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Preface 

Though it has been scarcely fifteen years since the waveguide was pro- 
posed as a practicable medium of transmission, rather important applica- 
tions have already been made. The first, which was initiated several years 
ago, was in connection with radar. A more recent and possibly more im- 
portant application has been in television where waveguide methods pro- 
vide a very special kind of radio for relaying program material cross-country 
from one tower top to another. Already Boston and New York have been 
connected by this means and shortly Chicago and intervening cities will 
be added. Other networks extending as far west as the Pacific may be ex- 
pected. It is reasonable to expect that these two applications will be but 
the beginning of a more general use. 

Interest in the subject of waveguide transmission is not limited to com- 
mercial application alone. A comparable interest, perhaps less readily evalu- 
ated but nevertheless extremely important, lies in its usefulness in teaching 
important physical principles. For example there are many concepts that 
follow from the electromagnetic theory that, in their native mathematical 
form, may appear rather abstract. However, when translated to phenomena 
actually observed in waveguides, they become very real indeed. As a re- 
sult, these new techniques have already assumed a place of considerable 
importance in the teaching of electrical engineering and applied physics both 
in lecture demonstrations and in laboratory exercises. It is to be expected 
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that they will be used even more extensively as their possibilities become 
better appreciated. 

Interest in waveguides has been greatly enhanced by the fact that they 
brought with them a series of extremely interesting methods of measure- 
ment, comparable both in accuracy and scope, with similar measurements 
previously made only at the lower frequencies. This extension of the range 
over which electrical measurements may be made has contributed also to 
neighboring fields of research. One early application led to the discovery of 
centimeter waves in the sun's spectrum. Another led to important new infor- 
mation about the earth's atmosphere. Still another contributed to the study 
of absorption bands in gases, particularly bands in the millimeter region. 
Also of great importance was its contribution to our knowledge of the prop- 
erties of materials for it led at a fairly early date to measurements at higher 
frequencies than heretofore of the primary constants, permeability, dielectric 
constant and conductivity—all for a wide array of substances ranging from 
the best insulators to the best conductors and including many of the so- 
called semi-conductors. It is because this new art has already attained con- 
siderable stature and is already showing promise as an educational medium 
that this book has been prepared. 

CHAPTER I 

INTRODUCTION 

1.5 Early History of Waveguides 

That it might be possible to transmit electromagnetic waves through 
hollow metal pipes must have occurred to physicists almost as soon as the 
nature of electromagnetic waves became fully appreciated. That this might 
actually be accomplished in practice was probably in considerable doubt, 
for certain conclusions of the mathematical theory of electricity seemed to 
indicate that it would not be possible to support inside a hollow conductor 
the lines of electric force of which waves were assumed to consist. Evidence 
of this doubt appears in Vol. I (p. 399) of Heaviside's "Electromagnetic 
Theory" (1893) where, in discussing the case of the coaxial conductor, the 
statement is made that "it does not seem possible to do without the inner 
conductor, for when it is taken away we have nothing left on which tubes 
of displacement can terminate internally, and along which they can run." 

Perhaps the first analysis suggesting the possibility of waves in hollow 
pipes appeared in 1893 in the book "Recent Researches in Electricity and 
Magnetism" by J. J. Thomson. This book, which was written as a sequel 
to Maxwell's "Treatise on Electricity and Magnetism," examined mathe- 
matically the hypothetical question of what might result if an electric charge 
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should be released on the interior wall of a closed metal cylinder. This 
problem is even now of considerable interest in connection with resonance 
in hollow metal chambers. The following year Joseph Larmor examined as 
a special case of electrical vibrations in condensing systems the particular 
waves that might be generated by spark-gap oscillators located in hollow 
metal cylinders. A more complete analysis relating particularly to propaga- 
tion through dielectrically-filled pipes both of circular and rectangular cross 
section was published in 1897 by Lord Rayleigh. Later (1905) Kaliihne 
examined mathematically the possibility of oscillations in "ring-shaped" 
metal tubes. Still later (1910) Hondros and Debye examined mathematically 
the more complicated problem of propagation through dielectric wires. Trans- 
mission through hollow metal pipes was also considered by Dr. L. Silberstein 
in 1915. 

As regards experimental verification, it is of interest that Sir Oliver Lodge 
as early as 1894 approached but probably did not quite realize actual wave- 
guide transmission. In a demonstration lecture on electric waves given before 
the Royal Society, he used, as a source of waves, a spark oscillator mounted 
inside a "hat-shaped" cylinder. An illustration published later suggests that 
the length of the cylinder was only slightly greater than its diameter. There 
is no very definite evidence that the short cylinder functioned as a waveguide 
or that such a function was discussed in the lecture. Perhaps of greater 
significance were some experiments reported a year later by Viktor von Lang 
who used pipes of appreciable length and repeated for electric waves the 
interference experiment that had been performed for acoustic waves by 
Quincke some years earlier. Other similar experiments were later performed 
by Drude and by Weber. 

About 1913 Professor Zahn of the University of Kiel became interested 
in this problem and assigned certain of its aspects to two young candidates 
for the doctorate, Schriever and Rcuter by name. They had barely started 
when World War I broke out, and both left for the front. Zahn continued 
this work until he was called a year later. It is reported that by this time he 
had succeeded in propagating waves through cylinders of dielectric, but it 
is understood that he did little or no quantitative work. Reuter was killed 
at Champagne in the autumn of 1915, but Schriever survived and returned 
to complete his thesis in 1920, using for his source the newly available 
Barkhausen oscillator. 

The contributions of Thomson, Rayleigh, Hondros and Debye, and 
Silberstein were, of course, purely mathematical. Those of von Lang, Weber, 
Zahn and Schriever were experimental, but they were of rather limited 
scope. The concept of the hollow pipe as a useful transmission element, for 
example as a radiator or as a resonant circuit, apparently did not exist at 
these early dates. Nothing was yet known quantitatively about attenuation, 
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and little or nothing of the present-day experimental technique had yet 
appeared. At this time, the position of this new art was perhaps comparable 
with that of radio prior to the time of Marconi. 

The history of waveguides changed abruptly about 1933 when it was 
shown that they could be put to practical use. Several patent applications 
were filed,1 and numerous scientific papers were published. More recently a 
great many papers have appeared, too many in fact for detailed consideration 
at this time. Three of the earlier papers are mentioned in the footnote 
below.2 Others will be referred to in the text that follows. 

The writer's interest in guided waves stems from some experiments done 
in 1920 when such waves were encountered as a troublesome spurious effect 
while working with Lecher wires in a trough of water. In one case there were 
found, superimposed on the waves that might normally travel along two 
parallel conductors, other waves having a velocity that somehow depended 
on the dimensions of the trough. These may now be identified as being the 
so-called dominant type. In another case, the depth of water was apparently 
at or near "cut-off," and conditions were such that water waves in the 
trough gave rise to depths that were momentarily above cut-off, followed a 
moment later by depths that were below cut-off. This led not only to varia- 
tions in power at the receiving end of the trough but also to variations in 
the plate current of the oscillator supplying the wavepower. Indeed these 
effects could be noted even when the wires were removed from the trough. 
These waves were recognized as being roughly like those described the same 
year by Schriever.3 

Several years later this work was resumed and since that time a con- 
tinued effort has been made to develop from fundamental principles of 
waveguide transmission a useful technique for dealing with microwaves. 
The earliest of these experiments consisted of transmitting electromagnetic 
waves through tall cylinders of water. Because of the high dielectric con- 
stant of water, waves which were a meter long in air were only eleven centi- 
meters long in water. Thus it became possible to set up in the relatively 
small space of one of these cylinders many of the wave configurations pre- 
dicted by theory. In addition it was possible, by producing standing waves, 
to measure their apparent wavelength and thereby calculate their phase 
velocity. Also by investigating the surface of the water by means of a probe, 

1 Reference is made particularly lo U.S. Patents 2,129,711 (filed 3/16/33, 2,129,712 
(filed 12/9/33), 2,206.923 (filed 9/12/34) and 2,106,768 (filed 9/25/34). 2 Carson, Mead and Schelkunoff, "Hyper-frequency Waveguides—Mathematical 
Theory." B.S.T.J., Vol. 15, pp 310-333, April 1936. G. C. Southworth, "Hyper-frequency 
Wave Guides—General Considerations and Experimental Results," B.S.T.J., Vol. 15, pp 
284-309, April 1936. Also "Some Fundamental Experiments with Waveguides," Proc. 
I.R.E.,No\. 25, pp 807-822, July 1937. W. L. Barrow, "Transmission of Electromagnetic 
Waves in Hollow Tubes of Metal," Proc. I.R.E., Vol. 24, pp 1298-1398, October 1936. 3 The waves actually observed are now known as TEio waves in a rectangular guide, 
while those described by Schriever are now recognized as TMoi waves in a circular guide. 
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the directions and also the relative intensities of lines of electric force in the 
wave front could be mapped. It is probable that certain of these modes were 
observed and identified for the first time. 

Shortly afterwards, sources giving wavelengths in air of fifteen centi- 
meters became available and the experimental work was transferred to air- 
filled copper pipes only 5 inches in diameter. At this time, a 5-inch hollow- 
pipe transmission line 875 feet in length was built through which both 
telegraph and telephone signals were transmitted. Measurements showed 
that the attenuation was relatively small. This early work, which was done 
prior to January 1,1934, was described along with other more advanced work 
in demonstration-lectures and also in papers published in 1936 and 1937.4 

It was recognized at an early date that a short waveguide line might, with 
suitable modification, function as a radiator and also as a reactive element. 
These properties were likewise investigated experimentally, and numerous 
useful applications were proposed. Descriptions may be found in the numer- 
ous patents that followed. These properties were also the subject of several 
experimental lectures given before the Institute of Radio Engineers and 
other similar societies by the writer and his associates during the years 1937 
to 1939.5 Included were demonstrations of the waveguide as a transmission 
line, the electromagnetic horn as a radiator, and the waveguide cavity as a 
resonator. An adaptation of the waveguide cavity was used to terminate a 
waveguide line in its characteristic impedance. 

From the first, progress was very substantial and by the autumn of 1941 
there were known, both from calculation and experiment, the more important 
facts about the waveguide. In particular, the reactive nature of discon- 
tinuities became the subject of considerable study, and impedance matching 
devices (transformers), microwave filters, and balancers soon followed. Also 
a wide variety of antennas was devised. Similarly, amplifiers and oscillators 
as well as the receiving methods followed. 

As might be expected, a great many people have contributed in one way 
or another to the success of this venture. Particular mention should be 
made of the very important parts played by the author's colleagues, Messrs. 
A. E. Bowen and A. P. King, who, during its early and less promising period, 
contributed much toward transforming rather abstract ideas into practical 
equipment, much of which found important military uses immediately upon 
the advent of war. Also of importance were the parts played by the author's 
colleagues, Dr. S. A. Schelkunoff, J. R. Carson, and Mrs. S. P. Meade, who, 
in the early days of this work, provided a substantial segment of mathe- 
matical theory that previously was missing. During the succeeding years, 
Dr. Schelkunoff, in particular, made invaluable contributions in the form 

4 A description of one of the earlier lectures appears in the Bell Laboratories Record 
for March 1940. (Vol. XVIII, No. 7, p. 194.) 
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of analyses which in some cases indicated the direction toward which experi- 
ment should proceed and, in others, merely confirmed experiment, while, 
in still others, gave answers not readily obtainable by experiment alone. In 
the chapters that follow, the author has drawn freely on Dr. Schelkunoff, 
particularly as regards methods of analysis. 

Beginning sometime prior to 1936, Dr. W. L. Barrow, then of the Massa- 
chusetts Institute of Technology, also became interested in this subject and 
together with numerous associates made very substantial contributions. No 
less than eight scientific papers were published covering special features of 
hollow-pipe transmission lines and electromagnetic horns. For several years 
the work being done at the Massachusetts Institute of Technology and at 
the Bell Telephone Laboratories probably represented the major portion, if 
not indeed the only work of this kind in progress, but with the advent of 
World War II, hundreds or perhaps thousands of others entered the field. 
For the most part, the latter were workers on various military projects. 
Starting with the considerable accumulation of unpublished technique that 
was made freely available to them at the outset of the war, they, along with 
others in similar positions elsewhere in this country and in Europe, have 
helped to bring this technique to its present very satisfactory state of de- 
velopment. 

CHAPTER VI 

A DESCRIPTIVE ACCOUNT OF ELECTRICAL 
TRANSMISSION 

6.0 General Considerations 

The preceding four chapters presented the more important steps in the 
development of the theory of electrical transmission, particularly as it 
applies to simple networks, wire lines, and waves in free space and in guides. 
For the most part, the analysis followed conventional methods and made use 
of the concise and accurate short-hand notation of mathematics. It had for 
its principal objective the derivation of a series of equations useful in the 
practical application of waveguides. 

Closely associated with the theory of electricity and almost a necessary 
consequence of it are the numerous concepts and mental pictures by means 
of which we may explain rather simply the various phenomena observed in 
electrical practice Though extremely important, this aspect of the theory 
was not stressed before. Instead it was deferred to the present chapter where 
it could be considered by itself and from the purely qualitative point of 
view. It is hoped that this arrangement of material will be of special use to 
those who find it necessary to substitute for mathematical analysis, simple 
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models to explain the phenomena which they observe in practice. It is be- 
lieved that, for these people, this chapter together with a few key formulas 
taken from the earlier sections will be helpful in gaining a fairly satisfactory 
understanding of the practical aspects of waveguide transmission. 

At the lower frequencies, the current aspect of electricity meets most of 
the needs and in comparison it is only occasionally that there is a need to 
discuss lines of electric and magnetic force. In waveguide practice, on the 
other hand, currents are usually not available for measurement and, al- 
though we recognize their reality, they necessarily assume a secondary role. 
In contrast with currents, we consider the fields present in a waveguide as 
very real entities and we attach a very great importance to their orientations 
as well as to their intensities. 

6.1 The Nature of Fields of Force 

As a suitable introduction to the discussion that follows, we shall review 
some of the fundamental properties of lines of electric and magnetic force 
and show pictorially the part that they play in transmission along an or- 
dinary two-wire line. 

The Electrastatic Field 

As is well known, the concept of the electric field was devised by Faraday 
to explain the force action between charged bodies. According to his view 
there exist in the space between the charged bodies, lines or tubes of electric 
force terminating respectively on positive and negative charges attached to 
the bodies. These tubes of force are endowed with a tendency to become 
as short as possible and at the same time to repel, laterally, neighboring lines 
of force. Their direction at any point is purely arbitrary, but, by subsequent 
convention, the positive direction is taken from the positively charged body 
to the negative. This is such that a small positive charge (proton) placed in 
the field tends to be displaced in the positive sense while an electron tends to 
move in a negative direction. The force exerted on the unit charge is a 
measure of the magnitude of the electric intensity E. It is measured in volts 
per meter and, since it has direction as well as magnitude, it is a vector quan- 
tity.1 Figure 6.1-1 illustrates in a general way the arrangement of lines of 
electrostatic force that are assumed to exist between two oppositely charged 
spheres. Also shown is a representative vector E. 

The Magneloslalic Field 

In the same way that Faraday provided a satisfactory explanation for 
the forces between charged bodies, so was he able to explain the forces be- 

1 Black-face type will be used when it seems desirable to emphasize the vector proper- 
lies of quantities having direction as well as magnitude. 
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tween magnetized bodies. In the latter case, the two kinds of electrostatic 
charge are replaced by north-seeking and south-seeking magnetic poles re- 
spectively. Similarly the tubes of electric force are replaced by tubes of 
magnetic force. Roughly speaking, the two kinds of tubes are endowed with 
analogous properties. Because these magnetic lines are at rest, it is appro- 
priate to speak of them as magnetostatic lines of force and consider them as 
being comparable but of course not identical with electrostatic lines already 
discussed. The force exerted on a unit magnetic pole is a measure of magnetic 
intensity H. Like its electric counterpart, it is a vector quantity. In the par- 

Fig. 0.1-1. Arrangement of lines of electrostatic force in the region between two oppositely 
charged spheres. 

Fig. 6.1-2. Arrangement of lines of magnetostatic force in the region between two 
oppositely magnetized poles. 

ticular system of units used in this text, it is measured in amperes per meter. 
Figure 6.1-2 illustrates the arrangement of the lines of magnetic force that 
are assumed to exist between two opposite magnetic poles. 

Inlerrelationship of Electric and Magnetic Fields 

As a result of the electromagnetic theory, there are certain properties with 
which we may endow lines of electric and magnetic force and thereby ex- 
plain numerous phenomena of electrical transmission. This establishes a 
relationship between electric and magnetic fields that makes them appear 

/ 

/ 
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at times as if they were different aspects of the same thing. They are as 
follows: 

1. Lines of magnetic farce, when displaced laterally, induce in the space 
immediately adjacent, lines of electric fcrce. The direction of the induced electric 
force is perpendicular to the direction of motion and also perpendicular to the 
direction of the original magnetic force. The intensity E of the induced electric 

LINE OF ELECTRIC FORCE 

LINE OF MAGNETIC FORCE 

Fig. 6.1-3. Directions of electric vector E and magnetic vector H relative to the velocity 
v of motion of such lines. 

Fig. 6.1-4. Simple corkscrew rule for remembering the directions of E, II and v. 

force is proportional to the velocity v of displacement and proportional to the 
intensity H of the original lines of magnetic force. 

The directions of the vectors v, E and H are shown in Fig. 6.1-3. They 
are so related that, when E moves clockwise into H, it is as though a right- 
hand screw had progressed in the direction of v as shown in Fig. 6.1-4. 
A convenient short-hand notation used rather generally by mathematicians 
makes it possible to express these facts by the following vector equation: 

E = —/x(v xFT (6.1-1) 
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The quantity n is the magnetic permeability of the medium under considera- 
tion. 

2. Lines oj electric force, when displaced laterally, induce in the immediately 
adjacent space lines of magnetic force. The direction of the induced magnetic 
force is perpendicular to the direction of motion and also perpendicular to the 
direction of the original electric force. The intensity H of the induced magnetic 
force is proportional to the velocity v of displacement and proportional to the 
intensity E of the original lines of electric force. 

// 
UNIT VOLUME CONTAINING 

STORED ENERGY 

POYNTING VECTOR 
FLOW OF POWER 

Fig. 6.1-5. Directions of the vectors E and H relative to the Poynting vector P in an 
advancing wave front. 

Again Fig. 6.1-3 and also the right-hand or cork-screw rule apply. In the 
short-hand notation these facts may be expressed by the following vector 
equation: 

H = e(v x E) (6.1-2) 

In this equation, t is the dielectric constant of the medium.2 

3. When an electric field of intensity E is translated laterally, it together with 
its associated magnetic field H represents a flow of energy. The direction of the 
flow of energy is perpendicular to both E and H and is therefore in the direction 
of the velocity v. The magnitude of the energy flow per unit volume across a unit 
area measured perpendicular to v is proportional to the product of the electric 
intensity E and the magnetic intensity H. It may be designated by the vector P. 

The relative directions of the vectors P, E, and H are shown in Fig. 6.1-5. 
The energy per unit volume moves with a velocity expressed by 

^ = 4= (6.1-3) 
VMe 

2 The values of permeability y. and dielectric constant e appearing in these equations 
are not the values found in most tables of the properties of materials. As here given y is 
smaller than the usual value yr by a factor of 1.257 X 1(T6 while e is smaller than er by 
a factor of 8.854 X lO-12. The use of these special values leads to certain mathematical 
simplifications. 
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It therefore corresponds to a flow of power. In the notation just referred to, 
it may be expressed by the vector equation 

P = E x H (6.1-4) 

4. Lines of force exhibit the properties of inertia. They therefore resist ac- 
celeration. 

Other principles not quite so fundamental but nevertheless useful in 
application are: 

5. Lines of force are under tension and at the same time are under lateral 
pressure. 

6. For perfect conductors there can be no tangential component of electric 
force. That is to say, lines of electric force when attaching themselves to a 
perfect conductor must approach perpendicularly. This is substantially 
true also for common metals such as copper. 

In passing it is well to point out that the first principle is really that by 
which the ordinary dynamo operates. The second is, for practical purposes, 
Oersted's Principle, if we assume that the fines of electric force are attached 
to charges flowing in near-by conductors. The third is known as the Poynting 
Principle. It has a wide field of application contributing very materially to 
the physical pictures of both radio and waveguide transmission. When ap- 
plied to the very simple case of low frequencies propagated along a trans- 
mission fine, it gives a result that is in keeping with the usual view that the 
power transmitted is equal to the product of the total voltage times the total 
current. The fourth principle is useful in explaining qualitatively how radia- 
tion from an antenna takes place. The usefulness of these four principles will 
be made more evident by the examples that follow. 

6.2 Transmission of Power along a Wire Line 

Direct Current 

According to the Poynting concept, one may think of an ordinary dry 
cell as two conductors combined with chemical means for producing a con- 
tinuous supply of fines of electric force. This need not be counter to the ac- 
cepted views concerning electrolysis, for we may think of these fines of force 
as being attached to ionic charges incidental to dissociation. As long as the 
cell is on open circuit, these fines of electric force remain in a static condition 
in which many are grouped in the neighborhood of the terminals of the cell 
as shown in Fig. 6.2-1 (a). In this state of equilibrium, the forces of lateral 
pressure are balanced by the forces of tension. There is no motion and hence 
no flow of power. For an ordinary dry cell such as used in flashlights, the 
electric intensity E will depend on the spacing of electrodes, but it may be 
as much as 200 volts per meter If we attach to the dry cell two parallel 
wires spaced perhaps a centimeter apart with their remote ends open, electro- 
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static lines will be communicated to the wires, thereby providing a dis- 
tribution roughly like that shown in Fig. 6.2-1 (b). Except at the moment of 
contact, there is no motion of the lines of electric force and therefore no 
magnetic held and, accordingly, there can be no how of power. The hnal 
configuration is to be regarded as the resultant of the forces of tension and 
lateral pressure. The electric intensity, E, measured in volts per meter at 
any point along the line, may be altered at will, merely by changing the 
spacing. 

If, next, we close the remote end of the line by substituting a conducting 
wire for the particular line of force shown as a heavy line in Fig. 6.2-1 (c), 
the adjacent lines of electric force will collapse on the terminating conductor, 

\—lZZZZZ2 

CROSS SECTION LONGITUDINAL SECTION 

© © 
© © © © © \ ' 

0 © 

V © © © © 0 
(d) 

/ ' 
(c) I V ■ 

Fig. 6.2-1. Lines-of-force concept applied to the transmission of d-c power along a wire line- 

as opposing charges unite. This removes the lateral pressure on the neighbor- 
ing lines with the result that the whole assemblage starts moving forward. 
Each line of force meets in its turn the fate of its forerunners, thereby de- 
livering up its energy to the resistance as heat. As soon as the lateral pressure 
at the cell is relieved, chemical equilibrium is momentarily destroyed and 
more lines of force are manufactured to fill the gaps of those that have gone 
before. All of this is, of course, at the expense of chemical action. 

According to the electromagnetic theory, as set forth in the second prin- 
ciple, this is but a part of the story of transmission. We must add that the 
motion of the lines of electric force from the dry cell toward the resistance 
gives rise in the surrounding space to lines of magnetic force in accordance 
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with Equation 6.1-2 and furthermore the two fields together give rise to 
component Poynting vectors representing power flow. Each component 
vector has a magnitude at any point equal to the product of the electric and 
magnetic intensities there prevailing and a direction at right angles to the 
two component forces in accordance with Equation 6.1-3. This is illustrated 
in Fig. 6.2-1 (d). 

Since the fields reside largely outside the conductors, we conclude that 
the principal component of power flow is through the space between the 
wires and not through the wires themselves. If, in the case cited above, 
there is appreciable resistance in the connecting wires, then we may expect 
that there will be a small component of energy flowing into the wires to be 
dissipated as heat. To account for this, we may picture lines of electric force 

<±>- 

Circle enclosing 
one half 

transmitted power 

Dissipative Material 
(a) 

Fig. 6.2-2. Fields of electric and magnetic force and also direction of power flow in the 
vicinity of conductors, (a) Magnified view showing power flow along a single 

dissipative wire, (It) Cross-sectional view of parallel-wire line. 

which in the immediate vicinity of the conducting wire lag somewhat behind 
the portions more remote. This is illustrated by Fig. 6.2-2(a) which shows a 
highly idealized and greatly enlarged section of the fleld in the immediate 
vicinity of one of the two dissipative conductors. The very small component 
of power flowing into the conductor is designated as the vector P' to dis- 
tinguish it from the much greater power P which we shall assume is being 
propagated parallel to the conductor.3 

The magnetic field associated with two cylindrical conductors consists of 
circles with centers on the line joining the two conductors, whereas the 
electric field consists of another series of circles orthogonally related to the 

3 For all metals from which conducting lines are ordinarily made, the component of 
power flowing into I he conductor is extremely small compared with the power flowing 
parallel to its surface. In Fig. 6.2-2(a) therefore, we should regard vector P' as greatly 
exaggerated in magnitude relative to that of vector P. 
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first, and having centers on a line at right angles to the first as shown in 
Fig. 6.2-2(b). The total flow of power through any plane set up perpen- 
dicular to the wires is found by adding up the various component products 
of E and H from the boundaries of the wires to infinity. The method by which 
this is carried out is outside of the scope of this chapter, but, as already 
pointed out, it leads to the same result as obtained by multiplying together 
the total voltage and the total current. There are two results of this integra- 
tion that are of special interest. (1) In the case of two parallel cylinders, one- 
half of the total power flows through the space enclosed by a circle drawn 
about the wire spacing as a diameter [see Fig. 6.2-2(b)]. The remaining half 
extends from this circle on out to infinity. (2) Since both the electric and 
magnetic intensities are greatest in the neighborhood of the wire, most of 
the total power flow takes place in the immediate vicinity of the wire. 

Transmission of A-c Power 

If the simple d-c source mentioned previously is replaced by an alternat- 
ing electromotive force, a variety of phenomena may take place, the more 
important of which will depend on the frequency of alternation. If this fre- 
quency is low (very long wavelength), the line may be relatively short com- 
pared with the wavelength, with the result that changes occurring at the 
source may appear very soon at the remote end. For this case, the observed 
phenomena will vary sinusoidally with time everywhere along the line, in 
substantially the same phase. This is the typical alternating-current power 
line problem1 and, except for minor details, which we shall not discuss at 
this time, it does not differ materially from the simple d-c case already 
covered. 

If, on the other hand, the frequency is high (short wavelength), the line 
may be regarded as being electrically long, with the result that sinusoidal 
changes occurring at the source may not have traveled very far before the 
direction of flow at the source has changed. The over-all result in extreme 
cases may become very complicated indeed; for, wavepower may not only 
be reflected from the remote end of the line but, if there are sharp bends in 
the line or abrupt changes in spacing, it may be reflected from these points 
also. The phenomenon observed is usually referred to as wave interference 
and it often leads to standing waves. Though described above as complicated, 
there are many cases where the results of wave interference may be suffi- 
ciently simple to be readily visualized. Practical difficulties of various kinds 
may arise from these effects, but they may also serve very useful purposes. 
In fact, a substantial portion of our microwave technique is based on wave 

4 The wavelength corresponding to a frequency of 60 cycles per second is five million 
meters. A commercial power line having a length as great as 100 miles is therefore but 
0.03 wavelength long. It is said to be electrically short. 
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interference. Certain specific examples will be discussed later, but first we 
shall discuss a somewhat simpler case. 

The Infinite Line 

Let us take, for discussion, a uniform two-wire line that is infinitely long. 
Waves launched on such a line are assumed to be propagated to infinity. 
There are no reflected components and hence no wave interference. If the 
frequency is very high, the forerunners of the lines of force sent out by the 
source will not have traveled very far when the emf at the source will have 
reversed its direction. This gives rise at the source to a second group of lines 
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Fig. 6.2-3. (a) Arrangement of lines of electric and magnetic force in both the longitudinal 
and transverse sections of an infinitely long transmission line, (b) Space relationship 
between electric vector R and magnetic vector II as observed in a plane containing 
the two conductors. 

of force exactly like the first except oppositely directed. This, in turn, will be 
followed by a third group identical with the first and a fourth identical with 
the second and so forth until equilibrium is reached. Because the lines of 
electric force are in motion, we must expect them to be accompanied by 
lines of magnetic force. Both are of equal importance. Therefore it is not 
correct to refer to either alone as a distinguishing feature of the wave. Both 
components are shown in cross section at the right in Fig. 6.2-3(a). 

The distance between successive points of the same electrical phase in a 
wave is known as the wavelength X. It depends on the frequency/ of alterna- 
tion and the velocity of propagation r; X = v/f. The velocity of propagation 
in turn depends on the nature of the medium between the two wires. For 
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air. the velocity va is substantially 300,000,000 meters per second (186,000 
mi per sec). For other media c = Va/\//xrer. Thus it will be seen that, by re- 
placing the air normally found between the two wires of a transmission line 
by another medium such as oil (er = 2 and Mr = 1), the wavelength will be 
reduced by a factor of X/y/l. 

If An is the maximum amplitude reached by the oscillating source during 
any cycle, the amplitude at any time I, measured from an arbitrary begin- 
ning, may be expressed by the equation 

A = .'li, sin (w/ + </>)= An sin vl + (6.2-1) 

where ^ is the initial phase of the amplitude relative to an arbitrary refer- 
ence angle 

If the transmission line is free from dissipation and we choose a datum 
point in a plane at right angles to the direction of propagation and at a 
distance far enough from the source that the lines of force have had an oppor- 
tunity to conform to the wire arrangement and if we designate the electric 
intensity at this point as and the corresponding magnetic intensity as 
Hn, then the electric and magnetic intensities at other corresponding points 
at a distance s further along the line may be represented by 

r\ 
E = En sin —^ (s — vt) 

A 

and 

// = Ih sin ^ {z — vl) (6.2-2) 
A 

These equations are the trigonometric representations of an unattenuated 
sinusoidal wave of electric intensity and magnetic intensity traveling in a 
positive direction along the z axis. They are plotted in the yz and xz planes of 
Fig. 6.2-3(b). An electromagnetic configuration similar to the above but 
traveling in the opposite direction is given by 

r\ 
E = En sin (s + vl) 

A 

and 

II = Hn sin ^ (s + vl) (6.2-3) 
A 

These equations may be further confirmed by plotting arbitrary values on 
rectangular-coordinate paper. In an infinite line the magnetic intensity H 
and the electric intensity E are in the same phase as shown in Fig. 6.2-3. 
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If the wave is subject to an attenuation of cc units per unit distance, 
possibly due to resistance in the wires, the corresponding components of 
E and H are equally attenuated. Either component may be expressed by 
an equation of the type 

E = Eo e sin ^ (s — vl) 
A 

(6.2-4) 

This is a very special form of certain equations appearing in Sections 3.2 
and 3.3. 

a = o 

distance-z 

a = o,i 

distance- z 

Fig. 6.2-4. Effect of attenuation on an advancing wave front. 

If the attenuation is negligible, then a = 0 and the term e-"' will be unity. 
Equation 6.2-4 will then reduce to 6.2-2. If, on the other hand, the attenua- 
tion is considerable, the product of a times s will increase rapidly with dis- 
tance, and the factor c will have the effect of reducing the electric 
intensity E prevailing at various points along the line. Figure 6.2-4(a) illus- 
trates the variation, with distance, of the electric intensity E for an un- 
attenuated wave a = 0. There is included for comparison purposes the case, 
a = 0.1. Figure 6.2-4(b) shows the effect of this rale of attenuation on waves 
that have traveled for some distance. It is significant that moderate amounts 
of attenuation have little or no effect on wavelength. 
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At low frequencies, conductor loss is often the principal cause of attenu- 
ation. At high frequency, this loss may be still more important6 and in addi- 
tion there may be losses in the medium around the two conductors. The 
latter is particularly true when the conductors are supported on insulators 
or are embedded in insulating material. There may also be losses due to 
lines of force that detach themselves from the wires and float off into the 
surrounding space (radiation). All three lead to attenuation and may be 
expressed in terms of an equivalent resistance. They are amenable to cal- 
culation for certain special cases. 

According to one view of electricity, the individual charges to which 
lines of force attach themselves are unable to flow through the conductor 
with the velocity of light. If this is true, lines of force snap along from one 
charge to the next in a rather mysterious fashion which we will not attempt 
to picture at this time. This view, like others mentioned previously, tends to 
relegate the charges and hence the currents to a secondary position. 

Although infinitely long transmission lines cannot be constructed in prac- 
tice, it is possible, by a variety of methods, to approximate this result. In 
general, a resistance connected across the open end of a short transmission 
line, of the kind here assumed, absorbs a portion of the arriving wavepower 
and reflects the remainder. If the resistance is either very large or very small, 
the reflected power may be very substantial but, by a suitable choice of inter- 
mediate values of resistance, the reflected part may be made very small in- 
deed. In the ideal case, the arriving wavepower is completely absorbed. A 
line connected to this particular value of resistance appears to a generator 
at the sending end as though it were infinitely long. The particular resistance 
that can replace an infinite line at any point, without causing reflections, is 
known as the characteristic impedance of the line. This quantity depends on 
the dimensions and spacings of the two conductors as well as the nature of 
the medium between. A parallel-wire line, in air, usually has a characteristic 
impedance of several hundred ohms. A coaxial line filled with rubber often has 
a characteristic impedance of a few tens of ohms. A line having characteristic 
impedance connected at its receiving end is said to be match-terminated. 

Reflections on Transmission Lines 

If the transmission line ends in a termination other than characteristic 
impedance, or if there are discontinuities, due to impedances connected 
either in series or in shunt with the line, reflections of various kinds will 
occur.6 Much of the practical side of microwaves has to do with these re- 
flections. 

6 The losses in most conductors increase with the square root of the frequency. 0 At the higher frequencies, reflections may also occur at points where the wire spacing 
changes abruptly. In some instances abrupt changes in wire diameter may be sufficient 
to cause reflection. These discontinuities may be regarded as changes in characteristic 
impedance. 
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A particularly simple form of reflection occurs when the high-frequency 
transmission line is terminated in a transverse sheet of metal of good con- 
ductivity, as for example, copper. An arrangement of this kind is shown in 
Fig. 6.2-5. As it is difficult to represent a wave front moving toward the 
reflecting plate, we shall substitute an imaginary thin slice or section of the 
electromagnetic configuration. A slice of this kind is shown in Fig. 6.2-5(a). 

Experiment shows that, at the boundary of the nearly perfect reflector, 
the transverse electric force E is extremely small. This is consistent with 
the sixth principle set forth in the previous section which states that there 
can be no tangential component of electric force at the boundary of a per- 
fect conductor. The result actually observed can be accounted for if it is 
assumed that the reflecting conductor merely reverses the direction of lines 
of electric force as they become incident, thereby giving rise to two sets of 

Fig. 6.2-5. (a) Propagation of an electromagnetic wave along a two-wire line terminated 
by a large conducting plate, (b) Representative lines of force reflected by the 

conducting plate. 

lines of force as shown in Fig. 6.2-5(b), one of intensity E, = E directed 
downward in the figure and moving laterally toward the metal sheet (in- 
cident wave) and the other of intensity Er = —£ directed upward and mov- 
ing away from the metal sheet (reflected wave). Accordingly the resultant 
electric intensity at the surface is zero. 

If the reflector is non-magnetic, the magnetic intensity H will be un- 
affected by the reflecting material. We find by applying the right-hand rule 
of Fig. 6.1-4 that the electric intensity Er = — E when combined with H 
constitutes a wave that must travel in a negative direction of v. This wave 
may be represented by Equation 6.2-5. In a similar way the Poynting vector 
which before reflection is represented by P = E x H now takes the form 
P = (—ExH). The negative sign according to the right-hand rule of 
Fig. 6.1-4 shows that the power approaching the conductor is reflected back 
upon itself. If E and H are respectively equal in magnitude before and after 

(a) (b) 
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incidence, the reflection is perfect, and the coefficient of reflection is said to 
be unity. Bearing in mind that H; = e(vxE) before reflection and Hr = 
e(_ v x _£) after reflection, it is evident that the direction of the magnetic 

intensity has been unchanged by the process of reflection and that the re- 
sultant magnitude at the surface of the metal is | | | 1 = 2 | # |. 
Thus we see that, at the moment of reflection from a metallic surface, the 
resultant electric force vanishes and the resultant magnetic force is doubled. 

The reflection of waves at the end of the line naturally gives rise to two 
oppositely directed wave trains. This is a well-known condition for standing 
waves. Though a complete discussion of standing waves calls for the math- 
ematical steps taken in Section 3.6, there are certain qualitative results that 
may be deduced from relatively simple reasoning. Some of these deductions 
will be made in the paragraphs that follow. 

If an observer, endowed with a special kind of vision for individual lines 
of force, were to be stationed at various points along a lossless transmission 
line as shown in Fig. 6.2-5, he would observe a variety of phenomena as 
follows. Near the reflector he would observe a waxing and waning of lines 
of force, both electric and magnetic, corresponding to the arrival of crests 
and hollows of waves. Also he would observe a similar waxing and waning 
corresponding to waves leaving the reflector. The sum of the two waves 
would give rise at the conducting barrier to a resultant electric intensity of 
zero and to a corresponding magnetic intensity that would oscillate between 
limits of plus or minus 2H. Since it is the magnetic component that is the 
the more evident near the barrier, this region would appear to the observer 
much like the interior of a coil carrying alternating current. 

If the observer were to pass along the line to a point one-eighth wave- 
length to the left of the reflector, the distance up to the reflector and back 
would then be a quarter wave and he would then find that at the moment 
that a wave crest (maximum intensity) was passing on its way toward the 
reflector a point on the wave corresponding to zero intensity would be re- 
turning from the reflector. Adding the corresponding electric and magnetic 
intensities at this point, he would observe that the electric intensity would 
not always be zero but instead it would oscillate between limits of plus or 
minus y/2 E. Similarly the corresponding magnetic intensity would no longer 
oscillate between limits of plus or minus 2H, but instead it would never reach 
limits greater than plus or minus \/2 H. Thus at this point the electric and 
magnetic components would have the same average intensity. 

If the observer were to move farther along the line, stopping this time at a 
distance of one-fourth wavelength to the left of the metal plate, the total 
electrical distance to the barrier and back again would be a half wave- 
length and he would now find that at the time a crest passed on its way 
toward the reflector a hollow (maximum negative intensity) would be pass- 
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ing on its return journey. This time, the resultant electric intensity would 
oscillate between limits of plus or minus 2E, and the resultant magnetic 
intensity would be zero at all times. To this observer then, this quarter-wave 
point on the line would have many of the characteristics of the interior of 
a condenser charged by an alternating voltage. 

If our observer were to move another one-eighth wave farther along the 
line, he would note that the resultant electric and magnetic forces would 
again be equal. Proceeding on to a point one-half wavelength from the metal 
reflector, he would observe that, at the time crests (maximum positive in- 
tensity) were passing on their way toward the reflector, hollows would be 
returning, and accordingly upon examining the resultant electric intensity 
he would find it to be zero at all times, whereas the corresponding magnetic 
intensity would be oscillating between limits of plus or minus 211. At this 
point along the line, he would be unable to distinguish his electrical environ- 
ment from that prevailing at the metal boundary. The half-wave line, there- 
fore, has had the effect of translating the metal barrier to another point in 
space a half wave removed. 

If the observer were to continue still farther along the line, he would 
pass, alternately, points where the resultant electric force is zero and other 
points where the resultant magnetic force is zero. It is important to note 
that at points in a standing wave where the magnetic force is a maximum, 
the electric force is a minimum and at points where the electric force is a 
maximum, the corresponding magnetic force is a minimum. It is customary 
to call the points of minimum E (or H) "mins," though the term node is 
sometimes substituted. Points of maximum E (or //) are known as "maxs" 
with the term loop as its alternative. If the observer were to measure current 
and voltage along the line, he would find that points of maximum voltage 
correspond to maximum E and that points of maximum current correspond 
to maximum H. 

An examination of the energy associated with the incident and reflected 
waves shows that, except for minor losses not to be considered here, there 
is as much energy led away from the reflector as is led up to the reflector, 
and that there is associated with the standing wave a stored or resident 
energy. The regular arrangement of nodes and loops along a standing wave 
with minima at half-wave intervals is a very important characteristic, for 
such points may be located very accurately experimentally, and accordingly 
wavelength may be measured with considerable precision. 

If, instead of terminating the wire line in a large conducting plane as- 
sumed previously, it is terminated in a relatively thin cross bar as shown in 
Fig. 6.2-6, the reflection will assume a somewhat more complicated form. 
First of all, the thin cross bar will intercept, initially at least, only a portion 
of the total wave front. The particular lines of force arriving along a plane 
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containing the two wires will be the first to be reflected and they will behave 
at reflection much like those already discussed, whereas those outside the 
plane of the two wires will not be intercepted initially by the thin cross bar 
but instead will advance for a short distance beyond the end of the line 
before their forces of tension bring them to rest. These outlying lines of 
force are represented by the lines designated as c in Fig. 6.2-6. After the 
first lines of force have been reflected, lateral pressure will be removed from 
those adjacent, with the result that they will close in and collapse on the 
conductor at a slightly later time than their neighbors. One over-all result 
of this process is to make the effective length of such a line slightly greater 
than the true length. Effects of this kind are observed in practice and they 
are referred to as fringing. Discrepancies between the wavelength as 
measured in the last section of line where fringing may take place and that 
measured between other minima along the same line are usually small but 

Fig. 6.2-6. (a) Representative transmission line terminated by a conductor of finite 
dimensions, (b) Nature of reflection by a finite conductor. 

they are nevertheless measurable It is also true that, as the wave front ap- 
proaches a limited barrier of this kind, some of its energy continues on into 
the space beyond and is lost as radiation. In general, the smaller the barrier, 
the larger will be the losses. 

Consider next a line open at its remote end, as shown in Fig. 6.2-7. In 
this case, none of the lines of force of the advancing wave is intercepted by 
a conductor, with the result that a very considerable number momentarily 
congregate near the end of the line and, because of inertia, they extend into 
the space beyond as suggested by Fig. 6.2-7(b). This process continues until 
forces of tension in the lines, still clinging fast to the ends of the wires, bring 
the assemblage temporarily to rest. At this moment, there is no magnetic 
component; for v, in the relationH = e(v x E), is zero while the correspond- 
ing electric intensity is approximately 2E. The lines of electric force, being 
momentarily at rest, represent energy stored in the electric form. 

(a) (b) 
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This static situation is extremely temporary, for the tension momentarily 
created in the lines of electric force soon forces the configuration as a whole 
to move backward. As the wave front gets under way, the magnetic force 
H increases in magnitude in accordance with the relation H = e(vxE). 

The fact that the wave front extends momentarily for a short distance 
beyond the physical end of the line and requires time to come to rest and 
get into motion in the reverse direction implies inertia or momentum in the 
wave front. This is the inertia referred to in the fourth principle mentioned 
in Section 6.1. In this form of reflection, fringing is usually very evident, 
and because of fringing we may have an apparent reflection point that is 
considerably beyond the end of the wires. Thus the distance from the end 
of the wires back to the first voltage minimum is much less than the quarter 
wave that otherwise might be expected. 

(a) (b) 
Fig. 6.2-7. (a) Transmission along a line open at the remote end. (b) Nature of reflection 

from open end. 

It is generally true that processes of reflection in which fringing takes place 
are usually attended by considerable amounts of radiation. This suggests 
that in the process of reflection some of this extended wavepower detaches 
itself from the parent circuit and is lost. Experience shows that this lost 
power may be greatly enhanced by separating the two wires or by flaring 
their open ends. The so-called half-wave dipole, sodamiliar in ordinary radio, 
is but a transmission line in which the last quarter-wave length of each wire 
has been flared to an angle of 90 degrees. If we wish to minimize radiation, 
we follow a reverse procedure and reduce the spacing between the two parallel 
wires. This also reduces fringing, for we find that the measured distance from 
the ends of the wires to the first voltage minimum is now more nearly a 
quarter wave. 

It is of interest to compare reflections taking place at the open end of a 
transmission line with those at a closed end. When a wave front becomes 
incident upon a perfect conductor, the electric force vanishes. At the same 
time, the lines of magnetic force, though effectively brought to rest, are 
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momentarily doubled in intensity. The energy is predominantly magnetic, 
and the type of reflection may be regarded as inductive. When the wave is 
reflected from the ideal open-end line, a reverse situation prevails. The lines 
of magnetic force momentarily vanish while lines of electric force, though 
brought to rest, are doubled in intensity. At this moment the energy is pre- 
dominantly electrostatic, and the reflection may be considered as being 
capacitive. 

When a line is terminated in a sheet of metal of good conductivity such 
as copper or silver, reflection is almost perfect. If the sheet is a poor conductor 
such as lead or German silver, most of the incident power will still be re- 
flected; but if a semi-conductor, such as carbon, is used as a reflector, a per- 
ceptible amount of the incident power will be absorbed. It is interesting also 
that the penetration into all metals at the time of reflection is very slight, 
for relatively thin sheets seem to serve almost as well as thick plates. It is 
therefore possible to use as reflectors extremely simple and inexpensive 
materials, for example, foils or electrically deposited films fastened to a 
cheaper material such as wood.7 

A more general study of reflections on transmission lines shows that the 
examples cited previously are special cases of a very general subject. Not 
only may there be reflections from the open and closed ends of a transmission 
line, but there may be reflections also when the line is terminated in an in- 
ductance, in a capacitance, or in a resistance. Details concerning the re- 
flections that may be observed from various combinations of these three 
impedances arc discussed in connection with Fig. 3.6-3. The outstanding 
results of these discussions may be summarized for the ideal case as follows: 

1. A pure inductance (positive reactance) connected at the end of a 
transmission line always leads to a reflection coefficient having a magnitude 
of unity. The standing wave resulting from this reflection will be charac- 
terized by the following: (a) If the terminating inductance is infinitely large 
(reactance of positive infinity), the reflection will be identical with that from 
an ideal open-end line, and the distance to the nearest voltage minimum will 
be a quarter wave. [See Fig. 3.6-3(a).] (b) If the inductance is finite but very 
large, the distance to the nearest voltage minimum, as measured toward the 
generator, will be somewhat greater than a quarter wave. [See Fig. 3.6-3(b).J 
(c) If the inductance is reduced progressively toward zero (reactance zero), 
the distance to the same voltage minimum will approach one-half wave- 
length. In this limiting case, another voltage minimum will appear at the 
end of the line. [See Fig. 3.6-3(c) and 3.6-3(d).] 

2. A pure capacitance (negative reactance) connected at the end of a 
7 One convenient and inexpensive form of reflector is a kind of building paper coated 

with copper or aluminum foil. Moderately good reflectors can also be made by covering 
wood with a special paint containing finely divided silver in suspension (Du Font's 4817). 
Most aluminum paints are unsatisfactory for this purpose. 
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transmission line also leads to a reflection coefficient having a magnitude of 
unity. In this case, the resulting standing wave will be characterized as 
follows: (a) If the capacitance is zero, (reactance equal to minus infinity), 
the reflection will correspond to that from the open end of a transmission 
line, and a voltage minimum will be found at a distance of a quarter wave 
from the end. (Sec Fig. 3.6-3(g).] (b) If the capacitance is increased from 
zero to a small finite value, the distance to the nearest voltage minimum 
will be somewhat less than a quarter wave. [See Fig. 3.6-3(f).] (c) If the ca- 
pacitance is increased progressively toward infinity (reactance zero), the 
distance to the nearest voltage minimum will approach zero. [See Figs. 
3.6-3(e) and 3.6-3(d).] The limiting condition, in which the terminating 
capacitance is zero, is comparable with that in which the termination is an 
infinitely large inductance. 

3. If a pure resistance is connected at the end of a transmission line, the 
magnitude of the reflection coelficient varies with the resistance chosen. 
The relations are such that: (a) If the terminating resistance is infinite, the 
magnitude of the reflection coelficient will be unity and its sign will be posi- 
tive. [See Fig. 3.6-3(h).] (b) If the terminating resistance approaches the 
characteristic impedance of the line, the distance to the nearest voltage 
minimum will remain constant, but the magnitude of the reflection coelficient 
will approach zero. [See Figs. 3.6-3(0 and 3.6-3(j).] (c) If the terminating re- 
sistance is made less than characteristic impedance, the sign of the reflection 
coelficient will be reversed, and, as the terminating resistance approaches 
zero, its magnitude will approach unity. [See Figs. 3.6-3(k) and 3.6-3(1)-] 

When the terminating resistance is infinite, the reflection is comparable 
with that in an ideal open-end line, and the nearest voltage minimum will 
be found at a distance of a quarter wave. When the terminating resistance 
is zero, the reflection is comparable with that in a closed-end line, and the 
voltage minimum will appear at the end of the line and also at a point one- 
half wave closer to the generator. If the line is terminated in a pure resistance 
of intermediate value, the voltage minima of such standing waves as may 
be present will be found at the end of the line for all values of the resistance 
that are less than characteristic impedance and a quarter wave removed from 
the end of the line for all values greater than characteristic impedance. When 
the terminating resistance equals characteristic impedance, there is no 
standing wave. 

If, instead of terminating the line considered above in an inductance coil 
or in a capacitance or a resistance, we assume that it continues indefinitely 
into a mass of material having either a conductivity or a dielectric constant 
different from that of air, similar reflections may take place at the surface. 
A particular example is shown in Fig. 6.2-8. In general, a part of the wave- 
power arriving at the surface will be reflected and a part will be transmitted. 
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One may picture a portion of the Faraday tubes of force turned back at the 
interface while the remainder continue into the second medium. If one were 
to reverse the direction of transmission and consider wavepower transmitted 
from the second medium back into the first, a similar partial reflection would 
be noted. In both cases the part turned back and returned to the source may 
be regarded as a reactive component since no energy is really lost. In a similar 
way, the transmitted component, since it is not returned to the source, may 
be regarded as a resistive or dissipative component. 

If the medium into which wavepower is transmitted is a perfect insulator, 
the transmitted wave will continue indefinitely except as attenuated by the 

Fig. 6.2-8. Reflection and transmission of lines of force incidental to a change of medium 
along a transmission line. 

wires along which it is guided. Its wavelength, X, in the dielectric will be 
less than the wavelength, Xo, in air as expressed by the relation 

If the second medium is somewhat conducting, the wave will be further 
attenuated, the rate of attenuation being related in a rather complicated 
way not only to the conductivity of the second medium b t to its dielectric 
constant and permeability as well. Thus far in microwave pract.ce, litde 
practical use has been made of materials having permeabilities very different 
from unity. However, considerable use has been made of materials having 
various dielectric constants, er, and conductivities, g. Sometimes these take 
the form of plates placed across a waveguide transmission line. Examples 
will appear in Section 9.8. 

If a thin sheet of insulating material having a dielectric constant, €r, 
and conductivity of zero is placed across a two-wire transmission line, the 
percentage of power reflected is given approximately by 

A thin sheet of this kind is approximated when wires carrying very high 
frequencies pass through the glass walls of a vacuum tube. If the glass 

qw = P ^ Ao 
(6.2-5) 
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thickness, I, is small compared with the wavelength in air, X,), the power 
reflected by the glass envelope will likewise be small. 

Sometimes it is not feasible to reduce the wall thickness sufficiently to 
avoid serious reflections. In these instances it may be possible to make the 
thickness one-half wavelength as measured in glass whereupon the wave 
reflected from one face of the plate will be approximately equal in amplitude 
to that from the other face and, since they are separated by one-half wave- 
length, they tend to cancel. 

Another case of practical interest is that in which the line is terminated 
in a plate of very special dielectric constant er, conductivity gi, and thick- 
ness /. This is followed by a second plate of nearly infinite conductivity. 
This arrangement is shown in longitudinal section in Fig. 6.2-9. By a proper 
choice of constants, the combination may be made a good absorber of wave- 

Er = l 
5=0 

e,o 

Fig. 6.2-9. A transmission line terminated in a conductor coated with a special materia 
such that all of the incident wave power is absorbed. 

power. It will therefore be substantially reflectionless It may be shown that 
to satisfy this requirement 

X0 = (6.2-6) 
lOTT^i 

and 

' = 607rg,(2« - 1) = WZ {2n - 1) (6'2~7) 

where n is any integer. One common example is that in which n = 0. The 
plate is then a quarter wave thick as measured in the medium.8 A reflection- 
less plate of this kind when placed at the end of a transmission line appears 
to the source as though the line were terminated in its characteristic im- 
pedance. Devices incorporating this principle are sometimes used as match 
terminators for waveguides.9 

" A more complete discussion of this problem was published in 1938 by G. VV. O. Howe, 
"Reflection and Absorption of Electromagnetic Waves by Dielectric Strata." Wireless 
Engr., Vol. 15, pp 593-595, November 1938. 9 Plates of this kind may be made very simply by mixing carbon with plaster in vary- 
ing proportions until the right combination is reached. 
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When a two-wire transmission line assumes the coaxial form, the lines 
of electric force are radial and lines of magnetic force are coaxial circles. 
The directions of these two components obey the right-hand rule. (See Fig. 
6.2-10.) Since the wave configuration is completely enclosed except for a 
small exposure at each end, radiation from this type of line can be made very 
small. 

•LINES OF ELECTRIC FORCE 
• OUT 

•LINES OF MAGNETIC FORCE 

Fig. 6.2-10. Arrangement of lines of electric and magnetic force associated with transmission 
along a coaxial arrangement of conductors. 

6.3 Radiation 

Electromagnetic waves, including both light and radio waves, are not 
unlike the waves that are guided along wire lines. Their difference is largely 
a matter of environment. In one case they arc attached to wires while in 
the other they have presumably detached themselves from some configura- 
tion of conductors and are spreading indefinitely into surrounding space. 
We shall present in this section one of several possible pictures of the launch- 
ing of radio waves from a transmission line. Like other verbal pictures drawn 
in this chapter, it should be regarded as highly qualitative. 

Assume a two-wire line with one end flared as shown in Fig. 6.3-1. If at 
some point to the left there is a source of wavepower, there will flow from 
left to right along the line a sinusoidal distribution of lines of electric and 
magnetic force not unlike that shown in Fig. 6.2-7. In order to simplify our 
illustration, we shall single out for examination two representative lines of 
electric force a-b and c-d located a half wave apart. It is understood, of 
course, that there are present many other lines both before and behind those 
represented. Also there are lines of magnetic force at right angles to the 
electric force. As time progresses each element of length of the line of force 
a-b moves laterally with the velocity of light. In the region where the wires 
are parallel, it remains straight but, upon reaching the flared section, its 
two ends fall behind the central section, thereby forming a curve as shown 
in Fig. 6.3-1(c). As this line of force moves to the end of the flared section 
[Fig. 6.3-1 (d)], its successor c-d follows one-half wavelength behind. 
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Because of the property of inertia with which all lines of force are assumed 
to be endowed, the central section of a-b. which is already greatly extended 
due to curvature, continues in motion for some time after the two ends, at- 
tached to the conductors, have come to rest. The result is shown approxi- 
mately by Fig. 6.3-1 (e). An instant later and perhaps after the two ends of 
line of force a-b have started on their return journey, the line of force c-d 
approaches sufficiently close to a-b that a coalescence ensues [Fig. 6.3-1 (f)]. 
An instant later fission takes place as illustrated in Fig. 6.3-1 (g), leaving a 
portion of the energy of each a-b and c-d now shared by a radiated com- 

c a 

a b 
(a) 

c a 

d) 

(e 

(f) 

Pi 

U 

Fig. 6.3-1. Successive epochs in a highly idealized representation of radiation from the 
flared end of a transmission line. 

ponent, r, and a reflected component, x. That the two components r and x 
should travel in opposite directions seems reasonable when it is noted that 
lines of electric force in .v are in the same direction as in the adjacent portion 
of r. They may therefore be expected to repel. The first of these components, 
r, appears to the transmitter as though it were a resistance since it represents 
lost energy. The second, v, appears as a reactance since it represents energy 
returned to the transmitter. The radiated component, r, will be followed by 
other components n, r>, etc., as represented in Fig. 6.3-1 (h). 

In the radiated wave front, the two components £ and ff are everywhere 
mutually perpendicular and in the same phase. Because the wave front 



324 BELL SYSTEM TECHNICAL JOURNAL 

is curved, as shown in cross section in Fig. 6.3-2, the component Poynting 
vectors which specify the directions in which energy is flowing will be slightly 
divergent. As a result, only a portion of the total wavepower will proceed 
in the preferred direction. It follows that, for best directivity, the emitted 
wave front should be substantially plane, and the lines of force should be as 
nearly straight as possible. There is shown in Fig. 6.3-3 a series of configura- 

u 

Direction of propagation 
Fig. 6.3-2. Cross section of electromagnetic waves radiated from the flared end of a trans- 

mission line. Lines of electric force lie in the plane of the illustration; lines of magnetic 
force are perpendicular to the illustration while the flow of power is along the divergent 
arrows P. 

tions based partly on speculation and partly on deductions from Huygens' 
principle. They illustrate in a rough way how, by increasing the aperture 
between the two wires of the elementary radiator, we may make the indi- 
vidual component Poynting vectors more nearly parallel.10 

10 Figure 6.3-3 has been greatly oversimplified. Experiment shows that, to achieve the 
result desired, the angle between the two wires of Fig. 6.3-3 must be smaller for larger 
apertures than for small apertures. 
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Thus far, we have restricted our considerations to directivity in the plane 
of the two conductors (vertical plane as here assumed). Experiment shows 
that, in the plane perpendicular to that illustrated, the directivity from a 
single pair of wires is slight. However, we may obtain additional directivity 
by increasing the horizontal aperture. One method of accomplishing this 
result is to array, at rather closely spaced intervals, identical elementary 
radiators each of the kind just described. [See Fig. 6.3-4(a).] An infinite num- 
ber of these elements infinitesimally spaced become two parallel plates as 
shown in Fig. 6.3-4(b). If metal plates are now attached at the right and left 

Fig. 6.3-3. Illustrating how radiating systems of large aperture may give rise to wave fronts 
of large radius of curvature and hence lead to increased directivity. 

Fig. 6.3-4. Alternate ways by which the aperture of a flared transmission line radiator may 
be increased. 

sides, the resulting configuration will become a waveguide horn. As a general 
rule, the larger the area of aperture, the more directive will be the antenna. 
The highly schematic array shown in Fig. 6.3-4(a) is introduced for illustra- 
tive purposes only. It is not one of the preferred forms used in microwave 
work. More practicable forms will be found in Chapter X. 

The wave model shown in Fig. 6.3-2 conveys but a portion of the known 
facts about a radiated wave. A more accurate model is shown in skeleton 
form in Fig. 6.3-5. It is assumed that the transmitted wave has been launched 
with about equal directivity in the two principal planes and that the ob- 

(a) (b) 
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server is looking into one-half of a cut-away section of the total configuration. 
In the complete configuration, the individual lines of electric force (solid 
lines) and magnetic force (dotted lines) form closed loops, thereby pro- 
ducing in each half-wave interval a packet of energy. The stream of projected 
energy from an antenna is, according to this view, a series of these packets 
one behind the other moving along the major axis of transmission. At the 
transmitter each packet may have lateral dimensions that are only slightly 
greater than the corresponding dimensions of the radiating antenna; but, 
since the packet has curvature and since propagation is radial, the packet 
spreads as it progresses so that at the distant receiver it may be very large 
indeed. 

Fig. 6.3-5. Highly idealized representation of a wave-packet radiated by a typical micro- 
wave source. One half of the total packet is assumed to be cut away. 

Around the edge of each packet there is a region where the relationship 
between the vectors E, H, and v is rather involved. For example, in the vicin- 
ity of point 1 in Fig. 6.3-5, there is a substantial component of E but at this 
point the vector H is zero and accordingly the Poynting vector P' at that 
point is also zero. (See Equation 6.1-4.) In a similar way there may be in the 
vicinity of point 2 a substantial component of magnetic force H; but, since 
at this point the electric force is substantially zero, we conclude that the 
Poynting vector P" is again zero and again no power is propagated.11 

11 The peculiar edge effects noted may be regarded as a result of a kind of wave inter- 
ference not unlike that prevailing in the regions of minimum E and H in the case of stand- 
ing waves as discussed in Section 6.3. A similar kind of wave interference is cited in Section 
6.5 to account for regions of low E and TI in transmission along a waveguide. 

p'=0 
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The sharpest radio beams now in general use are only a few tenths of a 
degree across. We conclude that for these sharp beams a small but neverthe- 
less appreciable curvature remains in the radiated wave packet. This means 
that, when the wave front has arrived at a distant receiver, it is still many 
times larger than any receiving antenna it may be practicable to construct, 
and accordingly the latter can intercept but a small portion of the total 
advancing wavepower. This implies a considerable loss of power, which is 
indeed the case. 

In the process of radio reception, one may think of the antenna structure 
as a device that cuts from the advancing wave front a segment of wavepower 
which it subsequently guides, preferably without reflection, to the first 
stages of a nearby receiver. To be efficient, the wavepower intercepted should 
be large. This, in turn, calls for a receiving antenna of considerable area. It 
will be remembered that a large aperture was also a necessary feature for 
high directivity at the transmitter. This is consistent with the accepted view 
that the processes of reception and transmission through an antenna are 
entirely correlative and that a good transmitting antenna is a good receiving 
antenna and vice versa. The directive properties of an antenna are some- 
times specified in terms of its effective area. (See Section 10.0.) 

The term uniform plane wave is a highly idealized entity assumed in 
many problems for purposes of simplicity but never quite attained in prac- 
tice. In an idealized wave front, the electric and magnetic components 
E and H are not only everywhere mutually perpendicular but both com- 
ponents are exclusively transverse. That is, there is no component of either 
E or 11 in the direction of propagation. Such a wave belongs to a class 
known as transverse electromagnetic waves (TEM). These may be com- 
pared with others, to be described later, known as transverse electric waves 
(TE) and transverse magnetic (TM) waves. Waves guided along parallel 
conductors are also TEM waves, but except in the case of infinitely large 
conductors they are not uniform plane waves. 

6.4 Reflection of Space Waves from a Metal Surface 

One of the early triumphs of the electromagnetic theory was its ability 
to account satisfactorily for the reflection and refraction of light. This 
theory was so general as to include not only a wide range of wavelengths 
but also a wide range of surfaces as well. According to this theory, re- 
flections may occur whenever electromagnetic waves encounter a dis- 
continuity. This may happen, for example, when waves fall on a sheet of 
metal, in which case the discontinuity is due to the sudden change in 
conductivity. Reflection may also occur when waves are incident on a 
thick slab of glass or hard rubber, in which case reflection is due to a sud- 
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den change in dielectric constant.12 Similar reflections may theoretically 
take place also at an interface where the permeability of the medium 
changes suddenly. The case in which there is a change of conductivity has 
an important bearing on waveguide transmission. It will therefore be dis- 
cussed in considerable detail. 

Assume a plane wave incident obliquely upon a conducting surface as 
shown in Fig. 6.4-1. The line along which the wave is progressing (wave- 
normal) is referred to as the incident ray. It intersects the conducting 
surface or interface at a point 0 and makes an angle Q with the perpendicu- 
lar OZ. After reflection, the normal to the new wave wave front makes an 
angle 6' with the perpendicular OZ. This second wave-normal is known as the 

Medium I 
M = M 

////////J/AZ//////. 
Medium 

-n < -n 

Fig. 6.4-1. Reflection at oblique incidence from a metal plate for the particular case where 
the electric vector is perpendicular to the plane of incidence. 

reflected ray, and its angle with the perpendicular OZ is known as the angle 
of reflection. The plane containing the incident ray and the perpendicular 
OZ is known as the plane of incidence. The incident and reflected rays lie 
in the same plane, and their corresponding angles of incidence and reflection 
are numerically equal. 

In problems of oblique incidence there are two cases of interest, depend- 
ing on whether the electric or the magnetic component lies in the plane of 
incidence. For our particular purpose, the second of these two cases is of 
special interest and it will therefore be discussed in considerable detail. 
The vector relations corresponding to this case are shown in Fig. 6.4-1. 

12 For a more general discussion of the electromagnetic theory of reflection: L. Page 
and N. I. Adams, "Principles of Electricity," D. Van Nostrand Co., Inc., pp 569-575, 
New York 1931. R. I. Sarbacher and W. A. Edson, "Hyper and Ultra-high Frequency 
Engineering," John Wiley & Sons, Inc., pp 105-116, New York 1943. 
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Included are the relative directions of E and II both before and aftei 
reflection. 

In Fig. 6.4-2 there are shown in cross section representative lines of 
electric force in an advancing plane wave front. They are numbered re- 
spectively 1, 2, 3, 4, 5, 6, and 7. Each individual figure [(a), (b), (c), etc.] 
represents a succeeding period of time. We shall assume that the particular 
wave front singled out for illustration represents the crest of a wave 
Both ahead and behind this crest there are located alternately at half-wave 
intervals other crests and hollows, and their respective lines of force alternate 
in direction. Each line of force in the wave front is assumed to be moving 
in a direction indicated by the vector v. It is furthermore assumed that 
there is also present a magnetic component, indicated by the dotted vector 
II that is perpendicular to E and also to v. The vectors v and H must of 
course be so directed as to be in keeping with the right-hand or cork-screw 
rule, both before reflection and after reflection. Also at the point of incidence 
the tangential electric force must be zero. To account for this, we assume 
that as each line of electric force moves up to the conducting plane it is 
reversed in direction, thereby making on the average as many lines of 
electric force at the surface directed toward the observer as directed away 
from the observer. Consider, for example, lines of force 3 and 5, 2 and 6, 
and 1 and 7, in Fig. 6.4-2(c). 

Associated with these two components of electric force which, let us say, 
are E and E', there are two components of magnetic force II and H'. 
These may be specified by H = €(v x E), each of which at the interface may 
be resolved into two components shown in Fig. 6.4-3 as 77 = H^ + H\\ 
at the left and II^ = —H\\' at the right. Combining these four vec- 
tors, assuming reflection to be perfect, we find that at the interface 
H^ — H= 0 and II^ — {—11^') — 1H, giving as an over-all result: 
(1) the electric force at the interface is everywhere zero; (2) the vertical 
component of the magnetic force at this point is also zero; and (3) the 
tangential component of the magnetic force at the interface is 211. 

The peculiar configuration that resides close to the metal boundary is 
propagated to the right as a kind of magnetic wave. It has rather inter- 
esting properties which will become more evident by referring again to 
Fig. 6.4-2. Two conclusions may be drawn from this figure, depending 
on the point of view assumed. To a myopic observer located at the inter- 
face and unable to see far beyond the point p and unable to distinguish one 
line of force from another, the advancing wave front would look like a con- 
figuration of amplitude 11^ = 111 and E = 0 moving parallel to the inter- 
face with velocity vz = r/sin 6. To this observer the apparent velocity 
would increase as 6 becomes progressively smaller until, at perpendicular 
incidence, vz would approach infinity. These results follow from the geo- 
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metrical relations shown in the lower part of Fig. 6.4-2. Phenomena 
similar to this are sometimes observed when water waves, coming in from 
the ocean, break upon the beach. If the approach is nearly perpendicular, 
the point at which the wave breaks may proceed along the beach at a 
phenomenal speed. A similar effect may be produced by holding at arm's 
length a pair of scissors and observing the point of intersection as the blades 
are showly closed. A relatively slow motion of the blades leads to a rather 
rapid motion of the point of intersection. 

Since, in the case of incident waves, the apparent velocity is vz = z'/sin 0, 
the corresponding wavelength is Xz = X/sin d. Both quantities play an 
important part in the picture of waveguide transmission to be drawn later. 
In particular, the apparent velocity will prove to be identical with a 
quantity known as phase velocity. 

Path of Incident 
Line of Force 

/ 

Path of Reflected 
Line of Force 

Hr= H - H' * 0 ± X. ± 
Er= E - E' = 0 

'' s / s s / s // ////JA 
Electric Vector-- "ii Electric Vector- 
(directed away (directed toward 
from observer) observer) 

Fig. 6.4-3. Relationship between various components of E and H before and after reflection 
by a metal plate. 

//////// 

A second observer located at the interface, shown in Fig. 6.4-2, endowed 
with better vision and able to single out particular lines of force may obtain 
a somewhat different view of reflection. If he observes a particular line of 
force such as (4) in Fig. 6.4-2 for the considerable period of time, t, required 
for it to approach the conducting interface [Figs, (a) to (c)] and recede to 
a comparable distance [Figs, (c) to (e)], he will note that, whereas the line 
of force has really traveled a total distance vl, its effective progress parallel 
to the interface has been v'l = vl sin d. (See geometrical relations in lower 
part of Fig. 6.4-2.) This provides another kind of velocity (v' = v sin 6) 
known as group velocity. It is the effective velocity with which energy is 
propagated parallel to the metal surface. It approaches zero at perpen- 
dicular incidence. It will be observed that 

v' = vz sin2 6 
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and 

v'vz = v- (6.4-1) 

Group velocity also plays an important part in waveguide transmission. 

6.5 Waveguide Transmission 

It was pointed out in an earlier chapter that each of the various con- 
figurations observed in waveguides may be considered as the resultant of a 
series of plane waves each traveling with a velocity characteristic of the 
medium inside, all multiply reflected between opposite walls. In the case 
of certain of these waves, this equivalence may not be readily obvious, but 
for the dominant mode in a rectangular guide, which is one of the more 
important practical cases, it is relatively simple. It also happens that the 
analysis of such waves throws considerable light on the nature of guided 
waves, and furthermore it enables us to deduce many of the useful relations 
used in waveguide practice—relations that might otherwise call for rather 
complicated mathematical analysis. 

It is assumed in Fig. 6.5-1 that we are viewing, in longitudinal section 
and at successive intervals of time, a hollow rectangular pipe having 
transverse dimensions of a and b measured along the x and y axes respec- 
tively. In this case the illustration is in the xz plane. It is further assumed 
that the electric force lies perpendicular to the larger dimension a and is 
consequently perpendicular to the plane of the illustrations. We assume 
in Fig. 6.5-1 (a) a particular plane wave front 1, perhaps a crest, that has 
recently entered the guide from below. Let us say that its velocity is 
v = va/\/fj^er and that is it so directed as to make an angle 6 with the left- 
hand wall as shown.13 Reflection at the left-hand wall will therefore be 
identical with that already shown in Fig. 6.4-2. A portion of the wave front 
that has just previously undergone reflection is shown immediately below 
at 2 in Fig. 6.5-1 (a). We assume further that this front is made up of lines 
of electric force perpendicular to the illustration together with associated 
lines of magnetic force lying in the plane of the illustration. It will be 
obvious presently that, like the case of reflection from a single conduct- 
ing sheet discussed in the previous section, we may obtain two rather 
different pictures of what takes place within the guide, depending on 
whether we fix our attention on the configuration as a whole or on some 
particular line of force which we may identify and follow through a con- 
siderable interval of time. We shall first consider the configuration as a 
whole. 

13 It is to be noted that the angle 0 which the wave front makes with the metal wall is 
equal to the angle which the wave-normal (ray) makes with the perpendicular to the metal 
wall. 
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We show in Fig. 6.5-1 (b) the same wave front shown in Fig. 6.5-l(a) 
but at an epoch later—after it has progressed a considerable distance along 
the guide. We now find the reflected portion 2 complete and a new portion 
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Fig. 6.5-1. The propagation of a multiply reflected wave front between two metal plates 
[Figs. (a)-(d)l is equivalent to the transmission of a TE wave parallel to the 

two plates. [Fig. (f)]. 

3 about to enter the guide. Following wave front 1 and at a distance of 
one-half wave behind, we find, shown dotted, the "hollow" of the wave. 
This we shall designate by the numeral 1'. We find here also a new portion 
of the "hollow" 2' that has just undergone reflection. 
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In Fig. 6.5-1 (c) and again in Fig. 6.5-1 (d) we find successive positions 
of these same wave fronts as they have moved forward in the guide. We 
may, if we like, think of these fronts as discrete waves moving zig-zag 
through the guide or as a single large wave front folded repeatedly back 
upon itself. Fixing our attention for the moment on Fig. 6.5-1 (d), we 
observe that the velocity v at which any point of incidence of the wave front 
(say at point 5) moves along the guide is given by the relation 

v 
Vz = sirTfl 

This particular velocity vt is the phase velocity of the wave as seen by a 
myopic observer located near a lateral wall of the guide. 

Referring again to Fig. 6.5-1 (d) and fixing our attention on the geometri- 
cal relation between the wavelength X and the width of the guide a, we 
may construct a right triangle with X/2 and a as sides and show that 

and since 

sin 0 = \/l — cos2 d 

sin « = j/l - Q-J 

and 

This says that for very large guides, that is, X < 2c, vi — v, but as X ap- 
proaches 2a, ve approaches infinity. The particular case where X = 2a 
and v, = oo is referred to as the cut-off condition. At cut-off, it would appear 
that the individual waves approach the wall at perpendicular incidence 
and a kind of resonance between opposite walls prevails. At wavelengths 
greater than cut-off no appreciable amount of power is propagated through 
the guide. 

The particular value of wavelength measured in air, corresponding to 
cut-off, is referred to as the critical or cut-off wavelength and is designated 
thus: X,: = 2a. The corresponding frequency is similarly known as the 
critical or cut-offfrequency and it is designated thus: /0 = v/\c. It is sometimes 
convenient to designate the ratio of the operating wavelength to the 
critical wavelength by the symbol v. From Equation 6.5-4 it follows that 

(6.5-1) 

(6.5-2) 

(6.5-3) 

(6.5-4) 
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Referring to Fig. 6.5-1 (a) we have indicated that the wave front 1 is 
made up of lines of electric force directed through the plane of the illustra- 
tion and hence away from the observer. There are, of course, lines of mag- 
netic force and also other lines of electric force both ahead and behind the 
wave front drawn, but these have purposely been omitted in order to 
simplify the illustration. If we were to take the magnetic force into con- 
sideration we would find as in Fig. 6.4-2 that, at the reflecting surface, a 
tangential component only is present and its magnitude is twice that of 
the magnetic component of the incident wave. 

In the discussion of reflection of plane waves in the previous section, it 
was also pointed out that the act of reflecting a wave reverses the direction 
of the electric force. Applying this principle to the case at hand, we see 
that if the electric force is directed downward in the section of wavefront 
1 of Fig. 6.5-1 (a), it will be directed upward in 2. Carrying this idea for- 
ward to Fig. 6.5-1 (e) we find that in fronts 1, 2, 3, etc., which we rather 
arbitrarily called crests, the electric vector alternates in direction as shown 
by the open and solid circles. Likewise the direction of the electric vector 
alternates in the fronts designated as 1', 2', and 3', but in this case they 
are respectively opposite in direction to 1, 2, and 3. Continuing to fix 
our attention on Fig. 6.5-1 (e), it will be observed that the direction of lines 
of force is the same in 1' and 2, in 2' and 3, and in 3' and 4, indefinitely along 
the entire length of the guide. Thus there are regularly spaced regions 
along the length of the guide where the electric vector is directed toward 
the observer alternating with other regions where the electric vector is 
directed away from the observer. Between the two are still other regions 
where the respective component vectors are oppositely directed and hence 
their sum may be zero. 

Adding the foregoing effects, bearing in mind that there are lines of force 
both ahead and behind the highly simplified wave fronts shown, we have 
a new wave configuration moving parallel to the main axis of the guide 
with a phase velocity vz as suggested by Fig. 6.5-1 (f). Examining more 
carefully the wave interference that is here taking place, it becomes evident 
that if we pass laterally across the guide along the line x in Fig. 6.5-1 (e) 
the instantaneous value of the resultant electric vector as shown is every- 
where zero. On the other hand, if we cross the guide along a parallel line 
x', the electric vector varies sinusoidally beginning at zero at either wall 
and reaching a maximum in the middle of the guide. It will be observed 
that if we pass along the major axis s of the guide the electric vector at 
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any instant again varies sinusoidally with distance. However, at the 
boundary of the guide the resultant electric vector is everywhere zero. 
Since there was no component of the electric force lying along the axis z 
of the guide in the component waves that gave rise to this configura- 
tion, there can be no such component in the resultant. Waves in which 
the electric vector is exclusively transverse are known as transverse electric, 
or TE, waves. 

A complete account of transmission of this kind should include, of course, 
a consideration of the lines of magnetic force. From Fig. 6.4-3 it is evi- 
dent that, at the point of reflection of the component plane wave on the 
guide wall, there are two components of magnetic force IIj_ and in 
both the incident and reflected waves. When these are added, the re- 
sultant of the transverse magnetic force, like that of the electric force, 
differs at different points in the guides. Following alone the line x', it 
is found that for the particular condition here assumed, the magnetic 
force is zero at each wall increasing sinusoidally to a maximum midway 
between. At this point the magnetic component is entirely transverse. 
Following along the line x, it will be found that the magnetic vector is a 
maximum near each wall decreasing cosinusoidally to zero in the middle. 
It is of particular interest that, at the wall of the guide, the magnetic 
component lies parallel to the axis. Magnetic lines of force are, in this type 
of wave, closed loops, whereas lines of electric force merely extend from 
the upper to the lower walls of the guide. The arrangement of lines of 
electric and magnetic force in this type of wave is shown in Fig. 5.2-1. 
The quantitative relationships between the various components of E and 
H are specified more definitely by Equation 5.2-1. The significance of the 
wavelength \a of this new configuration will be obvious from Fig. 6.5-1 (f). 

There are certain useful results that follow from Fig. 6.5-1 (f). It may 
be seen from the triangle there shown that 

(6.5-6) 

From Equations 6.5-1 and 6.5-3, it will also be seen that 

cos 9 X 
(6.5-7) 

Therefore 

X X 
(6.5-8) A, 
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Since \/\/\ — v- is the ratio of the apparent wavelength in the guide to 
that in free space and since for hollow pipes it is greater than unity, it is 
sometimes referred to as the strelching factor. It appears frequently in 
quantitative expressions relating to waveguides. Since velocity is equal 
to the number of waves passing per second times the length of each wave, 
we have 

(6-5-9) 

This is equivalent to the relation shown as Equation 6.5-5. 
A matter of special interest is the rate at which energy is propagated 

along the guide. For present purposes, it is convenient to regard a moving 
line of force and its associated magnetic force as a unit of propagated energy. 
A knowledge of the path followed by such a line of force will therefore 
shed light on the rate at which energy is propagated along a waveguide. 

It was pointed out in connection with Equation 6.4-2 that, when a wave 
is incident obliquely upon a metal surface, the apparent phase of the wave 
progresses at a velocity v2 greater than the velocity of light v, but that the 
energy actually progresses parallel to the interface at a velocity v' less than 
the velocity of light. It was pointed out, too, that v' = v sin 0 = vz sin2 6. 
Because of multiple reflections between opposite walls of a waveguide, its 
phase velocity is identical with v2. Also, because of these multiple reflections, 
energy being carried by these component plane waves follows a rather 
devious zig-zag path and will therefore progress along the axis of the guide 
at a relatively slow rate. This velocity which is known as the group velocity 
is idential with v' above. From relations already given, it will be seen that 

v' = v\/1 — v- (6.5-10) 

also 

v' = rz(l — v') (6.5-11) 

It will be apparent from this relation that, at cut-off, where v = 1, 
energy is propagated along the guide with zero velocity. This is consistent 
with the idea already set forth that, at cut-off, energy oscillates back and 
forth between opposite faces of the guide. As we leave cut-off and progress 
toward higher frequencies (shorter waves), the group velocity v' increases 
as the phase velocity v2 decreases, until, at extremely high frequencies, 
both approach the velocity v characteristic of the medium. This relation- 
ship is made more evident by Fig. 6.5-2. 

Reviewing again the simple analysis just made, we And that the wave 
configuration that actually progresses along a conventional rectangular 
waveguide may be regarded as the result of interference of ordinary uni- 
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form plane waves multiply reflected between opposite walls of the guide. 
This viewpoint accounts for not only the distribution of the lines of force 
in the wave front but also for the velocity at which the phase progresses 
and the velocity at which energy is propagated. As we shall soon see, it 
accounts also for the rate of attenuation. 

In the particular configuration just described the electric component is 
everywhere transverse, whereas the magnetic component may be either 
longitudinal or transverse, depending on the point in a guide at which 
observations are made. These waves are plane waves, but, since the elec- 

REGION OF LOW ATTENUATION i 

i 
i 

i 

ii 

0.5 REGION OF PRACTICAL 
OPERATION 

f . 1 

Fig. 6.5-2. Relative phase velocity vz and group velocity -/ for various conditions of 
operation of a waveguide. 

trie intensity is not uniformly distributed over the wave front, they are not 
uniform plane waves. 

The concept of multiply reflected waves provides a basis for calculating 
the attenuation in rectangular guides as was shown by John Kemp several 
years ago.14 The procedure is outlined briefly below. The reader is referred 
to the published article for details. 

There is shown in Fig. 6.5-3 a short section of hollow waveguide in which 
we imagine multiply reflected plane waves are propagated. We fix our 
attention on a zig-zag section cut from the guide and so directed that it 

11 John Kemp, "Electromagnetic Waves in Metal Tubes of Rectangular Cross-section," 
Jour. I.E.E., Part III, Vol. 88, No. 3, pp 213-218, September 1941. 
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lies parallel to the direction of propagation of the elemental wave fronts. 
The top and bottom conductors so formed may be regarded as a uniform 
Hat-conductor transmission line with oblique reflecting plates (sections 
of the side walls) spaced at regular intervals. Other transmission lines 
adjacent to that under consideration behave in exactly the same way as 
that singled out for examination and at the same time act as guard plates 
to insure that the lines of force so propagated remain straight. 

It is clear that the attenuation in each elemental transmission line will 
be that incidental to losses in the upper and lower conductors plus the 
losses incidental to reflection at oblique incidence from the several reflecting 

r 0 H 
Fig. 6.5-3. Elementary transmission lines terminated periodically by reflecting plates 

which go to make up a rectangular waveguide. 

plates. The total attenuation of the rectangular guide may then be found 
by summing up over a unit length of waveguide all of the elemental lines. 
This has been done with results that are equivalent to the corresponding 
equations given in Chapter V. The results are plotted in Fig. 6.5-4. 

Certain characteristics of these curves may be readily accounted for. 
For instance, at cut-off {6 = 0), both the number of unit reflection plates 
and the number of flat-plate transmission lines in a given length of wave- 
guide will be infinite. As a result, the component attenuations arising in 
each of these two sources will likewise be infinite. As the frequency is in- 
creased above cut-off the angle 0 will increase accordingly, leading thereby 

T 
b 

I 
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to fewer side-wall reflections and to a shorter over-all length of zig-zag 
transmission line. Thus, in this frequency range, the attenuations con- 
tributed both by the side walls and by the top and bottom plates de- 
crease with increasing frequency. Proceeding to frequencies far above cut-off, 
where d approaches 90 degrees, there will not only be very few reflections 
but the over-all length of zig-zag line will approach as its limit a single, 
straight two-conductor line made up of the top and bottom plates alone. 
Thus the attenuation due to the side walls will approach zero and that 
due to the top and bottom plates will increase as the square root of the 

1 
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Fig. 6.5-4. Component atlentuations contributed by the top and bottom plates and also 
the two side walls of a rectangular waveguide. 

frequency. Since the attenuation contributed by the top and bottom plates 
first decreases but later increases with frequency, we may expect, be- 
tween these two ranges, a region of minimum attenuation. The attenu- 
ations contributed by the upper and lower plates and also by the side walls 
of a 7.5 cm X 15 cm copper guide carrying the dominant mode have been 
calculated. The results have been plotted as curves A and B in Fig. 
6.5-4. They follow the courses predicted by the preceding qualitative 
reasoning. 

The fact that the reflection type of attenuation, such as is evident in the 
side walls above, decreases with frequency, suggests that, if a kind of wave- 
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guide could he devised where this type of attenuation alone exists, we 
could then operate the guide at extremely high frequencies and thereby 
obtain relatively low attenuations. This can, in effect, be done. It calls 
for a guide of circular cross section and a special configuration, known as 

o 
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Fig. 6.5-5. The circular electric or TEoi configuration in a circular waveguide. 

(b 

/ \ 

/ \ 

(a) (e) 
Fig. 6.5-6. Evolution of the circular-electric wave in a circular pipe from a dominant wave 

in a rectangular pipe. 

the circular-electric wave. In this configuration, the resultant electric force 
is everywhere parallel to the conducting boundary as shown in Fig. 6.5-5. 

That such a wave will lead to the interesting frequency characteristic 
noted is made more plausible by referring to Fig. 6.5-6 and its associated 
discussion. Figure 6.5-6(a) shows a conventional form of rectangular 
guide in which plane waves are multiply reflected from the two short sides. 
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In Fig. 6.5-6(b) the proportions of the guide have been altered some- 
what, but since the lines of electric force are still perpendicular to the top 
and bottom plates, the guide may be expected to function substantially 
as before. At the most, some attenuation that previously originated in 
the left-hand side wall may now be transferred to the top and bottom 
walls. As a second step, we may extend the width of the top and bot- 
tom walls as shown in Fig. 6.5-6(c) until they intersect, thereby forming 
an arc-shaped guide. The attenuation now prevailing is evidently confined 
to the top and bottom walls and the right-hand wall. It is reasonable to 
assume that the side wall attenuation still decreases with frequency 
since incident lines of force are everywhere parallel to this wall. As 
a third step, we assemble as in Fig. 6.5-6(d) a number of identical arc- 
shaped guides to form a composite circular guide with radial partitions. 
If, finally, we imagine the radial partitions removed as in Fig. 6.5-6(e), the 
resulting configuration will not be altered and we shall have removed the 
component of attenuation attributable to the top and bottom walls leaving 
only the component of attenuation attributable to the one side wall, which, 
as we have pointed out, becomes progressively smaller as the frequency is 
iniefinitely increased. 



Memory Requirements in a Telephone Exchange 

By CLAUDE E. SHANNON 
(Manuscripl Received Dec. 7, 1949) 

1. Lvtroduction 

GENERAL telephone exchange with N subscribers is indicated sche- 
matically in Fig. 1. The basic function of an exchange is that of setting 

up a connection between any pair of subscribers. In operation the exchange 
must "remember," in some form, which subscribers are connected together 
until the corresponding calls are completed. This requires a certain amount 
of internal memory, depending on the number of subscribers, the maximum 
calling rate, etc. A number of relations will be derived based on these con- 
siderations which give the minimum possible number of relays, crossbar 
switches or other elements necessary to perform this memory function. 
Comparison of any proposed design with the minimum requirements ob- 
tained from the relations gives a measure of the efficiency in memory utili- 
zation of the design. 

Memory in a physical system is represented by the existence of stable 
internal states of the system. A relay can be supplied with a holding con- 
nection so that the armature will stay in either the operated or unoperated 
positions indefinitely, depending on its initial position. It has, then, two 
stable states. A set of N relays has 2"N possible sets of positions for the arma- 
tures and can be connected in such a way that these are all stable. The total 
number of states might be used as a measure of the memory in a system, 
but it is more convenient to work with the logarithm of this number. The 
chief reason for this is that the amount of memory is then proportional to 
the number of elements involved. With N relays the amount of memory is 
then M = log 2N = N log 2. If the logarithmic base is two, then log2 2=1 
and M = N. The resulting units may be called binary digits, or more 
shortly, bits. A device with M bits of memory can retain M different "yes's" 
or "no's" or M different O's or 1's. The logarithmic base 10 is also useful in 
some cases. The resulting units of memory will then be called decimal 
digits. A relay has a memory capacity of .301 decimal digits. A 10 X 10 
crossbar switch has 100 points. If each of these points could be operated 
independently of the others, the total memory capacity would be 100 bits 
or 30.1 decimal digits. As ordinarily used, however, only one point in a 
vertical can be closed. .Vith this restriction the capacity is one decimal 
digit for each vertical, or a total of ten decimal digits. The panels used in a 

343 
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panel type exchange are another form of memory device. If the commutator 
in a panel has 500 possible levels, it has a memory capacity of log 500; 8.97 
bits or 2.7 decimal digits. Finally, in a step-by-step system, 100-point selec- 
tor switches are used. These have a memory of two decimal digits. 

Frequently the actual available memory in a group of relays or other 
devices is less than the sum of the individual memories because of artificial 
restrictions on the available states. For technical reasons, certain states are 
made inaccessible—if relay A is operated relay B must be unoperated, etc. 
In a crossbar it is not desirable to have more than nine points in the same 
horizontal operated because of the spring loading on the crossarm. C on- 
straints of this type reduce the memory per element and imply that more 
than the minimum requirements to be derived will be necessary. 

EXCHANGE 

Fig. 1—General telephone exchange. 

2. Memory Required for any S Calls out of N Subscribers 

The simplest case occurs if we assume an isolated exchange (no trunks 
to other exchanges) and suppose it should be able to accommodate any pos- 
sible set of S or fewer calls between pairs of subscribers. If there are a total 
of N subscribers, the number of ways we can select m pairs is given by 

N{N - l)(iV - 2) • • ■ (iV - 2m + 1) = iY! 
2"' m! 2mni\{N — 2 m)! 

(1) 

The numerator N{N - 1) ■ • • {N - 2m + 1) is the number of ways of 
choosing the 2m subscribers involved out of the iY. The m! takes care of 
the permutations in order of the calls and 2"' the inversions of subscribers 
in pairs. The total number of possibilities is then the sum of this for m = 
0, 1, • ■ - , 5; i.e. 

o 
E 

iV! 
'o 2"' m\{N - 2m)! 

(2) 

The exchange must have a stable internal state corresponding to each of 
these possibilities and must have, therefore, a memory capacity M where 

M = log E 
iY! 

2"lm\(N - 2m)!' 
(3) 
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If the exchange were constructed using only relays it must contain at least 
l0g;i S -V !/2",w!(-Y — 2m)! relays. If 10 X 10 point crossbars are used in 

the normal fashion it must contain at least ^ log1o N\/2mm\{N — 2ni)! 

of these, etc. If fewer are used there are not enough stable configurations of 
connections available to distinguish all the possible desired interconnections. 
With N = 10,000, and a peak load of say 1000 simultaneous conversations 
M = 16,637 bits, and at least this many relays or 502 10 X 10 crossbars 
would be necessary. Incidentally, for numbers N and 6" of this magnitude 
only the term in = 5 is significant in (3). 

The memory computed above is that required only for the basic function 
of remembering who is talking to whom until the conversation is completed. 
Supervision and control functions have been ignored. One particular super- 
visory function is easily taken into account. The call should be charged to 

MEMORY RELAYS 

1 SWITCHING 

1 
1 

M 1 

NETWORK 
2 

3 

CONTROL CIRCUIT 

Fig. 2—Minimum memory exchange. 

the calling party and under his control (i.e. the connection is broken when 
the calling party hangs up). Thus the exchange must distinguish between 
a calling b and b calling a. Rather than count the number of pairs possible 
we should count the number of ordered pairs. The effect of this is merely 
to eliminate the 2m in the above formulas. 

The question arises as to whether these limits are the best possible—could 
we design an exchange using only this minimal number of relays, for ex- 
ample? The answer is that such a design is possible in principle, but for 
various reasons quite impractical with ordinary types of relays or switching 
elements. Figure 2 indicates schematically such an exchange. There are M 
memory relays numbered 1, 2, ..M. Each possible configuration of calls 
is given a binary number from 0 to 2" and associated with the corresponding 
configuration of the relay positions. We have just enough such positions to 
accommodate all desired interconnections of subscribers. 

The switching network is a network of contacts on the memory relays 
such that when they are in a particular position the correct lines are con- 
nected together according to the correspondence decided upon. The control 
circuit is essentially merely a function table and requires, therefore, no 
memory. When a call is completed or a new call originated the desired con- 
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figuration of the holding relays is compared with the present configuration 
and voltages applied to or eliminated from all relays that should be changed. 

Needless to say, an exchange of this type, although using the minimum 
memory, has many disadvantages, as often occurs when we minimize a 
design for one parameter without regard to other important characteristics. 
In particular in Fig. 2 the following may be noted: (1) Each of the memory 
relays must carry an enormous number of contacts. (2) At each new call or 
completion of an old call a large fraction of the memory relays must change 
position, resulting in short relay life and interfering transients in the con- 
versations. (3) Failure of one of the memory relays would put the exchange 
completely out of commission. 

3. The Separate Memory Condition 

The impracticality of an exchange with the absolute minimum memory 
suggests that we investigate the memory requirements with more realistic 
assumptions. In particular, let us assume that in operation a separate part 
of the memory can be assigned to each call in progress. The completion of 
a current call or the origination of a new call will not disturb the state of the 
memory elements associated with any call in progress. This assumption is 
reasonably well satisfied by standard types of exchanges, and is very natural 
to avoid the difficulties (2) and (3) occurring in an absolute minimal design. 

If the exchange is to accommodate S simultaneous conversations there 
must be at least S separate memories. Furthermore, if there are only this 

— 1). 
number, each1 of these must have a capacity log    To see this, 

suppose all other calls are completed except the one in a particular memory. 
The state of the entire exchange is then specified by the state of this par- 
ticular memory. The call registered here can be between any pair of the N 
subscribers, giving a total of N(N - l)/2 possibilities. Each of these must 
correspond to a different state of the particular memory under considera- 
tion, and hence it has a capacity of least log N{N - l)/2. 

The total memory required is then 

If the exchange must remember which subscriber of a pair originated the 
call we obtain 

M = 5 log N{N — 1). (5) 
or, very closely when N is large, 

M =2S log N. (6) 
1 B. D. Holbrook has pointed out that by using more than 5 memories, each can have C1 

for certain ratios of a smaller memory, resulting in a net saving. This only occurs, 
however, with unrealistically high calling rates. 
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c 
The approximation in replacing (5) by (6), of the order of - log e, is equiva- 

lent to the memory required to allow connections to be set up from a sub- 
scriber to himself. With N = 10,000, S - 1,000, we obtain M = 26,600 

S INTERCONNECTING ELEMENTS 
Fig- 3—Minimum separate memory exchange. 

N = 2m- 

2- -2 

.q-) Ji-) ..2S 
-2m = N 

Fig. 4—Interconnecting network for Fig. 3. 

from (6). The considerable discrepancy between this minimum required 
memory and the amount actually used in standard exchanges is due in part 
to the many control and supervision functions which we have ignored, and 
in part to statistical margins provided because of the limited access property. 

The lower bound given by (6) is essentially realized with the schematic 
exchange of Fig. 3. Each box contains a memory 2 log N and a contact 
network capable of interconnecting any pair of inputs, an ordered pair being 
associated with each possible state of the memory. Figure 4 shows such an 
interconnection network. By proper excitation of the memory relays 1, 2, 
• ■ •, M, the point p can be connected to any of the N = 2m subscribers on 
the left. The relays 1', 2', • - M' connect p to the called subscriber on 
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the right. The general scheme of Fig. 3 is not too far from standard methods, 
although the contact load on the memory elements is still impractical. In 
actual panel, crossbar and step-by-step systems the equivalents of the 
memory boxes are given limited access to the lines in order to reduce the 
contact loads. This reduces the flexibility of interconnection, but only by 
a small amount on a statistical basis. 

4. Relation to Information Theory 

The formula M = 2S log N can be interpreted in terms of information 
theory.2 When a subscriber picks up his telephone preparatory to making 
a call, he in effect singles out one line from the set of N, and if we regard 
all subscribers as equally likely to originate a call, the corresponding amount 
of information is log N. When he dials the desired number there is a second 
choice from N possibilities and the total amount of information associated 
with the origin and destination of the call is 2 log N. With 5 possible simul- 
taneous calls the exchange must remember 25" log A7 units of information. 

The reason we obtain the "separate memory" formula rather than the 
absolute minimum memory by this argument is that we have overestimated 
the information produced in specifying the call. Actually the originating 
subscribers must be one of those not already engaged, and is therefore in 
general a choice from less than N. Similarly the called party cannot be 
engaged; if the called line is busy the call cannokbe set up and requires no 
memory of the type considered here. When these factors are taken into 
account the absolute minimum formula is obtained. The separate memory 
condition is essentially equivalent to assuming the exchange makes no use 
of information it already has in the form of current calls in remembering 
the next call. 

Calculating the information on the assumption that subscribers are 
equally likely to originate a call, and are equally likely to call any number, 
corresponds to the maximum possible information or "entropy" in com- 
munication theory. If we assume instead, as is actually the case, that certain 
interconnections have a high a priori probability, with others relatively 
small, it is possible to make a certain statistical saving in memory. 

This possibility is already exploited to a limited extent. Suppose we have 
two nearby communities. If a call originates in either community, the 
probability that the called subscriber will be in the same community is 
much greater than that of his being in the other. Thus, each of the exchanges 
can be designed to service its local traffic and a small number of intercom- 
munity calls. This results in a saving of memory. If each exchange has A7 

subscribers and we consider, as a limiting case, no traffic between exchanges, 
2 C E Shannon, "A Mathematical Theory of Communication," Bell System Technical 

Journal, Vol. 27, pp. 379-423, and 623-656, July and October 1948, 
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the total memory by (6) would be AS log .V, while with all 2.Y subscribers 
in the same exchange AS log 2.V would be required. 

The saving just discussed is possible because of a group effect. There are 
also statistics involving the calling habits of individual subscribers. A typical 
subscriber may make ninety per cent of his calls to a particular small 
number of individuals with the remaining ten per cent perhaps distributed 
randomly among the other subscribers. This effect can also be used to 
reduce memory requirements, although paper designs incorporating this 
feature appear loo complicated to he practical. 
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Matter, A Mode of Motion 

By R. V. L. HARTLEY 

{Manuscript Received Feb. 2S, 1950) 
Both the relativistic and wave mechanical properties of particles appear to 

be consistent with a picture in which particles are represented by localized oscil- 
latory disturbances in a mechanical ether of the MacCullagh-Kelvin type. Gyro- 
static forces impart to such a medium an elasticity to rotation, such that, for 
very small velocities, its approximate equations are identical with those of Max- 
well for free space. The important results, however, follow from the inherent 
non-linearity of the complete equations and the time dependence of the elas- 
ticity' associated with finite displacements. These lead to reflections which permit 
of a wave of finite energy remaining localized. Because of the non-linearity, the 
amplitude and energy of a stable mode, as well as the frequency, are determined 
by the constants of the medium. Such a stable mode is capable of translational 
motion and so is suitable to represent a particle. The mass assigned to it is de- 
rived from its energy by the relativity relation. While this mass is dimensionally 
the same as that of the medium it is differently related to the energy and so 
need not conform to the classical laws which the latter is assumed to obey. 

Exchanges of energy between particles and between a particle and radiation 
involve frequency changes as in the quantum theory. The experimental detection 
of a uniform velocity relative to the medium is not to be expected. Besides pro- 
viding a new approach to the problems of particle mechanics, the theory offers 
the prospect of incorporating the present pictures into a more comprehensive 
one, with a material reduction in the number and complexity of the independent 
assumptions. 

HE following quotation states a conclusion which is widely held: "But 
in view of the more recent development of electrodynamics and optics 

it became more and more evident that classical mechanics affords an in- 
sufficient foundation for the physical description of all natural phenomena."1 

This implies that classical mechanics and classical electromagnetics are so 
alike that one may be condemned for the shortcomings of the other. Actu- 
ally, classical electromagnetics is in open disagreement with classical mech- 
anics particularly with respect to those features for which it has been most 
criticized. According to the mechanical principle of relativity,2 the equations 
of any mechanical system are invariant under the Newtonian transformation, 
x = x' + Vt',y = y',z = z', / = where F isa constant velocity in the x 
direction. Since the classical electromagnetic equations are not invariant 
under this transformation, they cannot describe the performance of any 
classical mechanical system. Their failures, therefore, should not stand in 
the way of a study of the possibilities of such systems. 

The system considered here is the so-called rotational ether, suggested 

'A. Einstein, The Theory of Relativity, Methuen & Co., Ltd., London, 1921, p. 13. 2 Haas, Introduction to Theoretical Physics, 2nd Ed., Vol. I, p. 46. 
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by MacCullagh and elaborated by Kelvin, in which the stiffness is associ- 
ated with gyrostatic forces. Some consideration has been given to an alter- 
native model consisting of a non-viscous liquid in a high state of fine scale 
turbulence. It is well known that, by virtue of the gyrostatic forces associ- 
ated with it, a vortex will transmit a wave of transverse displacement along 
its axis. It would appear, therefore, that a gross wave involving similar 
displacements would be passed along from vortex to vortex, much as a 
sound wave is passed from molecule to molecule. However, since this model 
has not yet been shown to be fully equivalent to Kelvin's, attention will be 
confined to the latter. While this, as developed by Kelvin, gave a satis- 
factory description of electromagnetic waves in free space, it had nothing 
to represent matter. This was assumed to be something different from ether, 
which might or might not be pervaded by it. A closer study of the model has 
indicated that the peculiar nature of its stiffness makes possible sustained 
oscillatory disturbances in which the energy remains localized about a 
center which may move with any velocity less than that of a free wave. 
It is proposed to use such quasi-standing wave patterns to describe material 
particles. Matter, then, has no existence apart from the ether, and the 
motion of particles is the motion of patterns of mechanical wave motion. 
While the ether itself conforms to Newtonian mechanics, the mechanics of 
such a wave pattern, considered as a particle located at its center, is much 
more complicated than that of the familiar mass point of particle dynamics. 
This complexity provides a bridge from the older concepts of particle be- 
havior to the new. 

The study of this model given below reveals no insuperable obstacles such 
as were encountered by the electromagnetic theory and the simpler ether 
model. The properties of the wave-patterns are qualitatively consistent 
with many of the concepts of modern physics, though in some cases not 
with the generality of application which is now assigned to them. Among 
these concepts are: the space-time of special relativity, relativistic mechanics, 
de Broglie waves, proportionality of energy and frequency, energy thresh- 
holds, and transfers of energy according to the quantum frequency formula. 
The ether model also leads to certain concepts not found in the present 
theories. It provides, for example, for a possible failure of the mass-energy 
balance such as has been observed in nuclear reactions. It also suggests the 
possibility of a new type of particle which, by virtue of its negative inertial 
mass, is capable of exerting a binding force between other particles. 

These results make it more probable that classical mechanics may, after 
all, afford a sufficient "foundation for the physical description of all natural 
phenomena" even though the super-structure be very different from that 
contemplated by its originators. The present argument, however, is not 
that this particular description is necessary, but rather that it offers distinct 
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advantages. On the philosophical side, there is the prospect of greater 
unification of the basic theory through a reduction in the number of inde- 
pendent assumptions. Matter and radiation appear as wave motions which 
satisfy the same equations. The apparent conflicts between current concepts 
appear to be reconcilable through a more exact determination of the con- 
ditions under which each applies. On the more practical side, the ether 
model provides a different approach and technique. It has the advantage 
inherent in all models that, once one is found which fits one set of condi- 
tions, a study of its properties under widely different conditions may bring 
out relations which it would be difficult to postulate solely on the basis of 
observations made under the second conditions. The suggested existence 
of particles having negative inertia, as discussed near the end of the paper, 
should it lead to anything of value, would be an example of such a relation. 
Also it makes available the added relationships which are characteristic of 
non-linear equations, without encountering those difficulties with respect 
to absolute motion which may arise when non-linearity is introduced ar- 
bitrarily. While the working out of the quantitative relations involved is 
a rather formidable undertaking, any effort in that direction may well 
throw new light on those problems which have not yielded to other methods. 

The Gyrostatic Ether 

As stated above the specific form of gyrostatic medium on which the 
present discussion is based is the ether model proposed by Kelvin. This is 
discussed in detail in a companion paper.3 It is there shown that, for in- 
finitesimal displacements, it is characterized by the wave equations; 

'X©-Sf 

where po is the density, 770 is a generalized stiffness determined by the con- 
stants of the medium, q is the vector velocity, and T is a vector torque per 
unit volume, which has its origin in the torque with which a gyrostat op- 
poses an angular displacement of its axis. For a plane polarized plane wave, 

rp 
the quantity - can be interpreted as a surface tractive force per unit area, 

which a layer of the medium normal to the direction of propagation exerts 
on the layer just ahead. Its direction lies in the surface of separation, and 
is parallel to that of the velocity q. 

3 R. V. L. Hartley, "The Reflection of Diverging Waves by a Gyrostatic Medium"— 
this issue of The Bell System Technical Journal. 
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These equations become identical with those of Maxwell for free space, 

vx5 = 4, 

T - 1 
if we replace qhy R, - by H, pQ by e and - by p. Then poq corresponds to 
_ _ ^ 

D and —2<plo B where ip is the angular displacement of an element of the 
medium. Or the roles of the electric and magnetic quantities may be inter- 
changed. 

For present purposes, however, we are more interested in finite displace- 
ments. The relations which then apply are discussed in detail in the com- 
panion proper. It is there shown that changes of two kinds appear in (1) 
and (2), with corresponding changes in the transmission properties of the 
medium. The simple linear relations are to be replaced by non-linear ones, 
which cause distortion of a wave but no reflection. In addition, a qualitative 
difference appears in the nature of the elasticity, as was pointed out by 
Kelvin. The restoring torque is no longer proportional to the angular dis- 
placement alone. When the axis of a gyrostat is displaced it begins rotating 
toward the axis of the displacement, thereby decreasing the component of 
its spin which is normal to that axis. Thus the restoring torque for a con- 
stant angular displacement decreases with time. The restoring torque is 
therefore a function of the time as well as of the displacement. Because of 
this time dependence, a disturbance of finite amplitude generates waves 
which propagate both backward and forward. 

For a plane progressive sine wave it is found that the reflected waves 
interfere destructively. However, if a central generator starts sending out 
a diverging sinusoidal disturbance, a part of the energy is reflected inward 
as a wave of the same frequency as the generator and another smaller part 
as waves the frequencies of which are odd multiples of that frequency. This 
reflection attenuates the outgoing wave. If the incoming wave is reflected 
rather than absorbed at the generator, it tends to set up a standing wave 
pattern. As time goes on, the impedance of the medium as seen from the 
generator becomes more reactive and less power is drawn from the generator. 
Due to the attenuation, the energy in spherical shells of a given thickness 
decreases with increasing radius, so that it and the power transmitted at the 
wave front approach zero as r approaches infinity. This falling off is some- 
what similar to that suffered by a wave the frequency of which lies in the 
stop band of a filter, but with one important difference. There the attenua- 
tion is independent of the distance. But here, since the attenuation is a 
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function of the magnitude of the disturbance and of the curvature of the 
wave-front, the attenuation constant approaches zero as r increases in- 
definitely. 

Whether or not the total energy stored in the wave pattern will approach 
a finite or infinite value depends on how fast the attenuation decreases with 
distance, and a more complete solution is needed to give an exact answer. 
If it does approach infinity it will do so much more slowly than for a medium 
which does not reflect. 

The disagreement between classical electromagnetics and mechanics, re- 
ferred to above, may now be stated more explicitly. The former says that 
electromagnetic waves are represented exactly by Maxwell's equations, 
regardless of the magnitudes of the electromagnetic variables. When these 
waves are interpreted as existing in a mechanical ether, classical mechanics 
says that Maxwell's relationship is approached as a limit as the mganitudes 
approach zero. Waves of finite amplitude are to be represented by the more 
complicated relations. 

The two systems differ in three important respects; their relation to 
uniform linear motion, the linearity of their equations and the nature of 
the elasticity involved. Because the classical electromagnetic equations are 
not invariant under a Newtonian transformation, the set of axes to which 
the equations refer are uniquely related to other sets which are moving 
uniformly with respect to them. In special relativity, this condition is 
avoided by modifying the classical concepts of space and time to conform 
to the fact that the equations are invariant under the Lorentz transforma- 
tion. The Newtonian invariance of the ether equations, however, insures 
that a set of axes at rest with respect to the undisturbed ether is not unique. 
Hence in the modified model, in which ihe motions which constitute matter 
conform to the laws of the ether, a uniform linear velocity of the entire 
system cannot be detected. This is consistent with the accepted principle 
that absolute velocity is meaningless. 

We are, however, still faced with the question of the detection of uniform 
motion of matter relative to the ether. This is discussed at length below, 
where it is shown that the properties of the ether lead directly to an auxili- 
ary space-time, which applies very closely under the experimental condi- 
tions and accounts for the failure to detect the motion. This "experimental" 
space-time is formally identical with that of special relativity. Thus the 
modification of the space-time of classical electromagnetics which appears in 
special relativity might be said to bring it into closer formal agreement 
with the classical mechanics of ether wave patterns. At any rate the es- 
tablishing of this theoretical connection between the space-time of special 
relativity and a classical mechanical model is a step toward unification. 

On the matter of linearity, proposals have been made to add arbitrary non- 
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linear terms to Maxwell's equations. While this also makes the electro- 
magnetic equations more like those of the ether, an important difference 
still remains. An equation obtained in this way is not necessarily invariant 
under either a Newtonian or a Lorentz transformation. If, then, the axes 
with respect to which it is expressed are not to be unique, it must be shown 
that some transformation exists under which it is invariant. Not only is 
the form of the equation important here but also the interpretation of the 
dependent variables. For example, since the complete equations of the 
ether contain q-V, if the mechanical variables be replaced by the analogous 
electromagnetic ones, the equations will be Newtonian invariant only if 
E, which replaces q, is interpreted as a velocity. It is evident, therefore, 
that the fact that we are dealing with a mechanical model is an important 
point in the argument. Also, unless the added terms make the effective 
constants depend on the time as well as the dependent variables, there will 
be no reflection of the energy in a finite disturbance and the medium will 
not have the energy trapping property which is essential to the present 
argument. 

Stationary Wave Patterns 

The first question to be considered is the possibility of setting up a sus- 
tained wave pattern suitable to represent a particle at rest with respect to 
the ether. The simplest procedure might seem to be to look for it as a solu- 
tion of the approximate linear equations in the form of a pair of spherical 
waves propagating radially, one outward and one inward, so as to form 
together a standing wave pattern. However, certain difficulties are en- 
countered. There is nothing in the free linear ether which can serve as 
boundary conditions to fix the position or size of the pattern. Even if these 
were determined, there would be nothing to fix the amplitude, and so the 
energy. Most patterns, particularly those which involve a single frequency, 
have one or more of the following features. Some of the variables become 
infinite at the center; the total energy is infinite, energy is propagated away 
radially. 

These difficulties disappear, however, when we take account of the prop- 
erties of the ether for disturbances of finite amplitude. Let us suppose that 
the energy which is to constitute the pattern is supphed by a central gener- 
ator, the impedance of which is mainly reactive, so that reflected waves 
which reach it are reflected outward again. Once a standing wave pattern 
has been established as described above, let the force of the generator be 
reduced to zero without changing its impedance. The pattern will then 
persist except for a small and decreasing damping due to the outward radia- 
tion at its periphery. However, in the region near the center the displace- 
ments will be very large, and the incoming reflected waves will suffer reflec- 
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tions which increase with decreasing radius. These reflections will effectively 
take the place of the assumed reactive impedance of the generator, and so 
the latter may be discarded. The fact that the reflections take place from 
a somewhat diffuse inner boundary prevents the amplitude from building 
up to an infinite value at the center as it would with a linear medium. 

However, the reflected wave includes components of triple and higher 
frequencies and, due to the non-linearity, other frequency components will 
be generated. If the entire pattern is to be stable, all of these must satisfy 
the boundary conditions. Their magnitudes relative to the fundamental, for 
a particular mode of oscillation, will depend on the amplitude and fre- 
quency of the fundamental, as well as on the constants of the medium. 
Hence the amplitude as well as the frequency of a stable pattern of a par- 
ticular mode should be uniquely determined. Particles of different prop- 
erties would then be expected to consist of patterns involving different 
modes of oscillation. 

Returning to the lack of complete reflection at the outer boundary and 
the change it might be expected to make in the pattern with time, this 
might be an important factor for a single particle alone in the universe. 
Actually, however, a very large number of particles are present. If we con- 
sider a point at a considerable distance from any one particle, a point in a 
vacuum, the resultant of the disturbances produced there by all the patterns 
will be very large compared with that due to any one. But the effect on a 
particular pattern of its own loss by radiation will be determined by this 
small component, and so will be small compared with the effect exerted on 
it by the combined small fields of its neighbors. This combined field due 
to a large number of patterns, randomly placed, and moving at random, will 
constitute a randomly varying electromagnetic field in a vacuum, such as 
has recently been postulated for other reasons. If, now, the center of a 
pattern be placed at the point in question, this random field may occasion- 
ally take on so large a value as to disturb the equilibrium conditions of 
the pattern. 

It may be argued that, in spite of the merging of a given pattern in that 
of the random group, the group as a whole will suffer a progressive loss of 
energy through incomplete reflection. Were this to occur the total loss of 
energy would not be evenly distributed among the particles. As discussed 
below the particles would exchange energy through the mechanism of the 
non-linearities, continually forming less stable group patterns of greater 
energy, which in turn suffer transitions to more stable patterns of lower 
energy. A small continuous decrease in total energy would manifest itself 
as an increase in the rate of transitions downward in energy compared to 
those upward. 

Associated with a standing wave pattern such as that described above 
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would be three regions. Near the center would be a relatively small core in 
which the non-linear effects predominate and linear theory is totally inap- 
plicable. Farther out the departure from linearity is only moderate, and the 
variation of the constants with distance is slow enough that the reflections 
are small. It should be possible to treat wave propagation in this region by 
the methods developed for a string of variable density, which are sometimes 
cited as analogous with those employed in wave mechanics. The analogy is 
made closer by the fact that the variations in impedance which correspond 
to the varying density are determined by the energy density of the pattern 
itself. Still farther out the amplitudes become still smaller, the ether con- 
stants become very nearly but not quite uniform, and the pattern ap- 
proaches very closely to that in a linear medium. 

While the nature of the pattern is determined largely by the non-linear 
inner region, because of the small volume of this region most of the energy 
will be located in the nearly linear region. So we might expect some at least 
of the macroscopic properties of the pattern to differ very little from those 
deduced from a consideration of the corresponding pattern in a linear me- 
dium. We will therefore begin by examining such a pattern. For the linear 
case, when the axes are at rest with respect to the undisturbed ether, (1) 
and (2) lead to the wave equation for the vector displacement s, 

As is well known, this is satisfied by any function of the form 

s = /(w/ ± kxx ± k^y ± kez), 
where 

^ = /4 + kl + £, (4) 

and the constants co, kx, ky and ^ , are real or complex. Since an imaginary 
frequency is interpreted as an exponential change with time, it is not suit- 
able for representing a permanent pattern, so co will be taken to be real. 
Imaginary values of k are interpreted as exponential variations with dis- 
tance. But, since s is always real, we may, by a four-dimensional Fourier 
analysis, represent / as the summation of components of the form 

s = .4 cos (co/ ± kxx ± kyy d= ktz), (5) 

where A is a complex vector representing the amplitude and phase of the 
component, and kx , ky and k, are real. Since each component must satisfy 
(3), the new constants must satisfy (4). Each such component constitutes 
a plane progressive wave traveling, with velocity c in a direction, the cosines 
of which are proportional to the wave numbers kx , etc. 
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As a first step in building up a stationary pattern, in which there is no 
steady propagation of energy in any direction, we combine two progressive 
wave components (5) which are identical, except that their directions of 
phase propagation along, say, the 2 axis are opposite. The signs of the last 
terms are then opposite and the sum can be written 

s = 2A cos (co/ ± kxx ± kvy) cos k^. 

Proceeding in the same way for x and y, we arrive at the standing wave 
pattern, 

s = 8A cos col cos kxx cos &My cos ksz. (6) 

Components of this sort, each with its own amplitude and phase, may be 
combined to build up possible stationary patterns. However, we shall not 
attempt here to build such patterns, but rather to deduce what information 
we can from a study of a single component. 

Moving Wave Patterns 

In order to represent approximately a particle in uniform linear motion, 
we are to look for a solution of (3) which represents a moving wave pattern. 
For this we make use of two functions which may readily be shown to be 
such solutions, 

s = £+ (p{co + Vkx)l - /3 ^ .v ± kyy ± kz3
Sj , 

s = ^/3(aj — Vkx)t + 0 (kx — x ± kyy ± , 

where co, kx , ky and kz are real and satisfy (4), V is a real constant, and 

1 - c- 

g+ represents a plane progressive wave the propagation of which along the 
x axis is in the positive direction. g_ represents one of lower frequency, 
propagating in the negative a- direction. Their wave numbers in the x direc- 
tion differ in such a way that those in the y and 2 direction are the same for 
the two. In the plane wave case, where £„ = £*= 0 and co = ckx , they re- 
duce to 

8 = ^(0(1 ±2) <■.(( + ?)). 

The two waves then travel in the x direction with velocities c and -c, and 
. . . c + V 

their frequencies are m the ratio — . 
q y 
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In order to derive a quasi stationary pattern we replace the functions 
g+( ) and g_( ) by B cos a{ ) and combine components in a manner 
similar to that used in deriving (6). The result is 

= 8B cos a/Sco ^ ~ ~r> cos — Vl) cos akyy cos ak.z, (7) 

where 5 is a complex vector, and a may be any real scalar function of V. 
When we compare this with (6) we find that the last three factors, which 
in (6) describe a fixed envelope, in (7) describe an envelope which moves in 
the x direction with velocity V. For the same values of kx , ky and k,., the 
moving pattern has its dimensions in the .v direction reduced relative to 

those in the y and z in the ratio The first factor in (6) describes a sinusoidal 

variation with time which is everywhere in the same phase. In (7) it de- 
scribes one, the phase of which varies linearly with x. This factor also de- 

scribes a wave which progresses in the x direction with a velocity y. The 

existence of such a wave as a factor in the expression for a moving wave 
pattern was commented on by Larmor.4 Aside from the constant a in (7) 
it will be recognized as the Lorentz transform of (6), as it should be since 
the approximate equations of which it is a solution are invariant under 
this transformation. 

We shall take (7) to represent one component of a moving wave pattern 
which represents a moving particle. If we transform this to axes moving 
with the pattern by a Newtonian transformation it becomes 

s = SB cos a ^ /' — cos (xfikx x' cos aky y' cos akz z', (8) 

in which the envelope is at rest. This may be thought of as a stationary wave 
in an ether which is moving relative to the axes with a velocity — V. It 
is a solution of the wave equation for such an ether, as obtained by trans- 
forming (3) to the moving axes, or 

— = c2r'2s + 2V - - — F2 — 
di'- + dx'et' a*'2' 

The one dimensional form of this equation is identical with that given by 
Trimmer5 for compressional waves in moving air, except that in one case s 
is solenoidal and in the other divergent. 

So far we have found no reason to associate any particular moving 
pattern with the assumed stationary one, in the sense that the moving pat- 

4 Larmor, Ency. Brit. 11th Ed., 1910; 13th Ed., 1926, Vol. 22, p. 787. 6 J. D. Trimmer, Jour. Acous. Soc. Am., 9, p. 162, 1937. 
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tern describes the result of setting in motion the particle which is described 
by the stationary pattern. Without further knowledge or assumptions re- 
garding the factors which control the form of the pattern, we can go no 
farther in this direction by theory alone. Rather than try to guess at these 
factors, it seems preferable to investigate what properties the wave patterns 
must have in order to conform to the known results of experiment. 

Let us start with the Michelson-Morley experiment to which the earlier 
ether theory did not conform. The entire apparatus involved in the experi- 
ment is now to be considered as made up of particles each of which consists 
of a wave pattern in the ether. The apparatus as a whole may be regarded 
as a more complicated wave pattern. The interference pattern formed by 
the light beams may, if we wish, be included in the over-all pattern. The 
results to be expected in the experiment do not depend on the oscillatory 
nature of the wave, nor on its amplitude or phase, but only on its spatial 
distribution, which is determined by the envelope factors. It is obvious from 
(8) that, for any uniform velocity — T of the ether relative to the apparatus, 
the ratios of the dimensions of the envelope along the motion to those across 

it are reduced, relative to their values when V is zero, in the ratio ^ . That is 

to say the apparatus like the fringes undergo this change in relative dimen- 
sions. But, as is well known, this is exactly what is required in order that 
there shall be no apparent motion of the fringes. Hence any one of the 
stationary patterns hi a moving ether, as represented by (8), is consistent 
with the experiment. This experiment therefore furnishes no basis for select- 
ing any particular pattern. 

More generally, in any experiment, the distances and time intervals 
which are available as standards of comparison are associated with the 
wave patterns and change with their motion. Thus we may, following the 
special theory of relativity, define an auxiliary space and time, the units 
of which are associated with the dimensions and cyclic interval of a par- 
ticular periodic wave pattern. This pattern then plays the roles of the 
"practically rigid body" and the "clock" which determine space and time in 
relativity theory. An examination of (8) shows that the dimensions of the 
pattern, its frequency, and its phase change with the velocity of the ether 
relative to the pattern in just the way that the corresponding quantities 
associated with the rigid body and clock change with velocity in the rela- 
tivity theory. But there these changes are known to be such that no experi- 
ment can detect the velocity involved. It follows, therefore, that no experi- 
ment in which the apparatus consists of wave patterns of small amplitude 
is capable of detecting the velocity V, in (8), which in this case is the velocity 
of the ether relative to the apparatus. Hence any of the above patterns are 
consistent with the failure of all experiments designed to detect motion 
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relative to the ether. When account is taken of the non-linearity of the 
ether the result to be expected should differ from that just found for the 
linear case only by the small difference between the linear and non-linear 
patterns, which may easily be too small to measure. Thus the principal 
obstacle to the older ether theory is removed. 

While the special theory of relativity is usually written in the form 
which corresponds to a being unity in (8), it has long been recognized that 
there is no theoretical basis for this particular value. The ether patterns 
are consistent with the more general formulation. In order to pin down 
the value of a for the ether patterns we resort to another experiment. 
Ives and Stillwell" found that a molecule which emits radiation of fre- 

quency w when at rest emits a frequency^when in motion. This moving 

frequency is taken relative to axes moving with the molecule, and so is to 
, d. m 

be compared with the frequency of oscillation-co in (8). This indicates that 

in order to represent a component of the pattern which results when the 
fixed pattern is set in motion, we are to put a equal to unity. 

Another observed relation is that the energy of a moving particle is /3 
times that of the same particle at rest. This information should be useful 
in checking any theory of the mechanism by which the non-linearity of the 
medium determines the energy of the pattern. All we shall do here is to point 
out one relation, the significance of which from the standpoint of mecha- 
nism will be discussed below. In (7), where the frequency is expressed rela- 
tive to the same axes as the energy of the moving pattern, if we put a 
equal to unity, the frequency also varies as d- Hence if the pattern conforms 
to experiment with respect to its energy, the energy must be proportional 
to the frequency. 

Obviously, if we define the mass of the particle-pattern as its energy over 
c2, the particle will conform to relativistic mechanics. The mass of a particle 
as so defined, while dimensionally the same as that of the ether, is in other 
respects quite different. Since it is derived from the energy associated with a 
disturbance of the ether, it would be zero in the undisturbed ether, while 
the ether mass would be finite. The momentum of a particle would be deter- 
mined by the flow of energy associated with it. Also within a particle, if the 
mode of oscillation were such that the wave propagated continuously around 
the axis in one direction, the resulting rotation of the energy would be 
interpreted as an angular momentum or spin. This concept of spin was 
suggested by Japolsky7 in connection with cylindrical waves in a linear 
medium. There is, therefore, no a priori reason to expect that the motion 

f'H. E. Ives and C. R. Stillwell, Jour. Opt. Soc. Am., 28, 215, 1938 and 31, 369, 1941. 
7 N. S. Japolsky, Phil. Mug. 20, 417, 1935. 
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of particles should conform to the laws of classical mechanics. As just noted, 
it should conform much more closely to those of relativistic mechanics. 
Also, to the extent that the flow of energy follows the laws of wave mechan- 
ics, as suggested below, the behavior of the particles will also conform to 
those laws. Similar considerations apply to the mass of radiation as derived 
from its energy. 

Another experiment which helps to fix the required properties of the 
patterns is that of Davisson and Germer, in which it is shown that a particle 
moving with velocity V is diffracted as if it had a wave length X such that 

X = -A_ 
pmo V' 

where h is Planck's constant and mo is the rest mass. 
If, in (7) with a unity, we assume the energy frequency ratio to be equal 

to h, the wavelength associated with the first factor reduces to the value 
given by experiment. This does not mean that an ordinary physical wave of 
this length is present in the pattern. It does mean that, at any instant, the 
amplitude of the sinusoidal variation of displacement with distance, as 
given by the remaining factors, varies sinusoidally with the wave length X, 

and is zero as points separated by ^. Hence, when the presence of equally 

spaced obstacles calls for zero values of displacement at equally spaced 
intervals, the distorted wave should be capable of forming a stable dif- 
fraction pattern when the translational velocity of the pattern is such that 
the interval between points of zero displacement has the value required by 
the spacing of the obstacles. 

Thus the wave pattern will conform to this experiment provided, first, 
that it is characterized by a particular wave length, and second, that the 
factor of proportionality between its energy and frequency is equal to h. 
The first requirement implies that the wave pattern when at rest has 
practically all of its energy associated with components which are all of the 
same frequency, or else are confined to a narrow band near the characteristic 
frequency. 

At this point let us pause for a short review and discussion. Briefly, we 
have replaced the "rigid body" of special relativity by an oscillatory motion 
of the ether, the envelope of which is analogous with the configuration of the 
rigid body. We have found that when in motion this envelope behaves as 
does the rigid body, and the time relations conform to those of a moving 
clock. These latter may also be interpreted as a multiplying factor which 
has the form of a plane wave of the DeBroglie type. In wave mechanics, 
this is treated as a wave of a single frequency and of a variable phase veloc- 
ity greater than that of light. In the ether theory this wave is interpreted 
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as one factor in the description of an interference pattern which results from 
the superposition of component progressive waves of different frequencies, 
each of which travels with velocity c. This difference in viewpoint leads to 
other differences. 

One of these has to do with the possibility of describing accurately both 
the position and velocity of a particle, which is ruled out from the wave 
mechanics viewpoint. An ether wave pattern, however, may have its posi- 
tion accurately described by its envelope, while at the same time the pattern 
moves with a definite velocity. The particle velocity may here be regarded 
as a group velocity derived from two waves progressing in opposite direc- 
tions, but does not depend on the presence of dispersion as does that for 
waves in the same direction. It is not to be concluded from this that the 
position and velocity can be measured with this accuracy, for we have still 
to deal with the disturbing effect of the measurement. 

From the ether viewpoint, one of the limitations of wave mechanics is 
to be expected, its inability to calculate directly the position of a particle. 
The information regarding this position is contained in the expression for 
the envelope, while the wave factor depends only on its state of motion. A 
calculation based on a solution which involves the wave factor without the 
envelope would be expected to be indefinite regarding position. We should 
expect, however, that it would give information as to the probability of the 
presence of the particle in a given region, since this is derivable from its 
state of motion. 

Returning to the comparison with experiment, while wave patterns based 
on the linear equations have shown close agreement so far, the next experi- 
ment upsets the applecart. It has been observed that the motion of one 
particle is modified by the presence of other particles in its neighborhood. 
So long as the assumed equations are linear, the law of superposition holds, 
and every solution is independent of every other one. So any wave pattern, 
when once set up, will continue in its state of rest or of uniform motion 
indefinitely, and will not be influenced by the presence of other patterns or 
of free progressive waves. But these together comprise all other matter and 
radiation. Hence, while we have provided for the property of inertia, there is 
nothing which tends to alter the state of motion of a body, that is, there 
are no forces. In this respect the present linear treatment is similar to the 
special theory of relativity. So, in order to represent the interactions between 
particles, account must be taken of those between patterns which result 
from the non-linearity and time dependence of the ether. 

Reactions between Patterns 

The general problem of the effect of one pattern on another is even more 
intricate than that of the stable state of a single pattern, which it includes, 
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and its solution will not be attempted here. Some conclusions may, however, 
be drawn. Since the amount of reflected energy generated by an element of 
the medium depends on powers of the instantaneous disturbance higher 
than the first, the superposition of a second pattern will alter the standing 
wave pattern of the first, and vice versa. Also, as pointed out in the com- 
panion paper, the propagation of both the main and reflected waves also 
depends on higher powers of the instantaneous disturbance there. The result- 
ing variations in the propagation will also affect the conditions for a stable 
pattern. Neither pattern, then, can satisfy its stability conditions inde- 
pendently of the other; but if the combined patterns are to be stable they 
must together satisfy a new set of conditions common to both. How much 
each is altered by such a union will depend on the degree of coupling be- 
tween them, that is, on the amount of energy which must be regarded as 
mutual to the two. 

The effect of this coupling will be very different, depending on whether 
the frequencies of the two patterns are the same or different. When they 
are different the non-linear terms give rise to frequencies related to the first 
two by the quatum formula. The transfer of energy to these frequencies 
may, under favorable conditions, set up a new mode of oscillation the sta- 
bility conditions of which are better satisfied than those of the original 
frequencies. The new mode might be that of an excited atom. Or the fre- 
quency of one or both of the patterns may be changed to that corresponding 
to the particle in motion with a particular velocity. In either of these proc- 
esses some of the energy may be released as radiation at one of the dif- 
ference frequencies. 

If, however, the frequencies of the two patterns are identical, no new 
frequencies will result from their superposition. If the combined pattern is 
to persist there must be a stable mode for the combination, the frequency 
of which is identical with that of the separate patterns. This is hardly to be 
expected. Also the oscillations of the second pattern, being of the same 
frequency as those of the first, would have a much greater disturbing effect 
on its conditions for stability. It would appear, then, that if it were possible 
to bring two patterns of identical frequency into superposition, they would 
mutually disintegrate. This does not mean that two particles of the same 
type cannot exist in the same neighborhood. If they have different velocities, 
for example, their frequencies will be different. The similarity of these 
considerations to Pauli's exclusion principle is obvious. 

If the second pattern has much greater energy than the first, as it will if 
it represents a much heavier particle, its stability conditions may be little 
affected by the presence of the first. The behavior of the first, an electron, 
may then be discussed on the assumption that it exists in a medium, the 
properties of which vary with position in accordance with the fixed pattern 
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of the second particle, the nucleus. Since the stability conditions for the 
electron pattern particle are most strongly influenced by the effective con- 
stants of the medium near its center, we would expect its energy and fre- 
quency to be controlled largely by that part of the nuclear pattern which is 
near its center. Let us assume that, through some external agency, the 
center of the electron pattern is transferred from one position of rest to 
another which is differently placed relative to the nucleus. Owing to the 
different effect of the nuclear pattern on the effective constants of the 
medium as viewed by the electron pattern, the stable energy of the latter 
would be different at the second position. This change in rest energy with 
position may be interpreted as a measure of the change in a field of static 
potential associated with the massive nucleus. The similarity between this 
relationship and that which exists between the electron and the nuclear 
potential in wave mechanics is obvious. 

In speaking of a change in the effective constants of the medium, we refer 
to an average value taken over a number of cycles and wave lengths of the 
oscillations which make up the second pattern, or nucleus. Calculations 
based on this concept should not therefore be expected to give valid results 
when the time intervals involved in the averages are comparable to the 

h 
period *2 of the second particle at rest, or the distances are comparable to 

h 
the corresponding wave length of the pattern. lor a proton this period 

is 4.38 X 10-24 seconds and the wave length is 1.31 X 10-13 cms. If, then, 
an electron is to be subject to the kind of nuclear potential field just de- 
scribed, the linear dimensions of that part of it which is controlled by the 
potential field of the proton must be at least of the order of 10-13 cm. This is 
consistent with Gamow's8 observation that "It seems, in fact, that a length 
of the order of magnitude of 10_1j centimeters plays a fundamental role in 
the problem of elementary particles, popping out wherever we try to esti- 
mate their physical dimensions." 

The variations in the medium due to the nucleus might be treated in 
terms of their effect on the progressive wave components, the interference 
of which gives rise to the wave pattern of the electron. The component waves 
as so influenced should combine to form an interference pattern which 
represents the behavior of the electron in the field of the nucleus. It is also 
possible that a technique may be found for treating their effect on that 
factor of the electron wave which is similar to the DeBroglie wave. This 
should be more nearly like the techniques now used in wave mechanics. 

If two particles are brought so close together that the central cores of 
their patterns overlap, the departure from linearity becomes so great that 

8 G. Gamow, Physics Today, 2, p. 17, Jan., 1949. 
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a procedure which may be successful at intermediate separations becomes 
inadequate. Relativistic mechanics breaks down and Lorentz invariance 
may lose its significance. This is in agreement with the experimental result 
that, in some nuclear reactions, the energy balance, as calculated from 
the relativistic relations, is not satisfied. Also the difficulty which has been 
encountered in calculating nuclear phenomena by the techniques of wave 
mechanics suggests that the extremely non-linear condition is approached 
for the separation of the particles within a nucleus. This viewpoint suggests 
that an understanding of the nucleus might make possible an experimental 
determination of velocity relative to the ether. 

The reactions between wave patterns of appreciable amplitude may also 
be viewed from a somewhat different angle. We may think of the various 
wave patterns as being the analogs of the various modes of motion of, say, 
an elastic plate. For very small amplitudes they have negligible effect on 
one another. For larger amplitudes, where Hooke's law does not hold, the 
force may be represented as a power series of the displacement. The first 
power term represents the linear stiffness. If the frequencies of two modes 
which are in oscillation are wi and co*, the higher power terms represent 
forces of frequencies won ± ;/co2 where m and n are integers or zero. These 
forces set all the modes into forced oscillation at the frequencies of the 
various forces, in amounts which depend on the impedance of the particular 
mode for the particular frequency. When the frequency of the force coin- 
cides with the resonant frequency of one of the natural modes, the forced 
oscillations may be large. Thus the variation in stiffness with displacement 
provides a coupling whereby energy may be transferred from one or more 
modes, that is wave patterns, to other modes. But in this transfer the energy 
always appears associated with a new frequency which is related to those of 
the modes from which it came in accorance with the familiar formula of 
quantum theory. 

The theory of such energy transformations with change of frequency has 
been worked out in considerable detail for vacuum tube and other variable 
resistance modulators, and the results show little in common with the quan- 
tum theory beyond the relations connecting the frequencies. When, however, 
the variation is not in a resistance but in a stiffness, as occurs in the ether 
case, the situation is quite different. This problem has been explored both 
theoretically9 and experimentally.10 It is found that an oscillation of one 
frequency in one mode may provide the energy to support sustained oscil- 
lations of two other lower frequencies in two other dissipative modes. For 
this to occur the frequencies involved must be related through the quantum 
formula. Also the amplitude of the generating oscillation must exceed a 

9 R. V. L. Hartley, Bell Sys. Tech. Jour., 15, 424, 1936. 
10 L. W. Hussey and L. R. Wrathall, Bell Sys. Tech. Jour., 15, 441, 1936. 
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threshold value which depends on the frequencies, the impedance involved, 
and the constant of non-linearity. The transformed energy divides itself 
between the generated modes in the ratio of their frequencies. In a non- 
dissipative system, the frequencies of possible combinations of sustained 
oscillations are determined by the energy of the system. Here also they are 
connected by the quantum formula. 

The particle wave pattern discussed above would approximate very 
closely to such a non-dissipative non-linear system. We should therefore 
expect its frequency to be related to its energy through the constants of the 
ether. In the more complex wave patterns associated with more than one 
particle, it is unlikely that the pattern representing, say, an electron could 
maintain its identity as part of some arbitrarily chosen pattern, the magni- 
tudes of which are not commensurable with its own. This suggests that the 
stable states of the complex pattern would be confined to a sequence of 
discreet patterns which are related to one another through some property of 
the electron. These possible non-dissipative combinations of energy and fre- 
quency would represent the stable quantum states of the atom. The radia- 
tion process would then be similar to that referred to above in which energy 
from a source of higher frequency distributes itself between two lower fre- 
quencies in the ratio of the frequencies. The energy in the pattern of an 
excited atom would serve as the source. One of the two lower frequencies 
would be that of a pattern corresponding to a lower energy state to which 
the transition occurs. The other would be that of the radiating wave which 
carries off the energy lost in the transition. 

A Suggested New Particle 

We saw above that the observed variation of the energy of a particle 
with its velocity calls for a mechanism in which the energy varies directly 
as the frequency. The fact that a system, in which the stiffness varies with 
the displacement, is characterized by this relation suggests that the energy 
of a particle pattern depends mainly on variations in the stiffness of the 
ether. However, the non-linearities of the ether equations cannot all be 
interpretated as variable stiffnesses. The non-linearity which appears in (1) 
when the displacements are finite is equivalent to a variable inertia. It is 
in order, therefore, to inquire into the properties of a pattern in which the 
energy is determined by this kind of non-linearity. The variable inductance 
of an iron-core coil constitutes such a variable inertia. Theoretical and ex- 
perimental studies of circuits involving these coils have shown that they 
behave very much as do systems having variable stiffness, with one im- 
portant exception. The energy distributes itself in the inverse ratio of the 
frequencies. 

If, then, we assume that the energy of a moving pattern is determined by 
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a mechanism which conforms to this relation, it follows from (7) that its 

energy will vary as ^ . Expanding in the usual manner we then have 

W = woe2 — | WoE2 + • • • 

This says that a particle represented by such a wave pattern would have 
a positive rest mass and a negative inertial mass. Its momentum is directed 
oppositely to its velocity, and energy must be taken from it to set it in 
motion and given to it to stop it. Such a particle, when bouncing back and 
forth between two rigid walls or rotating about two centers of force, would 
exert a force tending to draw them together, instead of the usual repulsion. 
It is interesting to speculate that if, in an atomic nucleus, the positive charges 
which are passed back and forth between other nuclear particles were 
associated with particles of this type their motion would exert a binding 
force on the other particles. 

Conclusion 

It appears, then, that the ether model is capable of sustaining wave 
patterns the behavior of which is qualitatively in agreement with the 
results of experiment. In order to establish fully the sufficiency of classical 
mechanics for the physical description of natural phenomena, it will be 
necessary to work out the complicated quantitative relations whereby the 
constants of the ether may be deduced from experimental measurements. 
However, until a serious attempt to do this has failed for some reason other 
than sheer mathematical complexity, the insufficiency of classical mechanics 
can scarcely be argued. 

In conclusion, I wish to acknowledge the contributions of those of my 
colleagues who, through discussions over the years, have helped in develop- 
ing the concepts which have been put together in the above picture. 



The Reflection of Diverging Waves by a Gyrostatic Medium 
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This paper furnishes the basis for a companion one, which discusses the pos- 
sibility of describing material particles as localized oscillatory disturbances in a 
mechanical medium. If a medium is to support such disturbances it must reflect 
a part of the energy of a diverging spherical wave. It is here shown that this 
property is possessed by a medium, such as that proposed by Kelvin, in which 
the elastic forces are of gyrostatic origin. This is due to the fact that, for a 
small constant angular displacement of an element of this medium, the restoring 
torque, instead of being constant, decreases progressively with time. 

Introduction 

IN A companion paper1 it is pointed out that it may be possible to de- 
scribe the behavior of material particles as that of moving patterns of 

wave motion, provided a medium can be found which is capable of sus- 
taining a localized oscillatory disturbance. In most media this is not possible, 
for the energy of the disturbance would be propagated away in all directions. 
Something special in the way of a medium is therefore called for. It must 
be capable of trapping the wave energy released from a central source. 
Kelvin proposed a mechanical medium, the equations of which, for small 
disturbances, were identical with those of Maxwell for free space. The 
medium derived its elasticity from gyrostats. He recognized that, for finite 
disturbances, the restoring torque depends on the time as well as the angular 
displacement. It is the present purpose to show that this lime dependence 
imparts to his medium exactly the energy trapping property required. 

The Gyrostatic Ether 

The concept of an ether with stiffness to rotation originated with Mac- 
Cullagh2 in 1839, and was further developed by Kelvin3 in 1888. MacCullagh 
showed that certain optical phenomena associated with reflection could not 
be represented by the elastic solid ether of Fresnel, but required for their 
mechanical representation a medium in which the potential energy is a func- 
tion of what is now called the curl of the displacement. Fitzgerald4 remarked 
in 1880 that its equations are identical with those of the electromagnetic 

1 R. V. L. Hartley, Matter, a Mode of Motion—this issue of the Bell System Technical 
Journal. 

2 Collected Works of James MacCullagh, Longmans Green & Co., London, 1880, p. 145. 3 Mathematical and Physical Papers of Sir William Thomson, Vol. Ill, Art. XCIX, 
p. 436, and Art. C, p. 466. 4 Phil Trans. 1880, quoted by Larmor, Ether and Matter, Cambridge Univ. Press, 
1900, p. 78. 
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theory of optics developed by Maxwell. This conclusion is confirmed in 
later discussion by Gibbs,5 Larmor,4 and Heaviside. 

Kelvin, apparently unaware of MacCullagh's work, was led by similar 
considerations to the same result. He went farther and devised a physical 
model which consisted of a lattice, the points of which were connected by 
extensible, massless, rigid rods in such a manner that the structure as a whole 
was incompressible and non-rigid. Each of these rods supported a pair of 
oppositely rotating gyrostats. By a gyrostat he meant a spinning rotor 
mounted in a gimbal so that it is effectively supported at its center of mass 
and can have its spin axis rotated by a rotation of the mounting. The 
resultant angular momentum of the rotors was the same in all directions. 

This model, considered as a continuous medium, exhibits a stiffness to 
absolute rotation, the nature of which can be described by comparing it 
with the elasticity of a solid. A solid is characterized by a rigidity n such 
that small displacements u, v, w are accompanied by a stress tensor, one 
component of which is 

Vfo: dy/ " 

For the ether model the corresponding component is 

/dv du\ 0 

where ^ is a small angular displacemen^of the element about the z axis. 
More generally a small vector rotation Aip is accompanied by a vector re- 
storing torque per unit volume, 

AT = (1) 

The quantity An therefore represents a stiffness to angular displacement 
of the element. 

In the appendix it is shown that the lattice of gyrostats, treated as a 
continuous medium, exhibits this kind of elasticity. It is also shown that 
for infinitesimal displacements, the medium is described by the wave 
equations (8a and 6a). 

'x(|)-»g. oi 

v X 9 = --?,(!). (3) rjo at \Z/ 
6 Collected Works of J. Willard Gibbs, Longmans Green & Co., New York 1928, Vol. 

111 ^Heaviside, Electromagnetic Theory, Ernest Benn, Ltd., London, 1893, Vol. I, p. 226. 
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where po is tlie constant density, r\» is a generalized stiffness of the undis- 
turbed medium, given by (7a), q is the vector velocity, and T is the torque 
per unit volume. In a plane wave q is normal to the direction of propagation. 
T 
— is a tractive force per unit area in the direction of q, which acts on a surface 

normal to the direction of propagation. 
If, however, the amplitude is finite the equations become much more 

complicated. For present purposes we need consider only waves for which 
there is no component of velocity or torque in the direction of propagation, 
and we need consider only plane polarized waves for which the direction of 
the velocity is the same at all times and places. Also, as will appear below, 
we are concerned with the equations which describe a wave of infinitesimal 
amplitude which is superposed on a finite disturbance. This description need 
cover only infinitesimal ranges of time and position. It can therefore be 
expressed in terms of wave equations in which the constants of the medium 
have local instantaneous values which depend on the finite disturbance. 

Subject to these restrictions it is shown in the appendix that (2) is to be 
replaced by (23a) 

Vx(i) = ^v (4) 

where lq is a unit vector in the fixed direction of the velocity, and p is an 
instantaneous local density, defined in terms of the finite disturbance by 
(20a). And, in place of (3), (22a) 

where is a unit vector in the direction of the axis of rotation, p is again 
an instantaneous local density, c is an instantaneous local velocity derived 
in the usual way from p and an instantaneous local stiffness 77, while / is a 
function defined by the relation, (13a), 

T = -iMv, D- 

This function takes account of the fact that when the spin axis of the rotor 
is given a constant finite displacement, the restoring torque is not constant 
as in (1), but changes with time as the spin axis rotates toward the axis of 
displacement, and so reduces the component of the spin which is normal 

df 
to the displacement axis and so is effective in producing stiffness. — 4 — 

dt 
represents the rate of this change in torque for a fixed angular displacement. 

— 4-^-is to be interpreted as the rate of change of torque with angular 
dtp 



372 BELL SYSTEM TECHNICAL JOURNAL 

displacement, when the time consumed is infinitesimal, that is when the 
angular velocity is infinite. It is therefore an instantaneous local angular 
stiffness from which the instantaneous local generalized stiffness t? is derived 
as in (19a). 

To simplify these expressions, let the direction of propagation be x and 
that of q be y. Then 

• d v , do 
V X 9 = ^ — 0(/) = k T- > dx dx 

so is in the direction of z, and represents a clockwise rotation about z. 
(5) then becomes the sealer equation 

dA = - (T) + 2^]. (6) 
dx pc- \_dt \2/ dtj 

T is also in the z direction, so 

But 9 is in the y direction, so 

i(T) = -p
dJL 

dx \2 / H dt 
(7) 

These, then, are the desired equations of motion, for the type of wave 
under consideration. 

The Generation of Reflected Waves 

In this section we shall show that when a finite wave is propagated in 
this medium each element of the medium becomes the source of auxiliary 
waves which propagate in both directions from the source. 

To do this we shall make use of the argument by which Riemann7 showed 
that this does not occur for sound waves in an ideal gas. This will first be 
restated in more modern language. We consider a plane wave propagating 
along the x axis. We picture the finite pressure p and the longitudinal 
velocity n at a point in the medium as having been built up by the successive 
superposition of waves of infinitesimal amplitude, each propagating relative 
to the medium in its condition at the time of its superposition. If the first 
increment is propagating in the positive direction, 

du = — , 
pc 

7 Lamb, Hydrodynamics, Sixth Edition, p. 481. Rayleigh, Theory of Sound, Second 
Edition, Vol. II. p. 38. 
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where the characteristic resistance is pc. Here 

2 _ dp 
dp 

He assumes adiabatic expansion, so that p and c are functions of p only. If 
a second incremental wave of pressure dp, also traveling in the positive 
direction, be added, its velocity increment, being relative to the medium, 
will add to that already present. Its value will be related to dp through a 
new characteristic resistance corresponding to the modified density result- 
ing from the previous increment. Hence the velocity u resulting from a 
large number of such waves will be 

= = 
Jo oc 

w, 
Jo pc 

where w is the quantity represented by co in Lamb's version. If, then, all 
of the wave propagation is in the positive direction 

u = w. 

Similarly, if an incremental wave is traveling in the negative direction, 

du = ^, 
pc 

and the condition for all the propagation to be in that direction is 

u = ~w. 

Obviously, then, if u has some other value than one of these it results from 
the addition of increments some of which propagate hi each direction. 

Riemann deduces from the aerodynamic equations that 

ilt ^ ^ ^ Fx-) ^ = 0' ^ 

J + (u - c) ^ (w - u) = 0, (9) 
0/ dx 

That is, the value of w + u is propagated in the positive direction with a 
velocity of c + u and that of w — n, in the negative direction with a velocity 
c — n. If, over a finite range of x, a disturbance be set up such that neither 
of these quantities is zero, it must be made up of incremental waves in both 
directions. However, as w -)- u propagates positively it will be accompanied 
at any instant by a value of w — u which has been propagated from the other 
direction. But, since the value of this was initially finite over a limited dis- 
tance only, when all of this finite range is passed, w — u will be zero, u will 
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be equal to w and all of the wave will be traveling positively. A similar 
argument applies at the negative side of the wave. Thus the initial disturb- 
ance breaks up into two parts which travel in opposite directions without 
reflection. More generally, these considerations hold for any medium in 
which the stress is a function of the strain only. 

For the ether model, since we have assumed the displacements are normal 
to the direction of propagation, the velocity of wave propagation relative to 
the medium is the same as that relative to the axes. 

If now, following Riemann, we let 

dw = —^d , (10) 

so that now 

" = /ir/©' 

then from (7) and (6) 

dq _ dw 
Jt ~ ~ C dx' 

dw _ dq _ 2 df 
dt dx pc dl 

Adding and subtracting gives 

/d , cA / , N 2 df 
I - + C — I (w + q) = - — — , 
\dt dx) pc d/ 

/d d\ , . 2 df 

r) f 
which are to be compared with (8) and (9). Hence when - is not zero the 

values of w + q and w - 9 are not propagated without change. 
To show that reflection occurs, consider a disturbance at a point x at 

time /, characterized by q and w. At x and I Al,w -\- q will differ from the 
d 2 ^/ . 

value it had at x — cAI, /, or w + 9 — ^ (w + q)cAt, by — ^ dl A/. The 

increment at x in time At is 

d 2 df 
Aw Aq = — — (w q) cAl - — — At, 
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and 

From which 

d 1 d f 
Aw — Aq = — (w — q) cAI — — At. 

dx pc at 

Aw = -c
aJLM-l

sJAI, 
dx pc dl 

a div Aq = —c — At. 
dx 

r) / 
Hence the velocity is the same as when -y is zero but w is changed by 

at 
2 df 

— -At. But the only way in which w can change with q constant is 
pc dt 

by adding waves of equal amplitude propagating in opposite directions, so 
that their contributions to w are equal and those to q are equal and opposite. 

T S f 
From (10) this involves an increment of — of — 2 A/ or a time rate of change 

2 dl 

of —2 .This agrees with (6), from which it is evident that the presence of 

~ alters — from what it would otherwise be by But, since q is 
dt dx ■ pc2 dl H 

unchanged, the velocities at .r + ^ and x — ^ are increased by — —2 ~.^x 

Z Z pC" ul 
1 df 

and — — Ax. The first is thevelocityassociated with an auxiliary wave which 
pc2 dt 

propagates in the positive direction of x, and the second that of one which 
propagates in the negative direction, that is a reflected wave. Hence the 

1 df medium generates a reflected wave of — — per unit length in the direction 
pc- dt 

of propagation. 

The Reflection of a Progressive Diverging Wave 

So far attention has been confined to a single point. If a continuous dis- 
turbance is being propagated, it is important to know how the waves reflected 
at different points combine, for it is conceivable that they may interfere 
destructively. From the standpoint of the application to be made of these 
results in a companion paper, the case of most interest is that in which energy 
is propagated outward from a central generator as a sinusoidal wave of 
finite amplitude, beginning at time zero. Near the center, the wave of dis- 
placement will include radial as well as tangential components. As the radius 
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increases the radial components become relatively negligible. We shall 
confine our attention to this outer region, where, in the absence of reflection, 
the propagation differs from that of a plane wave only in that the amplitude 
varies inversely as the radius. We shall neglect the effect of any reflections 
on the outgoing wave, and calculate the resultant reflected wave at a radius 
ri as a function of the time and so of the radial distance r the wave front 
has traveled. 

If the outgoing wave were of infinitesimal amplitude, its velocity (/n 
could be represented by 

<7o = — Qo sin {ut — kr), (11) r 

for values of r < cly and by zero for r > c/, where Qo is the amplitude at 
some reference radius ro • The sine function is chosen to avoid the necessity 
of an infinite acceleration at the wave front, as would be required by a 
cosine function. When the amplitude is finite this wave suffers distortion 

due to the fact that k which is equal to - varies slightly with the variations 
c 

in the instantaneous value of c. However, these will be small and, since 
fluctuations in velocity alone do not cause reflection, we shall neglect them. 
The procedure is to make use of to calculate the reflected wave incre- 
ment generated in a length Ar' at a radius r', calculate the amplitude and 
phase of this at a fixed point ri </, and at ri integrate the waves received 
there for values of r' from ri to the farthest point from which reflected waves 
can reach n at the time I under consideration. 

To find the reflected wave generated in a length Ar' at r', we have from 
above that its velocity 

Aq' = Ly Ar'. 
pc2 dl 

From (21a), (19a) and (17a) 

1 Fi 
pc2 

7/0 II — (1 " ^ 95 ) 

where r/o and a are constants of the medium given by (7a) and (15a). From 
(18a) 

dj 2 _ c= —atiov 
dl j <P dt, 

SO 
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aFitp' j ip dl 

which reduces to 

dq' _ 

dr' 

di' ' r ^ 
jp = i 

if we neglect second powers of the variables compared with unity. 
To the same accuracy, from (14a) 

1 f dqoAf 
a? dl- 

From (11) 

d^o _ _roQo j~^ cos ^ ^ J_ sjn ^ _ ^r') J _ 

Here k is lir over the wavelength so, if as we have assumed fi, and therefore 
also r', is large compared with the wavelength, we may neglect the second 
term. Then 

/ 

(p = — r^=? sin (to/ — kr'), 
Icr 

ipdt = pj0^0-, cos {col — kr'), 
zccor 

sin2 (w/ — kr') cos (to/ — kr'), 
dr' 8co \ cr ) 

= — — [cos (oj/ — kr') + cos 3(o)/ — ^r')]- 
Sw \ cr / 

This, when multiplied by Ar', gives the value at r' of the wave, generated 
in the interval Ar', which propagates in the negative direction of r. This is 
made up of components of frequency w and 3aj. We are primarily interested, 
from the stand-point of reflection, in that of frequency co, so we shall confine 
our attention to this component, with the understanding that the other 
can be treated in exactly the same fashion. As the fundamental component 

propagates inward to r\ it increases in amplitude in the ratio r— and suffers 

a phase lag of k{r' — ri). If we call the resultant of all the reflected waves at 
ri, q\, then the contribution to q[ of the wave generated at r' is 
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kq'i = (r-^) cos (ul + kri - 2kr')Ar'. 
8w \ c ) ri r2 

This is to be integrated from to the farthest point from which a reflected 
wave has reached r\ at the instant I under consideration. This point is at 
\{rx + cl). So 

n /»• n \3 rhn+co i 
= q (-^) [ -7icos + kri - 2kr') dr'- 

8ri a) \ c / Jn r2 

Here the integrand is a function of r' and I and the upper limit of integration 
is also a function of I. We therefore make use of the relation8 

L [ /(*, a) dx = [ (£ fix, a))dx+ fib, a) 2- M *) fa • 

Putting I for a, r' for x we have 

which, upon integration becomes, 

dqi = a_ A ^ ^ krj _ 2^[5j(C0/ _ kn) - Siilkn)] 
dt Sri \ c / 

• sin (co/ + kr^) — [Ci{ul + kr\) — Ci{2kr\)] 

■ cos (oj/ + kri) ^ \ . 
aj(ri + c/)2/ 

Since q[ is zero when 7 is —, its value at t will be found by integrating from 
c 

— to /, so 
c 

q'l = ('-cos {(al - kr^ 4- - ^ - 2^ri 
8r? a; \ c / \ h 4- cl 

•\o) f Si(ul + kri) sin (co/ + kri) dl + Si{2kr\) 
L Jvi/c 

■ [cos (co/ 4- kr\) — cos 2kr]\ — co / Ci (iol 4" kfi) cos {(ol -|- kri) dl 
Jri/c 

4- Ci(2kri) [sin(to/ + kri) — sin 2^rJ ^ • 

which reduces to 
8 Byerly, Integral Calculus, second edition p. 99. 
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q[ = -r-|- ^ (cos (w/ - ^ri) + 2krx 8ft w \ c / \ ''i + c/ 

• [ —[5i(^ + — 5i(2^ri)] cos (w/ + 

— [Ci{ul + kr^) — Ciilkr^)] sin {ul + kri) 

+ Si{2o)t + 2krx) - SiiUrJ]) . 

The first term represents the value at ri of an outwardly moving wave in 
phase quadrature with the main wave. The second is a transient, the value 
of which is equal and opposite to that of the first term at the instant that 
the main wave passes ri . The first two terms in the inner bracket are waves 
which propagate inward and so are to be regarded as reflections of the 
main wave. The last two terms represent a velocity which is zero when the 
main wave passes ri, and subsequently oscillates about and approaches 

- — Si(4^ri). Physically it appears to result from the particular form chosen 

for the main wave, which starts abruptly as a sine wave. The time integral 
of the impressed force, and so the applied momentum, has a component in 
one direction. Presumably if the main wave built up gradually these terms 
would be absent. 

Returning to the reflected waves, their amplitudes are zero when the 
main wave passes ri, after which they become finite. Si(x) and Ci{x) os- 

cillate about and approach ^ and zero respectively as x approaches infinity. 

Hence, as t increases indefinitely, the amplitudes of the reflected waves 

approach ~ — Si{2kr^ and Ci(2^ri). For the assumed large values of 2krl £ 
these quantities are small compared with unity. When multiplied by 2£r1 

their variation is very slow. Hence the amplitudes vary roughly as , 

and approach zero as the main wave at fi approaches an ideal plane one. 
However, the significant fact is not that the reflected waves are small 

but that they are of finite magnitude. Because of this the main wave will 
not behave exactly as we assumed above, but will decrease slightly more 
rapidly with increasing radius. This should increase the reflection slightly, 
for the existence of the reflected wave is dependent on the decrease in am- 
plitude with distance when the radius of curvature is finite. 

To describe exactly what happens when the generator begins sending out 
waves from a central point would be hopelessly complicated, but we may 
form a general picture. In the early stages where the curvature is consider- 
able, the reflected waves would be quite large and the main wave would be 
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correspondingly attenuated. The arrival of the reflected waves at the gen- 
erator adds a reactive component to the impedance of the medium, as seen 
from the generator, which reduces the power delivered to the medium. 
Meanwhile energy is being stored as standing waves in the medium and 
the rate of flow of energy in the wavefront is decreasing. The energy in 
successive shells of equal radial thickness decreases with increasing r, in- 
stead of being uniform as it would be in the absence of reflection. In the 
limit it approaches zero, but as the rate of decrease depends on the curva- 
ture, the rate of approach also approaches zero. As the rate at which energy 
is stored and that at which it is carried outward at the wavefront both 
approach zero, the resistance which the medium offers to the generator 
approaches zero, and its impedance approaches a pure reactance. 

The total energy stored in the medium depends on how the over-all at- 
tenuation of the main wave is related to its amplitude. If there were no 
attenuation, the impedance would remain a pure resistance, the energy in 
successive shells would all be the same, and the total energy would increase 
linearly with r, and so with the time, and approach infinity. If the attenua- 
tion were independent of r, the total energy would approach a finite value. 
The present case is intermediate between these, the attenuation being finite 
but approaching zero with increasing r. If we assume it to vary as some 
power of the amplitude of the velocity, then W. R. Bennett has shown that 
if this power is less than the first the total energy approaches a finite value. 
If it is equal to the first, the energy approaches infinity as log r, and if it is 
greater than this, the power approaches infinity more rapidly. Until more is 
known as to the actual variation of amplitude with distance, nothing 
definite can be said about the limit of the total energy. 

APPENDIX: EQUATIONS OF THE KELVIN ETHER 

We are concerned with the wave properties of the model for wavelengths 
long enough compared with the lattice constant so that it may be regarded 
as a continuous medium. Its density is equal to the average mass of the 
gyrostats per unit volume. Its elastic properties are to be derived from the 
resultant of the responses of the individual gyrostats. 

We shall therefore begin by considering the behavior of a single element, 
which is shown schematically in Fig. 1. Here the outer ring of the gimbal, 
which is rigidly connected with the lattice, lies in the x y plane. The axis 
about which the inner ring rotates is in the x direction, and the spin axis C 
of the rotor is in the z direction. We wish to examine the effect of a small 
angular displacement ip of the lattice, that is, of the outer ring. If it is about 
x or z, it will, because of the frictionless bearings, make no change in the 
rotor. If it is about y it will produce an equal displacement of the spin axis 
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Y 

Fig. 1—Diagram of a gyrostat, showing its axes of rotation. 

C about y. To study its effect we make use of Euler's equations for a rotating 
rigid body.9 

A ^ - {B - C) O) ' 0)3 - L, 
at 

B ~2 - (C - A)^ = M, 
at 

C^p - {A - B)oji0)2 = N, 
at 

where wi, wo and cos are the angular velocities about three principal axes of 
inertia, fixed in the rotor, the moments of inertia about which are A, B 
and C, and L, M, and .V are the accompanying torques about the three axes. 
They are also at any instant the values of the torques about that set of 
axes, fixed in space, which, at the instant, coincide with the axes 1, 2, 3, 
which are fixed relative to the body. We let the 3 axis coincide with the 
spin axis C. We choose as the 1 and 2 axes, lines in the rotor which, at the 
instant, are in the x and y directions respectively. Since the moments of 

9 Jeans, Theoretical Mechanics, Ginn and Co.. p. 308. 
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inertia about these are equal, A and B are equal. By virtue of the frictionless 
hearings the external torques L and N about 1 and 3 are zero. 

Introducing these relations we have 

A + (C — A) 0)2(^3 = 0, (la) 
at 

A ~jr — (C — A)o}i ais = M, (2a) at 

cw = a (3a) 

From (3a) the velocity of spin W3 remains constant. The torque M about y 
is then to be found from (la) and (2a). For very small displacements, 

032 = <P- 

Putting this in (la) and integrating from zero to t, assuming <p to be zero 
at / = 0, gives 

C - A 
Oil =   0)2 <p. 

(2a) then becomes 

,.. J (C - A)2 2 
A(p -f-     0)2 (p = M. 

//-•   « \2 2 
This represents an angular inertia A and stiffness t03. The system 

ya 

will therefore resonate at a frequency ——. If the frequencies in- 

volved in the variation of (p are small compared with this, the inertia torque 
will be negligible, and the system will behave as a stiffness. If the displace- 
ments about A associated with wi are very small the restoring torque M 
will act substantially about the y axis. That is, the lattice will encounter a 
stiffness to rotation. 

Since the large number of gyrostats in an element of the model are oriented 
in all directions, an angular displacement of the lattice about y will gen- 
erally not be about the B axis for each gyrostat. If it makes an angle a with 
this axis, then only the component (p cos a of the angular displacement will 
be transmitted to the rotor. The resulting torque will then be S cos a, where 

^ = (C - A)2o>1 

It will be directed about B and so will not be parallel to the applied dis- 
placement. However, if a second gyrostat has the position which the first 
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would have if it were rotated about y through tt, its torque along y is the 
same as that of the first, and that normal to it is equal and opposite. Hence, 
if the gyrostats are properly oriented, the resultant torque will be parallel 
to the displacement and the medium will be isotropic. The y component of 
the opposing torque will be Sip cos2 a. Thus if the B axes are uniformly dis- 
tributed in space the total torque will be one third what it would be if they 
were all parallel to the axis of the applied displacement. Hence if there are 
iV gyrostats per unit volume the vector restoring torque T per unit volume 
will be 

rp _ N {C — Afo>\ _ , , 7*= -3 j—V- Wa) 

The next step is to derive the wave equations for a medium having this 
stiffness to rotation. If the vector velocity q is very small, 

v X ? = 2 (5a) 

where ^ is a vector angular displacement of an element of the medium at 
the point under consideration. 2ip plays a role analagous with that of the 
dilatation in compressional waves. Then, from (4a) and (5a), 

where the generalized stiffness of the undisturbed medium, 

A' (C - A)1 2 
= 12 ^(7a) 

To get the companion equation, we interpret the torque exerted by an 
element in terms of the forces it exerts on the surfaces of neighboring ele- 
ments. Let the x axis Fig. 2 be in the direction of the torque TAx3 which is 
exerted by the medium within the small cube. This very small torque can 
be resolved into the sum of two couples, one consisting of an upward force 
FyAx2 on the right face and an equal downward force on the left one, and 
the other of a leftward force FzAx- on the upper surface and a rightward one 
on the lower one. But, if there is not to be a shearing stress, Fy and Fz must 

T be equal, and each equal to —. Thus a torque per unit volume T is equivalent 

T to a set of tangential surface forces per unit area of — each. 
2 

Now consider the force exerted on an element by its neighbors, through 
the adjoining surfaces. To take the simplest case, let T in Fig. 2 be every- 
where in the x direction and independent of z but varying with y. Then 
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the forces exerted on the upper and lower surfaces are equal and opposite. 
That, downward on the right face exceeds that upward on the left by 
d_ 

dy 
tending the argument to three dimensions it is easily shown that the total 

(I aJ) Ay, so the force in the z direction is ) A#3. By ex- 
dy \2/ 

FyAX' 

/ 
az -ax 

aY=ax 
y- 

F7AX2 
/ AX 

X FyAX' 
Fig. 2—Diagram showing the forces exerted by an element of the medium through 

its surfaces. 

force is V X ^ Po t'ie density of the medium this force must equal 

PoAa^ ^, so 

v x © = « f ■ 

which, since q is small, reduces to 

© 
vxm = P.|. (8a) 

From this and (6a) the velocity of propagation is (Wpo)1'2 and the char- 
acteristic resistance is (po^o)1'2- In a plane wave the displacement is normal 
to the direction of propagation. The stress is a tractive force per unit area 
T 
— acting in a surface normal to the direction of propagation. It is in the 

direction of the velocity and in phase with it. 
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However, we are also interested in the case where the amplitudes are 
not negligible. We shall confine our attention to those cases where, as in 
plane or spherical waves at a distance from the source, the velocity is nor- 
mal to the direction of propagation and the variations in the plane of the 
wave front are negligible. (5a) then becomes much more complicated. 

V X g is, however, still a function of —, say 2Fi ( — ). Then, for small varia- 
at \dl / 

_ 
tions of — in the neighborhood of a particular value, we may write 

al 

where Fi ( — ) is a function of the particular value of ^ . This relation is 
\dl/ at 

to take the place of (5a). Similarly, if 

V X 
D-'-g). 

then, in place of (8a), we are to use, for small variations, 

v x (I) = ^ (i) i- (10a) 

When we come to the transition from (5a) to (6a), however, the situation 
is somewhat different. To see how this comes about, we go back to the 
behavior of the single gyrostat of Fig. 1. It was assumed above that the B 
axis coincided with the y axis However, when the displacement of the 
rotor about A is finite, this is no longer exactly true. The situation is then 
as shown in Fig. 3. A rotation ^ of the lattice about y displaces A in the ;v s 
plane by (p. The accompanying rotation of the rotor about .4 causes B to 
make an angle 6 with y, which is independent of (p. Then 

dtp _ ^2 = — cos 6. 
dt 

From (la) 

C - A 
W1 = — 

Also 

f df 
J dt 

cos / — cos d dt. 

= J 0)1 dl, 

C - A 
0)3 // ^ cos d dl dt, (Ha) 
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which determines 0 as a function of v and t. From (2a), neglecting the first 
term as above, 

M = S j ~ cos 6 dl, 

and the restoring torque about y, or 

Ty = —S cos Q j cos ^ dL (12a) 

This, together with (11a), determines Tv as a function of <p and t, instead of 
tp alone as it is for infinitesimal displacements. 

Fig. 3—Diagram showing the displacement of the axes of a gyrostat. 

We assumed here that, in the rest position of the rotor, its B axis coin- 
cides with that of the applied displacement tp. When this is not the case, the 
relations are more complicated, but they should be qualitatively the same. 
Hence, for an element of the medium, the torque per unit volume should 
be a function of <p and / similar to Ty , which reduces to — ^ tp for very small 
displacements. Since the restoring torque is in the direction of tp we may 
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write 

T = 0 (13a) 

where is a unit vector in the direction of the axis of rotation. 
The derivation of the wave equation is much simpler if we consider only 

the case of present interest where the direction of the rotation is everywhere 
the same so that lv is constant. Then (9a) can be written as 

VX-q = lM g) (14a) 

and (13a) as 

T = /). 

We wish now to replace — by — ( — I . These partial derivatives refer to a 
at at \2 / 

constant position so we are interested in the total time derivatives of T as 
given by (12a). To get the desired relation we need to express T explicitly 
in terms of ^ and /, that is, we must evaluate ip. Since the variables are 
small, we neglect their products of higher order than the third. Then 

cos 0 = 1 — ^ a 7.4 

where 

Putting 

a = ^ (~~A~ 013 ^ ' (13a) 

T = —4jjo cos d \ cos d dl, 
J dl 

in accordance with (12a) and substituting for cos 0 gives 

T = — 47/0 ^ ip tZ/J + a f ^ ^ " 

Then 

71= -4''0 [0 -a [/ "4) 

When ip is constant the first term is zero, so the second term can be inter- 
preted as the partial derivative of T with respect to /. Physically this de- 
scribes the change in torque for a fixed displacement which results from the 



388 BELL SYSTEM TECHNICAL JOURNAL 

fact that, as the axis of the rotor rotates toward that of the applied torque, 
the component of the spin which is normal to the axis of displacement pro- 

dup . 
gressively diminishes. To interpret the hrst term, we let — increase in- 

definitely. The second term then becomes negligible, and when we divide 
d dT 

through by — , the left side becomes — . But the time increment which 
dt dxp 

accompanies a finite increment of <p is now infinitesimal, and so this may be 
called the partial with respect to ip, with t constant. 

We have then 

dt 

where 

*/ _ 

"--•(it+i) 

,v - '■ (' -" 

— = —aijQfp f tp dt. (18a) 
dt J 

Substituting for ^ from (16a) in (14a), 
dt 

d<p 
^j 

We may interpret ~ as an instantaneous stiffness to rotation and define dip 

an instantaneous local generalized stiffness by the relation 

v 
dip, 

Fl 
V = ^ (19a) 

Similarly from (10a) we may define an instantaneous density by the relation 

p = F'2. (20a) 

Then we may speak of an instantaneous velocity c given by 

/ = ?, (21a) 
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and an instantaneous characteristic resistance pc. Then 

vx* =-^£© + 2I)- (22a) 

(10a) becomes 

where is a unit vector in the fixed direction of the velocity. These are the 
equations of motion which apply to a very small disturbance superposed 
on a finite disturbance. 
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[THIRD INSTALLMENT] 

CHAPTER VII 

EQUATIONS FOR TRAVELING-WAVE TUBE 

Synopsis of Chapter 

IN CHAPTER VI we have expressed the properties of a circuit in terms 
of its normal modes of propagation rather than its physical dimensions, 

in this chapter we shall use this representation in justifying the circuit 
equation of Chapter II and in adding to it a term to take into account the 
local fields produced by a-c space charge. Then, a combined circuit and 
ballistical equation will be obtained, which will be used in the following 
chapters in deducing various properties of traveling-wave tubes. 

In doing this, the first thing to observe is that when the propagation con- 
stant P of the impressed current is near the propagation constant Pi of a 
particular active mode, the excitation of that mode is great and the excita- 
tion varies rapidly as P is changed, while, for passive modes or for active 
modes for which P is not near to the propagation constant P,,, the excita- 
tion varies more slowly as P is changed. It will be assumed that P is nearly 
equal to the propagation constant Pj of one active mode, is not near to the 
propagation constant of any other mode and varies over a small fractional 
range only. Then the sum of terms due to all other modes will be regarded 
as a constant over the range of P considered. It will also be assumed that 
the phase velocities corresponding to P and Pi are small compared with 
the speed of light. Thus, (6.47) and (6.47a) are replaced by (7.1), where the 
first term represents the excitation of the Pi mode and the second term repre- 
sents the excitation of passive and "non-synchronous" modes. In another 
sense, this second term gives the field produced by the electrons in the ab- 
sence of a wave propagating on the circuit, or, the field due to the "space 
charge" of the bunched electron stream. Equation (7.1) is the equation for 
the distributed circuit of Fig. 7.1. This is like the circuit of Fig. 2.3 save for 
the addition of the capacitances Ci between the transmission circuit and 
the electron beam. We see that, because of the presence of these capaci- 
tances, the charge of a bunched electron beam will produce a field in addi- 
tion to the field of a wave traveling down the circuit. This circuit is intui- 
tively so appealing that it was originally thought of by guess and justified 
later. 

Equation (7.1), or rather its alternative form, (7.7), which gives the volt- 
age in terms of the impressed charge density, can be combined with the 

390 
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ballistical equation (2.22), which gives the charge density in terms of the 
voltage, to give (7.9), which is an equation for the propagation constant. 
The attenuation, the difference between the electron velocity and the phase 
velocity of the wave on the circuit in the absence of electrons and the dif- 
ference between the propagation constant and that for a wave traveling 
with the electron speed are specified by means of the gain parameter C 
and the parameters d, b and 5. It is then assumed that d, b and 8 are around 
unity or smaller and that C is much smaller than unity. This makes it pos- 
sible to neglect certain terms without serious error, and one obtains an 
equation (7.13) for 5. 

In connection with (7.7) and Fig. 7.1, it is important to distinguish be- 
tween the circuit voltage Vc, corresponding to the first term of (7.7), and 
the total voltage V acting on the electrons. These quantities are related 
by (7.14). The a-c velocity v and the convection current i are given within 
the approximation made (C « 1) by (7.15) and (7.16). 

.C, PER 
'METER 

Fig. 7.1 

7.1 Approximate Circuit Equation 

From (6.47) we can write for a current J = i and a summation over n 
modes 

e2 = (1/2)(r2 + 0l)i z 7-0 
^ (r; + /3o)(r2„ _ r2) 

(6.47a) 

This has a number of poles at F = T,,. We shall be interested in cases 
in which V is very near to a particular one of these, which we shall call 
Fi. Thus the term in the expansion involving F! will change rapidly with 
small variations in F. Moreover, even if {E-/^-P)l and F! have very small 
real components, F2 — F2 can be almost or completely real for values of F 
which have only small real components. Thus, one term of the expansion, 
that involving Fi, can go through a wide range of phase angles and magni- 
tudes for very small fractional variations in F, fractional variations, as it 
turns out, which are of the order of C over the range of interest. 

The other modes are either passive modes, for which even in a lossy 
circuit CE2//32/>)fl is almost purely imaginary, and rn almost purely real, 
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or they ate active modes which are considerably out of synchronism with 
the electron velocity. Unless one of these other active modes has a propaga- 
tion constant rn such that j (Ih - r2)/ri | is so small as to be of the order 
of C, the terms forming the summation will not vary very rapidly over the 
range of variation of F which is of interest. 

We will thus write the circuit equation in the approximate form 

Here there has been a simplification of notation. E is the z component 
of electric field, as in Chapter II, and is assumed to vary as expf-Fz). 
(JP/fPF) is taken to mean the value for the Fi mode. It has been assumed 
that & is small compared with ( Fi | and j F21, and pi has been neglected 
in comparison with these quantities. 

Further, it has been pointed out that for slightly lossy circuits, {Ei/p2P) 
will have only a small imaginary component, and we will assume as a valid 
approximation that {El/p2P) is purely real. We cannot, however, safely 
assume that Fi is purely imaginary, for a small real component of Fi can 
affect the value of F? - F2 greatly when F is nearly equal to Fi. 

The first term on the right of (7.1) represents fields associated with the 
active mode of the circuit, which is nearly in synchronism with the elec- 
trons. We can think of these fields as summing up the effect of the elec- 
trons on the circuit over a long distance, propagated to the point under 
consideration. 

The term (-jT2/coCi) in (7.1) sums up the effect of all passive modes 
and of any active modes which are far out of synchronism with the elec- 
trons. It has been written in this form for a special purpose; the term will 
be regarded as constant over the range of F considered, and Ci will be given 
a simple physical meaning. 

This second term represents the field resulting from the local charge den- 
sity, as opposed to that of the circuit wave which travels to the region 
from remote points. Let us rewrite (7.1) in terms of voltage and charge 
density 

(7.1) 

(7.2) 

From the continuity equation 

i = (jw/r)p (2.18) 

(7.3) 
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We see that Ci has the form of a capacitance per unit length. We can, for 
instance, redraw the transmission-line analogue of Fig. 2.3 as shown in Fig. 
7.1. Here, the current I is still the line current; but the voltage V acting on 
the beam is the line voltage plus the drop across a capacitance of Ci farads 
per meter. 

Consider as an illustration the case of unattenuated waves for which 

In (7.7), the first term in the brackets represents the impedance pre- 
sented to the beam by the "circuit"; that is, the ladder network of Figs. 
2.3 and 7.1. The second term represents the additional impedance due to 
the capacitance Ci, which stands for the impedance of the nonsynchronous 
modes. We note that if /3 < /3i , that is, for a wave faster than the natural 
phase velocity of the circuit, the two terms on the right are of the same 
sign. This must mean that the "circuit" part of the impedance is capacitive. 
However, for > fa , that is, for a wave slower than the natural phase veloc- 
ity, the first term is negative and the "circuit" part of the impedance is 
inductive. This is easily explained. For small values of 0 the wavelength of 
the impressed current is long, so that it flows into and out of the circuit at 
widely separated points. Between such points the long section of series 
inductance has a higher impedance than the shunt capacitance to ground; 
the capacitive effect predominates and the circuit impedance is capacitive. 
However, for large values of 0 the current flows into and out of the circuit 
at points close together. The short section of series inductance between 
such points provides a lower impedance path than does the shunt capaci- 
tance to ground; the inductive impedance predominates and the circuit 
impedance is inductive. Thus, for fast waves the circuit appears capacitive 
and for slow waves the circuit appears inductive. 

Since we have justified the use of the methods of Chapter II within the 
limitations of certain assumptions, there is no reason why we should not 
proceed to use the same notation in the light of our fuller understanding. 
We can now, however, regard V not as a potential but merely as a convenient 
variable related to the field by (7.2). 

From (2.18) and (7.3) we obtain 

Fi = jfa 

r = j0 

(7.5) 

(7.6) 

where 0i and 0 are real. Then 

(7.7) 

(7.8) 
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We use this together with (2.22) 

jhPeW (2.22) 
2Fo(i/3e - vy 

We obtain the overall equation 

rrriCEV/a'i') jTl ,79) 

2V0W, - r) L 2(r1 - r) ^cj 

In terms of the gain parameter C, which was defined in Chapter II, 

C3 = i&/p-P)(Io/SVo) (2.43) 

we can rewrite (7.8) 

n2 72/3,, T^C3 | 4^r2C3 . 
(jpe - r) - (r2 _ r2) + ( ) 

We will be interested in cases in which T and Ti differ from /3e by a small 
amount only. Accordingly, we will write 

-r = -jpe + PeC (7.11) 

-Fi = -jPe - jPcCb - PeCd (7.12) 

The propagation constant T describes propagation in the presence of 
electrons. A positive real value of 5 means an increasing wave. A positive 
imaginary part means a wave traveling faster than the electrons. 

The propagation constant Ti refers to propagation in the circuit in the 
absence of electrons. A positive value of b means the electrons go faster 
than the undisturbed wave. A positive value d means that the wave is an 
attenuated wave which decreases as it travels. 

If we use (7.11) and (7.12) in connection with (7.10) we obtain 

[1 + C(2j8 - C52)][l + C{b - jd)] 
- [-b+jd+jS + Cijbd- b*/2 + <P/2 + 8*/2)] (7 

_ 4/3. [(1 + C{2j8 - C82)]C 
coCi(iS2//32P) 

We will now assume that | 5 | is of the order of unity, that | b j and | d | 
range from zero to unity or a little larger, and that C <3C 1. We will then neg- 
lect the parentheses multiplied by C, obtaining 

* = I=VTJSTW) - iQC (7-14) 

Q == uCi{&/P2P) (7'15) 
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The quantity wCi has the dimensions of admittance per unit length, 
& has the dimensions of (length)-1 and {E2/0-P) has the dimensions of 
impedance. Thus, Q is a dimensionless parameter (the space-charge param- 
eter) which may be thought of as relating to the impedance parameter 
(£?//32P) associated with the synchronous mode the impedance (/3f/«oCi), 
attributable to all modes but the synchronous mode. 

At this point it is important to remember that there are not only two im- 
pedances, but two voltage components as well. Thus, in (7.8), the first 
term in the brackets times the current represents the "circuit voltage", 
which we may call Vc. The second term in the brackets represents the 
voltage due to space charge, the voltage across the capacitances Ci. The 
two terms in the brackets are in the same ratio as the two terms on the right 
of (7.14), which came from them. Thus, we can express the circuit com- 
ponent of voltage Vc in terms of the total voltage V acting on the beam either 
from (7.8) as 

KC = [i _ I F (7.16) 
uC^CEV/^P). 

or, alternatively, from (7.14) as 

V,= [1- iQCi-b + jd + ys)]-1 V (7,17) 

From Chapter II we have relations for the electron velocity (2.15) and 
electron convection current (2.22). If we make the same approximations 
which were made in obtaining (7.14), we have 

(juoC/v)v = ^ (7.18) 

(—2FoC2//)i = (7.19) 

We should remember also that the variation of all quantities with z 
is as 

(7.20) 

The relations (7.18)-(7.19) together with (2.36), which tells us that the 
characteristic impedance of the circuit changes little in the presence of 
electrons if C is small, sum up in terms of the more important parameters 
the linear operation of traveling-wave tubes in which C is small. The param- 
eters are: the gain parameter C, relative electron velocity parameter b, 
circuit attenuation parameter d and space-charge parameter Q. In follow- 
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ing chapters, the practical importance of these parameters in the opera- 
tion of traveling-wave tubes will be discussed. 

There are other effects not encompassed by these equations. The effect 
of transverse electron motions is small in most tubes because of the high 
focusing fields employed; it will be discussed in a later chapter. The dif- 
ferences between a field theory in which different fields act on different elec- 
trons and the theory leading to (7.14)-(7.20), which apply accurately 
only when all electrons at a given ^-position are acted on by the same field, 
will also be discussed. 



CHAPTER VIII 

THE NATURE OF THE WAVES 

Synopsis of Chapter 

IN THIS CHAPTER we shall discuss the effect of the various parame- 
ters on the rate of increase and velocity of propagation of the three 

forward waves. Problems involving boundary conditions will be deferred 
to later chapters. 

The three parameters in which we are interested are those of (7.13), 
that is, b, the velocity parameter, d, the attenuation parameter and QC, 
the space-charge parameter. The fraction by which the electron velocity is 
greater than the phase velocity for the circuit in the absence of electrons 
is hC. The circuit attenuation is 54.6 dC db/wavelength. () is a factor de- 
pending on the circuit impedance and geometry and on the beam diameter. 
For a helically conducting sheet of radius a and a hollow beam of radius 
Ci, Q can be obtained from Fig. 8.12. 

The three forward waves vary with distance as 
-tfe(\-yC)zBtxCz 

Thus, a positive value of y means a wave which travels faster than the 
electrons, and a positive value of x means an increasing wave. The gain in 
db per wavelength of the increasing waves is BC, and B is defined by (8.9). 

Figure 8.1 shows x and y for the three forward waves for a lossless circuit 
(d = 0). The increasing wave is described by Xi, yi. The gain is a maximum 
when the electron velocity is equal to the velocity of the undisturbed wave, 
or, when b = 0. For large positive values of b (electrons much faster than 
undisturbed wave), there is no increasing wave. However, there is an in- 
creasing wave for all negative values of b (all low velocities). For the increas- 
ing wave, yi is negative; thus, the increasing wave travels more slowly 
than the electrons, even when the electrons travel more slowly than the circuit 
wave in the absence of electrons. For the range of b for which there is an 
increasing wave, there is also an attenuated wave, described by X2 = — Xx 
and y2 = yi • There is also an unattenuated wave described by y3(^:3 = 0). 

For very large positive and negative values of b, the velocity of two 
of the waves approaches the electron velocity (y approaches zero) and the 
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velocity of the third wave approaches the velocity of the circuit wave in the 
absence of electrons {y approaches minus b). For large negative values of 
b, X\, yi and x?, y* become the "electron" waves and y-i becomes the "cir- 
cuit" wave. For large values of 6, yi and y-s become the "electron" waves and 
ya becomes the "circuit" wave. The "circuit" wave is essentially the wave 
in the absence of electrons, modified slightly by the presence of a non-syn- 
chronous electron stream. The "electron waves" represent the motion of 
"bunches" along the electron stream, slightly affected by the presence of 
the circuit. 

Figures 8.2 and 8.3 indicate the effect of loss. Loss decreases the gain of 
the increasing wave, adds to the attenuation of the decreasing wave and 
adds attenuation to the wave which was unattenuated in the lossless case. 
For large positive and negative values of b, the attenuation of the circuit 
wave (given by X3 for negative values of b and x^ for positive values of b) 
approaches the attenuation in the absence of electrons. 

Figure 8.4 shows B, the gain of the increasing wave in db per wavelength 
per unit C. Figure 8.5 shows, for i = 0, how B varies with d. The dashed 
line shows a common approximation: that the gain of the increasing wave 
is reduced by | of the circuit loss. Figure 8.6 shows how, for 6 = 0, Xi, 
X2 and Xi vary with d. We see that, for large values of d, the wave described 
by Xi has almost the same attenuation as the wave on the circuit in the 
absence of electrons. 

Figures 8.7-8.9 show x, y for the three waves with no loss (d = 0) but 
with a-c space charge taken into account (QC ^ 0). The immediately 
striking feature is that there is now a minimum value of b below which 
there is no increasing wave. 

We further note that, for large negative and positive values of b, y for 
the electron waves approaches ±2 v7QC. In these ranges of b the electron 
waves are dependent on the electron inertia and the field produced by a-c 
space charge, and have nothing to do with the active mode of the circuit. 

As QC is made larger, the value of b for which the gain of the increasing 
wave is a maximum increases. Now, C is proportional to the cube root of 
current. Thus, as current is increased, the voltage for maximum gain of the 
increasing wave increases. An increase in optimum operating voltage with 
an increase in current is observed in some tubes, and this is at least partly 
explained by these curves.* There is also some decrease in the maximum 
value of .Tx and hence of B as QC is increased. This is shown more clearly in 
Fig. 8.10. 

If x and B remained constant when the current is varied, then the gain 
per wavelength would rise as C, or, as the | power of current. However, 

* Other factors include a possible lowering of electron speed because of d-c space 
charge, and boundary condition effects. 
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we see from Fig. 8.10 that B falls as QC is increased. The gain per wave- 
length varies as BC and, because Q is constant for a given tube, it varies as 
BQC. In Fig. 8.11, BQC, which is proportional to the gain per wavelength 
of the increasing wave, is plotted vs QC, which is proportional to the ^ 
power of current. For very small values of current (small values of QC), 
the gain per wavelength is proportional to the f power of current. For 
larger values of QC, the gain per wavelength becomes proportional to the 
| power of current. 

It would be difficult to present curves covering the simultaneous effect 
of loss id) and space charge (QC). As a sort of substitute, Figs. 8.13 and 8.14 
show dxi/dd for </ = 0 and b chosen to maximize .Ti, and dx1/d{QC) for 
QC = 0 and 6 = 0. We see from 8.13 that, while for small values of QC 
the gain of the increasing wave is reduced by | of the circuit loss, for large 
values of QC the gain of the increasing wave is reduced by ^ of the circuit 
loss. 

8.1 Effect of Varying the Electron Velocity 

Consider equation (7.13) in case d = 0 (no attenuation) and Q = 0 
(neglect of space-charge). We then have 

8'(8+jb)=-j (8.1) 

Here we will remember that 

0e = a;/«o (8.2) 

-Fi = -7/3.(1 + Cb) = -ju/vi (8.3) 

Here z'i is the phase velocity of the wave in the absence of electrons, and «o 
is the electron speed. We see that 

u0 = (1 + C6K (8.4) 

Thus, (1 + Cb) is the ratio of the electron velocity to the velocity of the 
undisHirbed wave, that is, the wave in the absence of electrons. Hence, b 
is a measure of velocity difference between electrons and undisturbed wave. 
For 6 > 0, the electrons go faster than the undisturbed wave; for 6 < 0 
the electrons go slower than the undisturbed wave. For 6 = 0 the electrons 
have the same speed as the undisturbed wave. 

If 6 = 0, (8.1) becomes 

63 = -j (8.5) 

which we obtained in Chapter II. 
In dealing with (8.1), let 

5 = .v + jy 
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The meaning of this will be clear when we remember that, in the pres- 
ence of electrons, quantities vary with z as (from (7.10)) 

c 
  —iPe(l—Cv)t S,Cxt — € c/ 

(8.6) 

If v is the phase velocity in the presence of electrons, we have 

oj/v = (co/ Wo) (1 — Cy) (8.7) 

If Cy « 1, very nearly 

v = Wo(l + Cy) (8.8) 

In other words, if y > 0, the wave travels faster than the electrons; if 
y < 0 the wave travels more slowly than the electrons. 

From (8.6) we see that, if x > 0, the wave increases as it travels and if 
< 0 the wave decreases as it travels. In Chapter II we expressed the 

gain of the increasing wave as 

BCN dh 

where iV is the number of wavelengths. We see that 

B = 20(27r)(log1oe)^ 

B = 54.5a; 
(8.9) 

In terms of a; and y, (8.1) becomes 

(a;2 - y2)(y + &) + 2a;2y +1=0 (8.10) 

a;(a;2 - 3y2 - 2yb) = 0 (8.11) 

We see that (8.11) yields two kinds of roots: those corresponding to 
unattenuated waves, for which x — 0 and those for which 

a? = 3y2 + 2yb (8.12) 

If a; = 0, from (8.10) 

y2(y + 6) = 1 
(8.13) 

b = —y + 1/y2 

If we assume values of y ranging from perhaps +4 to —4 we can find the 
corresponding values of b from (8.13), and plot out yvsb for these unattenu- 
ated waves. 

For the other waves, we substitute (8.12) into (8.10) and obtain 

2yb2 + 8y2b + 8y3 + 1 = 0 (8.14) 
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This equation is a quadratic in b, and, by assigning various values of y, 
we can solve for b. We can then obtain x from (8.12). 

In this fashion we can construct curves of x and y vs b. Such curves are 
shown in Fig. 8.1. 

We see that for 

b < (3/2)(2)1/3 

there are two waves for which x ^ 0 and one unattenuated wave. The in- 
creasing and decreasing waves (.v 0) have equal and opposite values of 
x, and since for them y < 1, they travel more slowly than the electrons, 
even when the electrons travel more slowly than the undisturbed wave. It can be 

\ d = o 

UN y FOR 3ISTUR 
WAVE 

BED -' 
N 

\ 
\ \ — 

\ 

— 

\ 
-5 -4 -3 -2 -1 0 1 2 3 4 5 

b 
Fig. 8.1—The three waves vary with distance as exp (—jPt, + j&eCy + 0cCx)z. Here 

the x's and y's for the three waves arc shown vs the velocity parameter b for no attenua- 
tion (d = 0) and no space charge (QC = 0). 

shown that the electrons must travel faster than the increasing wave in 
order to give energy to it. 

For b > (3/2)(2)1/3, there are 3 unattenuated waves: two travel faster 
than the electrons and one more slowly. 

For large positive or negative values of b, two waves have nearly the 
electron speed (| y ( small) and one wave travels with the speed of the un- 
disturbed wave. We measure velocity with respect to electron velocity. 
Thus, if we assigned a parameter y to describe the velocity of the undis- 
turbed wave relative to the electron velocity, it would vary as the 45° 
line in Fig. 8.1. 

The data expressed in Fig. 8.1 give the variation of gain per wavelength 
of the undisturbed wave with electron velocity, and are also useful in fitting 
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boundary conditions; for this we need to know the three x's and the three 
y's. 

In a tube in which the total gain is large, a change in 6 of ± 1 about b = 
0 can make a change of several db in gain. Such a change means a difference 
between phase velocity of the undisturbed wave, Vi, and electron velocity 
Wo by a fraction approximately ±C. Hence, the allowable difference between 
phase velocity of the undisturbed wave, which is a function of frequency, 
and electron velocity, which is not, is of the order of C. 

8.2 Effect of Attenuation 

If we say that d ^ 0 but has some small positive value, we mean that the 
circuit is lossy, and in the absence of electrons the voltage decays with 
distance as 

-Ped 

Hence, the loss L in db/wavelength is 

L = 20(27r)(logioe)0/ 
(8.15) 

L = 54.5Cd db/wavelength 

or 

d = .01836 (L/C) (8.16) 

For instance, for C = .025, ^ = 1 means a loss of 1.36 db/wavelength. 
If we assume d ^ 0 we obtain the equations 

(x2 — y2){y + 6) + 2xy{x + rf) + 1 = 0 (8.17) 

{x2 — y2){x -\- d) — 2xy(y + 6) = 0 (8.18) 

The equations have been solved numerically for d = .5 and d = 1, and the 
curves which were obtained are shown in Figs. 8.2 and 8.3. We see that for 
a circuit with attenuation there is an increasing wave for all values of b 
(electron velocity). The velocity parameters yi and yz are now distinct for 
all values of b. 

We see that the maximum value of £1 decreases as loss is increased. This 
can be brought out more clearly by showing *1 vs b on an expanded scale. 
It is perhaps more convenient to plot B, the db gain per wavelength per 
unit C, vs b, and this has been done for various values of d in Fig. 8.4. 

We see that for small values of d the maximum value of Xi occurs very 
near to 6 = 0. If we let = 0 in (8.17) and (8.18) we obtain 

y(x2 — y2) + 2xy{x + ^) + 1 = 0 (8.19) 
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{x1 - v2)(.r + d) - Ixy- = 0 

We can rewrite (8.20) in the form 

_ mY' + ^V 
3 + d/x) 

-3 

-4 

\ d = 0.5 

y for "SN UNDISTURBED' N
N i 

WAVE \ 
— ^ 

^1 
\ 

  

X 

\ 

\ 
-5 -4 -3 -2 -I 

Fig. 8.2—The .r's and y's for a circuit with attenuation {d = .5). 
3 

d = i 

y FOR   ^ s UNDISTURBED WAVE 

y2- 

■x 

(8.20) 

(8.21) 

Fig. 8.3—The .r's and y's for a circuit with attenuation (d = 1). 

If we substitute this into (8.19) we can solve for x in terms of the parame- 
ter d/x 

x= + 

3 d/x 
1 + d/x 

1/2 

3 + d/x 
1 -\- d/x 

1/3 

(8.22) 
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Here we take both upper signs or both lower signs in (8.21) and (8.22). 
If we assume d/x <K 1 and expand, keeping no powers of d/x higher than 

the first, we obtain 

= + (A/3/2)(1 - (l/S^A)) (8,23) 

The plus sign will give Xi, which is the .-v: for the increasing wave. Let .tio 
be the value of rci for <1 = 0 (no loss). 

*10 = V3/2 (8.24) 

50 

40 

30 
B 

20 

10 

0 

Fig. 8.4—The gain of the increasing wave is BCN db, where N is the number of wave- 
lengths. 

Then for small values of d 

xj, = *10(1 - {l/3){d/x1o)) 
(8.25) 

.vi = .tjo — l/M 

This says that, for small losses, the reduction of gain 0} the increasing wave 
from the gain in db for zero loss is ^ of the circuit attenuation in db. The 
reduction of net gain, which will be greater, can be obtained only by match- 
ing boundary conditions in the presence of loss (see Chapter IX). 

In Fig. 8.5, B = 54.6 Xi has been plotted vs d from (8.22). The straight 
line is for aio = d/3. 

In Fig. 8.6, —Xi, x^ and x3 have been plotted vs d for a large range in d. 
As the circuit is made very lossy, the waves which for no loss are unattenu- 
ated and increasing turn into a pair of waves with equal and opposite small 
attenuations. These waves will be essentially disturbances in the electron 
stream, or space-charge waves. The original decreasing wave turns into a 
wave which has the attenuation of the circuit, and is accompanied by small 
disturbances in the electron stream. 

d=o 
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8.3 Space-Charge Effects 

Suppose that we let d, the attenuation parameter, be zero, but consider 
cases in which the space-charge parameter QC is not zero. We then obtain 

GAIN WITHOUT LOSS 
LESS V3 OF LOSS 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 
d 

Fig. 8.5—For 6 = 0, that is, for electrons with a velocity equal to the circuit phase 
velocity, the gain factor B falls as the attenuation parameter d is increased. For small 
values of d, the gain is reduced by ^ of the circuit loss. 

/ 

/ 
S/ 

y 

--y 
/' 

/ 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
d 

Fig. 8.6—How the three .x's vary for 6 = 0 and for large losses. 

the equations 

O2 - y*){b + y)+ 2x2y + AQC(b + t) + 1 = 0 (8.26) 

x[(x2 - f-) - 2y(y + b) + QC] = 0 (8.27) 

Solutions of this have been found by numerical methods for QC = .25, 
,5 and 1; these are shown in Figs. 8.7-8.9., 
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We see at once that the electron velocity for maximum gain shifts mark- 
edly as QC is increased. Hence, the region around 6 = 0 is not in this case 
worthy of a separate investigation. 

\ ̂ 3 
QC = 0.25 

■yr- 
r' 

   -V 

yi K 
J 

y.,y2 yi 

y2 

b 
Fig. 8.7—The x's and y's for the three waves with zero loss (d = 0) but with space 

charge (QC = .25). 

\ \y3 
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N 

X, 
   

\ u 
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\ 
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b 

Fig. 8.8—The x's, and y's with greater space charge (QC = .5). 

It is interesting to plot the maximum value of xi vs. the parameter QC. 
This has, in effect, been done in Fig. 8.10, which shows B, the gain in db 
per wavelength per unit C, vs. QC. 

We can obtain a curve proportional to db per wavelength by plotting 
BQC vs. QC. (Q is independent of current.) This has been done in Fig. 
8.11. For QC < 0.025, the gain in db per wavelength varies linearly with 
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QC. Chu and Rydbeck found that under certain conditions gain varies 
approximately as the j power of the current. This would mean a slope of f 
on Fig. 8.11. A f power dashed line is shown in Fig. 8.11; it fits the upper 
part of the curve approximately. 

O o n b 

\ 
*1 

\ 
^—  ^ x2 

yi 
^2 

Mi 

-5 -4 -3 -2 -1 0 1 2 3 4 5 
b 

Fig. 8.9—The .t's and y's with still greater space charge (QC = 1). 
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QC 

Fig. 8.10—How the gain factor B decreases as QC is increased, for the value of b which 
gives a maximum value of .ri. 

If we examine Figs. 8.7-8.9 we find that for large and small values of b 
there are, as in other cases, a circuit wave, for which y is nearly equal to 
— b, and two space-charge waves. For these, however, y does not approach 
zero. 

Let us consider equation (7.LI). If b is large, the first term on the right 
becomes small, and we have approximately 

8 = zkjlVQC (8.28) 
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These waves correspond to the space-charge waves of Hahn and Ramo, and 
are quite independent of the circuit impedance, which appears in (8.28) 
merely as an arbitrary parameter defining the units in which b is measured. 
Equation (8.28) also describes the disturbance we would get if we shorted 
out the circuit by some means, as by adding excessive loss. 

Practically, we need an estimate of the value of Q for some typical cir- 
cuit. In Appendix IV an estimate is made on the following basis: The helix 
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Fig. 8.11—The variation of a quantity proportional to the cube of the gain of the in- 
creasing wave (ordinate) with a quantity proportional to current (abscissa). For very 
small currents, the gain of the increasing wave is proportional to the ^ power of current, 
for large currents to the { power of current. 

of radius a is replaced by a conducting cylinder of the same radius, a thin 
cylinder of convection current of radius Oj and current of i exp(—jpz) is 
assumed, and the field is calculated and identified with the second term on 
the right of (7.1). R. C. Fletcher has obtained a more accurate value of Q 
by a rigorous method. His work is reproduced in Appendix VI, and in Fig. 
1 of that appendix, Fletcher's value of Q is compared with the approximate 
value of Appendix IV. 

In Fig. 8.12, the value QOS/y)2 of Appendix IV is plotted vs. ya for ai/a 
= .9, .8, .7. For ai/a = \,Q = 0. In a typical 4,000 mc traveling-wave 
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tube, ya = 2.8 and C is about .025. Thus, if we take the effective beam 
radius as .5 times the helix radius, Q = 5.6 and QC = .14. 

We note from (7.14) that Q is the ratio of a capacitive impedance to 
{Er/fFP). In obtaining the curves of Fig. 8.12, the value of {E2/(PP) for a 
helically conducting sheet was assumed. This is given by (3.8) and (3.9). 
If (Er/^P) is different for the circuit actually used, and it is somewhat 
different, even for an actual helix, Q from Fig. 8.12 should be multiplied 
by {E2/^rP) for the helically conducting sheet, from (3.8) and (3.9), and 
divided by the value of {Er/fP-P) for the circuit used. 
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Fig. 8.12—Curves for obtaining Q for a helically conducting sheet and a hollow beam. 

The radius of the helically conducting sheet is a and that of the beam is a\ . 
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8.4 Differential Relations 

It would be onerous to construct curves giving 5 as a function of b for 
many values of attenuation and space charge. In some cases, however, 
useful information may be obtained by considering the effect of adding a 
small amount of attenuation when QC is large, or of seeing the effect of 
space charge when QC is small but the attenuation is large. We start with 
(7.13) 

52 = / 1 , ^ 1 , -4QC (7.13) {-b+jd+jS) 
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Let us first differentiate (7.13) with respect to 6 and d 

—j dd — j d8 
28 d8 = 

{-b + j d + j8)2 (8.29) 
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Fig. 8.13—A curve giving the rate of change of Xi with attenuation parameter d for 
d = 0 and for various values of the space-charge parameter QC. For small values of QC 
the gain of the increasing wave is reduced by J of the circuit loss; for large values of QC 
the gain of the increasing wave is reduced by J of the circuit loss. 

-0.4 

1.2 1.4 0-4 0.6 0.8 1.0 0.2 

Fig. 8.14—A curve showing the variation of Xi with QC for QC = 0 and for various 
values of the attenuation parameter d. 

By using (7.13) we obtain 

d8 = 
-j28 

1 ) dd (8.30) 
(52 + 4QCy 

If we allow d to be small, we can use the values of 8 of Figs. 8.7-8.9 to plot 
the quantity 

Re{d8i/dd) = dxjdd (8.31) 
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vs. QC. In Fig. 8.13, this has been done for b chosen to make .Vi a maximum. 
We see that a small loss dd causes more reduction of gain as QC is increased 
(more space charge). 

Let us now differentiate (7.13) with respect to QC 

25',s = (^bTJT+W ~ 4rf('2C) (8-32) 

By using (7.13) with QC = 0 we obtain 

« = (2^) "(QO (8.33) 

In Fig. 8.14, dx/d{QC) has been plotted vs. d iox b = 0. 
We see that the reduction of gain for a small amount of space charge 

becomes greater, the greater the loss is increased {d increased). 
Both Fig. 8.13 and Fig. 8.14 indicate that for large values of QC or d the 

gain will be overestimated if space charge {QC) and loss {d) are considered 
separately. 



CHAPTER IX 

DISCONTINUITIES 

Synopsis of Chapter 

WE WANT TO KNOW the overall gain of traveling-wave tubes. So 
far, we have evaluated only the gain of the increasing wave, and we 

must find out how strong an increasing wave is set up when a voltage is 
applied to the circuit. 

Beyond this, we may wish for some reason to break the circuit up into 
several sections having different parameters. For instance, it is desirable 
that a traveling-wave tube have more loss in the backward direction than it 
has gain in the forward direction. If this is not so, small mismatches will 
result either in oscillation or at least in the gain fluctuating violently with 
frequency. We have already seen in Chapter VIII the effect of a uniform 
loss in reducing the gain of the increasing wave. We need to know also the 
overall effect of short sections of loss in order to know how loss may best 
be introduced. 

Such problems are treated in this chapter by matching boundary con- 
ditions at the points of discontinuity. It is assumed that there is no re- 
flected wave at the discontinuity. This will be very nearly so, because the 
characteristic impedances of the waves differ little over the range of loss 
and velocity considered. Thus, the total voltages, a-c convection currents 
and the a-c velocities on the two sides of the point of discontinuity are set 
equal. 

For instance, at the beginning of the circuit, where the unmodulated elec- 
tron stream enters, the total a-c velocity and the total a-c convection cur- 
rent—that is, the sums of the convection currents and the velocities for the 
three waves—are set equal to zero, and the sum of the voltages for the three 
waves is set equal to the applied voltage. 

For the case of no loss {d = 0) and an electron velocity equal to circuit 
phase velocity {b = 0) we find that the three waves are set up with equal 
voltages, each ^ of the applied voltage. The voltage along the circuit will 
then be the sum of the voltages of the three waves, and the way in which 
the magnitude of this sum varies with distance along the circuit is shown in 
Fig. 9.1. Here CN measures distance from the beginning of the circuit and 
the amplitude relative to the applied voltage is measured in db. 

The dashed curve represents the voltage of the increasing wave alone. 

412 
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For large values of CN corresponding to large gains, the increasing wave 
predominates and we can neglect the effect of the other waves. This leads 
to the gain expression 

G = A + BCN db 

Here BCN is the gain in db of the increasing wave and A measures its ini- 
tial level with respect to the applied voltage. 

In Fig. 9.2, A is plotted vs. b for several values of the loss parameter d. 
The fact that A goes to cc for = 0 as 6 approaches (3/2) (2)1/3 does not 
imply an infinite gain for, at this value of b, the gain of the increasing wave 
approaches zero and the voltage of the decreasing wave approaches the 
negative of that for the increasing wave. 

Figure 9.3 shows how A varies with d ior b = 0. Figure 9.4 shows how A 
varies with QC for = 0 and for b chosen to give a maximum value of B 
(the greatest gain of the increasing wave). 

Suppose that for b = QC = 0 the loss parameter is suddenly changed from 
zero to some finite value d. Suppose also that the increasing wave is very 
large compared with the other waves reaching the discontinuity. We can 
then calculate the ratio of the increasing wave just beyond the discon- 
tinuity to the increasing wave reaching the discontinuity. The solid line of 
Fig. 9.5 shows this ratio expressed in decibels. We see that the voltage of 
the increasing wave excited in the lossy section is less than the voltage of 
the incident increasing wave. 

Now, suppose the waves travel on in the lossy section until the increasing 
wave again predominates. If the circuit is then made suddenly lossless, we 
find that the increasing wave excited in this lossless section will have a 
greater voltage than the increasing wave incident from the lossy section, 
as shown by the dashed curve of Fig. 9.5. This increase is almost as great as 
the loss in entering the lossy section. Imagine a tube with a long lossless 
section, a long lossy section and another long lossless section. We see that 
the gain of this tube will be less than that of a lossless tube of the same 
total length by about the reduction of the gain of the increasing wave in 
lossy section. 

Suppose that the electromagnetic energy of the circuit is suddenly ab- 
sorbed at a distance beyond the input measured by CN. This might be 
done by severing a helix and terminating the ends. The a-c velocity and 
convection current will be unaffected in passing the discontinuity, but the 
circuit voltage drops to zero. For d = b = QC = 0, Fig. 9.6 shows the 
ratio of Fx, the amplitude of the increasing wave beyond the break, to 
V, the amplitude the increasing wave would have had if there were no break. 
We see that for CN greater than about 0.2 the loss due to the break is not 
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serious. For CN large (the break far from the input) the loss approaches 
3.52 db. 

Beyond such a break, the total voltage increases with CN as shown in 
Fig. 9.7, and from CN = 0.2 the circuit voltage is very nearly equal to the 
voltage of the increasing wave. 

Often, for practical reasons loss is introduced over a considerable distance, 
sometimes by putting lossy material near to a helix. Suppose we use CN 
computed as if for a lossless section of circuit as a measure of length of 
the lossy section, and assume that the loss is great enough so that the circuit 
voltage (as opposed to that produced by space charge) can be taken as zero. 
Such a lossy section acts as a drift space. Suppose that an increasing wave 
only reaches this lossy section. The amplitude of the increasing wave ex- 
cited beyond the lossy section in db with respect to the amplitude of the in- 
creasing wave reaching the lossy section is shown vs. CN, which measures 
the length of the lossy section, in Fig. 9.8. 

9.1 General Boundary Conditions 

We have already assumed that C is small, and when this is so the charac- 
teristic impedance of the various waves is near to the circuit characteristic 
impedance K. We will neglect any reflections caused by differences among 
the characteristic impedances of the various waves. 

We will consider cases in which the circuit is terminated in the -\-z direc- 
tion, so as to give no backward wave. We will then be concerned with the 
3 forward waves, for which 5 has the values 5i, , b* and the waves repre- 
sented by these values of 5 have voltages Fi, Vi, Vz, electron velocities 
vi, vz, vz and convection currents ii, it, . 

Let V, v, i be the total voltage, velocity and convection current at 2 = 0. 
Then we have 

Fi + F2 + Fs = V (9.1) 

and from (7.15) and (7.16), 

V + ^ + (9.2) 
Oi do 03 

^ + Ir = (-2F.C?//o)< (9.3) Oi Oo 03 

These equations yield, when solved, 

Fi = [F — (62 + 53)(J«OCA7> + 5253(-2 FoC2//o)i] 
(9-4) 

[(1 - 52/50(1 - 53/50] 

We can obtain the corresponding expressions for F2 and F3 simply by inter- 
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changing subscripts; to obtain V* , for instance, we substitute subscript 
2 for 1 and subscript 1 for 2 in (9.4). 

9.2 Lossless Helix, Synciiroxous Velocity, No Space Change 

Suppose we consider the case in which b — d = Q = 0, so that we have 
the values of S obtained in Chapter II 

51 = r
;V/6 = V3/2 - jl/2 

52 = e~lSr/6 = - v/3/2 - 7I/2 (9.5) 

63 = e'*12 — j 

Suppose we inject an unmodulated electron stream into the helix and 
apply a voltage V. The obvious thing is to say that, at z = 0, v = i = 0. 
It is not quite clear, however, that = 0 at 2 = 0 (the beginning of the 
circuit). Whether or not there is a stray field, which will give an initial 
velocity modulation, depends on the type of circuit. Two things are true, 
however. For the small values of C usually encountered such a velocity 
modulation constitutes a small effect. Also, the fields of the first part of 
the helix act essentially to velocity modulate the electron stream, and hence 
a neglect of any small initial velocity modulation will be about equivalent 
to a small displacement of the origin. 

If, then, we let n = f = 0 and use (9.4) we obtain 

V, = F[(l - 5,A)(1 - M,)]"1 (9.6) 

Vi = V/3 (9.7) 

Similarly, we find that 

Vo_ = Fa = V/3 (9.8) 

We have used V to denote the voltage at 2 = 0. Let Vs be the voltage at 2. 
We have 
ye = n/-/3\e-rt'

z(eHllD0tCt+{\/3l2)0eCz _|_ e;(l/2)0eCz-(v/3/2)0eCz _|_ 
(9.9) 

K.= (V/3)e~lPtll~cU (1 + 2 cosh ({\/3/2)^eCz)e~A3,2)PeCz) 

From this we obtain 

| VJV |2 = (1/9)[1 + 4 cosh2(\/3/2)/3eC2 

+ 4 cos (3/2)l3eCz cosh (-\/3/2)l3cCz] 
(9.10) 

We can express gain in db as 10 logxo | VJV |2, and, in Fig. 9.1, gain in db 
is plotted vs CiV, where A is the number of cycles. 

We see that initially the voltage does not change with distance. This is 
natural, because the electron stream initially has no convection current, 
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and hence cannot act on the circuit until it becomes bunched. Finally, of 
course, the increasing wave must predominate over the other two, and the 
slope of the line must be 

B = 47.3/CiY (9.11) 

The dashed line represents the increasing wave, which starts at VJV = 
^ (-9.54 db) and has the slope specified by (9.11). Thus, if we write for the 
increasing wave that gain G is 

G = A BCN db (9.12) 

15 / 

V 
/ 

ASYMPTOTIC..^/ 
EXPRESSION ^7/ 

Y 

4 
/ 

// 
/ 

(9.13) 

CN 
Fig. 9.1—How the signal level varies along a traveling-wave tube for the special case 

of zero loss and space charge and an electron velocity equal to the circuit phase velocity 
(solid curve). The dashed curve is the level of the increasing wave alone, which starts 
off with | of the applied voltage, or at —9.54 db. 

This is an asymptotic expression for the total voltage at large values of z, 
where | Fi ) » | Fo |, | Fa |, and for ft = </ = 0 = 0 

A = - 9.54 db 

B = 47.3 

We see that (9.11) is pretty good for CN > .4, and not too bad for CN > .2. 

9.3 Loss in Helix 

In Chapter VIII, curves were given for 8i, 82, fta vs. ft for QC = 0 and for 
d, the loss parameter, equal to 0, 0.5 and 1. From the data from which these 
curves were derived one can calculate the initial loss parameter by means 
of (9.6) 

A = 20 logm | Fj/F) (9.14) 
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Fig. 9.2—When the gain is large we need consider the increasing wave only. Using 
this approximation, the gain in db is A + BCN db. Here A is shown vs the velocity param- 
eter h, several values of the attenuation parameter d, for no space charge (QC = 0). 
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Fig. 9.3—A vs for 6 = 0 and QC = 0. 

In Fig. 9.2, A is plotted vs b for these three values of d. 
It is perhaps of some interest to plot A vs d ior b = 0 (the electron veloc- 

ity equal to the phase velocity of the undisturbed wave). Such a plot is 
shown in Fig. 9.3. 
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9.4. Space Charge 

We will now consider the case in which QC 9^ 0. We will deal with this 
case only for d = 0, and for b adjusted for maximum gain per wavelength. 

There is a peculiarity about this case in that a certain voltage V is applied 
to the circuit at z = 0, and we want to evaluate the circuit voltage asso- 
ciated with the increasing wave, Vc\, in order to know the gain. 

At z = 0, t = 0. Now, the term which multiplies i to give the space-charge 
component of voltage (the second term on the right in (7.11)) is the same 
for all three waves and hence at z = 0 the circuit voltage is the total voltage. 
Thus, (9.1H9.3) hold. However, after Fi has been obtained from (9.4), with 

/ 

/ 

,00 0.2 0,4 0.6 0.6 1.0 
QC 

Fig. 9.4—/I vs QC for d = 0 and b chosen for maximum gain of the increasing wave. 

V = Vi, v = i = 0, then the circuit voltage Vci must be obtained through 
the use of (7.14), and the initial loss parameter is 

A = 20 logio | Vcl/V | (9.15) 

By using the appropriate values of 5, the same used in plotting Figs. 8.1 
and 8.7-8.9, the loss parameter A was obtained from (9.15) and plotted vs 
QC in Fig. 9.4. 

9.5 Change in Loss 

We might think it undesirable in introducing loss to make the whole 
length of the helix lossy. For instance, we might expect the power output 
to be higher if the last part of the helix had low loss. Also, from Figs. 8.2 
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and 8.3 we see that the initial loss A becomes higher as d is increased. This 
is natural, because the electron stream can act to cause gain only after it is 
bunched, and if the initial section of the circuit is lossy, the signal decays 
before the stream becomes strongly bunched. 

Let us consider a section of a lossless helix which is far enough from the 
input so that the increasing wave predominates and the total voltage V can 
be taken as that corresponding to the increasing wave 

V = Vi (9.16) 

Then, at this point 

{juoC/riv = FA (9.17) 

(-2FoC2//o)i = Vx/bl. (9.18) 

Here 5i is the value for </ = 0 (and, we assume, 6 = 0). If we substitute the 
values from (9.16) in (9.4), and use in (9.4) the values of 5 corresponding to 
b = Q = 0, d 9* 0, and call the value of Vi we obtain Fi, we obtain the 
ratio of the initial amplitude of the increasing wave in the lossy section to 
the value of the increasing wave just to the left of the lossy section. Thus, 
the loss in the amplitude of the increasing wave in going from a lossless to a 
lossy section is 20 logio | Fi/Fi | . This loss is plotted vs d in Fig. 8.5. 

This loss is accounted for by the fact that | ii/Vi \ becomes larger as the 
loss parameter d is increased. Thus, the convection current injected into 
the lossy section is insufficient to go with the voltage, and the volt- 
age must fall. 

If we go from a lossy section ((/ ^ 0, 6 = 0) to a lossless section 
{d = 0, b = 0) we start with an excess of convection current and | Fi ( , 
the initial amplitude of the increasing wave to the right of the discontinuity 
is greater than the amplitude | Fj | of the increasing wave to the left. In 
Fig. 9.5, 20 log.o | Fi/Fi | is plotted vs d for this case also. 

We see that if we go from a lossless section to a lossy section, and if the 
lossy section is long enough so that the increasing wave predominates at 
the end of it, and if we go back to a lossless section at the end of it, the net 
loss and gain at the discontinuities almost compensate, and even for d = 3 
the net discontinuity loss is less than 1 db. This does not consider the re- 
duction of gain of the increasing wave in the lossy section. 

9.6 Severed Helix 

If the loss introduced is distributed over the length of the helix, the gain 
will decrease as the loss is increased (Fig. 8.5). If, however, the loss is dis- 
tributed over a very short section, we easily see that as the loss is increased 
more and more, the gain must approach a constant value. The circuit will 
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be in effect severed as far as the electromagnetic wave is concerned, and any 
excitation in the output will be due to the a-c velocity and convection current 
of the electron stream which crosses the lossy section. 

We will first idealize the situation and assume that the helix is severed 
and by some means terminated looking in each direction, so that the voltage 
falls from a value F to a value 0 in zero distance, while v and i remain un- 
changed. 

We will consider a case in which b = d = Q = 0, and in which a voltage 

LOS 
LOS 

IN GOING FROM  
SLESS TO LOSSY 

//' 
S s GAIN IN GOING FROM 

LOSSY TO LOSSLESS 

// y> 
Ss /> 

ovL—i        
O 0.4 O.B 1.2 1.6 2.0 2.4 2.6 3.2 

d 
Fig. 9.5—Suppose that the circuit loss parameter changes suddenly with distance 

from 0 to d or from d to 0. Suppose there is an increasing wave only incident at the point 
of change. How large will the increasing wave beyond the point of change be? These 
curves tell {b = QC = 0). 

V is applied to the helix N wavelengths before the cut. Then, just before 
the cut, 

Vi = {V/3)e-*rNe'NC>l 

V2 = (V/3)e-*'Ne2'NCh (9.19) 

V3 = iV/3)e-fll'Ne2*NCS3 

and 

(juoC/v)vi = V1/81 (9 20) 

(—2F0C3/Io)ii = V1/5l 

etc. 
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Whence, just beyond the break which makes V = 0, V, v and i are 

7=0 

(juoC/ri)v = Vi/81 + V2/82 + 73/63 (9.21) 

(-27oC3//o)/- = 7,761 + 72/62 + 73/63 

Putting these values in (9.4), we can find 7,, the value of the increasing wave 
to the right of the break. The ratio of the magnitude of the increasing wave 
to the magnitude it would have if it were not for the break is then | 7i/7i | , 
and this ratio is plotted vs CiV in Fig. 9.6, where N is the number of wave- 
lengths in the first section. 

0-ei      

0.6 

> 
0.4 

> 

0.2 

0 0.2 0.4 0.6 0.8 1.0 
CN 

Fig. 9.6—Suppose the circuit is severed a distance measured by CN beyond the input, 
so that the voltage just beyond the break is zero. The ordinate is the ratio of the ampli- 
tude of the increasing wave beyond the break to that it would have had with an unbroken 
circuit {b = QC = 0). 

We see that there will be least loss in severing the helix for CN equal to 
approximately j. From Fig. 9.1, we see that at CiY = j the voltage is just 
beginning to rise. In a typical 4,000 megacycle traveling-wave tube, CN is 
approximately unity for a 10 inch helix, so the loss should be put at least 
2.5,, beyond the input. Putting the loss further on changes things little; 
asymptotically, | 7,/7 | approaches f, or 3.52 db loss, for large values of 
CN (loss for from input). 

It is of some interest to know how the voltage rises to the right of the cut. 
It was assumed that the cut was far from the point of excitation, so that 
only increasing wave of magnitude 7, was present just to the left of the cut. 
The initial amplitudes of the three waves, V[, V2 , to the right of the 
cut were computed and the magnitude of their sum plotted vs CN as it 
varies with distance to the right of the cut. The resulting curve, expressed 
in db with respect to the magnitude of the increasing wave 7, just to the 
left of the cut, is shown in Fig. 9.7. Again, we see that at a distance CN = \ 
to the right of the cut the increasing wave (dashed straight line) 
predominates. 
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9.7 Severed Helix With Drift Space 

In actually putting concentrated loss in a helix, the loss cannot be con- 
centrated in a section of zero length for two reasons. In the first place, 
this is physically difficult if not impossible; in the second place it is desirable 
that the two halves of the helix be terminated in a reflectionless manner at 
the cut, and it is easiest to do this by tapering the loss. For instance, if the 
loss is put in by spraying aquadag (graphite in water) on ceramic rods sup- 
porting the helix, it is desirable to taper the loss coating at the ends of the 
lossy section. 

Perhaps the best reasonably simple approximation we can make to such a 
lossy section is one in which the section starts far enough from the input 
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Fig. 9.7—Suppose that the circuit is severed and an increasing wave only is incident 
at the break. How does the signal build up beyond the break? The solid curve shows 
(b = QC = 0). 0 db is the level of the incident increasing wave. 

so that at the beginning of the lossy section only an increasing wave is 
present. In the lossy section CN long we will consider that the loss com- 
pletely shorts out the circuit, so that (8.28) holds. Thus, in the lossy section 
we will have only two values of d, which we will call 5/ and 5//. 

5/ = jk 

bn = -jk 

k = 2-s/QC 

(9.21) 

(9.22) 

(9.23) 

Let Vj and Vn be the voltages of the waves corresponding to bj and bu 
at the beginning of the lossy section. Let Si, 62, ^3 be the values of b to the 
left and right of the lossy section. Let Fi be the amplitude of the increasing 
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wave just to the left of the lossy section. Then, by equating velocities and 
convection currents at the start of the lossy section, we obtain 

V1/8l = Vj/hj + Vu/hn (9.24) 

and, from (9.21) and (9.22) 

F,/5i = (-j/*)(7/ - Vu) (9.25) 

Similarly 

V1/81 — Vi/h'ii -(- Va 8'u 

Vr/81 = -(l/k*)(VI+ V n) 
(9.26) 

So that 

(9.32) 

V, = j{V1/2){k/8l)(jk/8l + 1) (9.27) 

Vn = j{Vl/2){k/8i){jk/8l - 1) (9.28) 

At the output of the lossy section we have the voltages V'i and V'n 

V'j = Vie'**" e~'2*kcN (9.29) 

V'n = Viie-^Ne-^kCN (9.30) 

Thus, at the end of the lossy section we have 

V = V'i+ V'n (9.31) 

(jnoC/v)v = V'i/8i + V'n/8ii 

(jnoC/v)v = {—j/k)(V'i - V'n) 

and similarly 

(—2FoC2//o)f = {-l/miV'j + V'n) (9.33) 

From (9.27) and (9.28) we see that 

v'j + V'n = -{k/81)[+{k/8l) cos 2irkCN + sin 2TrkCN]Vle-^N (9.34) 

y'j - v'u = i(V5i)[-(V5i) sin 2irkCN + cos 2TrkCN]V1e-**N (9.35) 

Whence 

V = -(W[+(^i) cos 2irkCN + sin 2TvkCN\V1e-^N (9.36) 

(Ju0C/v)v = (1A)[-(£A) sin 2irkCN + cos 2TkCN]V1e-'™ (9.37) 

(-2FoC2//o)i = (l/5i)[(lA) cos lirkCN + {\/k) sin 2irkCN]V1e-'2rN (9.38) 

These can be used in connection with (9.4) in obtaining V'\, the value of 
Vi just beyond the lossy section; that is, the amplitude of the component of 
increasing wave just beyond the lossy section. 
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In typical traveling-wave tubes the lossy section usually has a length 
such that CN is | or less. In Fig. 9.8 the loss in db in going through the lossy 
section, 20 logio | V'i/Vi \ , has been plotted vs. CN for QC = 0, .25, .5 for 
the range CN = 0 to CN = .5. 

We see that, for low space charge, increasing the length of a drift space 
increases the loss. For higher space charge it may either increase or decrease 
the loss. It is not clear that the periodic behavior characteristic of the curves 
for QC = 0.5 and 1, for instance, will obtain for a drift space with tapered 
loss at each end. The calculations may also be considerably in error for 
broad electron beams (7a large). The electric field pattern in the helix differs 
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Fig. 9.8—Suppose that we break the circuit and insert a drift tube of length measured 
by CN in terms of the traveling-wave tube C and N. Assume an increasing wave only 
before the drift tube. The increasing wave beyond the drift tube will have a level with 
respect to the incident increasing wave as shown by the ordinate. Here d = 0 and b is 
chosen to maximize a:i. 

from that in the drift space. In the case of broad electron beams this may 
result in the excitation in the drift space of several different space charge 
waves having different field patterns and different propagation constants. 

A suggestion has been made that the introduction of loss itself has a bad 
effect. The only thing that affects the electrons is an electric field. Unpub- 
lished measurements made by Cutler mode by moving a probe along a helix 
indicate that in typical short high-loss sections the electric field of the 
helix is essentially zero. Hence, except for a short distance at the ends, 
such lossy sections should act simply as drift spaces. 

9.8 Overall Behavior of Tubes 

The material of Chapters VIII and IX is useful in designing traveling- 
wave tubes. Prediction of the performance of a given tube over a wide range 
of voltage and current is quite a different matter. For instance, in order to 
predict gain for voltage or current ranges for which the gain is small, the 

oc = 1 

7^ 
0.50/ 

0.25 
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three waves must be taken into account. As current is varied, the loss param- 
eter d varies, and this means different rv's and y's must be computed for 
different currents. Finally, at high currents, the space-charge parameter Q 
must be taken into account. In all, a computation of tube behavior under a 
variety of conditions is an extensive job. 

Fortunately, for useful tubes operating as intended, the gain is high. 
When this is so, the gain can be calculated quite accurately by asymptotic 
relations. Such an overall calculation of the gain of a helix-type tube with 
distributed loss is summarized in Appendix VII. 



CHAPTER X 

NOISE FIGURE 

Synopsis of Chapter 

BECAUSE THERE IS no treatment of the behavior at high frequencies 
of an electron flow with a Maxwellian distribution of velocities, one 

might think there could be no very satisfactory calculation of the noise figure 
of traveling-wave tubes. Various approximate calculations can be made, 
and two of these will be discussed here. Experience indicates that the second 
and more elaborate of these is fairly well founded. In each case, an approxi- 
mation is made in which the actual multi-velocity electron current is re- 
placed by a current of electrons having a single velocity at a given point but 
having a mean square fluctuation of velocity or current equal to a mean 
square fluctuation characteristic of the multi-velocity flow. 

In one sort of calculation, it is assumed that the noise is due to a current 
fluctuation equal to that of shot noise (equation (10.1)) in the current enter- 
ing the circuit. For zero loss, an electron velocity equal to the phase velocity 
of the circuit and no space charge, this leads to an expression for noise figure 
(10.5), which contains a term proportional to beam voltage Vo times the 
gain parameter C. One can, if he wishes, add a space-charge noise reduction 
factor multiplying the term 80 VqC. This approach indicates that the voltage 
and the gain per wavelength should be reduced in order to improve the noise 
figure. 

In another approach, equations applying to single-valued-velocity flow 
between parallel planes are assumed to apply from the cathode to the cir- 
cuit, and the fluctuations in the actual multi-velocity stream are repre- 
sented by fluctuations in current and velocity at the cathode surface. It is 
found that for space-charge-limited emission the current fluctuation has no 
effect, and so all the noise can be expressed in terms of fluctuations in the 
velocity of emission of electrons. 

For a special case, that of a gun with an anode at circuit potential Vo, 
a cathode-anode transit angle di, and an anode-circuit transit angle d*, an 
expression for noise figure (10.28) is obtained. This expression can be re- 
written in terms of a parameter L which is a function of P 

f= i + (i)(4-^)(rc/r)(i/c)L 

p = (di- e2)c 

426 
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Formally, F can be minimized by choosing the proper value of P. In Fig. 
10.3, the minimum value of L, Lm , is plotted vs. the velocity parameter b 
for zero loss and zero space charge (d = QC = 0). The corresponding value 
of P, Pm , is also shown. 

P is a function of the cathode-anode transit angle 0i, which cannot be 
varied without changing the current density and hence C, and of anode- 
circuit transit angle £> , which can be given any value. Thus, P can be made 
very small if one wishes, but it cannot be made indefinitely large, and it is 
not clear that P can always be made equal to Pm . On the other hand, these 
expressions have been worked out for a rather limited case: an anode po- 
tential equal to circuit potential, and no a-c space charge. It is possible 
that an optimization with respect to gun anode potential and space charge 
parameter QC would predict even lower noise figures, and perhaps at attain- 
able values of the parameters. 

In an actual tube there are, of course, sources of noise which have been 
neglected. Experimental work indicates that partition noise is very im- 
portant and must be taken into account. 

10.1 Shot Noise in the Injected Current 

A stream of electrons emitted from a temperature-limited cathode has a 
mean square fluctuation in convection current i\ 

i\ = IcIqBq (10.1) 

Here e is the charge on an electron, h is the average or d-c current and R is 

the bandwidth in which the frequencies of the current components whose 
mean square value is i\ lie. Suppose this fluctuation in the beam current of 
a traveling-wave tube were the sole cause of an increasing wave 
(y = v = 0). Then, from (9.4) the mean square value of that increasing 
wave,, V-w would be 

El = {%eBVoCf/Io) | Mi |2 | (1 - 52/5i)(1 - ^A) f2 (10.2) 

Now, suppose we have an additional noise source: thermal noise voltage 
applied to the circuit. If the helix is matched to a source of temperature T, 
the thermal noise power Pt drawn from the source is 

Pt = kTB (10.3) 

Here k is Boltzman's constant, T is temperature in degrees Kelvin and, as 
before, B is bandwidth in cycles. If Kc is the longitudinal impedance of the 

circuit the mean square noise voltage V] associated with the circuit will be 

V] = kTBKc (10.4) 
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and the component of increasing wave excited by this voltage, Vu , will be, 
from (9.4), 

IT, = kTBKc | (1 - (52/(5i)(1 - Mi) | -2 (10.5) 

The noise figure of an amplifier is defined as the ratio of the total noise 
output power to the noise output power attributable to thermal noise at the 
input alone. We will regard the mean-square value of the initial voltage Vi 
of the increasing wave as a measure of noise output. This will be substantially 
true if the signal becomes large prior to the introduction of further noise. 
For example, it will be substantially true in a tube with a severed helix if 
the helix is cut at a point where the increasing wave has grown large com- 
pared with the original fluctuations in the electron stream which set it up. 

Under these circumstances, the noise figure F will be given by 

f = oT + TTvTT) 

F = 1 + {e/ kT){%V oC4/ To A',) | 525312 (10.3) 

Now we have from Chapter II that 

C3 = hKt/AV0 

whence 

F = 1 + 2{eV0/kT)C | 8283 |2 (10.4) 

The standard reference temperature is 290oiC Let us assume b = d — 
QC = 0. For this case we have found | 60 | = | ^3 ( = 1. Thus, for these as- 
sumptions we find 

F = 1 -f 8OF0C (10.5) 

A typical value of Vo is 1,600 volts; a typical value of C is .025. For these 
values 

F = 3,201 

In db this is a noise of 35 db. 
This is not far from the noise figure of traveling-wave tubes when the 

cathode temperature is lowered so as to give temperature-limited emission. 
The noise figure of traveling-wave tubes in which the cathode is at normal op- 
erating temperature and is active, so that emission is limited by space-charge, 
can be considerably lower. In endeavoring to calculate the noise figure for 
space-charge-limited electron flow from the cathode we must proceed in a 
somewhat different manner. 
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10.2 The Diode Equations 

Llewellyn and Peterson1 have published a set of equations governing the 
behavior of parallel plane diodes with a single-valued electron velocity. 
They sum up the behavior of such a diode in terms of nine coefficients .4 *-/*, 
in the following equations 

Vb- Va = A* I + B*qa A- C*Va 

^ = D* j + E* qa+ F*Va 

vb = G* 1 + H* qa + I*Va 

VOLTAGE DIFFERENCE 
(Vb-Va) 

CURRENT DENSITY 
1D + I 

(10.6) 

(10.7) 

(10.8) 

INPUT CONVECTION 
CURRENT DENSITY 

Id+ Qa 

INPUT VELOCITY 
Ua+Vg 

OUTPUT CONVECTION 
CURRENT DENSITY 

lo + Qb 

OUTPUT VELOCITY 
Ub +Vb 

Fig. 10.1—Parallel electron flow between two planes a and b normal to the flow, show- 
ing the currents, velocities and voltages. 

These equations and the values of the various coefficients in terms of cur- 
rent, electron velocity and transit angle are given in Appendix V. The diode 
structure to which they apply is indicated in Fig. 10.1. Electrons enter nor- 
mal to the left plane and pass out at the right plane. The various quantities 
involved are transit angle between the two planes and: 

/„ d-c current density to left 
/ a-c current density to left 
qn a-c convection current density to left at input plane a 
qi, a-c convection current density to left at output plane b 
ua d-c velocity to right at plane a 
Ub d-c velocity to right at plane b 
va a-c velocity to right at plane a 
vb a-c velocity to right at plane b 
Vb-Va a-c potential difference between plane b and plane a 
1 F. B. Llewellyn and L. C. Peterson, "Vacuum Tube Networks," Proc. I.R.E., Vol. 

32, pp. 144-166, March, 1944. 
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We will notice that I and the g's are current densities and that, contrary 
to the convention we have used, they are taken as positive to the left. Thus, 
if the area is cr, we would write the output convection current; as 

i = —aqb 

where qb is the convection current density used in (10.6)-(10.8). 
Peterson has used (10.6)-(10.8) in calculating noise figure by replacing 

the actual multi-velocity flow from the cathode by a single-velocity flow 
with the same mean square fluctuation in velocity, namely,2 

v] = (4 - ir)r} (kTc/I0)B (10.9) 

Here Tc is the cathode temperature in degrees Kelvin and /o is the cathode 
current. 

Whatever the justification for such a procedure, Rack3 has shown that it 
gives a satisfactory result at low frequencies, and unpublished work by 
Cutler and Quate indicates surprisingly good quantitative agreement under 
conditions of long transit angle at 4,000 mc. 

We must remember, however, that the available values of the coeffi- 
cients of (10.6)-(10.8) are for a broad electron beam in which there are 
a-c fields in the z direction only. Now, the electron beam in the gun of a 
traveling-wave tube is ordinarily rather narrow. While the a-c fields may 
be substantially in the 2-direction near the cathode, this is certainly not 
true throughout the whole cathode-anode space. Thus, the coefficients 
used in (10.6)-(10.8) are certainly somewhat in error when applied to 
traveling-wave tube guns. 

Various plausible efforts can be made to amend this situation, as, by 
saying that the latter part of the beam in the gun acts as a drift region in 
which the electron velocities are not changed by space-charge fields. How- 
ever, when one starts such patching, he does not know where to stop. In 
the light of available knowledge, it seems best to use the coefficients as they 
stand for the cathode-anode region of the gun. 

Let us then consider the electron gun of the traveling-wave tube to form 
a space-charge limited diode which is short-circuited at high frequencies. 

If we assume complete space charge (space-charge limited emission) 
and take the electron velocity at the cathode to be zero, we find that the 
quantities multiplying qa in (10.6)-(10.8) are zero. 

B* = E* = H* = 0* (10.10) 
2 L. C. Peterson, "Space-Charge and Transit-Time Effects on Signal and Noise in Mi- 

crowave Tetrodes," Proc. I.R.E., Vol. 35, pp. 1264-1272, November, 1947. 3 A. J. Rack, "Effect of Space Charge and Transit Time on the Shot Noise in Diodes," 
Bell System Technical Journal, Vol. 17, pp. 592-619, October, 1938. 
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Accordingly, the magnitude of the noise convection current at the cathode 
does not matter. If we assume that the gun is a short-circuited diode as far 
as r-f goes 

Vb — Va = 0 (10-11) 

Then from (10.6), (10.10) and (10.11) we obtain 

(10.12) C* 

« r- » D" C 
F A* 

< 1.5 

a 1.0 

0.5 
* r* G* C -- n- I A 

5 TT 4 77 377 277 \TT 

Fig. 10.2—Some expressions useful in noise calculations, showing how they approach 
unity at large transit angles. 

Accordingly, from (10.7) and (10.8) we obtain 

^ - (i - 

In Fig. 10.2, | 1 - D*C*/F*A* \ and j 1 - G*C*/I*A* | are plotted 
vs 0, the transit angle. We see that for transit angles greater than about 
Stt these quantities differ negligibly from unity, and we may write 

(10.15) 

(10.13) 

(10.14) 

qb = F*Va 

Vh - I*Va 

More specilically, we find 

Qb - 
vaIn jSie 

Ub 

Vb = —VaC .-^1 

(10.16) 

(10.17) 

(10.18) 



432 BELL SYSTEM TECHNICAL JOURNAL 

Here /Ji is j times the transit angle in radians from cathode to anode. For 
va we use a velocity fluctuation with the mean-square value given by (10.9). 

Suppose now that there is a constant-potential drift space following the 
diode anode, of length pi/j in radians. If we apply (10.6)-(10.8) and assume 
that the space-charge is small and the transit angle long, we find that q'b, 
the value of qb at the end of this drift space, is given in terms of qa and va , 
the values at the beginning of this drift space, by 

q'b = (q'a + {h/nb)Piv'a)e~f>- (10.19) 

The case of v'b, the velocity at the end of this drift space, is a little dif- 
ferent. The first term on the right of (10.8) can be shown to be negligible 
for long transit angles and small space charge. The last term on the right 
represents the purely kinematic bunching. For the assumption of small 
space charge the middle term gives not zero but a first approximation of a 
space-charge effect, assuming that all the space-charge field acts longitu- 
dinally. Thus, this middle term gives an overestimate of the effect of space- 
charge in a narrow, high-velocity beam. If we include both terms, we ob- 
tain 

v'b = Htq'a + e-Wa (10.20) 

Here the term on the right is the purely kinematic term.* 
Now, the current from the gun is assumed to go into the drift space, 

so that qa is qb from (10.17) and va is va from (10.18). The d-c velocity at 
the gun anode and throughout the drift space are both given by Ub. If 
we make these substitutions in (10.19) and (10.20) we obtain 

g'b = (/./«t)03i - (10.21) 

= - (2 ll + >) (10-22) 

The term in (10.22) is the "space-charge" term. We will in the fol- 
lowing analysis omit this, making the same sort of error we do in neglecting 
space charge in the traveling-wave section of the tube. If space charge in 
the drift space is to be taken into account, it is much better to proceed as 
in 9.7. 

From the drift-space the current goes into the helix. It is now necessary 
to change to the notation we have used in connection with the traveling- 
wave tube. The chief difference is that we have taken currents as positive 
to the right, but allowed /o to be the d-c current to the left. If i and v are 

* The first term has been written as shown because it is easiest to use the small space- 
charge value of H* for the drift region (Hf) in connection with the space-charge limited 
value of F* for the cathode-anode region rather than in connection with (10.17). 
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our a-c convection current and velocity at the beginning of the helix, and 
To and «o the d-c beam current and velocity, and <t the area of the beam, 

i — — aQb 

v — Vb 

lo = ah 

Wo = «o 

In addition, we will use transit angles 0i and 6-> in place of Pi and $2 

Pi = Pi 

(10.23) 

(10.24) 
02 = p2 

We then obtain from (10.21) and (10.22) 

q = -ph/uom - 92)e-m+e2)va (10.25) 

= -e-Wi+9*\,a (10.26) 

10.3 Overall Noise Figure 

We are now in a position to use (9.4) in obtaining the overall noise figure. 
We have already assumed that the space-charge is small in the drift space 
between the gun anode and the helix (QC = 0). If we continue to assume 
this in connection with (9.4), the only voltage is the helix voltage and for 
the noise caused by the velocity fluctuation at the cathode, iv,, F = 0 at 
the beginning of the helix. Thus, the mean square initial noise voltage of 
the increasing wave, VI,, will be, from (10.21), (10.22), (9.4) and (10.9), 

V\s = (2(4 - ir)kTcCBVo/h)\ SMOi - ^)C + (8, + 53) |2 

(10.27) 
| (1 - 52/5.)(l - h/di) r 

As before, we have, from the thermal noise input to the helix 

TT, = kTBKf\ (1 - Mi)(l - Mi) r (10-5) 

and the noise figure becomes 

f = 1 + K/vT. 

F = 1 + (1/2)(4 - Tr)(Te/T)(\/C)\ 8MO1 - 92)C + (52 + 53) |2 (10.28) 

Here use has been made of the fact that 

C = AV/4Fo 
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Let us investigate this for the case b = d = D (we have already assumed 
QC = 0). In this case 

^2 = \/3/2 - yi/2 

^3 = j 

and we obtain 

F = 1 + (l/2)(4 - x)(n/n(l/C)| (F/2 -\/3/2) 
(10.29 

- i(ViP/2 - 1/2) I1 

P = (0! - 02)C (10.30) 

For a given gun transit-angle di, the parameter P can be given values 
ranging from Q\C to large negative values by increasing the drift angle 
02 between the gun anode and the beginning of the helix. 

We see that 

F = 1 + (l/2)(4 - TrKTVrKl/CKF2 - VtP + 1) (10.31) 

The minimum value of (F2 — \/3>P +1) occurs when 

p = y/3/2 (10.32) 

if the product of the gun transit angle and C is large enough, this can be 
attained. The corresponding value of (F2 — \/3F + 1) is and the cor- 
responding noise figure is 

F = 1 + (1/2)(1 - 7r/4)(rc/r)(l/C) (10.33) 

A typical value for Fc is 1020°/^, and for a reference temperature of 290o/C, 

Tc/T = 3.5 

A typical value of C is .025. For these values 

F = 17 

or a noise figure of 12 db. 
Let us consider cases for no attenuation or space-charge but for other 

electron velocities. In this case we write, as before 

$2 = *2 + jyi 

8* = X3+ jy* 

Let us write, for convenience, 

L = | MgF + Si + 0212 (10.34) 
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Then we find that 

L = [(.V2.V3)2 + Cv^a)2 + (^XVa)2 + OaVs)2]/52 

+ 2[x-i(yl + .V2) + x^xl + ys)]? 

+ (x^ + xg)2 +(y2 + ytf 

This has a minimum value for P = Pm 

— [a:3(-V2 + ^2) + ^2(^3 + ya)] 

(10.35) 

(10.36) 
(X2X3)2 + (yzya)2 + (-^2 yz)2 + (^s^)2 

We note that, as we are not dealing with the increasing wave, .12 and *3 

1.0 
0.8 
0.6 
0.4 

0 2 

0.1 
0.08 
0.06 

  PM 1 1 1 . 
1 

....
. 

1 1 1 

- 

/ f 

/ 
/ / 

V \ \ 
V 
\ 

—L — 

Fig. 10.3—According to the theory presented, the overall noise figure of a tube with a 
lossless helix and no space charge is proportional to L. Here we have a minimum value 
of Lm , minimized with respect to P, which is dependent on gun transit angle, and also 
the corresponding value of P, Pm . According to this curve, the optimum noise figure 
should be lowest for low electron velocities (low values of b). It may, however, be impos- 
sible to make P equal to Pm . 

must be either negative or zero, and hence Pm is always positive. For no 
space-charge and no attenuation, .T3 is zero for all values of b and 

-*2 
Pm — 2 1 2 

yi + *2 

From (10.36) and (10.35), the minimum value of L, Lm , is 

Lm = (xz + ^3)" + (y2 + ys)' 

 Ixiiy'o + .T?) + Xijxl + ys)]" 
{xiXzY + (y2y3)2 + (-*2 ys)2 + (-vsys)2 

When ^3 = 0, as in (10.37) 

Ln, = ^2 + y2 + 2y2 ys + 
2 2 

y2y3 
2 1 2 

£2 + y2 

(10.37) 

(10.38) 

(10.39) 
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In Fig. 10.3, Pm and Lm are plotted vs b for no attenuation {d = 0). We 
see that Pm becomes very small as b approaches (3/2)2l/3, the value at which 
the increasing wave disappears. 

If space charge is to be taken into account, it should be taken into account 
both in the drift space between anode and helix and in the helix itself. In 
the helix we can express the effect of space-charge by means of the parameter 
QC and boundary conditions can be fitted as in Chapter IX. The drift 
space can be dealt with as in Section 9.7 of Chapter IX. The inclusion of 
the effect of space-charge by this means will of course considerably com- 
plicate the analysis, especially if 6 5^ 0. 

While working with Field at Stanford, Dr. C. F. Quate extended the 
theory presented here to include the effect of all three waves in the case of 
low gain, and to include the effect of a fractional component of beam cur- 
rent having pure shot noise, which might arise through failure of space- 
charge reduction of noise toward the edge of the cathode. His extended 
theory agreed to an encouraging extent with his experimental results. 
Subsequent unpublished work carried out at these Laboratories by Cutler 
and Quate indicates a surprisingly good agreement between calculations 
of this sort and observed noise current, and emphasizes the importance of 
properly including both partition noise and space charge in predicting noise 
figure. 

10.4 Other Noise Considerations 

Space-charge reduction of noise is a cooperative phenomenon of the whole 
electron beam. If some electrons are eliminated, as by a grid, additional 
"partition" noise is introduced. Peterson shows how to take this into 
account.2 

An electron may be ineffective in a traveling-wave tube not only by being 
lost but by entering the circuit near the axis where the r-f field is weak 
rather than near the edge where the r-f field is high. Partition noise arises 
because sidewise components of thermal velocity cause a fluctuation in the 
amount of current striking a grid or other intercepting circuit. If such side- 
wise components of velocity appreciably alter electron position in the helix, 
a noise analogous to partition noise may arise even if no electrons actually 
strike the helix. Such a noise will also occur if the "counteracting pulses" 
of low-charge density which are assumed to smooth out the electron flow 
are broad transverse to the beam. 

These considerations lead to some maxims in connection with low-noise 
traveling-wave tubes; (1) do not allow electrons to be intercepted by various 
electrodes (2) if practical, make sure that /o03r) is reasonably constant over 
the beam, and/or (3) provide a very strong magnetic focusing field, so that 
electrons cannot move appreciably transversely. 
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10.5 Noise in Transverse-Field Tubes 

Traveling-wave tubes can be made in which there is no longitudinal field 
component at the nominal beam position. One can argue that, if a narrow, 
well-collimated beam is used in such a tube, the noise current in the beam 
can induce little noise signal in the circuit (none at all for a beam of zero 
thickness with no sidewise motion). Thus, the idea of using a transverse- 
field tube as a low-noise tube is attractive. So far, no experimental results 
on such tubes have been announced. 

A brief analysis of transverse-field tubes is given in Chapter XIII. 



CHAPTER XI 

BACKWARD WAVES 

WE NOTED IN CHAPTER IV that, in filter-type circuits, there is an 
infinite number of spatial harmonics which travel in both directions. 

Usually, in a tube which is designed to make use of a given forward com- 
ponent the velocity of other forward components is enough different from 
that of the component chosen to avoid any appreciable interaction with the 
electron stream. It may well be, however, that a backward-traveling com- 
ponent has almost the same speed as a forward-traveling component. 

Suppose, for instance, that a tube is designed to make use of a given 
forward-traveling component of a forward wave. Suppose that there is a 
forward-traveling component of a backward wave, and this forward-travel- 
ing component is also near synchronism with the electrons. Does this mean 
that under these circumstances both the backward-traveling and the for- 
ward-traveling waves will be amplified? 

The question is essentially that of the interaction of an electron stream 
with a circuit in which the phase velocity is in step with the electrons but 
the group velocity and the energy flow are in a direction contrary to that of 
electron motion. 

We can most easily evaluate such a situation by considering a distributed 
circuit for which this is true. Such a circuit is shown in Fig. 11.1. Here the 
series reactance X per unit length is negative as compared with the more 
usual circuit of Fig. 11.2. In the circuit of Fig. 11.2, the phase shift is 0° 
per section at zero frequency and assumes positive values as the frequency 
is increased. In the circuit of Fig. 11.1 the phase shift is —180° per section 
at a lower cutoff frequency and approaches 0° per section as the frequency 
approaches infinity. 

Suppose we consider the equations of Chapter II. In (2.9) we chose the 
sign of X in such a manner as to make the series reactance positive, as in 
Fig. 11.2, rather than negative, as in Fig. 11.1. All the other equations apply 
equally well to either circuit. Thus, for the circuit of Fig. 11.1, we have, in- 
stead of (2.10), 

F = (lU) 

The sign is changed in the circuit equation relating the convection current 
and the voltage. Similarly, we can modify the equations of Chapter VII, 

438 
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(7.9) and (7.12), by changing the sign of the left-hand side. From Chapter 
VIII, the equation for a lossless circuit with no space charge is 

5-(5 + jb) = -j (8.1) 

The corresponding modification is to change the sign preceding 62, giving 

b^+jb) = +j (11.2) 

i K i K H( i IH 

... -i r j TT- 
Fig. 11.1 Fig. 11.2 

Fig. 11.1—A circuit with a negative phase velocity. The electrons can be in synchron- 
ism with the field only if they travel in a direction opposite to that of electromagnetic 
energy flow. 

Fig. 11.2—A circuit with a positive phase velocity. 

2,5 

2.0 

0 5 

-4 

Fig. 11.3—Suppose we have a tube with a circuit such as that of Fig. 11.1, in which 
the circuit energy is really flowing in the opposite direction from the electron motion. 
Here, for QC = d = Q, we have the ratio of the magnitude of the voltage Vz a distance 
z from the point of injection of electrons to the magnitude of the voltage V at the point 
of injection of electrons. Vz is really the input voltage, and there will be gain at values of 
b for which | Vz/V ! < 1. 

In (11.2), h and 5 have the usual meaning in terms of electron velocity and 
propagation constant. 

Now consider the equation 

b-{b - jk) = j (11.3) 

Equations (11.2) and (8.1) apply to different systems. We have solutions 
of (8.1) and we want solutions of (11.2). We see that a solution of (11.2) 
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is a solution of (11.3) for k = —b. We see that a solution of (11.3) is the con- 
jugate of a solution of (8.1) if we put b in (8.1) equal to k in (11.3). Thus, a 
solution of (11.2) is the conjugate of a solution of (8.1) in which b in (8.1) 
is made the negative of the value of b for which it is desired to solve (11.2). 

We can use the solutions of Fig. 8.1 in connection with the circuit of 
Fig. 11.1 in the following way: wherever in Fig. 8.1 we see b, we write in 
instead —b, and wherever we see yj, yz or ys we write in instead — yi, 
—y* or —ys • 

Thus, for synchronous velocity, we have 

5! = V3/2+jy2 

52= -a/3/2+7^ 

53 = —j 

We can determine what will happen in a physical case only by fitting 
boundary conditions so that at 2 = 0 the electron stream, as it must, enters 
unmodulated. 

Let us, for convenience, write $ for the quantity fiCz 

pCz = 4> (11.4) 

We will have for the total voltage Vz at z in terms of the voltage F at 2 = 0 

V. = - V«(l - 

+ [(i - {./{,)(! - (11.5) 

+ [{! - «,/«,)(! - 

We must remember that in using values from an unaltered Fig. 8.1 we use 
in the 5's and as the y's the negative of the y's shown in the figure (the sign 
of the ^'s is unchanged), and for a given value of b we enter Fig. 8.1 at —b. 

In Fig. 11.3, | Vz/V | has been plotted vs A for $ = 2. We see that, for 
several values of b, \Vz \ (the input voltage) is less than | V 1 (the output 
voltage) and hence there can be "backward" gain. 

We note that as 4? is made very large, the wave which increases with 
increasing $ will eventually predominate, and | Vz | will be greater than 
| V |. "Backward gain" occurs not through a "growing wave" but rather 
through a sort of interference between wave components, as exhibited in 
Fig. 11.3. 

Fig. 11.3 is for a lossless circuit; the presence of circuit attenuation would 
alter the situation somewhat. 
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EVALUATION OF SPACE—CHARGE PARAMETER Q 

Consider the system consisting of a conducting cylinder of radius a and 
an internal cylinder of current of radius Ui with a current 

• jut —Tz /1 ^ u e . (U 

Let subscript 1 refer to inside and 2 to outside. We will assume magnetic 
fields of the form 

iGi = Ahiyr) (2) 

H ^ 2 = Bh{yr) + CK^yr) • (3) 

From Maxwell's equations we have, 

d 

Now 

(jHif) = juerEz + rJz (4) 
dr 

I- (./.(=)) = (5) 
OZ 

1 (zKM) = (6) 
dz 

Hence 

Ezi = AIo{yr) ' (7) 
we 

£22 = zJl {BUyr) - CKoiyr)) (8) 
coe 

at r = a, E^ = 0 

C = B r ( Eo{ya 

at r = ai, Ezi = Ez2 

AIo{yai) = B (ln{yai) — ^ Koiyai) 
\ Ko{ya) 

/ Foiya) KQiyai)\ 
A ' *\L KM /o(t«I) / 

C = B (9) 

(10) 

441 
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In going across boundary, we integrate (4) over the infinitesimal radial 
distance which the current is assumed to occupy 

rdHv — rJdr 

lirrjdr = i 

rjdr "■ 2r 

(11) 

Thus 

B hiyai) + 

dH„ = 
2irr lira, ^l)"1 (12) 

B = 

B = 

hiya) 
Ko(ya) 

hiya) 

Kiiya,) - hiya,) ( 1 - h{y 
Ko{y 

o)A^o(7ai)\~| __ 
ya)Io(yai)Jj lira. 

r- ( \ , h{ya) A0(7^1) , s. 
o 1F1—\ Ai^ai} + r=r-.—r —r hyyai) lira, Lac(7«) Ao(7a) h{ya,) 

Kaiya) fAi^ai) . K^ya,)^'1 

lira, h(ya)I]{yai) 

at r = Oj 

Art — £r2 — 

Now 

-?T 
ate 

_/)(70,) /o(7«i) _ 

i \ Koiya) hiya,) 
lira,/ h{ya) I^ya,) 

A _ h{ya) A'o(7Qx)\ 
\ Kr{ya) /o(7«i)/ 

AxOyai) A'o(7ax) 
_/i(70i) /o(7fli) _ 

1 _ VmA _ 377 
& ^0 

Hence 

I&V = E2 = j - IQ{yai)G{ya, 701)7' 
po 

^ ^ ^ I2o{ya\)G{ya, yai)q 

G(7a,7fll)-6or«-^ 
L/O(70I) /o(Xfl 

(7a) 
)_ 

In obtaining this form, use was made of the fact that 

(13) 

(14) 

(15) 

(16) 

(17) 

K,{z)h{z) + A'o(z)/i(z) = - 
z 
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Now 

0 =  &  (18) 
^ coCxiEt/^F) 

where (Er/p-P) is the value of this quantity at r = Oi. In order to evaluate 
Q we note that 

V = _iLi = zlMi 
CoCl uCl 

£ " 7 = (jO 0) /2'(m)G(7a'7'") 

At a radius Oi 

Hence 

(20) 

4=©(l)!/S(WG(wTfl,) 

On the axis, (E2/l3-F) has a value {E2/p-F)o 

= © © FJ(a) (21) 

{E?/ft2F) = (j^j F3(ya)lliyai) (22) 

(23) 
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DIODE EQUATIONS 

FROM LLEWELLYN AND PETERSON 

These apply to electrons injected into a space between two planes a and 
b normal to the x direction. Plan b is in the +.v direction from plane a. 
Current density I and convection current q are positive in the —x direction. 
The d-c velocities , Ub and the a-c velocities va , Vb are in the direction. 
T is the transit time. The notation in this appendix should not be con- 
fused with that used in other parts of this book. It was felt that it would 
be confusing to change the notation in Llewellyn's and Peterson's1 well- 
known equations. 

Table I 

Electronics Equations 

Numerics Employed: 

^ = 107 - = 1.77 X 1015, e = l/(367r X 1011) - = 2 X 1028 

m t 

Direct-Current Equations: 

Potential-velocity: i}Vd = (1/2)m2 (1) 

Space-charge-factor definition: f = 3(1 — Tq/T) 

Distance: x = (1 — f/3)(«a + u^T/l ' (2) 

Current density: (q/cj/o = («„ + 

Space-charge ratio: Id/= (9/4)f(l — f/3)2 (3) 

Limiting-current density: 

T = (V^"a + VVMY U) 
106 x2 

Alternating-Current Equations: 
Symbols employed: 

(3 = id, 6 = uT, i = v7--! 
1 F. B. Llewellyn and L. C. Peterson "Vacuum Tube Networks," Proc. I.R.E., vol. 32. 

pp. 144-166, March, 1944. 

444 
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/35 

^2-2^-^-^^-6+l2-iO + 180 

General equations for alternating current 
q = alternating conduction-current density 
v = alternating velocity 

Vb- Va = A*I + B*qa + C*va 

qb = D*I + E*qa + F*va > 

vb = G*I + H*qa + I*Va. 

Table II 

Values of Alternating-Current Coefficients 

1 T2 1 

(5) 

A* = - Ua + nb € / P 
E* = — {lib — f («a + Uh)\e 

lib 

[■-K-fl 
F 

i r 
73* = - ^ " /3()) - ubF 

e p3 

+ f(Ma + Hh)P] 

C* = -- 2f(M„ + «&) ^ 
)? P" 

= e 2f («„ + Mt) q-v 
~ v T2 iib 

G* = - - ^ 7 M.P - PQ) 
e /33 nb 

— MaP + f(«0 -f Ub)P\ 

H* — — 
1 2 lib 

D* = 2f («a + «&) ^ 
«6 /32 

(1 - f) 

-a /* = _ [;<a — f(W(1 + 7<6)]g 
lib 

Complete space-charge, f = 1. 

/I* = - («a + lib) 
3/3 V /3 / 

P* = - S ".(2P - W) e /33 
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C* — — - («„ + lib) 
P V 

D* = 2 {Ua + «&) P 
M P2 

E* = - - e~p 

lib 

F* = ~ — (na 8e~^ 
V T2 i"b) 

G* = - - 5 (2P - "0 e (3* 

H* = 0 

I* = -e-& 



APPENDIX VI 

EVALUATION OF IMPEDANCE AND Q FOR 
THIN AND SOLID BEAMS1 

Let as first consider a thin beam whose breadth is small enough so that 
the field acting on the electrons is essentially constant. The normal mode 
solutions obtained in Chapters VI and VII apply only to this case. The more 
practical situation of a thick beam will be considered later. The normal mode 
method consists of simultaneously solving two equations, one relating the 
r-f field produced on the circuit by an impressed r-f current from the electron 
stream and the other relating r-f current produced in the electron stream by 
an impressed r-f field from the circuit. 

We have the circuit equation 

£=_[i|^s + ^]i (1) 

and the electronic equation 

To & J 

h E (2) 
(i/3e - ry 2Vq 

The solution of these two equations gives V in terms of To, K, and Q, which 
must be evaluated separately for the particular circuit being considered. 

The field solution is obtained by solving the field equations in various 
regions and appropriately matching at the boundaries. For a hollow beam of 
electrons of radius b traveling in the z direction inside a helix of radius a and 

pitch angle \f/, the matching consists of finding the admittances inside 

and outside the beam and setting the difference equal to the admittance of 
the beam. Thus the admittance just outside the beam for an idealized helix 
will be- 

_ _ ■ we hiyb) — 8Ki{yb) , s 
° E.0 

J y I,{yb) + SKo(yb) ' 
1 This appendix is taken from R. C. Fletcher, "Helix Parameters in Traveling-Wave 

Tube Theory," Proc. I.R.E., Vol. 38, pp. 413-417 (1950). 2 L. f. Chu and J. D. Jackson, "Field Theory of Traveling-Wave Tubes," I.R.E., 
Proc., Vol. 36, pp. 853-863, July, 1948. 

0. E. H. Rydbeck, "Theory of the Traveling-Wave Tube," Ericsson Technics, No. 46 
pp. 3-18, 1948. 

447 
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where 

5 = 
Klin a) ((^0a ya ~ foiyajKoiya)^ , 

,2 2 io = W lie, 

and 

72 = - r2 - /3o . 

(The 7's and A''s are modified Bessel functions). The admittance inside the 
beam is 

V = 11 y = i— 71 ^ (4) 
' 7 /o(76) • 

i 
Boundary conditions require that £zo = EZi — Ez and i7zo — 77zi = . 

Combining the boundary conditions, we see that 

Y°-¥' = irih (5) 

where the ratio of — is given by (2). Thus the field method gives two equa- 

tions which are equivalent to the circuit and electronic equations of the 
normal mode method. 

A6.1 Normal Mode Parameters for Thin Beam 

The constants appearing in eq. (1) can be evaluated by equating the cir- 
cuit equation (1) to the circuit equation (5). Thus if Yc = To — Yi, 

T2T0K 2jQKT* _J_ 
r2-i1 & + 2*7 IV U 

The constants can be obtained by expanding each side of eq. (6) in terms of 
the zero and pole occurring in the vicinity of To. Thus if 70 and 7p are the 
zero and pole of Yc, respectively, 

Fc^_(7p_70)(^) (7) 
\ dy A=ro \7 - 7p/ 

and the two sides of eq. (6) will be equivalent if 

rl=-yl-ti, (8) 
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and 

^ + |) (^)_d. (10) 

7n and yv can be obtained from eqs. (3) and (4) through the implicit equations 

ro i <f,\- ( \2\ (da cot <V) = (too) 77  x, (H) I^yo a)Ki{yoa) 

hiypb) 1 

Kc{ypb) K'-0{ypa) 

do a cot j^ypa)x1{ypa) - h{ypa)KQ{ypa) 
, ypa / [c ypa 

and 1/Ai is found to be 

1 _ /e" /. , doV'2 /o(7oQ) A(toa) _ hiyoa) 
K ^ r u \ 7n/ bl{yob) Koiyoa) _/o(7oa) hijod) 

(12) 

#0(70 a) _ Ki(yo a) _4_ 
K^yoa) Ko{yoa) 70 " .]■ 

(13) 

The equations for 70 and K are the same as those given by Appendix II, 
evaluated by solving the field equations for the helix without electrons pres- 
ent. The evaluation of 7p , and thus Q, represents a new contribution. Values 

of (}- (l + —°) are plotted in Fig. A6.1 as a function of 70a for various 
&e \ To/ 

ratios of b/a. (It should be noted that for most practical applications the 

1 -|- P? ) is very close to unity, so that the ordinate is prac- 
76/ 

tically the value of Q itself.) 
Appendix IV gives a method for estimating Q based on the solution of 

the field equations for a conductor replacing the helix and considering the 

resultant field to be — j. This estimate of Q is plotted as the dashed 
Pe 

lines of Fig. A6.1. 

A6.2 Thick Beam Case 

For an electron beam which entirely fills the space out to the radius b, 
the electronic equations of both the normal mode method and the field 
method are altered in such a way as to considerably complicate the solution. 
In order to find a solution for this case some simplifying assumptions must 
be made. A convenient type of assumption is to replace the thick beam by 
an "equivalent" thin beam, for which the solutions have already been 
worked out. 
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Two beams will be equivalent if the value of is the same outside the 

beams, since the matching to the circuit depends only on this admittance. 

1000 
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+ 10 
R 
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y. 1.0 
z: 0,6 
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0.1 

Fig. A6.1—Passive mode parameter Q for a hollow beam of electrons of radius b inside 
a helix of radius a and natural propagation constant 70. The solid line was obtained by 
equating the circuit equation of the normal mode method, which defines Q, with a cor- 
responding circuit equation found from the field theory method. The dashed line was 
obtained in Appendix IV from a solution of the field equations for a conductor replacing 
the helix. 

The problem, then, of making a thin beam the equivalent of a thick beam 
is the problem of arranging the position and current of a thin beam to give 
the same admittance at the radius b of the thick beam. This is of course 
impossible for all values of 7. It is desirable therefore that the admittances 
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be the same close to the complex values of 7 which will eventually solve 
the equations. 

The solution of the field equations for the solid beam yields the value for 

at the radius b as 
E, 

IIv _ jue nhinyh) , ^ 
Ez 7 h{nyb) ' 

where 

2   1 I f , /M /o ^ 
n " + /3o Te IvV- Fo (jP, -Vy 

Thus the electronic equation for the solid beam which must be solved simul- 
taneously with the circuit equation (given above by either the normal mode 
approximation or the field solution) must be 

_ Hv _ jueb f nhinyb) /i(7^)1 /1f-1 
" Ez 

11 yblhinyb) hiyb)]' K 0) 

Complex roots for 7 will be expected in the vicinity of real values of 7 

for which Ve » Yc and ^ ~ . By plotting Vc and Yc vs. real values of 
ay ay 

y, it is found that the two curves become tangent close to the value of 7 for 
which n = 0, using typical operating conditions (Fig. A6.2). Our procedure 
for choosing a hollow beam equivalent of the solid beam, then, will be to 

equate the values of Ye and at ;/ = 0. This will give us two equations 

from which to solve for the electron beam diameter and d-c current for the 
equivalent hollow beam. 

If the hollow beam is placed at the radius sb with a current of I In, the 
JJ 

value of -=r at the radius b gives the value for Yen as 
Ez 

Tr (By. 1 1 / - isllisyh) 

A 21.2 jif u\t ..2^ fKnisyb) Koiyb)!^'1 

■V-yb
I°(syb

)2
{l-n)lU^)--Uyf)\) " 

Equating this with eq. (16) at n = 0 yields the equation 

j-2e fo{sd) Lz^) + zwJ 

(17) 

(18) 
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7b 
Fig. A6.2—Electronic admittance Yc of a solid electron beam of radius b and circuit 

admittance Fc of a helix of radius a plotted vs. real values of the propagation constant 
7 in the vicinity of where j—e = ^—e where complex solutions for 7 are expected, for two 
typical sets of operating conditions. Plotted on the same graph is the electron admit- 
tance YeH for two equivalent hollow electron beams: the dashed curve (Fletcher) is matched 
to Ye at n = 0, while the dot-dashed curve (Pierce, Appendix IV) is matched at n = 1 
(off the graph). 
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where 6 = ycb and 7C is the value of 7 at « = 0; i.e. for ye y> ^0 

7C = /3C + A / — t /P R 
V e 2irb- Vo 

453 

(19) 

In the vicinity of n = 0, n varies very rapidly with 7, and hence matching 

is practically the same as matching . With this approximation 

eqs. (16) and (17) can be differentiated with respect to n and set equal at 
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Fig. A6.3—Parameters of the hollow electron beam which is matched to the solid 
electron beam of radius b and current /» at 7 = 7« /3,, where n = 0. sb is the radius 
and Ho is the current of the equivalent hollow beam. 

n = 0 to yield the second relation 

1 = fllmKse) \^ (20) 
/ L h{sd) h{e) J 

Equations (18) and (20) can then be solved to give the implicit equation 
for 5 as 

KoisQ) K,{e) , 1 

and the simpler equation for / 

hie) 21 {{e) 

t = i /ni(0) 

e- ilise) ' 

(21) 

(22) 
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s and / are plotted as a function of Q in Fig. A6.3. The value of YeH using 
these values of 5 and / is compared in Fig. A6.2 with Ye in the vicinity of 
where Yc is almost tangent to Fe for two typical sets of operating conditions. 
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Fig. A6.4—Passive mode parameter Q, for a solid beam of electrons of radius h inside 
a helix of radius a and natural propagation constant 70 , obtained from the equivalent 
hollow beam parameters of Fig. 3 taken at 7c = 70. All the normal mode solutions which 
have been found(2)' (3) for a hollow beam will be approximately valid for a solid beam if Q 
is replaced by Qs and K is replaced by Ks (Fig. 5). 

It is of course possible to pick other criteria for determining an "equiva- 
lent" hollow beam. In Chapter XIV, in essence, Yc and F,// were expanded 
in terms of (1 — n2) and the coefficients of the first two terms were equated. 
This has been done for the cylindrical beams, and the values of 5 and I found 
by this method determine values of Yen shown in Fig. A6.2. The greater 
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departure from the true curve of Ye would indicate that this approximation 
is not as good as that described above. 

It is now possible to find the values of Qs and Kg appropriate to the solid 
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\ 0.04 

0.02 

\ 0.01 

Fig. A6.S—Circuit impedance K, for a solid beam of electrons of radius b inside a helix 
of radius a and natural propagation constant 70, obtained from the equivalent hollow 

£2 (2), (3) 
beam parameters of Fig. 3 taken at y, = yo . K, should replace K = — in order 
for the normal mode solutions for a hollow beam to be applicable to a solid beam. 

beam. Thus if Q ^70 a, ^ and A a, ^ ^ are the values for the hollow beam 

calculated from eqs. (0), (12) and (Id), 

(23) Q, = (1 ( To a, s 
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and 

K3 = iK ^70 o, 5 ^ . (24) 

The t is placed in front of K in eq. (24) because IIq and K appear in the 
thin beam solutions only in the combination tl^K. Using tK instead of K 
allows us to use /„, the actual value of the current in the solid beam in the 

2\ 1/2 
1 + — 

and Ka . (1 + " are plotted vs. 70a inFigs. A6.4 andA6.5 for different 
70 \ 70-/ 

values of b/a and for values of I and 5 taken at ye = 70 . All the solutions 
obtained for the hollow beam will be valid for the solid beam if Qa and K, 
are substituted for Q and K. 
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HOW TO CALCULATE THE GAIN OF A 
TRAVELING-WAVE TUBE 

The gain calculation presented here neglects the effect at the output of 
all waves except the increasing wave. Thus, it can be expected to be ac- 
curate only for tubes with a considerable net gain. The gain is expressed 
in db as 

Here A represents an initial loss in setting up the increasing wave and BCN 
represents the gain of the increasing wave. 

We will modify (1) to take into account approximately the effect of the 
cold loss of L db in reducing the gain of the increasing wave by writing 

Here a is the fraction of the cold loss which should be subtracted from the 
gain of the increasing wave. This expression should hold even for moderately 
non-uniform loss (see Fig. 9.5). 

Thus, what we need to know to calculate the gain are the quantities 

A7.1 Cold Loss L dr 

The best way to get the cold loss L is to measure it. One must be sure that 
the loss measured is the loss of a wave traveling in the circuit and not loss 
at the input and output couplings. 

A7.2 Length of Circuit in Wavelengths, N 

We can arrive at this in several ways. The ratio of the speed of light c to 
the speed of an electron »o is 

G = A + BCN (1) 

G = .1 + [BCN - aL] (2) 

A, B, C, N, a, L 

505 

«o V To (3) 

where Vu is the accelerating voltage. Thus, if C is the length of the circuit and 
X is the free-space wavelength and Xy is the wavelength along the axis of 

457 
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the helix 

X„ = X "H (4) 
c 

Af = i =i±- (5) 
Ka 7 Uq 

Also, if £„ is the total length of wire in the helix, approximately 

N = U (6) 
A 

A7.3 The Gain Parameter C 

The gain parameter can be expressed 

-(^.r-or 

Here K is the helix impedance properly defined. To is the beam current in 
amperes and To is the beam voltage. 

A7.4 Helix Impedance K 

In Fig. 5 of Appendix VI, K "I" (7"^ ^ 'S vs" '>'oa ^or 

values of b/a. Ka is the effective value of K for a solid beam of radius b, and 
a is the radius of the helix. 70 is to be identified with 7 for present purposes, 
and is given by 

2-11/2 lir 
7" = x7 [■ - m 

(8) 

where \a is given in terms of X by (4). We see that in most cases (for voltages 
up to several thousand) 

(Xff/X)2 « 1 (9) 

and we may usually use as a valid approximation 

7. = ^ (10) 

and 

70 a = ^ (11) 
\n 

As (Jo = 2t/\, this approximation gives 

! + ,-V = 1 + 
,7o 
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and we may assume 

Thus, we may take A's as the ordinate of Fig. 5 multiplied by c/uq , from 
(3), for instance. 

The true impedance may be somewhat less than the impedance for a 
helically conducting sheet. If the ratio of the circuit impedance to that of a 
helically conducting sheet is known (see Sections 3 and 4.1 of Chapter III, 
and Fig. 3.13, for instance), the value of Ks from Fig. 5 can be multiplied 
by this ratio. 

A7.5 The Space-Charge Parameter Q 

The ordinate of Fig. 4 of Appendix VI shows Qs ~ ^1 + ^ vs- 

ya for several values of b/a. Here Qs is the effective value of Q for a solid 
beam of radius h. As before, for beam voltages of a few thousand or lower, 
we may take 

i + M)1,2 = i 
\w / 

The quantity /3C is just 

ft, (13) 
0 

and from (8) we see that for low beam voltages we can take 

I3e = y = yo 

so that the ordinate in Fig. 4 can usually be taken as simply Qs. 

A7.6 The Increasing Wave Parameter B 

In Fig. 8.10, B is plotted vs. QC. C can be obtained by means of Sections 
3 and 4, and Q by means of Section 5. Hence we can obtain B. 

A7.7 The Gain Reduction P.arameter a 

From (2) we see that we should subtract from the gain of the increasing 
wave in db a times the cold loss L in db. In Fig. 8.13 a quantity dxi/dd, 
which we can identity as a, is plotted vs. QC. 

A7.8 The Loss Parameter d 

The loss parameter d can be expressed in terms of the cold loss, L in db, 
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the length of the circuit in wavelengths, .V, and C 

- - m ty 

T 

(14) 

(15) 

A7.9 The Initial Loss A 

The quantity A of (2) is plotted vs. d in Fig. 9.3. This plot assumes 
QC = 0, and may be somewhat in error. Perhaps Fig. 9.4 can be used in 
estimating a correction; it looks as if the initial loss should be less with 
QC ^ 0 even when d ^ 0. In any event, an error in A means only a few db, 
and is likely to make less error in the computed gain than does an error in 
B, for instance. 



Technical Publications by Bell System Authors Other Than 
in the Bell System Technical Journal 

Progress in Coaxial Telephone and Television Syslems* L. G. Abraham.1 

AJ.E.E., Trans., V. 67, pt. 2, pp. 1520-1527, 1948. 
Abstract—This paper describes coaxial systems used in the hell System 

to transmit telephone and television signals. Development of this system 
was started some time ago, with systems working before the war between 
New York and Philadelphia and later between Minneapolis, Minnesota and 
Stevens Point, Wisconsin. Various stages in the progress of this develop- 
ment have been described in previous papers and the telephone terminal 
equipment has been recently described. This paper will outline how the 
system works and discuss some transmission problems, leaving a complete 
technical description for a number of later papers. 

Use of Ike Relay Digital Computer. E. G. Andrews and H. W. Bode.1 

Elcc. Engg., V. 69, pp. 158-163, Feb., 1950. 
Abstract—This paper is concerned primarily with the operating features 

of the computer and its application to problems of scientific and engineer- 
ing interest. The material herein has been derived largely from the experi- 
ence gained with one of the computers during a trial period of about 5 
months before final delivery. An effort was made during that time to try the 
machine out on a variety of difficult computing problems of varying char- 
acter to obtain experience in its operation and to establish as well as pos- 
sible what its range of usefulness might be. 

Longitudinal Noise in A udio Circuits. H. W. Augustadt and W. F. Kan- 
nenberg.1 Audio Engg., V. 34, pp. 18-19, Feb., 1950. 

Abstract—The words "longitudinal interference" have often been used 
to explain the origin of unknown noise in audio circuits with little actual 
regard to the source of the interference. In this respect, the usage of these 
words is similar to the popular usage of the word "gremlins". We attribute 
to gremlins troubles whose causes are unknown without much attempt to 
delve deeper into the matter. Similarly in the audio facilities field, many 
noise troubles are attributed to "longitudinal interference" or "longitudi- 
nals" or even simply "line noise" without a clear understanding of the na- 
ture of the trouble or the actual meaning of the terms. The noise trouble, 
however, still persists irrespective of the name applied to it until its causes 
are thoroughly understood and the correct remedial action is applied. This 

* A reprint of this article mav be obtained on request to the editor of the B.S.T.J. 
' B.T.L. 
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paper describes and illustrates, with representative examples, various types 
of common noise induction in order to lead to an understanding of their 
nature. The paper includes, in addition, a discussion of simple remedies 
which may be employed for representative cases of noise troubles due to 
longitudinal induction. 

Mobile Radio. A. Bailey.3 A.T.E.E., Trans., V. 67, pt. 2, pp. 923-931, 
1948. 

Stabilized Permanent Magnets.* P. P. Cioffi.1 A.I.E.E., Trans., V. 67, 
pt. 2, pp. 1540-1543, 1948. 

Abstract—Permanent magnets are stabilized against forces tending to 
demagnetize them, by partial demagnetization. It is shown that, after such 
stabilization, the magnet operates at a point on a secondary demagnetiza- 
tion curve. This curve may be treated identically as the major demagnetiza- 
tion curve is treated in ordinary magnet design problems. Formulas are 
developed for determining secondary demagnetization curves from the major 
demagnetization curve when stabilization is achieved by magnetization of 
the magnet before assembly, and by an applied magnetomotive force after 
magnetization in assembly. 

It will be shown that, when the magnet is partially demagnetized for the 
purpose of stabilization, its operating point lies on a curve which, for con- 
venience, will be called a secondary demagnetization curve. The object of 
this paper is to discuss the derivation of secondary demagnetization curves 
for given conditions of stability against demagnetizing forces and their 
applications to magnet design problems. 

Relay Preference Lockout Circuits in Telephone Switching* A. E. Joel, 
Jr.1 A.I.E.E., Trans., V. 67, pt. 2, pp. 1720-1725, 1948. 

Abstract—Occasions arise in telephone switching, particularly at com- 
mon controlled stages, where calls compete for the use of equipment com- 
ponents or switching linkages. These call requests for service are received 
at random by circuits which must choose among and serve them on a 
one-at-a-time basis. Circuits which perform this function are known as 
"preference lockouts". Extensive use has been made of these circuits in 
manual, panel, and crossbar switching systems. This paper describes the 
design philosophies of relay preference lockout circuits based on some of 
these applications. 

Piezoelectric Crystals and Their Application to Ultrasonics. W. P. Mason.1 

Book, New York, Van Nostrand, 508 pages, 1950. 
Television Terminals for Coaxial Systems.* L. W. Morrison, Jr.1 Elec. 

Engg., V. 69, pp. 109-115, February, 1950. 

* A reprint of this article ma)' be obtained on request to the editor of the B.S.T.J. 
'B.T.L. 3 A. T. & T. 
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Abstract—The broad features of operation of the LI Coaxial System for 
the transmission of television have been discussed in a recent paper (L. G. 
Abraham, "Progress in Coaxial Telephone and Television Systems", AIEE 
Transactions, Vol. 67, pp. 1520-1527, 1948). It is the purpose of this paper 
to describe, in somewhat more detail, the factors influencing the design of 
the coaxial television terminals and the features of the equipment now in 
service in the Bell System's Television Network. The television terminals 
here described were placed into network service in 1947, but in basic form 
are similar to experimental models developed prior to the war and used in 
early television transmission studies over the coaxial cable. 

Alternate to Lead Sheath for Telephone Cables. A. Paone.3 Corrosion, V. 6, 
pp. 46-50, February, 1950. 

Bridge Erosion in Electrical Contacts and Its Prevention.* W. G. Pfann.1 

A.I.E.E., Trans., V. 67, pt. 2, pp. 1528-1533, 1948. 
Abstract—The size of the molten bridge which forms as two contacts 

separate depends upon the contact material and the current. The molten 
bridge has two diameters, one in each contact. By pairing dissimilar con- 
tact materials an asymmetric bridge is created, in which the bridge diam- 
eters are unequal and with which is associated a self-limiting transfer 
tendency. Under certain conditions the use of unlike pairs can prevent the 
continued transfer of material from one contact to the other. 

Chess-playing Machine.* C. E. Shannon.1 Sci. Am., V. 182, pp. 48-51, 
February, 1950. 

Military Teletypewriter Systems of World War II.* F. J. Singer.1 Bibli- 
ography. A.I.E.E., Trans., V. 67, pt. 2, pp. 1398-1408, 1948. 

Abstract—This paper reviews the evolution of military teletypewriter 
communications since 1941 and briefly describes some of the important sys- 
tems that were developed during the war by Bell Telephone System engi- 
neers for the armed forces. 

Optimum Coaxial Diameters.* P. H. Smith.1 Electronics, V. 23, pp. 111- 
112, 114, February, 1950. 

Abstract—The derivation of the optimum ratios is briefly described and 
optimum values are indicated to one part in ten thousand. In all cases the 
medium between conductors is assumed to be a gas with a dielectric con- 
stant approaching unity, and any effect of inner conductor supports upon 
the optimum conductor diameter ratio for a given property has been neg- 
lected. 

General Review of Linear Varying Parameter and Nonlinear Circuit A naly- 
sis.* W. R. Bennett.1 I.R.E., Proc., V. 38, pp. 259-263, March, 1950. 

*|A reprint of this article mav be obtained on request to the editor of the B.S.T.J. 
1 B.T.L. 3 A. T. & T. 
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Abstract—Variable and nonlinear systems are classified from the stand- 
point of their significance in communication problems. Methods of solution 
are reviewed and appropriate references are cited. The paper is a synopsis 
of a talk given at the Symposium on Network Theory of the 1949 National 
I.R.E. Convention. 

Some Early Long Distance Lines in the Far West. W. Blackford, Sr.4 and 
J. F. Hutton.4 Bell Tel. Mag., V. 28, pp. 227-237, Winter, 1949-50. 

Radio Propagation Variations at VHP and UHF* K. Bullington.1 

I.R.E., Froc., V. 38, pp. 27-32, January, 1950. 
Abstract—The variations of received signal with location (shadow losses) 

and with time (fading) greatly affect both the usable service area and the 
required geographical separation between co-channel stations. An empirical 
method is given for estimating the magnitude of these variations at vhf and 
uhf. These data indicate that the required separation between co-channel 
stations is from 3 to 10 times the average radius of the usable coverage area, 
and depends on the type of service and on the degree of reliability required. 
The application of this method is illustrated by examples in the mobile 
radiotelephone field. 

Speaking Machine of Wolfgang von Kempelen* H. Dudley1 and T. H. 
Tarnoczy. Acoustical Soc. Am., Jl., V. 22, pp. 151-166, March, 1950. 

Perception of Speech and Its Relation to Telephony. H. Fletcher1 and 
R. H. Galt.1 Acoustical Soc. Am., JL, V. 22, pp. 89-151, March, 1950. 

Abstract—This paper deals with the interpretation aspect and how it is 
affected when speech is transmitted through various kinds of telephone 
systems. 

Vacuum Fusion Furnace for Analysis of Gases in Metals. W. G. Guldner1 

and A. L. Beach.1 Anal. Chem., V. 22, pp. 366-367, February, 1950. 
Complex Stressing of Polyethylene. I. L. Hopkins,1 W. O. Baker1 and 

J. B. Howard.1 Jl. Applied Phys., V. 21, pp. 206-213, March, 1950. 
Noise Considerations in Sound-Recording Transmission Systems. F. L. 

Hopper.2 References. S.M.P.E., JL, V. 54, pp. 129-139, February, 1950. 
Radiation Characteristics of Conical Horn Antennas* A. P. King.1 I.R.E., 

Proc., V. 38, pp. 249-251, March, 1950. 
Abstract—This paper reports the measured radiation characteristics of 

conical horns employing waveguide excitation. The experimentally derived 
gains are in excellent agreement with the theoretical results (unpublished) 
obtained by Gray and Schelkunoff. 

The gain and effective area is given for conical horns of arbitrary propor- 
tions and the radiation patterns are included for horns of optimum design. 

*A reprint of this article may be obtained on request to the editor of the B.S.T.J. 
'B.T.L. 
2W. E. Co. 4Pac. T.&T. 
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All dimensional data have been normalized in terms of wavelength, and are 
presented in convenient nomographic form. 

Microwaves and Sound. W. E. Kock.1 Physics 'Today, V. 3, pp. 20-25, 
March, 1950. 

Abstract—A recent development shows that obstacle arrays, modeled 
after the periodic structure of crystals, refract and focus not only electro- 
magnetic waves, but sound waves as well. The behavior of periodic struc- 
tures can be investigated by microwave and acoustic experiments on such 
models. 

Interference Characteristics of Pulse-Time Modulation. E. R. Kretzmer.1 

I.R.E., Proc., V. 38, pp. 252-255, March, 1950. 
Abstract—The interference characteristics of pulse-time modulation are 

analyzed mathematically and experimentally; particular forms examined 
are pulse-duration and pulse-position modulation. Both two-station and two- 
path interference are considered. Two-station interference is found to be 
characterized by virtually complete predominance of the stronger signal, 
and by noise of random character. Two-path interference, in the case of 
single-channel pulse-duration modulation, generally permits fairly good re- 
ception of speech and music signals. 

Electron Bombardment Conductivity in Diamond * K. G. McKay.1 P/iys. 
Rev., V. 77, pp. 816-825, March 15, 1950. 

Perception of Television Random Noise* P. Mertz.1 References. S.M.P.E., 
V. 54, pp. 8-34, January, 1950. 

Abstract—The perception of random noise in television has been clari- 
fied by studying its analogy to graininess in photography. In a television 
image the individual random noise grains are assumed analogous to photo- 
graphic grains. Effective random noise power is obtained by cumulating 
and weighting actual noise powers over the video frequencies with a weight- 
ing function diminishing from unity toward increasing frequencies. These 
check reasonably well with preliminary experiments. The paper includes an 
analysis of the effect of changing the tone rendering and contrast of the 
television image. 

Loudness Patterns—^4 New .4pproach.* W. A. Munson1 and M. B. Gard- 
ner.1 Acoustical Soc. Am., Jl., V. 22, pp. 177-190, March, 1950. 

Bell System Participation in the Work of the .4.5.-4. H. S. Osborne.3 

Bell Tel. Mag., V. 28, pp. 181-190, Winter, 1949-50. 
New Electronic Telegraph Regenerative Repealer.* B. Ostendorf, Jr.1 

Elcc. Engg., V. 69, pp. 237-240, March, 1950. 
Correlation of Giegcr Counter and Hall Effect Measurements in Alloys Con- 

* A reprint of this article mav he obtained on request to the editor of the B.S.T.J. 1 B.T.L. 3 A. T. & T. 
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taining Germanium and Radioactive Antimony 124* G. L. Pearson,1 J. D. 
Struthers,1 and H. C. Theurer.1 Phys. Rev., V. 77, pp. 809-813, March 
15, 1950. 

Optical Method for Measuring the Stress in Glass Bulbs* W. T. Read.1 

Applied Phys., Jl., V. 21, pp. 250-257, March, 1950. 
Programming a Computer for Playing Chess. C. E. Shannon.1 References. 

Phil. Mag., V. 41, pp. 256-275, March, 1950. 
Abstract—This paper is concerned with the problem of constructing a 

program for a modern electronic computer of the EDVAC type which will 
enable it to play chess. Although perhaps of no practical importance the 
question is of theoretical interest, and it is hoped that a satisfactory solution 
of this problem will act as a kind of wedge in attacking other problems of a 
similar nature and of greater significance. 

Recent Developments in Communication Theory. C. E. Shannon.1 Elec- 
tronics, V. 32, pp. 80-83, April, 1950. 

Abstract—In this paper the highlights of this recent work will be de- 
scribed with as little mathematics as possible. Since the subject is essentially 
a mathematical one, this necessitates a sacrifice of rigor; for more precise 
treatments the reader may consult the references. 

A Symmetrical Notation for Numbers. C. E. Shannon.1 /I w. Math. Monthly, 
V. 57, pp. 90-93, February, 1950. 

Capacity of a Pair of Insulated Wires.* W. H. Wise.1 Quart. Applied 
Math., V. 7, pp. 432-436, January, 1950. 

Echoes in Transmission at 450 Megacycles from Land-to-Car Radio Units* 
W. R. Young, Jr.1 and L. Y. Lacy.1 I.R.E., Proc., V. 38, pp. 255-258, 
March, 1950. 

Simplified Derivation of Linear Least Square Smoothing and Prediction 
Theory.* H. W. Bode1 and C. E. Shannon.1 I.R.E., Proc., V. 38, pp. 417- 
425, April, 1950. 

Abstract—In this paper the chief results of smoothing theory will be 
developed by a new method which, while not as rigorous or general as the 
methods of Wiener and Kolmogoroff, has the advantage of greater simplic- 
ity, particularly for readers with a background of electric circuit theory. 
The mathematical steps in the present derivation have, for the most part, 
a direct physical interpretation, which enables one to see intuitively what 
the mathematics is doing. 

Helix Parameters Used in Traveling Wave-Tube Theory.* R. C. Fletcher.1 

I.R.E., Proc., V. 38, pp. 413-417, April, 1950. 
Abstract—Helix parameters used in the normal mode solution of the 

traveling-wave tube are evaluated by comparison with the field equations 

*A reprint of this article may be obtained on request to the editor of the B.S.T.J. 
1 B.T.L. 
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for a thin electron beam. Corresponding parameters for a thick electron beam 
are found by finding a thin beam with approximately the same r-f admit- 
tance. 

Effect of Change of Scale on Sintering Phenomena* C. Herring.1 Jl., 
Applied Phys., V. 21, pp. 301-303, April, 1950. 

Abstract—It is shown that when certain plausible assumptions are ful- 
filled simple scaling laws govern the times required to produce, by sintering 
at a given temperature, geometrically similar changes in two or more sys- 
tems of solid particles which are identical geometrically except for a differ- 
ence of scale. It is suggested that experimental studies of the effect of such 
a change of scale may prove valuable in identifying the predominant mech- 
anism responsible for sintering under any particular set of conditions, and 
may also help to decide certain fundamental questions in fields such as 
creep and crystal growth. 

Mode Conversion Losses in Transmission of Circular Electric Waves Through 
Slightly Non-Cylindrical Guides.* S. P. Morgan, Jr.1 JL, Applied Phys., 
V. 21, pp. 329-338, April, 1950. 

Abstract—A general expression is derived for the effective attenuation 
of circular electric (TEoi) waves owing to mode conversions in a section of 
wave guide whose shape deviates slightly in any specified manner from a 
perfect circular cylinder. Numerical results are in good agreement with ex- 
periment for the special case of transmission through an elliptically deformed 
section of pipe. The case of random distortions in a long wave guide line is 
analyzed and it is calculated, under certain simplifying assumptions, that 
mode conversions in a 4.732-inch copper pipe whose radius deviates by 1 
mil rms from that of an average cylinder will increase the attenuation of the 
TEoi mode at 3.2 cm by an amount equal to 20% of the theoretical copper 
losses. The dependence on frequency of mode conversion losses in such a 
guide is discussed. 

Acoustical Designing in Architecture. C. M. Harris1 and V. O. Knudsen. 
Book, New York, John Wiley & Sons, Inc., 450 pages, 1950. 

Abstract—This book is intended as a practical guide to good acoustical 
designing in architecture. It is written primarily for architects, students of 
architecture, and all others who wish a non-mathematical but comprehensive 
treatise on this subject. Useful design data have been presented in such a 
manner that the text can serve as a convenient handbook in the solution 
of most problems encountered in architectural acoustics. 

*A reprint of this article may be obtained on request to the editor of the B.S.TJ. 
1 B.T.L. 
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