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Error Detecting and Error Correcting Codes 

By R. W. HAMMING 

1. Introduction 

THE author was led to the study given in this paper from a considera- 
tion of large scale computing machines in which a large number of 

operations must be performed without a single error in the end result. This 
problem of "doing things right" on a large scale is not essentially new; in a 
telephone central office, for example, a very large number of operations are 
performed while the errors leading to wrong numbers are kept well under 
control, though they have not been completely eliminated. This has been 
achieved, in part, through the use of self-checking circuits. The occasional 
failure that escapes routine checking is still detected by the customer and 
will, if it persists, result in customer complaint, while if it is transient it will 
produce only occasional wrong numbers. At the same time the rest of the 
central office functions satisfactorily. In a digital computer, on the other 
hand, a single failure usually means the complete failure, in the sense that 
if it is detected no more computing can be done until the failure is located 
and corrected, while if it escapes detection then it invalidates all subsequent 
operations of the machine. Put in other words, in a telephone central office 
there are a number of parallel paths which are more or less independent of 
each other; in a digital machine there is usually a single long path which 
passes through the same piece of equipment many, many times before the 
answer is obtained. 

In transmitting information from one place to another digital machines 
use codes which are simply sets of symbols to which meanings or values are 
attached. Examples of codes which were designed to detect isolated errors 
are numerous; among them are the highly developed 2 out of 5 codes used 
extensively in common control switching systems and in the Bell Relay 
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Computers,1 the 3 out of 7 code used for radio telegraphy,2 and the word 
count sent at the end of telegrams. 

In some situations self checking is not enough. For example, in the Model 
5 Relay Computers built by Bell Telephone Laboratories for the Aberdeen 
Proving Grounds,1 observations in the early period indicated about two 
or three relay failures per day in the 8900 relays of the two computers, repre- 
senting about one failure per two to three million relay operations. The self- 
checking feature meant that these failures did not introduce undetected 
errors. Since the machines were run on an unattended basis over nights and 
week-ends, however, the errors meant that frequently the computations 
came to a halt although often the machines took up new problems. The 
present trend is toward electronic speeds in digital computers where the 
basic elements are somewhat more reliable per operation than relays. How- 
ever, the incidence of isolated failures, even when detected, may seriously 
interfere with the normal use of such machines. Thus it appears desirable 
to examine the next step beyond error detection, namely error correction. 

We shall assume that the transmitting equipment handles information 
in the binary form of a sequence of 0's and 1's. This assumption is made 
both for mathematical convenience and because the binary system is the 
natural form for representing the open and closed relays, flip-flop circuits, 
dots and dashes, and perforated tapes that are used in many forms of com- 
munication. Thus each code symbol will be represented by a sequence of 
0's and 1's. 

The codes used in this paper are called systematic codes. Systematic codes 
may be defined3 as codes in which each code symbol has exactly n binary 
digits, where m digits are associated with the information while the other 
k — n — m digits are used for error detection and correction. This produces 

a redundancy R defined as the ratio of the number of binary digits used to 
the minimum number necessary to convey the same information, that is, 

This serves to measure the efficiency of the code as far as the transmission 
of information is concerned, and is the only aspect of the problem discussed 
in any detail here. The redundancy may be said to lower the effective channel 
capacity for sending information. 

The need for error correction having assumed importance only recently, 
very little is known about the economics of the matter. It is clear that in 

1 Franz Alt, "A Bell Telephone Laboratories' Computing Machine"—I, II. Mathe- 
matical Tables and Other Aids to Computation, Vol. 3, pp. 1-13 and 60-84, Jan. and 
Apr. 1948. 2 S. Sparks, and R. G. Kreer, "Tape Relay System for Radio Telegraph Operation, 
R.C.A. Review, Vol. 8, pp. 393-426, (especially p. 417), 1947. 

3 In Section 7 this is shown to be equivalent to a much weaker appearing definition. 

R = n/m. 
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using such codes there will be extra equipment for encoding and correcting 
errors as well as the lowered effective channel capacity referred to above. 
Because of these considerations applications of these codes may be expected 
to occur first only under extreme conditions. Some typical situations seem 
to be: 

a. unattended operation over long periods of time with the minimum of 
standby equipment. 

b. extremely large and tightly interrelated systems where a single failure 
incapacitates the entire installation. 

c. signaling in the presence of noise where it is either impossible or un- 
economical to reduce the effect of the noise on the signal. 

These situations are occurring more and more often. The first two are par- 
ticularly true of large scale digital computing machines, while the third 
occurs, among other places, in "jamming" situations. 

The principles for designing error detecting and correcting codes in the 
cases most likely to be applied first are given in this paper. Circuits for 
implementing these principles may be designed by the application of well- 
known techniques, but the problem is not discussed here. Part I of the paper 
shows how to construct special minimum redundancy codes in the follow- 
ing cases: 

a. single error detecting codes 
b. single error correcting codes 
c. single error correcting plus double error detecting codes. 

Part II discusses the general theory of such codes and proves that under 
the assumptions made the codes of Part I are the "best" possible. 

PART I 

SPECIAL CODES 

2. Single Error Detecting Codes 

We may construct a single error detecting code having n binary digits 
in the following manner: In the first n — \ positions we put m — 1 digits of 
information. In the w-th position we place either 0 or 1, so that the entire n 
positions have an even number of 1's. This is clearly a single error detecting 
code since any single error in transmission would leave an odd number of 
1's in a code symbol. 

The redundancy of these codes is, since m = n — 1, 

It might appear that to gain a low redundancy we should let n become very 
large. However, by increasing n, the probability of at least one error in a 
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symbol increases; and the risk of a double error, which would pass unde- 
tected, also increases. For example, if /> <K 1 is the probability of any error, 
then for 11 so large as l//», the probability of a correct symbol is approxi- 
mately 1/e = 0.3679 . . . , while a double error has probability l/2e = 
0.1839  

The type of check used above to determine whether or not the symbol 
has any single error will be used throughout the paper and will be called 
a parity check. The above was an even parity check; had we used an odd 
number of Ts to determine the setting of the check position it would have 
been an odd parity check. Furthermore, a parity check need not always 
involve all the positions of the symbol but may be a check over selected posi- 
tions only. 

3. Single Error Correcting Codes 

To construct a single error correcting code we first assign m of the n avail- 
able positions as information positions. We shall regard the m as fixed, but 
the specific positions are left to a later determination. We next assign the k 
remaining positions as check positions. The values in these k positions are 
to be determined in the encoding process by even parity checks over selected 
information positions. 

Let us imagine for the moment that we have received a code symbol, with 
or without an error. Let us apply the k parity checks, in order, and for each 
time the parity check assigns the value observed in its check position we 
write a 0, while for each time the assigned and observed values disagree 
we write a 1. When written from right to left in a line this sequence of k 0's 
and Ts (to be distinguished from the values assigned by the parity checks) 
may be regarded as a binary number and will be called the checking number. 
We shall require that this checking number give the position of any single 
error, with the zero value meaning no error in the symbol. Thus the check 
number must describe m -\- k \ different things, so that 

2" >m + k+\ 

is a condition on k. Writing n = m -\- k v/e find 

Using this inequality we may calculate Table I, which gives the maximum 
m for a given n, or, what is the same thing, the minimum n for a given m. 

We now determine the positions over which each of the various parity 
checks is to be applied. The checking number is obtained digit by digit, 
from right to left, by applying the parity checks in order and writing down 
the corresponding 0 or 1 as the case may be. Since the checking number is 
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Table I 

n m Corresponding k 

1 0 1 
2 0 2 
3 1 2 
4 1 3 
5 2 3 

6 3 3 
7 4 3 
8 4 4 
9 5 4 

10 6 4 

11 7 4 
12 8 4 
13 y 4 
14 10 4 
15 n 4 

16 11 5 
Etc. 

to give the position of any error in a code symbol, any position which has 
a 1 on the right of its binary representation must cause the first check to 
fail. Examining the binary form of the various integers we find 

1 = 1 
3 = 11 
5 = 101 
7 = 111 
9 = 1001 

Etc. 

have a 1 on the extreme right. Thus the first parity check must use positions 

1, 3, 5, 7,9, ■■■ . 

In an exactly similar fashion we find that the second parity check must 
use those positions which have I's for the second digit from the right of their 
binary representation, 

2 = 10 
3 = 11 
6 = 110 
7 = 111 

10 = 1010 
11 = 1011 

Etc., 
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the third parity check 

4 = 
5 = 
6 = 
7 = 

100 
101 
110 
111 

12 = 1100 
13 = 1101 
14 = 1110 
15 = 1111 
20 = 10100 

Etc. 

It remains to decide for each parity check which positions are to contain 
information and which the check. The choice of the positions 1, 2, 4, 8, • • • 
for check positions, as given in the following table, has the advantage of 
making the setting of the check positions independent of each other. All 
other positions are information positions. Thus we obtain Table II. 

Table II 

Check Positions Check Number Positions Checked 

1,3, 5, 7, 9, 11, 13, 15, 17,- 
2,3, 6, 7, 10, 11. 14, 15, 18,-• 
4, 5, 6, 7, 12, 13, 14, 15, 20,-• 
8, 9, 10, 11, 12, 13, 14, 15, 24, 

As an illustration of the above theory we apply it to the case of a seven- 
position code. From Table I we find for w = 7, w = 4 and k = 3. From 
Table II we find that the first parity check involves positions 1, 3, 5, 7 and 
is used to determine the value in the first position; the second parity check, 
positions 2, 3, 6, 7, and determines the value in the second position; and 
the third parity check, positions 4, 5, 6, 7, and determines the value in posi- 
tion four. This leaves positions 3, 5, 6, 7 as information positions. The results 
of writing down all possible binary numbers using positions 3, 5, 6, 7, and 
then calculating the values in the check positions 1, 2, 4, are shown 
in Table III. 

Thus a seven-position single error correcting code admits of 16 code sym- 
bols. There are, of course, 27 - 16 = 112 meaningless symbols. In some ap- 
plications it may be desirable to drop the first symbol from the code to 
avoid the all zero combination as either a code symbol or a code symbol plus 
a single error, since this might be confused with no message. This would still 
leave 15 useful code symbols. 
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Table III 

u-"' is Position w Decimal Value of 
\\ Symbol 1 2 c ' 4 5 6 7 ] ■ 

0 0 0 0 0 0 0 0 
1 1 0 1 • 0 0 1 1 
0 1 0 1 0 1 0 2 
1 0 0 0 0 1 1 3 

1 0 0 1 ■ 1 0 0 4 
0 1 0 0 1 0 1 5 
1 1 0 0 1 1 0 6 
0 0 0 1 ■ 1 1 1 7 

1 1 1 N 0 0 0 0 8 
0 0 1 1 0 0 1 9 
1 0 1 1 0 1 0 10 
0 1 1 0 0 1 1 11 

0 1 1 1 0 0 12 
1 0 1 0 1 0 1 13 
0 0 1 0 1 1 0 14 
1 1 1 1 1 1 1 15 

As an illustration of how this code "works" let us take the symbol 
0 11110 0 corresponding to the decimal value 12 and change the 1 in 
the fifth position to a 0. We now examine the new symbol 

0 1110 0 0 

by the methods of this section to see how the error is located. From Table II 
the first parity check is over positions 1, 3, 5, 7 and predicts a 1 for the first 
position while we find a 0 there; hence we write a - 

1 . 

The second parity check is over positions 2, 3, 6, 7, and predicts the second 
position correctly; hence we write a 0 to the left of the 1, obtaining 

0 1 . 

The third parity check is over positions 4, 5, 6, 7 and predicts wrongly; hence 
we write a 1 to the left of the 0 1, obtaining 

10 1. 

This sequence of 0's and Ts regarded as a binary number is the number 5; 
hence the error is in the fifth position. The correct symbol is therefore ob- 
tained by changing the 0 in the fifth position to a 1. 

4. Single Error Correcting Plus Double Error Detecting Codes 

To construct a single error correcting plus double error detecting code we 
begin with a single error correcting code. To this code we add one more posi- 
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tion for checking all the previous positions, using an even parity check. To 
see the operation of this code we have to examine a number of cases: 

1. No errors. All parity checks, including the last, are satisfied. 
2. Single error. The last parity check fails in all such situations whether 

the error be in the information, the original check positions, or the last 
check position. The original checking number gives the position of the 
error, where now the zero value means the last check position. 

3. Two errors. In all such situations the last parity check is satisfied, and 
the checking number indicates some kind of error. 

As an illustration let us construct an eight-position code from the previous 
seven-position code. To do this we add an eighth position which is chosen 
so that there are an even number of I's in the eight positions. Thus we add 
an eighth column to Table III which has: 

Table TV 
0 
0 
1 
1 

1 
1 
0 
0 

1 
1 
0 
0 

0 
0 
1 
1 

PART II 

GENERAL THEORY 

5. A Geometrical Model 

When examining various problems connected with error detecting and 
correcting codes it is often convenient to introduce a geometric model. 
The model used here consists in identifying the various sequences of O's and 
I's which are the symbols of a code with vertices of a unit ^-dimensional 
cube. The code points, labelled .v, y, 2, ■ ■ ■ , form a subset of the set of all 
vertices of the cube. 

Into this space of 2" points we introduce a distance, or, as it is usually 
called, a metric, D{x, y). The definition of the metric is based on the observa- 
tion that a single error in a code point changes one coordinate, two errors, 
two coordinates, and in general d errors produce a difference in d coordinates. 
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Thus we define the distance D(x, v) between two points x and y as the num- 
ber of coordinates for which x and y are different. This is the same as the 
least number of edges which must be traversed in going from x to y. This 
distance function satisfies the usual three conditions for a metric, namely, 

D(x, y) = 0 if and only if x = y 

D(x, y) = D{y, .r) > 0 if ;v 5^ y 

D(z, y) -f D{y, z) > D(.v, z) (triangle inequality). 

As an example we note that each of the following code points in the three- 
dimensional cube is two units away from the others, 

0 0 1 
0 1 0 
1 0 0 
111. 

To continue the geometric language, a sphere of radius r about a point x 
is defined as all points which are at a distance r from the point x. Thus, in 
the above example, the first three code points are on a sphere of radius 2 
about the point (1, 1, 1). In fact, in this example any one code point may be 
chosen as the center and the other three will lie on the surface of a sphere 
of radius 2. 
If all the code points are at a distance of at least 2 from each other, then it 

follows that any single error will carry a code point over to a point that is 
hoI a code point, and hence is a meaningless symbol. This in turn means that 
any single error is delectable. If the minimum distance between code points 
is at least three units then any single error will leave the point nearer to the 
correct code point than to any other code point, and this means that any 
single error will be correctable. This type of information is summarized in 
the following table: 

Table V 

Minimum 
Distance Meaning 

1 uniqueness 
2 single error detection 
3 single error correction 
4 single error correction plus double error detection 

double error correction 
Etc. 

Conversely, it is evident that, if we are to effect the detection and correc- 
tion listed, then all the distances between code points must equal or exceed 
the minimum distance listed. Thus the problem of finding suitable codes is 
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the same as that of finding subsets of points in the space which maintain at 
least the minimum distance condition. The special codes in sections 2, 3, 
and 4 were merely descriptions of how to choose a particular subset of points 
for minimum distances 2, 3, and 4 respectively. 

It should perhaps be noted that, at a given minimum distance, some of 
the correctability may be exchanged for more detectability. For example, a 
subset with minimum distance 5 may be used for: 
\ ' a. double error correction, (with, of course, double error detection). 

b. single error correction plus triple error detection. 
c. quadruple error detection. 
Returning for the moment to the particular codes constructed in Part I 

we note that any interchanges of positions in a code do not change the code 
in any essential way. Neither does interchanging the O's and 1's in any posi- 
tion, a process usually called complementing. This idea is made more precise 
in the following definition: 
Definition. Two codes are said to be equivalent to each other if, by a finite 
number of the following operations, one can be transformed into the other: 

1. The interchange of any two positions in the code symbols. 
2. The complementing of the values in any position in the code symbols. 

This is a formal equivalence relation (~) since A ~ A) A ~ B implies 
£ ~ yl; and ,4 ~ ~ C implies A ~ C. Thus we can reduce the study 
of a class of codes to the study of typical members of each equivalence class. 

In terms of the geometric model, equivalence transformations amount to 
rotations and reflections of the unit cube. 

6. Single Error Detecting Codes 

The problem studied in this section is that of packing the maximum num- 
ber of points in a unit w-dimensional cube such that no two points are closer 
than 2 units from each other. We shall show that, as in section 2, 2n" points 
can be so packed, and, further, that any such optimal packing is equivalent 
to that used in section 2. 

To prove these statements we first observe that the vertices of the n- 
dimensional cube are composed of those of two (« — l)-dimensional cubes. 
Let A be the maximum number of points packed in the original cube. Then 
one of the two {n — l)-dimensional cubes has at least A/2 points. This cube 
being again decomposed into two lower dimensional cubes, we find that one 
of them has at least A/2- points. Continuing in this way we come to a two- 
dimensional cube having A/2n~' points. We now observe that a square can 
have at most two points separated by at least two units; hence the original 
^-dimensional cube had at most 2"_1 points not less than two units apart. 
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To prove the equivalence of any two optimal packings we note that, if 
the packing is optimal, then each of the two sub-cubes has half the points. 
Calling this the first coordinate we see that half the points have a 0 and half 
have a 1. The next subdivision will again divide these into two equal groups 
having O's and Ts respectively. After (u — 1) such stages we have, upon re- 
ordering the assigned values if there be any, exactly the first n — 1 positions 
of the code devised in section 2. To each sequence of the first n — 1 coordi- 
nates there exist n — 1 other sequences which differ from it by one co- 
ordinate. Once we fix the w-th coordinate of some one point, say the origin 
which has all O's, then to maintain the known minimum distance of two 
units between code points the «-th coordinate is uniquely determined for all 
other code points. Thus the last coordinate is determined within a comple- 
mentation so that any optimal code is equivalent to that given in section 2. 

It is interesting to note that in these two proofs we have used only the 
assumption that the code symbols are all of length u. 

7. Single Error. Correcting Codes 

It has probably been noted by the reader that, in the particular codes of 
Part I, a distinction was made between information and check positions, 
while, in the geometric model, there is no real distinction between the various 
coordinates. To bring the two treatments more in line with each other we re- 
define a systematic code as a code whose symbol lengths are all equal and 

1. The positions checked are independent of the information contained 
in the symbol. 

2. The checks are independent of each other. 
3. We use parity checks. 

This is equivalent to the earlier definition. To show this we form a matrix 
whose i-th row has 1's in the positions of the i-th parity check and O's else- 
where. By assumption 1 the matrix is fixed and does not change from code 
symbol to code symbol. From 2 the rank of the matrix is k. This in turn 
means that the system can be solved for k of the positions expressed in 
terms of the other n — k positions. Assumption 3 indicates that in this 
solving we use the arithmetic in which 1+1 = 0. 

There exist non-systematic codes, but so far none have been found which 
for a given n and minimum distance d have more code symbols than a sys- 
tematic code. Section 9 gives an example of a non-systematic code. 

Turning to the main problem of this section we find from Table V that a 
single error correcting code has code points at least three units from each 
other. Thus each point may be surrounded by a sphere of radius 1 with no 
two spheres having a point in common. Each sphere has a center point and 
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n points on its surface, a total of n + 1 points. Thus the space of 2" points 
can have at most: 

2" 
n + 1 

spheres. This is exactly the bound we found before in section 3. 
While we have shown that the special single error correcting code con- 

structed in section 3 is of minimum redundancy, we cannot show that all 
optimal codes are equivalent, since the following trivial example shows that 
this is not so. For n = 4 we find from Table I that m = 1 and k = 3. Thus 
there are at most two code symbols in a four-position code. The following 
two optimal codes are clearly not equivalent: 

0 000 , 0000 
1111 and 0111. 

8. Single Error Correcting Plus Double Error Detecting Codes 

In this section we shall prove that the codes constructed in section 4 arc 
of minimum redundancy. We have already shown in section 4 how, for a 
minimum redundancy code of u — 1 dimensions with a minimum distance 
of 3, we can construct an n dimensional code having the same number of 
code symbols but with a minimum distance of 4. If this were not of minimum 
redundancy there would exist a code having more code symbols but with 
the same n and the same minimum distance 4 between them. Taking this 
code we remove the last coordinate. This reduces the dimension from n to 
« — 1 and the minimum distance between code symbols by, at most, one 
unit, while leaving the number of code symbols the same. This contradicts 
the assumption that the code we began our construction with was of mini- 
mum reduncancy. Thus the codes of section 4 are of minimum redundancy. 

This is a special case of the following general theorem: To any minimum 
redundancy code of N points vn u — 1 dimensions and having a minimum 
distance oi 2k — 1 there corresponds a minimum redundancy code of N 
points in n dimensions having a minimum distance of 2k, and conversely. 
To construct the n dimensional code from the n - 1 dimensional code we 
simply add a single n-th coordinate which is fixed by an even parity check 
over the n positions. This also increases the minimum distance by 1 for 
the following reason: Any two points which, in the n — 1 dimensional code, 
were at a distance 2k - 1 from each other had an odd number of differences 
between their coordinates. Thus the parity check was set oppositely for the 
two points, increasing the distance between them to 2k. The additional co- 
ordinate could not decrease any distances, so that all points in the code are 
now at a minimum distance of 2k. To go in the reverse direction we simply 
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drop one coordinate from the n dimensional code. This reduces the minimum 
distance of 2k io 2k — 1 while leaving N the same. It is clear that if one 
code is of minimum redundancy then the other is, too. 

9. Miscellaneous Observations 

For the next case, minimum distance of five units, one can surround each 
code point by a sphere of radius 2. Each sphere will contain 

1 + CO/, 1) + CO/, 2) 

points, where C(n, k) is the binomial coefficient, so that an upper bound on 
the number of code points in a systematic code is 

2" 2"+1 

i -j- C(//, 1) T CO', 2) u' -f" ;/ T 2 
> 2' 

This bound is too high. For example, in the case of n = 7, we find that 
m = 2 so that there should be a code with four code points. The maximum 
possible, as can be easily found by trial and error, is two. 

In a similar fashion a bound on the number of code points may be found 
whenever the minimum distance between code points is an odd number. 
A bound on the even cases can then be found by use of the general theorem 
of the preceding section. These bounds arc, in general, too high, as the above 
example shows. 

If we write the bound on the number of code points in a unit cube of dimen- 
sion // and with minimum distance d between them as B{n, d), then the 
information of this type in the present paper may be summarized as follows: 

B{n, 1) = 2" 

B{n, 2) = 2"~1 

Bin, 3) = 2'" < ? 

" + 1 

Bin, 4) = 2'" < — 
n 

Bin — 2k — \) = Bin, 2k) 

9" 
Bin, 2k - \) = 2"' < 

1 -f C(", 1) + ... + C(", k - 1) 

While these bounds have been attained for certain cases, no general 
methods have yet been found for contructing optimal codes when the mini- 
mum distance between code points exceeds four units, nor is it known 
whether the bound is or is not attainable by systematic codes. 
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We have dealt mainly with systematic codes. The existence of non-sys- 
tematic codes is proved by the following example of a single error correcting 
code with n = 6. 

000000 
0 10 10 1 
10 0 110 
111000 
0 0 10 11 
111111. 

The all 0 symbol indicates that any parity check must be an even one. 
The all 1 symbol indicates that each parity check must involve an even num- 
ber of positions. A direct comparison indicates that since no two columns 
are the same the even parity checks must involve four or six positions. An 
examination of the second symbol, which has three Ts in it, indicates that 
no six-position parity check can exist. Trying now the four-position parity 
checks we find that 

12 5 6 
2 3 4 5 

are two independent parity checks and that no third one is independent of 
these two. Two parity checks can at most locate four positions, and, since 
there are six positions in the code, these two parity checks are not enough 
to locate any single error. The code is, however, single error correcting since 
it satisfies the minimum distance condition of three units. 

The only previous work in the field of error correction that has appeared 
in print, so far as the author is aware, is that of M. J. E. Golay.4 

4 M J E. Golay, Correspondence, Notes on Digital Coding, Proceedings of the I.R.E., 
Vol. 37, p. 657, June 1949. 



Optical Properties and the Electro-optic and Photoelastic 
Effects in Crystals Expressed in Tensor Form 

By W. P. MASON 

I. Introduction 

HE electro-optic and photoelastic effects in crystals were first investi- 
gated by Pockels,1 who developed a phenomenological theory for these 

effects and measured the constants for a number of crystals. Since then not 
much work has been done on the subject till the very large electro-optic 
effects were discovered in two tetragonal crystals ammonium dihydrogen 
phosphate (ADP) and potassium dihydrogen phosphate (KDP). With these 
crystals light modulators can be obtained which work on voltages of 2000 
volts or less. Their use has been suggested2 in such equipment as light valves 
for sound on film recording and in television systems. Furthermore, since 
the electro-optic effect depends on a change in the dielectric constant with 
voltage, and the dielectric constant is known to follow the field up to lO10 

cycles, it is obvious that this effect can be used to produce very short light 
pulses which may be of interest for physical investigations and for strobo- 
scopic instruments of very high resolution. Hence these crystals renew an 
interest in the electro-optic effect. 

In looking over the literature on the electro-optic effect and photoelastic 
effect in crystals, there do not seem to be any derivations that give them 
in terms of thermodynamic potentials, which allow one to investigate the 
condition under which equalities occur between the various electro-optic 
and photoelastic constants. Hence it is the purpose of this paper to give such 
a derivation. Another object is to give a derivation of Maxwell's equations 
in tensor form, and to apply them to the derivation of the Fresnel ellipsoid. 

The first sections deal with the optics of crystals, and derive the Fresnel 
ellipsoid from Maxwell's equations. Other sections give a derivation of the 
two effects, discuss methods for measuring them by determining the bi- 
refrigence in various directions and give the constants for the two effects in 
terms of crystal symmetries. The final section discusses the application of 
the photoelastic effect for measuring strains in isotropic media. 

1 F. Pockels, Lehrbuck Dcr Krislalloptic, B. Teubner, Leipzig, 1906. 2 See Patent 2,467,325 issued to the writer; "Light Modulation by P type Crystals," 
George D. Gotschall, Jour. Soc. Motion Picture Engineers, Julv, 1948, pp. 13-20; B. H. 
Billings, Jour. Opt. Soc. Am., 39, 797, 802 (1949). 
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II. Solution of Maxwell's Equations In Tensor Form 

In tensor notation, Maxwell's equations for a nonmagnetic medium with 
no free charges take the form 

1 dDi dllj 1 dllj __ dEh. ^ = o dl 
V~dt ~ €iik dxh ' V dl lkl dxi ' dxi ' dxj 

where Di is the electric displacement, H; the magnetic field, Ek the electric 
field, V the velocity of light in vacuo and a tensor equal to zero when 
i = j or k or j = k, but equal to 1 or — 1 when all three numbers are different. 
If the numbers are in rotation, i.e. 1, 2, 3; 2, 3, 1; 3, 1, 2 the value is +1 
while, if they are out of rotation, the value is —1. 

We assume the electric vector to be representable by a plane wave whose 
planes of equal phase are taken normal to the unit vector m . Then 

Ek = E0ke
ju{t-Iinilv) (2) 

where Eok are constants representing the maximum values of the field along 
the three rectangular coordinates and = \/—l- Substituting (2) in the 
second of equations (1), noting that Eok are not functions of the space co- 
ordinates, we have 

1 dUj j<j} r j-, ^JuU—XiHh] /■}■) 
vln = ~ 0k ' 

Integrating with respect to the time 

IT ^ r 77 -tJult-Xinilv] _ jr Mt-Ximlv) /JN 11 j = — [ejkiEnf. nM — tin^ ■ W 
V 

Hence, 

//(I, = [cjit Flit Hi] (5) 

and therefore the magnetic vector is normal to the plane determined by 
Enk and «,•. 

Next, using the first of equations (1), 

ao* r aBi aci.u~,ftM 
HT = ^ - Vemto (6) 

Integrating with respect to time, 

V 
(7) 
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Inserting the value of //o;- from (5), this equation takes the form 

11- 

and, in general, 

V' 
Di = —~ Uiik^jkiEundnk]. (9) 

v 

Expanding the inner parenthesis, we have the components 

{Etfh — £3^)1; {E-Hh — (Eiih — £2111)3. (10) 

Then 

eo*[(£2«3 - E-Jh); (E-iih - Eoh); (£i»2 - £2»i)]«fc gives 

V2 

Di = —- [(£»«! — £1113)113 - {Ei ih — £0111)112] 
v2 

= [(£3113 + £2 no T £1111)111 — £i(«i -|- «2 ~l~ fh)\ 

Do = —[(£l llo — Eo Hi)Hi — {Eo lls — £3110)113] , 
V2 (,11; 

= [(£;(»3 T Ez iio -f- Eini)no — Eo{ii\ n2 + wi)] 

D3 = —^-[{Eo_1l3 — £3 "2)Ho — {£3111 — £1113)111] v2 

= [{£3113 + Eoiio T Ei 111)113 — £3(111 + tio T- ih)]. 

Now, since 11] + n\ + n\ = 1 because n is a unit vector, we have 

Di = ~[Ei — (£y«;)«.] or ~ Di — Ei — (£,• «>)«,■ = 0. (12) 
11- V- 

This equation states that Di, £. and are in the same plane, H> being 
normal to the plane as shown by Fig. 1. The energy flow vector 

5.- = ^-eijkEjHk (13) 
• 47r 

also lies in the plane since it is perpendicular to £ and H. It is at the same 
angle 9 with n that £ is with D. The velocity of energy flow is v/cos 9. The 
energy velocity is called the ray velocity and the energy path the ray path. 

Next, from the relation for a material medium, that 

D, = KijEj or conversely £, = 0jiDi (14) 
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where Ka are the dielectric constants measured at optical frequencies and 
Pa are the impermeability constants determined from the relations 

Pa = a'VA* 

where 

(15) 

AK = 

K12 Ku 

K12 K22 Km 

K13 Km K33 

and Aji the determinant obtained by suppressing the jth row and ith column, 
we can eliminate £,• from equation (12) and obtain 

^ Di = PnDi + PiiDi + PuDs — (Ej nj)ni 
V2 

2 
— PuDx + P22D2 + PmDz — (Ej «;)«2 

72 D3 = P13 Di + PmDI + P33D3 — (Ejnj)n3. 

This can be put in the form 

(Ejn,)nx = Dxlfixx — rf/V2] + P12D2 + P13D3 

(Ej-npni = PxzDx + {@22 — v'l/V2)D2 + P23D3 

(£^y)«3 = PnDx + P23D2 + {@33 - tf/V^Di. 

Solving for Dx, A and D3 

Dx = [(@22 - v2/r-)(@33 - tP/V2) - pUlEjUjlnx 

A = [(@n - v2/V2)(@33 - v2/r-) - pUEjHjfa 

D3 = [(@11 - V2/V2)(@22 - V2/V2) - PUEjfljW 

Now, since D and n are at right angles, 

Awi 4" D2112 4" D3U3 — 0. 

Hence, 

0 = [(0M - 1?/V*)(@33 - V2/V2) - @l3]nx 

+ [(@n - ^/V2)(@33 - V2/V*) - @M 

(16) 

(17) 

(18) 

(19) 

(20) 

+ [03.i - v^/V2^(@22 - t?/V2) - Pulnl 
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PLANE OF 
CONSTANT 

PHASE 

Fig. 1—Position of electric, magnetic and normal vectors for an electromagnetic plane 
wave in a crystal. 

Fig. 2—Rotated axes and angles for relating them to unrotated axes. 

By choosing the original x, y, z axes so that 13x1 = (3u = fin = 0 and using 
the values /3ii = /3i, $>2 = & , /^s = this gives the equation 

^ + ~~ o + —= 0. (21) 
„ V „ V „ V 
/3l - ^2 Pi - yl P* - yi 

For transmission along the .Y axis = 1, ih =7/3 = 0 and the two velocities 
are given by 

v- = hV- = b-, v- = p3V
2 = c2. (22) 
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Similarly the third velocity v- = /SiF2 = a- can also be used and equation 
(21) reduces to 

, = 0. (23) 
q2 — Ip [)- — C2 - V- 

This is a quadratic equation for the velocities v in terms of the principal 
velocities a, b and c which are usually taken so that a > b > c. 

Solving for the velocities, we obtain the quadratic equation 

v* — r2[»i(62 + c2) + nl(a2 + c2) + nl{a2 -f 62)] 

+ nlb2c2 + nlarc2 + nla2b2 = 0. 

Letting L = n\{b2 - c2), M = n\{c2 - a2), N = nl{a2 - b2) the solutions 
for the velocities become 

2^,2 = nlib2 + c') + nl{c' + a') + ihia' + b') 

± \/L2 + M2 + N2 - 2LM - 2LN - 2MN 

This equation can be put into a simpler form if we change to the coordinate 
system shown by Fig. 2. Here the rotated system is related to the original 
system by three angles 0, 4/. 6 is the angle between the Z axis and the 
Z axis, ip is the angle the plane containing Z and z' makes with the X axis 
while 4/ represents a rotation of the primed coordinate systems about the 
Z' axis. The direction cosines for the primed system with respect to the 
normal system are designated by the matrix 

X Y Z 

X' lx mx nx (26) 
11 Ml Mi 
(s m n-i 

v 
Z' 

where, in terms of 0, <p and \p, these direction cosines arc, 

fx = cos 0 cos ^ cos ^ — sin (p sin \p, 

7)1 x = cos 0 sin (p cos 4^ + cos V si11 "/s ni ^ ~~ s'n ® cos ^ 

l2 — — Cos 0 cos tp sin 4^ — sin cp cos 4/, 

mn = cos (p cos 4/ — sin (p sin 4' cos 0) = si11 ^ sin 4/ 

= cos (p sin 0, m3 = sin (p sin 0, ih = cos 0. (27) 

If we take Z' as the direction of the wave normal, then in equation (25) 

«i = (3, >h — m , «3 = 'h 
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and the equation for the velocities becomes 

l-f = a "'(sin2 $ sin2 6 + cos" 0) + 0'(cos' sin' 6 + cos2 0) + c' sin2 0 
/{a- — 02)"(coS" 0 cos2 if + sin2 ip)2 + 2{a2 — b2){c2 — b2) 

y sin2 0(cos2 0 cos2 p — sin2 p) + {c2 — b2)2 sin4 q 

(28) 

A very elegant construction for the wave-velocities and the directions of 
vibration is the Fresnel index ellipsoid. Consider the ellipsoid 

a2x2 + b2y2 + c2z2 = 1 (29) 

Then Fresnel3 showed that, for any diametral plane perpendicular to the 
wave normal, the two principal axes of the ellipse were the directions of the 
two permitted vibrations, while the wave velocities were the reciprocals of 
the principal semi-axes. 

We wish to show now that the maximum and minimum values of the im- 
permeability constants in a plane perpendicular to the direction of the 
wave normal determine the directions of vibration and the values of the two 
velocities. To show this we make use of the fact that /3,> is a second rank 
tensor and transforms according to the tensor transformation formula 

^ ^ ft, (30) dXk dxi 

where the partial derivatives are the direction cosines 

dx\ . d.Vi d.Vx 
— = = wi, T— = Wl 0.ri 0.V2 0.V3 

dx'i , d.Vo dx'z 
— = '2, — = ni->, — = Wo 
dxx dx2 dxa 

dx'z , dx'a dx'a 
= (3, r- = ma, — - na. 0X1 0X2 0X3 

Expanding equation (30) the six transformation equations become 

/3ii = C/3ii + 2fiWi/3i2 + KiUifiia + niiftai + 2min$n + 

/3i2 = (ifi&n "h {f\m2 T" w/iC)/3i2 + (C"2 4- Wi^>)/3i3 T- wiiwiofe 

+ (wnwo + + nvn2paa 

/Su = (\($\\ ~t~ (A'"3 T" mifa)Pi2 + (A"3 4" "iA)/3i3 4- mimafiia 

4~ ("1W3 4" W7iW3)^23 4" Uiiiafiaa (31) 
3 See for example "Photoelasticity," Coker and Filon, Cambridge University Press, 

pages 17 and 18. 
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022 = ^2011 + 2 fan*p 12 + 24^2013 + W2022 + 2wo»o023 -f- «2033 

023 =: ^2^3011 + (4^3 + W2^3)012 "I" (4^3 + W2^3)013 + ^2^3022 

-f" (ttloHi + W2W3)023 4" W2W3033 

033 = ^3011 + 24W?3012 + 2^3«30i3 -f- W3022 + 2W3«3023 + ^'3033- 

Now, if the axes refer to the axes of a Fresnel ellipsoid, 0i2 = 0i3 = 023 = 0 
and one of the impermeability constants for any direction, say 033 , can be 
expressed in the form 

033 — ^301 "I" W302 -f- W303 (32) 

If r, which lies along Z' of Fig. 2, is the radius vector of the Fresnel ellipsoid, 
then the direction cosines , W3 and «3 are 

x y z 
U = - , niz = - , «3 = -• r r r 

From equation (24) 0i = a-/V-, 02 = 62/F2, 03 = c2/F2 and equation (32) 
becomes 

2Tr20' 2 2 , ,2 2 1 2 2 . 
r F 033 = a -^ + 0 y + C 2 = 1- 

Hence the square of the radius vector of the Fresnel ellipsoid is 1/F"033 
and the radius vector of the impermeability ellipsoid agrees with that of the 
Fresnel ellipsoid. Hence, the directions of vibration can be determined from 
the principal axes of the impermeability ellipsoid for any diametral plane. 

When light transmission occurs along Z', the direction for maximum and 
minimum impermeability can be obtained by evaluating 0u and deter- 
mining the angle \}/ for which it has an extreme value. Inserting the direction 
cosines Ci, Wi and ih from equation (27), we find 

, „ f 2„ 2 2 , sin 2^ sin 2^ cos 0 . .2 • 2 , | 
0ii = 0i cos 6 cos cos 1// —     -f sm p sin \J/ 

f 2 „ • 2 2 , , sin 2(p sin 2\p cos 6 2 • 2 , "l (33) -b 02 cos 6 sm ^ cos i/' +  ^  + cos tp sm ^ 

+ 03 sin2 6 cos2 i/c 

Differentiating with respect to xp and setting the resultant derivative equal 
to zero, the value of \p that will satisfy the equation is given by 

(02 — 0i) sin 2ip cos d tan Ixp = 
(0i — 02) (cos2 6 cos2 <p — sin2 ^) + (03 — 02) sin2 6 

2. (34) 
{b' — a") sin 2(p cos 6 

(a2 — b2) (cos2 d cos2 (p — sin2 xp) + (c2 — b2) sin2 6' 
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For a given value on the right-hand side there are two values of \f/, 90° apart, 
that will satisfy the equation and hence we have two directions of vibration 
at right angles to each other. Inserting (34) in (33) the values of fin and 
0ii for these two directions are 

20n = /3i(sin2 (p sin2 tf-f- cos2 6) -f ^-.(cos2 v? sin2 6 4- cos2 6) -f- 03 sin2 6 

i , / V* - ft)2 (cos2 e COS- <P + sin2 ^)2 + 2(0! - 02)i03 - 0Z) 
^ 7 • sin2 6 (cos2 0 cos2 y — sin2 (p) + {03 — 02)'

1 sin4 0. 

Since 0\ corresponds to a-, etc., this equation agrees with the two velocities 
given in equation (28) and shows that the directions of vibration correspond 
with the maximum and minimum values of 0n ■ 

It can also be shown that the two directions of electric displacement co- 
incide with the two values of \{/ given by equation (34). Transforming the 
electrical displacements to the X', F', Z' set of axes we have 

D'i = ^ Tb + ~ Do + T>3 = fiDi + tmD, + n1D3 
dxi dx> dxs 

D2 = —^ Di + Do 4- —2 D3 — (0D1 4- moD2 4- noD3 (35) 
d.Vi Oxo dx^ 

D3 = —^ Dy 4- —^ D2 4~ " D3 = £3Dx 4- W3D2 + W3D3. 
Oxx 0x2 OX3 

Hence, inserting the values of A, A, A from equation (18), we find 

Di = f 1(3(02 — fti)(ft — fti) 4" WiWsO?! — 0n){Pz ~ /3ii) 

4- 11013(01 — fti)(ft — 0ii) 

Do = (0(3(00 — 0ii)(03 — 0ii) 4" »h»h(0i — 0n)(03 — 0n) 

4- 110113(01 — fti)(ft — fti) 

D-i = (1(02 — ftiKft — ^11) + inl(0i — 0n)(0z — 0n) 

+ 113(01 0n)y02 — 0n)- 

From equation (20) with 0io = 0^ = ^23 = 0, it is evident that the D3 com- 
ponent vanishes and hence the two values of electric displacement lie in a 
plane perpendicular to Z'. By inserting the values of 0ii and the value of 
\p found from equation (34) we find that A — 0 and hence the electric dis- 
placement lies along the directions of the greatest value of 0n . Similarly, 
from the second value of (Qn , Di vanishes and hence the second wave is per- 
pendicular to the first and in the direction of the smallest value of 0ii. 

(36) 
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III. Location of Optic Axes in a Crystal 

When the expression in the radical of equation (28) vanishes the two 
velocities are equal and an optic axis exists. Since the expression inside the 
radical can be written 

[fa2 — &2)(cos2 ^cos2^ + sin2 (p) — (b2 — c2)sin2 0]2 

— 4(a2 — b2)(c2 — b2) sin2 0sin2 tp = 0 

then, since the square is always positive and since (o2 — 62) > 0 and 
{b2 — c2) > 0, the equation can vanish only \i <p = 0. But <f> = 0 indicates 
that the two optic axes always lie in a plane perpendicular to the inter- 
mediate velocity b. With <p = 0 then the square vanishes when 

tan!6 = [j* _ *' or tan 6 = (38) 

If (a2 — h2) < {b2 — c2) the value of the tan 6 is less than unity and the 
crystal is called a positive crystal. For this case the two axes approach more 
closely the Z axis having the velocity c than they do the X axis. If 
(a2 — b2) > {b2 — c2) the crystal is negative. 

If a = b or b = c the crystal has a single optic axis and is respectively a 
positive or negative uniaxial crystal. For the first case the two velocities 
are given by 

vi = a — b, V2 — s/a2 cos2 6 c2 sin2 6. (39) 

The first velocity is that of the ordinary ray while that of the second is that 
of the extraordinary ray. Since a > c, the ordinary ray will have a velocity 
greater than the extraordinary ray except along the optic axis where they 
are equal. Since c < a, the maximum axis for any ellipse, formed by inter- 
secting the Fresnel ellipsoid at an angle to the optic axis, will lie in the plane 
formed by the normal and the c axis and hence the direction of polarization 
of the extraordinary ray will lie in the c, n plane. The polarization of the 
ordinary ray will be perpendicular to this plane. 

U b = c the a axis is the optic axis and the velocities of the two rays are 
again 

i'i = c and ?'2 = a2(l-sin2 0cos" <p) + c"(sin2 0cos' <p) (40) 

Hence, when d= 90°, <p = 0°, the two velocities are equal and a is the optic 
axis. In this case the velocity of the extraordinary ray is greater than that 
of the ordinary ray except along the a axis, and the crystal is a negative 
uniaxial crystal. The polarization of the extraordinary ray lies again in the 
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plane of the normal and the optic axis while the ordinary ray is perpendicu- 
lar to it. 

IV. Derivation op the Electro-optic and Photoelastic Effects 

In a previous paper4 and in the book "Piezoelectric Crystals and Their 
Application to Ultrasonics", D. Van Nostrand, 1950, it was shown that the 
electro-optic and photoelastic effects can be expressed as third derivatives 
of one of the thermodynamic potentials. Probably the most fundamental 
way of developing these properties is to express them in terms of the strains, 
electric displacements and the entropy. For viscoelastic substances it has 
been shown that the photoelastic effects are directly related to the strains. 
In terms of the electric displacements, the electro-optic constants do not 
vary much with temperature whereas, if they are expressed in terms of the 
fields, the constants of a ferroelectric type of crystal such as KDP increase 
many fold near the Curie temperature. The entropy is chosen as the funda- 
mental heat variable, since most measurements are carried out so rapidly 
that the entropy does not vary. 

The thermodynamic potential which has the strains, electric displace- 
ments and entropy as the independent variables is the internal energy U, 
given by 

dU = Ta dSij + Em ^' + 0 da (41) 
47r 

where Sij are the strains, Tjj the stresses, Em the fields, Dm the electric dis- 
placements, 0 the temperature and a the entropy. In this equation the 
strains Sa are defined in the tensor form 

s--i(S+£) «> 

where the n's are the displacements along the three axis. In the case of a 
shearing strain occurring when i ^ j, the strain is only half that usually 
used in engineering practice. In order to avoid writing the factor l/47r, we 
use the variable 8m= Dm/4ir. Then, from (41), 

T - dU F - dU ft - dU QD 
" as,,' £""a5.' a7' (43) 

Since, for most conditions of interest, adiabatic conditions prevail, we can 
set da equal to zero and can develop the dependent variables, the fields and 

1 "First and Second Order Equations for Piezoelectric Crystals Expressed in Tensor 
Form," W. P. Mason, B.S.T.J., Vol. 26, pp. 80-138, Jan., 1947. 
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the stresses in terms of the independent variables, the strains and the elec- 
tric displacements. Up to the second derivatives, these are 

r   d-Em . dEm . 
ij don 

1 f d'Em „ 0 . 2d'Em d'Em . . 1 , 
2! [dS^r " qr + dSijddn " n + d5na50 

n 0J + 

(44) 

_ dTkC s , dTkC 
Tkl - + d5n 

, 1 f d' Tkl c e , C X J_ ,1+ ... 
+ 2! [dS^r ij + dSiiddn Sij8n + dinddo " "J + ' 

For the electro-optic and photoelastic cases, the two tensors of interest are 

= ^irniklno d2 Tkl d'u d'En 
d8„d8o dSktd8nd8o dSk(d80 (45) 
d2 Em _ d'U = , , 

d8nd80 d8md8nd8o no' 

For the first partial derivatives, we have the values 

dTkl d OTkt _ d'U _ dEn = ^ dSu nkC ^ 

dEm < nS — = 47r/3mn adn 

where are the elastic stiffnesses measured at constant electric displace- 
ment, hnkt are the piezoelectric constants that relate the open circuit voltages 
to the strains, and /3m„ are the impermeability constants measured for con- 
stant strain. 

With these substitutions and neglecting the other second partial deriva- 
tives, we have, from (44), 

Em = -hmijSij + Dn ^ ^^ 

TkC = cUs* + D0 [-^ + . 

(47) 

This equation shows that there is a relation between the change in the im- 
permeability constant due to stress in the first equation, and the electro- 
strictive constant in the second equation through the tensor wljmn . These 
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effects, however, have to be measured at the same frequency before equality 
exists. 

To obtain the changes in the optical properties caused by the strain and 
the electric displacement we have to determine the fields and displacements 
occurring at the high frequencies of optics. Even for piezoelectric vibrations 
occurring at as high frequencies as they can be driven by the piezoelectric 
effect, these frequencies are small compared to the optic frequencies / and 
can be considered to be static displacements or strains. Hence, writing 

Em = El + Eme
ut, Dn = D0

n + Dne
jut, 

D0 = D0
o + D0e

iu\ Sfj = No- 

where co = 2irf, the first of equation (47) can be written in the form 

(48) 

+ D0
n D0e

iat. 

If we develop one of the fields, say E\, this can be written in the form 

Eieiut = [/3u + manSii + mM + + rnM^e^1 

+ [Pu + MijizSij + r in Dl + r122Dl + ^23^2^ (49) 

+ [/3i3 + MijnSij + rmD\ ru2D\ + ruzD^D^e"1 

where the first number of r refers to the field, the second to the optical value 
of D and the third to the static value of D. Hence, for the general case, 

Emej"1 = Dne
iut[0mn + + rmnoDl]. (50) 

From the definition of the two tensors and rmno given by equation 
(45), we can show that there are relations between the various components 
of the tensors. For the first tensor m ijno , since = Sji is a symmetrical 
tensor, then 

IHijna = fftjino (51) 

From the definition of the tensor mijn0 in the form 

= 4 GUr.) (45) 

it is obvious that we can interchange the order of 5„ and 6„ so that 

El = —hmijSij + Dl ma j fmno jjO 

Eme'"' = U.. + m^nSu + ^ D°. 

W ijno ijon 
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Since ij and no are reversible, it has been customary to abbreviate the tensor 
by writing one number in place of the two in the following form: 

11 = 1; 22 = 2; 33 = 3; 12 = 21 = 6; 13 = 31 = 5; 23 = 32 = 4 (52) 

Since the reduced tensor is associated with the engineering strains, it is 
necessary to investigate the numerical relationships between the four in- 
dex symbols and the two index symbols. From equation (48), when m 
9^ n, the change in the impermeability constant 0mn is given by 

niijmn Sij "f" tftjimnSji = Wti Sr (•^•5) 

Since Sr = 25,-, = 25^ we have the relation that 
mijmn = nirsiij, w, » = 1 to 3, r, s, = 1 to 6) (^4) 

In equation (45) we cannot in general interchange the order of ij and no 
since U does not contain product terms of strains and electric displace- 
ments and hence in general 

Mrs 9^ War. (55) 

Hence in the most general case there are 36 photoelastic constants. Crystal 
symmetries cut down the number of constants as shown in a later section. 

The tensor r„,no defined in equation (45) as 

(MV™. = (56) 
CJOJH OOji OOQ 

shows that we can interchange the order of w and n since U contains product 
terms of 8m and 5,, . Hence 

ftnno fnmo (57) 

and this is usually replaced by the two index symbols 
rq0 = rmno(m, n, o = 1 to 3; 9 = 1 to 6). 

The so called "true" electro-optic constants are measured at constant 
strain and for this case the modifications in the impermeability constants 
are given by the equation 

Em = D„[/C + ra
mn0D0]. (58) 

Since m and n are interchangeable, the third rank tensor is usually replaced 
by the two index symbols 

rsmno = rqo{m, 11,0= 1 to 3; 9 = 1 to 6). (59) 

As discussed in the next sections, these constants can be determined by 
applying an electric field of a frequency high enough so that the principal 
resonances and their harmonics cannot be excited by the applied field, and 
measuring the resulting birefringence along definite directions in the crystal. 
On the other hand if we apply a static field to the crystal, an additional effect 
occurs because the crystal is strained by the piezoelectric effect and this 
causes a photoelastic effect in addition to the "true" electro-optic effect. A 
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better designation for these effects is the electro-optic effect at constant 
strain and stress. 

This latter effect can be calculated from equation (47) by setting the 
stresses Tut equal to zero and eliminating the Sij strains. After neglecting 
second order corrections, 

Em = D.c'" FffL + (r'mno + '"■""/'■"d pA. (60) 
L \ 4irCijkt / J 

Since h^lj c'lfrl = go a, the other j^iezoelectric constant relating the open 
circuit voltage to the stress, the electro-optic effect at constant stress can be 
written in the form 

T _ & . Rliirnn goij fAl\ 
fmno ^who "I- 7 • wU 

47r 

In terms of the two index symbols 

T _ S . Wpg Sop /sr,} fqi) fqo T 

since it has been shown4 that gol> = gop/2 when i 9^ j, and the tensor in (61) 
has ij as common symbols which involves the summations of two terms. 

The electro-optic effect is usually measured in terms of an applied field. 
The change in the impermeability constant for this case can be de- 
termined from the first equations (47), setting TpC equal to zero and neglect- 
ing second order terms. Multiplying through by the tensor Kip of the di- 
electric constants 

D'p = £o Kip (63) 

since the product KoPPoP = 1. Introducing this equation into (58) we have 

Em = Dn [pL + rLpKlpE
0

o\ = Dn [tfnn + zinuEl]. (64) 

where the new tensor zmno is equal to 

Zmno = ?mnpK0p . (65) 

In terms of the two index symbols 
S s r,'T ,,,\ 

Zqo fqpKop . (66) 

in which the repeated index indicates a summation. The difference between 
the electro-optical constant at constant stress expressed in terms of the field 
and the electro-optical constant at constant strain is 

^T   ^.S Rlijmn goij | j fA'7\ 
Smno Smno I 7 Li. 0p Zmno I WijmnOpij \t)'/ 

47r 

since the piezoelectric constants dpare related to the g constants by the 
equation 

d"i = (68) 
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In terms of two index symbols 

Zq0 = 4o + nipqdopip, q = 1 to 6; o = 1 to 3) (69) 

where a repeated index means a summation with respect to this index. 
Finally the photoelastic effect is sometimes expressed in terms of the 

stresses rather than the strains. As can be seen from equation (47), the new 
set of constants is 

TTpg := VlprSrq (''O) 

where the are the elastic compliances measured at constant electric dis- 
placement. 

V. Birefringence Along Any Direction In the Crystal and 
Determination of the Electro-optic and 

Photoelastic Constants 

If we take axes along the Fresnel ellipsoid when no stress or held is ap- 
plied to the crystal, the result of the electro-optic and photoelastic effects 
is to change the impermeability constants by the values 

= /3i -h Ai ; = /32 + A2 ; fos = ^3 + A3 

I323 = A4 ; 0n = A5 ; 0ii = Ag 

where 

Ai = 211-E1 + ZnEo + ZuEz + mnSi + mnSq + wis-Ss + muSi 
+ tnuSh + niieSa 

Ao = Z21E1 + Z22E2 + Z23E3 + mnSi + W12S1 -(- nhzSz + nhiS* 
-f- W2&S5 "h MqeSe 

(71) 

(72) 

A3 = ZsiE! + Z32E2 + Z33E3 msiSi + WIW1S2 + WssSs + WsA 

A4 = Zn\E\ + Z40-E0 -f- 243^3 + maSx -f m&Sq + + viuSi 
+ wii&Sb 4~ mibSe 

Ag = ZsiEi + Z52E2 + Z63E3 + m5lSi -f- mwSz -|- m^iSs + WbiSi 
-j- Wss'S's -p WsfrS'e 

Ag = ZgiEi + 262£0 + Z63E3 + Wei^l + W62'S,2 + ntasSz + W64S4 
ff- m&bSb 4- wegAg. 

If we transmit light along the 2' axis which, as shown by Fig. 2, makes an 
angle of 6 degrees with the 2 axis in a plane making an angle v with the xz 
plane, the birefringence can be calculated as follows: Keeping z' hxed and 
rotating the other two axes about z' by varying the angle p, one light vector 
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will occur when ffn is a maximum and the other when /3n is a minimum. 
Using the transformation equations (31) and the direction cosines of (27), 
we find that /3n is given by the equations we 

/3u = /3ii ^ cos" d COS" V COSJ \p sin 2(p sin 2\J/ cos 9 " ~1 
—  ^ r sin" ^ sin ^ 

+ /Seisin 2(p cos 2\J/ — sin2 9 sin 2<p cos21/- + cos 0 sin 2\p cos 2^)] 

+ /3ia[ —sin 29 cos ip cos2 \p + sin (p sin 9 sin 2^] (73) 

cos 9 sin 2ip sin 2\L , 1 
 2 f" cos"' ^ Sln" ^ + 13-12 j^cos" 9 sin" (p cos" \p + 

+ P-isl — sin 29 sin <p cos"' if/ — s\n 9 cos ip sin 2\p] + ^33 sin2 9 cos2 \p 

dB' Differentiating with respect to \p and setting —1 = 0, we find an ex- 
dip 

pression for tan 2^ in the form 

—/3ii sin 2ip cos 9 + 2.01o cos 9 cos 2(p 

tan 2\j/ = + s""1 V S"1 ^ cos 9 sin 2ip — 2023 sin 9 cos cp 
/3n[cos" 9 cos" cp — sin" cp] + /3i2[(l + cos2 9) sin 2<p] 

— 0i3 sin' 9 ccs (p -f 022(.cos~ 9 sin"' (p — cos"' tp) 
— 023 sin 26 sin <p + 033 sin2 9 

Inserting this value back in equation (73) we find that the two extreme values 
of /Su are given by the equation 

20'n = 2022 + (0n - 022^) (cos2 9 cos2 (p + sin2 (p) + (033 - 022) sin2 9 

— 0i2 sin2 9 sin 2<p — 0i3 sin 29 cos<p — 023 sin 26 sin (p 

± 

1/ 

(011 - 022)'(cos2 6 cos2 P + sill2 <p)2 + 2(0n - 022)(033 - 022) sin2 6X 

(cos2 6 cos2 <p — sin2 p) -f (033 — 1S22)2 sin4 9 — 2(0n — ^22) X 

[/3i2(sin 2p sin2 0(cos2 9 cos2 p + sin2 p) -f 0i3 sin 29 cos pX 

(cos2 9 cos2 p + sinV) — 023 sin 29 sin ^(1 + cos2 p sin2 9)\ 

+ 2.(033 — 022) sin2 9\0i2 sin 2^(1 + cos2 9) — 0^ sin 29 cos p 
(75) 

— 023 sin 29 sin p\ + (2/3i2)2[sin 9 sin2 p cos2 p + cos2 6\ 

— ^012013 sin2 9 sin ^[cos2 9 cos2 p + sin2 p] — 1(012 023) 

[sin 29 cos ^(sin2 p cos2 9-\- cos2 p)] + (2/3is)2 sin2 9X 

(cos2 9 cos2 p + sin2 p) ~ 1013 023 sin 2p sin4 9 

+ (2023)2 sin2 0(cos2 9 sin2 p + cos2 p) 
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The birefringence in any direction can be calculated from equation (75); 
since /3u = v\/V'\ it equals I/m? where mi is the index of refraction corre- 
sponding to a light wave with its electric displacement in the /J'n direction. 
Similarly, for the second solution at right angle to the first, 

f>n = | = A 
v M2 

Hence if we designate the expression under the radical by A'o and half the 
expression on the right outside the radical by K\, we have 

A + T = A-i; A-A-Vfe. (77) 
Mi M2 MI M2 

Since mi and M2 are very nearly equal even in the most birefringent crystal, 
we have nearly 

M2 — Mi = A = y ■ (78) 

For special directions in the crystal, the expression for K2 simplifies very 
considerably. Along the x, y and z axes, the values are 

3 
X, (<p = 0°,d = 90°); ^ V(03S - ftz)2 + (2,^23)2 

Y, {<p = 90°, 9 = 90°); Bv = ^ ViPn - M* + WnY 09) 

3  
2, (v = 0°, e = 0°); is. = | ViPn - fe)! + (2ft2)2. 

If any natural birefringence exists along these axes, (2^23)2 will be very 
small compared to this and 

u3 M3/l 1 \ 

B, = | (/3i - + Ai - A=) = 2 _ 3 + Al " A,) (80) 

u3 M3 / 1 1 \ 
IS. = 2 (/3i - ^ ^ - a2) = 2 U; " 4 + A' " 7' 

Hence, for this case, measurements along the three axes will tell the differ- 
ence between the three effects Ai, A2 and A:i. To get absolute values requires 
a direct measurement of the index of refraction along one of the axes and 
its change with fields or stresses. This is a considerably more difficult meas- 
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urement than a birefringence measurement and requires the use of an ac- 
curate interferometer. 

If, however, the Z axis is an optic axis as it is in ADP, for example, and 
Ax = Ao = 0, a birefringence occurs due to the term /3i2. As shown in the 
next section, the electro-optic constants for ADP (tetragonal 4:2m) are 2:41 
and ^3 • 263 occurs in the expression for /3i2 = Ag , as can be seen from equa- 
tions (72), and hence the birefringence along the Z axis is 

Bz = = Ma 263-Ea. (81) 

The constants ^3 and zu have been measured independently by W. L. Bond, 
Robert O'B. Carpenter, and Hans Jaffe. Probably the most accurate meas- 
urements, and the only one published, are those of Carpenter,5 who finds 
that the indices of refraction and the Zes and Z41 constants for ADP and 
KDP are in cgs units 

Ha He roSxio7 r^xio7 

ADP 1.5254 1.4798 2.54 ± 0.05 6.25 ± 0.1 
KDP 1.5100 1.4684 3.15 ± 0.07 2.58 ± 0.05 

An even larger constant has been found for heavy hydrogen KDP by Zwicker 
and Scherrer.6 They find at 20oC that res = 6 X 10_7. Using this constant, a 
half wave retardation for a X = 5461 A0 mercury line occurs for a voltage 
of 4000 volts. 

For tetragonal crystals of these types the only photoeleastic constant for 
the z axis is Wee, and the birefringence for this case is given by 

Bz — Ma»W>6 (82) 

When a natural birefringence exists for the crystal, measurements of the 
other three effects A4, A5 and Ag can be made by determining the bire- 
fringence along other directions than the Fresnel ellipsoid axes. In a direction 
of Z' lying in the ArZ plane v — 0, 0 = variable and 

» _ ^ i /[(fru - ^22) cos2 e + (fe - 02") sin2 6 - 0i3 sin2 d]2 ^ BXz - 2 y + [2012 COS e + 2023 sin 0]2. 

When a natural birefringence exists, this reduces to 

cos2 6 i!„ = I [(A - A + At - A.) 
2 L\Ma Mb / 

+ f— — —-I-A3 — A2) sin2 0 — A5 sin 20 
VC Mb / 

(84) 

5 "The Electro-optic Effect in Uniaxial Crystals of the Type XH0PO4Robert O'B. 
Carpenter, Jour. Opt. Soc. Am., in course of publication. 6 Zwicker and Scherrer, Helv. Phys. Ada., 17, 346 (1944). 
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and hence, by measuring at 45° between the two axes, one can evaluate the 
A5 term. 

Similarly, for the YZ plane, — 90°, d = variable and 

t> _ V . /[—(011 — 02'j) + (033 — 022) sill2 d — 023 sin 2d]'2 /81-s 
vz ~ 2 y + [2012 COS 6 - 20,3 sin d]2. ^ 

Hence, when a natural birefringence exists, we have 

Byz — W I —("I- "2 + A1 — A r-(\ - A+a, - A.^ 
L \M(i M6 / 

+ (-2 — _2 + A3 — At j sin2 d — Ai sin 2d \. 
\Mo Hb / J 

(86) 

In the XV plane 6— 90°, y = variable and 

n _ M . /'[(0ii — 012) sin2— (033 — 022) — 0,2 sin 2^]2 j:>xu ~ ly _L ro/Q.. dr. ,,,12 v®'; 2 y + [2013 sin (p — 023 cos ip]2 

Then, for natural birefringence, 

Bx,j — ttIIT;- "ii + Ai — A — "2 + Ai — A2) sin2 if 
Ma M6 / 

f-2"_—2 + A3 — A2 j — As sin 2(p \. 
\MC Mb / J 

(88) 

Hence, with measurements at 45° between the axes and with suitably ap- 
plied fields and strains, the three effects A4, A6 and Ae can be measured. 
Since the axes of the test specimen are turned with respect to the X, Y and 
Z axes, suitable transformations of the effects Ai to Ae with respect to the 
new axes will have to be made. These can be done as shown in reference (4) 
by means of tensor transformation formulae. 

Another method for measuring the constants in A4, As, Ae is to measure 
the amount they rotate the axes of the Fresnel ellipsoid. As an example con- 
sider the Zn constant of ADP. For example, if we look along the A axis and 
apply a field in the same direction, then, in equation (74), d = 90°, <^ = 0 and 

tan 2* = (g9) 
033 — 022 _£ _1_ (Mb + Mc) (Mb — Mc) 

2 — 2 
Mc Mb 

According to Carpenter, the 241 electro-optic constant of ADP is 6.25 X 10-7 

in cgs units. p,a = nb = 1.5254; Mc = 1.4798; hence the angle of rotation for 
a field of 30,000 volts per centimeter = 100 stat volts cm is 

\p = —2.25 X 10-3 radians = 7.7 minutes of arc. (90) 
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VI. Electro-optic and Photoelastic Tensors for Various 
Crystal Classes 

Since rmno = rnmo and zmnu = z„m0 are third rank tensors similar to the 
km a piezoelectric tensor, they will have tlie same components for the various 
crystal classes. For the twenty crystal classes that show the electro-optic 
effect these tensors are given below. They are given with the crystal system 
they belong to, and the symmetry is designated by the Hermann-Mauguin 
symbol. The last number of the subscript of s designates the direction of the 
applied static held. 

(91) 

Triclinic; 1 ~n 221 231 241 251 261 

Zi2 2-22 232 242 252 262 

Zn 223 233 243 253 263 

Monoclinic; 2 0 0 0 241 0 261 

Zl2 222 2.32 0 252 0 

0 0 0 243 0 263 

Monoclinic; 2 = m Zu 2-1 231 0 251 0 

0 0 0 242 0 262 

Zl3 223 233 0 253 0 

Orthorhombic; 222 0 0 0 241 0 0 

0 0 0 0 252 0 

0 0 0 0 0 263 

Orthorhomic; 2mm 0 0 0 0 261 0 

0 0 0 242 0 0 

Zn 223 2,33 0 0 0 

Tetragonal; 4 0 0 0 241 251 0 

0 0 0 — 251 241 0 

Zi:i — 213 0 0 0 263 
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Tetragonal; 4 0 0 0 241 261 0 

0 0 0 251 — 241 0 

Zl3 2X3 Z33 0 0 0 

Tetragonal; 42m 0 0 0 241 0 0 

0 0 0 0 241 0 

0 0 0 0 0 263 

Tetragonal; 422 0 0 0 241 0 0 

0 0 0 0 —241 0 

0 0 0 0 0 0 

Tetragonal; 4mm 0 0 0 0 251 0 

0 0 0 251 0 0 

Zl3 2x3 233 0 0 0 

Trigonal; 3 2ll -2xi 0 241 261 — 222 

— 222 222 0 251 — 241 — 211 

213 2X3 233 0 0 0 

Trigonal; 32 2ll — 2xx 0 241 0 0 

0 0 0 0 -241 — 2X1 

0 0 0 0 0 0 

Trigonal; 3m 0 0 0 0 251 — 222 

— Z22 222 0 251 0 0 

2X3 2X3 233 0 0 0 

Hexagonal; 6 2ii — 2xi 0 0 0 — 222 

— 222 222 0 0 0 — Zu 

0 0 0 0 0 0 
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Hexagonal; 6m2 Zn —2u 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 

Hexagonal; 6 0 0 0 241 251 0 

0 0 0 261 -241 0 

Zu 213 233 0 0 0 

Hexagonal; 622 0 0 0 241 0 0 

0 0 0 0 -241 0 

0 0 0 0 0 0 

Hexagonal; 6mm 0 0 0 0 251 0 

0 0 0 251 0 0 

Zu 213 233 0 0 0 

Cubic; 23 and 43m 0 0 0 241 0 0 

0 0 0 0 241 0 

0 0 0 0 0 241 

The r tensor has similar terms. 
The photoelastic constants are similar to the elastic constant tensors 

except that itir, ^ m.r in general. However, for the tetragonal, trigonal, 
hexagonal and cubic systems, Pockels found that ma = Phi. This follows 
from the transformation equations about the Z axis which is the n fold 
axes for these groups. For a rotation of an angle d about Z, the direction 
cosines are 
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Transforming the two terms Wim = mu and W2211 = W21 by the tensor 
transformation equation 

(93) 

(94) 

dXi dXj dxk dx( 
Iftijkl — - — - - Wmnop 

uXjn uXn uXo oXp 

we find, for these two coefficients, 

— (nin + W22 — dwee) sin2 6 cos2 6 + 2(;«62 — niu) 

sin 6 cos'1 6 + 2(w6i — Wie) sin3 d cos d + mu cos4 6 + nhi sin4 d 

m'n = (wu + ■W22 — 4w/G0) sin2 0 cos2 d + 2(w.1r, — W62) 

sin3 0 cos 0 + 2(^26 — Wei) sin 0 cos'1 0 + Wsi cos4 0 + W12 sin4 0 

If W12 = W21 for all angles of rotation we must have 

Wie + ffhe = tnn + mtn 

For all the classes that nin = W21, either nhe = —Wie and = —tnn or 
else Wie = Vhe = tnn = w'62 = 0. 

Now, if Z is a four-fold axis, as it is in the tetragonal and cubic systems, 
then, for a 90° rotation, the value of tnn or /M21 must repeat. From the first 
of (92) this means that 

tnn = W21 and mn = tnn 

For a trigonal or hexagonal system additional relations are obtained between 
Wee and tnn , ttua and tnn in the usual manner. Hence the photoelastic matrices 
become, for the various crystal classes, 

(95) 
Triclinic 36 
Constant 

Monoclinic 
20 Con- 
stants 

/Mil VI12 '"13 '"U "in »i 16 

/«21 /«22 '"23 '"24 "hi Mio6 

m-n '"32 '"33 '"34 "l3i "l3i 
mti '"42 >"43 "I44 "I45 '"43 
mn VI52 '"63 "in "lu '"a 

WOl m62 '"a '"34 "IK "lit 

mn '"12 '"13 0 "in 0 

mn "122 "'23 0 "h!> 0 

mn '"32 '"33 0 »l3b 0 

0 0 0 >"44 0 '"43 
mn I"b2 '"a 0 "in 0 

0 0 0 "in 0 >"66 

The tt ten- 
sor is en- 
tirely anal- 
ogous 

The tt ten- 
sor is en- 
tirely anal- 
ogous 
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Ortho- 
rhombic 12 
Constants 

Tetragonal 
4,4,47m 9 
Constants 

Tetragonal 
42m, 422 
4mm, 
(4/m)mm 
7 Constants 

Trigonal 
3,3 11 Con- 
stants 

Trigonal 
32,3m 
3(2/m) 8 
Constants 

'"11 "'12 '"13 0 0 0 

"'21 '"22 '"23 0 0 0 

'"31 '"32 '"33 0 0 0 
0 0 0 '"11 0 0 

0 0 0 0 '"5 0 

0 0 0 0 0 '"66 

'"11 "'12 '"13 0 0 '"16 

'"12 '"11 '"13 0 0 — "'16 

"'31 "'31 '"33 0 0 0 

0 0 0 '"44 0 0 

0 0 0 0 '"14 0 

"'61 — "'61 0 0 0 '"66 

"111 "'|2 '"13 0 0 0 

'"12 '"11 '"13 0 0 0 

"'31 "'31 '"33 0 0 0 

0 0 0 '"44 0 0 

0 0 0 0 "'44 0 

0 0 0 0 0 '"6ft 

"'11 "'12 "'13 "'II — '"26 0 

"'12 W'n '"13 — '"14 '"25 0 

'"31 '"31 '"33 0 0 0 

'"41 — '"41 0 "'44 '"45 '"52 

- "'62 '"62 0 — '"46 '"41 "'41 

0 0 0 '"26 "'II '"II 

'"11 '"12 '"13 '"14 0 0 

'"12 '"11 '"13 -'"14 0 0 

'"31 '"31 '"33 0 0 0 

'"41 — >"41 0 '"44 0 0 

0 0 0 0 '"44 '"41 

0 0 0 0 '"14 '"11 

The tt ten- 
sor is en- 
tirely anal- 
ogous 

The tt ten- 
sor is en- 
tirely anal- 
ogous 

The ir ten- 
sor is en- 
tirely anal- 
ogous 

The tt ten- 
sor is anal- 
ogous ex- 
cept 
Trie = 
T66 = 

TTjO = 
(*11 — JTu) 

that 
2*62 
2*41 

The * ten- 
sor is ana- 
logous ex- 
cept that 
*66 = 2*41 
*66 = 
*11 — *!•• 
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Hexagonal 
6, 6w2,6 
622,6/wi; 
6mm, — mm m 
6 Constants 

"in 
'"12 

'"31 

Wf 12 

vtn 

'"31 

'"13 

'"13 

'"33 

0 
0 

0 

0 
0 

0 

0 

0 

0 

The tt ten- 
sor is anal- 
ogous ex- 
cept that 
T66 = 

0 0 0 "lu 0 0 Til — Ti2 

0 0 0 0 "lu 0 

0 0 0 0 0 Wj|| —WZ|2 
2 

Cubic Sys- 
tem 23,432 
^ 1 At 4 ^ 2 
—3,43J«,—3 — m in m 
3 Constants 

Isotropic 
Systems 2 
Constants 

mn "h2 >"12 

"'12 "hi via 

'"12 "'12 "hi 
0 0 0 

0 0 0 

0 0 0 

"hi "'12 V'l2 

'"12 mn via 

'"12 ma niu 

0 0 0 

0 0 0 

0 0 0 

0 
0 

0 

vUi 
0 

0 

0 
0 

0 

W11-W12 

0 
0 

0 

0 

mu 
0 

0 
0 

0 

JMli —»»12 

0 
0 

0 

0 

0 

VtH 

0 
0 
0 

0 

0 

Will —12 

The tt ten- 
sor is en- 
tirely anal- 
ogous 
(95) 

The tt ten- 
sor is anal- 
ogous ex- 
cept that 
ttcb = 
Til — TI2 

From measurement7 on the photoelastic effects at high pressure for cubic 
crystals, it has become apparent that the second derivatives of equation 
(44) are not sufficient to represent the experimental results and derivatives 
up to the fourth power should be included. This extension, however, is not 
considered in the present paper. 

VII. Photoelasticity in Isotropic Media 

The photoelastic effect in isotropic solids has been used extensively in 
studying the stresses existing in machine parts and other pieces. For this 
purpose a plastic model cut in the shape of the original is used and is loaded 
in a similar manner to that of the machine part to be studied. Since stresses 
are applied, the tt,- photoelastic constants are most useful. If we look along 

7 H. B. Maris, Jour. Optical Society of Amer., Vol. 15, pp. 194-200, 1927. 
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the Z axis, the last of equations (79) shows that the birefringence is equal 
to 

3   
= 5 AAA + A - A - A2)2 + 4(A6)

j (96) 

Since, for an isotropic substance /3i = ft , we have, after substituting the 
value of Ai and A*, with the appropriate photoelastic constants from equa- 
tion (95), (last tensor): 

| (rn - x.JVtr, - Ttf + (97) 

If we transform to axes rotated by an angle 0 about Z, the values of Tn 

and Tn are given by 

Tn = cos 20ri + 2 sin 0 cos dT6 sin2 dTi 
(98) 

T21 = sin -6T\ — 2 sin 0 cos BT^ cos ^OTt 
If, now, we choose the angle 0 so that Tu is a maximum, we find 

tan 29 = ~~ (99) 
i 1 — i 2 

Inserting this value of tan 20 in (98) we find 

Tl - ri t T' + W(Ti - Z-2)5 + 47-,' 

rj = Tl ^ T' - W(Ti - Ttf + 47,62 

(100) 

and, hence, 

T[ - Ti = ViT, - T.y + 4r6
2 (101) 

Hence the birefringence obtained in stressing a material is proportional to 
the difference in the principal stresses. By observing the isoclinic lines of a 
photoelastic picture, methods8 are available for determining the stresses 
in a model. A photograph9 of a stressed disk is shown by Fig. 3. The high 
concentration of lines near the surface shows that the shearing stress is 
very high at these points. By counting the number of fines from the edge 
and knowing the stress optical constant, the stress can be calculated at any 
point. 

If we apply a single stress Ti, the birefringence is given by the equation 
3 

-ft = ^ (ttu — Tru)Ti (102) 

8 See Photoelasticity, Cokcr and Filon, Cambridge University Press, 1931. 9 This photograph was taken by T. F. Osmer. 
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Instead of using the constants tth and ttvi it is customary to use a single 
constant C given by 

B = Ve - Ho = r = CT (103) 

where the constant C is called the relative stress optical constant and r the 
retardation. The dimensions of C are the reciprocal of a stress and are 

Fig. 3—Photoelastic picture of a disk in compression. 

measured in cm2 per dyne. A convenient unit for most purposes is one of 
10-13 cm2/dyne; if this is used, the stress optical coefficients of most glasses 
are from 1 to 10 and most plastics are from 10 to 100. This unit so defined 
has been called the "Brewster". In terms of the Brewster, the retardation is 

r = CTd (104) 

If C is measured in Brewsters, d in millimeters and T in bars (106 dynes/ 
cm2) then r, as given by the formula, is expressed in angstrom units. 
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(SECOND INSTALLMENT] 

CHAPTER IV 

FILTER-TYPE CIRCUITS 

Synopsis of Chapter 

A SIDE FROM HELICES, the circuits most commonly used in traveling- 
wave tubes are iterated or filter-type circuits, composed of linear 

arrays of coupled resonant slots or cavities. 
Sometimes the geometry of such structures is simple enough so that an 

approximate field solution can he obtained. In other cases, the behavior of 
the circuits can be inferred by considering the behavior of lumped-circuit 
analogues, and the behavior of the circuits with frequency can be expressed 
with varying degrees of approximation in terms of parameters which can be 
computed or experimentally evaluated. 

In this chapter the field approach will be illustrated for some very simple 
circuits, and examples of lumped-circuit analogues of other circuits will be 
given. The intent is to present methods of analyzing circuits rather than 
particular numerical results, for there are so many possible configurations 
that a comprehensive treatment would constitute a book in itself. 

Readers interested in a wider and more exact treatment of field solutions 
are referred to the literature.1,2 

The circuit of Fig. 4.1 is one which can be treated by field methods. This 
"corrugated waveguide" type of circuit was first brought to the writer's 
attention by C. C. Cutler. It is composed of a series of parallel equally spaced 
thin fins of height h projecting normal to a conducting plane. The case treated 
is that of propagation of a transverse magnetic wave, the magnetic field 
being parallel to the length of the fins. It is assumed that the spacing (■ is 
small compared with a wavelength. In Fig. 4.2, ph is plotted vs. Pah. Here P 
is the phase constant and /3n = co/c is a phase constant corresponding to the 
velocity of light. 

1 E. L. Chu and W. W. Hansen, "The Theory of Disk-Loaded Wave Guides," Journal 
of Applied Physics, Vol. 18, pp. 999-1008, Nov. 1947. 2L. Brillouin, "Wave Guides for Slow Waves," Journal of Applied Physics, Vol. 19, 
pp. 1023-1041, Nov. 1948. 
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For small values of fioh, that is, at low frequencies, very nearly /3 = /3o; 
that is, the phase velocity is very near to the velocity of light. The field 
decays slowly away from the circuit. The longitudinal electric field is small 
compared with the transverse electric field. In fact, as the frequency ap- 
proaches zero, the wave approaches a transverse electromagnetic wave 
traveling with the speed of fight. 

At high frequencies the wave falls off rapidly away from the circuit, and 
the transverse and longitudinal components of electric field are almost equal. 
The wave travels very slowly. As the wavelength gets so short that the 
spacing / approaches a half wavelength (PC = it) the simple analysis given 
is no longer valid. Actually, pi = tt specifies a cutoff frequency; the circuit 
behaves as a lowpass filter. 

Figure 4.3 shows two opposed sets of fins such as those of Fig. 4.1. Such 
a circuit propagates two modes, a transverse mode for which the longi- 
tudinal electric field is zero at the plane of symmetry and a longitudinal 
mode for which the transverse electric field is zero at the plane of symmetry. 

At low frequencies, the longitudinal mode corresponds to the wave on a 
loaded transmission fine. The fins increase the capacitance between the con- 
ducting planes to which they are attached but they do not decrease the 
inductance. Figure 4.6 shows ph vs. Pah for several ratios of fin height, h, 
to half-separation, d. The greater is h/d, the slower is the wave (the larger 
is P/Po)- 

The longitudinal mode is like a transverse magnetic waveguide mode; it 
propagates only at frequencies above a cutoff frequency, which increases 
as h/d is increased. Figure 4.7 shows ph vs. M = (.co/c)h for several values 
of h/d. The cutoff, for which pt = tt, occurs for a value of Poh less than iz/l. 
Thus, we see that the longitudinal mode has a band pass characteristic. The 
behavior of the longitudinal mode is similar to that of a longitudinal mode of 
the washer-loaded waveguide shown in Fig. 4.8. The circuit of Fig. 4.8 has 
been proposed for use in traveling-wave tubes. 

The transverse mode of the circuit of Fig. 4.3 can also exist in a circuit 
consisting of strips such as those of Fig. 4.1 and an opposed conducting 
plane, as shown in Fig. 4.5. This circuit is analogous in behavior to the disk- 
on-rod circuit of Fig. 4.9. The circuit of Fig. 4.5 may be thought of as a 
loaded parallel strip fine. That of Fig. 4.9 may be thought of as a loaded 
coaxial fine. 

Wave-analysis makes it possible to evaluate fairly accurately the trans- 
mission properties of a few simple structures. However, iterated or repeating 
structures have certain properties in common: the properties of filter 
networks. 

For instance, a mode of propagation of the loaded waveguide of Fig. 4.10 
or of the series of coupled resonators of Fig. 4.11 can be represented ac- 
curately at a single frequency by the ladder networks of Fig. 4.12. Further, 
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if suitable lumped-admittance networks are used to represent the admit- 
tances B\ and Bi, the frequency-dependent behavior of the structures of 
Figs. 4.10 and 4.11 can be approximated. 

It is, for instance, convenient to represent the shunt admittances B^ and 
the series admittances B\, in terms of a "longitudinal" admittance BL and 
a "transverse" admittance BT . BL and BT are admittances of shunt resonant 
circuits, as shown in Fig. 4.15, where their relation to Bi and Bz and ap- 
proximate expressions for their frequency dependence are given. The res- 
onant frequencies of B^ and Bt , that is, and cot , have simple physical 
meanings. Thus, in Fig. 4.10, wz, is the frequency corresponding to equal 
and opposite voltages across successive slots, that is, the tt mode frequency, 
cor is the frequency corresponding to zero slot voltage and no phase change 
along the filter, that is, the zero mode frequency. 

If o}L is greater than cor, the phase characteristic of this lumped-circuit 
analogue is as shown in Fig. 4.17. The phase shift is zero at the lower cutoff 
frequency cor and rises to tt at the upper cutoff frequency coz,. If cor is greater 
than coz,, the phase shift starts at — tt at the lower cutoff frequency coz, and 
rises to zero at the upper cutoff frequency cor, as shown in Fig. 4.19. In this 
case the phase velocity is negative. Figure 4.20 shows a measure of (EP/fPP) 
plotted vs. w for coz, > cor . This impedance parameter is zero at cot and rises 
to infinity at coz, • 

The structure of Fig. 4.11 can be given a lumped-circuit equivalent in a 
similar manner. In this case the representation should be quite accurate. 
We find that coz, is always greater than wr and that one universal phase curve, 
shown in Fig. 4.27, applies. A curve giving a measure of (Er/^P) vs. fre- 
quency is shown in Fig. 4.28. In this case the impedance parameter goes to 
infinity at both cutoff frequencies. 

The electric field associated with iterated structures does not vary sinus- 
oidally with distance but it can be analyzed into sinusoidal components. 
The electron stream will interact strongly with the circuit only if the elec- 
tron velocity is nearly equal to the phase velocity of one of these field com- 
ponents. If d is the phase shift per section and L is the section length, the 
phase constant (3m of a typical component is 

/3m = (0 + 2;«x)/L 

where m is a positive or negative integer. The field component for which 
m = 0 is called the fundamental; for other values of m the components are 
called spatial harmonics. Some of these components have negative phase 
velocities and some have positive phase velocities. 

The peak field strength of any field component may be expressed 

E = -M{V/L) 

Here V is the peak gap voltage, L is the section spacing and M is a function 
of /3 (or /3ro) and of various dimensions. For the electrode systems of Figs. 
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4.29, 4.30, 4.31 and 4.32 M is given by (4.69), (4.71), (4.72) and (4.73), 
respectively. 

The factor M may be indifferently regarded as a factor by which we 
multiply the a-c beam current to give the induced current at the gap, or, 
as a factor by which we multiply the gap voltage in obtaining the field. We 
can go further, evaluate Es/fi-P in terms of gap voltage, and use M^-Iq as the 
effective current, or we can use the current /0 and take the effective field in 
the impedance parameter as 

£2 = M^V/C)2 

It is sometimes desirable to make use of a spatial harmonic (m 7^ 0) 
instead of a fundamental, usually to (1) allow a greater resonator spacing 
(2) to obtain a positive phase velocity when the fundamental has a negative 
phase velocity (3) to obtain a phase curve for which the phase angle is 
nearly a constant times frequency; that is, a phase curve for which the group 
velocity does not change much with frequency and hence can be matched 
by the electron velocity over a considerable frequency range. Figure 4.33 
shows how 0 + 27r (the phase shift per section for m = 1) can be nearly a 
constant times oj even when 0 is not. 

1-1 K 
y .\V 

/ h 

* X / / / / / / / * 
Fig. 4.1—A corrugated or finned circuit with filter-like properties. 

4.1 Field Solutions 

An approximate field analysis will be made for two very simple two- 
dimensional structures. The first of these, which is shown in Fig. 4.1, is 
empty space for y > 1 and consists of very thin conducting partitions in the 
y direction from y = 0 to y = —h\ the partitions are connected together 
by a conductor in the z direction at y = —h. These conducting partitions 
are spaced a distance t apart in the z direction. The structure is assumed to 
extend infinitely in the -f-.T and —x directions. 

In our analysis we will initially assume that the wavelength of the propa- 
gated wave is long compared with (. In this case, the effect of the partitions 
is to prevent the existence of any y component of electric field below the z 
axis, and the conductor at y = —h makes the z component of electric field 
zero at y = —z. 

In some perfectly conducting structures the waves propagated are either 
transverse electric (no electric field component in the direction of propaga- 
tion, that is, z direction) or transverse magnetic (no magnetic field com- 
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ponent in the z direction). We find that for the structure under consideration 
there is a transverse magnetic solution. We can take it either on the basis 
of other experience or as a result of having solved the problem that the 
correct form for the x component of magnetic field for y > 0 is 

Hx = Hne
(-yv-jP2) (4.1) 

Expressing the electric field in terms of the curl of the magnetic field, we have 

. dHz dlly 
jueE; = — = 0 

dy Oz 

dllx dllz 
Juehy — —— — —— 

dz dx 

(4.2) 

Ey = — — Ihe(-yy-'Pz) (4.3) 
we 

. dUy dHx . , 
JmEz = ~ - -r— (4.4) 

ax dy 

Ez = - j Hoe(-yu-m (4.5) 
coe 

We can in turn express Hx in terms of Ey and Ez 

. „ dEz dEy . , 
-jupH: = — — (4.6) 

ay dz 

This leads to the relation 

02 - y2 = urfie (4.7) 

Now, l/\//ie is the velocity of light, and w divided by the velocity of light 
has been called do, so that 

d2-y2 = do2 (4.8) 

Between the partitions, the field does not vary in the z direction. In any 
space between from y = 0 to y = —h, the appropriate form for the magnetic 
field is 

u. = //„ ro5 My + A) (4.9) 
cos doh 

From this we obtain by means of (4.4) 

E. = -■^g0
5infti(y +h) (4.io) 

we cos do'' 

Application of (4.6) shows that this is correct. 
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Now, at y = 0 we have just above the boundary 

E. = -j 1 Hae-"- (4.11) 
toe 

The fields in the particular slot just below the boundary will be in phase 
with these (we specify this by adding a factor exp —j^z to 4.10) and hence 
will be 

E, = -j— Hoe-*' tan (30h (4.12) 
coe 

From (4.11) and (4.12) we see that we must have 

Poh tan Poh = yh (4.13) 

flt=TT 

1 

J 

/ 

/ 

fio h 
Fig. 4.2—The approximate variation of the phase constant /3 with frequency (propor- 

tional to Pali) for the circuit of Fig. 4.1. The curve is in error as pi approaches tt, and there 
is a cutoff at pi = tt. 

Using (4.8), we obtain 

m (4.i4) 
COS Po ll 

In Fig. 4.2, ph has been plotted vs Poh, which is, of course, proportional to 
frequency. This curve starts out as a straight line, P = Po that is, for low 
frequencies the speed is the speed of light. At low frequencies the field falls 
off slowly in the y direction, and as the frequency approaches zero we have 
essentially a plane electromagnetic wave. At higher frequencies, P > Po, 
that is, the wave travels with less than the speed of light, and the field falls 
off rapidly in the y direction. According to (4.14), p goes to infinity 
at Poll = t/2. 

As a matter of fact, the match between the fields assumed above and below 
the boundary becomes increasingly bad as becomes larger. The most rapid 



FILTER-TYPE CIRCUITS 195 

alteration we can have below the boundary is one in which fields in alternate 
spaces follow a + , —, + , — pattern. Thus, the rapid variations of field above 
the boundary predicted by (4.14) for values of (ioh which make fit greater 
than iv cannot be matched below the boundary. The frequency at which 

= it constitutes the cutoff frequency of the structure regarded as a filter. 
There is another pass band in the region tt < 13oh < 3t/2, in which the ratio 
of £ to H below the boundary has the same sign as the ratio of E to H above 
the boundary. 

A more elaborate matching of fields would show that our expression is 
considerably in error near cutoff. This matter will not be pursued here; the 
behavior of filters near cutoff will be considered in connection with lumped 
circuit representations. 

We can obtain the complex power flow P by integrating the Poynting 
vector over a plane normal to the z direction in the region y > 0. Let us 
consider the power flow over a depth W normal to the plane of the paper. 
Then 

p = \ I I Eyn*) dx dy (4.15) 

Using (4.1) and (4.3), we obtain 

2 Jo we 
2 (4.16) 

p = 1 Him 
4 0)67 

We will express this in terms of E the magnitude of the z component of 
the field at y = 0, which, according to (4.5), is 

E = — Ho (4.17) 
0)6 

We will also note that 

o)e = to-^/ue/\/u/e 
  ,  (4.18) 

= {u/c)/\/n/e = /VVmA 

and that 

\/mA = ^77 ohms (4.19) 

By using (4.17)-(4.18) in connection with (4.16), we obtain 

E'/H'p = WPoWKy/pY Vul* (4.20) 

We notice that this impedance is very small for low frequencies, at which 
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the velocity of the wave is high, and the field extends far in the y direction 
and becomes higher at high frequencies, where the velocity is low and the 
field falls off rapidly. 

We will next consider a symmetrical array of two opposed sets of slots 
(Fig. 4.3) similar to that shown in Fig. 4.1. Two modes of propagation will 
be of interest. In one the field is symmetrical about the axis of physical 
symmetry, and in the other the fields at positions of physical symmetry are 
equal and opposite. 

In writing the equations, we need consider only half of the circuit. It is 
convenient to take the z axis along the boundary, as shown in Fig. 4.4. 

t 1 
h 

/ / / /l/l 
// / / 

2d —r 

t" 

zlzizJz 
Fig. 4.3—A double finned structure which will support a transverse mode (no longi- 

tudinal electric field on axis) and a longitudinal mode (no transverse electric field on axis). 

T" 
h 
1 ■ / / / / / / 

Fig. 4.4—The coordinates used in connection with the circuit of Fig. 4.3. 

This puts the axis of symmetry at y = and the slots extend from y = 0 
to y = —h. 

For negative values of y, (4.9), (4.10), (4.12) hold. 
Let us first consider the case in which the fields above are opposite to the 

fields below. This also corresponds to waves in a series of slots opposite a con- 
ducting plane, as shown in Fig. 4.5. In this case the appropriate form of the 
magnetic field above the boundary is 

cosh y{d - y) -tfz 
Hx = Ha , , 

cosh yd 

From Maxwell's equations we then find 

Eu = - -Ho 
cce 
0 „ cosh y(d - y) 

cosh yd 

(4.21) 

(4.22) 
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(4.23) 

(4.24) 

(4.25) 

(4.12) 

(4.26) 

Fig. 4.5—The transverse mode of the circuit of Fig. 4.3 exists in this circuit also. 

Here we have added parameter, (<////). For any value of d/h, we can obtain 
yh vs ^n/t; and we can obtain /?// in terms of yh by means of 4.24 

Ph = ((t//)2 + OV*)2)1'2 (4.27) 

We see that for small values of pji (low frequencies) 

72 = (Ji/d) Po 

—m" 

If we examine Fig. 4.5, to which this applies, we find (4.28) easy to explain. 
At low frequencies, the magnetic field is essentially constant from y = d 
to y = —h, and hence the inductance is proportional to the height h + d. 
The electric field will, however, extend only from y = 0 to y = </; hence 
the capacitance is proportional to 1 d. The phase constant is proportional 
to \/LC, and hence (4.29). At higher frequencies the electric and magnetic 
fields vary with y and (4.29) does not hold. 

We see that (4.26) predicts infinite values of 7 for p/i = t/2. As in the 
previous cases, cutoff occurs at p( = ir. 

FILTER-TYPE CIRCUITS 

E, - -He-*' 
we cosh yd 

Pl = P2- r 

At y = 0 we have from (4.23) and (4.12) 

Ez = —j — Hoe j0z tanh yd 
coe 

Ez = —j — Hoe 1 tan poh 

Hence, we must have 

yh tanh {{d/h)yh) = p0/i tan poh 

COA/OCSCr/A'G 

* ///////////// 

¥W\SW\/\/\/\/i 

(4.28) 

(4.29) 
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As an example of the phase characteristic of the circuit, (Hh from (4.26) 
and (4.27) is plotted vs Poh for h/d = 0, 10, 100 in Fig. 4.6. The curve for 
h/d = 0 is of course the same as Fig. 4.2. 

If we integrate Poynting's vector from y = 0 to y = d and for a distance 
W in the .v direction, and multiply by 2 to take the power flow in the other 
half of the circuit into account, we obtain 

EVfP = (2/^o W)WPY (siah7;^h
y

y
d
d+7d) VMA (4.30) 

28 

24 

20 

16 
/3h 

12 

8 

4 

0 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

y3oh 
Fig. 4.6—The variation of 0 with frequency (proportional to 0qIi) for the transverse 

mode of the circuit of Fig. 4.3. Again, the curves are in error near the cutoff at 0C = jr. 

At very low frequencies, at which (4.28) and (4.29) hold, we have 

E'/lfP = (y'/Po/S'Hd/W) Vrfl 

E'/tfF = (h/d)'" (1 + d/h)m (d/W) VmA 

At high frequencies, for which yd is large, (4.30) approaches | of the value 
given by (4.20). There is twice as much power because there are two halves 
to the circuit. 

Let us now consider the case in which the field is symmetrical and Ez does 
not go to zero on the axis. In this case the appropriate field for y > 0 is 

H. = " y)e-"- (4.32) smh yd 

7h tanh (^j /h =/30 h tan/3o h 

-5-= o, 10,100 □ 
/3h = y(7h)2 + (y30h) 

100 
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Proceeding as before, we find 

yh 
= 0o h tan 0q h 

tanh ((<////) yh) 

We see that, in this case, for small values of yh we have 

0oh tanh 0oh = h/d 

(4.33) 

(4.33a) 

There is no transmission at all for frequencies below that specified by (4.33). 
As the frequency is increased above this lower cutoff frequency, yh and 
hence 0h increase, and approach infinity at 0oh = 7r/2. Actually, of course, 
the upper cutoff occurs at ^ = tt. In Fig. 4.7 0h is plotted vs 0oh for h/d = 0, 

/3h 

 T^T—=/3o h tan/3oh 
tanh(4),h 

-b- =0,10,100 
/3h = "Vfyh)2 +(/3OK)2 

I 

h . 
d " 0 / 10 too I 1 \. 

L 
O 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

/3o h 
Fig. 4.7—The variation of 0 with frequency (proportional to 0oli) for the longitudinal 

mode of the circuit of Fig. 4.3. This mode has a band pass characteristic; the band narrows 
as the opening of width 2d is made small compared with the fin height. Again, the curves 
are in error near the upper cutoff at 0C = tt. 

10, 100. This illustrates how the band is narrowed as the opening between 
the slots is decreased. 

By the means used before we obtain 

ewp=(.VM/HY (sinh 7;
o

c
5

0
h

s;;t _ J (4.34) 

We see that this goes to infinity at yd = 0. For large values of yd it be- 
comes the same as (4.30). 

4.2 Practical Circuits 

Circuits have been proposed or used in traveling-wave tubes which bear 
a close resemblance to those of Figs. 4.1, 4.3, 4.5 and which have very similar 
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properties3. Thus Field'1 describes an apertured disk structure (Fig. 4.8) 
which has band-pass properties very similar to the symmetrical mode of the 
circuit of Fig. 4.3. In this case there is no mode similar to the other mode, 
with equal and opposite fields in the two halves. Field also shows a disk-on- 
rod structure (Fig. 4.9) and describes a tube using it. This structure has low- 

/ 0\//' 

Fig. 4.8—This loaded waveguide circuit has band-pass properties similar to those of 
Fig. 4.7. 

Fig. 4.9—This disk-on-rod circuit has properties similar to those of Fig. 4.6. 

R 

<-L-->K-L— 
IK- -HIK- 

(a) (b) 
Fig. 4.10—A circuit consisting of a ridged waveguide with transverse slots or resonators 

in the ridge. 

pass properties very similar to those of the circuit of Fig. 4.5, which are 
illustrated in Fig. 4.6. 

Figure 4.10 shows a somewhat more complicated circuit. Here we have a 
rectangular waveguide, shown end on in a of Fig. 4.10, loaded by a longi- 
tudinal ridged portion R. In b of Fig. 4.10 we have a longitudinal cross sec- 

3 F. B. Llewellyn, U. S. Patents 2,367,295 and 2,395,560. 4 Lester M. Field, "Some Slow-Wave Structures for Traveling-Wave Tubes," Proc. 
I.R.E., Vol. 37, pp. 34-40, Jan. 1949. 
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lion, showing regularly spaced slots S cut in the ridge R. The slots S may he 
thought of as resonators. 

Figure 4.11 shows in cross section a circuit made of a number of axially 
symmetrical reentrant resonators R, coupled by small holes H which act as 
inductive irises. 

It would be very difficult to apply Maxwell's equations directly in de- 
ducing the performance of the structures shown in Figs. 4.10 and 4.11. 
Moreover, it is apparent that we can radically change the performance of 

— J R-- 
Fig. 4.11—A circuit consisting of a number of resonators inductively coupled by means 

of holes. 

JB, JB, JB, 
1 1 1 1 

jB2 
2 jB2 j b2 j b2 

H- 

2jB, JB, 
O--1 

j b2 J B2 J B2 

JB.  

(b) 

Fig. 4.12—Ladder networks terminated in tt (above) and T (below) half sections. Such 
networks can be used in analyzing the behavior of circuits such as those of Fies. 4.10 
and 4.11. 

such structures by minor physical alterations as, by changing the iris size, 
or by using resonant irises in the circuit of Fig. 4.11, for instance. 

As a matter of fact, it is not necessary to solve Maxwell's equations afresh 
each time in order to understand the general properties of these and other 
circuits. 

4.3 Lumped Iterated Analogues 

Consider the ladders of lossless admittances or susceptances shown in 
Fig. 4.12. Susceptances rather than reactances have been chosen because the 
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elements we shall most often encounter are shunt resonant near the fre- 
quencies considered; their susceptance is near zero and changing slowly but 
their reactance is near infinity. 

If these ladders are continued endlessly to the right (or terminated in a 
reflectionless manner) and if a signal is impressed on the left-hand end, the 
voltages, currents and fields at corresponding points in successive sections 
will be in the ratio exp(-r) so that we can write the voltages, 

Vn = Fo rnr (4.35) 

If the admittances Fx and Fo are pure susceptances (lossless reactors), V 
is either purely real (an exponential decay with distance) or purely imaginary 
(a pass band). In this case T is usually replaced by i/3. In order to avoid 
confusion of notation, we will use jd instead, and write for the lossless case 
in the pass band 

Vn = Fo (4.35a) 

Thus, 6 is the phase lag in radians in going from one section to the next. 
In terms of the susceptances,* 

cos 0=1 + B2/2B1 (4.36) 

We will henceforward assume that all elements are lossless. 
Two characteristic impedances are associated with such iterated networks. 

If the network starts with a shunt susceptance Bi/2, as in a of Fig. 4.12, then 
we see the mid-shunt characteristic impedance Kn 

Kr= 2(-B2(B2+ 4B0)-1'* (4.37) 

If the network starts with a series susceptance 2Bi we see the mid-series 
characteristic impedance Kt 

Kr = ±(l/2B1)(-52 + 451)/j52)
1« (4.38) 

Here the sign is chosen to make the impedance positive in the pass band. 
When such networks are used as circuits for a traveling-wave tube, the 

voltage acting on the electron stream may be the voltage across Bi or the 
voltage across Bi or the voltage across some capacitive element of B2 or 
Bi. We will wish to relate this peak voltage F to the power flow P. If the 
voltage across B2 acts on the electron stream 

V2/P = 2KW (4.39) 

If the voltage across Fi acts on the electron stream 

F = I/jB, 

* The reader can work such relations out or look them up in a variety of books or hand- 
books. They are in Schelkunofi's Electromagnetic Waves. 
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where I is the current in Z?i 

p = \r-\ Kt/2 

and hence 

vyp = 2/bjKt 

vyp = -4(5o/^1)(-52(52 + 

F2/P = 

(4.40) 

(4.41) 

(4.42) 

Here the sign has been chosen so as to make V'-/P positive in the pass band. 
Let us now consider as an example the structure of Fig. 4.10. We see that 

two sorts of resonance arc possible. First, if all the slots are shorted, or if no 
voltage appears between them, we can have a resonance in which the field 
between the top of the ridge R and the top of the waveguide is constant 

JB, jB, 

-.3 

jB, 

jB2 jB2
1 

I I I J B2 JB2 j b2 j b2 2 2 I 2 2 ! 2 2 

Cj-J CJ.a r.. 

Fig. 4.13—A ladder network broken up into tt sections. 

all along the length, and corresponds to the cutoff frequency of the ridged 
waveguide. There are no longitudinal currents (or only small ones near the 
slots S) and hence there is no voltage across the slots and their admittance 
(the slot depth, for instance) does not affect the frequency of this resonance. 
Looking at Fig. 4.12, we see that this corresponds to a condition in which 
all shunt elements are open, or B* = 0. We will call the frequency of this 
resonance uT , the T standing for transverse. 

There is another simple resonance possible; that in which the fields across 
successive slots are equal and opposite. Looking at Fig. 4.12, we see that 
this means that equal currents flow into each shunt element from the two 
series elements which are connected to it. We could, in fact, divide the net- 
work up into unconnected tt sections, associating with each series clement of 
susceptance By half of the susceptance of a shunt element, that is, Bo/2, 
at each end, as shown in Fig. 4.1.3, without affecting the frequency of this 
resonance. This resonance, then, occurs at the frequency (L for longi- 
tudinal) at which 

Bi + Bo/4 - 0. (4.43) 

We have seen that the transverse resonant frequency, wr, has a clear 
meaning in connection with the structure of Fig. 4.10; it is (except for small 
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errors clue to stray fields near the slots) the cutoff frequency of the wave- 
guide without slots. Does the longitudinal frequency wz, have a simple 
meaning? 

Suppose we make a model of one section of the structure, as shown in 
Fig. 4.14. Comparing this with b of Fig. 4.10, we see that we have included 
the section of the ridged portion between two slots, and one half of a slot 
at each end, and closed the ends off with conducting plates C. The resonant 
frequency of this model is oiz,, the longitudinal resonant frequency defined 
above. 

We will thus liken the structure of Fig. 4.10 to the filter network of Fig. 

1 SLOTS 

Fig. 4.14—A section which will have a resonant frequency corresponding to that for tt 
radians phase shift per section in the circuit of Fig. 4.10. 

Fig. 4.15—The approximate variation with frequency (over a narrow band) of the 
longitudinal {Bi) transverse {Bt) susceptances of a filter network. 

4.12, and express the susceptances Bi and B* in terms of two susceptances 
Bt and BL associated with the transverse and longitudinal resonances and 
defined below 

At the transverse resonant frequency ur , Br = 0, and at the longitudinal 
resonant frequency uL, B,. = 0. So far, the lumped-circuit representation 
of the structure of Fig. 4.14 can be considered exact in the sense that at 
any frequency we can assign values to Br and Bi. which will give the correct 
values for 6 and for V2/P for the voltage across either the shunt or the series 
elements (whichever we are interested in). 

B L = 2 C L {oj - £Ul) Bt= 2CT(a;-CUT) 

Br — Bi 

BL= B^ JV4 

(4.44) 

(4.45) 
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We will go further and assume that near resonances these values of Bt 
and Bl behave like the admittances of shunt resonant circuits, as indicated 
in Fig. 4.15. Certainly we are right by our definition in saying that Bt = 0 
at air , and B,, = 0 at . We will assume near these frequencies a linear 
variation of Bt and BL with frequency, which is very nearly true for shunt 
resonant circuits near resonance* 

Bt = 2Cr(w — Wr) (4.46) 

Bl = 2CL{U - cot) (4.47) 

Here CV can mean twice the peak stored electric energy per section length 
for unit peak voltage between the top of the guide and the top of the ridge R 
when the structure resonates in the transverse mode, and Cl can mean twice 
the stored energy per section length L for unit peak voltage across the top 

1 L pass J 1 BAND n 

Bx\ 
/ L 

ajT a»L 
Fig. 4.16—Longitudinal and transverse susceptances which give zero radians phase 

shift at the lower cutoff (oj = wr) and x radians phase shift at the upper cutoff (u = u/J. 

of the slot when the structure resonates in the longitudinal mode. 
In terms of Bt and Bl , expression (4.36) for the phase angle d becomes 

4-Bi, + Bt .Qx 
C05 6 = 457- bt 

(4A8) 

We see immediately that for real values of 6 (cos 6 < Bt and BL must 
have opposite signs, making the denominator greater than the numerator. 

Figure 4.16 shows one possible case, in which cor < ul • In this case the 
pass band (6 real) starts at the lower cutoff frequency co = wy at which Bt 
is zero, cos d = 1 (from (4.48)) and 0=0, and extends up to the upper 
cutoff frequency u = a.t which BL = 0, cos 0 = — 1 and 0 = tt. 

* In case the filter has a large fractional bandwidth, it may be worth while to use the 
accurate lumped-circuit forms 

Bt = a>7'Cr(w/air — cor/w) (4.46a) 

Bl = o}lCl{u/o)l — wt/«) (4.46b) 
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The shape of the phase curves will depend on the relative rates of varia- 
tion of Bt and BL with frequency. Assuming the linear variations with fre- 
quency of (4.46) and (4.47) the shapes can be computed. This has been done 
for CiJCt = 1, 3, 10 and the results are shown in Fig. 4.17. 

Ct 

CJt CO >■ 
Fig. 4.17—Phase shift per section, 0, vs radian frequency w for the conditions of Fig. 4.16. 

L__pass__j 
BAND / 

By/ 

ajL coj 
Fig. 4.18—Longitudinal and transverse susceptances which give —tt radians phase 

shift at the lower cutoff (oj = w/.) and 0 degrees phase shift at the upper cutoff (co = oir). 
This means a negative phase velocity. 

It is of course possible to make co/, > cot . In this case the situation is as 
shown in Fig. 4.18, the pass band extending from cot to wr • At co = coj,, 
cos 0 = -1, 0 = -tt. At co = cor, cos 0 = 1 and 0 = 0. In Fig. 4.19, as- 
suming (4.46) and (4.47), 0 has been plotted vs co for Cl/Ct = 1, 3, 10. 

The curves of Figs. 4.17 and 4.18 are not exact for any physical structure 
of the type shown in Fig. 4.10. In lumped circuit terms, they neglect coupling 
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between slots. They will be most accurate for structures with slots longitu- 
dinally far apart compared with the transverse dimensions, and least ac- 
curate for structures with slots close together. They do, however, form a 
valuable guide in understanding the performance of such structures and in 
evaluating the effect of the ratio of energies stored in the fields at the two cut- 
off frequencies. 

-77-1 

/ 3 

/ / 
1^ 

// 
/ 

// 

// 

/ 
V 
1 

a>L a»T 

4 18^" ^ ^—Phase shift per section, 0, vs radian frequency, w, for the conditions of Fig 

It is most likely that the voltages across the slots would be of most in" 
terest in connection with the circuit shown in Fig. 4.10. We can rewrite 
(4.41) in terms of T??- and 

V'/P = 
2(1 - \BLIBr){-BrBL)xn (4.49) 

We see that V'-jP goes to 0 at Br = 0 (cu = cor) and to infinity at $/, = 0 
(w = wj. In Fig. 4.20 assuming (4.46) and (4.47), {V2/P){^hCT) is 
plotted vs oj for CJCt = 1, 3, 10. 

Let us consider another circuit, that shown in Fig. 4.11. We see that this 
consists of a number of resonators coupled together inductively. We might 
draw the equivalent circuits of these resonators as shown in Fig. 4.21. Here 
L and C are the effective inductance and the effective capacitance of the 
resonators without irises. They are chosen so that the resonant frequency 
coo is given by 

wo = VTC (4.50) 
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and the variation of gap susceptance B with frequency is 

dB/du = 2C (4.51) 

The arrows show directions of current flow when the currents in the gap 
capacitances are all the same. 

0.9 

0.8 

— 0.7 t- 
3 

0.6 
3, 
T 0.5 U _i 

0,4 

0.3 
3/ 10 

Fig. 4.20—A quantity proportional to {EJ/pP) vs co for the conditions of Figs. 4.16 
and 4.17. 

o C 3" i c i 
nmn-K-ow- 

Fig. 4.21—A representation of the resonators of Fig. 4.11. 

We can now represent the circuit of Fig. 4.11 by interconnecting the 
circuits of Fig. 4.21 by means of inductances LM of Fig. 4.22. This gives a 
suitable representation, but one which is open to a minor objection: the 
gap capacitance does not appear across either a shunt or a series arm. 

It is important to notice that there is another equally good representa- 
tion, and there are probably many more. Suppose we draw the resonators as 
shown in Fig. 4.23 instead of as in Fig. 4.21. The inductance L and capaci- 
tance C are still properly given by 4.50 and 4.51. We can now interconnect 
the resonators inductively as shown in Fig. 4.24. 

We should note one thing. In Fig. 4.21, the currents which are to flow in 
the common inductances of Fig. 4.22 flow in opposite directions when the 
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gap currents are in the same directions. In the representation of Fig. 4.23 
the currents which will flow in the common inductances of Fig. 4.24 have 
been drawn in opposite directions, and we see that the currents in the gap 
capacitances flow alternately up and down. In other words, in Fig. 4.24, 
every other gap appears inverted. This can be taken into account by adding 
a phase angle — tt to 0 as computed from (4.48). 

Fig. 4.22—The resonators of Fig. 4.11 coupled inductively. 

2L 2L 2L 2L 2L 2L 

o O =cO O O 

Fig. 4.23—Another representation of the resonators of Fig. 4.11. 

mrm 
Fig. 4.24—Figure 4.23 with inductive coupling added. 

I— 
La 

Ma 

Lwb 
— n i— 

Lb 

—n 

Lb 

(a) 111 (b) m 

Fig. 4.25—A T — ir transformation used in connection with the circuit of Fig. 4,24. 

Now, the T configuration of inductances in a of Fig. 4.25 can be replaced 
by the tt configuration, b of Fig. 4.25. Imagine I and II to be connected 
together and a voltage to be applied between them and HI. We see that 

Lb = La + ILva (4.52) 

Imagine a voltage to be applied between I and II. We see that 

1/La = 1/7.6+ 2/Lm (4.53) 

If L ua « La , then Lb will be nearly equal to La and L^b» Lb. 
By means of such a 7' — tt transformation we can redraw the equivalent 

circuit of Fig. 4.24 as shown in Fig. 4.26. The series susceptance is now 



210 BELL SYSTEM TECHNICAL JOURNAL 

that of Li, and the shunt susceptance is now that of the shunt resonant 
circuit consisting of Ci (the effective capacitance of the resonators) and Li. 

Li 
nr\ HP 

L2 L2 C2 L2 C2 C 2 

Fig. 4.26—The final representation of the circuit of Fig. 4.11. 

o 

1 

I 

z1 

/ 

cur cu—*■ 
Fig. 4.27—The phase characteristic of the circuit of Fig. 4.11. 

The transverse resonance, Bi = 0, occurs at a frequency 

03T — "x/GiLI 

Near this frequency the transverse susceptance is given by 

BT 1 2CI((J} — cot) 

The longitudinal resonance occurs at a frequency 

and near o)L , 

ul = -\/2CiL\Lil(L\ 2Li) 

Bi, = Ciifd — co/,) 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

These are just the forms we found in connection with the structure of Fig. 
4.10; but we see that, in the case of the circuit of Fig. 4.11, the effective 
transverse capacitance is always twice the effective longitudinal capacitance 
(Cl/Ct = 1/2 in Fig. 4.19), and that co/, > cor for attainable volume of Li. 
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We obtain 0 vs w by adding — tt to the phase angle from 4.48, using (4.55) 
and (4.57) in obtaining Br and BL . The phase angle vs. frequency is shown 
in Fig. 4.27. As the irises are made larger, the bandwidth, uL — cot , becomes 
larger, largely by a decrease in w/,. 

The voltage of interest is that across Co, that is, that across the gap. 
From (4.37), (4.44), (4.45), (4.55) and (4.57) we obtain 

VyP = 2/(-BTBLy'* (4.58) 

V2/P = (VI/CMvl - »)(" - VT))-"2 (4.59) 

This goes to infinity at both io — coL and co = ajr. In Fig. 4.28, 
(F2/P)C2\/ux,a)7- is plotted vs w. This curve represents the performance of 
all narrow band structures of the type shown in Fig. 4.11. 

a 

7 

3 6 I 
j: s nj U 
-0- 4 
> 

3 

2 

Ulj 0JL 

Fig. 4.28—A quantity proportional to {E?/fFP) for the circuit of Fig. 4.11, plotted vs 
radian frequency u. 

In a structure such as that shown in Fig. 4.11, there is little coupling 
between sections which are not adjacent, and hence the lumped-circuit 
representation used is probably quite accurate, and is certainly more ac- 
curate than in structures such as that shown in Fig. 4.10. 

Other structures could be analyzed, but it is believed that the examples 
given above adequately illustrate the general procedures which can be 
employed. 

4.4 Traveling Field Components 

Filter-type circuits produce fields which are certainly not sinusoidal with 
distance. Indeed, with a structure such as that shown in Fig. 4.11, the elec- 
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trons are acted upon only when they are very near to the gaps. It is possible 
to analyze the performance of traveling-wave tubes on this basis5. The chief 
conclusion of such an analysis is that highly accurate results can be obtained 
by expressing the field as a sum of traveling waves and taking into account 
only the wave which has a phase velocity near to the electron velocity. Of 
course this is satisfactory only if the velocities of the other components are 
quite different from the electron velocity (that is, different by a fraction 
several times the gain parameter C). 

As an example, consider a traveling-wave tube in which the electron stream 
passes through tubular sections of radius a, as shown in Fig. 4.29, and is 
acted upon by voltages appearing across gaps of length ( spaced L apart. 

K—L—^ K L >J< L—->| 

V//////////A V/////////A\ Y///A\ * 

-4 -Jik -Jik -Jtk 
Vn-i Vn Vn+| Vn+2 

Fig. 4.29—A series of gaps in a tube of inside radius a. The gaps are ( long and arc 
spaced L apart. Voltages Vn , etc.. act across them. 

A wave travels in some sort of structure and produces voltages across the 
gaps such that that across the «th gap, V, is 

Vn = Vn e 
—jnO (4.60) 

where n is any integer. 
We analyze this field into traveling-wave components which vary with 

distance as exp{-jpmz) where 

/3m = (^ + 2mir)/L (4-61) 

where m is any positive or negative integer. Thus, the total field will be 

E = y. Em = y A, hiymr) (4.62) 

(4.63) 

Here hiymr) is a modified Bessel function, and ym has been chosen so that 
(4.62) satisfies Maxwell's equations. 

5 J. R. Pierce and Nelson Wax, "A Note on Filter-Type Traveling-Wave Amplifiers," 
Proc. I.R.E., Vol. 37, pp. 622-625, June, 1949. 
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We will evaluate the coefficients by the usual means of Fourier analysis. 
Suppose we let 2 = 0 at the center of one of the gaps. We see that 

-L/2 « 
EE*dz= Z AmA*mll{ymr) dz 

J—Lll m=—w J—L/2 
(4-64) 

= Z AmAlll{ymr)L ,,,=—00 

All of the terms of the form EmEv , p 9^ m integrate to zero because the 
integral contains a term exp{-j2ir{p — m)/L)z. 

Let us consider the field at the radius r. This is zero along the surface of 
the tube. We will assume with fair accuracy that it is constant and has a 
value — V/f across the gap. Thus we have also at r = o, 

/ill " fill 
EE* dz = — (V/t) Z / A*e~i0mZIoiyma) dz 

L/2 »i=—co J—tll 

= - (V/f) Z (A:)Io(yma) f —^ ) m—00 \ JP / 

We can rewrite this 
• Z./2 
f" EE* dz= - (V/() Z A*Ia(.y„a) 5111 ('3"^2) 

J-Ll2 [Pml/1 

(4.65) 

(4.66) 

By comparison with (4.64) we see that 

Am= - {V/L){ sin (j3mf/2)/(fimf/2))(l/Io(ya)) (4.67) 

This is the magnitude of the wth held component on the axis. The magnitude 
of the held at a radius r would be hiyr) times this. 

The quantity pm( is an angle which we will call da , the gap angle. Usually 
we are concerned with only a single held component, and hence can merely 
write 7 instead of y,,,. Thus, we say that the magnitude E of the travelling 
held produced by a voltage V acting at intervals L is 

E = —M{V/L) (4.68) 

= sin (gg/2) IqM 
{dg/2) I0{ya) ^•W) 

Qg = pf (4.70) 

The factor M is called the gap factor or the modulation coefficient*. 
For slow waves, y is very nearly equal to and we can replace yr and ya 
by Pr and /3a. For unattenuated waves, M is a real positive number; and, 

* This factor is often designated by /3, but we have used /3 otherwise. 
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for the slowly varying waves with which we deal, we will always consider 
M as a real number. 

The gap factor for some other physical arrangements is of interest. At a 
distance y above the two-dimensional array of strip electrodes shown in 
Fig. 4.30 

_ Sin {eg/2) yy 
M--mr 

(4.71) 

/I 1 / 

*9- *—L--> 
Fig. 4.30—A series of slots 6,, radians long separated by walls L long. 

COMOUCT/A/G 

7f A y=0 
T 

/ 

k 
Fig. 4.31—A system similar to that of Fig. 4.30 but with the addition of an opposed 

conducting plane. 

If we add a conducting plane a at y = h, as in Fig. 4.31, 

sin {eg/2) sinh y{h - y) 
M = 

{eg/2) sinh yh 
(4.72) 

For a symmetrical two-dimensional array, as shown in Fig. 4.32, with a 
separation of 2 h in the y direction and the fields above equal to the fields 
below 

M = 
sin {eg/2) cosh yy (4.73) 

{eg/2) cosh yh 

4.5 Effective Field and Effective Current 

In Section 4.4 we have expressed a field component or "effective field" 
in terms of circuit voltage by means of a gap-factor or modulation coeffi- 
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cient M. This enables us to make calculations in terms of fields and currents 
at the electron stream. 

The gap factor can be used in another way. A voltage appears across a 
gap, and the electron stream induces a current at the gap. At the electron 
stream the power Pi , produced in a distance L by a convection current 
i with the same ^-variation as the field component considered, acting on the 
field component is 

Pi = -Ei*L 

= +{MV)i* 
(4.74) 

/ / -< 

/ 

Fig. 4.32—A system of two opposed sets of slots. 

At the circuit we observe some impressed current I flowing against the 
voltage V to produce a power 

P2 = VI* (4.75) 

By the conservation of energy, these two powers must be the same, and we 
deduce that 

I* = Mi* 

or, since we take M as a real number 

/ = Mi 

(4.76) 

(4-77) 

Thus, we have our choice of making calculations in terms of the beam 
current and a field component or effective field, or in terms of circuit voltage 
and an effective current, and in either case we make use of the modulation 
coefficient M. 

Our gain parameter C3 will be 

C3 = (V/L)2M2Io/ 8/32 V q 
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where V is circuit voltage. We can regard this in two ways. We can think 
of _ {y/L)M as the effective field at the location of the current /o, or we 

can think of M-IQ as the effective current referred to the circuit. 
If we have a broad beam of electrons and a constant current density Jo 

we compute (essentially as in Chapter III) a value of C3 by integrating 

C3 = (l/8/32F0)/o(fVZ.)2 / M2 da (4.78) 

where da is an element of area. We can think of the result in terms of an 
effective field Ee 

/ 
M d<r (4.79) 

El = (F/Z,)1 

a 

where a is the total beam area, and a total current aJ^, or we can think of 
the integral (4.77) in terms of an effective current h given by 

Io= Jo J M2 da (4.80) 

and the voltage at the circuit. 
Of course, these same considerations apply to distributed circuits. Some- 

times it is most convenient to think in terms of the total current and an 
effective field (as we did in connection with helices in Chapter III) and 
sometimes it is most convenient to think of the field at the circuit and an 
effective current. Either concept refers to the same mathematics. 

4.6 Harmonic Operation 

Of the field components making up E in (4.62) it is customary to regard 
the m = 0 component, for which /3 = Q/L, as the fundamental field com- 
ponent, and the other components as harmonic components. These are some- 
times called Ilarlree harmonics. If the electron speed is so adjusted that the 
interaction is with the m = 0 or fundamental component we have funda- 
mental operation; if the electron speed is adjusted so that we have interac- 
tion with a harmonic component, we have harmonic operation. 

There are several reasons for using harmonic operation in connection 
with filter-type circuits. For one thing the fundamental component may 
appear to be traveling backwards. Thus, for circuits of the type shown in 
Fig. 4.11, we see from Fig. 4.27 that 0 is always negative. Now, in terms of 
the velocity v 

^ = o/v — 0/ L (4.81) 

and if Q is negative, v must be negative. However, consider the m = 1 
component 

0 = u/v= {2ir + d)/L (4.82) 
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We see that, for this component, v is positive. 
The interaction of electrons with backward-traveling field components 

will be considered later. Here it will merely be said that, in order to avoid 
interaction with waves traveling in both directions, one must avoid having 
the electron speed lie near both the speed of a forward component and the 
speed of a backward component. 

In order that the fundamental component be slow, d must be large or L 
must be small. The largest value of 0 is that near one edge of the band, where 
6 approaches tt. Thus, the largest fundamental value of is t/L, and to make 

377 

277 

fc C\J 
+ 
<l> 

77 

0 U)\ OJz 

Fig. 4.33—The variation of phase with frequency for the fundamental (0 to tt over the 
band) and a spatial harmonic (27r to itr over the band). The dotted lines show u divided 
by the electron velocity for the two cases. For amplification over a broad band the dotted 
curve should not depart much from the filter characteristic. 

/3 large with 7» = 0 we must make L small and put the resonators very close 
together. This may be physically difficult or even impossible in tubes for 
very high frequencies. The alternative is to use a harmonic component, 
for which /3 = (2w7r 9) L. 

Another reason for using harmonic operation is to achieve broad-band 
operation. The phase of a filter-type circuit changes by tt radians between 
the lower cutoff frequency on and the upper cutoff frequency o^f. Now, 
for the wave velocity to be near to the electron velocity over a good part 
of the band, must be nearly a constant times w. Figure 4.33 shows how 
this can be approximately true for the m = 1 component even when it ob- 
viously won't be for the m = 0 or fundamental component. Similarly, for 
a filter with a narrower fractional bandwidth and hence a steeper curve of 
6 vs co, a larger value of m might give a nearly constant value of v. 

t The phase of some filters changes more than this, but they don't seem good candidates 
for traveling-wave tube circuits. 
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CHAPTER V 

GENERAL CIRCUIT CONSIDERATIONS 

Synopsis of Chapter 

IN CHAPTERS III AND IV, helices and filter-type circuits have been 
considered. Other slow-wave circuits have been proposed, as, for in- 

stance, wave guides loaded continuously with dielectric material. One may 
ask what the best type of circuit is, or, indeed, in just what way do bad cir- 
cuits differ from good circuits. 

So far, we have as one criterion for a good circuit a high impedance, 
that is, a high value of Ey'^F. If we want a broad-band amplifier we must 
have a constant phase velocity; that is, 0 must be proportional to frequency. 
Thus, two desirable circuit properties are: high impedance and constancy 
of phase velocity. 

Now, E?/0-P can be written in the form 

K-ffi-P = E?/FWvg 

where W is the stored energy per unit length for a field strength E, and v„ 
is the group velocity. 

One way of making E2/02P large is to make the stored energy for a given 
field strength small. In an electromagnetic wave, half of the stored energy 
is electric and half is magnetic. Thus, to make the total stored energy for a 
given field strength small we must make the energy stored in the electric 
field small. The energy stored in the electric field will be increased by the 
presence of material of a high dielectric constant, or by the presence of large 
opposed metallic surfaces, as in the circuits of Figs. 4.8 and 4.9. Thus, such 
circuits are poor as regards circuit impedance, however good they may be in 
other respects. 

If the stored energy for a given field strength is held constant, E2/0-P 
may be increased by decreasing the group velocity. It is the phase velocity 
v which should match the electron speed. The group velocity vg is given in 
terms of the phase velocity by (5.12). We see that the group velocity may 
be much smaller than the phase velocity if —dv/dw is large. It is, for in- 
stance, a low group velocity near cutoff that accounts for the high imped- 
ance regions exhibited in Figs. 4.20 and 4.28. We remember, however, 
that, if the phase velocity of the circuit of a traveling-wave tube changes 
with frequency, the tube will have a narrow bandwidth, and thus the high 
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impedances attained through large values of —dv/do) are useful over a nar- 
row range of frequency only. 

If we consider a broad electron stream of current density Jn, the highest 
effective value of E2/^2P, and hence the highest value of C, will be attained 
if there is current everywhere that there is electric field, and if 'all of the 
electric field is longitudinal. This leads to a limiting value of C, which is 
given by (5.23). There Xo is the free-space wavelength. The nearest practical 
approach to this condition is perhaps a helix of fine wire flooded inside and 
outside with electrons. 

In many cases, it is desirable to consider circuits for use with a narrow 
beam of electrons, over which the field may be taken as constant. As the 
helix is a common as well as a very good circuit, it might seem desirable 
to use it as a standard for comparison. However, the group velocity of the 
helix differs a little from the phase velocity, and it seems desirable instead 
to use a sort of hypothetical circuit or field for which the stored energy is 
almost the same as in the helix, but for which the group velocity is the same 
as the phase velocity. This has been referred to in the text as a "forced 
sinusoidal field." In Fig. 5.3, (Er/^P)1'3 for the forced sinusoidal field is 
compared with (£2//32i>)1/3 for the helix. 

Several other circuits are compared with this: the circular resonators of 
Fig. 5.4 (the square resonators of Fig. 5.4 give nearly the same impedance) 
and the resonant quarter-wave and half-wave wires of Figs. 5.6 and 5.7. 
The comparison is made in Fig. 5.8 for three voltages, which fix three phase 
velocities. In each case it is assumed that in some way the group velocity 
has been made equal to the phase velocity. Thus, the comparison is made on 
the basis of stored energies. The field is taken as the field at radius a (cor- 
responding to the surface of the helix) in the case of the forced sinusoidal 
field, and at the point of highest field in the case of the resonators. 

We see from Figs. 5.8 and 5.3 that a helix of small radius is a very fine 
circuit. 

In circuits made up of a series of resonators, the group velocity can be 
changed within wide limits by varying the coupling between resonators, as 
by putting inductive or capacitive irises between them. Thus, even cir- 
cuits with a large stored energy can be made to have a high impedance by 
sacrificing bandwidth. 

The circuits of Fig. 5.4 have a large stored energy because of the large 
opposed surfaces. The wires of Fig. 5.6 have a small stored energy asso- 
ciated entirely with "fringing fields" about the wires. The narrow strips of 
Fig. 5.5 have about as much stored energy between the opposed flat sur- 
faces as that in the fringing field, and are about as good as the half-wave 
wires of Fig. 5.7. 

An actual circuit made up of resonators such as those of Fig. 5.4 will be 
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worse than Fig. 5.8 implies. Thus, there is a decrease of (JB
2//32/>)I/3 due to 

wall thickness. Thickening the flat opposed walls of the resonators decreases 
the spacing between the opposed surfaces, increases the capacitance and 
hence increases the stored energy for a given gap voltage. In Fig. 5.9 the 
factor / by which {K-ffFPy13 is reduced is plotted vs. the ratio of the wall 
thickness / to the resonator spacing L. 

There is a further reduction of effective field because of the electrical 
length, Q in radians, of the space between opposed resonator surfaces. 
The lower curve in Fig. 5.10 gives a factor by which {E?/0lP)m is reduced 
because of this. If the resonator spacing, 9, in radians, is greater than 2.33 
radians, it is best to make the opening, or space between the walls, only 
2.33 radians long by making the opposed disks forming the walls very 
thick. 

There is of course a further loss in effective field, both in the helix and in 
circuits made up of resonators, because of the falling-off of the field toward 
the center of the aperture through which the electrons pass. This was dis- 
cussed in Chapter IV. 

Finally, it should be pointed out that the fraction of the stored energy 
dissipated in losses during each cycle is inversely proportional to the Q of 
the circuit or of the resonators forming it. The distance the energy travels 
in a cycle is proportional to the group velocity. Thus, for a given Q the sig- 
nal will decay more rapidly with distance if the group velocity is lowered 
(to increase Et/pP). Equations (5.38), (5.42) and (5.44) pertain to attenu- 
ation expressed in terms of group velocity. The table at the end of the 
chapter shows that a circuit made up of resonators and having a low enough 
group velocity to give it an impedance comparable with that of a helix can 
have a very high attenuation. 

5.1 Group and Phase Velocity 

Suppose we use a broad video pulse F(/), containing radian frequencies 
p lying in the range 0 to , to modulate a radio-frequency signal of radian 
frequency co which is much larger than p^, so as to give a radio-frequency 
pulse /(/) 

the functions F{t) and /(/■) are indicated in Fig. 5.1. 
F(/), which is a real function of time, can be expressed by means of its 

Fourier transform in terms of its frequency components 

/(/) = eiatF{l) (5.1) 

(5.2) 
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Here A (p) is a complex function of p, such that A(—p) is the complex con- 
jugate of A{p) (this assures that F{l) is real). 

With F(t) expressed as in (5.2), we can rewrite (5.1) 
/Po 

A{p) 
Tin 

)ei{u+p)t dp (5.3) 

Now, suppose, as indicated in Fig. 5.2, we apply the r-f pulse /(/) to the 
input of a transmission system of length L with a phase constant /3 which 

-F(t) 
W-f(t) 

Fig. 5.1—A radio-frequency pulse varying with time as/(0- The envelope varies with 
time as F(/). The pulse might be produced by modulating a radio-frequency source 
with F(l). 

PHASE CONSTANT /3[(v) 

F(t). 
f(t)' 

L. J 

G{t) 

g(t) 

Fig. 5.2—When the pulse of Fig. 5.1 is applied to a transmission system of length L 
and phase constant /3(co) (a function of co), the output pulse g(J) has an envelope G(/). 

is a function of frequency. Let us assume that the system is lossless. The 
output g{t) will then be 

/Po 
AWe'"-*-'-"-'dp (5.4) 

PO 

We have assumed that pn is much smaller than cu. Let us assume that over 
the range u — po to u + po, 0 can be adequately represented by 

= f>* + fp ow 

In this case we obtain 
/Po 

A(p) 
PO 

The envelope at the output is 

JpU-(d0ldu)L) dp 

r Po 
G{1) = A(p) 

•*— On 
„jp(l—(d0/do>) L) dp 

(5.5) 

(5.6) 

(5.7) 
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By comparing this with (5.2) we see that 

C(i) = F ^ i) (5-8) 

In other words, the envelope at the output is of the same shape as at the 
input, but arrives a time r later 

t — —— L (5.9) 
dw 

This implies that it travels with a velocity vg 

- L/* = ©" (5-10) 

This velocity is called the group velocity, because in a sense it is the veloc- 
ity with which the group of frequency components making up the pulse 
travels down the circuit. It is certainly the velocity with which the energy 
stored in the electric and magnetic fields of the circuit travels; we could ob- 
serve physically that, if at one time this energy is at a position x, a time I 
later it is at a position x + vu /. 

If the attenuation of the transmission circuit varies with frequency, the 
pulse shape will become distorted as the pulse travels and the group velocity 
loses its clear meaning. It is unlikely, however, that we shall go far wrong 
in using the concept of group velocity in connection with actual circuits. 

We have used earlier the concept of phase velocity, which we have desig- 
nated simply as v. In terms of phase velocity, 

/5 = ^ (5.11) 
v 

We see from (5.10) that in terms of phase velocity v the group velocity 
Vn IS 

For interaction of electrons with a wave to give gain in a traveling-wave 
tube, the electrons must have a velocity near the phase velocity v. Hence, 
for gain over a broad band of frequencies, v must not change with frequency; 
and if v does not change with frequency, then, from (5.12), va = v. 

We note that the various harmonic components in a filter-type circuit 
have different phase velocities, some positive and some negative. The group 
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velocity is of course the same for all components, as they are all aspects of 
one wave. Relation (4.61) is consistent with this: 

0m = {d+ 2tmr)/L (4.61) 

1 / Tg = dpm/do) = (dd/ do:)/L (5.13) 

5.2 Gain and Bandwidth in a Traveling-Wave Tube 

We can rewrite the impedance parameter Er/firP in terms of stored 
energy per unit length W for a field strength E, and a group velocity v0 . 
If IF is the stored energy per unit length, the power flow P is 

P = Wl'g (5.14) 

and, accordingly, we have 

Er/IFP = EP/pWvg (5.15) 

And, for the gain parameter, we will have 

c = (Et/pwvoy'Kh/sVoy3 (5.16) 

For example, we see from Fig. 4.20 that E2/^2P for the circuit of Fig. 4.10 
goes to infinity at the upper cut-off. From Fig. 4.17 we see that dd/du, 
and hence \/v0 , go to infinity at the upper cutoff, accounting for the infinite 
impedance. We see also that dd/du goes to infinity at the lower cutoff, but 
there the slot voltage and hence the longitudinal field also go to zero and 
hence E1/0iP does not go to infinity but to zero instead. 

In the case of the circuit of Fig. 4.11, the gap voltage and hence the longi- 
tudinal field are finite for unit stored energy at both cutoffs. As dd/du is 
infinite at both cutoffs, V2/P and hence E2/l3-P go to infinity at both cut- 
offs, as shown in Fig. 4.28. 

To get high gain in a traveling-wave tube at a given frequency and volt- 
age (the phase velocity is specified by voltage) we see from (5.16) that we 
must have either a small stored energy per unit length for unit longitudinal 
field, or a small group velocity, Vg . 

To have amplification over a broad band of frequencies we must have the 
phase velocity v substantially equal to the electron velocity over a broad 
band of frequencies. This means that for very broad-band operation, v 
must be substantially constant and hence in a broad-band tube the group 
velocity will be substantially the same as the phase velocity. 

If the group velocity is made smaller, so that the gain is Increased, the 
range of frequencies over which the phase velocity is near to the electron 
velocity is necessarily decreased. Thus, for a given phase velocity, as the 
group velocity is made less the gain increases but the bandwidth decreases. 

Particular circuits can be compared on the basis of (E2/@rP) and band- 
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width. We have discussed the impedance and phase or velocity curves in 
Chapters III and IV. Field1 has compared a coiled waveguide structure with 
a series of apertured disks of comparable dimensions. Both of these struc- 
tures must have about the same stored energy for a given field strength. 
He found the coiled waveguide to have a low gain and broad bandwidth 
as compared with the apertured disks. We explain this by saying that the 
particular coiled waveguide he considered had a higher group velocity than 
did the apertured disk structure. Further, if the coiled waveguide could be 
altered in some way so as to have the same group velocity as the apertured 
disk structure it would necessarily have substantially the same gain and 
bandwidth. 

In another instance, Mr. O. J. Zobel of these Laboratories evaluated the 
effect of broad-banding a filter-type circuit for a traveling-wave tube by 
m-derivation. He found the same gain for any combination of m and band- 
width which made v = Vgidv/du = 0). We see this is just a particular 
instance of a general rule. The same thing holds for any type of broad- 
banding, as, by harmonic operation. 

5.3 A Comparison of Circuits 

The group velocity, the phase velocity and the ratio of the two are param- 
eters which are often easily controlled, as, by varying the coupling between 
resonators in a filter composed of a series of resonators. Moreover, these 
parameters can often be controlled without much affecting the stored energy 
per unit length. For instance, in a series of resonators coupled by loops or 
irises, such as the circuit of Fig. 4.11, the stored energy is not much affected 
by the loops or irises unless these are very large, but the phase and group 
velocities are greatly changed by small changes in coupling. 

Let us, then, think of circuits in terms of stored energy, and regard the 
phase and group velocities and their ratio as adjustable parameters. We 
find that, when we do this, there are not many essentially different configura- 
tions which promise to be of much use in traveling-wave tubes, and it is 
easy to make comparisons between extreme examples of these configura- 
tions. 

5.3a Uniform Current Density throughout Field 

Suppose we have a uniform current density Jq wherever there is longi- 
tudinal electric field. We might approximate this case by flooding a helix 
of very fine wire with current inside and outside, or by passing current 
through a series of flat resonators whose walls were grids of fine wire. 

1 Lester M. Field, "Some Slow-Wave Structures for Traveling-Wave Tubes," Proc. 
I.R.E., Vol. 37, pp. 34-40, January 1949. 
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In the latter case, if resonators had parallel walls of very fine mesh normal 
to the direction of electron motion there would be substantially no trans- 
verse electric field. All the electric field representing stored energy would 
act on the electron stream. In this case, we would have 

W = 5 / ^ (5.17) 

Here dZ is an elementary area normal to the direction of propagation. IF 
given by this expression is the total electric and magnetic stored energy 
per unit length. Where E is less than its peak value, the magnetic energy 
makes up the difference. 

In evaluating Erlo in (5.16) we will have as an effective value 

(£/o)cff = Jo f EdZ (5.18) 

Hence, we will have for the gain parameter C 

Jo J E2 dl 
1/3 

c = 

M (I /£2 i2) ^r° (5.19) 

C = 
Jo 

4 I - ) evg Vo 

It is of interest to put this in a slightly different form. Suppose X,, is the 
free-space wavelength. Then 

- = —- (5.20) 
v Xo V 

where c is the velocity of light 

c = 3 X 1010 cm/sec = 3 X 108 m/sec 

Further, we have for synchronism between the electron velocity no 
and the phase velocity v 

v2 = 2vVo (5.21) 

Also 

c = l/VTie 

e = l/cViWA (5-22) 

vWe = ^77 ohms 
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Using (5.20), (5.21), (5.22) in connection with (5.19), we obtain 

q _ fV\/mA /oAOV^ 
V 16ir2cvg J (5.23) 

= 11.16 (J0\0
2/vgy'3 

We have in (5.23) an expression for the gain parameter C in case longi- 
tudinal fields only are present and in case there is a uniform current density 
/n wherever there is a longitudinal field. 

In a number of cases, as in case of a large-diameter helix, or of a resonator 
with large apertures, the stored energy due to the transverse field is about 
equal to that due to the longitudinal field and C will be 2~1/3 times as great 
as the value of C given by (5.23). Thus, the value of C given by (5.23), or 
even 2-l/3 times this, represents an unattainable ideal. It is nevertheless 
of interest in indicating how limiting behavior depends on various parame- 
ters. For instance, we see that if the wavelength Xo is made shorter, a higher 
current density must be used if C is not to be lowered; for a constant C 
the current density must be such as to give a constant current through a 
square a wavelength on a side. 

In the table below, some values of C have been computed from (5.23) 
for various wavelengths and current densities. The broad-band condition 
of equal phase and group velocities has been assumed, and the voltage has 
been taken as 1,000 volts. 

Wavelength\ Amp/cm2 

Cm 

\ 
5 

.5 

For larger voltages, C will be smaller. C can of course be made larger by 
making the group velocity smaller than the phase velocity. 

Of course, if the electron stream does not pass through some portions of 
the field, C will be smaller than given by (5.23). C will also be less if there 
are "harmonic" field components which do not vary in the z direction as 
expijuz/v). 

5.3b Narrow Beams 

Usually, no attempt is made to fill the entire field with electron flow even 
though this is necessary in getting a large value of C for a given current 
density. Instead a narrow electron beam is shot through a region of high 

.1 1 

.060 .130 

.013 .028 
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field. We then wish to relate the peak field strength to the stored energy in 
comparing various circuits. 

Let us first consider a helically conducting sheet of radius a. The upper 
curve of Fig. 5.3 shows (£2//32P)l/3(i,/c)1/3 vs. fia. In obtaining this curve it 
was assumed that v « c, so that 7 can be taken as equal to /3. The field E 
is the longitudinal field at the surface of the helically conducting cylinder. 
Figure 5.3 can be obtained from Fig. 3.4 by multiplying F{ya) by (/oW)2'3 

to give a curve valid for the field at r = a. 
The helix has a very small circumferential electric field which represents 

"useless" stored energy. The lower curve of Fig. 5.3 is based on the stored 
electric energy of an axially symmetrical sinusoidal field impressed at the 
radius fl.f This field has no circumferential component but is otherwise the 

6 
5 
4 

3 

2 

0.8 0.3 0.5 0.7 1 2 3 4 5 6 7 8 9 10 
(3a 

Fig. 5.3—The impedance parameter (Fr/prF)*'3 compared for a helically conducting 
sheet (/I) and a forced sinusoidal field (R) with a group velocity equal to the phase ve- 
locity. The helix has a higher impedance because the phase velocity is higher than the 
group velocity by a radio shown to the J- power by curve C. 

same as the electric field of the helix (again assuming v « c). We can imagine 
such a field propagating because of an inductive sheet at the radius a, 
which provides stored magnetic energy enough to make the electric and 
magnetic energies equal. The quantity plotted vs. fSa is (Er/^P)113 (v/c)113 

(Vg/v)113. 
The forced sinusoidal field is not the field of some particular circuit for 

which a certain group velocity vu corresponds to a given phase velocity v. 
Hence, the factor (v,, v)m is included in the ordinate, so that the curve will 
be the same no matter what group velocity is assumed. For the helically 
conducting sheet, a definite group velocity goes with a given phase velocity. 
In Fig. 5.3, the ordinate of the curve for the helically conducting sheet 
does not contain the factor {?„ v)U3. If, for instance, we assume vu = v 

f See Appendix III. 

A 
B 

HELIX 

FORCED 
SINUSOIDAL 
FIELD 

C 
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in connection with the curve for the forced sinusoidal field, then the two 
ordinates are both (£2//32P)1/3 {v/c)w and the curve for the sheet is higher 
than that for the forced field because, for the helically conducting sheet, 

/ 

Fig. 5.4—Pillbox and rectangular resonators. When a number of resonators are coupled 
one to the next, a filter-type circuit is formed. 

T 

§ Q: a a 

CD 

Vg < v for small values of ya. Curve C shows {v/vg)m 

for the sheet vs. fia. Aside from the influence of group 
velocity, we might have expected the curve for the 
sheet to be a little lower than that for the forced field 
because of the energy associated with the transverse 
electric field component of the sheet. This, however, 
becomes small in comparison with the transverse mag- 
netic component when v <3C c, as we have assumed. 

Various other circuits will be compared, using 
the impressed sinusoidal field as a sort of standard 

I uej of reference. 
1 _ = One of the circuits which will be considered is a 

series of flat resonators coupled together to make a 
filter. Figure 5.4a shows a series of very thin pill- 
boxes with walls of negligible thickness. A small cen- 
tral hole is provided for the electron stream, and the 
field E is to be measured at the edge of this hole. 
The diameter is chosen to obtain resonance at a 
wavelength Xo. Figure 5.4b shows a similar series 
of flat square resonators. 

For the round resonators it is found that* 

(Er/fPPy13 = 5.36 Wc)m (v/vg)113 (5.24) 

for the square resonators* 

{Et/fPP)113 = 5.33 (v/c)1/3 (v/vg)1'3 (5.25) 

For practical purposes these are negligibly different. 
* See Appendix III. 

k -App, *0*. 0-oe\ 
Fig. 5.5—Resonators 

with the opposing paral- 
lel surfaces reduced to 
lower stored energy and 
increase impedance. 
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Suppose we wanted to improve on such circuits by reducing the stored 
energy. An obvious procedure would be to cut away most of the flat opposed 
surfaces as shown in Fig. 5.5. This reduces the energy stored between the 
resonator walls, but results in energy storage outside of the open edges, 
energy associated with a "fringing field." 

Going to an extreme, we might consider an array of closely spaced very 
fine wires, as shown in Fig. 5.6. Here there are no opposed flat surfaces, 
and all of the electric field is a fringing field; we have 
reached an irreducible minimum of stored energy in 
paring down the resonator. 

The structure of Fig. 5.6 has not been analyzed 
exactly, but that of Fig. 5.7 has. In Fig. 5.7, we have 
an array of fine, closely spaced half-wave wires be- 
tween parallel planes.* This should have roughly 
twice the stored energy of Fig. 5.6, and we will esti- 
mate (Er/lPP)113 for Fig. 5.6 on this basis. We obtain 
in Appendix III: 

For the half-wave wires, 

ABOUT 
Ao 

(Er-ippy13 = 6.20 (v/v0y
13 (5.25) 

Fig. 5.6—Quarter-wave 
wires, which have a min- 
imum of stored energy. 

and hence for the quarter-wave wires, approximately 

(E'/P-Py3 = 7.81 (v/voy'3 (5.26) 

As we have noted, (r c), which appears in the expression for {E1/01Pyi3 

for the sinusoidal field impressed at radius a and in (5.24) and (5.25), is a 

AO 

Fig. 5.7—Half-wave wires between parallel planes. The stored energy can be calculated 
for this configuration, assuming the wires to be very fine. The circuit does not propagate a 
wave unless added coupling is provided. 

function of the accelerating voltage. Figure 5.8 makes a comparison be- 
tween the sinusoidal field impressed at a radius a, curve .4; the flat resona- 
tors, either circular or square, the half-wave wires, C; and the quarter- 

* There is no transverse magnetic wave propagation along such a circuit unless extra 
coupling or loading is provided. Behavior of nonpropagating circuits in the presence of an 
electron stream is considered in Section 4 of Chapter XIV. 
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wave wires C. In all cases, it is assumed that the coupling is so adjusted as 
to make {vg/v) = 1 (broad-band condition). 

What sort of information can we get from the curves of Fig. 5.8? Con- 
sider the curves for 1,000 volts. Suppose we want to cut down the opposed 
areas of resonators, as indicated in Fig. 5.5, so as to make them as good as 
half-wave wires (curve C). The edge capacitance in Fig. 5.5 will be about 
equal to that for quarter-wave wires (curve C"). Curve C is about 3.7 times 
as high as curve B, and hence represents only about (1/3.7)3 = .02 as much 
capacitance. If we make the opposed area in Fig. 5.5 about .01 that in Fig. 
5.4a or b, the capacitance* between opposed surfaces will equal the edge 

12 
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LU 

\ 
100 VOLTS 
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B 

A IMPRESSED SINUSOIDAL FIELD 
B CIRCULAR RESONATORS 
C HALF-WAVE WIRES 
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Fig. 5.8—Comparisons in terms of impedance parameter of an impressed sinusoidal 
field (4), circular resonators (B), half-wave wires (C) and quarter-wave wires (C') assuming 
the group and phase velocities to equal the electron velocity. The radius of the impressed 
sinusoidal field is a. 

capacitance and the total stored energy will be twice that for quarter-wave 
wires, or equal to that for half-wave wires. This area is shown approxi- 
mately to scale relative to Fig. 5.4 in Fig. 5.5. Thus, at 1,000 volts the 
resonant strips of Fig. 5.5 are about as good as fine, closely spaced half- 
wave wires. 

Suppose again that we wish at 1,000 volts to make the gain of the reso- 
nators of Fig. 5.4 (or of a coiled waveguide) as good as that for a helix with 
pa = 3. For pa = 3 the helix curve A is about 3.2 times as high as the resona- 

* This takes into account a difference in field distribution—that in Fig. S.4b. 
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tor curve B. As {Er/p-P)1'3 varies as {v/v„y13, we must adjust the coupling 
between resonators so as to make 

vg = V(3.2)3 = .031 v 

in order to make (Er/^P)113 the same for the resonators as for the helix. 
From (5.12) we see that this means that a change in frequency by a frac- 
tion .002 must change v by a fraction .06. Ordinarily, a fractional variation 
of v of ±.03 would cause a very serious falling off in gain. At 3,000 mc the 
total frequency variation of .002 limes in v would be 6 mc. This is then a 
measure of the bandwidth of a series of resonators used in place of a helix 
for which /3a = 3 and adjusted to give the same gain. 

i.o  

o.a 

0.6 

f 

0.4 

0.2 

0 0.2 0.4 0.6 0.8 1.0 
VL 

Fig. 5.9—The factor / by which (Er/fPP)1'3 for a series of resonators such as those of 
Fig. 5.4 is reduced because of wall thickness t, in relation to gap spacing L. 

5.4 Physical Limitations 

In Section 3.3b the resonators were assumed to be very thin and to have 
walls of zero thickness. Of course the walls must have finite thickness, and 
it is impractical to make the resonators extremely thin. The wall thickness 
and the finite transit time across the resonators both reduce Er/fPP. 

5.4a Effect of Wall Thickness 

Consider the resonators of Fig. 5.4. Let L be the spacing between resona- 
tors (1/L resonators per unit length), and / be the wall thickness. Thus, the 
gap length is {L — I). Suppose we keep L and the voltage across each 
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resonator constant, so as to keep the field constant, but vary t. The capaci- 
tance will be proportional to (L — /)_I and, as the stored energy is the 
voltage squared times the capacitance, we see that (Er/f32P)1/3 will be re- 
duced by a factor /, 

/ = (1 - 1/ L)113 

The factor / is plotted vs. t/L in Fig. 5.9. 

(5.27) 
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Fig. 5.10—The lower curve shows the factor by which EJ/fEP is reduced by gap length, 
0 in radians. If the gap spacing is greater than 2.33 radians, it is best to make the gap 2.33 
radians long. Then the upper curve applies. 

5Ab Transit Time 

As it is impractical to make the resonators infinitely thin, there will be 
some transit angle across the resonator, where 

d0 = pt (5.28) 

Here t is the space between resonator walls, or, the length of the gap. 
If we assume a uniform electric field between walls, the gap factor M, 
that is, the ratio of peak energy gained in electron volts to peak resonator 
voltage, or the ratio of the magnitude of the sinusoidal field component 
produced to that which would be produced by the same number of infinitely 
thin gaps with the same voltages, will be (from (4.69) with r = a) 

sin (d0/2) 
M = 

<V2 
(5.29) 
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For a series of resonators 6 g long with infinitely thin walls Et/jiPP will be 
less than the values given by (5.24) and (5.25) by a factor M2/3. This is 
plotted vs. da in Fig. 5.10. 

5.4c Fixed Gap Spacing 

Suppose it is decided in advance to put only one gap in a length specified 
by the transit angle Qt. How wide should the gap be made, and how much 
will PP/pPP be reduced below the value for very thin resonators and infi- 
nitely thin walls? 

Let us assume that all the stored energy is energy stored between parallel 
planes separated by the gap thickness, expressed in radians as 0 or in dis- 
tance as L 

Here I is the gap spacing and L is the spacing between resonators. 
From Section 4.4 of Chapter IV we see that if V is the gap voltage, the 

field strength E is given by 

Here WT is a constant depending on the cross-section of the resonators. 
Thus, for unit field strength, the stored energy will be 

We see that Wo is merely the value of W when 6i = da and da = 0, or, 
for zero wall thickness and very thin resonators. Thus, the ratio W/Wo re- 
lates the actual stored energy per unit length per unit field to this optimum 
stored energy for resonators of the same cross section. 

For di < 2.33, W/Wo is smallest (best) for = dt (zero wall thickness). 
For larger values of 9i, the optimum value of dg is 2.33 radians and for 
this optimum value 

dt = i3€ 

Og = 0L 

E = MV/L 

The stored energy per unit length, W, will be 

W = WoW'/tL (5.30) 

w = WoL/m2 

w = Wo(9i/d g){dg/2)2/ sin2 {dg/2) 
(5.31) 

{Wo/WY* = (1.45O/0,)1'3 (5.32) 

If dt < 2.33, it is thus best to make dg = dt. Then (E2/^2^)1'3 is re- 
duced by the factor [sin(0/2)/(0/2)]2/3, which is plotted in Fig. 5.10. If 
dt > 2.33, it is best to make d - 2.33. Then {F?/^2P)W is reduced from the 
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value for thin resonators with infinitely thin walls by a factor given by 
(5.32), which is plotted vs. 61 in Fig. 5.10. 

If there are edge effects, the optimum gap spacing and the reduction in 
(Er/^2P)U3 will be somewhat different. However, Fig. 5.10 should still be a 
useful guide. 

In case of wide gap separation (large 6t), there would be some gain in 
using reentrant resonators, as shown in Fig. 4.11, in order to reduce the 
capacitance. How good can such a structure be? Certainly, it will be worse 
than a helix. Consider merely the sections of metal tube with short gaps, 
which surround the electron beam. The shorter the gaps, the greater the 
capacitance. The space outside the beam has been capacitively loaded, 
which tends to reduce the impedance. This capacitance can be thought of 
as being associated with many spatial harmonics in the electric field, which 
do not contribute to interaction with the electrons. 

5.5 Attenuation" 

Suppose we have a circuit made up of resonators with specified unloaded 
Q.t The energy lost per cycle is 

W t = 2irWs/Q (5.33) 

In one cycle, however, a signal moves forward a distance L, where 

L = v0/f (5.34) 

The fractional energy loss per unit distance, which we will call 2a, is 

2* = wsi (5-35) 

whence 

a = (5.36) 
2{Jv0 

So defined, a is the attenuation constant, and the amplitude will decay 
along the circuit as exp( —a?). 

The wavelength, X, is given by 

X = v/f = 27iVw (5.37) 

The loss per wavelength in db is 

db/wavelength = 20 logio exp(Q;X) 

db/wavelength = ^ ° (5"38) 

Q v
0 

t Disregarding coupling losses, the circuit and the resonantors will both have this 
same Q. 
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We see that, for given values of v and Q, decreasing the group velocity, 
which increases £2//32/>, also increases the attenuation per wavelength. 

5.5a Atlenuation of Circuits 

For various structures, Q can be evaluated in terms of surface resistivity, 
R, the intrinsic resistance of space, VmA = 377 ohms, and varous other 
parameters. For instance, Schelkunoff2 gives for the (7 of a pill-box resona- 
tor 

= 1.20 . 
1 + a/h 

Here a is the radius of the resonator and h is the height. If we express the 
radius in terms of the resonant wavelength Xo {a = 1.2Xo/7r), we obtain 

n _ Av7mA/T?) iv/c) / r 1f)s 
V (1 + h/a)n K ' 

Here n is the number of resonators per wavelength (assuming the walls 
separating the resonators to be of negligible thickness); thus 

n = h/\ = {h/\0){c/v) (5.41) 

From (5.40) and (5.58) we obtain for a series of pill-box resonators 

db/wavelength = 8.68(^/v/MA)(cAff)(l + h/a)n (5.42) 

In Appendix III an estimate of the Q of an array of fine half-wave paral- 
lel wires is made by assuming conduction in one direction with a surface 
resistance R. On this basis, Q is found to be 

Q = (VmAA^A) (5-43) 

and hence 
db/wavelength = 21 .Z{R/-\/ii/e){c/vg) (5.44) 

For non-magnetic materials, surface resistance varies as the square root 
of the resistivity times the frequency. The table below gives R for copper 
and db/wavelength for pill-box resonators for h/a <K 1 (5.42) and for wires 
(5.44) for several frequencies 

f, mc R, Ohms (db/wavelength)/ {c/vg) 
Pill-box Resonators Wires 

3,000 .0142 3.3 X 10-% 10.3 X lO"4 

10,000 .0260 6.0 X 10-% 18.1 X 10"' 
30,000 .0450 10.4 X 10-% 32.6 X lO"4 

In Section 3.3b a circuit made up of resonators, with a group velocity 
.031 times the phase velocity, was discussed. Suppose such a circuit were 

2 Electromagnetic Waves, S. A. Schelkunoff, Van Noslrand, 1943. Page 269. 
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used at 1,000 volts {c/v = 16.5), were 40 wavelengths long, and had three 
copper resonators per wavelength. The total attenuation in db is given below 

f, mc Attenuation, db 
3,000 21 

10,000 38 
30,000 67 
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CHAPTER VI 

THE CIRCUIT DESCRIBED IN TERMS OF 
NORMAL MODES 

Synopsis of Chapter 

IN CHAPTER II, the field produced by the current in the electron stream, 
which was assumed to vary as exp (—P^), was deduced from a simple 

model in which the electron stream was assumed to be very close to an ar- 
tificial line of susceptance B and reactance X per unit length. Following 
these assumptions, the voltage per unit length was found to be that of 
equation (2.10) and the field E in the z direction would accordingly be P 
times this, or 

r2riA' 
E = j.j-y I (6.1) 

Here we will remember that Pj is the natural propagation constant of 
the line, and K is the characteristic impedance. 

We further replaced A by a quantity 

E?/pt-P = 2K (6.2) 

where E is the field produced by a power flow P, and (3 is the phase constant 
of the line. For a lossless line, Pi is a pure imaginary and 

&-= -Px (6.3) 

From (6.1) and (6.2) we obtain 

_ P'TbCfiV/^P) • (64) 

2(P? - P2) ^ ; 

To the writer it seems intuitively clear that the derivation of Chapter 
II is correct for waves with a phase velocity small compared with the 
velocity of light, and that (6.4) correctly gives the part of the field asso- 
ciated with the excitation of the circuit. However, it is clear that there are 
other field components excited; a bunched electron stream will produce a 
field even in the absence of a circuit. Further, many legitimate questions 
can be raised. For instance, in Chapter II capacitive coupling only was 
considered. What about mutual inductance between the electron stream 
and the inductances of the line? 



238 BELL SYSTEM TECHNICAL JOURNAL 

The best procedure seems to be to analyze the situation in a way we know 
to be valid, and then to make such approximations as seem reasonable. One 
approximation we can make is, for instance, that the phase velocity of the 
wave is quite small compared with the speed of light, so that 

| Ih |2 » /3o = (co/c)2 (6.5) 

In this chapter we shall consider a lossless circuit which supports a group 
of transverse magnetic modes of wave propagation. The finned structure of 
Fig. 4.3 is such a circuit, and so are the circuits of Figs. 4.8 and 4.9 (assum- 
ing that the fins are so closely spaced that the circuit can be regarded as 
smooth). It is assumed that waves are excited in such a circuit by a current 
in the z direction varying with distance as exp (— Fz) and distributed normal 
to the z direction as a function of x and y,J (#, y). Such a current might 
arise from the bunching at low signal levels of a broad beam of electrons 
confined by a strong magnetic field so as not to move appreciably normal 
to the z direction. 

The structure considered may support transverse electric waves, but these 
can be ignored because they will not be excited by the impressed current. 

In the absence of an impressed current, any field distribution in the struc- 
ture can be expressed as the sum of excitations of a number of pairs of nor- 
mal modes of propagation. For one particular pair of modes, the field dis- 
tribution normal to the z direction can be expressed in terms of a function 
■irn{x, y) and the field components will vary in the z direction as exp(±rnz). 
Here the + sign gives one mode of the pair and the — sign the other. If 
r„ is real the mode is passive-, the field decays exponentially with distance. 
If r„ is imaginary the mode is active] the field pattern of the mode propa- 
gates without loss in the z direction. 

An impressed current which varies in the z direction as exp(—Fz) will 
excite a field pattern which also varies in the z direction as exp(—Fz), and 
as some function of x and y normal to the z direction. We may, if we wish, 
regard the variation of the field normal to the z direction as made up of a 
combination of the field patterns of the normal modes of propagation, the 
patterns specified by the functions Trn{x, y). Now, a pattern specified by 
7rn(.r, y) coupled with a variation exp(±rnz) in the z direction satisfies 
Maxwell's equations and the boundary conditions imposed by the circuit 
with no impressed current. If, however, we assume the same variation with 
x and y but a variation as exp(—Fz) with z, Maxwell's equations will be 
satisfied only if there is an impressed current having a distribution normal 
to the z direction which also can be expressed by the function Tn(x, y). 

Suppose we add up the various forced modes in such relative strength 
and phase that the total of the impressed currents associated with them is 
equal to the actual impressed current. Then, the sum of the fields of these 
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modes is the actual field produced by the actual impressed current. The 
field is so expressed in (6.44) where the current components /„ are defined 
by (6.36). 

If it is assumed that there is only one mode of propagation, and if it is 
assumed that the field is constant over the electron flow, (6.44) can be put 
in the form shown in (6.47). For waves with a phase velocity small compared 
with the velocity of light, this reduces to (6.4), which was based on the simple 
circuit of Fig. 2.3. 

Of course, actual circuits have, besides the one desired active mode, an 
infinity of passive modes and perhaps other active modes as well. In Chapter 
VII a way of taking these into account will be pointed out. 

Actual circuits are certainly not lossless, and the fields of the helix, for 
instance, are not purely transverse magnetic fields. In such a case it is per- 
haps simplest to assume that the modes of propagation exist and to cal- 
culate the amount of excitation by energy transfer considerations. This has 
been done earlier1, at first subject to the error of omitting a term which 
later2 was added. In (6.55) of this chapter, (6.44) is reexpressed in a form 
suitable for comparison with this earlier work, and is found to agree. 

Many circuits are not smooth in the z direction. The writer believes that 
usually small error will result from ignoring this fact, at least at low signal 
levels. 

6.1 Excitatiom of Transverse Magnetic Modes of Propagation by 
a Longitudinal Current 

We will consider here a system in which the natural modes of propagation 
are transverse magnetic waves. The circuit of Fig. 4.3, in which a slow wave 
is produced by finned structures, is an example. We will remember that the 
modes of propagation derived in Section 4.1 of Chapter IV were of this 
type. We will consider here that any structure the circuit may have (fins, 
for instance) is fine enough so that the circuit may be regarded as smooth 
in the z direction. 

Any transverse electric modes which may exist in the structure will not 
be excited by longitudinal currents, and hence may be disregarded. 

The analysis presented here will follow Chapter X of Schelkunoff's 
Electromagnetic Waves. 

The divergence of the magnetic field II is zero. As there is no z component 
of field, we have 

1 J. R. Pierce, "Theory of the Beam-Type Traveling-Wave Tube." Proc. I.R.E., Vol. 
35, pp. 111-123, February, 1947. 2 J. R. Pierce, "Effect of Passive Modes in Traveling-Wave Tubes," Proc. I.R.E., 
Vol. 36, pp. 993-997, August, 1948. 



240 BELL SYSTEM TECHNICAL JOURNAL 

SJL + SB, = 0 (6 6) 

dx dy 

This will be satisfied if we express the magnetic field in terms of a "stream 
function", t 

3,= ^ (6.7) 
dy 

B. = (6.8) dx 

x can be identified as the 2 component of the vector potential (the vector 
potential has no other components). 

We will assume tt to be of the form 

ir = t (x, y)e~1' (6.9) 

Here # (;*;, y) is a function of x and y only, which specifies the field dis- 
tribution in any x, y plane. 

We can apply Maxwell's equations to obtain the electric fields 

dHz dHy .   —^ = jueEz 
dy dz 

Using (6.7) and (6.8), and replacing differentiation with respect to z by 
multiplication by —T, we find 

E.=]-^ (6.10) 0)6 dx 

Similarly 

E,=^^ (6.11) o)e dy 

We see that in an x, y plane, a plane perpendicular to the direction of propa- 
gation, the field is given as the gradient of a scalar potential V 

v = (—yr/coeV (6.12) 

This is because we deal with transverse magnetic waves, that is, with waves 
which have no longitudinal or z component of magnetic field. Thus, a closed 
path in an x, y plane, which is normal to the direction of propagation, will 
link no magnetic flux, and the integral of the electric field around such a 
path will be zero. 

We can apply the curl relation and obtain Ez 

dHy dHx • r, —H - = joieEz 
dx dy , 

(6.14) 
F =i(d^4-dy\ z coe W dy*) 
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Applying Maxwell's equations again, we have 

= jo)fJ.Hx 
dEz dEy 
dy dz 

1 A (d^l 4- +J— 
we dy \ dx- dy2 / we 

dTT . dfi 
— = —Join — 
dy dy 

(6.15) 

This is certainly true if 

S+$=-(r!+^ ^ 

/3o = co\/^e = w/c (6.17) 

We find that this satisfies the other curl E relations as well. 
From (6.16) and (6.14) we see that 

Ez = (—y/we)(r2 + pl)Tr(x, y)e'T2 (6.18) 

For a given physical circuit, it will be found that there are certain real 
functions Trn{x, y) which are zero over the conducting boundaries of the 
circuit, assuring zero tangential field at the surface of the conductor, and 
which satisfy (6.16) with some particular value of F, which we will call rn , 
Thus, as a particular example, for a square waveguide of width W some 
(but not all) of these functions are 

vf-nOr, y) = cos {mry/W) cos {rnrx/W) (6.19) 

where n is an integer. We see from (6.10), (6.11) and (6.18) that this makes 
Ex, Ey and Et zero at the conducting walls x = ±T'F/2, y = AzW/2. 

Each possible real function Trn{x, y) is associated with two values of 
I1,,, one the negative of the other. The rn's are the natural propagation 
constants of the normal modes, and the 7rn's are the functions giving their 
field distribution in the x, y plane. The 7rn's can be shown to be orthogonal, 
at least in typical cases. That is, integrating over the region in the x, y 
plane in which there is field 

J j Trn(x, y) Ttm(x, y) dx dy = 0 
(6.20) 

ii 7^ in 

For a lossless circuit the various field distributions fall into two classes: 
those for which r„ is imaginary, called active modes, which represent 
waves which propagate without attenuation; and those for which r* is 
real, which change exponentially with amplitude in the z direction but do 
not change in phase. The latter can be used to represent the disturbance 
in a waveguide below cutofi frequency, for instance. 
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If rn is imaginary (an active mode) the power flow is real, while if r„ is 
real (a passive mode) the power flow is imaginary (reactive or "wattless" 
power). 

The spatial distribution functions and the corresponding propagation 
constants rn are a means for specifying the electrical properties of a physical 
structure, just as are the physical dimensions which describe the physical 
structure and determine the various 7rn's and rn's. In fact, if we know the 
various 7rn's and r„'s, we can determine the response of the structure to an 
impressed current without direct reference to the physical dimensions. 

In terms of the 7rn's and IVs, we can represent any unforced disturbance 
in the circuit in the form 

!>„(*, yjAnf*- + Bj-\ (6,21) n 

Here An is the complex amplitude of the wave of the wth spatial distribu- 
tion traveling to the right, and Bn the complex amplitude of the wave of 
the same spatial distribution traveling to the left. 

It is of interest to consider the power flow in terms of the amplitude, Au 

or Bn . We can obtain the power flow P by integrating the Poynting vector 
over the part of the x, y plane within the conducting boundaries 

P = l-f J EXH* H 

p = UI(ExH* ~ EvH*x) dx dy 

(6.22) 

By expressing the fields in terms of the stream function, we obtain 

/■ = A„Al (r/'-j ff + (^"J] ixiy (6.23) 2coe 

We can transform this by integrating by parts (essentially Green's 
theorem). Thus 

fX2 ditn dTTn , ^ dlTn X' C' * d'tin , (, 
/ — — dx = Ttn — - 7r„ —^ dx (6.24) 

Jxi ox dx ox x\ Jz, ox- 

Here .vi and X2, the limits of integration, lie on the conducting boundaries 
where Tn = 0, and hence the first term on the right is zero. Doing the same 
for the second term in (6.23), we obtain 

(W If - (§n + w) dy (6-25) 
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By using (6.16), we obtain 

Pn = AnA*n (r; + /3o) fj (ttJ2 dx dy (6.26) 

It is also of interest to express the z component of the «th mode, £2n , 
explicitly. For the wave traveling to the right we have, from (6.18), 

-E.n = An (^j (r; + y) (6.27) 

Let the field at some particular position, say, x = y — 0, be Ezno. Then 

An = (r; + /35) 7rn(0, 0) (6-28) 

and from (6.26) 

Pn = {Ez„0Ezn0*) 27r
2

ji(0) o)(r; + 01) // ^"{x, y)\- dxdy (6.29) 

We can rewrite this 

Ezni) Ezni* =   27r;(o) o)(r2
n + $1) 

(-r\)pn . T,, T,, rr r. , Nl2 , , (6.30) 
—jWrn( —r;) JJ [£„(#, y)]'dxdy 

For an active mode in a lossless circuit, r„ is a pure imaginary, and the 
negative of its square is the square of the phase constant. Thus, for a par- 
ticular mode of propagation we can identify (6.30) with the circuit parame- 
ter py/fPP which we used in Chapter II. 

Let us now imagine that there is an impressed current J which flows in 
the z direction and has the form 

/ = J(x,y)e-J (6.31) 

According to Maxwell's equations we must have 

IT ~ T" = + J (6-32) 
ax dy 

Now, we will assume that the fields are given by some overall stream func- 
tion tt which varies with x and y and with z as exp(—IV). 

In terms of this function tt, //x , Hy and Ex , Eu will be given by relations 
(6.7), (6.8), (6.10), (6.11). However, the relation used in obtaining Ez is 
not valid in the presence of the convection current. Instead of (6.16) we 
have 

dHy Bill 
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Again applying the relation 

dE1 dEv . „ 
  — = dy dz 

+ + (6.34) 

we obtain 
a2 
J IT . O 1 
dx2 3y2 

We will now divide both tt and / into the spatial distributions charac- 
teristic of the normal unforced modes. 
Let 

J{x, y) = S JnK{x, y) (6.35) 
n 

// J{x, y)Trn{x, y) dxdy 
Jn = ^  (6.36) 

Jj [TTnix, y)]2 dx dy 

This expansion is possible because the TTn's are orthogonal. Let 

f=e-r-T.CA(x,y) (6.37) 
n 

Here there is no question of forward and backward waves; the forced ex- 
citation has the same ^-distribution as the forcing current. 

For the wth component, we have, from (6.16), 

= - (r2„ + pl)U*, y) (6-38) 
dx- dy 

From (6.34) we must also have 

r /d27rn{x, y) a27rn(a;, y)\ 
n \ ay2 ) (6.39) 

= — Cn(r
2 +/3o)7rn(a;, y) — Jnfn{x, y) 

Accordingly, we must have 

c. = (6.40) 

The overall stream function is thus 

- = ^ E ^4" (6-41) n 1 n 1 
From (6.33) and (6.34) we see that 

Ez = ^ (F2 + /So)it (6.42) 
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So 

ve(n - r!) 

£. = ~'(r' + ^ e-
r' E W-44) coe !„ — rz 

6.2 Comparison with Results of Chapter II 

Let us consider a case in which there is only one mode of propagation, 
characterized by ttiO*;, y), Fi, and a case in which the current flows over a 
region in which tfifo y) has a constant value, say, 7ri(0, 0). This corre- 
sponds to the case of the transmission line which was discussed in Chapter 
II. 

We take only the term with the subscript 1 in (6.44) and (6.30). Combin- 
ing these equations, we obtain for the field at 0, 0 

= 
(£2//32P)(r2 + ri) r?/l II ^ dX dy (6.45) 

(11 + PI) 2*1(0, 0) 

We have from (6.36) 

7ri(0, 0) 
Ji = 

ff [tti^ y)]2 dxdy 
(6.46) 

From (6.45) and (6.46) we obtain 

= (6A7) 

2(r2i + plKrl - r2) 

Let us compare this with (6.4), which came from the transmission line 
analogy of Chapter II, identifying Ez and J with E and i. We see that, 
for slow waves for which 

/3o « | FI | (6.48) 

Po « ( F21 (6.49) 

(6.47) becomes the same as (6.4). It was, of course, under the assumption 
that the waves are slow that we obtained (2.10), which led to (6.4). 

6.3 Expansion Rewritten in Another Form 

Expression (6.44) can be rewritten so as to appear quite different. We 
can write 

r2 + /32o = r2 - r; + r2
n + pi 
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Thus, we can rewrite the expression for Ez as 

^ -rz {f • / ^ (r2„ + P^TTnix, y)Jn 
^ = e {{-j/ue) ^ _ r2  

(6.50) 

+ O'/we) S 7rn(^, )»)/« 

The second term in the brackets is just j/we times the impressed current, 
as we can see from (6.35). The first term can be rearranged 

(-jMirl + plUn 

(-y/we)(r2„ + /So) jj TTnix, y)J(x, y) dx dy (6 51) 

Jj [tnix, y)]2 dx dy 

Referring back to (6.29), let ^ be twice the power Pn carried by the 
unforced mode when the field strength is 

| Etna | = 1 (6.52) 

Further, let us choose theif„'s so that, at some specified position, .r = y = 0, 

n(0, 0) = 1 (6.53) 

Then 

^r" = [[ lfn(x, y)\'' dx dy (6.54) 1 n "T PO JJ 

Using this in connection with (6.51), we obtain 

rn7rn(^, y) JJ Trn(x, y)J(x, y) dx dy 
Ez = .-ril - E ^n(r

2„ - r2) 

+ {j/o*)J{x, y) 

(6.55) 

An expression for the forced field in terms of the parameters of the nor- 
mal modes was given earlier1,2. In deriving this expression, the existence of 
a set of modes was assumed, and the field at a point was found as an in- 
tegral over the disturbances induced in the circuit to the right and to the 
left and propagated to the point in question. Such a derivation applies for 
lossy and mixed waves, while that given here applies for lossless transverse- 
magnetic waves only. 
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The earlier derivation1 leads to an expression identical with (6.55) except 
that appears in place of . In this earlier derivation a sign was im- 
plicitly assigned to the direction of flow of reactive power (which really 
doesn't flow at all!) by saying that the reactive power flows in the direction 
in which the amplitude decreases. If we had assumed the reactive power to 
flow in the direction in which the amplitude increases, then, with the same 
definition of T,,, for a passive mode T* would have been replaced by — 
which is equal to T,. (for a passive mode, is imaginary). 

In deriving (6.55), no such ambiguity arose, because the power flow was 
identified with the complex Poynting vector for the particular type of wave 
considered. In any practical sense, T is merely a parameter of the circuit, 
and it does not matter whether we call Im T reactive power flow to the right 
or to the left. 

The existence of a derivation of (6.55) not limited in its application to 
lossless transverse magnetic waves is valuable in that practical circuits often 
have some loss and often (in the case of the helix, for instance) propagate 
mixed waves. 

6.4 Iterated Structures 

Many circuits, such as those discussed in Chapter IV, have structure in 
the z direction. Expansions such as (6.55) do not strictly apply to such struc- 
tures. We can make a plausible argument that they will be at least useful 
if all field components except one differ markedly in propagation constant 
from the impressed current. In this case we save the one component which 
is nearly in synchronism with the impressed current and hope for the best. 
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APPENDIX III 

STORED ENERGIES OE 
CIRCUIT STRUCTURES 

A3.1 Forced Sinusoidal Field 

If v « c, the field can be very nearly represented inside the cylinder of 
radius a by 

/o(/3r) -fa _ E ToiQr) /... 
v-v°Tm -pWa) w 

and outside by 

Inside 

V = Va e-"' (2) 
K{ya) 

e~*' Vo . (3) 
dV n T i(/3r) __y/Sl 

Br h{Pa) 

dz lo{0a) 

Outside 

dV K\{&r) —jpz T/ (-} 
Tr = -^KMe U (0) 

d_X. = -jp Ko^r\ e-*' Vo (6) 
dz JP Kotfa) 

Because there is a sinusoidal variation in the 2 direction, the average stored 
electric energy per unit length will be 

[(-Ermnx)2 + (£2max)2J(27rr^) (7) 1 \ / 6 
We = I - )l r 

2/\2 =0 

Here Et max and Ez max are maximum values at r = a. The total electric 
plus magnetic stored energy will be twice this. This gives 
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TT/ — 71-6 (7°) f^O — /0/2 , K0K2 — i^n"! w 
11 - ~2^ L /§ + ——J E 

L/o A'oJ 
n ^ ^ I Li + ^ I E 

\'/3 _ A1/3^ 1/3 (tf/fpy3 = (c/vy'3(v/v0y 
120 

+ -lN) V/o ^ kJ_ 
0a 

1/3 

(8) 

(9) 

A3.2 Pill-Box Resonators 

Schelkunoff gives on page 268 of Electromagnetic Waves an expression 
for the peak electric energy stored in a pill-box resonator, which may be 
written as 

.135 tt t a2hE? 

Here a is the radius of the resonator and h is the axial length. For a series 
of such resonators, the peak stored electric energy per unit length, which is 
also the average electric plus magnetic energy per unit length, is 

IF = .135 tt e^E2 (10) 

For resonance 

a = I.2Xo/ir (11) 

Whence 

W = .0618 eWET- (12) 

And 

(EV/31P)1'3 = 5.36 {v/vgY* {v/cY'* (13) 

The case of square resonators is easily worked out. 

A3.3 Parallel Wires 

Let us consider very fine very closely spaced half-wave parallel wires with 
perpendicular end plates. 

If z is measured along the wires, and y perpendicular to z and to the 
direction of propagation, the field is assumed to be 

Ex — E cos 0xc±0u cos — 2 
^0 

(14) 
t-. r* ' o Ey = E sin pxe cos — 2 

^0 

Here the -f sign applies for y < 0 and the — sign for y > 0. We will then 
find that 
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W = 2Wb = C^ re-'"dy 
L Jo 

w - — e- 
4/3 

(15) 

and 
{E?/P2F)1IS = 6.20 (v/voy13 (16) 

The surface charge density a on one side of the array of wires (say, y > 0) 
is given by the y component of field at y = 0. 

27r 
<x = eEy = eE sin fix cos — z (17) 

Ao 

This is related to the current I (flowing in the 2 direction) per unit distance 
in the x direction by 

(18) 
dz dt 

From (18) and (17) we obtain for the current on one side of the array 

I = — e E sin fix sin ^ z (19) 
2t AO 

If we use the fact that uKq/Itt = c and c e = l/'s/fi/e, we obtain 

I = —sin fix sin ^ z (20) 
VjU/f Ao 

If R is the surface resistivity of either side (y > 0, y < 0) of the wires, when 
the wires act as a resonator (a standing wave) the average power lost per 
unit length for both sides is 

P = lR\0Ef/{n/e) (21) 

In this case the stored electric energy is half the value given by (15), and 
we find 

Q = (VnS/R) ('A) (22) 



Factors Affecting Magnetic Quality* 

By R. M. BOZORTH 

IN THE preparation of magnetic materials for practical use it is impor- 
tant to know how to obtain products of the best quality and uniformity. 

In the scientific study of magnetism the goal is to understand the relation 
between the structure and composition on the one hand and the magnetic 
properties on the other. From both standpoints it is necessary to know the 
principal factors which influence magnetic behavior. These are briefly 
reviewed here. 

The properties depend on chemical composition, fabrication and heat- 
treatment. Some properties, such as saturation magnetization, change only 
slowly with chemical composition and are usually unaffected by fabrication 
or heat treatment. On the contrary, permeability, coercive force and hystere- 
sis loss are highly sensitive and show changes which are extreme among all 
the physical properties. Properties may thus be divided into slruclure- 
sensilivc and strnclure-insensitive groups. As an example, Fig. 1 shows mag- 
netization curves of permalloy after it has been (a) cold rolled, (b) annealed 
and cooled slowly, and (c) annealed and cooled rapidly. The maximum 
permeability varies with the treatment over a range of about 20 fold, while 
the saturation induction is the same within a few per cent. Structure sensi- 
tive properties such as permeability depend on small irregularities in atomic 
spacings, which have little effect on properties such as saturation induction. 

Some of the more common sensitive and insensitive properties are listed 
in Table I. The principal physical and chemical factors which affect these 
properties are listed in column 3. Their various effects will now be briefly 
discussed and illustrated. 

Phase Diagram 

Some of the most drastic changes in properties occur when the fabrication 
or heat treatment has brought about a change in structure of the material. 
For this reason the phase diagram or constitutional diagram is of the ut- 
most importance in relation to the preparation and properties of magnetic 
materials. As an example consider the phase diagram of the binary iron- 
cobalt alloys of Fig. 2. Here the various areas show the phases, of different 

*This urlicle is the substance of Chapter II of a book entitled "Ferromagnetism" to 
be published early in 1951 by D. Van Nostrand Company, Inc. 
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composition or structure, which are stable at the temperatures and com- 
positions indicated. The a phase has the body-centered-cubic crystal struc- 
ture characteristic of iron. At 910oC it transforms into the face-centered 
phase t, and at 1400° into the 5 phase, which has the same structure as the 
a phase. At about 400oC cobalt transforms, on heating, from the e phase 
(hexagonal structure) into the 7 phase. 

103 x 
70 PERMALLOY 

,r. ANNEALED AND 
tC) COOLED RAPIDLY 

ANNEALED AND 
COOLED SLOWLY (b) 

(a) COLD ROLLED 

0 2 4 6 8 10 12 14 16 
FIELD STRENGTH, H, IN OERSTEDS 

Fig. 1—Effect of mechanical and heat treatment on the magnetization curve of 70 
permalloy (70% Ni, 30% Fe). 

Table I 
Properties Commonly Sensitive or Insensitive to Small Changes in Structure, and Some of the 

Factors which Effect Such Changes 

Structure-Insensitive Properties Structure-Sensitive 
Properties 

Factors Affecting the 
Properties 

I,, Saturation Magnetization 
6, Curie Point 
X,, Magnetostriction at Saturation 
K, Crystal Anisotropy Constant 

H, Permeability 
He Coercive Force 
Wh Hysteresis Loss 

Composition (gross) 
Impurities 
Strain 
Temperature 
Crystal Structure 
Crystal Orientation 

The dotted lines indicate the Curie point, at which the material becomes 
non-magnetic. 

In between the areas corresponding to the single phases a, 7, 5 and t 
there are two-phase regions in which two crystal structures co-exist, some 
of the crystal grains having one structure and others the other. Such a two- 
phase structure is usually evident upon microscopic or X-ray examina- 
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Fig. 2—Phase diagram of iron-cobalt alloys. 
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Fig. 3—Photomicrographs of remalloy (12% Co, 17% Mo, 71% Fe) showing the pre- 
cipitation of a second phase in the specimen containing an excess of carbon (0.06%) 
Courtesy of E. E. Thomas. Magnification: (a) 50 times, (b) 200 times. 
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tion. Microphotographs of a single-phase alloy and a two-phase alloy of 
iron-cobalt-molybdenum are reproduced in Fig. 3 (a) and (b). 

The diagram of Fig. 2 shows several kinds of changes that affect the mag- 
netic properties. At (a) the material becomes non-magnetic on heating, 
without change in phase. At (b) there is a change of phase, both phases 
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if) 
$ 400 m D < 15 
z 300 

of 
z' 200 
o 
ti 
E 100 

0 200 400 600 800 1000 1200 
TEMPERATURE IN DEGREES CENTIGRADE 

Fig. 4—Effect of phase transformation of cobalt on magnetization with a constant 
field of 150 oersteds. Both phases magnetic. Masumolo. 
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Fig. 5—Phase transformation in iron-cobalt alloy (50% Co). High-temperature phase 
is non-magnetic. 

being magnetic. Figure 4 shows the changes in magnetic properties that 
occur during this latter transition; they are due partly to the high local 
strains that result from the change in structure, and partly to the difference 
in the crystal structures of the two phases. At (c) there is a change from a 
ferromagnetic to a non-magnetic phase, and Fig. 5 shows the rapid change 
in magnetization that occurs when the temperature rises in this area. At 
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(d) the a phase becomes ordered on cooling, i.e., the iron and cobalt atoms 
tend to distribute themselves regularly among the various atom positions 
so that each atom is surrounded by atoms of the other kind. This phenome- 
non is especially important in connection with the properties of iron-alumi- 
num and manganese-nickel alloys. 

The transition at (e) is entirely in the non-magnetic region but it has 
its influence on the properties of iron at room temperature. If iron is cooled 
very slowly through (e), the internal strains caused by the change in struc- 
ture will be relieved by diffusion of the metal atoms, but if the cooling is too 
rapid there will not be sufficient time for strain relief. Practically this means 
that to obtain high permeability in iron it must be annealed for some time 
below 90()oC, or cooled slowly through this temperature so that diffusion 
will have time to occur. In most ferromagnetic materials diffusion occurs 
at a reasonably rapid rate only at temperatures above about 500 to 600oC. 

103x16 

CD 
i 
o 4 
D O z 

o 
0 12 3 4 5 

FIELD STRENGTH, H, IN OERSTEDS 
Fig. 6—Effect of tension on the magnetization curve of 68 permalloy. 

The effect of a homogeneous strain on the magnetization curve can be 
observed in a simple way, as by applying tension to an annealed wire and 
then measuring B and H. The effect of tension on some materials is to 
increase the permeability and on other materials to decrease it, as shown 
in Fig. 6. Compression usually causes a change in the opposite sense. 

The internal strains resulting from plastic deformation of the material, 
brought about by stressing beyond the elastic limit, as by pulling, rolling 
or drawing, almost always reduce the permeability. The material is then 
under rather severe local strains similar to those present after phase change, 
and these strains are different in magnitude and direction in different places 
in the material and have quite different values at points close together. 
Strains of this kind can usually be relieved by annealing; therefore, metal 
that has been fabricated by plastic deformation is customarily annealed to 
raise its permeability. Figure 1 shows the effect of annealing a permalloy 
strip that has been cold-rolled to 15 per cent of its original thickness. 

>' 
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The temperature also is effective in changing permeability and other prop- 
erties, even when no change in phase occurs. Figure 7 shows the rapidity 
with which the initial permeability decreases as the Curie point is ap- 
proached. For this material, Ferroxcube III, a zinc manganese ferrite 
(ZnMnFe.iOs), the Curie point is not far above room temperature. 

The effect of impurities may be illustrated by the B vs H curves for iron 
containing various amounts of carbon. Curve (a) of Fig. 8 is for a mild 

^2000 
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5 (r ui 1000 Q. 
_i < 
t 500 
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TEMPERATURE IN DEGREES CENTIGRADE 
Fig. 7—Variation of initial permeability of Ferroxcube 3, showing maximum at tem- 

perature just below the Curie temperature. 
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FIELD STRENGTH, H, IN OERSTEDS 
Fig. 8—Effect of impurities on magnetic properties of iron. Annealing at 1400°C in 

hydrogen reduces the carbon content from about 0.02 per cent to less than 0.001 per cent. 

steel having 0.2 per cent carbon, (b) is for the iron commonly used in elec- 
tromagnetic apparatus—it contains about 0.02 per cent carbon and is an- 
nealed at about 900oC. When this same iron is purified by heating for several 
hours at 1400oC in hydrogen, the carbon is reduced to less than 0.001 per 
cent and other impurities are removed, and curve (c) is obtained. 

Finally, Fig. 9 shows that large differences in permeability may be found 
by simply varying the direction of measuremenl of the magnetic properties 
in a single specimen. The material is a single crystal of iron containing about 
4 per cent silicon, and the directions in which the properties are measured 
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are [100] (parallel to one of the crystal axes), and [111] (as far removed as 
possible from an axis). The magnetic properties in the two directions are 
different because different "views" of the atomic arrangement are ob- 
tained in the two directions. 

Production of Magnetic Materials 

In the preparation of magnetic materials for either laboratory or commer- 
cial use there are many processes which influence the chemical and physical 
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Fig. 9—Dependence of permeability on crystallographic direction. Williams. 

structure of the product. The selection of raw materials, the melting and 
casting, the fabrication and the heat treatment, are all important and must 
be carried out with a proper knowledge of the metallurgy of the material. A 
brief description of the common practices is now given. For further dis- 
cussion the reader is referred to more detailed metallurgical books and ar- 
ticles. 
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Melting and Casting 

For experimental investigation of magnetic materials in the laboratory, 
the raw materials easily obtainable on the market are generally satisfactory. 
When high purity is desirable specially prepared materials and crucibles 
must be used and the atmosphere in contact with the melt must be con- 
trolled. The impurities that have the greatest influence on the magnetic 
properties of high permeability materials are the non-metallic elements, 

COOLING WATER 
CONNECTIONS 

2 < 11 M > I 
L 1 

i ENTIRE FURNACE 
TILTS ON TRUNNION 

TO POUR INDUCTOR COIL 
MELTING 

CRUCIBLE 

MOLD 

Biiiil 

-ELECTRICAL CONNECTIONS 

Fig. 10—Induction furnace designed for small melts in controlled atmosphere, as de- 
signed by J. H. Scaff and constructed by the Ajax Northrup Company. 

particularly oxygen, carbon and sulfur, and the presence of these impurities 
is therefore watched carefully and their analyses are carried out with special 
accuracy. Impurities are likely to change in important respects during the 
melting and pouring on account of reactions of the melt with the atmos- 
phere, the slag or the crucible lining, or because of reactions taking place 
among the constituents of the metal. 

Melting of small lots (10 pounds) is best carried out in a high-frequency 
induction furnace. Figure 10 shows such a furnace designed for melting ten 
to fifty pounds, and casting by tilting the furnace, the whole operation being 
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carried out in a controlled atmosphere. High-frequency currents (usually 
1,000 to 2,000 cycles/sec but sometimes much higher) are passed through 
the water-cooled copper coils, and the alternating magnetic field so produced 

J 

Fig. 11—Arc furnace for large commercial melts. Courtesy of J. S. Marsh of the Bethle- 
hem Steel Company. 

heats the charge by inducing eddy currents in it. Crucibles are usually com- 
posed of alumina or magnesia. 

On a commercial scale melts of silicon-iron are usually made in the open 
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hearth furnace, in which pig-iron and scrap are refined and ferro-silicon 
added. The furnace capacity may be as large as 100 tons. Sometimes silicon- 
iron, and usually iron-nickel alloys, are melted in the arc furnace, in 
amounts varying from a few tons to 50 tons. A photograph of such a fur- 
nace, in the position of pouring, is shown in Fig. 11. The heat is produced 
in the arc drawn between large carbon electrodes immersed in the metal, 
the current sometimes rising to over 10,000 amperes. By tipping the fur- 
nace the melt is poured into a ladle, and from this it is poured into cast-iron 
molds through a valve-controlled hole in the ladle bottom. Special-purpose 
alloys, including permanent magnets, are prepared commercially in high- 

Table II 
Heats of Formation and Other Properties of Some Oxides {Sachs and Van Horn*) 

Oxide 
Heat of formation 
(Kilo-cal per gram 

atom of metal) 
Melting Point (°C) Density (g/cm3) 

CaO  152 >2500 3.4 
BeO  144 >2500 3.0 
MgO  
LijO  

144 
141 

2800 
>1700 

3.65 
2.0 

AljOa  127 2050 3.5 
V2O2  116 1970 4.9 
TiOi  109 1640 4.3 
Na.O 101 ♦ 2.3 

95 1670 2.3 
94 580 1.8 
91 1650 5.5 
89 2700 5.5 

ZnO  85 * 5.5 
PjOs   73 * 2.4 

68 1130 6.95 
FeO   66 1420 5.7 
NiO 58 ** 7.45 

* Sublimes. 
** Decomposes before melting. 

frequency induction furnaces or in arc furnaces in quantities ranging from a 
fraction of a ton to several tons. 

Slags are commonly used when melting in air, both to protect from oxi- 
dation and to reduce the amounts of undesirable impurities. Common pro- 
tective coverings are mixtures of lime, magnesia, silica, fluorite, alumina, 
and borax in varying proportions. In commercial production different slags 
are used at different stages, to refine the melt; e.g., iron oxide may be used 
to decarburize and basic oxides to desulfurize. 

Melting in vacuum requires special technique that has been described in 
some detail by Yensen.1 Commercial use has been described by Rohn2 and 
others.3 Melting in hydrogen has been used on an experimental scale in both 

iT. D. Yensen, Trans. A.I.E.E. 34, 2601-41 (1915). 2 W. Rohn, Heraeus Vacuumschmelze, Albertis, Hanau, 356-80 (1933). 
3 W. Hessenbruch and K. Schichtel, Zeits. f. Metallkunde 36, 127-30 (1944). 
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high-frequency and resistance-wound furnaces. In commercial furnaces Rohn 
has used hydrogen and vacuum alternately before pouring, for purification 
in the melt, in low-frequency induction furnaces having capacities of several 
tons. 

Just before casting a melt of a high-permeability alloy such as iron nickel, 
a deoxidizer may be added, e.g. aluminum, magnesium, calcium or silicon, 
in an amount averaging around 0.1 per cent. The efficacy of a deoxidizer is 
measured by its heat of formation, and this is given for the common ele- 
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Fig. 12—Solubility of some gases in iron and nickel at various temperatures. Sieverts. 

ments in Table II, taken from Sachs and Van Horn.4 Also several tenths of a 
per cent of manganese may be put in to counteract the sulfur so that the 
material may be more readily worked; the manganese sulfide so formed col- 
lects into small globular masses which do not interfere seriously with the 
magnetic or mechanical properties of most materials. 

Ordinarily a quantity of gas is dissolved in molten metal, and this is likely 
to separate during solidification and cause unsound ingots. The solubilities 
of some gases in iron and nickel have been determined by Sieverts5 and 
others and are given in Fig. 12, adapted from the compilation by Dushman.6 

The characteristic decrease of solubility during freezing is apparent. Most 
4 G. Sachs and K. R. Van Horn, Practical Metallurgy, Am. Soc. Metals, Cleveland 

(1940). 
5 A. Sieverts, Zeils.f. Metallkunde 21, 37-46 (1929). 6S. Dushman, Vacuum Technique, Wiley, New York (1949). 
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of the gases given off by magnetic metals during heating are formed from 
the impurities carbon, oxygen, nitrogen and sulfur; CO is usually given off 
in greatest amount from cast metal, and some N2 and H2 are also found. 
Refining of the melt is therefore of obvious advantage, and the furnace of 
Fig. 10 is especially useful for this purpose. 

Small ingots are sometimes made by cooling in the crucible. Usually, 
however, ingots are poured into cast iron molds for subsequent reduction 
by rolling, etc.; permanent magnet or other materials are often cast in sand 

*—2 -—> 

Fig. 13—Design of rolls in a blooming mill for hot reduction of ingots to rod. Carnegie 
Illinois Steel Corp. 

in shapes which require only nominal amounts of machining or grinding 
for use in apparatus or in testing. Special techniques are used for specific 
materials. 

Other considerations important in the melting and pouring of ingots are 
proper mixing in the melt, the temperature of pouring, mold construction, 
inclusions of slag, segregation, shrinkage, cracks, blow holes, etc. 

Fabrication 

Magnetic materials require a wide variety of modes of fabrication, which 
can best be discussed in connection with the specific materials. The methods 
include hot and cold rolling, forging, swaging, drawing, pulverization, elec- 



FACTORS AFFECTING MAGNETIC QUALITY 263 

trodeposition, and numerous operations such as punching, pressing and 
spinning. In the commercial fabrication of ductile material it is common 
practice to start the reduction in a breakdown or blooming mill (Fig. 13) 
after heating the ingot to a high temperature (1200° to 1400oC). Large ingots, 
of several tons weight, are often led to the mill before they have cooled 
below the proper temperature. The reduction is continued as the metal 
cools, in a rod or flat rolling mill, depending on the desired form of the final 
product. When the thickness is decreased to 0.2 to 0.5 inch the material has 
usually cooled below the recrystallization temperature. Because of the diffi- 
culty in handling hot sheets or rod of small thickness, they are rolled at or 
near room temperature, with intermediate annealings if necessary to soften 
or to develop the proper structure. In experimental work, rod is often 
swaged instead of rolled. 

In recent years the outstanding trends in methods of fabricating materials 
have been toward the construction of the multiple-roll rolling mill for roll- 
ing thin strip, and the continuous strip mill for high-speed production on 
a large scale. Figure 14 shows the principle of construction of a typical 4-high 
mill ((a) and (b)), and of two special mills ((c) and (d)). In the 20-high 
Rohn7 mill and 12-high Sendzimir8 mill the two working rolls are quite 
small (0.2 to one inch in diameter). These are each backed by two larger 
rolls and these in turn by others as indicated. In the Rohn mill (c), power is 
supplied to the two smallest rolls and the final bearing surfaces are at the 
ends of the largest rolls. In the Sendzimir mill (d) the power is supplied to 
the rolls of intermediate size and the bearing surfaces are distributed along 
the whole length of the largest rolls so that no appreciable bending of the 
rolls occurs. The small rolls reduce the thickness of thin stock with great 
efficiency, and the idling rolls permit the application of high pressure. 
In the Steckel mill power is used to pull the sheet through the rolls, which 
are usually 4-high with small working rolls. 

The continuous strip mill is an arrangement of individual mills such that 
the strip is fed continuously from one to another and may be undergoing 
reduction in thickness in several mills simultaneously. Figure 15 shows a 
mill of this kind, used for cold reduction, with 6 individual mills in tandem. 

For magnetic testing numerous forms of specimens are required for vari- 
ous kinds of tests; these include strips for standard tests for transformer 
sheet, rings or parallelograms for conventional ballistic tests, "pancakes" 
of thin tape spirally wound for measurement by alternating current, ellip- 
soids for high field measurements, and many others. The various forms are 

7 VV. Rohn, Heraeus Vacuumschmelzc, Albertis, Hanau, 381-7 (1933). 
8T. Sendzimir, Iron and Steel Engr. 23, 53-9 (1946). 
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required to study or eliminate the effects of eddy-currents, demagnetizing 
fields and directional effects and to simulate the use of material in apparatus. 
Most of the needs arizing in commerce and in experimental investigation 
are filled by strips or sheets of thicknesses from 0.002 inch to 0.1 inch from 

O 

O 

(3) 4-HIGH MILL, SIDE VIEW 

5 

(b) 4-HIGH MILL, END VIEW 

J ((O 

(C) 20-HIGH ROHN MILL (d) I2-H1GH SENDZIMIR MILL 
Fig. 14—Arrangement of rolls in mills used for reduction of thin sheet: (a) and (b) con- 

ventional 4-high mill; (c) Rohn 20-high; (d) Sendzimir 12-high. 

which coils can be wound or parts cut, by rods from which relay cores or 
other forms can be made, by powdered material used for pressing into cores 
for coils for inductive loading, and by castings for permanent magnets or 
other objects which may be machined or ground to final shape. 
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Ileal-Treatmenl 

High permeability materials are annealed primarily to relieve the internal 
strains introduced during fabrication. On the contrary permanent magnet 
materials are heat-treated to introduce strains by precipitating a second 
phase. Heat-treatments are decidedly characteristic of the materials and 
their intended uses and are best discussed in detail in connection with them. 
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Fig. 16—Some common heat treatments for magnetic materials. 

Figure 16 shows some of the commonest treatments in the form of tempera- 
ture-time curves. The purpose of these various heating and cooling cycles, 
and typical materials subjected to them, may be listed as follows: 

(1) Relief of internal strains due to fabrication or phase-changes (furnace 
cool). Magnetic iron. 

(2) Increase of internal strains by precipitation hardening (air quench 
and bake). Alnico type of permanent magnets. 
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(3) Purification by contact with hydrogen or other gases. Silicon-iron 
(cold rolled), hydrogen-treated iron, Supermalloy. 

There are also special treatments, such as those used for "double-treated" 
permalloy, "magnetically annealed" permalloy, and perminvar. 

Occasionally it is necessary to homogenize a material by maintaining the 
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Fig. 17—Variation of some properties of iron-silicon alloys with composition: B„ satura- 
tion intrinsic induction; 0, magnetic transformation point; p, electrical resistivity; nm, 
maximum permeability as determined by Miss M. Goertz. 

temperature just below the freezing point for many hours. Heat-treatments 
also may affect grain size and crystal orientation. 

Furnaces for heat-treating have various designs that will not be considered 
here. A modern improvement has been the use of globar (silicon carbide) 
heating elements that permit treatment at 1300 to 1350oC in an atmosphere 
of hydrogen or air. 
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Further discussion of "Metallurgy and Magnetism" is given in an excel- 
lent small book of this title by Stanley.9 

Effect of Composition' 

Gross Chemical Composition 

The effect of composition on magnetic properties will now be considered, 
using as examples the more important binary alloys of iron with silicon, 
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Fig. 18—Vciriation of Ba and d with the composition of iron-nickel alloys. 

nickel or cobalt, on which are based the most useful and interesting mate- 
rials. The iron-silicon alloys are used commercially without additions, the 
iron-nickel and iron-cobalt alloys are most useful in the ternary form; and 
many special alloys, for example material for permanent magnets, contain 
four or five components. 

Figure 17 shows four important properties of the iron-silicon alloys of low 
silicon content, after they have been hot rolled and annealed. The commer- 
cial alloys (3 to 5% silicon) are the most useful because they have the best 

3 J. K. Stanley, Metallurgy and Magnetism, Am. Soc. Metals, Cleveland (1949). 
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combination of properties of various kinds. The properties shown in the 
figure are important in determining the best balance: the maximum per- 
meability, nm , only indirectly (it is a good measure of hysteresis loss and 
maximum field necessary in use), and the Curie point, Q, only in a minor 
role. The saturation Bs, permeability, and resistivity p, should all be as 
high as possible. Bs, d and p arc structure insensitive, and vary with com- 
position in a characteristically smooth way, practically independent of 
heat treatment; pm depends on heat treatment (strain), impurities and 
costal orientation. There are no phase changes to give sudden changes with 
composition of properties measured at room temperatures. 
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Fig. 19—Variation of saturation magnetostriction, \s, and crystal anisotropy, K, with 
(he composition of iron-nickel alloys. 

Some of the properties of the iron-nickel alloys are given in Figs. 18 and 
19. The change in phase from a to 7 at about 30 per cent nickel is responsible 
for the breaks at this composition. The permeabilities, po and pm , (Fig. 20) 
show characteristically the effect of heat treatment. The maxima are closely 
related to the points at which the saturation magnetostriction, \a, and crys- 
tal anisotropy, K, pass through zero (Fig. 19). 

Additions of molybdenum, chromium, copper and other elements are 
made to enhance the desirable properties of the iron-nickel alloys. 

The iron-cobalt alloys, some properties of which are shown in Fig. 21, are 
usually used when high inductions are advantageous. The unusual course of 
the saturation induction curve, with a maximum greater than that for any 
other material, is of obvious theoretical and practical importance. The sud- 
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den changes in the Curie point curve are associated with a, 7 phase boun- 
daries, as mentioned earlier in this chapter. The peak of the permeability 
curve (Fig. 22) occurs at the composition for which atomic ordering is stable 
at the highest temperature (see also Fig. 2). The sharp decline near 95 per 
cent cobalt coincides with the phase change 7,6 at this composition. Addi- 
tions of vanadium, chromium and other elements are used in making com- 
mercial ternary alloys. 

Some useful alloys based on the binary iron-silicon, iron-nickel and iron- 
cobalt alloys are described in Table III. 

The hardening of material resulting from the precipitation of one phase in 
another is often used to advantage when magnetic hardness (as in per- 
manent magnets), or mechanical hardness, is desired. To illustrate this 
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Fig. 22—Variation of permeability at II = 10 oersteds, and of the critical temperature 
of ordering, with the composition of iron-cobalt alloys. 

process consider the binary iron molybdenum alloys, a partial phase dia- 
gram of which is given in Fig. 23. The effect of the boundary between the 
a and a + e fields is shown by the variation of the properties with composi- 
tion (Fig. 24a). Saturation magnetization and Curie point are affected but 
little, the principle change in the former being a slight change in the slope 
of the curve at the composition at which the phase boundary crosses 500oC, 
the temperature below which diffusion is very slow. The Curie point curve 
has an almost imperceptible break at the composition at which the phase 
boundary lies at the Curie temperature. The changes of maximum per- 
meability and coercive force are more drastic; /xm drops rapidly as the amount 
of the second phase, e, increases and produces more and more internal strain 
(Fig. 24b), and Hc increases at the same time. The experimental points 
correspond to a moderate rate of cooling of the alloy after annealing. 
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Fig. 23—Phase diagram of iron-rich iron-molybdenum alloys, showing solid solubility 
curve important in the precipitation-hardening process. 
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When the amount of the second phase is considerable (as in the 15% Mo 
alloy) it is common practice to quench the alloy from a temperature at which 
it is a single phase (e.g. 1100 or 1200oC) and so maintain it temporarily as 
such, and then to heat it to a temperature (e.g., 600oC) at which diffusion 
proceeds at a more practical rate. During the latter step the second phase 
separates slowly enough so that it can easily be stopped at the optimum 
point, after a sufficient amount has been precipitated but before diffusion 
has been permitted to relieve the strains caused by the precipitation. A 
conventional heat treatment for precipitation-hardening of this kind, used 
on many permanent magnet materials, has already been given in Fig. 16. 

In some respects the development of atomic order in a structure is like 
the precipitation of a second phase. When small portions of the material 
become ordered and neighboring regions are still disordered, severe local 
strains may be set up in the same way that they are during the precipitation 
hardening described above. The treatment used to establish high strains is 
the same as in the more conventional precipitation hardening. The decom- 
position of an ordered structure in the iron-nickel-aluminum system has 
been held responsible, by Bradley and Taylor,10 for the good permanent 
magnet qualities of these alloys. 

Some of the common permanent magnets, heat treated to develop in- 
ternal strains by precipitation of a second phase, or by the development of 
atomic ordering, are described in Table IV. 

The changes in properties to be expected when the composition varies 
across a phase boundary of a binary system are shown schematically by the 
curves of Fig. 25. 

Impurities 

The principle of precipitation hardening, as just described, applies also 
to the lowering of permeability by the presence of accidental impurities. 
For example, the solubilities of carbon, oxygen and nitrogen in iron, de- 
scribed by the curves of Fig. 26, are quite similar in form to the curve sep- 
arating the a and a + e areas of the iron-molybdenum system of Fig. 23; 
the chief difference is that the scale of composition now corresponds to con- 
centrations usually described as impurities. One expects, then, that the 
presence of more than 0.04 per cent of carbon in iron will cause the perme- 
ability of an annealed specimen to be considerably below that of pure iron. 
The amount of carbon present in solid solution will also affect the magnetic 
properties. 

Because the amounts of material involved are small, it is difficult to carry 
out well defined experiments on the effects of each impurity, especially in 

10 A. J. Bradley and A. Taylor, Proc. Roy. Soc. (London) 166, 353-75 (1938). 
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Fig. 25—Diagrams illustrating the changes in various properties that occur when a 

second phase precipitates. 

the absence of disturbing amounts of other impurities. Two examples of the 
effect of impurities will be given, in addition to Fig. 8. In Fig. 27 Yensen and 
Ziegler11 have plotted the hysteresis loss as dependent on carbon content, 

" T. D. Yensen and N. A. Ziegler, Trans. Am. Soc. Metals 24, 337-58 (1936). 
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the curve giving the mean values of many determinations. The hysteresis 
decreases rapidly at small carbon contents, when these are of the order of 
magnitude of the solid solubility at room temperature. 
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Fig. 26—Approximate solubility curves of carbon, oxygen and nitrogen in iron. 
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Fig. 27—Effect of carbon content on hysteresis in iron. Yen sen and Ziegler. 

Cioffi12 has purified iron from carbon, oxygen, nitrogen and sulfur by 
heating in pure hydrogen at 14750C, and has measured the permeability 

12 P. P. Ciofil, Phys. Rev. 39, 363-7 (1632). 
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at different stages of purification. Table V shows that impurities of a few 
thousandths of a per cent are quite effective in depressing the maximum 
permeability of iron. 

Carbon and nitrogen, present as impurities, are known to cause "aging" 
in iron—that is, the permeability and coercive force of iron containing these 
elements as impurities will change gradually with time when maintained 
somewhat above room temperature. As an example, a specimen of iron was 
maintained for 100 hours first at 100oC, then 150oC, then 100oC, and so on. 

Table V 
Maximum permeability of Armco iron with different degrees of purification, effected by heat 

treatment in pure hydrogen at 1475°C for the times indicated {P. P. Cioffi). 
Analyses from R. F. Mehl (private communication to P. P. Cioffi). 

Composition in Per Cent 
Time of Treatment Hm in Hours C s O N Mn P 

0 7000 0.012 0.018 0.030 0.0018 0.030 0.004 
1 16000 .005 .010 .003 .0004 — — 
3 30000 .005 .006 .003 .0003 — — 
7 70000 .003 — .003 .0001 — — 

18 227000 .005 <.003 .003 .0001 .028 .004 

Precision of analysis  .001 .002 .002 .0001 

The corresponding changes in coercive force are given in the diagram of 
Fig. 28. A change of about 2-fold is observed. 

Some Important Physical Properties 

There are many physical characteristics that are important in the study 
of ferromagnetism from both the practical and the theoretical point of view. 
These include the resistivity, density, atomic diameter, specific heat, ex- 
pansion, hardness, elastic limit, plasticity, toughness, mechanical damping, 
specimen dimensions, and numerous others. In a different category may be 
mentioned corrosion, homogeneity and porosity. Most of these properties 
are best discussed in connection with specific materials or properties; only 
the most important characteristics will be mentioned here. A table of the 
atomic weights and numbers, densities, melting points, resistivities and 
coefficients of thermal expansion of the metallic elements, is readily avail- 
able in the Metals Handbook. 

Dissolving a small amount of one element in another increases the re- 
sistivity of the latter. To show the relative effects of various elements, the 
common binary alloys of iron and of nickel are shown in Figs. 29 and 30. 
From a theoretical standpoint it is desirable to understand (1) the relatively 
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high resistivity of the ferromagnetic elements compared to their neighbors 
in the periodic table and (2) the relative amounts by which the resistivity 
of iron (or cobalt or nickel) is raised by a given atomic percentage of vari- 
ous other elements. From a practical standpoint, a high resistivity is usually 
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Fig. 28—Effect of nitrogen impurity on the coercive force of iron annealed successively 
at 100 and 150°C. 
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Fig. 29—Dependence of resistivity on the addition of small amounts of various elements 
iron. 

desirable in order to decrease the eddy-current losses in the material, and 
so decrease the power wasted and the lag in time between the cause and 
effect, for example, the time lag of operation of a relay. 

Knowledge of the atomic diameter is important in considering the effects 
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of alloying elements, and values for the metallic and borderline elements are 
shown in Fig. 31. Most of the values are simply the distances of nearest 
approach of atoms in the element as it exists in the structure stable at room 
temperature. Atomic diameter is especially important in theory because the 
very existence of ferromagnetism is dependent in a critical way on the dis- 
tance between adjacent atoms. This has been discussed more fully in a 
previous paper.13 

Even when no phase change occurs in a metal, important changes in strnc- 
lurc occur during fabrication and heat treatment, and these are compli- 
cated and imperfectly understood. When a single crystal is elongated by 
tension, slip occurs on a limited number of crystal planes that in general 
are inclined to the axis of tension. As elongation proceeds, the planes on 
which slip is taking place tend to turn so that they are less inclined to the 
axis. In this way a definite crystallographic direction approaches parallelism 

hool 2" (001) (oil) [100] 

(3) ROLLED (b) RECRYSTALLIZED (C) DRAWN 
Fig. 32—The preferred orientations of crystals in nickel sheet and wire after fabrication 

and after recrystallization. 

with the length of the specimen. In a similar but more complicated way, 
any of the usual methods of fabrication cause the many crystals of which it 
is composed to assume a non-random distribution of orientations, often 
referred to as preferred or special orientations, or textures. Some of the tex- 
tures reported for cold rolled and cold drawn magnetic materials are given 
in Table VI, taken from the compilation by Barrett.1'1 The orientations of 
the cubes which are the crystallographic units are shown in Fig. 32 (a) and 
(c) for cold rolled sheets and cold drawn wires of nickel. 

Since the magnetic properties of single crystals depend on crystallographic 
direction (anisotropy), the properties of polycrystalline materials in which 
there is special orientation will also be direction-dependent. In fact it is 
difficult to achieve isotropy in any fabricated material, even if fabrication 
involves no more than solidifying from the melt. The relief of the internal 

13 R. M. Bozorth, Betl Sys. Tech. Jl. 19, 1-39 (1940). 14 C. S. Barrett, Structure of Metals, McGraw Hill, New York (1943). 
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strains in a fabricated metal by annealing proceeds only slowly at low 
temperatures (up to 600oC for most ferrous metals) without noticeable grain 
growth or change in grain orientation, and is designated recovery. The prin- 
ciple change is a reduction in the amplitude of internal strains, and this can 
be followed quantitatively by X-ray measurements. Near the point of com- 
plete relief distinct changes occur in both grain size and grain orientation, 
and the material is said lo recrystallize. At higher temperatures grain growth 
increases more rapidly. The specific temperatures necessary for both re- 
covery and recrystallization depend on the amount of previous deformation, 
as shown in Fig. 33. Special orientations are also present in fabricated mate- 
rials after recrystallization, and some of these are listed in Table VI and illus- 
trated for nickel in Fig. 32 (b). 

As an example of the dependence of various magnetic properties on direc- 
tion, Fig. 34 gives data of Dahl and Pawlek16 for a 40 per cent nickel iron 

Table VI 
Preferred Orientations in Drawn Wires and Rolled Sheets, Before and After Recrystalliza- 

tion, and in Castings (Barrell1*) 
The rolling plane and rolling direction, or wire axis, or direction of growth, are designated 

Metal Crystal 
Structure 

Drawn wires Rolled Sheets 
As 

Cast 
As Drawn Recrys- 

tallized As Rolled Recrystallized 

BCC 

HCP 
FCC 

[110] 

[111] and 
[100] 

[110] (001), [110] and 
others 

(001) 
(110), [112] and 

others 

(001), 15° to 
[HO] 

(100), [001] 

[100] 

Cobalt  
Nickel  

alloy reduced 98.5 per cent in area by cold rolling and then annealed at 
1100oC. After further cold rolling (50 per cent reduction) the properties 
are as described in Fig. 35. 

The mechanical properties ordinarily desirable in practical materials are 
those which facilitate fabrication. Mild steel is often considered as the 
nearest approach to an ideal material in this respect. Silicon iron is limited 
by its brittleness, which becomes of major importance at about 5 per cent 
silicon; this is shown by the curve of Fig. 36. Permalloy is "tougher" than 
iron or mild steel and requires more power in rolling and more frequent 
aimealing between passes when cold-rolled, but can be cold-worked to smaller 
dimensions. If materials have insufficient stiffness or hardness, parts of 
apparatus made from them must be handled with care to avoid bending 
and consequent lowering of the permeability. If the hardness is too great 
the material must be ground to size. This is the case with some permanent 
magnets. 

16 O. Dahl and F. Pawlek, Zeits.f. Melallkunde 28, 230-3 (1936). 
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Fig. 34—Variation of magnetic properties with the direction of measurement in a sheet 
of iron-nickel alloy (40% Ni) severely rolled (98.5%) and annealed at 1100oC. 

The effect of size of a magnetic specimen is often of importance. This is 
well known in the study of thin films, and fine powders in which the smallest 
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dimension is about 10~4 cm or less. Many studies have been made of thin 
electrodeposited and evaporated films. Generally it is found that the per- 
meability is low and the coercive force high. The interpretation is uncertain 
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Fig. 35—Properties of the same material as that of Fig. 34, after it has been rolled, 
annealed, and again rolled. 
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Fig. 36—Variation of the breaking strength of iron-silicon alloys, showing the onset of 
brittleness near 4 per cent silicon. 

because it is difficult to separate the effects of strains and air gaps from the 
intrinsic effect of thickness, though it is known that each one of these vari- 
ables has a definite effect. As one example of the many experiments, we 
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will show here the effect of the thickness of electrodeposited films of cobalt. 
Magnetization curves are shown in Fig. 31 according to previously un- 
published work of the author. 

U) 12 
z 
I 10 I 
CD 

i8 

h- O 
g 6 

z 

£ 4 z 

THICKNESS IN MICRONS—^ 
(l MICRON=l CM* lO"4) 0 

o7 
s / 

/ 
/ 

/ . 

» I / / 
n 

s / / 

// 
\ 

ST i l 
i 

—/ / 
/ 

dv ov 

A 
/ 1 
/ / 

Si S / 
/ 

f 

i 

x" 

✓ 

Fig. 
on the 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 
FIELD STRENGTH, H, IN OERSTEDS 

37—Dependence of the magnetization curves of pure electrodeposited cobalt films 
thickness. 

103X 12 
Q UJ y~ 10 tn cr 
O 
z 8 

T0 

o 
o u. 4 
UJ > 
o 
UJ o u 0 

I 

\ 
MnBl 

\l \ 

V 

0 20 40 60 80 100 
PARTICLE DIAMETER IN MICRONS 

(l MICRON = 10-4 CM) 
Fig. 38—Dependence of coercive force on the particle size of MnBi powder. Gnillaud. 

The high coercive force obtained in fine powders by Guillaud16 is one of 
the most clear cut examples of the intrinsic effect of particle size. The coer- 
cive force increases by a factor of 15 as the size decreases to 5 X 10~4 cm 
(Fig. 38). 

16 C. Guillaud, Thesis, Strasbourg (1943). 
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Properties AJJeclcd by Magnetization 

In addition to the magnetization, other properties are changed by the 
direct application of a magnetic field. Some of these, and the amounts by 
which they may be changed, are as follows: 

Length and volume (magnetostriction) (0.01%) 
Electrical resistivity (5%) 
Temperature (magnetocaloric effect; heat of hysteresis) (10C) 
Elastic constants (20 per cent) 
Rotation of plane of polarization of light (Kerr and Faraday 

effects) (one degree of arc) 
In addition to these properties there are others that change with tem- 

perature because the magnetization itself changes. Thus there is "anoma- 
lous" temperature-dependence of: 

Specific heat 
Thermal expansion 
Electrical resistivity 
Elastic constants 
Thermoelectric force 

and of other properties below the Curie point of a ferromagnetic material, 
even when no magnetic field is applied. 

Also associated with ferromagnetism are galvanomagnetic, chemical and 
other effects. 



Technical Articles by Bell System Authors Not Appearing 
in the Bell System Technical Journal 

Measurement Method for Picture Tubes. M. W. Baldwin.1 Electronics, 
V. 22, pp. 104-105, Nov., 1949. 

Diffusion in Binary Alloys.] J. Bardeen.1 Phys. Rev., V. 76, pp. 1403- 
1405, Nov. 1, 1949. 

Abstract—Darken has given a phenomenological theory of diffusion in 
binary alloys based on the assumption that each constituent diffuses inde- 
pendently relative to a fixed reference frame. It is shown that diffusion via 
vacant lattice sites leads to Darken's equations if it is assumed that the 
concentration of vacant sites is in thermal equilibrium. Grain boundaries 
and dislocations may act as sources and sinks for vacant sites and act to 
maintain equilibrium. The modifications required in the equations if the 
vacant sites are not in equilibrium are discussed. 

Variable Phase-Shift Frequency-Modulated Oscillator. O. E. de Lange.1 

I.R.E., Proc., V. 37, pp. 1328-1331, Nov., 1949. 
Abstract—The theory of operation of a phase-shift type of oscillator is 

discussed briefly. This oscillator consists of a broad-band amplifier, the out- 
put of which is fed back to the input through an electronic phase-shifting 
circuit. The instantaneous frequency is controlled by the phase shift through 
this latter circuit. True FM is obtained in that frequency deviation is 
directly proportional to the instantaneous amplitude of the modulating sig- 
nal and substantially independent of modulation frequency. 

A practical oscillator using this circuit at 65 mc is described. 
Erosion of Electrical Contacts on Make.] L. H. Germer1 and F. E. Ha- 

worth.1 Jl. Applied Phys., V. 20, pp. 1085-1108, Nov., 1949. 
Abstract—When an electric current is established by bringing two elec- 

trodes together, they necessarily discharge a capacity. Unless the current 
which is set up is above I ampere, the erosion which is produced in a low 
voltage circuit is appreciable only when the capacity is of appreciable size 
and when it is discharged very rapidly by an arc. When the arc occurs, its 
energy is dissipated almost entirely upon the positive electrode and, when 
the circuit inductance is sufficiently low, melts out a crater intermediate in 
volume between the volume of metal which can be melted by the energy 

t A reprint of this article may be obtained on request to the editor of the B.S.T.J. 1 B.T.L. 
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and that which can be boiled. Some of the melted metal lands on the nega- 
tive electrode and, with repetition of the phenomenon, results in a mound 
of metal transferred from the anode to the cathode. This transfer, which is 
about 4 X lO-14 cc of metal per erg, is the erosion which occurs on the 
make of electrical contacts. 

The arc voltage is of the order of 15. If the initial circuit potential is 
more than about 50 volts, there may be more than one arc discharge, suc- 
cessive discharges being in opposite directions and resulting in the transfer 
of metal in opposite directions—always to the electrode which is negative. 

The occurrence of an arc is dependent upon the condition of the electrode 
surfaces and upon the circuit inductance. For "inactive" surfaces an arc 
does not occur for inductances greater than about 3 microhenries. Platinum 
surfaces can be "activated" by various organic vapors, and in the active 
condition they give arcs even when the circuit inductance is greater than 
this limiting value by a factor of 103. 

The Conductivity of Silicon and Germanium as Affected by Chemically In- 
troduced Impurities. G. L. Pearson.1 Paper presented at A. I. E. E., Swamps- 
cott, Mass., June 20-24, 1949. Included in compilation on semiconductors. 
Elec. Engg., V. 68, pp. 1047-1056, Dec. 1949. 

Abstract—Silicon and germanium are semiconductors whose electrical 
properties are highly dependent upon the amount of impurities present. 
For example, the intrinsic conductivity of pure silicon at room temperature 
is 4 X lO-6 (ohm cm)-1 and the addition of one boron atom for each million 
silicon atoms increases this to 0.8 (ohm cm)-1, a factor of 2 X 105. 

Although such impurity concentrations are too weak to be detected by 
standard chemical analysis, the use of radioactive tracers and the Hall 
effect has made it possible to make quantitative measurements at impurity 
concentrations as small as one part in 5 X 108. 

Silicon and germanium are elements of the fourth group of the periodic 
table with the same crystal structure as diamonds and they have respec- 
tively 5.2 X 10" and 4.5 X 10" atoms per cubic centimeter. The addition 
of impurity elements of the third group such as boron or aluminum gives 
defect or p-type conductivity. Elements from the fifth group such as phos- 
phorous, antimony or arsenic give excess or n-type conductivity. 

The conductivity at room temperature, where it has been shown that 
each impurity atom contributes one conduction charge, is given by equa- 
tion (1) where N is the number of solute atoms per cubic centimeter. 

o- = A -f BN. (1) 

1 B.T.L, 
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The constants A and E for the various alloys investigated arc given in the 
following table: 

Alloy A B 

Si + B 4 X 10-" 1.6 X io-" 
Si + P 4 X I0-6 4.8 X io-" 
Ge + Sb 1.7 X 10-= 4.2 x io-16 

Equation (1) applies to solute atom concentrations as high as 5 X 1019 

per cc. At higher concentrations the mobilities are lowered due to increased 
impurity scattering so that the computed conduction is higher than the 
measured. 

Microslruclures of Silicon Ingolsf W. G. Pfank1 and J. H. Scaff.1 

Metals Trans., V. 185 (//. Metals, V. 1) pp. 389-392, June, 1949. 
Increasing Space-Charge Waves.\ J. R. Pierce.1 Jl. Applied Phys., V. 20, 

pp. 1060-1066, Nov. 1949. 
Abstract—An earlier paper presented equations for increasing waves in 

the presence of two streams of charged particles having different velocities, 
and solved the equations assuming the velocity of one group of particles to 
be zero or small. Numerical solutions giving the rate of increase and the 
phase velocity of the increasing wave for a wide range of parameters, cover- 
ing cases of ion oscillation and double-stream amplification, are presented 
here. 

Traveling-Wave Oscilloscope. J. R. Pierce.1 Electronics, V. 22, pp. 97-99, 
Nov., 1949. 

Abstract—This paper describes a 1,000 volt oscilloscope tube with a 
traveling-wave deflecting system. The tube is suitable for viewing periodic 
signals with frequencies up to 500 mc. A signal of 0.037 volt into 75 ohms 
deflects the spot one spot diameter. A few milliwatts input gives a good 
pattern, so that the tube can be used without an amplifier. The pattern is 
viewed through a sixty power microscope. 

P-type and N-lype Silicon and the Formation of Photovoltaic Barrier in 
Silicon Ingots.^ J. H. Scaff,1 H. C. Theurerer' and E. E. Schumacher.1 

Metals Trans., V. 185 (Jl. Metals, V. 1) pp. 383-388, Jan., 1949. 
Longitudinal Noise in Audio Circuits. H. W. Augustadt1 and W. F. 

Kannenberg.1 Audio Engg., V. 34, pp. 22-24, 45, Jan., 1950. 
Transistors. J. A. Becker.1 Compilation of three papers presented at 

A. I. E. E. meeting Swampscott, Mass., June 20-24, 1949. Elec. Engg., 
V. 69, pp. 58-64, Jan., 1950. 

t A reprint of this article mav be obtained on request to the editor of the B.S.T.J. 1 B.T.L. 
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Application of Thermistors to Control Networks.} J. H. Bollman1 and 
J. G. Kreer.1 I. R. E., Proc., V. 38, pp. 20-26, Jan., 1950. 

Absxract—In connection with the application of thermistors to regulat- 
ing and indicating systems, there have been derived several relations be- 
tween current, voltage, resistance, and power which determine the electrical 
behavior of the thermistor from its various thermal and physical constants. 
The complete differential equation describing the time behavior of a di- 
rectly heated thermistor has been developed in a form which may be solved 
by methods appropriate to the problem. 

Sensitive Magnetometer for Very Small Areas.] D. M. Chapin.1 Rev. Sci. 
Instruments, V. 20, pp. 945-946, Dec., 1949. 

Abstract—A vibrating wire system for measuring weak magnetic fields 
is described for use in very small spaces. Quartz crystals are used for drivers 
to get sufficient velocity with very small displacements. To adjust the 
driving voltage to correspond exactly to the natural crystal frequency, the 
crystal is also used to regulate the oscillator. 

Method of Calculating Hearing Loss for Speech from an Audio gram.] H. 
Fletcher.1 Acoustical Soc. Am., Jl., V. 22, pp. 1-5, Jan., 1950. 

Abstract—The question frequently arises, Can one compute the hearing 
loss of speech from the audiogram and thus make it unnecessary to make a 
speech test after the hearing loss for several frequencies has been recorded. 
This paper shows that this can be done by taking a weighted average of the 
exponentials of the hearing loss at each frequency. Or if & is the hearing 
loss for speech and f3t the hearing loss at each frequency, 

IO^ao) = jG io^df 

The weighting factor G was determined by Fletcher and Gait from thresh- 
old measurements of speech coming from filter systems. As specifically 
applied to the case of hearing loss at the five frequencies 250, 500, 1000, 
2000 and 4000 cps, the above equation is approximately equivalent to 

/38 = -10 log [.01 X 10-(^,/10) + .13 X 10-(^/10) 

+ .40 X 10-(^/10) + .38 X 10-(^/10) + .08 X 10"(^/10,i 

where /h is hearing loss at 250 cps 
fa is hearing loss at 500 cps 
fa is hearing loss at 1000 cps 
Pi is hearing loss at 2000 cps 
p5 is hearing loss at 4000 cps 

f A reprint of this article may be obtained on request to the editor of the B.S.T.J. 1 B.T.L. 
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Designing for Air Purity. A. M. Hanfmann.2 Healing & Ventilating, V. 
47, pp. 59-64, Jan., 1950. 

Reciprocity Pressure Response Formula Which Includes the Effect of the 
Chamber Load on the Motion of the Transducer Diaphragms f M. S. Hawley.1 

Acoustical Soc. Am., Jl., V. 22, pp. 56-58, Jan., 1950. 
Abstract—In order to reduce the effects of wave motion in the coupling 

chamber to permit reciprocity pressure response measurements to higher 
frequencies, only two of the three transducers involved are coupled at a 
time to the chamber. Given for these conditions is a derivation of the pres- 
sure response formula which includes the effect of the chamber load on the 
motion of the transducer diaphragms. 

Theory of the "Forbidden" (222) Electron Reflection in the Diamond Struc- 
ture.] R. D. Heidenreich.1 Phys. Rev., V. 77, pp. 271-283, Jan. 15, 1950. 

Abstract—The dynamical or wave mechanical theory of electron diffrac- 
tion is extended to include several diffracted beams. In the Brillouin zone 
scheme this is equivalent to terminating the incident crystal wave vector 
at or near a zone edge or corner. The problem is then one of determining the 
energy levels and wave functions in the neighborhood of a corner. The solu- 
tion of the Schrodinger equation near a zone corner is a linear combination 
of Bloch functions in which the wave vectors are determined by the boundary 
conditions and the requirement that the total energy be fixed. This leads to 
a multiplicity of wave vectors for each diffracted beam giving rise to inter- 
ference phenomena and is an essential feature of the dynamical theory. 

At a Brillouin zone edge formed by boundaries associated with reciprocal 
lattice points S and 0 the orthogonality of the unperturbed wave functions 
in conjunction with the periodic potential requires that another recipro- 
cal lattice point \ be included in the calculation. The indices of X must be 
such that (X1X2X3) = (S1S2S3) — (gigiga)• The perturbation at the zone edge 
results in non-zero amplitude coefficients Cg, Cs and Cj for the diffracted 
waves irrespective of whether or not the structure factor for X , s or g van- 
ishes. This is the basis of the explanation of the (222) reflection and since it 
arises through perturbation at a Brillouin zone edge or corner the term 
"perturbation reflection" is advanced to replace the commonly used "for- 
bidden reflection." 

The octahedron formed by the (222) Brillouin zone boundaries exhibits 
an array of lines due to intersections with other boundaries to form edges. 
This array of lines is called a "perturbation grid" and the condition for the 
occurrence of a (222) reflection is simply that the incident wave vector 
terminate on or near a grid line. Numerical intensity calculations are pre- 

f A reprint of this article may be obtained on request to the editor of the B.S.T.T. 
1 B.T.L. 2\V. E. Co. 
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sented which show that a strong (222) can be accounted for by the dynamical 
theory. 

An impedance network model is briefly discussed which may aid in quali- 
tative considerations of the dynamical theory for the case of several 
diffracted waves. 

Delerminalion of g-Values in Paramagnetic Organic Compounds by Micro- 
wave Resonance. A. N. Holdem,1 C. Kittel,1 F. R. Merritt1 and W. A. 
Yager.1 Letter to the Editor, Phys. Rev., V. 77, pp. 146-147, Jan. 1, 1950. 

Nonlinear Coil Generators of Short Pulses.^ L. W. Hussey.1 I.R.E., Proc., 
V. 38, pp. 40-44, Jan., 1950. 

Abstract—Small permalloy coils and circuits have been developed which 
produce pulses well below a tenth of a microsecond in duration with repeti- 
tion rates up to a few megacycles. 

The construction of these coils is described. Low power circuits are di- 
cussed suitable for different types of drive and different frequency ranges. 

Subjective Effects in Binaural Hearing. W. Koenig.1 Letter to the Editor, 
Acoustical Soc. Am., Jl., V. 22, pp. 61-62, Jan., 1950. 

Abstract—Experiments with a binaural telephone system disclosed some 
remarkable properties, notably its ability to "squelch" reverberation and 
background noises, as compared to a system having only one pickup. No 
explanation has been found for this subjective effect. It was also discovered 
that a well-known defect in the directional discrimination of binaural sys- 
tems was remedied by a mechanical arrangement which rotated the pickup 
microphones as the listener turned his head. 

Corrosion Testing of Buried Cables. T. J. Maitland.3 Corrosion, V. 6, pp. 
1-8, Jan., 1950. 

40AC1 Carrier Telegraph System. A. L. Matte.1 Tel. & Tel. Age, No. 2, 
pp. 7-9, Feb., 1950. 

Giving New Life to Old Equipment. P. H. Miele.3 Bell Tel. Mag., V. 28, 
pp. 154-163, Autumn, 1949. 

Thermionic Emission of Thin Films of Alkaline Earth Oxide Deposited by 
Evaporation.^ G. E. Moore1 and H. W. Allison.1 Phys. Rev., V. 77, pp. 
246-257, Jan. 15, 1950. 

Abstract—Monomolecular films of BaO or SrO were deposited by evap- 
oration on clean tungsten or molybdenum surfaces with precautions to elimi- 
nate effects caused by excess metal of the oxide or by heating. Thermionic 
emissions of the same order of magnitude as from commercial oxide cathodes 
have been obtained from these systems. The results can be explained quali- 
tatively by considering the adsorbed molecules as oriented dipoles. Although 

f A reprint of this article may he obtained on request to the editor of the B.S.T.J. 1 B.T.L. 
3 A. T. & T. 
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the results may suggest a possible mechanism for a portion of the emission 
from thick oxide cathodes, there exist serious obstacles to such thin film 
phenomena as a complete explanation. 

Long Distance Finds the Way. W. H. Nunn.3 Bell Tel. Mag., V. 28, pp. 
137-147, Autumn, 1949. 

Private Line Services for the Aviation Industry. H. V. Roumfort.3 Bell 
Tel. Mag., V. 28, pp. 165-174, Autumn, 1949. 

Growing and Processing of Single Crystals of Magnetic Metals.] J. G. 
Walker,1 H. J. Williams1 and R. M. Bozorth.1 Rev. Sci. Instruments, 
V. 20, pp. 947-950, Dec., 1949. 

Abstract—Single crystals of nickel, cobalt and various alloys are grown 
by slow cooling of the melt. They are oriented by optical means and by 
X-rays, and ground to the desired shape using the technique described. 

A Look Around—and Ahead. L. A. Wilson.3 Bell Tel. Mag., V. 28, pp. 
133-136, Autumn, 1949. 

t A reprint of this article may be obtained on request to the editor of the B.S.T.J. 1 B.T.L. 3 A. T. & T. 
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