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This paper offers a general approach to the realizability theory of net- 
works with many accessible terminals. The methods developed are applied 
to give a complete characterization of all finite passive networks. 

I. SUMMARY 

1.0 A principal result of this paper is to characterize those matrices 
Z{p), functions of the frequency parameter p, which can be realized as 
open-circuit impedance matrices of finite passive networks. This char- 
acterization is provided by the following theorem: 

1.1 Theorem:* Let Z{p) be an n X n matrix whose elements arc Zrs(p), 
1 < r, s < n, where 

(i) Each ZrS{p) is a rational function 

(ii) Zrtiv) = Zr,{p) (the bar denotes complex conjugate) 

(iii) zra(p) = zuv) 

(iv) For each set of real constants /q , • • • , k,, , the function 
n 

'Pyfp^ = ^ ■ Zrs(,p)krks 
r.s=l 

has a non-negative real part whenever Re(p) > 0. 
Then there exists a finite passive network, a 2n-pole, which has the 

impedance matrix Z{p). 

* Presented to the American Mathematical Society, April 17, 1948. Abstract 
260, Bulletin of the A.M.S. No. 54. July, 1948. 
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Conversely, if a finite passive 2n-pole has an impedance matrix Z(p), 
that matrix has the properties (i), (ii), (in), (iv). 

A formally identical dual theorem holds for open-circuit admittance 
matrices F(p). 

1.2 A general realizability theorem, applicable to and characterizing 
completely all finite passive networks, whether having impedance ma- 
trices or not, is also proved. 

1.3 An effort is made to lay a foundation adequate for the realizability 
theory of both active and passive multi-terminal devices. To this end, 
a large part of the paper is devoted to the scrutiny of fundamental 
properties of networks. 

II. INTRODUCTION AND FOREWORD 

2.0 Network theory provides direct means for associating with an 
electrical network a mathematical description which characterizes the 
behavior of that network. Typically, this results in shifting engineering 
attention from a detailed, possibly quite intricate, electrical structure 
to a mathematical entity which succinctly describes the relevant be- 
havior of that structure. An essential feature of this shift in focus is 
emphasized by the word "relevant": only those terminals of the net- 
work which are directly relevant to the problem at hand are considered 
in the mathematical description. Design work can then be done in 
terms of constructs relating explicitly to these accessible terminals, the 
effect of the internal structure being felt only by implication. 

The physical origins of these mathematical constructs, and the im- 
plications of the internal structure upon them, cannot however be en- 
tirely forgotten, for they have mathematical consequences which are 
not always immediately evident. Until he knows these limitations 
imposed upon him by the physical nature or the necessary structural 
form of the networks he is designing—a design engineer cannot make 
free use of the mathematical tools that network theory has provided. 

We give the name "realizability theory" to that part of network 
theory which aims at the isolation and understanding of those broad 
limitations upon network performance, i.e., upon the mathematical 
constructs which describe that performance—which are imposed by 
limitations on the network structure. One may also include in the 
province of realizability theory some of the converse questions: the 
study of those structural features common to all networks whose per- 
formance is limited in some specified way. 

Realizability theory would have little content were it not that "per- 



FORMAL REALIZABILITY THEORY—I 219 

formance" here must be construed to mean performance as viewed from 
the accessible terminals only. Were all branch currents and node poten- 
tials in a network available to observation, a mathematical statement 
of performance would be equivalent to stating the full system of dif- 
ferential equations governing these quantities, i.e., equivalent to giving 
the detailed network diagram. 

2.1 With a few important exceptions, the converse kind of problem in 
realizability theory docs not lead to a strict implication from functional 
limitations to structural features, because the field of equivalent struc- 
tures for a specified performance is very broad. Typically, it is only by 
imposing some general a priori limitations on structure that further 
conclusions can be firmly drawn from a functional limitation. In study- 
ing this kind of problem one is rapidly led from those basic issues which 
are clearly part of realizability theory toward general, difficult, and 
usually unsolved problems of network synthesis. One cannot, and should 
not, draw a sharp boundary here, but Nature so far has provided a 
fairly definite one for us, in that most of these problems have proved 
too difficult of solution. 

2.2 The direct realizability problems, the passage from structural prop- 
erties to functional properties, have been somewhat more tractable. 
Here, again, there is no clear dividing line between general realizability 
theory and the sort of design theory in which, for example, one specifies 
a particular filter structure depending on a limited number of param- 
eters and examines the performance of the structure as a function of 
these parameters. There is an extensive literature at or near this latter 
level of generality, most of it relating to filters or filter-like structures 
(e.g., interstage couplers in amplifiers). 

At a more basic level, the limitations on a network's structure which 
are commonly met in practice are of the following kinds; 

a. Limitations on the kind of elements appearing, e.g., to passive 
networks, networks without coupled coils, networks whose elements 
have specified parasitics, etc; 

b. Limitations on the general form of the network diagram, e.g., to 
ladder or lattice structures, without limitation to a specified number of 
elements or parameters. 

Here the problems are varied and difficult. We survey briefly the 
present status of some of them. 

2.3 Networks with two accessible terminals, two-poles, are basic in 
network technology. Fortunately, also, two-poles are unique among 
networks in that there is always a simple way to describe their perform- 
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ance. Except for the trivial limiting case of an open circuit, every two- 
pole has a well-defined impedance, Z{p), a function of the complex 
frequency parameter p, which describes its performance in a way which 
is by now well understood. Dually, except for the limiting case of a 
short circuit, every two-pole has a well-defined admittance function 
Y{p). Even the limiting cases are tractable: every open circuit has the 
admittance function Y{p) = 0 and every short circuit the impedance 
function Z{p) = 0. 

In other words, by exercising his option to speak in terms either of 
impedance or of admittance, one can always describe the performance 
of a two-pole by using a single function of frequency. 

The descriptive simplicity and practical importance of two-poles led 
early to a fairly complete realizability theory for them. In 1924 R. M. 
Foster7 gave a function-theoretic characterization of the impedance 
functions of finite passive two-poles containing only reactances. The 
corresponding problem for two-poles which are not at all limited as to 
structure, beyond being finite and passive, was solved by O. Brune2 in 
1931. The effects of various structural limitations have since been 
studied by several writers (cf. Darlington,6 Bott and Duffin ). 

2.4 Technology, and the promptings of conscience, have meanwhile 
urged the study of devices with more than two accessible terminals. 
Here, however, Nature has been less kind, in that no uniquely simple 
method is available for describing the performance of such devices as 
viewed from their terminals. 

Indeed, basic network theory has been remiss here, in not even mak- 
ing available a mode of description which is generally applicable— 
whether simple or not. 

W. Cauer5 showed that, when one admits ideal transformers among 
his network components, it is sufficient to study networks which are 
natural and direct generalizations of two-poles, namely, 2n-poles,* for 
arbitrary values of n. The corresponding natural generalization of the 
impedance function Z{p) of a two-pole is the impedance matrix of a 
2n-pole: just as one multiplies a scalar current by a scalar impedance to 
get a scalar voltage, one multiplies a vector current by an impedance 
matrix to get a vector voltage. 

2.41 Not all descriptive difficulties are resolved, however, by consider- 
ing 2n-poles and their impedance or admittance matrices. For the 
moment, a simple example will suffice to show this: the 2 X 2-pole which 
consists simply of one pair of short-circuited terminals and one pair of 

* Defined in Cauer,6 and also later here. 
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open-circuited terminals is a finite passive 2n-pole (n = 2) which has 
neither an impedance matrix nor an admittance matrix. 

2.42 When one eliminates this kind of descriptive difficulty by fixing 
his attention only upon 2n-poles for which an impedance matrix (or, 
dually, an admittance matrix) is available, the general realizability 
problem for finite passive devices is solved. A partial solution, for the 
case n = 2, was published by C. M. Gewertz8 in 1933. The solution 
(Theorem 1.1) of the problem for a general value of n has been an- 
nounced recently by three authors, independently: Y. Oono,10 in 1946,* 
the present author, in 1948,f and M. Bayard,1 in 1949. The problem 
for reactive 2n-poles is much simpler and was solved by Cauer,3 in 
1931. 

2.5 Intermediate between the fairly specific problems of filter theory on 
the one hand and the general realizability theory of multi-terminal 
devices on the other, lies the study of four-poles as transducers. There 
is a considerable literature on the realization of transfer functions or 
transfer impedances under various structural limitations. The basic 
:.nd extensive work of Bode14 on active systems belongs also in this 
category since it is avowedly limited to single-loop structures. 

2.6 Beyond the important result that, by sufficiently elaborate circum- 
ventions, one may avoid the use of transformers in the synthesis of any 
two-pole, (Bott and Duffin13) little in general is known about networks 
which do not have transformers. 

2.7 The present paper is an essay in the realizability theory of devices 
with many accessible terminals. Ideal transformers are admitted as 
network elements; indeed, their use is essential. This fact is indicated 
by the adjective "formal" appearing in the title. 

The availability of ideal transformers makes it possible to exploit 
the simplification noted by Cauer and to consider only networks which 
arc 2n-poles in his sense. The aim of the paper, therefore, is to set a 
foundation for realizability theory which is completely general within 
this framework. 

2.71 The first problem is that of description. We observed above an 
example—entirely trivial—of a passive four-pole which had neither an 
impedance nor an admittance matrix. Unfortunately, opportunities 

* Date of Japanese publication. This reference, and manuscript of Oono10- 
were sent by Professor Oono in a personal communication to R. L. Dietzold, who 
showed them to me in December, 194S, while an early draft of the present paper 
was in preparation. The recent (1950) American republication of Oono10 unfor- 
tunately omits reference to the original. 

t Cf. footnote to 1.1. 
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for this kind of degeneracy become manifold in multi-terminal devices, 
and some degree of degeneracy is the rule rather than the exception. 
Consider an entirely practical example: that of an amplifier chassis from 
which the tubes have been removed * Here the degeneracy is essential 
and intrinsic; it would be highly artificial to regard it as the mere acci- 
dent of a limiting case. True, given any particular degenerate network, 
there is usually evident a method for representing or describing its be- 
havior. What is needed, however, is a mode of representation which is 
applicable generally to any 2n-pole without a priori knowledge of its 
structure or peculiar degeneracies. 

2.72 The mode of representation adopted in this paper, embodied in 
the notions of general 2n-pole (Section 4) and linear correspondence 
(Section 6), is an obvious one, and so completely general that it solves 
no problems other than the elemental one for which it was introduced. 
It provides a definite mathematical construct whose properties one can 
discuss with mathematical precision. This is all that we ask of it. 

Realizability theory begins and ends with the study of these proper- 
ties. It would be more accurate to say that the notion of general 2n-pole 
describes a particular, but still very large, class of mathematical en- 
tities; realizability theory consists in the study of certain subclasses of 
the whole class of these entities, the particular subclasses being distin- 
guished by special, and to us interesting, properties. 

2.73 Despite its avowed aim at generality, the paper is oriented toward 
the realizability theory of finite passive networks. It ultimately provides 
a proof of 1.1 and indeed a complete characterization of finite passive 
2n-poles, however degenerate. This characterization is accomplished in 
a sequence of postulates, each one delineating a property of general 
2n-poles, i.e., a subclass consisting of all 2n-poles having this property. 
The class of 2n-poles having all of these properties is then identified 
with the class of 2n-poles obtained from finite passive networks. 

2.74 If we have succeeded here in our hope to set an adequate founda- 
tion for the realizability theory of devices with many terminals, it will 
be because of the nature and organization of the postulates themselves. 
They describe what at present seem to be individually significant prop- 
erties of 2n-poles, of progressively greater specificity, which in the 
aggregate characterize finite passive devices. By eliminating them in 
various combinations one obtains larger classes of objects. Further re- 

* It is exactly this example, and the practical need of an adequate theory for 
it, which led the author first to study the realizability theory of passive multi- 
terminal devices. 
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search alone will tell whether or not one obtains in this way the kinds 
of device which are significant. For example, one would like general 
realizability theorems for structures containing vacuum tubes with 
frequency-independent transconductances, vacuum tubes with non- 
vanishing transit times, unilateral devices with specified parasitics, etc. 

2.75 Actually, the postulates as we have given them are certainly not 
adequate for such an ambitious program. Exigencies of the presentation 
have dictated a number of condensations and compromises. It is hoped 
that the basic ideas arc still evident even if not isolated individually in 
separate and entirely independent postulates. In any event, it is the 
author's firm belief that the presentation as given is at least illustrative 
of the kind of approach, and the level of mathematical detail, which 
will be needed if one is ever to provide a truly adequate realizability 
theory: a theory which will cover, for example, the broad range of active 
linear systems which present-day technology allows us to consider. 

2.8 Apart from the network theoretic concepts, which must be evalu- 
ated by their effectiveness in solving problems—an assessment which is 
by no means yet complete—this paper is strongly marked by an idio- 
syncracy of its author: a consistent and insistent use of geometric ideas 
and terminology. This is based on the personal experience that linear 
algebra achieves logical unity and a freedom from encumbering notation 
when viewed in this way. A general reference covering most of the linear 
algebra (geometry) required here is P. R. ITalmos' elegant monograph9. 

2.9 For a proof solely of 1.1, which has already been three times proved 
in the literature,1' "), 11 this paper provides an apparatus which is too 
cumbersome. There is even a sense in which 1.1 alone provides a charac- 
terization of all finite passive devices, for it seems to be generally ac- 
cepted that, by the use of ideal transformers, any finite passive network 
can be represented as a network which has an impedance matrix to 
which is adjoined suitable ideal transformers. Therefore we cannot claim 
that, in using this cumbrous apparatus to characterize all finite passive 
2n-poles (including the degenerate ones), we have offered anything not 
already provided by a simpler proof of 1.1. 

Three things may be said in rebuttal. First, we have already empha- 
sized that the apparatus here exhibited was designed for more problems 
than that to which it is here applied. It is presented in the belief that 
it will prove of further use. 

Second, even in the study of passive networks, it has seemed to the 
author helpful to look at the manifold things which are not passive net- 
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works. One gets then a clearer view of the unique position occupied by 
passive devices among all linear systems. 

Third, there is a kind of semantic issue here; the assertion that any 
finite passive network (sic) can be put in such a form that 1.1 applies 
seems to this author to give a kind of circular characterization of such 
devices. A characterization which did not itself involve the concept of 
a network seems more satisfying. Logically, there is no circle here, but 
this is a fact requiring proof. A careful reading of this paper will show 
that it provides a proof. This particular subtlety does not ot itselt justify 
the lengths to which we have gone. It is, however, no longer a subtlety 
if one wishes to consider devices which do not have a representation in 
terms of something non-degenerate to which ideal transformers have 
been added. 

2.91 The present Part I of the paper is so organized that at the end of 
Section 8 the reader is in possession of all of its principal results and its 
basic ideas. The remaining Sections, 9 through 20, may then be regarded 
as an Appendix containing the details of proofs. Indeed, Part II will be 
largely devoted to further details of proof, though there will be there 
one important idea not mentioned, save casually, in Part I—the idea 
of degree for a matrix. 

In Sections 4 through 11, technical paragraphs have been distinguished 
from explanatory or heuristic ones by starring the paragraph numeral. 

Part II of the paper contains the bulk of the proof of 1.1. This proof 
is modelled after that of Brune2 for the realizability of two-poles. One 
familiar with the Brune process will probably find Part II readable 
without extensive reference to Part I. 

Let the reader be warned that the Brune process is not a practical 
one for realizing networks because of its critical dependence upon a 
difficult minimization and balancing operation. The same criticism 
applies to the generalized Brune process of Part II. 

The Brune process is of theoretical importance because it does realize 
a network with the minimum number of reactive elements. These facts 
will be brought to light in Part 11. 

The proofs of Oono10 and Bayard1 are different from ours. That of 
Oono11 again follows the Brune model. 

III. INTRODUCTION TO PART I 

3.0 We keep before us first the problem of finding a mathematical de- 
scription applicable to and characterizing the behavior of all finite pas- 
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sive networks. Second, we seek to make mathematically precise those 
ideas which appear to form the basis of general realizability theory. 
Sections 4 through 7 introduce the immediate mathematical machinery 
for this. Section 8 states the fundamental realizability theorem and 
outlines its proof. At this point the reader has had an introduction to 
the results of the paper. The remainder of the paper is then devoted to 
the technical details of proof. Beginning with Section 12, the device of 
starring the technical passages will be dropped. 

3.1 Cauer'1 distinguished precisely the class of networks called 2n-poles 
from the class of all multi-terminal networks. He also showed that, by 
the use of ideal transformers, any multi-terminal network is equivalent 
to a network which is a 2w-pole (for some n) in his sense. We shall in 
Section 4 define a class of objects to be called general 2n-poles. This 
class includes all electrical networks which are 2n-poles in Cauer's sense. 
Its definition abstracts the significant properties isolated by Cauer. 

For the study, alone, of finite passive networks, this definition is 
unnecessary, since one can in fact so put the arguments as to deal only 
with 2n-poles which are finite passive networks, and therefore to deal 
only with concepts already defined in Cauer5. The somewhat physical 
notion of a general 2n-pole is a convenient backdrop against which to 
display the important physical properties of finite passive networks, 
and, indeed, of networks in general. Having it available, we use it 
throughout the realizability arguments. 

IV. DEFINITION OF GENERAL 2R-POLE 

4.0* Network theory establishes a correspondence between oriented 
linear graphs and systems of differential equations. With each node of 
the graph is associated a potential En = E„{t) and with each oriented 
branch a current h, = /■,(/). These potentials and currents are constrained, 
first by Krichoff's laws, and second by differential equations which de- 
pend upon the nature of the branches but not upon the topologj' of the 
graph. 

4.01* A finite passive network is one whose graph has the following 
properties: 

(i) There are finitely many nodes, 1,2, • • • , N. 

(ii) There are finitely many branches, 1,2, ■ • ■ , B. 

* Technical paragraph as explained in Section 2.91. 
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(iii) Let the 5-th branch begin at node rib and end at rib . Let Vb — 
Enb — E„'b . Then for each h, one of 

Vb = Rbh, Rb > 0 (a) 

h = cj'^, Cb>0 (b) at 

vb-E Lib. (0 6' at 

holds, where the matrix U.b'. is real, symmetric, and semi-defi- 
nite. 

Cauer has shown5 how an ideal transformer can be defined as the 
limiting case of a finite passive network. It is indeed no more nor less 
ideal than an open circuit {Rb = ^ or Cb = 0) or a short circuit {Rb = 0 
or Cb = 00)• 

4.02 We seldom deal with networks in the detail which is implicit in 
(iii) above. We are usually interested in the external characteristics, so 
to speak, of such networks as viewed from a relatively small number of 
terminals (nodes). These multi-terminal devices, however, we continue 
to incorporate into larger network diagrams. It is usually clear how 
Kirchoff's laws are to be applied in these cases, and what the differential 
equations of the resulting system are. We are obliged, however, to make 
these matters precise before we can deal intelligently with the most 
general physical properties of networks. 

4.1 We have seen the two kinds of constaint that a multi-terminal de- 
vice imposes on the branch currents and node voltages in a network in 
which it is incorporated: the topological ones contained in Kirchoff's 
laws and the dynamical ones described by differential equations. Cor- 
respondingly, there are two aspects to the concept of general 2n-pole. 

4.11* In its relation to Kirchoff's laws, a general 2n-pole is indicated as 
an object with n pairs of terminals (TV , T't), I < r < n. Each terminal 
can be made a node in an arbitrary finite diagram constructed out of 
network elements and other general 2?n-polcs, with arbitrary values of 
m. This diagram is not an oriented linear graph, so we have no basis 
for the use of Kirchoff's laws. From it, however, we construct an ori- 
ented linear graph, called the ideal graph of the diagram, by the follow- 
ing rule: 

The nodes of the ideal graph arc those of the original diagram. Every 

* Technical paragraph as explained in Section 2.91. 
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oriented branch of the original diagram is repeated in the ideal graph, 
similarly situated and oriented. Between those nodes which, in the 
original diagram, were the {Tt , T't) of a 2n-pole N, is drawn a branch 
/3r , called the r-th ideal branch of N, oriented from TV to T'r . This is 
done for each such terminal pair. 

Kirchoff's laws now apply to this ideal graph. 

4.12* Consider a particular 2n-poIe N. Let Er be the potential of TV , 
E'r that of T'r . Define 

Vr(t) = Er - E'r . 

Then Vr(t) is the voltage across the ideal branch /3r so oriented that 
Vr{t) > 0 when TV is positive relative to TV . Let /cr(i) represent the cur- 
rent entering Tr . Then kr{l) = IT{t), the current in /3r , so kr{l) is also 
the current leaving 7'r . This is the force of the notion of ideal branch 
and the fact which distinguishes a network which is a 2n-pole from an 
arbitrary network with 2n terminals. 

4.13 For example, the network at (a) of Fig. 1 is not a 2 X 2 pole because 
its currents are not constrained to meet the ideal branch requirement. 
The addition of ideal transformers in either of the ways shown in (b) 
or (c) of the figure converts it to a 2 X 2 pole. Of course in a circuit in 
which the currents are constrained externally—as they would be, for 

T, o——VvV AA/v 0T2 

T.'o- 
(a) 

■^T,' 

1 • • 
T, o 

T, O 1 | VW—! \AA 1 I oTa 
• La&J > • IQQQJ 

.'Jfi: ! rii^ 
(C) 

Fig. 1—Conversions of a four pole to a 2 X 2 pole. 

* Technical paragraph as explained in Section 2.91. 
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example, when the 2X2 pole is driven by separate generators in the two 
external meshes—these transformers can be eliminated. The definition 
of 2n-pole requires however that in every context the ideal branch con- 
cept is valid. 

4.2* The second aspect of the concept of general 2n-pole is that it im- 
poses some kind of constraint—other than that implied by 4.11 and 
Kirchoff's laws—upon the voltages across and currents in its ideal 
branches. Define the symbols 

v = v(t) = [yi(0, VoXt), • • , Vnit)] 

and 

k = k{l) = [ki{l), kXO, ''' j kn(l)] 

as the n-tuples, respectively, of voltages across (Tr , T'r) and currents 
into Tr , 1 < r < n. These are added and multiplied by scalars by the 
usual rules of vector algebra. If v and k represent simultaneous values 
of voltage and current in the 2n-pole N—i.e., values satisfying all the 
constraints—then we say that N admits the pair [v, &]. 

We say that N admits v if there is a k such that N admits the pair 
[v, A;]. This k is said to correspond to v. Dually, N admits k if there is a 
v (corresponding to k) such that N admits [v, A:]. 

The constraints imposed by a general 2n-pole N on voltages and cur- 
rents are completely described by the totality of pairs [v, A;] which N 
admits. We shall define a general 2w-pole, therefore, as 

(i) a collection of n oriented ideal branches, as in 4.11, and 

(ii) a list of pairs [v, k] of voltages and currents admitted in these 
branches. 

Hereafter we shall usually drop the adjective "general." 

4.21 The definition we have just given is, in a way, a postulational 
form of an n-dimensional Thevenin's theorem. It postulates that a 
2n-pole is a thingf which, as far as the outside world is concerned, can 
be represented by a collection of two-poles /3r , 1 < r < n, among which 
there exists a complicated agreement as to what currents and voltages 
will be admitted. 

4.22 The passive networks (b) and (c) of Fig. 1 define 2X2 poles, be- 
cause they satisfy 2.01 and clearly permit a complete specification of 
the admissible pairs [v, A-]. Any equivalent network would also specify 

* Technical paragraph as explained in Section 2.91. 
f In fact, at this level of generality, any thing. 
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the same 2X2 pole, because—by its very equivalence—it would admit 
the same pairs. The closest association we can make between a 2n-pole 
and a network, then, is to identify the 2n-pole with an equivalence 
class of networks. 

4.23 The completely symmetric role played by voltages and currents 
in this definition of general 2n-pole will make it possible to take early 
advantage of the well-known duality principle of network theory. We 
shall do so freely. 

4.3* We shall call a 2n-pole physically realizable if its admissible pairs 
[v, A'] are the solutions of a system of differential equations obtained 
from a finite passive network, admitting the limiting elements: ideal 
transformers, open circuits, and short circuits. 

V. PHYSICAL PROPERTIES OF NETWORKS 

5.0 There are clearly a great many properties of finite passive networks 
which are not yet possessed by the general 2r-poles now introduced. It 
is instructive to examine these properties physically. 

5.1 In the first place, the dynamical constraints (a), (b), and (c) of 4.01 
are expressed by linear, time invariant, differential equations. Accord- 
ingly, the 2n-poles of network theory are: 

5.11 Linear, in that the class of admissible pairs [y, A-] is a linear space; 

5.12 Time invariant, admitting with each [y(0, biO] also all 
[v(t + r), k{l r)] for aribtrary r. 

5.2 In the second place, a physical network N cannot predict the future, 
i.e., it cannot respond before it is excited. This can be formalized in 
terms of the pairs [v, /.■] admitted by N, but to do so would require some 
digression. The reasons will be seen under 5.7 below. 

5.3 We have already mentioned the constraints imposed on voltages 
and currents in a network by the topology of the network, through the 
medium of Kirchoff's laws. These constraints have three important 
properties: 

5.31 They are workless, since they are imposed by resistanceless 
connections, leakless nodes, and, in the formal theory, by ideal 
transformers. 

5.32 Though it seems scarcely necessary to say it, they are the only 
workless constraints. All other constraints are dynamical and have 
powers or energies associated with them. 

* Technical paragraph as explained in Section 2.91. 
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5.33 They are frequency independent, that is, holonoraic in the sense 
of dynamics. 

5.4 The workless and the dynamical constraints in a physical network 
are all defined by relations with real coefficients. The space of admissible 
pairs is then a real linear space. 

5.5 The positivities specified in 4.01 are characteristic of passive sys- 
tems. They correspond to the fact that the power dissipation and the 
stored energies are all positive. 

5.6 By definition, finite passive networks contain finitely many lumped 
elements. Correspondingly, their resonances and anti-resonances are 
finite in number. 

5.7 We are accumstomed to dealing with networks which have, in addi- 
tion to the properties listed above, a kind of non-degeneracy, in that 
the list of admissible pairs [y, k] satisfies: 

5.71 At least one of v or k can be specified arbitrarily—any real function 
is admitted; 

5.72 When the free number of [v, k] is specified, the other is uniquely 
determined. 

For these non-degenerate networks, the property 5.2 above is easily 
formalized: if, say, k is determined by v, then 

vit) = v\t) for t < 

implies 
^(t) = k\l) for t< to, 

where [?/, &*] are admissible pairs, i = 1,2. The general statement of 5.2 
involves this condition and some discussion of the v's for which N ad- 
mits [v, 0], and the dual notions. 

5.8 The reason for speaking in terms of pairs [v, fc], instead of in terms 
of "cause" and "effect," or "impulse" and "response," is hinted at by 
5.7 above. For the tacit implications of the cause and effect language 
completely obscure the fact that 5.71 and 5.72 are properties which are 
not automatically possessed by electrical networks. In fact, the simple 
four-pole of 2.41—a pair of unconnected terminals Ti , 7'i , and a pair 
of shorted terminals To, Tg—has neither property, yet it is a perfectly 
good linear time invariant four pole. Its admissible pairs are 

[(^i, 0), (0, h)], 

where vi and h are arbitrary real functions of the time 
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VI. LINEAR CORRESPONDENCES 

6.0 III developing the formal properties of 2/j-poles which are equivalent 
to the physical ones just listed, it would be instructive to adjoin re- 
quirements piecemeal, much in the order given in Section ij. Space does 
not permit us full enjoyment of this luxury, but the reader will find a 
rough parallel between Section 5 and the developments of this Section 
and Section 7. 

6.1 It is well known that linear time invariant systems are best studied 
by the tools of Fourier or Laplace analysis. We make this fact the basis 
of our first step in characterizing physically realizable 2n-poles simply 
by phrasing our whole discussion in the frequency language. The con- 
tent of the following paragraph will be obvious enough, but it does de- 
fine terms to be used later. 

6.11* Let v and k, without underscores, represent n-tuples of complex 
numbers: 

v = [fi , i>2 , • • • , vn], (1) 

k — [ki , ko , • • • , kn]. (2) 

These are to be manipulated by the rules of vector algebra. Let p be a 
complex number. We shall say that a 2n-pole N admits the pair [y, k] 
at frequency p, if in the sense of 4.2 N admits the pair [v, A-] (with under- 
scores) where v has components 

Vr(t) = Re^re"'), 1 < ?• < n, (3) 

and k has components 

kr(i) = Re(A-re'''), 1 < r < n. (4) 

Also analogously to 4.2, we say that N admits v at frequency p if 
there is a k such that N admits [y, k] at frequency p, and that this k 
corresponds to v (at frequency p). Similarly, N admits k at frequency p 
if there is a (corresponding) v such that N admits [y, k] (at p). 

6.12* Lot V denote the aggregate of all n-tuples (I), and K the aggre- 
gate of all n-tuples (2). These arc then complex linear spaces. 

6.2* As our first step toward characterizing realizable 2n-poles, let us 
consider a linear correspondence L between V and K described by the 
postulates: 
PI. There is a set FT of complex numbers and for each peTL a list 
L(p) of pairs [y, k], yeV, fceK. 

* Technical paragraph as explained in Section 2.91. 



232 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1952 

P2. If [y1, kl]cL(p) and [v2, k2]eL{p), then 

[aiv -f- ci-iV1, ciik1 -(- Uok ]eL{p) 

for any complex numbers a! , do . 

6.21* Given such a linear correspondence L, we can always describe a 
2w-pole Nt by: 

N/. admits [v, k] at frequency p if and only if [y, /o]eL(p). 
That is, we can always interpret the pairs [y, k] generated by (3) and 

(4) from the [y, k]eL{p), for each peTL , as the voltages across and 
currents in a set of n ideal branches. We call Nl the 27i-pole associated 
with L. 

6.22* We call Ti. the frequency domain of L (or of NJ. 

6.23 From here on, the words "2n-pole" can with some strain be re- 
garded as suggestive but unnecessary. We in fact deal with linear corre- 
spondences—having properties as yet unspecified—and shall show how 
physical networks can be constructed which admit the pairs [y, k]eL(p). 
Actually we use freely the concept of general 2n-pole and thereby avoid 
some elaborate circumlocutions. 

6.24* We identify two correspondences Li and L* as being the same if 
(i) their frequency domains differ only by a finite set, and (ii) for each 
p where both are defined the lists Li{p) and are the same. 

6.3 The simplest linear correspondences are those generated by ma- 
trices. For example, let Z{p) be an n X n matrix with, say, elements 
Zrsip) which are rational functions of p, 1 < r, s < n. Let TL consist of 
all the values of p at which Z(p) is defined. For peTL , define L(p) as 
the class of all pairs 

[y, A-] (5) 

obtained by letting k range over K, where for each k, v is defined by the 
matrix equation 

y = Z{p)k. (6) 

This kind of matrix equation will be used throughout to symbolize the 
n component equations 

Vr = it* Zr.(p)k.} 1 < r < n. (7) s=l 

The list of pairs L(p) defined by (5) clearly satisfies PI and P2. It 
can therefore be used to define a 2n-pole N,, . It is easy to see that N,. 

* Technical paragraph as explained in Section 2.91. 
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in fact is non-degenerate in a sense similar to that of 5.7, for the current 
amplitudes k can be specified arbitrarily, and the resulting voltage 
amplitudes v are then fixed by k and p, by (6). 

Z(p) is called the impedance matrix of the 2n-pole Nl . It is also 
sometimes called the open-circuit impedance matrix, because each 
Zra(p) is, by (7), the voltage amplitude across (2'r , 7'r) when the current 
amplitudes at all terminals save (7's , T'a) are zero—i.e., when all pairs 
save the s-th are on open circuit. 

G.31 Dually, the pairs 

[v, Y(p)v] 

defined by an admittance matrix Y(p) as v ranges over V define a linear 
time invariant 2n-poIe which is non-degenerate. 

VII. WORK AND ENERGY 

7.0* A linear correspondence satisfying PI and P2 is something which 
abstracts the properties of linearity and time invariance. Most of the 
remaining properties of physical networks involve the mention of work 
or energy. These concepts enter our picture by way of the scalar product 
{v, k) between a voltage n-tuple (1) and a current n-tuple (2), of 6.11. 
This scalar product is defined by 

(V, k) = J^Vrkr- (I) 
r=l 

7.01 If p = iia, one easily calculates from (3) and (4) of 6.11 that 

2 Re(y, k) = lim [ f ^ iv(0Av(/)~| dl. 
t—x 11 J-r Lr-i J 

That is, when p = iw, (he real part of 2(r, k) measures the average total 
power dissipated by the system of currents kr{t) against the driving 
voltages Vrit). 

When p is not a pure imaginary, the interpretation of the scalar 
product (y, k) is not so clearly physical as this. The reader will ulti- 
mately observe that our significant statements about such products can 
all be reduced to statements applicable when p = fw, i.e., when the 
power interpretation is valid. 

7.1* An important concept in what follows is that of the annihilator of 
a linear manifold (Halmos'J, par. 16). Let V) CZ V be a linear manifold. 

* Technical paragraph as explained in Section 2.91. 
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Then its annihilator (Vi)0 is the set of all k such that 

yeVi implies {v, k) = 0. 

(Vi)0 is a linear manifold in K. 
Dually, given Ki C K, (K,)" is the linear manifold of all yeV such 

that 
/ceKi implies (y, k) = 0. 

The annihilator concept is the analog in our general geometric frame- 
work of the idea of orthogonality. It clearly suggests a connection with 
workless constraints. 

7.2* The complex conjugate of an n-tuplc v (or k) is defined in the 
obvious way: if 

v = [vi , ,vn] 

then 

y = [yi , • • • , Vn]. 

This conjugation operation clearly has the properties 

a£ + bv = al + hi) 

where a and h are scalars and ^ and rj are (consistently) elements of V 
or K. Furthermore, at once from (I) of 7.0, 

(y, k) = (v, k). (3) 

7.21* A linear manifold will be called real if it contains, with any 
n-tuple also the conjugate of that n-tuple. 

7.22* A real manifold is spanned by real n-tuples. This will be proved 
in the Appendix, Section 20. 

7.23* The annihilator of a real manifold is real. For let Ki be real and 
fc1, • • • , kr be real n-tuples which span Ki . Then if ye(Ki)0 every 

(v, k') = 0, 

and conversely. But then also 

(y, k") = (y, k") = 0 = 0, 

so ye(Ki)0. 

* Technical paragraph as explained in Section 2.91. 
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7.3* Given a linear correspondence L, we make several definitions: 

V/.(p) is the set of all yeV such that there is a k with [y, k]€L{p). 

KL(p) is the set of all keK such that there is a y with [y, k]eL{p). 

Vlo(p) is the set of veVh{p) such that 

[y, 0]eL(p). 

Klo(p) is the set of keKL(p) such that 

[0, k]eL{p). 

7.31* The postulate P2 implies that for each peT,, , V/,(p), KI,(p), 
V/,o(p) and Kio(p) are all linear manifolds. 

7.32 Vi(p), for example, is the set of yeV such that Nz, admits v at 
frequency p. 

7.4* We now postulate 
P3. There exist fixed linear manifolds Vi, C V, C K such that 

(A) For every peVL , Vdp) = V/. = (KM(p))0 

(I) For every peVL , K;.(p) = KL = (Vx.o(p))0- 

7.41* We may henceforth write Vm , K^o , for Vz.o(p)) K/,o(p), knowing 
that, under P3 

Vlo = (Kl)0, 

kLo = (VL)0. 

7.42 Linear correspondences satisfying P3 abstract the properties men- 
tioned in 5.3. The equalities Vdp) = V;. , KL(p) = Kz, guarantee the 
frequency-independence of the workless constraints. The equalities 

Vdp) = (Kz.n(p))0, Kz.(7;) = (Vz.o(p))0 in a sense guarantee that the 
only constraints imposed upon admissible currents and voltages (as 
opposed to constraints relating currents and voltages) are those which 
arise from open or short circuits, i.e., are workless. 

7.43 An illustrative consequence of P3, for example, is that if L satisfies 
P3 and if Nz, is such that all of the current amplitudes can be specified 
arbitrarily, then indeed the voltages are determined by the currents. 
This will appear as a consequence of 8.1. It is a very general theorem 
about networks of a kind that this author, at least, has not heretofore 
encountered. 

* Technical paragraph as explained in Section 2.91. 
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7.5* Continuing toward realizability, we introduce 

P4. If peTL , then peVL- If [v, /c]eL(p), then [v, k]eL{p). 

This postulate embodies most of the reality properties of networks. 
It has as an immediate consequence the 

7.51* Lemma: If L satisfies PI, P2, P3, and P4, then all of 

VL , Vlo , Kt , KLO 

are real. 
Proof: By P4, viVtiv) = implies veVL{p) = VL . Hence Vl is 

real. Then Km = (V/,)" is real, and dually. 

7.G* The three remaining postulates on L refer to scalar products. 
They are concerned with the energy questions related to passivity, 
rather than with the workless constraint questions. 
P5. If [w, j]eL{p) and [v, k\eL{p), and if 

(A) u and v are real, or if 

(I) j and k are real, 

then 

(w, k) = (v,j). 

7.61 This is the property which provides the reciprocity law. In its 
presence, the relations in P3 may be weakened to 

VL(p) = Vz. □ (KM)0, 

KL(p) = K,. 3 (VM)0- 

This fact will appear as a consequence of the lemma of Section 12. 

7.7* Lemma: A consequence of P2 and P3(A) is that if 

[v, kr]eL{p), r = 1,2, 

then for any ueYL , 

(u, h) = (u, fca). 

For by P2 we have that 

[v — v, ki — fco] = [0, ki — ki\€L(p), 

hence h — k^eKu) . Then however, by P3(A), ueVimplies Me(Ktn)0, so 

* Technical paragraph as explained in Section 2.91. 
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that 

0 = (u, ki - h) = {u, ki) - (u, ki). 

Q.E.D. A dual result follows from P3(I). 

7.71* The result of 7.7 above means that the scalar product (v, k) is 
fixed by v alone when we know that [c, k]eL{p). This means that, given 
veVL , there is a unique function Fv(p) defined for peTj, by 

Fr{p) = 

where [r, k]eL{p). Dually, 

•hip) = (v, k) 

is defined for each fixed keKL . 

7.72* (P6.) The complement of F/, is finite and 

(I) For each veVL , Fvip) is rational 

(A) For each ke¥iL , Jk{p) is rational. 

7.73* (P7.) (A) Re(p) > 0 implies Re(F„(p)) > 0 

(I) Re(p) > 0 implies Re(Jfc(p)) > 0. 

VIII. THE FUNDAMENTAL REALIZABILITY THEOREM 

8.0* We can now state our fundamental realizability theorem: If a 
linear correspondence L satisfies PI, ■ • ■ , P7, the associated 2n-pole 
Nl is physically realizable. Conversely, given a physically realizable 
2n-pole N, the associated linear correspondence satisfies PI, • ■ • , P7. 

8.01 Actually, the postulates Pi, • • • , P7 are not unique nor even en- 
tirely independent. Many changes may be rung on them. We indicated 
one above. At the expense of apparent asymmetry, the (A) or (I) por- 
tions, in various combinations, can be deleted or weakened. We shall 
not pursue this subject further at this point, but must come back to it 
in Section 12. 

8.02 We close this Section by outlining the proof of 8.0. The details are 
then contained in the remainder of the paper. 

8.03 The proof that Pi through P7 are necessary for physical realiza- 
bility will be a direct one: it will be shown that, considered individually, 
each network branch and each ideal transformer satisfies the postulates. 

* Technical paragraph as explained in Section 2.91. 



238 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1952 

By an application of Kron's method (described by Synge12), it will then 
be shown that the imposition of Kirchoff's laws preserves the postulates. 
This work is most efficiently performed after the full machinery of the 
sufficiency proofs is available, and will be done in Section 19. 

8.04 The sufficiency of PI through P7 can be deduced—and we will do 
so—from the lemmas to be quoted below. Apart from Section 19 on 
necessity, the remainder of the paper is devoted to the proofs of these 
lemmas. 

8.1* Lemma: If L is a linear correspondence satisfying PI, P2, P3, and 
P4, then there exists a fixed real nonsingular matrix IF such that 

8.11 The list L w{p) of all pairsf 

[W~\, W'k], 

where [v, /c]eL(p), describes a linear correspondence Lw satisfying 
PI, P2, P3, and P4. 

8.12 The 2n-pole N w (= N^) associated with Lw consists of 
(i) Some number r of open-circuited terminal pairs (Ti, Th), , 

(ii) Some number s of short-circuited terminal pairs (2,
n_,+i, T 

■"ATn, T'n), 
(iii) A set of w = w - r - s terminal pairs (TV+i, Tr+i), • • • , 

(Tr+m , Tr+m)- 

8.13 Either m = 0, or the terminal pairs in (iii) are those of a 2m-pole Ni 
which has a nonsingular impedance matrix Zi(p). 

This lemma, and the following, will be proved in 13.2. 

8.2* Lemma: If L satisfies P5, P6, and P7, then Zi(p) is a positive 
realj matrix, that is, Zi{p) satisfies (i), ■ • ■ , (iv) of 1.1. 

8.3* Lemma: If a 27n-pole Ni has a positive real impedance matrix, then 
Ni is physically realizable. 

This is the sufficiency half of the matrix realizability theorem 1.1. 
Part II will be devoted to its proof. 

8.4* Lemma: If N w is physically realizable, then N can be constructed 
from it by the use of ideal transformers. 

This is Cauer's Transformation Theorem'1 about which we shall say 
more in Section 9. 

* Technical paragraph as explained in Section 2.91. 
f W~l and W arc respectively the reciprocal and the transpose of W. 
t Gewertz's terminology8, by now traditional. 
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8.5* The sufficiency half of 8.0 is now clear. By 8.2 and 8.3, Ni is physi- 
cally realizable. Clearly then N is, simply by the adjunction of the 
necessary open and short circuits. Finally N is by Cauer's theorem, 8.4. 

8.6* We can see now how to prove the necessity of positive reality for 
the realizability of a positive real matrix Z(p). This is the necessity half 
of the matrix theorem 1.1. Let Z(p) be the matrix of a realizable N. 
Then N has an associated linear correspondence L satisfying Pi, • • • , P7, 
by the necessity half of 8.0. The pairs of L are the pairs 

[Z(p)k, k] 

generated as k ranges over all n-tuples. By definition, then, the pairs of 
L ic are 

[W-lZ(p)k, W'k]. 

As k ranges over all n-tuples, the nonsingularity of W implies that 
W'k does also. Let U = IF-1. Then the pairs above are the same as 

[UZ(p)U'k, k] 

as k ranges over all n-tuples. Hence Lw has the impedance matrix 
UZ{p)U', where U = IF-1 is real and nonsingular. Because Lw has an 
impedance matrix, r = 0 in 8.12. 

Now by 8.1 and 8.2, Zi(p) is positive real and the matrix UZ(p)U' 
of Lw is just Zi{p) bordered by s rows and columns of zeros. It is then 
easy to sec that UZ{p)U' is positive real, and finally also that Z{p) is. 
These last two facts will be proved formally in Section 16. 

IX. cauer's transformation theorem 

9.0 Cauer's transformation theorem5 is the cornerstone of formal reali- 
zability theory. In one form, the theorem reads: 

9.1* Let Z{p) be the impedance matrix of a physically realizable 2n-pole 
N. Let U be a real, constant, nonsingular matrix. Then 

UZ{p)U' (1) 

is again the impedance matrix of a physically realizable 2n-poIe, Nu . 
N„ can be constructed from N by the use of ideal transformers. 

9.2* A superficial generalization of this theorem can be obtained at once 
from Cauer's proof. It asserts that if N is physically realizable and is 
described by the linear correspondence L, then there is a physically 
realizable 2/i-pole N» , obtainable from N by the use of ideal trans- 

* Technical paragraph as explained in Section 2.91. 
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formers, which is described by the linear correspondence Lw whose pairs 
at each p are the pairs 

[W~~lv, W'k], (2) 

where [v, k]eL{p). 
We refer to Cauer5 for the proof. It is straightforward. 

9.21 We shall use the second form (9.2) of Cauer's theorem in our 
realization process. Notice that it is in a sense a "physical" theorem, 
about the way one physical network is related to another. It is used in 
this way: we shall always solve a realizability problem by finding some 
network N which is easily realized, and then all' such that N n-, which 
is now realizable, provides a solution to the given problem. 

9.22* We shall call the 2n-pole N „■ a Cauer equivalent of N. 

9.3 Although Cauer's theorem will be applied, in a sense, only a ■posteriori, 
its effect is fundamental. For it implies that formal physical realizability 
is a property of matrices which is invariant under the operation (1) 
or a property of correspondences which is invariant under (2). There is 
an extensive classical literature on the properties of matrices invariant 
under operations like that of (1), and the effect of Cauer's theorem is to 
make these results all available to formal realizability theory. 

9.31* It is worth observing here that we are already well set up to use 
Cauer's theorem: 

Lemma: If L is a linear correspondence satisfying PI, ■ • • , P7, then 
the correspondence Lw of 9.2 also satisfies PI, • ■ * , P7. 

Proof: Let M = Lw ■ PI and P2 for M are obvious, with rA, = IT . 
By definition of M, 

v„(p) = w-'VtXv) = ir'v. 

KM(p) = W'Kdp) = IPK. 

V «„(?>) = W-'VM = TF-'V.o 

K mo(p) = W'Kw(p) = IF'K/.n 

where TT^S for a manifold S consists of all n-tuples W'v, where veS. 
Hence in P3, 

V.u(p) = VM = w-lvL 

K,,(p) = Km = W'K, 

for fixed manifolds VlW , K .w as defined. 

* Technical paragraph as explained in Section 2.91. 
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Now if yeV,.o, then 

{v, k) = 0 

for every AeKz, = (V/,o)0. Then, however, by direct calculation from 
Section 7.0, 

{W~lv, W*k) = 0, 

where W* is the adjoint, i.e. transposed conjugate matrix of W. But 
because W is real, W* = W. Hence if fcVto, then 

{W~lv, k) = 0 

for every keWKi. = K.w. Hence 

K„ = (F-'Vm)" = (V,„o(p))0. 

By this and its dual, P3 is completed for M. 
The reamining postulates for M follow from those for L by the simple 

equality 

(v, k) = {W~lv, W'k) 

already established, combined with F= F^ . 

9.32 For fixed Z(p), the matrices (1), as U ranges over a group, form an 
equivalence class. Classical matrix theory treats of such equivalence 
classes. This author's predilection is to regard this theory from a geo- 
metrical point of view. In part this prejudice may be justified by the 
ease with which that slightly more general object, a linear corre- 
spondence, can be treated by geometrical methods. In any event we shall 
begin our program of proofs with a brief introduction to the geometrical 
approach. 

X. GEOMETRICAL PRELIMINARIES 

10.0* We now wish to consider V and K as complex n-dimensional 
linear spacesf respectively of voltage vectors v and current vectors k. 
The distinction here is in point of view. A vector v is regarded as an 
absolute geometrical object; an n-tuple [r] = [cti , • • • , a,,] is regarded 
as a set of coordinates for the vector v, relative to some coordinate basis. 
Given a fixed coordinate basis, there is a one-to-one correspondence 
between vectors v and the n-tuples [c] which represent them in that 
basis, a correspondence which preserves the operations of vector algebra. 

* Technical paragraph as explained in Section 2.91. 
t For a reference concerning the ideas in this section, see Halmos9, Chapters 

I and II. 
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10.01 The effect of attaching a geometric identity to vectors, rather than 
to /i-tuples, is to make it possible to choose coordinate bases freely and 
as convenient, without elaborate constructions or even interpretations. 
We can then discuss properties of n-tuplcs (and other objects, e.g. 
matrices) which are invariant under the kind of operations exemplified 
by (1) and (2) of Section 9 as properties of a simile (jeometric object, 
rather than as properties shared by an extensive class of concrete ob- 
jects which arc converted into each other by the group of operations. 
10.1 This change in point of view need not change formally anything we 
have said to date; it simply erects a conceptual superstructure, or pro- 
vides a conceptual foundation, depending on the reader's personal 
attitude. 

We shall support this statement by going through the important ideas 
of Sections 4, 6, and 7 and examining their geometrical meanings or 
counterparts. It is convenient to consider first and at some length the 
notions of scalar product and complex conjugate. The geometric struc- 
ture will then be complete enough to permit a rapid survey of the 
remaining ideas. 

10.11* The geometrical counterpart of the scalar product introduced in 
7.0 is a numerically valued function a = a{v, k) of two vector variables. 
Its first argument v ranges over V and its second argument k ranges over 
K. The function a(v, k) is linear in v and conjugate linear in k: 

(T{au + bv, k) = acr{u, k) + ba{v, k), ^ 

(t{v, ak bC) = aa{v, k) + baiv, (). 

We denote this function <r(ii, k) by the simple bracket notation (v, k). 

10.12 With this scalar product, the geometry of V and K is that of a 
space K and the space K* = V of conjugate linear functionals over K. 
This is analogous to the real geometry of space and conjugate space 
discussed at length in Halmos9. In fact, in the introduction to Chapter 
III of Halmos9, the modifications introduced by the conjugate linearity 
of {v, k) over K are treated in detail. 

10.13* Because of its importance, we quote here a paraphrase of the 
results covered in Halmos9, par. 12. 

(i) If f{v) is any numerically valued homogeneous linear function of 
reV, then there is a unique vector k/eK such that 

f{v) = (v, k/) 

for all feV. 

* Technical paragraph as explained in Section 2.91. 
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(ii) If g(k) is any numerically values homogeneous conjugate-linear 
function of keK (i.e., if g(k) is linear in A:) then there is a unique VyeV 
such that 

g(k) = (va , k) 

for all keK. 

10.2* The annihilator (Vi)0 of a manifold Vi C V is, as in 7.1, the set of 
all keK such that 

I'eVi implies (v, k) = 0. 

10.21* It is shown in Halmos9 that to each basis vl, • • ■ , y" in V there 
exists a unique dual basis A-1, • ■ • , k" in K such that 

{v, A:8) = 8r8, (2) 

where 5rs is the Kronecker symbol; 5rs = 0 if r 5^ s, 5rr = 1, 1 < r, s < n. 

10.22 If 

[v] = [a,, • • • , an] 
(3) 

[k] = [hh ■■■ ,bn] 

are the w-tuples representing v and k relative to a pair of dual bases, 
then it is easily computed from (1) and (2) that 

n 
(y, A") = 2Z Orbr. (4) 

r=l 

Therefore the concrete scalar product of 7.0 is indeed the geometric 
scalar product here considered, when we restrict our pairs of bases in 
V and K always to be dual in the sense of (2). 

10.23* We shall use the words "coordinate frame" or simply "frame" 
to denote a pair of dual bases in V and K. Any basis in V (or K) specifies 
a frame by the uniqueness result quoted above. 

10.24 We shall henceforth deal always with coordinate frames, in fact, 
ultimately, real coordinate frames, rather than arbitrary pairs of bases. 
This means in classical language that we are considering as "geometrical 
properties" all properties which are preserved under the group of 
linear transformations which leave the bilinear form (4) invariant. 
The properties related to physical. realizability will turn out to be 
invariant only under the subgroup of real linear transformations pre- 
serving (4). 

* Technical paragraph as explained in Section 2.91. 
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10.3* Conjugation is an operation which to each veV associates a 
vector v uniquely determined by v with the properties 

v = v, 
  (5) 

(cm + bv) = au -(- bv, 

where a and b are any complex numbers and d, b their conjugates. 

10.31* Given any such conjugation operation in V, and given any 
keK, define a function (jk{v) by 

gk{v) = (v, k) (6) 

for veV. Then gk{v) is linear in v, by (5) above and (1) of 10.11. There- 
fore, by 10.13, there is a unique vector keK such that 

(/kiv) = {v, k). (7) 

10.32* Directly from (1) of 10.11 and (6) above, if j = ak + bf, then 

gAv) = agk{v) + bg,{v). 

From (7), therefore 

{v,j) = a{v, k) + b(v, 7) 

for all weV. Comparing this with (1) of 10.11, we see that 

j = ak + b(. (8) 

The second item of (5) above then holds for vectors keK. 
That k = k follows easily; We have from (6) and (7), written for the 

vector k, that 

(y, k) = (y, k). (9) 

We also have, by writing (G) and (7) for vectors v and k that 

(y, k) = (y, k). 

Taking complex conjugates of these two numbers, and using i = v 
from (5), we have 

(y, k) = (y, k). (10) 

Then (9) and (10), which hold for all yeV, identify k and k by 10.13. 

10.34* We have now showed in (5), (8) and (10) that this complex 
conjugate satisfies the formal properties of the conjugate for n-tuples 
introduced in 7.2. 

* Technical paragraph as explained in Section 2.91. 
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10.35. The abstract scalar product of 10.11 turned out in the end to be 
no more than the concrete one of 7.0 when we restrict our attention to 
n-tuples derived from vectors by the use of coordinate frames. In a 
similar way, it is not hard to show that there always exists a coordinate 
frame in which the abstract conjugation now introduced has the form 
of 7.2. This will be done in the Appendix (20.2). 

10.36* Our need for writing out the components of vectors has now 
almost vanished. Henceforth we shall use subscripts to denote particular 
vectors, e.g. Vi, rather than components. 

10.4* A vector will be called real if it is equal to its own conjugate. 
A manifold will be called real if it contains with each vector also the 
conjugate of that vector. V and K are then real. A basis will be called 
real if it is made up of real vectors, and a frame will be called real if its 
bases are real. Any frame in terms of which our conjugation operation 
takes the form of 7.2 is real by definition because its basis vectors in 
thai frame have components which are 0 or 1. The vector 0 is real, 
similarly. 

10.41* The basis dual to a real basis is real, for if 

(IV, k.) = 8rs , 

then by (10) of 10.3 and the hypothesis that vr = vr, we have 

(l'r , ks) = 5rs 5rs 

so the ka satisfy the same equations as the k. The uniqueness of the 
basis dual to Vi, • ■ • , vr then proves that k. = ks, 1 < s < n. 

10.42* Any vector v can be written 

v = vt + ivo 

where vi and vo arc real. Namely 

Vi =\{v + V). 

■" = -(»- 5). 

10.5* It is shown in Halmos9, par. 34, that if veV, keK are represented 
by M, [k] in some coordinate frame, and by [y]i , [k]i in some other frame, 
then there is a nonsingular matrix [IT], which (a) depends only upon the 

•Technical paragraph as explained in .Section 2.91. 



246 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1952 

two frames, and (b) relates these n-tuples as follows: 

Mi = [wru 

[/c]i = [wm. 

It is easy to show that if [W] has real elements, so that [W]* = [W]', 
then the two frames involved above are either both real, or else neither is 
real. Also, conversely, if both frames are real, then necessarily the [IF] of 
(11) has real elements and [IF]* = [IF]'. 

10.6* Some further important geometrical notions must be mentioned 
before we proceed. 

If Vi and Vo are disjoint linear manifolds in V—i.e. linear manifolds 
having in common only the single vector 0—we write 

Vi © V2 

for the linear manifold consisting of all vectors v = vi + v*, where 
v.eyi) i = 1,2. The circle around the plus sign is used to denote the 
disjointness of Vi and V2. 

It is shown in Halmos9, par. 19, that if 

V = Vi © V2 (12) 

then 

K = Kx © K2, (13) 

where Ki = (V2)
0, K2 = (Vi)0 and the dimension of Ki is equal to that of 

Vi, i = 1, 2. We call (13) the decomposition dual to (12). We some- 
times write Ki = Vf to denote the K, dual to V,- in the decomposition 
(13). It is shown in Halmos9, loc. cit., that there exists a basis vi, • • • , 
vn in V and its dual fci ,•••,&„ in K such that, if r is the dimension 
of Vx, 

Vi, • • • ,vr is a basis for Vi 

yr+i, • • • ,vn is a basis for V2 

•fci, • ■ ■ , kr is a basis for Ki 

kr+i, • • ■ , kn is a basis for K2. 

Furthermore, if Wx, ■ • • , Wn is any basis in V satisfying the first half 
of (14), its dual basis satisfies the second half, and dually. 

We shall show in the Appendix that if any one of Vi, V2, Kx, or 

* Technical paragraph as explained in Section 2.91. 
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K2 is real, then they all are, and that in this case the bases (14) can be 
chosen to be real. 

Similar considerations apply to decompositions into more summands: 
if 

v = Vj e v2 © • • • © vm 

then 
K = Kj © K2 © • • • © Km , 

where 

v* = k. = n v; = (z vA0. 
\ifii j 

XI. GEOMETRICAL CORRESPONDENCES 

11.0 With the geometry of V and K now in hand, we consider the 
geometric aspects of our network theoretic concepts. 

The definition in Section 4 of general 2/i-poIe describes a concrete 
thing and stands unaltered in our geometric view. The definitions in 
G.ll of the terminology typified by "N admits [v, k] at frequency p" 
are unchanged except that we should now explicitly indicate that we are 
discussing concrete n-tuples of complex numbers by placing brackets 
around the vector symbols, thus: [v], [fc]. In other words, a 2a-pole is 
described by a concrete relation between n-tuples. 

11.1* All of the postulates PI, • • • , P7 arc stated in a language which 
now has been given an absolute geometric meaning. In this meaning, 
PI and P2 describe a geomelrical linear correspondence between vectors 
yeV and keK. This is the geometric counterpart of the concrete 
notion of a linear correspondence between n-tuples. 

11.11 An impedance matrix, as in G.3, describes a particularly tightly 
knit linear correspondence, namely a linear function from K to V. 
The geometrical counterpart is an impedance operator which for each 
p is by definition a linear homogeneous function which assigns to each 
vector keK a unique v = Z(p)keV. That is: an operator is a functional 
relationship between vectors and as such has a geometric identity. 

11.12 It is easy to provef that, given an impedance operator Z(p), 
and given any coordinate bases in V and K respectively, there is a 
matrix [Z{p)], with elements Zrs(p), 1 < r, s < n, such that relative to 
these bases the coordinates ks of a vector k and the coordinates vr of 
v = Z(p)k arc related by (7) of 6.3. We call [Z{p)] the matrix of Z{p) 

* Technical paragraph as explained in Section 2.91. 
f Cf. Halmos9, par. 26. 
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relative to the given pair of bases. A strong analog of this observation is 
contained in the following lemma. 

11.13* Lemma: (i) Let L be a geometrical linear correspondence. Fix 
any real coordinate frame and let [L] be the linear correspondence 
whose paired n-tuples arc 

[[v], [fc]], 

where 
[v, k]eL{p). 

(ii) Alternatively, let [L] be a (concrete) linear correspondence be- 
tween n-tuples. Interpret the n-tuples related by [L] as representing 
vectors in some real coordinate frame. Let L be the geometrical cor- 
respondence whose pairs, expressed as n-tuples in this frame, are those 
of the concrete correspondence [L]. 

In either case, (i) or (ii), the geometric correspondence L satisfies the 
geometric postulates PI , • • • , P7 if and only if the concrete corre- 
spondence [L] satisfies the concrete forms of these postulates. 

The proof of this lemma consists essentially in reading the postulates 
carefully. We shall not reproduce it. 

11.2 Our position is now this: We have on the one hand geometrical 
objects, vectors v, k, operators Z{p), Yip), and geometrical correspond- 
ences L. On the other hand, we have concrete n-tuples [y], [k\, matrices 
[Z{p)], [Yip)], and linear correspondences [L]. Given any pair of bases 
in V and K, in particular, given any coordinate frame, each geometric 
object generates a corresponding concrete object which represents it 
relative to those bases or that frame. Conversely, given a concrete ob- 
ject [(;], we can choose a frame in V and K and find that geometric object 
^ whose coordinates in the chosen frame are given by [i|]. 

11.21* The concrete object, linear correspondence, defines a linear time- 
invariant 2n-pole by 6.21. To complete the picture, we might say that a 
geometrical correspondence L defines a Cauer class of 2a-poles. 

11.22* This terminology is motivated by the following observation: 
if [L] and [L]i are linear correspondences representing L in two distinct 
real frames, then there exists a real nonsingular matrix [IF] relating the 

N, [k]]e[L]ip) 

and the 

[Hi , [kWLUp) 

* Technical paragraph as explained in Section 2.91. 
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by the formulas of 10.o. This means that [L] and [L]i are related like the 
[L] and [L » ] of 9.2. The 2n-polo associated with [L]i therefore is a Cauer 
equivalent of that associated with [L]. 

11.23 The observation of 11.22, combined with (ii) of 11.13, gives an 
alternative proof of 9.31. This proof is deceptively free of calculation, 
but ot course the calculations are concealed in the extensive geometrical 
developments of Section 10, many of which are there offered on faith. 

XII. THE FUNDAMENTAL LEMMA 

12.0 This section is devoted to the statement, and the proof in part, of a 
lemma which, on the face of it, looks like an exercise in manipulating the 
postulates. In fact, the content of the lemma, and most of the details of 
its proof, are essential in what follows. To postpone them would force us 
into needless duplication of effort. 
Lemma: Let L be a geometrical linear correspondence satisfying PI, 
P2, P4, P5(I), P6(I), P7(I) and the following weak form of P3(I): 

P3'(I): If per, , then K,(p) = K, 3 (V,o(p))n. 

Then there is a frequency domain P', C F, , differing from T, by a 
finite set, such that L satisfies all of the postulates for perl. 

The statement of the dual result is evident and will be omitted. 
The proof that L satisfies P3 will be given in this section. Verification 

of the remaining postulates will follow in paragraph 16.6. 
We assume that the properties of positive real (PR) functions are 

known. They are summarized for later use in Section 15. We make 
occasional advance references thereto. 

To the proof: 

12.01 First, K, is a real manifold and for peVL 

K, C (V,o(p))0. (1) 

This, with P3'(I), gives P3(I) for L. 
Proof: K, is real, as in 7.51. Consider now a peT, and a yeV,o(p); 

then [v, 0]eL(p). Consider any real jeKL ; then there is a MeV,(p) 
such that [u, j]eL(p). Now 0 and j are real. Hence by P5(I) 

(v, J) = (u, 0) = 0. 

Therefore any real JeK,. has a vanishing scalar product with every 
veVufp). Since K, is real, it is spanned by real J and (1) follows. 

12.1 By the dual of 7.7, if we know that 

[", '<UL(P), 



u 

250 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1952 

then the value of (v, k) is determined by k. This makes it possible to 
state P6(I) and P7(I) for L (we take P6(I) to include the hypothesis 
that rL has a finite complement). 

12.11 If keK-i, then Jk{p) is PR. 
Proof: if k is real then 

Jk{p) = (v, k) = (v, k), (2) 

where, of course, [v, k]eL{p). Then however [v, k]eL{p), by P4. Hence 
by 12.1, (2) gives us 

Jk{p) = Jk{p)- 

From this and P6(I), P7(I) we conclude that Jk{p) is PR for any real 
keKL . 

Now, given any ktK.,,, we have keKi, by 12.01. Then 

k = /ci + iki 

where h and ki are real and in K,,, since KL is a linear manifold (see 
10.42). Let 

[Vr , kr\eLip), 

r = 1, 2. Then we have (P2) 

[vi + m , k]eL(p). 

Then 

Jk{p) = (Pi , h) + (v2, kf) + i{vi, ki) — i{v2, kf). 

Now by P5(I), (vi, kf) = (^ , kf). Hence 

Jk{p) = (^i , kf) + (^2, kf) (3) 

for any ptVL . Since each summand in (3) is a PR function, it follows 
that Jk{p) is PR for any fceK. 

12.12 Let Ki be the set of all vectors /oeKi, such that 

Jk{p) = 0 for every peVL . 

Notice that we do not assert that Ki is a linear manifold. 
If fceKi then A:eKL and (3) above applies. Then 

(^i, kf) + {vo, ki) = 0 

and, using this and the PR property of each summand, we conclude 
that h and ki are in Ki. 
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12.13 We wish now to show that Ki c: KLo(p). Consider a real jeK.L and 
a real /ceKi. Let 

[u{p), j]eL(p), 
(4) 

[v{v), fc]eL(p). 

Then, given any real X, by P2 

[nip) + Mp)J + \k]eL{p). 

Then, because keKi, 

(u + \v, j + X/c) = (u, j) + X(v, j) + X(w, /c). 

Since j and /c are real, by P5(I) this can be written 

{u + Xy, j + X/o) = {u, j) + 2X(v, j). (5) 

Choose any pj such that Re(pi) > 0. Then P7(I) implies that the left 
side of (5) has a non-negative real part at p = pj. The right side, by 
suitable choice of X, can have any chosen real part unless 

ReWpx), j) = 0. (6) 

Hence P7(I) implies (6). Now (y(p), j) is a rational function, by P6(I) 
applied to the other members of (5). By (6), this rational function has a 
vanishing real part throughout the right half p-plane. Hence it is an 
imaginary constant; 

Wp), j) = ia. (7) 

Then 

(v(p),j) = (vip), j) = -ra. (8) 

But [y(p), A:]eL(p), so [y(p), k]eL{p) by P4. Since also [y(p), /;]eL(p), 
by 12.1, we have from (8) that 

(f(p), j) = —ici. 

Comparing this with (7) written for p, we have a = 0 and 

(y(p).i) = 0 for ptVL. (9) 

Now v{p) was determined by (4) wherein k is real. For any fceKi, 
k = ki + iko, where ki and ki are real and in Ki (12.11). A correspond- 
ing v{p) satisfying (4) can be written 

y(p) = yi(p) + iv2{p), (10) 
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by P2, where [vr(p), kr\eL{p), r = 1, 2. Then (9) holds for each of 
V\(p), Voip) and therefore also for the v{p) of (10). 

We have showed now that for any peF/, and any keKi , the v(p) of 
(4) has a vanishing scalar product with every real jeK.L . Since K/, 
is spanned by real j, 

v{p)e{K,.)n = Vlo • (11) 

12.14 By (11), 

[v(p), 0]eL(p). 

Comparing this with (4), and applying P2, 

Hp) - v{p), A: - 0] = [0, k]eL{p). 

Since k is now any vector in Ki, we have 

K, C K/,o(p) C Kl (12) 

for every peTL . 

12.15 We can now also show that Vl(p) C (Ki)0. We return to 12.13 
and read (9) thereof as originally derived for real j and k. Applying 
P5(I), we have from (9) that 

(u{p), k) = 0 for peTL. (13) 

By the argument immediately following (9), (13) also holds for any 
/ceKi , provided j is real. As in 12.11 any jeKt can be written 
j = ji -J- iji, where ji and jz are real, and the corresponding 

u(p) = rhip) + iuXp) 

where [uXp), jrHXp)- Therefore, finally, (13) holds for any u{p) 
satisfying (4)—i.e., any u(p)eYiXp)—and any A:eKi . Therefore 

V.XP) Q (Ki)0 (14) 

for any peV,.. 

12.2 We now fix our attention on a specific real pneTi. 

12.21 By P4, if 

[v, k]eL{po) 

we have also , 

[v, k](L{po) = L(pa). 

In particular, Ki.o(po) is real. 
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12.22 We can now show that Ki is a real linear manifold. Consider a 
real keKu>(pa). Then (0, k]eL{po) and by 12.1 

Jicipa) = 0. 

Then by 12.11 (and 15.12), Jk(p) = 0, so A tKi . Since Klo(po) is spanned 
by real k (12.21), we have 

K-Lo(pn) Q Ki . 

Comparing this with (12) gives us 

K/.„(p„) = Ki . (15) 

Since K/.o(p(l) is a real linear manifold by definition and 12.21, we see 
that Ki is. 

12.3 Let us now write, by (12) and (15), 

K, = K, © K! (16) 

where IC. is an arbitrary fixed manifold disjoint from Ki and with it- 
spanning K,. . All three manifolds are real (12.21, (15), 10.6). 

Choose a KL disjoint from K/. such that 

K = Ks © Ko © Ki. (17) 

Let the decomposition of V dual to (17) be (10.6) 

V = V3 © V, © V!. 

Then V3 = (K2 © KO" = (K,.)0 = VLo by 12.01. Hence 

V = VM © V2 © Vi. (18) 

By (14) and the definitions, 

Vu, C V,(p) C V,.n © V2. (19) 

12.31 Consider a real po. Then by P3'(I), (15) and (1(5) we have 

Kto(po) Q Kt(po) C Ko © Kto(po). (20) 

This is now an expression dual to (19). We shall prove next that, given 
any keKL(po)nK>(= Ko), there is a unique rt€V,.(po)nVo such that 

[L'k , k]eL(po). (21) 

Dually, given any t-,€V/,(po)nVo, there is a unique /i.-eK/XpojOKo such 
that 

[v, kv]eL(p0). 
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The proof is a standard one in algebra and depends only upon P2, 
(19), and (20). 

Proof: Given fccK/,(po)nK2, there is some feV/,(po) such that 

[y, k]eL(po). (22) 

By (19), then, 

V = Vo + Vz 

where VotVlo , VzeVt. Then 

[yo, 0]eL(po) 

so, applying P2 to this and (22), 

[v — Va, k — 0] = [y2, /c]cL(po). (23) 

Hence y2€VL(po)nV2 and vk = V2 satisfies (21). Suppose now 
y36Vz.(po)nV2 and 

[ys, k]eL{Va). 

Then using this with (23) and P2 

[y2 — ys, 0]€L(po). 

Hence (y2 - ys)eV/.o. Now ViXptOHVa is a linear manifold and contains 
V2, ys • Hence 

(y2 - y3)€VLonVz.(po)nV2 = 0. 

Therefore V2 = Vz. 
The dual argument completes the proof. 

12.32 The argument actually exhibited in 12.31 uses only P2 and (19), 
hence the y* of (21) is unique whether or not po is real. Indeed, this is 
true even when ktKi.. 
12.33 The result of 12.31 establishes a bi-unique linear mapping between 
K2 and V,(po)nV2. Hence these two manifolds are of the same dimen- 
sion. Since K2 and V2 = K? are of the same dimension by construction, 
it follows that 

VL(po)nV2 = V2 

and, by (19), that 

VL{po) = © V2. 

12.4 Let us now introduce a real frame in V and K which provides real 
bases in Ki, K2, K3 and in Vi, V2, Vlo of (17) and (18). Let /bi, * • • , km 
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be the basis vectors spanning Ko. By 12.32, there are unique vectors 
wi(p)> •" • . Um{p) in Vo such that 

[«.(?), krWAp)- 

Let vi, • " , vm be the (real) basis vectors in V2 dual to the In , • • • , km : 

(yr, ks) = bra 1 < r < s. (24) 

Since the uT{p) are all in we have for each peTL 

m 
U,(p) = X) ars{p)vr (25) 

r=I 

where the coefficients ars{p) arc calculated by (24) to be 

Craip) = Mp), kr). (26) 

12.41 Because the kr are real, P5(I) implies that 

MP) = (Wr(p), k8) = {Ua{p), In) = drsip). (27) 

By the reasoning just following (8) and by the uniqueness of the 
uB{p)eWi, since V2 is real, we have u,(p) = u,(p). Then 

ars{p) = (u.{p), kr) = (Usip), kr) = drsip). 

12.42 We have by P2 that 

[Urip) + \Usip), kr + \k,]eLip), (28) 

for any X. The identity 

(Wr "b Us , kr "b ks) (Wr Us , kr ks) 
(29) 

= 2(wr, ks) + 2(Us, kr) 

holds in fact for any vectors Ur, ?/s, K , ka. Using (27), (28) and P6(I), 
it exhibits arfl(p) as a rational function. 

12.5 Consider the m X m matrix [Z\{p)\ whose elements are the ar8(p). 
the s-th column of this matrix consists of the components of Usip). 
The rank of the matrix is by definition the dimension of the space 
spanned by these columns. 

12.51 Now the rank of [Zi(p)] can be expressed in terras of the vanish- 
ing or not of its various minor determinants. There are finitely many 
such minors and each is a rational function. Each is either identically 
zero or else vanishes at only finitely many points. Hence the rank of 
[Ziip)], except at these finitely many points, and at the p in the comple- 
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ment of Tl , is a constant. We call this constant the nominal rank of 

12.52 Let rl consist of all vcTl where [Z,(p)] has its nominal rank. 
Then Ft has a finite complement. By the reality result of 12.41, it 
peFt then ytYL . 

It is clear that at any peF,. the rank of [Zi(p)l does not exceed its 
nominal rank. 

12.53 By construction, the vectors Wi(p), ■ • • , um{-p) all lie in . 
By the reasoning of 12.33, at any real p^YL they span V2 . Hence the 
nominal rank of [Zi(p)] is vi. Therefore, for any ytY^ , [Zi(p)] has rank 
m and the Wi(p), • • ■ , wm(p), lying in V2, still span V2 . Therefore for all 
perl 

v.(p)nv2 = v2. 

By (19), then, 

VL(p) = V^o © V2 = W, , (30) 

a fixed manifold, for all per'L. 

12.54 It is clear by its construction (cf. Halmos , par. 26) that [Zi(p)] 
describes the mapping of 12.32 from K> to V2 = V/.(p)nV2 by 

[vk] = [ZtipW]. 

Here the m-tuples [y^] and [k] are the components of vk and k relative to 
the bases now available in V2 and K>. 

12.55 We repeat 

Ki C K,,)(p) C Kl = K, © K2. (12) 

Fix a peFl and a /ceKi,o(p)nK2 . Then [0, k]eL{p). Since 0eV2, it follows 
from 12.54 that [Zi(p)] annihilates k. Suppose m ^ 0. Since the rank of 
[Zi{p)] is m, it follows that k = 0. Hence for pel\ 

KLo(p)nK2 = 0. 

By (12), then, (31) 

Kio(p) = Ki = K^o , 

a fixed manifold. This, with the result of 12.53, proves that L satisfies 
P3(A), when m 5^ 0. 

If m = 0 then V2 = 0, K2 = 0 and (31) follows from (12) and (16). 

12.56 [Zi(p)] is of dimension m and rank m for any peYL . Therefore 
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the correspondence of 12.32 and 12.54 between V-. and Ko is bi-unique 
for any peTL . This extends 12.31 to any peT'L . 

12.57 If m = 0, i.e., if Vo = Ko = 0, then VLo = (K/.o)'1 and the fact 
that L satisfies all the postulates is trivial because all scalar products 
(v, k) for veY,, = VLo and ktK.L = K^o are zero. If m ^ 0, we have yet 
to show that L satisfies P5(A), PG(A), P7(A). 

12.6 Since now L satisfies P3, 7.7 as given is applicable and we find 
(with 12.1) that if peT'L and 

[c, k]eL(p), 

then (v, k) is fixed by either v or k. Furthermore, 

(v, k) = {v + Co, k + ko) 

for any CoeVM , koeKLo. 

12.61 If per',, and [c, k]eL(p), then veVL , keK,. . By (30), (31), and 
(16), therefore, there exist coeVwi, kotK,.o such that u = v — coeVo, 
j = {k - /cQ)(Ko. Then by P2 

[u,j]eL(p). (32) 

By 12.6, then, any value assumed by a scalar product (c, k) with 
[c, k]€L{p) is also assumed by a product (m, j), where (32) holds and 
weV2, jeKo. 

XIII. SUFFICIENCY OF THE POSTULATES 

13.0 We suppose that L satisfies the postulates of 12.0. Then the results 
of Section 12 are applicable. The ones of first importance are contained 
in the facts from (15), (30) and (31), that 

V;. = Vz.0 ® V2, 

K, = Ko © KLo , 

where the choice of Ko was governed only by the requirement that the 
second of these formulae hold. 

13.01 Considering K-. and Vo as separate spaces, Vo = K* by 10.6. 
Let M be the geometrical linear correspondence between them with 
frequency domain T,. and pairs described by 12.31 and 12.56 (or 12.54). 
That is, as vectors in Vo and K. 

[v, k]eM(p) 
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if and only if, as vectors in V and K, 

k kWV). 

13.02 In the real frame of 12.4 let us renumber the basis vectors so that 

wi, • • • , vr span Vm , 

Wr+l j ' " ' » ^r+m Span V2 , 

Vr+m+i, ,Vn span Vi . 

Then 

/cj, • • • , fcr+m span K2 , 

kr+m+i, ''' , kn span K/xi • 

We say that such a frame reduces L. 

13.1 Let us now interpret the s-th components of [y] and [k] in this frame 
respectively as the voltage across and the current in an ideal branch 
/3S of a 2n-pole N, 1 < s < n. 

By construction, the vectors veYl in this frame have components 
ar+m+1 = • • • = an = 0, since Vi, • • • , vr+m span VL . At the same time, 
the components 6r+m+i, • • • , 6„ of [k] may be chosen arbitrarily without 
altering the fact that [[v], [k]]e[L](p) because of 12.06. Therefore, the 
ideal branches Pr+m+i, • • • , /3n can each be realized physically by a short 
circuit. 

In a dual way, since /cr+i, ■ • • ,kn span K/,, any keK.L has components 
bi, • ■ • , bT sdl zero in our chosen frame. Furthermore, the components 
ai, • • • , ar of [y] can be chosen at will. Hence the ideal branches 
0i, Pr can each be realized physically by an open circuit. 

Let Ni now be the 2m-pole whose ideal branches are 0r+i, • ■ • , Pr+m • 
Let the pairs [[y], [k]] admitted by IL at each perl be the [[y], [k]], 
where [y, k]eM(p) (13.01). The representation just found for N shows 
that N is physically realizable if and only if Ni is. 

13.11 The matrix [Zi(p)] of 12.54 is the impedance matrix of the 2m- 
pole Ni. 

13.12 We now show that [Zi(p)] is a positive real matrix. The displayed 
formulae of 12.41 show (ii) and (iii) of 1.1, and 12.42 shows (i). Now 
suppose that [y, k\eM(p). Then, as vectors in V and K, [v, k]tL{p) by 
definition of M(p). Then, however, if k is fixed 

Jk{p) = (f, k) 
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is a PR function (12.11). Regarding v and k in V2 and K2 let 

[^r+l J • • * , ^r+m] = [k]. 

Then by (1) of 7.0 
m m 

iv, k) = asl{p)hi+rb,+r (=i »=i 

and this lias a non-negative real part if Re(p) > 0. This is (iv) of 1.1- 

13.2 We can now prove the lemmas 8.1 and 8.2. Given a linear cor- 
respondence [L] which satisfies PI, ■ • • , P7 by 11.13 we can interpret 
[L] as the concrete correspondence representing a geometrical cor- 
respondence L in some chosen real frame, and L satisfies PI, • ■ • , P7. 
Then by the results in 13.01-13.12 there exists a real frame in which the 
representative [L]i of L has the properties claimed in 8.1 and 8.2 for L w . 
But we saw in 11.22 that [L\ and [L]i are related by a real matrix W like 
the L and Lw of Section 8. Q.E.D. 

13.21 With the proofs of 8.1 and 8.2 we have reduced the sufficiency 
claimed for PI, • • • , P7 in 8.0 to the sufficiency of positive reality of 
[Z(p)] claimed in 1.1, by the argument outlined in 8.5. 

XIV. OPERATOR-VALUED FUNCTIONS OF J) 

The next three sections are directed principally toward the proof of the 
matrix theorem of 1.1. They do however, contribute to 12.10 and to 
the necessity proof. 

14.0 We continue to use the geometric language. The reader who re- 
gards this as unduly pedantic is free to place a concrete interpretation 
upon every argument, for all of the arguments are either frankly based 
on matrix representations or upon the three identities: 

14.01 (Zj, k) = (Z*k, j) for all j, /ceK. 

1402 Zk = (Zk) for all ktK. 

14.03 Z' = (Z)* = (Z*) 

14.04 These identities are obvious for matrices using 7.0 and 7.2. 
Geometrically, the first and second define Z* and Z, and the third 
defines Z' in two ways. The equivalence of these two ways is a theorem 
based on (10) of 10.33. 

14.05 The symbol Z will always denote an impedance (operator, matrix, 
scalar), and Y will always denote an admittance. An impedance oper- 
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ates from K to V, an admittance dually. The operators in Halmos9 

are physically dimensionless, in that they operate, e.g., from V to V. 
This difference is scarcely noticeable. 

We shall regularly omit the duals to concepts or proofs given in terms 
of impedances. In doing so, we adopt the rule that the dual to an 
expression 

{Zk, k) 

is 

(y, Yv). 

14.1 An operator is called symmetric if Z = Z'. Such operators have 
three useful special properties: 

14.11 If Z is symmetric and j and k are real, then 

{Zj,k) = (Zj, k) = {(Z)*kJ) = (Z'kJ) = (ZkJ) 

by (10) of 10.33, 14.02, 14.01, 14.03, and hypothesis. 

14.12 Let k = h + iki, where h and ki are real (10.42). If Z is symmetric 
then 

{Zk, k) = (Zkx, ki) + {Zkz, kz), 

for, by 14.11, 

(Zki, ih) = —i{Zki, ki) = —i{Zki, ki) 

= —{Z(iki), k\). 

(Cf. the similar identity in 12.11.) 

14.13 The symmetric operator Z is completely defined by the quadratic 
form 

{Zk, k) (1) 

as a function of real keK. For 14.11 permits the formula (29) of 12.42 
in any real frame, where vs = Zk, . The matrix elements of [Z{p)] in 
that frame are then defined by that formula in terms of values of (1) 
for real k. 

The form (1) specifies any Z (symmetric or not) if k is allowed to 
range over all of K (Halmos9, par. 53). 

14.2 Let Z{p) now be an impedance operator depending on p. We say 
that po 9* co is a pole of order m of Z{p) if 

t{k) = lim {p - po)"'{Z{p)k, k) (2) 
P-*P0 
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exists for every /'^K and is not identically zero. By 15.13, this limit 
f{k) defines an operator Ro, the residue* of Z(p) at po, by 

(ffo/.1, k) = f(k) for A-eK. 

The changes in (2) required to define a pole at p = =o are obvious. 
14.21 A pole pn of order m of Z(p) is a pole of some matrix element of 
[Z(p)], of order m, in any frame, and no element of [Z(p)] has a pole at 
po of order exceeding m. For the elements of [Z(p)] are defined by the 
values of (Z(p)/c, k), by 14.11 and Halmos" loc. cit. 

XV. POSITIVE REAL FUNCTIONS 

15.0 Let/(p) be a scalar function of the complex variable p. Following 
Brune2 we define f(p) to be positive real if 

(i) f(p) is a rational function of p, 

(ii) lip) = fiP), 

(iii) Re(p) > 0 implies Re(/(p)) > 0. 

The property (i) of being rational is of course on a quite different 
level of ideas from the other properties, but it saves words later to in- 
clude it specifically in the meaning of positive real. 

We abbreviate the words positive real to PR. 

15.01 The open region of the complex plane consisting of all finite p 
such that Re(p) > 0—the right half plane—we denote by r+ . 

15.1 Brune, loc. cit., established a number of properties of PR functions 
Jip) which will be useful to us here: 

15.11 fip) has no poles in r+. 

15.12 If Re(/(p)) = 0 for some peT+ , then/(p) = 0 for all p. 

15.13 If it exists, ,^-r is PR. 
fiP) 

15.14 If fip) has a pole at p = po, it has one at p = po . 

15.15 If /(p) has a pole at p = iuo , that pole is simple and 

/(p) = 7T5r +/l(p)' 

where r > 0, and /i(p) is PR. 

* Properly, Ro is ii residue only when m = 1. There is no convenient name 
available for general in. 
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15.16 If/(p) has a pole at p = , that pole is simple and 

/(p) = pr + flip), 

where r > 0, and /i(p) is PR. 

15.17 We shall use all of these in the next section, save 15.13. Our aim 
is to prove properties analogous to 15.11, • • • , 15.16 for PR matrices 
and operators. 

The reader familiar with the Brune process2 for realization of a 2-pole 
will remember the importance of the properties 15.11, ••• , 15.16 for the 
success of that process. Correspondingly, we must establish the analogs 
of these properties to implement the general Brune process for 2a-poles. 

XVI. POSITIVE REAL OPERATORS 

16.0 An operator Z(p) from K to V will be called positive real (PR) if in 
some real coordinate frame the matrix [Zip)] is a PR matrix in the sense 
of 1.1—that is 

(i) [Zip)] has rational elements Zrs(p) 

(ii) Zrsip) = Z„ip) 

(iii) Zrsip) = Zsrip) 

(iv) For any real keK and any peT+ 

Re(Z(p)/c, k) > 0. 

We intend in this section to establish for PR operators the properties 
listed below. By subtracting 0.9 from the designation of each property 
one obtains the designation of the analogous property of a PR scalar 
function, stated earlier. 

16.01 Zip) has no poles in r+ . 

16.02 If Re(Z(p)/c, k) = 0 for some peT+ , then Zip)k = 0 for all p. 

16.03 If it exists, Z~\p) = Yip) is PR. 

16.04 If Zip) has a pole at p = po, it has one at p = po. 

16.05 If Zip) has a pole at p = iuo, that pole is simple* and 

Zip) = 2 I 2 R + Zlip), 
p + Wo 

where R is real, symmetric, and semi-definite, not zero, and Zi(p) is PR. 

* i.e., of order one. 
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16.00 If Z{p) has a pole at p = ^, that pole is simple and 

Zip) = VR + Zxip) 

where R = R' = R, R > 0 and Zi(p) is PR. 

10.07 There is property of rational scalar functions f(p), whether PR 
or not, that is essential in the Brune theory: the existence of a finite 
integer, the degree of /. Each step in the Brune reduction of f(p) leaves 
an unreduced portion which is of lower degree than the function upon 
which the step was performed. The finiteness of the original degree of / 
then guarantees the termination of the process in finitely many steps. 

There exists also for rational matrices (and operators) a concept of 
degree. This degree plays the same role in the general Brune process for 
2w-poles as the degree of a scalar function does in the process for 2-poles. 
To define this degree and develop its properties requires an excursion 
into classical algebra. Since we shall not need these ideas until Part II 
we defer further discussion of them to that part. 

16.1 If Z{p) is PR it follows at once that the matrix [Z{p)] is PR in any 
real frame. 

Proof: Two such matrices are related by 

[Z(p)]1 = [U][Z{p)][U]' 

where U is real, by 11.22 and the argument in 8.6. The PR properties 
of [Z{p)] are obviously preserved by this operation. 

16.11 If Z{p) is PR, then 

zip) = Z'ip) = z^ip) = Zitf. 

Proof: Use 16.0 and 14.03 in a real frame. 

16.12 If Zip) is PR, then for any given AeK the function 

Jkip) = iZip)k, k) 

is a PR scalar function. It follows that the limitation in (iv) of 16.0 
to real k is a simplification, not a restriction. 

Proof: Jkip) is independent of coordinate representation. By use of a 
real frame, (i) of 16.0 implies (i) of 15.0. 

By 14.01 and 16.11 

7^f) = iZ*ip)k, k) = iZip)k, k) = Jkip). 

This is (ii) of 15.0. For any k, 14.12 and (iv) of 16.0 imply (iii) of 15.0. 



264 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1952 

16.13 Conversely to 16.12, if Z{p) is symmetric and Juiv) is PR for 
every real />', then ^(p) is PR, and Jk{p) is PR for all k. 

Proof: Jifp) is rational so (i) of 16.0 holds in any frame by 14.13. 
Clearly (iv) of 16.0 holds. 

Now for real k, by (10) of 10.33 and 14.02 

Jk(p) = Jkiv) = {z(p)k, k). 

Hence Z{p) — Z{p) by 14.13. This is (ii) of 16.0, and (iii) there holds 
by hypothesis. 

16.2 Proof of 16.01: By 15.11 and 16.12, Jk(p) has no poles in r+. 
This is 16.01 by the definition 14.3 of pole. 

16.21 Corollary: Any PR Z{p) can be considered as defined throughout 
r+ : for any k, Jk(p) is defined throughout r+ by 16.2. For each p, 
as a function of k, Jifp) defines Z(p) (14.13). 

16.3 Proof of 16.03: In any frame [Z'fp)] = [Zip)]'1 = [F(p)] consists 
of rational elements, by direct calculation of the inverse matrix. In a 
real frame [F(p)] = [Z'fp)] is symmetric and real for real p by the same 
argument (both facts are also deducible geometrically). Hence we have 
the duals of (i), (ii) and (iii) of 16.0 for Yip). Clearly Yip) is defined 
throughout r+ . 

Now suppose that for some veW and some poer+ we have 

Ilefv, Yipo)v) < 0. 

Then there is a keK such that v = Zipf)k. Therefore 

Re(Z(po)/v, AO = ReiZip0)k, k) < 0. 

Since this is impossible, we have the dual of (iv) of 16.0 for 1 (p) and 
y(p) is PR. 

16.4 Proof of 16.04: This is immediate from 15.14, 14.3, and 16.12. 

16.5 Proofs of 16.05 and 16.06: Suppose Zip) has a pole at p = iuo. 
Then iZip)k, k) does and that pole is simple by 15.15 and 16.12. Then 
by 14.3 we can write 

Zip) =  t— Ro T Zoip) 
P — two 

where Znip) is regular at p = fcoo. Now Zoip) has a pole at p = —iuo 
by 16.5, so a similar argument gives 

Zip) = t— Ro H j—r— Ri + Ziip), (1) 
p — luo p + lOiO 
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where Z\(p) has no pole at ?coo or —iuo . The symmetry of Z and linear 
independence of the terms above then imply the symmetry of Ro, R\ 
and Z[(p). 

For any keK, now, 

(Z(p)fc, k) =  k) + (fti Ic) + (Z^k, k). 
p — lUo p + two 

Applying 10.12 and 15.15, 

{Rok, k) = (Rrk, k) > 0 

for all k. Hence /?„ = Ri = R (say) and R is semi-definite. Also, 
{Zi(p)k, k) appears as the residue fi(p) in 15.15 and is therefore PR. 
Then Zi{p) is PR by 16.13. With R(, and Ri identified, (1) above is the 
expansion given in 16.05. We have now proved all of 16.05 save the 
reality of R. But 

is PR, by 16.13, hence is real for real p. Therefore R is real. 
The proof of 16.06 is similar. 

16.6 To prove 10.02 we appear to digress somewhat, by first com- 
pleting the proof of the fundamental lemma of 12.0. It was established 
in Section 13 that the matrix [Z\{p)\ describing M{p) in the chosen 
basis is PR. The case in which it is nonsingular (i.e., m ^ 0, cf. 12.56, 
12.57) remains to be examined. 

16.61 If [Zi{p)] is nonsingular then its inverse is PR (16.3). Then for 
any reW, 

(y, k) = (v, Y{p)v) (2) 

is PR (10.12 dual). By 12.01, for any ReVt, the values of the function 
Fu{p) are the values of (2) for some vtW*. Hence Fu{p) is PR. This is 
P6(A) and P7(A) for L. 
16.62 To settle P5 for L in 12.0, consider ptV'L and 

[v, k]eL{p), [u,j]eL(p), 

where u and v are real. Then, say, 

v = Vo + vi , 

where I'dcT'to, vitVz. But then 

V = V = Vn + Vi 
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and, because Vlo and V2 are real, Do = Vo, wi = Vi, and these vectors are 
real. Using similar reasoning for u, 

(v, j) = fa , y(p)ui)> (u> k) = (w«» ^(P)yi)> (3) 

by 12.61. The equality (w, k) = [v, j) now follows from (3) and the duals 
of 16.11, 14.11. Hence we have P5(A) for L and 12.0 is proved. 

16.7 We now prove an important 
Lemma: Let Zip) be a PR operator from K to V. Let IT be the set 

of p where Zip) is defined and has a rank equal to its nominal rank. Let 
L be the correspondence with domain IT and pairs 

[Z(p)k, k], k(KL . 

Then L satisfies PI, • • ■ , P7. 
Proof: L satisfies PI and P2 (6.3). IT satisfies P4 by the argument of 

12.52. Then L satisfies P4, for by 16.11 

Z&jk = Zip)k. 

L satisfies P5(I) by 14.11 and 16.11. IT satisfies P6 by 12.52. Then L 
satisfies P6(I) and P7(I) by 16.12. The fundamental lemma, 12.0, 
now proves that L satisfies all the postulates. 

16.71 We call a correspondence satisfying all the postulates PR. 

16.72 Proof of 16.02: Suppose Re(Z(po)/c, k) = 0 for some poer+. 
Because this function of p is PR (16.12) we have 

Mp) = {Zip)k, k) = 0. 

Hence keKr = Ky, (12.12, 12.55). Hence [0, kWp) for every peTL. 
That is 

Zip)k = 0 for pelT • 

16.73 Corollary: If Zipo)k = 0 for some poeT+ , then Zip)k = 0. 
For the hypothesis here implies that of 16.72. This is the analog of 
15.12; the result of 16.02 is stronger. 

16.8 An important consequence of 16.7 is the 
Lemma*: If Zip) is PR and of rank m, then there exists a real coordi- 

nate frame in which the matrix [Zip)] is an m X m nonsingular PR 
matrix [Ziip)] bordered by zeros. 

* Proved by Cauer®. 
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Proof: Consider the PR correspondence L defined by Z(p). Then 
Vlo = 0, because Z{p)0 = 0 for every perL . Consider the real frame 
of 13.02. [Z(p)] in this frame takes any of Av+m+i , • • • , kn into 0 because 
these span Km . Within Ko, [Z{p)] must describe the same operation as 
the [Zi(p)] of 12.54. Because [Z{p)] is symmetric the lemma follows. 

XVII. THE JUXTAPOSITION OF CORRESPONDENCES 

17.0 This section and the next will consider ways of constructing new 
correspondences from old. This will provide the basis of the necessity 
proof of Section 19. 

17.01 It is obvious that if two physical networks are set side by side 
and their accessible terminals regarded as the terminals of a single 
larger network, that enlarged network is again a physical network. 
This is the gist of the present section. 

17.1 Suppose that 

V = V1@V2, K = K1©K2, 

where K,- = V* and all spaces are real (10.G). Let Ei project on V 
along V2 (Halmos9, par. 33) and ^2 = 1 — project on V2 along Vi . 
Then E* projects on K,- along Kj , j 9* i (Halmos9, loc. cit.). It is 
easily verified that Ei = Ei, E* = E* , from the analog of 14.02 for 
dimensionless operators. 

Considering V, and K, as separate spaces, let L, be a geometrical 
linear correspondence between them with frequency domain F,-, i = 1, 2. 

Consider the correspondence L between V and K defined by 

(i) The frequency domain IT = Fiflro 

(ii) [v, k]eL{p) if and only if [£>, E*k\eLi(p), i = 1, 2. 

In (ii), of course, we regard E{v and E*k as elements of V,-, K,. 

17.11 L so defined is called the juxtaposition of Li and L-,. 

17.2 Lemma: L is PR if and only if each of Li and L2 is PR. 

17.21 Proof of "if": It is clear that L satisfies PI and P2. Further 
notation is now simplified if we put Li = M, L2 = N. Consider the 
manifolds 

V M © Vat , V,,0 © V NO ) K.w © KAT , K.WO © KATO , 

where V ^ C Vi is the manifold of voltages admitted by Li = M con- 
sidered as a correspondence between Vi and Ki, and V mo the manifold 
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of voltages weVi such that [v, 0]€Li(p) for all peFj. Dual definitions 
for K,w , Kmo , and symmetrical ones for Vw , • • • , KNo need not be 
repeated. 

It is clear from these definitions that the four manifolds above are, 
in the order listed, the manifolds 

VL , Vlo , Kl , Kto 

for L. Now, for example, 

(K/yn)n = (Kmo ® Kato)" = (K Mo)on(KAro)" 

by 10.6. This last manifold, in V, is (Vm © V2) H {YN © Vi), byP3 
for M and N, and by 10.6. But by direct calculation 

(VM © V..)n(VA. © V,) = VM © Vat = Vl . 

The dual of this result then completes P3 for L. 
P4 for L is immediate because the Ei and Ei are real. 
The duality of the decompositions of V and K implies the identity 

(v, k) = (EiV, E*k) + {EoV, E2 k) 

(that is ExEi = E^Ex = 0, and dually. This is Halmos9, par. 33). All 
of P5, P6, and P7 for L follow at once from this identity. 

17.22 The "only if" of 17.2 is a special case of the result of Section 18. 
Its proof will be deferred to 18.4. 

17.23 It is obvious that the notion of juxtaposition and the lemma of 
17.2 extend to juxtapositions 'of more than two correspondences. 

17.3 Even without the "only if" part of 17.2, we have enough for the 
following characterization of PR correspondences: 

Theorem: A correspondence L is PR if and only if it is the juxtaposi- 
tion of 

(i) a correspondence defined by a nonsingular PR matrix between 
a Vi and a Ki = Vi , 

(ii) a correspondence consisting of short circuits: that is of pairs 
[0, k] for all A*eK. and all p, 

(hi) a correspondence consisting of open circuits: that is, of pairs 
[y, 0] for all yeVs and all p. 

Proof: If L is PR, the decomposition indicated is that of 13.1, 13.11, 
13.12. If L is the juxtaposition indicated, then it is PR by 16.6 and the 
"if" in 17.1, provided the short and open circuits are PR correspondences. 
The verification of the postulates for these latter is easy and will be 
omitted. 
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17.31 The labor of considering PR correspondences instead of matrices 
has yielded the disappointingly simple result of 17.3. We have already 
been warned of this, however, by our knowledge of the properties of 
physical networks (2.9). 

XVIII. THE OPERATION OF RESTRICTION 

18.0 In addition to juxtaposition, which is an operation on correspond- 
ences clearly motivated by physical considerations, there is an operation, 
here called restriction, which has important use in the next section. 
There the physical meaning of the operation will become clear. 

18.1 Let V and K = V* be a pair of dual spaces. Let U and J = U* be 
another pair. Suppose that C is a given fixed linear operation from J to 
K: given any je], there is a unique k(j)eK, written 

HJ) = Cj, 

such that if kT = Cjr, r = 1,2, then 

aiki -j- cio/ro = C(aiji -(- 0,2j2) 

for any complex scalars ai , cto . 

18.11 Let (v, k)i denote the scalar product between V and K, and 
(ui 3)1 that between U and J. Given C, and any peV, let us find that 
unique vector ?<(y)eU for which 

{u(v),j)2=(v,Cj)l (1) 

for every jeJ. That such a vector u{v) exists and is unique follows from 
10.13 when we notice that the right-hand side of (1) defines a function 
conjugate linear in j. Now for fixed j, the right-hand side of (1) is linear 
in v, hence so also is the left side. That is, there is a linear operation C* 
from V to U such that 

u(v) = C*v. 

The following chart illustrates the situation: 

V K 
C* i j C 

U J 

18.12 We suppose now that C takes real j into real k, i.e., that C is 
real. Then by (1) 

iC*v,j)2 = (C*v,j)2 = (v,Cj)i = {v, Cj)i. 
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By comparison with (1), we have 

C*v = C*v. 

Hence C* also takes real vectors into real vectors and is real. 

18.2 Now let L be a PR correspondence between V and K. We define 
one, say M, between U and J, as follows: For each pePr,, let M(p) 
consist of all pairs 

[w, j] 

such that u = C*v and 

[v, Cj]eL(p). 

This definition can be illustrated by enlarging the chart of 18.11: 

V — K 
c\ IC 

U M J 

The m's corresponding to jtJ can be constructed by going around 
through C, L and C*. This then defines a direct mapping from J to U. 

18.21 We call the M defined by 18.2 a restriction of L, since its pairs 
are images under C* and (T1 (which is not defined over all of K) of a 
restricted set of pairs drawn from L. 

18.22 Clearly there is a dual operation defined by an operator D from 
U to V. We might distinguish the operation of 18.2 by calling it a 
current restriction, its dual by calling it a voltage restriction. 

18.23 The restriction Af of L is defined by lists M{p) which exist for 
any peTi ■ The frequency domain of M has not yet been specified, 
however. 

18.3 Theorem: If L is PR, then there is a frequency domain Tu for M 
such that M is PR. 

Proof: PI and P2 for M are evident at once, for any ptIT . The 
remainder of the proof is divided among 18.31, • • • , 18.37 below. 

18.31 For P3, let ]u be all jej such that CjeKL , Then, given jeJM , 
for each peTL there is a y such that 

[y, Cj]eL{p), 

whence 

[C*v,j]eM(p). 
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Therefore J ^(p), the space of currents admitted by M at frequency p, 
coincides with the fixed Ju at each perL . 

Clearly is a real linear manifold. 

18.32 Consider now Vm{p): if [u, 0]eikf(p), then there is a ^ such that 
u = C*v and 

[y, CO] = [y, 0]eL(p). 

Hence vtW— Vlo for each pelT . Therefore, for each peTz,, 

U,,o(p) SC*VM. (2) 

Now suppose, conversely, that pelT and feVto = V/,o(p). Then 
[u, 0]eL(p). Now 0 = CO, so [v, C0]eL(p). Hence [C*v, 0]eM(p), so 
C*velJm(p). This proves the inequality opposite to that of (2), so for peTL 

U,,o(p) = C*VW = U,Wo, (3) 

a fixed space. 

18.33 Now consider (U^o)0. If ie(Umi)0, then 

(u, 3)2 = 0 

for every wellmi . That is, by (3), 

(C*c, 3)1 = (v, Cj)i = 0 

for every veWLo. Therefore Cj€(VLo)0 = KL , and jej m by 18.31. That 
is, we have proved 

J ji/ 2 (U .wo)0, 

and, combining 18.31 with this and (3), 

J,,(p) = JU 2 (ujwoCp))0 = (Umo)0. (4) 

This is the weak form PS'U) of 12.0 for M. It is as far as we can go 
with P3 at the moment. 

18.34 Consider P4. If for pePz, we have 

[U, j]eM(p) 

then [y, Cj]eL(p) and u = C*u. But then [y, Cj]eL{p) and u = C*v, by 
18.12. Then however 

[u,jhM(p) 

by definition of M. This is P4. 
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18.35 Consider P5(I): if 

[ur,jrVM{v), 

where jV is real, r = 1, 2, then 

(Wr , j*)l = iC*Vr , j.)l = {Vr , Cj.\ , (5) 

where [vr, Cjr]eL(p). Since CyV is real 

(vi, = ("2, CjOi 

by P5(l) for L. This with (5) for r s proves P5(I) lor ilf. 

18.36 Fix a jej m and for each peF^ a u{p) such that 

[u{p)>j]eMip). 

Then u{p) = C*v(p) and 

Hp), Cj]eL(p), 

for some v{p). Then as in (5) above 

(u(p), j)i = Hp), Cj)i. 

P6(I) and P7(I) for L then imply that P6(I) and P7(I) hold for M, 
using Ft for T m in P6. 

18.37 We now have M satisfying the hypotheses of 12.0. Therefore 
there is a r.w such that M satisfies all the postulates. This is 18.3. 

18.4 Proof of "only if" in 17.2: Suppose that L between V and K is 
the juxtaposition of Li between Vi and Ki, L2 between V2 and K2. 
Let, say, U = Vi and J = Ki. Let C be the identity map from K, to K: 
if jej = Ki , then Cj is just j considered as a vector in K. Then C is 

real. It is easily computed that C* is Ei . 
Consider the restriction M of L based on this C. Its pairs for 

periWcrL are all the pairs [u, j] such that j = E*jeKL and u = Ev, 
where 

[vJWp). (6) 

But then 

[u,j] = [Ev, E*j] 

and this is in Li(p) by (6) and the definition of juxtaposition. Therefore 
the list M{p) is contained in Lfp). 

Suppose that [u, j]eL],{p). We have [0, OjtTHp) so by P2 and the defi- 
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nition of juxtajjosition 

[u,j]eL(p). 

But then j = E*j, u = En, and by definition of ]\f 

[u,j]eM(p). 

Therefore for every peTm , M(p) = Eiip). Therefore there is a fre- 
quency domain (F .,,) for Li such that Li is PR. 

XIX THE NECESSITY PROOF 

19.0 Fortunately for this section, those parts of network theory which 
we require have recently been very succinctly stated by J. L. Synge12. 
We shall paraphrase them here, referring the reader to the source1' for 
details of definition. 

19.01 First, we observe that in Cauer's definition5, which we shall 
repeat in detail below, an ideal transformer with m windings is a 2m-pole 
whose terminal pairs are the termini of the respective windings. 

A system of m coupled coils is a 2w-pole with similarly defined terminal 
pairs. 

19.02 Given a 2n-pole N which is a finite passive network, let us adjoin 
ideal transformers as in Figure 1(b). We then draw the ideal graph of 
this network. Adjoin to the graph ideal generator branches 71 , • • ■ , 
7,, , 7r between 7"r and Tr , I < r < n. Let /3r be the ideal branch repre- 
senting the transformer winding between Tr and Tr , \ < r < n. Enu- 
merate the remaining branches of (he graph 0n+i , • ■ • , /3b. 

19.03 The branch 7r is in a mesh with /3r and no other branches. Let us 
call this the r-th external mesh. Any basic set of meshes must include 
each of these. 

19.04 Let (1, • • • , (n be the currents in the generator branches, 
A'i , • • • , h the currents in the branches /3i , • • • , /3b and 

[C] — [A , • • • , (n , ki , • • • , AvJ, [A-] = [A'i, • • ■ , kb]. 

Let Wi, • • • , wn be the voltages across the generator branches, 
V\ , - • ■ , Vb the currents in the /3i, • ■ • , /3b and 

[w] = [wi ,•••,«>„, vi ,■•• , vb], [y] = [ci , • • • , Pb]. 

19.05 Let us choose a basic set of meshes, let j\ , • • • , j» be the respec- 
tive mesh currents, and 

[j] = [ji , ••• , j'l 



274 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1952 

Let 

N = ["I , * * • , w.l 

be the s-tuple of mesh voltages. We suppose thatji, ■ ■ • ,jn ,Ui, • ■ • ,un 

refer respectively to the n external meshes. (Cf. 19.03.) 

19.06 The results of Synge12 can now be stated as follows: 
There exists a real constant matrix [Ci] of s columns and h + n rows 

(having, in fact, elements which are +1, —1, or 0) such that for any [j] 

m = [cm (i) 

is a set of branch currents satisfying Kirchoff's node law, and for any [iv] 

[u] = [Cxl'N (2) 

is a set of mesh voltages satisfying Kirchoff's mesh law. Furthermore, 
given any [<!] which satisfies the node law, there is a [j] such that (1) 
holds. 

19.07 If we interpret the [4 [j], etc., as representations in real bases 
then [Ci] is real and [Ci]' = [Ci]*. 

19.08 The matrix [Cj] has the form 

[Cx] = 
Cz 0 

0 c 

where [Cz] is an n X n diagonal matrix (having diagonal elements ±1, 
in fact). 

Proof: By construction, ji, • ■ • , jn are mesh currents in the external 
meshes. These are then equal, save for sign, to the currents ft , • • • , 4 
in the generator branches. 

19.09 By 19.08, (1), and the definitions in 19.04, 

[k] = [CM N = [C]'[v], 

and by 19.07, [C]' = [C]*. 

19.1 Let us suppose that we have enumerated the branches /3n+i, 
• • • ,13b in 19.02 in such a way that /3n+i, • • • , /3C are all the two poles in the 
graph, Pc+i, ■••,13d are all the branches containing coils which are 
magnetically coupled, and f3d+i ,•••,& the remaining ideal branches of 
ideal transformers. 

Let [Zd{p)] be the (d — n) X {d - n) impedance matrix relating the 
voltages across the branches /3n+i, • • • , ft* to the currents in them when 
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we consider the individual two-poles and the system of coupled coils 
as separate unconnected networks. Then [Zd{p)\ is composed of a 
(c — n) X (c — n) diagonal matrix in the upper left field and a (d — c) X 
(d — c) matrix in the lower right, with zeros elsewhere. 

19.11 The diagonal part of [Zdip)] has elements drawn from the follow- 
ing list: 

(i) Kv) = P 

(ii) /(p) = bp 

(iii) Ap) = Xp 

where p, 5, X are non-negative constants, possibly different for each 
branch. 

19.12 It is shown in texts on electromagnetic theory that the matrix 
representing a system of coupled coils is of the form 

p[G\, 

where [G] is a real, constant, symmetric, and semi-definite matrix. 
The lower right field of [Zj(p)] is then such a matrix. 

19.13 It is obvious from this description that [Zd{p)] is PR. It therefore 
describes a PR correspondence between (d — n)-tuples of current and 
voltage. 

19.2 We must at last consider ideal transformers in detail. Let Vi and 
Ki be m-dimensional spaces represented as aggregates of m-tuples. 

Let pi , P2 , • • • , Pm be wi real numbers. Let Vr consist of all ?n-tuples 
[a] = [ai, • • • , am]€Vi such that 

(X\ Cl'2 Clfn 
Pi P2 Pm ' 

We interpret these relations as follows: 
(a) If any pr = 0, then ar = 0 
(b) If any two pr, ps are not zero, then 

cir _ aa 

Pr ps 

(c) If only one pr ^ 0, then aT is arbitrary. 
Let Kr consist of all w-tuples [b] = [6i, • • • , bm]eKi such that 

Pibi + pzbo + • • • + pmbm = 0. 

Vt and Ky- are linear manifolds. 
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Let [LT] be the concrete linear correspondence defined by the list 
\Lt\{p) which consists for each complex p of all pairs [[a], [b]] where 
[aJeVr , [(^eKr . ^ 

The correspondence described by [Lt] is what Cauer6 defines as an 
ideal transformer. He shows, loc. cit., how it can be defined as the 
limiting case of a physical transformer. 

There is also a dual kind of device, described by a correspondence 
admitting all [b]eKi for which 

bJ = b = ... = bJL' 
X] X'j Xm 

and all [a]eVi for which 

Xiai + • • • -f- Xmam = 0. 

This also is an ideal transformer obtainable as a limiting case of a 
physical one. 

19.21 The correspondence LT is PR. 
Proof: We observe that Vr = (Kr)", for let [ajeVr, [/>]eKr , and let 

t be the common value of the ar/pr ■ Then 

(a, h) = 2ar5r = (2prbr = ((2pr6r) = 0. 

The postulates are now all easily proved. We omit the details. 

19.3 Let V and K be 6-dimensional spaces. We interpret the 6-tuples 
[v] and [k] of 19.04 as representing vectors peV, /ceK in a real frame. 

Let L be the correspondence between V and K formed by juxtaposing 
(i) the correspondence described by [Z^ip)] relating components with 

indices in the range n -f- 1 to d, 
(ii) the several correspondences described by ideal transformers, 

relating components with indices in the ranges 1 to 7i and d + I to b. 
L is PR because it is the juxtaposition of PR correspondences. 

19.31 Let U and J be s — n-dimensional spaces. We interpret the [wj 
and [j] of 19.04 as representing wtU, je] in a real frame. 

19.32 Let C be the operation from J to K whose matrix in our chosen 
frames is [C]. Then C* operates from V to U with the matrix 
[C]* = [C]'. By these definitions, C is real. Let M be the correspond- 
ence between U and J obtained by restricting L with C. Then there is a 
frequency domain V m such that M is PR (18.3). 

19.4 By 19.09, [71/] in our chosen frame is the correspondence estab- 
lished between mesh currents and mesh voltages by the network of the 
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2n-pole N. When this network operates as a 2/t-pole, the only mesh 
voltages which are not zero are those relating to the external meshes, 
since there are no internal sources of voltage. We must now account 
for this. 

19.41 Let V2, K2 be n-dimensional spaces. Choose a real frame and let 
D be the operation which takes 

[ai, • • • , an]€V2 _ (3) 

into 

[«!,•••, a„ , 0, , OjeU (4) 

in the frame of 19.31. Then D is real and D* in the chosen frames takes 

bs]e] (5) 

into 

[hi, • ■ ■ , bn]eK2. (0) 

19.42 We interpret the n-tuples (3) and (6) as voltages and currents 
in the external meshes of N. Their relations to (4) and (5) are con- 
sistent with this interpretation. 

Let us restrict M by D, to get a correspondence M1 between V. and 
K.. In our chosen frame, the passage to [Mi] corresponds, by (3) and 
(4) of 19.41, to considering mesh voltages in N which vanish for every 
internal mesh, and, correspondingly letting the mesh currents adjust 
themselves to this situation. We of course observe only the external 
mesh currents (6). 

19.43 M was PR. So, therefore is Mi (18.3 dual). Since [Mi] is the 
correspondence established by the physically realizable 2n-pole N, 
the necessity of PI, • • • , P7 for formal realizability is established. 

XX. APPENDIX TO PART I 

20.0 We must prove 7.22 and those assertions of 10.G which are not 
covered in Halmos'. These concern reality. 

20.1 Let Vi be a real manifold and 

V = Vi ® V,, K = Ki © K2 

where Ki = (V2)0, etc. The basis (14) of 10.6 exists by Halmos9, par. 19. 
We show that it can be chosen to be real. We have linearly independent 
vectors 

Vi, ,l>r, Vr+l , ■■■ , P„ , 
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where the first r span Vi, the last n — r, V2. Let 

vs = w, + iw,, 1 < s < n, 

where u,, ws are real (10.42). Since Vi is real and a linear manifold, 

Us = + va)eWi, 1 < s < r, 

and, similarly, wseVi , 1 < s < r. Among the 2n real vectors 

Ui,Uv, • • • , Ur , Wi , ' • • , , Mr+l > " ' " > Un , ICr+l > ' ' " > > (1) 

the first 2r are in Vi, and they span Vi because the v,, 1 < s < r, can 
be constructed from them. The whole list (1) spans V, because from it 
all the ys, 1 < s < n, can be constructed. Since the VseVz do not use 
in their construction any of the first 2r vectors (1), it follows that the 
last 2{n — r) vectors in that list must contain a set spanning V2. The 
reality of the vectors (1) then establishes the existence of a real basis, 
say, 

/ 11 1 /n\ 
> ' ' ' j > I^r+l > ' ' " > \^) 

which provides a basis in Vi and V2. 

20.11 We now have 7.22. The unique dual basis 
h' ... h' /Cl , , t^n 

to (2) is real by 10.41. Hence all of Vi, V2, Ki , Kz are real. The proof 
of 10.6 is then complete. 

20.2 If in a real basis (2) (dropping primes) 

V = UiVi + CliVi + • • • + dnVn , 

that is, if 

[y] = [at, • • ■ , an], 

then by (5) of 10.3 

v = diVi + • • • + dnvn , 

hence 

[D] = [«! f ' ' ' ) ^n]- 

The geometrical conjugation of 10.3 is therefore simply the concrete 
one of 7.2 in any real basis. This proves the remark of 10.35. 
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An Application of Boolean Algebra to 

Switching Circuit Design 

BY ROBERT E. STAEHLER 

(Manuscript received January 10, 1952) 

This paper discusses Ike application of switching (Boolean) algebra to the 
development of an all-relai/ dial pulse counting and translating circuit em- 
ploying the minimum number of relays. An attempt is made to outline what 
appears to be the most promising method of obtaining beneficial results from 
the use of the algebra in the design of practical switching circuits. 

INTRODUCTION 

The demands made upon telephone switching systems in regard to im- 
provements in handling capacity, speed, flexibility and economy are con- 
tinually increasing. In order to meet design objectives enabling the 
fulfillment of these demands, switching circuits have of necessity become 
more and more complex and intricate. As certain types of relay switch- 
ing circuits increase in complexity, the problem of control and output 
contact network design becomes more and more laborious and time con- 
suming. This is especially true in those circuits in which an attempt has 
been made to achieve the ultimate in efficiency and economy in that the 
number of relays used therein approaches the absolute minimum neces- 
sary to provide the required number of distinct output combinations. 
In this type of near-minimum combinational or sequential relay circuit 
there are numerous parallel control and output contact paths which 
thread through the same relays repeatedly, thereby causing the indi- 
vidual relay contact loads to become relatively large. Thus the designer's 
problem becomes that of first developing a workable control and output 
contact network and then manipulating and minimizing contacts within 
that network so that the maximum number of contacts used on any one 
relay is within that permissible on any commercially available relay 
having the necessary speed characteristics. 

Even in those combinational and sequential relay circuits which are 
not near-minimum and therefore probably have fairly light individual 
relay contact loads, there are, of course, advantages to be gained by 
using the least number of contacts possible. Although the initial cost per 
additional contact (assuming that a few added contacts per relay will 
not impair the relay speed or space characteristics to an extent that the 
circuit requirements are not met) is almost negligible, there are other 

2,80 



BOOLEAN ALGEBRA AND CIRCUIT DESIGN 281 

economic savings possible. Since each contact must be connected to the 
remainder of the contact network, minimizing contacts and consequently 
soldered connections means a saving in wiring time and labor. Further- 
more, if the designer will manipulate the contacts so that the relays can 
be chosen from a comparatively few standardized codes, which are in 
large demand, it is possible to avoid the expensive stockpiling of numer- 
ous special designs having only a limited demand. In addition, using 
the least number of contacts minimizes the focal points of most relay cir- 
cuit failures which are the contacts themselves (i.e., dirty or worn con- 
tacts). 

It might also be noted at this point that electronic combinational or 
sequential circuits usually require electronic gating networks to perform 
functions which are completely analogous to those of relay contact net- 
works. Hence, the same problem of minimization exists. However, in 
electronic circuits, gate minimization is even more advantageous since 
the cost per additional electronic gate is much higher than the cost per 
additional relay contact. 

It is rather obvious that the multiplicity of paths in most combina- 
tional and sequential circuits can cause their design to become an ex- 
tremely difficult and time consuming problem if the contact paths are 
developed with the aforementioned considerations in mind. 

The circuit designer's usual approach to the solution of such contact 
minimization and manipulation problems is that of inspection. The 
method of inspection presupposes a background of considerable experi- 
ence in that the designer must recognize certain contact network arrange- 
ments that may allow further rearrangements and thereby he must 
mentally develop his own rules. In order to check on any of his manipu- 
lations he must repeatedly redraw the network during this inspection 
design process. It is evident that this is often a long and tedious method 
and, depending on the skill of the designer, may or may not result in an 
optimum or even adequate solution. 

Suitable contact network arrangements often appear only after con- 
sideration of several alternative schemes and the rearrangements of the 
network interconnections of these schemes. Realization of this makes it 
quite evident that any means of obtaining and comparing these various 
schemes quickly and with a mathematical accuracy which does not 
require continuous checking of network paths permits a more rapid and 
complete exploration of the particular problem. Switching algebra, first 
codified by C. E. Shannon1, is (he systematic application of G. Boole's2 

1 C. E. Shannon, A Symbolic Annljisis of Relay and Switching Circuits, Trans. 
AIEE, 57, 1938. 2 G. Boole, The Mathematical Analysis of Logic (Cambridge 1847) and An In- 
vestigation of the Laws of Thought (London 1854). 
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"Algebra of Logic" to switching circuits and is just such a means. It is 
a tool which can be used to investigate the complex combinational and 
sequential networks to determine satisfactory contact arrangements or 
reject unsatisfactory ones with a minimum of time and effort. It should 
be emphasized, however, that as with any tool, satisfactory results de- 
pend upon the judgment, ingenuity and logical reasoning of the user. 
Furthermore, as will be evident from the following development, switch- 
ing (Boolean) algebra in its present state is not to be considered entirely 
self sufficient but, for the most beneficial results, should be applied, when 
warranted, in conjunction with inspection techniques so that the latter 
may fill in any limitations in the algebra techniques which have not been 
completely systematized as yet due to the newness of this field. 

The problem of solving the contact requirements of a minimum relay 
dial pulse counting and translating circuit recently developed as a com- 
ponent of the originating register of the No. 5 Crossbar System will be 
used as a means of illustrating the practical use now being made of 
switching algebra and of indicating exactly where the application of the 
algebra enters the design problem. 

BASIC DIAL PULSE COUNTER REQUIREMENTS 

The primary function of the originating register is to receive pulse 
signals representing digits from a telephone dial or similar calling device 
and to store a record of the digits in a form suitable for use by an external 
circuit. The dial pulse counting and translating circuit, an integral part 
of the originating register, is oriented with respect to other parts of the 
register by the block diagram of Fig. 1. The L relay is the pulse detecting 
relay. When the subscriber's switchhook contact is closed due to the 
lifting of the phone, the originating register is connected to the line and 
the L relay is operated. Thereafter it follows the breaks and makes of 
the subscriber's dial and feeds these repeated dial pulses into the counter. 
After the pulses are counted they are translated to a new code. In switch- 
ing systems it is advantageous to translate from the basic dial ten pulse 
decimal code to a "two out of five" self-checking code. In this latter code 
any single error within the circuit will result in either one or three relays 
operated in the associated storage circuit rather than two and thus an 
error can readily be detected. The output of the translator is fed via a 
steering circuit to the register or storage circuit. The slow release RA 
relay is the pulse train detecting relay which holds between the indi- 
vidual pulses of a digit and releases only at the end of the pulse tram. 
When it releases it activates the translating circuit and thereby transfers 
the translated code information to the storage circuit. The RA1 relay 
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in operating terminates the output from the translator and simultane- 
ously releases the relays in the counter to prepare it for the next digit. 

Specific requirements imposed by the originating register circuit neces- 
sitate the counting of one to eleven pulses; the use of a driving source 
consisting of a single break-make (or transfer) contact with ground on 
the armature spring; and outputs as follows: 

1. Count of 1 through 10; ground on two of the 0, 1, 2, 4, 7 output 
leads in the combination corresponding to the count. 

2. Count of 10: ground on the Z0 lead. 
3. Count of II: ground on the 0 lead only (this is a trouble-detecting 

feature). 
In addition, the design of the steering and register-storage circuit 

requires that no output leads be connected together until the second 
pulse is received. Furthermore, each relay is limited to a combination of 
simple make and break contacts not exceeding a total of twelve. This uti- 
lizes the maximum number of springs obtainable on presently available 
relays and also avoids the larger armature gaps imposed by transfers 
which would result in a reduction in the relay speed of operation. Speed 
requirements also do not permit the use of shunt release in the circuit 
operation. 

COUNTER 
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FOR PRODUCING 

REQUIRED OPERATING 
SEQUENCE 

ON 
ir LOCK 

I ON 

r TO 
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RELAY SETTINGS TO 
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VIA STEERING 
CIRCUIT TO 

REGISTER OR 
STORAGE 
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Fig. 1—The .schematic of a portion of a dial pulse register circuit for counting 
decimal code pulses anil (ranslaling them to "two out of five" signals. (In the 
symbolism used in the illustrations a cross indicates a "make" contact and a 
vertical bar indicates a "break" contact.) 
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THEORY OF A MINIMUM RELAY COUNTER 

The counting circuit under consideration does not contemplate the 
use of any circuit elements other than relays that react to the beginning 
or end of a pulse. Therefore it must establish a distinct combination of 
relays operated or released during and between successive pulses. The 
minimum number of ordinary "two-position" relays, R, required to 
count P pulses can be obtained from the expressions (1) 2P < 2^ if 
the counter is to lock up during, or recycle after, the last pulse or (2) 
2P < 2" — 1 if the counter is to lock up after the last pulse. 

The usual counting circuit used for determining the number of pulses 
in a dial train is required to count ten pulses, however there are certain 
advantages in regard to trouble indications if the counter counts eleven 
pulses. In either case the minimum number of relays necessary, accord- 
ing to the preceding formulae, is five. It should be noted that the ease 
with which this minimum number can be attained depends upon whether 
the input is derived from a single, double or transfer contact source. 

DETERMINATION OF OPERATING SEQUENCE 

Having determined that the minimum number of relays necessary is 
five, the first step in design is to develop an operating sequence pattern 
from the resulting 2B or 32 possible relay combinations. These combina- 
tions may be utilized in any order deemed desirable to obtain the 23 dis- 
tinct combinations needed to differentiate between eleven pulses (22 for 
the eleven makes and breaks plus an all-relays-normal combination). In 
this phase of the design switching algebra is not involved. The optimum 
sequence to meet a particular set of requirements can only be determined 
by repeated trials guided by an intimate knowledge of objectives. 

Initial studies, made by Joseph Michal, of various possible sequence 
patterns for a five relay circuit, including those having a three relay 
"ring" followed by two auxiliary relays and those having a two relay 
pulse divider followed by three auxiliary relays, resulted in the conclu- 
tion that the latter approach was the most fruitful. The sequence pat- 
tern adopted is shown in detail in Table I. The pattern is extended 
through 12 pulses, and it can be seen that the nature of the sequence is 
such that this employs all 32 combinations of the 5 relays. Several of 
these are transient and occur during part of a pulse or inter-pulse inter- 
val. Examination of the tail end of the sequence indicates that it will be 
simpler to design on the basis of a full 12 pulses than attempt to block 
at the end of the 11 pulses specified by the requirements. If trouble con- 
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Table I 
Sequence ok Operation 

Pulsing Counting Relays 
Relay Relay Two out of 

Combination Five Code 
L A B c D E 

Seizure 0 1 1 1 1 1 1 
1st pulse 1 0 1 1 1 1 2 

0 0 0 1 1 1 3 0,1 
2nd pulse 1 1 0 1 1 1 4 

1 1 0 0 1 1 5 
0 1 1 0 1 1 6 0,2 

3rd pulse 1 0 1 0 1 1 7 
0 0 0 0 1 1 8 
0 0 0 0 0 1 9 1,2 

4th pulse 1 1 0 0 0 1 10 
0 1 1 0 0 1 11 0,4 

5th pulse 1 0 1 0 0 1 12 
1 0 1 1 0 1 13 
0 0 0 1 0 1 14 1,4 

6th pulse 1 1 0 1 0 1 15 
0 1 1 1 0 1 16 
0 1 1 1 0 0 17 2,4 

7th pulse 1 0 1 1 0 0 18 
0 0 0 1 0 0 19 0,7 

8th pulse 1 1 0 1 0 0 20 
1 1 0 0 0 0 21 
0 1 1 0 0 0 22 1,7 

9th pulse 1 0 1 0 0 0 23 
n 0 0 0 0 0 24 
0 0 0 0 1 0 25 2,7 

10th pulse i 1 0 () 1 0 26 
0 1 1 0 1 0 27 4, 7-ZO 

llth pulse i 0 1 0 1 0 28 
i 0 1 1 1 0 29 
0 0 0 1 1 0 30 0 

12th pulse i 1 0 1 1 0 31 
0 1 1 1 1 0 32 0 

Total of 25 = 32 combinations used. 
Note: U is used to indicate that the relay listed at the head of the column is 

operated, and 1 is used to indicate that the relay is released. 

ditions introduce pulses beyond 12, the circuit will without difficulty 
recycle through combinations corresponding to pulses II and 12. 

Table I also indicates the leads which must be grounded in order to 
provide the translations to the "two out of five" and "single lead" codes. 

The characteristics of this circuit may be summarized as follows: It 
contains only five relays which is the absolute minimum necessary. It 
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uses all 32 of its available combinations. Its control and translating job 
is complex enough to indicate the need for a considerable number of con- 
tacts and hence the need for extensive contact manipulation to minimize 
and distribute these contacts. 

It is apparent that a great deal of time would be necessary to accom- 
plish this manipulation by inspection methods, thereby indicating the 
need for an additional tool such as switching algebra to assist the de- 
signers in this task. 

ALGEBRAIC METHODS APPLIED TO CONTROL CIRCUIT 

The sequence of operations of Table I is used as the starting point 
in the application of the algebra. The exact calculations necessary to 
develop the control and translating circuit by this means are shown in 
detail later. However, the individual steps in the solution might well be 
outlined here. First, the design of the control and translating networks 
will be regarded as separate problems. In theory these can be integrated 
together, but the resultant network is likely to be so complex that under- 
standing and maintenance of the circuit would suffer. Each of the two 
networks can be individually considered as a multi-terminal network of 
the single input type. That is, the control network is an associated set of 
contacts which connects a single ground input to the windings of five 
relays, and the translating network is an associated set of contacts which 
connects a single ground input to the six output leads. Since switching 
algebra is directly applicable to two-terminal networks rather than multi- 
terminal networks, the approach to this particular problem is of neces- 
sity somewhat indirect. 

The most satisfactory method of attack is to develop first a two- 
terminal network for each of the output paths of the multi-terminal 
network under consideration. The two-terminal networks can be ex- 
pressed algebraically and manipulated into their simplest form by means 
of the switching algebra theorems to be given later. The individual net- 
works can then be inspected carefully, either in algebraic or circuit form, 
with the objective of combining them in the most advantageous fashion. 
It will be found, in general, that the simplest network configurations do 
not readily combine and that further manipulation is necessary to obtain 
an economical circuit. It is at this point that the algebra achieves its 
greatest utility, since its application permits the simple and rapid chang- 
ing of a given two-terminal network into a large variety of different 
forms with mathematical assurance that circuit equivalence is main- 
tained. Inspection of the networks in the several forms provides clues 
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as to the preferable combining forms and often indicates additional 
manipulations that might be desirable. 

This network development is a combination of mathematics and inte- 
gration by inspection. It is characterized by repeated trials of alternative 
forms and at no stage is there any definite assurance that the optimum 
circuit has been attained. However, the ease of manipulation provided 
by the algebra greatly enhances the probability of designing a better 
circuit than would be possible by inspection alone. In combining the 
two-terminal networks, care must be taken not to introduce "sneak" 
paths which improperly connect outputs together. The algebra usually 
offers means of introducing one or two additional contacts which permit 
combining networks and yet eliminate the adverse effects of the sneak 
paths. 

The above procedure will now be carried out in detail with the switch- 
ing algebra theorems that are used in all the following algebraic manipu- 
lations noted at the margin by the number which corresponds to the 
number of the theorem in the complete listing in Table II. This table is 

Table II 
SwiTcniNa (Boolean) Algebua* 

Definitions 
Addition 

(+) = AND = Scries 
Multiplication 

(.) = OR = Parallel 

Circuit States 
0 = Closed Circuit 
1 = Open Circuit 

Postulates 
(1) Ar = 0 or Z = 1, where X is a con- 

tact or a network. 
(2a) 0-0=0 
(2b) 1+1 = 1 
(3a) 1-1=1 
(3b) 0 + 0 = 0 
(4a) 1-0 = 0-1 = 0 
(4b) 0 + 1 = 1 + 0=1 

Theorems 
(la) A' + r = F + A' 
(lb) XV = YX 
(2a) A + r + Z = (A + n + z 

= A + (Y + Z) 
(2b) AKZ = (AF)Z = A'O'Z) 
(3a) A)' + AZ = AO- + Z) 
(3b) (A + Y)(A + Z) = A + YZ 
(4a) A + A = A 
(4 b) A A = A 
(5a) A + XY = X 
(5b) A(A + Y) = X 
(6a) (A)' = A' 
(6b) (A')' = A 
(7a) (A + F + Z + 

= X'-Y' Z'- 
(7b) (A-F-Z- •••)' 

= A' + Y' + Z' + 

■)' 

(8a) A' + A = 1 
(Sb) A'A = 0 
(0a) 0 + A = A 
(Ob) I X = A 
(10a) 1 + A = 1 
(10b) O A = 0 
(11a) (A + Y')Y = XY 
(lib) AT' + Y = A + Y 
(12a) (A + Y)(X' + Z){Y + Z) 

= (A + n(A' + Z) 
(12b) AZ + AT' + FZ = AZ + AT 
(13) (A + Y) (A' + Z) = AZ + AT 
(14a) /(A) = A ■/(A)a_1, a'-o 

+ .4,-/(A')a-O. a'-I 
(14b) /(A) = [A + /(A)a-o. a'-.] 

[-4' + /(A)a-,, A'-o] 

* Reprinted from The Design of Switching Circuits by Keister, Ritchie and 
Washburn with the permission of D. Van Nostrand Co., Inc. 
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taken from The Design of Switching Circuits by Keister, Ritchie and 
Washburn*. The development of the algebraic expressions from the 
sequence of operations table will be in exact parallel to the methods 
suggested in the aforementioned text. 

The symbolism adopted in the following development is basically that 
of using the notation A for all the make contacts on the A relay, and A' 
for all the break contacts on the A relay. Contacts or groups of contacts 
in series are related by the symbol of addition (+) and contacts or groups 
of contacts in parallel are related by the symbol for multiplication (■) 
which may or may not be explicitly written, as in ordinary algebra. 
Therefore (.4 + B') symbolizes a series contact path that is closed 
when the A relay is operated and the B relay is released, while (AB1) 
symbolizes the parallel contact path that is closed when either A is 
operated or B is released. Switching algebra includes only two numerical 
values, 0 and 1, with the quantity 0 assigned to represent a closed path 
and 1 to represent an open path. For the tabular notation of Table I, 0 
is used to indicate that the relay listed at the head of the column is oper- 
ated and 1 is used to indicate that the relay is released. 

As stated earlier, the present application of switching algebra utilizes 
the sequence of operation chart of Table I. The operate and release 
combinations for controlling the A, B, C, D and E relays can be selected 
from this table by observing where each relay to be controlled changes 
state. For example, the operate combination for relay D is relay combi- 
nation 8 and the release combination for relay D is relay combination 24. 
It is not necessary to include the contacts of a relay in its own operate 
and release combinations. Note that the A and B relays which serve as 
a pulse divider can be controlled solely by the L relay and contacts on 
A and B without reference to C, D, E. However the C, D and E relays 
are internally controlled by all five counting relays. The development 
of all these control paths uses the following abbreviations: 

g(X) = operating combinations for the X relay 

r(X) = releasing combinations for the X relay 

h(X) = holding combinations for the X relay 

X = make contact on the X relay 

Furthermore as expressed by theorem (fia and 6b) the negative ot a 
contact network X is defined as a network which is a closed path under 
all conditions for which X is open, and is open under those conditions 

* D. Van Nostrand, 1951. The Bell Telephone Laboratories Series. 
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for which X is closed. Hence h(X) may be obtained from r(X) by noting 
that h(X) is the negative of r(X). Therefore the entire control path of 
any relay can be expressed generally as 

f(X) = y{X)[X + h{X)] = y(X)[X + (r(A'))'] 

Thus for the A relay 

9(A) = L' + B' 

r(A) = U + B 

h(A) = [U + B\' = LB' (7a) 

and 

f(A) = (U + B')(A + LB') 

= (U + B')(A + L)(A + B') (3b) 

= (L + A)(L' + B') (12a) 

Also for the B relay 

(j(B) = L + A 

r(B) = L + A' 

h(B) = [L + A']' = L'A (7a) 

and 

f(B) = (L + A)(B + L'A) 

= (L + A)(B + L')(B + A) (3b) 

= (L + A)(L' + B) (12a) 

The schematic forms of the .4 and B control circuits as represented by 
the above algebraic expressions are shown in Fig. 2a and 2b. Since the 
general requirements of the basic problem specify only one transfer on 
the L relay, only simple makes and breaks on the A and B relays and no 
shunt release paths (to avoid reduction in speed of operation), the combi- 
nation of the above specific circuits is not possible without recourse to 
double windings. Another factor which affects the practical form of the 
circuit is the finite transit time of the L relay armature spring. Switching 
algebra presupposes instantaneous action of relay contacts and in certain 
cases, when the use of a break-make transfer is required, additional con- 
tacts are necessary to cover the open contact interval. The final circuit 
form, conceived by F. K. Low, is shown on Fig. 2c and uses an added A 
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contact. Algebraic equivalence of this circuit with the original is shown 
below. 

f{A) = {L'A + B'){L + A) (Fig. 2c) 

= (L' + B')(A + B'){L + A) (3b) 

= {U + B')(L + A) (12a) 

f(B) = {L'A + B){L + A) (Fig. 2c) 

= (Z/ + B){A + B){L + A) (3b) 

= {L' + B)(L + A) (12a) 

For the C relay which operates and releases twice in the entire 32 
combination cycle 

g{C) = (A' + B + D' + E'){A' + B + D + E) 

r(C) = [{A B' D + E'){A + 5' + D' + E)] 

h{C) = [{A A- B' + D E'){A + B' + D' + E)]' 

= (A'BD'E + A'BDE') (7a, 7b) 
and 

/(C) = [{A' + 5 + Z)' + E'){A' + Z? + Z> + E)] 
[C + A'BD'E + A'BDE'] 

= [A' A- B A- {D' + E'){D + E)] 
[C + A'B{D' + E'){D + E)] (3a, 3b, 13) 

= [A' A- BA- {D' + E'){D + E)][C + A'B] 
[C A- {D' A- E'){D A- E)] (3b) 

= [(A' + B)C + (Z)' + E'){D + E)][C + A'B] (3b) 

The schematic circuit which the above represents is shown in Fig. 3a. 
Circuits of this type which use certain contacts more than once can some- 
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Fig. 2—Pulse divider of counting circuit. 
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times be drawn in bridge form with a consequent saving of contacts. 
One method is to manipulate the expression into a form which is known 
to be the series-parallel equivalent of a bridge. However, following 
usual algebraic procedures it is often difficult to recognize where this is 
possible. In the present case a method developed by G. R. Frost (not 
yet published) was used effectively. This resulted in the bridge circuit of 
Fig. 3b which has the series-parallel equivalent: 

/(C) = [C + (Z/ + E'){D + E)][A' + B + {D' + E'){D + E)] 

[C + A'][C + B] 

By use of theorem (3b) this is seen to be equivalent to the previous 
expression for/(C). 

For the D relay which only operates and releases once in the entire 
cycle 

g(D) = (A + B + C + E') 

r{D) = (A + B + C + E) 
h(D) = (A + B + C + E)' 

= A'B'C'E' 

and /(/)) = (A + B + C + E')(D + A'B'C'E'). 
D 
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Fig. 3—Internal control of counting circuit. 
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By noting that A + B + C is the negative of A'B'C, this can be 
reduced to 

/(/)) = (A + B + C + E'){D + A'B'C) (3b, 12a) 

However, this transformation introduces a hazard caused by the 
transit time of A relay contacts in passing from relay combination 9 to 
10. Therefore the original expression will be used for relay D. The control 
path is shown in Fig. 3c. 

For the E relay which operates and locks only once in the cycle 

g(E) = {A' + + C + D) 

h{E) = E 
and 

f{E) = (.4' + B' + CA- D){E + E) 

(A' + B' + C + D)E (4a) 

This control path is shown in Fig. 3d. 
Apart from the problem of developing the required contact network, 

the practical problem of what operating power must be given to the 
relays in order to meet speed requirements must be dealt with. Since 
the use of low resistance windings in series with protective external 
resistors is called for to obtain the speed required, it appears that the 
use of two windings per relay might prove advantageous. By operating 
on the low resistance winding while locking on the high resistance wind- 
ing, the current drain may be reduced (thereby saving a fuse) and 
furthermore some code reduction may be made possible as shown later. 
If double windings are used, two of the external series resistors may be 
eliminated by combining the control network so as to make certain that 
only one of the low resistance windings on the C, 1), or E relays is 
energized at any one time. This would permit the use of one common 
external resistance with the aforementioned relays instead of three. 

Keeping these practical considerations in mind, further savings may 
be made by combining the control circuits as shown in Fig. 3e. Although 
there is in this circuit a possibility of contact stagger on the A relay 
contacts causing the C and I) low resistance windings to be energized at 
the same time, this will not be harmful since, when the stagger occurs, 
both relays are firmly locked operated by their high resistance holding 
windings. 

TRANSLATING CIRCUIT 

The translating circuit is particularly adaptable to switching algebra 
manipulation. Table I shows the combinations which prevail at the end 
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of each pulse and the necessary "code" leads that must be grounded at 
these times. Reference to the block diagram of Fig. 1 shows that the 
output of the translator is not activated until the slow release RA relay 
releases after the last pulse of a digit has been received. Therefore the A 
relay can be eliminated from these combinations since at the end of 
every pulse the .4 and B relays are either both operated or both released 
and hence only one is needed to indicate the condition of both. Table III 
lists the numerous combinations which must close a ground path through 
to each of the five code leads and the ZO lead. At the conclusion of the 
algebraic manipulation, the A and B contacts may be redistributed 
evenly since they perform interchangeable functions in translation. 

The objective in the design of the translating circuit is to obtain the 
most economical contact network subject to a spring distribution that 

Table III 
Translation 

Output Lead 
Grounded 

Counting Relays 
Decimal Pulse 

B c D E 

0 0 1 1 1 1 
1 () 1 1 2 
1 0 0 1 4 
0 1 0 0 7 
0 1 1 0 11 
1 1 1 0 12 

1 0 1 1 1 1 
0 0 0 1 3 
0 1 0 1 5 
1 0 0 0 8 

2 1 0 1 1 2 
0 0 0 1 3 
1 1 0 0 6 
0 0 1 0 9 

4 1 0 0 1 4 
0 1 0 1 5 
1 1 0 () 6 
1 0 1 0 10 

7 0 1 0 0 7 
1 0 0 0 8 
0 0 1 0 9 
I 0 1 0 10 

ZO 1 0 1 0 10 

Inconsequential combinations that may be used for simplification 
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fits in with the control contact network. Again, this is a multi-terminal 
network problem and the procedure is to design two-terminal networks 
that combine most readily. Since it is impractical to illustrate all the 
repeated trials that led to the final design, each network will be designed 
separately with the understanding that some of the steps are imposed 
by the form of all networks viewed collectively. 

The procedure adopted for developing the "0" lead network is as 
follows. First set up the miniature table repeating the portion of Table 
III that corresponds to the "0" lead. These parallel combinations should 
then be manipulated algebraically to obtain the greatest simplification 
possible. It is rather easy to apply some of the algebraic rules by observ- 
ing the condition of the relay in the several combinations in the table. 
A simple "shorthand" rule to follow is: if in the table of combinations 
describing a particular two terminal network, all possible combinations 
of certain relays appear in conjunction with a single combination ot other 
relays, the network contacts on the former relays may be neglected. In 
other words when 2" different combinations of any number of variables 
m, are identical in all but n columns, contacts on the corresponding n 
relays are not required. This procedure is carried out below. 

B c D E 

0 1 1 1- 

1 0 1 1- 

1 0 0 1- 

0 1 0 0- 

0 1 1 0^ 

1 1 1 0- 

(B + C + D') 

(B' + c + E') 

(B + cr + E) 

(C + D' + E) 

Thus we have the following algebraic expression for the "0" lead, 
which can be simplified as shown. 

(5 + C" + D')(B' + C + E')(B + C + EXC + D' + E) 

[C + (B + D'){B + E)(D' + E)]{B' + C + E') (3b) 

[C + (B + BD')(B + D')](B' + C + E') (3b) 

This is shown on Fig. 4a. A somewhat different manipulation of the 
equation permits placing the network in the bridge form of Fig. 4b. 
The algebraic equation, given below, can easily be shown to be the 
equivalent of the original. 

[B + C + B(B' + B')](B' + C + E')(B + C + D') 
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111 certain cases the use of theorem (14b), normally employed to reduce 
the contacts of a particular relay to a single make and break, can pro- 
duce simplifications difficult to accomplish otherwise. This is shown 
below, with the theorem applied with respect to relay E since E tended 
otherwise to be heavily loaded. 

(B + C" + £')(£' + C + E')(B + C" + E)(C" + D' + E) 

[E + (B + C + D')(B' + C + l)(B + C + 0)(C" + Z)' + 0)] 
[E' + (B + C" + D'XB' + C + 0)(B + C + 1)(C" + D' + 1)] 

(14b) 

(E+ C + BD')[E' + (B' + C)(B + C + D')] (9a, 10a, 3b, 9b, 5b) 

By modifying the first factor of the final expression in accordance with 
theorem 1 la, this equation can be put in bridge form as shown on Fig. 4c. 

[E + C" + B(B' + D')][E' + (B' + C)(B + C + D')] 

The above equation uses the same contacts as the previous expression, 
and although the right hand member is in a slightly different form, the 
expression is equivalent to the one obtained earlier. 

When it is known that output conditions are inconsequential for some 
relay combinations, these inconsequential relay combinations may be 
combined with valid combinations to eliminate contacts in the network. 
Inconsequential means that the output during these particular combina- 
tions does not affect the proper functioning of the circuit. Four such 
combinations are listed in Table III. Only those inconsequential combi- 
nations which will combine readily with the actual combinations, thereby 
resulting in a reduction in the number of contacts, are to be used. Al- 
though the use of all the all-relays-released condition may be helpful in 
certain cases, it will not be used in the circuit under consideration since 
its use makes the requirement that no tie shall exist between output leads 
until the second pulse is received hard to meet. 

With this in mind the "0" lead network is again examined. Note the 
use of another "shorthand" rule which states that if a part of the 2" 
possible combinations is used in closing a path, the negative of the unused 
part of the 2" possible combinations is equivalent to the original com- 
binations. Thus if in the case at hand three of the possible four combina- 
tions of the B and C relays occur in series with the same combination of 
the D and E relays, the expression used is that for the series path of the 
D and E relays plus the negative of the missing combination of the B 
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and C relays. In the following tabulation the combinations below the 
horizontal line are inconsequential. 

B C D E 

0 1 1 

1 0 1 

1 0 0 

0 1 0 

0 1 1 

1 1 1 

0 0 1 

1 1 0 

0 0 0 

The expression becomes: 

(C + E' + B'D'){C' + D' -\- BE){B + Z> + E) 

[E + (C + 1 + B'D'W + D' + B0){B + D + 0)] 
+ (C + 0 + B'D'){C' + D' + B{){B + Z) + I)] 

(14b on E) 

[E + (C + D'){B + D)][E' + (C + B'D'){C' + D' + B)] 
(9a, 9b, 10a, 10b) 

[E + (C + D')(B + D)][E' + CD' + CB + B'D'] (8b, 9a, 4b, 5a) 

[E + (C + D'){B + D)][E' + BC + B'D'] (12b) 

[E + (C + D')(B + D)][E' + (B + D'){B' + C)] (13) 

Fig. 4d shows the schematic of the above expression. It is possible to 
put this in a bridge form without other changes because of the manner 
in which the front and back contacts of D are related to the other con- 
tacts. Comparison of all the circuits of Fig. 4 indicates that they all use 
the same number of contacts although final decision should be post- 
poned until all the output circuits are obtained and the ease of combina- 
tion of the different circuits can be compared. 

The procedure for determining the remaining code leads is carried out 
on the following pages. 

(C + D' + BE) 

(C + E' + B'D') 

(B + D + E) 



lead— 
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B C D E 

0 0 

0 0 

0 0 

0 0 0 

+ E') 

-(C + D + E) 

resulting in [E + C + D][E' + B] which is shown on Fig. 5a. It will later 
be found advantageous, in combining, to include the B' term in the first 
factor, giving the expression: 

{E -f B' + C + D){E' + B) shown on Fig. 5b 

lead- 

B C D E 

hem •e 

or 

(C + D' + E') 

0 1 1 

0 0 0 

110 0 

0 0 10 
0 0 (B' + C + D) 

(B + C) 0 0 0 0 

(C + Z)' + E'){B' + C + D)iB + C) 

[C + B{D' + E')][C' + B' + D\ 

For later ease in combining, this is changed to: 

[C + B{B' + 7)' + E')]\C' + B' + D] 

shown on Fig. 5c. 

(3b) 

(11a) 
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"4" lead— 

B C D E 

10 0 1 

0 10 1 

110 0 

1 0 1 0 

= (D + E' + B'C) 

(B' + C + D' + E) 

0 0 1 
(B' H- C + D) 1 1 0 

0 0 0 

hence 

(2) + E' + + C + D){B' + C + D' + E) 

[D + + C'){B'C' + E')][Df + B' C + E] 

which is shown on Fig. 5d. 

"7" lead— 
B C D E 

0 0 
(B + D + E) 1 0 0 

0 0 1 
(C + E) 0 1 

0 0 
1 0 

0 0 0 

icnce 
(i? + D + E){C + E) 

tr 
E + C(B + D) 

vhich is shown on Fig. 5e. 

'Z0" lead— 

B C D E 
10 10 

hence one has (£' + C D' E) which is showi in Fig. of. 
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The final contact savings are achieved by combining the various out- 
put paths. The combined translation circuit that appears to be as re- 
duced as possible is shown in Fig. (i. Note that certain forms of the 
individual output paths combine more readily than others. For example 
Fig. 4c and 5b combine more readily with the remaining paths than 
Fig. 4b and 5a. Note also that sometimes it is not the most reduced form 
of the individual output paths that permits efficient combining. This is 

C E 
-X h 

B D 
•X h "O"LEAD 

(a) 

"0" LEAD 

(b) 

"0" LEAD B D C 

•X—*—X- 

D B 
-X- 

D 
C D 

H h 

"0" LEAD 

(d) 
Fig. 4—The "0" lead of the translating circuit. 

B, "I" LEAD 
jti —x"r 
■ U_c— 

(a) 

—x~t 
L-X—f x—xJ 

(b) 

_r 

C D 
-) X- 

(C) 

D B 
-X- 

D B c E 
J—1 1 X X- 

(d) 

E B D ■X t X X- 

(e) 

B C D E nyr\" , 
X 

(f) 

Fig. 5—The "1, 2, 4, 7, and ZO" leads of the translating circuit. 
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exemplified by the use of Fig. 5b rather than Fig. 5a. Although various 
forms of all of the output leads were tested for efficient combination only 
the form used is shown for outputs other than the "0" and "1" leads. 

It is essential to scrutinize the final network for possible sneak paths. 
Sometimes to avoid these sneak paths it is necessary to add one contact 
on one relay to allow savings on others. Here again the inspection tech- 
niques go hand in hand with switching algebra and the need tor both is 
obvious. The algebra obtains the various forms which are capable of 

RA E 
1 

P 9 RAI "0"LEAD 

^ ' 1 . A 

D RA' "7"LEAD A 

C  X  P E "ZD"LEAD 
RA1 "|" LEAD 

RA1 LEAD 

RAI 
—H 

"2" LEAD 

Fig. 6—Combined translating circuit. 

different degrees of combination very quickly and efficiently. The inspec- 
tion method is then necessary for the actual combination of these forms. 

The additional RA relay contact is necessary to assist in avoiding in- 
terconnections between the output leads until after the second pulse is 
received. The final assignments of either A or B relay contacts are 
chosen to equalize the load on these relays. 

THE COMPLETED CIRCUIT 

The final form of the counting and translating circuit is shown on 
Fig. 7. The relays are all double wound to gain the benefits of current 
drain reduction. One additional advantage of using double windings is 
the relay code reduction made possible since now only two codes are 
necessary. One code serves the A relay and one other code serves the 

V 
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B, C, D and H relays. In comparison to this total of five relays and two 
codes the circuit in present use in the latest crossbar system requires ten 
relays and seven codes. 

AN ALTERNATE DESIGN OF THE PULSE DIVIDER 

To illustrate the application of algebra where the apparatus contem- 
plated puts less premium on contact minimization but more on stand- 
ardization and winding minimization, certain modifications of the 
proposed circuit are considered. 

In the event that new apparatus developments make possible the 
construction of relays that meet the necessary speed requirements even 
though winding impedance is increased, it appears possible (if the pulse 
divider is redesigned) to use only one code having a single winding for 
all five relays. The use of added contacts might be allowable if the new 
type of relay carries more springs than the present relay. 

The redesign of the pulse divider to use single windings can be accom- 
plished by manipulation of the basic algebraic expressions derived earlier 
for the pulse divider. 

Thus for the A relay 

By attempting to manipulate the B relay control circuit into the same 
form, one obtains 

The schematics represented by the above algebraic expressions are 
shown in Fig. 8a and 8b. The circuit of Fig. 8c is obtained by combining 
the first two circuits so that only a single transfer is needed on the L 
relay. Note however that it is necessary to make the lower two B trans- 
fers have continuity action to insure proper functioning. Fig. 8d shows the 
pulse divider drawn in conventional form. 

CONCLUSION 

As far as is known, the dial pulse counting and translating circuit 
described herein requires fewer relays than any other circuit with similar 

f{A) = (// + B')(A + LB') 

= [L' + B'][A + B'{L + /?)] (Ha) 

KB) = (L + A)(B + L'A) 

= (L + A){L' + B){A + B) 

= [// + B][A + BL] 

= [L' + B][A + B(L + B')] 

(3b) 

(3b) 

(Ha) 
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functions at present employed in Bell System standard switching equip- 
ment. The previous dial pulse counter used in the latest crossbar system 
required a total of ten relays. Thus the present design represents a 
considerable saving in cost and space. To a certain extent this result can 
be ascribed to the use of switching algebra during the circuit develop- 
ment. 

Relay circuits designed on the basis of utilizing a large proportion of 
the possible combinations permitted by the component relays usually 
require heavy spring pile-ups. Since general purpose relays are limited 
in the number of springs which they can carry, this type of circuit usually 

(A) 

-j- L B A I tHllh-L   v y » x 1 — 

(a) 
J 

(B) 

Jwi'hL 

(b) 

(A) 

J 

tnl'tx 

WhL 
(B) ^ 

- B A 
—X—t—X- 

(C) 

u 

jdw .7) 
jH"- 

rtr 

n 
(d 

Fig. 8 

entails considerable design effort to make most effective use of the avail- 
able springs. Application of switching algebra to this aspect of the design 
problem can often provide crucial assistance. 

It is recognized that switching algebra, in its present state of develop- 
ment, does not permit complete mathematical statement and manipula- 
tion of multi-terminal networks as represented by the counting and 
translating circuits. It does provide, however, facilities in manipulating 
two-terminal networks into a variety of forms from which can be selected 
those that combine most readily. This can result not only in a saving of 
time, but also in improved circuits which might not be realized by other 
design techniques. Unfortunately the algebra in its present state does 
not indicate when the optimum circuit has been attained. To some extent 
this is caused by apparatus or circuit considerations to which, since it is 



BOOLEAN ALGEBRA AND CIRCUIT DESIGN 305 

concerned solely with contact networks, the algebra does not apply. 
Thus, there is still considerable room left for the ingenuity and judgment 
of the switching circuit designer. 

As a result of the experience in designing the dial pulse counter and 
translator, certain observations on the use of the algebra are believed to 
be valid. Although switching algebra may be used in the design of the 
simplest circuits, the most noticeable benefits are obtained by the appli- 
cation of the algebra to the design of those circuits in which the control 
and output paths are complex and interrelated. The particular minimum 
relay counting and translating circuit under discussion is an excellent 
example of this type of circuit. A secondary advantage of the algebra is 
its compact notation and its value as an efficient circuit "bookkeeping" 
method. 
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Interaction of Polymers and Mechanical 

Waves 

BY W. 0. BAKER AND J. H. HEISS 

(Manuscript received October 19, 1951) 

New techniques of Mason, McSkimin, Hopkins and co-workers for gener- 
ation of shear waves over the frequency range 2 X 101 to 2.1+ X 10' cps 
have been used to study mechanical properties of chain polymers. Polymer 
solids, melts and dilute solutions, representing the main states in which 
plastics and rubbers are fabricated or used, were explored to find the char- 
acteristic relaxation limes, rigidities and viscosities of various chemical 
structures. Polyisobutylene, hevea rubber, polydimcthyl siloxane, vinyl chlo- 
ride-acetate copolymers and plasticized nitrocellulose were compared with 
polyethylene arid polyamides as examples of the range of solid properties 
encountered. 

.4 s melts, several polyisobutylenes, polybutadiene, polypropylene, poly- 
propylene sebaeale and poly-a-methyl styrene were investigated as models 
for varying degrees of chain substitution. Chain rigidity in, for instance, 
polyisohulylene, seemed to reflect visco-elastic over-all eonfigurational changes 
up through the kilocycle range, but nearest neighbor interactions took over in 
the megacycle region, leading to moduli of l(f dynes/cm' even for syrupy 
fluids. 

In dilute solution, polyisobutylene, polystyrene, natural rubber and poly- 
butadiene microgel exhibited characteristic dynamic viscosities and rigidi- 
ties depending linearly on concentration. Presumably, this reflects mechan- 
ical properties of isolated chains. Some possible models were suggested for 
the frequency dependence of such properties. 

INTRODUCTION 

The "equilibrium" mechanics of polymers, the giant molecules of 
plastics and rubbers, have been quite elegantly developed in the range 
of high strains ("kinetic theory" of elasticity—Meyer,1 et al). However, 
the molecular displacements as these strains, and, indeed, much smaller 
ones, occur, are little understood.2 Nevertheless, it is essential to know 
about detailed motions in connecting chemical structure with physical 
properties. Only in this way can there be obtained from the chemical 
industry compositions which will serve properly in telephone apparatus. 

306 
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Other studies have treated one way of getting at these mechanisms by 
relating stress relaxation, creep, viscosity, etc. to a distribution of 
molecular relaxation times (and energy barriers), as originated by 
Kulm.3,4 Another approach is to strain polymers with periodic waves 
over a very wide spectrum of wavelengths, eventually going to fre- 
quencies comparable with those of the thermal vibrations of significant 
groups or segments in the macromolecules. The resulting dispersion or 
resonance phenomena can then he examined. Hence a mechanical radi- 
ation field can interact with the masses of elementary structural units, 
as the usual electromagnetic field interacts with atomic and group 
charges. In general, direct interpretations of this kind must be done 
with shear waves, and, at least, not only with longitudinal or ultrasonic 
waves. 

This kind of study is now proceeding using waves generated and fol- 
lowed by piezoelectric crystals connected in as actual electromechanical 
circuit elements (A. M. Nicolson, 1919). Recent schemes of Mason and 
co-workers cover the frequency range from 10 X lO3 to 60 X 10'' cps, 
as reported in the paper by Mason and McSkimin in the last issue, 
while a tuning fork method used by I. L. Hopkins has been applied to 
"soft" polymers (rubbers) over the range 102 to 104 cps (the general 
range of J. D. Ferry's work at Wisconsin on concentrated polymer 
solutions). 

The relation of these studies to the scientific and technical exploita- 
tion of plastics and rubbers is in knowing what a particular chemical 
composition does to strength, stiffness, ease of molding, impact tough- 
ness, etc. That is, are there qualities of the interaction of saturated 
aliphatic groups that make polyethylene or polyisobutylene have some 
glass-like as well as liquid-like, or rubbery, nature even at room tem- 
perature? If so, conditions causing brittle failures must be watched for. 
How is the storage of molecular strains in injection molded plastics re- 
duced by increasing molding temperature (when the kinetic theory stiff- 
ness per chain actually increases)? These and many similar problems 
may be generalized under the headings below; in each case the chemical 
structure of the macromolecule appears to be reflected in relaxation 
times which combine in different ways to give flow or rigidity, toughness 
or brittleness. 

Extrusion and Molding 

Non-Newtonian flow leading to "frozen-in" stresses, subsequent dis- 
tortion and irregular shapes of plastics5 and rubbers,0 implies energy 
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storage in the sheared molecules. The dynamic shear studies will confirm 
this. Also dispersion of carbon black and other pigments is restrained 
by elastic qualities of "liquid" polymers (i.e., instead of "mixing", com- 
pounds just microscopically deform and later re-form.) Likewise, the 
efficiency of compounding' and extrusion8 depend on how quickly the 
molecules relax after straining. 

Impact Strength, Briftleness and Tenacity 

Toughness, mechanical shock resistance, ultimate elongation and 
strength reflect the facility with which the polymer molecules can bo dis- 
placed without breaking the piece. Thus, they accommodate to the stress 
by motions presumably similar to those described above. (The situation 
is complicated when crystallites are also displaced.9) In any case, time 
sensitivity in the range 10 3 sec upward exists.10,11 The discussion by 
Morey" is a valuable survey of these ideas, and explicitly notes the 
significance of multiple relaxation processes on damping of shock waves. 
Evidence of the relation of simple changes in chemical structure to the 
principle relaxation times effective in these physical properties of plastics 
and rubbers is thus another part of the dynamics studies. The "brittle 
point", or volume-temperature transition of amorphous polymers, ' 
apparently reflects directly the correspondence of the time of experiment 
with dominant relaxation time of the polymer.14,15 A few measurements 
on plasticized polymethyl methacrylate (from which, however, no actual 
rigidities were calculated) indeed indicate abrupt stiffening as a function 
of frequency at a given temperature.16 However, the changes measured 
were too small and indefinite to indicate any particular molecular relax- 
ation. Other work" with plasticized polymers is nevertheless concordant 
with the current findings that molecular relaxations and not long range 
order determine embrittlement. The converse of this is, of course, that 
as some "transition" is approached, hysteresis, heat build up, flex crack- 
ing and fatigue are greatest. 

Creep, Stress Relaxation and Recovery 

Even these "long time" qualities of plastics, such as found in cold 
flow, apparently result from integrated displacements of rapidly oscil- 
lating segments of the chains. A most interesting analysis of stress 
relaxation in rubbers employs Kuhn's suggestion of a particular distribu- 
tion of relaxation times.18 The present point is that, again, these relaxa- 
tion times reflect processes which should appear directly in reaction of 
the polymer with high frequency shear waves. 
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From these aspects above the current results of dynamics studies will 
be reviewed. 

POLYMER SOLIDS: OVER-ALL MECHANICS 

Solid polymers will denote rubbers and plastics in the state in which 
they are technically used. This is usually their most complex form, with 
inter- and intra-molecular factors undistinguished. Thus, separation and 
identification of the main relaxation processes are difficult or impossible. 
However, it is interesting to consider typical values of modulus and 
viscosity as related to chemical structure, in the range of frequencies 
corresponding to extrusion rates, and stresses in actual use. 

These values of dynamic modulus and viscosity are distinct from the 
usual quantities in the literature. The usual expressions are for longi- 
tudinal (sound) waves, and give dynamic Young's modulus1"1 

E* = Ei — iEi 

Ei measures the out of phase part of the force-displacement relation, 
and E2 = to- ("effective viscosity coefficient"). Now, the general clastic 
constants are X + 2/j, with X = Lamp's constant and /x = shear modu- 
lus. Here. 

X + 2/x = A' + |/i, 

with K = bulk modulus. Alternately, 

„ 3 A 3X + 2m 
Ll = r~r~ ^ = ytt— ^ X -j- M X +M 

However, in general the present results lead to the simpler shear modu- 
lus m- Further the energy losses studied are expressible directly as the 
usual shear viscosity 

m' = v- 

Previous comprehensive studies of the dynamics of rubbers over sig- 
nificant frequency ranges have yielded loss factors either written as 
E2/E1 (see above),19 or as a function of the shear viscosity based on 
Stoke's assumption that the comprcssional (dilatational) viscosity is 
zero.2" But as Nolle1'"' and Ivey, Mrowca and Guth20 clearly recognize, 
recent work has strongly manifested the presence of compressional vis- 
cosity in simple liquids21 as well as polymeric ones."' "I Hence, the pres- 
ent understanding relating molecular structure to viscosity, plasticity 
and visco-elasticity is unsuitable for interpreting mechanical wave mo- 
tion more complex than in shear, unless shear constants are also known. 
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This sums up to mean that the chemical interpretation of basic poly- 
mer mechanics requires shear wave measurements. Nevertheless, fas- 
cinating evidence of the existence of fine-structure relaxations in polymer 
solid has come from longitudinal wave investigations.19'2 ' '" ' Also, 
the pioneering shear wave studies of Ferry and collaborators'7, "8 on con- 
centrated solutions of polymers have suggested intrinsic relaxations of 
the chain molecules in a highly plasticized "semi-solid" state. 

The more simplified findings cited below will be seen to unify ap- 
proaches in this field. Comment must first be made, however, on formu- 
lation of experimental results in dynamics of polymers. 

Expression of Dynamic Properties 

Alternate and equivalent expressions have been thoroughly surveyed;29 

all represent combinations of either Maxwell (scries) springs and pistons 
(elasticity and viscosity) or Voigt (parallel) springs and pistons. Obvi- 
ously, there is no physical separation of elastic and viscous elements in 
a polymer molecule, so the irrelevance of the detail of the model need 
not be emphasized. However, the models lead to convenient formulation 
of relaxation times which dielectric studies, in particular, have shown 
have clear connections with chemical structure. In this chapter, some- 
times one and sometimes the other model, or combination, will be used, 
with the symbols shown on the next page. 

Other symbols are sometimes used,30 but should be easily identified 
in terms of the above. 

Rubbers and Soft Plastics 

In Table I, the shear moduli of rigidity, /x, and of viscosity, n', are 
shown as calculated for the Kelvin-Voigt model, for polymers having 
the indicated units of structure. The frequencies are from a few hundred 
to a few thousand cycles, hence, in the range of much technical use, 
(flexing of tires ~300 cps) and rates of shear during processing.31'32 Data 
are from a general study by I. L. Hopkins33 of the Bell Laboratories, 
based on a tuning fork transducer introduced by Rorden and Grieco. 
The strains employed were always small, in the range 0.3 to 1.5 per 
cent; n and n' were essentially independent of strain, except for some 
loaded rubber stocks. The m values clearly trace the magnitudes to be 
expected in going from the most typical rubber (hevea) to the semi- 
rigid plastics (vinyl chloride-acetate copolymer and plasticized cellulose 
nitrate). As anticipated from steady-stress observations the "plastics" 
have m > 107 dynes/cm2. Increase of y with frequency is also greater as 
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the "plastics" range is approached; a relaxation region is implied. Figs. 
1 to 4 show the dispersion of rigidity with frequency in more detail. 
Especially striking in Figs. 1 and 2 is the small temperature dependence 
(at least between 27° and ()(j0C) of n- Because of experimental uncer- 
tainty, m cannot be said to be actually higher at the higher temperatures 
in accord with straight kinetic theory, but at least it is strongly tending 
that way, as also noted for lower frequencies studies on natural rubber.19 

Nothing like this appears for the plastics; in plasticized nitrocellulose 
the 100-cycle rigidity decreases 10-fold from 27° to GG0C. This is, then, 
the second general dynamic quality which reflects the low van der Waals' 
(dipole, dispersion and induction) forces in hevea rubber and polydi- 
methyl siloxane, as well as their intrachain flexibility. Interchain forces 
in polyisobutylene (Butyl rubber) are low too, but barriers to flexibility 
because of sterically hindered-CHa groups come in. Table I and Fig. 3 

KELVIN-VOIGT 

MAXWELL 
1 

J 
o- = strain 
S = stress 
t = time 
t = relaxation time 
r' = retardation time 
n = G = modulus 
n' = t] = viscosity 

T 

dt n di v 
da _ 1 dS _j_ S da _ S _ m 

dl -q f] 
a 

V T = - 

For const. »S, — = - or 77 
dt rj 

S There is same strain in each ele- 
rfo- ment; the total stress = sum of 
dt single stresses. 

There is same stress on eacli ele- 
ment; the total strain = sum of 
single strains. 
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Table I 

Polymer Unit 

Hevea rubber 

CH;, 

—CH2—C=CH—CH2— 
Polydimethyl siloxane 

CH3 

—0—Si— 

CH:, 
Polyisobulylene 

CH3 

—CH,—C— 

CH3 
Poly vinyl chloride (~92%)-acetate 

(~8%) plaaticized by ^36% cli- 
octylphthalate 

—CH.—CH— and 
I 

C1 

—CH,—CH— 
O 

O—C—CHa . 
Cellulose nitrate 

CH2ONO2 
/ 

CH O 
/ \ 

—C CH—O— 
\ / 

CH CH 

ONO, ONOa 

and ~25 wt. % Camphor plasti- 

Shear Modulus, n, dynes/cmJ 

27°C 

100 cycles 

3 X 10° 

0.7 X 10B 

5 X 10" 

13 X lO" 

60 X 10° 

5000 cycles 

5.5 X 10° 

1 X 106 

30 X 10fi 

80 X 10° 

250 X 10° 

Shear Viscosity 
Poises, m'i 27°C 

100 
cycles 

350 

300 

1,000 

25,000 

80,000 

5000 
cycles 

40 

30 

1,500 

2,000 

4,500 
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Fin. 1—Viscosity and shear modulus of hevea rubber (cross-linked). 
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Fig. 2—Viscosity and shear modulus of polydimethyl siloxane (cross-linked). 
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Fig. 3—Viscosity and shear modulus of polyisobuiylene (cross-linked Butyl). 

emphasize that thinking about the mechanics of a particular chemical 
structure must include the spatial relationships of groups within the 
chains, as well as between them. 

The dynamic viscosities in Table I are also in accord with the se- 
quence of structures. Their frequency dispersion again connotes varying 
relaxation processes. Natural rubber's low inner friction, lor both com- 
pressional35 and shear waves36 is famous in its low hysteresis heating. 
(This unique property is geopolitically crucial, because adequate truck 
and bus tires cannot yet be made of any other rubber.) Indeed, it is 
striking that at 100 cycles, a piece of gum rubber has a local viscosity 
of only 350 poises. The silicone rubber gum also has high elastic efficiency, 
and its temperature coefficient of viscosity is very low (see Fig. 2), like 
the thermal coefficients for familiar silicone liquids. It is exciting to 
speculate in Figs. 1 and 2, whether more precise measurements which 
Hopkins is now undertaking will confirm the apparently negative tem- 
perature coefficients of viscosity at some frequencies. "Kinetic theory 
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viscosity" arising from transfer of momentum among thermally agitated 
chain segments, does not seem to have been considered in the theory of 
perfect rubbers. As in gases, it would require an increase of viscosity 
with temperature. 

In polyisobutylene, however, the dynamic viscosity leaps upward in 
both magnitude and temperature dependence. It should be emphasized 
that this is, again, for a cross-linked (Butyl) gum—an infinite network 
like the hevea gum, with presumably infinite macroscopic viscosity. 
The striking thing is that this internal viscosity is not greatly dependent 
on the network, at the degrees of "cure" used in rubber technology. For 
instance, recent studies over the frequency range 20-000 cycles, on high 
molecular weight, Mv = 1.2 X 10'', linear polyisobutylene/7 give, at 
250C and 100 cycles, / = 4800 poises, although the steady flow viscosity 
of this polymer at this temperature is greater than 3 X 109 poises.38 

Then, the infinite network (r}alcady »„«• —^ cc) Butyl polymer of Fig. 3 
has at 270C and 100 cycles n' = 8000 poises. At 1000 cycles agreement 
appears to be about the same, and is tolerable considering the several 
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per cent of compounding ingredients in the Butyl gum, and possibility 
of a small fraction of low molecular weight uncured polymer in it. 

Also, wide variations in the degree of cure of Butyl gums were studied 
without large changes in n'f* In this regard, the particular sample of 
Fig. 3 had an equilibrium swelling ratio (= volume swollen polymer in 
cyclohexane at 250C/volume insoluble part of dry vulcanizate) of 4.84. 
This indicates an Mc value (average molecular weight between cross- 
links) of <20,000.39 Actually many of the dynamic properties can prob- 
ably be found in individual chain units or segments even smaller than 
this. This is a significant point in engineering applications where plastics 
may be cured to reduce creep but where it is desired to retain typical 
"chain" properties to increase impact toughness. That is, usually some 
optimum condition for this compromise can be found. The later section 
on liquids will suggest that physical properites typically associated with 
chain polymers can indeed reside in even shorter chain sections than the 
Mc's observed in usual gum rubbers. 

Filled Polymers 

Marked effects of carbon black and other pigments are of course 
familiar in both steady and alternating mechanics of rubbers.1 '" ' 
Brief comment on their influence on dynamic shear properties and thus 
relaxation mechanisms involved may be directed toward plastics, also, 
however. Thus, technologically it would be desirable to load thermo- 
plastics with considerable volumes of "inert" fillers, just as is done with 
rubber. But, almost invariably strength and toughness decline, instead 
of improving, as in the rubber case. A reason for this appears in inves- 
tigations by Hopkins when carbon black (a standard type of reinforcing 
black) was added to Butyl rubber of the sort described in Table I. It is 
that stiffness seems to rise more rapidly than internal viscosity—i.e., a 
given strain results in proportionately higher stress than the accompany- 
ing internal viscosity provides means for dissipating the stress (as on 
impact). Hence, the brittleness which fillers normally engender in ther- 
moplastics may represent this change in y vs. y' balance. Table II illus- 

Table II 

Wt. Per Cent 
of Carbon Black 
in Butyl Stock 

Shear Modulus, m. dynes/cm2 at 27°C Shear Viscosity, n'. Poises, at 270C 

100 cycles 5000 cycles 100 cycles 5000 cycles 

15.2 
2S.6 

8 X 10" 
45 X 106 

60 X 106 

150 X 10° 
11,000 
35,000 

2,000 
3,000 
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trates some values for Butyl compounds. The swelling ratio (SR) for 
the compound containing 28.6 wt. per cent filler has dropped to 3.2, 
implying also considerable reductions in Mc (since theoretically 

(l/SRY'* = tt" — 2bMc™)- Thus, the apparent chain segment between 
M. c 

cross-links is shorter than in the unfilled stock (the two were cured to 
give closely similar degrees of primary valence cross-linkage) and corre- 
spondingly the steady-pull modulus is higher. Yet, the internal friction, 
while also higher, seems to reflect new relaxations from interaction with 
the filler, and total shock-absorbing power has declined. 

Microcryslalline Polymers 

The preceding studies at comparatively low frequencies indicated (1) 
magnitudes of shear rigidity and internal viscosity characterizing rub- 
bers and soft plastics. By familiar shifts of temperature or frequency, 
they would also apply to polymers known as hard, amorphous plastics 
at room temperature such as polystyrene and polymethyl methacrylate. 
(2) Dispersion of m and m' with frequency affirm that the intrinsic or 
fine structure relaxations have times < 10~l! to 10~4 sec, and so refer to 
chemical units much smaller than the average molecules in the usual 
technical rubbers and plastics. A way to get at what sizes and habits 
these units might have will be by investigation of low molecular weight 
polymer liquids. But, while still in the section on solids, it is recalled 
that microcrystalline polymers such as polyethylene, polyesters (Teryl- 
ene), polyamides (nylons), cellulose esters, polyvinylidene chloride, poly- 
acrylonitrile etc., have mechanical properties dominated by their crystal- 
line-amorphous ratios.9, ■!6'4(1'41 The amorphous volumes are clearly those 
which donate the flexibility, toughness and shock-resistance of these 
plastics and textile fibers.9,40 An interesting point is, how "viscous" are 
the disordered chain segments? In an over-all sense, all kinds of dissipa- 
tion including crystallite friction, analogous to grain friction in metals, 
scattering of longitudinal waves, and stiffening by low temperatures can 
occur in these polyphase systems. Thus, effects of chain orientation as 
well as lateral order (crystallinity) have been detected in dynamics 
studies.2"'41 The intrinsically liquid-like or amorphous components of 
this behaviour—and the things which will correlate most simply with 
dipole concentration and other chemical features—are most accessible 
to study at very high frequencies. For, in these polymer solids, unlike 
the essentially continuous and homogeneous amorphous ones first dis- 
cussed, the mechanics reflect small regions having widely divergent 
properties. Thus, methods developed by H. J. McSkimin of Bell Tele- 
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phone Laboratories (described in the last issue), have been used to probe 
for elemental reactions at the upper end of the frequencies presently 
available. Both longitudinal and shear waves were used. In polyethylene, 
a wavelength for the shear waves was 0.0074 cm., at / = 8.55 X 10 
cycles, and in polyhexamethylene adipamide (the usual 6-G textile ny- 
lon), the shear wavelength was 0.0125 cm., for / = 8.67 X 10'' cycles, 
all at 250C. 

The important consequence of these experiments so far has been that, 
despite the small strains involved, the viscosity appears to be a "poly- 
mer" viscosity, rather than an inner friction involving just a few liquid- 
like atoms per unit. Thus, polyethylene of "equilibrium" crystallinity 
and average molecular weight corresponding to an intrinsic viscosity in 
xylene of [r?] = 0.89 (at 850C), was measured over the range from 0 to 
50oC. The results from both longitudinal and shear wave measurements 

Table III 

Temp., 0C. f, cycles/scc 
Viscosity Poises 

/ X' + 2n' X' 

0 8 X 106 15 38 8 
0 25 X lO® 5 14 4 

30 8 X 106 15 34 4 
30 25 X 10° 5 13 3 

are given in Table III. These viscosities are expressed in this case for a 
Kelvin-Voigt model, of rigidity and viscosity in parallel. The rigidities 
associated with these viscosities are about 3 X 10J dynes/cm2, or not far 
from the value under steady pull of about 1 X 10 . 

Now this suggests that the rigid plastic polyethylene retains, even 
under mechanical impulse of microsecond duration, a shock-absorbing 
capacity reflected in a shear viscosity of 5-15 poises, and a compres- 
sional viscosity of 3-8 poises. The former, //, may roughly correspond 
to the liquid viscosity of a paraffin-like chain of from 50 to 65 c-atoms 
in length. Thus, the dynamics measurements seem to relate to basic 
premises of polymer structure. These are that the amorphous regions 
(whose existence is shown quite independently by x-ray scattering, den- 
sity, heat-capacity, etc.) indeed take up and dissipate sudden stresses 
which the microcrystallites, despite their great strength, would be too 
brittle to sustain. 

These results give hope that further probing of the dynamics of liquid- 
like elements in rigid plastics will eventually lead to precise adjustment 
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of molecular weight, chemical structure (degree of branching in poly- 
ethylene), crystallinity, etc. These quantities, when fitted to a given 
pattern of n, X, // and X' at proper frequencies would yield plastics of 
optimum serviceability under the multitude of stresses encountered in 
use. 

A similar liquid-like structure-even where the (crystalline) rigidity is 
much higher40 and mobile chain segments smaller—apparently occurs in 
polyamides. Presumably the hydrogen bonding and dipole interactions 
are very imperfect in the disordered regions,40 and there the chain inter- 
action is reminiscent of polyethylene. For instance, in polyhexamethyl- 
ene adipamide, measurements in the 8 to 30 megacycle range do indicate 
that the Lame elastic constant X is about 5.0 X lO10 dynes/cm2, but 
only about 3 X 10'° for polyethylene. This reflects over-all stiffness 
dominated by crystallites. Nevertheless, the compressional viscosity, X' 
is 17-0 poises (going from 8 to 30 mc) for the polyamide, but only 5-2 
poises for polyethylene. Of course, since there is dispersion in both cases, 
these relative magnitudes might be quite different at some other fre- 
quency or temperature (all above are at 250C). Yet it remains that the 
nylon, despite its hardness, also has a liquid-like component more vis- 
cous than that of polyethylene. Similar relations appear in the shear 
viscosities, /, also determined for these two systems. For the 6-6 poly- 
amide, fx' goes from 19 to 7 poises over the 8 to 30 mc interval while 
polyethylene changes from 15 to 5. These quantities indicate again, as 
with the polyethylene, that "polymer liquids" rather than just a few 
small groups of atoms are the important mechanical elements even at 
frequencies of 10'. Now polystyrene, an amorphous polymer, also has 
rigidities of about 1010 dynes 'cm2 but the m' and X' values at room tem- 
perature are far below 5 to 20 poises, and glass-like brittleness (although 
not so bad as silica glass) results. 

So far, then, the two characteristic extremes of polymer mechanics 
have been discussed: (I) the soft rubbers, whose dynamics at low kilo- 
cycle frequencies imply, at ordinary temperatures, predominantly over- 
lapping combinations of relaxation processes whose relaxation elements 
involve many segments per molecular chain; and (2) the hard, micro- 
crystalline plastics, whose behaviour is predominated by relaxation proc- 
esses having times of Ifr'' to 10~7 sec because the longer period (slower) 
displacements have been relaxed out at the temperatures of normal use. 
(Likewise, interconvertability by temperature19 between these two ex- 
tremes is presumed. Also, a certain correspondence between dielectric 
and dynamic relaxations in these classes is indicated.41") Next, it is in- 
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teresting to see what are the simplest structures (particularly in terms 
of molecular weight) yielding these effects. In other words, what kind of 
liquid really exhibits "polymer mechanics?" No detailed answer to this 
can be given below, but results on some polymer liquids of low average 
molecular weight will indicate that the mechanisms in rubbers and plas- 
tics are probably more general than previously supposed. 

POLYMER LIQUID MECHANICS 

By techniques described in detail elsewhere,22 23 a series of polyisobutyl- 
ene liquids have been investigated. These polymers were made by ionic 
catalyzed mass polymerization at reduced, but not very low, tempera- 
tures. While no great care to purify the monomer was used, such poly- 
merizations require fair purity to go at all. Seemingly, the resulting liq- 
uids do represent a polymer homologous series, although head-to-tail 
sequence of the monomer units, some single ethyl rather than paired 
methyl side groups, etc., may differ slightly from the higher molecular 
weight forms in Butyl rubber and polyisobutylene gum. Whatever are 
these details, it appears that the polymers represent a linear hydro- 
carbon chain, with essentially two methyl groups on every other chain 
atom: 

CHa 

—CHo-C 

CH, 

CHa" 

CH2-C- 
1 

CH3. DP—1 

By contrast, polyethylene, with the nominal chain —CHa-CHo-CHa 
CHa— and to a lesser extent polystyrene, 

—CHa-CH— , 

A 

NX 

have chains in which rotation about the bonds is less sterically hindered. 
The final section, on isolated polymer chains (in dilute solution), will 
consider this aspect further. However, some results will be reported be- 
low on a low molecular weight poly-a-methyl styrene, which may be 
considered structurally a cross between the rubber, polyisobutylene, and 
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the plastic, polystyrene, 

CH;f 

—CHo-C— • 
i 

o 

v 

Other studies in progress on liquid polybutadiene, polyisoprene, poly- 
propylene, and polypropylene sebacate from which further information 
about intra-chain stiffness may be derived, will also be noted. 

Properties of the polyisobutylenes studied arc summarized in Table 
IV, some additional molecular weights in this range appear as extra 
points in some of the high-frequency graphs. The molecular weights M, 
are "intrinsic viscosity" averages42, iia and, with reasonable estimations 

Mn of the "j=p ratio, check with cryoscopic number average, M„ , values on 
Mv 

such materials, which are in turn listed in the table as expressed by melt 
viscosity relations of Fox and Flory.42" These molecular weights repre- 

Table IV 

Polyiso- 
butylenc 
Polymer 

DP, M, Mu 
2S°C 

viscosity 
Poises 

Maxwell 
M 

Voigt 
 m'  
Poises 

Maxwell 
 n'  
Poises 

Freq. Cycles 

A 10 565 318 0.37 3 X 108 0.6 0.6 14 X 10° 
A" 30 1660 697 39.6 6.2 X 10B 16.5 18.8 2 X 10' 

1.7 X 10a 7.9 10.0 14 X 10B 

B 45 2520 1070 216 3 X 109 15.2 24.2 14 X 10" 
C 56 3350 1720 737 3.6 X 109 20.2 47.9 14 X 108 

I) 74 4170 2530 1840 4.5 X 109 23.4 78.9 14 X 10" 
E 147 8240 4850 4600 5.3 X 109 27.2 92.3 14 X 10" 

sent reasonable averages rather than absolute values for these hetero- 
geneous polymers. The DP values are just the number of isobutylene 
units per average chain. The 77 values are the steady flow viscosities at 
low rates of shear—usually determined by a falling ball. 

Rigiditij and Viscosity Magnitudes 

The properties of these liquids ranging from polymer A having only 
forty times the viscosity of water to E, which begins to approach fluid- 
ities of technical polymer melts (polyamides, for instance), were explored 
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in the kilocycle range with shear waves generated by torsioual crystals 
and in the megacycle region by shear waves with the reflectance method 
and by longitudinal (ultrasonic) waves from a pulse propagation tech- 
nique.23 The results have been expressed in two ways. First, in earlier 
reports,22'23 a trend corresponding with experiment was given by two 
Maxwell elements arranged in parallel. This result is too simple com- 
pared to the distributions of relaxation times previously proposed for 
high molecular weight polymers to reproduce detailed observation. 
Nevertheless, perhaps because of the smaller molecules involved, there 
seems to be clear indication that two principal relaxations predominate 
the mechanical reactions of these liquids over the range of frequencies 
of present interest, 102 to 107 cps. For example, for polymer D, these are: 

First Relaxation Second Relaxation 

/c ~ 4 X 103 cycles 
/i ~ 4 X 107 dynes/cm2 

/„ ~5 X 10° cycles 
^ ~ 6 X 10° dynes/cm2 

(In accounting for the second main relaxation, a hysteresis component 
had to be introduced whose significance has been suggested.") 

Second, specific values of shear rigidity p (Maxwell) and p (Voigt), 
shear viscosity p (Maxwell) and p (Voigt) as well as the constants for 
related compressional wave systems, X + 2m (elastic) and X' -f 2p' 
(viscous) have been calculated for particular frequencies. Unlike in the 
first way of expression, these latter quantities are all highly frequency 
dependent. However, they describe conditions at various frequencies of 
interest, and arc thus often worthwhile. 

Both ways of looking at the data lead, as implied by the figures above, 
to the proposal that typical polymer stiffness (shear rigidity of ~10' 
dynes/cm2) is present at Mv ~ IfiOO, with DPV ~ 30, or an average 
chain length of about 00 carbon atoms. This appears when the straining 
is done in 10-3 to K)"4 sec. In the 10"° to 10"s sec range, rigidity occurs 
for even an average chain length of 20 atoms as shown in Table IV. 

STRUCTURAL FACTOR IN LIQUID MECHANICS 

The main relaxations in the kilocycle range in polyisobutylene liquids 
seem to lead to quasi-configurational elasticity. This is where the kinetic 
theory tendency for a most probable separation of chain ends is retarded 
by viscous interaction of segments between and within the chains. Hence, 
the middle dashed curves of Fig. 5, showing shear elasticity for some of 
the polymers of Table IV, decrease exponentially with increasing tern- 
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perature. While pure kinetic theory elasticity would give a modulus 
increasing linearly with increasing temperature, these systems, like all 
practical rubbers and plastics, actually grow softer with rising tempera- 
ture when deformed dynamically. It is striking, nevertheless, that a 
modulus of ~I0' dynes/cm2 seems characteristic of the visco-elastic 
energy storing of these simple polymer structures. As noted below this 
is 10'' loss than the crystal-like, close-packed, stiffness found for these 
same molecular frequencies above their second principal relaxation time. 
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Maxwell model wit h relaxation freijuencies 1()3-1U4. (Lower dashed curves for fre- 
quency-dependent models.) 
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Thus, it seems that the former, 107, modulus is typical of the struc- 
tural arrangements in polymers said to be above their second order 
transition temperatures12,13 while the second, 10"', modulus reflects in- 
teractions below the freezing-in. 

These conclusions obtain regardless of the particular expression of the 
data. But, for comparison, curves are shown on Fig. 5 for a polyiso- 
butylene A" in which the dynamic modulus n at 20 kc is computed for 
both Maxwell and Voigt elements. The two points denoting the steady 
flow viscosity of polymer A" rank it with respect to the others in the 
series. 

Apparently even very fluid polymer melts, chain molecule plasticizers, 
and small segments of long molecules must be expected to show appre- 
ciable rigidity when stressed rapidly. Referring to the introduction it is 
reasonable that rough extrusions, frozen-in molding stresses and the 
like are so easily produced. The lines of Fig. 5 are not, of course, implied 
to be linear over any considerable temperature range. In the region rep- 
resented, the temperature coefficient for viscous flow is about 16 kcal 
for the B, C and D liquids (about 12 for A). This agrees roughly with 
the steady flow values found for very high molecular weight polyiso- 
butylene.38, 42n The temperature coefficient for the rigidity is less, as 
would be expected, since the whole center of gravity of the chain need 
not be displaced, but only local segments. 

This quasi-configurational elasticity is increased by molecular weight 
(although kinetic theory elasticity of chain segments in a network is de- 
creased by increasing segment length). The log m vs density at 250C 
plotted in Fig. 6 indicates that the chief influence is the number of 
chains per cc, since the points for all the molecular weights now lie on 
a single line. It should be repeated that the elasticity modulus plotted, 
M, is again for a roughly hequency-independent or "absolute" model. 
The same is true for the three solid lines on Fig. 6, showing /x in the 
second, or 10' cycle, relaxation range. Here effects of detailed liquid 
structure come out; the three average molecular weights no longer lie 
so nearly on a single line. This elasticity is presumably from the crystal- 
like interaction of nearest-neighbor segments. If temperature is adjusted 
so that densities are the same, it is seen that the lower average molecular 
weight liquid has the higher elasticity modulus. This difference is not 
large, and should not be interpreted as showing an equal segment inter- 
action, for a polymer of lower specific volume (B compared to D). 
Rather, it emphasizes in this relaxation range, approaching the "glass" 
behaviour, that the relaxation rate is vastly more temperature dependent 
than the specific volume change alone, and structural variations in the 
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-Principal shear elasticities of polyisobutylenes as related to their densi- 

packing of segments in the liquid (coordination number, etc.) become 
important. 

"Sufi" and"Hard" Liquid Stales; Second Order Transitions 

A recent noteworthy study4'1 of volume-temperature and viscosity- 
temperature changes in polystyrene (with a note on polyisobutylene) 
brings out many points in common with ideas of polymer liquid struc- 
ture indicated by the dynamics work."'Particularly, the fact that 
according to steady state measurements, the "local configurational ar- 
rangement of the polymer segments"4'1 below Tu remains fixed accords 
with the postulations from dynamics work. That is, above the second 
main relaxation, it seems to be just the interactions in these fixed ar- 
rangements which cause the glassy (or "crystalline") dynamic modulus 
of 10"' to 10in dynes/cm'. Further, the point that Tu is not an isoviscous 
state for polymers43 agrees with the dynamics result that macroscopic 
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viscosity of the polymer has relatively little to do with the actual values 
of dynamic viscosities. These would be at frequencies where the response 
of the polymer liquid to the mechanical field is determined only by 
motions within the local fixed arrangements mentioned above. 

Fig. 7 illustrates this, where on one scale the macroscopic viscosity is 
plotted according to the familiar log-log relation withjnolecular weight. 
Two extremes of average molecular weight, Mn and Mv are used for the 
liquids, to show that the molecular weight distribution does not alter 
the general conclusions. (M„ is an upper limit weight average figure.) 
On the other scale, the dynamic viscosity //, in this case for a single 
element frequency-dependent Voigt model, shows low values and marked 
curvature. These betoken the relaxation in which molecular weight, 
through its effect on free volume and other structural factors, is signif- 
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of polyisobutylene liquids of different molecular weights. 
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icaiit for displacements superficially quite different from those in macro- 
scopic viscosity. 

The compressional viscosity, X' Is also plotted, for the same model, in 
Fig. 7. It is, within experimental error, zero for polymer A', as deter- 
mined by shear and compressional wave studies at 8 mc frequency.22 

This is a rare case, then, where the attenuation of sound waves through 
a liquid lias been quantitatively accounted for by the shear viscosity. 
But, as soon as the average molecular weight rises to 1000 or so, X' 
comes in clearly, and the new mechanism for dissipating compressional 
or dilatational stresses is developed. As this presumably represents di- 
rectly free volume or coordination number changes in liquid struc- 
ture,44,4■, its detailed study near 7'„ ,4,1 and in connection with brittle 
points of rubbers, may eventually be especially fruitful. 

Another depiction of influence of average molecular weight in these 
liquids on dynamic viscosities occurs in Fig. 8. Here, the \'c curve is 
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for, again, a crude model attempting to show compressional viscosity 
over the whole frequency range, while the other viscosities are Voigt 
expressions at 8 (or 14) mc. Extremes of molecular weight averages are 
shown. 

Comparison of the "soft" or quasi-configurational rigidities, expressed, 
like the m of Fig. 5 as relatively frequency independent ^ , with the 
"hard" or glassy rigidities is given in Fig. 9. The X and n values are for 
the Voigt model at 8 mc. The graph does not show the bend-over of the 
"soft", He, curve with molecular weight, but that happens more grad- 
ually. The "hard" rigidities X and m quite readily show this inflection. 
As before, the relaxing segments must be <100 chain atoms, according 
to the behaviour of the molecules at room temperature. 

Concerning Influence of molecular weight on engineering "brittle 
points" of such importance in rubber technology, the present studies 
agree with earlier proposals. Thus, although the T,, or v-T second order 
transition point always decreases with decreasing molecular weight, 
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the brittle point tends to increase as the molecules get smaller. This was 
supposed to be because the ultimate elongation (doubtless due to visco- 
elastic or quasi-configurational elasticity and not kinetic theory elas- 
ticity as sometimes said) declined with chain length, so that the speci- 
men broke at lower and lower strains,1-' even though it was not really in 
the glassy state. Now, the results above"'23 demonstrate that the shear 
modulus at a given temperature does fall off for average molecular 
weights of polyisobutylene below ~5000. Hence, the mechanical em- 
brittlement of the low molecular weight samples is not because they arc 
stiffer, but because they are weaker. 

POLY-a-METHYL STYRENE: A "PLASTIC" LIQUID 

Most of the liquid studies have been on polyisobutylene polymers, 
made "hard" or "soft" by temperature or frequency, but under use 

Table V 

Poly-a-methyl ■n Poises 
n', 14 mc Poises /i, 14 mc dynes/cm2 

styrene 
Maxwell Voigt Maxwell Voigt 

I 
II 

242 
4340 

111.4 
502.7 

23.6 
14.3 

5.1 X lO" 
7.6 X 10° 

4* X 108 

7.4 X 109 

conditions, considered rubbery. If one of the methyls in polyisobutylene 
is replaced by a phenyl, poly-a-methyl styrene, a hard plastic is pro- 
duced. Low molecular weight polymers of this composition are, however, 
liquids at room temperature. Hence, it is interesting to compare their 
reaction to mechanical waves with that of polyisobutylene liquids of 
similar macroscopic viscosity. Table V lists a few properties at 250C. 

Polymer I has roughly the steady flow rj of polyisobutylene B. Also, 
the Voigt /i' at 14 mc is similar: 15.2 poises compared to the 23.0 poises 
of the poly-a-methyl styrene. However, the Voigt m is already 50 times 
higher for the phenyl substituted chain. (This shows the shift of the 
second relaxation range, of course, where nearest neighbor interactions 
rule.) Even more striking, the temperature coefficient of a m.- , calculated 
as the second principal shear viscosity in a frequency independent 
model,23 as before, is about 24 kcal, compared to about 12 for He for 
polyisobutylene in its similar model. Thus, although there was no ap- 
parent difference between the mechanical properties of these two poly- 
mer liquids in their room temperature state, their dynamics diverged 
remarkably. This was when they were studied with shear waves whose 
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frequencies approached the glass-into-rubber relaxation times. Clearly, 
again, individual interaction of chain-like chemical units and not any 
micellar or other special aggregation of them, predominates polymer 
mechanics. 

It still remains, however, to separate interactions of the basic units 
within and between chains. Most likely, the model plastic vs rubber 
liquids just discussed differ in the high frequency region substantially 
only because of m/er-chain forces between phenyl vs methyl groups. 
However, especially in the high-frequency region, questions of inlra- 
chain structure, such as the steric hindrance of adjacent pairs of methyl 
groups in polyisobutylene, restricted rotations about bonds, etc., come 
in. Obviously where configurational or quasi-configurational displace- 
ments are important, as in all cases of elongation >20 per cent (this is 
certainly an upper limit), flexibility of single chains needs to be under- 
stood. This is built deeply into chemical structure; plasticizers pre- 
sumably may change over-all configuration as well as modify interaction, 
but they are impotent to vary flexibility. Accordingly, problems of rub- 
ber, usable in the Arctic, and of wire and cable insulation bendable at 
low temperatures always come back to whether the polymer chain bonds 
have free rotation. Some examples of the combinations of effects within 
and between chains can indeed be shown in several other polymer liquids 
which are rubber models. 

This influence of small changes in chemical structure is compactly 
illustrated by comparing a few other hydrocarbon polymer liquids with 
polyisobutylene. Also, rather dilute dipolar groups have been introduced 
in the linear polyester liquid polypropylene sebacate, whose structure is 
otherwise like that of hydrocarbons.4511 In Table VI, liquids of the given 
structure with some (unknown) distribution of molecular weights, were 
studied with shear waves at 77 and 142 kc at a temperature where each 
had the same steady flow viscosity. The figure chosen was 700 poises, 
and the temperature range required to adjust to it in the series was 
10.9° to 850C, meaning that the liquids had comparable consistencies at 
ordinary temperatures. 

Despite these similarities under steady stress, the retardation times, 
r', vary three-fold, with the highly substituted hydrocarbon chains, 
polyisobutylene and polypropylene, the highest. Despite the intermo- 
lecular action of the dipoles in polypropylene sebacate, the low polymer 
has a short retardation time, although its "brittle point" with decreas- 
ing temperature is far above that of polybutadiene or even polyiso- 
butylene. Presumably the flexibility around C—O—C bonds rather 
compensates for increased dipole interaction. Where both low polarity 
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and chain flexibility obtain, as in polybutadiene and the silicones, dy- 
namic properties apparently accord with brittle points in implying small 
temperature coefficients of relaxation times. In fact, the temperature 
coefficient for dynamic viscosity of polybutadiene is only about 1.5 kcal, 
whereas a comparable figure for polyisobutylene and polypropylene is 
12 kcal. 

The frequency range in which the structural comparisons above were 
made, resides, as discussed earlier, in the zone of configurational visco- 
elasticity. That is, over-all shape changes, rather than just nearest 
neighbor interactions, are predominant even at these comparatively 
short average chain lengths. Now, other recent studies of polyisobutyl- 
ene liquids, at 5 to 100 cps frequency, exhibit no rigidity at 250C and 
above, although they become non-Newtonian rapidly as temperature is 

Table VII. Shear Dynamics of Polyisobutylene A". 
(17, = 1660; tj,260 = 39.6 Poises) 

T, °C Freq., cps 
Voigt Maxwel 

/i dynes/cm' >1 Poises n dynes/cm3 >) poises 

25 266 3.8 X 103 39.2 1.2 X 106 39.3 
25 1601 4.8 X 10' 38.4 3.1 X 106 39.0 
27 26300 5.4 X 105 19.9 1.9 X 107 20.5 
27 41390 1.5 X 10" 19.9 1.9 X 107 21.5 
27 53060 1.5 X lO" 18.1 2.6 X 107 19.3 

reduced.451' The questions are, where does the configurational elasticity 
drop out, as frequency is reduced at 250C; and does it seem reasonable 
that this dispersion correlates with a shift in frequencies at lower tem- 
peratures. Partial answers are given by very recent studies ot I. L. 
Hopkins of Bell Telephone Laboratories. He has equipped the tuning 
fork vibrator described earlier33 with two parallel vanes filled in between 
with a film of polymer liquid. Pure shear properties can be derived from 
the response of this system. Table VII lists a few typical figures obtained 
on polyisobutylene polymer A". These indeed show that the kilocycle 
relaxation zone (some new data by McSkimin's torsional pulse method 
are given for it) extends smoothly down to where dynamic and steady 
stress viscosities are equal. Seemingly there are no new "extra long 
time" relaxation mechanisms; probably the slow relaxation times some- 
times indicated for high molecular weight rubbers are just displacements 
of this configurational relaxation to long times because of high molecu- 
lar weight and internal viscosity. 

By contrast to the conclusions associated with the data of Table VII, 
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some observations at low frequencies on isoviscous properties of polyiso- 
butylenes A" and C indicate nearly identical retardation times. Thus A" 
at 250C and C at G10C have Tjx = 39.6 poises. The 77 values at 266 and 
1600 cps are also about 39 poises, ^ at 266 cps is 3800 dynes per cm" 
for both liquids, and at 1600 cps is from 3.5 X 104 to 4.8 X 104 dynes 
per cm". 

In the final section, mechanical waves have been used to explore 
dilute polymer solutions, to see how isolated molecules behave, free of 
interaction with each other. 

DILUTE POLYMER SOLUTIONS 

Physical Principles in Mcasnrcincnls 

Precise information on dynamics of solutions approaching infinite 
dilution (and thus complete separation of the polymer chains) is desired 
here. Again these must be shear dynamics; bulk rigidity of ordinary 
liquids is so high that a few polymer molecules added cause little effect. 
Dilution is emphasized because even at 1 per cent by volume, high 
polymer molecule coils frequently interact, especially in "good" solvents. 
Thus, several workers have detected shear rigidity in polymer solutions, 
in one case for polymethyl methacrylate of average molecular weight 
320,000, at 1 per cent concentration in o-dichlorobenzene.46 Very low 
frequencies used (~]0 cycles) there and in an earlier study47 suggest, 
however, that even here, appreciable entangling of the molecules created 
a temporary network such as studied by Ferry.27, "s Such was certainly 
present in the 5 to 18 per cent solutions of cellulose acetate in dioxane 
measured in one of the earliest observations of shear rigidity in polymer 
solutions.411 

Accordingly, since strictly linear, and hence non-interacting, mechanics 
are sought for the macromolecules in dilute solution, careful evaluation 
of experiments is essential. Since already it appears that important 
over-all (quasi-configurational) relaxations occur for, say, polyisobutyl- 
ene in the kilocycle range, and it is suspected that not all of the inter- 
actions involved are between chains, the torsional crystal techniques 
are attractive. The absolute viscosity of these solutions is very low, so 
the ammonium dihydrogen phosphate crystal whose piezoelectric qual- 
ities arc appropriate for polymer liquids in the circuits previously 
noted22,23"43 is advantageously replaced by quartz. 

Detailed electromechanical behaviour of such crystals in the pure 
liquids cyclohexane and benzene is of first concern. The electric field 
applied to electrodes on the suspended crystal produces mechanical 
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torsion generating pure shear waves. These waves may be modified by 
the environment around the crystal (vacuum, gas, liquid, solid) and 
react back. Thereby a mechanical resistance, Ru , and a mechanical 
reactance, Xm , arc imposed on the electrical properties of the crystal 
element in the circuit. This connection comes out as: 

ASg = IURm 

Af = —K^X m , 

where ARe is the increase in measured electrical resistance of the crystal 
element in the medium compared to in vacuum (or practically in dry 
air or nitrogen). The decrease in resonant frequency of the crystal ele- 
ment under these conditions is Af. Thus Ki and Kz are electromechanical 
constants, which fundamentally may be calculated from the dimensions 
and piezoelectric constants of the crystals.49 Now, in simple, Newtonian 
liquids, 

Ru = Xm = V irf-qp 

Thus, by carefully measuring ARe (or Af) on a liquid of accurately 
known density p and viscosity *?, at a given frequency /, and a given 
temperature, the constants Ki and Ki may be evaluated without as- 
sumptions and approximations of deriving them. Their constancy will 
then reflect the electromechanical stability of the system. Their be- 
haviour under various conditions will be illustrated below. One further 
point is that when a liquid or solution does exhibit shear rigidity, or, in 
other words, if the single large molecules in a dilute solution are able 
to store energy, then Rm > Xm . Hence, in this case, the observed 
quantities ARe , and especially Af require particular precision. 

In this regard, typical magnitudes of change of /r between dry air 
and pure cyclohexane, at various temperatures, appear in Fig. 10. 
Questions often arise as to the arbitrariness oi suspension of the radi- 
ating crystal, by the fine supporting and lead wires. The effects with 
the plain wires, in the solid curves of Fig. 10, are somewhat, but not 
radically, changed when a metal bead is put on, heavily loading vibra- 
tions in the wires, as shown by the dashed curves. In Fig. 11, a some- 
what larger influence of the loaded support wires is shown for the Re 
values, but both curves, by their smoothness and shape over a tem- 
perature range where the thermal expansion and other elastic constants 
of the metal support wires are quite different from those of the quartz 
crystal, affirm reliability of mounting and electromechanical coupling. 

Fig. 10 shows, even for an 80-kc crystal, that Af for an organic liquid 
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(or dilute polymer solution) is bothersomely small. An excellent oscillator 
at 20 kc can hardly be expected to drift less than ±2 cycles, but at 20 
kc the Af like that between the sets of curves on Fig. 10 might be only 
10 cycles, so 20 to 35 per cent error could come in. Hence, a different 
scheme for measurement of fR than that in earlier systems23,49 was 
evolved. The tenth harmonic of the (say 80 kc) resonant frequency was 
beat against the 79th harmonic of a controlled standard 10-kc frequency. 
An interpolation oscillator accurately readable to 1 cycle then supplies 
the many hundred (roughly 1000) difference between these two high 
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Fig. 11—Temperature variation of resistance at resonance before and after 
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Fig. 12—Temperature variation of crystal constants A'i and Ko at 80 kc be- 
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harmonics. In this way, and in about 30 sec a balance can be conven- 
iently achieved and the required ten-fold gain in accuracy attained. 

By these means, and with best literature values of viscosity and 
density (which were checked in the laboratory at several temperatures) 
for purified solvents, curves for Ki and K< were obtained as exhibited 
in Fig. 12 for 80 kc. Behaviour of Ki at different frequencies over a tem- 
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Fig. 13—Temperature variation of crystal constant A'i over a frequency range 
with benzene and cvclohexane as standard fluids. 
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perature range is shown in Fig. 13, and of K*, in Fig. 14. Fig. 14 brings 
out the significant point that in the present arrangement, where the 
oscillating crystal is immersed in the liquid studied, the dielectric prop- 
erties of the liquid are important. Apparently the dielectric losses even 
of these purified hydrocarbons are different enough so that K* at 80 kc 
is quite different for benzene and cyclohexane. (Dielectric studies have 
previously indicated difficulty in preparing benzene having theoretically 
expected loss.) It is also possible that slight differences in wetting the 
crystal cause K-i to vary with the liquid used. 

The K\ and Ki values determined for all the various conditions above 
were then used under these conditions for measurements on the polymer 
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0.0 
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0.6 
40 KC 
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40 KC 

0.4 20 KC 
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Fig. 14—Temperature variation of crystal constant K-> over a frequency range 
with benzene and cyclohexane as standard fluids. 

solutions in the kilocycle range. In the megacycle range, the balanced 
shear wave reflectance technique2' gave satisfactory results over certain 
concentration zones which could fairly well be extrapolated to high 
dilutions. Thus, over the whole spectrum, there seems to be no doubt 
about the reality of the effects described below. That is, their magnitude 
far exceeds experimental uncertainty, as demonstrated in this section. 

POLYISOBUTYLENB SOLUTIONS; DYNAMICS OF SEPARATE CHAINS 

Solutions of polyisobutylene of Mv = 1.2 X lO" from about 0.1 to 
1.0 wt. per cent concentration in cyclohexane yield Rm and XM curves 
as shown in Fig. 15. The points coincide for the pure solvent, as they 
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Fig. 15—Electromechanical interaction of solutions of polyisobutylene (M, = 
1.18 X 108) in cyclohcxane with crystal vibrating torsionally at 20 kc. 

should for a liquid having only viscosity. But, apparently as soon as any 
polymer chains are added, the curves diverge. A stiffness coming from 
separate chain molecules is being displayed.50 Qualitatively, theoretical 
expectations of Kuhn51,and others seem justified, at least that there 
is a relaxation mechanism for isolated chains. 

The usual question of how best to express the dynamical results arises. 
The procedure of earlier sections for polymer solids and liquids will be 
followed. In general, a frequency dependent modified Maxwell element 
as sketched on Fig. 10 will be used. However, a frequency-independent 
analysis has also been carried out for one sample system, and, from this, 
basic mechanical constants of single "average" molecules are obtained, 
if it is reasonable to relate the mechanical models for the liquid con- 
tinuum to the discrete chains dissolved in it. 

Fig. 17 shows typical results from the simple scheme of Fig. 1G, where 
the pure solvent viscosity, tjj , has been considered to be in parallel 
with a Maxwell element. The total shear rigidity of the solution (at a 
given concentration) is represented by y.B ■ The viscosity of the polymer 
molecule coils in solution with the solvent streaming through them is 

i 

/"a = 
(R2-X2) a) 77B 

ai/>7?s-2RX /"Bl 

- bs 

2RX (R2-X2)2 
vs\h Va [Xj 

bA = Wfl top copr}s-2 Rx 

T 
Fig. 16—Relations for calculation of shear stiffness and viscosity of dilute 

polymer solutions. 
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taken to be i]D . Thus, the steady flow viscosity, i}s = i]A + riH . Also, 

VA + Vu VB 
  = Vr Or — = 1]Sp 

VA VA 

under steady flow, or, alternatively, approximately a "dynamic intrinsic 
viscosity" 

T- • -~\ LVa Cjc-0 

can be written for any given frequency. 
The curves in Fig. 17 are frequency dependent, however, although it 

turns out that vb is only slightly so. Nevertheless, the considerable rise 
of r]A above the pure solvent viscosity, as the concentration is increased, 
indicates other mechanisms are being lumped into r?.4 . As usual, some 
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Fig. 17—Rigidity and viscosities of polyisobutylene (M, = 1.18 X 10°) in cy- 
clohexanc, at 250C and 20 kc. 

extensive distribution of relaxation times is probably responsible. How- 
ever, from the chemical point of view, it is best to see if some principal 
mechanisms related to known structures can be identified. If so, they 
could be associated with new ideas about the details of polymer intrinsic 
viscosities, as well as the form of isolated molecules.'1'"a3, 55 

First, the frequency dependence of the mb of the model of Fig. 16 is 
as shown on Fig. 18. Striking regions of dispersion appear, although 
more {joints are needed to define the 10° cycle zone. Actually, many sets 
of data have been obtained in the 104 cycle zone. Recently, an immersed 
quartz tuning fork has given the approximate value shown for 2300 
cycles. The experiments of Fig. 18 were on a polyisobutylene having 
Mv = 3.9 X 106, dissolved in cyclohexane. Values of 77,4 and r]H were, 
of course, also obtained. The results were then analyzed for a system of 
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three Maxwell elements in parallel with again, as in Fig. 16, a solvent 
viscosity, this time called 771 (truly absolute solvent viscosity) in parallel 
with them. The Mn curve of Fig. 18, running through the observed 
points could then be calculated, by some special trial methods, with 
which Messrs. II. T. O'Neil and O. J. Zobel of Bell Telephone Labora- 
tories kindly helped. 

This analysis, identifying three principal relaxation regions for the 
motions of polyisobutylene chains in cyclohexane, gave for a 1 per cent 
solution (taken as linear part of concentration curve and hence equiva- 
lent to high dilution). 

Principal rigidities M2 = 890 dynes/cm" 

/i:i = 3,190 dynes/cm" 

m = 84,000 dynes/cm2 

Principal viscosities 771 = 0.0082 poise (pure cyclohexane) 

rp = 0.255 poise 

rji = 0.006 poise 

ip = 0.004 poise 

Principal relaxation frequencies /« = 550 cycles 

/;t = 8.45 X 104 cycles 

fi = 3.52 X 10f' cycles 

Tentatively, these mechanisms may be schematically described as on 
Fig. 19. Here, the polymer coil, subjected to shear waves in dilute solu- 
tion, exhibits rigidities M2, M:i and m , all shown on different scales, po is 
the configurational elasticity because of actual changes in root mean 
square separation of chain ends, as from R to R'. It is retarded by vis- 
cous drag through the solvent, 772, which is presumably the main source 
of characteristically high r]r of chain polymer solutions. The relaxation 
frequency for this mechanism is low—a few hundred cycles. It may 
come in significantly in work on more concentrated solutions at low 
frequencies,28'45•48■57 where chain entanglement is nevertheless the dom- 
inant- factor. 

/is is when segments of the same chain in the molecular coil temporarily 
entangle with each other. Striking evidence has recently been given by 
Fox and Flory'8 that because of mutual interference, the theoretical 
random flight configuration of a chain gives very much too small a 
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molecular coil volume, Vc. This suggests that thermal agitation tending 
toward a smaller Ve, and excluded volume or repulsions forcing a large 
one, will cause collisons or entanglements which might last long enough 
to give a van der Wants cross-bond as denoted by crosses on the 
sketch. (The actual forces in these would somewhat resemble those be- 
tween different molecules in the concentrated solutions of Ferry. '' ) 
This mechanism has the reasonable (based on Ferry's and others' work) 
relaxation frequency of 8.45 X I04. A small viscosity, 773, may comprise 
friction of slippage at the entanglement points, with both the polymer 
and associated solvent molecules. 

In Fig. 19, m-i is a relatively high stiffness presumed to be some average 
hindrance to rotation of one segment with respect to another. In the 
sketch, close-packed spheres representing methyl groups in polyiso- 
butylene are portrayed. Their force fields overlap more in some places 
than others, in the meandering of the chain to form the molecular coil 
(of course, some tail-to-tail structures may be important here; they have 
all been shown head-to-tail in the sketch). Thus, this total internal steric 
restraint on chain flexibility, with a relaxation frequency of 3.5 X 10', 
contributes greatly to the large dispersion of rigidity in the megacycle 
range noted in Fig. 18. The related viscosity, v*, is again low. 

There is no doubt a considerable distribution of relaxation character- 
istics associated with each and all of these mechanisms. 

Physical Properties Per Molecule 

Since the viscosities and rigidities in the dilute solutions indeed seem 
to be additive with the number of molecules present, values of these 
properties, for the hypothetical mechanisms, can be expressed per aver- 
age chain. Of course, the measured quantities are/expressed as constants 
per cc of solution, but it may be useful to think of in terms of one aver- 
age chain in each cc. Then, the shear deformation of this chain could be 
denoted by a force constant. The associated viscosities remain, however, 
dependent on solvent surroundings. Thus, for the polyisobutylene of 
Mv = 3.9 X 106, in cyclohexane solution, at 250C the molecular quan- 
tities are: 

[fo] = 17 X 10-13 dyne cm [772] = 1.6 X 10 16 poise 

[/a] = 6 X 10~12 dyne cm [773] = 3.9 X 10_1R poise 

[/.,] = 16 X 10"11 dyne cm [77.1] = 2.4 X 10-18 poise 

In the section on polymer liquids, the high-frequency modulus m was 
attributed to a nearest-neighbor glass or crystal-like interaction (since 
the actual values were indeed typical of the hardest organic solids). 
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However, in polyisobutylene (and to some degree in poly-a-methyl 
styrene), it is especially difficult to distinguish inter-chain from inlra- 
chain crowding of methyl groups. Thus, while average center-to-center 
separation of methyls is ~4 A in adjacent chains/0 it is <2.5 A within 
chains, in polyisobutylene. This crowding is apparently strong; the ob- 
served AHpZn is only 12.8 kcal per mole instead of the 19.2 expected/0'ob 

The energy of steric hindrance thus amounts to almost half of the actual 
heat of polymerization. It is reasonable that a large part of the hardness 
of a mass of polyisobutylene chains, such as in the liquids, should there- 
fore reflect the same mechanism as that for m (Fig. 19) hi the dilute 
solutions. A rough check on this can be made. A polyisobutylene having 
considerably lower molecular weight than 3.9 X lO1' and thus inter- 
mediate between the "liquid" and "solid" ranges, had a Maxwell shear 
modulus in the megacycle region (14 mc) of m = 5.3 X lO"', at 250C. 
The number of molecules/cc, with individual [/.i] given above, necessary 
to give the observed density of this polymer was multiplied by [/i], giving 
M = 2.8 X 10,J dynes/cm2. Accordingly, about half of the observed high 
frequency rigidity of polyisobutylene, at 250C, may be calculated from 
a "molecular constant" embodying intra-chain stiffness. 

Much more refined and detailed treatments are required to generalize 
these "molecular constants" which are after all, as shown below, de- 
pendent on using a thermodynamically "inert" solvent. However, much 
as structurally significant dipole moments can be derived from measure- 
ments in dilute solutions, it seems hopeful that macromolecular me- 
chanics can be so elucidated. Also additional structures, such as poly- 
propylene and polydimethyl siloxane compared to polyisobutylene, are 
currently being studied. 

Temperature Variation 

Some further behaviour at different temperatures and solubilities of 
separate chains in dilute solution may now be considered against this 
background of possible mechanisms. Practically, these studies will bear 
on processing and properties, lacquers, paints, and casting solutions of 
polymers, as well as on the other qualities outlined in the introduction. 
Results may be conveniently discussed in terms of the modified Max- 
well single element, with factors va , t]u , and mb (Fig. 16). Mostly, the 
kilocycle range, reflecting molecular coil changes, will be of interest. For 
comparison, it may be noted that at 20 kc, the polyisobutylene whose 

— 1061 dynes/cm" in 1 per cent solution in cyclohexane receives 889 
dynes/cm2 of this from u-i, the retarded configurational mechanism; 169 
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Fig. 20—Temperature variation of rigidity of 1 per cent solution of polyiso- 
butylene (M, = 1.18 X 106) in cyclohexane. 

dynes/cm2 from the entangled segments stiffness, M3 ; and only 3 dynes/ 
cm2 from the intra-chain stiffness, m . Thus, chain configuration me- 
chanics, including the associated viscosities, can be well enough thought 
of in the following paragraphs, in terms of , Vb and t?.* . 

The exponential decrease of g with temperature familiar for polymer 
solids and liquids is much suppressed in the m« vs T curve of Fig. 20. 
While the au , internal rotation, mechanism for single polyisobutylene 
molecules probably has a considerable activation energy, that for the 
P2, configurational, rigidity should be very small. Then, without re- 
tardation, the intrinsic chain modulus would rise with rising tempera- 
ture. These influences seem to combine to give the modest decline of mb 
appearing in Fig. 20. If these rigidities are plotted against \/T, the 
temperature coefficient is 2.3 kcal. This is much less than the familiar 
values for the stiffening of rubbery solids, and emphasizes that inter- 
chain action reigns then. 

Solvent Variation 

Effects of solvents of different (mostly positive) heats of mixing on 
state of polyisobutylene molecules in solution have been nicely estab- 
lished by Fox and Flory.58 Especially, this work has clarified principal 
factors in the intrinsic viscosity expression 

-X • 20 KC 
O 40 KC 
A 80 KC 

1 »  ^ 

5 10 15 20 25 30 35 40 45 50 
TEMPERATURE IN DEGREES CENTIGRADE 

WVe rr ,,1/2 3 
^ M ' 100 = ^ 



INTERACTION OF POLYMERS AND MECHANICAL WAVES 345 

Here, Ve = effective volume per molecule (and hence as determined by 
chain configuration), M = molecular weight, a represents change in 
linear extent of molecule because of mutual interference of segments58 

and <p expresses the hydrodynamics interaction of solvent and molecular 
coil (including varying degrees of "straining through" the coil).61, R2' 63' 64 

Interpretation of the mechanical properties of chains in dilute solution, 
with reference to the rough concepts of Fig. 16, arouses particular in- 
terest in the factor a3. For a high molecular weight polyisobutylene, 
intrinsic viscosity theory58 indicated that a3 the ratio for volume of 
actual coil divided by volume for ideal random flight coil was 3.81 in 
cyclohexane but only 1.42 in benzene, both at 30oC. This striking alter- 
ation in equilibrium chain configuration, a variable which is not readily 
introduced into polymer liquids or solids, appears in the inherent vis- 
cosity vs c curves in cyclohexane, Fig. 21, and benzene, Fig. 22. The 
large difference in [77] at 250C, (i.OO in cyclohexane vs ~1.5 in benzene, 
indeed emphasizes the different solvent powers.65 Likewise, the large in- 
crease of [77] with temperature in Fig. 22 accents the poor solvent qual- 
ities of benzene.66 Too, empirically, polymer molecules which are either 
tight coils or are actually chemically cross-linked to form microgel mole- 
cules characteristically show positive slopes of inherent viscosity vs c 
plots.67 Accordingly, all this evidence for large changes in the conforma- 
tion of chain molecules in "good" vs "poor" solvents should show up 
in dynamics of dilute solutions. Also, technically, quite different physical 
properties are found for polymer-plasticizer compounds where compat- 
ibility is high (good solvent) than where it is low (poor solvent). Here, 
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Fig. 21—Inherent viscosity of polyisobutylene (il/, = 3.87 X 106) in cyclo- 
hexane at 250C. 
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at various temperatures. 

more flexible compositions are often produced with low compatibility 
plasticizers—indeed, sometimes with those on the verge of phase sepa- 
ration than with those with highly favorable heats of solution.68 This 
would mean that the bad solvents would compress the chains so that 
they would be more easily strained than if they were in a "free chain" 
or even extended configuration. If single chain, visco-clastic stiffnesses 
are acting this way, the dynamic /xs would then actually decline as heat 
of mixing become more positive. 
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Fig. 23—Rigidity of polyisobutylenes in cyclohexane and benzene at 250C and 
20 kc. 
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This seems to take place, as indicated by the lower compared to the 
upper curve on Fig. 23. Here, the of the usual modified Maxwell 
model, at 20 kc, is plotted against c for the polyisobutylene of Mj, = 
3.9 X 10''. Also, the middle curve shows mb for a polymer of about a 
third of this molecular weight; while there is a small reduction in nB 

with ilf, in this range, it is much less than the reduction caused by 
tightening up the polymer coil. 

The fj-i, values per average molecule, [fB], fall from 18 X 10-1'1 dyne 
cm in cyclohexane to 7 X 10 in benzene. (Of course, [fB] for the inter- 
mediate molecular weight polymer in cyclohexane is only 5 X 10~13 be- 
cause so many more molecules are present in solution.) 

The temperature dependence of nB also becomes nearly zero at least 
over the narrow range from 25 to 50oC, in benzene compared to cyclo- 
hexane. This seems to accord with the indications previously, from Fig. 
20, for a lower molecular weight polymer, that different mechanisms are 
competing. These may be the configurational, with n T, and relaxa- 
tion, with m varying in some complicated way with T. Thus [77] increases 
markedly with T, and presumably denotes an expanding molecular coil 
tending toward the "normal" configuration in cyclohexane. At the same 
time, the relaxation processes with rising temperature tend to cause the 
decrease in nB typical of the upper, solid, curves on Fig. 24. In engineer- 
ing use, often times poorly compatible plasticizers give compounds 
which stiffen more gradually with temperature than do "solvent" plas- 
ticized ones. 

For similar reasons, the dynamic molecular coil viscosity, t]B , ought 
to vary less with temperature in thermodynamically poor than in good 
solvents. This is indeed seen in Fig. 25. On the other hand, 77,1 for the 
modified Maxwell element has been described as the solvent viscosity 
with segment hindrance and restricted rotation terms from the polymer 
molecules lumped in with it. These latter terms are presumably little 
affected by over-all configuration (n-- term; the /x;i mechanism will be 
somewhat affected, but not the mi , on Fig. 19). Thus, va should have 
comparable temperature dependence in both good and bad solvents, as 
seems to be indicated by Fig. 20. 

Microgel Molecule Solutions 

The statistical coil of linear polymer molecules may be replaced by a 
chemically fixed, cross-linked network in microgel molecules.67 These 
may be made completely rigid, like Einstein spheres, or highly swell- 
able. The latter are hybrids between rigid spheres and coiled chains. In 
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synthetic rubber, they confer unique flow properties, causing the excel- 
lent processibility of GR-S 60. However, dynamic tenacity, such as in 
flex crack growth, is degraded by their presence. Now presumably the 
excellent extrusion qualities of synthetic rubber composed of from 60 to 
80 per cent microgel molecules are because of their individual shear 
stiffness. Thus, if a wire coating, for mstance, is extruded at high rates 
of shear, chain molecules are deformed, and store energy just as dis- 
cussed in the earlier sections on liquids. After emerging from the extru- 
sion die, they relax, and cause the gross retraction, shrinkage and rough- 
ness shown in the wire insulation of the upper photograph of Fig. 27. A 
polymer with about 70 per cent microgel molecules gives the smooth 
covering shown in the lower specimen of Fig. 27. Here, the shearing 
stresses of extrusion seem insufficient to distort the tiny networks of 
the microgel molecule; in any case, the covering does not roughen or 
relax. Similar effects have been found for microgel plastics. Neverthe- 
less, unlike gross or macro gelation, the whole melt can flow. 

On this basis, dilute solutions of microgel molecules ought to indicate 
high shear rigidity per molecule. The mechanism ^3 of Fig. 19, in which 
now the junction points are not temporary, but are primary valence 
cross-links, should be predominant. Fig. 28 shows, for a polybutadiene 
microgel in cyclohexane,07 that Mb has indeed risen, compared to equal 
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(Mu = 3.87 X 10B) in cyclohexane and benzene. 

  CYCLOHEXANE 
  BENZENE 

• 20 KC 
O 40 KC 
A 80 KC 

1 t—- —   _ 



350 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1952 

Fig. 27—Effect of microgel molecules in synthetic rubber on smoothness of 
extruded wire insulation. Rough covering is from high-speed extrusion of GR-S 
without microgel. 

weights of chain molecules. Further, accompanying the extremely high 
average molecular weight of the microgel (18.0 X 10t'), the [./«] per 
average molecule is 42 X 10 dyne cm or about twenty-five times that 
of the polyisobutylene with Mn = 3.9 X 10". Also, the temperature 
coefficient for mh of polybutadiene microgel is low. 

Of course, polybutadiene, as chains or as microgel molecule segments, 
has many double bonds. These Mill surely influence the m , or internal 
rotation mechanism. Further work remains to show just what is their 
effect in the microgel case. But, it is interesting to compare mb values 
for Hevea rubber chains with those for, say, polyisobutylene, which has 
only single bonds in the chain. 
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Fig. 28—Rigidity of 0.5 per cent solution in cyclohexane of polybutadiene 

microgel (A/V = 18.6 X 10°) at 20kc. 
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Hcvea Rubber Solutions 

The comparison of equal weight concentrations of natural rubber in 
cyclohexane with polyisobutylene in cyclohexane is surprising: 

Hevca rubber = .23 X 10'' ub = 1350 dynes/cm2, 1 per cent 
solution (corr.). 

Polyisobutylene M, = 1.2 X 10" ub = 1000 dynes/cm2, 1 per cent 
solution (corr.). 

Both results are at 20 kc. The higher value for natural rubber may be 
because of the double bonds causing stiffening of the chain. On the other 
hand, maybe easy rotation around single bonds raises the Ms part. Cer- 
tainly the viscous retardation within natural rubber chains is very low, 
as noted in the section on solids. However, its interaction with, or con- 
figuration, in cyclohexane may be peculiar. The [fo] per average mole- 
cule is, however, low, being 15 X 10 14 dyne cm at 250C. 

Polystyrene Solutions 

Much work, on light scattering and other properties, has indicated 
appreciable intra-chain stiffness for polystyrene,69 but still much freedom 
compared to polyisobutylene.6911 However, this work, as well as AHpin of 
17 kcal compared to ~I9 kcal calculated for no steric hindrance, sug- 
gests comparatively small restraints on ideal flexibility. This needs to be 
checked by a frequency analysis of dilute solution mechanics, but poly- 
styrene seems to be a reasonable example of "plastic" behaviour at room 
temperature because of interaction between the chains. (It is recalled 
that, earlier, a-methyl styrene polymer was cited as plastic model show- 
ing both intra- and inter-chain stiffness. Unlike in polystyrene, the 
intra-chain factor shows up in a AHpzn of 9-10 kcal, a third less than 
that calculated if there were no steric hindrance.) Thus, no evidence of 
unusual stiffness appears in Fig. 29, when, indeed, the ma values are 
considerably lower, for equal weight concentrations, than those for nat- 
ural rubber. The highly milled rubber studied had Mv very nearly that 
of Mj, = 0.234 X lO6 of the polystyrene, so the [/«] per average poly- 
styrene chain, 4.5 X 10-14 dyne cm is less than a third that of the rub- 
ber. No wonder that at high temperatures, where the phenyl group 
interaction between chains is much reduced, polystyrene makes a good 
rubber. Also, in Fig. 29 arc shown data for a polymer of Mv = 1.2 X 106, 
made in emulsion and having [rj] = 4.350 in benzene at 250C. 
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The polystyrene solutions discussed above were in benzene, a good 
solvent. Here, the situation is converse to that for polyisobutylene; for 
polystyrene, cyclohexane is a poor solvent and benzene, good. Hence, if 
the previous interpretation of reduced single chain quasi-configurational 
(juo) stiffness is general for solvents of more endothermic mixing, the 
"plastic" molecule polystyrene should show it in cyclohexane. This is 
indeed evident in Fig. 30, showing one of the same polystyrenes of Fig. 
29, measured at 20 kc (normalized to 1 per cent concentration). Also, on 
Fig. 30 are shown the inherent viscosity (practically, the intrinsic vis- 
cosity, in this case) and the absolute viscosity of the 1 per cent solution 
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Fig. 29—Change of shear stiffness, hb , with frequency, for 1 per cent solutions 
of polystyrene in benzene. 

under steady flow, i],. These are all plotted against temperature down 
to phase separation, at about 26° to 270C. 

The marked positive slope of the tnt\r/c curve denotes the large con- 
traction in molecular coil volume preceding phase separation or insolu- 
bility. The absolute viscosity, , however, rises with declining tem- 
perature because it is dominated by solvent viscosity, but when the 
polymer phase comes out, ijs abruptly falls off. 

The mb values are consistent with this steady flow behaviour, except 
that the rise of mb at the turbidity point seems to be because a layer of 
swollen polymer-rich phase forms on the torsional crystal surface. This 
condition is seen in Fig. 30 to coincide nicely with the abrupt changes 
in steady flow viscosity. 

The slight maximum in the Mb curve at about 350C may not be real. 
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It does come near the point of minimum interaction for the whole sys- 
tem. In any case, as discussed before, the average temperature coefficient 
of mb io the poor solvent is very low compared to the good solvent. The 
values of mb are roughly f to ^ those in benzene. 

GENERAL THEORY OF SINGLE CHAIN MECHANICS; KUHN AND KIRKWOOD 

As noted before, much of the present understanding of stress-strain 
properties of polymer chains, iu dilute solutions, liquids or solids, has 
come from W. Kuhn's long interest in this subject. Many supplementary 
contributions have been stimulated by Kuhn's work, and new points of 
view have been introduced by others. For instance, recently new and 
different proposals have been made about the flow birefringence and 
non-Newtonian viscosity of solutions of deformable spheres.70 These 
ideas could be tested on suitable microgel solutions. 

Recently, moreover, an especially significant general theory of visco- 
elastic behaviour of polymer in solution has been constructed by Kirk- 
wood.'1 It explicitly considers the hydrodynamic conditions leading to 
the rigidity now observed for high-frequency shear waves. It formulates 
definitely the configurational changes of isolated chains in solution when 
strained in shear. As this theory is advanced to forms where simpler 
calculations can be made, it may answer many of the questions raised 
by the new experiments on single chain properties. 
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CONCLUSIONS 

To leave some impression of the elemental chemical structures which 
move around when wood, rubber, plastics, textiles and finishes are used 
mechanically—that has been the aim of this study. Polymer viscosities 
have been found in a variety of "solids"; rigidities have been demon- 
strated for very fluid "liquids" and solutions. Studies of these solid and 
liquid extremes have given some chemical reality to the classical spring 
and dashpot models. 

Existence of compressional viscosity has been shown for polymer 
liquids and solids. It may comprise a new quality for investigation of 
polymer structure. At present, too little is known of its origin to inter- 
pret further the effects of intense ultrasonic irradiation of polymer solu- 
tions. Experiments of Schmid and co-workers72 early indicated degrada- 
tion of molecular weight of polystyrene, so irradiated, but whether this 
is chemical, from local heating in the solvent, or actual physical coupling 
with the wave field, is still unsettled. However, these workers also con- 
sidered a compressional stiffness of the polymer molecules in the solu- 
tions,73 and showed that if there was coupling, it was not inertial (by 
dissolving polystyrene in solvents of exactly the same density, no reduc- 
tion in effect was observed). A point of general interest arises here; 
impact fractures of plastics presumably actually fracture some primary 
valence bonds. This is certainly true for many thermoset materials, and 
probably for chain compounds. Hence, if the detailed mechanism of how 
compressional waves move and perhaps rupture polymer segments were 
known, information on the baffling problems of ultimate strength would 
be gained. The observations above on dependence of X and X' on molec- 
ular weight and structure provide only the barest start on this but a 
new goal is in view. Too, basic questions of how rapidly molecules being 
formed in a polymerization equilibrate in temperature with their sur- 
roundings are elucidated by compressional wave propagation constants. 
For instance, absolute rate measurements on velocity of chain growth 
cannot be said to be isothermal if they seem to be faster than the ther- 
mal relaxation times which the ultrasonic measurements indicate can be 
~10~6 to KT5 sec. 

Likewise, more thorough understanding of velocity and dispersion of 
compressional waves in polymer solutions would clear up anomalies in 
velocity measurements for a wide variety of polymers, some of which 
have been tentatively attributed to chain branching. 
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The Reliability of Telephone Traffic Load 

Measurements by Switch Counts 

BY W. S. HAYWARD, JR. 

(Manuscript received October 15, 1951) 

The switch count method of telephone traffic measurement is subject to sam- 
pling errors. The nature of these errors is discussed and formulas are de- 
rived which describe the extent of the errors under normally encountered 
traffic conditions. 

INTRODUCTION 

Of prime importance to the telephone traffic engineer is the deter- 
mination of the busy season busy hour load carried by groups of trunks 
or other circuits of a telephone switching system. Three direct methods 
of measuring such loads are found in the field today. These are: 

a. Peg Count and Holding Time Method 

The number of calls carried by the circuit group during the observa- 
tion period is counted. This number multiplied by the average holding 
time per call (in hundreds of seconds) and divided by the length of the 
observation period (in hours) gives an estimate of the group load in 
units of hundred-call-seconds per hour (CCS). The major drawback to 
this peg count method is that it requires a separate determination of the 
average holding time per call for the group under observation. R. I. 
Wilkinson1 has analyzed the sources of errors of holding time measure- 
ments. In addition, correlation between load and holding time introduces 
an error which has not been studied. 

b. Switch Count Method 

At fixed intervals the circuit group is scanned and the number of busy 
circuits is counted. The total number of busy conditions counted divided 
by the number of scans is, then, an estimate of the load on the group in 
units of average simultaneous calls or erlangs*. This estimate is generally 
converted to CCS (1 erlang = 30 CCS) by traffic engineers since the 

* The name "erlang" for average simultaneous call was adopted at a plenary 
meeting of the CCIF at Montreux in October, 1946. 

357 
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load entries of most traffic tables are in terms of CCS. For theoretical 
studies the erlang is a more convenient unit and will be retained here. 

c. Continuous Melhod 

The busy condition of each circuit is represented by a fixed increment 
of electrical current through an ampere-hour meter. The instantaneous 
current is then analogous to the calls simultaneously present so that the 
meter, which integrates the current, may be calibrated to indicate hun- 
dred-call-seconds or erlang-hours directly. Although this method is po- 
tentially the most accurate, practical difficulties have limited its use. 

In addition to these direct methods, there are several methods of in- 
direct load measurement which, relying more heavily on traffic theory, 
make use of partial load indications, such as duration of group busy or 
the number of calls finding the group busy. Such measurements are less 
reliable than the direct measurements particularly when applied to un- 
derloaded groups. 

This paper is concerned with the reliability of switch count load meas- 
urements since this method appears to have prospects of considerably 
wider adoption in the future. Main emphasis will be placed, both quali- 
tatively and by the application of error formulas, on the relative effects 
of various measurement and traffic parameters on the accuracy of switch 
count measurements. Where long derivations of formulas are required 
they are deferred to the Appendix. 

SOURCES OF ERROR 

As has been described, switch count measurements yield the average 
number of calls found present when a group of circuits is scanned at 
fixed intervals during an observation period. Usually only that period 
of the day during which the load is greatest is of interest to the traffic 
engineer. Because the load during such periods also fluctuates from day 
to day, measurements of the loads for several days must be averaged to 
provide a useful load estimate. 

There are two main sources of error, therefore, in switch count esti- 
mates of telephone traffic loads: 

1. Each individual count of busy circuits is separated from the next 
by a time interval during which changes in load are not detected. Con- 
sequently, the load indicated by measurement may differ appreciably 
from the actual load carried. This difference can be decreased by de- 
creasing the interval between scans. 
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2. Even if the load carried during a measurement period were known 
very accurately, it is still only a sample of the many loads that might be 
offered by the same source of traffic under statistically identical con- 
ditions. Therefore, the average of several load readings may be expected 
to be somewhat in error as an estimate of the true average of the traffic 
source. The latter will be referred to as the source load to distinguish it 
from the carried load. 

Mechanical and human errors are likely to be present as well but, since 
they are not inherent in the switch count method, they will be neglected 
here. 

SWITCH COUNT ERROR 

As shown in the Appendix, for periods of observation which are rela- 
tively long with respect to average holding time made on traffic with 
certain assumed characteristics, the average error of switch counts in 
estimating traffic load carried in the same period is zero. The coefficient 
of variation of the error, which is the standard deviation of the error 
expressed in per cent of the traffic load carried, is given by: 

where r = ratio of scan interval to holding time 

t = average holding time 

a' = carried load in erlangs 

c = number of switch counts 

T = length of observation period 

N = number of observation periods 

and where the following assumptions are made: 
a. Calls originate individually and collectively at random, f 
b. Holding times are exponentially distributed. 
c. Congestion loss from the group is negligible. 

* I have recently learned that these carried load formulas have been published 
by Conny Palm in fekniska Medelandenfran Kungl. Telegrafstyrelsen, 1941. nr. 7-9. 

t See T. C. Fry, Probability and Its Engineering Uses, D. van Nostrand Co. 
Inc., New York, p. 216, for a definition of this condition. 

ctnh 

rc = T/t > 20 
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As shown in the Appendix, this formula simphfies, when r < 2, to 

where c/T = rate of scan in cycles per time unit. From equation (2) it 
is apparent that if the scan interval is of the order of a holding time, the 
error of an estimate of traffic carried is inversely proportional to the rate 
of scan and inversely proportional to the square root of average load, 
holding time and hours of observation. For example, take the case where 
switch counts are made during the busy hour, five minutes apart on a 
trunk group carrying calls with an average holding time of 3 minutes 
and an average load of 5 erlangs (180 CCS). What is the error in the 
estimated load carried if the readings for ten days arc averaged? (As- 
sume conditions (a), (b) and (c) are met.) We have 

iV = 10 observation periods 

T = I hour 

t = 1/20 hour 

a' = 5 erlangs 

c = 12 scans per observation period 

rc = T/l = 20 average holding times per observation period 

From equation (2) since T/l = 20 and r = T/d = 1.7 

If, as proposed in the Appendix, it is assumed that the error has a 
normal distribution, there is 90 per cent assurance that observed values 
will fall within 1.647*, or in the example within 3.52 per cent, of the true 
average*. Note that this error limit would be halved if the rate of scan 
were doubled or if four times as many hours of observation were taken. 

The coefficient of variation of the switch count error for constant values 
of T/t as a function of r is plotted on Fig. 1 for one observation period 
of a one erlang load. For loads other than one erlang the coefficient of 
variation is found by dividing by \/a'N- Thus in the example we have, 
using the dotted curve, 

* This assumes that a sufficient number of observations are taken so that a 
priori information may be neglected in making an estimate of the universe. 

(2) 
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or more accurately using the solid curve, 

r* = vib = 2-3% 

The error of using equation (2) is seen to be negligible for most purposes 
even when T/l is less than 20. The probability of an observation oc- 
curing within a given number of standard deviations is widely published 
for the normal curve. A few values are given below: 

= Pz Probability of exceeding ± or or ± zV 

0.6745 0.50 
1.44 0.85 
1.64 0.90 
2.00 0.9545 
3.00 0.9973 

Fig. 2 is a plot for 40 observations of measured load vs carried load. 
Each observation was made for a half hour period on a panel line finder 
group with switch counts made at the start and middle of the period. 
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Fig. 1—Accuracy of switch count estimate of load actually carried. 
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Fig. 2—Accuracy of switch count estimate of true average load. 

This is compared with the average of switch counts made every 30 sec- 
onds which has a relatively negligible error. The average holding time 
per call for the group was 176 seconds. The accuracy of only two 
counts is surprisingly good and the observations are seen to lie satisfac- 
torily between the 2a limits. 

ERROR OF TRAFFIC IN A GIVEN PERIOD AS AN ESTIMATE OF THE SOURCE 
LOAD 

The average traffic carried in two different periods but generated by 
the same traffic source is subject to statistical variation. As a result, any 
measurement of load, even if measurement errors are eliminated, is only 
a sample of the wide range of traffic loads that might have been gen- 
erated by the same source of traffic under identical circumstances. 
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.1. Riordan has shown2 that the standard deviation of the average 
traffic load for any one period is given by 

where a = the average source load 

t = average holding time per call 

T = length of observation period 

(Assumptions are as before with an additional one that all periods are 
in statistical equilibrium) 

When t/T « 1 this reduces to the form also given by F. W. Rabe3 

w 

or expressed in a per cent of the average 

v"= 100 (5) 

When N periods of length T are observed the coefficient of variation is 
reduced further to: 

F» = 100 l/Jr (6) 

In the example of the previous section, 

iV = 10 

T = 1 

1 = 1/20 

a = 5 

V = A — 447% 
' y 5-io-i 4A7/o 

COMBINATION OF ERRORS 

Evidently if switch count readings are used to estimate the average 
which may be expected in other periods, the two errors described above 
should both be taken into account. The errors are probably correlated 
but this correlation is weak and at present no method of allowing for it 
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is evident. Such a refinement would probably change the equation for 
standard deviation only slightly from that derived for the independent 
case; therefore independence will be assumed. The standard deviation 
of the sum of two independent variables is the square root of the sum of 
the squares of the component standard deviations: 

^ = Vtfi + cr y 

vr 
rctnhl -1—2 

2ia (8) 

NT NT 

Assuming — is approximately unity, that is, that carried load is approxi- 
CL 

mately equal to source load, 

V. = 100 ^rctnhg-) (9) 

In the example given, 

7S = 4.96% 

There is, then, 90 per cent assurance that the source average is within 
1.64 X 4.96 = 8.1 per cent of the observed average. Note that doubling 
the switch count rate (which halves the switch count error) reduces the 
total error only to 7.6 per cent (about 6.7 per cent improvement), while 
doubling the number of hours of observations reduces the error to 5.9 
per cent (about 30 per cent improvement). Plots of the coefficient of 
variation of a one hour observation of a one crlang load versus scan rate 
for various average holding times are given in Fig. 3 for a wide range of 
holding times. The coefficient of variation of error in estimating other 
loads may be found from Fig. 3 by dividing the unit load coefficient 
by y/aNT. In the example, the unit load coefficient is found, by entering 
Fig. 3 with 1 = 3 minutes and rate of scan = c/T = 12/1 scan cycles per 
hour, to be 35.0 per cent. Dividing by \/5-l-10 gives a coefficient of 
variation of 4.96 per cent as before. It is evident from Fig. 3 that in- 
creasing scan rates is not a universal way to improve the accuracy of 
source load estimates. 

CHOICE OF SCAN RATES 

What then governs the choice of scan rate? Evidently increasing the 
rate increases the accuracy of carried load estimates to any point de- 
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sired. This is far from true if source load is being estimated. If the cost 
of making a scan is constant, increasing the number of observation 
periods and decreasing the scan rate will improve accuracy of source 
load estimates without changing measurement costs. The number of 
hours available for measuring, of course, limits this procedure, while 
the increase in accuracy becomes negligible as r becomes large. On the 
other hand, if the cost of each observation is only slightly affected by the 
cost of making additional scans, a high scan rate might be justified. 

In applying the above relationships to traffic measurements, the 
usual question raised by the traffic engineer will be either how many 
hours of data need he take to be reasonably sure of his estimate or, 
conversely, how sure is he of an estimate based on available data. 
Assuming as before that the error distribution is normal, the per cent 
plus or minus error limits within which a proportion, Pz , of the estimates 
will fall is given by zV3 ; the value of z corresponding to any selected 
Pz may be found from tables of the normal probability distribution. 
"Reasonably sure" is often taken to mean that there is 90 per cent 
assurance that the error does not exceed 5 per cent. When Pz is 0.90, 
z is 1.64, so that under this condition 1.64F, = 0.05, or F, = 0.0305. 
Given scan rate and holding time, Fs is proportional to l/\/aNT accord- 
ing to equation (9) or Figure 3. When F8 is held constant, aNT is con- 
stant so that the plot of log NT against log a is linear, as shown in 
Figs. 4 and 5. The number of hours needed to meet any chosen reliability 
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interval is 120 seconds. 

requirements may then be read directly from such graphs. In the second 
type of question, 2, NT, scan rate and holding time are fixed so that 
zVa is proportional to l/\/a. Plotting log zV, against log \/a again 
gives a linear plot as shown on Fig. 6. 

In the numerical example above, the limits of error corresponding to 
90 per cent assurance may be read from Fig. G which is plotted for the 
appropriate assurance, average holding time and scan interval. Reading 
the error limits at the point where the 10 hours measured line crosses 
180 CCS (5 erlangs) gives ± 8.1 per cent as before. Fig. 5 may be 
entered to find the total number of hours required to reduce this error to 
5 per cent. Reading at the point where the 180 second holding time line 
crosses 180 CCS gives 26 hours. 

QUALITATIVE EXTENSION OF THEORETICAL APPROACH 

The original traffic assumptions made in deriving the theoretical re- 
sults above are: 

a. Calls originate collectively and individually at random. 
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Fig. 5—Hours of measurement required for 90 per cent assurance that error in 
estimating source load does not exceed plus or minus 5 per cent when measuring 
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b. Holding times are exponentially distributed. 
c. Congestion loss from the group is negligible. 
d. Observation periods are in statistical equilibrium. 
How do departures from these assumptions affect the reliability of 

usage measurements? 

a. Holding Time Distribution 

Experience in application of delay and loss formulas has shown that 
theories based on exponential holding times are often applicable to other 
holding time distribution cases which have a wide range. However, tor a 
constant holding time distribution special theories often are called for. 
The average and standard deviation of switch count estimates of carried 
load when holding time is constant, are given in part 2 ol the Appendix. 
It is shown there that for estimates of carried load, 

x = 0 

r > 1 V. = 100 /(/a.^ f (r - 1) CO) 

r < 1 minimum Vx = 0 (r = 1, i, i, etc.) 

maximum Vx = 100 ^ a'^rp (r = & i> f. etc-) 

Since constant holding times found in practice are often very short, the 
case of r > 1 is the most likely to be met. For all values of r greater than 
one, the error given by formula (1) for exponential holding times is some- 
what greater than the error given by formula (10) for constant holding 
times, so use of formula (1) for the constant holding time case is con- 
servative. For values of r less than 1, the error is an oscillating function 
of r. The coefficient of variation varies from zero to 23 per cent above 
that for exponential holding times. Where r may not be accurately known 
the formula for exponential holding times again seems appropriate. 

In making estimates of the source load when the holding time is con- 
stant, if r > 1, each scan is uncorrelated with any other, since no call 
can be counted twice, and may be considered a random sample of traffic. 
There are a total of Nc scans which have an average scan of a and standard 
deviation Va- The average error in estimating a is, therefore: 

s = 0 

with coefficient of variation 

F- =100 t/ii =100 m 
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Equation (12) may also be derived with the procedure used for equation 

(9) using <j\ = + a],. For values of r large enough to make ctnh^0 

= 1 equation (12) is approached by equation (9). For smaller values 
of r (but with r still greater than 1), V, for constant holding times is 
less than V, for exponential holding times. When r = 1, there is no 
carried load error. For values of r less than 1, the coefficient of varia- 
tion of error in estimating source load average mil vary from 

\/\^Nf t0 ]/ ^VT(1 +T) 

depending on the exact value of r. It is interesting to note that V, for r 

= 0.5 is the same as for r = 1.125. 

b. Loss 

The effect of loss in the group depends upon the disposition of the lost 
calls. In general, accuracy in measuring carried load increases with in- 
creased loss because under these circumstances fewer load changes occur 
between scans. This is evident in the extreme case of a group which is 
100 per cent loaded; a single switch count gives a correct reading for any 
length period. Obviously load readings at 100 per cent occupancy are 
not very useful in estimating offered loads since the amount of lost load 
cannot even be guessed at. However, in the cases of lost calls held 
(Poisson) or cleared (Erlang B), the offered load may be estimated from 
the carried load (less and less accurately as occupancy increases) and in 
the case of lost calls delayed the offered and carried loads are likely to be 
the same even at high occupancies. With high loss, therefore, estimates 
of source load are subject to errors not considered in deriving equation 
(99); however, switch count error in estimating carried load will be 
materially less than predicted by equation (1). 

c. Random Call Origination 

On trunk groups which are alternate routes, calls may no longer be 
considered as originating at random. The resultant grouping of call orig- 
inations will tend to decrease the accuracy of switch count measurements 
in estimating carried load; however, there is a corresponding decrease in 
accuracy in estimating the source load from the carried load so that ac- 
curacy in estimating carried load may be less worthwhile. 
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d. Statistical Equilihrium 

Statistical equilibrium may be thought of as the absence of trends in 
subscriber calling rates or holding times with the passage of time. The 
effect of trends on switch count accuracy in measuring carried load is 
very small except where the changes in traffic level are frequent and 
abrupt with respect to the scan frequency. Such traffic behavior is rare. 

Trends within the busy hour complicate the problem of estimating the 
average source load. However, it can be shown that if the trends are small 
(in the order of 10 per cent to 20 per cent) little error is introduced by 
assuming that no trend exists. Large trends (in the order of 100 per 
cent), however, may indicate that the traffic source is so unstable that 
more hours of traffic data should be taken in order to insure that the 
sample is representative. 

Trends from day to day do not affect the source load estimates in the 
same way as within hour trends. The source loads are seldom exactly the 
same on any two days although in most offices a load pattern is repeated 
from week to week. The traffic engineer may be interested in the average 
source load of either a typical week day in the busy season or, some- 
times, of the average of the two highest days in the week. As long as the 
source load of each particular day remains close to the average for that 
day of the week, the general average for several different days of the 
week, will be known with about the same accuracy as if they had all 
come from a common source. If, however, there is no stable pattern in 
the source load, a third error in estimating the average is generated. 
There is some difficulty in determining whether or not variations in load, 
as indicated by measurements, are due to sampling variations or to an 
unstable source. Quality control methods might be used to detect in- 
stability but gathering and processing sufficient data for such an analysis 
might prove uneconomical. In general, if a traffic engineer feels that 
his source load is unstable he will need more hours of data than indicated 
by formula (9) to meet a given criterion of reliability. 

CONCLUSIONS 

A theoretical approach to the problem of the accuracy of switch count 
measurements in estimating carried load and average source load has 
been explored. It is believed that the assumptions made are satisfied 
sufficiently often in practice to enable fairly wide application of the re- 
sults of this exploration to traffic measurements. However, it should be 
kept in mind that where the assumptions are clearly not valid, special 
allowances will need to be made. In any case, the confidence placed in 
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usage measurements by a traffic engineer is a function of his experience 
and judgment. It is hoped that the results of this study will add to the 
knowledge essential to sound traffic engineering. 

APPENDIX 

DERIVATION OF SWITCH COUNT ERROR IN ESTIMATING CARRIED LOAD— 
WITH EXPONENTIAL HOLDING TIMES 

This derivation is based on a similar derivation by R. I. Wilkinson1. 
However, since load rather than holding time is of interest here, the em- 
phasis has been somewhat shifted. 

Assume that switch count measurements are being taken on traffic 
with: 

a. Calls originated individually and collectively at random 
b. Exponentially distributed holding times 
c. Negligible loss 

Let i = interval between scans 

t = average holding time 

a' = traffic carried, in erlangs 

T = length of observation period 

r = f = number of holding times in a scan interval 

T 
c = ^ = number scans in observation period 

T 
tc = = number of holding times in observation period 

L 

N = number of observation periods. 

Consider that the observation period begins with the first scan and 
ends i time units after the last scan. It is desired to find the error in esti- 
mating the true load carried by averaging the number of circuits found 
busy on each scan. Following Wilkinson's method we will first estimate 
the error of the switch count method in measuring the contribution of a 
single call to total usage and then modify it to take account of n calls. 
Calls of two types must be considered, those originating outside the in- 
terval and extending into it, Type I, and those originating within the 
interval, Type II. Both types may be subdivided depending on whether 
or not they extend beyond the end of the observation period. These are 
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indicated in Fig. 7. Only that part of a call which falls within the obser- 
vation period contributes to the usage of that period. First the error 
made by switch counts in measuring this contribution will be derived. 

Type I 

Consider a call which is already in progress at the start of the obser- 
vation period. Its duration beyond that point, according to theory, will 
be exponentially distributed about an average of I. 

If this duration, t, is between 0 and i, the call will be counted once (a 
measured contribution of i erlang hours) and a positive error of x = i — t 
will be made. The same error will be made \i t = '21 x so that the call 

^TART STOP 

lah 
Ita 

Han Ibt- 

12 3 4 5 (C-2HC-0 
Fig. 7—Graphical indication of the two types of calls with their two sub- 

divisions. 

is counted twice and so forth. Summing all the ways of making an error 
Xy we have: 

P{x) dx = - x) + f(2i -x)+ fid - x) (1) 

where /(f — x) is the probability of I = i — x and 

m = 

Calls lasting beyond d neither start nor end in the observation period 
so that their contribution is measured without error. For these: 

p(0) - Pit > d) = e" (2) 

Therefore: 

1 - 
i — x 

Px>oix) dx = =- e t dx 
c 

, 2i — x , ci — x 
+ fe I dx + '■■ + j e i dx (3) 

t ' 
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Letting 

y = t > 
r h' •t/ —r r -w - i < »»- x ^ —nr u 

e~CT = 6=1- //; A' = X e~nT 

t ' ' 1^0 1 - e" 

Pz>o(.r) dx = eve~TK dy (4) 

The moment generating function Mi(a) of y is: 

M+x) = f P{y) dy e"" + e"" 
^ , V 

ra -r 
= h + K9^ 

1 -j- a 

Neglecting terms of order higher than a2, 

MM = 1 + airK - h') + |2 (A>2 + 26' - 2rA) (G) 

Type II 

Calls of Type IT may have either positive or negative errors given by: 

Px<M dx = 1 ^ 2 IM-x) + fi(i - x) + fM - x) 
i 

+ • • • + /c-i((c - l)i - x)] W 

+ ga{-x) + Old - x) + g>{2i - x) + •■■ + (Jc-iid — l)i - x] 

Pz>o(x) dx = [fid - x) + M2i - rr) + • • ■ + ffci - x)] 
i 

where fn{ni — .r) = probability that a Type II call has length ni — x and 
ends before the end of the observation period. 

1 c - n , = - c ' •  dx 
I c 

dJni — x) = probability that a Type II call starts ni — x before 
the end of the observation period and ends after 
the end of the observation period. 
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Equation (7) becomes: 
-1 -j ni—x ^ ^ c—X ni—xq 

dx 
[. . r—1 ni—x c—X -i ni—x-! % x 1 - - c — n . v* 1 
— Sle ' * ~ + ' J 

Px>o{x) dx = Ti—-r^ 2 i ' 
\_ I n=\t 

r.<L^\dx 

(8) 

Letting 

and noting that 

= ?/, K = ^2 e as before 
t n=0 

—nr ^ — Ch 
\nC = 1 _ c-r n=0 r t- 

(9) 
P,s.(x) dx = [(l + f) (k - i + i] ^ 

P,a,(x) dx = <rv [(' - f) (a- - i ^tf)] 

The moment generating function of this pair of equations is the sum 
of their separate m.g.f.'s: 

Muia) = f P^oiyy dy + £ Pv>o(y) dy e"" dy 

, „ , c - Ke-' c - K (c - K)e^ (10) rc + K + c-2 +rzr^e + i-e-r e_ 

+ Q:(/i + rc — e rKe ar) 

rc(l + a)" 

Neglecting terms of order higher than a2, 

MM 

2 oc 
= — ^ rc + (x{h' — rK) + — 

rc 
^rctnh^^ — 2^ (rc — rK + 2b') 

(11) 

Now the number of Type I calls present in an observation is a vari- 
able—with average "a" and a Poisson distribution. Similarly the num- 

ber of Type II calls is a variable, independent of the number of Type I 
T 

calls, with an average of "a V or "arc" and a Poisson distribution. Ac- t 
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cording to the laws governing the compounding of variables the moment 
generating function of the sum of n variables //, when n is also variable 
with generating function (7(0, is G{M{a)) where M{a) is the moment 
generating function of y. 

The generating function of a Poisson variable with average "a" is 
e~a+al so that 

G{Mj{a)) = e~a+aMl{a) 

(12) 
G{M//(a)) = e-aTC+aTCMll{a) 

These independent variables may be added by multiplying their mo- 
ment generating functions to give the m.g.f. of the total measurement 
error of the carried load 

M{a) = f>-(n+arr)+a'v/(o)+arc',,,r/(o) 

From (6), (11) and (13) the following parameters are found: 

g = 0 (14) 

If, now, rc is sufficiently large 

vy = arc rctnh^0 — 2J (15) 

It is more convenient to deal with the standard deviation expressed 
as per cent of the carried erlang load, the coefficient of variation. This 
is done by multiplying both sides of equation (15) by t to convert the 
time dimension from holding times to hours, dividing by T to convert 
from erlang-hours to erlangs, dividing by a' to convert to proportion of 
carried load, and multiplying by 100 to convert to per cent. Assuming 
a . . . 1 

— is approximately ^ : 

Vx = 100 , / L \2 
rctnhl ^-1 — 2 

a'T 

When N observations are made this reduces further to 

v. - 100 y/^['-etnh(0-2j 

NowotnhW = l + + (^<^) 
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and for r < 2 

r/2 ^ (l/2y 
3 45 

Therefore 

rctnh 
© 

Vx = 100 
© a'NT 6 

r 100 
c/T i/i Ga'NTt 

(r < 2) (16) 

The error in carried load may be considered as the sum of a large num- 
ber of independent errors. Its distribution may, therefore, be expected 
to approach the normal distribution. Comparison of the third and fourth 
moments of the normal distribution with those of the error distribution 
(which may be obtained from equation (13)) show good agreement for 
values of a' greater than 1. 

DERIVATION OF SWITCH COUNT ERROR IN ESTIMATING CARRIED LOAD WITH 
CONSTANT HOLDING TIMES 

Wilkinson has shown1 that, for constant holding time, switch count 
error in measuring the holding time of one call has an average 

where T »£ 

T»i 

xi = negative error 

X2 = positive error 

Divide the problem into two parts: 

1. For r > 1 

Xi = -t 

x = 0 

and standard deviation 

Ox = V—XlXi 

Xi = i — 1 

ax = y/ti — t- = tVr - 1 (17) 
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2. For r < 1 

Min. (Tz = 0 for j = 1, i, j, etc. 

Max. ^ 1 i | (18) 

for r = t, f, f, etc. 

Expressing this error in terms of carried load and proceeding as in 
Part I of the Appendix 

1. r > 1 F. = 100 y/^ (r - 1) (19) 

2. r < 1 Min. Vx = 0 

Max. V.= mr-y/Jrf (20) 

= ,/ 1 
c/TJ 4a'Nl NTt 

Equation (20) compares favorably with the exponential holding time 
coefficient of variation of error of 

\/ (Sa'N 
100 
7/f V (Sa'NTt 
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Network Representation of Transcendental 

Impedance Functions 

BY M. K. ZINN 

(Manuscript received November 5, 1951) 

The purpose of the paper is to show that the admittance or impedance of 
certain continuous structures, such as, for example, a finite length of trans- 
mission line of any sort, or resonant cavity, can be represented exactly at 
all frequencies by a network comprising lumps of constant resistance R, 
inductance L, conductance G and capacitance C. The network will contain 
an infinite number of branches, in general, although a finite number may 
be used if it is desired to represent only certain modes. 

The procedure is based upon a proposition known to students of f unction 
theory as "Mittag-Lefflcr's theorem," which amounts, roughly, to an ex- 
tension of rational functions to apply to transcendental functions of the 
type encountered in the theory of continuous structures. 

Several illustrative examples of the network synthesis are given. 

GENERAL 

Students of network theory are familiar with the fact that the im- 
pedance at a pair of terminals in a linear network comprising a finite 
number of resistors, inductors and capacitors, connected in any manner, 
is a rational function of the frequency having, in general, the fractional 
form of one polynomial divided by another. They arc also familiar with 
the partial fraction rule whereby the function can be broken up into a 
series of elementary fractions, each of which exhibits one of the poles of 
the original function. This form is sometimes useful in the problem of 
network synthesis, where the impedance function is given and the ob- 
ject is to find a network having this impedance. 

The purpose of the present paper is to show how a similar procedure 
can be carried out for certain transcendental impedance functions per- 
taining to structures having distributed constants, such as, for example, 
a resonant cavity or a piece of transmission line. The method employs a 
well-known proposition of function theory, which is usually referred to 
as Mittag-Leffler's theorem. This theorem provides a tool for breaking 
up a transcendental meromorphic function into an infinite series of 
simple fractions in much the same way as the partial fraction rule is used 
to break up a rational meromorphic function. The series representation 

378 
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provides a means of determining a network of resistors, inductors and 
capacitors that will have an impedance equal to the specified transcen- 
dental impedance function. This process will be referred to as obtaining 
a "network representation" of the function. If the given function is the 
impedance of some continuous (i.e., non-lumped) electric structure, the 
result will be an equivalent network for the structure. For other pur- 
poses, such as, possibly, analogue methods of computing, the given func- 
tion may not arise from any electrical structure. In either case, the net- 
work representations to be derived are possible only if the function 
satisfies certain restrictions, which are stated in the section immediately 
following. 

The discussion is confined to transcendental impedance functions be- 
cause of the technological interest in the electromagnetic structures with 
which they are associated and because they have not received as much 
attention as rational functions in the literature dealing with network 
synthesis. The problem with which this paper is concerned can then be 
stated as follows: given, a transcendental impedance function satisfying 
certain conditions: to determine a network comprising elements of 
constant resistance, inductance and capacitance whose driving-point im- 
pedance function, at a pair of terminals, will equal the given function at 
all frequencies, real and complex (except at the poles). 

For illustration of the procedure, three examples are given. The first 
is the impedance of a short-circuited or open-circuited transmission line 
in which the distributed primary constants, R, L, G and C are assumed 
to be invariable with frequency. The second and third examples are the 
impedances of resonant cavities driven in two different modes. In these 
examples the variation of resistance with frequency, due to "skin-effect," 
is taken into account. 

IMPEDANCE FUNCTIONS 

The functions under discussion will be referred to as "impedance 
functions" with the understanding that the term is meant to include 
"admittance functions" as well. By reason of the duality principle that 
runs through all electric circuit theory, any general proposition devel- 
oped for one must apply to the other. The functional designation, F{p), 
will be used to denote either an impedance or an admittance function. 
When a distinction is necessary, the impedance will be designated by 
Z(p) and the admittance by Y(p). The independent complex variable p 
is the generalized radian frequency. (For sustained sinusoidal currents 
and voltages, p = iu = 2wif where / is the real frequency.) 

For the applications contemplated, F{p) is a transcendental mero- 
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morphic function, which term implies that the function is given by the 
ratio of two entire functions, one or both of which is transcendental, and 
that the singularities of the function are ordinary poles, except for the 
point at infinity, which is an essentially singular ,point. In order to realize 
the particular network developments to be given, it will be supposed 
that the function satisfies the further restrictions given below: 

(1) All the poles lie in the left half of the p-plane with none on the 
imaginary axis.. 

(2) F(p) — F(p). (The superbar denotes the complex conjugate of 
the unbarred symbol.) 

(3) Real part [F(fa))] > 0 for all real values of u. 
These three conditions are necessary to insure that the function is the 

impedance of a possible linear, passive electric circuit structure. Inter- 
preted physically in terms of this possible equivalent structure, the first 
condition specifies that the structure shall be stable; that is, every natu- 
ral mode of oscillation dies away exponentially. The second condition 
specifies that the natural oscillations are real functions of time. The 
third condition specifies that if a sinusoidal current flows at the driving- 
point terminals of the equivalent structure, the average real power de- 
livered to it will be positive. Since these three conditions, or their equiva- 
lents, are frequently mentioned in discussions of network theory, it is 
assumed that they are understood without more detailed explanation. 

In addition to the above restrictions on the form of the impedance 
function, the following two conditions, while not necessary, will be im- 
posed to limit the scope of the discussion: 

(4) All the poles of F{p) are simple. 
(5) F(p) = 0(1), exactly, as | p | —> co everywhere except at the poles. 
Condition (4), while limiting the scope of the exposition required, does 

not restrict the application of the results in any important way, because 
most impedance functions for which a network representation may be 
required have only simple poles. 

Condition (5) implies that as p increases along any straight fine drawn 
through the origin and not passing through any pole of F(p), the modu- 
lus of F(p) either approaches a limit or oscillates between finite limits. 
The physical implication of this condition is that the response of the 
network as a function of time to a suddenly applied cause begins with a 
discontinuity of the same degree as that of the cause. For example, the 
current response of the network to an applied step of voltage begins with 
a finite discontinuity. This behavior is a characteristic of continuous 
(non-lumped) electromagnetic structures, which furnish the principal 
apphcation of the network developments to be described. 
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mittag-leffler's theorem7 

Let the poles of the given function F(p) he pi, P2, ps •• • , where 

0 < | Pl | < | P2 | < | P3 | • * * 

and let the residues at the poles he Ai, A2, A3 • • • , respectively. Suppose 
that it is possible to draw a sequence of closed contours, Cn, such that 
Cn encloses pi, p*, • • • pn but no other poles and such that the minimum 
distance of Cn from the origin tends to infinity with n. Suppose also that 
F{p) satisfies conditions (2), (4) and (5) above. Then Mittag-Leffler's 
theorem gives the following series development for F(p): 

F{p) = F{0) + Limit t, (^- + —) (I) 
\p — pn pn/ 

The notation here used employs the convention that 

P-n = pn and A-n = An, 

since, by virtue of condition (2), the poles occur in conjugate complex 
pairs. The value, n = 0, then allows for a pole on the negative real 
axis. 

Given any suitable function, the procedure is to determine its value 
for p = 0 and the location of its poles. The residues are next determined 
by 

An = Limit (p — p„)F(p). 
P-*Pn 

Then the Mittag-Leffler expansion can be written down at once. 

NETWORK REPRESENTATION 

In the series (1) the terms occur in pairs with conjugate complex poles 
and residues. The object is to obtain a network representation of each 
such pair of terms. If F(p) is taken as an admittance, the branches rep- 
resenting the pairs of terms will all be connected in parallel; if F(p) is 
taken as an impedance, they will all be connected in series. 

Methods for obtaining a network representation for a rational func- 
tion, such as the one comprising a pair of terms in the series (1), are well 
known. It is only necessary to describe certain procedures of particular 
application to the present problem. Brune5 has stated that the necessary 
and sufficient condition for a network representation of a rational func- 
tion of p to be realizable is that it be a "positive real function," that is, 
a function that is real for real values of p and whose real part is positive, 
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or zero, when the real part of p is positive, or zero. In view of conditions 
(1) and (2) above, only one test12 need be applied to each pair of terms 
of the series (1): the sum of a pair of terms will be a positive real func- 
tion if, and only if, the real part of their sum is greater than, or equal to, 
zero for all purely imaginary values of p. 

The general term pair for which a network representation is sought is 

Fn(P) = + + ^ = p„(p) _ p„(o) (2) 
P - Vn P - Vn Pn Pn 

Evidently two cases can be distinguished at the outset, depending upon 
whether P„(0) is positive or negative. If Pn(0) is positive, the network 
branch, in order to be realizable, should be designed to represent P„(p). 
The left-over negative term, — Pn(0), then can be absorbed in the posi- 
tive first term, F(0), of the series (1); more will be said of this later. If, 
on the other hand, Pn(0) is negative, the network branch should repre- 
sent the whole term, P„(p) - Pn(0). This procedure insures that the 
real part of the branch impedance will be positive, or zero, at zero and 
infinite frequencies. To guarantee that the resistance is positive at all 
other frequencies requires further tests now to be specified. 

Let the real and imaginary coefficients of the poles and residues of 
the nth term be 

P„ = —+ l&n , Pn = —an — ifin 

An = Cn + ibn , An = fl,. — 

(With this notation, an and /3n are always positive; an and hn can be either 
positive or negative.) Then (dropping the subscripts) 

2{aa — 6/3) + 2ap 
Pip) = a2 + /32 + 2ap + p2 

r.rr./- m 2iaa — W)(a2 + P') + 2aj"(aQ: + 6/3) ^ 
R[PM] = (a2 + /32)2 + 2O)2(Q!2 - ^) ^^ 

P(0) = 
2(aQ: — 6/3) 

a2 + p2 

\ -2(aa3 " 3a2^ ~ 3a^2 + ^3)a,2 ~ 2(aa ~ ¥)a,4 
K[l {ICC) I w;j ^2)2 + 2(a2 - PW + w4] 

The necessary and sufficient conditions12 for the real part of a rational 
function of p to be positive, or zero, for purely imaginary values of p are 
that the function be positive for p —> ±fco and have no imaginary roots 
of odd multiplicity. When this test is applied to the functions P(p) and 
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P(p) — /3(0), as given by (3), the following conditions are obtained: 
P(p) will be a positive real function if, and only if, 

If all terms of the series satisfy one or the other of these conditions, 
network branches can be devised to represent all the terms and all the 
R, L, G, C elements of the branches will be positive. 

In case all the terms are of the type where P„(0) is positive, so that 
the network branches are made to represent P.Xp), the left-over constant 
terms can be collected and added to the first term, F{0), of the series. 
This collection of terms then must be represented by a final branch of 
pure resistance, or conductance, of value, 

If the sum of the variable terms approaches zero for p —» drfco, the 
final constant term supplies the high frequency resistance of the func- 
tion F(p) and since this must be positive, if condition (3) is satisfied, the 
final resistive element will be positive. If the series converges non-uni- 
formly, the sum of the variable terms can have a value other than zero 
as p —> dhfco in spite of the fact that every term approaches zero indi- 
vidually. In that case (see example I) all or part of the high frequency 
resistance may lie supplied by the sum of the variable terms. 

In case all the terms arc of the type where Pn(0) is negative, so that 
the network branches are made to represent the sum, Pn(p) — P„(0), 
of the variable and constant terms and the series is uniformly conver- 
gent, all the high frequency resistance is provided by the branches rep- 
resenting these terms. The first term, F(0) then supplies the dc re- 
sistance, which is positive by condition (3). Non-uniform convergence 
can modify this division of high- and low-frequency resistance, however. 

Cases can arise in which the series contains terms of both types. In 
such a case the dc resistance, or high frequency resistance, or both, of 

(4) 

(5) 

W) - E Pn{0) 
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the given function might he less than the sum of the variable terms for 
these frequencies, with the result that the final resistance branch would 
be negative for either the series or parallel type of network development. 

To make the procedure as concrete as possible, particular forms of 
networks are described in the section following with explicit formulas for 
computing their elements. 

NETWORK FORMULAS 

Simple forms of network branches are shown in Figs. 1 and 2. Those 
of Fig. 1, referred to as branches of "the first kind" are suitable for con- 
nection in parallel where the given function F(p) is an admittance, F(p), 
while networks of "the second kind," shown in Fig. 2, are suitable for 
connection in series to represent an impedance, F(p) = Z(p). The net- 
works of Figs, la and 2a apply where the value P„(0) of the general term 
is positive, while Figs, lb and 2b apply where P„(0) is negative. Figs. 3 
and 4 illustrate, respectively, networks of the types of Figs, la and 2a 

Cn l-n 

 V\A If— 
Rn Ln LwvJ Rn Cn 

_L — 
Gn Gn 

(a) (b) 
Fig. 1—General branches of the first kind. 

Fig. la Fig. lb 

(use where P(p) = F(p) (use where F(p) = F(p) 
and Fn(0) > 0) and Fn(0) < 0) 

I , + i^Vn + hi) 
Ln ~ 2an " 271P 

1 AP 

ES. " "" (a' + ') i-C. filial + bl) 

= i. (a.a„ - bM GnLn = -O""" -W" (0) 

Cn a„ M 

t = t (a"a" + M") = Wal+ll) 

G, = KCO) - E F„(0) ft = Yio) 



NETWORKS FOR IMPEDANCE FUNCTIONS 385 

connected to form the completed network with the final non-reactive 
branch, Gn or /?„, in place. 

Formulas for the network elements are obtained by equating the poles 
and residues of the network impedance function to the given poles and 
residues of the general term of the series. Since both poles and residues 
occur in conjugate complex pairs, and since equality of real and imagi- 
nary parts is involved, there are four equations, which are necessary and 
sufficient to determine the four constants, /?, L, G, C, of the network. 
The formulas that are obtained by solving these equations are given 
beneath Figs. 1 and 2. 

The values given for Go and R0 in each case assume that all the terms 
of the series are of the type specified for that case. 

Cn 

—vyv— 
Gn 

—Wv— 

L-n 

-vyv 
Gn 

Rn L-n 
 VAr 

Rn 

(a) (b) 
Fig. 2—General branches of the second kind. 

Fig. 2a 

(use where F(p) = Z(p) 
and Zn{6) > 0) 

C = _L 
" 2an 

rk - (§ +') 

Rn 1 / i ,3 \ = _ («„«„ — h,Sn) 
L„ an 

= — idnOln + Mn) Cn an 

Fig. 2b 

(use where Fip) = Zip) 
and Zn(o) < 0) 

Plial + 02
n)\al + hi) 

2MZ 

M- 

Cn = 

_L   
LnC'n filial -j- hi) 

anOCn bnfin RnGn — 

C„Ln = 

M (7) 

N 
Mial +fil) 

R. = Z(0) - E Z.(0) Ro = z(0) 

where M = anifil - al) -f 2anfinhn 

N = —anal + 3albnfi„ + 3ananfil — hnfil 
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In the case of the parallel-type networks (Figs, la and lb), = 
—a„ + iPn is a pole of the admittance, Y(p), and An = an + ibn is the 
corresponding residue. In the case of the series-type network, the same 
symbols represent a pole and residue of the impedance, Zip). 

The networks specified by Figs. 2a and 2b are duals of the networks 
of Figs, la and lb, respectively, and are obtained from the latter merely 
by replacing Ln by Cn, Rn by G„, and vice versa. 

The formulas are intended to apply to complex poles. They can be 
applied to real poles by taking 6„ and /3n equal to zero and doubling the 
residue, a,,, but this procedure is unnecessary, because the network rep- 

1 g; 

Fig. 3—Network of the first kind (branches la). 

 wv 
Rn 
 V\A  

i 
Gi 

—WV 
R, L, 

 VA  
1 

G? 
—VA—-AKSIA—1 

R2 L2 

Fig. 4—Network of the second kind (branches 2a). 

resentation of a real pole can be found readily enough by inspection of 
the impedance terms involved. (See Example 1.) 

The above discussion is intended to sketch a general picture of the 
procedure. Individual cases may involve considerable detail that can be 
understood more readily by reference to the next section. 

APPLICATIONS 

Example la: A transmission line with its far terminals short-circuited 
affords a simple illustration of the equivalent network theory. Let it be 
assumed that the parameters, R, L, G and C of the line are constants. In 
the more advanced examples to follow, the variation of these parame- 
ters with frequency for a particular kind of line will be taken into con- 
sideration. 
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The impedance of the short-circuited line (Fig. 5) is 

Z = Zo tanh F (1-0) 

where Zo is the characteristic impedance and F is the total propagation 
constant of the line. We have 

'-mT 

T = l(R + pL){G + pC)]'" (1-2) 

R, L, G and C being given for the lolal length of line. 
To obtain a development in terms of network branches of the kind 

shown in Fig. 1, we consider the admittance function, 

r=r„cothr (i-3) 

where Y = 1/Z and Fo = l/Zo. Our first task is to find the poles of this 
function and the residues. Since the complex frequency variable p occurs 

R,L,G,C 

Z=-hr 

Fig. 5—Short-circuited transmission line. 

under square roots in both Zo and F, it might be suspected, offhand, that 
the singularities of the function are branch points rather than poles. 
Such is not the case, however. There are no branch points and all the 
poles are simple. 

The singularities of Y are to be found among the zeros of tanh F, 
which occur at 

F = iirn, n = 0, ± 1, ± 2, ± 3, • • ■ (1-4) 

To determine them, we solve 

r2 = (K + VL){G + pC) = -ttV (1-5) 

and find these roots: 

Vn = -a,, + i&n , V-n = Pn = - OCn - 
where 

G , R 
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For n = 0, the above would give 

R G 
Vo= ~L'~C 

But if we let T -> 0, so that tanh F —> T, we find that only the point, 
-R/L, is a singularity of F; the other point, -G/C, is a regular point. 
Therefore F has only one real singularity. 

To find the nature of the singularities of F, we next calculate 

Limit f ^ —f", v"| = An (1-7) 
P-Pn LZuip) tanh r(p)J 

and find that at each pn the limit exists and has the value 

i 
^ = = (1-8) 

where T'fpn) = — r(p), evaluated at p = p„ . The fact that this limit 
dp 

exists shows that all the singularities are simple poles. The values of An 

are then the residues at these poles. 
When we now apply formulas (G) to determine the elements in the 

general branch of the equivalent network of Fig. la, we obtain, for 
n > 1, 

_ L 1 _ ir2n2 Gn _ G Rn _ R /. qn 
Ln _ 2' J^Cn' LC' Cn C Ln V 

The network then comprises an infinite number of such branches in 
parallel. Each branch has the same elements Rn and Ln, equal, respec- 
tively, to half the total resistance and inductance of the transmission 
line, but the elements Gn and Cn decrease from one branch to the next in 
inverse proportion to the squares of the integers. 

The Q of the nh branch, which can be regarded as the Q of the asso- 
ciated resonance of the short-circuited line, is 

• n _ COn _ 
~ 2«„ Gn . Rn G . R (1-10) loin Gn | Rn " _L — 

C"n 
+ Ln C L 

where 

/~l G2 n in 

- y L.cn C'„ y LC C 



NETWORKS FOR IMPEDANCE FUNCTIONS 389 

Thus, for small dissipation, the resonances would become sharper in di- 
rect proportion to the frequency (if the parameters R, L, G, C, were 
invariable with frequency, as assumed). 

The above described branches of the equivalent network account only 
for the complex poles (n > 1) of the admittance function. Two more 
branches remain to be calculated. One is for the real pole (n = 0), which 

occurs at po = —R/L, with residue, Aq = j . The required branch for 
Lj 

this pole is 

1 
(1-12) 

p — po R + pL 

The other is the final conductance branch, which is calculated as follows: 

ft = Y(0) +■£ — = i/t coth VGB - ~ n=-« Pn \ R R 

- 2G e 

(1-13) 
1 

„=—co 7r2n.2 -T GR 
= 0 

so that, for this example, the conductance branch vanishes. The network 
is drawn in Fig. G. 

A series type of network, as shown in Fig. 7, can be determined by 

l 2C 2C 477" 
T 

77"2 ATT2 > 2G 2G 

(Go=0) 

2 

Fig. 6—Network of the first kind equivalent to the short-circuited line of 
Fig. 5. 

(Ro=o) 
   

2_ 

-^y\A— 

—V\A— 
z_ 

-AN\  
2R 2L 2R 2 L 

^(i)2 .2^312 ^(i)2 

Fig. 7—Network of the second kind equivalent to the short-circuited line of 
Fig. 5. 
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similar means. Since, however, it is a dual of the parallel network of Fig. 
9 for the open-circuited line, next to be discussed, it can be drawn im- 
mediately, without further calculation, once the latter has been found. 

Exam-pie lb: We now calculate a network for the same line with its 
far terminals open (Fig. 8). To obtain a network of the first kind, with 
branches in parallel, we deal with the admittance function, 

Y = Fo tanh T (1-14) 

The singularities of F are found among the zeros of coth r, which occur 
at 

r = iir(n + |), = 0, ± 1, ± 2, ± 3, (1-15) 

The points p = -R/L and —G/C are both regular points this time. 
( —G/C is a zero of F.) The singularities are simple poles, as before, with 
residues, 

1 (1-16) An = 
Z0{pn)T'(pn) 

as before. 
The network branches for the complex poles are therefore obtained 

merely by putting n + h in place of the n in all formulas of the short- 
circuit network. There is no branch corresponding to the branch R + pL 
of the other network and the conductance branch is again found to be 
zero. The complete parallel network is drawn in Fig. 9 and the series net- 
work, in Fig. 10. 

It will be observed that the series network of Fig. 10 is the dual of the 

R,L,G,C   

Z = -rr 

Fig. 8—Open-circuited transmission line. 

i 2C ^(1) 
2G 

2C 
^(i) t \2 TT2 

2G 

(GQ-O) 

Fig. 9—Network of the first kind equivalent to the open-circuited line of Fig. 8. 



NETWORKS FOR IMPEDANCE FUNCTIONS 391 

parallel network of Fig. 0 and the series network of Fig. 7 is the dual of 
the parallel network of Fig. 9. These dual relationships are of course a 
result of the fact that the impedance of an open-circuited line is the dual 
of the impedance of the same hue when short-circuited. 

Example 2: Short-circuited Concentric Line {or Toroidal Cavitij with 
E Radial). The preceding example considered a fictitious transmission 
line of invariable parameters, R, L, G, C, having a perfect short circuit 
at one end. The present example has to do essentially with the same 
problem but considers it from a more practical point of view. The vari- 
ation of R and L with frequency is taken into account and the impedance 
of the "short-circuit" is no longer neglected. 

Let the line be the piece of coaxial cable plugged at both ends with 
conducting material as illustrated in Fig. 11. Considered from an alter- 
native point of view, our line is now a toroidal cavity oscillating in the 

(Ro=o) 

—vw— 
G 

-vyv 
G 

—\AA—I 000 j— 
2R 2L 
TT2 W2 

-wv 2. 
G 

WV— 
2R 2L 

47r2 477"2 

Fig- 10—Network of the second kind equivalent to the open-circuited line of 
Fig. 8. 

mode where the electric force E is directed radially and the magnetic 
force H lies in planes at right angles to the axis. If we assume the cavity 
to be excited, or "driven," from one end,* the impedance that is effective 
in defining the selective characteristic of the cavity with respect to fre- 
quency is the total impedance at that end, that is, the sum of the im- 
pedance Zi, viewed into the cavity, and the impedance, Z*, of the ad- 
jacent end-plug. Therefore, we have to deal with the impedance, 

Z = Z1 + Z2. (2-1) 

By "impedance" is here meant the same thing that one considers in look- 
ing at the problem from the point of view of transmission line theory, 
namely, the complex ratio, for exponential oscillations, of the voltage 
between the inside and outside cylindrical surfaces to the total current 

* For determining the "natural frequencies" of oscillation of the cavity, it is 
immaterial at what point along it the impedance is taken; the total impedance 
at every point has the same roots. The impedance is, nevertheless, not the same 
at all points so that the behavior of the cavity, when driven, will depend to some 
extent on the driving point. 
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flowing axially in the inner conductor at the same point. The zeros of Z 
define the natural frequencies of oscillation of the cavity and their asso- 
ciated damping constants, or Q's. Our task is to develop an equivalent 
network for this Z. 

We have 

z = Zi + Z, = Zc 1 + pe 
-2yh 

+ 
1 + P 

1 — pe"2^ 1 — P 
(2-2) 

- h 

i 

I % 

—Wv— 

2hc A 3 . 3 •> 
^■2n2v 2d<fn 2hifnl 

7r2nz6r\ (.. 3 3 N 
^ 2d<^n 2h«fn ' 

-vw 

(± + ±\ 
277" \ 20 la + b' 

^■nv 

= ^2.lnr b V = , 1 = 3 (lOa) 
VJo^o 

C = 27T€o 
log|- 

(e.g.) //0= 4^-(to-7), e0=^:, for air in M.K.S. units 
/I=LIq, g = 5.8(107) , FOR COPPER IN M.K.S. UNITS 

(n=1 FOR FUNDAMENTAL MODE) 
Fig. 11—Toroidal cavity, E radial. 
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where 

Zo = (g ^ pc)'"' T = W + + pC)"5 (2-3) 

Zii -f- Zo 
(2-4) 

(2-5) 

R + pL = - 
2ira l\{iTa) 2ira li[aa) 'XirU Ki^aU) 

+ ^ log - (2-6) 
Zir a 

G + pC = " {go + peo) 
log- 

(2-7) 

a 

h, a, b = cavity length, inner radius, outer radius, as shown in Fig. 11, 
all measured in meters 

p, g are permeability, conductivity of the conducting material of the walls 
(for copper: p = 47r(10~7), g = 5.8(10') in M.K.S. units). 

Mo, (lo, to are permeability, conductivity, dielectric constant of the dielec- 
tric material occupying the cavity (for air: mo = 47r(10_'), g0 = 0, 
to = (10_0)/3()7r in M.K.S. units), p = generalized frequency vari- 
able. 

/o(z), hiz) are Bessel functions of the first kind for imaginary argument 
and of order 0,1. 

Ko{z), Ki{z) are Bessel functions of the second kind for imaginary argu- 
ment and of order 0, 1. 

Except for ignored small deviations of the field around the corners of 
the cavity, the above formulas are exact. To arrive at results that are 
sufficiently compact to be useful, we make these approximations, at the 

(2-8) 

a = (ppg)112 

start: 

(2-9) 

where 

(2-10) 
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From this, 

P = 
v -no (211) 

= 1 

77 + 770 

Having in mind microwave applications, where the moduli of the argu- 
ments of the Bessel functions are >3000, we take 

Uz) = lUz) 
IM Ki{z) 

so that 

K + Pt = ^ (i + ,-) + log- (2-12) 
27r \a b/ 2x a 

Also, we have in mind only air dielectric and assume any loss therein to 
be negligible; that is, we assume G = 0. 

All further approximations that are made are either 

1/2 
= 1 + A or (1 + 2A) = 1 + A 

1 - A 

where, for an air-space enclosed by copper walls, and for frequencies on 
the order of 30,000 megacycles, A is on the order of 10 4. For cavities 
made of other materials, the results obtained may not be sufficiently ac- 
curate and the problem would have to be reviewed from the start. In 
particular, the results do not hold for a cavity having walls of magnetic 
material, because we assume here that the permeability of the metal walls 
is the same as that of air; i.e., n = mo . 

To obtain an equivalent network of the first kind, we deal with the ad- 
mittance, which is, from (2-2), 

Y = - = Ho t1 ~ P^1 ~ Pe ^ (2-13) 
Z 2(1 - p2e_2TA) 

where Hn = 1/iio. 
The poles of Y are then the zeros of 1 — p'e "7ft, which are obtained by 

successive approximations. We first make a close estimate ot the zeros by 
assuming that the impedance of the short-circuiting plugs is zero; that 
is, we assume, Zo := 0, whence p — — 1. To obtain this estimate, we have 
to solve 

yh = — f 1 + ^-) = Trin (n = ±1, ±2, d=3 • • • ) (2-14) 
v \ da/ 

where 
, _ 2ab log (b/a) 

a + b 
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and v = 3(10s) meters per second. The approximate solution is 

t) 
whore 

pin -pOn I 1 + , 
(l(T\ 

nrnv . . 
Pon = and a0n = {p0nfi(j) 

Next we improve our estimate of the zeros by the well-known method in- 
volving the derivative of the function, 1 — p2e~2yh, with respect to p, 
evaluated at pu . This now takes account of the actual impedance of the 
end-plugs. The values of the zeros, so obtained, are 

Pn = -«„ + ip„ , p_n = Pn = -Cin - f/3n 

where 

=(i + i 

i i > (2-15) 

^ = """ t1 + m, - K, 

where 5,.* is the real part of a{)n. That is, 

= U„m^2)i/2 

where 

irnv 
WOn — —J— . 

k 

As an incidental matter of interest, the above gives the Q of the cavity 
at any resonance, namely 

Qn = ~ = dK —^ (2-16) 2tOLn ^ Ad 
It 

For example, the dimensions, o = .5 cm., b = 1.0 cm., h = .5 cm. pro- 
vide a cavity that resonates at about 30,000 megacycles. Then the Q's at 
the first three resonances would be as follows: 

Won 
2ir Q 

1 30,000 X 106 4250 
2 00,000 X 106 0010 
3 90,000 X 106 7300 

* For any frequency, 8 = (avifir/2)1/2 is sometimes referred to as the "skin depth" 
because it is the depth of metal at which the current density falls to 1/e times its 
value at the surface of the metal. 
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The importance of including the effect of the end-plugs in determining 
Q is shown by the fact that, if they were assumed to have zero impedance, 
Q at the first resonance would be 12,120 instead of 4250. 

To determine the residues at the poles, we write 

Y_ (1 - P)(1 - P^') = W (2_17) Y - Ho 2(1 _ p2e_2rA) G(p) 

and then the residue at a simple pole pn is 

A = 
F(Vn) (2-18) 

" G'{pn) 

Tliis limit is found to exist, showing that the poles are, in fact, simple. 
The value found for the residue, A n , is 

An — On T f5n, A—n = A n = cin ibn 

_ Cocoon/, 1 _ J_\ 
an Tm \ 2(Wn 2h5n/ (2-19) 

_ HoUon / f i f A 
n ~ "^T \2d5„ 2h8nJ 

When formulas (6) are applied to determine the elements of the tuned 
branches of the equivalent network of the first kind, the results are, for 
the nth branch, 

= KoTrn/, | 1 -L 1 

2c00n \ 2dSn 2hbn 
1 2 — COQn 

V dbn hbj LnCn d8n hdj (2_20) 

Gn _ ^On 
lTn~ 2Mn 

Rn _ / 1 , J 
Ln 'O0n \d8n 

+ mn 

In terms of the ft, L and C of the piece of coaxial line, the elements of the 
nth branch are as follows: 

Ln = = 4- _L +_L^ 
2 \ 2d8n 2h8n) 

Rr, ^ f (!+ 2 \ 2/i/ (2-21) 

C„ = ^(l-Ar + —) 2hU ir2n2 \ 2d8, 

2d8n ' 2/15, 
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*-i( 

tmv (uonnug\12 

The network is shown in Fig. 11. 
It Mill be found that a "leakage" element, Gn, appears in the equiva- 

lent network, although the air dielectric in the cavity was assumed to 
have no leakage {G = 0). This element arises from the end-plugs and is 
necessary to account for the dissipation in them. 

To obtain a network exactly equivalent to the cavity at all frequen- 
cies, we should add a branch corresponding to n = 0, as was done in 
example 1. This branch would make the equivalence hold down to and 
including zero frequency. But, inasmuch as the approximations that have 
been made hold only for the high frequencies, where the resonances oc- 
cur, it would be inconsistent to add this branch. What has been arrived 
at, then, is a partial network representation that gives a close approxi- 
mation to the impedance of the cavity at high frequencies, only. 

Example 3: Toroidal Cavity with E Axial. For further illustration, we 
consider another mode of oscillation of the short-circuited concentric 
transmission line investigated in the previous example. This time it is 
assumed that the radial electric force vanishes while the axial electric 
force between the end-plugs exists. The magnetic force is directed in 
circles concentric with the cylindrical central conductor, as before. This 
situation is illustrated in Fig. 12, which is the same as Fig. 11, except for 
the new disposition of the /^-vector. 

For the new mode of oscillation, where the wave is a cylindrical one 
propagated back and forth between the inner and outer conducting 
cylinders, the oscillatory space is naturally thought of as a "toroidal 
cavity," while, in the previous example, where the wave was propagated 
axially back and forth between the terminal discs, the space was called 
a "concentric line." Actually, the cavity itself has the same geometric 
form in the two cases. A practical distinction may exist, however, in that 
the axial mode of oscillation could be more easily excited in a cavity 
whose axial length is large compared to its radius, while the cylindrical 
mode would arise more easily in a flat "pillbox" cavity whose radius is 
large compared to its axial dimension. 

The approach to the problem will be that of transmission lino theory, 
as before. This time, the "line" comprises two circular discs between 

where 

r IM) , h 
L = — log - Zir a 

c = 
2ireo 

h a 
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which the cylindrical wave is propagated. The series impedance and 
shunt admittance of such a line are functions of the radius and so will be 
designated Z{r) and F(r), respectively. Their values are given below: 

Z{r) = 

Y(r) = 

2T) + iosiih 
2irr 

iu2irreo 
h 

(3-1) 

(3-2) 

These formulas take into account the losses in the flat walls but assume 
the conductance of the air between them to be negligible. Losses in the 
inner and outer "short-circuiting" cylinders will be taken into account by 
the boundary conditions. 

Ni 

 b *. 

2(b-a)C / 3 . 3 _ \ 
^■2n2 v 2htfn 2(b-a)<fn^ 

2(b-a)) 
WV 

2hefn 2(b-a)tfn 

cv0r)C 2h<fn 2(b-a)d"n^ 

29 
,, _ 77-nv 
'yon- b-a 

i -- A)h L 27ra v = , 1 =3(lOa) 
V/Zo^o 

C = 27rae0 

SEE FIGURE II FOR //0,e0,//,g 
(n = l FOR FUNDAMENTAL MODE) 

Fig. 12—Toroidal cavity, E axial. 
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If V is the voltage between the flat faces of the cavity at a radius r and 
/ the total current in the lower face at this radius, we have 

^ = -JZ(r) 
dr 

fr = -vnr) 

(3-3) 

By differentiating, 

d 
dr 

But 
l~-Ifr-Zt^zt)dl+VZY ^ 

ZY = (27? + ivnh) = = T2 

h 

which is a squared propagation constant, independent of r, and 

i = _1 
Z dr r 

Therefore, 
d2V I dV 2V n (r. rs 
—7+-— -7 I = 0 (3-5) dr- r dr 

is the differential equation for the voltage. The usual solution of this 
equation is a linear combination of /o(yr) and /vo(7r) but since, in this 
case, the arguments will lie almost purely imaginary, it is more con- 
venient to employ the pair of functions, Jo(—iyr) and No(—iyr). 

The solution for the voltage between the upper and lower surfaces at 
radius r is 

V(r) = AJ0(-iyr) + BN^-iyr) (3-6) 

and, from this, the total radial current in the lower surface, at that 
radius, is 

m = = -iYvWAU-iyr) + BN^-iyr)] (3-7) Z dr 
where 

F„(r) = l/Zo(r) = [Y(r)/Z(r)]m 

The impedance at the inner radius a, looking outward, is then 

Zl(„) = tW = iZM A.J;(-iya\ + (3-8) 
I {a) A.Jy{ — iya) + BNi{ — iya) 



400 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1952 

The total impedance at a (inward + outward) for which we require an 
equivalent network is 

Z = Zi(d) + Za 

where Za is the impedance of the central plug to axial current, viz., 

2.=^'-^ (3-9) 
27ra Ii{aa) 

To evaluate the constants A and B, the following boundary conditions 
are imposed at radii a and b: 

at a: 7 = 7(a), a given voltage 

at 6: 7 = I(b)Zb 

where Zb is the impedance of the other "short circuit," comprising the 
outer cylindrical wall. It is given by 

Zb = ^ (3-10) 27rO /li(o-o) 

Except for ignored small deviations of the field around the corners 
of the cavity, the above expressions are exact. The process of finding 
the singularities of Z by successive approximations results in expressions 
that are too long to write down here. To obtain results sufficiently com- 
pact for engineering use, we resort to the following asymptotic approxi- 
mations for the Bessel functions: 

/ 2 V/2 

./oOs) ~ ^ ) cos (z — 7r/4) 

Jiiz) ~ i^) cos ^ — -W4) 

-/Vo(z) ~ s'n (2 — 7r/4) (3-11) 

N-l{Z) ~ S"1 (2 — 37r/4) 

h{z) Kojz) ^ 
hiz) ~ ' K^z) 

Also, with an error on the order of 10 4, 

ZoW ~ ^ = A'oW = 1/H«(r) 
2irr 
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These substitutions result in the following asymptotic formula for the 
total impedance Z at radius a 

2tj / TA 
— cos fcc + 11 1 + i 1 sin kx 

Z = KM   A ^  (3-12) 
cos kx + — sin kx 

Vo 

where k = - — I and x = —iya. 
a 

To find an equivalent network of the first kind to represent Z, we deal 
with the admittance, Y = 1/Z. It is instructive and saves much work 
to put Y in the form of exponential functions, with the substitution 

which is the reflection coefficient at both inside and outside cylindrical 
surfaces of the cavity. By this means we obtain 

(1 _ p)(l - pe-^) 
5 - HM 2(1 - (3"13) 

This is now identical in form to the formula (2-13) of example 2, where 
the 7?-vector was radially, instead of axially, directed. In fact, since 

ikx = y{b — a) 

and 
2\112 _ i(a / 

v \ 1 + w 

comparison with the similar formulas of example 2 shows that all the 
results of that example can be made to apply to the present one merely 
by changing the dimensional parameters as follows: 

Example 2 Example 3 
(E radial) {E axial) 

h goes into h — a 

2ah log (I)/a) . , 
d =  , , goes into h a + h 

The first result of interest is (he value of Q, which is 

Qn = hS„ ksr- f3"14) 
l + jr^ 

b — a 
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where, as before, 8n is the "skin depth" equal to the real part of trn. That 
is, 

5. = 

To gain an idea of numerical magnitudes, consider the same cavity used 
in example 2. The dimensions are, as before, h = .5 cm., b — a = .5 cm. 
For the square cross-section chosen, the first resonance again occurs at 
30,000 megacycles, very nearly, and we can make the following direct 
comparison of the Q's for the two modes of oscillation: 

n IMn/2ir 
o.. 

Ex. 2 (£ radial) Ex. 3 (E axial) 

1 
2 
3 

30,000 X 106 

60,000 X 106 

90,000 X 10fi 

4250 
6010 
7360 

4370 
6180 
7560 

Due to the asymptotic approximations used, the results for example 3 
are not as accurate as those for example 2; the two sets of results show 
only that the Q of the cavity is substantially the same for the two differ- 
ent modes of oscillation. 

The poles of Y are given by 

= — (*„ + Z/3n, P-n — pn — «n 

1 
a„ — OJOn IJ- - 

\_'2h8n 
+ (6 - a)8n_ 

ft. = <■">" [i + 2^ - (6 _ ajsj 

and the residues are 

(3-15) 

a,, = 

K = 

an + ibn 

H,i(a)coon 1 - 
irn 

Ho(a)a}On 1 
irtl _2h8n 

1 
2hSn 2(6 - a) J (3-16) 

+ -1—1 
- a)sj 

Applying formulas (G) gives the following values for the n,h branch of 
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the network of the first kind: 

L" - A'o(o) iS t1 + i + 2(6-o)J 

fl + ± ^_1 
L h8n {b - a)5„J 

1 _ 2 
— Ci'On 

LnCn 

Man On =   
Cn 2(6 - a)8n 

(3-17) 

Rn 
J- = UOn J-'n 

± + 
5 

_/t5,1 2(6 — a) 8 -] 

in all of which won = irnv/(6 — a) and v = l/inoeo)1'1 = 3(108) meters 
per second. 

The results can be put in the same form as those obtained for the other 
cavity mode, dealt with in example 2, by employing the "primary con- 
stants" of the cylindrical transmission line, viz.: 

1/2 
B(0)=±M,! L(a) = 

7ra L 2(7 J Zira 

G(a) = 0 C{a) = 
'Ziraeo 

h 

In terms of these constants, the elements of the nth branch of the equiva- 
lent network of the first kind are 

_ (6 - a)L{o) / 1 1 \ 
2 \ ^ 2h8n ^ 2(6 - a)8n/ 

\ 265„ ^ 2(6 - a) 5,,/ 
= 2(6 - a)C(a) 

13-8) 

ir-n- 

q _ MonOja) | | _ i 3 
ir2n25n \ 2h8n 2(6 — (1)8,,, 

The network is shown in Fig. 12. 
As in the preceding example, a leakage element arises, in spite of the 

fact that we assumed initially that gu of the air in the cavity is zero. 
This element accounts for the losses in the inner and outer cylindrical 
walls. 
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A number of people with whom the above material has been discussed 
have given helpful comments and criticisms. I wish to acknowledge my 
debt in this respect to H. Nyquist, S. A. Schelkunoff, R. M. Foster, S. O. 
Rice, J. Riordan and W. H. Wise. 
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