step of the whip the value 
of the acceleration ratio will be found to be 

Xo = 3 

and for the completed whip or steady state 

Xo = 4 

The expression .4o = Xq'-'w is an important factor in shock considerations. 
Thus we have a simple relation for the final maximum amplitude of the periodic 
acceleration of the mass m when subjected to a triangular whip; viz., it is 
four times the product of whip velocity and natural frequency of the system. 
The constant Xo depends upon the configuration of the whip; the velocity 
v indicates the intensity of the whip; while co expresses the kind of response 
the system is capable of. 

It is of interest to note that^this maximum periodic value of ^0 will be pro- 
duced only if the ratio of pulse frequency and natural frequency is of the 
correct value. It is difficult to produce shocks on existing equipment of 
exactly the same characteristics within narrow limits as to time duration 
and therefore it must expected that a considerable variation in damage 
may occur even though similar shocks are administered to identical test 
objects. For the same reason a shock of lower intensity may produce 
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more damage than a higher one because impulse amplitude as well as dura- 
tion change at the same time. 

Although damping is a highly desirable feature in a shock mount, the 
damping device may cause a certain amount of coupling between the mass and 
the base, and if too much damping is provided the transient acceleration of 
the mass may become excessive. 

The analysis of this problem by means of the Laplace transforms is not 
difficult, for we can use results previously obtained. The transform equa- 
tion for a system with damping, subjected to a whip, is 

^ (40) 

in which F{s) represents the transform of the disturbance or excitation. 
Since we are interested in the effect of the damping or rj upon the response, 
only the first part of the triangular whip will be considered. 

In this case 

.fi(0 = vl 

and 

AW/)] = F(s) = (41) 

Substituting (41) in (40) 

^(co2 + 2Q:S) „ / \ / 
X(s) = 2r/ . \2 | o2l = ^l(S) (^2) s IU + a) + p \ 

If X(5) is the transform of x{l), a displacement, then the acceleration is x(l) 
or g(l), (x{t) = g(l) by definition) and 

mo] = -%(')] = 

Substitution in (42) gives 
2 

5 + — 

^(^^(^a)22;,2 («) 

Now £-l[s2X(s)] = g(l) 
so that 

8«) = ^ ~ I .] r-' sin (pi + t) (44) 
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Fig. 14—Transient acceleration during initial part of triangular whip. 

Letting 

and 

vu 
a. ( 
~ = - = V, $ = Vl - V2 = 0)7 

Substituting 

in which 

col = 6o 

~l0o 
X =   sin (X0o + -A) 

T 
(45) 

tan tp = 'vy 
i — 277" 

Figure 14 is a plot of X against do for various values of r;. It is noted that 
for 77 = .5 of critical damping the initial acceleration is equal to the un- 
damped, X being one. 

The data presented here are also applicable to long duration pulses, be- 
cause the final results have been given in dimensionless quantities, the units 
of measurement being those of the pulse. 

Symbols Used 

Mass m 
Mass of base nil 
Spring stiffness k 
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Displacement mass *...x,x(J) 
Displacement base -Vi, Xi(l) 
Force on base F, F{l) 
Velocity of base v 
Acceleration of base ao , $1 
Acceleration of mass m .i;, x{i), g(l) 
Maximum acceleration of the mass m Ao 

Maximum acceleration ratio Xo = — ^co 

Acceleration ratio X = —^ VLO 

Natural frequency of mass m (circular) j3o 
Circular (angular) displacement col = do 
Frequency of sinusiode of which pulse consists (not pulse frequency) coo 
Peak pulse displacement a 
Pulse period (triangular) 2b 

TV 
(sine pulse)  

wo 
2t 

(shifted cosine pulse)  COo 
Period of mass m T 
displacement during pulse period _ - = 3 

peak pulse amplitude 
amplitude steady state _ ^ 
peak pulse amplitude 
max. amplitude steady state _ ^ 

peak pulse amplitude 
elapsed time ' _ l_ ijjv l/liv l_ = T 

pulse length (interval) 2b' wo ' wn 'To 
pulse length (interval) _ 

natural period of system T 
Damping coefficient (, a 

t 
Critical damping ratio — = 7; CO 
Transform of x(l) — X(s) 

" XiQ) =...• Xi(s) 
" F{1) =  F0(s) 
" /(/) =  F{s) 

f{t) represents any function of /, without reference to its dimensional 
magnitude. 



Maximally-flat Filters in Waveguide 

By W. W. MUMFORD 

Microwave radio relay repeaters require the use of band-pass filters which 
match closely the impedances of the interconnecting transmission lines and which 
suppress adjacent channels adequately. A type of structure called a Maximally- 
Flat filter meets these requirements. 

The ladder network which gives a maximally-flat insertion loss characteristic 
is discussed and several methods of achieving its counterpart in microwave trans- 
mission lines are presented. Resonant cavities are used to simulate tuned circuits 
and the necessary formulas relative to this approximate equivalence are given. 

Experimental data confirm the theory and show that this technique yields 
remarkable impedance matches. 

Introduction 

\ It 7"E USUALLY associated the word filter with any device which is selec- 
^ tive. The electric wave filter has that property which enables it to 

transmit energy in one band or bands of frequencies and to inhibit energy in 
other bands. Selectivity is the result of either selective absorption1,2* 
or selective reflection. This paper discusses a special case of the classical 
lossless transducer which derives its selective properties entirely from selec- 
tive reflection. The insertion loss of this type of filter can be analyzed in 
terms of the input reflection coefficient and the input standing wave ratio. 

In many applications of lossless filters it is desirable to obtain a character- 
istic such that the insertion loss, and hence the reflection coefficient, is small 
over as wide a band as possible. A special case described here, referred to 
as a maximally-flat filter, has a loss characteristic such that a maximum 
number of its derivatives are zero at midband. While the maximally-flat 
type of characteristic does not give the smallest possible reflections over a 
finite pass band, it does give small reflections, and has added advantages of 
simplicity in design and in many cases less transient distortion than filters 
giving smaller reflections. 

The desirable characteristics of maximally-flat filters have long been 
realized.1,3 Mr. W. R. Bennett4 of these Laboratories derived the con- 
stants for a maximally-flat ladder network in the late 20's, and gave simple 
expressions for the element values. Butterworth,5 Landon6 and Wallman7 

have treated maximally-flat filter-amplifiers in which the filter sections are 
separated by amplifier tubes. Darlington8 has considered the general case 
of four terminal filters which have insertion loss characteristics that can be 
prescribed, but he places the emphasis more on filters that have tolerable 

* A list of selected references appears at the end of the paper. 
684 
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ripples in the pass-band than on maximally-flat structures. The work of 
Bennett will be followed closely not only because it came first, but also be- 
cause it is easy to understand. 

Bennett expresses the values of the filter branches in terms of their cutoff 
frequencies, which in turn bear a relationship to the cutoff frequencies of the 
total filter. In the language of one who is familiar with microwave tech- 
nique,9- 1U-11 •12 the values of the filter branches can be expressed in terms of 
the loaded ()'s of the cavities, which in turn bear a relationship to the loaded 
Q of the total filter. A simple mathematical expression connects the loaded 
Q to the cutoff wavelengths. 

At low frequencies the band-pass maximally-flat filter is made up of 
resonant branches connected alternately in series and in parallel. The 
microwave analogue of this configuration is obtained by the use of shunt 
resonant cavities that are spaced approximately a quarter wavelength apart 
in the waveguide. Use is made of the impedance inverting property of a 
quarter wave line, thereby eliminating the necessity of using both series and 
parallel branches. 

The resonant cavity in the waveguide resembles a shunt resonant tuned 
circuit,'3 but is different in several minor respects. An analysis of these 
differences reveals the corrective measures that are necessary in order that 
the simulation shall be sufficiently accurately attained. 

The first part of the paper deals with the concepts of loaded Q and reso- 
nant filter branches of both the scries and the parallel types. Admittance 
and impedance functions, as well as expressions for the insertion loss, are 
given using these terms, and the relationship between loaded Q and cutoff 
frequencies is stated. This concept of loaded Q is then introduced to de- 
scribe the performance of a complete maximally-flat filter in terms of its 
cutoff frequencies. The insertion loss is then given as a simple expression 
containing the total Q and the resonant frequency. The Q's of all the 
branches are derived from the total Q in simple terms. The connection be- 
tween the insertion loss and the input standing wave ratio is then discussed 
before turning to the actual design problem. 

Next the paper deals with the application of the filter theory to wave- 
guide technique. The limitations of the quarter-wave coupling lines are 
pointed out and the added selectivity due to them is derived. 

Then the paper compares microwave resonant cavities with parallel- 
tuned circuits. Formulas are given which relate the geometrical configura- 
tion to the loaded Q, the resonant frequency and the excess phase of the 
cavities. Three types of cavities are treated: those using inductive posts, 
inductive irises and capacitive irises. 

Finally, the measured results on a four-cavity maximally-flat filter in 1" X 
2" waveguide are presented and compared with the original design points. 
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As a further confirmation of the theory, the experimental results on another 
and longer waveguide filter consisting of fifteen resonant cavities and four- 
teen connecting lines are given. The conclusion is reached that maximally- 
flat waveguide filters can be designed to have excellent impedance match 
and off-band suppression qualities. 

Notation 

a Width of waveguide. 
b Height of waveguide. 
B Normalized susceptance. 
c Velocity of light in free space. 
Cr Capacitance in the rth branch of a filter. 
d Width of iris opening. 
d Diameter of post in waveguide. 
b A small number « 1. 
e Base of natural logarithms. 
/ Frequency. 
/u Resonant frequency. 
jc Frequency at half power point. 
fcw Cutoff frequency of waveguide. 
G Terminating conductance of filter. 

K Susceptance parameter. 
( Length of transmission line. 
(' Length of line corresponding to excess phase of cavity. 
(c Length of line connecting two cavities. 
Xo Resonant wavelength. 
Xc Wavelength at half power point. 
\0 Wavelength in transmission line. 
\a Wavelength in free space. 
Lr Inductance in rth branch of a filter. 
m An integer, including zero. 
n Number of branches in filter. 
Po Available power. 
P!. Power delivered to load. 
Q Loaded (). The selectivity of a loaded circuit. 
Qr Loaded Q of the rth branch. 
Qt Loaded Q of the total filter. 
R Terminating resistance of the filter. 
s Distance from center of waveguide. 
5 Voltage standing wave ratio. 



MAXIMALLY-FLAT FILTERS IN WA V ECU IDF. 687 

t Thickness of iris. 
Vmax Maximum voltage on transmission line. 
Tm,-„ Minimum voltage on transmission line. 
oj Angular frequency. 
9, Frequency parameter. 
Y Admittance. 
Fo Surge admittance of transmission line. 
Z Impedance. 
Zo Surge impedance of transmission line. 

Y1 
Y3 y5    

1 

Y2 
Y4 Yn-i 

THE Y'S ARE USED TO DENOTE 
GENERALIZED ADMITTANCE FUNCTIONS 

Fig. 1—Block diagram of a filter consisting of a ladder network. 

1-1 ^3 l5 Ln 
0—nnnD— -nroTD— —GFFD—0 

-C2 - -C4 - ^c6 ; ^Cn-i 

Fig. 2—Schematic diagram of a low-pass filter. 

General 

The art of designing filters which utilize lumped elements is well known. 
Desirable characteristics may be obtained by means of a ladder network of 
generalized admittances, such as is illustrated in Fig. 1. In particular a 
low-pass filter takes the configuration shown in Fig. 2, and a band-pass filter 
that of Fig. 3. In either case, certain frequency selectivity characteristics 
can be obtained when the individual branches are assigned definite values. 
The individual branches, LiC'i , L2C2, in the bandpass filter consist of an 
inductance, Lr, and capacity, Cr, in series or shunt. For the specific case 
to be discussed in this paper, namely a filter consisting of lossless elements 
intended for insertion between a source having an internal resistance R 
and a receiver having the same resistance, analysis is simplified if a branch 
is described in terms of its resonant frequency and its loaded Q* The 

* The loaded Q of a resonant branch in such a filter is the reciprocal of its percentage 
band width measured to the half power points when that branch alone is fed by the same 
generator and has the same load resistance as that of the total filler. 
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resonant frequency of a branch is independent of the terminal resistance and 
is given by the relation 

1 
/o — 2WLrCr 

(1) 

The loaded Q of the branch, to be designated ()r, is a function not only of the 
inductance and capacitance in the branch, but also of the resistance, R, of 
the terminations on the filter. For the series resonant branches, it is given 
by 

  1 . /Lr   ti-'o Lt 
~ 2R y (Tr ~ TR 

and for the parallel resonant branches 

^Cr _ COQC, R. 

(2) 

(3) 

L| ,/Cl La c3 

tC2 j 

Ln cn 
..—nnnr^-|(—o 

c4 Ln-i ^n-t 

Fig. 3—Schematic diagram of a band-pass filter. 

It may be noted that the loaded Q can be defined in terms of the insertion 
loss imposed by connecting the branch between a source and receiver each 
of resistance R. Analysis of such a circuit shows that 

~ = l + tf (t-T 
"■GH)' 

(4) 

where / is the frequency; 
Po is the power available from a generator which has an internal 

resistance P; 
P/, is the power delivered through the inserted branch to a load of 

resistance R. 
At the cutoff frequency, fc, defined as the frequency at which the power 

■Po 
delivered to the load is half the available power, — = 2, whence 

2 L 

Qr = 
1 fo 

fc fo fc2 ~ fey 
JO fc 

(5) 
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Written in terms of the wavelengths this becomes 

Xo 
Or = (6) 

This equation is a convenient one to use later in the discussion on resonant 
cavities. 

The normalized admittance of a single-shunt branch terminated by a re- 
sistance R can be expressed in terms of its resonant frequency and its (); 
thus 

VR = 1 + j2Q, 
HH)- 

(7) 

Similarly, the normalized impedance of a single-series branch terminated 
by a resistance R can be written 

Z 
^ = i « (8) 

l_h 
Jo / 

The use of the term loaded Q thus has the advantage that expressions for 
normalized admittance and normalized impedance of shunt and series reso- 
nant circuits respectively are identical, as are also the corresponding expres- 
sions for their insertion loss functions. 

Loss functions of complete filters can likewise be expressed in terms of a 
loaded Q defined for the complete filter. For example, the loss function of 
the particular type of filter called a "Maximally-flat" filter is given'1 

2n 

A 
Pl 

- 1 + 

7 _/o" 
/o / 

Sc /o 

Jo ~ J_ 

(9) 

where n is the number of resonant branches in the filter, and/- is the cutoff 
frequency of the filter (half power points). 

In consequence of the concept of loaded Q of the total filter, the loss 
function can be expressed as 

K " 1 + 

where the total Qr of the filter is 

Qt = 

(M T - T (10) 

(11) 
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For convenience, the bracketed term of equation 9 may be called a 
frequency parameter, whence 

0 = 

L fo 
fo f 
fc fo 

L/o /J 

and the loss function becomes 

^ = i + (n)2". 

(12) 

(13) 

  

'— -- 
/ / 

P0 , , ,,,,20 

J\ 
/ 3

L 

r~ 
/ 

/ 

/ 
0.1 0.2 0.4 0.6 1 

(n)n I03 

Fig. 4—Insertion loss of maximally-flat filters. 

Maximally-Flat Filters 

The loss function for maximally-flat filters as given in equation 13 is 
plotted in Fig. 4 where the insertion loss in db is used on the ordinate and 

42" is used on the abscissa. 
The ladder network which gives rise to this loss function consists of n 

resonant branches, as shown in Fig. 3, that are all tuned to the same fre- 
quency, but whose selectivities, or loaded (Ts, are tapered from one end of 
the filter to the other according to the positive imaginary parts of the 2n 
roots of — 1, according to the theories of Bennett4 and Darlington.8 These 
roots are expressed thus 

'2r - 
sin (2j*r)" 
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where r is the number of the root, n is the total number of branches. Thus 
the selectivities of the branches follow the relation 

()r = ()7 sin ^2n ^ tt (14) 

where Qr represents the selectivity of the total filter, and Qr represents the 
required selectivity of the riU branch, e.g., the selectivities of the first, second 
and third branches are 

0. = 

ft = ersin^ (IS) 

Q, = 

This type of filter is particularly practical when a filter is required to give 
more than a certain amount of insertion loss in an adjacent band, and less 
than another certain amount of insertion loss at the edges of the pass-band. 
Putting this information in equation 10 gives two equations containing two 
unknowns, Qr, the selectivity of the total filtej, and n, the number of 
branches needed to fulfill the stated requirements. The solution for n 
may be fractional, in which event the next higher integral value of n is 
chosen, and this value is used to determine the selectivity, Qr , of the filter. 
From this, the selectivities of all the branches are determined in accordance 
with equation 14. 

Standing Wave Ratio 

An alternative way of specifying filter performance is to refer to the input 
impedance mismatch as a function of frequency. The impedance mis- 
match can be expressed in terms of the direct and the reflected waves and in 
terms of the standing wave ratio that exists along the transmission line that 
connects the properly terminated filter with its generator. The standing 
wave ratio and the insertion loss of a filter bear a definite relationship to 
each other if the filter is composed of purely reactive elements. This rela- 
tionship is given by the formula 

Po (S + I)2 

K = "Ts- (16) 

Fmax where A is the standing wave ratio, '"ax, of the maximum voltage to the 
V min 

minimum voltage as measured along the transmission line. 
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When the filter characteristic is given by equation 13, the relationship be- 
tween the frequency parameter, and the standing wave ratio can be ex- 
pressed as 

(«)" = . (17) 

This is shown graphically in Fig. 5, where the standing wave ratio is given 

in db ( 20 logio ^""iX). This graph is used as an aid in the design of filters of 
\ ' min / 
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Fig. 5—Input standing wave ratio of maximally-flat filters. 

this type, where the requirements are given in terms of the standing wave 
ratio. From this information the number of filter branches and the selec- 
tivity of the total filter can be determined, either from equation 17 or from 
Fig. 5. 

Distributed Branches 

It has been assumed that the mutual impedances of successive branches 
are all zero. At low frequencies this limitation may not be a serious one 
and the practical realization of the expected filter characteristics is accom- 
plished by shielding properly one branch from another. However, as the 
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frequency is increased it becomes difficult to isolate the branches and unde- 
sirable mutual impedances arise which complicate the problem. In par- 
ticular, in the microwave region, where waveguides are used, the physical 
size of each branch may be large compared with the wavelength and it is 
then impossible to lump all the branches at one place in the waveguide with- 
out encountering the complicated effect of mutual impedances. 

A practical way of circumventing this difficulty is to distribute the branch 
circuits along the transmission line or waveguide at such distances that the 
mutual impedances become negligible. Then, however, the lengths of 
transmission line act as transducers, but since their properties are well under- 
stood and readily calculable this appears to be a practical solution. As a 
matter of fact, the impedance transforming properties of a length of trans- 
mission line can be used to advantage.11 •1:1 ■14 For instance, it is well 
known that a quarter wavelength of lossless line transforms a load imped- 
ance according to the relation 

Z =~ (18) 

where Zq is the surge impedance of the line and ZL is the load impedance. 
Hence if the load impedance consists of a series resonant circuit contain- 

ing an inductance, a capacity and a resistance equal to Zo in series, the im- 
pedance at the input end of the quarter wavelength of line is given 

^ = r ■ (W) 
[i + ftQ (jo - j)] 

The input admittance is 

Y = Y, (20) 

As can be seen from equation 7, this is identical with the input admittance 
of a parallel tuned circuit whose terminating conductance is 

G = Fo. (21) 

The quarter-wave line likewise transforms a parallel circuit to a series 
circuit, as is illustrated in Fig. 6. This property of the quarter-wave line 
thus makes it possible to simulate a ladder network of alternate series and 
shunt branches by spacing shunt branches (or series branches) at quarter 
wavelength intervals along a transmission line, as illustrated in Fig. 7. 
The resonant frequencies and the selectivities of the branches are chosen as 
before. 
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Sometimes in practice a quarter wavelength may not be sufficient spacing 
to avoid mutual impedances arising between adjacent elements, in which 
event the connecting line may be increased to a higher odd multiple of quar- 
ter wavelength. This accentuates the frequency sensitivity of the connect- 

Vi 
Yl= Y0(I+i2n.) 

o— 

Vo E 2o >Zo 

Z/=Z02Y0(l+j2rL) 

Fig. 6—Illustrating the impedance inverting property of a quarter wavelength of trans- 
mission line. 

LUMPED CONSTANT FILTER USING SERIES & SHUNT ELEMENTS 

f02,Q2 fon.Qn 

I 
LS 

'01,1 
fon-it

Qn-i 

LUMPED CONSTANT FILTER USING ONLY SHUNT ELEMENTS 
A0 AQ /vq 

toi,ui ro2,u2 t031
u3 ron-i,wn-i "on.^n 

Fig. 7—Simulation of ladder network by shunt branches at quarter wave intervals. 

ing line, but this effect can be taken into account by decreasing the selectiv- 
ities of the branches themselves by appropriate amounts. In narrow-band 
filters this may be negligible, but in broad-band filters it may be consider- 
able, as shown in the following analysis. 

Selectivity of Connecting Lines 

Consider a length of transmission line having a surge impedance Zo = 
1 

and terminated in a parallel resonant circuit containing an inductance, a 
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capacitance and a resistance equal to Zo ,* as in Fig. 6. The terminating 
admittance is given by the relation (See Eq. 7 and 9) 

Y L = Fo(l +i2S2). (22) 

The input admittance at the end of the length of line, f, (nominally a quar- 
ter wavelength long) is given by the relation 

Y _ (1 + i2fi) cos 0 + j sin 0 
To cos 0 + y(l + jlYt) sin 0 

(23) 

where 

ItrC 
\ 

t = length of line 

X = wavelength 

-"(H) 
n = 

letting 

0 = 1(1 + 5) = ^ + T (24) 

cos 0 = —sin ^ ^ (25) 

sin 0 = cos ^ = 1 (26) 

where 5 is a number small compared with 1. Then the admittance becomes 

v ^ . tt^  i  /77>. 

y° 12 l+j(2!2 + ^) 

This is the normalized input admittance of a circuit as shown in Fig. 8, 
where each end of an ideally inverting line is shunted by a tuned circuit 

whose normalized admittance is j ^. 

'Zirt tt 
From Eq. 24, setting — = x, it follows that 

Xo 2 

(28) 

* More generally, the terminating admittance can assume any value without affecting 
the result. 
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From equation 7, the admittance of the circuit is expressed in terms of its 
selectivity, thus 

=j2Q(ja ~j)- 

Solving for the selectivity of this circuit, from Equations 28 and 29: 

(29) 

(30) 

The selectivity of the coupling line can hence be counteracted by sub- 

tracting - from the selectivities of the branches associated with it, provided 

tt6 rrfi 
J 2 

1 1 AT 
T T ALL 

FREO 

Fig. 8—Schematic diagram illustrating that the selectivity of a quarter wavelength 
of line can be represented by adding a tuned circuit to each end of an ideally inverting 
impedance transformer. 

the coupling line is a quarter wavelength long. If it becomes necessary to 
Stt 

use f wavelength coupling lines, the selectivity of the line is tripled and — 

is subtracted from the selectivities of the associated branches. 

Resonant Cavities 

The foregoing analysis reviews the principles of the design of filters which 
use lumped-constant circuits distributed along a transmission line. These 
principles can be applied to the design of filters in waveguides, coaxial lines, 
or any other types of transmission lines, provided that these lines are suffi- 
ciently lossless, the band is sufficiently narrow and the branches themselves 
are realizable. In the microwave region the first two provisions are usually 
met without difficulty, as is also the third provision when circuits with dis- 
tributed constants are used. It may be difficult to construct a coil and a 
condenser circuit for microwaves, but easy to construct a resonant cavity 
which displays some of the desirable properties of the tuned circuit. Reso- 
nant cavities are similar to lumped tuned circuits in two respects.12'13 They 
transmit a band of frequencies and they introduce a phase shift. An ap- 
proximate equivalence is demonstrated in Appendix I, and is illustrated in 
Fig. 9, which depicts a resonant cavity as being nearly identical with a 
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tuned circuit situated across the middle of a short length of transmission 
line. This short length of transmission line is added in order to account for 
an excess of phase shift associated with the resonant cavity, but it can read- 
ily be absorbed in the connecting line which otherwise would have been an 
odd quarter wavelength long. 

The similarity between resonant cavities and resonant lumped circuits 
enables one to use the known art of designing lumped element filters to de- 

£' r 

RESONANT 
CAVITY 

Z + 2Z = 
X6" 

Fig. 9—A resonant cavity is approximately equivalent to a resonant circuit shunted 
across a short length of transmission line. 

Y0 LINE 

TAN&^-S 
\0 B 

ARCTAN|- , y B4 + 4 02 2 Q =   = —  ARC TAN — 
2 ARC SIN 

VB4 + 4B2 

Fig. 10—The resonant wavelength and the loaded Q of a cavity depend upon the 
normalized susceptance of the end obstacles and their separation. 

sign filters which use resonant cavities, provided that the selectivity, the 
resonant frequency and the excess phase shift of the resonant cavity are 
known. 

Resonant Wavelength and Loaded Q of Cavities 

These properties can best be derived by considering one of the usual types 
of cavities, which consists of two obstacles or discontinuities separated by a 
length of transmission line. Such a cavity is shown schematically in Fig. 
10. The obstacles at each end are assumed to be equal, and to have an 
unvarying susceptance BY a, where To is the surge admittance of the con- 
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necting transmission line. This type of cavity is resonant when the rela- 
tion is satisfied9 •10 

tan 
2irl 
Xo 

2 
B (31) 

where Xo is the resonant wavelength in the transmission line, 
(is the length of the cavity 

B is the normalized susceptance of the end obstacles. 
This resonance occurs at any number of wavelengths, but the 1st or 2nd 

longest wavelength at which resonance occurs is in the region which is usu- 
ally of greatest interest. 

The selectivity in this region is determined also by the value of the nor- 
malized susceptance, B, of the obstacles, and is given by the relation (See 
Appendix I) 

Q = 

arc tan — 
B 

(32) 
2 arc sin 

V-B4 + 4B2 

This selectivity is based upon the wavelength, not the frequency parameter. 
In terms of the wavelength in the transmission line this is 

<3 = 
XffO \g0 

Xpel X. gel 
(33) 

2-Ki _ 2'KI 
Xflrcl X(jc2 

where X^o is the wavelength of resonance in the transmission line and Xac 

is the wavelength at the half power points. If the phase velocity in the 
transmission line does not vary with frequency, then the selectivity can be 
expressed simply in terms of either the wavelength or the frequency since 

LSi 
fo / 

Xo   X 
"x x^ 

(34) 

However, when the velocity in the transmission line varies with frequency, 
equation 34 does not hold true, and the expression relating the two parame- 
ters is more complicated. In the case of the rectangular waveguide 

X0 = (35) 
V/2 - fL 

where c is the velocity of light in vacuum,/cu, is the cutoff frequency of the 

waveguide, fcw = 
and a is the width of the waveguide. 
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It can be shown readily that the frequency parameter can be expressed 
in terms of the wavelength, thus 

f _ fo\ = f^oo _ 
/o / ^g"/ V^g/ V^gO/ 

(36) 

where Xa is the wavelength in free space. 
For narrow percentage bands, this reduces to the approximate relation 

/ / _ fo\ ^ Ago _ ^g\ /XaoV 
\/o f / KoJ \XgO/ 

(37) 

-20 

(D -in 
«. _e 

-6 
-5 CAVITY WITH INDUCTIVE OBSTACLES 

o -4 

"r -3 

-1 -2 D "2 ^-VB4 + 4B2 tan-.2. TAN 
Q = 

2 SIN-1 

7B4 + 4!p 
j— -I 200 5 6 e to 20 30 40 50 60 80 100 

SELECTIVITY (LOADED Q) 
300 

Fig. 11—The relation between loaded Q and normalized susceptance. (Inductive oh 
stacles) 

This states, in effect, that the percentage bandwidth is greater in terms of 
wavelength than in terms of frequency, by the square of the ratio of the 
wavelengths in the guide and in free space. The selectivity in terms of the 
frequencies and wavelength ratio thus becomes 

«* ■ &)' ■ ■ "« 

This is the selectivity that is plotted as a function of B in Figures 11 and 12. 

Excess Phase and Connecting Lines 

The excess phase of this type of cavity is taken into account by adding the 
lengths of line, C (see Fig. 9), which have a length given by the relation (See 
Appendix I) 

tan 
■irrC = _ (V 

Xgo kB. 
(39) 
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Combining Eq. 31 and Eq. 39 and solving for t' in terms of t 

I' = (40) 

where C is the length of the cavity and X0o is the resonant wavelength in the 
line. 

CAVITY WITH CAPACITIVE OBSTACLES 
K~£—*1 

-I 2 
I—=ii^TAN-'f 

TAN 
Q = 

25 N 
'VB4 + 4B2 

3 4 5 6 7 8 9 10 20 30 40 50 60 80 100 
SELECTIVITY (LOADED Q) 

200 300 

Fig. 12—The relation between loaded Q and normalized susceptance. (Capacitive ob- 
stacles) 

Thus, when this length, corresponding to the excess phase of the cavity 
resonator, is absorbed in the length of line connecting two cavities together, 
the correct total connecting length becomes 

L = {2m + 1) ^ - ([ - ft 

A + A 
T + Y (41) 

where A and A are the lengths of the cavities and m is any integer including 
zero. 

Obstacles in Waveguides 

The three properties of the cavity—the resonant frequency, the selectiv- 
ity and the excess phase—are given in Equations 31, 32 and 39, regardless 
of the sign of the normalized susceptance, B. In the case where the obstacles 
are inductive, B is negative; and where the obstacles are capacitive, B is 
positive. 
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Further explanation is needed to distinguish between these two impor- 
tant cases. First consider the case where inductive obstacles are used. 

Tan — is negative and the cavity length lies between a quarter and a half 
X0o 

wavelength (plus any multiple of half wavelength). The selectivity, as 
given by equation (32), is plotted on Fig. 11 for the fundamental mode. 
The excess phase is positive, and the added lengths, of Fig. 9 are positive. 
The connecting lines between two such cavities are then slightly less than a 
quarter wavelength (or odd multiple thereof). 

Next consider the case where the obstacles are capacitive. Tan -— is 

positive and the cavity length lies between zero and a quarter wavelength 
(plus any multiple of half wavelengths). The selectivity as given by equa- 
tion (32) is plotted in Fig. 12 for cavity lengths lying between a half wave- 
length and three quarters wavelength. The excess phase is negative and 
the added lengths, ([ of Fig. 9 are negative. The connecting lines between 
two such cavities are then slightly longer than a quarter wavelength (or odd 
multiple thereof). 

SuSCEPTANCE OF OBSTACLES 

The Equations (31), (32) and (39) give the resonant wavelength, the selec- 
tivity (in terms of wavelength) and the excess phase as functions of the nor- 
malized susceptance of the obstacles which form the ends of the cavity, and 
a knowledge of this susceptance as a function of the geometrical configura- 
tion of the obstacle is necessary to complete the design of the filter. At low 
frequencies, conventional coils and condensers can be used to form the dis- 
continuities in the transmission line; while at high frequencies, transmission 
line stubs can be used.14 In the microwave region, where waveguides are 
employed, obstacles having the shapes shown in Figures 13, 14, and 15 can 
be used.15 

Inductive Vanes 

Figure 13 shows a plane metallic obstacle, transversely located across a 
rectangular waveguide, with a centrally located rectangular opening extend- 
ing completely across the waveguide in a direction parallel to the electric 
vector. For thin obstacles, the normalized susceptance can be calculated 
from the approximate formula,15 

B = - ^ cot2 ~ (42) 
a 2a 

where X„ is the wavelength in the waveguide, a is the width of the waveguide, 
and d is the width of the iris opening. 
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When the iris is constructed of material of finite thickness, r, the expression 
for the susceptance is more complicated,10 •11 and the equivalent circuit 
becomes a four-terminal network with both shunt and series elements. 
The equivalent shunt susceptance of this network can be obtained experi- 
mentally by measuring the insertion loss of the iris, from which a curve such 
as shown in Fig. 16 can be computed. These data* were taken for irises 
.050" thick in waveguide having internal dimensions of 0.872" X 1.872" in 
the frequency range around 4000 mc. The ordinate is a parameter, K, from 
which the normalized susceptance is calculated: 

B = K 
(s)' 

(43) 

1 
d-i 
a— 

B i 

Fig. 13—One type of inductive obstacle in rectangular waveguide. 

d b B = LOGe CSC ^ 
Li 

Fig. 14—One type of capacitive obstacle in rectangular waveguide. 

B = 
2Xg 

0 L0G£(^) 

Fig. 15—Another type of inductive obstacle consists of a C3lindrical post. 

Along the abscissa is plotted the ratio of iris opening to width of the wave- 
guide. 

It can be demonstrated that for values of K from — 1 to — 20, the equiv- 
alent iris opening is approximately the actual opening less the thickness of 
the metal sheet. For practical purposes, when the susceptance lies be- 
tween —1.5 and —30, it is often sufficient to use the approximation, 

\n .■>. ITr(d — r) B = - cot2 

a la 
(44) 

where t is the thickness of the iris. 

* Data supplied by Mr. L. C. Tillotson of Bell Telephone Laboratories. 
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Capacitive Irises 

The normalized susceptance of infinitely thin capacitive obstacles, as illus- 
trated in Fig. 14, may be calculated by the approximate relation15 

c . 46 ird 
B = - log. cosec - (45) 

where b is the height of the waveguide, X,, is the wavelength in the waveguide, 
and d is the width of the iris opening. 
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0 
Fig. 16—Experimentally determined curve of normalized susceptance of inductive irises. 

As with the inductive vanes, the normalized susceptance is a function of 
the iris thickness and may be calculated from the approximate formula15 

B = +1^ [ \ 
(-: - 0 

(46) 

where Bq is the normalized susceptance of the infinitely thin iris, and t is 
the iris thickness. 

For best results, the irises should be designed from experimentally deter- 
mined curves, however. 
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Inductive Posts 

The normalized susceptance of the round cylindrical inductive post, cen- 
trally located in the waveguide parallel to the electric vector, may be calcu- 
lated from the approximate formula11-15 •16 

a 
1 

log- 

(47) 

where a is the width of the guide, and d is the post diameter. 
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d 
0 

Fig. 17—Experimentally determined curve of normalized susceptance of inductive posts 

The experimentally determined values of susceptance are somewhat less 
than the values calculated by the formula (47). The difference is less than 

20% when - is less than 0.08. A curve of experimentally determined values 
d 

is plotted in Fig. 17, the data being taken in rectangular waveguide 0.872" X 
1.872" at a frequency near 4000 mc.* 

The normalized susceptance of posts is also a function of their position in 
the waveguide, the susceptance decreasing as the posts are moved off center. 
This feature may be used when it is desired to make all the posts in a filter 

* Data supplied by Mr. A. E. Bowen of Bell Telephone Laboratories. 



MAXIMALLY-F LA T FILTERS IN IV A V EG VIDE 705 

from stock of a given diameter. The expression for the normalized sus- 
ceptance of off-center posts is given by the relation11 •16 

1 (48) 2S * - ^ 
a 2 its sec — 

a 
log. 

4a tts 
t^T2 cos 7 

where s is the distance off center. 

Experimental Data 

The principles of waveguide filter design as outlined in the foregoing have 
been used in several applications. For example the channel branching fil- 
ters in the New York-Boston microwave radio relay link consist of two reso- 
nant cavities separated by the equivalent of f wavelength sections of 
waveguide. The transmitting modulators in this relay system also use 
two-chamber filters to separate the wanted sideband from the unwanted 
sideband. The transmission band in each of these applications was 10 mc 

■h h 622 

j 2 jB2 J0> j B2 Jb2 J°1 JD' 

Fig. 18—Diagram of a transmission line filter consisting of four resonant cavities and 
three connecting lengths of line. 

and the image frequency or the unwanted sideband which was to be re- 
flected was 130 mc away. 

In another case the requirements were that the standing wave ratio should 
be less than 0.64 db over a band of 20 mc and more than 28 db 30 mc on 
each side of the midband frequency. The design formulae indicated that a 
filter consisting of four cavities would be needed. These, then, would take 
the general configuration shown in Fig. 18, where the first and last cavities 
are formed by the obstacles and the length of line A , while the two mid- 
dle cavities are formed by the obstaclesand the length A . The lengths 
(11 and A2 correspond to the transforming sections of transmission line which 
connect the cavities together. The loaded Q's required to meet the speci- 
fications turned out to be Q\ = 12.25 and Qi = 30.0, after allowance had 
been made for the selectivities of the f wavelength connecting sections. 
Assuming that the cavities would be formed with inductive obstacles, as 
shown schematically in Fig. 19, the susceptances to obtain these selec- 
tivities were obtained from Fig. 11 based on equation 32. This gave 

By = -4.08 

Bi = -6.36 
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These susceptances were realized with centrally located round posts, for 
which the data of Fig. 17 has been plotted, and this filter was constructed 
according to the calculated dimensions which are shown in Fig. 20. Each 
of the four cavities was tuned separately to resonance near midband by ad- 
justing a capacitive plug located in the center of each. The characteristic 
then obtained is plotted in Fig. 21, which shows that the standing wave 

£l-^12 —f £2-)—022 —f £2-"j—«12 

L, L- • Co L; :l2 L, 

Fig. 19—A four-cavity filter which utilizes inductive obstacles. 

I 1tuning PCUCSJ 1 

Fig. 20—The calculated dimensions for a four-cavity maximally-flat filter in 0.872" x 
1.872" rectangular waveguide. 

Q 
Z 25 

h 20 < 
u is 

"^OlO 4030 4050 4070 
FREQUENCY IN MC 

4090 

Fig. 21—Measured characteristic of four-cavity filter of Figure 20. 

ratio met the design points quite well. These are shown as circles in the 
figure. The insertion loss of this filter was less than 0.7 db over a 25-mc 
band and less than 0.3-db at midband. 

Another maximally-flat waveguide filter consisting of fifteen resonant 
cavities gave an insertion loss of two decibels at midband, 4-db loss at 20- 
mc bandwidth and 40-db loss at 30-mc bandwidth. The input standing 
wave ratio was less than 1.0 db over a 20-mc band. Its characteristics are 
plotted in Figs. 22 and 23. This excellent performance is remarkable in 
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Fig. 22—Measured standing wave ratio of maximally-flat filter consisting of fifteen 
resonant cavities. 

Cfl 40 

30 

4030 4040 4050 
FREQUENCY IN MC 

Fig. 23—Measured insertion loss of the fifteen-cavity filter. 

view of the difficulties that might be encountered in constructing and align- 
ing a filter consisting of 75 discontinuities and 29 lengths of waveguide. 
Its physical length (over 80") may be seen in the photograph of Fig. 24. 
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The theoretical treatment of maximally-flat filters presented here has ig- 
nored the dissipation in the elements. Better agreement between expected 
and observed characteristics would be obtained if this had been taken into 
account. The observation of .3-db loss and 2-db loss in the four-cavity and 
the fifteen-cavity maximally-flat filters is indicative of the amounts of added 
insertion loss to be expected because of dissipation in the elements. In 
addition to the increased loss at midband, we should expect a rounding of the 
insertion loss characteristic near the cutoff frequencies, and a broadening of 
the standing wave characteristic at frequencies well beyond cutoff. In 
many applications, however, these effects can be ignored. 

Concluding Remarks 

In the foregoing, the design of maximally-flat band-pass filters has been 
treated in detail. The treatment of other types of band-pass and band- 
rejection filters is beyond the scope of the present paper, although much of 
the material presented here may be of use in designing such filters. In 
fact, almost any filter consisting of a ladder network of inductive and capaci- 
tive elements in series and in shunt can be simulated in waveguides by fol- 
lowing these principles. Emphasis on the maximally-flat filter has been 
deliberate for two reasons: it gives a type of transmission characteristic that 
is useful in microwave work; it is simple to design. 
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APPENDIX I 

A cavity resonator, consisting of a length of transmission line, I, at each 
end of which there is an unvarying susceptance, jB, is approximately equiv- 
alent to a tuned circuit, consisting of an inductance, L, and a capacity, C, 
in parallel located at the center of a short length of transmission line, 2t', 
when these two conditions are satisfied: 

(1) The square root of L over C is equal to the surge impedance of the 
transmission line divided by twice the loaded Q of the cavity. 

(2) The sum of the lengths of the two transmission lines ( and 2€' is equal 
to a half wavelength at resonance. 

The first of these conditions follows from equation 3 of the text above, 
and the proof of the second condition will be given in the following analysis, 
based on the schematic drawing of Figures 9 and 10. In this analysis, the 
loaded Q of the cavity is derived in terms of the susceptance of the obstacles 
at its ends. 

Since the cavity and the tuned circuit are both symmetrical it is adequate 
to consider but one half of each in establishing the equivalence. Then by 
setting the short circuit admittance of one equal to the other and setting the 
open circuit admittance of one equal to the other, the necessary relationships 
are derived. 

The following symbols will be used in addition to those used in the text: 

Vsc = Normalized admittance, short circuited. 

Yoc = Normalized admittance, open circuited. 

The subscripts 1 and x refer to the cavity and the equivalent tuned circuit 
respectively. 

2^ I 
91 - ^ ■ 2 
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The short-circuited admittances of half the cavity and half the tuned 
cuit are 

Yaci = j{Bi — cot 0i) 

Ysex = -j cot dx 

while the open-circuited admittances are 

f oci = j{Bi + tan di) 

I OCX — 
1 — ^ tan dx £ 

Putting Ysci = Yam 

Putting A5 in A4 and setting Foci = Foci 

— +  : 
By + tan 0, = —  

1 
COt 0i — By 

2 COt 01 — By 

Solving for Bx we have 

Bx = —By{Bi sin 20i — 2 cos 20i) 

which becomes 

B. = VB\ + 45; sin 2p (h* - l) 
AffO \Rg / 

where 

2 
= arc tan — . 

By 

Equation A9 gives the requirements for resonance. 
The expression for the loaded Q is 

2*1 

Q = 
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The cutoff wavelengths are obtained when Bx is equal to i 2 and we have 
from equation A8 

27r^ 2irf . 2 

JW = v- arc sm wim ■ (A11) 

27r^ 27r^ . 2 < a n\ 
v;= v + arcsmwir+4' (A12) 

from which we obtain 

Q = ^ ^^arctan|. (A13) 
2arC Sin V& + IB* 

This gives the loaded Q of the cavity in terms of the susceptance of the end 
obstacles. 

To derive the length corresponding to the excess phase of the cavity, let 
the short-circuited admittances be equal by equating equations A1 and 
A2, and let the wavelength be the resonant wavelength of the cavity, and 
we have 

Bi — cot 0io = — cot 0iO. (A14) 

From equation A9 

5! = 2 cot 20io (A15) 

so that 

But 

hence 

or 

That is 

2 cot 20io — cot 0io = —cot 0x0 . (A16) 

2 cot 20io — cot 0io = —tan 0io (A17) 

tan 0io = cot 0x0 (A18) 

0io + 0,0 = ^ (A19) 
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whence 

1+21'= ^ (A20) 

which proves the second condition mentioned above, namely, that the sum 
of the lengths of the transmission lines in the cavity and its equivalent cir- 
cuit is equal to a half wavelength. 

The normalized admittance of the cavity terminated in the surge admit- 
tance of the guide can be written in terms of its loaded Q and a wavelength 
variable as 

This expression is obtained from equations A8 and A13 by making the as- 
sumption that the bandwidth is narrow so that the sine of the angle in equa- 
tion A8 can be replaced by the angle. This admittance is referred to a point 
slightly inside the cavity, i.e. a distance V inside. 

The similarity between this expression and the corresponding one for the 
parallel resonant circuit consisting of lumped elements is evident. (See eq. 
7 of the text.) 

In the case of the cavity the bracketed term is a wavelength variable; in 
the case of the tuned circuit it is a frequency variable. 

The loss function for maximally-flat filters in waveguides becomes 

The loaded (Ts of the cavities taper sinusoidally from one end of the filter to 
the other so that 

(A21) 

(A22) 

(A24) 



Transient Response of an FM Receiver 

By MANVEL K. ZINN 

Introduction 
/ I VHIS paper develops various formulas for the response of an FM 

receiver to signal or noise input voltages of arbitrary form. The prin- 
cipal object in view is to obtain a more complete understanding of how an 
FM receiver responds to transient voltages, such as those arising from 
ignition interference, but the more general aspects of the theory have other 
applications as well. In particular, general formulas are given for the re- 
sponse of a linear circuit to an applied voltage, or current, of variable fre- 
quency. The Fourier transforms, or frequency spectra, of the response, and 
the envelope thereof, are determined. 

Two examples are given: (1) the audio response of an FM receiver to a 
very large impulse and (2) the response, including harmonic distortion, to 
a sinusoidal signal wave. 

The element of an FM receiver that demands most discussion is the bal- 
anced frequency detector. The greater part of the paper accordingly deals 
with that important clement. The general problem can be stated as follows: 
A limiter and frequency detector are transmitting a steady unmodulated 
carrier wave to an audio output circuit. At time, I = 0, frequency modula- 
tion of arbitrary form is applied to the carrier (either by signal modulation or 
a superposed noise transient). What is the audio output voltage that re- 
sults? 

Frequency Detector 

Except for the greater bandwidth, the amplifiers and selective circuits 
between the antenna and the limiter of an FM receiver are similar to those 
of an AM receiver in their transmission features. If the selective circuits 
have a bandwidth ample to accommodate the maximum frequency swing of 
the FM transmitter, and if the transmission over the band is substantially 
"flat" and the phase shift nearly linear with frequency, the amplifiers will 
introduce little distortion. The limiter and frequency detector are therefore 
regarded as the distinctive elements of an FM receiver meriting theoretical 
discussion. 

The literature contains descriptions of frequency detectors of several 
types together with adequate analyses of the action of the circuits based on 
the variable impedance concept.1 The more generally used circuits can be 

1 See Items 3 to 6 in list of references attached. 
714 
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reduced to the circuit shown schematically in Fig. 1, which can be taken to 
illustrate a generic form of frequency detector. Zj and Z2 are two resonant 
impedances tuned to different frequencies, one above, the other below, the 
carrier frequency.2 For example, the simplest version of Zi and Z2 could be, 
for each, a parallel combination of R, L and C. Across each of these 
impedances is connected a rectifier with load circuit so proportioned that 
the rectification is substantially linear. The rectifiers are poled so that their 
low-frequency outputs are opposed, thereby obtaining cancellation of even- 
order demodulation products. With this arrangement, the low-frequency 
output voltage V0, which is applied to the audio amplifier, is substantially 
proportional to the difference between the envelopes of the voltage drops 
across Zi and Z2. 

The resistance elements of the impedances, Zi and Z2, each include a shunt- 
ing resistance equal to half the load resistance of the associated rectifier, 
which therefore determines, to some extent, the Q of the tuned circuit. The 
output diode load, R0 C0, has negligible impedance at the carrier frequency. 
Under these conditions, the low-frequency output voltage across the two- 
rectifier load impedances is 

Fo = 7? ([Fx] - [F2]) 

where rj = detection efficiency (nearly unity) 
Fi, F2 = high-frequency voltages across Zi , Z2, respectively (Fig. 1) 

[F] = envelope of F. 
All this is in accord with the accepted understanding of the operation of a 
properly designed linear rectifier working at an efficiency approaching 100 
per cent. 

The amplitudes of the voltages, Fi and Fo, across the resonant imped- 
ances, Zi and Z2, of Fig. 1 are shown in Fig. 2. In the practical engineering 
analysis of this frequency detector circuit, employing the idea of impedance 
that varies in step with the instantaneous frequency, the two voltages of 
Fig. 2 are subtracted (owing to the opposed polarities of the rectifiers) to 
obtain the over-all voltage-frequency characteristic shown in Fig. 3. Then 
it is inferred, by physical intuition, that if the instantaneous frequency of 
the carrier is varied at the input, the output voltage wave will vary as in- 
dicated by the curve of Fig. 3. Strictly speaking, this is a false assumption, 
but where the rate of variation of the instantaneous frequency is at an audio 
signal frequency far below the carrier frequency, the error in the assump- 
tion is of no importance, whereas the simphfication in thinking accomplished 

2 The term carrier frequency will be used to designate the value of the unmodulated 
received frequency after all heterodyne conversions. (This frequency is equal to the mid- 
band frequency of the last intermediate frequency amplifier ahead of the limiter, if tuning 
is perfect.) 
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by it is considerable. It is only where the rate of variation of the instan- 
taneous frequency is high, as it can be in the case of a large noise transient 
caused by impulse excitation, that the error in the assumption in question 
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Fig. 1—Circuit of a balanced frequency detector. 
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Fig. 3—Output voltage of frequency detector. 

can become serious. A particularly subtle error that can arise from the 
assumption is to fall into the habit of regarding the characteristic curve of 
Fig. 3 as a frequency transmission curve of the sort obtained by measuring 
the ratio of output to input of a linear network over a range of frequencies. 



TRANSIENT RESPONSE OF AN FM RECEIVER 717 

The curve of Fig. 3 is not such a transmission curve, because the principle of 
superposition does not apply and a frequency conversion is involved. 

Owing to the considerations discussed above, the analysis to follow avoids 
the assumption of variable impedance associated with the varying 
instantaneous frequency. This does not imply that the assumption, as 
employed by various writers, is considered seriously erroneous, but, rather, 
that it seems preferable to develop the theory without invoking the as- 
sumption, provided that this can be done without falling into unmanageable 
complications. Briefly, the procedure in the work to follow is to determine 
directly the envelopes of the voltages Fj and Fo as functions of time, one 
envelope then being subtracted from the other to obtain the output wave. 
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Fig. 4—Current wave out of limiter. 

General Theory 

When a carrier is being received, the limiter can be regarded as substanti- 
ally a constant current source having an internal shunt admittance small 
compared to the admittance of the tuned impedance elements, Zj and Z2, 
of the frequency detector. If the limiting is severe, as it should be for good 
operation, the current delivered by the limiter is a rectangular wave as 
illustrated in Fig. 4. When this current is driven through the impedances, 
Zi and Z2, the voltage drops, Fi and Fo, that arise across these elements 
are substantially sinusoidal in form, owing to the selectivity, which practi- 
cally extinguishes all harmonics of the carrier frequency. We therefore take 
the current input to be sinusoidal in the first place, namely 

/(/) = h cos Itrfol 

This is the unmodulated current, 7r///4 being the current cutoff point of the 
limiter and /„ the frequency of the carrier. When the carrier is modulated 
in frequency, we write 

/(/) = h cos [lirfal + 6(l)] ■ (ll 

where 0(/) is the phase angle varying with time. The instantaneous fre- 
quency then is 

/« = 4 i [Itt/J + (!(/)] = /„ + 4 «'(/). (2) /tt at IT 
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In the transmission of signals by frequency modulation, the instantaneous 
radian frequency deviation, 6'{t), is made to vary in proportion to the 
signal amplitude, so that Q{t) then varies in proportion to the time integral 
of the signal amplitude. 

As a preliminary step to the discussion of the frequency detector itself, 
we require a formula for the voltage drop across an impedance Z(/) when the 
frequency-modulated current (1) flows through it. The point of view 
usually adopted is to regard the impedance as a composite function of time, 
viz., Z[/(/)], and to say that the voltage across it is 

v(t) = nmm = im [/„ +1«'(;) J. (3) 

This quasi-stationary viewpoint gives results that are nearly correct if the 
rate of change, d"{t)/2Tr, of the variable frequency is not too large. The 
magnitude of the error has been determined in a paper by Carson and Fry.3 

In the present paper, impedance is a function of frequency that is inde- 
pendent of time, as in the classic theory of linear systems. The frequent 
use of the term "instantaneous frequency," as defined by (2), does not 
imply a departure from this point of view. 

In the following, H{t) is, in general, the voltage response as a function 
of time, of a network to a unit impulse of current applied at time I = 0. 
In the case of a two-terminal impedance element, //(/) is the voltage drop 
across the element when a unit impulse of current is sent through it. Then, 
if the frequency modulated current (1) flow through the impedance, the 
voltage drop is 

V{t) = h [ cos [a)o(/ — r) + d{t — dr (4) 
•'o 

where ojq = lirjo. d{l) can have any form as a function of time. V(l) 
can be written, 

V{i) = \ eiuo1 f ff(T) dr 
2 Jo 

_)_ ^ e~'"0< f e^or-mt-r) (5) 
2 Jo 

In the frequency detector problem, the result finally desired is the envelope 
of the voltage wave. It will clarify the discussion to explain first what is 
meant by an envelope. If the voltage is of the form 

V{t) = c{l) cos [coq/ + 0(/)] 

= a{t) cos coo/ — b{t) sin wot 

= JKO + m] + MiW - (6) 
3 Item 1 in the bibliography. See formula 21 in that paper. 
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the complex function, 

[7(01 = c(l) e'*'" = a(l) + i«0 (7) 

is here called the "envelope function" of the voltage with respect to the 
radian frequency cv,,, c{l) being a real amplitude modulation factor, which is 
the envelope' itself, as usually conceived, and exp [i<t>(l) ] a complex fre- 
quency modulation factor, in which <//(/) is the instantaneous deviation of 
the radian frequency from the reference value, oio. If such a modulated 
voltage wave is applied to an ideal linear detector, the output voltage across 
the load circuit of the latter is the real envelope, c(/) = [a2(/) -f b2(t)]u\ 
This concept of an envelope function provides a convenient generalization 
of modulation ideas. Both amplitude modulation and frequency modula- 
tion vary the envelope function, but in different ways. In amplitude mod- 
ulation, the real magnitude, «:(/), is varied while the angle 4> is constant, 
whereas, in frequency modulation, c is constant and it is the angle, «/>(/), that 
is varied. 

It will be seen that (5) is in precisely the same form as (6), so that we can 
write the envelope function of V(l) immediately, as follows: 

[V(t)\ = a(l) + Hi) = h [ e--or-Hfla-r) //(t) dT f8) Jo 

The conjugate envelope function then is 

[7(01 = "(I) - ib(t) = h [ H(r) dr. (V) Jo 

The spectrum of the envelope function is also of interest. To obtain the 
spectrum, which we shall call, fo(/), we find the Fourier transform (hereafter 
abbreviated, F.T.) of both sides of (8), viz.: 

Fo(/) = f" [V(/)]e~ial d/ = h [M e''"1 [ e-,'W9rHea-T)-I1(t) dr dl. (10) 
J—oo J—x Jo 

It is permissible to reverse the order of integration of r and /, obtaining 

Fo(/)=//jf e-iU0Tff(T)J e-<ut+mt-T) dt dr. (11) 

The F.T. of h exp [id(l)] will be designated, i.e. 

*{/) = h [00 e'9U)~<al dl. (12) 
J— 00 

1 The "envelope", so defined, is an engineering concept and is not quite the same thing 
as the envelope of mathematics, which is always tangent to a curve or set of curves. 
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Putting / — r in place of I in place of / as the variable of integration in (12) 
we have 

*(/) = heiaT r <r,'u<+,'9(|-T) di. (13) 
J—00 

Thus it is seen that the inner integral of (11) is equal to e~lar^{f) and the 
equation becomes 

Foil) = W) [ EW'™'dr. (14) •'0 

Now the F.T. of H{i) is Z(/), i.e. 

Z{j) = [ dl. (15) 
J—00 

Therefore 

Z{f + /o) = [ H(l)e~i("+aoU dt. (16) 
J—oo 

This differs from the integral in (14) only in the lower limit of integration. 
But since H(t) is the response to an impulse applied at time / = 0, H(l) = 
0 for / < 0 and the two integrals are therefore equal. Putting (16) in (14) 
we have, finally 

Po(f) = r [a(0 + ib(l)]e-iut dl = nj)Z{f + /„). (17) J—cc 

The F.T. of the conjugate envelope function, a — id, is 

P'o(—f) = f" [«(/) - ib(l)]e-iut dl = *(-/)£(-/ + /o) (18) 
J—co 

where symbols with the superbar denote the complex conjugates of unbarred 
symbols. Since Z{j) is the F.T. of a real variable, Zf (/), it must assume con- 
jugate values for positive and negative values of /, i.e., Z(f) = Z(—/) and 
therefore Z{f + /o) = Z(— / + /o). Consequently, (18) could be written 

Fo(-f) = *(-f)Z(f + fo) (19) 

(17) and (18) are the final solutions in frequency functions corresponding 
to the solutions (8) and (9) in time functions. The formulas in frequency 
functions have the advantage of compactness, which makes them easy to 
remember. 

We require also the F.T. of the voltage itself, I (/), which we shall call 
F(f). From (6) 

F(f) = J" V(t)e~'ul dl = % j {a + 

+ i f00 (a - ib)e~<{a+uo) dU (20) 
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and from (17) and (18) this evidently is 

F(n -- mf - hWi + i®(-/ - uM-A (20 

or, since Z(/) = Z(—/) 

F(f) = mf) Mf - /o) + #(-/ - /„)]. (22) 

Anyone familiar with the rules of Fourier transforms could write down this 
frequency function in the first place and then proceed to find the time func- 
tions by the reverse of the process just carried out. But the time functions 
are more closely related to the physics of the problem and therefore provide 
a more fundamental starting point for its solution. 

It will be appreciated that, although the above discussion has been phrased 
to apply to the problem of finding the voltage drop across an impedance 
when a frequency modulated current flows through it, the formulas also give 
the current through an admittance when a frequency-modulated voltage is 
applied across it. They also give the output voltage or current of a four- 
terminal network when a frequency-modulated current or voltage is applied 
at the input. These various applications of the formulas obviously can be 
made by placing definitions on Z and H appropriate to the particular 
problem. 

The next step is to assume suitable values of the impedance Z(f) and vari- 
ous forms of the frequency modulation function 6 and to employ these 
particular values in the general formulas 8, 9, 17 and 18. 

Balanced Frequency Detector 

The impedance can be defined, in general, as a rational algebraic function, 
viz.: 

v (iCO — Ui)(/cO Q'i) • • • (fw Oni)   T(icu) (21) 
(ico — pi){iTr — pi) ••• (to — pn) Q(to) 

Writing the polynominals P and Q in this way as the products of their factors 
exhibits the o's as the zeros of Z and the p's as the poles. The latter deter- 
mine the frequencies of free vibration of the network. For the network to 
be stable, the p's must all have negative real parts. The o's and p's are 
either real or occur in conjugate complex pairs. By the partial fraction 
rule, the expression can be broken up into a series of simple fractions; thus 

2(W = + . A- +.... (24) 
/w — p\ to — pf 

If the poles are all simple, the A's are given by 

I - (25) 
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For the present purpose, only a pair of terms of (24) need be considered. 
This will provide a specific solution of the balanced frequency detector for the 
case, previously used for illustration, where the impedances are two simple 
resonant circuits of parallel R, L and C. At the same time, this solution 
can be extended to more complicated circuits by superposing a number of 
such elementary solutions, as is clearly possible with the type of impedance 
development indicated by (24). 

The impedance of R, L and C in parallel, written in the form of (23) and 
(24), is 

ia 1 _ ^ _j_ ^ 
C (fco — P\){i(x> — pi) iio — pi ioj — p2 

(26) 
k ^ k 

io) + 7 /co -f- 7 

— pi = y = a + ifl 

— p2 — y = a —10 

'■U-D 

'-rc(' + t) 

1 i / 1 1 _ /-2 2 _ 1 

" 2RC' V LC 4i?2C2 ' Wc VLC 

The voltage response of the circuit to a unit impulse of current is then 

Hit) = r (^— + ^4-^) df = he'1" + ke-i', I > 0. (27) 
J-oo \/co + 7 /OJ + 7/ 

To find the envelope function of the voltage drop when the frequency 
modulated current 

/(/) = 'l + e~iUol-i0(Oj (j) 

is applied to the circuit, we make use of the general formula, (17), which 
states that the spectrum, or Fourier transform, of this envelope function is 

Fo(/) = [ Wit) + mv~iul dl = + /o) (17) 

ZM = 

where 
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where f) is the F.T. of h cxp [i6(l)] and Z(/) is the impedance, (26), in this 
case. The envelope function then is 

a{l) + ib(t) = I T(/)Z(/ + /o)^"' ^ 
J-x 

= /ike-Uwo+y)' J ' e<iUti+y)T+mT> dr (28) 

+ l,h~(i'"0+y)l f' e
('w«^)r+,fl(r) dr. 

This result is obtained by employing the convolution formula3, which states 
that if I'\ and F* are F.T.'s of Gi and G-, respectively, then the F.T. of Fi/s is 

J" Fi(f)F2(/)e
iu" df = l_ GMGtil - r) dr. (29) 

(The upper limit of the integrals in (28) is / instead of co for the reason that 
//(/) is zero for / < 0.) The result could have been obtained equally well 
without using the Fourier transforms by substituting (27) in (8). When 
0f/) is specified mathematically in the infinite interval (—co, 00) these 
formulas give the resultant of the steady state and transient oscillations. 
Various problems can be solved by specifying particular forms of variation 
for 0(/). Two examples follow: (1) where the instantaneous frequency, 
0'(/), is an impulse and (2), where 0'(/) is a sinusoidal wave, as for elemen- 
tary signal transmission. 

Example I: Impulse Modulation 

Ignition interference comprises a sequence of sharp impulses, each of du- 
ration very brief compared to the interval between them, so that the tran- 
sient in the receiver produced by one impulse dies away before the next one 
arrives. It is therefore sufficient to consider the disturbance caused by a 
single impulse. 

If the receiver is perfectly tuned, an impulse produces, in the tuned cir- 
cuits, a transient of the same nominal frequency6 as the signal carrier. 
When superposed on the carrier, the interfering transient alters, or mod- 
ulates, both the amplitude and phase of the carrier. The amplitude mod- 
ulation is wiped out by the limiter, but the phase modulation remains to 
produce noise in the output. The phase shift caused by the transient is a 
random variable, because it depends upon the time of arrival of the impulse, 
and this is entirely fortuitous. 

5 See pair 202 of Item 10 in the bibliography. 6 By "nominal frequency" is meant the frequency as determined by counting zeros of 
tlic wave. The transient actually comprises a spectrum of frequencies spread over the 
hand of the tuned circuits, of course. 
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It is of engineering interest to determine the noise produced by a very 
large impulse, exceeding greatly the amplitude of the signal carrier. When 
such a large impulse arrives, it causes a sudden jump, or discontinuity, in 
the phase of the carrier. The excursion of the instantaneous frequency 
corresponding to the phase jump is indefinitely large and the problem ac- 
cordingly cannot be solved satisfactorily by means of the usual assumption 
of quasi-stationary frequency. The problem of large impulsive interference 
provides, therefore, the principal justification for the more exact method of 
analysis here employed. In the paragraph following, the problem is re- 
stated in terms providing a suitable basis for mathematical analysis. 

We assume, as before, that the limiter is delivering to the frequency de- 
tector a steady carrier current of constant amplitude h and frequency /o. 
At time / = 0 a brief disturbance occurs specified by the statement that 
the instantaneous frequency, 0'(/), of the current suddenly executes an 
impulse of moment 0. That is: Q'{l) is zero at all times except at / = 0, 
when it goes to infinity and back to zero again in such a way that the area 
of the impulse so formed is 0. The carrier current amplitude then remains 
constant but the phase, d(l), of the carrier takes a sudden jump of 0 radians 
at / = 0. What is the voltage output of the frequency detector? 

The general formula (28) gives directly the envelope function of the volt- 
age across the impedance (26) for a phase function 0(/). In this formula we 
have now to put 0(/) = 0 before time I = 0 and 0, after / = 0. We do this by 
dividing the interval of integration into two parts, (— °o, 0) and (0, /); thus 

a{_t) + ib{t) = hke-(iuo+y)t ^J e(iU0+y)T dr + e,e jf' eUao+y)T d^j 

+ hke~(<wo+y)l (^f" eiiuo+y)T dr + e'9 jf V,U[,^)T dr^j 

= hk M ^ + gf9. (30) 
i 7 iu0 -}- 7 

Let the radian frequency interval by which the applied frequency wo 
is set off from the resonant frequency coc be 

A = oio — wc (31) 

as indicated on the curves of Fig. 2. Whena/o}c is small compared to unity, 
as it is in practical circuits, /3 is very nearly equal to o)c. (See the formulas 
following equations (26).) Then 

io3o + 7 = ioio + a + iue = a — iA 2fo)o 

and 

iuo + 7 = iuo + a — icoe = a + iA. (32) 
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From this it is evident that the first term of (30) contains the demodulation 
sum product of frequency on the order of 2u0. This frequency will be 
suppressed by the diode load circuit and consequently the second term of 
(30) is an adequate representation of the envelope function. Therefore we 
write 

_ Cl _ I >6 
„(;) + ib(l) = hk t1 ' (33) 

and with the above approximations this is very nearly equal to 
. /. «0\ —(a+i&)l | 10 

One deduction that can be made immediately from this formula is that the 
frequency of the oscillation in the output of the rectifier caused by the phase 
jump at the input is A, the radian frequency interval by which the applied 
carrier frequency differs from the resonant frequency. The oscillation is 
heavily damped, however, because a, while being very small compared to 
oj, , is comparable in magnitude with A in circuits commonly used. 

The angle of the complex envelope function (34) represents merely 
a phase shift of the carrier frequency coo. We are interested only in the 
magnitude of the function, viz.: 

c(0 = [a!W + (35) 

After some algebraic work, the desired formula comes out of (34) in the 
following form: 

c{i) 

where 

= [^1 - 2;n(/) sin ^A/ + ^ + '»'(/) J / > 0 

2C ' (a2 + A2)1'2 

ni{i) = 2e sin j (36) 

The discussion so far has dealt with a single impedance (or network) and has 
been concerned with obtaining formulas for the voltage across the imped- 
ance, and the envelope thereof, when a frequency-modulated current is sent 
through it. It is necessary now to refer to the construction of the balanced 
frequency detector, which is the particular object of our study. Figure 1 
shows two impedances having the variation with frequency sketched in 
Fig. 2. The carrier current is driven through the two impedances in series 
and linear rectifiers are connected across each in such polarity that their 
low-frequency output voltages are opposed. We assume that the output 
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voltage of each rectifier is the envelope of the voltage existing across its 
associated impedance. Therefore, to find the total output of the balanced 
frequency detector, we have to find the difference between the envelopes of 
these voltages. 

It is necessary to specify the two impedances more precisely. It appears 
that the best operation is obtained if the frequency of the carrier is midway 
between the resonant frequencies of the two impedances. That is 

A = Wo — Ci>i = OJ-j — Wi) 

where wi , wo are the resonant frequencies of Zi, Zo, (previously written as 
w0 for any impedance). Furthermore it appears that the two impedances 
should have identical values of C and very nearly the same damping con- 
stants. The design of the detector circuit is accordingly specified by 

and then 

C! = C2 = C 

R, = Rn = R 

Li = 1/wiC 

Lo = l/woC 

a i =0:2 = a — 1/2RC 

k, = kt = k = 1/2C (fl/wo « l) 

/ L\ _W2_Wo + A 
y Ln Wl Wo — A 

All the quantities are assumed to be substantially constant over the signifi- 
cant frequency range. 

With the circuit constants so proportioned, it can be seen from (36) that 
the envelope of the voltage across Z, differs from that across Z2 only in the 
sign of A. Therefore, the output voltage of the balanced frequency detector, 
when the instantaneous frequency variation is an impulse of moment 0 at 
/ = 0, is 

Vo{l) = coil) - Ci(l) . 

= 2c ^ 1/'! + 2": sin _ f) + n^\ 

-[l-2B!si„(A( + f)+»d"\ /.>0 ^ 

= 0, / < 0, where w = 2e a' sin 
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On Fig. 5 is given a plot of this function for a value a/A = 1 of the rela- 
tive damping. Calculations for other values of a A show that the output os- 
cillates only weakly for a/A = \ and is nearly dead-heat for a/A = 2 
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Example 1: Signal Reception 

If the carrier is frequency-modulated by a signal 

s{i) = S cos (// (39) 

and the frequency modulation factor of the transmitter is/x, the phase of the 
carrier wave is made to vary in accordance with the relation 

c' s* 
e{i) = m / s{i) <ii = —- si" q1 = x sin y' x (J 

(40) 

fiS is then the radian frequency deviation of the transmitter and txS/q, 
which is the ratio of this frequency deviation to the frequency of the signal, 
is commonly referred to as the "frequency deviation ratio." This factor, 
which is denoted by .v in the above equation, enters as a fundamental 
parameter in all FM theory. 

To find the envelope function of the voltage wave produced across the 
impedance (26), when the frequency-modulated carrier is received at the 
frequency detector, we put (40) in (28). To effect the integration, the 
expansion 

^lxsin ql _ £ Jn{x)ein'" (41) 
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is used, Jnix) being the Bessel coefficient of the first kind, of the nth order and 
with the argument x. For brevity, Jn(x) will be written Jn . Also, the 
first term of (28) is to be omitted, because, as was shown in the preceding 
example, it represents frequency sum terms which are filtered out by the 
diode output circuit. Then we have 

a(l) + ib(l) = like-(iao+J}U [' e"'u+')T ^ JneinqT dr. (42) 
00 n=a—00 

When the integration is carried out, the result is 
so j inql co j inqt 

„(/) + Mi) = hk £ . ^4-7-. - = hi E ~ ^ . ■ (43) 
n=—oo /wn + 7 + mq n =-oo a + iA + lliq 

To obtain the magnitude of a + ib, which is the envelope required, we multi- 
ply the above Fourier series for a + ib by that for a — ib, obtaining a double 
summation, which can be written as follows: 

c\l) = a\l) + b'd) = ca+ E («'■"" + 
n =1 

00 
= flo + 2 an cos nql 

n=l 

where an is the real part of the complex coefficient cn and Oq = Co. 
The coefficients are given by 

(44) 

Cn = 

Cn = 

h ^ Jm Jm+n 
4C2 m=—oo (a — iA — imq)[oL + iA + i{m + n)q] 

h2 JmJm+n 
(45) 

4C2 ,„=_oo (a + iA + imq)[a — iA — i{m + w)^]' 

Obtaining this result involves use of the relation 

J-n{x) = (-)" Jn{x). (46) 

From (45) 

  b X '■ Jrn J771+71 [a + (A + inq)(A + mq + nq)] , 
4C2 7n=—no [a2 + (A + viq)2][a2 -f- (A -f- mq -f nq)2]' 

Finally, we have to obtain, as before, the difference between the en- 
velopes of the voltages across the two impedances of the balanced frequency 
detector; that is, we have to determine 

Vq{1) = CzO) - Ci(t) (48) 

where ci(l) is given by (44) as it stands and €2(1) is obtained from the same 
expression merely by reversing the sign of A. The complete solution for 
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the output voltage of the frequency detector, when a phase variation, 
d'{t) = xq cos ql, is impressed on the carrier at the input, then is 

(49) 
[co ni/s r oo 

Oo + 2 S On2 COS nqt - I Oo + 2 X am cos nqt 

where ani is given by (47) and c,^ is given by the same formula with the 
sign of A reversed. 

An approximation that is permissible when the frequency swing xq does 
not approach the available frequency range A is 

I' oO) — -dn cos nqt (50) 

where 

An = 
an2 — Qnl 

V Ofl 
n odd; = 0, n even. (51) 

The table following gives the results of a computation of the first four 
coefficients from formulas (45) and (51) for the case of a frequency deviation 
ratio, = 5, for q/2Tr = 3000 cycles per second, for A/27r = 30,000 cycles 
per second and for a/A = 5,1 and 2. 

Coefficient R II In
 1.0 2.0 

do 0 0 0 
Ai .848 .478 .191 
A 2 0 0 0 
a3 .0312 - .00438 -.00281 

Note; To obtain volts, multiply all values by 
RJ/a 

(a2 + A2)1/2 

The coefficients for even values of n vanish, which confirms what can be 
inferred from physical considerations, namely, that the balanced construc- 
tion of the frequency detector eliminates the d.c. component and all even 
harmonics. From the ratio of .da to Ai we obtain the following ratios, ex- 
pressed in db's, of the third harmonic distortion to the fundamental signal 
for the three circuit designs: 

a/A 20 log 10 | yls/zli | 

.5 
1.0 
2.0 

-28.7 db 
-40.8 
-36.6 

The results for the sinusoidal signal, when considered in conjunction with 
those for the impulse modulation, also permit certain conclusions regarding 
signal-to-noise ratios for impulsive interference in FM reception. 
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Ratio of Noise to Signal 

It may be helpful, in conclusion, to attempt a theoretical estimate of the 
ratio of noise to signal in the audio output under the condition of severe 
impulsive interference. 

The ratio of the peak value of the pulse to the signal amplitude at the 
frequency detector output is given by the ratio of the peak values oi f{t), 
as plotted in figure 5, to the values of .-li in the table above. To obtain 
a result of practical significance, however, the effect of the audio circuit 
should be taken into account. In the absence of specific information on 
the structure of this circuit, we assume that the peak value of a pulse at 
its output is equal to the area, or moment, of the pulse at its input times 
twice the audio cutoff frequency. This is true for an ideal "square cutoff" 
filter and not seriously in error for actual circuits. The area of the largest 
pulse at the frequency detector output is approximately 2A/(q:' + AJ) and 
the value of A i, the signal fundamental amplitude, can be approximated by 

A' = 4-rL (52) a2 + A- 

(For the example above, this approximation gives A], = .8, .5 and .2 as 
compared to the exact values, .848, .478 and .191.) In this way we arrive 
at the following estimate of the peak ratio of noise to signal in the audio 
output: 

Max. value of largest pulse coa 

Signal amplitude tt x q 
(53) 

where a)a is the cutoff-frequency of the audio circuit, q the signal frequency 
and .r the frequency deviation ratio. Then xq is the "frequency swing" of 
the transmitter, i. e., the maximum departure of the instantaneous frequen- 
cy from its mean value. It is to be noted that this formula is free from the 
detector circuit parameters, a, A, R, and indicates that, to a first approxi- 
mation, at least, the maximum ratio of noise to signal depends only upon 
the audio circuit cutoff frequency and the FM swing. Furthermore, this 
establishes a ceiling for the interference that will not be exceeded no mat- 
ter how large the impulses may be. 
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Transverse Fields in Traveling-Wave Tubes 

By J. R. PIERCE 

Traveling-wave tubes will have gain even if the r-f field at the mean position 
of the electron stream is purely transverse. The addition of a longitudinal mag- 
netic focusing field reduces the gain due to transverse fields and increases the 
electron velocity for optimum gain. 

LL slow electromagnetic waves have both longitudinal and transverse 
electric field components. Sometimes either the longitudinal or the 

transverse field may go to zero along a line or plane parallel to the direction 
of propagation. For instance, for the slow mode of propagation there is no 
transverse field on the axis of a helically-conducting sheet. Still, over any 
plane normal to the direction of propagation there are bound to be both 
longitudinal and transverse field components. 

If a very strong longitudinal magnetic field is used in connection with a 
traveling-wave tube, the transverse motions of electrons may be so restricted 
as to be of little importance. With weak focusing fields, however, the trans- 
verse motion of electrons may be important in producing gain. The trans- 
verse fields can force the electrons sidewise, and thus change the 
longitudinal fields acting on them in such a way as to abstract energy from 
the electron stream.1 This is closely analagous to the action of the longi- 
tudinal fields in displacing electrons forward or backward into regions of 
greater or lesser longitudinal field. 

The purpose of this paper is to analyze the behavior of traveling-wave 
tubes in which transverse fields are important. The attack will be similar 
to that used previously.2 

In this paper we shall consider only the electric field associated with the 
slow mode of propagation along the circuit having a speed close to the elec- 
tron speed, and we shall neglect other field components attributable to local 
space charge. The writer believes the results so obtained to be valid at low 
currents but in error at high currents, and an acceptable guide at currents 
usually encountered. 

In an earlier paper2 a relation was found between the longitudinal field Ez 

excited in a mode of propagation of a transmission system and the longitud- 
1 See, for instance, J. R. Pierce and VV. G. Shepherd, "Reflex Oscillators," B. S. T. J., 

Vol. 26, No. 3, pp. 666-670 (July, 1947). 2 J. R. Pierce, "Theory of the Beam-Type Traveling-Wave Tube," Proc. I. R. E., Vol. 
35, pp. 111-123, Feb. 1947. 

1. Circuit Theory 

732 
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inal exciting current q. Both and q vary as (exp jul) (exp — Fz). The 
relation is 

Y 
E- = (1) 

Here Fq is the propagation constant of the transmission mode considered and 
is defined in such a sense that for unattenuated propagation, Fo = jfio where 
/3o is a positive number. The quantity tJ/q is defined as 

(2) 

Here P is complex power transmitted by the mode and Ez is the field asso- 
ciated with the mode. 

In generalizing (1), let us consider the combination of equations (1) and 
(2) 

r* = 1'iE* p* (3) 

Now, suppose there is motion of the electrons not only in the z direction but 
in a direction normal to the z direction, which we will call the y direction. 
We shall have two extra first-order terms of the same general nature as 
qE*, which contribute to the power, giving 

o* 1 f V* A. ( T\ dE* A. J7*\ r0 
P* = Yy* z *--/n)-v Yy ^ guEu) 

Here qz is the a-c convection current in the z direction, —/o is the d-c con- 
vection current in the z direction (assumed to be the only d-c convection 
current), y is a small displacement, qy is the convection current in the y 
direction and Ey is the field in the y direction. 

We will now specialize this expression. Suppose we consider a two-dimen- 
sional transverse magnetic wave propagating in the z direction with a phase 
velocity v such that v- <<C c2. Then over a restricted region the electric 
field can be represented quite accurately as the gradient of a sealer potential 
of 

V = exp (-Tz)(A exp (jTy) -f B exp (—jTy)). (5) 

Here A and B are constants. Using our notation, in which the field is 
understood to include the factor exp ( —Fz), we obtain 

Ez = T (A exp (jTy) + B exp (-jTy)) (6) 

^ = jT^'iA exp (jTy) - B exp ( —fFy)) (7) 
dy 

Ey = -jTiA exp (jTy) - B exp (-jTy)). (8) 

r2 r2• (4) 1 — 1 0 
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In other words 

d~ = -VEy. (9) 
dy 

This relation will also be approximately correct remote from the axis in an 
axially symmetrical tube. Here we let y represent a displacement in the r 
direction. 

We may also define a quantity a so that 

Ey = jaEz (10) 

-(A exp QTy) - B exp j-jTy)) 
Ay exp (jTy) + B exp {—jTy) 

For an active mode, such as the one we consider, the chief component of 
jF is a positive real number. Hence, for large positive values of y, the 
quantity a approaches a value 

a = 1. (12) 

This is characteristic of a plane symmetrical field far from the axis and also 
of an axially symmetrical field far from the axis. 

Using (9) and (12) we rewrite (4) 

P* = hE%!2 - ja*(r*hy + qy)] (13) 

We see from this that, according to our assumptions, for the mode considered, 

Ez = {qz - ja*{T* hy + qv)) ^ . (14) 

We will henceforward assume that a and \p are so nearly real that we can 
regard them as real quantities, giving 

Ez = \qz - jaiT* IQy + qu)] r
2
n) ■ (15) 

This is, then, the circu't equation which we will use. 

2. Electronics Equations 

We will assume an unperturbed motion of velocity «o in the s direction, 
parallel to a uniform magnetic field of strength B. Products of a-c quantities 
will be neglected. 

In the x direction, perpendicular to the y and s direction 

~ = -vBy. (16) 

Assume that = 0 at y = 0. Then 

x = —qBy. (17) 



TRAVELING-WAVE TUBES 

In the direction we have 

^ — joEz). (18) 
ill 

Now 
rfy = , dy rfs (JQ) 
<// a/ as <// 

^ - Dj. (20) 
(It 

13=-. (21) 
"o 

We obtain from (20) and (18), and (17) 

(i/3 - D? =-Mo/sSy--7— (22) 
Mo 

/3„ = — . (23) 
Wfl 

We may note that 7?/i is the electron cyclotron frequency. Now, 

dy dy dz 
y = di ~ dzdl (24) 

y = uoijfi — r)y. 

From (24) and (22) we obtain 

—jr\aEz 
y - 4(i/3 - D2 + i3ol 

. _ -jv<*UP - Y)E* 
Wo[0"/3 — F)" + ^ol' 

We will have for qy 

jyahUP — r)-^ 
^ " wo[(y^ - F)2 + ^2ol ■ 

It is easily shown that 

_ i]Ez 

ih(ji3 - r) 

(25) 

(26) 

= (27) 
Wo 

(28) 

(26) 
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If po is the d-c linear charge density and p the a-c linear charge density 

Po = (30) 
Wo 

If qx is the z component of convention current, we have 

qz = PaZ -\- Hop 

Iq Z . (^1) 
  r Wo p. 

Wo 

We also have 

d(/2 = __dp 
dz dt 

Tqz = jup. 

From (31) and (32) we obtain 

_ -jPhz 
q' UP - r)' 

Thus 

wo(i/3 - r)2 • 

3. Combined Equation 

Combining (34), (28) and (25) with (15), we obtain 

vh To f Jl _ a*{T* - (jfi - T)) 

"" 

Here Fo is the power transmitted by the circuit for a field strength Ez. K 
has the dimensions of impedance. Fo is the voltage specifying the electron 
velocity Wq 

Wo = 277 Fo • (38) 

From (36)-(38) and (35) we see 

_ 2/32C3ro r i/3 ^(F* - (iff - r))-| 

(r2 - Fo) L(^ - r)2 [0/3 - r)2 + /32o] J' (39) 

(32) 

(33) 

jvPlpE; 
Q* ~ .ti to -px2 • (34) 

1 ul UT' - r?) Lw - r)J 10(5 - r) + (Sol '' (35) 

We now introduce new parameters 

0^0 2P2P f ^ 
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We now make the approximation that 

-r = -y/3 + 8. (40) 

Where | 5 | « | /3 [ , Neglecting higher order terras, 

(41) r2 - r° = 2jif c3 L «2 

s2 + 52 + To 

4. Purely Transverse Field Along the Path 

We can imagine a case in which a approaches infinity and the quantity 

n3 2^3 El/Ey h /.qN 
D =aC = w 8F. ( 5 

remains finite. In this case we have 

T^-Tl = 2j^D' (43) 

To 52 + /5r 

We will let 
-To = -7/3 - jfiDb - (3Dd. (44) 

Here i is a parameter describing the difference in speed between the electrons 
and the unperturbed wave and d is a. loss parameter. 

Assuming bD « 1 and dD « 1, and letting pD{x + jy) = 5, (45) 
we find 

(v2 - y2 + P) (y + 6) + 2xy(x + d) = -1 (46) 

(x- — y2 + p) (x -\- d) — 2xy(y + 6) = 0 (47) 

where 

/ = -^T . (48) J pD"- 

If would be difficult to work with all of the parameters b,f and d. How- 
ever, it scarcely seems that the attenuation parameter d should enter into 
any unusual phenomena due to the presence of the magnetic field. Accord- 
ingly, let us investigate (46) and (47) for d = 0. We then obtain 

.v2(3y + ft) + {P - y2) (y + 6) = -1 (46a) 

x[xn- + (P - y2) - 2y(y + 6)] = 0. (47a) 

From the x = 0 solution of (47a) we obtain 

^ = 0 (49) 
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If is found that this solution obtains for large and small values of b. For 
very large and very small values of b, either y = —b (51) or y — ± / (52) 
The wave given by (50) is a circtii! wave; that given by (51) represents the 
travel down the tube of electrons oscillating in the magnetic field with cyclo- 
tron frequency. 

f2 = o 

y FOR 
UNDISTURBED WAVE 

s 
N 

\ 
x, s 

ylANDy2 J 

X2 r-' y. 
s 

\ 
\ \ 

\ 
\ 

\> 
NS 

s 

2.5 
2.0 

1.5 

Q 1.0 OJ H < 0.5 

Fig. 1—Plot of parameters giving velocity and attenuation of the three forward waves 
vs. a parameter b proportional to electron speed with respect to the undisturbed wave. 
A positive value of .r means an increasing wave; a positive value of y means a wave travel- 
ing faster than the electrons. This plot is for/2 = 0 (no magnetic field). 

In an intermediate range of b, we have from (47a) 

.r = ±V2y(y + b) - (/2 - y2) 

and 

b = — 2y ± V/2 — l/2y- 

(53) 

(54) 

For a given value of p we can assume values of y and obtain values of b. 
Then, x can be obtained from (52) or (53). In Figs. 1-6, a: and y are plotted 
vs. b forp = 0, .5, 1,2,4 and 10. It should be noted that xi , the parameter 
expressing the rate of increase of the increasing wave, has a maximum at 
larger values of 6 as/ is increased (as the magnetic focusing field is increased). 
Thus, for higher magnetic focusing fields the electrons must be shot into the 
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Fig. 2—Propagation parameters forf- — 0.5. 
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Fig. 3—Propagation parameters for/2 =1.0. 
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Fig. 4—Propagation parameters for/2 =2.0. 
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Fig. 5—Propagation parameters for/2 =4.0. 
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Fig. 6—Propagation parameters for/ = 10.0. 

0 0.2 C.4 0.6 0.8 t.O 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 
PROPORTIONAL TO MAGNETIC FIELD, f 

Fig. 7—Parameter .v giving rate of increase of increasing wave vs. /, which is propor- 
tional to magnetic field strength. 

circuit faster to get optimum results than for low fields. In Fig. 7, the max- 
imum positive value of x is plotted vs. /. The plot serves to illustrate the 
effect on gain of increasing the magnetic field. 
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Let us consider an example. Suppose 

X = 7.5 cm 

D = .03 

These values are chosen because there is a longitudinal field tube which oper- 
ates at 7.5 cm with a value of C (which corresponds to D) of about .03. The 
table below shows the ratio of the maximum value of .-ri to the maximum 
value of x\ for no magnetic field. 

Magnetic Field in Gauss / xi/xm 
0 0 1 

50 1.17 .71 
100 2.34 .50 

A field of 50 to 100 gauss should be sufficient to give useful focusing action. 
Thus, it may be desirable to use magnetic focusing fields in deflection travel- 
ing wave tubes. This will be more especially true in low-voltage tubes, for 
which D may be expected to be higher than .03. 

5. Mixed Fields 

In tubes designed for use with longitudinal fields, the transverse fields far 
off the axis approach in strength the longitudinal fields. The same is true 
of transverse field tubes far off the axis. Thus, it is of interest to consider 
equation (41) for cases in which a. is neither very small nor very large, but 
rather is of the order of unity. 

If the magnetic field is very intense so that fil is large, then the term con- 
taining a2, which represents the effect of transverse fields, will be very small 
and the tube will behave much as if the transverse fields were absent. 

Consideration of both terms presents considerable difficulty as (41) leads 
to 5 waves (5 values of 8) instead of 3. The writer has attacked the problem 
only for the special case oi b = d = 0. In this case we obtain from (41) 

•/■)3 /"i3 = C 
J2 + 52 + ^ I' (5S) 

In work which is given as an appendix, Dr. L. A. MacColl has shown that 
the two "new" waves (waves introduced when a = 0) are unattenuated and 
thus unimportant and uninteresting (unless, as an off-chance, they have 
some drastic effect in fitting the boundary conditions). 

Proceeding from this information, we will find the change in 8 as 0l is in- 
creased from zero. From (51) we obtain 

-fl3/"3 f 2a8d8 2ad0~o "1 , , ds (FTW2 - (-FTW2J. (56) 
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(57) 

Now, if /So = 0 

Using this in connection with (56) for /30 = 0 we obtain 

For the increasing wave 

Si = /3(.866 - j.S). (59) 

Hence, for this wave 

dh = f ( — .866 +y.5)^. (60) 

This shows that applying a small magnetic field tends to decrease the gain. 
This does not mean, however, that the gain with a longitudinal and a trans- 
verse field and a magnetic field is less than the gain with the longitudinal 
field alone. To see this, we can assume that not /3(, but or is small. Differ- 
entiating (55) we obtain 

— 2db lorbdb da2 "I 
.IS = -jp C [^3- - - (s! + . (61) 

If a = 0 
—jl3* C3 = 53 (62) 

1 b3 da2 

''5 = 3(?+ir)- (63) 

If /3o is zero, a small transverse field (small increase in a2) increases the magni- 
tude of b without changing the phase angle. If /?» » | 5 | , then 

db = da2 (04) 
Pi) 

and the change in b is purely imaginary. For the increasing wave, the change 
in 6 as a transverse field is added will range from an increase in the real part 
for small magnetic fields to no change in the real part for large magnetic 
fields. 

APPENDIX 

Study of The Algebraic Equation 

b3(b2 + Pi) + iP3CHb'2 + Pl + ar52) = 0 

55 + plb3 + jP3CH\ + <*-)b2 + jplp3C3 = 0 
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IT + (^1+ } C\1 + a2) + 7 ^Y C1 = o (2A) 0/ VPo/ \/3n/ \Po, 

Write 

A - 2 

3 
F C3 = a (3A) \po/ 

(i-Yc'a'-i 
NPO/ 

Then 

z5 -f 23 + j(a + i)z2 ja = 0 (4A) 

a is assumed to be positive, and b is assumed to be real and non-negative. 
For 6 = 0 we have 

(z3 + ja) (z2 + 1) = 0 (5A) 
• -1/3 „• 1/3 2irjl3 .1/3 4ri/3 //CAN 

z=J,-J,ja ,ja e ,ja e (6A) 

We have 

[Sz4 + 322 + 2j(a + b)z] ^ + jz2 = 0 
db 

i ■ 2 az —jz 
db Sz4 + 322 + 2i(fl + 6)2 (7A) 

From this we draw the following conclusion. Suppose that for a certain 
value of b the five roots are distinct, and that among them there is a purely- 
imaginary root. Then as b varies, in the neighborhood of its initial value, 
that root remains purely imaginary. 

In particular, consider b as increasing from the initial value 0. As long 
as the five roots remain distinct, there are exactly three purely imaginary 
roots. 

In order to have a real root s = x, we would have to have simultaneously 

a-5 + a:3 = 0 

{a + b)x?- + a = 0 (8A) 

This is impossible (with a > 0). Hence there is never a real root. 
In particular, as b increases from 0, no root can cross the real axis. Hence, 

as b increases from 0, as long as the roots remain distinct, there are two 
purely imaginary roots above the real axis, one purely imaginary root below 
the real axis, and two complex roots below the real axis. 
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Since there is no term in s4 in the equation, the sum of all the roots is 0. 
Hence the two complex roots must be located symmetrically with respect to 
the imaginary axis. 

First order variations of the roots with b can be calculated at once by 
means of the equation 

- =   — (9A) 
db 5z4 + 3s2 -f- 2j{a + b)z 

In principle, higher-order variations can be calculated by carrying the 
differentiation to higher orders. However, the formulae get wonderfully 
complicated. 

A very practical way of solving the equation is the following: 
The three imaginary roots can be found by plotting a curve. If we let 

2 = jy, (4A) becomes 
yb y3 -p £)y2 _ a = o (10A) 

For the imaginary roots y is real and we have merely to plot the left-hand 
side of (10A) vs. y to find the roots. Denote them by 21,22,23, which are 
now regarded as known numbers. These roots satisfy the equation 

(2 — 2i)(2 — 22) (2 — 23) = 23 —(2i + 22 + 23)22 + (2i22 + 2I23 + 2223)2 

— 212223 = 23 + Q;i22 + Q!23 + ors = 0 (HA) 

The two complex roots satisfy some equation 

s2 + /3i2 + £. = 0 (12A) 

The /3's are at present unknown. When we find them we can at once calcu- 
late the complex roots. We must have 

(23 + ai22 + 0:22 + "3) (s2 + /3i2 + ff-i) = 25 + 23 -f- j(a + b)z- + ja (13A) 

Comparing the coefficients of 24 and 2°, we get the equations 

ai + /3i = 0 

OC302 = ja (14A) 

which give us the /3's. 
Suppose that the magnetic field is very small, so that 0o « 0- Then 

unless a is very small, both a and b in (10A) will be very large numbers, and 
we find that two of the imaginary roots are given approximately by 

> =± tHb)"2 (15A) 
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As /3o —» 0 the other three roots are given by 

z = l-j(a + b)]m (16A) 

These three roots correspond to the waves found for traveling-wave tubes 
with a purely longitudinal field. The roots according to (ISA) represent 
such a combination of deflection and bunching as to produce no induced 
current in the circuit. The roots of (ISA) are "extra" roots attributable to 
the consideration of transverse fields and transverse electron motion. 

For the roots given by (ISA), 8/0 —> 0 as 0o —»0. Thus in this case it is 
convenient to form the solution of two parts, one varying as 

->02 ■ / ufiu \ _ 
e sm Ut b) 

and the other varying as 

">02 V 
e C03 U+vs 

As 0o —> 0, the first of these approaches the form 

and the second approaches the form 

Again, these "extra" waves produce no induced current in the circuit. 
Two additional pieces of information: 
As a —»0, 6 a remaining fixed, the roots approach the limiting values 

0, 0, 0,j, -j. 

As a—* *>, ba remaining fixed, two of the roots approach the limiting values 

^ \/ • 

the other roots behave as 
•/ I tS1'3 Y I lnI/S 2r>/3 •/ | L\l/3 Jrj'S j(a + b) ,]{a + b) e tj(a + b) e 

Much of the preceding discussion depends upon the roots remaining distinct. 
The condition that two or more of the roots coincide, which is a relation 
between a and b, can be written out, but it has not as yet been reduced to a 
compact and intelligible form. 



Abstracts of Technical Articles by Bell System Authors 

Pulse Code Modnlalion.1 H. S. Black and J. 0. Edson. A radically 
new modulation technique for multichannel telephony has been developed 
which involves the conversion of speech waves into coded pulses. An 
8-channel system embodying these principles was produced. The method 
appears to have exceptional possibilities from the standpoint of freedom 
from interference, but its full significance in connection with future radio 
and wire transmission may take some time to reveal. 

Modnlalion in Communicalion.' F. A. Cowan. Any signaling system 
requires some means for introducing a change in conditions at the sending 
end which may be recognized at (he receiving end. The process by which 
the conditions are changed has come to be called modulation. There are 
many varieties of forms of change as well as a large number of conditions 
which are subject to change in response to the signals to be transmitted. 

In early systems for communication at a distance the signal information 
might have been impressed upon a rising column of smoke, a light, a stone 
tablet, or a sheet of parchment. For modern communication wide use is 
made of systems in which the signals change the magnitude or condition 
of electric energy. 

Starting with the electric telegraph a little more than a hundred years ago 
this medium of communication has grown steadily more important and more 
complex. To meet a variety of needs many systems of modulation have 
been developed and papers describing them in detail are available in the 
technical literature. Various aspects of the modulation processes have 
been analyzed carefully and presented and some of the earlier conceptions 
have acquired a classical textbook status. Recent trends have placed 
emphasis on modulation systems which more readily may be understood 
when viewed in a somewhat different manner. It is the purpose of this 
paper to present certain conceptions which may facilitate the understanding 
of the various systems of modulation and permit an improved perspective. 

Frequency Division Techniques for a Coaxial Cable fSehvork? R. E. 
Crane, J. T. Dixon and G. H. Huber. A description is given of develop- 
ments employing frequency division techniques by which the telephone- 
message-carrying potentialities of the coaxial cable system are realized. 
By these methods 480 high quality telephone messages are prepared for 

' Trans. A. I. E. £,vol. 66, 1947 {pp. 895-899). 
* Trans. A. I. E. £., vol. 66, 1947 (pp. 792-796). 3 Trans. .4. /. E. E., vol. 66, 1947 (pp. 1451-1459). 
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transmission over the line and restored to original condition at main terminal 
points. At intermediate points appropriate groups of channels may be 
removed, inserted, bridged, or relocated in the frequency spectrum of the 
line. 

Experimental Studies oj a Remodulating Repealer.'1 W. M. Goodall. 
This paper describes tests made on an experimental broad-band microwave 
f.m. repeater. A superheterodyne receiving unit is used with a microwave 
reflex-oscillator transmitting unit to form a repeater. An experimental 
setup for testing this repeater in a circulating-pulse system is described. 
Oscillograms showing the performance of the repeater on a multilink basis 
are discussed. 

An Electronic Regenerative Repeater Jor Teletypewriter Signals.b R. B. 
Hearn. The important factor in teletypewriter signal transmission over 
circuits is the relative position on a time scale of the code pulses. If this 
timing is preserved, wide amplitude variations can be experienced without 
errors resulting. Correctly timed signal pulses at the transmitting end 
of a circuit are not necessarily properly timed at the receiving end, as the 
transmission path may shift the timing of some transitions with respect to 
others. However, if the signals are not too badly changed or distorted, it is 
possible to retime them at an intermediate point and send them on in their 
original form. 

Many arrangements have been devised for automatically retiming and 
retransmitting teletypewriter signals. These arrangements are known as 
regenerative repeaters. A few of these have been designed to make use of 
electronic timing arrangements and the purpose of this paper is to describe 
such an electronic regenerative repeater, known as repeater TG-29, designed 
originally for use by the Armed Forces. 

Submarine Detection by Sonar.6 A. C. Keller. Sonar, the only effective 
method of detecting completely submerged submarines was a major factor 
in the defeat of the {/-boat and the winning of the Battle of the Atlantic. 
A majority of the 996 enemy submarines sunk during World War II was 
detected and located by sonar. The word sonar is formed from the phrase 
SOund Navigation And Ranging and applies broadly to under water sound 
devices for listening, echo ranging, and locating obstacles. 

The QJA sonar system, one of those which got into active service during 
World War II, is described here. This equipment was designed by Bell 
Telephone Laboratories and manufactured by the Western Electric Com- 
pany. 

4 Proc. 1. R. E., May 1948 (pp. 580-583). 6 Trans. A. I. E. E., vol. 66, 1947 (pp. 904-911). 6 Trans. A. I. E. E., vol. 66, 1947 (pp. 1217-1230). 
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Mcasuremtnl of High Q Cavities at 10,000 Megacycles? R. W. Lange. 
Known methods of measuring Q in high Q resonant cavities, together with 
their accuracies and sources of error, are discussed. For relatively low 
values of Q and of frequency, it is shown that band width methods are more 
accurate than decrement methods. For values of Q above 30,000 at fre- 
quencies above 3,000 megacycles the reverse is true. The significant feature 
of the present method, the wide range heterodyne decrement method, is that 
the accuracy is improved by observing the decay over a relatively long 
interval of time. An absolute accuracy of plus or minus three per cent and 
a relative accuracy of plus or minus two per cent are achieved. Design 
features and performance are discussed and constructional details are 
presented. 

Absorbing Media for Underwater Sound Measuring Tanks and Baffles? 
W. P. Mason and F. H. Hibbard. By using absorbing walls surrounding 
a small body of water, measuring tanks have been produced which will de- 
termine the directional properties of underwater sound instruments down 
to a level of 25 db below the direct beam. These absorbing media are con- 
structed by inserting fine mesh screen or packed copper wadding in a viscous 
liquid such as castor oil. These obstructions result in an enhanced viscous 
action which is nearly independent of the frequency above 10 kilocycles. A 
six-inch wall can reduce the reflections by 20 db. Tanks using such ab- 
sorbing media were used for testing transducers at the manufacturing plant 
and were used for determining the approximate characteristics of small sized 
instruments. Absorbing media were also used in the sound transparent 
dome housing the transducer and in the back of the QJB transducers. 

Calculation of the Directivity Index for Various Types of Radiators? C. 
T. Molloy. This paper gives the derivations of the "directivity index" 
formulas for several types of sound radiators. The "directivity index" is 
defined as "the ratio of the total acoustic power output of the radiator to 
the acoustic power output of a point source producing the same pressure at 
the same point on the axis." The utility of the directivity index concept is 
that it permits power calculations to be made for all radiators in the same 
manner as for point sources. Directivity index formulas, together with 
graphs covering practical cases, are given for the following types of radiators: 

1. General plane piston in infinite baffle, 
2. Circular plane piston in infinite baffle, 
3. Rectangular plane piston in infinite baffle, 
4. Sectoral horn, 
7 Trans. A. I.E. E., vol. 66, 1947 (pp. 161-166). 
* Jour. A cons. Soc. America, July 1948 (pp.476-483). 
* Jour. Acous. Soc. America, July 1948 (pp. 387-405). 
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5. Multicellular horn, 
6. Piston set in sphere. 
A Magnetic Field Strenglh Meier Employing the Hall Effect in Germanium ™ 

(i. L. Pearson. The instrument to be described measures magnetic field 
strengths as determined from the Hall effect in germanium. The essential 
parts of this instrument include a small germanium probe, and a panel type 
microammeter calibrated directly in gauss. Its accuracy is ±2 percent at 
fields between 100 and 8000 gauss. At higher fields the readings are too 
low, the error amounting to 9 percent at 20,000 gauss. The chief advantages 
of this instrument are: (a) small size and portability, (b) continuous reading 
rather than ballistic as in ordinary field strength meters, and (c) a small 
nonmagnetic probe with which one can search in very narrow gaps. 

The Representation of Vouels and their Movements}1 Ralph K. Potter 
and Gordon E. Peterson. It is shown that movement of the major 
resonances in the voiced sounds of speech may be represented by traces in 
a three-dimensional graph. Apparently a great deal can be learned about 
speech through investigation of such traces, and they suggest a new method 
for vowel designation that is particularly adaptable to quantitative analysis. 

General Mobile Telephone System.1- H. I. Romnes and R. R. O'Connor. 
The tremendous need for communication with ships, airplanes, trucks, tanks, 
and other mobile units used in such large quantities during the war accel- 
erated the development of practical mobile radiotelephone equipment for 
use in the 30 to 200 megacycle range and emphasized the practicability and 
usefulness of mobile telephone service. By the end of the war the art had 
advanced sufficiently in the applications of these higher frequencies so that 
it seemed practicable to provide telephone service to mobile units on a gen- 
eral basis rather than limit it to safety and emergency services as had been 
the case before the war. The Federal Communications Commission there- 
fore made available a few frequencies for experiments in this field. In the 
two years which have elapsed, the Bell System has made this service avail- 
able on an experimental basis in more than 60 cities and about 100 more 
systems are under construction. This paper describes the arrangements 
used and outlines the experience obtained to date with this service. Im- 
provements are being made constantly so that this must be regarded as an 
interim report on a rapidly changing and expanding service. 

Interference between Very-High-Frequency Radio Communication Circuits.1* 
W. Rae Young, Jr. Interference between different radio circuits is an old 
problem, one which in the past generally has been solved by trial and error 

1(1 Rev. Sci. Instruments, April 1948 (pp. 263-265) n Jour. Acous. Soc. America, July 1948 (pp. 528-535). 12 Trans. A. I.E. E., vol. 66, 1947 (1658-1666). 
13 Proc. I. R. E., Waves and Electrons Section, July 1948 (pp. 923-930). 
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and by hand tailoring (special filters, etc.). With the general increase in 
the usage of radio communication, however, the amount of potential inter- 
ference is greatly increased. This paper will he concerned principally with 
the v.h.f. problem. 

There is generally a large difference between transmitting and receiving 
power levels. As a result, spurious radiations, spurious responses, and lack 
of sufficient receiver selectivity may in many instances cause interference. 
Situations are described in which such interferences are likely. 

In mobile systems interference can occur if the interfering station is close 
enough to "capture" it from the desired signal. This, in turn, depends upon 
the selectivity and spurious response of the receiver and the amount of 
spurious radiation from the transmitter. The problem can be approached 
in a statistical manner. 

The types of spurious radio behavior which are common causes of inter- 
ference are discussed. Sample measurements are given to illustrate the 
relative magnitude of the various modes of behavior. Formulas are given 
which permit computation of the frequency of the disturbances. A method 
is described for making charts suitable for a given type of equipment from 
which the spurious frequencies can be read directly as a function of the 
operating frequency. 
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J. T. Mullf.r, Technical College, Amsterdam, Holland, 1923; M.S., 
Stevens Institute of Technology, 1943. Mr. Muller came originally to the 
United States to continue his studies in 1923, became interested in the design 
and development of high-speed automatic equipment for a number of com- 
panies and joined Western Electric in 1941 and the Bell Telephone Labora- 
tories in 1943. He has been primarily concerned with the protection of 
radar equipment against shock and vibration and the development of new 
types of shock mounts. His interest is in the field of experimental and 
mathematical dynamics. 

William W. Mumford, B.A., Willamette University, 1930. Bell Tele- 
phone Laboratories, 1930-. Mr. Mumford has been engaged in work that 
is chiefly concerned with ultra-short-wave and microwave radio commu- 
nication. 

Liss C. Peterson, Chalmers Technical University, Gothenburg, 1921; 
Technical Universities of Charlottenburg and Dresden, 1921-23. American 
Telephone and Telegraph Company, 1925-30; Bell Telephone Laboratories, 
1930-. Mr. Peterson has recently been concerned with the theory of 
hearing. 

J. R. Pierce, B.S. in Electrical Engineering, California Institute of Tech- 
nology, 1933; Ph.D., 1936. Bell Telephone Laboratories, 1936-. Engaged 
in study of vacuum tubes. 

Claude E. Shannon, B.S. in Electrical Engineering, University of Mich- 
igan, 1936; S.M. in Electrical Engineering and Ph.D. in Mathematics, 
M. I. T., 1940. National Research Fellow, 1940. Bell Telephone Labora- 
tories, 1941-. Dr. Shannon has been engaged in mathematical research 
principally in the use of Boolean Algebra in switching, the theory of com- 
munication, and cryptography. 

M. K. Zinn, B.S. in Electrical Engineering, Purdue University, 1918; 
U. S. Army Signal Corps and Air Service, 1918-19. American Telephone 
and Telegraph Company, Department of Development and Research, 1919- 
34; Bell Telephone Laboratories, 1934-. Mr. Zinn's work has been con- 
cerned mainly with transmission engineering problems. 
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