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Propagation of TEqi Waves in Curved Wave Guides 

By W. J. ALBERSHEIM 

TEoi waves transmitted through curve wave guides lose power by conversion 
to other modes, especially to TMu- 

This power transfer to coupled modes is explained by the theory of coupled 
transmission lines. It is shown that the power interchange between coupled lines 
and their propagation constants can be derived from a single coupling dis- 
criminant. 

Earlier calculations of TE0| conversion loss in circular wave guide bends arc 
confirmed and extended to S-shaped bends. 

Tolerance limits for random deflections from an average straight course arc 
given. 

THE TEqi mode of propagation in circular wave guides has great 
potential value for the transmission of wide-band signals because 

its attenuation decreases with frequency. In order to take full advantage 
of this property one must use sufficiently large wave guides to operate well 
above the cutoff of the lowest transmitted frequency. The difficulty of this 
transmission method lies in the fact that TEoi is not the dominant mode 
and that energy may be lost by transfer to the many other modes capable 
of transmission in the wave guide. In an ideal wave guide, which is perfectly 
straight, perfectly circular and perfectly conducting, the propagation is 
undisturbed; but slight imperfections and especially a slight curvature of 
the wave guide axis may produce serious disturbances. 

The character of these disturbances has been investigated in several 
publications by Prof. M. Jouguet1 and in unpublished work by Mr. S. 0. 
Rice of the Bell Telephone Laboratories. Both Jouguet and Rice use the 
method of perturbations, which is a form of calculus invented by astronomers 
to compute the deviations from the exact elliptical orbits of the planets 
which are caused by the disturbing influences of their fellow planets. 
Although the above-mentioned authors obtained valuable results, the 
interpretation of their solutions is difficult due to this rather abstract 
mathematical formulation. To most engineers the understanding of a 
physical problem is greatly helped if it is possible to use a method of analysis 
which is elementary in character and easily interpreted in familiar physical 
terms. The familiar concept on which the present treatment will be based 
is that of coupled circuits. 

1 See References 2 and 3, listed on page 7. 
1 
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It has been stated by the earlier authors that the curvature of the wave 
guide produces a coupling between modes. Before going into a detailed 
analysis one may estimate by inspection the nature of this coupling and the 
kind of modes that are most strongly coupled to each other. Figure la 
shows the cross section and the longitudinal section of a straight cylindrical 
wave guide. The location of every point inside the wave guide is determined 
by three coordinates: the radial distance r from the cylinder axis; the 
azimuth angle <p from an arbitrary 0 line and the axial distance z from the 
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b-TOROIDAL CO-ORDINATES IN CURVED WAVEGUIDE 
Fig. 1 

origin. If the wave guide is bent as shown on Fig. lb, but a wave front 
at right angles to the cylinder axis is to be maintained, the waves must be 
shortened at the inside of the bend and lengthened at the outside of the 
bend. Regarding compression as a positive and expansion as a negative 
deformation, one sees that the distortion of the wave shape is proportional 
to the curvature of the wave guide multiplied by the cosine of the azimuth 
angle. It is natural to assume that the coupling between modes is propor- 
tional to this distortion. 

Now it is known that all modes of propagation in a circular wave guide 
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can be derived from functions Jn(xr) cos tup. In these functions, n is 
called the aximuthal index because it indicates the type of symmetry around 
the circumference of the wave guide. When these characteristic functions 
are multiplied by the distortion factor cosine ip, the resulting expressions 
are proportional to the sura of cosine (n + I) p and cosine (n — 1) p. This 
means that the bending of the wave guide couples mainly those modes which 
differ by ±1 in azimuth index. Since the TEqi mode has the azimuthal 
index 0, it is coupled to all modes of the type TEim and TMim . 

In the above qualitative discussion we have claimed that coupling exists 
without defining the physical coupling parameters and their effects. We 
must now supply this definition and show that the TEoi mode is particularly 
susceptible to coupling losses. 
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b-COUPLED RESONATORS 

Our investigation is guided by S. A. Schelkunoff's statement2 that a wave 
guide mode has the same equation of propagation as a high-pass transmission 
line. Schelkunoff further points out3 that the high-pass character of circular 
wave guide modes can be interpreted as the effect of interfering plane waves 
whose directions of propagation deviate from the wave guide axis by a 
constant slanting angle. 

We therefore approach the problem of coupled wave guide modes by 
studying the behavior of two coupled transmission lines such as shown on 
Fig. 2a. Each transmission line is schematically shown as an array of small 
ladder sections. The series impedances per unit length of the lines are Zi 
and Z2 ; their shunt admittances per unit length, yi and y2. The two 
lines are loosely coupled by small mutual series impedances per unit length 
(zm) and by small mutual shunt admittances per unit length (ym). 

A network of coupled ladder sections is more tractable than a wave guide 
structure, but still somewhat complicated. Let us therefore carry the 
analogy one step further. Figure 2b shows two resonant circuits, each 

2 Ref. 4, pp. 378 and 381 of the book. 3 Ref. 4, p. 410 of the book. 
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consisting of single capacity C, and an impedance Z which includes an 
inductance L and a damping resistance R. The resonators are coupled 
by a small mutual inductance Zm and by a small mutual capacity Fm . 

The behavior of coupled resonators is very well known to radio engineers. 
They occur as tuned transformers in amplifier circuits, as band-pass filters 
and as "tank circuits" in radio transmitters. Even before the advent of 
radio, their acoustical equivalents were studied in the form of resonant 
tuning forks. The mathematical aspects of this problem were already 
clearly set forth in a paper by Wien written in 18974. He showed that the 
interaction between the free vibrations of two tuned circuits depends on 
the coupling coefficient and on the ratio of their complex resonance fre- 
quencies. The closer the two frequencies are to each other, the less coupling 
is needed to transfer energy between the two circuits. The reason is that 
the individual free vibrations of two nearly synchronous circuits remain in 
step long enough to accumulate the small energy transfer impulses of many 
vibrations. 

Now consider the two transmission lines of Fig. 2a and assume that a 
constant frequency signal is impressed upon the input of one or both of them. 
The signals are carried along the two lines as traveling waves. Again it is 
true that loosely coupled signals affect each other strongly if they remain in 
step. With traveling waves "remaining in step" means that they must 
travel with approximately equal phase velocities. We conclude that the 
phase velocities or phase constants of coupled transmission lines play a 
similar role as the resonant frequencies of coupled tuned circuits. This 
intuitive reasoning is confirmed by analysis (see Section 1 of the analytical 
part of this paper). 

We thus find that we must expect trouble for TEoi wave guide trans- 
mission if a mode with an azimuth index 1 has a propagation constant 
close to that of the TEoi. It so happens that there exists one mode, the 
TMu, which in an ideal wave guide has exactly the same propagation 
constant as the TEoi. This then should be the principal source of trouble— 
and from previous work it is known that such is the case. 

Our discussion of coupled transmission lines has shown that the interaction 
effects are functions of their relative uncoupled propagation constants and 
of the coupling coefficient. The propagation constants of the TEoi and 
TMu wave guide modes are known but their coupling coefficient remains 
to be found. 

Since the energy of the transmission modes is located in the dielectric 
inside the wave guide, we consider first the coupling between the plane 
"slant wave" groups from which the modes are built up. 

4 Reference 5. 
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As shown in the analytical part, the coupling coefficient of these slant 
waves may be defined as the energy interchanged between the modes per 
unit length of line divided by the geometric mean of the energies per unit 
length stored up in each of the modes. 

From the coupling coefficient of the slant waves the coupling coefficient 
of the wave guide modes is derived. 

On the basis of the above physical interpretation the analysis is carried 
out and the properties of TEoi propagation through curved wave guides of 
various shapes are derived in the analytical part of this paper which is 
subdivided into the following nine sections: 

Section 1 develops an approximate theory of loosely coupled, weakly 
damped circuits. The theory is first derived for coupled resonators which 
are familiar to communication engineers, and then applied in similar form 
to coupled transmission lines. It is shown that the important interaction 
properties of coupled lines are functions of a single coupling discriminant. 
The relative energy content of the two lines in each of the two possible 
coupled modes is plotted as a function of the coupling discriminant. 

Section 2 contains the field equations of a straight circular wave guide 
and their modification by a toroidal bend. 

Section 3 gives the solutions of the field equations for the uncoupled 
TEoi and TMu modes in wave guides with infinite, and with small but 
finite conductivity. 

Section 4 applies the coupling theory to the TEoi and TMu modes in 
circular wave guide bends. The coupling coefficient, coupling discriminant 
and energy division between the two modes are derived as functions of the 
wave guide diameter bending radius and conductivity and of the signal 
frequency. 

Section 5 derives the critical bending radius and the attenuation of TEoi 
waves in long wave guides of constant curvature. Two numerical examples 
are given. 

Section 6 shows that in a curved section of wave guide which follows a 
long straight section or other source of pure TEoi the energy fluctuates 
back and forth between a condition of pure TEoi and of predominant TMu . 
The length and magnitude of the fluctuations are derived. 

Section 7 computes the increase in average attenuation caused by serpen- 
tine bends of regular shapes. Numerical examples are tabulated. 

Section 8 shows that the results of Section 7 can be applied to helical 
bends and to small two-dimensional random deviations from a straight 
course. 

Section 9 shows that for any given statistical distribution of random 
angular deviations the average attenuation is minimized by an optimum 
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wave guide radius for each signal wave length and by an optimum signal 
wave length for each wave guide radius. 

Numerical examples are given for sinusoidal bends. 

Summary of Results 

1. The energy loss of TEqi waves in curved wave guides by conversion 
into the TMu mode is interpreted as a case of coupling between 
resonant transmission lines. 

2. In a pair of coupled lines the energy cannot be confined entirely to a 
single line but travels through both in one or both of two possible 
combination modes. 

3. All important properties of coupled circuits, including wave guide 
modes, are functions of a single discriminant. 

4. When the discriminant is much smaller than one, most of the energy 
can be carried in one line or component mode. 

5. When the discriminant is much larger than one, the energy flow is 
nearly equally divided between the two lines or component modes. 

6. In wave guides of typical dimensions the coupling discriminant 
becomes one for a "critical" bending radius greater than a mile. 
For all sharper bends, that is for most practical installations, the 
discriminant is greater than one. 

7. In a long wave guide section with more than critical curvature the 
average attenuation constant is the arithmetic mean between those 
of the TEoi and the TMu modes. 

8. If a wave guide region carrying pure TEqi is followed by a curved 
region, the energy in the curved region fluctuates back and forth 
between pure TEoi and predominant TMu ■ The location of TEqi 
minima and maxima is a function of the signal frequency, the wave 
guide diameter and the total bending angle. 

9. For highly supercritical curvatures the bending angles at which 
minima and maxima occur are nearly independent of the curvature 
and approach the limiting values previously computed by Jouguet 
and Rice. The minima approach zero. When the bending radius 
approaches or exceeds the critical value, the maxima and minima 
become shallower and their spacing is increased by a function of the 
coupling discriminant. 

10. For regular serpentine bends or random angular deviations from an 
average straight course which are much smaller than the first extinc- 
tion angle, the percentage increase in average attenuation is propor- 
tional to the square of the maximum deviation and to the fourth 
power of wave guide diameter and signal frequency. 

11. Wave guide installations of practical dimensions for frequencies now 
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attainable are tolerant to random angular deviations of the order of 
1 degree. 

12. For any expected distribution of random angular deviations there 
exists an optimum wave guide radius for each signal wave length and 
an optimum signal wave length for each wave guide radius, which 
minimize the average attenuation. 
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ANALYSIS 

1. Interaction of Coupled Circuits 

1.1 Free Oscillations of Coupled Resonators {Fig. IB) 
The circuits are coupled according to the following four equations: 

ei = —Z\ii -T Zmii 1.1-1 

ix = Fie, + Fme2 1.1-2 

e2 = —Ziii d- Zmi\ 1.1-3 

H = F 2<?2 + Fmei 1.1-4 

where index i refers to circuit 1, index 2 to circuit 2 and index m to the mutual 
coupling impedance and admittance. The coupled oscillations have the 
solution: 

ei = EuePat + ElbePbt 1.1-5 

*2 = E2ae
Pal + EutPbt 1.1-6 

In the limiting case of zero coupling (Fm = 0,Zm = 0) the obvious solution 
shows independent oscillations in the two separate circuits: 

eio = Kiiio = EioePl 1.1-7 

620 := 7^2^20 = -£20 €P2 1.1-8 

The wave impedance Ki of the primary circuit is found by dividing equation 
1.1-1 by 1.1-2 

is — 61 — t 
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Similarly, 

By multiplying equation 1.1-1 by 1.1-2 one finds 

-ZiFi = 1 1.1-9 

from which one can compute the exponent pi. In the specific circuits 
shown in Fig. lb 

Z\ = Lipi "h Ri and 1.1-10 

Yi = Cipx 1.1-11 

From 1.1-9, 10 and 11 

and by analogy 

R-2 

' 1 RY 
LiCi ~ 4Z.,2 

'jT R* 
L2C2 4L2

2 

1.1-12 

^ = ~ 2U+ j V iQ ,-^13 

In equations 1.1-7 and 1.1-8, £io and £20 are amplitude constants determined 
by boundary conditions. In equations 1.1-12 and 1.1-13, 5i and 82 are the 
decay or damping constants, coi and C02 the radian frequencies. 

With finite but loose coupling and small damping the circuits can oscillate 
with either or both of the two frequencies. 

= Pi+jt+Pi^rtwr+^ = p. + o.smi - vr+*) 1.1-14 

pb = - ti^Livrr^ = f* + 0.5 - Vi+^) 1.1-15 

In the last two equations, the symbol k, defined by « = \/ -k, may 
Y pi — pi 

be called the coupling discriminant. The first term of the product on the right 
side of this expression is the reciprocal of the fractional difference between 
the uncoupled frequencies; the second term k is the "coupling coefficient." 

When there is only one coupling impedance, the coupling coefficient is 
usually defined as the mutual circuit impedance divided by the geometric 
mean of the separate circuit impedances. A broader definition which 
applies to all combinations of mutual impedances and admittances is 

. _ P12 _ P 21 
" VEr, ~ VPJ, 
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In this equation Pi is the energy stored in circuit 1, Pi the energy stored 
in circuit 2 and Pm is the energy transferred from one circuit to the other. 
One finds 

2 • 2 2 
p = 61 = eL 

1 2K~*~ 2 K, 

n -2 ri — — — li A.2 
Ki 

= i\K, 

p   ^12^2   i i Jf   ^21 ^1 | • t' A12 — — twiiKi — -|- l2ll\h.l 
A 2 Ai 

1.1-17 

1.1-18 

1.1-19 

Equations 1.1-5 and 1.1-6 contain four amplitude constants. Two of these, 
for instance E\a and Eib, can be adjusted to satisfy boundary conditions. 
The other two are fixed by the equation 

Ela A'l _ pa — pi _ pi, — pi _ E\b Ki 

EiaKo Pa Pi Pb Pi Eib Ki 

The square root of this expression, 

Eia 
Ela 

_ Eib /Ki   
Eib V Ti ' 

may be called the normalized amplitude ratio. It is a vector quantity 
denoting the amplitude ratio and phase relation of each oscillation frequency 
in the two circuits, assuming that they have been normalized to equal 
resistances by an ideal transformer. The absolute value 

ElaKi 

JE?a A2 
= Wa = 

1 
W'b 

is the ratio of the energies stored in the two circuits oscillating at frequencies 
pa and pb respectively. 

From 1.1-14, 15, 16 and 18 

IVi + ,-1 
= IF 

A, 

| Vl + X2 + 1 

= -v/l + x-2 — x 1 — A 

When the indexes are left off, W < 1 and ) .4 ) < 1 by definition. One 
sees that energy, amplitude and phase relations between the coupled 
circuits at each oscillating frequency are governed by the coupling dis- 
criminant. This also applies to the damping coefficients and frequencies 
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of the coupled oscillations. It can be shown by combining and transforming 
equations 1.1-14, 15, 19, that the coupled damping coefficients are 

5l + bzW , W la I f w 2a 
5a = —I 7—frT" = 51=7  + 52 1 -|- W total H'total 

_ 5iir + 52 _ 5l Wlb . 52^26 
6 1 + W ~ total total 

The damping constants of two coupled resonances are found by combining 
the uncoupled damping constants in the same proportion as the energies 
oscillating in the two resonators. 
The coupled frequencies are 

Wi — WU2 
COq = 

OJfc = 

1 - W 

(j)2 — Wul 

and 

1 - W 

1.2 Forced traveling waves in coupled transmission lines (Fig. 1A). 
The two lines are coupled according to the four equations 

Tei = ziii + Zmii 

Tii = yiei -f yme2 

= 22^2 + Zmii 

Tii = y2«2 + ymCl 

which may be compared to the corresponding equations of section !.!• 
There is a dimensional difference because in transmission lines the series 
impedances z are measured in ohm/meter and the shunt reactances y in 
mho/meter. T is the propagation constant of the wave traveling in the 
+5 direction. If a sinusoidal signal with the radian frequency u is impressed 
upon the input of the lines, the coupled waves have the solution 

ex = Elaeiat'ra' + Elbeiat-Tb" 1.2-1 

62 = Eiae^*' + Ei^0"'^ 1.2-2 

For zero coupling one finds, in analogy to Section 1.1 

exo = Kiii = El0eio"-Tl' 

620 =:: Kiii = EioS0" rj 

K-Ui 
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and 
Ti = V^iZx 

T2 = y/y^z-i 

£10 and £20 are independent integration constants. For finite but loose 
coupling and small attenuation constants one finds in analogy to 1.1-14 
and 1.1-15 

Ta = Vr+T2 = Tj + 0.5r2(i - vr+*) 

Tb = 

where 

2 

Fx + r2 

2 

Fx - r2 
Vi + k2 = r2 + 0.5 rx(i - Vi + /c2) 

r, - r2 
"v/Fi r2 1.2-3 

is the coupling discriminant. Just as in Section 1.1 the coupling coefficient 
k is defined by the equation 

£l2 £>2X 
1.2-4 k = 

VP1P2 VP1P2 

Pi is the energy per unit length stored in line 1; £2, the energy per unit 
length stored in line 2, and £x2 = £21, the energy per unit length inter- 
changed between the lines. The waves can travel in the coupled lines with 
either or both of two transmission constants. Two of the amplitude 
vectors in equations 1.2-1 and 1.2-2, for instance £ia and £26, are free to 
satisfy boundary conditions; the other two are determined by the equation 

P-iaKi _ Fq — Fx _ Ft — r2 _ EibKz 

£ia £2 ra — r2 Ft — Fx £26 Ki 

1.2-5 

A is the normalized amplitude and phase ratio for two lines transformed to 
equal wave impedances. 

£20 A'x 
£iaA2 

= wa = 
Wb 

Wa = vT+T2 - 1 = w 
\/1 -f- /c2 + 1 

is the ratio of energy flow in the two lines. At the propagation constant Fq, 

Aa = Vl + k-2 - 1.2-6 
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When the indexes are left off, W < \ and j ^4 ] < 1 by definition. 
In a manner analogous to that of Section 1.1 it can be shown that the 
coupled attenuation constants are 

+ <22IV Wla , W2a 1 -y 7 aa = ~~i—i Ti/ ^ "i fTT— + "2 m— l-z~l 
1 + IK iVtotal " total 

<22 + OCiW W\b , W2b . ry s 

«'= TTir = ai + ^ 1-2'8 

The attenuation constants of the coupled waves are found by combining 
the uncoupled attenuation constants in the same proportion as the energies 
traveling in the two lines. 
The coupled phase constants are 

ft. = \~_Ww'and 1'2-9a 

ft = T^ir 1-2-9b 

From equations 1.2-5 to 1.2-8 one sees that the coupled propagation 
constants are conveniently described in terms of the power ratio W. W 
itself is a known function of the complex coupling determinant k which is 
shown on the attached Fig. 4 for the following three special cases: 

Case 1. 
The two fines have equal phase constants and different attenuation con- 

stants:^ = i3l Q!2 ^ 
k is an imaginary number. 
W changes its character abruptly at the critical coupling. 

| k critical [ = 1 
For | /c | < 1 

IF < 1 ; "6 ^ "a ; Pb = Pa 

For 1 k | ^ 1 

IF = 1 ; (Xb = Cta Pb Pa 

Case 2. 
The fines have different phase constants and equal attenuation constants. 
k is a real number 
W changes asymptotically from 

TFo = 0 to 

IFi = 0.172 and to 

IFoo = 1 
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Case 3. 
The phase and attenuation constants differ by equal amounts. As shown 

below, in section 4, this case applies to the coupling between the TEoi and 
TMn modes in curved circular wave guides with finite conductivity. 

k2 is an imaginary number. 
W changes asymptotically from 

Consider a straight circular cylinder with an inside radius such as shown 
on Fig. 1 A. Let the radial coordinate equal r, the azimuthal coordinate 
equal v and the longitudinal coordinate equal z. Let the dielectric losses 
inside the cylinder be negligible. 

The field equations inside the cylinder are5 

TFo = 0 to 

W\ = 0.217 and 

TFco = 1 

For /c » 1 all three cases approach the limit 

1.2-10 

2. Derivation of Field Equations 

and 

d{rHv) _ dllr 
dr d(p 

= joser Et 

6 See Ref. 4, pg. 94 of the book. 
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The natural transmission modes which satisfy these equations have the 
form 

£ =/„(ryn(*+*o)Vl','-r' 2-0 

Each of these modes conforms to the same equations as a wave traveling 
in a transmission line with an impedance and phase velocity dependent upon 
the mode. In a straight cylinder with perfectly conducting walls, there 
exists no coupling between the different modes so that any and all can 
exist without interacting. If the conductivity of the walls in a straight 
circular cylinder is finite, it produces a resistive coupling between modes of 
equal azimuthal index {n in equation 2-0). In copper tubing and at the 
frequencies now obtainable (co < 1012) this coupling effect is negligible. 

A stronger couphng may be caused by deviations of the wave guide from 
the shape of a straight circular cylinder. The deformation considered 
in the present analysis consists in a circular bend of the axis, as shown 
schematically on Fig. lb. 

In such a circular bend the longitudinal coordinate is replaced by the 
product of the bending radius R by the bending angle 0: 

z = Rd 

This transforms the first two component equations of curl E into 

= —jun Hr d(REg) _ dE? _ 
Rrd<p Rdd 

dEr d{REe) = —icon 
Rdd Rdr 

The variable R can be eliminated by the relation 

i? = i?o — r cos ip 

where Rq is the bending radius of the cylinder axis. The coordinate 6 can 
be replaced by a longitudinal coordinate s, measured along the cylinder 
axis. Hence, 

5 = QRa 

The progressive modes which we investigate have the approximate form 

-E =/n(r)ein(^0VM'-r' 
Hence 

1 = - i?0r 
30 ds 

Q 
— = jn for all field components. 
dtp 
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~ may be expressed by a prime; 

dl~F' 
dr 

Thus the equations with curl E become 

jnE, E, sin (p RoTE,, . 
 + p r 5  = —jwn Hr r K0 — r cos ip Kq — r cos ip 

—/^oTE,. / E. cos <p . TT 
D E> + jS  = — 7C0M Rq — r cos tp Ra — r cos ip 

Ev -f- rEf = jnEr = —jcti/ir Hs 

For gradual bends 

Ro» a > r 

One may therefore approximate 

Ro • i i r 

v  = 1 + P cos ^ Ro — r cos ip Ro 

It is convenient to introduce the symbol 

a 
C ~ Ro 

which is proportional to the coupling coefficient. All powers of c greater 
than the first will be neglected. One can now write the approximate field 
equations in the curved cylinder: 

—' -f- TEy - E, sin ip -\- cT - Ev cos ip = —jcon Hr 2-1 
T d d 

— TEr — E', — cT - Er cos <p + - E, cos tp = —jun 2-2 
d d 

Ev + rE!9 - jnEr = -junrH, 2-3 

^d— Ut sin + cF - cos ip = jut ET 2-4 
r a a * 

— THr — II', — cV - Hr cos v? + - iZs cos ip = jut E^ 2-5 
d d 

IIv + rH'v — jnEr = jutr Es 2-6 

The coupling terms all contain the factor cos ip or sin ip. This means 
that every transmission mode is coupled only to modes with an azimuth 
index differing from its own by ±1. 
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3. Characteristic Equations of TEqi and TMn Modes 

The mode which one desires to propagate through the wave guide is the 
TEoi mode. In a straight wave guide with perfectly conducting walls 
it is characterized by the following equations: 

n = 0 3-1 

Eri = Etl = Hpi = 0 3-2 

E^ = E1e
jat~TlzJl(y) = e1J1(y) 3-3 

Hrl = - My) 3-4 
JPOV 

Ht\ = — /o(y) 3-5 
JPOV 

In these equations 

ij = = 377 ohm (intrinsic free space resistance) 3-6 

0Q = OjVe/T = ^ 3-7 

y = xr 3-8 

Ti = V^Jl 3-9 

In a perfectly conducting wave guide 

X0 = 3-10 
a 

^ = -0 = ■-^-0 (cutoff factor) 3-11 
/3o a 

i\ = = jh 3-12 

If the wave guide has the conductivity of g mho/m, its intrinsic high 
frequency impedance is 

Zi = (1 + j)R, = (1 + i)34.4 y7* 3-13 

This changes x to 

IX - XO - ^ ~ ^RiV and 3-14 TJfl 

ri = jft + ^/j-^—315 

* Ref. 4 pg. 83. 
f Compare Ref. 4, pg. 390. 
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Due to the curvature of the guide, this desired mode is coupled to all mode§ 
which have the azimuthal index number 1. 

However, for low curvatures, this coupling is very loose and only causes 
appreciable effects if it can act over a great length of wave guide without 
phase interference. 

This means that the disturbing mode must have nearly the same phase 
velocity as the desired mode. It so happens that in a perfectly conducting 
circular cylinder there exists one mode, the TMu, which has exactly the 
same velocity as the TEoi. Such a coincidence is called "degeneracy." 

In the analysis of very gradual bends, only this TMu mode need be 
considered. It is characterized in a straight guide by the following equations: 

n = 1 3-16 

= £26
/"t-iv • cos + ^o) = ^ cos <p 3-17 

y y 
The TMu mode can be polarized in all directions. But since only the 

component directed toward 
== 0 

is excited by the wave guide curvature, yo has been omitted in the last 
term of eq. (3-17). 

t, dj^y) . t f \ • i j dj Et2 - C2 —y-— sin <p = c2/](y) sin p, where J — — 
ay dy 

Ea = —^ Ti(y) sin ^ 
12 

j\{y) sin v? rjl 2 

u etjfaJxiy) 11,2 — f; COS ifi 
vT, y 

H* = 0 

In a perfectly conducting wave guide the x defined by eq. 3-8 is 

X = X2 = xo and 

r2 = Fi = jPi 

In a wave guide with an intrinsic impedance per 3-13, 

X2 - xo — ^and 3-18 rjav 

(f +j)Ri t 
V/1 — i'2 arj 

From 3-15 and 3-19 one finds ai = auv2 3-20 

r'" ^ 3-19 
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4. Interaction Between TEoi and TMu Modes 

Since the separate modes of propagation behave like traveling waves in 
transmission lines2, their interaction can be derived from the coupling 
equations derived in Section 1 of this analysis. 

The uncoupled propagation constants Th and Ih are known (equations 
3-15 and 3-19). In order to find the coupling discriminant one must derive 
the coupling coefficient from the field equations 2-1 to 2-6. The coupling 
coefficient is defined as 

In computing the coupling coefficient one may neglect the small attenua- 
tion constant. The energy stored by the TEoi wave per unit length is 

This expression is not affected by the cutoff factor v because one may 
consider the field inside the guide as composed of slanting plane waves with 
the electric field strength Ei. The energy stored by the TMu wave per 
unit length is 

Jo v Jo 
4-1 

p2 = H\ T)r dip dr The inter- 

changed energy: 

Combining equation (4-1) with 3-3, 3-8 and 3-10 

From reference 1, page 146 of the book 

Hence 
O.Slela 

F\ —   4-2 
V 

In a similar manner one finds 

O.Slez a2 

2 2(1 - 
4-3 

2Loc. cit. 
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and 

Substituting the values of 4-2, 4-3 and 4-4 into 1.2-4 one finds for the 
coupling coefficient between the two groups of plane waves traveling at a 
slant to the wave guide axis 

3.83 -Ro V1 

The coupling coefficient k between the TEoi and TMn modes which are 
the resultants of their slant wave groups is greater than k, according to the 
following reasoning: 

From 1.2-10 

/3 = /3o(l ± 0.5 k,) 

This makes the cutoff factors of the coupled modes 

_ x ^o_ 
V ~ \± 0.5k, 

and the coupled propagation constants 

r = = /3oV(l ± 0.5^)2 - "o 
For k„ « 1 

5k) 
r  / 0.5^, \ 

r = /JovT^Tg (^i ± ^^2) = Tod - 0. 

Hence, in view of eq. 1.2-10, the effective coupling coefficient of the wave 
guide modes is 

k, 0.369a 

*",1JWT^T' 4-5 

From equations 3-15 and 3-19 

Fx - r2 = 

VFiFa ^ jfio —iTnja 

Fi - r2 = -!-±i Ri Vl - v2 4-6 
CT] 

4-7 
Fi r2 Fx r2 (1 —j)Ri Xo\/1 — v2 

From 1.2-3, 4-5 and 4-7 one obtains the coupling discriminant 

- 0.369 - 27r•377a2 

* .Ro.R.Xo(l - i)(l - v*) 
Since 

i?.-= 0.00452 X^0,5-p.* 4-8 

* Loc. cit. 
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with the relative high frequency resistivity 

p'= 4/ Poopper 
2-. —0.6 

Its absolute value 

9.65-104(l + j)a\ 

i?oPr(l — f2) 

1.366-lOVx"0,6 

iWl - v2) 

1.2 

1.1 

«.o 

0.9 

5 o.a 

0 0.7 

a. 0.6 

1 o.s 
til 
UJ 0.4 

0.3 

0.2 

0.1 

CASE 1 
EQUAL PHASEN CONSTANTS \ — 

/ ^^CASE 2 

/ / CONSTANTS 

CRITICA 
COUPLIN j 

  

// 
G 

/ V 
/ 

i i // CASE 3 
  TE01 AND TM,, MODES: 
EQUAL DIFFERENCES BETWEEN PHASE 

AND ATTENUATION CONSTANTS — 
/ // 

A y 

20 40 60 100 O.I 0.2 0.4 0.6 I 2 4 6 8 10 
COUPLING DISCRIMINANT, |K| 

Fig. 3 

As shown in equation 4-6, the differences between the propagation 
constants of the TMu and TEoi waves are proportional to the intrinsic 
skin impedance Ri which contains the factor (1 j). This means that the 
phase and attenuation constants of the two waves differ by equal amounts 
in accordance with "Case 3" of Section 1. For this case the power ratio 
per 1.2-20 may be written 

aA + i 
W = 

2 - 1 

Vi+iM2 + i 

The numerical value of this function is plotted on Fig. 3. It can be 
computed conveniently by means of the following auxiliary parameters: 

\/l + i i « I2 = ^ + i? = cosh x + j sinh a; 4-9 
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p = -\/0.5 + 0.5-y/i _|_ | x |4 = cosh x 

q = \/—0.5 + 0.5-y/i + | k |4 = x 

tanh ^ 

In analogy to Case 1 of Section 3, the condition of | k | = 1 may be called 
critical coupling. It occurs at the critical radius of curvature 

1.366-lO5 A 0'6 

Ao or =  JZ — meters 
Pr(l - 

For subcritical coupling (i?o » Rn) W approaches 

4-10 

11 subcr. — 

For supercritical coupling (i?o « Ra), 

-> 0 

w. = 1 - V2 1 

From the above results, it is possible to predict the behavior of waves 
originating either as TEoi or as TMn modes, in any given wave guide 
configuration. This is done for some typical cases in the following sections. 

5. Propagation in Long Waveguides with Constant Curvature 

It has been shown in Section 3 that for each curvature there exist two 
modes of propagation. 

In one, 

and the attenuation 

In the other, 

and the attenuation 

Wa = 
TEfll 

< 1 

«a < 
OTE "I- «TM 

^ = r > 1 

5-1 

5-2 

5-3 

ab > OCTE + TM 5-4 
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In a long wave guide the "5" mode will die down due to its greater attenua- 
tion, no matter how much of it was initially present, so that one need only 
consider the "a" mode. 

This mode has a phase velocity slightly smaller than that of the uncoupled 
TEoi wave and an attenuation nearer to that of the TEoi than the TMu 
wave. 

The magnitude of the critical radius is illustrated by the two examples 
of Table I. 

Table I 
Characteristic Values 

Parameter Symbol Equation Example 1 Example 2 

Wave guide radius 
Free space wave length 
Cutoff ratio 
Attenuation constant 

Attenuation constant 

Critical Radius 

a 
Xo 
V 
"TECcu) 

"TMCcu) 

Rcrit 

3-11 
3-15,4-17 

3-19 

4-10 

.05 m 

.03 m 

.366 
2.04 X lO"4 

neper/m 
1.53 X 10-s 

neper/m 
2.12 km. 

.05 m 

.01 m 

.122 
3.58 X lO"6 

neper/m 
2.41 X lO"3 

neper/m 
3.44 km. 

Table II 
Relative Attenuation Versus Radius of Curvature 

General formulae Example 1 Example 2 

K Ro/Rct W a/ao Rokm a/ao Rokm a/ao 

0 oo 0 1 oo 1.00 OO 1.00 
0.1 10 0.0025 1 + 0.0025 (F-2 - 1) 19.7 1.02 34.15 1.17 
0.2 5 0.01 1+0.01 9.85 1.06 17.08 1.66 
0.5 2 0.06 1+0.057 3.84 1.38 6.83 4.45 
1 1 0.22 1 + 0.18 1.97 2.16 3.42 12.94 
2 0.5 0.48 1 + 0.32 0.98 3.11 1.71 22.2 
5 0.2 0.75 1 + 0.43 0.38 3.83 0.68 26.6 

10 0.1 0.87 1 + 0.46 0.20 4.05 0.34 27.9 
OO 0 1.00 1 + 0.50 0 4.30 0 34.1 

The increase of attenuation in long wave guides with uniform curvature 
is shown on Table II, with numerical values for the same examples as in 
Table I. 

6. Propagation in a Uniformly Curved Section of Wave Guide 
Following a Long Straight Section. (Fig. 4) 

No matter what mixture of modes may prevail at the beginning of the 
wave guide, all modes except the TEoi die down in the long straight section 
due to their higher attenuation, so that the wave form at the beginning 
of the curved section is pure TEoi. 

Since it has been shown in Sections 1 and 4 that each of the two possible 
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modes of propagation in a curved wave guide consists of both TEoi and 
TMn waves, it follows that both modes must be superimposed in such a 
manner that at the transition point the TM components cancel each other by 
interference. 

Let the relative amplitudes of the two TE components equal a and b\ 
then the corresponding amplitudes of the TM modes are aAa and bAi 

0 

Ro 

1 

( 

0 . 

20 
Fig. 4 

respectively, where Aa and Ab are the normalized voltage ratios per 1.2-5. 
At the beginning of the curved section 

a b = 1 (TE amplitude) 

aAa + bAb = aAa - b/Aa = 0 (™ amplitude) 
Hence 

1 
a = 

b = 

% b   Al 
a 

1 + Al 

A g 
1 + Al 

= W 

The two waves have different phase velocities and therefore interfere 
with each other. According to 1.2-9, the difference between the phase 
constants is 

Pb — Pa = (02 — 0l) 

By means of equations 4-9, this can be transformed into 

0b — 0a = (02 — 0l)(p + q) 6-1 
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The length of one tomplete interference cycle is 

lir 
s" ~ (p + ?)(& - ft) 

If both components had equal attenuation, the beats superimposed on the 
decaying envelope of the TEoi wave would correspond to an amplitude ratio 

eo max 1 W 
eTnffi = l^W -t+l 

However, during the progress of the mixed wave through the curved section, 
the intensity of the fluctuations is reduced by the greater attenuation 
constant of the faster and weaker "i" component. In one complete inter- 
ference cycle, the differential attenuation reduces the weaker component to 

^4; 
A 

Approximation for Weak Coupling 

'2ir   (cto—"psjir   (2*7P+Q) 
An 

For | k | « 1 

/36 - |8a = (02 - 0l)(l + 0.5 I K |2) 

From 5-15 and 3-19 

& - 0a = — vr^2 

arj 

- U X 10"' (1 + 0.5 I * |=) radian/m 1 a V ^og 
For intermediate coupling, 6-1 may be transformed into 

06 - 0a = £0l/W 

with /„, = fff-. = vr+ vr+R + v-1 + vv+u p 
J V^l'l 2 | K | 

A pproximalion for Strong Coupling 

For | k | » 1 

fu) = 1 + 0.125 | k h" 06 - 0a = ^0i(l + 0.125 j k j-4) 

Substituting the value of k from 4-13 and transforming, 

ft - ft = = —l- (1 + 0.125 | < r1) 6-2 
A0Ao AQAQ 

The phase difference between the two components is 

T 2.32as . 2.32ad , irn . . 
^-a = ^r-r,-/(«) = —r—/(«) = 

AqAQ AQ 
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where 6 is the bending angle of the wave guide. The power carried by 
the TEoi wave is 

p 2 f\ i /te — cos —. o-4 
£ 

Minima of TEoi occur when this phase difference is an odd multiple of tt. 
Hence, the bending angles producing minima of TEoi amplitudes are: 

„ -p,, , 1-36Xo M2»+l)2.22, Wmm — 1,^" T" 1 j" /1 , n nc I I—— t 
fl(l + 0.125 I K J-4) /(,) 

The initial fluctuation ratio approaches 

"l max . i . I I 
—7 = P + q = V2 \ k\ 

min 

which is a large value tending to infinity. 
The relative attenuation of the slightly weaker component during one 

beat cycle is 

d 2x   —hljt+q   —\/2ir/l«| .   4.44 
Jo ~ e "6 ~ R . 

which is a small reduction tending to zero. Hence, the fluctuations persist 
through a large number of beats. The power is transformed back and 
forth between the TEoi and the TMn modes. 

In Section 5, it was shown that in a long, uniformly curved wave guide 
the attenuation is intermediate between that of the TEoi and TMu modes. 
But from equations 1.2-7 and 8 it follows that the two modes contribute 
to the attenuation in proportion to their relative power flow. Since at 
the beginning of the bend the power of the TMu component is zero, 
it is to be expected that the initial rate of attenuation equals that of the 
TEoi wave alone. This is proved by differentiating with regard to s. One 
finds for all values of k that 

d 
ds 

-r°' _i_ /.,-rV ae a8 + be = —ai 
ii=0 

Discussion of Results 

Equation 6-2 corresponds directly to an equation derived by S. O. Rice 
and, after allowing for the different choice of variables, to M. Jouguet's 
equation (75)6. It differs from the results of these earlier calculations 
by the factor /(«) = 1 + 0.125 j k. j""4 which is a reminder that the simplified 
form of the equations given by the earlier authors is an extrapolation to 
infinite conductivity or infinite curvature of the wave guide. 

6 Reference 3, pg. 150 of Cables and Transmission, July 1947. 
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From equations 6-3 and 6-4 it is seen that the TEoi wave is recovered by 
bends which are an even multiple of . But such bends are efficient 
transmitters of TEoi waves only over a narrow frequency range since 
Bmin varies with frequency. 

If the circular bend is followed by a long straight section, the TEoi and 
TMn components existing at the end of the bend are carried over into the 
straight section, but the TMn component dies down due to its greater 
attenuation and constitutes a total loss. 

Numerical examples for first extinction angle. 

Using the same dimensions as in Table I of Section 5, one finds from 
eq. 6-5 for: 

Example 1: 0m,„ — 0.816 Radians — 46.8° 

Example 2: 6min — 0.272 Radians — 15.6° 

7. Serpentine Bends 

Sections 5 and 6 dealt with bends continued with uniform curvature 
over large angles. The present section considers the small random devia- 
tions from a straight course which are unavoidable in field installations. 

Actual deviations are expected to be random both with regard to maximum 
deflection angle and to curvature; they are likely to approximate a sinusoidal 
shape. For purposes of computation, the following analysis assumes as a 
first case circular S-bends which consist of alternate regions of equal lengths 
and equal but opposite curvatures. An exaggerated schematic of such 
S-bends is shown on Fig. 5A. 

Each circular bend tends to produce a single mode with an attenuation 
per equation 1.2-7. However, the discontinuous reversals of curvature 
at the inflexion points produce mixed modes, and the initial part of each 
region reduces the amplitude of the TM components produced in the 
previous region. 

Each region may be treated as a discrete 4-terminal section of a trans- 
mission network. Regardless of the wave composition at the input terminal, 
differential attenuation will establish in a long serpentine wave guide a 
steady state condition. In this steady state each region produces equal 
attenuation. This attenuation per region and the resulting average 
attenuation constant will now be derived. 

The TEoi and TMn waves each consist of "a" and "b" components with 
separate amplitude ratios and propagation constants, as derived in Sections 
1 and 4. In the first region (between points 1 and 2 of Fig. 5A) Ro is taken 
as positive, and 

A = Vl + K"2 - K-1 1-2-6 
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In the second region, between points 2 and 3, the polarity of i?o, and 
consequently of k and the ratio of TM to TE amplitudes, are reversed. 

sm 3 . 'N0 

Rn ^9 R0 sm 

a - CIRCULAR S BENDS 

20 

b-SINUSOIDAL BENDS 
Fig. 5 

Except for this change of polarity the amplitude ratios at points 1 and 2 
are equal. Introducing the symbols 

—r»m 
g = e 

gm = h(ga 4" gb) 

gd = %(gb - ga) 
one can tabulate 

point 

1 

e-i-E 

u -{- b 

^TM 

aA — 

(l + to) g..( 
aA b 
--Agd 

7-1 

7-2 

Calling - = y, one finds 
a 

4 1 ~ 4 — I •• i + ygd _ -A+m _ 
1 + y A2 - y 

— ' ^average 
^average 
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1 1 y 
ravcragc ^ T„ log . . 2 with •^m n 1 + ygd 

y = f K + Sd2) 4- A /j/gd2 + -^ (1 + gd2)2 

This formal solution, is hard to evaluate. It can be greatly simplified 
for the subcritical and supercritical cases. 

1. Subcritical-Curvature I /c I « 1 

^ 2 + 2^ 

11 - g2A ^ r ^ 
2 1 + 

raverage = Fq { 1 + — —^ ] = Ta 

For very low curvatures, the average attenuation approaches that of the 
"a" mode, and this in turn approaches that of the Tiioi wave. 

2. Supercritical Curvature. | k ) » 1 

The differential attenuation constant is small compared to the differential 
phase constant. 

[y | = M 1 = 1 
Substituting these values into 7-1 and 2, one finds 

-0.5yflm y = * 
Expressed as a function of 6: 
ye = cos yp -\- j sin \p with 
P = M(d - 0.5 dm) 7-3 
M has the value per eq. 6-18. 
The power ratio of the combined TMu and TEoi waves is 
WB = tan21/2 
In view of equation 1.2-7 the instantaneous rate of energy loss is 

ae = ai cos2 ^ + «2 sin ^ = ai + (0:2 — "i) sin2 7-4 

1 f'm 1 f9m 

aaveruge = — a, d, = — I Otg dd 
Sm Jo dm JO 

, / /1 sin Mdm\ 
Average - «! + «l) ^ 2Mdm ) 

In view of 3-20 

^average 
P. 2 + 1 i' 2 — 1 sin Mdm~\ 

L 2 ~ 2 Mdm J 
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For small deflection angles, MQm « 2 

®nverngo = <^1 "4* ^ M 6m j 

If a p% increase in attenuation is the tolerance limit 

dm ^ \/ ^ . ■ Substituting the value of M from 6-3, lUM y v-1 — 1 

_ 0.105\/^ 
Um /   • 

a VI — v2 

The maximum deflection equals 

Ae = 0.5 6m. Hence, in view of 3-11 

. . 0.032V7xo .. 1-84X? i /"T" , 

' - a2vr=T' rad'ans = de2rees 

3. Sinusoidal Bends with Predominantly Supercritical Curvature. 

Sinusoidal bends cannot be supercritically curved over their entire length 
because at the inflection points the curvature drops to zero. For sufficiently 
short bends, however, no great error is caused by treating the entire length 
as supercritical. In that case, equations 7-3 and 7-4 remain valid. 6 
takes the new value 

Q 6m i 6m • ^m) 
T Tsm 2$^ 

Hence 
M6m . Tr{s — sm) yp = —x— sin    

2 2Sm 

, (*2 — ai f .2 \M6m . 7r(s — Sm)l , 
"average = "l H / Sin —— Sin     ds 

Sm JO 2 2Sm 
r'm . 2 f 
i 5111L 

For small deflection angles, M6m « 2 

ao — "i M2dm f'm .2 iris — Sm) , 
"average "l I A I ^ O 

Sm 4 JO 2Sm 

M26m P. , v~2 - 1 — "i + ("2 — "0 —- — "i ^1 + —^—- M26il 

0.026\Wp .• 1.49Xo / ^ , a9 = 2 /. „ radians = —- A/ . r „ degrees - a VI - f2 a K 1 - f2 

The tolerance limit for sinusoidal deflections is 20% smaller than for 
circular S bends. 
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The effect of supercritical but shallow circular and sinusoidal S bends is 
illustrated by the following numerical examples. 

Table III 
Increase of Attenuation in S Bends 

Maximum deflection Ae (in degrees) 
Attenuation 
Increase p% Example 1 (>■ = .366) Example 2 (»■ =• .122) 

Circular Sinusoidal Circular Sinusoidal 

10 
20 
30 
40 
50 

2.25 
3.18 
3.89 
4.50 
5.03 

1.82 
2.58 
3.15 
3.64 
4.07 

0.23 
0.33 
0.41 
0.47 
0.52 

0.19 
0.27 
0.33 
0.38 
0.42 

8. Helical Bends and Random Two-Dimensional Deviations 

A helical bend may be treated as a bend which has a constant absolute 
magnitude, but a changing direction of curvature. As indicated in eq. 3-17, 
the TMn wave can be polarized in all directions. At any differential 
element of wave guide length, the TMn component polarized in the local 
bending plane is coupled to the TEoi wave; the TMn component polarized 
at right angles is not coupled and persists unchanged. By requiring that 
the absolute magnitude of the TMn/TEn amplitude ratio remain constant, 
a steady state solution can be found. 

Shallow helical bends of small curvatures may be treated as the super- 
position of two sinusoidal bends offset by 90° in the longitudinal direction 
and in the bending plane. The increases in attenuation due to these two 
sinusoidal bends are computed from eq. 7-5 and added. 

It is believed that random deviations from a straight course approach 
sinusoidal shape more closely than circular shape, hence equation 7-5 may 
be used to establish a tolerance limit for such random deviations. For 
quantitative results the statistical distribution of the squared deviation 
maxima must be taken into consideration. 

9. Optima of Wave Guide Radius, Signal Wave Length and 
Attenuation as a Function of Angular Deviation 

In a straight wave guide the attenuation decreases with wave guide radius 
and signal frequency. However, the deterioration due to wave guide 
curvature increases with wave guide radius and frequency. Hence, for a 
given tolerance limit to angular deviation from the straight course there 
exists an optimum radius for each wave length and an optimum wave length 
for each radius. This will be shown for the case of uniform sinusoidal bends, 
under the simplifying assumption that the cutoff radio v <3C 1. 
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Solving 7-5 for p one obtains 

p = 0.45A2a4X_4 9-1 

where p si the percentage increase in attenuation, and A the deviation angle 
in degrees. 

Hence the average attenuation 

a\ = a(l + 0.01^) 9-2 

From 3-15 and 3-11 

, V Ri ^ «—3 T-J x 2 —3 o a =   = 10 Ki A a 9-3 
ar, 

Introducing the Ri value from 4-8 

a = 4.5 lO-ViX1-5^3 9-4 

where p is the high-frequency resistance of the wave guide relative to copper. 
From 9-1, 2 and 4 

aA = 4.5 10_6pX1-5a~3(l + qX-W) 9-5 
with 

q = 4.5 10-3A2 

The attenuation reaches a minimum when 

/(X, a) = Xl sa~3 + qX~2 Ba = minimum 

Case 1. X is given 

8f/8a = —3X1-6a~i + ^X"2-5 = 0 

aopt = 1.32X9-
0-25 = 5.2XA-0-8 

From 9-5 

atopt = 4a = 1.29 lO-'pX-^A1-6 

Case 2. a is given 

hf/SX = 1.5X0 Bfl-3 - 2.SqX~3-ba = 0 

Xorl = 1.14fl9
0-25 = 0.294aA0-5 

From 9-5 
aAop« = 1.6a = 1.15 10_6pa-1'5A0*75 

Numerical Example 
Let A = 0.42° 

a — 0.05 m 
X =0.01 m 
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From Table III 

a* = 1.50 a = 5.4 10~5p neper/w 

Case 1: X fixed at 0.01 m 

aopt = 0.08 m 

cxopt = 2.76 10~5p neper/meter 

Case 2: a fixed at 0.05 m 

\opt = 0.0097 m 

aoPi = 5.36 10-5p neper/m 

Assuming sinusoidal bends with a 0.42° maximum deviation, the attenua- 
tion of centimeter waves can be reduced to one half by increasing the wave 
guide radius from 5 to 8 cm. For a 5 cm wave guide radius, 1 centimeter 
wavelength is close to the optimum. 



A New Type of High-Frequency Amplifier 

By J. R. PIERCE and W. B. HEBENSTREIT 

This paper describes a new amplifier in which use is made of an electron flow 
consisting of two streams of electrons having different average velocities. 
When the currents or charge densities of the two streams are sufficient, the 
streams interact to give an increasing wave. Conditions for an increasing 
wave and the gain of the increasing wave are evaluated for a particular geometry 
of flow. 

1. Introduction 

IN CENTIMETER range amplifiers involving electromagnetic resonators 
or transmission circuits as, in klystrons and conventional traveling-wave 

tubes, it is desirable to have the electron flow very close to the metal circuit 
elements, where the radio-frequency field, of the circuit is strong, in order 
to obtain satisfactory amplification. It is, however, difficult to confine the 
electron flow close to metal circuit elements without an interception of elec- 
trons, which entails both loss of efficiency and heating of the circuit elements. 
This latter may be extremely objectionable at very short wavelengths for 
which circuit elements are small and fragile. 

In this paper the writers describe a new type of amplifier. In this ampli- 
fier the gain is not obtained through the interaction of electrons with the 
field of electromagnetic resonators, helices or other circuits. Instead, an 
electron flow consisting of two streams of electrons having different average 
velocities is used. When the currents or charge densities of the two streams 
are sufficient, the streams interact so as to give an increasing wave. Electro- 
magnetic circuits may be used to impress a signal on the electron flow, or to 
produce an electromagnetic output by means of the amplified signal present 
in the electron flow. The amplification, however, takes place in the electron 
flow itself, and is the result of what may be termed an electromechanical 
interaction.1,2 

While small magnetic fields are necessarily present because of the motions 
of the electrons, these do not play an important part in the amplification. 

1 Some electro-mechanical waves with a similar amplifying effect are described in 
"Possible Fluctuations in Electron Streams Due to Ions," J. R. Pierce, Jaur. A pp. Phys., 
Vol. 19, pp. 231-236, March 1948. 2 While this paper was in preparation a classified report by Andrew V. Haeff entitled 
"The Electron Wave Tube—A Novel Method of Generation and Amplification of Micro- 
wave Energy" was received from the Naval Research Laboratory. Dr. Haeff's report 
(now declassified) contains a similar analysis of interaction of electron streams and in 
addition gives experimental data on the performance of amplifying tubes built in ac- 
cordance with the new principle. We understand that similar work has been done at the 
RCA Laboratories. 

33 
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The important factors in the interaction are the electric field, which stores 
energy and acts on the electrons, and the electrons themselves. The charge 
of the electrons produces the electric field; the mass of the electrons, and 
their kinetic energy, serve much as do inductance and stored magnetic 
energy in electromagnetic propagation. 

By this sort of interaction, a traveling wave which increases as it travels, 
i.e., a traveling wave of negative attenuation, may be produced. To start 
such a wave, the electron flow may be made to pass through a resonator or a 
short length of helix excited by the input signal. Once initiated, the wave 
grows exponentially in amplitude until the electron flow is terminated or 
until non-linearities limit the amplitude. An amplified output can be ob- 
tained by allowing the electron flow to act on a resonator, helix or other 
output circuit at a point far enough removed from the input circuit to give 
the desired gain. 

There are several advantages of such an amplifier. Because the electrons 
interact with one another, the electron flow need not pass extremely close 
to complicated circuit elements. -This is particularly advantageous at very 
short wavelengths. Further, if we make the distance of electron flow 
between the input and output circuits long enough, amplification can be 
obtained even though the input and output circuits have very low imped- 
ance or poor coupling to the electron flow. Even though the region of 
amplification is long, there is no need to maintain a close synchronism 
between an electron velocity and a circuit wave velocity, as there is in the 
usual traveling-wave tube. 

A companion paper by Dr. A. V. Hollenberg of these laboratories describes 
an experimental "double stream" amplifier tube consisting of two cathodes 
which produce concentric electron streams of somewhat different average 
velocity, and short helices serving as input and output circuits. No further 
physical description of double stream amplifiers will be given in this paper. 
Rather, a theoretical treatment of such devices will be presented. 

2. Simple Theory 

For simplicity we will assume that the flow consists of coincident streams 
of electrons of d-c. velocities Mi and u* in the a: direction. It will be assumed 
that there is no electron motion normal to the x direction. The treatment 
will be a small-signal or perturbation theory, in which products of a-c. 
quantities are neglected. M.K.S. units will be used. All quantities will 
be assumed to vary with time and distance exp_;(oj/ — fix). The wavelength 
in the stream, X,, is then related to 0 by 

0 = 27r/X« (1) 
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The following additional nomenclature will be used: 

to dielectric constant of vacuum 
to = 8.85 X 10~12 farad/meter 

7] charge-to-mass ratio of the electron 
rj = 1.76 X 10" coulomb/kilogram 

Ji, J2 d-c. current densities 
Mi, «2 d-c. velocities 
P01, P02 d-c. charge densities 

P01 — —Ji/th , P02 = —J2/U2 
Pi, P2 a-c. charge densities 
Vi, V2 a-c. velocities 
Vi, V2 d-c. voltages with respect to the cathode 
V a-c. potential 
ft = oj/MI , 02 = wM 

Although the small-signal equations relating charge density to voltage V 
have been derived many times, it seems well to present them for the sake 
of completeness. For one stream of electrons the first-order force equation is 

dvi di'i . dii d V   Ml — 71 —— 
dt dl, dx dx 

(u - 0Mi)z'i = — 770K 

Vi = -^r (2) 
Mi(0i — 0) 

From the conservation of charge we obtain to the first order 

1(7 = — "T" (poY'I + Pi«i) ot ox 
wpi = poi0i'i + Mi0pi 

POlflVl 
Pi = Ml(01 - 0) 

From (2) and (3) we obtain 
7]J 102 V 

(3) 

P1 Mi(0i - 0)2 

We would find similarly 
■nJtPV 

92 M2(02 - 0)2 

(4) 

(5) 

It will be convenient to call the fractional velocity separation b, so that 
!(mi - Mg) 

Mi + M2 
b = 2("1. ^ (6) 
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It will also be convenient to define a sort of mean velocity Mo 

2WI«2 /7N 
Mo =  ;  UJ Mi + M2 

We may also let Vq be the potential drop specifying a velocity m0 , so that 

Mo = VWo (8) 

It is further convenient to define a phase constant based on Mo 

/3o = - (9) 
Mo 

We see from (6), (7) and (9) that 

ft = /3o(l - h/2) (10) 

^2 = /3o(l + h/2) (11) 

We shall treat only a special case, that in which 

T ^ (12) Mi M2 Mq 

Here /o is a sort of mean current which, together with mq , specifies the 
ratios Ji/u\ and Jt/th., which appear in (4) and (5). 

In terms of these new quantities, the expression for the total a-c. charge 
density p is, from (4) and (5) and (8) 

. Jot? 
P = Pi "T P2 — 2 Mo Vo 

1 
+ y ™ 

Equation (13) is a ballislical equation telling what charge density p is 
produced when the flow is bunched by a voltage V. To solve our problem, 
that is, to solve for the phase constant /3, we must associate (13) with a 
circuit equation which tells us what voltage V the charge density produces. 
We assume that the electron flow takes place in a tube too narrow to propa- 
gate a wave of the frequency considered. Further, we assume that the 
wave velocity is much smaller than the velocity of light. Under these 
circumstances the circuit problem is essentially an electrostatic problem. 
The a-c. voltage will be of the same sign as, and in phase with, the a-c. 
charge density p. In other words, the "circuit effect" is purely capacitive. 

Let us assume at first that the electron stream is very narrow compared 
with the tube through which it flows, so that V may be assumed to be con- 
stant over its cross section. We can easily obtain the relation between 
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V and p in two extreme cases. If the wavelength in the stream, X,, is 
very short (/J large), so that transverse a-c. fields are negligible, then from 
Poisson's equation we have 

a2 7 
^ -e° 8? 

p = eo/32 V (14) 

If, on the other hand, the wavelength is long compared with the tube radius 
(/3 small) so that the fields are chiefly transverse, the lines of force running 
from the beam outward to the surrounding tube, we may write 

P = CV (15) 

t 
^l> 

2 

Fig. 1—A "circuit" curve for a narrow electron stream in a tube. The ratio of the a-c. 
charge density p to the a-c. voltage V produced by the charge density is plotted vs. a 
parameter 0//3o, which is inversely proportional to the wavelength X, in the flow. Curve 1 
holds for very large values of /S/ft) ; curve 2 holds for very small values of /3/0o, and curve 
3 over-all shows approximately how p/V varies for intermediate values of /3//3o. 

Here C is a constant expressing the capacitance per unit length between the 
region occupied by the electron flow and the tube wall. 

We see from (14) and (15) that if at some particular frequency we plot 
p/V vs. /3/(So for real values of /3, p/V will be constant for small values of /3 
and will rise as /32 for large values of /3, approximately as shown in Fig. 1. 
For another frequency, /?,, would be different and, as p/7 is a function of /?, 
the horizontal scale of the curve would be different. 

Now, we have assumed that the charge is produced by the action of the 
voltage, according to the ballistical equation (10). This relation is plotted 
in Fig. 2, for a relatively large value of Jq/uqVq (curve 1) and for a smaller 

value of Jq/uqVq (curve 2). There are poles at /3//5o = 1 ± - , and a mini- 
2 

mum between the poles. The height of the minimum increases as /o/«oFo 
is increased. 

A circuit curve similar to that of Fig. 1 is also plotted on Fig. 2. We see 
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that for the small-current case (curve 2) there are four intersections, giving 
four real values of & and hence four unattenualed waves. However, for the 
larger current (curve 1) there are only two intersections and hence two 
unattenuated waves. The two additional values of (3 satisfying both the 
circuit equation and the ballistical equation are complex conjugates, and 
represent waves traveling at the same speed, but with equal positive and 
negative attenuations. 

1 

I 

 -/ rlT 
n 

\V 
/ 

7/ v 
yy ... i I J 1 1 1  1— 1 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 
tyflo 

Fig. 2—Curve 3 is a circuit curve similar to that of Fig. 1. Curves 1 and 2 are based 
on a ballistical equation telling how much charge density p is produced when the voltage 
V acts to bunch a flow consisting of electrons of two velocities. The abscissa, 0/Bo, 
is proportional to phase constant. Intersections of the circuit curve with a ballistical 
curve represent waves. Curve 2 is for a relatively small current. In this case inter- 
sections occur for four real values of /3, so the four waves are unattenuated. For a larger 
current (curve 1) there are two intersections (two unattenualed waves). For the other 
two waves P is complex. There are an increasing and a decreasing wave. 

Thus we deduce that, as the current densities in the electron streams are 
raised, a wave with negative attenuation appears for current densities 
above a certain critical value. 

We can learn a little more about these waves by assuming an approximate 
expression for the circuit curve of Fig. 1. Let us merely assume that over 
the range of interest (near P/Po = 1) we can use 

p = a*eoP2V (16) 

Here or is a factor greater than unity, which merely expresses the fact that 
the charge density corresponding to a given voltage is somewhat greater 
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than if there were field in the x direction only and equation (11) were valid. 
Combining (16) with (13) we obtain 

 1   1 J_ 
+ / 7 (17) 

+ |) - ,)! 

where 

1 2a
2e0plu0Vo • ^ 

In solving (17) it is most convenient to represent 0 in terms of Po and a 
new variable 8 

p = /3„(1 + 8) (19) 
Thus, (14) becomes 

RJ+RT ^ 

Solving for 8, we obtain 

•Rl)t(¥RR)Rn 

The positive sign inside of the brackets always gives a real value of 5 
and hence unattenuated waves. The negative sign inside the brackets 
gives unattenuated waves for small values of U/b. However, when 

+ 4 
1/2 

(21) 

8 (22) 

there are two waves with a phase constant Po and with equal and opposite 
attenuation constants. 

Suppose we let Um he the minimum value of U for which there is gain. 
From (22), 

= b'-/8 (23) 

From (21) we have for the increasing wave 

s = >5[KrJ(l/1 + 8(rJ-1)-ir (24) 

The gain in db/wavelength is ' 

db/wavelength = 20(27r) logio « | 6 | (25) 

= 54.6 | o 1 
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We see that by means of (24) and (25) we can plot db/wavelength per 
unit b vs. (U/Um)2- This is plotted in Fig. 3. Because U2 is proportional 
to current, the variable {U/Uu)2 is the ratio of the actual current to the 
current which will just give an increasing wave. If we know this ratio, 
we can obtain the gain in db/wavelength by multiplying the corresponding 
ordinate from Fig. 3 by b. 

20 

200 60 80 100 fl 10 400 600 1000 

(W/WM)2= (U/UM)2 

Fig. 3—The parameter {W/Ww)2 = ((i7/t/w)2isproportionaltocurrent. Asthecurrent 
is increased above a critical value for which (W/WMY = 1, there is an increasing wave of 
increasing gain. In this curve the gain per wavelength per unit b, called F[WJWMy, \s 
plotted vs. {W/Wm)1. For large values of {W/Wu)\ F{W/WMY approaches 27.3 and the 
gain per wavelength approaches 27.3 h. 

We see that, as the current is increased, the gain per wavelength at first 
rises rapidly and then rises more slowly, approaching a value of 27.36 
db/wavelength for very large values of (U/Uu)2. 

We now have some idea of the variation of gain per wavelength with veloc- 
ity separation b and with current {U/Um)2. A more complete theory would 
require the evaluation of the lower limiting current for gain (or of U M) in 
terms of physical dimensions and an investigation of the boundary condi- 
tions to show how strong an increasing wave is set up by a given input 
signal. The latter problem will not be considered in this paper; the former 
is dealt with in the third section and in the appendix. 
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3. Design Curves 

It is proposed to present in this section material for actually evaluating 
the gain of the increasing wave for a particular geometry of electron flow. 
In this section there is some repetition from earlier sections, so that the 
material presented can be used without referring unduly to section 2. In 
order to avoid confusion, much of the mathematical work on which the 
section is based has been put in the appendix. 

The flow considered is one in which electrons of two velocities, Ux and Uz, 
corresponding to accelerating voltages V\ and F2, are intermingled, the 
corresponding current densities /1 and J2 being constant over the flow. 
The flow occupies a cylindrical space of radius a. It is assumed that the 
surrounding cylindrical conducting tube is so remote as to have negligible 
effect on the a-c. fields. 

It will be assumed, according to (12), that the current densities and the 
voltages Vi and V2 are specified in terms of a "mean" current Ja and a 
"mean" voltage V0 corresponding to a velocity «o, by 

J1 _ Jq 
y\12 - v\n ~ vT (12a) 

The gain will depend on the beam radius, the free-space wavelength X, 
and on Jq and Vq , and on the fractional velocity separation 

» = (6) 
Ml "T Ma 

The wavelength in the beam, , which is associated with the voltage 
Ko is given by 

X. = = xVw 
c c 

X. = 1.98 X 10-3X VK (26) 

Here c is the velocity of light. 
A dimensionless parameter fV is defined to be 

w = ^ = -^4 (27) 
0^ Co Mo or ' 

W = 8.52 x .0^ (28) 

Here oj,, is the electron plasma frequency associated with the average space 
charge density Jo/u0, and w is the radian frequency corresponding to the 
wavelength X. In (28), the constant is adjusted so that J0 is expressed in 
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amperes per square centimeter rather than in amperes per square meter, 
while / is expressed in megacycles. 

Below a minimum value of W, which will be called Wm , there is no gain. 
PFji, is a function of the velocity separation b and of the ratio of the beam 
radius a to the beam wavelength, Xg. A plot of (Wu/b)2 as a function of 
(a/Xs) is shown in Fig. 4. 

The variation of gain in the interval, \Vm < IF < oo, is shown in Fig. 3 
where "Decibels gain/wavelength/unit 6" is plotted as a function of 
(IV/Wm)2- This is the same curve which was derived in section 2. The 
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0.01 0.02 0.04 0.06 0.1 0.2 0.4 0.6 0.8 1.0 2 4 

(a/g 
Fig. 4—As the ratio of beam radius a to wavelength in the beam, X,, is increased, the 

critical value of W, WM , decreases and less current is needed in order to obtain gain. 
Here {Wm/b)2, which is called H{a/\a), is plotted vs. (fl/X.). 

ratio {W/WM)2 is the same as the parameter (U/Um)2 used there, although 
£/ and W are not the same. 

The curve in Fig. 3 is useful in that it reduces the interdependence of a 
large number of parameters to a single curve. However, there are cases as, 
for example, when one is computing the bandwidth of an amplifier, in which 
it would be more convenient to have the curve in Fig. 3 broken up into a 
family of curves. We can do this by the following means: 

We can write the gain in db/wavelength in the form 

db/wavelength = bF{W/W m)2 (29) 

- 
\ 

- 
\ 
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Here F{W/Wm)2 is the function plotted in Fig. 3. If ^ is the total length 
of the flow, the total gain in db, G, will thus be 

G = F(W/WM)2 

Ag 
(30) 

We will now express (W/Wm)2 in such a form as to indicate its dependence 
on wavelength in the beam, . We can write from (27) 

W = ^ = ^ 
u2 X2 

Here X, is a "plasma wavelength," defined by the relation 

11Q 
Xg = 

We further have 
(coe/27r) 

wl = m{a/\.) 

(31) 

(32) 

(33) 

Here H{a/\lt) is the function of (a/X.) which is plotted in Fig. 5. 

(b/le) 
25 

20 

X 

X N 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 
b OJ/COf. 

Fig. 5—In these curves the total gain in db, G, divided by the ratio of the length I to 
the plasma wavelength Xe, is plotted vs. boj/ue, which is proportional to frequency, for 
several values of the parameter (a/bX,)2. Changing b, the velocity seperation, changes 
both the parameter and the frequency scale. 

(34) 

Now, from (26), (27), and (29) we can write 

G = (3&)fe)4feJfeJg(k-,] 

For a given tube the parameters (//Xe) and (a/b\e) do not vary with fre- 
quency, while (c/X,,) is proportional to frequency. Hence, we can construct 
universal frequency curves by plotting G/(€/\e) vs. (o/Xg) for various values 
of the parameter (a/b\e). It is more convenient, however, to use as an 
abscissa iXa/Xg = ico/cog, and this has been done inrFig. 5. 
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In order to use these curves it is necessary to express the parameters 
6co/we, X, and (a/6Xe)

2 in terms of convenient physical quantities. We obtain 

foo/co, = -545 X 1O-106F1/4co//5/2 

\t = 2.04 X 10-2Fo7/5/2 (35) 

{a/b\ey = 767 IQ/bWm 

Here Jo is current in amperes and Jo is in amperes / cm.2 

The broadness of the frequency response curves of Fig. 5 is comparable 
to that of curves for helix-type traveling-wave tubes. 

It is interesting to note that the maximum value of G/(^/Xe) varies little 
for a considerable range of the parameter a/b\6, approaching a constant 
for large values of the parameter. This means that, with a beam of given 
length, velocity and charge density, one can obtain almost the same opti- 
mum gain over a wide range of frequencies simply by adjusting the velocity- 
separation parameter b. 

4. Concluding Remarks 

There is a great deal of room for extension of the theory of double-stream 
amplifiers. This paper has not dealt with the setting up of the increasing 
wave, nor with other geometries than that of a cylindrical beam in a very 
remote tube, nor with the effect of physical separation of the electron streams 
of two velocities nor with streams of many velocities or streams with con- 
tinuous velocity distributions. 

This last is an interesting subject in that it may provide a means for deal- 
ing with problems of noise in multivelocity electron streams. Indeed, it 
was while attempting such a treatment that the writers were distracted by 
the idea of double-stream amplification. 

APPENDIX 

Derivation of Results Used in Section 3 

Consider a double-stream electron beam whose axis coincides with the 
z-axis of a system of cylindrical coordinates (r, (p, z) and which is subject to 
an infinite, longitudinal, d-c. magnetic field. The radius of the beam is a 
and each of the streams is characterized by d-c. velocities, Ui and «2, which 
are vectors in the positive z direction, and d-c. space charge densities, P02 
and P02 • All d-c. quantities are assumed to be independent of the coor- 
dinates and time, except, of course, for the discontinuities at the surface of 
the beam. Small a-c. disturbances are superimposed upon these d-c. quanti- 
ties and they are small enough so that their cross products can be neglected 
compared with the products of d-c. quantities and a-c. quantities. It is 
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further assumed that only those a-c. quantities are allowed which have no 
g 

azimuthal variation, that is, — = 0. Fig. 6 shows the electron beam. 
dtp 

Outside the beam the appropriate Maxwell's equations are 

- (rS.) = i - -Ei (A-l) r or rjo 

ir = -i - E' ^ OZ TJO 

^ ^ = Ac 5. (A-3) or 32 
where 

^ = - (A-4) 
c 

Vo = A/^- = 377 ohms (A-5) 
\ <0 

Inside the beam, equations (A-2) and (A-3) remain the same, but instead 
of equation (A-l) we have 

= ;*£,+ gi+ g! (A-6) 
r or tjo 

where qi and qt are the first order a-c. convection current densities of the two 
streams. These quantities can be calculated from the force equation and 
the equation for the conservation of charge. Assuming that all a-c. quanti- 
ties vary as expjXw/ — /Jz), the force equation is (for stream number one, say) 

jwvi — j/luiVi = — {elm)Et (A-7) 

and the equation for the conservation of charge is 

jppoivi + jfaipi = +jupi (A-8) 

Equations (A-7) and (A-8) can be solved for Vi and pi : 
— {e/m)Et 

fi = 

" I) 
ppoi 

(A-7a) 

(A-8a) 

where 
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Combining equations (A-7a) and (A-8a) one has 

jPp<n{e/m)Ez 
Pi = 

-■(-U 

i(V'7o)(poi/w€o)-E. 
9i = " 

(-1)" 
Similarly 

[f we now define 

and let 

• ^ ^ 77 ^ - poi   -C-I 
TJO W60 

Qi = / 0X2 

■■('-0 

where a)e, the plasma-electron angular frequency given by 

Equations (11) and (12) become 

-Kkh*)W\B\ 
92 {Z - B2y 

Thus equation (A-6) becomes 

(A-9) 

The first order a-c. convection current density is given by 

= Pox^i d~ P1M1 (A-10) 

which, by combining with (A-7a) and (A-8b), becomes 

(A-ll) 

(A-12) 

/3o — K/^i + ^2) (A-13) 

= ?'; B* = ~ (A-14) 

Z = I (A-15) 
Po 

W, = ^ (A-16) 
CO CO 

^ = — — , etc. (A-17) 
wco 

_ -i(^Ao)TEx 5? „ (A-IS) 
31 - (Z - s.y " ( ' 

(A-19) 

i 1 (rfl,) = y - LE, (A-6a) 
r 9r 770 
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where 

i = ! _ (A-20) FI B\ W\B\ 
{Z - B1y (Z - B2Y 

If we assume that the tube which surrounds the beam be taken as infinitely 
remote, the appropriate solutions outside the beam are 

= Ao^iyr) (A-21) 

and inside the beam 

e.*=i~A,KM (A-22) 
k 

= Ail^r) (A-23) 

£tl = -j^Aih^r) (A-24) 
V L 

where y2 = 02 — k2 (H2 

e = y2L 
(A-25) 

The 7's and i^'s in equations (A-21)-(A-24) are modified Bessel functions.3 

At the surface of the beam (r = a), one has the following two independent 
boundary conditions 

fin = (A-26) 

(A-25a) 

which, using equations (A-21)-(A'24), yield 

JoOia)  __  Kv(ya) /. yys 
VLIM KIM ' ) 

From equations (A-13), (A-14), (A-15) and (A-24) one has 

& = ZPoaVI (A-28) 

ya = Z/3ofl (A-29) 

If we now define a beam wavelength, X,, by the relations 

ft = ^ (A-30) 
Aa 

and assume for the purpose of simplifying the calculation that in the ex- 
pression for L in (A-20) 

W\B\ = WlBl = W2 (A-31) 
3 See A Treatise on the Theory of Bessel Functions, G. N. Watson, Chapter 3. 
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We easily see that 

where 

W2 = (o;e/co)2 

COa = — Jo/ CoM0 

(A-32) 

(A-33) 

We obtain from (A-20), (A-28), (A-29) and (A-30) 
2 

[v-^J 
= L 

= 1 - 

(A-34) 

[ W2 W2 1 
L(Z - B1)

2 + (Z - B2yj 

Equation (A-31) is equivalent to Equation (12) of the text or to 

/l J 2 
vf vt12 

(A-35) 

r aa "1. 

il T IT 
Fig. 6—The diameter of the electron flow considered is 2a, and the length is (. 

Letting Y = —L and making use of the following well known relations 
between the Bessel functions 

h(jx) = Jo(x) 

I\(jx) = jJiix) 
Equation (A-34) becomes 

(A-36) 

V = 
(A-37) 

W 
+ 

w 
- 1 

(Z - B1y ' (Z - B2)
2 

Let the right-hand side of equation (A-37) be denoted by Fi(Z) and the 
middle of ^(Z). In order to find the real roots of equation (A-37) one can 
plot Ei and as functions of Z on the same chart. The abscissae of the 
intersections of the two curves will then be the real roots. In Fig. 7, Fi 
is plotted as a function of Z for Bi = 0.9 and Bz = 1.1. 
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In view of the definitions in equations (A-13) and (A-14), both Ri and 
are uniquely defined by a single parameter, .namely, the fractional velocity 
separation, b. That is 

and 

b = 2(«1 — «2)/(«i + U2) = 2(/32 — P\)/{P2 + /3i) 

= Bi-Bx 

B1= 1- (6/2) 

^2 = 1 + (6/2) 

(A-38) 

(A-39) 
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Fig- 7—A curve illustrating conditions giving rise to various types of roots. 

A complete plot of F2, for any value of the parameters W and (o/X,), 
would show that equation (A-37) has an infinite number of real solutions. 
A real solution of equation (A-37) means an unattenuated wave. Thus 
there are an infinite number of unattenuated waves possible. The waves 
which will actually be excited in any given case, however, depend upon the 
boundary conditions at the input and output of the tube. Ordinarily only 
those waves will be excited which do not have a reversal in phase of the 
longitudinal E vector, say, as r varies from 0 to a. Attention, therefore, 
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will be given only to those waves for which -E, does not change sign over a 
cross-section of the beam. By inspection of equation (A-23), it is evident 
that this requirement is automatically satisfied if I- > 0. On the other 
hand, if L is negative, one has 

Eti ~ Jo (vT ^ z) (A-23a) 

Thus attention will be limited to those roots which satisfy 

^/y 2Z? Z < 2.405 (A-40) 
As 

where 2.405 is the first zero of the Bessel function in equation (A-21a). 
Returning to Fig. 7, portions of three different Fz curves are plotted: one 

for fF2 = 0.01, one for W* = 0.0152 and one for W2 = 0.02. All three 
curves are for (a/X.) = 0.16. The intersections which represent roots which 
satisfy the inequality (A-40) are marked with arrows. Evidently there are 
either four real roots of this type or there are two real roots and a complex 
conjugate pair, the distinction being determined by the value of W. Thus 
there is a critical value of W2 (in this case it is 0.0152) for which two of the 
real roots are identical. This identical pair is indicated by two arrows 
near the minimum of the F\ curve at Z = 1. 

A pair of conjugate complex roots means that there are an increasing wave 
and a decreasing wave. Thus for each value of b and (o/X.) there is a least 
value of W2 below which the tube will have no gain. 

It can be shown that the critical tangency of the Ei and F* curves occurs 
at a value of Z which is less than b2 away from unity. Very little error will 
be incurred, then, by assuming that this critical point occurs at Z = 1 
if b is small. 

Letting Z = 1 in equation (A-37), and using equations (A-39) one has 

. /iCi(2WX.)J. {yJmM/bV - 1 cAJtii 
( / ) Uo^TTO/X.)/, Wmu/bY - 1 2WX.)/ 

where WM is the critical value of W. Equation (A-41) determines (WM/b)2 

as af unction of (o/X,). This relationship is plotted in Fig. 4. 
We will find that there will be an increasing wave in the range 

Wu < W < °o. The calculation of the gain in this interval would be very 
laborious since Bessel functions of complex argument would be involved. 
However, a good approximation can be made when b is small. The real 
part of Z will always be near unity and the imaginary part will be found to 
be less than b/2. Therefore one can let Z = 1 in equation (A-37) where it 
multiplies the factor (lira/Xo) in the argument of the Bessel functions and 
let Z — 1 = £7 in the right-hand side of Equation (A-37). With these 
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assumptions F can be determined as a function of (o/X,) and U can be deter- 
mined as a function of F. We have from Equation (A-37) 

1 i 1 - 1 + F /A \ + m (A-37a) {U + 6/2)2 {U - 6/2)2 IF2 

When U = 0, W2 = W2
M = W2

M , so that 

1+ F = 8(WM/by (A-42) 

and equation (A-37a) becomes 

(U +1 b/2)' + (U~W2)' = WW^/wy (A-376) 

the solution of which, for the increasing wave, is 

U = j{b/2)[{\/2){W/WM)2W\ + 8(1F.w/IF)2 - l) - l]4 (A-43) 

and the gain will be given by 

Gain/J = 21.3[{X/2)(W/W„yW\ + S(WU/W)' - l) - l]! (A-44) 

db/wavelength/unit b 

"Decibels gain/wavelength/unit b" is plotted against (W/WmY in Fig. 3. 
As (W/Wm)2 becomes very large, the gain per wavelength approaches 

27.3 6 db. 



Experimental Observation of Amplification by Interaction 
Between Two Electron Streams 

By A. V. HOLLENBERG 

The construction and performance of an amplifier employing the interaction 
between two streams of electrons having different average velocities are de- 
scribed. Gain of 33 db at a center frequency of 255 Mc has been observed 
with bandwidth of 110 Mc between 3 db points. 

1. Introduction 

A NEW type of amplifier in which the gain is obtained by an interaction 
between streams of electrons of two or more average velocities is 

proposed in a companion paper by Pierce and Hebenstreit.1 This amplifier 
contains input and output portions in which signals are impressed on and 
extracted from the electron flow by electromagnetic circuits and a central 
portion in which gain occurs purely by interaction between streams of elec- 
trons without any circuits being involved. A small signal theory for coinci- 
dent electron streams of two d-c. velocities is presented in Pierce and Heben- 
streit's paper. 

In this paper a description of the construction and operation of an amplifier 
of this kind will be presented. Departures of the actual conditions in the 
amplifier from the assumptions of the theory limit the expectations of quanti- 
tative agreement. It is believed, however, that the evidence for gain arising 
from the interaction between two streams of electrons is clear, and that the 
broad frequency response predicted by the theory has been confirmed. 

2. Description of Amplifier 

The frequency range near 200 Mc was chosen for the first experimental 
test of the proposed method of amplification for reasons of convenience. 
The theory indicates that current density requirements increase with fre- 
quency, but that these requirements become severe only at the higher micro- 
wave frequencies. Availability of circuit parts and test equipment, rather 
than anticipated difficulties at higher frequencies, led to the choice that was 
made. 

The essential features of one of the double-stream amplifier tubes which 
has been constructed and operated are represented in Fig. 1. The out- 
put helix was identical with the input helix in construction and connection 

1A New Type of High Frequency Amplifier, J. R. Pierce and W. B. Hebenstreit, this 
issue of the B. S, T. J. 
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to the coaxial line. The two identical probes pi, and p2 , extending from 
coaxial lines into the two electron streams at the beginning and end of the 
central portion of the tube between the two helices were inserted for com- 
parison of the signal amplitudes at the beginning and end of the region in 
which no circuit is present. 

A similar tube containing an output gap in place of the output helix sec- 
tion is represented in Fig. 2. 

In both cases concentric tubular electron streams originate at the ring- 
shaped emitting surfaces of the two cathodes at potentials V\ and V2, pass 
through their respective control grids and through a common accelerating 
grid. An axial magnetic field of approximately 700 gauss is applied in order 
to maintain the definition of the beams. The outer and inner tubular beams 

1 H s\\\\\\\^ 1 

G 

H l| 

11 *1'1,11 

C. C, —INNER AND OUTER CATHODES 
S, S,- n " " ELECTRON STREAMS 

T -HELIX TERMINATION 
H -INPUT HELIX 
C -OUTPUT GAP 

Fig. 2—Representation of double-stream amplifier with, gap output. 

have mean radii of 0.215" and 0.170" respectively and a wall thickness of 
0.030" in each case. 

The short sections of helix which are used for input and output are wound 
of 0.013" diameter molybdenum wire, 44 t.p.i., and mean diameter of 0.500". 
The axial velocity of signal propagation along this helix is equal to that of 
54-volt electrons. The helix sections are each 2" long. Ceramic supporting 
rods on each helix section are sprayed with aquadag, over 1|" of their 
length on the end nearest the center of the tube, for terminating purposes. 
The thickness of the spray coating increases toward the center of the tube. 
The distance between helices is 8.7". 

The gain produced by the electronic interaction depends upon a difference 
in velocity between the two electron streams. The signal is impressed 
upon one of the streams by the helix when its velocity is that at which travel- 
ing wave amplifier interaction between the stream and the helix occurs. It 
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is required, therefore, for this helix that one of the streams travel-at a 
velocity corresponding to a potential in the neighborhood of 54 volts. 
Useful interaction occurs from 50 to 60 volts. The inner stream is adjusted 
for helix interaction in this amplifier, and the outer stream travels at a lower 
velocity to bring about the interaction between the two streams. Operation 
about a mean voltage of about 50 volts was planned in designing the ampli- 
lier, and in estimating its expected performance. The amplifier is 16 wave- 
lengths long in terms of the wavelength associated with a mean voltage of 
50 volts and a frequency of 200 Mc. Eleven of these wavelengths are in the 
center portion between the helices. 

The conditions in the amplifier tube differ from those assumed in the 
derivation of the theory of the double-stream interaction in the following 
significant ways: 

1. The beams are separated in space and not completely intermingled. 
Calculations on the effect of this separation have been made. Numeri- 
cal examples of the calculated magnitude of the effect on gain will be 
given below. 

2. Hollow tubular beams are used, instead of "solid" beams of uniform 
current density over their cross-sectional area. The theory indicates 
that, for the beam dimensions and currents used here, the parameters 
which depend upon beam radius and total current in the beam are 
nearly the same whether the current is concentrated in an infinitely 
thin cylindrical shell or uniformly distributed over the cross-section of a 
cylinder of the same radius. 

5. The metal wall surrounding the beams is not infinitely remote. Its 
diameter was chosen as a compromise between the requirements of 
preventing serious d-c. space charge depression of potential in the 
beam and of being far enough removed from the beam to prevent a large 
effect on the interaction due to its presence. Its proximity tends to 
increase the minimum current required for producing gain, and there- 
fore to reduce the ratio of actual to critical current on which the gain 
depends. 

4. The beams are not perfectly confined to hollow cylinders of the dimen- 
sions given. There is evidence that some spreading outside of these 
dimensions occurs. The currents reaching the collector can be meas- 
ured and these are used as "beam currents" in the discussion to follow 
and in comparisons between theory and experiment. Somewhat larger 
currents than these were initially launched, and the lost fraction may 
have contributed to the interaction before striking the walls. 

Although the assumptions of the theory are not fulfilled in the actual 
amplifier, estimates of its performance were first made without correction 
for the discrepancies. With voltages of 40 and 60 volts on the outer and 
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device was very large, for the velocity of the outer beam was far from that 
at which interaction with the helices occurs. 

A signal from the probe at the end of the central portion of the tube 
23 db greater than that from the probe at the beginning of this section was 
observed in a comparison of the second type. This can probably be taken 
as a measure of the increase in signal in this portion of the tube due to the 
double-stream interaction alone, although the probe arrangement may also 
be subject to some remaining complicating effects. Overall gain for the 
device in this measurement was 32 db. Further interaction of the same 
kind occurs in the portions of the tube outside of the space between the 
probes. 

Measurements of the gain of an amplifier with helix output as a function 
of velocity separation between the streams have been made. For fixed 
mean voltage and current, theory predicts an increase in gain from zero db 
at zero separation to a maximum and then a decrease to zero as the velocity 
separation is further increased. A maximum gain was observed experi- 
mentally as velocity separation was varied, and in the neighborhood of the 
predicted optimum value of velocity separation for the current used. 

In the amplifier tube with gap output it was possible to evaluate the a-c, 
component of current in the electron stream produced by the amplified 
signal since the impedance across the gap was known. The power output 
from this tube at saturation was 0.1 mw, a little less than the maximum 
shown in Fig. 3. For 75 ohm output impedance this power corresponds 
to 1.15 milliampere r.m.s., or about one third of the total d-c. current to the 
collector in both streams. The output power, although relatively low, is 
thus of the right order of magnitude for the currents used. 

Acknowledgment 

The writer wishes to acknowledge his indebtedness to J. R. Pierce for 
valuable suggestions and discussion, and for supplying unpublished calcu- 
lations concerning the relation between hollow and solid beams, the effect of 
the proximity of the conducting wall, and the effect of the separation of 
the beams in space. 

Thanks are also due to A. R. Strnad for assistance in mechanical design 
and to R. E. Azud for construction of the amplifier tubes. 



The Synthesis of Two-Terminal Switching Circuits 

By CLAUDE. E. SHANNON 

PART I: GENERAL THEORY 

1. Introduction 

THE theory of switching circuits may be divided into two major divi- 
sions, analysis and synthesis. The problem of analysis, determining 

the manner of operation of a given switching circuit, is comparatively 
simple. The inverse problem of finding a circuit satisfying certain given 
operating conditions, and in particular the best circuit is, in general, more 
difficult and more important from the practical standpoint. A basic part 
of the general synthesis problem is the design of a two-terminal network 
with given operating characteristics, and we shall consider some aspects of 
this problem. 

Switching circuits can be studied by means of Boolean Algebra.1,2 This 
is a branch of mathematics that was first investigated by George Boole in 
connection with the study of logic, and has since been applied in various 
other fields, such as an axiomatic formulation of Biology,3 the study of neural 
networks in the nervous system,4 the analysis of insurance policies,5 prob- 
ability and set theory, etc. 

Perhaps the simplest interpretation of Boolean Algebra and the one 
closest to the application to switching circuits is in terms of propositions. 
A letter X, say, in the algebra corresponds to a logical proposition. The 
sum of two letters AT + F represents the proposition "X or F" and the 
product A'F represents the proposition "X and V". The symbol X' is used 
to represent the negation of proposition X, i.e. the proposition "not X". 
The constants 1 and 0 represent truth and falsity respectively. Thus 
X + F = 1 means X or Y is true, while X + YZ' = 0 means X or (F and 
the contradiction of Z) is false. 

The interpretation of Boolean Algebra in terms of switching circuits6•',•9■ln 

is very similar. The symbol X in the algebra is interpreted to mean a make 
(front) contact on a relay or switch. The negation of X, written A", 
represents a break (back) contact on the relay or switch. The constants 0 
and 1 represent closed and open circuits respectively and the combining 
operations of addition and multiplication correspond to series and parallel 
connections of the switching elements involved. These conventions are 
shown in Fig. 1. With this identification it is possible to write an algebraic 
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HINDRANCE FUNCTION 

0 (PERMANENTLY CLOSED CIRCUIT) 

1 (PERMANENTLY OPEN CIRCUIT) 

X (MAKE CONTACT ON RELAY X) 

X' (BREAK CONTACT ON RELAY X) 

X + Y (SERIES CONNECTION) 

XY (PARALLEL CONNECTION) 

w [x+y(z+x')] 

Fig. 1—Hindrance functions for simple circuits. 

expression corresponding to a two-terminal network. This expression will 
involve the various relays whose contacts appear in the network and will be 
called the hindrance or hindrance function of the network. The last net- 
work in Fig. 1 is a simple example. 

Boolean expressions can be manipulated in a manner very similar to 
ordinary algebraic expressions. Terms can be rearranged, multiplied out, 
factored and combined according to all the standard rules of numerical 
algebra. We have, for example, in Boolean Algebra the following identities: 

0 + X = X 

0-X = 0 

1-X = X 

X + F = F + X 

XF = FX 

X + (F + Z) = (X + F) + Z 

X(FZ) = (XF)Z 

X(F + Z) = XF -1- XZ 

The interpretation of some of these in terms of switching circuits is shown 
in Fig. 2. 

There are a number of further rules in Boolean Algebra which allow 
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   ,x„   _   0xn   
o + x 
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X +Y 

-CT 

—• = *—o o—o'o 
= Y + X 

X (YZ) (XY) Z 

x 

-0Y0- 

_ozo- 

XY2 

•cj> ■ -c;D-C:> 
X (Y+Z) = XY t XZ 

Fig. 2—Interpretation of some algebraic identities. 

simplifications of expressions that are not possible in ordinary algebra. 
The more important of these are: 

X=X+X=X+X+X = etc. 

X = X-X = X-X-X = etc. 

X + 1 = 1 

X + 7Z = (X + 7)(X + Z) 

X + X' = 1 

X-X' = 0 

(x + vy = x'v 

(XF)' = X' + F' 

The circuit interpretation of some of these is shown in Fig. 3. These rules 
make the manipulation of Boolean expressions considerably simpler than 
ordinary algebra. There is no need, for example, for numerical coefficients 
or for exponents, since nX = X" = X. 

By means of Boolean Algebra it is possible to find many circuits equivalent 
in operating characteristics to a given circuit. The hindrance of the given 
circuit is written down and manipulated according to the rules. Each 
different resulting expression represents a new circuit equivalent to the given 
one. In particular, expressions may be manipulated to eliminate elements 
which are unnecessary, resulting in simple circuits. 

Any expression involving a number of variables Xi, X2, ••• , Xn is 



62 BELL SYSTEM TECHNICAL JOURNAL 

called a function of these variables and written in ordinary function notation, 
f{Xl, X2, • • • , Xn). Thus we might have f{X, F, Z) = X + F'Z + XZ'. 
In Boolean Algebra there are a number of important general theorems which 
hold for any function. It is possible to expand a function about one or more 
of its arguments as follows: 

/(X!, X2, • • • , Xn) = Xx/a, X2, • • • , Xn) + X'/(0, X2, • • • , X„) 

This is an expansion about Xi. The term/(l, X2, ■ • • , Xn) is the function 

e___oxo___e _ , 0
X

C i:Ix0 , _   oXo—oXo oXo—• 

* = x+x = x+x+x 

<j^Yn  

(x + v) (x + z) 

-crn- 
XX' = 0 

Fig. 3—Interpretation of some special Boolean identities. 

/(Xi, X2, • ■ • , X„) with 1 substituted for X, and 0 for X', and conversely 
for the term/(0, X2, • • • , Xn). An expansion about Xi and X2 is: 

/(X!,X2, • • • ,Xn) = XiX2/(l, 1,X3, • • ■ ,Xn) + X1XZ/(1,0.Xs, ••• ,Xn) 

+ XiX2/(0, 1, X3, • • ■ , Xn) + X1
,X27(1, 1, Xa, • • • , Xn) 

This may be continued to give expansions about any number of variables. 
When carried out for all n variables, / is written as a sum of 2n products 
each with a coefficient which does not depend on any of the variables. 
Each coefficient is therefore a constant, either 0 or 1. 

There is a similar expansion whereby/ is expanded as a product: 

fiXuXw-,X,) 

= [X. + /(0, X,, • • •, X,)] [x; + /(I, X.. ■ ■ ■ , X,)] 

= [X, + x2+/(0,0. • ■ •, X.)1 [X, + xi+m 1, ■ ■ ■ .XJ] 

ix: + x,+/(i. 0, ■ • •. x„)i [x; + x; + /p. i,..., xji 
= etc. 
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The following are some further identities for general functions: 

X + /(X, Y, Z, • • ■) = X +/(0, F, Z, ■ • •) 

X' + /(X, F, Z, • • •) = X"' + /(I, F, Z, • • •) 

X/(X, F, Z, •■•) = X/(l, F, Z, • • •) 

xy(x, F, Z, • • •) = X'/(0, F, Z, •••) 
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z.  

X + f(X,Y, Z,w) X + f (0,Y, Z, W) 

TlZZr ■ -C U W'J -o o—1 

f{X,Y,Z,W) Xf(l,Y,Z,W) + X'f(0,Y,Z,W) 

-C:dh 

= XYf(l, 1,Y, Z) + X Y'f(l,0,Y, Z) + X'Y f (0, l,Y,Z) + X' Y' f (0,0, Y,Z) 
Fig. 4—Examples of some functional identities. 

The network interpretations of some of these identities are shown in Fig. 
4. A little thought will show that they are true, in general, for switching 
circuits. 

The hindrance function associated with a two-terminal network describes 
the network completely from the external point of view. We can determine 
from it whether the circuit will be open or closed for any particular position 
of the relays. This is done by giving the variables corresponding to operated 
relays the value 0 (since the make contacts of these are then closed and the 
break contacts open) and unoperated relays the value 1. For example, with 
the function / = IF[X + F(Z -f- X')] suppose relays X and F operated and 
Z and IF not operated. Then/ = 1[0 -f- 0(1 + 1)] = 0 and in this condition 
the circuit is closed. 
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A hindrance function corresponds explicitly to a series-parallel type of 
circuit, i.e. a circuit containing only series and parallel connections. This 
is because the expression is made up of sum and product operations. There 
is however, a hindrance function representing the operating characteristics 
(conditions for open or closed circuits between the two terminals) for any 
network, series-parallel or not. The hindrance for non-series-parallel net- 
works can be found by several methods of which one is indicated in Fig. 5 
for a simple bridge circuit. The hindrance is written as the product of a 
set of factors. Each factor is the series hindrance of a possible path between 
the two terminals. Further details concerning the Boolean method for 
switching circuits may be found in the references cited above. 

This paper is concerned with the problem of synthesizing a two-terminal 
circuit which represents a given hindrance function f{Xi, • • • , Xn). Since 
any given function / can be realized in an unlimited number of different 

ways, the particular design chosen must depend upon other considerations. 
The most common of these determining criteria is that of economy of ele- 
ments, which may be of several types, for example; 

(1) We may wish to realize our function with the least total number of 
switching elements, regardless of which variables they represent. 

(2) We may wish to find the circuit using the least total number of relay 
springs. This requirement sometimes leads to a solution different 
from (1), since contiguous make and break elements may be combined 
into transfer elements so that circuits which tend to group make and 
break contacts on the same relay into pairs will be advantageous 
for (2) but not necessarily for (1). 

(3) We may wish to distribute the spring loading on all the relays or on 
some subset of the relays as evenly as possible. Thus, we might try 
to find the circuit in which the most heavily loaded relay was as 
lightly loaded as possible. More generally, we might desire a circuit 
in which the loading on the relays is of some specified sort, or as near 
as possible to this given distribution. For example, if the relay Zi 

f = (W+X)fZ+S)(W + Y + 3)(2+Y + x) 
Fig. 5—Hindrance of a bridge circuit. 
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must operate very quickly, while X2 and Xg have no essential time 
limitations but are ordinary {/-type relays, and X* is a multicontact 
relay on which many contacts are available, we would probably try 
to design a circuit for f(Xi, Xt, Xg, XJ in such a way as, first of all, 
to minimize the loading on Xi , next to equalize the loading on ^2 
and Xg keeping it at the same time as low as possible, and finally 
not to load Xt any more than necessary. Problems of this sort may 
be called problems in spring-load distribution. 

Although all equivalent circuits representing a given function / which 
contain only series and parallel connections can be found with the aid of 
Boolean Algebra, the most economical circuit in any of the above senses will 
often not be of this type. The problem of synthesizing non-series-parallel 
circuits is exceedingly difficult. It is even more difficult to show that a 
circuit found in some way is the most economical one to realize a given 
function. The difficulty springs from the large number of essentially 
different networks available and more particularly from the lack of a 
simple mathematical idiom for representing these circuits. 

We will describe a new design method whereby any function f(Xi, X2, • • • , 
,Yn) may be realized, and frequently with a considerable saving of elements 
over other methods, particularly when the number of variables n is large. 
The circuits obtained by this method will not, in general, be of the series- 
parallel type, and, in fact, they will usually not even be planar. This 
method is of interest theoretically as well as for practical design purposes, 
for it allows us to set new upper limits for certain numerical functions asso- 
ciated with relay circuits. Let us make the following definitions: 

X(n) is defined as the least number such that any function of n variables 
can be realized with not more than X(n) elements.* Thus, any function of 
n variables can be realized with X(n) elements and at least one function with 
no less. 

u(n) is defined as the least number such that given any function / of n 
variables, there is a two-terminal network having the hindrance/ and using 
not more than ju(») elements on the most heavily loaded relay. 

The first part of this paper deals with the general design method and the 
behaviour of X(«). The second part is concerned with the possibility of 
various types of spring load distribution, and in the third part we will study 
certain classes of functions that are especially easy to synthesize, and give 
some miscellaneous theorems on switching networks and functions. 

2. Fundamental Design Theorem 

The method of design referred to above is based on a simple theorem deal- 
ing with the interconnection of two switching networks. We shall first 

* An dement means a make or break contact on one relay. A transfer dement means 
a make-and-break with a common spring, and contains two elements. 
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state and prove this theorem. Suppose that M and N (Fig. 6) are two 
(« + 1) terminal networks, M having the hindrance functions Uk (k = 
1, 2, • •• n) between terminals a and k, and N having the functions Vk 
between b and k. Further, let M be such that U3x- = l(j, ^ = 1, 2, ■ • • , n). 
We will say, in this case, that M is a disjunctive network. Under these con- 
ditions we shall prove the following: 

Theorem 1: If the corresponding terminals I, 2, , n of M and N are 
connected together, then 

^ = ft (Ui. + n) (i) fc=l 

where Uab is the hindrance from terminal a to terminal b. 

L 
i j 1 1 1 9 

 a o o — 
3 

M 
— 

1 1 1 i 1 1 1 I 1 n — 

N 

 m II . II w 
L 

Fig. 6—Network for general design theorem. 

Proof: It is known that the hindrance Uab may be found by taking the 
product of the hindrances of all possible paths from a to 6 along the elements 
of the network.6 We may divide these paths into those which cross the line 
L once, those which cross it three times, those which cross it five times, etc. 
Let the product of the hindrances in the first class be Wi, in the second 
class Wz, etc. Thus 

Uab = Wx'WyWb-" (2) 

Now clearly 

in = f[ (£/» + vk) 1 

and also 

w3 = wb = ■■■ = \ 

since each term in any of these must contain a summand of the type Ujk 
which we have assumed to be 1. Substituting in (2) we have the desired 
result. 

The method of using this theorem to synthesize networks may be roughly 
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described as follows: The function to be realized is written in the form of a 
product of the type (1) in such a way that the functions U* are the same for a 
large class of functions, the Vk determining the particular one under consider- 
ation. A basic disjunctive network M is constructed having the functions 
Uk between terminals a and k. A network N for obtaining the functions 
Ft is then found by inspection or according to certain general rules. We 
will now consider just how this can be done in various cases. 

3. Design oe Networks for General Functions—Behavior of X(w)- 

a. Functions of One, Two and Three Variables: 

Functions of one or two variables may be dismissed easily since the 
number of such functions is so small. Thus, with one variable V, the 
possible functions are only: 

0, 1, X, X' 

and obviously X(l) = 1, ^(l) = 1. 
With two variables X and Y there are 16 possible functions: 

0 X F XY XY' X'Y X'Y' XY' + X'Y 

\X' Y' X + F X + F' X' + F X' + Y' XY + X'F' 

so that X(2) = 4, /x(2) = 2. 
We will next show that any function of three variables /(X, F, Z) can be 

realized with not more than eight elements and with not more than four 
from any one relay. Any function of three variables can be expanded in a 
product as follows: 

/(X, F, Z) = [X + F + /(0, 0, Z)][X + Y' + /(0, 1, Z)\ 

[X' + F + /(I, 0, Z)] [X' + Y' + /(I, 1, Z)]. 

In the terminology of Theorem 1 we let 

Ui = X + Y Fx 

£/2 = X + Y' F 2 

Uz= X' + Y Fa 

U* = X' + Y' F 4 

so that 

i-b =/(x, r,z) = 11W* + vt) 

The above Vk functions are realized with the network M of Fig. 7 and it is 
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easily seen that Ujk = 1 (j, ^ 2> 4)- Tlie problem now is to construct 
a second network N having the Vk functions Fx, F2, Vs, Vt. Each of 
these is a function of the one variable Z and must, therefore, be one of the 
four possible functions of one variable: 

Consider the network N of Fig. 8. If any of the V's are equal to 0, connect 
the corresponding terminals of M to the terminal of N marked 0; if any are 
equal to Z, connect these terminals of M to the terminal of N marked Z, 
etc. Those which are 1 are, of course, not connected to anything. It is 
clear from Theorem 1 that the network thus obtained will realize the function 
f(X, Y, Z). In many cases some of the elements will be superfluous, e.g., 
if one of the F,- is equal to 1, the element of M connected to terminal i can 

be eliminated. At worst M contains six elements and N contains two. 
The variable X appears twice, Y four times and Z twice. Of course, it is 
completely arbitrary which variables we call X, F, and Z. We have thus 
proved somewhat more than we stated above, namely, 

Theorem 2: Any function of three variables may be realized using not more 
than 2, 2, and 4 elements from the three variables in any desired order. Thus 
X(3) < 8, m(3) < 4. Further, since make and break elements appear in 
adjacent pairs we can obtain the distribution 1, 1, 2, in terms of transfer ele- 
ments. 

The theorem gives only upper limits for X(3) and ai(3). The question 
immediately arises as to whether by some other design method these limits 
could be lowered, i.e., can the < signs be replaced by < signs. It can be 
shown by a study of special cases that X(3) = 8, the function 

0, 1, Z, Z'. 

a 

Fig. 7—Disjunctive tree with two bays. 

X®Y@Z = X(YZ + F'Z') + X' (YZ' + F'Z) 

requiring eight elements in its most economical realization. m(3), however, 
is actually 3. 
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It seems probable that, in general, the function 

Ai © A2 0 • • • © A'n 

requires 4(« — 1) elements, but no proof has been found. Proving that a 
certain function cannot be realized with a small number of elements is 
somewhat like proving a number transcendental; we will show later that 
almost all* functions require a large number of elements, but it is difficult 
to show that a particular one does. 

z z • O O——. 

z' k z       • b 

0 » 
Fig. 8—Network giving all functions of one variable. 

•x 

Fig. 9—Disjunctive tree with three bays, 

b. Functions of Four Variables: 

In synthesizing functions of four variables by the same method, two 
courses are open. First, we may expand the function as follows: 

/(IF, Z, V, Z) = [W + X+Y+ V\{Z)\ ■ [W + X + V + F2(Z)]. 

[IF + Z' + F + F8(Z)HIF + Z' + F' + V4(Z)]. 

[IF' + AT + F + F5(Z)]-[IF' + Z + F' + F5(Z)]. 

[IF' + Z' + F + F7(Z)]-[IF' + Z' + F' + F8(Z)]. 

By this expansion we would let f/i = IF + Z + F, 1/2 = IF + Z + F', • • ■ , 
U* = IF' + Z' -F F' and construct the M network in Fig. 9. N would 

* We use the expression "almost all" in the arithmetic sense: e.g., a property is true 
of almost all functions of « variables if the fraction of all functions of n variables for which 
it is not true —♦ 0 as « —» . 
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again be as in Fig. 8, and by the same type of reasoning it can be seen that 
X(4) <16. 

Using a slightly more complicated method, however, it is possible to 
reduce this limit. Let the function be expanded in the following way: 

f{W, X, Y, Z) = [W + X + V\(Y, Z)HW + X' + F2(F, Z)\ 

[W + X + V3{Y, Z)HW' + X' + Vi{Y, Z)l. 

We may use a network of the type of Fig. 7 for M. The V functions are 
now functions of two variables F and Z and may be any of the 16 functions: 

Y FZ 

F' F'Z 
C< d{ 

Z FZ' 

Z' Y'Z' 

Y + Z 

Y + Z' 

Y'+ Z 

E 
Y'Z + FZ' 

I FZ + F'Z' 

We have divided the functions into five groups, A, B,C, D and E for later 
reference. We are going to show that any function of four variables can 

Fig. 10—Simplifying network. 

be realized with not more than 14 elements. This means that we must 
construct a network N using not more than eight elements (since there are 
six in the M network) for any selection of four functions from those listed 
above. To prove this, a number of special cases must be considered and 
dealt with separately: 

(1) If all four functions are from the groups, A, B, C, and D, N will 
certainly not contain more than eight elements, since eight letters at most 
can appear in the four functions. 

(2) We assume now that Just one of the functions is from group 
without loss of generality we may take it to be FZ' + F'Z, for it is the other, 
replacing F by F' transforms it into this. If one or more of the remaining 
functions are from groups A ov B the situation is satisfactory, for this func- 
tion need require no elements. Obviously 0 and 1 require no elements and 
F, F', Z or Z' may be "tapped off" from the circuit for FZ' -f F'Z by writing 
it as (F + Z)(F' + Z'). For example, F' may be obtained with the circuit 
of Fig. 10. This leaves four elements, certainly a sufficient number for 
any two functions from A, B,C, or D. 
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(3) Now, still assuming we have one function, YZ' + F'Z, from E, 
suppose at least two of the remaining are from D. Using a similar "tapping 
off" process we can save an element on each of these. For instance, if the 
functions are Y -\- Z and Y' + Z' the circuit would be as shown in Fig. 11. 

(4) Under the same assumption, then, our worst case is when two of the 
functions are from C and one from D, or all three from C. This latter case 
is satisfactory since, then, at least one of the three must be a term of 
YZ' + Y'Z and can be "tapped off." The former case is bad only when 
the two functions from C are FZ and F'Z'. It may be seen that the only 

Z'( 

-o o- 
z' 

Fig. 11—Simplifying network. 

Fig. 12—Simplifying network. 

essentially different choices for the function from D are F + Z and F' + Z. 
That the four types of functions/ resulting may be realized with 14 elements 
can be shown by writing out typical functions and reducing by Boolean 
Algebra. 

(5) We now consider the cases where two of the functions are from E. 
Using the circuit of Fig. 12, we can tap off functions or parts of functions 
from A, B or D, and it will be seen that the only difficult cases are the fol- 
lowing: (a) Two functions from C. In this case either the function / is 
symmetric in F and Z or else both of the two functions may be obtained 
from the circuits for the E functions of Fig. 12. The symmetric case is 
handled in a later section, (b) One is from C, the other from D. There 
is only one unsymmetric case. We assume the four functions are F © Z, 
F © Z', FZ and F -j- Z'. This gives rise to four types of functions /, 
which can all be reduced by algebraic methods. This completes the proof. 
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Theorem J: Any function of four variables can be realized with not more 
than 14 elements. 

c. Functions of More Than Four Variables: 

Any function of five variables may be written 

f{X\, ■ , Xf) = [Z5 + /ipf,, , XiMX't, + UX^ ■■■ , X4)] 

and since, as we have just shown, the two functions of four variables can 
be realized with 14 elements each, /(Xi, • • • X5) can be realized with 30 

0      
X •  oXo  
X'*- Oxo  Y Y     o  Y y V— o o  

X' Y» 
X + Y • 

X,+ Y'* 
X'Y'# 

X +Y'« 
X' + Y* 

xy—£v'D-1-Cy3- 
Fig. 13—Network giving all functions of two variables. 

Now consider a function ffXi, Xz, , Xn) of n variables. For 
5 < « < 13 we get the best limit by expanding about all but two variables. 

f{Xi, Xz, • •' , Xf) — [Xi + X2 + • • ■ + Xn—Z + Vl(Xn_l , Xn)l 

 [X( + X2 + • ■ • + X,
n_2 + VsiXn.! , Fn)] (4) 

The F's are all functions of the variables Xn_i, Xn and may be obtained 
from the general N network of Fig. 13, in which every function of two 
variables appears. This network contains 20 elements which are grouped 
into five transfer elements for one variable and five for the other.* The 
M network for (4), shown in Fig. 14, requires in general 2" 1 — 2 elements. 
Thus we have: 

* Several other networks with the same properly as Fig. 13 have been found, but they 
all require 20 elements. 

x' 

O 
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Theorem 4. X(n) < 2" 1 + 18 

d. Upper Limits for\(n) with Large n. 

Of course, it is not often necessary to synthesize a function of more than 
say 10 variables, but it is of considerable theoretical interest to determine 
as closely as possible the behavior of X(») for large n. 

*n-2 

0-2 

*0-2 
0-2 

Fig. 14—Disjunctive tree with (« — 2) bays. 

92 

*nv^ 

9 2 
Fig. 15—Network giving all functions of (m + 1) variables constructed from one giving 

all functions of m variables. 

We will first prove a theorem placing limits on the number of elements 
required in a network analogous to Fig. 13 but generalized for m variables. 

Theorem 5. An N network realizing all 22"' functions of m variables can 
be constructed using not more than 2 •2""' elements, i.e., not more than two ele- 
ments per function. Any network with this properly uses at least (| — <) 
elements per function for any e > 0 with n sufficiently large. 

The first part will be proved by induction. We have seen it to be true 
for m = 1,2. Suppose it is true for some m with the network N of Fig. 15. 
Any function of m + 1 variables can be written 

g= lXm+1-f/a][Z'm+1+/6] 



74 BELL SYSTEM TECHNICAL JOURNAL 

where fa and fb involve only m variables. By connecting from g to the cor- 
responding/a and fb terminals of the smaller network, as shown typically 
for gs, we see from Theorem 1 that all the g functions can be obtained. 
Among these will be the 2'"' f functions and these can be obtained simply 
by connecting across to the / functions in question without any additional 
elements. Thus the entire network uses less than 

(22m + 1 - 22m)2 + 2 • 22"' 

elements, since the N network by assumption uses less than 2 • 22m and the 
first term in this expression is the number of added elements. 

The second statement of Theorem 7 can be proved as follows. Suppose 
we have a network, Fig. 16, with the required property. The terminals 
can be divided into three classes, those that have one or less elements di- 

 .f2 

__J •f22m 

Fig. 16—Network giving all functions of m variables. 

rectly connected, those with two, and those with three or more. The first 
set consists of the functions 0 and 1 and functions of the type 

{X f) = X /x=o 

where X is some variable or primed variable. The number of such functions 
is not greater than 2m-2'm for there are 2m ways of selecting an "X" 
and then 2lm different functions /x=o of the remaining m — \ variables. 
Hence the terminals in this class as a fraction of the total —> 0 as m —> oo. 
Functions of the second class have the form 

(* + /i)(F + /2) 

In case X 9* Y' this may be written 

XY + XY' gx=i,Y~o + X'Ygx=0.y=1 + X' F'gx=o. r=o 

and there are not more than (2m) {2m — 2)[22"' such functions, again a 
vanishingly small fraction. In case X = Y' we have the situation shown 
in Fig. 17 and the XX' connection can never carry ground to another 
terminal since it is always open as a series combination. The inner ends 
of these elements can therefore be removed and connected to terminals 



SYNTHESIS OF SWITCHING CIRCUITS 75 

corresponding to functions of less than m variables according to the equation 

g — {X + fl)(X' + fi) = (X + flX=o)(X' +/2X=l) 

if they are not already so connected. This means that all terminals of the 
second class are then connected to a vanishingly small fraction of the total 
terminals. We can then attribute two elements each to these terminals 
and at least one and one-half each to the terminals of the third group. As 
these two groups exhaust the terminals except for a fraction which —> 0 
as « —» oo, the theorem follows. 

If, in synthesizing a function of n variables, we break off the tree at the 
(n — w)th bay, the tree will contain 2"~"'+1 — 2 elements, and we can find 
an N network with not more than 2"",-2 elements exhibiting every function 
of the remaining m variables. Hence 

X(«) < 2n~m+1 - 2 + 2 22m < 2n~m+1 + 2 22m 

x' 

Fig. 17—Possible situation in Fig. 16. 

for every integer m. We wish to find the integer M = M(n) minimizing 
this upper bound. 

Considering m as a continuous variable and n fixed, the function 

f{m) = 2n~m+1 + 22m-2 

clearly has just one minimum. This minimum must therefore lie between 
nil and Wi + 1, where 

f(m) = /(wi + 1) 

i.e., 

or 

2n-m1+i 2
2mi.2 = 2n~mi + 22mi+1-2 

2" = 2" +l/02mi+1 

'(2 - 22m') 

Now nil cannot be an integer since the right-hand side is a power of two 
and the second term is less than half the first. It follows that to find the 
integer M making f{M) a minimum we must take for M the least integer 
satisfying 

2" < 2"+i22"+1 
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Thus M satisfies: 

This gives: 

M + 1 + 2u+l > n> M + 2" (5) 

« < 11 M = 2 
11 < « < 20 M = 3 
20 < « < 37 M = 4 
37 <n <70 M = 5 
70 < « < 135 M = 6 

-1 > s 

v 
1/ 

1/ 1/ 

N
 

34 56789 10 tl 
LOGa" 

Fig. 18—Behaviour of g(n). 

2n+l 
Our upper bound for X(«) behaves something like — with a superimposed ft 
saw-tooth oscillation as n varies between powers of two, due to the fact that 
m must be an integer. If we define g(n) by 

^n+l 
2„-v+i + 22tf2 = g(n) L- , 

M being determined to minimize the function (i.e., M satisfying (5)), then 
g{n) varies somewhat as shown in Fig. 18 when plotted against log2 n. The 
maxima occur just beyond powers of two, and closer and closer to them 
as n —► oo. Also, the saw-tooth shape becomes more and more exact. The 
sudden drops occur just after we change from one value of M to the next. 
These facts lead to the following: 

Theorem 6. (a) For all n 
^n+8 

X(m) <  , 
n 

(b) For almost all n 
'yn+t 

X(w) < — . 
n 



SYNTHESIS OF SWITCHING CIRCUITS 77 

(c) There is an infinite sequence of w,- for which 
^n+l 

x(».) < — (1 + c) € > 0. n 

These results can be proved rigorously without much difficulty. 

e. A Lower Limit for X(n) with Large n. 

Up to now most of our work has been toward the determination of upper 
limits for X(n). We have seen that for all n 

X(») < B-. 
n 

2n . 
We now ask whether this function 5 — is anywhere near the true value 

n 
of X(«), or may X(«) be perhaps dominated by a smaller order of infinity, 
e.g., np. It was thought for a time, in fact, that X(w) might be limited by 
n for all n, arguing from the first few values: 1, 4, 8, 14. We will show that 

2" . 
this is far from the truth, for actually — is the correct order of magni- 

tude of X(n): 
r\n /"I I* 

A - < X(n) < B — 
n n 

for all n. A closely associated question to which a partial answer will be 
given is the following: Suppose we define the "complexity" of a given func- 
tion / of n variables as the ratio of the number of elements in the most 
economical realization of / to X(«). Then any function has a complexity 
lying between 0 and 1. Are most functions simple or complex? 

Theorem 7: For all sufficiently large n, all functions of n variables excepting 
2" 

a fraction 5 require at least (1 — e) — elements, where e and 8 are arbitrarily 
yt 

small positive numbers. Hence for large n 

m > a - o - 
n 

and almost all functions have a complexity > ^(1 — e). For a certain sequence 
Hi almost all functions have a complexity > ^(1 — e). 

The proof of this theorem is rather interesting, for it is a pure existence 
proof. We do not show that any particular function or set of functions 

2" 
requires (1 — «) — elements, but rather that it is impossible for all functions 

n 
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to require less. This will be done by showing that there are not enough 
2" 

networks with less than (1 - e) — branches to go around, i.e., to represent n 
all the 22n functions of« variables, taking account, of course, of the different 
assignments of the variables to the branches of each network. This is only 
possible due to the extremely rapid increase of the function 2'" . We require 
the following: 

Lemma'. The number of two-terminal networks with K or less branches is 
less than {6K)k. 

Any two-terminal network with K or less branches can be constructed 
as follows: First line up the K branches as below with the two terminals 
a and b. 

a. 1—T 
2—2' 
3—3' 
4—4' 

b. K—K' 

We first connect the terminals a, b, 1, 2, • ■ ■ , K together in the desired way. 
The number of different ways we can do this is certainly limited by the num- 
ber of partitions of -K + 2 which, in turn, is less than 

2k+1 

for this is the number of ways we can put one or more division marks between 
the symbols a, 1, ■ • • , K, b. Now, assuming a, 1, 2, ■ ■ • , K, b, intercon- 
nected in the desired manner, we can connect T either to one of these ter- 
minals or to an additional junction point, i.e., T has a choice of at most 

K + 3 

terminals, 2' has a choice of at most K + A, etc. Hence the number of 
networks is certainly less than 

2k+\K + 3) (iiC + 4) (^ + 5) • • • {2K + 3) 

<{(>K)K K >3 

and the theorem is readily verified ior K = 1,2. 
We now return to the proof of Theorem 7. The number of functions of n 

/-   6)2" 
variables that can be realized with — elements is certainly less than n 
the number of networks we can construct with this many branches multi- 



SVNTHESIS OF SWrTCHING CIRCUITS 79 

plied by the number of assignments of the variables to the branches, i.e., 
it is less than 

,n-](l-e)(2n/n) 
// = (2«)(1"<)(2n/B) [bd - e) 

Hence 

loga H = {1 - e)— log 2n + (1 - e) — log (1 - e) — • 6 
// H ft 

= (1 — e) 2" + terms dominated by this term for large n. 

ig n so larg 

arrive at the inequality 

By choosing n so large that ^2" dominates the other terms of log H we 

log2 H < (I - ex) 2" 

II < 2(1~<l)2n 

But there are S = 2'n functions of n variables and 

H 2<1~M)2n n 
^ = "2^--° as 

Hence almost all functions require more than (1 — 61)2" elements. 
Now, since for all n > N there is at least one function requiring more than 

1 2" 
(say) - — elements and since X(») > 0 for n > 0, we can say that for all n, 

2 n 

2" 
X(«) > A — 

n 

for some constant .4 > 0, for we need only choose A to be the minimum 
number in the finite set; 

1 HI) H2) X(3) HN) 
2 ' 21 ' 22 ' 23 ' ''' ' 2n 

1 2 3 N 

2" 
Thus X(») is of the order of magnitude of — . The other parts of Theorem 

n 
8 follow easily from what we have already shown. 

The writer is of the opinion that almost all functions have a complexity 
nearly 1, i.e., >1—6. This could be shown at least for an infinite sequence 
iii if the Lemma could be improved to show that the number of networks is 
less than (6K)hl2 for large K. Although several methods have been used 
in counting the networks with K branches they all give the result {6K)K. 
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It may be of interest to show that for large K the number of networks is 
greater than 

m)K" 

This may be done by an inversion of the above argument. Let /(A) be the 
number of networks with K branches. Now, since there are 2zn functions of 

2"+2 

n variables and each can be realized with (1 + e) — elements (w sufficiently « 
large), 

/((l + e)
2T2) (2„)"+"b"+''"' >2*" 

for n large. But assuming /(AT) < {6K)Kli reverses the inequality, as 
is readily verified. Also, for an infinite sequence of K, 

f(K) > {6K)kI2 

Since there is no obvious reason why f(K) should be connected with powers 
of 2 it seems likely that this is true for all large K. 

We may summarize what we have proved concerning the behavior of 
2"+! 

X(») for large n as follows. X(«) varies somewhat as — ; if we let 

^n+l 
X(w) = An — 

ft 

then, for large n, An lies between | - € and (2 + e), while, for an infinite 
sequence oin,\ — e<zl„<l + e. 

We have proved, incidentally, that the new design method cannot, in a 
sense, be improved very much. With series-parallel circuits the best known 
limit* for X(n) is 

X(«) < 3.2n_1 4- 2 

2" 
and almost all functions require (1 - e) , elements.7 We have lowered logj n 

the order of infinity, dividing by at least   and possibly by n. The logo n 
best that can be done now is to divide by a constant factor < 4, and for 
some », < 2. The possibility of a design method which does this seems, 
however, quite unlikely. Of course, these remarks apply only to a perfectly 
general design method, i.e., one applicable to any function. Many special 
classes of functions can be realized by special methods with a great saving. 

* Mr. J. Riordan has pointed out an error in mj' reasoning in (6) leading to the statement 
that this limit is actually reached by the function Xi @ Xj © ... © Xn, and has shown that 
this function and its negative can be realized with about v? elements. The error occurs 
in Part IV after equation 19 and lies in the assumption that the factorization given is 
the best. 
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PART II: CONTACT LOAD DISTRIBUTION 

4. Fundamental Principles 
We now consider the question of distributing the spring load on the relays 

as evenly as possible or, more generally, according to some preassigned 
scheme. It might be thought that an attempt to do this would usually 
result in an increase in the total number of elements over the most economi- 
cal circuit. This is by no means true; we will show that in many cases (in 
fact, for almost all functions) a great many load distributions may be ob- 
tained (including a nearly uniform distribution) while keeping the total 
number of elements at the same minimum value. Incidentally this result 
has a bearing on the behavior of n{n), for we may combine this result with 

Fig. 19—Disjunctive tree with the contact distribution 1, 3, 3. 

2n+1 
preceding theorems to show that ^(«) is of the order of magnitude of as 

n1 

n —> =o and also to get a good evaluation of n{n) for small n. 
The problem is rather interesting mathematically, for it involves additive 

number theory, a subject with few if any previous applications. Let us 
first consider a few simple cases. Suppose we are realizing a function with 
the tree of Fig. 9. The three variables appear as follows: 

IF, X, V appear 

2, 4, 8 times, respectively 
or, in terms of transfer elements* 

1,2, 4. 
Now, W, X, and Y may be interchanged in any way without altering the 
operation of the tree. Also we can interchange X and Y in the lower branch 
of the tree only without altering, its operation. This would give the dis- 
tribution (Fig. 19) 

1,3,3 

* In this section we shall always speak in terms of transfer elements. 
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A tree with four bays can be constructed with any of the following dis- 
tributions 

w X Y Z 

1, 2, 4, 8 = 1,2, 4,+ 1,2,4 

1, 2, 5, 7 = 1,2,4 + 1,3,3 

1, 2. 6, 6 = 1,2,4 + 1,4,2 

1, 3, 3, 8 = 1,2,4 +2,1,4 

1, 3, 4, 7 = 1,3,3 + 2, 1,4 

1, 3, 5, 6 = 1, 4, 2 + 2, 1, 4 

1, 4, 4, 6 = 1,3,3 + 3, 1,3 

1, 4, 5, 5 = 1, 4, 2 + 3, 1, 3 

and the variables may be interchanged in any manner. The "sums" on the 
right show how these distributions are obtained. The first set of numbers 
represents the upper half of the tree and the second set the lower half. They 
are all reduced to the sum of sets 1, 2, 4 or 1, 3, 3 in some order, and these 
sets are obtainable for trees with 3 bays as we already noted. In general it is 
clear that if we can obtain the distributions 

Oj , 02 , #3 , ' " * > On 

bi, bi, bs , • •• , b„ 

for a tree with n bays then we can obtain the distribution 

1, Oi + 6l , Co + ^2 , • • • , o„ + 

for a tree with n + 1 bays. 
Now note that all the distributions shown have the following property: 

any one may be obtained from the first, 1, 2, 4, 8, by moving one or more 
units from a larger number to a smaller number, or by a succession of such 
operations, without moving any units to the number 1. Thus 1, 3, 3, 8 is 
obtained by moving a unit from 4 to 2. The set 1, 4, 5, 5 is obtained by 
first moving two units from the 8 to the 2, then one unit to the 4. Further- 
more, every set that may be obtained from the set 1, 2, 4, 8 by this process 
appears as a possible distribution. This operation is somewhat analogous 
to heat flow—heat can only flow from a hotter body to a cooler one just as 
units can only be transferred from higher numbers to lower ones in the above. 

These considerations suggest that a disjunctive tree with n bays can be 
constructed with any load distribution obtained by such a flow from the 
initial distribution 

1,2, 4,8, ,2"-' 

We will now show that this is actually the case. 
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First let us make the following definition: The symbol (oi, 02, • • • , fln) 
represents any set of numbers bi, bi, ■ ■ • , bn that may be obtained from 
the set fli, 02, • • • , on by the following operations: 

1. Interchange of letters. 
2. A flow from a larger number to a smaller one, no flow, however, being 

allowed to the number 1. Thus we would write 

1, 2, 4, 8 = (1, 2, 4, 8) 

4, 4, 1, 6 = (1, 2, 4, 8) 

1, 3, 10, 3, 10 = (1, 2, 4, 8, 12) 

but 2, 2 7^ (1, 3). It is possible to put the conditions that 

b\ , bz , • • • , bn = (01 , Oo , • • • , On) (6) 

into a more mathematical form. Let the o,- and the bi be arranged as non- 
decreasing sequences. Then a necessary and sulficient condition for the 
relation (6) is that 

a a 
(1) > S fl." 5 = 1, 2, • • • , n, i«=l 1 

w n 
(2) and 

1 1 

(3) There are the same number of I's among the Oj as among the bi. 
The necessity of (2) and (3) is obvious. (1) follows from the fact that if 
o,- is non-decreasing, flow can only occur toward the left in the sequence 

01 , 02 , OS , • • ■ , On 
8 

and the sum ZI o,- can only increase. Also it is easy to see the sufficiency of 
1 

the condition, for if , ^2, • • • , bn satisfies (1), (2), and (3) we can get the 
bi by first bringing Oi up to bi by a flow from the o< as close as possible to 
oi (keeping the "entropy" low by a flow between elements of nearly the 
same value), then bringing 02 up to b* (if necessary) etc. The details 
are fairly obvious. 

Additive number theory, or the problem of decomposing a number into the 
sum of numbers satisfying certain conditions, (in our case this definition is 
generalized to "sets of numbers") enters through the following Lemma: 

Lemma: If ai, 02, • • ■ , On = (2, 4, 8, • • • , 2") 
then we can decompose the a,- into the sum of two sets 

a.- = bi + d 

such that 

Ax, 62, • • • , fin = (1, 2, 4. • • • , 2n~l) 
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and 
Ci, CS, • • • , Cn = (1, 2, 4, • • • , 2n_1) 

We may assume the arranged in a non-decreasing sequence, ai < oj < 
,{3 < • • • < an. In case ax = 2 the proof is easy. We have 

1, 2, 4, • • • , 2n_1 B 
n—1 1, 2, 4, • • • , 2 

2, 4, 8, • •• , 2" A 

and a flow has occurred in the set 

4, 8, 16, • • • , 2" 

to give fl2, as, • • • , on . Now any permissible flow in C corresponds to a 
permissible flow in either A or B since if 

Cj = o,- + bj > Ci= a.- -h bi 

then either oy > a,- or bj > bi 

Thus at each flow in the sum we can make a corresponding flow in one or the 
other of the summands to keep the addition true. 

Now suppose ai > 2. Since the c,- are non-decreasing 

(n - 1) a2 < (2n+1 - 2) - aj < 2n+1 - 2 - 3 

Hence 
oW+l   c 

a, - 1 <   r— - 1 < 2"_1 

n — 1 

the last inequality being obvious for » > 5 and readily verified for « < 5. 
This shows that (ai - 1) and (a2 - 1) lie between some powers of two in the 
set 

1,2,4,... , 2n_1 

Suppose 
2ff_1 < (ax - 1) < 2« 

2p_1 < (a2 — 1) < C q< p < (n — !)• 

Allow a flow between 2" and 2«-1 until one of them reaches (ax — 1), the 
other (say) i?; similarly for (a2 — 1) the other reaching S. As the start 
toward our decomposition, then, we have the sets (after interchanges) 

(ax - 1) 1 

1 a2 — 1 

2, 4 • • ■ 2s-2 R 29+1 ■ ■ ■ 2P~12P 2P+1 ■ • • 2n~1 

2, 4 • • • 29_2 25-1 2" ■ • • 2p~2S 2p+1 • • • 2n_1 

ax a? 4, 8 • • ■ 29~1 ■ ■ • 2,'+2 

L 
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We must now adjust the values to the right of Z, — Z to the values 
as, at, • • • , an . Let us denote the sequence 

4, 8, • • • , 2«-1
J (29-1 + R), 3-29, 3-29+1, • • • (2" + S), • • • , 2" 

by mi , M2, • * • , Mn-2. Now since all the rows in the above addition are 
non-decreasing to the right of L — L, and no 1's appear, we will have proved 
the lemma if we can show that 

i i+3 
]L M." < Oi *= 1, 2, •••,(« — 2) «—1 »=»3 

since we have shown this to be a sufficient condition that 

fla , 04 , • • • , fln = (Ml , Mn , • • • , Mn-2) 

and the decomposition proof we used for the first part will work. For 
i < q — 2, i.e., before the term (29-1 -f R) 

E Mi = 4(2' - 1) 

and 

since 

Hence 

»+8 
ai > ^2 > *2P_1 > i2Q 1 

3 

q< P 

23 M» ^ 2 ] Ai i ^ (/ — 2 1 3 

Next, for {q — 1) < i < (p — 3), i.e., before the term (21' -f S) 

23 Mi = 4(2,~1 - 1) + + 3 • 29(2i~9+1 - 1) 

< 3-2,+1 - 4 < 3-2*+1 - 5 

since 

R < 2" 

also again 
»+8 
Z ^ > i2p~1 

3 

so that in this interval we also have the desired inequality. Finally for the 
last interval, 
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^ jU," = 2' 1 — Cj — ^2 5: 2' 3 — fli — 02 — 2 
1 

and 
<+3 <+3 
y, fl,- = y 0,- — Ol — 02 ^ 2't3 — Oi — 02 — 2 

3 1 
since 

Oi, 02, • • • , On = (2, 4, 8, • * • , 2") 

This proves the lemma. 

5. The Disjunctive Tree 

It is now easy to prove the following: 
Theorem 8: A disjunctive tree of n bays can be constructed with any dis- 

tribution 
Oi, 02, • • ■ , 0„ = (1, 2, 4, • • • , 2n-1). 

We may prove this jby induction. We have seen it to be true for n = 
2,3,4. Assuming it for n, it must be true for w + 1 since the Lemma shows 
that any 

Oi, 02 , • ■ • , On = (2, 4, 8, • ■ • , 2") 

can be decomposed into a sum which, by assumption, can be realized for the 
two branches of the tree. 

It is clear that among the possible distributions 

(1, 2, 4, • • • , 2n_1) 

for the tree, an "almost uniform" one can be found for all the variables but 
one. That is, we can distribute the load on (w - 1) of them uniformly 
except at worst for one element. We get, in fact, for 

n = 1 1 
n = 2 1,2 
n = 3 1,3,3 
n = 4 1, 4, 5, 5, 
n = 5 1, 7, 7, 8, 8, 
n = 6 1, 12. 12, 12, 13, 13 
n = 7 1,21,21, 21, 21, 21, 21 
etc. 

as nearly uniform distributions. 

6. Other Distribution Problems 

Now let us consider the problem of load distribution in series-parallel 
circuits. We shall prove the following: 
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Theorem 9: Any function f(Xi, Xo, • • • , Xn) may be realized ■with a 
series-parallel circuit with the following distribution: 

(1,2, 4, • • • , 2n~2), 2n~2 

in terms of transfer elements. 
This we prove by induction. It is true for n = 3, since any function of 

three variables can be realized as follows: 

f{X, Y, Z) = [X + /i (F, Z)][X' + f, (F, Z)] 

and /i(F, Z) and /aCF, Z) can each be realized with one transfer on F and 
one on Z. Thus /(X, F, Z) can be realized with the distribution 1, 2, 2. 
Now assuming the theorem true for {n — 1) we have 

/(AT , X2 , • ■ • , AT) = [Xn+MXx,^, ••• ^-j)] 

[Xn + fi(X\ , X2 , • • • , Xn-x)] 

and 

2, 4, 8, • • • , 2"_3 

2, 4, 8, ■ • • , 2"~3 

4, 8, 16, • • • , 2"-3 

A simple application of the Lemma thus gives the desired result. Many 
distributions beside those given by Theorem 9 are possible but no simple 
criterion has yet been found for describing them. We cannot say any 
distribution 

(1, 2, 4, 8, • • • , 2"-2, 2-2) 

(at least from our analysis) since for example 

3, 6, 6, 7 = (2, 4, 8, 8) 

cannot be decomposed into two sets 

ai, <*2, as, <*4 = (1, 2, 4, 4) 

and 

, />2, k , ^4 = (1, 2, 4, 4) 

It appears, however, that the almost uniform case is admissible. 
As a final example in load distribution we will consider the case of a net- 

work in which a number of trees in the same variables are to be realized. 
A large number of such cases will be found later. The following is fairly 
obvious from what we have already proved. 
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Theorem 10: It is possible to construct m different trees in the same n variables 
with the following distribution: 

ai, flj, • • • , fln = {m, 2m, Am, ••• , 2n-lm) 

It is interesting to note that under these conditions the bothersome 1 disap- 
pears for m> We can equalize the load on all n of the variables, not just 
n — 1 of them, to within, at worst, one transfer element. 

7. The Function n{n) 

We are now in a position to study the behavior of the function u(n)- 
This will be done in conjunction with a treatment of the load distributions 
possible for the general function of n variables. We have already shown 
that any function of three variables can be realized with the distribution 

1, 1,2 

in terms of transfer elements, and, consequently m(3) < 4. 

Any function of four variables can be realized with the distribution 

1, 1, (2, 4) 

Hence /x(4) < 6. For five variables we can get the distribution 

1, 1, (2, 4, 8) 

or alternatively 

1, 5, 5, (2, 4) 

so that m(5) < 10. With six variables we can get 

1, 5, 5, (2, 4, 8) and /x(6) < 10 

for seven, 

1, 5, 5, (2, 4, 8, 16) and /i(7) < 16 

etc. Also, since we can distribute uniformly on all the variables in a tree 
except one, it is possible to give a theorem analogous to Theorem 7 for the 
function /j(«) : 

Theorem 11: For all n 
r\n+3 

M < V 

For almost all n 
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For an infinite number of «, , 
^n+l 

< (1 + e) —T- n" 

The proof is direct and will be omitted. 

PART Til: SPECIAL FUNCTIONS 

8. Functional Relations 

We have seen that almost all functions require the order of 

2n+1 

elements per relay for their realization. Yet a little experience with the 
circuits encountered in practice shows that this figure is much too large. 
In a sender, for example, where many functions are realized, some of them 
involving a large number of variables, the relays carry an average of perhaps 
7 or 8 contacts. In fact, almost all relays encountered in practice have less 
than 20 elements. What is the reason for this paradox? The answer, of 
course, is that the functions encountered in practice are far from being a 
random selection. Again we have an analogue with transcendental numbers 
—although almost all numbers are transcendental, the chance of first en- 
countering a transcendental number on opening a mathematics book at 
random is certainly much less than 1. The functions actually encountered 
are simpler than the general run of Boolean functions for at least two major 
reasons: 

(1) A circuit designer has considerable freedom in the choice of functions 
to be realized in a given design problem, and can often choose fairly simple 
ones. For example, in designing translation circuits for telephone work it is 
common to use additive codes and also codes in which the same number of 
relays are operated for each possible digit. The fundamental logical simplic- 
ity of these codes reflects in a simplicity of the circuits necessary to handle 
them. 

(2) Most of the things required of relay circuits are of a logically simple 
nature. The most important aspect of this simplicity is that most circuits 
can be broken down into a large number of small circuits. In place of 
realizing a function of a large number of variables, we realize many functions, 
each of a small number of variables, and then perhaps some function of these 
functions. To get an idea of the effectiveness of this consider the following 
example: Suppose we are to realize a function 

f{Xx , Y2, ■ • • , X2n) 
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of 2n variables. The best limit we can put on the total number of elements 
22n+1 

necessary is about . However, if we know that / is a function of two 
2n 

functions/i and/2, each involving only n of the variables, i.e. if 

/ = ,h) 

fi = fi (Xi, Xz, • • • , Xn) 

ft = fiiXn+l , Xn+2 J • • • J Xin) 

then we can realize / with about 
nn+l 

4 • — 
11 

22"+i 
elements, a much lower order of infinity than ——. If g is one of the simpler Zll 
functions of two variables; for example if g(/i jfz) = /1 + /z, or in any case 
at the cost of two additional relays, we can do still better and realize / with 

about 2 2-^ elements. In general, the more we can decompose a synthesis 
11 

problem into a combination of simple problems, the simpler the final circuits. 
The significant point here is that, due to the fact that / satisfies a certain 
functional relation 

/ = gih ,h), 

we can find a simple circuit for it compared to the average function of the 
same number of variables. 

This type of functional relation may be called functional separability. It 
is often easily detected in the circuit requirements and can always be used 
to reduce the limits on the number of elements required. We will now show 
that most functions are not functionally separable. 

Theorem 12: The fraction of all functions of n variables that can be written 
in the form 

f = gihiX, ■ ■ ■ X,), Xa+l , • • • , Xn) 

where 1 < s < n — 1 approaches zero as n approaches 00. 

We can select the 5 variables to appear in h in ways; the function h 

then has 22* possibilities and g has 22n"'+1 possibilities, since it has w - 5 + 1 
arguments. The total number of functionally separable functions is there- 
fore dominated by 
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n—2 

< („ 
£ 

91 

zr )2
2'22n-+i 

and the ratio of this to 22" —^ 0 as —> oo. 

Xs 

S + 1 

x S + l 

Fig. 20—Use of separability to reduce number of elements. 

Fig. 21—Use of separability of two sets of variables. 

In case such a functional separability occurs, the general design method 
described above can be used to advantage in many cases. This is typified 
by the circuit of Fig. 20. If the separability is more extensive, e.g. 

/ = gih^Xx ■ ■ • Xs), h2{X8+l ■ ■ ■ Xt), Xl+l, ■■■ ,Xn) 

the circuit of Fig. 21 can be used, using for "V either hi or //2, whichever 
requires the least number of elements for realization together with its 
negative. 

We will now consider a second type of functional relation which often 
occurs in practice and aids in economical realization. This type of relation 
may be called group invariance and a special case of it, functions symmetric 
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in all variables, has been considered in (6). A function/(Xi, ••• , Xn) 
will be said to be symmetric in Xi, X2 if it satisfies the relation 

/(Xi, X2, ■ • • , X,) = /(X2, Xx, ■ • • , Xn). 

It is symmetric in X\ and X\ if it satisfies the equation 

/(Xl , X2 , • • • , Xn) = /(X2 , Xl , Xs , • • ■ , Xn) 

These also are special cases of the type of functional relationships we will 
consider. Let us denote by 
N00 ... o = I the operation of leaving the variables in a function as they 

are, 
A100 ■ • • o the operation of negating the first variable (i.e. the one occupy- 

ing the first position), 
Nou o that of negating the second variable, 
Nno • • • 0 that of negating the first two, etc. 
So that Xl0i/(X, F, Z) = f(X'YZ') etc. 

The symbols Ni form an abelian group, with the important property that 
each element is its own inverse; NiNi = I The product of two elements 
may be easily found — if Ni Nj = Nk,k is the number found by adding i 
and j as though they were numbers in the base two but without carrying. 

Note that there are 2" elements to this "negating" group. Now let 
51i2i3i....w = / = the operation of leaving the variables of a function in the 

same order 
S2,i.-a,--.n = be that of interchanging the first two variables 
53,2.i.4.—.» = that of inverting the order of the first three, etc. 

Thus 

W(X, Y, Z) = /(Z, X, F) 

W(Z, X, F) = SlnfiX, F, Z) = /(F, Z, X) 

etc. The 5,- also form a group, the famous "substitution" or "symmetric" 
group. It is of order «!. It does not, however, have the simple properties 
of the negating group—it is not abelean (n > 2) nor does it have the self 
inverse property.* The negating group is not cyclic if w > 2, the symmetric 
group is not if w > 3. 

The outer product of these two groups forms a group G whose general 
element is of the form NiSj and since i may assume 2n values and;, n! values, 
the order of G is 2nn! 

It is easily seen that Sj Ni = NkSj, where k may be obtained by per- 

♦ This is redundant; the self inverse property implies commutativity for if XX = I 
then XV = (AT)-1 = F-1*-1 = FA. 
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forming on i, considered as an ordered sequence of zero's and one's, the 
permutation Sj. Thus 

By this rule any product such as NiSjNtNi Sm Nn Sp can be reduced to the 
form 

and this can then be reduced to the standard form NiSj . 
A function/ will be said to have a non-trivial group invariance if there are 

elements Ni Sj of G other than I such that identically in all variables 

It is evident that the set of all such elements, NiSj, for a given function, 
forms a subgroup Gi of G, since the product of two such elements is an ele- 
ment, the inverse of such an element is an element, and all functions are 
invariant under I. 

A group operator leaving a function / invariant implies certain equalities 
among the terms appearing in the expanded form of /. To show this, 
consider a fixed NiSj, which changes in some way the variables (say) 
Xi, Xi, ■ • ■ , Xr. Let the function f{Xi, • • • , Xn) be expanded 
about X\, • • • , Xr 

If / satisfies NiSjf = f we will show that there are at least J2r equalities 
between the functions /i, /a, • • • , /sr. Thus the number of functions 
satisfying this relation is 

■S-uuNuoo — NioioSan . 

NiNj ■ ■ • NnSpSg ■■■ Sr 

NiSj f = /. 

/= [Xl+ *a+ ••• + Xr+MXr+x, ••• ,Xn)] 

[Ai -f Ar2 + ■ • • + A, + /2(Arr+i, • • • , A",.)] 

[Xi + A2 + • • • -fi A'r -f- fir{Xr+i, • • • , A,)] 

AT , A2, • • ■ , Ar A 

into 

y* y* ... y* ■^a\ } aj > j -^ar B 

where the *'s may be either primes or non primes, but no A*. = A,. Give 
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Xi the value 0. This fixes some element in B namely, X,,- where a,- = 1. 
There are two cases: 
(1) If this element is the first term, ai = 1, then we have 

0X2, ••• ,zr 

izai, ••• ,zar 

Letting X , • ■ • , Xr range through their 2r_1 possible sets of values gives 
2r~1 equalities between different functions of the set /,• since these are 
really 

fixl , Xi , • • • , Xf , Xr±i , • ■ • , Xn) 

with Xi, Xi, • • • , Xr fixed at a definite set of values. 
(2) If the element in question is another term, saj Xa2 , we then give X 
in line A the opposite value, X = (Z*)' = (Za)'. Now proceeding as 
before with the remaining r — 2 variables we establish If 2 equalities between 
the fi. 

Now there are not more* than 2nn\ relations 

KiSif = / 

of the group invariant type that a function could satisfy, so that the number 
of functions satisfying ayiy non-trivial relation 

< 2n«! 2i2n. 

Since 

2"n\ 232n/22n —► 0 asw->co 

we have: 
Theorem 13: Almost all functions have no non-trivial group invariance. 
It appears from Theorems 12 and 13 and from other results that almost all 

functions are of an extremely chaotic nature, exhibiting no symmetries or 
functional relations of any kind. This result might be anticipated from the 
fact that such relations generally lead to a considerable reduction in the 
number of elements required, and we have seen that almost all functions are 
fairly high in "complexity". 

If we are synthesizing a function by the disjunctive tree method and the 
function has a group invariance involving the variables 

Zx, Z2, • • • , Zr 

at least 2r~2 of the terminals in the corresponding tree can be connected to 

* Our factor is really less than this because, first, we must exclude X-Sj = /; and second, 
except for self inverse elements, one relation of this type implies others, viz. the powers 
{NiSj)pf = f. 
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other ones, since at least this many equalities exist between the functions to 
be joined to these terminals. This will, in general, produce a considerable 
reduction in the contact requirements on the remaining variables. Also an 
economy can usually be achieved in the M network. In order to apply this 

INDEPENDENT 
OF X.Y 

(3) (4) 
Fig. 22—Networks for group invariance in two variables. 

Y 
0) 

(4) 
(5) O) 

Fig. 23—Networks for group invariance in three variables. 

method of design, however, it is essential that we have a method of deter- 
mining which, if any, of the NiSj leave a function unchanged. The 
following theorem, although not all that might be hoped for, shows that we 
don't need to evaluate NiSjf for all NiSj but only the N,/ and Sjf. 

Theorem 14: A necessary and sufficient condition that NiSjf = f is that 
Ntf = Sjf. 

This follows immediately from the self inverse property of the Ni. Of 



96 BELL SYSTEM TECHNICAL JOURNAL 

course, group invariance can often be recognized directly from circuit re- 
quirements in a design problem. 

Tables I and II have been constructed for cases where a relation exists 
involving two or three variables. To illustrate their use, suppose we have 
a function such that 

Nin Sm f ^ f 

Fig. 24—M network for partially symmetric functions. 

The corresponding entry Z'Y'X in the group table refers us to circuit 9 of 
Fig. 23. The asterisk shows that the circuit may be used directly; if there 
is no asterisk an interchange of variables is required. We expand / about 
X, Y, Z and only two different functions will appear in the factors. These 
two functions are realized with two trees extending from the terminals of the 
network 9. Any such function/ can be realized with (using just one variable 
in the N network) 

9 + 2(2n~* - 2) + 2 

= 2n~, T* 7 elements, 
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a much better limit than the corresponding 

2"_1 + 18 

for the general function. 
Table I 

Group Invariance Involving Two Variables (Superscripts Refer to Fig. 
Sl2 Sn 

N0„ (x y) 
(x y')-* 

(y xy* 
(y x'y* Nol 

iV,o (x'yY 
(x'y'V 

Table II 

(y'xy* 
TV)1 iVu 

Group Invariance Involving Three Variables (Superscripts Refer to Fig. 23) 
•S'liJ .5l32 5jia 5231 5312 5321 

Nona xvz XZY 1 YXZ '* YZX2* ZX Y 2* ZFAT: 

N ool XVZ'3* XZY' '* YXZ'7 FZA" 3 ZXY'3 Zl'A" 4 

Nom XV'Z3 XZ'Y4* YX'Z 4 YZ'X 3 ZX' V 9 ZY'X 7 

N„n XV'Z'5 XZ'Y'1 YX'Z'8 YZ'X'2 ZX'Y'2 ZY'X'8 

N Inn X'YZ3 A"ZF7* Y'XZ4 Y'ZX 3 Z'ATF 9 Z' FAT4 

AT101 X'YZ'3 X'ZY'8* Y'XZ' Y'ZX'2 Z'XI"2 Z'FA" 1 

Nuo X'Y'Z 6* X'Z'Y 8* Y'X'Z ! Y'Z'X2 Z'X'Y2 Z'F'A'8* 
Nm X'Y'Z'0 X'Z'V 7 Y'X'Z'7 Y'Z'X' 3 Z'X' 1" 3 Z'Y'X'7 

9. Partially Symmetric Functions 

We will say that a function is "partially symmetric" or "symmetric in a 
certain set of variables" if these variables may be interchanged at will 
without altering the function. Thus 

XYZW + (AT + AT) IF + WZ' 

is symmetric in X and Y. Partial symmetry is evidently a special case of 
the general group invariance we have been considering. It is known that 
any function symmetric in all variables can be realized with not more than 
n2 elements, where n is the number of variables. In this section we will 
improve and generalize this result. 

Theorem 15: Any function /(AT , AT , • • • , Xm , IT , IT , • • • Fn) sym- 
metric in AT , Xi, • • • , A',,, can be written 

/(AT , A2, • • • , Xm , IT , IT , • ■ • , Fn) 

= [6T(AT , X2, • • • , AT,,) + /0(IT , IT , • • • , IT)]. 

(AT , A2, ■ • • , AT,,) + /i(IT , IT , ■ ■ • , IT)]. 

[Sm{Xi, A2, • • • , AT,,) + /,„(IT , IT , • • ■ , IT)] (6) 

where 

/k:(3 x , IT , • • • , I n) 

= /(0, 0, ■ • • , 0, 1, 1, • • • , 1, IT , IT , • ■ • , Yn) 

k 0's im — k) 1's 
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and Sk{Xi, X2, ■ • ■ , Xm) is the symmetric Junction of Xi, X2, , Xn 

with k for its only a-number. 
This theorem follows from the fact that since / is symmetric in Xi, X*, 

• • • , Xm the value of / depends only on the number of X's that are zero and 
the values of the T's. If exactly K of the X's are zero the value of / is 
therefore Jk , but the right-hand side of (6) reduces to Jk in this case, since 
then SifXx, X2, • ■ • , Xm) = l,j 9* K, and = 0. 

The expansion (6) is of a form suitable for our design method. We can 
realize the disjunctive functions Sk{Xi , Xo, • ■ ■ , -^n) with the symmetric 
function lattice and continue with the general tree network as in Fig. 24, 
one tree from each level of the symmetric function network. Stopping the 
trees at Fn_i, it is clear that the entire network is disjunctive and a second 
application of Theorem 1 allows us to complete the function / with two ele- 
ments from Yn • Thus we have 

Theorem 16. A ny function of m -f n variables symmetric in m of them can 
be realized with not more than the smaller of 

(m + 1)(X(») + m) or {m + 1)(2" + w — 2) + 2 

elements. In particular a function of n variables symmetric in n — 2 or more 
of them can be realized with not more than 

n- —11+2 

elements. 
If the function is symmetric in Xi, ATz, • • • , Xm , and also in I 1,1 2, • * ■ , 

Vr, and not in Zi, Z2, • • • , Z„ it may be realized by the same method, 
using symmetric function networks in place of trees for the I variables. 
It should be expanded first about the X's (assuming m < r) then about the 
T's and finally the Z's. The Z part will be a set of {m + l)(r + 1) trees. 
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A Method of Measuring Phase at Microwave Frequencies 

By SLOAN D. ROBERTSON 

A method of measuring microwave phase differences is described in which it 
is unnecessary to compensate for amplitude inequahties between the signals 
whose phases arc being compared. The apparatus described is also suited for 
the measurement of the magnitude of a transfer impedance as well as the phase. 

WITH the increasing interest in wide-band amplifiers and circuits for 
microwave communication systems the measurement of the transfer 

phases of such components has become a necessary procedure. A commonly 
used technique for measuring phase at microwave frequencies is to sample 
the signal at the input and output of the device to be measured and to obtain 
a null balance between the two signals by varying the phase of one signal by a 
known amount. If the two samples are not of nearly equal amplitudes, it is 
necessary to attenuate the larger one with an attenuator of known phase 
shift. The latter operation presents difficulties. 

A method of phase measurement has been developed which overcopies 
these difficulties by permitting measurements to be made with samples of 
unequal amplitudes. The method uses the homodyne detection principle 
and operates in the following manner: The output energy of a signal oscil- 
lator is divided into two portions. One portion is applied to a balanced 
modulator where it is modulated by an audio-frequency signal. The sup- 
pressed-carrier, double-sideband signal from the modulator is applied to the 
device to be measured. As before, means are available for sampling the 
signal at both the input and output of the device. The other portion of the 
oscillator power is fed through a calibrated phase shifter and is applied to a 
crystal detector in the manner of a local oscillator in a double-detection 
receiver. The signal samples are then alternately applied to the crystal 
detector where they are demodulated by the action of the homodyne carrier. 
In each case the phase shifter is adjusted so that the audio signal is a mini- 
mum in the detector output. This occurs when the phase of the homodyne 
carrier is in quadrature with the signal sidebands. The difference in phase 
between the two adjustments of the phase shifter is equal to the phase dif- 
ference between the two samples. 

Figure 1 shows the apparatus used for measuring phase in this manner. 
Radio frequency power from a suitable oscillator is applied to the H-plane 
branch of an hybrid junction1 where it divides and emerges in equal portions 

1 W. A. Tyrrell, "Hybrid Circuits for Microwaves," Proc. I. R. E., Vol. 35, No. 11. pp. 
1294-1306; November 1947. 
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from the two lateral branches. The portion applied to the calibrated 
variable phase shifter at the top of the figure becomes the homodyne carrier. 
The remaining portion is applied to a balanced crystal modulator2 through 
a second variable phase shifter which need not be calibrated. The latter 
was introduced in order that the phase of any modulated power reflected 
due to an imperfect balance in the modulator could be shifted so that it 
would be in quadrature with the homodyne carrier and would, therefore, 
not produce an audible signal in the detector. 

The portion of the power which enters the modulator is modulated by a 
signal derived from an audio-frequency oscillator. The suppressed-carrier, 
double-sideband signal which leaves the modulator is applied, after a certain 
amount of attenuation, to the input of the device to be measured. Probes 
are provided at the input and output of the latter for sampling the signal. 
Provision is made for connecting either probe to a crystal detector of the type 
used for detecting an amplitude-modulated signal. 

The homodyne carrier emerging from the calibrated phase shifter is 
attenuated to a level of about one milliwatt and is applied to the crystal 
detector. The output of the detector is connected to an audio-frequency 
amplifier terminated by a pair of headphones or an output meter. An 
attenuator may be placed between the amplifier and the detector as an aid 
in measuring the magnitude of a transfer impedance. 

The procedure for adjusting the apparatus and measuring phase is as 
follows: 

With both sampling probes disconnected from the detector the variable 
phase shifter between the oscillator and modulator is adjusted until the 
output of the detector is zero. This balances out the effect of any signal 
reflected by the modulator. The input probe is then connected to the 
detector and the calibrated phase shifter is adjusted until the signal disap- 
pears in the audio output. When this occurs the homodyne carrier is in 
quadrature with the signal sidebands, and the resultant signal applied to the 
detector is equivalent to a phase-modulated wave having a low modulation 
index, and consequently is not demodulated by a detector of the type used 
here. 

The input probe is then disconnected from the detector and the output 
probe connected. The phase shifter is again adjusted for a null in the audio 
output. The difference in phase between the two adjustments of the phase 
shifter is equal to the phase shift between the input and output of the 
device. If the probes are not located exactly at the input and output termi- 
nals of the unknown it may be necessary to make a correction in the meas- 

2 C. F. Edwards, "Microwave Converters," Proc. I. R. E., Vol. ^5, No. 11, pp. 1181- 
1191; November 1947. 
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ured phase by allowing for the known phase shift in the line between the 
probes and the actual terminals of the unknown. 

So much for the general method. Certain precautions are necessary in 
order to avoid errors in measurement. In practice the carrier is not com- 
pletely suppressed in the output of the balanced modulator. It may be at a 
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Fig. 1—Schematic circuit for microwave phase measurement. 
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Fig. 2—Vector diagram of balanced condition with the resultant carrier in quadrature 
with the signal sideband. 

level of the order of 10 to 20 decibels below the sidebands. Since the 
residual carrier will be added to the homodyne carrier in the detector, and 
since the null adjustment will be reached when the resultant carrier is in 
quadrature with the sidebands, it is desirable that the residual carrier be low 
in level compared with the homodyne carrier. The error in phase A<f) 
introduced by the residual carrier is shown in the vector diagram of Fig. 2. 
A difference in level of about 40 decibels between the homodyne and residual 
carriers will give an error of not more than half a degree in phase. The 
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homodyne method of detection has all the conversion efficiency of the usual 
double-detection arrangements and, in addition, has the advantage in this 
particular application of having a very low noise level due to the relatively 
narrow band required for the audio signals. The 40-decibel level difference 
mentioned above is accordingly not a serious handicap. 

Other precautions must be observed. The homodyne carrier can be 
brought in quadrature with the signal for two different phases 180° apart. 
This is illustrated in Fig. 2. In many applications, where only the variation 

in phase difference is of importance, this uncertainty of 180° can be ignored. 
The correct setting of the homodyne carrier phase can, however, be deter- 
mined very easily. Assume that the input probe is connected to the receiver 
and that the phase has been adjusted for a balance. Then disconnect the 
audio frequency drive from one of the crystals in the balanced modulator. 
The residual carrier will now no longer be suppressed and the error angle 
A<^ of Fig. 2 will become larger. Whether the homodyne carrier is lagging or 
leading the signal carrier can be determined by observing whether more or 
less phase shift, respectively, must be introduced to restore balance. A 
similar test performed with the output probe will indicate whether or not it 
is necessary to add 180° to the measured phase difference. If either probe 

Fig. 3—Variable phase shifter using a polystyrene vane. 
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test indicates a lead, whereas the other probe indicates a lag, then the addi- 
tion of 180° is indicated. 

In microwave circuits it frequently happens that the transfer phase 
varies quite rapidly with the frequency, particularly if some part of the circuit 
is at or near resonance. In measuring the phase characteristics of a circuit 
of this type over a band of frequencies it is necessary, therefore, to take the 
points of measurement close enough together to avoid phase errors corres- 
ponding to multiples of 360°. 

When a balance has been established so that the signal is minimized in the 
detector output, one may observe the presence of the second harmonic of the 
audio tone. This harmonic is a distortion term generated in the detector. 
If it is objectionable, it can be eliminated either by a low-pass filter in the 
audio output, or by using a balanced detector. 

In measuring transfer impedances it is desirable to know the ratio of the 
magnitudes of an output voltage and an input voltage as well as the phase 
difference. The equipment described here can be used for measuring ampli- 
tudes by adjusting the phase shifter for a maximum signal in the audio 
output. Maximum signal levels can then be compared with the aid of an 
audio-frequency attenuator and output meter connected as shown in Fig. 1. 

The apparatus was assembled with standard 4000-megacycle waveguide 
components. A satisfactory phase shifter was made of an ordinary vane- 
type variable attenuator by replacing the resistance strip with a vane of 
quarter-inch thick polystyrene six inches in length. This phase shifter gave 
a total shift of about 100°. Constructional details of this phase shifter are 
shown in Fig. 3. Other phase shifters could have been used with equally 
satisfactory results. It is desirable, however, that the phase shifter be 
impedance matched to the line in which it is located in order that reaction 
back on the oscillator shall be a minimum. In the shifter of Fig. 3 the ends 
of the polystyrene vane have been tapered two inches at each end to accom- 
plish this result. 

The phase shifter can be readily calibrated by using a standing wave 
detector fitted with a sliding probe as a standard of phase. The standing 
wave detector is terminated on one end and connected to the modulated 
signal source on the other. The signal picked up by the sliding probe is 
applied to the crystal detector. Knowing the guide wavelength in the 
standing wave detector, known phase shifts can be introduced by sliding the 
probe along the guide. By adjusting the phase shifter in the homodyne 
carrier path for balance, calibration points can be established. 

The measuring procedure described above has been tested experimentally 
at 4000 megacycles with very satisfactory results. With ordinary care it was 
possible to measure phase differences with an accuracy of better than half a 
degree. 



Reflection from Corners in Rectangular Wave Guides— 

Conformal Transformation* 

By S. O. RICE 

A conformal transformation method is used to obtain approximate expressions 
for the reflection coefficients of sharp corners in rectangular wave guides. The 
transformation carries the bent guide over into a straight guide filled with a non- 
uniform medium. The reflection coefficient of the transformed system can be 
expressed in terms of the solution of an integral equation which may be solved 
approximately by successive substitutions. When the corner angle is small and 
the corner is not truncated the required integrations may be performed and an 
explicit expression obtained for the reflection coefficient. Although applied here 
only to corners, the method has an additional interest in that it is applicable to 
other types of irregularities in rectangular wave guides. 

Introduction 

THE propagation of electromagnetic waves around a rectangular corner 
has been studied in two recent papers, one by Poritsky and Blewett1 

and the other by Miles2. Poritsky and Blewett make use of Schwarz' 
"alternating procedure" in which a sequence of approximations is obtained 
by going back and forth between two overlapping regions. Miles derives 
an equivalent circuit by using solutions of the wave equation in rectangular 
coordinates. Several papers giving experimental results have been pub- 
lished. Of these, we mention one due to Elson3 who gives values of reflection 
coefficients for various types of corners. 

Here we shall deal with the more general type of corner shown in Fig. 1 
by transforming, conformally, the bent guide (in which the propagation 
"constant" of the dielectric is constant) into a straight guide in which the 
propagation "constant" is a function of position—its greatest deviation 
from the original value being in the vicinity of points corresponding to the 
corner. This type of corner has been chosen for our example because it 
possesses a number of features common to problems which may be treated 
by the transformation method. 

The essentials of the procedure used are due to Routh4 who studied 
the vibration of a membrane of irregular shape by transforming it into a 
rectangle. After the transformation the density (analogous to the propaga- 
tion constant in the guide) was no longer constant but this disadvantage 
was more than offset by the simplification in shape. 

Until this paper was presented at the Symposium I was unaware of any 

* Presented at the Second Symposium on Applied Mathematics, Cambridge, Mass. 
July 29, 1948. 1 See list of references at end of paper. 
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other wave guide work based on conformal transformations (as described 
above) except that of Krasnooshkin5. At the meeting I learned that 
the transformation method had also been discovered (but not yet published) 
by Levine and by Piloty independently of each other. Levine has studied 
the same corner, see Fig. 1, as is done here. However, his method of 
approach is quite different in that he obtains expressions for the elements 
in the equivalent pi network representing the corner, whereas here the 
reflection coefficient is considered directly. This is discussed in more 
detail at the beginning of Section 6. Piloty's work is closely related to the 
material presented in a companion paper6 and is discussed in its introduction. 

In this paper the partial differential equation resulting from the trans- 
formation, together with the boundary conditions, is converted into a rather 
complicated integral equation. Numerical work indicates that satisfactory 
values of the reflection coefficient, in which we are primarily interested, 
may be obtained by solving this integral equation by the method of succes- 
sive substitutions. However, the question of convergence is not investigated. 

Although they are here applied only to corners, the equations of Sections 3, 
4 and 5 are quite general. In order to test their generality they were used 
to check the expression7 for the reflection coefficient of a gentle circular 
bend in a rectangular wave guide, E being in the plane of the bend. The 
work has been omitted because of its length. It was found that the essential 
parts of the transformation may be obtained by regarding the inner and 
outer walls of the guide system as the two plates of a condenser, solving the 
corresponding electrostatic problem (using series of the Fourier type), and 
utilizing the relation between two-dimensional potentials and the theory of 
conformal mapping. 

When the angle of the corner is small we may obtain the series (7-5) 
and (7-11) for the reflection coefficients corresponding to simple (i.e. not 
truncated) E and II corners, respectively (a corner having the electric 
intensity E in the plane of the bend will be called an E corner or an electric 
corner. H corners are defined in a similar manner). When the angle of 
the general E corner shown in Fig. 1 is small we may use the series (7-18). 

The series (7-5) and (7-11) giving the reflection from small angle corners 
are related to the series giving the reflection coefficients for gentle circular 
bends. In fact, if the radii of curvature of the latter be held constant 
while the angle of bend is made small, the series for the circular bends 
reduce to those for the corners. 

As for the limitations of the method, note first that it can be used only 
for wave guide systems in which the dimension normal to the plane of 
transformation is constant throughout. Moreover, the integral equations 
of the present paper, except for the work of Appendix III, are derived 
on the assumption that the dimensions of the guide approach constant 
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values at minus infinity and the same values at plus infinity. When this 
assumption is not met, a conformal transformation may still be used to 
carry the system into a straight guide. However, there appears to be some 
doubt as to the best way of dealing with the resulting partial differential 
equation. One method, discussed in the companion paper6, leads to an 
infinite set of ordinary linear differential equations of the second order. 
Again, possibly the Green's functions appearing in Sections 3 and 5 may be 
replaced by suitable approximations. 

1. Representation of Field for Corner or Bend in Rectangular Guide 

Quite often waves in rectangular wave guides are classed as "transverse 
electric" or "transverse magnetic". However, for our purposes it is 
more convenient to class them as "electrically oriented" or "magnetically 
oriented" waves.8,9 Thus, the electric and magnetic intensities are obtained 
by multiplying 

Ex = 
1 d2A SB 

Hz = 
dA + 1 d2B 
dy iufx dxdt; iue dxd£ ' 'dy 

Ey = 
1 d2A 

/we dyd^ dx 
Hy = - M + .1 ^ (i-i) 

9a" iuu dyd£ 

£r = a. 3 
• r-* 1 1 d2A 

iue 
Ht = D 1 1 

- lueB + ^— rT2 iub 9r 

by e,a" and taking the real part. Here co, /i, and e are the radian frequency, 
the permeability of the medium filling the guide (m = 1.257 X 10 6 henries 
per meter for air), and the dielectric constant of the same (« = 8.854 X 10-12 

farads per meter for air), respectively, x, y, and f constitute a right-handed 
set of rectangular coordinates in which the f axis is normal to the plane of 
the bend. Equations (1-1) may be verified by substituting them in 
Maxwell's equations. 

The potentials A and B satisfy the wave equation 

d2A . d2A , d2A 2 
  + —= + —r = a A dx* ^ bf ^ d? (1_2) 

a — Jco\//ie = i27r/Xo 

where Xo is the wave length in free space corresponding to the radian 
frequency oj. 

When the electric vector lies in the plane of the bend, as shown in Fig. 1, 
and the incident wave contains only the dominant mode we set 

.4 = 0, B = Q sin (ir^/a) (1-3) 
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where a is the wide dimension of the rectangular cross-section, the guide walls 
normal to the f axis are at f = 0 and f = a, and Q is a function of a and v 
such that 

d'Q , d'Q 2 _ 
' aTl - I 10 C? = 0 df (1_4) 

Iho = UttXo (l — /4). ' 

The guide walls are assumed to be perfect conductors and hence the tan- 
gential component of E must vanish at the walls. This requires the normal 
derivative of Q to vanish at those walls which are perpendicular to the 
plane of the bend: 

^ - o. (1-5) dn 

When the magnetic vector lies in the plane of the bend and the incident 
wave consists of the dominant mode, we set 

A = P, B = 0 (1-6) 

where P is a function of .\ and y such that 

dx2 " a)2 

and 

P = 0 (1-8) 

at the walls perpendicular to the plane of the bend. In this case the guide 
walls parallel to the plane of the bend are at f = 0 and t; = b. 

2. Electric Vector in Plane of Bend 

Figure 1 shows a section of the bend taken parallel to the electric vector. 
b is the narrow dimension of the guide. Let the frequency and the wide 
dimension a of the guide (measured normal to the plane of Fig. 1) be such 
that only the dominant mode is freely propagated. The position of any 
point in this section is specified by the complex number z = .r + iy where 
the origin and the orientation of the axes have been chosen somewhat 
arbitrarily. 

The constant k and related propagation constants which appear in the 
formulas dealing with Q and electric bends are given by 

k = (26/Xo) [1 - (X„/2a)2]1/2 = -HAob/ir 

7m = m2 — k2; m = 0, 1, 2, • • • ; 70 = ik (2-1) 

6 P + d-P, - TlP = I\ Too = i2ir/\o (1-7) 

Xo = free space wavelength 
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Since, by assumption, only the dominant mode is freely propagated, k and 
7m for w > 0 are real and positive. 

We imagine an incident wave of unit amplitude coming down from zb 
in the upper left portion of Fig. 1. What are the amplitudes of the reflected 
wave traveling back toward Zb and the transmitted wave traveling outward 
to the right towards Z3? Our task is to find a Q(x, y), satisfying the wave 
equation (1-4) and the boundary condition (1-5), which represents a 
disturbance of the assumed type. 

ai(7r-2a) z5 = co e 
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The first step is to find the conformal transformation 

z = x iy = /(v + id) = f{w) (2-2) 

which carries the bent guide (shown in Fig. 1) in the {x, y) plane over into 
the straight guide (shown in Fig. 2) in the (y, 6) plane. This may be done 
by the Schwarz-Christoffel method discussed in Appendix I. This trans- 
formation carries the wave equation (1-4) and the boundary condition 
(1-5) into 

^ + [1 + (2-3) 

— = 0 at 0 = 0 and 0 = it 
dQ 

(2-4) 
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where the upper and lower guide walls are carried into 0 = 0 and 0 = tt, 
respectively, and g{v, 0) is given by 

1 +sM) = l/'fr + ie) I2 7r2/62 (2-5) 

/ o\ —  [c/t v + cos 0]2a 

[ch{v — I) — cos d]a[ch(v + /) — cos 0]° 

Here c/j denotes the hyperbolic cosine,/'^ + id) denotes the first deriva- 
tive of /(w), and from Appendix I, lira is the total angle of the bend. I is a 
parameter which depends upon a and the ratio d/do where d = \ zi — za\ 
and da = [ 24 — 26 | in Fig. 1. A table giving values of I for a 90° bend 
{a = 1/4) appears in Appendix I. 

That the propagation constant is no longer unifonn in the transformed 
guide shows up through the fact that the coefficient of k-Q in (2-3) is now a 
function of the coordinates {v, 0). g{v, 0) measures the deviation of the 
propagation constant from its value at d = — 00. For example, if we 
consider a wave front coming down from 25 we expect it to get past 24 before 
it reaches zq . In Fig. 2 the same wave front is tilted forward corresponding 
to a high phase-velocity (or small propagation constant) at 24 where v = 0 
and 0 = tt. This is in line with the fact that the coefficient of WQ in (2-3) 
vanishes at 24 by virtue of (2-6). Similar considerations hold at Zi and 22. 

What is our reflection problem in terms of the transformed guide? In 
addition to satisfying the two equations (2-3) and (2-4) Q must behave 
properly at infinity. For large negative values of v, Q must represent an 
incident wave plus a reflected wave. The incident wave is of unit amplitude 
and the reflected wave is of the, as yet, unknown value Re. For large 
positive values ot v Q must represent an outgoing wave. Thus Q must 
also satisfy the two equations 

Q = e-ikv + Rrfikv^ ^ _ oo (2-7) 

Q = TEC'ikv , V-^ (2-8) 

where the subscript E appears on the "reflection coefficient" RB and the 
"transmission coefficient" 7^ to indicate that here we are dealing with an 
electric corner. 

Our problem is now to take the four equations (2-3, 4, 7, 8) and somehow 
or other obtain the value oi Re . We are not so much interested in TE 

because it does not have the practical importance of the reflection coefficient. 
There are at least two different ways we may proceed from here. One 
is to transform the differential equation plus the boundary conditions 
into an integral equation which may be solved approximately by iteration. 
Another way is to assume <3 to be a Fourier cosine series in 0 whose co- 
efficients are functions of v. Substitution of the assumed series in the 
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differential equation (2-3) gives rise to a set of ordinary differential equations 
having v as the independent variable and the coefficients as the dependent 
variables. The integral equation method is used in this paper. The 
second method is discussed in the companion paper. 

3. Conversion of Differential Equation into an Integral Equation 

The differential equation (2-3) may be converted into an integral equation 
by using the appropriate Green's function in the conventional manner. 
The only modifications necessary are essentially those given by Poritsky 
and Blewett1 in a similar procedure. 

The conversion is based upon Green's theorem in the form 

/(C S " G fn) dS - // (QV'G - GV!0) iV ie (34) 

where the integration on the rightextends over the rectangular regional < v<V2, 
0 < 0 < tt (inside the straight guide associated with {v, 0), i.e. the guide of 
Fig. 2) except for a very small circle surrounding the point (^o, 0o). 
G = G{vo, 0o-,v, 0) is the Green's function corresponding to 

— + ^ + ife2F = 0 (3-2) 
a^2 902 

in the region —« <z;< ooJ0< 0<7r subject to the boundary condition 
dV/dn = 0 on the walls (97/90 = 0 at 0 = 0 and 0 = tt). G becomes 
infinite as —log r when r —> 0, r being the distance between the variable 
point (^ 0) and the fixed point (vq , 0o). Poritsky and Blewett* have shown 
that, in the notation (2-1), 

G = CmTm1 COS wdo cos mde'U~Voiym (3-3) m=0 

eo = 1, em = 2 for m = 1, 2, 3 • • • 

Equation (3-1) leads to 

2irQ(vo ,e,) + l'[-Qdfv + G ^ + [ [CSl - G^ 

= k2 [ 2 dv [ dd g(v, 9)QG 
Jvi Jo 

from which the required integral equation for Q is found to be 
Q(vo, d0) = 

I dv [ de g{v, d)Q{v, 0) Stm Tm1 cos w0o cos md e~u'~Vo]ym (3-5) 
2irJ-oo Jo "»=o 

* We have replaced their i by —i since here we assume the time to enter through the 
factor eiu' instead of e~ia'. 

(3-4) 
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where 7m is given by (2-1). The term e~ikvo comes from the first integral 
on the left side of (3-4) as i'i —► — oo. Equation (3-5) is a general equation 
which may be applied to a number of wave guide problems by choosing a 
suitable function g(v, d). For the corner of Fig. 1 g(v} 6) is given by (2-6). 

If g(v, d) approaches zero when | v j becomes large, as it does for the 
corner, expressions for the reflection coefficient Re and the amplitude Te 
of the transmitted wave may be obtained by letting I'd —> ±=0 in (3-5). 
For very large values of | vo 1 the contributions of all the terms in the summa- 
tion except the first (m = 0) vanish. Comparison of the resulting expression 
for Q(vo, do) with the limiting forms (2-7) and (2-8) defining Re and T« gives 

r'=£dv rde ^e) q("' s)r"" o'6) 

TE=1'YrC dV [ ie s(v' e) Q(h 6)e"" (3"7) 

Since the integrands involve the as yet unknown Q{v, 6) these expressions 
are not immediately applicable. In fact, if we knew Q(v, d) it would not be 
necessary to use these integrals for and Tb—we could simply let f —> d= ao 
and use (2-7) and (2-8). Nevertheless, (3-6) and (3-7) are useful in obtain- 
ing approximations to Re and Te when approximations to Q are known. 

In Appendix IV it is shown that Re is the stationary value, with respect to 
variations of the function Q, of an expression made up of integrals containing 
Q in their integrands. From the integral equation it follows that when 
^ ^ 0, i.e., when the frequency decreases toward the cut-off frequency of the 
dominant mode, Q becomes approximately exp (—ikv). Furthermore, Re 
approaches zero. This is in contrast to the apparent behavior of Ru which, 
according to the discussion given in Section 5, may possibly approach — 1 
under the same circumstances. Thus reflections from the two types of 
corners, or more generally, irregularities in the E plane and in the H plane, 
appear to behave quite differently as the cut-off frequency is approached. 

Re and Te are not independent. Since the energy in the incident wave is 
equal to the sum of the energies in the reflected and transmitted waves we 
expect 

ReR*e + TeT*e =1, ' • (3-8) 

where the asterisk denotes the conjugate complex quantity. In addition, 
there is a relation between Re and TE which for a symmetrical irregularity, 
i.e. for g(v, d) an even function of v, states that the phase of Re differs from 
that Te by ±ir/2. In this special case Tg is determined to within a plus or 
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minus sign when is given. These relations may be proved by substituting 
various solutions of equation (2-3) for Q and Q in the equation 

lQdl-QdN] ^\Q*A-Qf[ (3-9) 

where vi and v?, are large enough (fi negative and positive) to ensure that 
Q and Q have reduced to exponential functions of v. Equation (3-9) follows 
from Green's theorem. When Q is taken to be the solution for which (2-7) 
and (2-8) holds and Q its conjugate complex <2*, equation (3-8) is obtained. 
Keeping the same solution for Q but now letting Q denote the solution 
corresponding to an incident wave of unit amplitude coming in from the 
right: 

Ql = -f Rxe-ikv, v -+ co 

Qi = Tieikv , ^ - co 

gives T = Ti where we have dropped the subscript E and have assumed 
that g(v, 9) may be unsymmetrical. Taking Q to be Qi gives 

RT* + RtT = 0 

which is the relation sought. In the symmetrical case R = Ri,R/T+ R*/T* 
is zero and hence R/T is purely imaginary as was mentioned above. The 
same relations hold for RB and Tff. These results are special cases of a 
more general result which states that the "scattering matrix" is symmetrical 
and unitary for a lossless junction.10 

4. Approximate Solution of Integral Equation 

A first approximation to the solution of the integral equation (3-5) is 
obtained when we assume that the non-uniformity of the propagation 
constant has no effect on Q. Thus we put 

QM{v, 9) = e~ikv (4-1) 

in the integral on the right and obtain an expression for the second approxi- 
mation (2<2)(», 0), and so on. Here we shall not go beyond Q(2)(f, 9). 

It is convenient to expand g{v, 9) in a Fourier cosine series 
00 

g{v, 0) = S fln(f) COS «0 
(4-2) 

OnW = - f s(v> 0) cos nG d9, €o = 1 ; €„ = 2, M > 0. TT Jo 
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The second approximation, obtained by substituting (4-1) in (3-5), may then 
be written as 

00 
e(2)(.o, 0o) = e~xkva + k22~l X) 7m1 cos mOa m—0 

C4"3) 
• f am(v)e-Mv-Vohm dv. 

J—oo 

The rath approximation i?Bn) to the reflection coefficient (when the 
electric vector lies in the plane of the bend) is defined in terms of Q(n) by 

Limit Q(n\v, d) = <rifcB + (4-4) 
1>—♦—00 

is also equal to the integral obtained by replacing Q in (3-6) by Q(n-1). 
We have 

R? = 0, R^ = —ik2~l f flo(f)e~2tt' dv, 
J—oo 

R^ = R^ - ik3 E (47m ej-1 (4-5) 
m—0 

/« . oo 
dv0 am(v0) / dvam(v)e~tk 

00 J— 00 
— tKo+ffl)—I"—"ol Ym 

where 7m is given by (2-1). 
The results of this section have the same generality as the integral 

equation (3-5) in that they are not restricted to corners. 

5. Truncated Corner—Magnetic Vector in Plane of Bend 

When the magnetic vector lies in the plane of the bend the reflection 
may be calculated by a similar procedure. The wide dimension a of the 
wave guide now replaces the narrow dimension b in Fig. 1. We shall call 
the result of making this change the "modified Fig. 1". We again assume 
the frequency to be such that only the dominant mode is propagated without 
attenuation. In place of equations (1-3, 4, 5) involving Q we have those of 
(1-6, 7, 8) involving P. 

The conformal transformation which carries the modified Fig. 1 into 
Fig. 2 leads to 

0 + = o (51) 

P = 0 at 0 = 0 and 0 = tt 
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where 

k = 2a/Xo = — irooo/7r, c = (/c2 — 1)1/2 = ak/b 

5m = m- — 1 — c2 = w2 — k2, 5i = ic 

Xo = free space wave length, m = 1, 2, 3 • • • 

and 

(5-2) 

\fUiiy + id) \*ir>/a* = 1 + g{v, 0). (5-3) 

Here /mod(w) pertains to the modified Fig. 1. Since the expression for 
f'{w) given in Appendix I is proportional to b and since the modified trans- 
formation contains a in place of 6, it follows that g(y, 0) for the magnetic 
corner is exactly the same function, given by (2-6), as for the electric corner. 

It is again assumed that the incident wave coming down from the left 
in the modified Fig. 1 is of unit amplitude and of the dominant mode. 
At large distances from the corner 

which serve to define the coefficients of reflection and transmission. The 
subscript ff on the reflection and transmission coefficients indicate that 
here we are dealing with a magnetic corner. 

The conversion of the differential equation into the integral equation now 
employs the Green's function 

P = [e-iev -f P„0 sin 6, v-> - <*> 

P = Th e-icv sin 0, + <* 
(5-4) 

G = 2 sin sin mde '' rnl4' (5-5) 

which corresponds to 

F = 0 at 6 = 0 and 9 = ir 

The integral equation for P is found to be 

P(r0, d0) = e~icV0 sin 90 

+ ~ iv de g(.v}e)p{v,e) Ett 
27r J-=o Jo "*=: 

2 * +00 
sin mdo sin mde'1" l'ul4' 

(5-6) 

where the parameters are given by (5-2). This is a general equation. 
For the corner of the modified Fig. 1 g(v, 6) is given by (2-6). 
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By letting i>o —> — « we obtain the exact expression 

When dealing with the electric corner we saw that .Rif —0 as jfe —► 0. 
The presence of c in the denominator of (5-7) suggests the possibility that 
-Rw —» — 1 as c —» 0. For Rh must remain finite and this may perhaps come 
about through P{v, 0) —> 0 in the region, say around d = 0, where g(v, 0) is 
appreciably different from zero. This and the fact that P(v, d) must 
contain a unit incident wave suggest that for v < 0 the dominant portion of 
P{y, d) is 2i sin cv which gives R/i = — 1. Incidentally, it is apparent that 
the approximations for P(v, 6) given below in (5-8) and (5-10) (and therefore 
also the approximations (5-11) for RH) fail when c becomes small. 

The first approximation to the solution of the integral equation (5-6) is 

bi{v) = ao{v) - a2{v)/2, bn(v) = [a„_i(i») - dn+i(zi)]/2, n > 1 

we find that the second approximation is 

Pa)(v, 9) = e-icv sin 9 (5-8) 

When we introduce the coefficients 

(5-9) 
sin 9g{v, 0) = bn(v) sin n9 

PW{r0 ,9o)=e icVo sin 90 + k2~1 X sin m90 

(5-10) 

The successive approximations to the rellection coefficient are 

00 « +00 
Rii1 = RiP — it 2 (4c5m) 1 / dvo bmivn) (5-11) 
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6. Series for R(2) When Corner Has No Truncation 

The integrals which appear in the approximations for the reflection 
coefficients are difficult to evaluate in general. This section serves to put 
on record several expressions which have been obtained for i?(2) when the 
corner is not truncated. Corresponding evaluations of R{Z) would be 
welcome since the work of Section 7 for small angle corners indicates that 
^(3) _ ^(2) is 0f ^ same order as i^(2). However, I have been unable to 

go much beyond the results shown here. 
As mentioned in the introduction, H. Levine has studied the effect of a 

corner in a wave guide by representing it as an equivalent pi network having 
an inductance for the series element and two equal condensers for the shunt 
elements. Early in 1947 he derived the following expressions (in our 
notation) for the elements corresponding to a simpe E corner :* 

where Fo is the characteristic admittance of the straight guide, iBa the 
admittance of one of the two equal shunt condensers, —iBh the admittance 
of the series inductance, 4>(a-) the logarithmic derivative of r(a- + 1), and 
/Stt is the total angle of the simple corner (for no truncation we set 0 = 2a). 

When the reflection coefficient for the corner is computed from the 
equivalent network for the case /3 —> 0 it is found to lie between the approxi- 
mate value Re^ given by (7-3) and the considerably more accurate value 
R^ given by (7-5). All three approximations are of the form Ap2 + 0(/33) 
where A differs from approximation to approximation but is independent of 
P, and 0{pz) denotes correction terms of order /33. Since R^ gives the exact 
value of ^4, it may be regarded as the standard when the three approxima- 
tions are compared. If this comparison be taken as a guide, it suggests 
that the rather cumbersome expressions (6-2) and (6-5) for R^ given below 
are not as accurate as the simpler expressions resulting from Levine's work. 
Dr. Levine has also obtained corresponding results for the general £-corner 
of Fig. 1. It is hoped that his work will be pubhshed soon. 

When the corner is not truncated it is convenient, as mentioned above, 
to replace 2a by P so that p-ir is the total angle of the bend. For no trunca- 
tion / = 0 and (2-6) becomes 

Bb/Y0 = (M"1 cot (pTr/2) 

(6-1) 

* I am indebted to Dr. Levine for communicating these expressions to me. 
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From (4-2) and (4-5), or from (3-6), 

rW = f dv I dOg(v, e)e~'' 
ZTT J—oo JO 

—2ikv 

(6-2) 
r(« - ik)T(n + ik) ^ (-2^)2m03), _ _.J1 -^2 1 \n — iBJiRtl -f- tR) ^2 

n~i n\{n — 1)!2 m=o(2w)!(« — m)\ 

where we have expanded g{v, 9) as given by (6-1) in powers of 
cos d/ch v and integrated termwise. The notation is (a:)o = 1, (a),, = 
a (a + 1) • • • (a -f « — 1). 

For a right angle corner /3 = 1/2, and a more rapidly convergent series 
may be obtained by subtracting the sum of the series corresponding to 
k = 0, namely 

log 2 = E ^ (6-3) n-I w!2» v ^ 
(l/2)n 1,Jo ^ ~ n—1 

Thus for /3 = 1/2 

r'F = ~ik [log, 2 - E d 

(6-4) 
A-i = -n-^/sinh tt^, An = /lill (1 + 2), « > 1 

m—1 

The rate of convergence of the more general series (6-2) may be increased 
in a somewhat similar way. It is found that 

Rf = -j [/ - 2/32(l - ^0 - | (2 + fXl - A,) 

- ^ (23 + 20fr + 23,)( 1 - • -J 

J = K + L (6-5) 

x = S ^ - rb - ^ " « - •5772 

T _ V _(/3)n-m _ V (V2 — /3)m 
(2w)! n=m (« - w)! n P ^ (l/2)mWi(w - /3) 

where .5772 • • • is Euler's constant, ^(a;) is the logarithmic derivative of 
!!(.%•) = r(x + 1), and ^1„ is given by (6-4). 
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The results corresponding to are quite similar. When the corner 
is not truncated 

(2) • 2 r(n — ic)T(:n + ic) ^ ( — 2^)2m(/3)n-m 
~'K' (;7+ 1) ! (» - 1) !2c ,iho (2m)\(n - m)l 

= J'Jj - ^(1 - Ax) - ^ (2 + /32)(1 - A,) (6-6) 
2c L ^ 

- (23 + 20/32 + 2^4)(1 - is) - • • • 

7 = 1 - ^(1 - ^) - .5772 

^ ^ (1/2 - ^)B. 
^ (1/2),,, w(w - /3) (w - /3 + 1) 

in which i„ is obtained by replacing c by ^ in the expression (6-4) for An . 
The evaluation of the integrals for ) and R/P for general values of I 

appears to be difficult although it is possible to obtain approximate expres- 
sions for the case when / is large. 

7. Reflection from Small Angle Corners 

The expressions for R™ and i?(3) may be evaluated approximately when 
the angle of the corner is small. It turns out that, for I = 0, they are of the 
same order of magnitude and both of them must be considered. Moreover 
R(n) for n> 3 differs from Rw by terms of the same order as those neglected 
in our approximations so that there is no point in going to the higher values 
of n. 

We first obtain the approximation for .ftE for a corner with no truncation 
having the total angle tt/S. Since /3 is very small (6-1) may be written as 

g{v, 6) = exp [0v] — 1 = fa + 0V/2! + 0(/53) ^ ^ 

<p = log (chv + cos 0) — log {chv — cos 0) 

where 0(/33) denotes terms of order /33. The expression v? becomes very large 
near the two points (0, 0) and (0, tt) (the coordinates being {v, 0)). The 
following considerations indicate that this does not invalidate our procedure. 
The remainder, denoted by 0(/33), in (7-1) is less than | fa I3 exp 1 fa 1. 
Near (0, 0) <p is approximately equal to 21og(2/r) where r2 = i>2 + 02. 
Consequently the remainder is less than {2(3 log 2/r)3 (2/r)2^ When the 
expression (7-1) for g{v, 0) is set in the integral equation it is seen that all 
terms, and in particular the remainder term (by virtue of the inequality 
just stated), of the double integral converge at (0, 0). Hence the contribu- 
tion of the remainder term is of order (3* even in the worst case when the 
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Green's function is replaced by —log r. A similar result holds for the other 
point in question, namely (0, tt). 

Integrating (7-1) from 0 = 0 to 0 = tt and using equations (A2-1, 3) of 
Appendix II gives 

a*{v) = /32[/i(v, z>) - /2(d, I-)] + 0(/33) 

= 4/32 E «-2 e-2"" + 0(/33) (7-2) 
n-1,3,5,- • • 

where ?; > 0. We consider only positive values of v since g(v, 0) and the 
<7n(z))'s are even functions of v. Thus (4-5) yields 

i^2) = -ik2/32 E '^(n2 + kT1 + 0(/33) (7-3) 
n=l,3,8,- • • 

This is an approximation to the exact value given by the double series in 
(6-2). Comparison of (6-5) and (7-3) when /3 and k approach zero gives, 
incidentally, 

(„ - 1/2)- = 'Em-5. , 
m=l n = l Z m=l 

From (4-2), (7-1) and the expansions (A2-2) of log (chv ± cos 6) it follows 
that 

am(v) = 4/3"I + 0(/32), m = 1, 3, 5, • ■ • 
(7-4) 

am(v) = 0(/32) , w = 0, 2, 4, 6 • • • 

Equations (4-5), (A2-4), the relation y2
n = m2 — k2, and (A2-8) give us the 

answer we seek: 

Kf3) = RiP — ik32p2 XI Tm' m~2 J{m, in, k, ym, 0, 0) + 0(/33) 
Tn=1.3.5.• ■ • 

= —iklff E 7m1 wr2 + 0(/33) (7-5) 
7n-l,3,5.." 

It is not necessary to go to i?B4) because it differs from Rb) by only 0(/33). 
When H lies in the plane of the bend the reflection from a small angle 

corner with no truncation may be obtained by much the same procedure. 
For brevity we shall not write down the order of magnitude of the remainder 
terms. From (5-9), (A2-1), and (A2-3) 

bi(v) = a0(v) - an(v)/2 (7-6) 

= /TVi - h- (I3 - /4)/2] 

= (ffre-2" + 4 E n-2e-2,,v - 4 E (" - l)~1^2ne] 
71=3.5.71=2,4.••• 
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where we have written Im for Im{v, v) and assumed j; > 0. Then, using 
(5-11), 

R™ = -u2
C-y[.-2 + 2 z + cY1 

(7_7) 

-2 E »(»2 —1)_1(»2 + c2)-1] 
n—2.4.- • • 

When we put 

= K-iCf) - fl„+i(®)]/2, w > 1 (7-8) 

6n(f) = 2/3[(n - l)-ie-(n-i)ld - (n + IJ-hr^M], » = 2, 4, 6, • • • 

5n(f) = 0(/32), n = 1, 3, 5, • • • 

in (5-11) and use the results of Appendix II we obtain 

Rp -u'c-1? E C[(n-ir2/(»-l,»-l,5„,0,0) 
n—2.4,6 ■ ■ • 

+ (n + 1) 2 /(w + 1, w -|- 1, c, 5„, 0, 0) (7-9) 

- 2(n2 - ir1J(n-l,n+ l,c,5n,0, 0)] 

The values of the first two J's, obtained by setting m = n zt 1 in (A2-7), 
may be simplified by using 

c2 -f- (« ± 1 + 5)2 = 2(n ± i)(n -f- 5) 

where we have dropped the subcript n from 5„ . In order to eliminate 5 
from the denominator we multiply both numerator and denominator by 
» — 3 and use 

(n - 3) (5 + 2n ± 2) = (n ± I)2 + c2 - 5(w ± 2) 

«2 - 52 = 1 + C2 = K2 

Setting in the value, given by (A2-9), of the last J and separating the 
terms (into those which contain the first power of 5 and those which do not) 
enable us to write the term within the square brackets in (7-9) as 

4w2 _ Snf" (n — 1) — 1 , (w + 1) + 1 
/c4(n2 - I)2 k2 L(n - l)2{c2 + {n - I)2} in + l)2{c2 + (» + I)2} 

2n[2in + c2) - kV - 1)}] 10) 

^ k2(«2 - 1)2(«2 + c2) J 

It is found that when (7-10) is put in (7-9), the contribution of the first 
two terms within the square bracket of (7-10) exactly cancels the summation 
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which is taken over 3, 5, 7 ■ • • in the expression (7-7) for . Moreover, 
if we make use of 

XI 4n(n2 — I)-2 = 1 
n-2,4.6.-" 

we see that the contribution of the last term within the square brackets of 
(7-10) cancels the remaining terms in . Only the contribution of the 
first term in (7-10) remains and it gives 

K»3) = X wV - 1)~2C -{- 0(/33) (7-11) 
n=2,4.6.* • • 

The relative simplicity of this result indicates that there may be another 
method of derivation which avoids the lengthy algebra of our method. 

Recently approximate expressions for the reflection coefficient of gentle 
circular bends have been published7. In our present notation these may be 
written as 

. 2 -2 f sin u cos u — e~uym"cl Re = - tb Pi —— - U X  7—7  
L 24 tt rtr 7m J 

r, -2 —4 [sin u v cos M - e_u,"/e n2 ^ 
Pl LBtT^2 n-2^6.... 7r4c5n («2 - l)3j 

where (Hir is the angle of the bend, pi is the radius of curvature of the center 
line of the guide and u is 27r times the length of the center line in the bend 
divided by the wavelength in the guide: 

u = (iiT-kpx/b = (iircp\/a 

The first expression for u is to be used in and the second in Rh . If we 
now let /? —> 0, keeping pi fixed, then u —> 0. The trigonometric and expo- 
nential terms may be approximated by the first few terms in their power 
series expansions, and part of the series which make their appearance may be 
replaced by their sums given, for example, by equations (4.1-7) and(4.1-8) 
of reference7. After some cancellation, the above expression for Re and Rn , 
which hold for gentle circular bends, reduce to (7-5) and (7-11), respectively, 
which hold for the sharp corners. In other words, the reflection coefficients 
for both the sharp and the circular bends approach zero as /3 —> 0, and 
furthermore their ratio approaches unity. 

We shall merely outline the derivation of the approximation R^ for a 
truncated corner. Instead of (7-1) we have from (2-6), 

g{v, d) = exp M - 1 = ^ + aV/2! + 0(a3), (7-12) 

^ = 2 \og[chv + cos 0] - log [ch{v - t) — cos 0] - log [ch{v + 0 - cos 0] 
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The Fourier coefficients of g{v, 0) may be obtained by using the results of 
Appendix II. Assuming d > 0, m > 0, 

ao(v) = 2a{y — t)^{v) + 2_1a2 ( v) I— t, v — l) 

+ Ii(v + v + /) - 4/2(f - I, v) - 4/2(0 + l,v) + 2 Ii(v — l, v -\- I)], 

am(,v) = 2am-'{-2{-)me-m\v\ + (7-13) 

where ^(0) = 1 when 0 < 0 < / and \p{v) = 0 when v > I. Substitution 
of the values (A2-3) for /1 and 12 gives 

ao(v) = [2a{v - 0 + - 02¥(®) (7"14^ 
00 

+ a2X) w-2[4e-2no -h e-2nv--nt - 4(-)ne-2np_nt 

n—1 
g-2nip-t| 2e—— 4(—)nc-nl'-''-no] 

The second approximation to the reflection coefficient is 

R(P = iak-1 sirfkl - ic?k-n-'{2kl - sin 2kt) 

- iko& «-V + ^)-1 {2-(-)n2e-"' (7-15) 
n=l 

4- [1 — 2(—)ne_"t + e-2n']cos 2kt 

+ nkrl{e~lnl — (—)n2e-f"lsin 2kt] 

The typical term in the summation (4-5) for is 

_ r dva aM f+' dv (7-16) 
4')'m^m J-°o J-cc 

When m = 0, co = 1, To = ik, and ao(o) is 2a(v - 0 + O^2) for 0 < o < / 
and is 0(a2) for v > t. The integral may then be approximated by replacing 
the upper limit oo in (A2-14) by /. The value of (7-16) for m = 0 is found 
to be, to within 0(a!2), 

2_1a2/2(e_2<i' — 1) — (3/4)ta2^_2(sin 2kl — 2kl) (7-17) 

When w > 0, em = 2, 7^ = m2 - k\ and the substitution of the value 
(7-13) for flm(o) enables us to express (7-16) as the sum of six /'s where J is 
defined by (A2-4). The /'s may be evaluated with the help of (A2-7) and 
(A2-8). Substitution of this value of (7-16) and the value (7-17) for m = 0, 
together with i?(

E
2) given by (7-15), in the expression (4-5) for R-T gives 

our final result 

R1-^ = fa^'sin2 kl 4- a2/22_1(e-2lfct — 1) ' (7-18) 
CO 

4- fa2 \A~xk~2{2kt - sin 2kl) - 5sin 2kt + kY, n=l 
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where 
OC 

B = - 2(-)ne-nt] 
n=l 

An = cos 2kt - [2cos kt - (-)nrY"']2 

Equation (7-18) is an approximation, to within terms of order a2, for the 
reflection coefficient of a truncated corner which turns through a small 
angle 27ra. The electric vector lies in the plane of the bend. When I = 0, 
(7-18) reduces to (7-5) by virtue of 2a = 

APPENDIX I 

CONFORMAL TRANSFORMATION OF TRUNCATED CORNER 

We shall use a Schwarz-Christoffel transformation* to carry the guide of 
Fig. 1 into the straight guide of Fig. 2. The first step is to transform the 
interior of Fig. 1 into the upper half of an auxiliary complex plane which we 
shall denote by f. Let the points Zi, z2, Za, 24, z5 in Fig. 1 correspond to 
the points - h, h, 1, -1 in the f plane. A suitable transformation 
is then 

' 2 = D + £ [V + h)-a(T - h)-a{T - l)"1^ + l)-1^ (Al-1) 
Jo 

where D, E and h are to be determined from the geometry of Fig. 1. Because 
of the symmetry of our transformation about the line joining Zo and Z4 
it follows that z = Zo corresponds to f = 0. Hence D = Zo. As f travels 
from 1 — e to 1 + e, e being very small and positive, along a semicircular 
indentation above f = 1, z as given by (Al-1) increases by 

£(1 - hT'2'1 f*' (r - l)"1 dT = (1 - hT' 

while, according to Fig. 1, it increases from * + *0 to » + ib. Hence we 
set the real part of E equal to -2^^ - l'2)a- We have tacitly assumed 
the factors in (Al-1) to have their principal values at r = 1 + e and also 
that 0 < /; < 1. As z goes from Zi to Zo, f goes from -// to +h. In this 
range arg(T + /;) = 0 and arg(r — h) = t- 
Consequently, if j Zo — 21 j = f, then 

S! - ai = fe-" = - ^-"(l - ^dr 

* See for example, S. A. Schelkunoff, Electromagnetic Waves, New York (1943) 
pp. 184-^187. 
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and we see that E is purely real. Hence 

( = 2for~1(l - /z2)° f' (A2 - r2)_0(l - t2)"1 dT 
J-h 

is an equation from which h may be determined as a function of t. Setting 
r2 = Wx, expanding (1 — h2x)~l in powers of h2 and integrating termwise 
leads to 

^ ^ (A T2\a/l—1(Xr?fA 13 / 
24=-f(f^r(1 _A)A 

TT ^(1 — a) .|_: 

r(l - a) 
hl-iaFii — a, 1 — — a; h ) (Al-2) 

1 + "I (1, i; 1+ a; 1 - A1) sin ttq; r(f — a) 

where we have used relations from the theory of hypergeometric functions. 
The term 1/sin ira is the reduced form of an original term containing a 
hypergeometric function which has been evaluated by the binomial theorem. 
The second and third expressions are suited to calculation when h2 < 1/2 
and h2 > 1/2 respectively. 

Now that the guide of Fig. 1 has been transformed into the upper half of 
the f plane, the next step is to transform this upper half into the straight 
guide of Fig. 2. We want f = — 1, i.e. z6, to go into v = — ^ and f = 1, 
i.e. 33, to go into j) =■ + oo. Again using the Schwarz-Christoffel formula 
with iv = v 19 (the exterior angles at z; = ± oo are equal to tt) 

w = Di + El f (T + 1) '(r — 1) 1 dr (Al-3) 
Jo 

We take the point 3o in Fig. 1 to correspond to = 0, 0 = 0 in Fig. 2. Since 
this corresponds to f = 0, Di must be zero. Also dw/d^ is real because w 
traverses the walls of the guide of Fig. 2 as f moves along the real axis in the 
f plane. Hence Ei is real. As f goes from 1 — e to 1 + e around a small 
circular indentation above f = 1, w changes from x to oo -f ir. Thus 

iir = -£i2_1(—mt) or Ei = —2 (Al-4) 

When (Al-3) is integrated, (Al-4) inserted, and the result solved for f 
we obtain 

f = tanh w/2 (Al-5) 



CONFORM A L TRANSFORM A TION 125 

The function we require is obtained by differentiating (Al-1) and (Al-3): 

j-l/j 

= £(f2 - - D^VCf2 - i) 

= a - hnf - hY-b/* 

if cli'w/2 
ir csh\{w — I) sh\{w + t) 

_b[ (e- + iy T 
TT — l)(eu'+t - 1)J 

where 

h = tanh l/l 

For a 90 degree corner a = 1/4 and 

i = 2"I(i - 

where, in Fig. d = \ Zi — Zo\ and da = \ Z\ — Z(,\. In order to obtain 
the relation between t, defined by (Al-7), and d/do various values of h? 
were picked and the corresponding values of t and d/da (using (A 1-2) and 
(Al-8)) computed. Representative values are given in the following table. 

d/ do 1 d/ do I 
1.000 0 .5796 1.2302 
.9041 .0633 .5385 1.4910 
.8565 .1417 .5000 1.7594 
.8292 .2007 .4615 2.0634 
.7745 .3500 .3727 2.8872 
.7196 .5421 .2804 4.0096 
.6919 .6549 .1708 5.987 
.6273 .9624 .0959 8.294 

APPENDIX II 

Integrals Associated with Corners of Small Angle 

The derivation of the integrals encountered in Sections 7 and 8 will be 
outlined here. The first ones are 

i r 
Ii(u, i') = - / log(c// n — cos 0) log (ch v — cos 0) dd 

TT Jo 

(Al-6) 

(Al-7) 

(Al-8) 



(A2-1) 

(A2-2) 
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I2(u, '•)—-/ log(c/j u — cos d) lo^ (ch v + cos d) dd 
TV JQ 

13 (m, v) = - [ COS 20 log (ch u — cos 0) log (ch v — cos 0) dB 
TV Jo 

2 [* 
U(u, v) = - I COS 20 log (ch u — cos 0) log (ch v + cos 0) dd 

TV Jo 

Assuming u and v to be positive and using the expansions 
00 

log(r// u — cos 0) = log(e"/2) — 2^ ;t_le_"ucos nd 

oo 
log(f// u + cos 0) = log(eu/2) - 2X1 (-)n«~le~nucos n9 n = l 

leads to 

/,(«, v) = log(e*/2) log(eV2) + 2I: 
71=1 
00 

/,(», ») = log(e"/2) log(«V2) + 2E    
71 = 1 

13(w, z-) = -e-2uIog(eV2) - g_2"log(eu/2) + 26--'' 
(A 2-3) 

+ 2X1 + 2)-16-"u—"(e-2" + e-2") 
71 = 1 

Ii(u, v) = -e-2"log(6''/2) - 6-2ulog (6-/2) - 26-'- 
00 

+ 2X (-)n«-1(" + 2)-16—u—"(e-2" + 6-2'') 71=1 

When u or v are negative they are to be replaced by their absolute values 
in the expressions (A2-2, 3). 

Now we consider the double integral 
, +00 » +00 

J^m'C,5ir-s) = L d'''L d' (A2-4) 

•exp [ —m | z'o — r | —m 1 z» — 5 ] —ic(v + z-q) —5 | z- — i-q 1 ] 

in which /x, c, 6 are real and positive and r and 5 are real. The double 
integral may be reduced to a single integral by substituting 

= b r+eo (52 _|_ (A2_5) 

TV J-n 
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interchanging the order of integration, and integrating with respect to v 
and t'o. Assuming 5 — r > 0, the integral is then evaluated by closing the 
path of integration by an infinite semicircle in the upper half plane and 
calculating the residues of the integrand at the poles ib, c + im, —c-\- ip: 

J{p, m, c, 8] r, s) = / 
J-x IT 

— 48pm 

4Spmeixla-r)-ic(T+') dx 
=0 7r(52 + .t2)[m2 + {x + c)-][m- + (a- — c)2] 

—(i+tc)s+(i—tc)r 

5[m2 + (c + j5)2][w2 + (c — ib)2] 
(A2-6) —mj-f (m—2 ic)r p 

;;/[52 + (c + m)2][M2 + (2c + im)2] 
cMr-(M+2.-c)» 

+ 
- '»2]] p[82 + (c - ip)2][m2 + (2c 

Substituting special values for the parameters gives the results required 
in the text. Thus, 

J(m, m, k,y]l, I) = e~2ikl J{in, m, k,y,0, 0) 

J{m, m, k,y; —l, I) = e2ikl J(m, m, k,y,0, 2() 

J{m, m, 7; —/, 0) = e2ikt J{m, in, k,y,0, I) (A2-7) 

,/ s n o\ 2m(8 + 2m) Jim, in, c, 8; 0, 0) = 7——— 
(c2 + w2)[c2 + (m + 5) J 

which hold irrespective of any relations between the parameters. The 
derivation of the last result is simplified by setting a = c + im, a = c — im 
and factoring the denominators in (A2-6) so as to obtain terms of the 
form a ± /5, a ± ib. 

When 72 = m2 — k2 considerable simplification is possible and we obtain 

7(»,ro,*,r;0,0) 

A,n, m, k; y, 0, /) = ^ ' CV c°s - ^sin fo)' 
k- l y w + k 

(A2-8) 

If we put p = n — 1, m = « + 1, and set 82 = n2 — \ — c2 = n2 — k2 

where k2 = 1 + c2, (A2-6) yields, after some reduction, 

J{n - 1, » + 1. c, 5; 0,0) = " 7 '.v. + (" _ 1)6 

(cn + ib)2 2(« + 1)(1 — ic)2{n — ic) 

+   (A2-9) 
2{n - 1)(1 - ic)2(n + ic) V J 

c n - b2 nb[2{i? + c2) - «2(n2 - 1)] 
K\n2 - 1) K\n2 - 1)(«2 + c2) 
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The form of the final expression has been chosen so as to be suited to the 
use we shall make of it. 

Another double integral which appears in our work is 
/+00 

dvoa{vo) 
(A2-10) 

/00 

dv a{v) exp [ — ik{v + t'o) — 7 I f — l'o |] 
00 

where a{v) is an even function of v and is such that all of the integrals 
encountered converge. We begin our transformation by dividing the 
interval of integration (— 00, oo) for fo into ^, 0) and (0, =0). Making 
the change of variable ^0 = —vo,v= — z/ in the first interval, dropping 
the primes and using a(—v) = a(v) leads to 

I(k, 7) = 2 f iv, oW [" dv cos 4(» + Vo) (A2-11) 
Jo J—00 

We now split the interval of integration of v in (A2-11) into the intervals 
(_ oo, 0), (0, z-o), {vo, 00). In (- =0, 0) we change the variable from v to 
— v', drop the prime, and use a(—z;) = a{v). By paying attention to the 
sign of zi — z)o we may remove the absolute value sign. By changing the 
order of integration in the double integral arising from the third interval 
(in which 0 < zio < <*>, vq < v < 00) we may show that it is equal to the 
double integral arising from the second interval. Thus 

j(k, y) = 2 [ dvo a(vo) f dv a(v)e yv 7Vo cos ^(z'o — v) 
Jo Jo 

-f 4 J dvo dv a(v)e~yVoh''v cos ^(z'o + z1) 

When a(v), 7 and k are real we may write (A2-12) as 

/(fe,7) = 2\r dva{v)e-yv-ikv 2 

1 Jo 

+ 4 Real jf" dvoa(vde~yva+ikv'> dv a(v) e"+" 

and when 7 = ik we have 

I(k,ik) = 2 [ dvoa(vo) [ dv a{i)e~uu' 
Jo Jo 

+ 2 j dvoa(vo) J dv aiv)^2'1"' -{-e~2,k''0]. 

(A2-12) 

(A2-13) 

(A2-14) 
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APPENDIX III 

Integral Equation When Guides Entering and Leaving Irregularity 
Are of Different Sizes 

Here we shall indicate how the integral equation method may be extended 
to cover the case mentioned in the above title. It is supposed that only the 
dominant mode is propagated freely in both guides. 

E in Plane of Irregularity 

Let the notation for the guide carrying the incident wave be the same as 
for the E-corner. b denotes the narrow dimension of the guide and the 
quantities k and are given by (2-1). Both guides have the same wide 

—* \ 
x 

h INCIDENT WAVE | 
I   fcj, 

v  v 
o 

Fig. 3 

dimension a. The narrow dimension of the guide shown on the right of 
Fig. 3 is ii. We introduce the new quantity 

k, = [(261/\o)2 - (6i/a)2]l/2 (A3-1) 

to correspond to k. Since, by assumption, only the dominant mode is 
freely propagated in both guides both k and ki are real positive quantities 
less than unity. 

Let z = f{w) carry the system of Fig. 3 into a straight guide of width tt 
in the w = v -\- id plane (see Fig. 2), and let giy, 0) be defined by 

1 + g(v, 0) = (/'(w) I2. 

The behavior of g(v, 0) at infinity is shown by the table 

v dz/dw g{y, 6) 
— oo b/ir 0 
+ co bi/ir kikT7, — 1 

where b\/b = ki/k has been used. It is convenient to introduce the ap- 
proximation £(fl) to g{v, &). Il(y) may be chosen at our convenience subject 
only to the conditions that it be differentiable, £(—«>) = 0, and |(°o) = 
klk-2 - 1. 

When we define G by equation (3-3) so that, as before, it is the Green's 
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function corresponding to a guide of width b, we may use equation (3-4) 
to derive the new integral equation 

dQ 

{g(^ 0) - ih)TEe~,klV]G{vQ , 00; V, 6) ^A3 

+ TeF{V0) 

in which 

fW = e-"','GsW/s(®) - 

irw = 2-'w, - 4)^' /J rw-r'"1"'" ^ (A3.3) 

Ar+(ro) = 2-'^ + f" g'Me-"tl+t" dv Jvo 

Here g'(v) denotes dg{v)/dv. Equation (A3-2) and 

Limit <2(r, 0) = TEe~tklV (A3-4^ 
XJ—*CC 

are to be solved for the unknown function Q{v, 0) and the unknown quantity 
Te ■ The method of successive approximations may be used in somewhat 
the same fashion as in the simpler case but we shall not give a general 
discussion. 

The first approximations are found to be 

Ti" = l/iV-(oo), Ri" = -A+(-^)/A-(cc) (A3-5) 

where the iV's may be obtained by setting 1)0= i00 in equations (A3-3). 
One of the simplest choices for g{v) is to let it be zero for negative values 

of v and to have the value ^(«0 = - 1 for positive values of v. Then 

= 2k{ki + k)-1, RP = (k- kj {k + kx)-' (A3-6) 

These are quite similar to the corresponding expressions for a transmission 
line which have been used extensively in wave guide work. 

In working with these formulas, when k is small, it is sometimes convenient 
to use the result 

f 2 dv [ dd g{v, 0) = 7r2F2 [ dv I dd\f'{w)\2 - (12 - ®i)t (A3-7) 
Jvx Jo Joi J0 

where the evaluation of the double integral on the right is made easier by 
the fact that it represents the area in the original guide (in the (x, y) plane) 
enclosed by the lines corresponding to v = vi and v = V2. v-i and Vi are 
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chosen to be moderately large positive and negative numbers, respectively. 
It turns out that, when k\ and k are very small, this is related to the "excess 
capacity" localized at the irregularity whose effect must be added to that 
of the mismatch, indicated by (A3-6). 

When the entering and leaving guides are of the same size it is still possible 
to use the formulas of this appendix. N~{v^) may be replaced by an expres- 
sion which now has for its limiting value 

H in Plane of Irregularity 

Let the figure corresponding to the irregularity be Fig. 3 with b and bi 
replaced by a and oi , respectively. In addition to the quantities c and k 
defined by equations (5-2) we define 

where we assume k and ki to lie between 1 and 2. At v = — <» P{y} 0) 
still consists of the unit incident wave plus the reflected wave given by the 
first of equations (5-4) and g{v, 0) is still zero. However, now, at v = *>, 

ki — 2ai/Xo, Ci — (/q — I)1'" (A3-9) 

P{v, 0) = Tne'"1" sin 0 

£(*>) = KlK~2 — i = >r\cl — C2) 

The integral equation for P(v, 0) and 7"^ is 

(A3-10) 

(A3-11) 

PM = e-iei"g(ro)/i(*>) - AT{vf) - eiev*M+^) 

M-(n) = "'(.icr'ict - c)-' f" e'Me-"--" dv j— CO 

M+(vo) = k2(2c)~1(c + cr1 f" fCOe-""-*" dv 
j HQ 

rilei-c)v dv 
(A3-12) 

First approximations are 

TP = l/M-(oo), Rp = -M+(-oo)/M-(oo) (A3-13) 
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which, when we choose Qiy) to be zero for v < 0 and kik 1 for > 0, 
become 

nl) = 2c(ci + c)-\ R? = (c - ci)(ci + c)-1 (A3-14) 

which again agrees with results obtained from transmission line considera- 
tions. When the entering and leaving guides are the same size we may use 

ATi'x.) = 1 + tK2(2c)-1 f i(v) dv (A3-15) 
J—00 

It seems difficult to give any general rules for the choice of £{v). Since 
for Rh and Tu , the factor sin 6 reduces the effect of the singularities on the 
walls of the transformed guide, the choice g(v) = g(v, ir/2) suggests itself. 
The factor sin d is not present in the formulas for Rb and TB and regions 
near the walls are more important. In this case the selection 

£(*') = tt-1 f giv, 0) dd 
Jo 

may be useful, especially since it allows us to use the result (A3-7) when k 
and ki become small. 

APPENDIX IV 

Variational Expressions for Reflection Coefficients 

The reflection coefficients are proportional to the stationary values of 
certain forms associated with the integral equations. In order to obtain 
these forms we proceed as follows. It is readily seen that the values of 
xi and Xi which satisfy the symmetrical set of equations 

auxx + 0*12X2 = bi /. . . v 
(A4-1) 

OnXi T O22X2 = ^2 

are the ones which make 

J = fliiA'i 2012X1X2 -p 022X2 — 2b\Xi 262X2 (A4-2) 

stationary when ^1 and X2 are given small arbitrary increments. This 
stationary value of J is 

Ja = —bixi — 62X2 

If we take the integral equation to be the analogue of the set of linear 
equations, the reflection coefficient turns out to be proportional to . 
In order to set down the actual expressions it is convenient to write r for 
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(v, d) and dS for the element of area dvdd so that the integral equation 
(3-5) for Q{v, d) may be written as 

Q(ro) = + 42(2x)-1 f g{r)Q{r)G{r0 , r) dS (A4-3) 

where the integration extends over the interior of the guide and G(ro, r) 
denotes the Green's function (3-3). 

If the number of equations in the set (A4-1) were increased from two to a 
large number N, the set of x's would correspond, say, to the values of Q{r) 
or of g(r)Q(r), and the b's would correspond to the values of exp(—f^'o). 
In any event, we take the analogue of J to be 

•/. = / gwewiew - 2e-""]ds 
(A4-4) 

- A3(2x)~1 j j s(r)e(r)?(fo)e(fo)G(r„, r) dS„ dS 

where the subscript E indicates that we are dealing with an electric corner. 
It may be verified,* by giving Q{r) a small variation dQ(r), that the function 
Q(r) which makes Je stationary is the one which satisfies the integral 
equation (A4-3). Furthermore, when we assume Q{r) to satisfy the integral 
equation, the expression for Je reduces to an integral which is proportional 
to the integral (3-6) for the reflection coefiicient Re . More precisely, 

is given by 

Re = [Stationary value of Je\ (A4-5) 
ztt 

It follows that if, by some means, we have obtained a fairly good approxi- 
mation to Q, we may obtain a better approximation to Re hy computing 
Je and using the formula 

Re = ik{2v)~lJ e 

When we use the first approximation exp(—i^) for Q to compute /g it 
turns out that the above formula gives the third approximation, Re \ to 
the reflection coefficient. 

The magnetic corner may be treated in much the same way. The 
integral equation (5-6) for Piy, d) becomes, in the notation of this appendix, 

P(ro) = e^lc'u sin do + K2(27r)_1 J g{r)P{r)G{r0, r) dS (A4-6) 

in which the v in dS = dvdd is integrated from — oo to -f- oo and 6 from 0 toTr, 

* See Courant and Hilbert, Methoden der Mathematischen Physik, Julius Springer, 
Berlin (1931), page 176, where a similar problem is treated. 
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as before, and G(ro, r) now denotes the Green's function (5-5). We define 
Jh by 

= f g{r)P{r)[P{r) - l<ricv sin 0]d5 

(A4-7) 

-K2(27r)-1 JI g(.r)P{r)g{r0)P(r0)G{ro, r) dSo dS. 

JH is stationary with respect to small variations in P{r) when P{r) 
satisfies the integral equation (A4-6). Furthermore, from the integral 
(5-7) for Rh , 

Rh = [Stationary value of Jh\ (A4-8) 

which may be used in the same way as equation (A4-5) for Re . 
J. Schwinger has used variational methods with considerable success to 

deal with obstacles in wave guides.* However, his variational equations 
differ somewhat from those given here. Some light on the relation between 
Schwinger's equations and the present one may be obtained by returning 
to the simple algebraic equations (A4-1) and (A4-2). A rough analogue 
of the expression required to be stationary in Schwinger's theory is 

(a u^i + 2aiiXiXi -f anxl)/{biX\ (A4-9) 

The essential point here is that the stationary value of the expression 
corresponding to (A4-9) gives the value of an impedance or combination 
of impedances appearing in some equivalent circuit. Expression (A4-9) 
may be obtained by expressing J, defined by (A4-2), as a function of xy 
and y = xi/xy. J is still to be made stationary but now it is a function of 
xi and y. Solving dJ/dxy = 0 for Xy and setting this value of Xy in / gives 
the following function of y 

— {by -j- bvy)2 (an + 2ai2y + 022y2T_1
> 

which is the stationary value of J with respect to variations in xy when y is 
held constant. This function is still required to be stationary with respect 
to y. The same is true of its reciprocal which becomes (A4-9) when both 
numerator and denominator are multiplied by and the definition of y 
used. When (A4-1) is replaced by a larger number of equations similar 
considerations lead to a generalized form of (A4-9). The expression required 
to be stationary by Schwinger is obtained when the suras in the general- 
ized form are replaced by integrals. 

* An account of the method together with applications is given in "Notes on Lectures 
by Julian Schwinger: Discontinuities in Waveguides" by David S. Saxon. An account 
is also given by John W. Miles.11 
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A Set of Second-Order Differential Equations Associated with 
Reflections in Rectangular Wave Guides—^Application 

to Guide Connected to Horn* 

By S. O. RICE 
In dealing with corners and similar irregularities in rectangular wave guides 

it is sometimes helpful to transform the system, conformally, into a straight 
guide. Propagation in the straight guide may then be studied by an integral 
equation method, as is done in a companion paper, or by a more general method 
based upon a certain set of ordinary differential equations. Here the second 
method is developed and applied to determine the reflection produced at the junc- 
tion of a straight guide and a sectoral horn—a problem the first method is unable 
to handle. The WKB approximation for a single second-order differential 
equation is extended to a set of equations and approximate expressions for the 
reflection coefficient are derived. 

IN A companion paper1 the disturbance produced by a corner in a rec- 
tangular wave guide is examined by transforming the system, con- 

formally, into a straight guide. Although the medium in the straight guide 
is no longer uniform, an integral equation may be set up and approximate 
solutions obtained. 

In that paper the wave guide is assumed to have the same cross-section 
at + as at — oo. When this is not so, a conformal transformation may 
still be used to transform the system into a straight guide provided one 
dimension of the original cross-section is constant. However, now some 
advantage appears to be gained by replacing the integral equation by a set 
of differential equations. Since two cases appear, corresponding to E and II 
corners, there are two sets of equations to be considered. 

These two sets of equations are studied in the present paper. After their 
derivation in Sections 1 and 2 several remarks are made in Section 3 con- 
cerning their solution, special emphasis being laid on the problem of deter- 
mining the reflection coefficient. In the remainder of the paper the general 
theory is applied to a system formed by joining a rectangular wave guide 
to a horn, (with plane sides) flared in one direction. The reflection coeffi- 
cients for sectoral horns flared in the planes of the electric and magnetic 
intensity, respectively, are given approximately by equations (6-1) and (7-1). 
These approximations assume the angle of flare to be small so that, as it 
turns out, only the first equations of the respective sets need be considered. 

As was mentioned in the companion paper, Robert Piloty has recently 
made use of conformal transformations in wave guide problems. In his 

* Presented at the Second Symposium on Applied Mathematics, Cambridge, Mass., 
July 29, 1948. 

'See list of references at end of paper. 
136 
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method the propagation function g{v, 6) is derived graphically from the 
geometry of the wave guide irregularities and the result used in one or the 
other of two sets of differential equations which are equivalent to those 
derived below. Piloty's work is scheduled to appear soon in the Zeilschrifl 
fur angewandle Physik under the title "Ausbreitung el.-magn. Wellen in 
inhomogenen Rechteckrohren." 

1. Differential Equations when Electric Vector is in (x, y) Plane 

The partial differential equation to be solved is, from equation (2-3) of 
the companion paper1, 

r? + 5^ + 11 + e)li2G = 0 (1"1) 
dv2 90- 

where 

— = 0 at 0 = 0 and 0 = tt 
90 

1 + g(v, 0) = 1 + X OnCosnd = \f'{v -f id) \2 ir2/b' (1-2) n=0 

k = [(29/Xo)" — (b/af]' , Xo = free space wavelength 

In (1-2), z = a- + iy = J(v id) is the transformation which carries the 
wave guide system in the (a, y) plane into the straight guide of width 0 = tt 
in the {v, 0) plane. For the sake of simplicity we shall always assume that 
far to the left the system becomes a straight wave guide of dimensions 
a, b (b < a) such that only the dominant mode is propagated without 
attenuation. This insures that the a„'s (which are functions of v) will 
approach zero as j; —» — The dimension (of our system) normal to the 
(a, y) plane is a throughout. 

Since the normal derivative of Q vanishes on the walls at 0 = 0 and 0 = tt 
we assume 

<2 = Fo + F, cos 0 + Fz cos 20 + ■ • • , (1-3) 

where Fi, Fz, • • • are functions of v, and substitute it together with the 
Fourier series (1-2) for 1 + g{v, 0) in (1-1). 

The equations obtained by setting the coefficients of the resulting cosine 
series to zero are 

F" + (1 + flo^Fo + ^ Z anFn = 0 (1-4) 
/ n=l 

K + 1(1 + oo + a,m/2)k2 - m2]Fm + amk2F0 (1-5) 

+ r- Z' (flln-ml + an+7ff)Fn = 0 
2 n=l 
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where m = 1, 2, 3, ■ • • , = (FFm/dv2, and the prime on 2 indicates that 
the term w = w is to be omitted. In grouping the terms we have assumed 
that Fo is the major part of Q. 

The principal problem is to solve equations (1-4) and (1-5) when the 
fundamental mode Fo is of the form 

Fo = e-ikv + REeik\ v-+- <*> 
(1-6) 

Fo = Te(v), 

in which Re is a constant and Te(v) represents a wave traveling towards 
v = <x>. At z; = ± oo Fi, F2, • • • have the form of waves traveling (or 
being attenuated) away from the region around v = 0. As before, we shall 
be mainly interested in determining the reflection coefficient R. 

It is assumed that only the dominant mode is propagated without attenu- 
ation in the straight wave guide far to the left and hence Fi, F2, • • • all 
become zero as f — =0. 

2. Dijferenlial Equations when Magnetic Vector is in (x, y) Plane 

The partial differential equation is now given by equation (5-1) of the 
companion paper1 

0 + ^ + [1 + «(M)]«!P = 0 (2-1) 

where the dimension of the system normal to the (.-r, y) plane is now h, a is 
the dimension (in the {x, y) plane) of the straight guide at the far left and 

F = 0 at 0 = 0 and 6 = ir 
00 

1 + g(.v, 0) = 1 + S On cos nd (2-2) n=l 

k = 2a/Xo, Xo = free space wavelength 

c = (K2 - l)1'2 

Since F = 0 at 0 = 0 and 0 = r we assume 
CO 

F = ^ F„ sin nd (2-3) 
71=1 

where the F's are functions of v to be determined by the equations 

Fl -f- [k2(1 + flo — O2/2) — l]Fi + TT (On-1 — fln+l)Fn = 0 (2-4) 
Z n-2 

2 
Fm + U2(l +00 — Oim/l) — W2jFm + — (flm-l — flm+l)Fi 

2 « 
+ ^ 22, (0|m-n| — Om+n)F„ = 0 Z „=2 

(2-5) 
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in which m = 2, 3, 4, • • • and the primes on Fm and have the same 
significance as in (1-4) and (1-5). 

The principal problem here is to solve equations (2-4) and (2-5) simul- 
taneously subject to 

F\ = e~icv + Rueicv, v —* — <*> 
(2-6) 

Fi = Th(v), —> -f-co 

which again corresponds to a unit wave in the dominant mode incident from 
the left. Th(v) and the remaining F's correspond to outward traveling 
waves as before. Ft, F3 , • • • all approach zero as v —> — «. 

3. Remarks on Solving the Equations of Sections 1 and 2 for the Reflection 
Coefficient 

Suppose that we have a system in which the wave propagation is governed 
by the single differential equation 

^^=0 

where h = h{v) is a positive imaginary function of v, twice differentiable and 
such that h —> ic, c being a constant; as z) —> — co. We desire the solution 
of (3-1) which, together with its first derivative, is continuous everywhere 
and at ± co satisfies the conditions 

y = e-icv q- Rgicv^ V-+ -cc (3-2) 

y' + (h + h'/(2h))y -> o, ^ (3-3) 

The constant R (the reflection coefficient) is to be determined. Condition 
(3-3), in which the primes denote differentiation with respect to v, is sug- 
gested by the fact that we want y to represent a wave traveling in the positive 
v direction (the factor exp (iul) is suppressed). In writing (3-3) we have 
assumed that h is such that for large values of v the two solutions of (3-1) 
are asymptotically proportional to* 

y = /<-'*«, (3-4) 

^ = £(r) = icv + /* (h — ic) dv. (3-5) 
J—00 

Physical considerations suggest that solutions satisfying (3-2) and (3-3) 
exist in most cases of practical importance. However, if the function h is 
picked arbitrarily the corresponding solutions may be incapable of satisfying 

* S. A. SchelkunofT2 mentions that this approximation, sometimes designated by 
"WKB", goes back to Liouvillc. The ideas we shall use are quite similar to those in 
Schelkunoff's paper. 
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the conditions. For example, if h = icj(1 + exp 21) then h —> ic exp ( v) 
as d -> oo, and the solutions of (3-1) behave like Bessel functions of order 
zero and argument c exp (-v). It may be verified that these solutions do 
not satisfy (3-3). Again, condition (3-3) may be satisfied without y having 
much lesemblance to an outgoing wave at ?) = oo. Thus if h —> ia/v as 
v —> co f y inc eases like v" whe e iT — n — a = 0. When 0 < a < 1/2 both 
values of n lie between 0 and 1, and both solutions satisfy (3-3). Despite 
these sho tcomings it still seems best to etain (3-3) to specify the behavio" 
of y at t; = oo. 

It should be mentioned that P. S. Epstein3 has obtained the reflected 
wave by transforming the hypergeometric differential equation into the 
form (3-1). This method has been extended by K. Rawer' who gives a 
number of references in which the approximation (3-4) is used to study 
propagation in a medium having a variable dielectric "constant". An 
interesting paper on the general subject of reflection in non-uniform trans- 
mission lines has been written by L. R. Walker and N. Wax5. 

1. When most of the reflection occurs in a short interval, say near ?; = 0' 
R may be obtained by numerical integration of (3-1). One method is to 
start at w = 0 with the initial conditions y = 1, y' = 0 and work outwards 
in both directions. Let Yjji) denote this solution and 1 biy) the solution 
obtained by starting with y = 0, y' = 1. The general solution is 

y = CtYaiv) + C2Yb{v). (3-6) 

Cj and C2 are to be determined by the conditions 

y = (constant) /i_1/2e_£ , v > (3-7) 

y = (ic/h)1 /2[e-« + , v < Vx (3-8) 

where vi and vi are large negative and positive values, respectively, of v. 
These conditions lead to equations for Ci, C2, R: 

[y'+ d+yUV2 = 0 

[y' - 0-y + 2(ichy12 6"*],=,, = 0 (3-9) 

[y' + 0+y - 2(ichy'2Ret]v=Vl = 0 

in which ^ is given by (3-5) and 

6* = h± h'/{2h). (3-10) 

The required value of R is obtained by letting ^ - co, ^ > co in the 
expressions, which follow from (3-9), 
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7 = Ct/C, = -[{Y'a + e+Ya)/{Y'b + 

r = [y'/yUVl = [{Y'a + yYb)/{Ya + 7^)]^ (3-11) 

R = [(^ + r)/(^- — exp |^—2/a), — 2 J {h — ic) dv^ 

where the arguments of Ya(v) and l7'6(f) have been omitted for brevity. 
If h should change from a positive imaginary quantity to a positive real 

quantity in , Vz) and remain greater than some fixed positive number for 
v > D2 it may be shown that | 7? | = 1 (7 and F are real and Im 0+ = Im d~, 
Real 0+ = —Real 9~ a,tv = z'i). This complete reflection is to be expected 
from physical consideration. 

2. An exact expression for the reflection coefficient which holds when h 
satisfies the conditions following (3-1) (in particular it must not pass through 
zero anywhere in — <*> < v < =0) is 

R = [ e_Jy(?') ^ h~* dv (3-12) 
J— 00 CtV" 

where ^ is given by (3-5). Before this integral for R may be evaluated 
y{v), and hence R itself, must be known. Nevertheless, when R is small a 
useful approximation may be obtained by using the WKB approximation 

^y(zj) = {ic/h)1 l2e~t (3-13) 

-if 
2 " "" (3-14) 
1 r _2ir5,—5/2 fdKV 1 j—3/2d-K], 

= 2iLe |_i6 U/ 4a 

in which K = —h2. 
The expression (3-12) for R is obtained by letting z)o —> — in the integral 

equation 
.+M 

Thus 

R = t I e 25 // 4 5 dv 
dv- 

y(ro) = {ic/h)' e (o - J Ga(i'o, v)y{v)hi — h 5 dv, 

(■gt-to v ^ Vq 

Ga{vo,v)= -hhohirh . ' (3-15) 
[e?0"£, v > i'o 

— ^ = f h dv, h = h{vo), ^0 = ^(^'o). 
Jv 

Ga(vo, v) is the approximate Green's function suggested by (3-13). The 
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integral equation may be obtained from the differential equation (3-1) and 
the boundary conditions (3-2) and (3-3) by the one-dimensional analogue 
of the method used in Section 3 of the companion paper1. If we multiply 
both sides of 

(where 5(0) has been added for generality) by Ga(fo, v), integrate twice by 
parts over the intervals (7^ , vo — e), (t'o + e, ^2) with e > 0 and vi < 
Vq < V2, and finally let e —> 0 we obtain 

+ Ga(vo,vi)[y' - 0 y]v~v1 - Ga(To,v2)[y' + 0+y]„=l,2. 

Equation (3-15) follows when we put s{v) = 0 and let 7)i —► — co, V2—* 
It will be recognized that (3-17) and (3-15) are closely related to integral 
equations occurring in the work of R. E. Langer6 and E. C. Titchmarsh9. 

When h has, for example, one or more simple zeros in — 00 < d < co 
the integral in (3-15) contains a factor which becomes infinite and the 
integral equation fails. However, we shall not concern ourselves with this 
case beyond remarking that it involves results obtained by H. Jeffreys10, 
Langer7, Furry11 and others. 

3. So far we have been considering the solution of only one equation 
whereas we really require the solution of a set of equations. If it is apparent 
that most of the disturbance is given by the first equation of the set it may 
be possible to proceed by successive approximations, each of the remaining 
equations being of the form (3-16) with s{v) determined by the solution of 
the first equation. 

Another method of dealing with a system of N equations is that of numeri- 
cal integration. As a contribution towards obtaining the boundary condi- 
tions at large positive and negative values of v we shall state a generalized 
form of the WKB solution. Although this solution is related to the general 
results obtained by Birkhoff12, Langer8, and Newell13 concerning the asymp- 
totic forms assumed by the solutions of a system of ordinary linear differen- 
tial equations of the first order, it is worth mentioning explicitly. 

Let the m\h equation of the set be 

- *y = s(.) (3-16) 

yfo) = Ga(vo, v) ^(f) - y(v)^ ~ h 5J dv 
(3-17) 

ym = J2 Am„yn, m = 1, 2, • • ■ , N (3-18) 

where the ^4mn's are relatively slowly varying functions of v (see equations 
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(3-22) for a more precise statement of the assumptions) and the dots denote 
differentiation with respect to v. We shall reserve primes to denote trans- 
position of matrices. It is supposed that Amn = Anm (equations(2-4) 
plus (2-5) satisfy this condition and (1-4) plus (1-5) may be made to do so 
by setting Fg = 2ll2Fo). 

The solution of (3-18) is approximately 
AT 

ym = E Sm<[e(<d7 + (3-19) i=i 

where the df are the 2N constants of integration and 
N 

'Pi Fmt ^ ; ■dmn'S'nf 
n=l 

'Pi E SL = 1 (3-20) 

= /" vZl 
•Pi dv 

serve to determine <pi, l-i, and Sm( (the last to within a plus or minus sign). 
We assume the N roots <p~i, tpl, • ■ ■ ^ of the determinantal equation arising 
from the first of equations (3-20) to be unequal, and denote by ^ that square 
root of tp] which has a positive real part or, if the real part be zero, which has 
a positive imaginary part, vu is any convenient constant. 

The approximation (3-19) may be obtained by setting the assumed form 

ym = gm e±£, £ = <pdv 

in (3-18). The result is a set of N equations of which the wth is 

gm ± 2gm(p ± gm<f> + = E Amngn. (3-21) 
n 

We also assume 

M « I V2 M Irn I « 1 gmH « I gmV2 1 (3-22) 

gm — gmO + gml + gm2 T" * * ' 

where gmr and its first two derivatives satisfy inequahties of the type 

| gmO | » | gml | » 1 gm2 1 « ' ' 

The first and second order terras in (3-21) give, respectively, 

gmO<P Amn gnO = 0 ^ 
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Although the WKB approximation has the same form as (3-30) in the 
region where v is finite, we regard (3-30) and (3-31) as being the exact limiting 
forms of y. Hence, ^ may differ from f+. 

Letting — 00 in (3-29) and comparing the result with (3-30) gives the 
exact result 

r = \ f e~E [y - 2$S' - f»y]y(s) dv (3-32) J—co 

which leads to an approximation for the reflected wave when y{v) is known 
approximately. 

The integral equation (3-29) may be obtained by premultiplying both 
sides of y = by the transpose of the approximate Green's matrix 

Ga{vQ, v) = 
-iSes"20 S'0, v < v0 

-%SeSo-~S'0, v>Vo. 

= I 

and integrating by parts twice. It is seen that each column of Ga(vo, n) 
is an approximate solution of y = ^ly, in which the columnar constants of 
integration are the columns of So , and represents a wave traveling away 
from v0 in both directions. Ga(vo, v) is continuous at ^ and 

[- G.(.0. k)! - (I- G.(».. t')! = So S'o = _jv=to+0 Lof Jv=vo—0 

Thus the wth column of Ga^o, v) gives the approximate values of yi(v), 
* j y^), subject to the conditions that all these and all of their first 

derivatives are continuous dX v = vo except yn{y) which has the jump 
yn(flo + o) - yn{vo - 0) = 1. 

The presence of 

2$5, + $5" = $3' - QS'SS^1 

= QiS'S - S'^S-1 

in (3-29) and (3-32) makes the N variable case somewhat different from the 
case N = 1. 

5. When Zmn and Ymn are slowly varying functions of v the approximate 
solution of the transmission line equations 

dVm__^ 
i / > ^inn J n dv 71=1 

dJm _ _ y y 
J   / V mn ' n 

dv n=i 

(3-32) 
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where Zmn = Znm and Ymn = Ynm is, as in (3-19), 

Vm = t Sml [e
u ft + e-1' it] 

t=l 
N 

= Z Tml - e-t'it]. (3-33) (=1 

Here ^ is the integral of vi as given by (3-20), and vt is determined by 
setting the determinant of the matrix^2/ — ZY to zero. When (pi is known, 
Sm( and Tmi are determined (to within a plus or minus sign which may be 
absorbed by the constants df of integration) by the relations 

N 
fl Sml ^ 1 Zmn Tnl n=l 

N 
(ft Tmi = —^2 YmnSml (3-34) 

n=l 
N 

X/ SmlTml = 1 n«l 

The last condition, which arises from the condition that the equations for 
the second-order terms be consistent, may be regarded as a generalization 
of Slater's15 result for the case TV = 1. 

4. Transformation for Wave Guide Plus Horn 

The system to which we shall apply some of the preceding equations con- 
sists of a straight wave guide starting at &• = — oo and running to x = 0 
where it is connected to a sectoral horn. The horn is flared in the (.r, y) 
plane only. The dimension of the system normal to the {x, y) plane is 
constant and equal to a or b according to whether the electric or magnetic 
vector is in the plane of the horn. 

One might expect that the field in this system may also (in addition to 
our method) be determined by an alternating procedure of the type described 
by Poritsky and Blewett16 using the equations obtained by Barrow and 
Chu17 for transmission in the horn. However, we shall not investigate this 
possibility as we are primarily interested in using the system as an example 
to which we may apply the foregoing equations. 

If the total angle of the horn is 20:71-, and if the sides of the straight guide 
are at y = 0 and y = b, (assuming the electric vector to be in the plane of the 
horn), the equation of the lower side, i.e., the continuation of the side y = 0, 
of the horn is y = —x tan ott and that of the upper side is y = 6 -}- a; tan ott. 
liz = x + iy and w = n + then the Schwarz-Christoffel transformation 
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z = f(w) which carries the guide plus horn in the z plane into the straight 
guide with walls a,t d = 0, d = r in the w plane may be obtained from 

= (1 - (4.1) 
dw 

This gives, upon setting . 

^r- = \f'(v + |2 = [1 — cos 20 + ev\a $/r , dw 

the relation (4-2) 
1 + g(v, 0) = [1 - 2e2v cos 2d + eiv]a 

from which the Cn's may be obtained in accordance with (1-2). 

5. Expressions for the fl„'s for Horn 

The Fourier coefficients of 1 + g{v, 0) appearing in (1-2) and (2-2) are 
the same. It may be shown from (4-2) that 

\eiavF{-a,-a-,i\e-iv) , *>0 
1 + Uo = jr(l + 2a)/r2(l + «) , v = 0 (5-1) 

[F{-a, -a- 1; e4") , . < 0 

and 

[le^-^i-alrFt-a, r - r + 1; r4o)A! , ^ > 0 
02r ::= '|2( —Q:)r(l + Co)u=o/(l + «)r , f = 0 (5-2) 

\2e2T\-a)rF{-a, r - a; r + 1; eiv)/r\ , z; < 0 

where the F's denote hypergeometric functions, r = 1, 2, • • • and we have 
used the notation 

(/3)o = 1, (/3)r = /3(/3 + 1) ■ • • 03 + r - 1) (5-3) 

When n is odd, a„ = 0 because of symmetry about d = tt/2. The expres- 
sions for a > 0 in (5-1) and (5-2) may be verified by expanding the two 
factors in 

4i / n\ 4oii/i 2iB—2v\a/4 —210—2 b no; 
1 + g(.v, 6) = e {1 - e ) (1 - e ) 

by the binominal theorem and picking out the terms containing e2rie. When 
j; < 0 we use the relation 1 + g{v, 0) = e4a"[l + g(—w, 0)], and when w = 0 
we may sum the hypergeometric series. 

Differentiation of (5-1) and (5-2) leads to 

C 4Q:e4a" F(-a, 1 - 1; e-4") , f > 0 
— (1 -f- flo) := j 2q:(1 + oo)«=o > v = 0 (5-4) 
dv [4a2eivF{l - a,l - a-,2;eiv, v<0 
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16a:"e4Q''(l — e"*")'""1 F{a, a; 1; e-4"), v > 0 

16a2^"(l - eivfa-lF{a, a; 1; e4"), f < 0 

where in obtaining (5-5) use was made of Euler's transformation 

F{a} b-, c; x) = (1 — x)c~a~bF(c — a, c — b; c]x) 

It is seen that d{l a^/dv is continuous at = 0 but the second deriva- 
tive becomes infinite as i/*"-1. 

When 1 + fln and a2 are expressed as the customary integrals defining the 
Fourier coefficients it is seen that one of the coefficients occurring in equation 
(2-4) for Fi is given by 

1 + flo - 02/2 = ? f (1 - 2ev cos 20 + ev)a sin2 0 dd 
TT Jo 

= (e2" + l)2aF( —a, 5; 2; sech2 v) 

At f = 0, 1 -j- flo — 02/2 and its first and second derivatives are continu- 
ous, their values being 

r(2 + 2a) 2ar(2 + 2a) 
rv^ ' 

(5-7) 

(5-6) 

r(i + «)r(2 + a)' r(i + a)r(2 + a)' 

4a(2a2 + 2a + l)r(l + 2a) 

1 flo — O2/2 — 

r(i + a)r(2 + a) 

respectively. These may be obtained by differentiating the integral in 
(5-6) and setting v = D. 

A second expression for 1 + Oo — Qi/l follows from (5-1) and (5-2): 

e4a,[/?(—a, —a; 1; e-4") -f- ae~-vF{—oi, 1 — a; 2; e~iv)], 

v > 0 

F(—a, —a; 1; eiv) + ae2"F(—a, I — a; 2; e4"), 

^ < 0. 

(5-8) 

6. Approximation to Reflection Coefficient of Horn, Electric Vector in (.v, y) 
Plane 

When the flare angle 2a7r of the horn is very small the reflection coefficient 
may be shown to be 

^= S+0(a2) (6-1) 
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where 0(a2) denotes correction terms of the order a2. This result is based 
upon the fact that when terms of order a- are neglected the set of dif- 
ferential equations (1-4) and (1-5) reduce to the single equation 

+ (1 + doWF, = 0 (6-2) 

where, from (5-1, 4, 5), 

zi > 0 z; < 0 

1 + flo 1 

d 
- (1 + Co) Aae4"" 0 
av 

d2 

"To (1 + do) 16+++! - e-4")2"-1 16a2eiv(l - e*")2"-1 
cr 

The reflection coefficient (6-1) is the one corresponding to the differential 
equation (6-2) and may be computed by setting 

(1 + ao)k2 = —h2 = K (6-3) 

in the integrals (3-14). 
The expression (6-1) for Re may be obtained quickly (but the procedure 

is not trustworthy) by assuming that the principal contribution to the first 
integral in (3-14) comes from the region close to z; = 0, say in — e < z) < e, 
where the second derivative of fr1'2 is infinite but integrable. When the 
integration is performed approximately by replacing the second derivative 
by the first, (3-14) gives 

(6-4) 

= 27* \jv(1 + <,oril. = Yk 

where e is assumed to be so small that 1 + Co is effectively unity and 
J(1 + ao)/dv changes from 0 at — e to 4q! at + c. 

A more careful investigation based on the second integral in (3-14) also 
leads to the value (6-1) for Re . It further suggests that possibly most of 
the correction term, denoted by 0(q:2) in (6-1), is given by 

2 r" 1 Sx 
a r iv = _L + e [Si(x) _ t/2 + iCiix)] (6-5) 
2ik Jo 4z.T 4i 

with x = k/a and 2^ = i.vfexp (2q:z;) - 1]. Si(x) and Ci{x) denote the 
integral sine and cosine functions. Incidentally, the rather curious result 
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00 00 4 00 
Z Z , , v = 2 Z 
n=i m=i mnym + «) n=i 

turned up in the investigation of the orders of magnitude of the various 
terms. 

7. Approximation to Reflection Coefficient of Horn, Magnetic Vector in (a:, y) 
Plane 

The work of this section is quite similar to that in Section 6 except that 
here we enter into more of the details. We shall show that when a is small 
the reflection coefficient appearing in equation (2-6) is 

Rb = g + 0(a2). (7-1) 

From (2-4) the analogue of the differential equation (3-1) is 

F? + [k2(1 + ao - 02/2) - IJFx = 0 (7-2) 

and the K appearing in the second of equations (3-14) is now 

K = —W = fc2(l -f co - C2/2) - 1 (7-3) 

The largest terms in the expression (5-8) for 1 -f- Co — ai/l yield, to within 
terms of 0(a), 

K = k-^ + atr2") - 1 , 2) > 0 

K = K2(4a e4"" - l(xe-~v) (7-4) 

K = K2(16a2e4a<' + 4ae-21') 

K = k
2(1 + ae2") - 1 = c2 + , v <0 

K = 2cLK-e-v (7-5) 

K = 4aKV 

where the dots denote differentiation with respect to v and c2 = k2 — 1. 
We have retained the a2 in K as given by (7-4) because at this stage we do not 
know whether it may be neglected or not. 

When » < 0, the definition (3-5) of ^ and (7-5) yield 

ij = icv + 'i / (A'3 — c) dv 
J—oo 

r 0-6) 
= icv + ic / [(1 -f- k2 c ' aclv)^ — \\ dv = icv -f- 0(a) 

J— co 
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and we have 
.0 
f e-2(K-5,2K2dv= f 6~2*cv c~5 4q:2 k4 e*v dv 

Loo Loo (7-7) 

= 0(a2) 

which may be neglected. The other integral suggested by (3-14) is 

f0 e-2(K-3l2Kdv= f" e~2<cv c~a 4aK e2v dv 
Loo 4-« (7-8) 

= 2aK2 c 3/(l — ic) 

When f > 0, 

( = i:„o + i f 1«V' + - 11' to 

= i ["(K'e'-'-rfdv + OM, 
Jo (7-9) 

= ~[x — tan-1 x — c tan-1 c\ -j- 0(q;), 
la. 

x = (kV" - \)\ 2a dv = x{l + X2)-1 dx 

In the integrals containing exp (—2i») as a factor, £ may be taken to be icv 
since the integrand becomes negligibly small by the time icv differs signifi- 
cantly from (7-9). We have 

f XT** jfdv = fe-'Ve" " D'1 k a\ie'" - le*')* dv 
Jo Jo 

= C e-nx-*K a2 \6e*av dv (7-10) 
Jo 

= 8a r + x-2) dx 
Jc 

where the integrals containing e-2" and e-4" have been neglected since their 
contribution is 0(a2). When a becomes exceedingly small the exponential 
term oscillates rapidly and the last line of (7-10) is likewise 0(a2). This may 
be verified by integrating by parts, starting with 

exp Y dx = ia .r_2(l + x2)(7(exp F), 

Y = —i(x — tan-1:*:) /a 

The last integral which must be considered is 
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fe^K-^Kdv = re-%2eiav - 1)-* eiav + 4a^^
2,'] dv 

Jo Jo 

= 16k2 a f e~2* x~3 eiav dv 
Jo 

■ f —2icv—2v —3 2 . , (7-11) + / e c k 4q: dv 
Jo 

= + 2a<VV(l + ic) 

= 0(a2) -|- 2aK c 3/(l ic). 

That the integral having .r as the variable of integration is 0(a2) may be shown 
as in (7-10). 

When we combine our results in accordance with (3-14) we obtain 

= <r2t[AA'-s,!A:! - i/r3"A:] ^ Z I j— 00 

= i + * W) ^ 
4i |_1 — ic 1 + icj 

= ia/(2c3) 0(q!") 

which is (7-1). 
If, instead of discarding (7-10) because it is 0(q;2), we retain it and the 

corresponding integral in (7-11) (in the hope that they represent most of the 
difference between the approximate value (7-1) for Rh and the true value) 
we obtain the approximation 

RH = ifL -i? f + J.-1) dx (7.J3) 
2c3 4 Jc 

in which the integral may be evaluated by numerical integration. 
The approximations (6-1) and (7-1) for the reflection coeflicients may also 

be obtained from an equation given by N. H. Frank.18 However, care 
must be taken to suitably define the wave guide characteristic impedance 
which appears in his expression. 

8. Specula/ion on the Reflection Obtained from Horn Flared in Both Directions 

All the work from Section 4 onward applies only to a horn flared in one 
plane. Nevertheless, it is interesting to speculate on how close an estimate 
of the reflection from a three-dimensional horn may be obtained by super- 
posing the two reflection coefficients (6-1) and (7-1). It must be kept in 
mind that the flare angles (the a's) may be different in the two directions, 
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that k is given by (1-2) and c by (2-2), and finally the difference (not the 
sum) oi Re and R,t must be taken. In (6-1) Rb is the reflection coefficient 
of the component of the magnetic vector normal to the (x, y) plane (which 
is proportional to Q), while in (7-1) Rh is the reflection coefficient of the 
transverse electric vector (which is proportional to F) and there is a difference 
in sign just as in the case of voltage and current reflection coefficients. If 
a > b and Xo is the wavelength in free space, the superposition gives the 
following expression for the reflection coefficient of the electric vector: 

R — Rg — Re 
■ " . (8-1) 

= | [(2a/Xo)2 - irW[(2fl/Xa)2 - 1] - W*) 

where 2iTaH and 2-7^ are the total horn angles in the planes of H and E, 
respectively. Of course this approximation can be expected to hold only 
when otg and as are small. 

9. Numerical Calculations—Rg for 60° Horn 

The value of Rg , the reflection coefficient when the magnetic vector lies 
in the plane of the flare, was computed on the assumption that only the 
dominant mode need be considered.* Thus, instead of the system of 
equations (2-4) and (2-5), only their simplified version, namely the single 
second order differential equation (7-2), was used. This equation may be 
written as 

+ ifF, = 0 (9-1) 
dv1 

where, according to (5-6), 

K = -W = k2(1 + uo - a,/2) - 1 (9-2) 

1 -h flo - fl2/2 = (e2" + l)2Q:i?(—a, 1/2; 2; sech2 v). 

The problem was to obtain the Rg appearing in that solution iq of (9-1) 
which satisfies the boundary conditions (2-6). 

No computations for Re were made. 
In the first method of calculation the integrals in the approximation 

(3-14), namely 

I<„ = ~ T e-^KT1" ^ KT1" dv (9-3) 
2i J-oo dv2 

(K* — c) dv, 

* I am indebted to Miss M. Darville for carrying out the computations of this section. 

2£ = 2icv + 2i 'L 
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were evaluated by Simpson's rule. The second derivative of K-lli was 
computed from the even order central differences of For a = 1/6, 
corresponding to an angle of 7r/3 between the two sides of the horn, calcula- 
tions at two representative wave lengths led to the table 

Xo c K2 = 1+C2 Rh (9_4) 
1.549a .8173 1.6680 -.0420 + *.0724 
1.610a .7376 1.5441 -.0551 + f.0878 

An idea of the variation of K may be obtained from its values at — oo, 
— .6, 0, .6, 1.8, 3.6 which are approximately .67, .76, .98, 1.62, 4.56, 17.4, 
respectively. The range of integration was —3 < v < 4.4. 

The second method of computation used the formulas (3-11) with Fi 
playing the role of y. The differential equation (9-1) was integrated by the 
Kutte-Runge method, the interval between successive values of v being 
0.2. For c = .8173 the values obtained were 

''i ''2 T F Rb (9-5) 
-.6 .6 -.202 - i.981 -.142 -i.794 -.0167 + 7.0658 

-1.2 1.2 -.218 - i1.004 -.049 - 7.696 -.0525 + 7.0754 
-1.8 1.8 -.225 - 7.989 +.086 - 7.716 -.0512 + 7.0753 
-2.4 2.4 -.220 - 71.000 .136 - 7.842 -.0424 + 7.0722 

In order to gain an idea of the meaning of these values of v it should be 
recalled that 7c = ^ + id and the walls of the guide are at 0 = 0 and 0 = tt. 
An interval of length tt = 3.14 • • • in the v direction therefore corresponds 
roughly to a distance equal to the width of the guide. The above table 
indicates that, loosely speaking, most of the reflection occurs close to the 
junction of the horn and wave guide. 

The last value of Rh in (9-5) agrees quite well with the value —.0420 + 
7.0724 obtained from the approximate expression (9-3). It appears that the 
method leading to (9-5) is superior to the one based on (9-3) since, in theory, 
it may be made as accurate (insofar as the single equation (9-1) may replace 
the set of equations (2-4, 5)) as desired. Moreover, less actual work seems 
to be required. 

The approximation (7-1) yields, for c = .8173, 

_ ia _ i{\) _ 
" 2C3 2(.8173)3 

which is considerably in error, as we might expect, since a = 1/6 is not small, 
liowever, if we use the approximation (7-13) and evaluate the integral 
by Simpson's rule we obtain 
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Rn = U53 - (.061 + i.077) 

= -.061 + i.076 

which is in better agreement with the earlier values of Rh ■ 
No similar computations have been made to test the corresponding 

approximation for Re obtained when the correction term (6-5) is added to 
the leading term in (6-1). However, it appears that for a = 1/6 and the 
representative value k = .38, (6-5) is only about one sixth as large as ioc/{2k) 
and hence is relatively unimportant. 
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Abstracts of Technical Articles by Bell System Authors 

Pulse Echo Measurements on Telephone and Television Facilities} L. G. 
Abraham, A. W. Lebert, J. B. Maggio, and J. T. Schott. Pulse echo 
measurements have been used on telephone and television facilities since 
1940 to locate impedance irregularities and control quality in manufacture 
and installation. These sets send a pulse into a line and observe on an 
oscilloscope the echoes returned from irregularities. The shape and width 
of the pulse, the rate at which it is repeated and the pulse magnitude are 
important in determining the accuracy of the results and the requirements 
of the measuring apparatus. The "coaxial pulse echo set" is used for factory 
and field testing of coaxial cables. The "Lookator" was developed for use 
on much narrower band systems such as spiral-four field cable and open 
wire lines. 

Television Network Facilities.- L. G. Abraham and H. I. Romnes. This 
paper describes television network facilities which are needed to connect 
studios and other pickup points to transmitters in the same and in distant 
cities, and discusses their transmission characteristics. Short-haul tele- 
vision circuits may be by microwave radio or over wire circuits. Long- 
haul television connections may be by radio relay or over coaxial systems 
of the type originally developed for carrier telephone circuits. Transmission 
requirements include adequate frequency band, accurate gain and phase 
equalization, and freedom from interference resulting from excessive noise, 
crosstalk, or modulation. Radio and wire systems are under development 
to provide extensive high-quality television networks. 

A Carrier Telephone System for Rural Service} J. M. Barstow. The 
Ml carrier telephone system was designed for the purpose of extending tele- 
phone service into areas served by rural power lines, but not served by co- 
existing rural telephone lines. To the local office operator and to a carrier 
subscriber the service provided is the same, so far as procedures involved 
in establishing a connection are concerned, as a voice-frequency line. 

At the office end of the system a telephone wire line extends from the 
office to a point near the power line. Here is located a converter (called 
common terminal) which converts the voice-frequency signal to be trans- 
mitted to the subscriber to an amplitude-modulated double-sideband carrier 
signal. This signal is coupled to the power line through a coupling unit 

1 Trans., A. I. E. E., vol. 66, 1947 (pp. 541-548). 2 Transactions, A. I. E. E., vol. 66, 1947 (pp. 459-464). 3 Trans. A. I. E. E., vol. 66, 1947 (pp. 501-507). 
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and high-voltage capacitor. At the subscriber's location the signal is taken 
off by similar means and led by separate wires to the subscriber premises, 
where it is reconverted to voice frequency by means of a subscriber terminal. 
A signal transmitted from the subscriber to the central office goes through 
similar conversions. 

The usual number of parties per two-way channel may be assigned ac- 
cording to local custom, and divided-code or full-code ringing is provided. 
Equipment is available for five two-way channels over a single-power line 
employing frequencies in the range 150 to 425 kilocycles. A sixth channel 
has been discontinued because of radio interference. 

A description is given of the manner in which the power line should be 
treated in order to reduce reflection effects. The power line treatment does 
not affect its capabilities in regard to power transmission. 

Application of Rural Carrier Telephone System.* E. H. B. Bartelink, 
L. E. Cook, F. A. Cowan,* and G. R. Messmer. This paper deals with 
the application of a carrier system developed primarily for providing rural 
telephone service over power distribution circuits in areas where this means 
of extending telephone service may be more attractive than other avail- 
able methods. The modifications required in the power circuits to permit 
carrier frequency transmission are described, including the effect of these 
modifications on the operation of the power system. Construction fea- 
tures also are discussed. The use of the rural carrier telephone system over 
open wire telephone pairs is discussed briefly. 

An Improved Cable Carrier System} H. S. Black, F. A. Brooks, A. J. 
Wier and I. G. Wilson. A new 12-channel cable carrier system is described 
which is suitable for transcontinental communications. Important fea- 
tures are negative feedback amplifiers of improved design, new arrangements 
for accurate equalization of the cable loss, and automatic thermistor regu- 
lators which continuously control the transmission of each system. 

Joint Use of Pole Lines for Rural Power and Telephone Services} J. W. 
Campbell,* L. W. Hill, L. M. Moore, and H. J. Scholz. The use of 
poles to carry both power and communication circuits is not new, having 
been employed before 1890. There are today more than 6,000,000 poles 
used jointly by power and telephone organizations in the United States. 
The great bulk of these poles are located in urban areas where the voltages of 
the power circuits concerned are generally less than 5,000 volts and the 
span lengths between poles generally do not exceed about 150 feet. 

As power and telephone lines were extended into rural territory, new 

4 Trans. A. I. E. E., vol. 66, 1947 (pp. 511-517). 
6 Trans. A. I. E. E., vol. 66, 1947 (pp. 741-746). 
« Trans. A. I.E. E., vol. 66, 1947 (pp. 519-524). 
* Of Bell Tel. Labs. 
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problems were encountered in the application of joint construction because 
of the use of longer spans and higher voltages for the power circuits and the 
increased noise induction in the necessarily longer exposures. However, 
progress in the art through cooperation of the telephone industry with the 
Edison Electric Institute and the Rural Electrification Administration has 
brought about the developments reviewed in this paper which now make 
long span higher voltage rural joint use feasible where conditions are favor- 
able. 

Atomic Energy.1 Karl K. Darrow. {The 1947 Norman Wait Harris 
Lectures at Northwestern University.) This little book, which reproduces 
four lectures substantially as they were given, is at once a very readable and a 
very accurate account of enough of the facts of nuclear physics to convey a 
good understanding of the atomic bomb and the possibilities of atomic 
power. The scientific accuracy of the presentation is instanced by the 
author's apologies for his title; he emphasizes that in reality his subject is 
nuclear energy, but that on the day of Hiroshima somebody wrote of an 
atomic bomb and the misusage spread like a chain reaction. 

The role of electrons, protons and neutrons in atom building is told in a 
simple and entertaining style (but with a degree of ornamentation that may 
disturb some readers), and the discussion of rest mass and the Einstein rela- 
tion between mass and energy is pointed up by well-chosen numerical il- 
lustrations beginning with the lightest composite nuclei. The role of fast- 
particle bombardment in increasing and decreasing the size of nuclei is also 
explained. The reader thus acquires a clear understanding of the basic 
phenomena for which nuclear fission is famed. The text is augmented by 
well-chosen cloud chamber photographs. 

Though the author's treatment is accurate, his style and marshalling of 
facts are very readable. This is well illustrated by the closing paragraph 
of the third lecture, which follows immediately upon the author's develop- 
ment of the idea of the chain reaction: 

Here is the climax of my lectures, and here is where you should be frightened; and, 
if I had an orchestral accompaniment, here is where the orchestra would have mounted 
to a tumultuous fortissimo, with the drums rolling and the trumpets blaring and the 
tuba groaning and the strings in a frenzy, and whatever else a Richard Wagner could 
contrive to cause a sense of Gotterdiimmerung; for, let there be no doubt of it, this is 
something that could bring on the twilight of civilization. But at this crucial junc- 
ture I have only words to serve me, and all the words are spoiled. We speak of an 
awful headache, a dreadful cold, a frightful bore, and an appalling storm; and now 
when something comes along that is really awful and dreadful and frightful and 
appalling, all these words have been devaluated and have no terror in them. I have 
to fall back on the saying, of unknown origin and dubious value, that the strongest 
emphasis is understatement. Let then this picture, with its circles and its symbols 
and its numbers, be considered an emphatic understatement of the most terrific thing 
yet known to man. 

7 Publishedby John Wiley & Sons,Inc., New York, and Chapman & Hall, Ltd., London. 
80 pages. $2.00. 
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The book will be welcomed particularly by those who at one time or 
another have had a general acquaintance with radio-activity, cosmic rays 
and the results of cloud chamber research, but whose vocational activities 
have forced such special knowledge well into the nebulous regions of their 
memories. 

Network Theory Comes of Age* R. L. Dietzold. The third decade in 
the growth of modern network theory, the decade of maturity, is considered 
in this review of the advances in network theory evolved over the past ten 
years. New types of networks developed during the war are included. 

Thermistors as Components Open Product Design Horizons* K. P. 
Dowell. These thermally sensitive resistors with high negative tempera- 
ture coefficients have come a long way since they were laboratory curiosities 
and are now available in a wide range of types with diverse and stable char- 
acteristics. You may be able to transfer to your own problems some of the 
unusual design ideas described here. 

Gas Pressure for Telephone Cables}0 R. C. Giese. Communication 
cables consist of a number of electric conductors insulated from one another 
and encased in a metal sheath. This encasement is subjected to numerous 
hazards, such as those caused by electrolysis, crystallization, various kinds 
of mechanical damage, and lightning burns. Any damage to the sheath 
which will permit water to enter the cable will decrease the effectiveness of 
the insulation material and thus cause an impairment or an interruption to 
the service. The entrance of moisture through small openings in the sheath 
can be materially retarded when the space inside the cable, not occupied by 
the conductors or insulation, is filled with a gas maintained under controlled 
conditions. Nitrogen is the gas usually used for this purpose because it 
is inert and does not combine chemically with the conductors or insulation. 
In addition the use of the gas provides a method of locating openings in the 
sheath by means of a pressure gradient, which is a material aid in cable main- 
tenance. 

Rural Radiotelephone Experiment at Cheyenne Wells, ColoP J. Harold 
Moore, Paul K. Seyler and S. B. Wright. The first rural party-line 
telephone service by radio installations operating on the subscribers' prem- 
ises was inaugurated August 20, 1946. This paper describes the equipment 
used, how it operates, and the results obtained during the preliminary testing 
and the initial period of regular operation. Radio is one of several new 
methods which the Bell System is exploring in its program for extension of 
telephone service in rural areas. It is expected that experience gained in 

8 Electrical Engineering, September 1948 (pp. 895-899). 0 Elec'l. Mfg., August 1948 (pp. 84^91). 10 Transactions, A. I. E. E., vol. 66, 1947 (pp. 471-478). 
" Trans. A. I.E. E., vol. 66, 1947 (pp. 525-528). 



ABSTRACTS OF TECHNICAL ARTICLES 161 

this experiment will aid in developing a standard rural radiotelephone 
system. 

Ejfect of Passive Modes in Traveling-Wave Tubes}2 J. R. Pierce. As 
the beam current in a traveling-wave tube is increased, the local fields due 
to the bunched beam become appreciable compared with the fields propa- 
gating along the circuit. The effect is to reduce gain, to increase the electron 
speed for optimum gain, to introduce a lower limit to the range of electron 
speeds for which gain is obtained, and to change the initial loss. 

New Test Equipment and Testing Methods for Cable Carrier Systems.12 

W. H. Tidd, S. Rosen and H. A. Wenk. Three portable test sets developed 
for the improved cable carrier telephone system are described: A high sen- 
sitivity selective transmission measuring set covering 10 to 150 kc, a decade 
oscillator for frequencies from 2 to 79 kc, and a tube test set. 

A New Microwave Television System}* J. F. Wentz and K. D. Smith. 
A microwave point-to-point radio system is described which is designed for 
the transmission of television programs. This system is intended to sup- 
plement wire facilities for local distribution of television signals from pickup 
points to studios or from studios to broadcast transmitters and to long dis- 
tance network terminals. The circuits and equipment are described in 
detail. Performance obtained in tests during 1946 is given. 

12 Proc. I. R. E., August 1948 (pp. 993-997). 13 Trans. A. I.E. E., vol. 66, 1947 (pp. 726-730). 14 Transactions, A. I.E. E., vol. 66, 1947 (pp. 465-470). 
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