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Theory indicates that the usef ul frequency range of junction transistor 
riodes may be extended by a factor of ten by a new structure, the p-n-i-p, 

which uses a thick collector depletion layer of intrinsic (i-type) semiconduc- 
tor to reduce greatly the collector capacitance and to increase the collector 
breakdown voltage. This structure will permit simultaneous achievement of 
high alpha cutoff frequency, low ohmic base resistance, low collector capac- 
itance, and high collector breakdown voltage. Because of the high breakdown 
voltages and larger areas per unit capacitance, permissible power dissipa- 
tions appear much larger than for other high frequency junction types. The- 
oretical calc ulations indicate that oscillations at frequencies as high as 8,000 
mcps may he possible. 

Early exploratory models have verified the basic theory. Progress toward 
initial design objectives has been encouraging. In general, the observed per- 
formance has been consistent with the materials used and the structure 
achieved. The highest frequency of oscillation obtained to date is 95 mcps. 
Better performance is expected as technical control of materials and struc- 
tures is improved. 

In the five years since the announcement of the junction transistor 
by Shockley, great steps have been made in extending its useful fre- 
quency range and its power-handling capacity. Recent developments, 
particularly those which have increased the frequency range,2,12'13 have 
brought the performance of practical devices close to ultimate limits 
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prescribed by structure and material. Further extension of frequency 
range and, to a lesser degree, of power capability must be sought in 
new materials or in improved structures. The p-n-i-p* transistor em- 
ploys a new structure which in theory promises to increase the useful 
frequency range of junction triodes by a factor of at least ten. In the 
p-n-i-p, the n region of the base and the p region of the collector are 
separated by a relatively thick region of i-type (i.e., intrinsic or near-in- 
trinsic, almost free of donor and acceptor centers) semi-conductor. This 
permits establishment of a thick collector depletion layer at relatively 
low voltages, thus producing low collector capacitance and several other 
desirable features. 

The advantages of the new structure may be seen by study of the 
limitations of previous triode structures. In general, high frequency 
performance of conventional units, such as p-n-p alloy1 transistors, is 
improved by making the base region thinner to increase the alpha cutoff 
frequency (/„), by using lower resistivity base material to reduce the 
ohmic base resistance {rb'), and by decreasing the area of emitter and 
collector junctions to reduce the collector capacitance (Co). These equiva- 
lent circuit parameters are of nearly equal importance as may be seen 
from the gain-bandwidth expression discussed below. 

The design changes required to improve the parameters involve con- 
flicts, and compromises are necessary. For example, the decrease of base 
thickness which increases alpha cutoff frequency also increases (less 
rapidly) the ohmic base resistance.f The decrease in base resistivity 
which reduces base resistance also increases (again, less rapidly) the 
collector capacitance and decreases the collector breakdown voltage, 
thus decreasing power capacity. The reduction of junction area which 
decreases collector capacitance reduces the current rating and thereby 
the possible power rating. For transistors having circular electrodes, it 
may also increase the ohmic base resistance. 

For these reasons, conventional junction triodes designed for high 
frequency application tend to be very small and to have very low voltage, 
current, and power ratings. Ultimately, the decrease of collector reverse 
breakdown voltage sets a lower limit to usable base resistivity and 
thereby to the thickness of the collector depletion region. This sets a 
lower limit on base region thickness, since average base layer thickness 
should be two or more times depletion layer thickness. For base layers 
thinner than this, irregularities in thickness or in impurity distribution 
may permit the depletion layer to contact the emitter, producing the 

* And its homologue, the n-p-i-n. 
f In the junction tetrode, this increase of base resistance is overcome by crowd- 

ing the minority carrier emission close to one of the base contacts, thus producing 
low ohmic base resistance. See Reference 2. 
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ac collector-to-emitter short circuit effect called "electrical punch- 
through." Lower limits of junction areas are set by desired operating 
currents and by mechanical reasons. Diminishing returns are reached 
for structures a few mils in diameter and a fraction of a mil thick. 

To facilitate comparisons, the limitations described qualitatively 
above have been interpreted quantitatively in terms of a gain-band 
figure of merit,* 

To'B = 25^ ' (L1) 

in which To is low frequency available power gain in the common emitter 
connectionf and B is the frequency at which the gain is 3 db down from 
its low frequency value. A reasonable upper limit on this (power gain) X 
(bandwidth-squared) product is 4 X 1016, which indicates that a 0-10 
mcps video gain of 20 db may be obtained by improvement of conven- 
tional triode structures. 

The same figure of merit, for a p-n-i-p of equal junction area, is ap- 
proximately 101J. Calculation shows that units may be designed to 
produce 10 db or more gain at 1,000 mcps. Although many of its operat- 
ing principles are similar to those of the p-n-p and the n-p-n, the p-n-i-p 
differs from the earlier triodes in that low collector capacitance is ob- 
tained by means of a thick collector depletion (space-charge) layer of 
intrinsic semi-conductor. The section view of a p-n-i-p in Fig. 1 illus- 
trates its major features. The wide depletion layer (electric field region) 
produces small collector capacitance (Cc) and gives a high reverse break- 
down voltage, while the very thin base region of low resistivity gives 
simultaneously a low ohmic base resistance (rV) and a very high alpha 
cutoff frequency (fa)- The design with four regions, emitter, base, de- 
pletion layer, and collector, increases the (power gain) X (band-squared) 
figure of merit (fa/ZSrb C,.) about two decades, thus increasing the useful 
frequency range about one decade. 

The thick collector depletion layer of intrinsic or near-intrinsic semi- 
conductor provides advantages in addition to the reduction of the col- 
lector capacitance. Because base layer resistivity does not limit collector 
breakdown voltage as it does in previous structures, much lower base 
resistivities may be used, thus producing lower ohmic base resistances. 
Furthermore, the thick depiction region makes the structure much more 
rugged for very high alpha cutoff units since the very thin base layer is 

* This figure of merit is essentially identical with one described by R. L. Pri- 
chard at the A.I.E.E. Winter Meeting in New York City, Jan. 22, 1954. 

t It is assumed that the input terminals of the transistor are shunted by an 
external resistance which determines the input impedance and therefore the band- 
width. Power gain decreases approximately 6 db per octave at frequencies greater 
than B. 
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a surface layer on an 0.5-2.0 mil intrinsic layer, rather than a thin and 
unsupported web. 

When operating biases are applied to a p-n-i-p transistor, holes in- 
jected at the forward biased emitter diode diffuse across the n region of 
the base then drift at high velocities through the field region to the 
reverse biased collector p region just as in a PNP transistor. However, 
in the p-n-i-p, the drift transit time through the collector field is com- 
parable to the diffusion transit time through the base and contributes 
to phase shift of the short-circuit current-transfer ratio, alpha. In ad- 
dition, the emitter depletion layer capacitance, CTe, which is unim- 
portant in previous triodes, is relatively large in the p-n-i-p and degrades 
performance at very high and microwave frequencies by providing a 
low impedance shunt around the emitter junction. 

The details of structure and operation, design theory, a comparison 
of p-n-p and p-n-i-p units and some experimental results are discussed 
in the following sections. The concluding summary reviews the theo- 
retical and experimental work. 

STRUCTURE AND OPERATION 

Impurity Distribution 

In general, device characteristics depend on structure and on operat- 
ing conditions. However, structure is more basic than operating con- 
ditions. The spatial distribution of fixed charge centers (donors and ac- 

Fig. 1 — Sectional view of a p-n-i-p transistor. 
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ceptors) is the fundamental structural characteristic of the junction 
transistor. Fig. 2(a) shows an impurity density profile for a p-n-i-p 
along an axial line running through emitter, base, collector space-charge 
layer, and collector. Similar profiles for step junction (alloy) and graded 
junction (grown crystal) p-n-p's are shown in Figs. 2(b) and (c). 

The emitter and collector regions of the p-n-i-p have very high im- 
purity concentrations (low resistivities), while the impurity density in 
the base is moderately high and the depletion layer is almost free of 
impurities. The high acceptor density in the emitter forces most of the 
emitter current to flow as holes, giving an injection ratio (7) close to 
unity. The high density in the collector gives a low collector body re- 
sistance and fixes the position of one face of the collector depletion layer. 

IO'B-IO'9 lO'B-IO'9 

wk xm > 

INTRINSIC < 3 X tO13 

Il0,6-I0'7 

EMITTER BASE DEPLETION LAYER COLLECTOR 

(a) step-base p-n-L-p 
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toie-io19 IO'S-IO'9 

EMITTER BASE 

(b) step (alloy) p-n-p 

  

COLLECTOR 

kIO
,7-IO'6 

EMITTER BASE COLLECTOR 

(C) GROWN (GRADED) p-n-p 
Fig. 2 — Impurity density profiles. 
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The high donor concentration in the base region leads to low ohmic 
base resistance (rb') and fixes the position of the base face of the deple- 
tion layer. In the depletion layer, the concentration of impurities is so 
low that the field region (space-charge layer) extends from the n-type 
base to the p-type collector at low voltages. 

Depletion Layer 

The properties of the depletion layer which are important at high 
frequencies are the capacitance across it (Cc) and the carrier transit 
time through it (re). These are determined primarily by the impurity 
density, the thickness of the region, and the base-to-collector voltage. 
Potential and field distributions in the depletion layer for both small and 

FIELD DISTRIBUTION POTENTIAL DISTRIBUTION 

: OEPLtTION REGION 
DEPLETION 

REGION i 

(a) Nd=Na 

(b) Nd<Na 

(c) Nd > Na 

Fig. 3 —• Field and potential distributions in depletion region of p-n-i-p transistor. 
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typical applied voltages are shown in Fig. 3 for p-n-i-p structures in 
which the depletion layer contains no net impurities (a), a small acceptor 
dominance (b), and a small donor dominance (c). When collector voltage 
is increased from zero, the space charge layer thickens until it extends 
from base to collector. Further increase of voltage simply increases the 
field strength in the region, without significant further increase in its 
thickness. 

The capacitance initially changes inversely as the square root of 
collector potential, but becomes constant when depletion region thick- 
ness becomes constant. The time required for holes to drift from base to 
collector decreases with increase of depletion region field until scattering- 
limited carrier velocities are reached (about 5 X 106 cm/sec for holes, 
at 10,000 volts/cm).10 It should be noted that normal operation does not 
occur until the depletion layer extends from base to collector (particu- 
larly if the depletion region is slightly n-type so that effective base 
thickness is large at low collector voltages, see Fig. 3(c)). The breakdown 
voltage of the collector is very high,* since the field strength in the deple- 
tion region is relatively uniform by comparison with that in older types 
of units, the region is wide, and strong fields are required to produce 
carrier multiphcation. 

Base Region 

Base region design seeks the conflicting objectives of short diffusion 
transit time, requiring a thin region, and low ohmic base resistance, 
requiring a thick region. In practice, the region is made as thin as feasible, 
but of low resistivity material, and base contact geometry is chosen to 
minimize the ohmic resistance. In the p-n-i-p, very low base resistivity 
is practical, because the collector breakdown potential is fixed by the 
thickness of the intrinsic depletion layer rather than by the base re- 
sistivity as in fused junction p-n-p's. 

The large donor density in the base region together with the very 
high frequencies of operation make the emitter depletion layer ca- 
pacitance (CTe) both larger and more important than in previous tran- 
sistors. In order to reduce this capacitance, the emitter junction area 
is made small, thus leading to emitter current densities of 1 to 100 
amperes/cm2. In general, as the dc current density is increased, the 
minimum dc collector voltage must also be increased in order to preserve 

* An avalanche mechanism similar to a Townsend discharge in gases is now 
believed responsible for reverse voltage breakdown in junction structures. See 
Reference 3. 
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emission-limited current flow. Insufficient voltage may result in space- 
charge limited operation.4, a 

Three structures which may be used to obtain low ohmic base re- 
sistance are shown in Fig. 4. Obviously, the base contact ring may be 
placed arbitrarily close to the emitter, as in Fig. 4(a), so that the base 
resistance is that of the region beneath the emitter. Since this is some- 
what difficult, the ring may be placed at a distance from the emitter, 
and the emitter imbedded in the base n-region as in Fig. 4(b), reducing 
the resistance between the emitter periphery and the base ring at only a 
small cost in alpha cutoff frequency. In addition, as shown in Fig. 4(c), 
the n-region used may be of graded resistivity such as results from im- 
purity diffusion from the surface. The large impurity concentration at 
the surface minimizes both edge emission and radial base resistance. 

BASE BASE 
RING EMITTE 

DEPLETION 
LAYER COLLECTOR 

(a) CLOSE-SPACED RING 

EM TTER 

COLLECTOR 

(b) IMBEDDED EMITTER 

EMITTER 

COLLECTOR 

(c) IMBEDDED EMITTER - DIFFUSED SURFACE LAYER 
Fig. 4 — Low-base resistance structures. 
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These advantages are, however, balanced in part by an increase in the 
emitter depletion region capacitance associated with the low resistivity 
base material. 

DESIGN THEORY 

General 

The principal objectives in the initial p-n-i-p design have been high 
alpha cutoff frequency, low collector capacitance, and low ohmic base 
resistance. The equivalent circuit employed is shown in Fig. 5. The 
output and feedback admittances which are important in earlier junc- 

Ct 

, + L^ 

Ypp — qle 
kT 

2 i-an + 
i£)T 

tanh 

Fig. 5 — Equivalent circuit of the p-n-i-p transistor. 

tion triodes are omitted, since the space charge layer widening factor 
kT dw s . ii e, 7 

(H\2 Or fXc -) is very small.6,7 The transfer admittance is shown cc ' 'vTT' qw dVc 
as a current generator (afe) with cutoff frequency (| a2 | ~ 3 db down) 
of/„ because this gives explicit recognition to base region diffusion transit 
time Tb and allows it to be combined with space charge layer transit 
time Tc . 

Emitter Region Design 

Emitter region acceptor concentration should be very large (lO18 — 101J 

atoms/cc) in order to keep the injection ratio 7 close to unity at both 
low and high frequencies.8 At low frequencies, 7 is determined by emitter 
resistivity and carrier life path or diffusion length, base resistivity and 
width, as 

7 = To = 1 + q-fcie 
O'eEne 
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At high frequencies, 7 is determined by the ratio of acceptor density 
in the emitter to donor density in the base as 

1 
Thf = ~ N Dn Dh 

1 + ~ 
N I) 

Obviously, since the effective donor density in the base must be large 
to give low ohmic base resistance, the effective acceptor density in the 
emitter must be even larger if high frequency 7 is to be close to unity. 

Base Region Design 

Base region thickness, w, and the diffusion constant, Dp , determine 
the diffusion transit time for holes from injection by the emitter to 
collection by the field of the depletion layer. 

w2 m 
T' = 25-b- 

(1) 

For circular electrodes, which are useful, easily made, and easily ana- 
lyzed, the ohmic base resistance for the active region of the base between 
emitter and collector depends on base resistivity, p6, and base thickness 
as follows: 

r ' — Pb =  1 /n) 
6 Sirw qiinN dSttw 

If w is made small, r*/ can be reduced only by making No large. Although 
large reductions in 77/ can be made, increasing No is ultimately a self- 
defeating procedure for several reasons: as No is increased both Dp 

and the electron mobility, fin, decrease, thus increasing hole transit time 
and also partially off-setting the reduction in rb' by Nd ■ In addition, the 
capacitance of the emitter depletion region varies approximately as 
Nd12, thus diverting more ac emitter current from hole injection. This 
capacitance is 

(3) 

where F/ is the average electrostatic potential across the emitter de- 
pletion layer. Equations (1) to (3) show the conflicts which necessarily 
arise in base region design for very high frequencies. The limiting design 
combines very small iv, large No , small emitter area A e, and relatively 
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large dc emitter current Ie so that the minority carrier emitter admit- 
tance Dee is at least of the order of magnitude of juCre. Total emitter 
admittance is 

ql* , „■ _\\n [(! + 
. kT^+:IUT) (flr) J 

Vee + JuCTe =  / 0„2\l/2 T (.4) 
coth 

vTV12 

Dr) 

Depletion Layer Design 

As mentioned previously, the most important characteristics of the 
depletion layer in the p-n-i-p are the transit time for holes, Te, and the 
capacitance, C'tc . The minimum voltage for normal operation, I'm in , and 
maximum or breakdown voltage, T'rmax , are also significant. 

The minimum voltage for "normal" operation is reached when the 
electric field between the n-type base and p-type collector is strong 
enough so that the holes drift at their limiting velocity of 5 X 106 

cm/sec.* The collector to base voltage required for normal operation is 
the product of the minimum field strength for the limiting velocity and 
the thickness of the depletion layer and is given by 

Fmin = 10,000 xm (5) 

in which xm is depletion layer thickness in cm. The maximum field ob- 
tainable before reverse voltage breakdown is not known exactly, but is in 
practice near 100,000 volts/cm, so that 

Fmax ^ 100,000 xm . (6) 

Depletion layer capacitance is nearly independent of collector voltage 
in normal operation and is inversely proportional to layer thickness. 

c™ = — (7) 
Xm 

Transit time for holes increases directly with layer thickness, however, 
being 

- = ^ (8) 

Since increase of tc decreases the alpha cutoff frequency /„ , the choice 

* At lower field strengths, the transit time for holes is longer, giving a lower 
alpha cutoff frequency. The "normal" is the best, rather than the only possible, 
operating condition. 
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of xm is a design balance between Cc and ja, with any desire for low 
voltage operation weighting the scales toward smaller xm . 

As collector voltage and therefore field strength is reduced below that 
required for normal operation, transit time is increased because of the 
reduced drift velocity. In addition, the holes in transit interact with the 
ac field of the layer, thus increasing the output conductance </cc. Further, 
a larger density of holes in the layer is required to carry the same cur- 
rent, disturbing the field distribution. If the voltage is reduced greatly, 
space-charge limited emission may occur,4' 5 producing much longer 
effective transit times. 

If output voltage is reduced sufficiently, the collector field will not 
extend all the way from base to collector. If the layer is somewhat n-type, 
the field region collapses toward the p-region of collector. If it is some- 
what p-type, the field collapses toward the n-region of the base. The 
latter arrangement has the advantage that /„ is less drastically reduced. 
Further, in normal operation, the negatively charged acceptor atoms of a 
slightly p-type layer will neutralize the charge of the holes in transit, 
thus making the field more nearly constant from collector to base. The 
effects of low voltage on the collector field distribution are indicated ap- 
proximately by the dashed lines of Fig. 4.* 

Collector Region Design 

Acceptor concentration in the collector should be large for several 
reasons. This gives a low collector body resistance, which virtually 
eliminates internal series loading of the collector, and it aids operation 
by fixing the position of the collector edge of the depletion layer. The 
advantages obtained may be seen by considering a unit in which the 
collector body is made somewhat p-type and a collector contact is at- 
tached at some distance from the depletion layer. If 10 ohm-cm p-ma- 
terial is used for the collector body and a collector contact fastened 2.5 
mils from the collector resistance of 250-500 ohms will result. In addition, 
because of the weak drift field at the collector edge of the depletion 
layer, the hole transit time is about twice that for a true p-n-i-p. 

Alpha Cutoff Frequency 

A current transmission cutoff frequency fa for the p-n-i-p is given 
approximately byf 

* The field distributions occurring in an intrinsic depletion layer at low field 
strengths have been discussed in Reference 11. 

f It is assumed that alpha is given by a = « o(l + jf/fa)- Equation (9) repre- 
sents the phase of this expression quite well, but the amplitude rather poorly. 
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2ir{jb + rc/2) 
(9) 

Equation (9) implies (correctly) that the delay time for total current 
passing through the depletion layer is about one-half the transit time 
for the carriers. This results from the induction of charge on the base 
and collector electrodes by the carriers in transit. If ^ = wtc is carrier 
transit angle and Jc = e3"1 is the conduction current of holes entering 
the depletion layer from the base, the total current entering the depletion 
layer from the base can be shown to be 

It may be noted that the total current J of equation (3.6-2), when written 
in the form Jlnnx Z0 in which d is the phase shift of the total current with 
respect to the conduction current entering from the base, is approxi- 
mately 0.973 Z —22.5° for ip = 45°, 0.901 Z -45° for ^ = 90°, and 
0.636 Z —90° for ip = 180°. 

DESIGN COMPARISON 

Comparison of figures of merit is the best, albeit unsatisfactory, means 
for comparative evaluation of devices. For junction transistors, one 
non-controversial figure of merit is established — the noise figure. Two 
transmission figures of merit for junction transistors are suggested at 
the bottom of Table I. It should be pointed out that the p-n-i-p figures 
are for theoretical design possibilities, some features of which have al- 
ready been realized experimentally. 

The Units 

Table I gives parameters of interest for several types of transistors. 
Structural, material, and electrical parameters for the Bell Telephone 
Laboratories' developmental M1778 p-n-p unit are averages for large 
numbers of units. The electrical parameters of the plated-contact tran- 
sistor recently announced by Philco were taken from a talk by W. H. 
Forster before the Philadelphia I.R.E., Dec. 3, 1953.12 The structural 
and material parameters have been estimated. The p-n-i-p structures 

(10) 

which reduces for small >p to 

./ ~ e 

General 
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Table I — Transistor Designs 

P-N-I-P(Calculated Values) 
M1778 Philco 

No. 1 No. 2 No. 3 

Wb ■— mils 1.0 0.2 0.13 0.8 0.04 
Pi, — ohm cm 1.5 0.5 0.14 0.05 0.02 
dia, — mils 15 4 10 6 5 
didc — mils 30 6 15 8 5 
Xm — mils 0.1 0.05 0.63 0.36 0.7 
Nb — atoms/cc 1015 3.5 X 1015 1.4 X 10'6 4.2 X 1016 1.2 X 1017 

fa — mcps 2.0 55 100 200 360 (600)* 
rb' — ohms 50 65 34 20 16 
Cc — mmf 25 2.5 1.0 0.5 0.1 
uaCe — mhos — — 0.023 0.038 0.102 
Ce — mmf — — 36 22 27 
COaTb c 0.0157 0.056 0.0214 0.0126 0.0060 
(/a/25 n'Cc) 'Z2 — mcps 8 115 340 900 3000 

* First value calculated by Equation (9); second value is for diffusion through 
base n-region only (i.e., rc = 0). 

and materials were assumed and electrical parameters were calculated 
from them by the Equations (1) to (11). Mobilities measured for low 
resistivities by M. B. Prince9 were used in the calculations. 

Figures of Merit 

The last row of Table I gives ({
a/25rb'Cc)112, which was discussed 

previously as a gain-bandwidth figure of merit for a broad band common 
emitter amplifier. It is also related to the maximum frequency at which 
reliable oscillations may be obtained. The figure of merit uarb'Cc is the 
open circuit voltage feedback ratio at the alpha cutoff frequency and 
gives some indication of the balance between the two time constants, 
1 /wa and rbCc. It is also approximately the ratio of input impedance to 
output impedance in a common emitter broadband amplifier at high 
frequencies. 

Comments 

It should be noted that the emitter depletion layer capacitance is 
significant in all the p-n-i-p designs and that barrier transit time reduces 
alpha cutoff frequency some forty per cent in the highest frequency 
design. Despite this, it is probable that p-n-i-p or n-p-i-n germanium 
junction triodes will serve as oscillators and perhaps amplifiers at fre- 
quencies as high as 3,000 mcps. 
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EXPLORATORY MODELS 

Objectives 

While the p-n-i-p transistor will be useful for high voltage and high 
power operation, our exploratory development work has been directed 
toward good performance at very high frequencies. The initial electrical 
objectives set were those of p-n-i-p No. 1 of Table I: fa = lOO^mcps, 
Cc < 1.0 mmf, and r*/ = 34 ohms. The base thickness of 0.13 mil and 
base resistivity of 0.14 ohm-cm are the critical structural parameters. 

Fabrication 

Although p-n-i-p's might conceivably be built in a single operation, 
one procedure used has two major parts. The first is the production and 
evaluation of 2-mil thick wafers of intrinsic germanium with a skin or 
surface layer of 0.1-1.0 ohm-cm n-germanium 0.3-0.5 mils thick. The 
second step is the alloying of collector, emitter, and base electrodes to 
these wafers. 

Wafers with n-type skins have been made by three methods. Intrinsic 
crystals growing from a melt by the Teal-Little technique have been 
doped with arsenic, grown for a few seconds longer (another 0.5-1.0 
mils), and snatched mechanically from the melt. The resulting crystal 
surface has a mirror finish and is relatively flat. N-type skin layers have 
also been produced by alloying the wafer surfaces with lead-arsenic 
and lead-antimony mixtures and by the diffusion of arsenic into wafer 
surfaces. 

Collector and emitter electrodes are alloyed by the indium germanium 
process with times, temperatures, and quantities of indium selected to 
give desired alloying depths. Ring-base connections of antimony and 
gold plated kovar have been used. 

Measurements 

Progress toward the initial design objectives mentioned previously 
has been encouraging. The predicted behavior has been verified semi- 
quantitatively. The capacitance of a 15-mil diameter collector is usually 
less than 1.0 mmf at Vo = —25 volts as predicted in design No. 1 of 
Table 1. Ohmic base resistances generally less than 50 and as low as 5 
ohms have been measured. However, the highest alpha cutoff frequency 
obtained as yet is 25 mcps. This has been limited primarily by the thick- 
ness of the base layer. At present this is of the order of 0.30 mils so that 
an alpha cutoff frequency of 25 mcps is about what would be predicted. 
Further development of the technology of fabrication seems reasonably 
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straight-forward at least to the design objectives of No. 1 and No. 2 of 
Table I. 

The best unit measured to date showed ao > 0.96, /„ ~ 25 mcps, 
rb' ~ 60 ohms, and Cc ~ 1.8 mmf. These values agree quite well with 
those expected from the resistivities and layer thicknesses employed. The 
unit oscillated at 95 mcps with Vc = —30, /„ = 1.0 ma. Connected in a 
common emitter video amplifier working from a 75-ohm generator im- 
pedance into a load resistance of 2,150 ohms shunted by 5 mmf of ca- 
pacitance, this unit produced a power gain of 23 db at 500 kc, falling to 
20 db at 3 mcps and 15 db at 10 mcps.* In an uncompensated common 
emitter tuned circuit, this unit gave 20.5 db at 10 mcps with 3 mcps band- 
width between the three db points.* It has been operated with a collec- 
tor voltage of —90 volts. 

SUMMARY 

The designed elimination of donors and acceptors from a thick col- 
lector depletion layer introduces a new design variable in junction tran- 
sistor triodes. The new structure (p-n-i-p or n-p-i-n) is believed capable 
of development into the microwave frequency range. Several factors 
which were of second order importance in p-n-p and n-p-n units such as 
emitter depletion layer capacitance and collector transit times become 
significant in limiting ultimate performance. The thick depletion layer 
permits operation at higher voltages than were previously possible in 
any but low frequency units.* 

Moderately good results have been obtained already. Units having 10 
mil emitter diameter, 15 mil collector diameter have produced stable 
gains without compensation of 20.5 db at 10 mcps and have oscillated 
at 95 mcps. 

The junction transistor now promises to be a serious competitor to 
high vacuum triodes over a much larger range of frequencies and power 
levels than before. 
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Arcing of Electrical Contacts in Telephone 

Switching Circuits 

Part III—Discharge Phenomena on Break of 
Inductive Circuits 

By M. M. ATALLA 

(Manuscript received November 16, 1953) 

This is a presentation of a study of the discharge phenomena occurring 
between contacts on break of an inductive load. The main objectives are: 
(1) to forward some detailed explanations of the main components of a 
break transient in terms of basic conduction and emission processes, and 
(2) to establish the conditions that determine the nature of the transients. 
The study covered the following: (1) occurrence of interrupted and steady 
arcs, (2) initiation of reversed arcs in one breakdown, (S) arc initiation 
under dynamic conditions, (4) initiation and maintenance of glow dis- 
charge, and (5) glow-arc transitions. 

INTRODUCTION 

An important phase in the study of discharge phenomena between 
contacts is that involving the break of an inductive circuit. A typical 
switching circuit in its simplest form consists of a battery in series with a 
coil (electro-magnet), a cable or lead and a pair of contacts. Coils now in 
use may have inductances of the order of tens of henries and may store 
as much energy as 106 ergs. On break of the circuit an appreciable portion 
of this energy may be dissipated between the contacts through a steady 
arc, a series of interrupted arcs, a glow discharge or any of their combina- 
tions. In most cases, the energies involved are too high to provide 
satisfactory contact life from the standpoint of electrical erosion. 

The discharge transients obtained are usually complex in nature.1 

A close examination of these transients reveals a great deal of rather 
curious effects that have not been previously considered in detail. This 
is a presentation of a recent study of the break transient with the 
primary objective of furnishing some explanation of the more pertinent 
phenomena involved in terms of the basic concepts of surface emission 
and gas conduction. 

535 
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NOTATION 

a Arc radius or equivalent characteristic length of cross section 
c Local capacitance at the contacts 
e Electron charge 
T-a Current density in the arc 
1th Thermionic emission current density 
Ina Normal glow current density 
lao Abnormal glow current density 

oLimit) Limiting glow current density preceding glow-arc Limit transi- 
tion 

k Boltzman constant 
I Local inductance at the contacts 
m Mass of contact metal atom 
n Number of consecutive arcs in one breakdown 
r Resistance of the local contact circuitry 
s Separation between the contacts 
1 Time 
fell Charging time between breakdowns 
f dei Deionization time following an arc 

to Glow duration 
Us Velocity of contact separation 
Uch Charging velocij^ defined as s/Ich 
Ual Velocity of the metal atoms 
V Arc voltage 
Vn Residual voltage at the contacts following a breakdown of n- 

consecutive arcs 
2 Impedance (l/c)112 

A Constant in the thermionic equation 
Aa Area of arc spot 
C Circuit capacitance 
E Battery voltage 
F Field strength 
I Current 
lo Current in a glow discharge 

Minimum arcing current 
lo Initial closed circuit current 
L Circuit inductance 
R Circuit resistance 
T Absolute temperature 
Tb Absolute boiling temperature 
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To Absolute initial temperature 
V V oltage 
Vai Arc initiation voltage 
Vgi Glow initiation voltage 
V0 Voltage drop across the contacts wtih normal glow 
a Thermal diffusivity 
v Work function 
w Angular frequency (lc)~112 

GENERAL 

A typical circuit consisting of a battery, a coil of an electro-magnet, 
a cable or lead and a pair of contacts is shown in Fig. 1(a). Due to the 
usual magnetic core of the coil, this circuit presents some unnecessary 
complications in making interpretations of the observed contact phe- 
nomena. Since our main objective is an understanding of the basic 
phenomena occurring between the contacts, it appeared justifiable to 
restrict our work to circuits and circuit elements that lend themselves 
to simple treatment. Figure 1(b) shows the circuit used in most of this 
work. All coils used have air cores. 

When the contacts are closed, a steady state current /„ = E/R is 
established in the circuit. At the first physical separation between the 
contacts, the circuit current will charge the capacitance C causing a 
voltage rise at the contacts at an initial rate of /0/C. In the meantime, 
the separation between the contacts will increase. The first breakdown 
will occur when the voltage across the contacts first reaches or exceeds 
the arc initiation voltage corresponding to the separation attained, the 
atmosphere involved and the contact surface condition. Fig. 2 represents 
diagrammatically the occurrence of the first discharge, abc is the arc 
initiation voltage versus separation line for a "normal" contact.2 The 
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Fig. 1 — (a) Typical relay circuit in practice, (b) Linear circuit used in this 
study. 
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CONTACT SEPARATION —»- 
Fig. 2 — Initiation of the first arc between contacts on break of an inductive 

circuit. 

portion be corresponds to the sparking potentials in the atmosphere, 
ab corresponds to the range of small separations, of the order of or less 
than the mean free path of an electron in the atmosphere, where the arc 
is initiated by field emission through the influence of surface contamin- 
tions or films. As was shown in Reference 2, when the cathode surface 
was carefully cleaned, the constant field line was not obtained and the 
arc was initiated at the minimum sparking potential of the atmosphere. 
It occurred on the sides of the contacts along a path much longer than 
the minimum separation between the contacts.* 

Lines 0-1 and 0-2 represent the voltage rise at the contact with small 
and large shunt capacities. Points 1 and 2 are the respective first dis- 
charge points. In the first case, the arc is initiated at a smaller separation 
and higher field strength without direct influence of the atmosphere. In 
the second case the arc is initiated at a lower field strength at the spark 
potential of the atmosphere, f 

The first arc established may or may not be maintained depending on 
conditions that are discussed in the next Section. When an arc is inter- 

* With Pd contacts a gross field of 20 X 10° volts/cm was reached between clean 
contacts without initiating an arc along the shortest gap. According to the Fowler- 
Nordheim equation a field of about 50 X 10° volts/cm is required to give the neces- 
sary initiatory electrons. It is possible, however, that before such a high field is 
attained a metal bridge is pulled electrostatically3 to short the gap. The electro- 
static stress is roughly given by 0.5 X 10~12 F- Kg/cm2 where F is the field 
strength in volts/cm. At F = 50 X 10® volts/cm, the stress is 1250 Kg/cm2 which 
may exceed the yield stress for the contact metal. 

f The first arc may be initiated at an appreciably lower voltage than predicted 
by the above static consideration. The first break at the contacts usually follows 
the explosion of molten bridge drawn between the contacts. Thermionic emission 
can then furnish the initiatory electrons of the arc. This is only possible, however, 
if the voltage across the contacts exceeds the ionization potential of the metal 
atoms before excessive cooling of the cathode has occurred. 
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rupted, it is followed by a recharging process to a new arc initiation 
voltage when a second arc is initiated. Under certain conditions, the 
second arc may be initiated at a lower voltage than the first arc due to 
residual effects of the first arc which may alter the conditions in the gap. 
This effect is discussed later. 

A transient on break with a series of interrupted arcs is shown in 
Fig. 3. The first arc was initiated at 230 volts and a gross field of 2.5 X 106 

volts/cm. All the following arcs were initiated at the spark breakdown 
potentials in air corresponding to the separations involved. Fig; 4 
shows a transient where the arc was sustained with occasional interrup- 
tions. 

In addition to arcing, one may obtain glow discharge. Fig. 5 shows a 
transient where glow discharge predominates. Glow initiation and 
glow-arc transitions are discussed in a later Section. 

Fig. 6 shows the methods used for current and voltage measurements. 
As indicated, direct voltage measurements at the contacts were avoided 
to eliminate the unnecessary complications of the measuring circuit. 
INTERRUPTED ARCS 

Conditions for Obtaining Interrupted Arcs 

A breakdown from a voltage Fa. into an arc corresponds to a rapid 
voltage drop at the contacts from Va* to the arc voltage p. For most prac- 
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TIME, t, IN 10~6 SECONDS 
Fig. 3 — Typical contact voltage transient on break of an inductive circuit. 

Pd contacts in atmospheric air, E = 50 volts, L = 0.2 henry, R = 950 ohms and 
C = 510 X 10-12 farad. Velocity of contact separation = 40 cms/sec. 



540 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1954 

ID 

< 

O 
> 

o 
< 
H 
Z 
o 
o 

300 H 

0—i 
^ jyyvwwvvvAA^. 

0 80 
TIME ,t, IN 10"6 SECONDS 

Fig. 4 — Contact voltage transient with sustained arc on break of an inductive 
circuit. Pd contacts in atmospheric air, E = 50 volts, L = 0.025 henry, 72 = 115 
ohms, C = 20 X 10-12 farad. Velocity of contact separation 40 cms/sec. 

tical purposes one may neglect the voltage drop time which is the initia- 
tive period of the arc. For the circuit in Fig. lb, the current through the 
arc is the summation of the main circuit current and the transient current 

from the l-c circuit. The transient current is (Fai — v){j)111 sin 11 (lc)112. 

Fig. 7, (a) and (b), represent diagrammatically the voltage and current 
transients for lumped and distributed circuits. In both cases the arc is 
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Fig. 5 — Contact voltage transient with glow discharge on break of an inductive 

circuit. Pd contacts in atmospheric air, E = 50 volts, 700 ohms relay coil and C = 
200 X 10U-12 farad. Velocity of contact separation = 40 cms/sec. 



ARCING OP ELECTRICAL CONTACTS IN TELEPHONE SWITCHING CIRCUITS 541 

terminated when the current drops to the minimum arcing current J, 
It is evident that the condition for obtaining an interrupted arc is: 

/„ - {Vai -v)^ 
1/2 

< Ir, (1) 

It may be pointed out that surface contamination, such as organic 
activation, tends to decrease both/m and Fa." 4- According to equation 1, 
one may conclude that contact surface contaminations usually tend to 
cause a transition from an interrupted arc transient to a steady arc 
transient. The latter is usually associated with appreciably higher 
energy dissipation between the contacts and much lower contact life 
due to erosion. 
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Fig. 6 — Voltage and current measuring circuit. 

Residual* Voltage Following an Interrupted Arc 

At the interruption of the first arc the voltage at the contact is v, 
the arc voltage, and the voltage at the capacitor C, Figure lb, is Vi 
which is usually negative. If the local contact circuit is non-dissipative, 
the residual voltage is vi = 2v — Fa,-. For a dissipative circuit with a 
resistance r corresponding to the frequencies involved: 

iii = p - (Fa.- - v)e-M2)-'r") (2)t 

for an oscillating circuit, as is usually the case, where z = (l/C)]U. 
The capacitor C at th will then recharge the local contact capacity c, 
c « C, through the inductance l. If the voltage attained at the contacts 
is sufficient and the conditions in the gap and at the contact surface are 
favorable, a reversed arc may be re-initiated, as previously discussed. 
This process may repeat several times and the residual voltage ii„ will 
change sign and decrease progressively. At the end of n arcs, it can be 
shown that the residual voltage v„ is given by: 

* The term "recovery has also been used in the literature, 
t Equation 2 and 3 are valid only for small values of r/z. These are approxima- 

tions of the more general expression given by Germer.14 
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( —l)ny„ = V + {Vai - y)e-('/2)-(rW.» _ 2v ^ 1 e-CW2).(r/.).n (3) 
n=0 

This equation indicates that vn is negative for odd numbers of arcs and 
positive for even numbers of arcs.* If r/z is neglected, Equation 3 is re- 
duced to 

( — 1)"^ = Vai — 2vn (3a) 

For Vai = 300 volts and y = 14 volts, the residual voltages following 
the first four arcs are respectively —272, +244, —216 and +188. These 
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(b) 
Fig. 7 — Mechanism of interruption of an arc. (a) Lumped circuit elements 

(b) Distributed elements. 

values are numerically higher than measurements due to neglecting 
the term r/z. For the circuits used in our experiments r/z ranged be- 
tween 0.1 and 0.5 and as many as 4 or 5 consecutive arcs have been ob- 
tained in one breakdown. Figure 8 shows a transient with both positive 
and negative residual voltages corresponding to even and odd number 
of arcs respectively.! 

* Except when vn is not too much higher than the arc voltage v. 
f The following alternative explanation for the occurrence of high positive 

residual voltage was considered: the first arc may be extinguished by the formation 
of a metal bridge due to the arc2. This may occur before the capacitor C has at- 
tained a negative voltage. This possibility, however, was eliminated. From the 
measured residual voltages the energies in the arcs were calculated. The heights 
of the bridges produced were computed (reference 2) and were found to be too 
small compared with the contact separations. 
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Fig. 8 — Contact voltage transient with interrupted arcs on break of an in- 
ductive circuit. Pd contacts in atmospheric air, E = 50 volts, L = 0.010 henry, 
li = 40 ohms and C = 900 X lO-12 farad. Velocity of contact separation = 40 
cms/sec. 

Initiation of Reversed Arcs in One Discharge 

In one breakdown from a voltage F,,. it is commonly observed that a 
succession of reversed arcs may be obtained. It was shown in equation 3 
that the residual condenser voltage yn progressively decreases, numeri- 
cally, with the number of arcs n. Following the interruption of the first 
arc, the condenser voltage is — (ih 1 and the contact voltage is +v, the 
arc voltage. The capacity C will then recharge the local capacitance at the 
contact through a small load inductance I. If the circuit resistance is neg- 
lected, the maximum voltage the contact will acquire is — (2 | Pi j + v). 
If this equals or exceeds the original arc initiation voltage Vai , a second 
arc is obtained. For illustration, consider a breakdown initiated at Fa.- 
= 300 volts and y = 14 volts. From Equation 3, vn was calculated for 
the first four arcs at r/z = 0.0 and 0.2 The corresponding maximum 
contact voltages acquired after each arc were also calculated and the 
results are given in Table I. For r/z = 0, column 3, one may obtain, ac- 
cording to this simple circuit consideration, more than 4 arcs, actually 
5. For rjz = 0.2, which is a reasonable practical value, only 2 arcs may 
be obtained, column 5, since following the second arc the maximum 
voltage attained at the contacts is only 256 volts which is less than the 
initial arc initiation voltage. 

It is possible in some cases, however, to obtain a few more arcs than 
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Table I — Initiation of Reversed Arcs by Overcharging of 
Contact Capacitance 

(Calculated) 

r 
i = 0 - = 0.2 2 

a) 
Arc No. 

(2) 
Sn 

(3) 
Max. 

Cont. Voltage 

(4) 
Vn 

(5) 
Max. 

Cont. Voltage 

1 
2 
3 
4 

— 272 
+244 
-216 
+ 188 

-558 
+502 
-446 
+390 

-195 
+ 121 
-60 
+22 

-404 
+256 
-134 
+58 

Vai = 300 volts, t; = 14 volts. 

predicted above. These additional arcs have appeared to be initiated at 
lower voltages than the first arc. This is undoubtedly due to the residual 
surface and gap effects of the previous arc.* These are discussed in the 
following section. 

Arc Initiation Under Dynamic Conditions — Introduction 

In Reference 2 measurements have been presented of the arc initiation 
voltage between contacts at different separations and surface conditions. 
These tests are "static" in the sense of allowing enough time to elapse 
between two arcs to obtain a complete reconditioning of the contact 
surfaces and gap. With successive arcing, as obtained on break of an 
inductive circuit or during one breakdown, it was observed that the 
arc may be initiated at appreciably lower voltages compared with 
static test results. 

One arc may enhance the initiation of a shortly following arc possibly 
through the effects of: residual ions in the gap or on a cathode surface 
film, residual metal atoms in the gap and residual thermionic emission. 
Exactly how each of these effects can enhance the initiation of the arc 
can be determined only after an understanding of the mechanisms of 
initiation of the first arc, its maintenance and its termination. It is in 
order at this point to present a sketchy outline of some plausible mecha- 
nisms which are largely of speculative nature. This discussion is also 
limited to short arcs initiated and maintained with no direct influence 
of the surrounding atmosphere. 

* The additional arcs observed may be partially accounted for by a considera- 
tion of the actual value of the arc terminating current which was taken as zero in 
the above calculations. 
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a. Arc Initiation 

(1) The first initiatory electrons are produced by field emission. The 
necessary field strength is largely dependent on cathode surface con- 
ditions. It is highest for perfectly clean cathode surfaces and appreciably 
lower in the presence of cathode surface films.2'4' 6 This is probably due 
to lower work functions or due to the presence of positive ions on a 
cathode film causing local field intensification.7 (2) The field emission 
electrons will travel to the anode where, to qualify for setting the second 
step in arc initiation, should be able to produce, through evaporation, 
some anode metal atoms* or possibly atoms of an adsorbed gas or a 
surface film. (3) The potential drop across the contacts should exceed 
the ionizing potential of the evaporated atoms to allow ionization by 
electron collision. (4) Ions produced, on approaching the cathode, will 
cause local fields high enough to produce electron avalanches. (5) the 
above processes will rapidly multiply leading to the establishment of an 
arc. 

h. The Established Arc 

One main characteristic of the short arc is its very high cathode current 
density, t This high emission rate indicates that the short arc is not only 
initiated but also maintained by field emission.Since the total voltage 
drop across the arc is only of the order of 10 volts, the cathode drop 
thickness should be very small compared to the total arc length. The 
cathode drop is followed by the arc column or plasma which is a high 
conduction medium with equal electron and ion densities, a small 
potential drop and a relatively high neutral atom density. To maintain 
the arc: (1) enough metal atoms should be produced to maintain the 
necessary ionization medium, (2) ions lost by collection at the cathode, 
by recombination and by lateral diffusion should be replaced by an 

* The arc may also be initiated without the assistance of the anode atoms or 
ions8. The field emission current density at the cathode in this case, was found 
to reach a critical value before the arc is initiated. It is thought9 that at this 
current density the emission spot can attain its melting point through resistive 
heating. The cathode in this case will furnish the necessary metal atoms for the 
subsequent steps of arc initiation. 

f Recent measurements by the author obtained from arc tracks on Pd contacts 
produced by short duration constant current arcs indicated current densities as 
high as 50 X 10® amp/cm2. 

f Paper by P. Kislink to be published in the Journal of Applied Physics. 
§ Recent analytic considerations, to be published by the author, indicate that 

in such arcs the current density should be dependent on the work function of the 
cathode material as well as on the product "pressure X separation" in the arc. 
For instance, for work functions of 2 and 5 volts, our calculations show that the 
minimum current densities are, respectively, 5 X 105 and 1.4 X 107 amp/cm2. 
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equal number of ions obtained by electron-atom collision in the arc 
column. 

c. Arc Termination 

In general, the arc may be terminated by disturbing one or more of 
the steady state conditions discussed above. For instance, if the potential 
across the contacts is decreased to or below the ionization potential of 
the metal atoms, the necessary ionization process will stop and a de- 
ficiency of ions in the arc will result. The negative space charge will 
immediately upset the arc potential distribution interrupting the high 
electron emission, etc. The arc is also interrupted when the current drops 
to the minimum arcing current value. This is a well established experi- 
mental characteristic of the arc which has yet to be explained in terms 
of the more basic concepts. It is thought, however, that a decreasing 
arc current decreases the pressure and the atom density in the arc col- 
umn. It is possible that when a limiting current is reached the ionization 
rate becomes too small to maintain the condition of equal space charges 
in the arc column. One should expect, accordingly, that providing the 
contact surfaces* with a film of low evaporation energy should furnish 
a more adequate supply of atoms to the arc which may then be main- 
tained at lower currents. This is in accordance with observations ob- 
tained for active contacts.4 

^Lrc Initiation Under Dynamic Conditions; Observations on Break 

It appeared of interest to examine the relations between arc initiation 
voltage and contact separation during the break transient and compare 
them with measurements made under static coditions.2 In Fig. 3, the 
increase in arc initiation voltage with separation is in accordance with 
the static relation shown as a broken line. During the period 2-3, the 
breakdowns occurred along longer paths than the minimum contact 
separation and at the minimum value of the sparking potential. By 
measurement /s = 20 X 10"G sec, S3 = 8 X 10-4 cm and ps = 0.61 mm 
Hg X cm. This is roughly the ps value at the minimum sparking poten- 
tial in air.10. 

By gradually decreasing the charging times of the transient, by adjust- 
ing circuit parameters, it was observed that a point was generally 
reached when a portion of the breakdowns was initiated at voltages well 
below the coresponding static initiation voltages. Fig. 9 illustrates this 

* The necessary atoms may be obtained from either electrodes or both. Arc 
transfer observations generally indicate signs of evaporation from both electrodes. 
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Fig. 9 — Lowering of arc initiation voltage under dynamic conditions. Tran- 

sient on break of I'd contacts in atmospheric air. E = 50 volts, L = 0.010 henry, 
li = 40 ohms and C = 270 X 10-12 farad. Velocity of contact separation = 40 
cms/sec. 

effect. In contrast to the static line, shown as a broken line, the break- 
down potential shows little change with separation for a major part ot 
the transient. Towards the end, it shows a gradual increase which in this 
particular case fails to reach the static line. Figure 10(b) is a plot of the 
ratio (V„i)dvn/iVai),tai versus time along the transient. 

This phenomenon is attributed to residual effects in the contact gap 
or on the contact surfaces. In this section, are discussed the possibilities 
of the presence of residual ions, residuad atoms and residual thermionic 
emission. 

a. Deionizalion Time 

This is determined by calculating the transit time of an ion across the 
contact gap under the applied field corresponding to the charging of the 
contact capacitance. For simplification, the initial motion of the ions 
and the initial field are neglected, the voltage rise is approximated by 
V/Vai = l/lCh and the field is taken as V/s. 
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Fig. 10 — Lowering of arc initiation voltage under dynamic conditions. 

Defining a charging velocity s/lCh = uCh and a deionization velocity 
s/ldeio = Udeio and substituting in equation 4 gives 

Udeio — 
eVai 
§rn Uch 

1/3 
(4a) 

Following an arc, the contact voltage increases until a new breakdown 
occurs at Fa,-. At this instant residual ions from the previous arc could 
be present in the gap only if Ueh > Udeio , or if 

^ ieVA 
U'h > 1 ~Gm) 

112 
(5)^ 

This is a convenient expression to apply to our measurements, Fig. 
9. For any breakdown point on the transient Fa, is measured and Uch is 
calculated from the corresponding circuit current, capacity C and con- 
tact separation. For illustration, for Pd contacts and Fa,- = 300 volts, 
equation 5 shows that for the presence of residual ions, Ihe charging 
velocity uch must be greater than 10* cms/sec. For / = 0.3 amp. and C = 109 

farad, tCh = VaiC/I = 10~6 sec and for the presence of residual ions the 
separation between the contacts must be greater than 1.0 cm. This sep- 
aration is much greater than most separations involved in our field of 
study. In Fig. 10(b) are plotted the values of Uch during the transient. uCh 
reaches a maximum of about 1.8 X 104 cms/sec. This maximum occurs 
because uch is proportional to si which is a product of two monotonic 
functions one increasing and the other decreasing. It is of interest to note 
that the decrease in w0/, caused an increase in the ratio (Fa,)dI/n/(Fa,).fo«. 

* Deionization by recombination and lateral diffusion were neglected. 
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From a group of transients similar to Fig. 9, obtained at different con- 
ditions, the plot in Fig. 11 was made. It indicates that in general, the 
ratio {Vai)dyn/{Vai)»tat starts decreasing at about Uch = 2 X lO3 cms/sec 
and at 2 X 104 the arc initiation voltage is only 50 per cent of the corres- 
ponding static value. As shown in the figure a deionizing velocity of 106 

cms/sec is just about two orders of magnitude too high to account for 
this phenomenon. It should be added, however, that while all the ions 
have cleared the gap, it has been proposed7 that the life time of an ion 
on a surface film can be long enough to enhance the initiation of the 
next arc. If this mechanism is accepted, our data would indicate that 
the life time of the ions was only of the order of KF7 second. 

h. Residual Atoms 

After an arc, the contact gap contains some metal atoms evaporated 
from the electrodes by the arc. These atoms will clear the gap by travel- 
ling to and condensing on the electrodes and by lateral diffusion. A crude 
approximation is given here of the time of recollection of the atoms on 
the electrodes based on their initial momentum. 

One may visualize the arc spot on an electrode to have a temperature 
distribution extending from submelting temperatures to a range of 
boiling temperatures, corresponding to the arc pressures. The lowest 
temperature is probably the normal boiling temperature of the contact 
metal. At the termination of the arc, the metal atoms produced at the 
lowest boiling temperature are the slowest and last to recondense on the 
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Fig. 11 —Apparent relation between arc initiation voltage and velocity of 
charging. E = 50 volts, L = 0.010 henry, K = 40 ohms and C as indicated for Pd 
contacts in atmospheric air. 
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opposite electrode. An estimate of their velocity may be obtained by 
assuming thermal equilibrium to have preceded the arc extinction and 
by using the Maxwellian velocity distribution. The most probable 
velocity of the metal atoms at the boiling temperature IT is: 

- = Kpf (« 

Due to subsequent collisions of the atoms, the velocities thus obtained 
are probably too high. For Pd at T^ = 2500oK, uat = 6.4 X 104 cms/sec. 
In Fig. 11 is plotted a portion of the velocity distribution at the above 
conditions. It appears that residual atoms can still be present in the gap 
at the initiation of the next arc. If it is assumed that the presence of Pd 
atoms in the gap is alone responsible for the lowering of the arc initiation 
voltage, one may conclude that the sparking potential in Pd vapor is 
lower than in air. No evidence, however, is available to support this. 
On the other hand, at least for contacts with gaps short enough to ex- 
clude the surrounding atmosphere, or for vacuum contacts in general, 
it is quite probable that the presence of metal atoms in the gap could 
enhance arc initiation. This, as pointed out previously, is because the 
arc cannot be initiated until atoms from the electrode surfaces are 
evaporated, by electron bombardment or otherwise, to be subsequently 
ionized. 

c. Cooling Time of The Arc Spot, Maintenance of Thermionic Emission 

At the interruption of the first arc, the arc spot initially at the boiling 
temperature of the metal, will start cooling mainly by conduction to the 
bulk of the surrounding metal. For a certain period, however, it will 
remain at temperatures high enough to furnish enough thermionically 
emitted electrons that may enhance the initiation of the following arc. 
Assuming the arc spot to be a hemisphere of radius "a" initially at a 
temperature T b while the rest of the metal is at To, the temperature T 
at the center of the hemisphere is given by 11: 

4 ra/2(a()l/2 
(T - T0)/{Tb - T0) = ^ jo zV2 dz (7) 

Numerically, for Tb = 2500oK and To = 300oK, T drops to 2400oK and 
to 1600oK at a/2 {at)11'1 = 2.0 and 1.2, respectively. It is evident 
that the cooling time is proportional to the area of the arc spot. If the 
current at which the arc is terminated is 1 m and the arc current density 
is ia, the area of the arc spot is Ao = Im/ia and a = (/m/iria)1'". For 
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ia = 107 amp/cm27, and Im = 0.5 amp one gets: T = 2400oK at t = 
4 X 10~9 sec and T = 1600oK at i = 1.1 X 10"8 sec for Pd. 

The corresponding thermionic emission is obtained from 

ith = AT2e"^ 

with A = 60 amp cm-2 deg.-2 and tp = 4.99 volts for Pd12. At the 
termination of the arc, t = o, ith = 0.048 amp/sec2, at f = 4 X 10 9 sec, 
ith = 0.032 amp/cm2 and aU = 1.1 X 10_8sec, ith = 6 X 10_8 amp/cm.2 

The respective rates of electron emission from the arc spot are 1.5 X 1010, 
1.0 X 1010 and 1.9 X 104 electrons/sec. This indicates that the initiating 
electrons may he furnished by thermionic emission if the charging time fol- 
lowing the first arc is of the order of or less than about 5 X ICT* sec. This 
time is more than an order of magnitude too small compared to the 
charging times involved in the data of this section. One may, therefore, 
exclude the thermionic emission as an explanation for the low arc initia- 
tion voltages obtained. 

The initiation of reversed arcs, however, may be enhanced by ther- 
mionic emission from the previous arc spots since the recharging times 
involved, irilc)1'2, are usually very small. I and c are usually of the orders 
of ICT7 henry and 10-11 farad and the charging time is of the order 
ICT9 sec. 

ESTABLISHMENT OF GLOW DISCHARGE AND TRANSITION INTO AN ARC 

For the circuit in Fig. 1(b), it was observed that on break of the 
contact, glow discharge was observed under certain circuit and contact 
surface conditions. An obvious requirement was that the voltage across 
the contacts should exceed the glow discharge voltage of the contact in 
the surrounding atmosphere. This requirement alone, however, was not 
sufficient as in some eases no glow could be detected, in others glow was 
established and maintained and in other instances glow was followed by a 
transition into an arc. In this section is presented an experimental study 
of the conditions that determine the nature of the discharge. 

Cathode Current Density in Static Normal Glow 

First, measurements were made of the cathode current density in a 
static normal glow. This was done for palladium and gold contacts in dry 
atmospheric air at 250C. In each case the cathode was the flat end of a 
cylinder and the anode was a larger parallel flat surface of the same ma- 
terial as the cathode. The circuit in Fig. 12 was used. The contacts were 
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cleaned by filing then washing with methyl alcohol and distilled water. 
The contacts were slowly brought together until glow discharge was 
established. Before measurements were made the circuit current was 
increased to allow the glow to cover the entire cathode flat surface as 
well as a portion of its cylindrical surface. By allowing the contacts to 
glow for about 20 minutes, the occasional arcing first observed was 
eliminated and a steady glow was established. The cathode was observed 
under a microscope and the current was adjusted to obtain a glow just 
covering the flat cathode area. From the measured current and the 
cathode area, the cathode current density was determined. The results 
are given in Table II. 

Fig. 12 — Circuit for measurement of cathode current density in normal glow 
discharge at static conditions. 

Observations on Glow Maintenance and Glow-arc Transitions 

The simplified circuit in Fig. 13 was used. The contact cathode was 
the flat end of a cylinder. The cylindrical portion was tightly fitted into 
a block of an insulating material allowing an exposure of the flat end and 
a cylindrical area less than 10 per cent of the fiat area. The anode was a 
parallel plain surface of the same material. 

To avoid the unnecessary complications of a measuring circuit con- 
nected to the contacts, the plates of a cathode ray oscilloscope were, 
instead, connected across a capacitor, 10 times C, in series with the circuit 
capacitor C. From the transients obtained, it was possible to identify 
glow discharge, steady arcs and interrupted arcs. Four typical transients 
are shown in Fig. 14. Transient A shows a case where glow discharge 
was established and maintained for the entire half period of the circuit. 
In transient B glow was not detected and, instead, interrupted arcs 
occupied the entire half period. In transient C, glow discharge was 
maintained for a short duration 1-2 followed by interrupted arcing, 2-3. 
At point 3 the circuit current was high enough to maintain an arc and a 
steady arc was obtained, 3-4. Transient D is similar to B where glow 
discharge was undetectable. The multiple discharge in D, however, 
lead to the steady arc 2-3. 

Before presenting our measurements and discussion, a review is given 

POWEF —MICROSCOPE 
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Table II Cathode Current Density in Steady Normal Glow 
in Dry Atmospheric Air at 250C 

Electrodes Cathode Diameter, cm. Glow Current, amp. Cathode Current 
Density, amp,/cmJ 

Pd 0.05 0.010 5.1 
0.10 0.033 4.2 

Au 0.05 0.017 8.6 
Ag* — — 9 

* Measurement by F. E. Haworth.13 

here of the process of the initiation of the steady arc which was explained 
in detail in reference.5 For the inductive circuit in Fig. 13, when the 
proper contact separation is reached, a first breakdown will occur dis- 
charging the local capacitance at the contacts. This is followed by re- 
charging from C through L and a second breakdown. This will repeat 
while the circuit current will increase in a discontinuous fashion. If it 
reaches the minimum arcing current of the contact, a steady arc is es- 
tablished, otherwise, the transient will be made up entirely of local 
multiple discharges. Figures 14D and B are the main condenser voltage 
transients corresponding to the above two cases respectively. 

The interrupted arcs, or multiple discharges, and the steady arc con- 
stitute the two processes of conduction that are commonly obtained when 
the voltages involved are below the spark breakdown potential of the 
surrounding atmosphere. In such cases, the arc initiation is dependent 
on the contact material and its surface condition and is independent of 
the atmosphere.2 If the voltages involved are equal to or greater than 
the minimum sparking potential of the atmosphere, the initiation of a 
breakdown is primarily dependent on the atmosphere. This breakdown, 
however, may in addition lead to a glow discharge as discussed above. 
This immediately raises the question as to whether breakdowns leading 
to an arc and breakdowns leading to a glow discharge are initiated at the 
same potentials. For this purpose the following experiment was per- 
formed. 

io6a 

POWER SUPPLY 

i 

c- 
' A A   V VV 

ioC- L— 1 —* p- v — 
.OSCILLOSCOPE CONTACT 

I 

Fig. 13 — Simplified circuit for the study of glow-arc transitions. 
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Initiation Voltage of Glow Discharge 

The cantilever bar setup previously used for similar measurements 
of arc initiation voltage as function of separation2 was used here. By 
varying the separation the corresponding glow initiation voltage was 
measured. For each separation a measurement was also made of the 
arc initiation voltage. The results are given in Table III. The results 
indicate that both arc and glow are initiated at the same voltage for 
the same separation. One may, therefore, conclude that at least the first 
few steps involved in the process of the breakdown are the same whether 
they lead to a glow discharge or to an arc. In many cases, it was observed 
that the arc was preceded by a period of glow discharge. This was not 
found, however, to be the general case as discussed in the following sec- 
tion. 

Table III — Glow and Arc Initiation Voltages as Functions of 
Contact Separation for Pd Contacts in Dry 

Atmospheric Air at 250C. 

S: 10-* cm. 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5 18.0 19.5 
VBi : volts 320 320 340 380 400 420 450 480 500 520 540 560 590 
Vai : volts 310 320 340 370 400 420 450 470 490 510 540 570 590 

Glow-arc Transition 

The experimental setup used is shown in Fig. 13. By systematic varia- 
tion of the circuit parameters Vo, L and C, a variety of transients 
was obtained and recorded. Samples of typical cases are shown in Fig. 14. 
For transient stability and reproducibility, it was found necessary to 
exercise extreme care in securing good contact surface cleanliness and in 
maintaining it during the experiment. The presence of organic vapors, 
humidity, films of grease or oil, fingerprints, etc., usually led to erratic 
results. The general effect was an inclination towards more arcing and less 
glow discharge. Only by proper cleaning of the contact surfaces and allow- 
ing the contact to arc heavily for about 20 minutes was it possible to 
obtain fairly reproducible results. Table IV shows a summary of results 
obtained from one of several sets of experiments performed. 

Before stabilization of the transient, it was generally observed that the 
glow period was first short then gradually increased until it reached a 
limiting value which it did not exceed. These limiting values are given 
in column 5 as fractions of the half period 7r(LC)1/2. They range from zero, 
actually glow was not detected with a time resolution of 1 per cent of the 
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Table IV — Glow-Arc Transition Data for Pd Contacts 
in Atmospheric Air-Cathode Diameter 0.1 Cm. 

(1) 
Vo 

volts 

(2) 
C 

10-"/ 

(3) 
L 

10-a/» 

(4) 

= (L/C)'" 
ohms 

(5) 

ftfMLC)1" 

(6) 
(Fo — Va)/L 
lO'amp./scc 

(7) 
(/a) max. 

amp. 

(8)t 
(i'd) max. 
amp./cm.2 

(9) 
('ffV'O max. 

600 18,000 5 52 0* 6.0 <.018 <2.3 <0.5 
500 — — — 0 4.0 <.012 <1.6 <0.4 
450 — — — 0 3.0 <.009 <1.2 <0.3 
400 — — — i of 2.0 >.19 >23 >4.8 
350 — — — 1.0 1.0 >.10 >13 >2.6 
320 — — — 1.0 0.4 >.04 >5 >1.0 

600 18,000 8 660 0 3.8 <.015 <2 <0.4 
500 — — — 0.22 2.5 .19 24 4.8 
450 — — — 0.44 1.9 .23 29 5.8 
400 — — — 1.0 1.2 >.15 >19 >3.8 
350 — — — 1.0 0.6 >.076 >10 >2.0 

600 18,000 15 906 0.25 2.0 .23 29 5.8 
550 — — — 0.30 1.7 .23 29 5.8 
500 — — — 0.35 1.3 .20 26 5.2 
450 — — — 1.0 1.0 >.17 >22 >4.4 
400 — — — 1.0 0.7 >.11 >14 >2.8 

600 18,000 20 1050 0.40 1.5 .28 36 7.2 
550 — — — 0.40 1.2 .23 29 5.8 
500 — — — 1.0 1.0 >.19 >24 >4.8 
450 — — — 1.0 0.8 >.14 >18 >3.8 

* No glow wus detected with a time resolution of 1 per cent of a half period 
7r(Z/C)"2. 

t Uninterrupted glow occupied the entire half period. 
J Obtained by dividing (/„)max by the total cathode area. 

transient time, to a full transient time. By calculation, the corresponding 
limiting currents and limiting current densities were obtained, columns 
7 and 8 respectively. The ratios of the limiting current densities to the 
normal glow current density are also given in column 9. They show that 
at the interruption of the glow discharge the current density was 5 to 7 
times the normal glow current density. This indicates a transition from 
normal glow to abnormal glow before the final transition into an arc. 
One may, therefore, conclude that if glow discharge is obtained it starts 
as normal glow which may occupy only a small fraction of the cathode 
area. By increasing the current the cathode glow area expands at con- 
stant current density until it covers the entire cathode area. Further 
current increase leads to a transition into abnormal glow with higher 
current densities. Transition of the abnormal glow into an arc occurs 
when the current density reaches a limiting value. This limiting current 
density is extremely sensitive to surface contamination and generally 
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increases with surface cleaning.* For clean Pd contacts in atmospheric 
air an average limiting current density of 30 amps/cm2, or about G times 
the normal glow current density, was obtained. This sudden transition 
from the low current density glow to the very high current density arc 
represents a high rate of change in the emission process. With con- 
taminated contacts, this is probably due to the presence of low work 
function high emission spots on the cathode. These spots may be elimi- 
nated by proper cleaning thus allowing glow discharge to be maintained 
at higher current densities. The observed glow-arc transitions for clean 
contacts, consistently occurring at about 30 amps/cm2 for Pd, may still 
he attributed to (he formation of a surface film on the cathode through a 
cathode-atmosphere reaction, f 

Measurements have also indicated that under certain conditions, 
glow discharge cannot be obtained even at currents much below the 
limiting currents discussed above. It appears that there is a limiting rate 
of rise of current with time above which glow discharge cannot be main- 
tained. In Table IV, column G, the initial rates of current rise are given. 
In all cases where the rate of current rise was greater than about 3 X 104 

amps/sec, lines 1, 2, 3 and 7, no glow was obtained. The experiment 
was repeated with two other cathode diameters of 0.2 and 0.05 cm. The 
limiting rates of rise obtained were approximately the same as given 
above, indicating that the limiting rate of current rise is independent of 
the cathode area. This seems reasonable since at the beginning of the 
transient the currents are very small and the emission area is only a 
very small fraction of the cathode area. No detailed explanation, how- 
ever, can be furnished at this time as to why such a limit of the rate of 
current rise does exist. It is obvious, nevertheless, that while the rate of 
current rise can be increased without limit by manipulating the circuit 
parameters, the conduction mechanism in the contact gap, will, in gen- 
eral, have its own limitations as determined by the emission processes 
involved. 
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* With a contaminated cathode surface a transition into an arc may occur dur- 
ing the normal glow period well before the current is high enough to allow normal 
glow to cover the entire cathode surface. This is particularly true with larger 
cathode areas which are usually hard to clean satisfactorily by the above pro- 
cedure. 

t A recent unpublished study by F. E. Haworth has shown that in the absence 
of the usual surface contaminants, glow discharge is capable of activating pal- 
ladium and silver contacts through the formation of surface films. Those surface 
reactions appear to be strongly dependent on the atmosphere. 
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Thickness Measurement and Control in 

the Manufacture of Polyethylene 

Cable Sheath 

By W. T. EPPLER 

(Manuscript received October 22, 1953) 

The manufacture of multiple sheath for Alpeth and Stalpeth cables re- 
quires the application of a sheath of polyethylene over a sheath of corrugated 
metal which is flooded with a rubber asphaltic compound. For high quality 
and minimum cost, this outer sheath must be of uniform thickness through- 
out its length. One of the problems in cable sheath manufacture is to maintain 
the concentricity and average thickness of the extruded polyethylene sheath 
to close limits during manufacture. This article reports on: (1) The applica- 
tion of a capacitance sensitive bridge to the measurement of the eccentricity 
and average thickness of the sheath on cables moving at speeds of 20 to 100 
feet per minute; (2) The method of thickness calibration; and (3) The use of 
the thickness measurements in maintaining the sheath concentricity and 
average thickness within close limits during the sheathing operation. 

HISTORY 

In the manufacture of multiple sheath for Alpeth and Stalpeth cables, 
an outer sheath of polyethylene is applied. It is desirable for high quality 
and low cost to make this outer sheath of a uniform thickness throughout. 
The construction of these cables is shown in Fig. 1. In both designs, the 
outer sheath is polyethylene extruded onto a corrugated metal under- 
sheath which has been flooded with a rubber asphaltic compound. 

The extrusion art had been unable to obtain a high degree of control, 
primarily because measurements of the thickness could not be obtained 
until after the sheath was applied to the cable core. Eccentric sheath 
must have a greater average thickness than concentric sheath, if the 
thickness of the thin side is not to fall below a required minimum thick- 
ness. 

The symmetrical design of a typical core tube and die for sheathing is 
shown in Fig. 2. Concentric set-up of these extrusion tools around the 

559 
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cable core will not produce concentric extruded sheath. This is caused 
by an unbalance in the plastic flow in the extruder. The flow makes a 
ninety degree turn from the extruder cylinder into the die head, and to 
reach the far side of the die, must flow around the core tube. The flow 
resistance also varies with changes in the temperature of the plastic and 
of the extruder screw speed. 

The core tube is fixed in position in the extruder head. The die is 
located around the core tube and can be moved hi any direction eccentric 
to it. Fig. 3 shows a core tube and die mounted in the extruder head and 
indicates the location of the four die adjusting screws by which move- 
ment of the die in relation to the fixed core tube is accomplished. The 
die must be located at some one eccentric position in relation to the core 
tube to compensate for the differences in flow resistances in the head. 

To set the die for concentric sheath and to adjust for specified thick- 
ness the prevailing practice of the cable art of measuring the wall thick- 
ness of a sample taken from the lead or finish ends of the sheathed cable 
was of necessity resorted to because it was the best technique available. 
The cutting of a ring of sheath and the micrometer gage are shown in 
Fig. 4. These end samples only approximate sheath conditions because 

  CONDUCTORS   

  CORE WRAP   

-< ALUMINUM SHEATH  

SOLDERED STEEL SHEATH  

  SEAM CEMENT 

 FLOODING COMPOUND  

POLYETHYLENE 
JACKET 

ALPETH DESIGN STALPETH DESIGN 
Fig. 1 — (Left) Telephone exchange cable of Alpeth design; (right) Stalpeth 

design. 
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Fig. 2 — Typical core tube and die. 

they are only short pieces to represent cables up to a few thousands of 
feet in length. 

Sheath eccentricity is expressed as a percentage and is the difference 
between the thicknesses, of the thickest and the thinnest sides of a cross 
section, in relation to the specified wall thickness expressed in mils. 
Control from end sampling resulted in most cables having eccentricities 
of 30 per cent to 00 per cent. Also, it was difficult to keep the average 
thickness to within ±0.010 inch of the specified average thickness. 

The need for a better gaging method than end sampling, led to an 
investigation of determining the wall thickness in terms of the capaci- 
tance that would be formed by the metal undersheath and a probe sliding 
on the sheath surface. 

A test set as shown in Fig. 5 was developed which responds to changes 
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Fig. 3 — Core tube and die assembled in extruder head and die adjusting 
screws. 

in capacitance. The capacitance response is in turn calibrated in thou- 
sandths of an inch of sheath thickness. The electronic system of the set 
has been described in the Bell System Technical Journal previously.* It 
is practical from test set measurements to control the concentricity of 
Alpeth cable to within 35 per cent and Stalpeth to within 20 per cent. 
Average thicknesses within ±0.005 inch are maintained. 

Formerly, the safe practice was to use an excess of approximately 10 
per cent over specified average in order to keep the thin side of eccentric 
sheath within the minimum spot limit. Control from test set measure- 
ments eliminated the necessity of using an excess of polyethylene because 
sheath of improved concentricity maintained close to the specified av- 
erage thickness does not vary below the specified minimum spot thick- 
ness. The quality of the sheath is improved because it is of consistently 
high dimensional uniformity not previously obtainable. Also, concentric 
sheath has better flexing characteristics since eccentric sheath concen- 
trates the stresses of flexing in the thin side. 

* Continuous Incremental Thickness Measurements of Non-Conductive Cable 
Sheath, B. M. Wojciechowski, B.S.T.J., 33, pp. 353-368, Mar., 1954. 
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' 
Fig. 4—(Left) Removing test strip from end of cable; (right) performing 

micrometer measurements on test strip. 

CALIBRATION OF THE TEST SET FOR SHEATH THICKNESS MEASUREMENTS 

Calibration of capacitance into thickness was difficult because the 
capacitance is not a simple function of polyethylene thickness. It de- 
pends also on the curvature of the sheath surface, the size and shape of 
the probe, the amount of flooding and the height and shape of the cor- 
rugated metal. For a given probe, it depends chiefly on the thickness, 
the flooding and the sheath curvature. The flooding sometimes varies 
from a thin film to an excess that overfills the corrugations. The surface 
curvature is not uniform because the soldering of the metal overlap of 
Stalpeth cable generally produces a flattened sector and the capstan at 
the soldering operation results in an elliptical shape. Changes in the sur- 
face curvature and in the amount of flooding can be compensating or 
cumulative in varying the capacitance. 

To determine whether a correlation between jacket thickness and 
capacitance existed, extensive spot checks for three sizes of cable were 
made. Marked points on cable were measured for capacitance and then 
with a micrometer. A slight error can exist because the micrometer 
measurement is only one spot in the center of an area which is effective 
to capacitance. This condition is shown by Fig. 6. Also, it is difficult to 
determine accurately the surface curvature associated with the capaci- 
tance measurement. 

The relation of thickness to capacitance conditions in the samples is 
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Fig. 5 — Capacitance test set and unit for tracking probes on cable surface. 

shown by Fig. 7. The sheath thickness is specified as the distance be- 
tween the outside surface of the sheath to the bottom of the corrugations 
formed into the polyethylene by the crests of the corregated metal 
sheath, as indicated by dimension T. The top sketch shows the normal 
amount of flood. The capacitance Mill be different in each of the three 
conditions of equal thickness shown. With excess flood, center sketch, 
the distance between plates is increased and the capacitance is decreased. 
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Fig. 6—Thickness measured by direct calibration; spot by micrometer; 
area by capacitance. 
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Insufficient flood, bottom sketch, alters the dielectric from polyethylene 
plus some flood, to all polyethylene. The capacitance is decreased. 

A typical plot of points and a calibration curve are shown in Fig. 8. 
Each of the three cable sizes measured revealed a wide band of plot 
points. In each curve the points were more dense toward the left side of 
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Fig. 8 — Measured points of sheath thickness versus recorder readings and 
developed calibration curve. 
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the band, becoming progressively less to the right across the band. The 
majority of points to the extreme right were found to be cases of excess 
flood. Many of the points, near the extreme right had insufficient flood- 
ing. Points close to the curve had the flood just filling the corrugation 
valleys. Other points consist of various other amounts of flood and/or 
are the result of deviation from correct surface curvature. 
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Fig. 8 also shows that the greatest percentage of points are within a 
thickness range of approximately 0.010 inch. In moving downward from 
maximum thickness the concentration of measured thicknesses increases 
rapidly over approximately 0.003 inch and then becomes progressively 
less covering an additional 0.010 inch. The calibration curve was placed 
at about the location of maximum point concentration. By averaging the 
thickness indications along a short length of the cable, a measurement 
adjusted for the occasional extremes in flooding and surface variations 
is obtained. The accuracy for practical use is therefore within limits of 
±0.005 inch from the mean. 

Investigation was also made of flat samples of Polyethylene placed 
upon a flat metal plate. Flat samples eliminate the variables introduced 
by the cable surface curvature, the corrugated metal undersheath and 
the flooding material. A plot of capacitance against thickness for flat 
samples is shown in Fig. 9. Each point represents an individual molded 
flat sample. The majority of points are within ±0.003 inch of the curve. 

The measurement of sufficient points to obtain curves for the many 
cable diameters would involve an impractical amount of work. 

The calibration curves for the three cable sizes and the curve for flat 
samples drawn to the same capacitance versus thickness scale have simi- 
lar form, but are displaced one from the other. The displacement of the 
calibration curves for cables of core diameters of 1.39 to 2.38 inches is 
shown by Fig. 10. The displacement is approximately 1 meter division 
for a diameter change of 0.1 inch. 

Calibration curves for other cable diameters than the three measured 
were obtained by an approximation formula based on measuring a few 
points from each sheath diameter to detennine the displacements and 
slopes and multiplying the flat sample curve values by the displacement 
and slope correction factors. 

The curve for flat samples and the curve for 2.38 inch diameter cable 
plotted to the same scales is shown in Fig. 11. The two curves are suffi- 
ciently alike so that by multiplying the flat sample curve thickness values 
by a constant (Ki) obtained from the ratio of the cable sheath thickness 
to the flat sample thickness at zero recorder scale, the amount of curva- 
ture of the resultant curve and the measured sheath curve are essentially 
the same, and they have the same thickness and capacitance values at 
zero recorder reading. A multiplier (Ko) can then be added to adjust the 
slope of the percentage curve to make it practically coincide with the 
sheath thickness curve. Actually, there is a slight difference between the 
curvature of the flat sample curve and those of cable sheath. The amount 
of curvature increases as the cable diameter decreases. 
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Fig. 10 — Calibration curves by core diameters, thickness versus recorder scale. 
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Fig. 11 — Adjustment of flat sample direct calibration to obtain calibration of 
2.38-inch diameter cable sheath. 

The result is the following approximation formula, from which the 
thickness calibration can be calculated within 0.001 inch with the error 
negligible over most of the working range. 

T = TpKJvi 

where T = Thickness in thousandth's of an inch of polyethylene cable 
sheath. 
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Tf = Thickness fo flat polyethylene sample at same recorder 
meter reading as for T. 

Ki = Ratio of actual cable sheath thickness to flat sample thick- 
ness at zero meter reading. 

Kz = Constant to change slope of TfKi curve. 

To = Thickness in thousandth's of an inch of cable sheath at 
zero meter reading. 

The 7vi factor accounts for the dimensional differences between the 
capacitor formed by a flat thickness of polyethylene on a flat plate com- 
pared to the actual capacitor construction of cable at zero meter. Both 
have the same capacitance of 1.20 uuF at zero meter reading. K2 ac- 
counts for changes resulting from the curved surfaces of cable. Ki and K2 
are different for each cable diameter. 

Since zero meter is used as a reference point, the formula becomes: 

ACCURACY CHECK UNDER OPERATING CONDITIONS 

A check* was made of the accuracy of calibration and of the response 
under operating conditions of applying the sheath to the cable. The 
upper graph in Fig. 12 was obtained with the test set probe tracking at 
a cable sheathing speed of 50 feet per minute. The probe was shifted to 
different octant locations on the circumference for lengths of the cable 
as indicated on the graphs. The track of the probe was marked on the 
sheath surface and the sheath then removed, cleaned of flooding com- 
pound and the micrometer measurements of the thickness taken at 
six-inch intervals along the length. The lower graph is a plot of the thick- 
ness obtained by micrometer. The ability of the test equipment to track 
and respond to the thickness variations is apparent from comparison of 
the two graphs. 

APPLICATION OF TEST EQUIPMENT FOR EXTRUSION CONTROL 

The test set is placed at some distance after the extruder to prevent 
the probe from marking the plastic polyethylene. The machinery of the 

* Test and measurements by courtesy of J. L. O'Toole, Bell Telephone Lab- 
oratories. 

For + meter readings A'2 

For — meter readings A'2 

T = {TfK, - To) K2 + To 
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sheathing line is diagrammed in Fig. 13. At the top left is the supply reel 
of metal jacketed cable. The cable is pulled through the flood tank where 
the hot rubber asphaltic compound is flowed over the corrugated metal 
sheath. It then progresses through the die head of the extruder where 
the polyethylene sheath is extruded over the flooded metal sheath. The 
cable with plastic polyethylene then enters the cooling trough where it is 
cooled and solidified. At the exit of the cooling trough is an air blower 
for drying the water from the sheath surface. The test set is located after 
the dryer. The next unit is the capstan which pulls the cable. At the final 
unit to the right, the sheathed cable is taken up on the shipping reel. 

A typical recorder graph taken along 360 feet of cable length with the 
sensing probe held at one location on the sheath circumference is shown 
in Fig. 14. With apparently stable conditions of extrusion the spot thick- 
ness indications will vary as much as plus or minus 0.010 inch while the 
lengthwise average remains stable as shown in Fig. 14. These fluctuations 
arc sheath thickness variations which result from the complex interaction 
of the many sheathing line variables, but they may be increased or de- 
creased by response to uneven flooding distribution and/or variations 
in surface curvature. However, it is practical to visually average this 
graph to within ±0.001 inch. 

For die adjustment, thickness measurements are obtained visually by 
estimating the average of the fluctuations of the recorder's visual indica- 
tor. Measurements are taken at quadrant locations corresponding to the 
locations of the four die adjusting screws. Opposite thicknesses give the 
amount of eccentricity. Die adjustments can be made accurately because 
the amount of eccentricity is known and the amount of die movement is 
governed by the adjusting screw pitch. 

Adjustment to specified average sheath thickness is made by averaging 
measurements at eight positions equally spaced around the sheath. In- 
creasing the speed of the cable in relation to the speed of extrusion in- 
creases the stretch of the polyethylene and decreases the average 
thickness. Decreasing the cable speed increases the average thickness. 

APPLICATION OF TEST EQUIPMENT FOR SHEATH INSPECTION 

The thickness test provides an accurate gage for the inspection organi- 
zation to measure compliance of the sheath to specified requirements. 
Inspection possibilities with the thickness test set are many and the 
problem becomes one of an economic procedure that will assure the re- 
quired quality. Continuous recording of the entire cable length is prac- 
tical but is unnecessary from a manufacturing viewpoint. Recorder chart 
speed is one half inch per minute and cable speeds are from 20 to 100 
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Fig. 14 — Recorder graph of single octant variation and thickness scale in 
thousandths of an inch. 

feet per minute. It was found that the fluctuations or variation peaks of 
one line along the cable length could be averaged from chart lengths of 
34 inch. Also that Iw taking measurements consecutively by octants 
around the circumference a practical measure of the entire circumference 
is obtained and is sufficient coverage to locate the minimum wall thick- 
ness. The graphs of Fig. 15 show typical inspection recordings of two 
cable lengths. 

Four thicknesses arc specified for inspecting sheath, all of which are 
obtained from a graph of the consecutively recorded octants. These 
checks are: 

1. The minimum spot thickness. 
2. The average thickness lengthwise along the thinnest side. (Average 

of minimum octant.) 
3. The average cross sectional thickness. (Average of octant averages). 
4. The maximum difference between the lengthwise average of the 

thickest side (average of maximum octant) and the lengthwise 
average of the thinnest side (average of minimum octant). 
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Fig. 15 — Inspection graphs of two reel lengths — octant graphs with esti- 
mated octant averages — calculation of average thickness and eccentricity; 
location of specified thickness and actual thickness, in thousandths of an inch. 
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The location of the four major thickness limits have been indicated 
below the test graphs. 

CONCLUSIONS 

This test equipment has proved to be a practical means for the control 
of the concentricity and the average thickness of the polyethylene sheath 
on Alpeth and Stalpeth cables. It is accurate, reliable and of rigid con- 
struction suitable for continuous shop use. It measures the sheath wall 
thickness directly in thousandths of an inch both visually and as a re- 
corded graph and does so non-destructively as the sheath is applied. 

Concentricity is maintained within 35 per cent on Alpeth and within 
20 per cent on Stalpeth cable. Average thickness is controlled to within 
±0.005 inch of specified average thickness by the practice of visually 
averaging graphs of about twenty-five feet of cable length. 

Polyethylene is conserved in two ways which reduce manufacturing 
costs. First, improved control permits operating at specified average 
thickness without varying below minimum spot limit. Previously, an 
excess over specified average thickness was necessary to prevent the 
wider range of variation from going below the specified minimum spot 
thickness. Second, the sheath is of consistently uniform dimensional 
quality not previously obtainable which made it practical to reduce the 
average wall thickness 11 per cent below previously specified thickness. 
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Topics in Guided-Wave Propagation 

Through Gyromagnetic Media 

Part I — The Completely Filled Cylindrical Guide 

By H. SUHL aud L. R. WALKER 

(Manuscript received January 26, 1954) 

The characteristic equation for the propagation constants of waves in a 
filled circular guide of arbitrary radius is written in terms of magnetizing 
field and a carrier density, which are shown essentially to determine the 
dielectric and permeability tensors for a gas discharge plasma and for a 
fen He. The complex structure of the spectrum of propagation constants and 
its dependence upon radius and the two parameters are analyzed by a semi- 
graphical method, supplemented by exact formulae in special regions. Thus 
the course of individual modes may be charted with fair accuracy. 

1. INTRODUCTION 

Any material medium which propagates electromagnetic disturbances 
possesses a local electric or magnetic structure and it is just the motion of 
the electric or magnetic carriers under the fields of the disturbance that 
determines how the propagation takes place. If a dc magnetic field be 
applied to the medium one may expect the local response to be altered 
and, consequently, to find changes in the character of the propagation. 
Gyromagnetic media arc those for which such changes are sufficiently 
large to be experimentally significant. For plane waves and for optical 
frequencies the experimental effects and their explanation have been 
familiar for a great many years. The non-reciprocal rotation of the plane 
of polarization of light travelling parallel or antiparallel to an applied dc 
magnetic field, which is known as the Faraday effect, is such a phenom- 
enon. So also is the fact that the medium becomes doubly refracting for 
arbitrary directions of propagation. 

Interest in gyromagnetic media at longer wavelengths first arose in 
connection with radio propagation in the ionosphere. The ionosphere is 
essentially an ionic cloud and the earth supplies a magnetic field, which, 
for the charge densities involved, is sufficient to produce a large effect 
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upon propagation. Here, as in the earlier optical cases, the disturbances 
considered are essentially plane waves. In recent years, with the ex- 
tensive development of microwave techniques, two gyromagnetic media 
have been investigated using guided waves. One of these is the gas dis- 
charge plasma, an ionic medium like the ionosphere, in which, however, 
the charge density may be varied over wide ranges in a controllable 
manner. The magnitude of the effects observed in such ionic media are 
governed by the relation of the applied frequency to the cyclotron fre- 
quency of the ions in the dc magnetic field. Goldstein and his associates1 

have studied the propagation of waves in a cylindrical waveguide within 
which a discharge is supported and to which a longitudinal magnetic 
field is applied. Among many effects which they have observed is a 
large Faraday rotation. 

The other medium being actively investigated is the low-loss ferro- 
magnetic medium, as exemplified by the ferrites. In this case the pe- 
culiarities of the medium have their origin in the precession of the 
magnetization of the ferrite about the applied field. This precession 
takes place with a frequency dependent upon the applied field strength 
and large changes in the nature of the propagation occur when the fre- 
quency of the r.f. applied field approaches this. Polder2 worked out the 
effective properties of such a medium for plane waves and Hogan3 has 
made various experimental studies of the propagation in cylindrical 
guides containing ferrite. Here, again, Faraday rotation and other 
non-reciprocal effects have been observed. 

In this paper a variety of topics associated with the theory of guided 
waves in gyromagnetic media is considered, with the main emphasis laid 
on the ferrites. The exposition does not attempt to be systematic. Very 
few problems in this field admit of a thorough analytic treatment and, 
frequently, the more closely allied they are to the practical uses of ferrites 
in microwave devices the more fragmentary is the analysis. On the other 
hand since the problems can always be formulated it is always possible 
in specific cases to resort to a purely numerical solution. The problems 
considered here all arise in the effort to analyze the operation of various 
devices and different idealizations are utilized in particular cases. 

In Part I the general properties of gyromagnetic media are discussed 
and the connection between the phenomenological constants of the 
medium and the underlying molecular model is derived for the ferrite 
and for the plasma. The assumptions necessary to render the ferrite 
problem tractable are discussed at some length. Maxwell's equations are 
written down for a general gyromagnetic medium and some of the salient 
features of their solution are noted. The propagation of circularly po- 
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larized waves in circularly cylindrical guide filled with ferrite or plasma 
is then considered. The characteristic equation connecting frequency 
and propagation constant is first derived. For the purpose of obtaining 
results which can be compared with experiment, a specific molecular 
model is chosen for the ferrite. In this way the ferrite itself is specified by 
a single parameter, its saturation magnetization, and its state by an- 
other, namely the applied field. The object of the calculation, then, is 
to find, for a given ferrite and a given guide radius, the mode spectrum 
of the wave guide and the variation of propagation constant with mag- 
netic field. This is done by a semi-graphical method supplemented by 
exact analytic formulae in the neighborhood of certain critical points, 
series expansions in certain regions and some numerical computations 
in others. A sketch of a similar procedure applicable to the plasma is 
given. 

It should be pointed out that the filled cylindrical waveguide is not a 
topic of the highest importance from the technical standpoint. It is for 
this reason that no effort is made here to obtain a comprehensive body 
of exact numerical information about the modes. One wishes, on the 
other hand, to exploit the simplifying features of the problem (as con- 
trasted with the more useful case of a cylinder of ferrite not filling the 
guide) so that the discussion may be exhaustive, in the sense that the 
complete mode spectrum is exhibited. 

In Part II we deal with cases of transverse magnetization. By that 
term we mean the following: the microwave fields propagate in a direc- 
tion normal to the dc magnetization and they do not vary along the 
magnetization direction. They may then be separated into two inde- 
pendent sets of field components, of which only one explicitly depends 
on the dc magnetizing field. For these two fields wave impedances are 
defined which can be used for matching purposes. A few simple examples 
are then given. One special case, that of the "non-reciprocal helix" utiliz- 
ing ferrite, is of importance in traveling-wave tube work and is discussed 
at length.7 The slow-wave propagation along both a cylindrical and a 
"plane" helix are treated; magnetic loss is analyzed in some detail for 
the plane case, and general rules are given for its approximate deter- 
mination in the cylindrical case. 

In Part III perturbation theory and some miscellaneous topics are 
taken up. Suitable perturbation methods are developed for cases in 
which the wave guide fields are drastically modified over small volumes 
(as occurs if thin pencils or thin discs are inserted) and also for situations 
in which the local properties of the medium arc but slightly disturbed 
over finite volumes. Among the miscellaneous topics dicusssed is the 
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propagation between infinite parallel planes filled ith ferrite in a longi- 
tudinal magnetic field. The effect upon Faraday rotation of multiple 
reflections is considered. 

2. THE PHYSICAL PROPERTIES 

The propagation of electromagnetic waves in a medium is governed 
by Maxwell's equations which connect the space variations of E and H, 
the electric and magnetic intensities with the time variations of D and B, 
the electric displacement and magnetic induction. To characterize the 
particular medium relations may be given of the form D = || e\\E and 
B = \\^\\H where ] ( e 11 and 11 /x 11 are the dielectric and permeability ten- 
sors. For disturbances whose amplitude is in some appropriate sense 
small, the elements of these tensors will be independent of rf ampli- 
tude, but mil depend upon the dc state of the medium, upon the fre- 
quency of the signal and in unfavorable cases upon the wavelength of 
the latter. With the assumptions made in this paper the dependence 
upon wavelength mil not arise. 

The form of || e |1 and H ^ 11 may be known experimentally or it may be 
deduced from some molecular model of the medium. If the equations of 
motion of the parts of the medium are known under applied electric and 
magnetic fields, the displacement and magnetic induction resulting from 
this motion may be found explicitly. In isotropic media and in the ab- 
sence of applied dc fields, each component of the displacement or of 
induction depends in the same way upon the associated component of 
E or H. The tensors then become diagonal with equal elements. The ap- 
plication of a dc magnetic field, say in the ^-direction, causes ions to circle 
about this field or magnetic dipoles to precess about it. It follows that a 
rf electric field in the ionic case or magnetic field in the ferrite, normal to 
the dc magnetic field, will produce a component of motion at right angles 
to itself and in time quadrature with it. From symmetry and from the 
equations of motion in a magnetic field the tensors may be expected to 
be now of the form 

a — jb 0 
jb a 0 
0 0 c 

(1) 

where a is an even function of magnetic field and b an odd function, c, in 
general, will be independent of the magnetic field. 

That a and 6 at a given frequency and for a given sample of the medium 
are not independent but are related through the magnetizing dc field, Ho, 
is a fact of which we need not take cognizance when solving Maxwell's 
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equations subject to the appropriate boundary conditions. Their solution 
will determine the propagation constant /3 of a wave as a function of a 
and h, no matter what their interrelation. On the other hand, in a given 
experiment /3 is generally determined as a function of one parameter 
only: the magnetizing field Ho. Comparison of the family of calculated 
results /3 = /3(a, b), with the results /3 = (3(Ho), found experimentally 
will, of course, determine a and h as functions of Ho. 

If, however, we have a prior knowledge of a and h in terms of Ho, 
either through postulating the correct dynamical model for the medium, 
or through independent experiments, we can utilize the functional form 
of a and b in our analysis of /3, and thus arrive directly at £ as a function 
of Ho. The distinction between the two methods is by no means aca- 
demic; early introduction of such a functional form of a and b into the 
waveguide problem actually simplifies the analysis. Aside from this prag- 
matic consideration the latter method seems to us more appropriate for 
another reason: it is hardly the task of analysis of technical devices to 
check on the physical theories that give a and b as functions of Ho ; such 
checks arc made by experiments specifically designed to avoid the ana- 
lytic complexities attending the solutions for most of the technically 
important structures. 

Accordingly we adopt the more direct approach of expressing a and b 
in terms of Ho (and, of course, in terms of the magnetic or electric carrier 
density of a given sample) throughout these papers, even in those few 
cases in which /3 can be expressed analytically as a function of a and b. 

2.1 Fer rites 

Most ferrites used in microwave applications are fully saturated in dc 
magnetic fields that are small compared with the dc field with which they 
are biased in operation. We shall therefore always postulate a fully 
saturated sample. Accordingly the magnetization vector M at a point in 
the sample will always be of constant magnitude, although its orienta- 
tion will change in the ac field. 

One equation of motion for M that takes this into account is 

^ = y{M X Ht] — r-77-j [M X [M X IJrW (2) at | M | 

where /// is a total effective magnetic field seen by the spins that make 
up M, I is the time and 7 is the gyromagnetic ratio appropriate to elec- 
tron spins, whose (/-factor is close to 2. The expression on the right hand 
side of (2) is in the nature of a torque; the force on M is always at right 
angles to M, thus leaving its magnitude unchanged. The first term on 
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the right of (2) is quite well substantiated by quantum mechanical con- 
siderations. It is a vector normal to M and to the force HT and is re- 
sponsible for the precession. The second term is also a vector normal to 
M, but is in the plane of M and H in a sense such as to reduce the angle of 
the precession. It thus represents a damping. Not much is known about 
the precise mechanism of the damping, so that its phenomenological 
representation by the second term of (2) is still in doubt. 

Ht , the total field acting on the electron spins, is made up of terms 
not all of which are of electromagnetic origin. It consists of the dc field 
Ho within the sample, the ac field H, the anisotropy field, and the field 
ascribed to the quantum mechanical exchange forces between spins. 

Ho in the sample must be calculated from the applied dc field Hcxt by 
a purely magnetostatic calculation, which, in the case of sufficiently 
simple shapes, can be carried out with the help of the appropriate de- 
magnetizing factors. Throughout this paper it is assumed that this 
problem has been solved, so that Ho is given. Furthermore it is assumed 
that Hexi and Ho are uniform. Boundary effects due to non-uniformities 
of Ho are neglected. 

The microwave field H in the sample is one of the unknowns of the 
problem of propagation, and will appear in the solution of Maxwell's 
equations subject to the appropriate boundary conditions. 

The anisotropy field, a property of a single crystal of ferrite, arises 
from the fact that through the medium of spin-orbit interaction, the 
electron spins can "see" the orbital wave-functions. Since these have the 
symmetry properties of the crystal, it is to be expected that the aniso- 
tropy field will be a vector function of M, with the symmetry properties 
of the crystal. The samples of ferrite used in practice contain a great 
many small crystals randomly oriented, so that the net effect of the 
anisotropy field on microwave propagation must be obtained by means 
of an averaging procedure. The integrations involved are laborious and 
have not been carried out so far. We shall therefore neglect anisotropy 
altogether. Since anisotropy fields are usually of the order of a few 
hundred gauss, this will put our results in error below frequencies of 
about 3,000 mc/sec. (Corresponding to a precession frequency of yHo = 
3,000 mc/sec., Ho is about 1,100 gauss.) 

The field between two spins ascribable to exchange forces will be zero 
when the two are parallel, and thus arises out of differences oftspin ori- 
entation (that is, differences of M) from place to place. In fact, analysis 
shows that this magnetic field is proportional to Vi]/ for cubic crystals. 
Thus equation (2) really involves position coordinates as well as time. 
Hence the ac part ?n of M at a point will depend not only on the ac field 
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H at that point, but on values of H throughout the volume of the sample. 
Therefore B, which is nolj + m, will likewise be a functional of H over 
the whole sample. Fortunately it turns out that the spatial variation of 
H in a microwave structure is so much slower than that characteristic of 
the "spin waves" to which V2/}/ gives rise that this effect is quite negli- 
gible at microwave frequencies. Only in the most immediate vicinity of 
gyromagnetic resonance could such effects become significant. 

Thus, we shall regard HT simply as the sum of the dc and ac magnetic 
fields, + U, and correspondingly M as the sum of the dc magnetiza- 
tion (directed along H0 in a saturated sample when anisotropy is neg- 
lected) plus an ac part m. Equation (2) must now be solved for m in 
terms of H. It is a non-linear equation, whose solution in will depend on 
H non-linearly, as will B. Even if m could be determined in this way, 
Maxwell's equations would become non-linear, and hope of their solu- 
tion remote. It is therefore necessary, and in the great majority of ap- 
plications also quite sufficient, to assume that the ac quantities in (2) 
are so small that their products can be neglected and only linear terms 
taken into account. The terms m and H may now be assumed to vary 
as exp jut. 

Under these circumstances, (2) becomes 

and is easily solved for m in terms of H, and of the dc quantities Ho, Mo 
which we shall assume to point in the ^-direction. Each of the components 
mx, viy is a linear function of both Hx and Hy and when they are sub- 
stituted in the components of the equation B = noS + m, lead to ex- 
pressions of the form (1) for B in terms of H: 

= 7{[m X //„] + [Mo X //]) at 

{[Mo X [m X -#„]] + [Mo X [Mo X //]]), M o 

Bx   nH Z j^Hy , 

By = JkHx + y-Hy , and 

B. = yoHz. 

(3) 

It is convenient to introduce two auxiliary quantities 

y\ Ho, 
i 
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and in terms of these one obtains the relations first derived by Polder: 

(4) 

M _ 1 . ojl + g) + Sgn V , 
Mo <i2(l + a2) — 1 + 2jci(T sgn p' 

k _  — p  
Mo _ (r2(l -b or) - 1 + 2ja(T Sgn p' 

where the function 

sgn p = +1 p > 0 

= -1 p < 0 

(j is the ratio of the natural precession frequency | 7 | 7/o to the —TT 

signal frequency, p is the ratio of a frequency — | 7 1 il/o/Mo, associated ^TT 
with the saturation magnetization il/o, to the signal frequency. Note 
that a and p always have similar signs: if Hq is reversed, so is the satura- 
tion magnetization. Equations (4) are true only for a fully saturated 
sample. Therefore they hold good only for values of a greater than the 
very small value corresponding to the amount of Ho required to saturate 
the sample. In practice that value of Hq is generally so small that this 
restriction is trivial. In the text a number of formulae will appear 
which apply "near c = 0". These are to be understood as applying near 
the very small value of a that corresponds to saturation. 

Equation (4) has an interesting implication with regard to the loss 
parameter a. If a were zero, we would have 

M = 1 — . ^ and 

(5) 
Mo 1 — o"2' 

K P 
Mo 1 - ff2' 

and these equations describe the loss-free case. If in equations (5), <t is 
replaced by (<r + ja sgn p), the resulting expressions check (4) to order a. 
For small a, it follows that any propagation problem need be considered 
for the loss-free case (5) only.* The first order change due to loss in any 
formula so obtained can be deduced by differentiation of the formula 

* A form of the damping term in Equation (2), no less justified experimentally 

than the one used above, is - .-^7-7 [MX— ). When this expression is used the 
\M\\ dt ) 

permeabilities are exactly functions of the variable, o- + ja sgn p. 
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Figs. 1(a) and 1(b) — The relative permeabilities m/mo and ic/fio versus o-. 

with respect to a, and multiplication by ja sgn p. Of course this procedure 
is invalid close to resonance (a = 1), when terms in a play an important 
part. Equations (5), which will hereafter be called the Polder equations, 
are plotted in Fig. 1. The quantity 

K p 
PH = - =   o 

p. \ — pa — (T- 

is shown in Fig. 1(c). It occurs in the waveguide theory, and also in the 
theory of other microwave circuits considered later on. The ratio /i/mo = 
p/pz will be denoted by vu . At a fixed p, p/po decreases from unity at 
o- = 0, through zero at a = —p/2 + ■\/p2/4 + 1 to — co at o- = 1 — 0, 
and then from -(-<»atcr = 1+0 steadily down to unity at o- = co. k/pq 
increases from 71 at a- = 0 to + co at cr = 1 — 0, and then again from 
— co at a- = 1 + 0 to zero at tr — co. 

It has already been mentioned that the anisotropy fields are of the 
order of a few hundred gauss. For most ferrites the saturation magnetiza- 
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tion is about 1,000 gauss. It will therefore be consistent with the neglect 
of anisotropy to assume that the applied frequency is such that p is less 
than unity and this will be done hereafter. 

2.2 Ion clouds or plasmas 

Since these are considered in much less detail in these papers, their 
physical properties are stated only briefly here. 

Instead of a tensor relationship between B and, H we now have one 
between the displacement vector D and the electric field E. If the mag- 
netizing field is along the 2 axis, we have 

Dx = eEx — j-qEy , 

Dy = jrjEx + tEy, and (6) 

Dz = €zEz . 

If the medium consists of equal densities R of positive ions and elec- 
trons, and if collisions and thermal velocities are neglected, e and 77 can 
be calculated for weak ac disturbances Ee3al from the equation of motion 

v = A Ee3"1 + T[y X TJ], 
m 

where v is the velocity vector of the electron and 7 = c^o/m, in the usual 
notation. When this equation is solved and the abbreviations 

1 I rr ^ 
u0 = \ y\ Ho] o- = — ; Q = - > Wp ~ ^2 

OJo W 

are introduced, one obtains, from the fact that the total current is 
jweoE + Rv, the heavy ions being assumed stationary, 

e = e0(l+ ^ 
a 2 - 1. 

2 
77 = €0 

q a 
cr2 - 1 

, and (7) 

e2 = eo(l - qZ), 

where eo is the dielectric constant of vacuum. The waveguide theory will 
involve the parameters 

^ ~ = 1 - (1 _ ^(1 - 52)'and 

_ 77 _ q<r 
PE — - — e a'1 + q2 — 1 
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These results apply to stationary plasmas only. If the plasma were 
an electron stream moving along the wave-propagation direction, for 
example, the dielectric constants would depend on wavelength also, and 
the propagation problem would lie much more involved. 

The variations of e and r; with a are shown in Fig. 2. e/eo for a given (/ 
starts at o- = 0, e = eo (1 — f/), decreases through zero at o- = \/1 — q2 

to — a© at o- = 1—0, starts again from -f- oo at (7 = 1 -f- 0, and de- 
creases to £o at t7 = . r; = 0 when «7 = 0, decreases to — coat(7 = 1 — 0 
and then decreases from + =o at 1 + 0 to zero at o- = co. 

We note that similar formulae apply to the electron-gas in semicon- 
ductors at temperatures sufficiently low and frequencies sufficiently high 
so that damping is not important. However, the formulae have to be 

12 
II 

10 
9 
8 
7 

6 
5 
4 

3 
2 
1 

O 
-0.5 

-1.0 

-1.5 

-2.0 
-2.5 
-3.0 
-3.5 
-4.0 
-4,5 
-5,0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 1.0 I.I 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
tr 

Fig. 1(c) — The ratio pH = k/p versus <7. 

1 

/ 
0 
/ 
r 0'/ 

i 

C\i 
d 

/ 
/ 
/ 

.4 

o.'s 
/ 0.6 0.4 

— 

— /! 

J 1 
H 

// 
/i 

c hlu 
p/c 0.4

 

cxl 1 



590 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1954 

generalized in some of those cases to take into account the existence of 
groups of electrons with different "effective masses" m. 

3. THE SOLUTION OF MAXWELL'S EQUATIONS 

Maxwell's equations will now be solved in a cylindrical waveguide 
filled with a hypothetical medium which contains the ferrite and the 
plasma as a special case. It will be supposed therefore that both its per- 
meability and dielectric constant are tensors of the form previously 
considered. 

3.1 Field components 

The following notation will be found convenient. The projection of a 
vector A upon the plane normal to the z-axis will be written 4t . If the 
components of A t are a, (3 then an associated vector having components 
(0, —a) is devoted by 4/*- A similar notation is used for differential 
operators. Thus, if V denotes (d/dx, d/dy), V* denotes (d/dy, — d/dx)-\. 
Denoting scalar products by a dot, the following identities are evident 

At*-At* = At-At ; (44)* = -At ; 4r44 = 0; 

At-Bt* = -At*-Bt ; 

and 
AfB* = z-component of [A X B]. 

Also if k is a unit vector along the positive z-axis, /c X 4 = —44. 
Similar relations hold for differential operators. If one denotes the star- 
ring operation by the symbol P then clearly 

P!=-l; p-1 = -P; = ^L- (a - P). 
P + a 1 -f a2 

where a is a number. 
Maxwell's equations may now be written, for that case in which the 

dependence of any component upon t and z is of the form ej(uM9z), in the 
form: 

S7*HZ + j0Ht* = jueEt + oivE*, 

V -Ht* = jo}€tEt, 

V*Z?z + j0E* = —jupHt — mHt*, and 

V-Et* = -juyzHz, 

where use is made of equations (3) and (6). 

f The operator V* is called "flux" by Schelkunoff. Strictly, one should write 
V< and Vj*, rather than V and V*, but this is needlessly cumbersome. 

(9) 
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Figs. 2(ii) and 2(b) —The relative dielectric constants e/eo and ij/tu veisus a. 

It is desirable to remove scale factors as far as possible. A unit of 
length given by 

1 1 
/3o U\/fjL^t 

will be used to measure lengths. This unit is where Xo is the wave- 
length in an unbounded, unmagnetized medium. It will be assumed that 
/3 is in future measured in units of /3o. Finally all magnetic fields will 
be multiplied by vVz/c* to give them the dimensions of electric fields. 
Using the definitions of the v's and p's given in Section 2, Maxwell's equa- 
tions may be put into the form: 

V*H: + jpf/t* = VS(jEt + PbES), 

V-Ht* = jEz, 

S7*EZ -f- jfiE * = pnH*), 

(10a) 

(10b) 

(10c) 

and 

V-E* = —iHt . (lOd) 
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Ei and Hi may now be eliminated yielding two simultaneous second 
order equations for Ez and Hz. These, in turn, may be combined to 
produce two independent second order equations each of which is satisfied 
by an appropriate linear combination of Ez and Hz. These equations 
may be solved and Ez and Hz expressed as linear combinations of the 
solutions. The transverse fields are then written in terms of Et and Hz 

and, finally, the boundary conditions are applied leaving a transcendental 
equation in /32. 

Operating on (10a) and (10c) with V • and taking account of (10b), 
(lOd), one finds that 

i/3V Hi* = VE{jV-Ei + jpEHx) = -0E,, and ^ 

jpV-Et* = — fz/O'V-Hi + ipnEt) = pHt 

Operating on (10a) and (10c) withV*-, usingV*-V* = V2 and so on, 
one obtains, using (10b) and (lOd), 

V2//z + i/3V-Hi = ve{-Hz + pBV-Ei), and 
(12) 

V2^ + i/3V -Ei = -Vh{Ex + ph^-Hi). 

Now, elimination of V -Ef and V -F, between (11) and (12) yields 

V2//* + vE {\ — pe2 — ^ = jPipn + Ph)Ez , and 
VEV" (13) 

\72Ez + VH i I — Pi2 — -^—)EZ = —jfiipE + Ph)Hz , \ vEPB' 

equations which demonstrate that pure TE or TM fields no longer exist, 
as the result of the presence of p's. Hz or Ez might now be eliminated 
between these equations giving a single equation in V2 and (V2)2, but it 
is more convenient to find those linear combinations of Ez and Hz which 
satisfy a first order equation in V2. Writing such a linear combination as 

i = Ez+ j\Hz, (14) 

and adding j'A times the first of equations (13) to the second, it is found 
that this is an equation in \p alone of the form 

VV + xV = 0, (15) 

provided that A is a root of the quadratic 

/i 2 /32 \ / 2 /32 \ VE [i — PE j — PH [i — PH —   I 
A2 - —A PePU/^ A WJil A - 1 = 0. (16) 

0{PE + PH) 
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The value of x2 is then given by 

X1.2" — vb (]- — pe' — ^ — Pips + Ph)M.i , (17a) 
\ VBVH/ 

or 

X1.2' = vn (l — pn' — ——) + &{pe + Ph)Aii2 , (17b) 
\ VEVHJ 

where Ai and A2 are the roots of (10) and xi2, X22 are the corresponding x2- 
The labelling of the roots is not important, but consistency must be 
maintained. From (14) Ez and H. must satisfy 

and 

so that 

and 

Ez + jKiHz = \pi, 

Ez + j^Jh = \f/2 

.1 A 2^1 - Aih 
= H ,— ' A2 — Ai 

(18a) 

(18b) 

Solutions of (15) may now be sought in cylindrical coordinates. To 
satisfy the boundary conditions in circular guide it will be necessary to 
assume the solutions to vary as e1"0, where 6 is the polar angle and n is 
any integer, positive, negative or zero. Equation (15) then becomes 

1 a / d^i.2(r)\ / 2 w2\ , . 
r3-r[

r^) + VXI'2 " ?) = 0l 

if r is the radius. Solutions which are regular within the guide will have 
the form of constant multiples of Jnixi.tf), where Jn is the nth order 
Bessel function. The solutions of (15) are, then, 

^1.2 = AiizJn(xifir)elne, (19) 

where the A's are constants. Ez and Hz can be found now from (18), but 
further equations must be found to express Et and Hi. Using P to denote 
the starring operation, (10a) and (10c) may be re-written as 

(jvFP — PeVe)Ei + jfiHt = —VHz, 

and 
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—jfiEl "h (jVgP — PhVh)Ht= ^7Ez , 

which yield 

{[vEVuil + PEPH) — /32] — jvHVsipH + PE)P]EI 

= -jPVEz - Va(jP - pa)VH,, 

and 

+ PePh) — /32] — jvHVE{pH + PB)P\Ut 

= vsijP — pb)VEz — jpVHz 

The term in parentheses may be removed by using the rule for inverting 
such expressions in P which was given earlier. This process gives 

tiEt = j^l + PePH — + i(Pff + PB)^ 

[— jPVEz — VnijP — P*)VtfJ, 

and 

(20a) 

SlHt = ('id- PEPH — ^ + i(ps + PE)E 
.\ VEVH/ (20b) 

[vs^jP pb) V Ei j(3^7 IIZ\, 

where 

= VEVH 

= VEVh ( 1 + PEPH — ——) — (pe + PH) 
L\ VeVh/ 

— (1 + Pe) (1 "T PH) —— — (1 — PK)(1 P//)l 
\_VEVH J L.VEVH J 

It may be noted that for plane waves in the unbounded medium along 
the z axis, which have Ez = Hz = 0, must vanish and that the propaga- 
tion constants for such plane waves are evidently given by 

if = VEVH(1 ± PE) (1 ± PH)- (21) 

The values of Ez and Hz given by (18) may now be substituted in (20) 
and the operator P removed. This gives, finally, 

i 

(22a) 

(Ai — A/ltiEi = j J^l + PePh — J (/3A2 — PhVh) + VgipH + Pk) J V\p 

— ^(i3A2 — PhVB){PE + PH) + J'fl' ^1 + PEPH — VVi 

minus the same expression with suffixes 1 and 2 interchanged. 
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(Ai — Azj&Ui = J^l 4" PEPII — (AZVEPE — — VEAI{PB + PH)J Vr/'i 

( \ 1 ^22b') VeAi I 1 + pEpii — ——- ) — (pe + Ph){A2VePe — P) V*^ 
\ VeVH/ J 

minus the same expression with suffixes 1 and 2 interchanged. 

Equations (22a) and (22b) may be written in a variety of equivalent 
forms by making use of the relations between Ai and Ao. The manipula- 
tions which have been used in deriving (22a) and (22b) assume the use 
of rectangular coordinates, but the results are valid in polar coordinates 

' d 1 d \ 
if Ei means (i?r, E6) and V means I — , - • That this is the case may v or r do 
be seen from the consideration that the rotation, —6, which carries the 

vector (Ex , Ev) into the vector (Er, Eg) also transforms (— , —) into 
\dx dy/ 

d_ I d_ 
dr ' r dd/ 

3.2 The characteristic equation 

The boundary conditions of the problem are that = 0 and Eg = 0 
at r = n , the radius of the guide. El is given l)jr [see (18)1. 

(A, - AOB, = [Ai.-W.txir) - A1A!J.(x!r)le"'1 (23) 

and vanishes at r = 7'o if 

. JniXtfo) . JniXiTo) 
Al = ; A2 = ' 

Hence the relations hold: 

^1,2 = "T"- Jn(x2.iro)Jn(xi.2r)e3ne. 
A2.1 

From (22a) it follows that 

(A, - A.)m = ( 1 + PhpH — ) (^2 — PhVh) 
\ VEVH/ A2 

+ VB{PB + PK) ) Jnixir) + ^ (^A2 — PHVH){pe + P//) 

/32 

+ r// ( 1 + pePH — 
VEVH 

Xl'/n'txuoj 

* In Appendix III the field components in polar coordinates are written out 
fully for the ferrite and plasma eases with some changes in notation which are 
introduced in Sections 4.11 and 4.2. 
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(24) 

minus the same expression with the suffixes interchanged. Hence 

(Aj - A?)QJ'Je(ro) 

= T(Ai _ /prf2 + ^ 
ro L \veVii / 

+ + ph) - A,,* (i - pj - A-)} 

- ^(p. + P.) - AaPff (l - p/ - ^)} ^terT0'' 

where use has been made of the relation AiAo = —1. Therefore the 
characteristic equation for /32 is obtained by equating the term in square 
brackets to zero. Because of the quadratic relation satisfied by A and 
the relation between A and x, it is possible to write the characteristic 
equation in a great variety of ways. It will be convenient to introduce a 
function 

FM = F.M = . (25) 
Jn{X) 

Using the F-function and replacing the A's by x's the characteristic 
equation may be written :* 

nvnixz2 — Xi2) + PB(1 — P"2)l ^7 r \ ^ T~ 
_VKVH JP\PE-\-Pii) A2 

- Fn(x2ro). 
Ai 

The asymmetry of this equation between pH , v„ and pe , vE arises from 
the fact that the boundary conditions involve electric field components 
alone. 

It may be noted that if the basic solution had been taken to vary as 
cos nd or sin n6, the expression for Eg would have been a linear combina- 
tion of sin nd and cos nd that could not have vanished at the Avails for 
all d. 

In passing Ave remark that for a guide of arbitrary cross-section, the 

* The characteristic equations given in Reference 4 were specializations to the 
ferrite and plasma cases of the form in square brackets. They have also been de- 
rived by Kales5 and Gamo6. These authors have given expressions for some, though 
not all, of the varieties of cut-off point derived in this paper and classified them 
as TE or TM according to the field configuration at cut-off. By contrast, they are 
classified here by their association with quasi-TE or quasi-TM limit modes which 
reduce to the usual TE and TM modes in the unmagnetized medium. 
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boundary value problem may be put into the form, of which (26) is a 
special case, 

V2/i + Xi2/i = o, 

and 

V2/2 + X2S2 = 0, 

. / X22 dfi _ Xi2 dfo \ _ vh(x22 — Xi2) f Ph/32 , n _ 2x1 dfi 
\A2 dN A1 dN) /3(pB + pa) \_VeVh PB PH J 55 ' 

where d/dN and d/dS are normal and tangential derivatives at the guide 
surface, where, in addition, fi = fi. 

4. DISCUSSION OF THE PROPAGATION CONSTANTS 

At this point we specialize the characteristic equation (26) to one or 
other of the two media. 

4.1. The ferrite (pe = 0, ve = 1) 

4.11. After some rearrangement the characteristic equation becomes 

X22 
1 [>„ 
ti2 L 

(xR'o) — 71 FniXiVo) — n 
Xo xi2 L Xi 

where X2.1 = (i A1.2 and the X satisfy 

(1 — VB) f 1 — \ + VuPn* 
Xi.22 -  ^^ Xj.2 - /32 = 0. 

PH 

The x's are given by 

2 A /32 

(27) 

(28) 

X1.2 — ^1 - —j PffXi^ . (29) 

From Polder's equations for pu and , (28) may be written 

X!/ - [p + (T(1 - ^Xi.2 - /32 = 0, (30) 

or 

X1X2 = —/32, (31a) 

Xi + X2 = p + tr(l — /3"), 

= p + tr + o-XiX2. (31b) 

If /32 be eliminated between equations (28) and (29), xi.22 may be ex- 
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pressed solely in terms ot Xi.2, ph and vH in the form 

1 - X1.22 

Xl,2 — i 

1 - 1 Xl.2 
PH 

Again using Polder's formulae, this becomes 

Xi.a2 = 1^ ■ (32) 1 — OA] ,2 

With these expressions for the x, the characteristic equation takes the 
form 

(j(Xi , cr, I'o) — (t(X2 , o, To), (33) 

where 

G(X, er, r.) = (34) 

Equations (31b) and (33) may now be considered for a fixed a and p 
as determining associated pairs of values for Xi and Xo. Such a pair in 
turn determines /32 = — X1X2. Since /32 must be positive for propagation 
Xi, X2 must have opposite signs. The convention will be adopted that Xi 
is positive and Xo is negative. Equation (31b) will hereafter be called the 
Polder relation and Equation (33) the G-equation. 

An important fact of which frequent use will be made is that the 
transformation 

Xi—>—X2, X2—>—Xi, cr —> — cr, p —> —p 

leaves the Polder relation and /32 unchanged and converts n to —n in the 
G-equation. It follows that it is necessary to consider positive n only, 
provided we allow the pair a, p to take on negative as well as positive 
values. This corresponds to the physical fact that a right-circular wave 
in a backward-directed magnetizing field behaves like a left-circular 
wave in a forward field. 

The discussion in this paper is confined to the first azimuthal mode 
number n = ±1. Accordingly the symbol F will replace Fi in what 
follows. 

Before commencing the graphical analysis of the G function it is ad- 
vantageous to consider briefly the function F(x) = xJi(x)/Ji(x), which 
we require for real and for purely imaginary x. By logarithmic differentia- 
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1 

iEEEEEEEEEz^ 

5J 4j 3j 2J 1J 0 1 |2 3 14 5 | 6 7 Q 9 101 
U, j, Ua J3 

X 
xJ\'{x) 

Fig. 3 — The function F{x) = . 
JAx) 

tion of the infinite product for Ji{x), F(x) is found to be given by 

F(x) = 1-2 2, 
n-ljr? - X2 

where the jn's are the zeros of 
Thus, F{x) is real if x2 is, which is always the case here. For positive x, 

F(x) is an always decreasing function of x, which has an infinite number 
of first order zeros and poles. The zeros are those of Ji(x) and will be 
denoted by vn . The poles are the zeros of Ji(x). It may be recalled from 
the properties of Bessel functions that for large n these zeros and poles 
are essentially equally spaced with a separation t/2. When x is a pure 
imaginary, equal to jy, F(x) becomes This is a steadily in- 
creasing function of y, always positive, and behaving like y — li for 
large y. The function F is shown in Fig. 3. Further formulae pertaining 
to F are given in Appendix I. The inverse function F'l{x), which is also 
of some importance, is a multivalued function of x, whose behavior is 
readily understood from the figure for F{x). We are now ready to proceed 
with the graphical analysis of the (/-equation. 

In a rectangular coordinate system with X as abscissa and a as ordinate, 
a contour map is sketched of the function 
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G = 
1 - (TX 
1 - X2 \F[u 

1 - X2 

1 — (rX 
- 1 

for all values of X, cr from — oo to + <», ro being kept fixed. This can 
be done as accurately as desired by first drawing the contours % = 

   = constant (Fig. 4), along each of which G simply behaves like 
1 — crX 
A/\ B and is easily evaluated with the help of a table of F. However, 

i s 1 + oo 

2.0 

1.0 

0.5 

+ 00 

-1.5 

2.C 

+ 0C 

0,5 -0.5 -1.5 -1.0 -2.0 

1 - X2 

Fig. 4 — Curves of constant x2 = 1 - crX 
in the o- — X plane. 
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many features of the (7-contours are already determined by the position 
of the contours G = ^, and G = 0, across which G changes sign (from 
zb oo to T qo or from ±0 to ^0). Because of their special role in the 
subsequent analysis it is desirable to introduce a scheme for their enum- 
eration. The infinity and zero curves in the right-hand half-plane will be 
denoted by I and 0, respectively, those in the left-hand half-plane by /' 
and 0'. All but two of the /-curves arise from the poles jn of F. Their 
equations are 

Each of these curves has two branches, one in the half-plane X > 0, one 
in X < 0 and these are called /„ , /,/ respectively. All /„ curves pass 
through X = l.o- = 1, all /„' curves pass through X = — 1, ct = —1. The 
lines X = 0, X = — 1 are also infinity curves to be denoted by I a , I,,' 
respectively (As X —>■ +1, G tends to a finite value). 

Zero curves of G are given by 

or in a more readily computable form by 

The branches of F '(X) may be labelled according to the scheme: "0" 
for - oo < [F~l(\)]2 < j2; "1" for < [/'"'(X)]2 < and so on. The 
nth branch of F~l(\) gives rise to an 0n curve for X > 0 and to an 0,/ 
curve for negative X. All 0,/ curves pass through X = — 1, tr = —1; all 
save one of the 0,, curves pass through X = 1, a = 1. The exceptional one, 
seen to be Oo, is associated with the "0" branch of F~\\) on which 
F~\l) = 0. For fixed a, G tends to zero as X —> », hence the vertical 
lines X = ± «: are also zero curves, to be denoted by 0M and 0J respec- 
tively. 

In a sense the two branches of o-X = 1 are also zero curves, to be called 
0,- and 0/. 0C and 0/ are zero curves only when viewed from "one side." 
In the right half-plane, for X < lasoA—>1 — 0 and for X > 1 as 
crX —> 1 + 0, the argument of F tends to infinity and remains real. 
Therefore G passes through all values an indefinite number of times and 
aX = 1 is a limit line of all contours, G = constant. For X < 1 as 
crX —> 1 + 0 and for X > 1 as aX —> 1 — 0, the argument of F is 

1 — X2 .2/2 -to   T = Jn /ro n = 1, 2, 
1 — crX 
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Fig. 6 — Qualitative behavior of G{\, a) at large distances from the origin as a 
function of arc tan a/\. ro is about 2. 

imaginary and F tends to infinity. However F 
1 - X2 

tends to zero 
1 - a\ 

so that G tends to zero. 
To complete the picture of the G-function given by the form and posi- 

tion of the 0 and I curves it is necessary to see how it behaves at large 
distances from the origin. This is indicated in Fig. 5 and also by Fig. 6. 
The latter shows the value of G at large distances as a function of direc- 
tion. In general, along the line a = cX + d (c finite), G will tend to — c 
for all d. For c = fjn (which is the slope of the asymptotes to the /„ 
curves), G again tends to a constant. Now, however, the constant depends 
upon d and assumes all values from — =o to + « as a function of d. In 
the first quadrant the sign of variation of the limiting value of G with 
direction c is opposite to that of its variation with d near c = Vq /jn. 
Consequently local maxima and minima arise as a function of direction 
between successive /,,-curves. This suggests the existence of saddle points, 
which may be verified directly. In the third quadrant, the dependence of 
G upon c and d does not give such maxima and minima, and indeed no 
saddle points are found there. Finally it is necessary to consider the be- 
havior of G as a tends to infinity, while X remains finite, corresponding to 
(1/c) —» 0. If X remains fixed, then for X > — 1, G —> T oo as cr —» ± co ; 
and forX < —1,G—>±ooas(r—>±oo.AsX—>0, the curves of constant 

G are asymptotic to X<r = ( 1 — ^) — B\, where B goes from — oo to 
\ un-' 

-f co with G. Interleaved with these families of curves are the curves 
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G = ± oo, which are Xo- = ^1 — + 0(X2). More detailed information 

on these matters Mill be found in Appendix II. 
From the G-diagram it would be possible to determine pairs of X-values 

with opposite signs, which, for a definite cr-value satisfy the characteristic 
equation, but, for a given p such pairs would not necessarily satisfy the 
Polder relation (31b). It is necessary to have a procedure which takes 
account of the latter systematically. Such a method may be based upon 
the fact that if, for a and p positive, the Polder relation is solved for Xi 
in terms of X2 it can be thought of as a rather simple mapping of the 
whole Xa-quadrant upon a part of the Xi-quadrant (Xi > 0). Similarly for 
0- and negative there is an analogous mapping of the Xi-quadrant onto 
the X2-quadrant. 

Considering first the case cr, p > 0, the Polder relation may be written 
in the forms 

From (36) it may be seen that the curves X2 = const, transform into a 
bundle of hyperbolae passing through the intersection of a = 1/Xi and 
o- = Xi — p; that is, through X10, ao, where 

These hyperbolae have the vertical asymptotes Xi = — I/X2, and intersect 
a = 0 at Xi = p — X2. For a fixed positive tr less than ao, Xi decreases 
from 1/a to tr + p as X2 increases from - co to 0, but when a is greater 
than ao, Xi increases from l/a to a p under the same circumstances. 
Thus the whole X2-quadrant is transformed upon that part of the Xi- 
quadrant which lies between the hyperbola Xi = l/o- and the straight 
line Xi = o- + p. It follows that points in the Xi-quadrant which are, for 
a given p, excluded from this region, cannot be the site of acceptable so- 
lutions of the G-equation. 

Since as has already been stated, the Polder relation is unchanged 
by the substitution Xi —> — X2, X2 —> — Xi, o- —> —a, and p to — p, it 
follows that for a and p negative a similar mapping of the Xi-quadrant 
upon part of the X2-quadrant takes place. The transforms of the lines 
Xi = const, and so forth may easily be found by using these substitutions 
in the formulae already given. 

Reference to Fig. 1(a) and (b) will show that ±<ro are the values of a at 
which p reverses sign. Therefore we may expect ao to play a special role 

(36) 
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in the propagation theory, as also does a = 1. The following scheme 
exists: for 0 < tr < co, k and /x are both positive; for oo < o- < 1, k < 0 
and /x < 0, for (r > 1, k is negative and m positive. If cr is changed to 
— a,H goes into /x, and k into —k. 

The procedure which will now be used to discuss the solution of the 
characteristic equation, observing the Polder relations, begins by writing 
the equation, for a, p positive, in the form 

G(Xi , CT, To) = G{T(\i), cr, ro) 

We are already in possession of a contour map of the left hand side 
of this equation in the quadrant a > 0, X > 0, and of the function 
G{\2, a, ro) in the quadrant X < 0, cr > 0. The latter surface has now to 
be transformed into one in the Xi-quadrant by the relation 

X2 = T(Xi) = ((T + p — Xl)/(1 — ffXi) 

(or equally well, Xi = T{\o). This may be effected by considering the 
transformation of curves (/(Xo, cr, ro) = constant, onto the Xi-quadrant. 
For the /' curves whose analytical expression in terms of cr and X2 is very 
simple, the corresponding explicit expression of the transformed curve 
in Xi and a is simple. Contours other than /' are most easily transformed 
by replotting G(\->, c, n) = const, in the hyperbola-mesh formed by the 
lines TiX*). However, information about particular points and about 
asymptotic behavior of these transformed curves is available in analytic 
form and is stated in Appendix II. The two surfaces so obtained will in- 
tersect in various curves, along whose projections on the X — ct plane both 
Polder relation and G-equation are satisfied. For each such projection Xi 
is a function of cr, X2 is then known in terms of cr and p, and finally 13' = 
— X1X2 is known. In most cases the general course of these curves can be 
found without resort to much numerical analysis. Each of the curves is 
associated with a definite mode and it follows that the classification of 
the modes can be carried out fairly easily. The approximate location of 
the solution curves relies upon the fact that if the position of the infinity 
curves of both surfaces is known, continuity considerations will fre- 
quently assure the existence of an intersection within certain regions. 
Moreover, the neighborhood of certain special points on these solution 
curves can be investigated analytically. These are points at which one 
or both of the G-functions may be approximated by a simpler expression; 
included among these is the point at infinity. 

It is clear that for a and p negative the whole procedure outlined above 
may be carried out in a similar way, with the 0- > 0, X > 0 quadrant now 
being transformed on to the cr < 0, X < 0 quadrant. 
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It is possible to translate such solution curves into — a curves in a 
direct graphical manner if a mesh of constant /32 lines is drawn in the 
first quadrant. From (30) these are given by 

X!2 - [p + .7(1 - ^IXj - /32 = 0, 
or 

1 - Xx2 

-K 
V 
- /32J 

= i - r. 
Xx 

The contour, /3 = 5, is just the contour x2 = 1 — h2 displaced along the 
T-axis by an amount, — p/(l — b2). The contours of constant /3 all pass 
through the point o- = o-q , X = oo + p and are shown in Fig. 7. Their 

r 
0.5 oo 4.0 2.0 

1.0 

0,7 

\ 
0.6 

0.3 
4.0 

.25 0.5 
0.5 0.6 0.7 0,8 0.9 1.0 I.I 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

Fig. 7 — Contours of constant /32 = X     for p = 0.5. 
1 — irX 

[/3«(X, (t, p) = ^(-X, -a, -p)] 
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course in the third quadrant is immediately found by reflection in the 
origin. 

When p = 0 the magnetization of the ferrite vanishes and it is clear 
that we should then obtain just the modes of a guide filled with isotropic 
material (n = fxz ■, k = 0). Superficially it might appear that, sinc£ the 
equations (31b) and (33) depend upon a, even for p = 0, this result 
might not be attained. We now show that /32 is indeed independent of a 
for p = 0. It may first be noted that in this case if tr ^ 1, the Polder re- 
lation (31b) transforms 

1 — Xi" . . 1 — X2" 1 \ • + o" — X2 into   — and Xi into 
1 - crX, 

The G-equation reads 

1 - 0-X2 1 — crX: 

1 — \2cr 
1 - X2

2 
1 

Fin 
Vh: 

- x'! 1 -1 
fX, 

1 - X20" 
1 - x..2 

Since Xi 5^ X2 we must have 

F 
(- ^ 

or 

1 - Xi.j 
1 — fXi.s nr 

= 0 or co, 

or ^ 
n- 

Thus X1.2 are roots of 

or else of 

In the first case 

X2 - cr X + 
ro2 

X2 - <7^ X + 

Un 
rn2 -1=0, 

To 
-1=0, 

and in the second 

-XiXs = /32 = 1 - , 
ro 

Jn -XiXs = /32 = 1 - ^. 
ro" 
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Thus, when a ^ 1, the /32 values, for p = 0, are evidently independent 
of a and are just those of an isotropic medium. When a — l(fi = k = r^>), 
p = 0, (f is indeterminate and for p small, there is a small region near 
a = 1, of width in which p' differs appreciably from the isotropic 
value. The convergence of an expansion of (S2 in powers of p[(61) and (62)] 
shows a marked dependence on o-. 

4.12. The scheme of analysis described above will now be illustrated 
in detail by a discussion for a radius ro between Ui and ji, which, if the 
ferrite were unmagnetized, would propagate the TEn-mode alone. 

Figs. 8(c) and 8(d) show the division of the X — cr plane into regions of 
positive and negative G(\, a) by the various I and 0 curves. A few con- 
tours of constant G are plotted to indicate the behavior of the function 
in more detail. That part of the X — o- plane which is excluded by the 

o- 0 

i. /oTZ e) 
/ 
// > 

w /. 2' -r 
/y+s. 

-1 - K 

Or — 

- // - O',' y 

/ Oo 
^ / 

/ 

-3 -2 -1 

Fig. 8(e) — See Fig. 
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(0oo)T 
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Ga) 
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Pij, 9 _ Geometrical exploration of the solution curves. The permitted areas 
of the \ - a plane are divided by the O, I, {0)t , (I)t curves into regions in which 
G(X, a) and (7(7'00, <0 'ike or unlike signs. Shaded regions are those of unlike 
signs. Solution curves (shown schematically by dotted lines) must lie in regions 
of like signs. Only the first few 0 and I curves are shown. Fig. 9(a) and (b), ro ~ 
3.0; Fig. 0(c) and (d), ~ 5.0; Fig. 9(e) and (0,1/2 < r0 < h ; Fig. 9(g), ro < «. • 
| p | < 1, throughout. The horizontal dashed line marks | <7 | = | ao | . 

Polder relation is indicated, for p = by shading. For other p-values 
the straight portion of the boundary of the excluded region is simply 
translated along the X-axis. 

In Fig. 9(a) the allowed region of the first quadrant is shown again, 
together with the transforms (Ia')t, (Qi)t , and (/h')t of the only 
critical curves /./, 0/ and Ib occurring in the second quadrant for the 
present radius. Regions in which G(Xi , a) and cr) have opposite 
sign are shaded; the common signs in the remaining parts of the quadrant 
are as indicated. (In this diagram p is taken to be %). 

From the disposition of the surfaces G{\i, a) in the region between Oi 
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and /i and of the surface (?(T(Xi), a) between (0w')t and (/b') r it isevident 
that along any contour such as 0(Xi , a) = K, G(T{\i), a) will take on all 
positive values from 0 to & and, in particular, K. Since this is true for 
any K, it follows that the region between (h , A , {Ib')t contains a solu- 
tion curve. Two points on this curve are immediately obvious; the inter- 
sections of {Ib')t , h and the point (1, 1) on (O^Or , 0C . The first is the 
intersection of the curves 

X = 1 + 
1 + <r' To2 

1 - X1' 
1 - crX 

At the point (1, 1), X2 is - co, Xi is unity and /32 is therefore infinite. 
Armed with this knowledge we now investigate analytically the behavior 
of /32 near o- = 0 directly from the original (/-equation and Polder rela- 
tions. Writing Xi = 1 + ce and o- = 1 + e, (1 — X")/(l — cX) is to zero 
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- -0.6 

- -0.8 

- -1.2 

- -1.4 

- -1.6 

Fig. 9(d) — See Fig. 9. 
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order just 2c/l + c. Thus, Gf(X1, cr) to zero order is 

But we have, in this case, Gfa) = 0, so that 
2 2c 

1 + c ro2' 

where Zi is the smallest non-zero root of F(z) = 1. From the Polder 
relation, the leading term of X2 is —p/(l + c)e, and consequently the 
leading term of /32 is 

2 

V 
(1 + c)€ 

'StzM 
cr — 1 

This analysis is readily extended to the next order term, which is stated 
in Section (4.17). 

From analogous considerations concerning the variation of one G- 
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Fig. 9(g) — See Fig. 9. 



616 THE HELL SYSTEM TECHNICAL JOURNAL, MAY 1954 

function through all possible values of the other in the region bounded by 
11 , {Ib)t , (Oi')r we deduce that the solution curve just discussed con- 
tinues into that region and persists as o- —> co. For, the asymptote of 

ro2 

(0i')r is a = -2 X, and between it and X = 1, which is the asymptote of 
Ul 

(Ib')t , (?(!/'{Ai)) tr) takes on all values between 0 and — «>; m particular, 
the limited range of values assumed by G(\i , a) in this region. The be- 
havior of the solution curve for large a may be deduced by using the 
asymptotic formulae for curves G(Xi , a) = g and (^(TXXi) a) = g which 
are given in the appendix. These are 

=-gXl'gF ' 

and 

ro2 

It is clear that </ at a point of intersection is given by —r^/ui plus terms 
of order 1/Xi ; substituting this value in the second equation gives the 
solution curve correctly to order 1/Xi in the form. 

7'0 \ (T = — Xl - p. 
Ui" 

When the solution curve has such a linear asymptote it is convenient 
to calculate /32 from the formula 

/32= l-b-—- + terms of order higher than l/o- 
<y <x 

which is readily obtained from (30). In the present case 

/32 = ^1 — ^1 + ^ + higher terms in l/c. (38) 

As o- —> oo, /32 tends to the value appropriate to the TEn-mode in an 
isotropic medium (n —> nz = mo , k —^ 0 as o- —> oo). Thereby the whole 
solution curve is classified as specifying part of a TEn-limit mode. 

The remaining section of the TEn-limit mode in the upper half-plane 
is again found in the region between (OiOr and (Ib')t for cr < o-q . Any 
line cr = constant < cro cuts these two curves at two values of Xi . As Xi 
varies between these values, ^(^(Xi), cr) varies from 0 to — co ; it is, thus, 
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Fig. 10(a) —/32 versus p for small values of a — the TEu-limit mode. 

clearly equal to the finite (negative) (?{Xi, o-) somewhere between. This 
situation persists up to o- = ctq — 0 and a solution curve therefore exists 
between o- = 0 and a = o-q . It meets (r = 0 for Xi satisfying 

^(ro VT^"2) - l] = vT^2) " ^ 
1 - Xx2 

and Xi + X2 — p. (39) 

These equations have been solved numerically; the corresponding /32 

= — X1X2 is shown in Fig. 10(a). For ro between Ui and ji a value derived 
for /32 from the first three terms of an expansion of /32 in powers of p, 
equation (61), turns out to be in very good agreement with the numerical 
calculation up to p = 1, for tr = 0 and presumably is good for small a. 

At o-o (the point at which p becomes negative), the solution curve is 
"cutoff". However, the corresponding /32 is not zero. As o-q is approached 
from below (?(Xi , o-) —► 0 and so (7(X2, cr) tends to zero. Thus, X2 tends to 
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Fig. 10(b) — /32 versus p for small values of o- — the TMn-limit mode, 

the negative root X20 (unique for the present radius) of 

The associated /32 is — X2nXio = — — and is shown in Fig. 11(a). The way 
(TO 

in which /32 approaches this value as tr —> <to can be found and is one of 
the more subtle examples of behavior of a mode near a special point. 
Writing cr = 00 — da, Xi = X10 — 5Xi, we observe that, since 00 + p 

— — = 0, the Polder relation in the form 
(TO 

^ 1 , 0- + p - 1/(T 
Ai h —     

(T 1 — crX2 

fully determines ^ ; any variation due to 6X2 vanishes at a- = 00. 5X2 can 
no- 

be determined from theG-equation. Near o-X = 1 — 0 (X > l),G!(Xx,o-)is 
given by 

_ro . /l — Q-XI 
X, V Xx2 - 1 ' 

which near no, Xxo may be written 

rn=5.75 

5.00 

25 

/ r0 = 

r 4.825 

-oaV -0.6 -0.4 -0.2 
V0=5.33 

0.2 0.4 0.6 0.8 
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— \/5(T 

da 
Xl0 ^ + ^ 

Xio2 - 1 

dG 
The perturbed G{\2 ,a) which (since Gfao, oo) = 0) is 6X2 + 0(6o-) 

0A20 
equals the preceeding expression and gives 

6X2 = 
Am 

So- 
Aio 77—h Co OAi 

Xxo2 1 
dGV1 

axoo/ 

Accordingly, 8/32 = — X10 SXo + O(So-), a result which shows that /32 

tends to its terminal value along the vertical. It is clear analytically and 
graphically that this mode persists as p —> 0, and must be identified with 
the only isotropic mode for this radius, namely TEu . No other branches 
exist below o- = 00, since 6'(Xi, a) and G(!r(Xi), a) have opposite signs 
except in the region just considered. 

The two solution curves considered so far are not the only ones; in 
fact the infinity of sheets of the surface G(Xi , c) in the region bounded 
by h , Oc and (Ia')t , Fig- 9(a), intersect the transformed sheets G(7,(Xi)o-) 
in infinitely many more curves. In the blank areas of that region the 
(5-functioiis have equal sign, and all those areas must be carriers of solu- 
tion curves, since in every one of them every single contour G(Xi, a) = g 

o.u 
rn = 5.75 

0 0.2 0.4 0.6 0.0 1-0 
P 

-1.0 -0.6 -0.6 -0.4 -0.2 

Fig. 10(c) — /32 versus p for small values of cr — the TEu-limit mode. 
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p = 0 is clarified in the text. 
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crosses all contours of a), in particular o-) = g. All 
the additional solution curves arising in this way start at o- = 1, Xi = 1; 
the nth of them threads its way from one blank region to another, first 
through the intersection of /n+i with {Ib')t , then through the intersec- 
tion of 0,, with ((V)r , and finally comes to an end at the intersection of 
In with {Ia)t ■ At the end point (tr = 1, Xi = 1), X-. and, therefore, /32 are 
infinite, (just as for the TEu solution curve). At the end point (/„ , 
(//)r), Xa, and, therefore, /32 are zero. The a and Xi values corresponding 
to the latter are obtained from the equations 

/-"V =■'"■; Xi„ = <r. + P. (40) 
1 - CnXln ?'0- 

It is possible to derive the slope b^'/ba of the /32 — tr curves at these cut- 
off points. Near cut-off, the infinity /„ of G(Xi, o-) is matched by the 
infinity of G(X2, cr). The G-equation therefore degenerates to 

1 , x in L.IH! 
Xo (ro) . A - A" 

r°V 1 - ffX! ^ 

Writing cr = crn — xKi, Xi = Xin — y\i, expansion of the right hand 
side of this equation to order I/X2 furnishes one relation between x and y; 
the Polder equation furnishes another. The two can be solved for x, and 
so, since to first order 

9 , , ,0" — 0" n >5(7 5/3" = — XlnX2 = Xjn   — Xl — 
X X 

btf/bc may be found. It is found that for convenience in computation, 
the results of this calculation are best presented parametrically. Equa- 
tions (46-8) represent equations (40) and b&'/ba in this way. Fig. 12 
(a) and (b) show the result of some computations. Near a = 1, /32 = 
00, these added solution curves behave rather like the TEu curve. The 

. 9 . 1 . 
leading term in the expansion of /3" in powers of ^ ^ is now 

(7—1 
th 

for the solution curve ending at 7„ — ■ Here.zn+i is the (n + 1) 
root of F(z) = 1, not counting 0. 

It will turn out later that the infinity of solution curves just discussed 
represents an incipient form of the whole mode spectrum; the reservoir 
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from which higher modes are drawn as the guide radius is increased. 
That the propagation of modes which for larger guide radii correspond 
to higher TM and TE modes is possible for limited ranges of a might 
be ascribed to the larger ^-values in those ranges, which cause the wave 
to see an effectively larger guide. This explanation is convincing only 
when <t > 1. When oo < <r <1, n is negative, and the propagation must 
then be the result of an interplay between /x and k. In passing we remark 
that we are here dealing with the propagation analog of so-called "shape 
resonances," which physicists sometimes encounter in resonance experi- 
ments on small spheres of ferrite in cavities. 

We now turn to a discussion of the solution curves for o- < 0 which 
lie in the third quadrant. Fig. 9(b) shows the partition of the region 
allowed by the Polder relation (again for v = %) i11^0 positive and 
negative regions by the various I', 0', (/)r and (0)r curves. Regions in 
which (r(X2, tr) and G(T(\o), &) have opposite signs are shaded. For 
a < — to , the question whether a given region of like signs is the site 
of a solution curve may, with one exception, be answered by the same 
type of geometrical argument as used for cr > 0. The singular area is 
that part of the region bounded by In' and 0C in which the G-functions 
are both positive. Here both G(X2, t) and G(T(X2), t) are zero on 0C ; 
G(X2, t) goes to co on /s', whereas G(T(X2), *) is finite throughout the 
region. No intersection can be predicted, then, by the earlier argument. 
It can indeed be shown (for all 7o) that there is no such intersection. For, 
in the case p = 0, the solution curves are or On' curves as demon- 
strated in Section (4.11). The region under consideration contains no 
such curves, and hence no solution curves. Thus, for p = 0, since G(X2, t) 
goes to infinity on /V, the surface G(T{\2), t) must lie entirely below 
the surface ^(Xo, cr). Consider now, for fixed a and increasing p, a point 
on the G(T(\?), a) surface whose height remains unchanged. For such a 
point 7,(X2, p, cr) remains fixed and from the Polder relation this means 
an increasingly negative X2. Since it can be shown that G(X2, cr) goes 
monotonically from 0 to as X2 becomes more negative, it follows that 
G(T(\*), a) continues to be below G(X2 , cr) for all p. 

All other regions of common sign do carry solution curves. That 
corresponding to the TEu-limit mode begins ato-= — 1, X2 = —1, 
passes through the intersection of (Oo)r and (V and persists for indefi- 
nitely large a. The asymptotic formula (38), for /32 at large cr also holds 
as a —> — co, if the signs of both a and p are taken to be negative. The 
behavior of /32 near cr = — 1 may be found by the same means used at 

t = 1. The resulting expression* is to order —;—— essentially the same 
cr -f- 1, 

* See Section 4.17 for a more exact formula. 
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as the earlier (37) except that the smallest root of F{z) = — 1 replaces 
that of F{z) = 1. The remaining solution curves confined to the region 
bounded by (V, 0C, {Ia)t portray the incipient modes already encoun- 
tered in the first quadrant. Their behavior near a = —1 also follows 
(58), associated with the higher roots of F(z) = —1. Their end points, 
the intersections of /„' with (Ia)t, are still given by the parametric 
representation (46-8), due regard being paid to the signs of a-n and p. 

The remaining branch of the TEu-limit mode, lying above tr = — oo, 
is found in the triangle between {Ia)t, a = 0 and 7b . Its end points are 
given by (39) with p negative and by the intersection of Ib with (/„)?■ 
which is o- = — (1 + p), X2 = — 1, Xi = 0. Thus the cut-off in contrast 
to the analogous branch for a- > 0, is given by /32 = 0, o- = — (1 + p). 
(When p < — 1, the branch does not exist at all.) We note that a left- 
circular plane wave is cut off at exactly the same value of a as the TE- 
mode is in this particular case (see, however, the following sections). 
The slope at cut-off is determined by expanding the G functions near 
their infinities at /„ and Ib and utilizing the Polder relation. The slope 
is found to be 

djf = TVo) ( . 
da p(l - F(ro)) " 7 

A further solution curve lies in the region between 0C and (Oo)r for 
a > — (To . It has no analogue in a guide with isotropic material and 
will be discussed later. 

In the discussion of the mode spectrum for radii between Ui and ji 
three distinct types of cut-off point have already been encountered. When 
larger radii are treated it is found that no other types arise.* In Section 
4.17 formulas relevant to the three types are given. An examination 
of the field components in the neighborhood of the cut-off points is of 
some interest. Cut-off points of type one (intersections of /„ and (Ia')t 
or In and (Ia)t), at which p2 = 0, have E2 = 0 and the field is of a 
pure TE-type. The medium behaves transversely as though it had a 
permeability, n — k2/m- Although the field is purely TE at cut-off the 
mode terminating at such a point may in the limit of vanishing magne- 
tization be either a TE- or a TM-mode. This impartiality extends to cut- 
off points of the other types. Cut-off points of type II [(0n')r — 0C or 
(0„)j. — (V] occur at o- = ioo, where g = 0 and here /32 does not van- 
ish. In such cases one of the x's is finite and the corresponding contri- 
butions to the field pattern quite normal. The other, however, tends 

* There is an exception to this statement. This is the type designated in Sec- 
tion 4.17 as 2ox> which cuts off an isolated mode having no TE or TM analogue. 
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to an infinite imaginary value and the associated fields are confined 
very closely to the guide walls. The wall currents are very large and 
essentially longitudinal. Type III cut-off points [/« — at which 
n = —k have /32 = 0, but the fields are not of a purely TE- or TM- 
type. They ^consist essentially of a rotating, transverse, H, which is 
uniform over the guide. The components Hz, Eg and Er are smaller 
by one order of o- — (rCut-off and Ez, two orders smaller. 

It should be stressed again that, in general, the modes are never of 
pure TE or TM type. Nevertheless, for the sake of brevity, we shall 
refer to them as such; calling them TE-modes or TM-modes according 
to their limit as the magnetization is removed. 

4.13. We now consider the behavior of the modes as a function of 
radius. The reader will be aided by Figs. 8(a) to (e) and 9(a) to (g). In 
preparation for this it is necessary to examine the movement of the 
In , In and 0,, , 0,/ curves when ro is varied. It will be recalled that the 
equation for the /„ curves and their reflections, in the origin, is 

The contours x(X a) = where x2 = (1 — X2)/(l — crX) have already 
been plotted in Fig. 4. The /„ , /„' curves are among these, and, clearly, 
for a fixed n, the associated x~ decreases as ru increases. The course of a 
given pair (/„ , /„') may then be seen directly from Fig. 4. The qualita- 
tive behavior of the pair changes radically only when ro passes through 
the value . Before it does so, /„ lies, for X between 0 and 1, above cr = X 
and tends to cr = x as X tends to zero. At ru = jn, the /„ and /,/ curves 
merge into the lines o- = X and X = 0. Beyond j„ , In lies below o- = X 
for X between 0 and 1 and goes to — x as X approaches zero. The TV- 
curve remains, throughout the reflection of /„ in the origin. As ro —► x, 
In tends to the line X = 1, to X = — 1. No /„ curves ever enter the 
region X > 1, a < 0; no TV curves enter X < — 1, o- > 0. It is also im- 
portant to relate the /„ , TV curves to the boundaries of the Polder 
regions. /„ curves cut the Polder boundary a = X — p, of the first quad- 
rant in at most one point. As r« increases from 0 to jn, this point moves 
from cr = (ro to o- = x . Thereafter, no intersection occurs at fixed p until 
ro equals jn/s/1 — p2; it here reappears at o- = 0 and moves steadily to 
cr = 1 — p as ro increases indefinitely. The only intersection with the 
other Polder boundary a = 1/X, is at X = 1, cr = 1, regardless of ro . 

The 0,, , O/ curves are given by 

1 - X2 _ j, 2 

1 - O-X TV 
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if the nth branch of is used. Thus, as r0 increases, the successive 
curves either all pass through a fixed point (which can only be X = ±1, 
<r = ±1, n > 0) or move steadily up or down without further intersec- 
tion. An 0„ curve starts from crX = 1 at ro = 0 and falls for X < 1, rises 
for X > 1, as ro increases. For large X, since a ~ jn/r0

2 (X *- 2), n > 0, 
the 0,, and /„ curves move together with a constant separation. Oo is 
singular, since it does not pass through X, a = 1 and falls steadily for all 
X; it tends to tr = 0 for large X. The On' curves rise from <rX = 1 at ro = 0 
for —1 < X, fall for X < —1. They run parallel to In+i for —X very 
large. For small X there is an expansion 

" = (i1 - " uAu'°- 1) + 0(X) 

holding for 0n and for On'. This indicates that for ro < un, 0„ goes to 
-f- oo and O/ to — °o for small X, but at ro = Wn+i, 0n and 0„' merge 
momentarily at 

X = 0, 

w„+1
2(wn+1

2 - 1) 

For larger ro, 0n goes to — oo and 0n' to + oo. Since the union of 0n and 
0/ takes place at a negative cr, it is clear that 0„ curves, unlike /„ curves, 
may cross the line a- = 0 twice. Intersections of the 0„, 0n' curves with 
the Polder boundary are difficult to examine explicitly and this may lead 
to some obscure situations for 0 < j X ] < 1. However, for a > cro , 
since 0„ and /„ have a fixed separation for large ] X |, this pair escape 
intersection with the boundary at the same value of ro, namely jn . 
Similarly 0„' and In+i escape together at ro = jn+i for a < — oo. 

We shall now examine the effect of varying ro upon the sequence of 
modes when o- > oo . When ro is less than it!, a case in which the iso- 
tropic medium would not propagate, no part of Oo' lies in the upper 
half plane and there is then no (Oo')?- curve. The solution curve which in 
the previous discussion of Section 4.12 was assigned to TEu , after 
passing the intersection [7i — (/h)t] can no longer escape to infinity and 
terminates on [A — Thus, the TEu mode at this radius has 
become an incipient mode with cut-off and other properties given by the 
formulae already quoted for such modes. As ro approaches iq from 
below, the /32 — o- curve is double valued between o-ct-off and some larger 
value. This is borne out by the fact that dtf/dcr becomes positive at 
cut-off, and by the observation that the solution curve bulges towards 
large a between h — (Ib')t and its terminus. The part of the p* — a 
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curve along which — < 0, will tend smoothly towards the /32 — o- curve 
dp 
da 

for 7*0 just greater than «i . The course of the TEn solution curve remains 
qualitatively unchanged for all ro > Hi . 

When ro passes through Ui, and the TEn solution curves escapes dis- 
continuously to infinity, the solution curves below it disengage from 
their former end points /„+i — (Ia)t and instead end at the point 
In — (Ia)t . When ro exceeds jx, the curves A and 0i escape intersection 
with a = \ — p simultaneously, for o- > o-q , and the curve (Ii)t makes 
its first appearance. From the asymptotic formulae (App. II) the latter 
runs to infinity between 7i and (h , and now the solution curve which 
ended for Ui < ro < ji at h — (Ia)t is carried to infinity between 7i 
and (7i)r . The asymptotic expression for (32 versus a, given in formula 
(56) indicates that p tends to the isotropic value for the TMu mode. 
No further qualitative changes will take place in behavior of this mode 
as ro increases. 

As ro increases through W2 (the value at which the isotropic medium 
supports the TE12 mode), the (O/)?- curve makes its appearance, an 
event accompanied by the escape of the uppermost incipient solution 
curve (the one ending at {Ia)t — II) to infinity. The escape takes place 
in the same way as that of the TEn solution curve as ro passed through 
Mi. The newly escaped curve, of course, represents the TEi2-limit mode. 
The end points of the remaining incipient solution curves also jump 
discontinuously to their next higher neighbors as they did at ro = Ui. 
The course of events as ro is increased further should now be abundantly 
clear, and is summarized in Table I on page 642. 

We now turn to the region 0 < o- < 00 and consider first the situation 
0 < ro < Mi. It is clear that in the area bounded by 0^, Oo, {I a) t and 

b)t both G functions are negative. There is no simple geometrical argu- 
ment which determines the existence of a solution curve in this region. 
It is therefore necessary to use a type of analytic argument, which is use- 
ful in a number of other cases, although fully discussed only in the pre- 
sent instance. 

We show that the least value attained by (r(Xi, o-) in the admissible 
region for p = 0 (which contains all regions admissible for other p-values) 
is greater than the maximum value of G(\i, a) in the range — 1 < X2 
< 0, o- > 0. Consider the variation of G(Xi, a) as the point Xi = 1, 

o- = 1 is approached along a line of constant x in the admissible region 
for p = 0 (see Fig. 4). We have the relation 

GM = \ 
x- 

i F(nx) - 1 A 
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For x negative, F(rox) is positive and thus, as X approaches unity from 
above G decreases. Again for x2 positive and ro < Wi, F(rox) is positive 
and thus, as X approaches unity from below, G also decreases. Thus for 
any xb G{\, a) takes on its least value at <t = 1, X = 1 and this value is 

~ lF{rox) - 11. 
x2 

The minimum value of this limit in this region is F(ro) — 1 and is greater 
than -1. In the region - I < X2 < 0, o- > 0, x2 is between 0 and 1, and 
the x2 curves run from a = 0 to a = ^. G will clearly decrease as a- 
increases from zero on any one of those curves. Thus G attains its maxi- 
mum on cr = 0, where its value is 

1 
1 - X2 

Since F(ra\/1 — X2) is positive for ro < ih and | X | < ], G is clearly less 
than —1. In passing we note that for ro = Wi, both G functions may 
attain the value —1. 

As ro passes through Ui, the (Oo')r curve appears in the region under 
discussion and together with (IB')r delimits the region carrying the TEu- 
solution curve already discussed at length. No qualitative changes occur 
in that curve as ro is increased indefinitely. When ro exceeds ji , the 
{Ii)t curve appears between (Oo')r and (Ia')t- Between (Ia')t and 
{i/)t the G functions have a region of common sign, yet no solution 
curve arises there for a given p until ro reaches ji/ V1 - p-.* From then 
on, the h curve cuts (/../)r , see Fig. 9(c), and a solution curve exists 
between (/i')r and h . It is cut off at the intersection (7V)t — /1; there, 

(f- = 0 and a, — are given by the same parametric formulae (46-8) 
da 

applying to the cut-off of incipient modes, the parameter Q being nega- 
tive. The curve begins at o- = 0, where it satisfies the usual equation, 
which for this radius has two solutions. The solution with the smaller 
X, belonging to the present curve, tends to the isotropic TMn-limit as 
p —> 0. At a fixed m , sufficiently below Ui, this mode does not exist at 

* There are some exceptions to this statement. When 4.82 < ro < iii = 5.33 and 
v exceeds vT - AV'o2, a double-valued /32 - cr curve exists between two positive 
(j values. For values of ro still closer to u* further regions of common sign may 
arise as a result of the interplay of the (0i')!Z' and (Ia')t curves. We have not 
examined these regions closely. Such dubious regions are confined to the immedi- 
ate neighborhoods below the . 

F(ro Vl - X2) 

UI 
+ 1 



GUIDED-WAVE PROPAGATION THROUGH GYROMAGNETIC MEDIA 629 

If ro is greater than u*, the (Oi')r curve has appeared. A new region of 
like signs of the G's arises between it and (/i')t , see Fig. 9(e), and con- 
tains a solution curve. This ends at on , Xio and begins at cr = 0 at a value 
of Xi pertaining to the TMu-mode. Thus, it is clear that as /•„ passed 
M2, the end-point of the TMn curve jumped discontinuously from 
{Ia )t — U to oo, Xio. This jump is anticipated as ro approaches Wo; the 
/32 — a curve first bulges beyond {I a)t — h towards its later course and 
returns to that point with positive slope. As ro increases further no change 
occurs in the qualitative behavior of the mode. It may be noted that 
above ih the mode exists for all p. 

Beyond ro = uz, at least part of the area between h and (//)r is an 
admissible region and does in fact contain the TE12 solution curve. It 
begins at a- = 0 and Xi given by that solution of eqn. (39) which is, in 
the limit p = 0, the TE12 solution. It is cut off with /3" = 0 at {Ia')t 
— 11, the end point relinquished by the TMu-solution curve. As ro 
passes j2, the TE12 solution retains its cut-off point, but, beyond ro = u3, 
it will transfer this point discontinuously to 00, Xio . Thereafter its course 
remains essentially unaltered. Tables I, II and III show the progression 
of cut-off points of the various modes. 

It may be recalled that in the analysis of iq < ro < ji, the modes in 
0- < — (ro followed essentially the same course as in a > ao • This is also 
true of their progress with changing radius and of the escape process. 
The singular character of the (0u)t curve and the presence of /« lead to 
some local changes in the progress of the modes but have no effect on 
their more salient features in this particular range of a. The scheme of 
progression of the end points is shown in Table I. 

In contrast with the state of affairs in the region just discussed, the 
mode structure in the area between cr = 0 and a = — o-q is very mark- 
edly affected by the presence of ((Vjr and I,,'. 

When ro < Wi, a solution curve exists between a = — 1 — p, and 
a = — tro. It starts with /f = 0 at the intersection of (Ia)r and (/,/) with 
a slope given by (41). For sufficiently small r0, /32 tends to infinity as 
o- —► do, since the solution curve approaches the line 0/ or (0M)r . Its 
shape is then given by (52), see Section 4.17. As ro increases, Oo falls 
steadily. Eventually, for sufficiently large p, its minimum falls below 

all when 

* See footnote on page 628. 
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— ctq . (Oo)r now has two branches for a > — <ro, which pass through the 

point cr = — oo, X2 = — — making there a finite angle with each other. 
(To 

(Oo)r is completed by a loop in cr < — oo, Fig. 9(g), which does not 
affect the incipient modes appreciably. The mode in question now has 
two branches. The first starts as before and ends at cr = — o-q , where the 
associated /32 is given by /3U

2 = Xa/cro and Xa is the smaller root of 

(«) 

It resumes at cr = — cro and 01 = & = \b/cro, where \b is the larger 
root of the above equation, progresses to smaller | cr (-values and then 
back to cr = —cro where (3' tends to infinity again in accordance with 
(52). Beyond 7-o = tq , where On rises steadily from a = —ootocr = 0 with 
increasing X, one branch of (Oo)r in — oo < cr < 0 disappears and only 
the second branch of the mode remains. Neither branch has an analogue 
in ordinary waveguides; as p —> 0 each lies in a smaller and smaller 
neighborhood of cr = 1, and finally vanishes into cr = 1, X2 = — 1. 

For 7'o between Mi and ji there is a single solution curve starting at 
cr = 0 and ending with /S2 = 0 at (Ia)t — Ib' • This may be identified 
in the limit p = 0, with the TEn-limit mode, and has already been fully 
discussed for Ui < 7-0 < ji. No change in the formula for its cut-off point 
occurs up to 7*0 = R2 • A useful spot-point (7b' — (7i)t) along its course 
can be found when 

and is given by (60). 
In the range ji < n < W2, a further solution curve (corresponding to 

the TMu-limit mode) can arise, provided 

p< iA-S 

The radius at which it will then first appear is 

ji 
ro = /i 

Vl — P" 

It begins on cr = 0, according to (39) and is cut off, with /32 = 0, at 
{Ia)T — 7/. 

As 7-0 passes 112, the cut-off point of the TEi solution curve moves dis- 
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p = l.O 
0.9 
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■— 

0.7 

O.fi p = o 
-o.l ...5 

OA 

0.3 
7 0.2 

/ 
0.4 o e, 0.8 -0.6 -0 4 -0,2 -1.0 

Fig. 13 — Approximate course of modes in the — a plane for various p values 
and at two values of ro • Fig. 13(a), above, ry = 2.75, TEj,-limit modes; — I < a < \ . 
Fig. 13(b), ro = 2.75, TEu-limit mode and incipient TMn-limit mode, a > \ . Fig. 
13(c), ro = 2.75, TEu-limit mode, a < —\. Fig. 13(d), (e) and (f), ro = 5.75, TEu- 
limit and TE12-limit modes; Fig. 13(d), —1 <<r < I; Fig. 13(e), a > 1; Fig. 13(f), 
,7 < -1. Fig. 13(g), 13(h) and 13(i), ro = 5.75, TMn-limit modes; Fig. 13(g); 
— 1 < tr < 1; Fig. 13(h), o- > 1; Fig. I3(i), <7 < 1. It should be noted that a scale 

d2 

linear in is used for convenience when | o- I > tro . 
1 + /32 

continuously to o- = — o-q , X2 = —— and, simultaneously, the cut-off 
CTo 

point of the TMu curve occupies the position relinquished by the for- 
mer. The TMu mode now exists for all p. A new solution curve (TE^) 
appears in the region bounded by 0/, (Oi)t and TV, if p is not too large, 
terminating at {Ia)t — //, the point left by the TMi terminus. (If p 
exceeds -y/l — ji/Ui this curve will not exist at all.) 

Figs. 13(a) to (i) and 14 show the approximate course of the /32 — cr 
curves for the TEu mode at ro = 2.75 and for the TEu , TMu and TE12 
modes at ro = 5.75. The incipient TMu mode at ro = 2.75 is shown 
for positive a, p only. They were computed by the methods outlined 
above. 

4.14. Guides of large radius. It is of some interest because of the high 
dielectric constant of ferrites to examine the behavior of the modes as 
the radius, ro, is allowed to become very large. The two sides of the 
G-equation will remain determinate for unlimited ro provided 

ro t/fAr.A'VrArj 
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Fig. 13(d) — bee Fig. 13 

remains finite, while 

ro 
I - X-r 
I — CT/V 

or ro 1 - Xt2 

1 - trXly 

becomes infinite imaginary. Examining the solutions obtained under 
these conditions it is possible to find expansions for /32 in inverse powers 
of ro2. These are as follows: 

for p > 0, o- > 1 or p < 0, — oo < o- < 0 

P/2 \ Xn2 

r = i + 
V 

- 1 + (43a) 
cr—l V o" — 1/ro2' 

where the x„ are the successive roots greater than zero of F(xn) = 1 
and the modes are associated with the by the scheme: TEn —> Xi, 
TMn —■> .To, TE12 —* X3, etc: 

for p > 0, 0 < (7 < <7o or p < 0, o- < — 1 

= i+^h -(1+-^)^, <7—1 \ (7 + 1/ ro- 
(43b) 
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with Fiy,,) = — 1 and TEn —> iji ; TMn —> yi; TE12 —> 2/3, etc. 

for p > 0, o-q < o- < 1 and p<0, —1 < a < — cro, 

there are no solutions. 
These formulae are valid for any p which is not itself so small as to be of 

order 1/ro2. If they are applied to modes varying as e'"6, where n = ±1 
and c, p are positive, they indicate the following results: for o- > 1, 

V 
n = ±1, /3" —+ 

0 < a < <to }n = 
a — I ; for (To < ^ < 1, no n = ±1 modes; for 

P . These, in turn, may be classified 
<T + 1 

in the following way. For a > 1, w = — 1, and for 0 < o- < o-q , n = +1 
which correspond to p and k both positive, the propagation constant 
tends to the value for a plane wave whose direction of circular polariza- 
tion coincides with that of the wave guide pattern. For 00 < a < 1, 
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where m is negative, n = ±1, no modes exist for large enough guide. 
For 0 < a < ito , n = —1 and a > 1,7i = +1, the propagation constant 
tends to that for a plane wave whose polarization is in the opposite 
sense to that of the field pattern and here m is positive, but k is negative. 
An examination of the field pattern in this last case shows that most of 
the field energy is indeed associated with a circular polarization opposite 
to that of the pattern as a whole. 

The discussion of the preceding sections shows that the complete 
structure of the mode spectrum for a guide filled with lossless ferrite is 
very complex. It is also clear that for some combinations of guide size 
and magnetic parameters the course of an individual mode in the f? — a 
plane may be quite involved. In particular, two values of fi1 associated 
with the same mode often occur at a given a. The extent to which the 
complexity of the spectrum Mill be observed in practice will depend 
principally upon the loss of the real ferrite and upon the guide radius. 
The effect of loss near a = 1, where the incipient modes are crowded 
will be to cause simultaneous excitation of many of these and conse- 
quently a confused z dependence of the guide excitation. For values of 
ro just below jn , the point of escape of the TE modes, the latter exist 
over considerable ranges of cr, see Fig. 12(a), and would probably be 
observable. The TE modes near u„ also persist over a wide range, but 
are double-valued. Concerning such double-valued waves it may be ob- 
served that from the results of the subsequent treatment of losses, it is 

clear that if ff ; > 0, it is necessary to put the source of power at the a | o" | 
opposite end of the guide. 

4.15. Losses, Faraday rotation and merit figure. So far the analysis has 
been concerned with the loss-free medium. It is of some interest to 
determine the attenuation constant (the imaginary part of /3) that 
arises when losses are taken into account. As long as these are small, 
this can be done rather easily; in fact, sufficiently far from resonance 
(o- = 1), for each formula giving /32, we can establish one giving the 
attenuation constant. 

If the losses are of magnetic origin we utilize the fact (already demon- 
strated in section 2) that to first order in a, the permeabilities y, k are 
functions of <t -f- ja sgn p, and of no other combination of a, a. Since 
a, a enter Maxwell's equations only through y and k, /32, which is derived 
from them, must likewise depend on a through a- + ja sgn p. Any formula 
for fi" derived for the loss-free medium can, therefore, be generalized to 
the lossy case by replacing a with a + ja sgn p, to first order in a. To 
this order, then, we find 
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P2 = P'2 + ja sgn p d-l^l, da 

where p' is the propagation constant for the loss-free case. Thus 

« dip')2 

jP = jp' - 
2/3'a 

(44) 

and the last term on the right, (multiplied by our scaling variable 
Pa = u\/fi2eo) is the attenuation in nepers per meter. The present con- 
vention is that the waves propagate in the positive z direction, as exp 
(—jPz). It follows that they will decrease in that direction only if 
diP')2/d\ o- | < 0. Occasionally this is not the case, and presumably 
indicates that the direction of the power flow opposes that of the phase 
velocity. 

For small dielectric loss, too, it is possible to derive formulae for the 
attenuation constant from those already obtained; obviously the latter 
depend on e only through e = eo — jei, and can therefore be expanded. 
But it must now be remembered that p was defined as p0ctxin\/u\/fi:€. 
and ro as raetuni ^ VTilc 80 the scaling parameter co\/ij.ze will make 
contributions to the imaginary part. It is then readily verified that 

'lictuill • 1 1 = P - J ^7 n' 2eo P dM 
ir*Y). (45) 

A few words may be said about the relation of Faraday rotation to 
the p2 — a curves. A linearly polarized plane wave traveling in the un- 
bounded medium along the magnetizing field can be regarded as the 

a a 

TE 
' v 

TV TE TE 
0.75 TM., 
Ob 

\™,2 TM ISOTROPIC 0.2 ITF I TE 12 * 
TM,3[ 

i aLl 
TM TE lb 

-2.0 -1.6 -1.2 -0.6 -0.4 0.4 0.9 
-tr. 

Fig. 14 — The course of the fully developed modes (solid lines) and of some of 
the lower incipient modes (dotted lines) as a function of a for rg = 5.75 and 
I p | = 0.6. 
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sum of right and left circular components which travel with different 
propagation constants. If these are /3+ and 0- (measured in units of /3o) 
the plane of polarization of the resultant will appear to rotate by 

, X 1 
(/3+ — 0-)/2 radians per reduced wavelength — = — . ^TT po 
In the filled waveguide, on the other hand, it is no longer true that right 
and left circularly polarized modes add up to a plane polarized mode, 
as is readily seen by reference to the field components given in Appendix 
IV. To define Faraday rotation in a simple way it is therefore necessary 
to neglect changes in the field pattern due to the magnetization and 
consider only the changes in the propagation constants. Then the rota- 

tion of a mode with azimuthal mode number n will be ~ (/?+ — /3_). 

In the present case n = 1, and the 0+ , 0- are found from the curves of 
0- versus tr, Figs. 13(a) to (i), for positive (a-, p) and negative (cr, p) re- 
spectively. 

The merit figure is defined as the ratio — radians rotation per neper 
loss — and is independent of path-length. For small losses, (neglecting 
terms 0(a!2)), this ratio is 

Rl{0+ - 0-) = 1 0+ - 0-' 
lm(0+ + 0-) « 30^ ' 

5 | 0" 1 d 1 cr | 

in the notation of the present Section. 

4.16. Formulae for the ferrite. 

I. Cut-off points 

Cut-off points will be classified into three types, 1, 2 and 3, according 
to the nature of the intersecting curves which generate them. All points 
of a given type may be assigned an index which further identifies the 
generating curve. This will be written as a subscript. 
Type 1. Intersections of In — {I a) t , & > 0, written as 1„ and of 

In — (Ia)t , o- < 0, written as 1,/ 
02.= 0 
There is a parametric representation: 

1 Xi. o 1 = ee, 

| p | = 2 sinh 0^1— and (46) 

2 / 2\ 
I I ro 9 I / 1 70 \ n~e 

n1-^6 • 
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The slope at cut-off: 

dp 
da /p 

jn 
ro2 

(jr? _ ^ 
ro2 coth 0 

r • 2 Jn   
_ro2 1+ 2 1 

^ Aro)J 
J e — e 

• Sgn a, 

and 

dp 
p COth 6 \da )v ' 

Type 2. Intersections of 

(OnOr - 0C at (T = (ro = /(/ 4 + 1 - I 'type ^ 

(0«) t — 0/ at o- = — o-Q ; type 2n . 

/32 ^ 0 

Define Xo as a root of 

(47) 

(48) 

-1 
Oo = vo | L 

1 - (1 - Xo2) 
ro 

^_1(Xo)/ J 
(49) 

with the following convention: for 2n', Xo is negative and the 
nh branch of F^CXo) is used; for 2„, Xo is positive and the nh 

branch of F_1(Xo) is used. Now 

(TO 

(1 - Xo )A = 

Near cut-off 

s2 = ^ 
Co 

with 

1 

, ro / 1 + o-q2 . A 
+ A V ^ 1 - av* V 1 

Co — c 
T Xo Co 

(50) 

(51) 

2 Xo 
1 - ro 

1 + [Xo j Co 
(cq -f- 2 | Xo | -f- coXq2 

+ 
1 + Co I Xc 

For 2o a special situation arises for 1 < ro < Ui where there are two 
positive solutions for Xo. We write 2oi and 2o2 for the points corresponding 
to the smaller and greater of these. A special cut-off point will be labeled 
2ooo and arises from 0/ and (Ofl)r as Xi goes to infinity. For this point 
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2.0 

2.5 5.0 3,5 4.5 2.5 3.0 4.0 2.0 

Fig. 15 — The function 
F(ro) 

I - Fir, 
related to cutoff of Type 3. 

t = oo, /32 —> co and near — oo we have 

P2 = V 1 
n,2(l (To 1 - 1 0- 1) (2 - 1 p 11 0-0 I) ' 

Type 3. Intersections of IB — for — o-q < o- < 0 only; no sub- 
script is needed. 

/32 = 0, 
0- = -1 -p, 

and 

{dp2) {dp2) F{ro) (see Fig. 15) (54) 
{da)p (dp) a p 1 - F{r0) 

The cut-off points of the modes follow various schemes in different 
ranges of a as indicated below. 

For a- > o-o we have Table I. When a < — oo, 1,/ replaces ln in the 
Table I. "None" indicates that the mode exists, but has no cut-off. 

For 0 < o- < o-o we have Table II. "N.P." in Table II indicates that 
the mode is not propagated. For — ou < a- <0 we have Table III. In 
this range of a one has also the mode without classical analogue. For 
ro < Mi this is cut-off at 3 and 201 and may have a second branch from 
2o2 to 20m • For ro > Mi the second branch only exists. 
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Table I 

Mode 
Rndius TEu TMu TEn TMu TEu etc. 

ro < 1U li I2 I3 li Is 
\ 

ui < ro < ji None li 12 
1 

la U 

ji < ro < «2 None None 
i 

Is la Is 
\ 

Ms < ro < ji None None None Is la 
ji < ro < U3 None None None None la 

etc. 

II. Asymptotes, genesis of the modes and spot points 

For | o-1 —> <» there are asymptotic formulae: 

For TEin-modes 

ro 

For TMin-modes 

0 1-^+2. 
To / * 

(55) 

(56) 

For 1 o- | > o-o, all modes have their origin in the points o- = 1, Xi = 1 
or o- = — 1, X2 = — 1, where /32 —> co. The variation of /32 with o- in the 
neighborhood of these points is described by the two expansions: 

for o- ~ 1 

ft.*=—r^-j+—-+2~(-+i)+Y} An + 1 LO" - 1 [ P Xn
2 \P / 2 J 

+ 0{a - 1)J , 

(57) 

where 

and 

with the scheme 

an 

an + 1 2ro2 

F(xn) = 1 Xn > 0, 

n 1 2 3 4 etc. 

Mode TEn TMu TE12 TM12 etc. 
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Table II 

Mode 
Radius TEu TMu TEu TMu TEu etc. 

0 < To < III N.P. N.P. N.P. N.P. N.P. 
"1 < '"o < ji 2o' N.P. N.P. N.P. N.P. 
ji < To < Vl 20' b N.P. N.P. N.P. 

\ 
112 < ''o < ji 2o' 2,' 1. 

1 
N.P. N.P. 

ji < To < ll* 20' 2/ 
i 

h b N.P. 
• \ 

113 < Tfl < ji 20' 2,' 22' h b 
etc. 

Table III 

Mode 
Radius TEu TMu TEu TMu TEu etc. 

0 < To < Hi 
111 < To < ji 

N.P. 
3 
| 

N.P. 
N.P. 

N.P. 
N.P. 

N.P. 
N.P. 

N.P. 
N.P. 

ji < To < tl> 

"2 < To < ji 

•l- 
3 

\ 
2. 

1/ 

3 
1 

N.P. 

V 

N.P. 

N.P. 

N.P. 

N.P. 

ji < To < W3 2, 
4 
3 

\ 
22 

li' 12' N.P. 

U3 < To < ji 
etc. 

2, 3 li' I2' 

for cr ~ — 1 

an + 1 a + 1 + 
2aT A _ 2\ _ 

V Vn- 

where 

and 

On Vr 
an + 1 2ro2' 

FiVn) = -1, 

+ 0(cr + 1) 
]• 

(58) 

with the same identification as above. 
For cr > o-q a spot-point is given by /„ — (Ib)t with 
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^ = Xx = 1 + P 
1 + (7' 

and (59) 

t \ 2 - 2 1 ^1   Jn 
1 — trXi nr ' 

The identification scheme is again that shown above. 
For —o-q < a <0 an isolated identifiable point arises from IB'- 

(/n)7. which is expressible in inverse form by the relations 
2 

1 - 
To 
jn' i /d2 + and 

Jn2 

v = ^- i) 

1 - — 
1 + ^^+ ^ 

Jn P J 

(60) 

for 

i - ^ < & < 
ro2 iA7!- 

The identification of the modes with n proceeds as in the earlier parts of 
this section. 

III. Small p. 

To order p2 there exist the following expansions for (f: for the TEin- 
mode 

2 
/32 = /3o + 

1 - (T2 Wn2 - 1 
V + 

+ 

2/3n' 
(1 - ff

2)2 

5 + 5M,,2 — 2u„ 
(Mn

2 - I)2 1 4(Mn
2 - 1) 2 

W - 1) (1 - Mn2) ^ ' 
(61) 

where 

ro2 

For the TMi„-modes 

o2 /} 2 ^ I 1 3/3O 2 2 
P - fa - v + (1 - (T2)2 2(1 - /V) p ■ ■ ■ (62) 
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where 

0OZ = 1 — . 
ro2 

The radius of convergence of these series is not known. It is clear that it 
will depend on a and will become smaller as <r2 —> 1. 

4.2. The Plasma (pn = 0, = 1). The characteristic equation (26) 
may now be written 

—2 [XiF„(xiro) - n] = — [XoFnixzro) - n], (63) 
Xi2 X22 

where (in contrast with the ferrite case) Xi.2 = /SAi^ . The X satisfy 

X! o2 — (yg ~ ~ ft'/Ve) ~ VEPE2 XJ „ — ^2 = 0 

and the x's are given by 

(64) 
Pe 

XI.2 = (1 — P /vh) — PffXl.2 (65) 

From the equations for pe and ve in terms of a, q given in Section 2, 
equation (64) may lie written 

Xl-22 _ (nr^2 - ^2) Xi-2 - ^ = 0. (66) 

XiXo = -p2 (67a) 

(67b) 

or 
-,2 

X. + X! = r^—2 -"t?, 1 - q- 

(J 
+ 0'XlX2 . 

1 - q- 

Elimination of p1 between equations (64) and (65) enables us to express 
Xi/ solely in terms of X1.2, ph and vB : 

2 1 — Xi.22 

X1.2 = - 
1 1 - lAs, 1 A1.2 

Pe 

which, from the plasma formulae for pe , ve , can be written 

xu! = AA • (68) 1 — 0^1,2 
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With these expressions for the x> the characteristic equation (G3) takes 
the form 

H(ki , a, ro) = a, ro), 

where 

r.) = ^ [A - «] • (69) 

For given o-, and q, equations (67b) and (69) are simultaneous equa- 
tions for Xi, X2. When Xx, X2 have been found, (3* = — XxXj is known. 
Since /32 must be positive, Xi, Xo must have opposite signs. As in the 
ferrite, the convention Xi > 0, X2 < 0 will be adopted. Equation (G7b) 
will hereafter be called the plasma relation. The transformation 

Xi —> —X2, X2 > Xi, ff > o" 

leaves the plasma relation unchanged and changes n to — n in the 
H-equation. As more fully explained in connection with the ferrite sec- 
tion, it is therefore necessary to consider positive n only if a is allowed 
to take on negative as well as positive values. As before, only the first 
azimuthal mode number (11 = ±1) is considered in this paper. 

The method of analysis is the same as that used for the ferrite. Here 
we shall only sketch the most important steps; the reader will have no 
difficulty in completing the analysis by referring to Section 4.11. For 
fixed ro, a contour map of H is drawn in the X, tr plane (see Fig. 16 
drawn for ro ~ 2.2). The gross features of this map are determined 
by the lines 77 = 0, = ± 00. For greater detail recourse is had to the 

1 _ ^2 
lines - — = constant, along which values of H are readily generated. 

1 — trX 
Further help is obtained from a knowledge of the location of the saddle 
point of H. The infinity curves are given by the same formulae as for 
the ferrite, except that the line X = 0 is no longer an infinity line: along 
X = 0, // = —1. Zero curves are given by 

1 r0
2(l — X2) 

^ x MF-Kx-1)]2' 

The branches of crX = 1 are also zero curves in the same restricted 
sense as for the G function. In the same notation as for the ferrite, all 
/„ curves pass through a = 1, X = 1; all curves through — 1, — 1. 
The same is true for all 0n , 0/ curves (n > 0). The only exception is 
denoted by Oo, it arises from that branch of F~l along which F '(1) = 0. 
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Fig. 16 — The division of the X — o- plane into regions of positive and negative 
// by the first few 0 and / curves. Dotted regions are positive. Cross-hatched re- 
gions contain the higher 0 and I curves. 

Along all lines, cr = \c d, H tends to infinity except whenc = ro'/un' . 2 
(the slopes of the linear asymptotes of 0 curves). Along cr = — \ d, 

Un' 
II tends to a value depending on d. More about the general behavior of 
II can be derived by means entirely analogous to those employed in the 
study of G. 
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X-pairs determined from the //-diagram do not necessarily solve the 
problem, since for a fixed q, they may not satisfy the plasma relation 
(G7b). To take it into account, we interpret it as a transformation of the 
whole of the second quadrant onto part of the first, and of the whole 
fourth quadrant on part of the third. Writing (67b) in the form 

2 
- 1 

Xi = - + -1 g' = r(x2), a 0- 1 — a"A2 

we see that the curves X2 = const, transform into a bundle of hyperbola 
passing through the intersection of o-2 = 1 — g2 with a = 1/X, that is, 
through 

1 /  
Xl0 = vT^7' fo = Vi — g2- 

These hyperbolae have vertical asymptotes Xi = — , and cut the line 
X2 

cr = Oin — X2. For a fixed positive a < o-q, Xi decreases from l/a to a/ 
(l — g2) as X2 increases from — =0 to 0, but, when cr > o-q , Xi increases 
from l/cr to (r/(l — q). Thus the second quadrant transforms into the 
region between a = X(1 — q) and cr = 1/X in the first quadrant. Simi- 
larly, the inverse transformation X2 = T(Xi) transforms the fourth 
quadrant into the region between a = X(1 — q) and a = 1/X in the 
third quadrant. Points outside these regions cannot be site of acceptable 
solutions of the H equation. In order to locate acceptable solutions, the 
K = equation is now written in the form 

/7(Xx, o-, ro) = /Z/TCXi), cr, ro) 

when cr > 0, and in the form 

//(X2, cr, ro) = a, ro) 

when o- < 0. These equations represent the curves of intersection of 
the //-surfaces. Along each such curve, both //-equation and plasma 
relation are satisfied. Their projections onto the first (or third) quadrant 
give Xi (or X2) as a function of cr, and hence X2 (or Xi) from the plasma re- 
lation. Thus /32 = — X1X2 is known along each solution curve. The rough 
locating of the solution curves, and the establishment of precise analyti- 
cal formulae near special points on them proceeds in complete analogy 
with the ferrite case. Here we shall consider only the radius ro ~ 2.2, 
as typical of radii large enough to permit propagation of the TEu mode 
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Fig. 17 — Geometrical exploration of solution curves for the plasma. The 
dotted regions are excluded by the plasma relation; the cross-hatched regions are 
those in which H{\. a) and //(T(X), a) have unlike sign. Solution curves may lie 
only in unshaded parts of the 1st and 3rd quadrants, g2 = 0.25, ro ~ 2.0. 

through the unmagnetized plasma, but too small to admit higher modes. 
The solution curves for ro ~ 2.2 are indicated roughly in Fig. 17. 

In the first quadrant, for a > oo, a solution curve starts at Xi = 1, 
(7=1, passes through the intersection of Ti , (Ib')t and proceeds to 
infinity as indicated. The formulae in Section 4.21 describe the cor- 
responding curve near <7=1, and at o- —>■ =», showing that the solution 
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curve describes the TEn-limit mode. Incipient modes also exist, just 
as in the ferrite; their end-points on a = (1 — (or, briefly, on 
(X2 = 0)r) are now the points for which H(\i, a) = —1 and, simulta- 
neously, «r = (1 — q")Xi . 

Below Co, there is only one solution curve for Tq ~ 2.2. It begins at 
o- = 0, Xi = /3igo (= -X2, by the plasma relation), where /3i8o is the 
propagation constant of the TEu mode in the unmagnetized plasma. 
(In contrast with the ferrite, the plasma becomes isotropic as o- —> 0). 
It is cut off at the intersection of the contour II(Xi, cr) = — 1 in that 
region with (X2 = 0)r . At that point /32 = 0 and a is best stated, thus: 

(t = (1 - q') V(1 + I/2)/[l + (1 - qVl 

where y is the (unique) real root of 

EOVro) = V (1 + y"-) [1 + (1 - (f)y2]- 

Alternatively these two equations may (by varying y) be used to generate 
?-o's and the corresponding cut-off values of a. Of course, the two equa- 
tions are merely a re-statement of the equations //(Xj, a) = — 1, 0" = 
Xi(l - q), heed being paid to the fact that the argument of F is imaginary 
in the region considered for the radius under discussion. 

In the third quadrant for a < — cro, we also find the TEu-limit mode. 
Its solution curve begins atX2= — 1, <r = —1, and proceeds to a = — ^ 
without passing through any easily computed intersections of I curves. 
Formulae pertaining to the TEu mode in this range are stated in Section 
4.22. Again the incipient modes are found in their usual region. For 
0 > a > — (To, the solution curve corresponding to the TEu mode 
begins at o- = 0, X2 = -/3iSo(= -Xi) and is cut off at the intersection 
of//(X2, (t) = -1 withX2(l - q) = a (or (Xi = 0)r). At that point 
/32 = 0, and a is given by 

a = -(1 - g2) \/(l - 2/2)/[l - (1 - g2)2/2]> 

where y is the least real root of 

F{uy) = - V(1 - i/2)[l - (1 - g2)?/2J- 

Alternatively, this equation can be used to generate ?o, and the asso- 
ciated o", if y is regarded as a parameter, which for U\ < ro < j\ is between 
zero and unity. 

At a fixed n the higher roots of the last equation with sign reversed and 
the corresponding a are associated with the cut-offs of the incipient 
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Fin. '8 — Cutoff value of o- for the TEn-limit mode in the plasma as a function 
of ?•(, for various ry2. 

modes in the lower hall' plane. Similarly the real roots of 

F(rQy) = -v/(i - y'2) [i - (i - q2)y2]> 

and the corresponding 

cr = +(1 - q) V(1 - y2)/[i - (1 - q2)y0-], 

are associated with the cut-offs of the incipient modes in the upper half- 
plane. These equations have been solved for the TEn mode and their 
solutions shown in Figs. 18(a) and 18(b). 

4.21. Some formulae relating to the plasma {chiefly for TE-modes). 

The formulas given here employ dimensionless variables (Section 3) 
except where otherwise stated. 

Approximations for extreme values of a or q 
(a) small a, q1 not near unity 

TEim mode: 

= /3m
2 + Ama -f- Bma2 + (70) 
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where 

0 2 = 1 - 
ro2 ' 

2 

+     
(Un? - I)2 

TM modes show no first order variation with tr. 
(b) small q\ a' not near unity. Here /3a and ra are the actual propaga- 

tion constant and radius, without scaling factors: 
TEim mode: 

2 
n 2 /1 2\ 2 Mm /3a = {1 - Q )o} Moeo - —z 

+ "w rzh (s^=i"+ 0(s4)- 

(71) 

TMim modes: 

= (1 - sVwo - j4 - v'w (1 - ■ (72) 
ro2 1 — O-2 \ coVoeo?a / 

(c) Approximation for large a; q2 not near unity. 
TEim mode: 

1 uj 2q 1 
H 1 - g2 ro2 <r(l - g2) {uj - 1) ' (73) 

All formulae in (a), (b), (c) apply to both positive and negative cr (right 
and left circular waves). Formulae 70 and 73 show that the first order 
changes in /32, whether due to very large or very small cr, have coefficients 
that differ only in sign. 

The TEn mode near resonance {q < 1) 

Near cr = +1, 
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Near a = —1, 

i—^ rx- • (75) 
1 - g2 l + o- 

Cut-off of the TEn mode {q < 1) {ui < ro < j\) 

a positive: 

jS2 = 0; = (1 - g2) V(1 + »V[1 + (1 - ffa)y2]» (76) 

where ?y is the only real root or the smallest imaginary root of 

Eijm) = V(i + i/2)[i + (i - g2)?/2]- 

a negative: 

^ = 0; <r = -(1 - g2) V(1 — !/2)/[l - (1 - S2)!/2!, (77) 

where \j is the smallest real root of 

E{wS) = - V(1 - y2)[l - (1 - q2)y2]- 

(See section 4.2 for further explanation). 

APPENDIX I. THE F-FUNCTION 

The function F{x) has been defined by the equation 

Ji(x) 

Using the infinite product for Ji(x) and differentiating logarithmically 
one finds 

f(x) = 1 - 2 I; , (78) 
n=ljn X 

where Ji0"n) = 0. Near one of its poles, jn , F{x) behaves aajn/{x — jn). 
It is also useful to know the form of F(x) near one of its zeros, un , 
which are also zeros of Ji(x). Such an expansion may conveniently be 
found by using the Ricatti equation satisfied by F(.'c), which is 

xd-^ = I - x2 - F\ (79) 
dx 

The expansion near w„ is then 

F{un + y) = y\ - - J - i + ll + higher terms. (80) 
L^n J " J^n J 
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The equation may also be used to furnish an expansion near x = 0. 
This is 

2 ,4 
F{x) = 1 — — ^77 + higher terms. (81) 

4 96 

Finally, putting x = jy, one finds from Eq. (79) for large y 

F{jy) = i/—higher terms. (82) 
2 o y 

APPENDIX II. INFORMATION PERTAINING TO THE CONSTRUCTION OF 
^-DIAGRAMS 

The accurate construction of the contours G = const, is conveniently 
based on the contours (l — y)/{l — fX) = const, along any one of which 
G is a function of X alone. These contours are shown in Fig. 4. Their 
asymptotic properties are almost self-evident. 

The curves G = cj = const, have various asymptotes. These, together 
with their range of validity, and their Polder transforms where needed 
are stated in Table IV. 

The formulas given in Table IV show that the curves G = const, 
generally have two kinds of asymptotes; linear and hyperbolic. Formula 
(83) shows the behavior of G along a line of constant finite slope unequal 
to ro2/jn2, the asymptotic slope of the /„ curves. Parallel to a line of 
slope ro2/jn all G contours must be found, not just the restricted range 
given by the first formula. Writing a = { ro/jn) X + x in the equation 
G = g, and expanding F near its pole jn , we find x in terms of g and ob- 
tain (84) which holds for all g, from - co to + co. When f/ = 0 it also 
gives the linear asymptotes of 0n , On' curves except Oo, as is readily 
verified from the equation 

1 ro2(l - X2) 
^ X X[F-1 (X) ]2 ' 

for the zero curves. 
Formula (85) shows how the (r-contours tend towards o-X = 1 from 

the side o-X > 1 as X 0. 
Formula (86) relates the asymptotic behavior of the curves G = g 

to the zero curves, g = 0, for small X. All G curves approach zero curves 
arbitrarily closely as X —> 0. The only exceptions are the infinity curves 
whose form near X = 0 is 
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When ro = w„+i, the 0n curve merges with the 0„' curve at 

—2 ro' 
{Un+l2 — 1) Un+13 ' 

Similarly all of the contours G = g oi the sheet to which 0n belongs 
merge with the corresponding G = g of the sheet to which (V belongs, at 

2(1 + g) ro2 

(88) 
(Un+1

2 — 1) Un+l3 ' 

These remarks apply to all 0n , On' curves, Oo included. 
The Oo-curve, for large X, behaves as 

1 - ro2 

and so tends to a from above for ro < 1 and from below when ro > 1. 
(In fact, for ro < 1, Oo lies wholly in the first quadrant; when Ui > u > 
1, Oo cuts o- = 0 once.) 

The saddle points of G are most easily found by considering G in the 
coordinate net formed by the curves x2 = const, and X = const. At a 
saddle point 

dG 3 f 1 /1 . 

rx = rAAinr°x) - 1 
= 0 

and simultaneously 

3-G = 0 
3X 

The only saddle points that might be missed in this way are points at 
which the two derivatives are not independent, that is points where the 
X2 contours have vertical tangents, and it is easily verified that no saddle 
points exist there. 

dG 
Proceeding with the differentiations, we find that — = 0 gives 

OA 

Finx) = 0 
or 

rox = w„ (89) 

a dG n - and so — = 0 gives 
dx 

- + ? F'iu„) = 0 
X X 
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or 

(90) 

The corresponding (t„8 are given by 
2 2 m 

(91) 1 ^na   1'n 
1 Cns^jis ^0" 

and are all positive. Thus all saddle points lie in the first quadrant. At a 
saddle point G = —r0

2/Un and therefore it is the intersection of two 
contours G = — / un

2 . Forn > 1, one of these obeys the asymptotic 
formula (83), the other is asymptotic to /„ and 7n_i (see Fig. 5), and 
obeys (84), with n and n — I, near those curves. For n = 1, one of them 
still follows formula (83), but the two "arms" of the other are asymp- 
totic to o- = 1/X and h , and so follow (85) and (84) with n = 1 re- 
spectively. 

Three further facts useful in the construction of (7-diagrams are: 
1 _ ^2 u 2 rQ2 

Along a curve   r = -r, G equals — —2; thus the zero curves of F & 1 — ffX n Un 
are contours of constant G. 

Along X = +1, 

G = ^ • (92) 

As (T, X —> 1 along (o- — 1) = a (X — 1); 

As 0-, X —> — 1 along (cr + 1) = a(X + 1); 

a + 

(93) 

G — 

As for G{T{\), a, ro) we have, in addition to the asymptotic formulas 
in the table: 

IB' transforms into = 1 -f —. 
o- + 1 

The intersection of (7n)r or (7n
,)r with tr = 0 is given by 

Xl-2 = p± 
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APPENDIX IT. THE FIELD COMPONENTS 

The field components are given here for the ferrite and for the plasma. 
They are normalized in such a way that Ez takes a simple form. It should 
be noted that the X's appearing in these equations are those defined in 
Sees. 4.11 and 4.2 for the ferrite and plasma respectively and have a 
different significance in the two cases. 

We write 

Mr) = Ur) - JAW) 

Then, for the ferrite, 

E. = [A.W - A^r)]e'-', 

'• - i if ^ 3 - ■)>' 

H. = jf) AM - 1 AMy", 

A 2 (?') 1 / _ 1 — X2 
i ^6 ^(x.)}] e3nB, and 

r X22 f X2 

a»-»•)} 

and, for the plasma, 

E, = Ui(r) - A2{r)\e'n9, 

Er = -{ F^) -1 {(1 - xi)Fnixxr) + n\i} 
P L r xi- 

_ 4£W 1 {(1 _ xfiF.M + nXi) 

ejnB 

r X2 
e3nB 
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Eg = r^r) J_ {Xj F„(xir) + n(l - xi2)} 
L (r) xi2 

_ 4?^ i_ (X^fer) + n(l - x.1))] e-, 
r X2- J 

H, = [XiAi(r) - X2A2(r)] 

Wr = A {^n(xir) + n] - —^ ~ {X2F„(x2r) + ?i}"| e'"® , 
L r xi2 r X2- J 

and 

7/0 = -j —^ {Fn(xir) + nXi} - {/'„(x2'") + wX2}l eJ"0 

L r xi" r X2Z J 
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Coupled Wave Theory and Waveguide 

Applications 

By S. E. MILLER 

(Manuscript received February 2, 1954) 

Some theory describing the behavior of two coupled waves is presented, 
and it is shown that this theory applies to coupled transmission lines. A 
loose-coupling theory, applicable when very little power is transferred be- 
tween the coupled waves, shows how to taper the coupling distribution to 
minimize the length of the coupling region. A tight-coupling theory, appli- 
cable when the coupling is uniform along the direction of wave propagation, 
shows that a periodic exchange of energy between coupled waves lakes place 
provided that the attenuation and phase constants (a and (3 respectively) 
are both equal, or provided that the phase constants are equal and the dif- 
ference between the attenuation constants (ai — 0:2) is small compared to the 
coefficient of coupling c. Either (ai — a2)/c or (/3i — fH^/c being large 
compared to unity is sufficient to prevent appreciable energy exchange be- 
tween the coupled waves. Experimental work has confirmed the theory. Appli- 
cations include highly efficient pure-mode transducers in multi-mode sys- 
tems, and frequency-selective filters. 

INTRODUCTION 

This paper describes some theoretical relations in coupled transmission 
lines, and the use of coupled lines as circuit elements. In order to illus- 
trate the points of interest in the theoretical material, several applica- 
tions will be stated first. Detailed discussion of experimental models 
will be given after the theoretical sections. 

The theory of coupled transmission lines may be used to determine 
many properties of a multi-mode transmission system in which there is 
distributed coupling between modes. In round pipe, for example, the 
individual modes of propagation can be considered as separate trans- 
mission lines which in the perfect waveguide are completely independent. 
Geometric imperfections in the waveguide, if distributed over many 
wavelengths, cause a transfer of power between modes which in general 

661 
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form is predicted by coupled transmission line theory. As a consequence, 
analysis of the mode-conversion effects associated with circular-electric- 
wave transmission in commercial round pipe has been aided materially 
by applying the coupled-transmission-line concept.1 In another problem, 
the transmission of the circular-electric waves through bends,2 the 
coupled-wave theory of subsequent sections has also provided valuable 
insight. 

Coupled transmission lines can be employed as circuit elements to 
exchange power between one mode of a multi-mode line and a designated 
mode of another transmission hue. Consider Fig. 1, which shows a rec- 
tangular waveguide having entries 1 and 2 coupled through a series of 
apertures to a parallel round waveguide having entries 3 and 4. The 
rectangular guide may be made single mode for convenience, and for the 
configuration shown may be made to couple to any TE mode of the round 
guide. Input power at entry 1 may be transferred in whole or in part to 
the selected mode at entry 4, the remaining portion of the power appear- 
ing at entry 2. Very little power in any mode will appear at entry 3 for 
excitation at 1, and very little power in undesired modes will appear at 
entry 4. Thus the structure has the hybrid property in addition to being 
mode selective. A matched impedance is presented at all entries to all 
modes over a very broad frequency band. 

Recently, coupled transmission lines have found use as input and out- 
put circuits for travel ling-wave tubes. In this instance a helical input 
(or output) line was electromagnetically coupled to the travelling-wave- 
tube helix, with conditions adjusted for complete energy transfer be- 
tween the helices. The result is an input-output circuit requiring no 
metallic connection to the tube helix and requiring no connection through 

Fig. 1 — Coupled transmission line transducer. 
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the vacuum seal. R. Kompfner conceived this form of connection to 
travelling-wave tubes while working with the Admiralty in England, 
and demonstrated the usefulness of the idea here at the Laboratories. 
Similar work was done by the group at the Electronics Research Lab- 
oratory at Stanford University, and was described by S. T. Kaisel at 
the August, 1953, West Coast I.R.E. Convention. Both groups re- 
quested pre-publication copies of this paper for use in their research. 

LOOSE COUPLING THEORY 

On the assumption that negligible power is abstracted from the driven 
line of two coupled transmission lines, the magnitude and mode content 
of the forward and backward waves in the side line may be written. With 
reference to Fig. 2, there is assumed coupling between two uniform lines 
in the interval — L/2 to +L/2 along the axis of propagation, and no 
coupling elsewhere. On the basis of loose coupling a normalized voltage 
wave on line 2 may be written 

E2 = Lor,(2'/Xj)(l+I'/2), (1) 

in which the phase reference is taken as x = —L/2. The forward current 
If in the side line at the point x = L/2 is 

I, = KFM [I rix)**-™1-1™'dx, (2) 

where 
-trtd/Xj+l/Xj) 

F = 6—z • Z/IO 

</>(.t) = a coupling function. More precisely, l/<f)(x) is the ratio of the 
voltage on line 2, E^x), to the equivalent voltage generator in series with 
line 1 at .r. 

K = fraction of the transferred current which travels in the forward 
direction. 

M = the transfer constant for the various modes which can propagate, 
relative to the mode for which 4)(x) is defined. The backward current h 
at the point x = —L/2 is 

L_ 

js = (i - jo™ /1 dx. (3) 
~r 
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If the coupling mechanism is non-directive (sending equal waves forward 
and backward) and has the same value for all modes, then K = % and 
M = 1.0. For simplicity these values are assumed in writing the remain- 
der of the expressions. However, the theory is applicable if the coupling 
mechanism is mode selective and/or directive provided that these proper- 
ties do not change over the length of the coupling interval. 

The mode discriminating property of the coupled hues is the ratio of 
the forward current for Xi = X2 to the forward current for Xi ^ X2. This 
ratio is 

Discrimination = 
1/ (^1 ~ ^2) 
// (Xi N X2) 

IJ 

j I (frix) dx 

(4) 

J l (f>{x), 
2fl 

dx 

where d = 7rL(l/Xi — I/X2) = Z/(/3i — /32)/2 and the /3's are the phase 
constants of the two transmission lines. 

The directivity of the coupling arrangement is defined as the ratio of 
the forward current for Xi = X2 to the backward current; this ratio is also 
given by equation (4) provided 

= — ttL 
t+ty(ft+ft)- 

Thus, in the loose coupling case, the critical performance characteristics 
are given by the discrimination function, equation (4), for appropriate 
values of the parameter 6. 

1 
LINE 1 

2,01 r± 

1 
hi 

I^(X) 
1 

1 
1 

LINE 2 

^20 > 

T'v) 
1 

1 
1 

x = 0 

Fig. 2 — Schematic of coupled transmission lines. 
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A simplified example will illustrate the application of these relations. 
Suppose the coupling function <£(rc) is constant in the interval — L/2 to 
L/2 and zero for other values of x. Then the discrimination function is, 
from (4) 

Let us further assume, in the hypothetical example, that line 2 (Fig. 2) 
is a single-mode line having a guide wavelength Xj equal to 1.2Xo, and 
that line 1 is the three-mode line having guide wavelengths Xi, X2, and 
X3 equal to l.lXo, 1.2Xo, and 1.3Xo respectively. Assume the coupling 
length L equals 20Xo. For equal coupling to all modes in a differential 
unit of length, the relative current waves travelling in the forward direc- 
tion in the three modes of line 1 are obtained from (4). For the ratio of 
the X2 forward current to the Xi forward current, 

for which (5) gives a discrimination of about 13.5 db. For the ratio of 
the X2 forward current to the X3 forward current 

corresponding to a discrimination of about 14 db. For the ratio of the X2 
forward current to the X2 backward current, 

corresponding to a discrimination of about 43 db. The backward currents 
in modes \i and X3 can similarly be verified to be very small compared to 
the forward-travelling X2 current. 

Thus, directivity and mode purity in a simplified case have been shown 
to be of the desired form. 

It may be noted that the denominator of (4) is the Fourier transform 
of the coupling function <K.t). Since the numerator of (4) is independent 
of 0, the discrimination is maximized by minimizing the denominator. 
An analogous problem exists in the time versus frequency domain rela- 
tions, and experience with the latter can be used to predict the discrim- 
inations to be expected using various coupling distributions. 

In the simple example cited above, a length of coupling interval of 
20Xo yielded a discrimination between the desired versus undesired for- 

Uniform Coupling Discrimination = —. 
sin 0 (5) 
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Fig. 3 — Discrimination versus fl/V for linear taper coupling. 

ward wave components of about 13 db. How can this discrimination be 
improved? If the difference between the wavelengths of the desired and 
undesired wave types is increased, the value of 0 is increased and greater 
discrimination results. In practical cases, however, there frequently is 
very little that can be done about the wavelength difference because it is 
inherent in a structure which is fixed by other considerations. By increas- 
ing the length of the coupling interval L the value of 0 is also increased; 
in the case of uniform coupling, (5) shows that a value of d/ir equal to 
about 8 is required to get 30 db discrimination. In the above example 
this corresponds to L approximately equal to 125Xo. The latter coupling 
length is probably impractical, and is certainly inconvenient. The final 
alternative is to alter the distribution of coupling between the lines, and 
considerable can be done in this manner. 

Suppose a linear taper of the strength of coupling is used, as sketched 
in Fig. 3. Then the discrimination becomes 

(0/2 \2 

sin 0/2/ ' (6) 

which is plotted in Fig. 3. The first peak in discrimination occurs at O/t 
equals two, compared to a value of d/ir equals one for the first peak using 
uniform coupling; however, for all values of O/ir greater than about 3, 
the linear taper provides superior discrimination. This illustrates a gen- 
eral trend; tapering the coupling distribution improves the discrimina- 
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tion for large ^/tt values at the expense of an increased A/tt value for the 
first discrimination peak. 

The first two lines of Fig. 4 give the discrimination functions for two 
forms of cosine taper; Fig. 5 shows a plot of the first function and Fig. 6 
shows a plot of the second function for a particular case. These figures 
illustrate the importance of the slope at the ends of the coupling distri- 
bution. Comparing Fig. 5 with Fig. 3, Fig. 5 has a larger end-slope, shows 
a lower value of fl/vr for the first peak in discrimination, but provides 

FIGURE FOR DISCRIMINATION PLOT 
^(X) 

DEFINITION 

rf(X)=COS^) 

DISCRIMINATION 

cos e 

9Hx) = t+|Ji+COs(^A)[ 
KL. 
2 

kL JvI n 

L kL 
"2 " 2 

,(t+c) 

\ 

/' V 

kL 2 

f) 
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Fig. 4 — Discrimination functions corresponding to certain coupling distribu- 
tions. 
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poorer discrimination at values of 6fir slightly above the first peak. In a 
similar way Fig. 6 shows better discrimination than Fig. 5. 

Linear superposition of forward or backward currents may be em- 
ployed to advantage when designing a coupling distribution. The second 
line of Fig. 4 gives the discrimination for a coupling function composed of 
a raised cosine plus uniform coupling. For a value of c = 22.4 and k = 1, 
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Fig. 7 — Discrimination versus ^/tt for two uniform couplings superposed. 

the discrimination is greater than 38 db for A/tt between 1.95 and 3.0, 
and is greater than 50 db for ^/tt larger than 3. Below ^/tt = 1.95 the 
discrimination is similar to that shown in Fig. 6. 

Linear superposition of two uniform coupling distributions yields a 
structure which is easy to fabricate and, in cases where the requirements 
arc not too complex, may provide satisfactory discrimination. The third 
line of Fig. 4 gives the general relation, and Fig. 7 shows the discrimina- 
tion plot for a case of interest. Discriminations on the order of 30 db are 
available in a broad region between ftyV equal to 1.3 to 2, an attractive 
abscissa value compared to the d/r = 8 required for simple uniform 
coupling. 

Linear superposition of a linear taper and uniform coupling also yields 
a structure which is easj' to fabricate, and the theoretical discrimination 
plot for an interesting set of conditions is shown in Fig. 8. High discrim- 
inations are provided over greater ranges of 6 than for the case of two 
uniform coupling functions superposed. 

The general relations involved in the superposition of coupling func- 
tions may be summarized as follows: Let 4>i(x), faix)- • •<t>n(.x) be known 
coupling functions and let 

0r = 01 + 02 + ' * -00 • (7) 

Let the maximum length of the coupling interval be L. Then, designating 
the transforms of 0i , 0o- • -0,, by Fi and Fo- ■ -F,, respectively, where 

/L/2 
(8) 

L/2 

t-t 

u 

1.0 | ^(X) 2.0 

I . 1 
ii I ij.— 

[0^54j_j I ^ 0.273 L 0.273 L 
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Fig. 8 — Discrimination versus ^/tt for a linear taper and uniform coupling 
superposed. 

and letting 

= ^ + ^2+ •••J'n, (9) 

the discrimination function for the composite coupling distribution 
(/>r(.T) is given by 

Discrimination = ^ . (10) 
b T 

Another useful theoretical approach to the employment of multiple 
distributed coupling functions is illustrated in Fig. 9. The top sketch 
represents any coupling function (}>i{x). The lower sketch shows a new 
coupling function faix) formed by locating a (f>i{x) at ±d/2 on the 'V 
axis. Using Fi to denote the transform for 4)i{x), and Fi to denote the 
transform corresponding to faix), 

F2 = 2Fi cos d', (11) 

\/ \ / 

| \ r 
V y 

V y 

/ 
T~ b0 / 

yS(X) 

7.06 —f 

\*— 1 

=_Jv >   X 
—j 1 

wherein 
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for the forward wave discrimination and 

e'-d{h+i 

for the directivity as defined earlier in connection with (4). 
The discrimination function for the composite coupling function 

02(.'c) is 

Discrimination = ^ = 0- 9' - ^ ^ = 0) * . (12) 
I'o 12 COS d 

The factor 1/cos Q' is the discrimination function associated with two 
point couplings, and the overall discrimination is the 'product of that 
discrimination and the discrimination associated with a single distributed 
coupling function 0i(.t). This line of thought may be extended to show 
that use of the same distributed coupling function in place of each point 
coupling in the multi-element distributions described in the following 
section results in multiplying the discrimination of the multi-element 
coupling function by the discrimination associated with the distributed 
coupling function. 

In many cases of interest it is either inconvenient or impossible to use 
absolutely continuous coupling between transmission hues. In the wave- 
guide case illustrated in Fig. 1, for example, a continuous slot cut in the 
common wall would not provide coupling of the distributed form due to 
a wave which would oscillate back and forth in the slot itself. We know, 
however, that the effects of the continuous coupling distribution can be 

9Mx) 

^5MX+4) 
izW 

A- 
,AMX-4 

\ \ 
d 
2 

X 0 
4 

Fig. 9 — Schematic of multiple distributed coupling functions. 
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simulated closely by using closely spaced point couplings. In order to do 
this intelligently we need a theory for multi-element point couplings. 

The most general symmetrical point coupling distribution for parallel 
coupled lines is illustrated in Fig. 10. The letters ao, cu , a2- • desig- 
nate the strength of the couplings, and ch , do, ■ ■ ■ L represents the 
spacings between them. The transform for the total coupling distribu- 
tion is 

F, 
-L 

L/2 

L/2 
0.26x1 L) dx. 

Ft = do 2ai cos 71 -f 2a2 cos 72 + 2a3 cos 73 + 
which 

1 
^2 

(13) 

2an cos 6 in 

yh = ir dk \     or tt 4 — 
Xi Xi 

and 

e=tl (k ~ yor tl a+L 

depending on whether forward wave discrimination or directivity is re- 
quired. The discrimination function is then 

FT(7/C = 0, 0 = 0) Discrimination = 
F-, 

(14) 

Let us take as an example the familiar 1-3-3-1 binomial distribution 
of amplitudes for equally spaced couplings. In the terminology of equa- 
tion (13), ao = 0, en = 3, 02 = 1, dfc = 0 for k > 2,di = L/3, and ^2 = L. 
Then (14) yields 

Discrimination = 
1 

6 cos 0/3 + 2 cos 0 cos3 0/3 ' 

CENTER OF ARRAY 

J 
ip a, 80 a, 83 83 an 

(15) 

k- 

1 I L-d,—! 1 1 I k—d2 >| 
k da >1 
 L k 

Fig. 10 — Schematic of point coupling distributions. 
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which is the relation given by Mumford.3 The approach is perfectly gen- 
eral, and henceforth the coupling distribution only will be given with 
the understanding that the corresponding discrimination function can 
be obtained from (13) and (14). 

For the case of tapered amplitudes and an even number of equally 
spaced couplings, (13) can be simplified to 

Ft = 2ai cos 
2n — 1 

2aL> cos 
30 

2n — I 
+ • • • 2an cos 6. (16) 

This case is of interest because a solution has been worked out for the 
analogous antenna problem to bring the spurious responses (the peaks 
of the side lobes in the antenna case, or the peaks of the undesired mode 
responses in the wave selector case) to the same level relative to the de- 
sired response. This makes the total length of the coupling array a minimum 
for a given required degree of discrimination. The solution4 includes specifi- 
cation of the Tchebysheff distribution of coupling strengths cq , ao, cq - • • 
an that are required to achieve various levels of spurious response, and 
the resulting increase in total array length required to place the first null 
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in undesired mode response at the same value of 

fe-xlWxW,) 

as for uniform strength couplings equally spaced. Fig. 11 shows the latter 
relation, a very useful yardstick with which to evaluate the extra coupling 
length required by less ideal but more easily constructed coupling distri- 
butions. 

An important practical question is "What is the smallest number of 
point couplings which will satisfy requirements in a given stiuation?", 
for it is time-consuming and expensive to fabricate the coupling holes or 
probes in some circumstances. The large range of possible mode condi- 
tions and discrimination requirements makes it difficult to give an answer 
in closed form, but the general restrictions involved may be stated. In 
the case of n equally spaced couplings (of any amplitude taper) the dis- 
crimination vanishes at A/tt = {n — 1). This is illustrated by the dis- 
crimination plot of Fig. 12. 

Moreover, it is found that equally spaced couplings produce discrimina- 
tions which are periodic in d/ir on the interval {n — 1), and which are 
symmetrical about 6/it = {n — l)/2. 

The implication of the discrimination zero at d/ir = (n — 1) is that a 
large number of point couphngs are required to get good directivity and 
good forward wave discrimination. In the simple case cited above in 
which L = 20Xo, the O/t value for directivity was shown to be 33.3. 
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Fig. 12 — Discrimination for 8 equal-strength point couplings equally spaced. 
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Thus, something on the order of 50 or GO equally spaced couplings might 
be needed. 

Simulation of continuous coupling functions with equal strength 
couplings may be carried out as follows: the coupling amplitude versus 
distance plot may lie divided along the distance axis into a number of 
intervals of equal area, and a point coupling placed at the center of each 
interval. The more efficient continuous coupling functions require more 
point couplings to get a good simulation in this manner. For example, 
the function of line 2, Fig. 4, with c = 22.4 and k = 1 has been simulated 
with 12 and 40 equal strength couplings (as described above) and the 
exact discrimination plotted using (13) and (14). The results are given 
in Figs. 13 and 14. The original continuous coupling function yields dis- 
criminations greater than 38 db for all values of 6/tt greater than 2; the 
40-point simulation approximates this well in the region oi 6/ir = 1.7 to 
4.5, but thereafter begins to fail. The 12-point simulation (Fig. 13) never 
matches the original but does best in the region of small d/ir. 

It is more efficient to seek high discriminations by tapering the 
strength of equally spaced couplings than by tapering the spacing be- 
tween equal strength couplings. However, when low discriminations are 
acceptable, the relative efficiency of tapering the spacing between con- 

)*—0-341L—*4 
0.202 L , 

I fe8#! I • ••••••••••• 
j U Q603L A j 

! U  0.700L >l I  i  

u) 40 

< 20 

S 0 

Fig. 13 — Discrimination for 12 equal-strength point couplings arranged to 
simulate the continuous distribution of Fig. 4, line 2. 



676 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1954 

M 35 

Z 30 

525 

10 15 

1 

(vj A A L i 
V * \ 

j \ / f 

V, J \ ) \ 

/ 

/ 
/ 

/ 
/ 

Fig. 14 — Discrimination for 40 equal-strength point couplings arranged to 
simulate the continuous distribution of Fig. 4, line 2. 
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slant strength couplings is much greater than when high discriminations 
arc required. Fig. 15 shows a distribution which produces about 20 db 
discrimination from d/ir = 1 to 3.25. Eight couplings arranged with the 
Tchebyshcff amplitude taper for 20 db discrimiuation would produce 
that discrimination from d/iv = 1.05 to 5.95. 

It is possible to obtain directivity or mode discrimination at smaller 
0/tt values than made available with uniform coupling. This situation is 
analogous to the superdirectivity problem in antenna design, with similar 
results — the lobes of spurious response are increased. In particular, if 
the coupling near the ends of the third array of Fig. 4 is made larger than 
the coupling in the center region, making "c" a negative quantity, the 
first peak in discrimination occurs at B/t less than one, and the first 
minimum in discrimination becomes less than 13 db. 

By implication, emphasis has been placed on obtaining both mode dis- 
crimination and directivity simultaneously. However, by employing a 
relatively short coupling length it is apparent that the discrimination 
associated with 

is in suitable range for good discrimination. Consequently, one can de- 
sign a directional coupler with little mode discrimination. Conversely, 
when using a relatively small number of point couplings, the mode dis- 
crimination in the forward wave may be good when the directivity is 
poor. 

TIGHT COUPLING THEORY* 

We now consider the case in which a significant amount of power is 
taken from the driven transmission line by the line coupled to it. To 
simplify the problem the coupling is assumed uniform along the length 

* An analysis of coupled transmission lines was given by W. J. Albersheim," 
and the effects of coupling between waves on certain particular forms of trans- 
mission media were analyzed by Meyerhoff9 and Krasnushkin and Khokhlov.10 

The treatment given here is intended to be more general and is believed to de- 
scribe the effects of wave coupling under a greater variety of conditions. 

may be kept small when the directivity associated with 
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axis. The space variation of the wave amplitude may be written 

-r—1 = — (Fi + ku)E1 + kziEz, (17) 

and 

dx 

^-2 = feft - (r2+ . (18) 
ax 

in which kn , kn represent the reaction of the coupling mechanism on 
lines 1 and 2 respective!}'' 

kn , kn represent the transfer effects of the coupling mechanism 
ri.2 are the uncoupled propagation constants of line 1 and 2 

respectively; 
Eu are the complex wave amphtudes on lines 1 and 2, 

and are so chosen that i £1 j2 and ] £212 represent the power carried by 
lines 1 and 2 respectively at the input or output of the coupling region. 
The usual transmission-line equations are of this general form, except 
for second derivatives in place of the first. The first derivatives appear 
here because we deal only with the forward travelling waves, which the 
preceding section has shown are the only significant waves when small 
coupling per wave length is employed. Limiting our interest to the cases 
for which reciprocity holds and noting that there is always a transverse 
plane of symmetry midway between the ends of any pair of uniformly 
coupled lines, we may transform the wave amplitudes to make A'12 = 
kn = k. We may further simplify the equations without loss of essential 
generality by submerging the differences (kn — k) and (/C22 — k) into a 
modified propagation constant for lines 1 and 2 respectively, yielding 

~= -{yi + V^ + m, (19) 

and 

in which 

dx 

^ = kEt - (72 + k)E,, (20) 
dx 

7i — Fi + kn — k, and ^Q') 

72 = To + /v22 — k. 

For some cases kn = kw = k and for all cases of interest here 7„ differs 
very little from r„ since we are concerned only with loose coupling per 
wavelength. 
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The solution, for Ei = 1.0 and J?2 = 0 at x = 0, is 

1 (ti - T2) 
Ei = 

and 

where 

_2 2V(7I - 72)2 + 4/o2_ 

+ 
1 (71 — 72) 

_2 2 V (7! — 72)2 + 4A 
^ e1"21 

vy ' 

(21) 

p __   ^ rii     ^ r2i 
V (71 — 72)2 + 4A-2 V (71 — 72)2 + 4/.-2 6 ' 

Ti — —I4(2k + 71 + 72) + HV(7I ~ 72)2 + 4/i:2, (23) 

?'2 = —1/2{2k + 71 + 72) — H'v/ (71 — 72)2 + 4/i"2. (24) 

The nature of the coupling coefficient fc is the first thing to investigate. 
Assume no dissipation in either the transmission line or in the coupling 
mechanism. Then it follows that for any value of x, 

\ Ei\2 \ Ezf = constant (25) 

on the basis of energy conservation. It may be determined that (25) 
leads to the requirement that the coupling constant k be purely imagin- 
ary. This is a very important result. In all of the following discussion k 
is taken to be purely imaginary. Even where dissipation in the trans- 
mission lines themselves is important, it is still assumed that the coupling 
mechanism is non-dissipative. 

The simplest case is 71 = 72 = 7, coupling between identical trans- 
mission lines. Then (21) and (22) reduce to 

Ei = cos cx e-{ic+y)x, (26) 

and 

E2 = i sin cx e-
(ic+y)x

y (27) 

where k = ic. The exponential of (26) and (27) shows that the coupling 
modifies the average phase constant, and that the attenuation in the 
driven line (7?i) is the same as in the uncoupled case for cx (coupling 
length times coupling strength) equal to nir radians. The amplitude and 
phase variations due to the coupling are plotted in Fig. 16. Complete 
power transfer between lines takes place cyclically, with a period of 
cx = tt, and with suitable choice of the product cx, an arbitrary division 
of power between the lines may be selected. 
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Fig. 16 — Wave amplitude and phase factors versus the integrated coupling 
strength ex for tightly coupled transmission lines having identical propagation 
constants. 

Let us now assume that the phase constants of the two lines are un- 
equal, but the attenuation constants are the same. Then 

«i = «2 = <x, and 

(71 - 72) = t(/3i — ft), 

and equations (21) and (22) reduce to 
TTI I<*+«(C+(01+02)/2)]® 77' * El = € El , 

where 

(28) 

(29) 

Ei* = cos 

i(0i — ft) 1 

2c - ft)2 

4c2 

sin - ft)5 

+ 1 cx 

4c2 

_ e—Ja+iCc+C^i+fo)/2)!*^* 

(30) 

(31) 
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have equal attenuation constants hut unequal phase constants. 

where 

Eo* = 

i/^ 
- fa)2 

sin 

4c2 + 1 

+ h)2 

4c2 4- 1 cx 
(32) 

The major effects of coupling in this case are represented by Ei* and Es*, 
which are plotted in Fig. 17 for several values of (/3i — fa). As (/3i — fa) 
becomes different from zero, the maximum power transferred from the 
driven line to the undriven line decreases, and the period of the cyclical 
variation in amplitude is reduced. The latter period is the value of cx 
given by 

✓ 
(fa - fa)2 

4c2 + 1 CX -- TT (33) 

The driven and undriven-line wave amplitudes Ei* and E** at the max- 
imum power transfer point, namely, at 

✓ 
(34) 



G82 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1954 

100 
60 
40 

20 

10 
6 

. . 4 

1.0 
0.6 
0.4 

0.2 

s E 
— 

* E 
n 

N 
-/ 
/ 

/ 

  -1 \ 
— S; 

SI 

A 
\ 

0.001 0.004 0.01 0.04 0.1 0.2 0.4 1.0 2 4 6 10 20 40 
20 LOG |E| 

Fig. 18 — Wave amplitude factors at the maximum power transfer value of cx 
versus (/3i — ^/c when the coupled lines have equal attenuation constants. 

are plotted in Fig. 18 as a function of the ratio (/3i — l3o)/c. It is evident 
that this maximum energy transfer may be made very small for suitably 
large values of (fii — 02)/c. The behavior of 7?i* and Eo* as a function of 
coupling length x is shown with greater accuracy in the wide amplitude 
range of interest in Figures 19 and 20 respectively. 

Consider now the case in which the coupled lines have identical phase 
constants, 0i = 02 = 0, and unequal attenuation constants so that 
(ti — 72) = ("i — 0:2). Then (21) and (22) reduce to 

TP —[«l+>(c+fl)J® J 1- 
El = € 112 

_   (oa — Q2) "1 [(a„2) /2+^V («!-«2)s-4c2]x (35) 
2V(«i - «2)2 - 4c2J 1 ^ 

1 I   ^ 1 ~| e[(ai—«2)/2—"a)2-4c2]x\ 
_2 2\/(«i - «2)2 - 4c2 J / ' 

Ei = e-
Iai+,'(c+W]l Ei**, (35') 

and 

77- = -la1+.'(c+ff)]x _ (e[(o1-a2)/2+>$-v/(«l-«2)2-4c2]x 
V (ai - aa)2 - 4c2 (36) 

— <»2)/2-l^-v/(al-«2)2-4c2]x| ^ qj. 

E2 = e-i
ai+«°+m*E2**. (36') 
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The amplitude factors F** and Eo** have been defined in such a way as 
to reflect the principal effects of attenuation difference in the two lines; 
for the case in which the driven line attenuation constant ai is negligible, 
note that Ei** and E** contain all the amplitude variations of Ei and 
Ez respectively. In general, Eff* and Eo** are the ratios of the wave am- 
plitudes actually present in lines 1 and 2 respectively to the wave am- 
plitude which would exist in line 1 at the same value of x in the absence 
of coupling. 
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and equal attenuation constants. The curves are periodic for larger values of ctv 

We consider first the case of («i — ao) negative, i.e., a lower attenua- 
tion constant inthe driven line than in the undriven line. The effects of 
unequal attenuation constants may be illustrated at the integrated 
coupling strength cx = ■k/2 which, as Fig. 16 shows, results in complete 
transfer of power to the undriven line when en = en and /h = 02. Fig. 21 
shows that the driven line wave amplitude E** is very small when 
(en — mVc is small, but is only db below unity when (en — a-ij/c is 
about 55. Fig. 22 illustrates the way the undriven line wave amplitude 
i?2** decreases as (en — mVc increases. 

For integrated coupling strengths less than 7r/2, the effects of unequal 
attenuation constants are not pronounced at small (en — ao)/c, but again 
for large (a! — enVc, Ex** approaches unity and E-f* becomes small. 
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Fig. 21 — The effect of unequal attenuation constants on the driven line wave 
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that the undrivcn line has the larger attenuation constant. 
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and (ai — oft)/c as a parameter. The curve for (ai — a^/c = 0 is periodic. 

For integrated coupling strengths greater than 7r/2 the effect of small 
values of (ai — q:2)/c is to increase the loss to E**, as shown by the 
curve for cx = 37r/4 in Fig. 21. However, for sufficiently large values of 
(oq — ol-2)/c the loss to Ex** is made small. 

The variation in E** and Ei** as a function of coupling strength (cx) 
is given in Figs. 23 and 24. The periodicity of Ex** is removed for 
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(ai — oc2)/c as small as —1, but a value as large as —10 or more is re- 
quired in order to reduce the loss to E** to a moderate value for large 
integrated coupling (cx) values. 

When (ai — £*2) is positive, the attenuation constant for the undriven 
line is less than that for the driven line, and under these circumstances 
Ei** can exceed unity. Physically this means that the power loss line is 
carrying the energy for a distance and returning it to the driven line at 
a more distant point. The curves of Fig. 25 and Fig. 26 show the varia- 
tion of Ei** and E-** versus positive (or — q:2)/c values, at fixed values 
of integrated coupling strength ex. For cx equal to 7r/4, the driven line 
wave magnitude Ei** decreases as the ratio (qy — a2)/c assumes small 
positive values and goes through a balanced type of null near 
(ai — a2)/c = 3.5 (see Fig. 25). Again this is the resultant of the lower 
loss undriven wave carrying power for a distance and returning it to the 
driven wave in the proper phase to cause cancellation of the straight- 
through component of the driven wave. For cx between 7r/4 and 7r/2 the 
null would move from (ai — ao)/c near 3.5 toward (ai — q:2)/c = 0. 

Figures 27 and 28 show the variation of Ei** and Eo** versus the 
integrated coupling strength cx at fixed values of (ax — q:2)/c. In these 
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Fig. 25 — Driven line wave amplitude versus (oa — a>)/c with equal phase 
constants and cx constant. Positive (ai — a*) indicates the undriven line has the 
smaller attenuation constant. 
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figures a double logarithmic scale is used on the ordinate to represent 
amplitude variations from 50 db below unity to amplitudes 50 db above 
unity. An arbitrary break in the scale has been made at ±0.1 db which 
for practical purposes will be assumed to correspond to amplitudes of 
unity. With reference to Figure 27, small positive values of (en — a^/c 
move the first null in Ei** from cx = 7r/2 toward lower values of ex. 
For abscissa values greater than t/2, E** exceeds unity. For 
(en — enVc = 1, Ei** again has a minimum in the vicinity of cx = Sir/2 
but this second null has disappeared for (en — a/)/c = +2 and presum- 
ably also for larger positive values. With reference to Figure 28, Ei** 
grows at a more rapid rate as a function of cx when (en — ao)/c takes on 
positive values. The null in the vicinity of cx = tt is still present for 
(en — enVc = 1 but has disappeared at (cn — «2)/c = 2. For (a! — a2)/c 
equal to +2 (and presumably for larger positive values) the undriven 
wave amplitude Ei** is greater than Ei** for cx larger than about 0.5. 

The question comes to mind in connection with this case in which the 
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Fig. 2S — Undriven line wave amplitude versus cx, for equal phase constants; 
(hi — «2)/c as a parameter. 
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uiidriven wave has a smaller attenuation coefficient than the driven 
wave, "How much less is the undriven line wave amplitude than would 
have existed at the same value of x if the same incident wave had been 
launched in the lower loss line and in the absence of coupling to the 
higher loss line?" This amplitude difference for the condition 
(ai — ci-i)/c = 1 is represented in Fig. 28 by the difference between the 
curve for E?** and the curve labeled 20 log ecx. Similarly, for the condition 
(ai — 012)/c = 2, this amplitude difference is represented by the difference 
between the curve for Eo** and the curve labeled 20 log e2ci. 

The general case of 71 ^ 72 is important both in interpreting undesired 
mode coupling effects in multi-mode systems as well as in evaluating 
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Fig. 29 — Driven and undriven line wave amplitudes versus cx with {ai — ai)/c 
= 0.03 and (/3i — ftl/c = 0.5. 
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Fig. 30 — Driven and undriven line wave amplitudes versus cx with (<*1 — a2)/c 
- —2 and 03i — foVc - 2. 

errors iu construction of devices intended to produce 71 = 72 . To facili- 
tate discussion of this case we define 

iai+'(c+(^i+/32)/2)]x (37) 

and 

i?2 = E2***e~lai+i(c+^1+p2)l2)]x. (38) 

where Ei and E2 are defined by (21) through (24). The relation between 
Ei*** and Ei (or Eo*** and Ei) is the same as described in connection 
with (35) and (36). 

Small deviations from 71 = 72 are represented in Fig. 29, which shows 
E*** and E*** versus cx for (cu — ai)/c = —0.03 and (di — &2)/c = 0.5. 
At cx = 7r/2 radians, the first complete power transfer point in the 71 = 72 
case, the above values correspond to a phase difference (pi — fipx = x/4 
or 45°, and an attenuation difference (<*1 — c(i)x = 0.03 7r/2 or 0.047 
nepers (0.41 db) for the path length of the coupling distance. In the ab- 
sence of the dissipation difference, but for the same difference in phase 
constants, Fig. 20 shows that Ei* reaches a maximum at —0.26 db near 
cx = 7r/2, whereas the value including the dissipation difference (Fig. 32) 
is —0.46 db. The latter two values differ by 0.2 db or one-half of 
(ax — ai)x; when (ai — a;o)/c is small compared to unity, this is a general 

result. 
More sizeable deviations from 71 - 72 are represented in Fig. 30, which 

shows E*** and E*** versus cx for (oa — ap/c = —2 and (Pi — Pi)/c = 
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Fig. 31 — Driven and undriven line wave amplitudes versus (on — ad/c for 
cx = Tr/2\/2 and (/3i — 02)/c = 2. 

2. At cx = 7r/2, the phase difference is therefore tt radians and the at- 
tenuation difference tt nepers. The result is appreciable attenuation for 
Ef** and only a moderate ratio of Ei***/E2***. 

Fig. 31 shows the way dissipation differences counteract the coupling 
forces when there is a phase constant difference (di — (i^/c = 2. This 
may be compared with Fig. 21 which represents the case of (/Si — $2) =0. 
Very little change in E*** occurs until (oa — oli)/c exceeds (Si — SzVc; 
this is again a general result. 

Finally, we may inquire as to how much power is dissipated in the 
system when attenuation constant differences are utilized to mitigate 
the effects of coupling. A measure of the power preserved is 

| £*** |2 + | £,,*** |2 

and this quantity is plotted in Fig. 32 for cases previously discussed in 
connection with Figs. 21 and 31. Either in the absence or presence of a 
phase constant difference, the attenuation constant difference shows a 
maximum effect in reducing the available power at (oa — a^/c = 2. 
This is probably a general result brought on by the factor 

V (71 - 72)2 - 4c2 
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found in the exponent of terms describing Ex and E* 
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TIGHT COUPLING EFFECTS OF MULTIPLE DISCRETE COUPLINGS 

In practice it is convenient under some conditions to produce the de- 
sired coupling between transmission lines using multiple discrete cou- 
plings. It is then of interest to know the relation between the total power 
transferred and the number and strength of the individual couplings. It 
is the purpose of this section to state these relations. 

We assume two transmission lines having identical propagation con- 
stants, with coupling units located at intervals along the lines as shown 
schematically in Fig. 33. A coupling unit may be a single point coupling, 
or an array of point couplings, but is always assumed to have the property 
of low reflection in the driven line and low back-wave transmission in 
the undriven line. If there are 

ni couplings of magnitude oa , 

111 couplings of magnitude ao, 

and 

nk couplings of magnitude ak 

located along the lines in any order whatsoever, the wave amplitudes in 

Vo=0 

En=l-0 

V, Vs 

Fig. 33 — Schematic of transmission lines with multiple point couplings. 
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Fin. 34 — Overall loss to the undriven line versus loss per coupling unit, with 
the number of coupling units as a parameter. 

the driven and undriven lines respectively are 

E = cos [tii sin-1 cti + riz sin"1 a2 + ■ • ■ R* sin-1 on], (39) 

and 

V = sin [rii sin"1 ax + n-i sin"1 a2 + • • • w*.- sin"1 aj • (40) 

These are amplitude factors due to coupling, and the normal attenuation 
effects in the uncoupled lines must be added separately. For complete 
power transfer we set the bracketed quantity of (39) and (40) equal to 
v/2, which gives the desired information about number and strength of 
point couplings. Other transfer losses may similarly be prescribed or 
determined. 

For multiple coupling units of the same coupling strength, Fig. 34 
shows the overall transfer loss to the undriven line versus loss per cou- 
pling units as a parameter. The shape of these curves from the complete 
transfer point toward higher losses is very nearly the same. Fig. 35 shows 
the loss per coupling unit versus number of coupling units, with overall 
transfer loss to the undriven line as a parameter. 

SOME RESULTS OF EXPERIMENTS IN DOMINANT-MODE WAVEGUIDE 

In a previous paper on dominant-mode waveguide directional cou- 
plers,5 complete power transfer between dominant-mode rectangular 
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Fi^. 35 — Loss per coupling unit versus number of coupling units, with the 
desired transfer loss as a parameter. 

waveguides was shown to be possible in a coupling interval two wave- 
lengths long, and very broad band directivity characteristics of a shape 
prescribed to meet given requirements were shown to be achievable. 

The following paragraphs report on experiments which have been 
carried out with the objective of developing other useful devices and 
with the ancillary aim of verifying other predictions of the theory. 

Experimental work was done to verify the cyclical nature of energy 
transfer between coupled lines, to determine the magnitude of losses 
which accompany such transfer in the waveguide case, and to determine 
desirable coupling distribution shapes in the tight coupling case. These 
experiments were carried out by R. W. Dawson in the 3.1 to 3.5 cm band 
using the 0.4" x 0.9" I.D. jig shown in Fig. 36, consisting of two wave- 

OVERALL LOSS 
TO SIDE ARM 

% 
B 

— • ■ - - ■r£,' 

Fig. 36 — A 0.4" x 0.9" I.D. waveguide jig used for 3 cm coupled line experi- 
ments. The long waveguides on one side of the coupling insert were required to 
accommodate low-reflection terminations for directivity measurements. 
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guides having one wall cut away to accept a coupling insert. In one set 
of observations, the insertion loss in the driven-line and the transfer 
loss to the undriven line were recorded for a variable number of No. 22 
copper wires dividing a coupling aperture 11I4,, long aI1d linearly tapered 
from 0.030" height at the ends to 0.33" height at the center. The results 
are recorded in Fig. 37. At 102 holes, negligible power was abstracted 
from the driven line, and the transfer loss to the undriven line forward 
wave 1 Ei I was about 18 db. Note that more coupling was observed at 
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Fig. 37 — The transfer loss and the insertion loss versus frequency for the 
coupled waveguides of Fig. 36, showing the cyclical exchange of power as the 
coupling was increased by reducing the number of dividing wires in the fixed 
coupling aperture. 
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increasing wavelength values, a general result for small holes in the side 
wall. As the number of wires in the given aperture was reduced, markedly 
increased coupling resulted. This was due to the fact that the coupling 
loss per hole varied approximately as the fourth power of the hole dimen- 
sion perpendicular to the electric vector, whereas the overall power loss 
varied only as the square of the number of holes in the loose coupling 
region. (Equations (39) and (40) describe the effects of number of cou- 
pling points more precisely.) At 60 holes, the transfer loss was about 5 db 
and the wave in the driven line was reduced by about 2 db; the slope of 
the | Ei | versus Xo plot was the same as for 102 holes. At 34 holes, the 
transfer loss was about 2 db and the wave in the driven line was reduced 
by about 5 db; in this case, however, the undriven line wave loss in- 
creased with increasing Xo. Since coupling increases with increasing Xo 
we deduced that the total coupling was greater than required for com- 
plete power transfer and the bracketed expression of (39) and (40) was 
greater than 7r/2. On the diagram of Fig. 16, the presumed operating 
point was near cx = 2.2 radians. At 25 holes, Fig. 37(d), the transfer 
loss was about 5 db and the wave in the driven line was reduced by about 
2 db; as in the 34 hole case, the undriven line wave amplitude decreased 
with increasing Xo and hence with increasing coupling. Again the in- 
tegrated coupling appeared to be in the region between 7r/2 and tt. The 
driven line wave loss was headed for a low value at the long-wave end 
of Fig. 37(d), and it seems clear that periodic energy exchange is realized 
in practice. 

The losses associated with this energy exchange may be inferred by 
comparing the total power output of the undriven and driven lines to the 
input power. Assuming that the forward waves in the driven and un- 
driven lines contain all the output power, (i.e. neglecting reflection, back 
wave in the undriven line and waveguide losses) the following table gives 
the losses observed in the above described experiments: 

Number of Holes Coupling Mechanism Loss 

db 
50 0.16 
34 0.23 
25 0.33 

These losses may be due to circulating currents in the wires, in which 
case the loss would be expected to increase with increasing coupling. 

Good agreement between the observed and theoretical directivities has 
been found in the loose coupling case/ but when appreciable power is 
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abstracted from the driven line it is clear that the theory given above 
does not apply. Dawson has obtained experimental data of interest in 
this connection. For a 6X,, long linear-taper aperture of the form given 
above (0.33" height at the center and 0.030" height at the ends), the 
loose coupling theory predicts directivities in excess of 45 db for the 
wavelength band 3.1 to 3.5 cm. When using sufficient number of wires 
to obtain 18 db transfer loss, directivities in the range 36 to 48 db were 
observed. The reason for the 36 db observation being lower than the 45 
db theoretical value may be inaccuracy of fabrication (jig per Fig. 36) 
or inapplicability of the loose coupling theory at 18 db transfer loss. At 
3 db transfer loss, the observed directivity of a similarly shaped but 5.5 
X„ long coupling array is shown at the top of Fig. 38; again loose coupling 
theory predicts more than 45 db directivity. The reason the observed 
values are in the 24-33 db range rather than above 45 db is presumed to 
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Fig. 38 — Directivity and return loss for two coupling distributions, each of 
which produced 3 db transfer loss. 
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Table I 

Array 
Transfer Loss 

Xo = 3.15 cm Xo = 3.30 cm Xo = 3.45 cm 

db 
3.2 
4.3 
3.5 

db 
3.0 
4.2 
2.9 

db 
2.8 
4.0 
2.4 

Two cascaded arrays  
Single 5.5Xg array  

Array 
Straight Through Loss 

Xo = 3.15 cm Xo = 3.30 cm Xo = 3.45 cm 

db 
3.0 
2.6 
2.9 

db 
3.2 
2.8 
3.6 

db 
3.5 
3.0 
4.3 

Two cascaded arrays  
Single 5.5 \0 array  

be inapplicability of the theory. Loose coupling theory predicts better 
than 35 db directivity over a broad frequency band at a coupling length 
of about 2X(J ; therefore one might expect to obtain better overall results 
by using two cascaded arrays each about 2\y long, and each having a 
transfer loss of 8.4 db to get the 3 db net transfer loss. Observed directivi- 
ties for such a coupling array are also given in the top of Fig. 38; in this 
case values in the 32-37 db region were obtained. The destructive inter- 
ference associated with addition of backward wave components is more 
nearly of the form computed by loose coupling theory because the ex- 
citing wave is more nearly constant over the length of one of the arrays. 
The observed return loss at any one of the four waveguide entries, when 
the others arc terminated, is given for the 5.5\g and cascaded 2Xff cou- 
pling arrays at the bottom of Fig. 38. The cascaded 2X„ combination is 
again superior to the single long taper. The characteristic of being in- 
herently matched at all terminals makes the coupled-line type of 3 db 
hybrid attractive at the very high frequencies where lumped element 
matching becomes difficult if not impracticable. 

Where space is at a premium, or where more constant transfer loss 
values are to be desired a shorter array composed of larger holes is at- 
tractive. A single linear taper of the shape outlined above and 2XII long 
was observed to have better than 22 db directivity and better than 25 db 
return loss over the 3.1 to 3.5 cm band. The observed loss values of the 
three coupling arrays discussed above are given in Table I. The coupling 
arrays composed of larger holes have less slope in the loss versus fre- 
quency characteristic for side-wall coupling. 



700 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1954 

SOME LOOSELY COUPLED TRANSDUCERS IN MULTIMODE WAVEGUIDE 

In connection with research on low-loss circular-electric-wave trans- 
mission,1 there developed a need for means with which to measure the 
power present in any one of the modes of a multi-mode round waveguide. 
In particular, it was known that the circular electric wave in round 
waveguide converts readily to the TMu wave due to curvature of the 
line,2 and a direct measurement of the effect was needed. The TMu wave 
will not exist in the round waveguide without the presence of at least 
four other modes, and in the waveguide size used for the experiments 
five other modes could propagate. In designing a transducer for this ap- 
plication, therefore, it was necessary to evaluate the discrimination 
function, equation (4), with regard to mode discrimination between five 
different pairs of modes as well as to insure directivity. Moreover, the 
TMu wave is degenerate with the circular electric wave TEoi, i.e., they 
have the same phase constant. Therefore, mode discrimination against 
TEoi could not be obtained through the phase difference effects described 
by (4). This discrimination was obtained using geometric balance in the 
individual coupling orifices, which were narrow slits on the center line 
of the wide side of the rectangular guide, as shown in Fig. 39. The shape 
of the coupling distribution employed was that described in connection 
with Fig. 14 except that 80 point couplings were used to simulate the 
raised-cosine coupling distribution (instead of 40 as in Fig. 14) in order 
to assure good directivity for the very long coupling length that was 
required. The round guide diameter was two inches, the rectangular guide 
width 0.820 inches, calculated to produce the same cut-off frequency in 
the rectangular guide as exists for the TMu wave in the round wave- 
guide. The coupling length was about 17 inches. 

One simple method for evaluating the mode content of such a trans- 
ducer is to measure the azimuthal distribution of electric field at the 
round guide wall using the radial probe technique described by M. 
Aronoff.7 If the power in a single mode is a great deal larger than the 

Fig. 39 — A TEioD to TMnO coupled wave transducer. 
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Fig. 40 — Distribution of radial electric field at the guide wall for the forward 

and backward waves of the transducer of Fig. 39. 

power in any other mode of the multi-mode guide, the radial probe 
technique narrows down the possible mode types to a very few. Measure- 
ments of this type, recorded in Fig. 40, indicate that the forward wave 
has the radial electric field distribution to be expected for the TMu wave. 
However, the forward wave might have the same radial field distribution 
at the wall and actually be the TEu wave instead of TMn . The TEu 
wave is very simply generated from a dominant mode rectangular guide, 
by means of a long taper transition along the axis of propagation from 
the rectangular cross section to the circular cross section. Such a trans- 
ducer was used to measure the output wave of the TMu transducer and 
it was found that the TEu component was down on the order of 30 db 
below the value which would be present if the radial field intensity ob- 
served at the top of Fig. 40 had been due to TEu . By a process of elim- 
ination, therefore, and by virtue of the fact that we have a pure pattern 
suggesting the presence of a single mode, we have established that the 
mode generated is actually TMu • Other checks can of course be made, 
such as measurement of the phase constant of the output wave. 

The backward wave shown at the bottom of Fig. 40 has a maximum 
field more than 20 db below the maximum field of the forward wave and 
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has a six-peaked variation with angle which indicates the presence 
of TE31 . 

The transfer loss of the TMn transducer was derived by (1) calibrat- 
ing the receiving probe on a known amount of power in the TEu wave, 
(2) inserting this same amount of power in the rectangular waveguide 
of the coupled wave transducer and, with the probe at the transducer 
output, observing the change in the receiver response, and (3) correcting 
the observed loss using the theoretical difference in the radial electric 
field at the wall for the TEu versus TMn waves in the known waveguide 
diameter. (This technique is described in more detail by Aronoff.') The 
result gave a transfer loss of about 25 db to the TMn wave. The insertion 
loss for the rectangular guide of the transducer was less than 0.2 db. 

Coupled-wave devices of the type shown in Fig. 39 were built for 
several of the modes in 2" round waveguide. The one built for the TE31 
mode in 2" waveguide (mechanically similar to the TMn model of Fig. 
39) has several characteristics worthy of mention. Fig. 41 shows the 
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Table II 

Ratio of Fonvard 
Traveling TMu Power to 

Observed Discriminations 

Xo = 3.1 cm Xo = 3.3 cm Xo = 3.5 cm 

db db db 
TMu Backward >20 >20 >20 
TEm Forward 28.5 28 26 
TE11 Backward 37 35 39 
TM01 Forward 40 46 41.5 
TMot Backward 49 51 45.5 
TEji Forward 24.5 21 23 
TEn Backward 29.5 35 31 
TE31 Forward 14 26 21.5 
TE01 Forward 45 46 45 
TEqi Backward 64 69 67 

measured forward and backward wave patterns in the round guide, for 
excitation in one of the rectangular guides of the transducer. Only TE31 
of the six modes possible in the 2" pipe at 3.3 cm has a six-lobed pattern 
of azimuthal distribution of radial electric field at the Avail, and hence 
the clean pattern Avith equally spaced deep nulls indicates the presence 
of a rather pure TE31 mode. The six maxima of the forward Avave Avere 
equal Avithin ±0.15 db. The backward wave had a peak electric field at 
least 23 db cIoavu on the peak electric field of the fonvard wave. 

Using coupled transmission line techniques and the familiar geometric 
taper techniques, transducers Avere built for all of the six modes possible 
in 2" diameter pipe at 3.3 cm for use in the circular electric Avave research 
program.1 These transducers Avere used to measure the fonvard Avave and 
backAvard Avave output of the TMu transducers, as given is Table II. 
In reality, imperfections in either one of the two transducers involved 
in a measurement could result in the recorded values of discrimination. 
For example, if the TMu transducer were perfect and the TEm output 
transducer contained some TMu • then the insertion loss measurement 
involving the tAvo transducers face to face Avould produce an indication 
of mode impurity. Since avc do not haA-e independent information on the 
mode purity of any one of the transducers at the leA'el of the observed 
Avave impurities, Ave can only state that both transducers involved in a 
discrimination measurement are probably at least as good as the number 
tabulated. 

It should be noted that very high discriminations betAveen TE01 and 
TMu were achieved, despite the fact that this one discrimination de- 
pends solely on the mode-selectiA'e nature of the coupling orifice. Similar 
discriminations can be employed effectiA*ely to augment the wave-inter- 
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ference discrimination even in cases where there is difference between 
the desired and undesired modes' phase constants, to achieve very large 
discriminations. In the TMn discriminations listed above, the values for 
TE31 are not great but are consistent with computed values for the 
coupling length and the coupling function employed; longer coupling 
lengths would produce better TMu versus TE31 discriminations. 

A TIGHTLY COUPLED TEioD TO TEqi0 WAVE TRANSDUCER* 

A highly efficient means of transferring power from dominant-mode 
rectangular waveguide to one of the higher modes of a multi-mode wave- 
guide would be essential in a waveguide transmission system.1 When 
several modes can propagate in one or both of the guides, the problem 
of achieving complete power transfer is more difficult and requires some 
new techniques. This section describes these techniques and gives ex- 
perimental data for a circular-electric-wave (TEinD — TE010) transducer. 

The desired transducer was required to make the wave transformation 
between a single-mode rectangular waveguide and the circular electric 
mode (TE010) of an 0.875" round waveguide at a nominal frequency of 
24,000 mc. The 0.875" round waveguide at this frequency will support 
10 modes of which the circular electric mode and its degenerate partner 
TMn0 are the fourth and fifth in order of appearance. 

The minimum length of the coupling interval required to achieve mode 
discrimination may be estimated using loose coupling theory (equation 
4). The mode nearest to TE010 in phase constant is the TE31

0 and for 
this mode a coupling length of about 0.18 meters is required in order to 
produce a value of Q/tt equal to unity. As shown by equation (5) for 
uniform coupling, it is necessary to have ^/tt equal to unity or greater in 
order to develop discrimination against the undesired mode. 

The maximum coupling coefficient permissible for a given amount of 
mode impurity at the complete power transfer point may be estimated 
using the tight coupling theory of the preceding sections. For example, 
equations (31) and (32) show that for the ratio (01 — /32)/c equal to 10, 
the transfer loss to the undesired wave will always be greater than 14 db 
(regardless of the length of the coupling interval), corresponding to an 
energy loss for the desired wave of less than 0.2 db. For the TE010 and 
TE310 modes the calculated values of ft and ft lead to the conclusion 
that the coupling coefficient c between TE310 and TEio1-1 must be less 

* When discussing the modes of hollow metallic waveguides of different cross- 
sectional shapes, it has been found convenient to use a superscript to designate 
the shape of the cross section. (See G. C. Southworth, Princivles and Avplicalions 
of Waveguide Transmission, D. Van Nostrand Co., 1950). Thus, TEnP refers to 
the TF10 mode in rectangular waveguide. 
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than 3.45 radians per meter. If the coupling coefficient for TEioD to 
TE010 is equal to that for TEioD to TE310 it follows that the total coupling 
length must be greater than 0.455 meters, because complete power 
transfer requires that the product of coupling-length times coupling- 
coefficient be exactly 7r/2 (see Fig. 17). Actually, the TEio111 — TE310 

coupling may be greater than the TEioa — TE310 coupling which leads 
to the requirement for longer coupling intervals. It is evident that the 
shorter coupling intervals may be employed at the sacrifice of greater 
mode impurities. The preceding calculations were made for the TEioD — 
TE310 and TEio0 — TE010 transfer ratios as though only one mode of the 
multi-mode waveguide were present at a time, i.e., using a theory based 
on coupling between two waves instead of a theory for the simultaneous 
coupling between a plurality of waves. It is felt that this is probably 

Fig. 42 — An experimental circular electric wave (TEion to TEm0) transducer 
for 24,000 mc. 

justified provided that the coupling per unit length is weak and only one 
mode in each guide carries an appreciable amount of power. 

Fig. 42 shows a photograph of one of the models used to obtain experi- 
mental data. The coupling holes were located in the narrow wall of the 
rectangular waveguide, thus avoiding coupling to all of the TM modes 
of the round waveguide. The total coupling length was 0.55 meters. The 
coupling orifices were spaced about 0.3 wavelengths in the dominant- 
mode rectangular waveguide, which assured reasonable directivity in 
the transfer of power between waveguides, provided that two or more 
coupling elements were employed. 

The transfer loss between the rectangular waveguide and the circular 
electric mode of the round waveguide was measured as a function of the 
number of coupling elements, using the structure of Fig. 42 with the 
addition of a movable thin-walled metallic cylinder. The latter could be 
moved inside the transducer in such a way as to cover up a variable 
number of coupling holes, and contained a long wooden termination so 
that all the power entering the movable cylinder was absorbed. The inner 
diameter of the movable cylinder was large enough to propagate the 
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circular electric wave but did cut off some of the waves which could 
propagate in the round guide of the transducer itself. The measured 
transfer loss under these conditions is recorded in Fig. 43. It is seen that 
the TEio111 — TE010 coupling was so weak as to be in the region where 
power from successive coupling elements should add inphase all the way 
up to 40 coupling elements. The observations show the inphase addition 
for less than 30 coupling elements but show a marked deviation in the 
vicinity of 40 to 66 coupling elements. This is evidence of inequality of 
the phase constants for the TE010 and TElol-, waves. More will be said 
about this matter presently. The transfer loss between the rectangular 
waveguide and the TEn mode of round waveguide, is also recorded in 
Fig. 43. As expected, the power from successive coupling elements did 
not add inphase and no appreciable build-up of power in the TEu mode 
took place. 

One way of evaluating the total power in all modes other than the 
circular electric mode, is to measure the value of the transverse magnetic 
intensity at the wall of the round waveguide. The circular electric wave 
has no such field component and all other waves do possess such a field 
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component. Thus the total value of the transverse magnetic intensity at 
the round waveguide wall is a measure of the impurity associated with 
the circular electric wave. (This is very similar to the radial probe tech- 
nique described by M. Aronoff.') Using this method of evaluation, the 
mode impurities present at the output of the transducer were measured 
as a function of the number of coupling elements, and the results are 
recorded in Fig. 44. The absolute calibration of the ordinate relates the 
observed magnetic intensity to that which the same power input used at 
the rectangular guide would have produced if placed in the round wave- 
guide in the TEn mode. These measurements show that for all of the 
modes other than the circular electric mode, the energy components 
from successive coupling elements suffer destructive interference. Al- 
though curves are shown only for one and for 66 coupling elements, the 
patterns for intervening numbers of coupling elements were similar in 
shape and never exceeded an intensity value greater than about 6 db 
above that given for the 66 coupling element case; thus the mode dis- 
criminating property of the coupled wave transducer was verified ex- 
perimentally. 

Returning to the question of TEVP — TE010 transfer loss, it is clear 
from Fig. 43 that the rectangular waveguide has a phase constant which 
is not equal to that of the circular electric mode in the round waveguide. 
One reason for this inequality lies in the fact that the coupling elements 
disturb the phase constant in the two waveguides unequally, a conse- 
quence of the fact that some of the power transferred to the round wave- 
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guide on a single coupling element basis, appears in modes other than 
TEoi . Thus, the total coupling to TEion is greater than to TE010. The 
total coupling modifies the phase constant of each line, per (20'), and 
since the total coupling coefficient is unequal for the TEioD and the 
TE010 modes, the perturbed phase constants should be expected to be 
unequal when the unperturbed phase constants are made equal. A method 
of determining the magnitude of this phase-constant disturbance has 
been suggested by S. A. Schelkunoff. In this method the reflected wave 
from a single coupling orifice is measured in the dominant waveguide and 
in the single mode of interest in the multi-mode waveguide. Having de- 
fined the ratio of the incident to the reflected power in the same mode by 
the sympol p, Schelkunoff determines that the disturbed phase constant 
p', is related to the undisturbed phase constant /3 by the relation 

= /3 + (41) 

in which "d" is the distance between the coupling orifices in the coupling 
arrangement which one wishes to evaluate. This relation may be used to 
evaluate the change in the phase constant for the circular electric mode 
and for the wave in the dominant waveguide, and the change of wave- 
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Fig. 46 — Rectangular guide insertion loss for the transducer of Fig. 42. 

guide dimensions required to correct this phase constant difference may- 
be computed as though the coupling elements were not present. 

For the small phase constant disturbances which are associated with 
the weak couplings employed, this procedure was found very accurate. 
The reflection measurements and associated calculations for the model 
of Fig. 42 indicated that the rectangular guide width should be 0.340" 
for equality of phase constants instead of 0.359" as computed neglecting 
coupling effects. The measured value of the transfer loss when the in- 
dividual coupling holes had been enlarged and the rectangular guide 
width had been altered to the 0.340" value is shown in Fig. 45. It is 
evident that the theoretical value of 0 db transfer loss was approached, 
and that the shape of the transfer loss versus number of coupling ele- 
ments, was reproduced very well. The 0.75 db minimum transfer loss 
consisted of no more than 0.3 db heat loss, the remaining loss being due 
to power present in other modes. 

The measured insertion loss in the rectangular waveguide is shown as 
a function of the number of coupling holes at the three frequencies in 
Fig. 46. Complete power transfer would, of course, correspond to an in- 
finite insertion loss in the rectangular waveguide. It is interesting to note 
that at 24,000 mc the peak in the rectangular guide insertion loss occurred 
at 85 coupling elements whereas the maximum in the TEioD — TEoi0 

transfer loss characteristic occurred at about 96 coupling elements (Fig. 
45). This difference is likely to be the result of power transferred back 
to the rectangular waveguide from round waveguide modes other than 
circular electric. Additional evidence of deviations due to the coupling 
between a plurality of waves was obtained; the rectangular-guide in- 
sertion loss as a function of number of coupling elements did not increase 
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smoothly according to a cosine amplitude function as would be expected 
for two coupled waves of identical phase constant, but instead exhibited 
ripples. The remarkable thing about the data of Figs. 45 and 40 is that 
it agrees with the theory for two coupled waves as well as it floes. 

The coupling per individual orifice decreases with increasing frequency 
and this is verified by the observation (Fig. 46) that a greater number of 
coupling elements are required to reach the maximum insertion loss in 
the rectangular guide at the higher frequency. 

Some indication of the overall bandwidth of this first experimental 
model is given in Figs. 47, 48 and 49 which show respectively the TEio0 — 
TE010 transfer loss, the insertion losses in the TEioD and TE010 modes, 
the TEion — TEu0 and TEioD — backward wave TE010 transfer losses, 
and the TEioa and TE010 return losses in the frequency range 20,000 to 
30,000 mc. No one of these characteristics represents the degree of ex- 
cellence which is achievable but they do demonstrate that good im- 
pedance match, low transfer losses to the desired mode, and appreciable 
discrimination against unwanted modes, can be achieved over frequency 
ratios on the order of 1.5. 

FREQUENCY SELECTIVITY 

In the case wherein the coupling is so weak as to not affect the total 
phase constant appreciably, all modes of hollow conductor waveguides 
of any cross section have the same phase constant at all frequencies pro- 
vided that these modes have the same cut-off frequency. This results 
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in very broad band mode-selective characteristics, as has been demon- 
strated. 

The transfer loss characteristics are in general a function of frequency, 
since the individual coupling holes arc somewhat frequency selective. 
There may be applications wherein less variation in transfer loss as a 
function of frequency is required. One approach to this problem is to 
make the coupling holes individually have less coupling variation with 
frequency; since the total coupling loss between two identical transmis- 
sion lines is a function only of number of coupling holes and the loss per 
hole (equations (39) and (40)) constant coupling per hole will produce 
constant coupling overall. Riblet and Saad6 have reported on this ap- 
proach. 

There is another approach to obtaining flat coupling versus frequency 
despite variations in the coupling per hole, and that is to intentionally 
create a difference between the phase constants of the two coupled lines. 
Fig. 17 illustrates the transfer characteristic when the coupled lines have 
unequal phase constant, and either identical or negligible attenuation 
constants. Near the maximum for the transferred wave j E* \ there is a 
region wherein the transfer loss is independent of coupling strength, and 
the transfer loss in this flat-loss region is under control of the ratio 
(/3i — I3z)/c. Hence for a given transfer loss there is an optimum ratio of 
phase constant difference to coupling strength in order to minimize the 
overall transfer loss variation. For the distributed coupling case, equa- 
tions (31) and (32) represent the transferred wave amplitude and show 
that the transferred wave goes through a maximum as a function of 
integrated coupling strength cx, when 

The transferred amplitude at this maximum point is 

1 
(43) 

The integrated coupling strength at the maximum point is 

1 
(44) 

For the important case of an optimum 3 db transfer loss coupler, E?* 
is 0.707. Then (/3i — ftO/c equals 2 and CoXn equals 7r/2\/2 from (43) 
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and (44). Assuming a coupling length Xo of two wavelengths in the line 
with the smaller phase constant, it follows that /5i//32 is about 1.18 show- 
ing that a phase-constant difference of 18 % is required. This phase-con- 
stant difference is quite readily attainable in the waveguide structure of 
Fig. 50(a). The two modes coupled together are given shghtly different 
cut-off wavelengths in the coupling region, and may be tapered to the 
standard waveguide size outside the coupling region. The desired phase- 
constant difference can also be obtained in two identical metallic guides 
by inserting a piece of dielectric into one of the guides in the coupling 
region as sketched in Fig. 50(b). Although rectangular waveguides are 
used in Fig. 50 to illustrate the method of obtaining frequency inde- 
pendent transfer characteristics, the approach is general and may be 
applied to any form of single or multi-mode transmission line. 

Fig. 50 — Examples of structures in which flat transfer loss may be obtained 
despite coupling loss variations. 

In either dominant-mode directional couplers or in multi-mode cou- 
pled-wave devices such as the one illustrated in Fig. 1, one may obtain 
much more frequency selectivity than occurs incidentally due to the 
frequency sensitivity of the coupling elements used. This may be done 
by coupling two transmission lines which have the same phase constant 
at one frequency, but unequal phase constants at other frequencies. 
Then, as shown by equation (31), the midband transfer loss may be set 
at any desired value by adjusting the integrated coupling strength cx 
at midband (where — $2 = 0), and at other frequencies where (/3i — 
d?) 7^ 0, the transfer loss will increase. For the particular case of cx = tt /2 
(fixed) for which complete power transfer occurs when /3i = (and as- 
suming ai = ct2 or both a's are negligible), Fig. 51 shows the shape of 
the filter characteristic, Ei* versus (ffi — 132)/2c. This plot is valid for 
any form of transmission line. 

A very simple configuration for realizing such a frequency-selective 
filter involves coupling between two hollow conductor waveguides, one 

SECTION A-A 

Cb) 
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Fig. 51 — Transfer loss Ez* versus (fr - &*)/2c for coupling strength cx = 
7r/2, the value required for complete power transfer. 

of which is air-filled and the other of which is filled with a material of 
dielectric-constant e. The phase constants for these waveguides have the 
form sketched in Fig. 52, in which /3o is the phase constant in free space. 
At the frequency /„. the two waveguides have identical phase constants 
and, in a typical case, negligible loss constants so that complete power 
transfer can be obtained. For the case e = 2.55, Fig. 53 shows the com- 
puted frequency characteristic on the assumption that the integrated 
coupling is set for complete transfer (cx = 7r/2) and is independent of 
frequency. (Actually the usual coupling mechanisms are somewhat fre- 
quency sensitive and would increase the selectivity somewhat.) This filter 

FREOUENCV 
Fig. 52 — The general form of the phase constants for two hollow conductor 

waveguides, one of which is filled with a dielectric. 
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Fig. 53 — The transfer loss E** versus normalized frequency for two coupled 

hollow conductor waveguides, one of which is air filled and has a guide wavelength 
\/2 times the free space wavelength at /„, , and the other of which is filled with a 
material of dielectric constant 2.55 with dimensions chosen for equality of phase 
constant with the air-filled guide at/™ . Coupling cx assumed constant at 7r/2. 

characteristic applies regardless of the shapes of the hollow conductor 
waveguidess (which may be dissimilar) and regardless of the modes 
selected. 

It is apparent that frequency selectivity in the transfer characteristic 
E* can also lie obtained without requiring that the phase constants be 
unequal by using coupling elements which are frequency sensitive. 

DIELECTRIC WAVEGUIDE CONFIGURATIONS 

The coupled-wave approach to circuit design is applicable using any 
form of transmission line, the only important variant associated with 
different forms of line being the physical structure associated with intro- 
ducing the desired coupling between lines. In a recent publication8 A. G. 
Fox showed that dielectric waveguides are very attractive for use in the 
millimeter wavelength range, and this section points out how dielectric 
waveguides can be used in various forms of coupled wave devices. Fox 
showed that dielectric waveguides arranged in the configuration sketched 
in Fig. 54 are coupled by the electric field components only, and that 

''I 
1 
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/ 

/ 

\ / 

\ / 

\ / f 



716 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1954 

periodic energy exchange of the type described by equations (26) and 
(27) is observed. Moreover, he also showed that if one line were made 
very lossy the energy exchange phenomena disappeared and, despite 
sufficient coupling to cause complete power transfer when both lines 
were loss-free, power passed through the coupling region in the low-loss 
line with less than 0.25 db attenuation. This verified the predictions of 
equations (35) and (36). 

Other implications of the coupled wave theory can also be utilized in 
dielectric waveguides. If the two lines (Fig. 54) arc made of materials 
having different dielectric constants and their cross-sectional dimensions 
set so as to secure identical phase constants at a frequency fm , then a 
frequency-selective coupled-wave filter results and the selectivity charac- 
teristic of Fig. 53 applies. As an alternative to using materials having 
different dielectric constants, the same dielectric may be used for both 
lines by making one line solid and the other hollow. 

If both lines are made of the same material and the cross-sectional 
dimensions are set so as to obtain a known difference between their phase 
constants, the result is a directional coupler having a region of flat trans- 
fer loss (of any desired magnitude) and equations (42), (43) and (44) 
apply. 

Both of the preceding applications can be carried out in dielectric 
waveguides having arbitrary cross-sectional shapes. 

NQ2 

NQ t 

Fig. 54 — Coupled dielectric waveguides. 
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If one of the transmission lines (Fig. 54) is round and the other is 
rectangular and if their cross-sectional dimensions are set for equal phase 
constants, then the power in one of the two polarizations of the round 
line may be transferred to any desired extent to the rectangular guide, 
and power in the other polarization of the round guide will pass the 
coupling region undisturbed. Two such rectangular-rod to round-rod 
coupling configurations arranged in cascade along the round-rod, with 
the two rectangular rods coupled in planes at 90° to each other, consti- 
tutes a means for independently connecting to the two polarizations of 
the round-rod. This type of device depends upon the fact that the phase 
constants of the two polarizations of round-rod are identical, whereas 
the two phase constants for the rectangular rod are different. Thus a 
wave interference occurs in the transfer characteristic for one of the 
polarizations, and for suitable values of (/h — AO/c (see Fig. 18) the 
power transferred in this polarization can be made small. 

SUMMARY 

Two approaches to a theoretical description of the behavior of two 
coupled waves have been presented. One, based on the assumption of 
negligibly small coupling, is applicable in cases where very little power 
is transferred between the coupled waves. The other, a solution based 
on uniform coupling between waves in the coordinate of propagation, is 
valid for any magnitude of total coupling. 

The loose coupling theory shows how to taper the coupling distribution 
in order to minimize the length of the coupling interval required for a 
given degree of directivity and/or for a given magnitude of mode im- 
purity. In particular, it is possible to shape the coupling distribution so 
as to discriminate sharply against one or more undesired modes in a 
coupled-wave arrangement involving just a few modes. (See Figs. 7 and 
15 for examples). 

The theory indicates that significant exchange of power takes place 
provided that the attenuation and phase constants of the coupled waves 
are equal, or provided that the difference between the attenuation con- 
stants and the difference between the phase constants are small compared 
to the coefficient of coupling. A suitable difference between either the 
attenuation constants or the phase constants of two coupled waves is 
sufficient to prevent appreciable energy exchange (equations 29-32 and 
35-36). 

It follows that substantially single-mode propagation is possible in a 
multi-mode structure even though geometrical effects tending to cause 
coupling between modes are present. A gradual transition in the boundary 
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of a multi-mode waveguide will not cause an appreciable exchange of 
power between modes provided that the quantity (/3i — 1^2)/c is suffici- 
ently large for the modes which are coupled by the boundary change. 
Similarly, for disturbances in the coupled-wave system which takes place 
over a large number of wavelengths in the direction of propagation, the 
coupled-wave theory indicates that all conversion will take place in the 
forward direction and very little reflection in any mode will result. 

The tight coupling theory shows that for the case of identical complex 
propagation constants, a periodic exchange of energy between waves 
takes place along the coordinate of propagation. The only effect of the 
existence of an attenuation constant for both waves (compared to the 
dissipationless case) is to add the same exponential attenuation factor 
(to the periodic energy exchange phenomenon) which would have existed 
for a wave traveling on one of the lines in the uncoupled state. 

When the phase constants of the two coupled waves are not equal (and 
the attenuation constants are either equal or negligibly small compared 
to the coupling coefficient), the exchange of energy between waves is no 
longer complete but remains periodic (Fig. 17). The quantity (0i — ^2)/c 
determines the fraction of the total energy which is exchanged, and also 
modifies the period of the energy exchange phenomenon along the axis 
of propagation. 

When the phase constants of the two lines are equal but the attenua- 
tion constants are unequal, the energy transfer phenomenon differs only 
slightly from that associated with equal propagation constants provided 
that the quantity (ai — a2)/c is less than about —0.1. For (a! — a^/c 
more negative than about -1, the periodicity of the energy transfer 
phenomenon has largely disappeared (Fig. 23) and as (ai — 02)/c be- 
comes on the order of —10 or more, the principal effect of the coupling 
for the low loss line is a minor alteration of the phase and attenuation 
constants. The wave amplitude for unit input on the low-loss line be- 
comes [from (33) for [ (ai — 0:2) \/c » 1] 

jji _ ^-lai-c2l(.a1-a2)+Hc+P)]x (45) 

Through proper choice of the phase constants relative to the coupling 
coefficient in two coupled transmission lines, it is possible to make di- 
rectional couplers having an arbitrary transfer loss that is independent 
of frequency despite variations in coupling strength with frequency 
(equations 43-44). It was also shown that the coupled-wave approach 
may be utilized to create highly frequency-selective filters which may 
operate between single-mode media or between selected individual modes 
of a multi-mode system. 
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The experimental data given for two dominant-mode rectangular 
waveguides showed that the periodic energy exchange theoretically pre- 
dicted for a coupled-wave system can be achieved in coupled transmis- 
sion lines. 

Performance characteristics were given for some loosely coupled trans- 
ducers between a dominant-mode rectangular waveguide and one mode 
of a six-mode waveguide. A tapered coupling distribution was used to 
achieve the mode selectivity in a limited length interval. 

The problems associated with a coupled-wave transducer for trans- 
ferring all of the power from a dominant-mode rectangular waveguide 
to the circular electric mode in a ten mode waveguide, were discussed 
and the observed characteristics of an experimental model were given. 

The application of coupled-wave techniques to other types of trans- 
mission systems was illustrated by pointing out analogous structures 
using coupled dielectric waveguides. 
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transmission impairments or limitations on transmission capacity. 

Jn Part I of this paper, Sections 1 to 11, fundamental properties of trans- 
mission-frequency characteristics are discussed, together with general rela- 
tions between frequency and pulse transmission characteristics and special 
transmission characteristics of importance in pulse systems. This is fol- 
lowed by a presentation of engineering methods of evaluating pulse distortion 
from various types of gain and phase deviations. 

In Part II, Sections 12-16, transmission limitations imposed by charac- 
teristic distortion will be discussed. 
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INTRODUCTION 

Pulse transmission is a basic concept in communication theory and 
certain methods of modulating pulses to carry information approach in 
their characteristics the ideal perfonnance allowed by nature. In certain 
applications, such as telegraphy, pulse signalling and data transmission, 
it has the advantage of great accuracy, since the information is trans- 
mitted in digital form by "on-off" pulses. This at the same time facili- 
tates regeneration of pulses to avoid accumulation of distortion from 
noise and other system imperfections, together with the storing, auto- 
matic checking and ciphering of messages, as well as their translation 
into different digital systems or transmission at different speeds, as may 
be required in extensive communication systems. Another characteristic 
of pulse systems is that improved signal-to-noise ratio can be secured in 
exchange for increased bandwidth, as in pulse code, pulse position and 
certain other methods of pulse modulation. Finally, pulse modulation 
systems permit multiplexing of communication channels on a time divi- 
sion basis, which under appropriate conditions may have appreciable 
advantages over frequency division in the design of multiplex terminals. 

In pulse modulation systems, pulses are applied at the transmitting 
end in various combinations, or in varying amplitude, duration or posi- 
tion, depending on the type of system. Pulses thus modulated to carry 
information may be transmitted in various ways, or undergo a second 
modulation process suitable to the transmission medium. The received 
pulses will differ in shape from the transmitted pulses because of band- 
width limitations, noise and other system imperfections. The performance 
of the system in the absence of noise can be predicted if the "pulse trans- 
mission characteristic" is known, that is, the shape of a received pulse 
for a given applied pulse. 

Although the pulse-transmission characteristic suffices for determina- 
tion of system performance it is customary for various reasons to relate 
it to the "transmission-frequency characteristic," that is, the steady- 
state transmission response expressed as a function of frequency. For 
one thing the transmission-frequency characteristics of various existing 
facilities and their components are known, and for new facilities can be 
determined more readily by calculation or measurements than the pulse- 
transmission characteristic. But the more fundamental reason is that the 
transmission-frequency characteristics of various system components 
connected in tandem or parallel can readily be combined to obtain the 
over-all transmission characteristic, while this is not the case for pulse 
transmisssion characteristics. It is thus possible to analyze complicated 
systems with the transmission-frequency characteristic as a basic 
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parameter, and to specify requirements that must be imposed on the 
transmission-frequency characteristic of the system and its components 
for a given transmission performance. 

A fundamental problem in pulse modulation systems is transmission 
distortion of pulses by system imperfections in the form of phase and 
gain deviations over the transmission band or a low-frequency cut-off, 
usually referred to as "characteristic distortion," which may give rise 
to excessive interference between pulses and resultant crosstalk noise or 
errors in reception, depending on the type of system. Because of such 
interference, characteristic distortion limits the number of pulse ampli- 
tudes permissible in the transmission of information or messages over a 
given channel, and may reduce the rate at which pulses can be trans- 
mitted in systems employing only two pulse amplitudes, the minimum 
number. It thus places a limitation on channel capacity which, unlike 
signal distortion by noise, cannot be overcome by increasing the signal 
power. 

Characteristic distortion is an important consideration particularly in 
wire systems where there is a low-frequency cut-off caused by trans- 
formers, and where the transmission band may extend over several 
octaves with substantial variation in attenuation and phase shift, or 
may be sharply confined by filters. In wire systems there are also fine 
structure deviations from a smooth attenuation and phase characteristic 
of a more or less random nature, resulting from small random impedance 
variations and mismatches along the lines. Gain and phase deviations 
remaining even after fairly elaborate equalization may be appreciable 
and difficult to overcome, especially in systems comprising a large num- 
ber of repeater sections. 

The purpose of this paper is to present a compendium of theoretical 
fundamentals on pulse transmission in a form suitable for engineering 
applications, both from the standpoint of design of new pulse transmis- 
sion systems and pulse transmission over existing facilities. Emphasis is 
placed on considerations of various system imperfections, because of 
their importance from the standpoint of transmission performance, and 
since literature on this question is rather limited. Certain fundamental 
properties of transmission-frequency characteristics are discussed, to- 
gether with general relations between frequency and pulse transmission 
characteristics and special transmission characteristics of importance in 
pulse systems. This is followed by a presentation of methods of evaluat- 
ing pulse distortion from various types of gam and phase deviations, to- 
gether with resultant transmission impairments or limitations on pulse 
transmission rates in low-pass, symmetrical and asymmetrical sideband 
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systems. Conversely, these methods may be used in the design of pulse 
modulation systems to evaluate requirements imposed on the transmis- 
sion characteristics for a given transmission performance. 

Transmission impairments may result from system imperfections other 
than characteristic distortion, which require a different theoretical ap- 
proach and are not considered here. Among them are erratic timing of 
pulses, thermal and other noise within the transmission system and in- 
terference from outside sources, such as other communication systems or 
atmospheric disturbances. 

1. PROPERTIES OF TRANSMISSION-FREQUENCY CHARACTERISTICS 

A basic parameter of transmission systems is the transmission-fre- 
quency characteristic 

T(tco) = A(u)e-iHa), (1.01) 

in which u = 2irf is the radian frequency, A(w) is the amplitude and 
<//(u) the phase characteristic. The transmission-frequency characteristic 
may designate the ratio of received voltage to transmitted current, of 
received current to transmitted voltage, of received to transmitted cur- 
rent or of received to transmitted voltage. The two latter ratios are not 
the same except for symmetrical networks with impedance matching at 
both ends. For symmetrical structures having appreciable attenuation, 
such as transmission lines between repeaters, the ratios are virtually the 
same with impedance matching at the receiving end. In the following, 
T(to}) will designate any of the above ratios, as the case may be. 

When a number of networks are connected in series, as is usually the 
case in transmission systems, the resultant transmission characteristic 
is 

T(ico) = T2(tco) ■ ■ ■ Tn(w), 

= (A1A2---An)e-i(*1+*'+-+M, ' 

where Ti ,T2 ■ • • Tn are the transmission characteristics of the individual 
networks with the same impedance terminations as encountered in the 
series arrangement, i.e. as measured in place or with equivalent termina- 
tions. 

The phase characteristic ^ can in general be regarded as the sum of 
three components. The first is the minimum phase shift component, 
V'11, which has a definite relation to the amplitude characteristic of the 
system, and is of particular interest in connection with phase distortion 
with different types of amplitude characteristics. The second is a 
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linear component wrj , which represents a constant transmission delay 
Td for all frequencies, as in the case of an ideal delay network. Ladder 
type structures and transmission lines have phase characteristics which 
can be represented by the above two components. The third component 
can be represented by a lattice structure with constant amplitude char- 
acteristic but varying phase. Such a network component may be present 
in a transmission system or may be inserted intentionally for phase 
equalization, i.e. to supplement the first component above so as to secure 
a linear phase characteristic without altering the amplitude characteristic 
of the system. 

The following discussion is concerned with the relationship of the first 
component to the amplitude characteristic of the system, or conversely. 

The natural logarithm of the transmission-frequency characteristic 
given by (1.01) is 

(nTiiui) = (nA (u) — i\p(w). (1.03) 

The component (nA (u) is referred to as the attenuation characteristic, 
and when expressed in decibels equals 8.69 In A (w). 

The following relations exist between the attenuation and phase char- 
acteristics of minimum phase shift systems or system components:1" 

tnAM = - - f -°(— du = - [ in, (1.04) 
TT J-co CO — U TT Jo U' — CO" 

and 

0 = 1 r faAXu) du = _2 r .JnMu) du (105) 

TT J-oo CO — U IT Jo U — CO- 

In the evaluation of these integrals, the principal values are to be used, 
i.e., results of the form fn( — u) are to be taken as hi j —u | rather than 
/a | it | + it. 

As an example consider an attenuation characteristic as shown in Fig. 
1, with A(co) = Aq between co = 0 and coc and Ai between co = coc and 
co. Equation (1.05) then becomes 

,0/ \ 2co 
V (w) = —— TT 

(nA, -J^—, + fnAi [ 2 
d" 1, 

Jo U- — CO- Jue U- — CO-J 

= - fn(Ao/Ai)fn 
C0c + CO 
COf — CO 

(1.06) 

In Fig. 1 is shown the phase characteristic for Aq/A^ = 100, correspond- 
ing to a 40 db cutoff at co = co,.. 
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Fig. 1—Low-pass transmission frequency characteristic with sharp cut-off. 

In Fig. 2 the attenuation and phase characteristics are shown as a 
function of co/ajc for co < coc and as a function of the inverse ratio uc/o: 
for co > coc . It will be noticed that for the above case the phase charac- 
teristic is infinite for co/coc = 1 and has even symmetry about this point, 
while the attenuation characteristic has odd symmetry with respect to 
the midpoint of the amplitude discontinuity. The phase characteristic 
may be mochfied by a gradual cutoff in the attenuation characteristic, 
as illustrated in the figure. It is possible to shape the attenuation char- 
acteristic to obtain a linear phase characteristic in the transmission 
band, i.e. between co/coc = 0 and 1. Since transmission systems with a 
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Fig. 2 — Solid curves same as in Fig. 1, but with inverse scale for a)/uc > 1. 
Dashed curves illustrate modification in phase characteristic with gradual cut-off 
in attenuation (not computed). 
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Fig. .'I — Low-piiBS transmission frequency characteristics with natural linear 
phase shift for o}/uc < 1. 

linear phase characteristic in this range are of particular importance in 
pulse transmission, this case will be considered further. 

It will be assumed that the phase characteristic has even symmetry 
when expressed in the scales of Fig. 2, in which case the phase charac- 
teristic as shown by the solid lines in Fig. 3 is given by 

i/'0(to) = wr co/oJc < 1, 

= OJc'T/CO Co/ale > 1. 

With these expressions in (1.04) the attenuation characteristic becomes: 

2wct 

(1.07) 

fnA((i}) = l + A"-- "-V'n1 +'JM 

1 — Cd/wc_ 

For co = 0, the latter expression approaches the limit fnA(0) = 4cocr/7r, 
so that 

tnAM/AW = fl + 1 (^ - "=) fo 1 +^1. (LOS) 
TT L ^ \«c W / 1 — CO/COcJ 

which is the attenuation characteristic shown in Fig. 3. 
Other attenuation characteristics with a linear phase characteristic 

between co/coc = 0 and 1 are possible with other types of variations in 
the attenuation or phase characteristic for co/coc > 1 than assumed 
above. For example, the attenuation characteristics may be assumed 
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constant for a)/a)c > 1, in which case the attenuation characteristic will 
be somewhat different for co/coc < 1 and the phase characteristic different 
for oj/wc > 1, as illustrated in Fig. 3. (The solution for the latter case is 
given in Reference 2.) It will be noticed that there is a comparatively 
minor difference between the attenuation characteristics for a)/wc < 1 
in the above cases, so that the attenuation characteristic for w/W > 1 
has a relatively minor effect, provided there is no discontinuity near 
oi/ojc = 1. The transmission loss characteristics shown in Fig. 3 represent 
a close approximation to the type of characteristic employed in pulse 
transmission systems, as will be shown later. 

In the above examples low-pass characteristics were assumed. For 
high-pass characteristics the algebraic sign of the phase is reversed with 
respect to the amplitude characteristic as indicated in Fig. 4, which also 
illustrates relationships for band-pass characteristics. The band-pass 
characteristics are obtained by connecting low-pass and high-pass net- 
works in tandem. The resultant attenuation and phase characteristics 
are obtained by adding the low and high-pass attenuation and phase 
characteristics, as illustrated in the figure. In the second case shown in 
the figure, the band-pass characteristic is assumed to have a linear phase 
characteristic in the transmission band, in which case the attenuation 
characteristic will not be symmetrical about the midband frequency, 
unless the latter is high in relation to the bandwidth. The third case 
illustrates the type of band-pass characteristic encountered in wire 
systems with a low-frequency cutoff. There will then be phase distortion 
at the low end of the band, since it is not feasible with a fairly sharp 
low-frequency cutoff to obtain a linear phase characteristic in the trans- 
mission band. 

If the amplitude or attenuation characteristic of a transmission system 
is modified, it will be accompanied by a modification in the phase 
characteristic. Of basic importance are cosine modifications in the 
attenuation and amplitude characteristics. Let the modified amplitude 
characteristic be of the form 

A(u>) = A0(o>) eacoa"T, (1.09) 

where i4o(aj) is the original amplitude characteristic. The modified at- 
tenuation characteristic is then 

tnA{u) = tnAoiu) + a cos cor. (1-10) 

In accordance with (1.05) the modified phase characteristic becomes, 

o/ \ 1 fi00 /nAo(co) i , a f00 cos ojt ^ (co) = - /  du + - /   du, . . 
TT 0) — U TT J-oo 03 — U U-iiJ 

— ^(to) + a sin cor, 
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where \po(co) is the phase characteristic of the original amplitude charac- 
teristic Ao(a)). 

Thus, for any consine modification in the attenuation characteristic 
there is a corresponding sine modification in the phase characteristic, 
and for any sine modification in the phase characteristic a corresponding 
cosine modification in the attenuation characteristic. In general any 
modification in the attenuation characteristic may be represented by a 
Fourier cosine series, in which case the modification in the phase charac- 
teristic will be the corresponding Fourier sine series. 

With a cosine modification in the amplitude rather than in the at- 
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Fig. 4 — Attenuation and phase shift for various types of transmission fre- 
quency characteristics. 
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tenuation characteristic 

A(co) = ylo(a)) [1 + a cos cor], (1-12) 

and the corresponding phase characteristic becomes 

lnAv{u)[\ + a cos ut] 
t\o>) = -1 r TT J-c CO — U 

dn, 

, \ -i r sin cor 
= \f/o[co) + 2 tan 

1 + r cos cor ' 
2 7* 

= to(.co) + 2[r sin cor + — sin 2 cor 

3 7' 
+ — sin 3 cor + .. 

o 

where 

(1.13) 

= - [1 T Vl - a2], (1-14) 

and the minus sign is to be used. 
Thus, a cosine modification in the amplitude characteristic is accom- 

panied by an infinite series of sine deviations in the phase characteristic. 
For sufficiently small values of a, r = a/2 and (1.13) reduces to (1.11). 

2. FREQUENCY AND IMPULSE TRANSMISSION CHARACTERISTICS 

In dealing with pulse transmission, it is customary to consider three 
basic types of time variations of currents and electromotive forces, a 
cisoidal variation, a unit impulse and a unit step. The cisoidal variation, 
elut, is basic in the solution of network and transmission problems in 
terms of complex impedances and admittances. The unit impulse is a 
current or electromotive force of very high intensity and short duration, 
such that the area under the impulse is unity. The unit step is a current 
or electromotive force which is zero for t < 0 and unity thereafter. 

The time responses of networks or transmission systems to these three 
basic time functions are interrelated so that each may be obtained when 
one of the others is known. Furthermore, the time responses for electro- 
motive forces or currents of arbitrary wave shape may be obtained from 
the response characteristic for any one of these basic time functions. 

The pulses applied in pulse systems can usually be approximated by 
impulses. Furthermore, with impulses certain simple relationships can 
be established which are either obscured or more complicated when a 
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unit step is assumed. For these reasons, only the transmission charac- 
teristic for impulses will be considered here, or for pulses of sufficiently 
short duration to be regarded as impulses. 

Corresponding to any transmission-frequency characteristic is an 
impulse transmission characteristic, P(l), which designates the received 
pulse as a function of time for a transmitted unit impulse. The impulse 
and transmission frequency characteristics are interrelated by the follow- 
ing Fourier integral relations 

Pit) = ^ H niu)eial du, (2.01) 

T{iu) = £ P(0e-,u< dt. (2.02) 

The transmission characteristic for an applied pulse or signal of 
arbitrary shape 0(1) is given by 

Hit) = ~ T Tiico)Siico)eiut dco, (2.03) 
-^TT J—oo 

where >S(fco) is the frequency spectrum of the applied pulse and is given 
by 

S(iu) = J G(t)e~iu" dt. (2.04) 

In the case of a symmetrical pulse S(tco) is a real function. 
In view of (1.01), expression (2.03) may also be written 

Hit) = — [ Aioj)Sico) cos [ut — ^(co)] f/w, (2.05) 
TT Jo 

where the relations ^4( —w) = A(cj), >S( —co) = aS(w), )/'( —co) = — ^(co) 
have been used, and it is assumed that .S'(?w) = 8(1x1) is a real function, 
as for a symmetrical pulse. 

In most pulse transmission systems, the applied pulses can be ap- 
proximated by short rectangular pulses. Rectangular pulses of unit 
amplitude and duration 5 have a frequency spectrum 

= (2.06) 
a)o/2 

The same pulse transmission characteristic as when an impulse is 
applied is obtained with a rectangular pulse if A(u) is modified by the 
factor (o)5/2)/sin (o)5/2). In the following it will be assumed that the 
applied pulses are of sufficiently short duration to be regarded as im- 
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A(a;r+u) = iA" (u) 

Q. 
5 < 

/ / / / / 
"A- 

^(ajf-u) = \[A(-u)+^'r 

Fig. 5 — Transfer of reference frequency from w = 0 to to = ajr . 

pulses or that otherwise the above modification is applied, in which 
case 

In the latter equation .4(co) can also be regarded as the frequency 
spectrum of a pulse applied to a transmission system having a constant 
amplitude characteristic and a phase characteristic ^(co) over the band 
of the pulse spectum. 

Equation (2.07) applies to any type of transmission-frequency char- 
acteristic and is convenient in this form for low-pass characteristics. For 
band-pass characteristics as shown in Fig. 5 however, it is convenient 
from the standpoint of general analysis as well as for numerical evalua- 
tion to use a reference frequency air within the tranmsission band, that 
is, to employ the transformation co = cor + u dw = du. 

With the notation 

(2.07) 

Ci(u) = A(«) = A (u ^r), 

■^(W) = ^(co) — lKcOr) = V'(w) — l/V, 
(2.08) 
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equation (2.07) can be written: 

P{t) = cos (cor/ — i/v)[/?_(/) + R+(t)] 

+ sin {o)ri - \pr)[Q-{l) - Q+(0]. 
(2.09) 

TT Jo 
(2.10) 

7?+ = - f Ci{u) cos [ut — ^(w)] du, 
TT Jo 

8 rUr 

Q- = - Ct(— u) sin [ut + "^'(— w)] du, and 
TT Jo 

(2.11) 

Q+ = - j Q{u) sin [ut — ^(w)] du. 
TT Jo 

The envelope P(t) of the impulse transmission characteristic is given 

Comparison of (2.09) with (2.07) shows that R- and R+ can be identi- 
fied with the impulse characteristics of low-pass systems having the 
same frequency characteristics as the bandpass system below and above 
cor. The impulse characteristics and Q+ which arise from asymmetry 
in the transmission characteristic with respect to a!r are not present in 
low-pass systems, since by definition the amplitude characteristic has 
even symmetry and the phase characteristic odd symmetry with respect 
to zero frequency. 

The first and second components of (2.09) are referred to as the in- 
phase and quadrature components of the impulse characteristic of 
band-pass systems.3 The transmission-frequency characteristic may cor- 
respondingly be regarded as made up of a component with even sym- 
metry and another component with odd symmetry about Wr, as indicated 
in Fig. 6. These two components, together with the in-phase and quadra- 
ture components, will depend on the choice of a)r . However, P(t) as given 
by (2.09) and the envelope as given by (2.12), will remain the same, since 
a single impulse characteristic is associated with a given transmission- 
frcquency characteristic. 

With the customary pulse transmission methods, the reference fre- 
quency cor may be identified with a modulating or carrier frequency, 
which has a special significance when the envelope of a sequence of 
received pulses is considered. Although for a single pulse the envelope 

by 

P(t) = [{R- + R+)2 + (Q- - Q+y-]112. (2.12) 
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is always the same, for a sequence of pulses the resultant envelope of the 
received pulse train will depend on the in-phase and quadrature com- 
ponents.4 The reason for this is that one has even and the other odd 
symmetry about the peak amplitude of the envelope for a single pulse, 
when the phase characteristic is linear. 

In order to compare the transmission performance as the reference or 
carrier frequency is changed, it is necessary to determine the in-phase 
and quadrature components for each carrier frequency under considera- 

FBEQUENCY, CO 
Fig. G — Decomposition of amplitude characteristic Cli asymmetrical with 

respect to wr into a component (£■• of even symmetry and a component da of odd 
symmetry about cur . When the phase shift is linear, Gh = CE2 + da . 

tion. One method is to evaluate integrals (2.10) and (2.11) for each 
carrie frequency, which may be facilitated by resolving the transmis- 
sion-frequency characteristic into symmetrical and anti-symmetrical 
components as indicated in Fig. 6. This, however, is a rather elaborate 
procedure which can be avoided with the aid of a simple translation 
from one reference or carrier frequency to another, as shown below, 
provided the in-phase and quadrature components or the envelope has 
been determined for one reference frequency. 

Equation (2.09) may also be written, with p = cp{t): 

P(t) = cos(urt — fa — <p) P{t), 
  _   (2.13) 

= cos(cor£ — ypr) cos tp P{t) -j- sin(wri — i/v) sin cp Pit). 



TilKORET1CAL FUNDAMENTALS OF PULSE TRANSMISSION 735 

Comparison of (2.13) with (2.09) shows that: 

R- + R+ = cos <p P(t), 
_ (2.14) 

Q- - Q+ = sin ^ P(l), 

tan ? = (Q^- Q+)/(R- + R+). (2.15) 

To find the corresponding components when cor is changed to co/, 
equation (2.13) may he written 

P(t) = COS[o}r't — \pr' — (w/ UT)t + (\pr' — l/'r) " <p] P(t) 
= cos(cor't - \pr' - <p') P(t), (2.1G) 

where <p' = ^'(Z) is given by: 

<p' = (P + (w/ - Ur)t - OA/ - tr), 
(2.17) 

= <P + Uyt — ty . 

Thus, when the reference frequency is changed by uu and its phase by 
\pu, the corresponding in-phase and quadrature components become: 

R-' + R+' = cos {(p + Uyt - ypy) Pit), and 
(2.18) 

QJ - Q+' = sin {<p + cout - ty) P{t) 

To summarize, when the in-phase and quadrature components have 
been determined for any reference frequency Wr from (2.10) and (2.11), 
and the envelope P together with the function <p from (2.12) and (2.14), 
the in-phase and quadrature components for another reference frequency 
co/ can readily be determined with the aid of (2.18). In the particular 
case where the amplitude characteristic has even and the phase charac- 
teristic odd symmetry with respect to the midband frequency, the 
quadrature component disappears with respect to the midband fre- 
quency, so that <p = 0 and (2.18) simplifies to 

/?_' + R+ = cos (uyl — iA,,) P(t), and 
(2.19) 

Q- - Q+ = Sill (iOyt - ty) P{t). 

The above relations (2.18) and (2.19) facilitate comparison of trans- 
mission performance as the reference or carrier frequency is changed, for 
example the comparison of double with vestigial sideband transmission, 
as illustrated in section 14. 
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3. IDEALIZED CHARACTERISTICS WITH SHARP CUTOFF 

In pulse transmission theory, particularly in dealing with transmission 
capacity of idealized transmission systems, an ideal low-pass transmis- 
sion frequency characteristic is ordinarily assumed, with constant ampli- 
tude and delay in the transmission band together with an abrupt cutoff 
at the top frequency and zero amplitude beyond, as shown in Fig. 7. 
As is evident from Fig. 1, this type of characteristic is an abstraction 
which cannot be physically realized since it will have phase distortion 
and infinite transmission delay. It can, however, be approached with 
sufficiently elaborate phase equalization. 

For the above type of characteristic, A(co) = 1 between co = 0 and 
wi, while = uTd, where is the transmission delay. With these 
values in (2.07): 

_ ^a'1 s^11 C01'0 

TT 0)1^0 
(3.01) 

where to = t — Td is the time referred to the peak amplitude of the 
received pulse. 

The resultant pulse transmission characteristic is shown in Fig. 7, 
with the factor 8ui/ir omitted. The peak amplitude is attained after an 
infinite time, since the above type of characteristic can be realized only 
with Td —> oo. The impulse characteristic is zero when onto = ±mr, or 
<o = ±ri, ± 2ti , • • • ± nn where 

Tl = 
2/! 

(3.02) 

Impulses can thus be transmitted at the latter intervals without 

(a) 
AMPLITUDE AND PHASE 

CHARACTERISTICS 
(b) 

IMPULSE CHARACTERISTIC 

-tn - "   tr 

_P(t0) = 77"t0/ry 
AMPLITUDE 

W-PHASE 
^'(o;) = oo 

o co 
FREQUENCY, W i —4*-7i -4»-^ -A*-7\ 

7; =77-/0),= 
26 

Fig. 7 — Idealized low-pass characteristic with sharp complete cut-off. 
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mutual interference between the peaks of the received pulses. This is a 
basic theorem underlying the determination of the transmission capacity 
of idealized systems.3 

For an idealized bandpass characteristic between wo and coi, it follows 
from (2.09) with T(w) = ura and T(—w) = —iiTd that the impulse 
characteristic with respect to the midband frequency w, = ajm is 

P{1) = 2 cos[a>m<o - Pit), (3.03) 

where P{t) is given by (3.01) and = Tm — wmTd is the phase intercept 
at zero frequency. For the transmission characteristic to be ideal in the 
sense that the peak pulse amplitude occurs when to = t — Td = 0, it is 
necessary that rj/o = ±nr, where n is an integer. This is not necessary 
if the bandwidth is small in relation to the midband frequency. There 
will then be a large number of cycles of the modulating frequency 
within the envelope P(t), and the latter can be recovered by envelope 
detection regardless of the phase of the modulating frequency. 

With i/'o = zknir, 

, A 2us8 sin co,to /o r\ i \ 
Pit) =   cos uml0 — , (3.04) 

TT CO., to 

aji5 sin ccito woS sin coo/o /0 r.r\ =    — , (3.05) 
TT Wity TT Ciloto 

where wm = (ojq + coi)/2 and w8 = (wi — wo)/2. 
The shape of the impulse characteristic as given by (3.04) is illustrated 

in the upper half of Fig. 8. Alternately the impulse characteristic may 
be regarded as made up of two components in accordance with (3.05). 
The first component corresponds to a low-pass characteristic of band- 
width wi, the second component to a negative low-pass characteristic 
of bandwidth wo, as indicated in the lower part of the Fig. 8. 

The factor sin ajs£o/Wo in (3.04) is zero at the same intervals as for a 
low-pass characteristic of bandwidth us, as shown in Fig. 8, so that 
pulses may be transmitted at the same rate without mutual interference 
between pulse peaks. The bandwidth in the present case, however, is 
2a)8 = wi — wn, so that for the same bandwidth the pulse transmission 
rate is half as great as for a low-pass characteristic. 

An exception to this is the particular case when on = 2a;o, so that the 
total bandwidth is coo ■ The factor sin oioU/uoto in (3.05) is then zero at 
intervals to = l/2/o, while the factor sin uiU/uih is zero at intervals 
l/2/i = l/4/o, as shown in Fig. 9. Pulses may accordingly in principle be 
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AMPLITUDE VS 
FREQUENCY CHARACTERISTIC 

IMPULSE CHARACTERISTIC 

ENVELOPE P(t) 

ct>s-»4*-a>s 

SI NTT to A 
\ 77-to A 

"7o U)\ / 
FREQUENCY / 

/-~4-COS CymtoP(t0) 

U- 75 •4* T\  T\ *4* Ti ^ Ti "T*" ^ 
r. =7r/ais = 1/2 fs TIME 

(3) REPRESENTATION OF IMPULSE CHARACTERISTIC AS 
ENVELOPE MODULATED BY MIDBAND FREQUENCY 

AMPLITUDE VS 
FREQUENCY CHARACTERISTIC 

i IMPULSE CHARACTERISTIC 3 = 1 + 2 

OJq CW, 
FREQUENCY, CO 

— 0 

4-^-4-7; 
4—To—4*— 

7j-*4-T; 4"-T, 4"--^-Ti 4-- T;-4-T;-4»-T; 4 
-4«—To—4*—To—4  To  

(b) REPRESENTATION OF AMPLITUDE VS FREQUENCY AND IMPULSE 
CHARACTERISTICS, 3, AS THE SUM OF A POSITIVE LOW-PASS 
CHARACTERISTIC, 1, AND A NEGATIVE LOW-PASS CHARACTERISTIC, 2 

Fig. 8 — Idealized band-pass characteristics and corresponding impulse trans- 
mission characteristics. 
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transmitted without mutual interference at the same rate as for a low- 
pass characteristic of bandwidth coo, or at the same rate as with single 
sideband transmission over a band-pass system of bandwidth coo. More 
generally, pulses can in principle be transmitted without mutual inter- 
ference between pulse peaks at the same rate as for a low-pass character- 
istic of bandwidth coi — too = 2cos if coo is a multiple of an — too. It should 
be noted however, that this pulse transmission rate cannot actually be 
realized since the phase characteristic will have infinite slope, so that 
the transmission delay will be infinite. In addition, the zero frequency 
phase intercept i/'u must be ±/or, a condition which cannot be attained 
or remain stable in view of the infinite slope of the phase characteristic. 

With the envelope given by the factor sin cos£o/Wo in (3.04), the 
in-phase and quadrature components for any reference frequency can 
be determined with the aid of (2.19). If the lower band-edge is selected, 
i.e. wr = coo, then a)(/ = w,. With a linear phase characteristic \p„ = cor,;, 
so that in (2.19) ^,,1 — xp,, = ■ The in-phase and quadrature com- 
ponents are accordingly obtained by multiplying the envelope by cos 
uato and sin uJo, respectively. 

As an alternate method, the two components can be obtained from 

AMPLITUDE VS FREQUENCY 
CHARACTERISTIC 

n 
3= +2 

a) 

tt»o CO, 
FREQUENCY. CO 

IMPULSE 
CHARACTERISTIC 

I  --ENVELOPE \ ^ 

2/ 

T0 = TT/COQ = -L- TIME — 
2 to 

Fig. 9 — Special case of idealized band-pass characteristic in which wi = 2wo 
and resultant, impulse characteristic is zero at intervals ro = -y . 

a/o 
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(2.09), which with TtL = 0, = 0 becomes: 

Pit) = cos ajo^+(<) + sin wofoQ+(0, 

with 

R. 
8 r"6 

= - / cos uto du, 
TT Jo 

8cob Sin oiblo 25a)s . Sin co.fo  =   cos a)sfo   — 
TT COfcto X COsto 

and 

s rb • Q+ = - I sin uto du, 
IT Jo 

8wb 1 — cos Ubto 25cjs • , sin Ugto =   sm ajgfo 
CCbto Oisto 

(3.06) 

(3.07) 

(3.08) 

where cob = 2us is the bandwidth. It will be noticed that R+ and Q+ are 
obtained by multiplying the envelope by cos wsto and sin in accord- 
ance with (2.19). 

(a) 
FREQUENCY CHARACTERISTICS 

(b) 
IMPULSE CHARACTERISTICS 

2 
k-cux-*- 

N 

3 = 1 + 2 \ 3= 1-r 2 

7, -»n 

Fig. 10 — Idealized transmission characteristic with gradual cut-off, 3, ob- 
tained by superposition of characteristic with sharp cut-off, 1, and characteristic, 
2, with odd symmetry about wi . Linear phase shift assumed. 
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4. IDEALIZED CHARACTERISTICS WITH GRADUAL CUTOFF 

The idealized transmission characteristics discussed above are of 
principal interest in that they indicate the physical limitations on pulse 
transmission rates for a given bandwidth. Even if these impulse char- 
acteristics could be realized without undue difficulties from the stand- 
point of phase equalization, they would be impracticable in most applica- 
tions. Their oscillatory nature would entail the use of discrete pulse 
positions and precise synchronized sampling at fixed intervals, and 
would preclude certain methods of pulse modulation and detection. 

The non-linearity in the phase characteristic as well as the oscillations 
in the impulse characteristic can be reduced with a gradual rather than 
a sharp cut-off, as illustrated in Fig. 10. It is assumed that an ideal 
characteristic with a sharp cutoff is supplemented by an amplitude 
characteristic Cli which has odd symmetry about the cutoff frequency 
wi, i.e., (ii (—w) = — (ti (n). 

If the latter component alone is considered, and a linear phase charac- 
teristic assumed, it follows from (2.09) with an = cor that the effect of 
this component on the pulse transmission characteristic is given by 

Pi(t) = — Qi sin oji/q , (4.01) 

where lo = t — Td and 

28 rz 

Qi = — Cti(u) sin ulo du. (4.02) 
TT JQ 

The function Pi{t) will be zero at the same points as the original pulse 
transmission characteristic with a sharp cut-off at on and under certain 
conditions also at other points. It will modify the original impulse char- 
acteristic by reducing the oscillatory tail, as illustrated in Fig. 10, but 
the zero points remain unchanged.3 

With the above modification, the resultant impulse characteristic ob- 
tained by superposition of (3.01) and (4.02) becomes 

P{t) = - sin on/o (- — 2 f Qi(u) sin ufo du], 
TT \li, Jo / 

= - sin udoPO), 
TT 

(4.03) 

where 

m = ^ — 2 [ aM sin ulo du \ . (4.04) 
Jo Jo J 

In the following the expression for F(l) is given for the case when the 
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band-edge is modified by a supplementary characteristic of the form 

Cli(«) = 4(1 - s"1 W2ux) u < ux, 
(4.1)5) 

= 0 u > u1 . 

This form of di represents a close approximation to actual modifications 
of band-edges by a gradual cutoff and also results in rather simple ex- 
pressions for the modified impulse characteristic 

With (4.05) in (4.04), 

i rx 

F{t) = — — / (1 — sin ttm/Scoi) sin uto du, 
tn Jo 

1 fl- COS (X)xtu COS Wxto _ COS COjfo 
tu X L 0)xto TT -f- 2(1)xto TT — 2o}xto_ 

= 0>x COS Uxto [— + ^ _ 2uxto " TT + 2o>xto\' 

1 COS Uxto 

(4.06) 

£o 1 — i2uxto/ir)- 

The impulse characteristic obtained from (4.03) is 

p/,\ 4coi sin coi(o cos uJo Qy\ 
x coi^o 1 — {2o)xto/tt)2 

For the particular case shown in Fig. 11 the value of ux is taken to be 
wi/2. 

For a symmetrical bandpass characteristic, as shown in Fig. 12, 

P(i) = 2 cos {comt0 - ^o) P(t). (4-08) 

P(t) is obtained by replacing on by cos in (4.07), and \f/a is the phase 
intercept at zero frequency as in connection with (3.03). This gives 

p,a _ sin coJo cos cjj/q (4 09) 
x coJo I — i2(j}xto/ir)- 

For the particular case shown in Fig. 12, the value of ux is taken to be 

The in-phase and quadrature components with respect to any fre- 
quency are obtained from (2.19) with yf/y = cotj and are shown in Fig. 
12 for the particular case in which the reference frequency is displaced 
from the midband frequency by = co,. 
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5. IDEALIZED CHARACTERISTICS WITH NATURAL LINEAR PHASE SHIFT 

With the type of amplitude characteristics discussed above it is 
necessary to employ phase equalization to obtain a linear phase charac- 
teristic. Furthermore, oscillations of appreciable amplitude remain in 
the impulse characteristic. A virtually linear phase characteristic to- 
gether with a reduction of these oscillations can be attained by a further 
extension of the gradual cut-off in Fig. 10, such that ux = ui. An ampli- 
tude characteristic of this type, together with the corresponding impulse 

1.0 

0.8 m Q Z3 
0.6 

0.4 

0.2 

0 

(a) 
FREQUENCY 

CHARACTERISTIC 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 
oi/ai, 

1.6 

1.0 
UJ o 3 
t 0.8 _J Q. 
5 < 0.6 
io 3 o 
-0.4 
£ z 
5 0.2 

-0.2 

(b) 

/ 1 \ 

IMPULSE 
CHARACTERISTIC 

/ ' \ 

/ 1 \ 

V-/ 

< "" > 
T, = 77/tU, * I7"1 * 

"24, 
Pig. 11 — Low-pass characteristic with gradual cut-off and associated impulse 

characteristic. Linear phase characteristic assumed. 
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(b)3 IMPULSE CHARACTERISTIC 

Fig. 12 — Symmetrical band-pass characteristic with gradual cut-off and 
associated impulse characteristic. In-phase and quadrature components shown 
with respect to wr = wm — w, . 

characteristic is shown in Fig. 13. The supplementary amplitude charac- 
teristic and the impulse characteristic are obtained by making ux = oq 
in (4.05) and 4.07). 

The resultant amplitude characteristic between w = 0 and co = 2c<ji 
in this case becomes 

AM = \ 1 + cos 
TTCO 1 2 TTO) 
2^J _ C0S 4toi' 

and the impulse characteristic: 

m = 
sin 2^1/0 

(5.01) 

(5.02) 
TT 2a;iio[l — (2wl^||/7^):-,]' 

where on is the bandwidth to the half-amplitude point on the trans- 
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mission frequency characteristic and 2u\ the bandwidth to the point of 
zero amplitude. 

In Fig. 13 is also shown the amplitude characteristic given by (1.08), 
which will have a linear phase characteristic in the transmission band, 
i.e. from oj = 0 to 2coi . Because of the close approximation of (5.01) to 
the proper type of amplitude characteristic as regards phase linearity, 
the phase characteristic associated with (5.01) may for practical purposes 
be regarded as linear. 

For a symmetrical band-pass characteristic as shown in Fig. 14, the 
impulse characteristic is given by (4.08) and the envelope by (4.09) 
with o}x = u, , or 

p(t) = 
sin 2cos/o 

(5.03) 
TT 2a)i<(i[l — (2a)sfo/7r)2] 

The in-phase and quadrature components shown in Fig. 14 with 

(a) 
IMPULSE CHARACTERISTIC 

(b) 
FREQUENCY CHARACTERISTIC 

| 0.5 
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0,2 
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-1.25 -1.0 -0,75 -0.50 -0.25 1.25 1.50 1.75 2.0 0 0.25 0.50 0.75 
totMAX = 2^oh 

Fig. 13 — Low-pass transmission frequency characteristic, 1, and associated 
impulse characteristic. Frequency characteristic, 2. is same as shown by solid 
lines in Fig. 3 and has a linear phase characteristic between oi = 0 and comnx . 
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Fig. 14 — Symmetrical band-pass characteristic with linear phase shift and 
corresponding impulse characteristic. In-phase and quadrature components 
shown with respect to ur = oj,,, — ajs . 

respect to a reference frequency at the midpoint of the band-edge are 
obtained from (2.19) with = ws . This gives P(t) cos ujo for the in- 
phase and F sin a)s/n for the quadrature component. 

In Fig. 15 is shown a special case of a band-pass characteristic, which 
corresponds to that illustrated in Fig. 9 with on = 2wo, shown for com- 
parison by dashed lines in Fig. 15. In this particular case ojm = 3 coo/2, 
and cox = ioa = a>o/2. With \p{l = nir, equation (4.08) in conjunction with 
(4.09) gives 

. &oo / . /0x sin 2a)o/o — sin confn 
P{t) = COS (cOofo/2) 

27r coodl — (mtn/T) 2] 
(5.04) 
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This expression is zero when sin 2cooio — sin coo^o = 0, and also when 
cos cooto/2 = 0. Zero points in the impulse characteristic will occur at 
uniform intervals to = tt/coq = l/2/o. Pulses can accordingly be trans- 
mitted at these intervals without mutual interference, or at the same 
rate as for a low-pass characteristic with the bandwidth to the half- 
amplitude point equal to loq . This is the same pulse transmission rate 
as is possible in principle with an ideal band-pass characteristic as shown 

BAND-PASS CHARACTERISTIC 
/ SHOWN IN FIG.9 

k 

L- 5 ^5 "1 

C^o 0^ = 20^ 
FREQUENCY, U) —*■ 

(a) AMPLITUDE VS FREQUENCY CHARACTERISTIC 

\s^-ENVELOPE P(t) 

TIME l 

Tn  T0 T0 < rQ >t* Tn To >1* To 
Tr\ — 

(5) IMPULSE CHARACTERISTIC 
Fig. 15 — Particular case of band-pass characteristic with gradual cut-off in 

which impulse characteristic is zero at intervals to = . 
tja 
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by the dashed hues in Fig. 15. With a gradual cut-off, however, the phase 
characteristic will be nearly linear and have a finite slope, so that the 
above pulse transmission rate can be realized provided i/'o = rfcrar. The 
same pulse transmission rate can also be attained with vestigial side-band 
transmission, discussed in section 14. 

Another particular case of interest is that shown in Fig. 16, in_which 
com = 2co, . In this case (4.08) becomes with \J/o = ±mr and with P(t) as 

ws <^s 

FREQUENCY 

uim - 2 U>s 

(3) FREQUENCY CHARACTERISTIC 

ENVELOPE P(t) / 

COSWm'tP{t) j 
/ » \ 

r 

\ j 

ii"- 7-1 = l/2fs 
TIME •—*■ 

WITH PULSES TRANSMITTED AT POINTS 1, 2, 3 THERE 
IS NO MUTUAL INTERFERENCE BETWEEN PULSE PEAKS 

(b) IMPULSE CHARACTERISTIC 
Fig. 16 — Particular case of symmetrical band-pass characteristic for which 

, = 2 CO a . 
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"I f f 0.9 

0.8 
k-- T.— 0.7 
"2^ 

0.5 
6/ r, =0.5 0.4 

0.3 

0.2 

0 CJ, 2CU, 
FREQUENCY 

Fig. 17 — Modification of frequenc}' characteristic to obtain same response as 
for impulses, when pulse duration is prolonged to half the pulse interval. 

given by (5.03) 

P{t) — COS Olmt 
TT 

sin (Jijo 

5c0r 

0 0Jmfn[ 1 — (cOm^n/7r)2] ' 

sin 2wmfo 
(5.05) 

TT 2wJ(|[l — (wro/oA)2] ' 

Pulses can in this case be transmitted without mutual interference be- 
tween the pulse peaks at the points shown in the above figure. The 
effective pulse transmission rate is the same as for a low-pass characteris- 
tic between w = 0 and to = 2to,„ with half amplitude at tom .* 

As mentioned in Section 2, when pulses of finite duration are employed, 
the same response as for impulses is obtained if the amplitude charac- 
teristic is modified by the factor (co5/2)/sin (co5/2). In Fig. 17 is shown 
the resultant minor modification in the amplitude characteristic (5.01) 
when the duration of the pulses is equal to half the pulse interval. 

The low-pass and band-pass amplitude characteristics considered 
above can also be regarded as the spectra of pulses applied to a trans- 
mission system having a constant amplitude characteristic over the 

* W. R. Bennett and C. It. Feldman originally proposed this type of charac- 
teristic in an unpublished memorandum, as a means of matching the bandwidth 
economy of baseband transmission without inclusion of frequencies near zero. 
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band of the spectra. If the phase characteristic of the system is linear 
over this band, the received pulses will have the same shape as the 
impulse characteristics. It should be recognized, however, that there 
may be appreciable phase distortion within the transmission band or 
pulse spectrum, if there are amplitude discontinuities beyond the band 
resulting from a sharp cut-off by filters. Nevertheless, the type of am- 
plitude characteristic or frequency spectrum considered above has de- 
cisive advantages from the standpoint of transmission distortion of the 
pulses, as shown later, since appreciable phase distortion will ordinarily 
be confined to the edges of the band where the frequency components 
of the pulse spectrum have low amplitudes. 

Another type of amplitude characteristic resembling that shown in 
Fig. 13 and frequently considered in connection with pulse transmission 
is a Gaussian characteristic: 

A(co) = e"™2. (5.06) 

The corresponding impulse characteristic is 

= (5-07) 

If it is assumed that the amplitude is reduced to 1 per cent of the peak 
value after an interval U = tt/wi , corresponding to the first zero point 
of an ideal impulse characteristic, it is necessary that tfo2/4«r = 4.6, or 
a = .54/coi2. The corresponding amplitude and impulse characteristics 
are 

A(co) = e-o.54(Wui)^ (5_08) 

and 

P{t) = (5.09) 
O.SSTT 

Iii Fig. 18 a comparison is made of the two frequency characteristics 
(5.01) and (5.08) considered above, and of the corresponding impulse 
characteristics (5.02) and (5.09V The comparison shows that for the 
same pulse transmission rate and with negligible intersymbol inter- 
ference, a somewhat wider band must be provided with a Gaussian 
amplitude characteristic. This is a disadvantage, particularly when the 
band is restricted within prescribed limits by considerations of inter- 
ference in adjacent transmission bands, as radio pulse systems. 
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Fig. IcS — Comparison of two representative frequency ami impulse transmis- 
sion characteristics. Frequency characteristic 1; 7'(w) = ?[! + cos iru/'lui]. Fre- 
quency characteristic 2: T{(>)) = exp — 0.54(aj/ui)2. 

Amplitude characteristic 1 of Fig. 18 has certain properties, aside 
from the linearity of the associated phase characteristic, which makes it 
preferable to a Gaussian as well as other types of amplitude characteris- 
tics for most pulse systems. The corresponding impulse characteristic 
has zero points at intervals ti = l/2/i with the minimum possible oscilla- 
tion consistent with this property for a given bandwidth. This permits 
the use of this impulse characteristic for pulse systems with discrete 
pulse positions with minimum intersymbol interference and considerable 
tolerance on synchronization. Since the oscillation in the impulse char- 
acteristic is inappreciable, it can also be used for pulse systems without 
discrete pulse positions and with other methods of detection than syn- 
chronized instantaneous sampling. In view of these attributes, an ampli- 
tude characteristic of the above type, rather than a constant amplitude 
characteristic with sharp cut-off, may be regarded as ideal when various 
physical requirements for practicable pulse systems are taken into con- 
sideration. 



752 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1954 

6. PULSE ECHOES FROM PHASE DISTORTION 

For any transmission—frequency characteristic the corresponding 
impulse characteristics can be determined from the Fourier integral 
relation (2.01). This, however, may involve the evaluation of compli- 
cated integrals, which in general would require numerical integration 
and would be a rather elaborate procedure. A preferable method of 
sufficient accuracy in most engineering applications is to employ the 
theoretical solutions given previously for various ideal transmission 
characteristics with a linear phase shift as a point of departure or first 
approximation. A satisfactory second approximation can in many 
instances be secured by evaluating the transmission distortion resulting 
from a sinusoidal deviation in the phase characteristic. Furthermore, 
any type of deviation in the phase characteristic can in principle be 
represented by a Fourier series in terms of harmonic sinusoidal devia- 
tions. 

Aside from the circumstance that in many cases a sine deviation in 
the phase characteristic affords a fairly satisfactory approximation to 
actual phase distortion it has the advantage in theoretical formulation 
that it permits determination of the resultant pulse distortion by the 
method of "paired echoes." In the usual application of this method only 
small phase deviations are considered resulting in a single pair of pulse 
or signal echoes of small amplitude, and the method is then particularly 
simple.5,6 When delay distortion is appreciable, however, as is fre- 
quently the case in wire circuits, it becomes necessary to consider a 
large number of pulse or signal echoes of considerable amplitude. Since 
the amplitudes of the pulse echoes may be obtained from available tables 
of Bessel Functions, the determination of the echoes is, nevertheless, 
simple in procedure and the determination of the shape of the distorted 
pulses or other signals not too elaborate. 

A given amplitude characteristic within the transmission band may 
be associated with various phase characteristics, depending on the shape 
of the amplitude characteristic outside the transmission band and also 
on whether or not a minimum phase shift system is involved. It is 
therefore permissible to consider the effect of various departures from 
a given phase characteristic independent of the amplitude characteristic 
within the transmission band. 

With a sinusoidal departure from a given phase characteristic ^(w) 
as shown in Fig. 19, the modified phase function becomes 

^(co) = \po(cc) — b sin cor. (6.01) 

With 
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T.M = A„(w) 

the modified transmission-frequency characteristic becomes 

7'M = ^oM eib 6in ur
) (6.02) 

which, inserted in (2.01) gives 

P{t) = ~ T Ti)(iu)eibBinuTei"t da. (6.03) 
Z7r •/—C30 

The following relation (Jacobi's expansion) in which Ji, Ji • ■ ■ are 
Bessel Functions in their usual notation can now be employed7 

sin ut = + Ji(6)[e.W _ 

+ ./2(5)[e2,w + <r2n 
„. (6.04) 

+ Jz{h)[e^T - e ^ 

+ J4(5)[e4,'UT + e-4,UT] + • • • 

Let Po(0 designate the shape of the received pulse or other signal for 
a transmission frequency characteristic T^ia) obtained from (6.03) with 
5 = 0. In view of (6.04) the solution of (6.03) may then be written 

PQ) = Jo(5)Po(0 + J1(5)[Po« + r) - P0{t - r)] 

+ JiQl^YPoit T 2r) + Po(/ — 2r)l 
(6.05) 

+ JzmPoit + 3r) - P.it - 3r)] 

+ J4(5)[Po(/ + 4t) + Po(^ — 4T)] + • • • 

The shape of the received pulse or signal P{t) is thus obtained by 
superposing an infinite sequence of pulses or signals of shape Poit). The 
peak amplitudes of the pulse or signal echoes and the times at which 
they occur with respect to / = 0 are given in the following table. The 
reference point / = 0 is arbritrarily selected to coincide with the peak 
of the pulse Po(0: 

Time  -.It -2t -r 0 - 2t 3t 

Amplitude.... J*{b) Jiib) Jxib) ■/o(5) -Jx{b) Jiib) -Mb) 

A sufficient number of echoes must be considered until their peak 
amplitudes become negligible. 

The superposition of echoes to obtain the resultant pulse is illustrated 
in Fig. 20. Instead of plotting the various echoes and combining them 
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into a resultant pulse or signal as in Fig. 20(c) the equivalent and less 
laborious method shown in (d) can be employed. With the latter method 
the pulse Po is plotted with reversed time scale and its peak made to 
coincide with the point for which the amplitude of the resultant pulse P 
is to be determined. The amplitude of P is determined as indicated in 
the figure. In the particular case where the original phase characteristic 
\p{) is linear, the pulses Po(0 will be symmetrical with respect to their 
peak amplitude, and this assumption will be made in the following 
applications. 

For amplitudes 5 « 1, the Bessel Functions become negligible except 
for Jo and Ji, which are given by Jo(6) = 1 and Ji(5) = 6/2, so that 
(6.05) becomes 

P(i) = P.W + | Pa(« + r) - | Po(i - r), (6.06) 2 2 

AMPLITUDE 

PHASE 
F i- 

yj {CO) = iOTd - bsiN car 

FREQUENCY, CO —*■ 
(3) LOW-PASS CHARACTERISTIC 

■^(u)=urd-bsiN ur 

FREQUENCY, CO 

(b) BANDPASS CHARACTERISTIC 
Fig. 19 — Low-pass and band-pass characteristics with sinusoidal phase dis- 

tortion. 
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For amplitudes h > 1, it is necessaiy to consider a greater number of 
echoes, as will be evident from Table I for 5 = 1, 2, 5, 10 and 15 radians.8 

The preceding equations apply to low-pass characteristics and also 
to symmetrical bandpass characteristics, as shown in Fig. 19. In the 
latter case G(w) = (i(—u) and T( —w) = —^(w) in (2.10) and (2.11) 
so that R+ = R- and Q+ = Q- and (2.09) becomes 

P(t) = COS (urt - tr) R{t), (6.07) 

where R{t) = R+ + i?_ and co, = w„, = midband frequency. The en- 
velope R{t) is accordingly obtained by replacing Po(0 in (6.05) by Rait), 
the envelope in the absence of phase distortion. 

In Fig. 21 is shown a particular case of a sine deviation in the phase 
characteristic and the corresponding delay distortion, which approxi- 
mates that encountered in many instances. For a low-pass system the 
phase and delay distortion would be as shown for u > 0. In this particu- 

IJ2 
J, 

AMPLITUDES OF PULSE ECHOES 
Jo 

-27" -7 O T zr t 
-Ji 

(a) 

Po(t+27") Pn(t+7") Po(t) Po (t-r) Po(t-2r) 

Jz Po(t+27") 

RESULTANT PULSE P(t) 

, Jo Pott) 
J,(Pn-2r) 

P 

t+r) 

-q^Pott-r) 

P— JoSo"*" Jl^i"" Jj 3-) 
+ J232+J23 —2 

_LU2_ 

-Jl 
a-2 = 0 

(d) 

Fig. 20 — Determination of resultant pulse by superposition of pulse echoes. 
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Table I — Amplitudes of Echoes, Jn(b) 

ft = i 2 5 to 15 

n = 0 0.7652 0.2239 -0.1776 -0.2459 -0.0142 
1 0.4401 0.5767 -0.3276 0.0434 0.2051 
2 0.1149 0.3528 0.0466 0.2546 0.0416 
3 0.0196 0.1289 0.3648 0.0584 -0.1940 
4 0.0340 0.3912 -0.2196 -0.1192 
5 0.2611 -0.2341 0.1305 
6 0.1310 -0.0145 0.2061 
7 0.0534 0.2167 0.0345 
8 0.0184 0.3179 -0.1740 
9 0.0055 0.2919 -0.2200 

10 0.2075 -0.0901 
11 0.1231 0.1000 
12 0.0634 0.2367 
13 0.0290 0.2787 
14 0.0120 0.2464 
15 0.0045 0.1813 
16 0.1162 
17 0.0665 
18 0.0346 
19 0.0166 
20 0.0073 

lar case the maximum amplitude h is at the maximum frequency comax 

= 2coi, so that sin cor = 1, or cor = 7r/2, for co = 2coi . Hence the interval 
between pulse echoes is r = 7r/4coi = l/8/i. The interval r is accordingly 
34 the interval n = 1/2/: required for the pulse Po(t) to reach zero ampli- 
tude in the absence of phase distortion. 

AMPLITUDE CHARACTERISTIC 

PHASE CHARACTERISTIC 
 -jL. 

-s" 
 a>MAX  

•s N 
1 sin ur / ! 

ENVELOPE DELAY^"-, ^-''-brcos ur 

Fig. 21 — Particular case of sinusoidal phase deviation. 
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For the particular case illustrated in the above figure, the delay dis- 
tortion is given by 

drp/du = —br COS cor. 

When co = 0 

d\p/du = —br = — dmax • (6.08) 

When COT = TCOmax = 7r/2 

d\p/dco = 0. 

Hence 

dyp/doi = — dmex cos (co7r/2comax). (6.09) 

With r = tt/2comax and br = dmax , the following relation is obtained 

b — — C0max djnas. — 4/"max dmax • 
TT 

(6.10) 

In Fig. 22 are shown the positions of the pulse echoes for the above 
case on a numerical scale t -/max , together with their amplitudes for 
5 = 5 radians. On this scale the interval between pulse echoes 
t = l/4/max is y±. In the same figure is shown an assumed pulse shape in 
the absence of phase distortion, which is the same as shown in Fig. 13, 
except that the small tail has been neglected. The peak of the pulse is 
taken at (/"max = —0.75, and the amplitude of the resultant pulse at the 

* 0.70 

-0.328 

AMPLITUDES OF 

/ 0 

0.1517 0.05 y'|O.I3l 

26 

0.05 
1 

o.: 

m.is 

28 

0.05 
1 

0.131 

-0. 78 
-o 

1 -0.05 

26 

-2.0 0.5 1.5 2-0 -1.5 -1.0 -0.5 0 
"t f M AX 

Fig. 22 — Illustrative example of calculation of impulse characteristic shown 
in Fig. 23, by method illustrated in Fig. 20(d). 
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"H ^MAX h~ 
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0.6 
MAX 

0,7 
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O 0.5 
^MAX'MAX 

= 3.75 25 2.5 
2 0.4 

3 0.3 

< 0.2 

0.1 

/ 
w 

-0.1 

-0.2 

-0,3 

-0.4 
-4 -2 -1 

to^MAX =: 2t0f, 
Fig. 23 — Impulse transmission characteristics with cosine variation in delay, 

corresponding point obtained by the method illustrated in d of Fig. 20 

P = 1-0.365 + 0.85 (0.39 + 0.05) 

+ 0.5 (0.26 - 0.328) + 0.15 (0.131 - 0.178) 

= 0.70. 

In Fig. 23 are shown the resultant pulses obtained by the above method 
for various values of b and the corresponding values of . Since 
the interval between pulse echoes is small in relation to the duration of 
the pulse Poii), as seen from Fig. 22, the individual pulse echoes cannot 
be discerned in the resultant pulses shown in Fig. 23. It will be noticed 
that as h increases, the pulses are received with decreasing transmission 
delay, which is due to the choice of reference delay in the delay distor- 
tion curve. That is, as dmax or b is increased, the delay becomes increas- 
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ingiy negative with respect to d,imK = 0 used for reference. The curves 
apply to a band-pass system as indicated in the figure, and also to a 
low-pass system having the delay distortion shown above the midband 
frequency of the band-pass system. 

An improved approximation to phase distortion is sometimes obtained 
by considering two sine deviations in the phase characteristic. 

If the phase characteristic is given by 

^(co) = iA()(w) — h' sin cor — b" sin cor', (6.11) 

l" L.' , ,b =-0.0435 D 

V ^ (a) 

"• f"MAx  
6 
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,r d = -0.15 d 
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dwAX = 0.85 d max 
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f/fwAX = f/2f, 
Fin. 24 — Shape of delay distortion with combined fundamental and third 

harmonic cosine variation in delay. 
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pjg 25 — Comparison of impulse characteristics with fundamental and com- 

bined fundamental and third harmonic cosine variation in delay as in Fig. 24. 

the combined effect of the two sine deviations is obtained by first deter- 
mining the effect of —b' sin cor' from (6.05). The value of P(t) = Pi(t) 
thus obtained from (6.05) with b = b' and r = r' is next substituted for 
P0{t) in (6.05), with h = b" and r = r" to evaluate the effect of -b" 
sin cor". That is, the system is considered to consist of a tandem arrange- 
ment of two components, the first with a phase distortion -b' sin cor 
and the second with phase distortion —h" sin cor". 

In Fig. 24 is shown a particular case in which the second component 
is a triple harmonic of the first with amplitude b" = 0.0435&'. this 
results in an improved approximation to the delay distortion encountered 
in certain wire facilities, where the band is sharply confined by filters. 
In Fig. 25 is shown the pulse shape for this case with b' = 15 radians, 
together with that for a single sine deviation of 6=15 radians. 

It will be recognized from the above that as the number of sine com- 
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ponents required to represent a given phase distortion increases, the 
determination of the resultant pulse becomes rather laborious, unless 
the sine deviations are all small in amplitude. In the latter case each 
sine deviation corresponds in a first approximation to a single pair of 
echoes, so that the effect of a number of sine deviations can be obtained 
by direct superposition. 

7. PULSE ECHOES FROM AMPLITUDE DISTORTION 

Departures from a given amplitude characteristic ma3r in certain cases 
be approximated by a single cosine variation, as illustrated in Fig. 26. 
Since the amplitude characteristic is an even function of w, any departure 
from a given amplitude characteristic may be represented by a cosine 
Fourier series. The effect of a cosine variation in the amplitude charac- 
teristic is therefore of basic interest. 

A cosine variation will in general be accompanied by a change in the 
phase characteristic, as discussed in Section 1, but it will first be assumed 
that phase correction is employed to maintain a fixed phase characteris- 
tic. 

Let Ao(w) be the original amplitude characteristic and let the modified 
amplitude characteristic be of the form 

A(co) = Ao(«)[l + a cos cor]. (7.01) 

Equation (2.01) for the impulse transmission characteristic then be- 
comes, with To(tco) = Ao(co)e_"/'0<a'), 

m = t [ 7'o(iB) t1 + i(e'"'+ e<" ^ 

= Foil) + " P,it + t) + ~ P0{t - r). 

(7.02) 

(a) RATIO OF AMPLITUDE 
CHARACTERISTICS (b) IMPULSE CHARACTERISTIC 

O 
< 1 

A(£U)/A0(aj) =1+3 COS CO T 

FREQUENCY, OJ 

f Volt) 

fPolt+T") / 1 \ |Po(t-r) 
V ^ 

! TIME 
7" *1* 7" -H 

Fig. 26 — Pulse echoes from cosine variation in amplitude characteristic with- 
out change in phase characteristic. 
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There will thus be pulse or signal echoes of amplitude a/2 at the time 
r before and after the main pulse as illustrated in Fig. 26. 

With a cosine variation in the attenuation rather than in the amplitude 
characteristic, the modified amplitude characteristic becomes 

.4(w) = .4o(co) efl cos ^ (7.03) 

and the modified impulse characteristic 

Pit) = -L r TvawV'-'e"" da. (7.04) 
ZtT •/—co 

The expansion corresponding to (6.04) is in this case: 

ea cos UT = /o(a) + /i(a)(e,w + e~,w) 

+ /2(a) (e
2,w + e-2n 

+ 73(a) (e3,w + e-
3,w), + • • • (7.05) 

where h , h ■ • • are Bessel functions for imaginary arguments in their 
usual notation. 

The resultant modified impulse characteristic in this case becomes 

Pit) = 7„(a)Po(0 + Ha)[Po{t + r) + Po{t - r)] 

+ 72(a)[Po(^ + 2t) + Po(i - 2r)] (7.06) 

+ h{a)[Poil + 3t) + Poit - 3r)] + ••• 

which can be interpreted in a similar way as discussed for (6.05). For 
small values of a, h (a) ^ 1, h (a) ^ a/2 and the remaining terms 
in (7.06) negligible, so that (7.02) is obtained. 

As discussed in Section 1, when the amplitude characteristic is modi- 
fied in accordance with (7.01), the resultant modification in the phase 
characteristic is in accordance with (1.13) 

^ = 2 tan"1 1 _[si
2
ncur . (7.07) 

1 -f- r2 cos cot 

The modified transmission-frequency characteristic is in this case 

T(foj) = 7,o(fw)(l + a cos co^e-"^1, (7.08) 

which can be transformed into 

TM = ToM (1 + ^ 'w)2, 
i + r- 

= T.M —(1 + 2re~iuT + rV""'). 1 + r- 

(7.09) 
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Thus, with a cosine variation in the amplitude characteristic in ac- 
cordance with (7.01), accompanied by a minimum phase shift change in 
the phase characteristic in accordance with (7.07), the modified impulse 
characteristic becomes 

P{t) = , [Fo(0 + 2rPo(t - r) + /Pod - 2r)], (7.10) 
1 -f r- 

where 

= - [1 " Vl - a2]. (7.11) 

The received pulse or signal P(t) will thus consist of three components 
each having the same shape as the pulse or signal Pod), but differing in 
amplitude and displaced in time, as indicated in Fig. 27. 

For small values of the amplitude a of the cosine deviation, r = a/2 
and 1 -f r2 = 1, so that 

Pd) = Pod) + aPod - r) P0d - 2r). (7.11) 

The solution for a somewhat similar case given elsewhere,'1 has an 
infinite number of echoes, with the second echo given by a Pod — 2r) 
rather than (a2/4)Po(i — 2r) as above. In the case referred to, the ampli- 
tude deviation is in a first approximation a cos wr, but there are addi- 
tional terms in cos 2wr, cos 3wt etc, which are responsible for the different 
amplitude of the second echo and for the infinite sequence of echoes. 

With a cosine modification in the attenuation characteristic as given 
by (7.03), there will be a corresponding sine modification in the phase 
characteristic in accordance with (1.11). The modified transmission- 

fa) RATIO OF AMPLITUDE 
CHARACTERISTICS 

\A(£y)/A0(cy) 
= i+a cos cut 

FREQUENCY. U) 

(b) IMPULSE CHARACTERISTIC 

TTr2
p°(t' 

TIME 
-_7 ^ r >j 
a«i, r = -a/2 

Fig. 27 — Pulse echoes from cosine variation in amplitude characteristic with 
associated minimum phase shift variation in phase characteristic. 
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frequency characteristic is in this case 

Tiiu) = To(io>)ea a (cos tor—« sin tor) 

= T0fa)ea' iuT, (7.12) 
[23 ~| 

, —itor i R —2»ior i ® —3itor i 1+ae +^Te 3! + ' * * • 

The modified impulse characteristics is in tliis case 

P(l) = P.(() + aP„(t " t) + P.(f - 2T) 
(7.13) 

+ | P.(( - Sr) + • • • 

For small values of a both (7.11) and (7.13) give for the modification 
in the impulse characteristic resulting from a small cosine deviation in 
the amplitude or attenuation characteristics accompanied by changes 
in the phase characteristic: 

In certain applications it is convenient to regard Po(t) as a pulse or 
signal applied to a transmission line and P(t) as the received pulse or 
signal with a cosine deviation in the amplitude characteristic of the 
transmission line. 

In the lower part of Fig. 28 is shown the modification in the received 
pulses resulting from a slow pronounced cosine deviation in the ampli- 
tude characteristic shown at the top. In Fig. 29 is shown the effect of 
positive and negative cosine variations when the amplitude at zero fre- 
quency is held constant, a condition which may be approximated in wire 
systems as a result of variation in attenuation over the transmission 
band with temperature. Curve 1 would correspond to a 3.5 db smaller 
loss at the maximum frequency 2wi than at zero frequency, and curve 2 
to a G db greater loss at the maximum frequency. It will be noticed that 
pulse distortion as well as the variation in the peak amplitude of the 
pulses is greater under the first condition, i.e. curve 1. Pulse overlaps can 
in both cases be avoided by a moderate increase in pulse spacing, and 
in the first case can be substantially reduced also by a decrease in pulse 
spacing. 

8. FINE STRUCTURE IMPERFECTIONS IN TRANSMISSION CHARACTERISTICS 

As a result of imperfections in the transmission medium and in equali- 
zation there may be fine structure departures from a nominal transmis- 
sion characteristic, as illustrated in Fig. 30. They are often caused by 

Pit) = Po(t) + a Po{t - r). (7.14) 
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A/Ao= (i + 0.5 COS a T) 
r = 77/4 a;, 

0 O), 2W, 
FREQUENCY 

l.b 
0. PULSE CORRESPONDING TO AQ 
1. FIRST PULSE ECHO 

1.4 "  S. 2. SECOND PULSE ECHO 

1,2 - 
3/ \ 3. RESULTANT PULSE FOR 

\ FREQUENCY CHARACTERISTIC A 

1.0 - 
/ 0 

0.0 " / / 

0,6 - 
j / 

0.4 - 
/ / 

\ 
1 \N \ 

0,2 - 
/ ' // ' // ' r ' / s / s 

\ ^ \ \ n \ 1 \ N \ \ ^ \ 
'2 \ 

0 —   
TIME  ► 

U 7-,=^- J 

Fig. 28 — Modification of impulses characteristic by slow cosine variation in 
amplitude characteristic. 

echoes in very long lines resulting from impedance mismatches. Fine 
structure deviations from a specified amplitude characteristic may in 
principle be represented by a cosine Fourier series, since the amplitude 
function is an even function of w. Thus, if the specified amplitude char- 
acteristic is ^io(w), the actual amplitude characteristic ^(w) may be 
represented by an infinite cosine Fourier series as; 

./1(a)) = /lo(co)[l + Cli COS wr -j- 0? COS 2a)T + + am COS 7/10)r -f- • • •]. 

(8.01) 
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The coefficients cti, 02 • ■ • am • • • are determined in the usual manner 
by Fourier series analysis to represent the function 

A(u) 
fM = yio(co) 

= 1 + «(w) (8.02) 

over the frequency band. If ^4o(w) closely approaches A(co) the fine 

■ c&'i 

,co>^ 
\ 
\ 

(a) RATIO A{£j)/A0(cy) 

NUMERALS ON CURVES CORRESPOND TO 
THOSE ON IMPULSE CHARACTERISTICS BELOW 

FREQUENCY 

(b) IMPULSE CHARACTERISTICS 

/ J 0.8 
/ 

' 0 
< 0.6 

-1 
\ 

/ \ < 0.2 / 

TIME 
ri=  ^ 

2f. 
Fig. 29 — Effect of slow cosine variation in amplitude characteristic when 

amplitude at zero frequency is held constant. 
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structure departures a(w) in the transmission characteristic and hence 
the coefficients 01,02 • • • am • • ■ will be small. 

In the above representation -4o(w) can also be regarded as the ampli- 
tude characteristic of a terminal network or as the frequency spectrum 
of a pulse applied to a transmission system with an amplitude charac- 
teristic/(w) = 1 + a(w). 

In a Fourier series analysis of the deviation in the amplitude charac- 
teristic, the fundamental period of the amplitude variation would be 
selected so that there is one complete cycle between — coi and wi, the 
cutoff frequency, in which case wir = tt or 

71" 
Wl ' 

This is the interval between pulse echoes when the amplitude charac- 
teristic is represented by (8.01). It is identical with the interval n given 
by (3.02) at which pulses can be transmitted without mutual interfer- 
ence with a constant amplitude transmission frequency characteristic. 

1 A/Aq = l + CK(a>) 

A0 = NOMINAL OR IDEAL 
CHARACTERISTIC 

A = ACTUAL CHARACTERISTIC 

--J 
Wmax 

(0) TRANSMISSION FREQUENCY CHARACTERISTIC 

A'' \ 
^=Vo+/3fo» 

FREQUENCY 

.'P0 = NOMINAL OR IDEAL 
IMPULSE CHARACTERISTIC 

.-P = ACTUAL IMPULSE CHARACTERISTIC 

AP = P-PQ-" 

(b) IMPULSE TRANSMISSION CHARACTERISTIC 
Fig. 30 — Fine structure imperfections in trausnussion frequency characteristic 

and resultant prolongation of impulse characteristic. 
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Assume that pulses of unit peak amplitude but varying polarity are 
transmitted at intervals r = n and consider the interference with a 
given pulse from all pulses. As illustrated in Fig. 31, the first preceding 
and following pulses will in accordance with (7.02) give rise to a pulse 
echo ±ai/2 and the second preceding and following pulses to a pulse 
echo ±02/2 etc., where the signs of the echoes depend on the polarity 
of the pulses and on the signs of the coefficients ai, 02. The resultant 
intersymbol interference Ua{t) will depend on the polarity of the various 

PULSE ECHOES FROM INDIVIDUAL PULSES 

a,/si 

PUL 
ECH 

a t/21 

.SE 
OES 

tal/2 

PULSES 

♦a 1/2 

-r, — - T-,— 

♦ "32/2 ♦ -a2/2 
aa/sf aa/sj 

fa3/2 ♦ 
| -33/2 -aa/sj 

84/21 fa4/2 

RESULTANT PULSE TRAIN AND INTERSYMBOL INTERFERENCE 

a, a, a2 
a2 _ .£3 . 83 , a4 a4 

Ua"T T "i i'T T T T14 

Fig. 31 — Combination of pulse echoes into intersymbol interference for a 
particular case. 
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pulses and will thus vary with time. It can have any value assumed by 
the expression 

UM) = if ± I1 ± | ± | • ± ^ ± ^ + • • • (8.03) 

The maximum possible intersymbol interference will thus be the sum 
of the absolute values of the coefficients am . 

Ua = | Oi 1 + | Uo 1 + | Os | + • • • + | Cfm | + * * * (8.04) 

In certain pulse systems, such as PAM time division systems, rms 
intersymbol interference is of main importance, while in others, such as 
PCM or telegraph systems, peak intersymbol interference is of principal 
interest. If the fine structure imperfections are regarded as of random 
nature, in the sense that they are not predictable and vary between 
systems having the same nominal transmission characteristics, peak 
intersymbol interference can be estimated from rms interference by 
applying a peak factor of about 4. With random variation in the ampli- 
tude of intersymbol interference, the probability of exceeding 4 times 
the rms value is in accordance with the normal law about 5 X l(Fa. Peaks 
in excess of 4 times the rms value will thus be so rare that they can for 
practical purposes be neglected. 

The rms intersymbol interference is equal to the root mean square 
of all the different values which can be assumed by expression (8.03). 
This turns out to be equal to the root sum square of the amplitudes 
am/2 and — am/2 of the pulse echoes, or 

U. = [I; {fj +1: = (i I: (s.os) 

When am are the various coefficients in the Fourier representation of 
aiu) over the frequency band from —an to wi, the following relation 
holds. 

v 2 a™ = o— l a2(a') doj = — f a2(co) dco (8.06) J 1 Jcoi J-al COi Jo 

where a(co) in the present case is given by (8.02) and represents the 
departure in the ratio A (co)/Ao(co) from unity. 

With (8.06) in (8.05) the following expression is obtained for rms 
intersymbol interference due to amplitude deviations a(a)) not accom- 
panied by phase deviations 

Ua = Q (8-07) 
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where a is the rms deviation in q:(w) over the transmission band as 
given by 

11/2 
a = \ — f q!2(co) dwl 

L-OJl Jo J 

-[}.C ■■'»"] 

(8.08) 

The rms amplitude deviation expressed in db is 

a' = 20 logio(l + a) 

= 8.69 a when a < 0.1 (8.09) 

A corresponding analysis can be made for fine structure imperfections 
in the phase characteristic. The deviation /3(co) = t//(co) — ipo(ic) from a 
prescribed phase characteristic iMco) may in this case be represented by 
a sine Fourier series since the phase characteristic is an odd function of 
oj: 

jS(co) = bi sin cot + bo sin 2cot +•••+&», sin mcor + 

(8.10) 

The resultant peak intersymbol interference becomes 

Ub = 1 | + | ^2 | + * * * + j &jn | T" " * " (8-11) 

and the rms intersymbol interference 

bJ B-UE 
1/2 

= b, (8.12) 

(8.13) 

where b is the rms phase deviation in radians as given by 

b = \- f1 fMdcoT, 
L^X •'0 J 

=fir ««j' 

In the above derivation, the amplitude and phase deviations were 
assumed independent of each other. The resultant rms intersymbol 
interference from both is in this case 

U = (fV + Uty = (a1 + b2)1". (8.14) 

This relationship, applying to an ideal transmission characteristic, has 
been established by a different method in a paper by W. R. Bennett.10 
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From (7.05) it will be seen that with minimum phase shift relation- 
ships a small cosine deviation of amplitude am in the amplitude charac- 
teristic will be accompanied by a phase deviation hm = am. Hence in this 
case (8.14) gives 

This also follows when it is considered that in this case all the pulse 
echoes occur after the main pulse, and have amplitudes ai, a? ■ • • am . 
The root sura square of the amplitudes is in this case [XT "mT > which 
is greater than t/0 as given by (8.05) by the factor 21''. 

The above analysis was based on an infinite sequence of pulse echoes, 
which combine to give the proper pulse distortion but may be regarded 
as fictitious in nature. The assumption of an infinite sequence of pulse 
echoes can be avoided by a different method of analysis outlined below, 
which does not involve the assumption that the coefficients are known 
from a Fourier series analysis, and furthermore, does not assume an 
ideal amplitude characteristic with a sharp cut-off as above. 

Let Ac^ and Aoc-*'1'0 designate two transmission — frequency charac- 
teristics, where A, Ao, ^ and xpo are functions of co, which for con- 
venience is omitted in the following. The squared absolute value of the 
difference in the transmission frequency characteristics is then 

A e-** - Aoe",Vo j2 = Ao2[2(l - cos /3) (! + «) + a2], (8.16) 

where a = Q:(a)) = (/I — Aq)/Aq represents the deviation in the ratio 
of the amplitude characteristics from unity and /3 = /3(w) = \p — \pa the 
deviation in the phase characteristic. 

Let P and Po designate the impulse characteristics corresponding to 
the above transmission frequency characteristics, and let AP = P — Po. 
Assume that unit impulses of varying polarity are transmitted at uni- 
form intervals rj . The rms value of AP over the interval ri in relation to 
the maximum amplitude P(0) of the received pulses, or the rms inter- 
symbol interference U, is then given by 

U = 21/2 a (8.15) 

(8.17) 

—\— f A2[2(l - cos /3)(1 + a) + or] f/col , 
P(0) \_irTi Jo J 

For small values of a and /3, this expression becomes 

e=pio) f A'(a2+^ ^T- 
(8.18) 
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If a and /3 are random variables representing fine structure deviations 
uniformly distributed over the transmission band, it is permissible to 
simplify (8.18) to: 

(7 = , f -LY" (a2 + 62)1'2, (8.19) 
\CO]Tl/ 

where 
1 / (■"max \l/2 

A°dV ' (8-20) 

(1 \l/2 
  / a' dco) , and (8.21) 
Wmax Jo / 

6 = rm%2d.Y/2, (8.22) 
\Wniax " 0 / 

where a)max is defined as in Fig. 30 and wi is the bandwidth at the half 
amplitude point. 

For a transmission characteristic with linear phase shift, aside from 
small random imperfections as considered here: 

1 rumax 
p(0) =- Ao du. (8.23) 

TT JO 

For the particular case of a transmission characteristic with constant 
amplitude between w = 0 and oa = owx , = 1. Pulses would in this 
case be transmitted at intervals n = tt/coi so that tt/coiti = 1 and (8.19) 
is identical with (8.14). 

For a transmission characteristic of the type shown in Fig. 13, pulses 
would also be transmitted at intervals n = tt/coi so that tt/coin = 1. 
In this case wmax = 2oji , and evaluation of (8.20) gives 77 = 31/2/2 = 
0.866. Rms intersymbol interference is thus reduced by the factor 0.866, 
for the same values of a and h. However, these are now the rms devia- 
tions taken over a band which is twice as great as with a sharp cut-off 
at coi. 

Expressions (8.14) and (8.19) can also be applied to localized imper- 
fections in the amplitude and phase characteristics confined to a narrow 
portion of the transmission band. This follows when it is considered 
that such deviations can be represented by Fourier series containing a 
large number of coefficients, so that the resultant intersymbol inter- 
ference can attain a great number of different values depending on the 
secjuence of transmitted pulses. A particular case of a localized imperfec- 
tion in the amplitude characteristic in the form of a low-frequency cut-off 
is considered in the following section. 
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9. TRANSMISSION DISTORTION BY LOW FREQUENCY CUT-OFF 

A low-frequency cut-off in the transmission frequency characteristic 
of wire systems is unavoidable with transformers as employed for in- 
creased transmission efficiency or other reasons. In single sideband 
frequency division systems, there is a low-frequency cut-off in individual 
channels caused by elimination of the carrier and part of the desired 
sideband. The effect of a low-frequency cut-off can be avoided by em- 
ploying a symmetrical band-pass characteristic as illustrated in Fig. 16, 
or more generally by double sideband transmission with a two-fold in- 
crease in bandwidth as compared to a low-pass system. It can also be 
overcome by vestigial sideband transmission with inappreciable band- 
width penalty, but with complications in terminal instrumentation. The 
effect of a low-frequency cut-off can, furthermore, be reduced without 
frequency translation as involved in double or vestigial sideband trans- 
mission, by certain methods of shaping or transmission of pulses, as 
discussed in the following, and by certain methods of compensation at 
the receiving end or at points of pulse regeneration not considered here. 

The nature of the pulse distortion resulting from a low-frequency cut- 
off is illustrated in Fig. 32. If the phase characteristic is assumed linear, 
the amplitude characteristic may be regarded as made up of two com- 
ponents, in accordance with the following identity: 

A(co) = Ao(a)) + [A(cc) - Ao(co)], (9.01) 

where /ln(co) is the amplitude characteristic without a low-frequency 
cut-off and [.4 (w) — Ao(co)] a supplementary characteristic of negative 
amplitude, as indicated in Fig. 32. 

The impulse characteristic may correspondingly be written 

P(t) = Po(0 + [P(0 - Po(<)]. (9.02) 

If the cut-off is confined to rather low frequencies, the impulse charac- 
teristic AP(t) = P(t) — Po(t) will extend over time intervals substan- 
tially longer than the duration of P0(t) or the interval at which pulses 
are transmitted. The total area under the resultant pulse is always 
zero. 

When a sufficiently long sequence of pulses of one polarity is trans- 
mitted, the cumulative effect of the pulse overlaps resulting from the 
modification P(t) — Po(t) in the impulse characteristic will be a dis- 
placement of the received pulse train, as illustrated in Fig. 33 for various 
intervals between the pulses. This apparent displacement of the zero 
line, often referred to as "zero wander," will reduce the margin for dis- 
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tinction between the presence and absence of pulses in a random pulse 
train. In the particular case when pulses are transmitted at the minimum 
interval ri = 1/2/: possible without intersymbol interference in the ab- 
sence of a low-frequency cut-off, the pulse train will ultimately vanish 
when an infinite sequence of pulses of one polarity is transmitted, as 
illustrated for the last case in Fig. 33. 

The number of pulses of one polarity, or nearly all of the same po- 
larity, which can be transmitted before the limiting condition illustrated 
in Fig. 33 is approached depends on the extent of the low-frequency 
cut-off. If the low-frequency cut-off is inappreciable, this number may 
be sufficiently great so that the probability of encountering such a 
sequence in a random pulse train and resultant errors in reception may 
be so small that it can be disregarded. The requirement of the low- 
frequency cut-off which is necessary to this end is evaluated below for 
pulses transmitted at intervals rj = l/2/i. 

T 

/A-, 

1/ 

— Ao= TRANSMISSION FREQUENCY 
i/" CHARACTERISTIC WITHOUT 

LOW-FREQUENCY CUTOFF 

FREQUENCY 

P0 = IMPULSE CHARACTERISTIC 
WITHOUT LOW-FREQUENCY 

CUTOFF 

TIME 
r-,— . 

P-R = LOW-FREQUENCY CUTOFF u COMPONENT 
Fig. 32 — Separation of low-frequency cut-off componente A-Ao and P-Po in 

transmission frequency and impulse characteristics. 
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PULSE TRAIN ENVELOPE ZERO LINE WITH LOW-FREQUENCY CUTOFF 

A A t A / 
ZERO LINE WITHOUT LOW-FREOUENCY CUTOFF 

v y y y 

  
PULSE TRAIN ENVELOPE AND ZERO LINE 

WITH LOW-FREQUENCY CUTOFF 
/ \ / \ / N. / \ / \ / 

/ V v v A w' 
/ > x X X X 

/ \ / \ / \ / \ / \ 
,/ / ^_/ ^_/ \_/ \_/  

- ZERO LINE WITHOUT 
LOW-FREQUENCY CUTOFF 

Fig. 33 — Effect of low-frequency cut-off on recurrent pulses as pulse interval 
is decreased. 

If it is assumed that positive and negative impulses are applied at 
random to the transmission systems at intervals ri, the rms intersymbol 
interference resulting from a low-frequency cut-off can be evaluated by 
essentially the same method as employed in Section 8 for fine structure 
imperfections in the transmission characteristic, provided coo is much 
smaller than on . On this basis, rms intersymbol interference in relation 
to the peak amplitude Po(0) of the pulses in the absence of a low-fre- 
quency cut-off becomes: 

= Af— fww - AMYdS) "o(U) \7rri Jo / 

For a transmission characteristic with linear phase shift 

Po(0) = - f jI-o(co) du. 
TT Jo 

y/2 

(9.03) 

(9.04) 

(9.05) 
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For the particular case of sharp cut-offs at wo and wi 

^,o(w) = 1 0 < w < on , 

A(w) — -do(w) = —1 0<aj<wo, and 

Po(0) = coi/TT Ti = TT/WI , 

and 
(\ 1/2 / \ 1/2 

) = (-0) . (9.06) 
IT2 / VoJi/ 

It will be noticed that the same result is obtained from (8.07) with the 
amplitude deviation ot = f^4(co) — ^4o(co)] = — 1 between 0 and wo. 

In actual systems, the low-frequency cut-off will be gradual between 
w = 0 and coo, rather than abrupt as assumed above. With a linear 
variation in the amplitude characteristic between 0 and wq , A(w) — 
Ao(u) = (—1 + wAooMo(O) and U = (wo/3coi)1/2. 

If a sufficient number of pulses of one polarity is transmitted in suc- 
cession at intervals n = l/2/i the received pulses will as noted before in 
the limit be reduced to zero amplitude by the low-frequency cut-off. 
The maximum pulse distortion resulting from pulse overlaps when a 
train of pulses as transmitted is thus equal and opposite to the amplitude 
Po(0) of the received pulses in the absence of a low-frequency cut-off, so 
that peak intersymbol interference U = —1. If rms intersymbol inter- 
ference is held at one-quarter the peak value, i.e., U = 0.25, the prob- 
ability of encountering the maximum tolerable intersymbol interference 
and resultant errors in reception is low enough to be disregarded. On this 
basis the ratio wo/^i would in accordance with (9.06) have to be less than 
0.0625. Actually a substantially smaller ratio would be required because 
of intersymbol interference from other imperfections in the transmission 
characteristic and noise. Furthermore, a low-frequency cut-off will 
be accompanied by phase distortion at the low end of the transmission 
band, disregarded in the above evaluation. The requirements imposed 
on the low-frequency cut-off will thus be rather severe for a pulse 
system as assumed above in which random sequences of pulses are 
transmitted at intervals n = l/2/i. Two pulse amplitudes were as- 
sumed above, and with a greater number of amplitudes the require- 
ments would be more severe. 

From Fig. 33 it is evident that the effect of a low-frequency cut-off 
on a received pulse train can be reduced by transmitting pulses at longer 
intervals than n = l/2/i considered above. For example, with a two-fold 
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increase in the pulse interval, as represented by the second case in Fig. 
33, the maximum displacement of the zero line would be half the peak 
amplitude of the pulses. There would then be a 50 per cent reduction in 
the margin for distinction between the presence and absence of a pulse 
in a random pulse train, rather than a complete elimination of the margin 
for an infinite train of pulses of the same polarity transmitted at intervals 
ti = 1/2/j. This improvement would be achieved at the expense of a 
two-fold increase in bandwidth for a given pulse transmission rate. A 
further improvement, for the same two-fold increase in bandwidth, can 
be achieved by "dipulse" transmission, as discussed below. 

In dipulse transmission a positive pulse followed by a negative pulse 
in the next pulse position would be transmitted to indicate "on," and 
a negative pulse followed by a positive pulse to indicate "off," as indi- 
cated in Fig. 34. There will then be a substantial reduction in the pulse 
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(d) OICODE TRANSMISSION (a)+(C) 
THE PULSES AND ZEROS IN THE RECEIVED PULSE TRAIN (d) HAVE THE 
FOLLOWING RELATIONS TO THE ORIGINAL PULSES (3) 

1. POSITIVE AND NEGATIVE PULSES IN (dj REPRESENT CORRESPONDING 
PULSES IN(3) 

2. POINTS ON PULSE TRAIN IN fd) REPRESENT A REPETITION OF PREVIOUS 
PULSE, AS INDICATED BY DASHED LINES 

Fig. 34 — Dipulse and dicode pulse transmission methods. 
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overlaps resulting from a low-frequency cut-off, as illustrated in Fig. 
35, and in peak intersymbol interference. 

If AP(0 = Pit) - Poit) is the modification in the impulse characteris- 
tic shown in Fig. 32, the modification in the dipulse transmission charac- 
teristic resulting from a low-frequency cut-off becomes 

AiPit) = AP(t) - APit - n), (9.07) 

where ri is the interval between the positive and negative dipulse com- 
ponents. 

The difference given by (9.07) represents the differential in the curve 
Pit) - Po(0 shown in Fig. 32 over an interval n . It can be shown that 
the maximum cumulative effect or peak intersymbol interference for a 
long pulse train is represented by the sum of the differentials given by 
(9.07) and is approximately equal to 

tj ^ AP(r1) = ^(n) - Po(ti). (9.08) 

As an example, if the shape of A — Aq in Fig. 32 were about the same 
as that of Aq , APit) would have the same shape as Po(0 but would be 
lower in peak amplitude by the factor /o//i and would have the time 
scale increased by the factor /i//o. Peak intersymbol interference as 

-7-4- "H"- — — ^ AP(t) 
\| AP(t)-AP(t-7T) / i 

-   V-    1 \ r 1 / 
4—/ APTU^tt 

j / 
1 / 

\j/ 

—*1 ^ k- 

Fig. 35 — Low-frequency cut-off effects AP(/) and A/J(< — n) for positive and 
negative pulses and resultant effect AiP(<) = APit) — APit — n) for a dipulse. 
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obtained from (9.08) would then be about U = f0/fi and thus in the 
order of 10 per cent of the peak pulse amplitude for/o//i = 0.10. 

The bandwidth penalty incurred in dipulse transmission can be 
avoided by transmitting two identical pulse trains, one of which is de- 
layed by one pulse interval and reversed in polarity with respect to the 
other.* The combined pulse train will then be as indicated in Fig. 34, 
and one or the other of the two original component pulse trains can be 
restored at the receiving end by suitable conversion equipment. In the 
combined pulse train, a pulse of one polarity is always followed by a 
pulse of opposite polarity, but not necessarily in the next pulse position. 
For this reason the low-frequency cut-off compensation with the above • 
method of "dicode" transmission is not quite as effective as with dipulse 
transmission. Furthermore, since it is necessary to distinguish between 
three pulse amplitudes (1,0, —1), in the received pulse train, the maxi- 
mum tolerable pulse distortion in relation to the peak pulse amplitude 
is only half as great as with two pulse amplitudes (1, —1) in an ordinary 
code. 

10. TRANSMISSION DISTORTION FROM BAND-EDGE PHASE DEVIATIONS 

In pulse transmission systems where phase equalization is employed, 
it may be impracticable or unnecessary to equalize over the entire trans- 
mission band. There will then be residual phase distortion near the band- 
edges, as indicated in Fig. 36. This type of phase deviation will give rise 
to pulse distortion extending over appreciable time intervals if the band- 
edge phase deviations are large, as indicated in the above figure, for the 
reason that the frequency components outside the linear phase range 
will be received with increased transmission delay. Evaluation of the 
pulse shape is in this case a rather elaborate procedure, but rms pulse 
distortion or intersymbol interference resulting from such phase dis- 
tortion can readily be determined as outlined below. In certain pulse 
modulation systems, such as PAM time division systems, rms inter- 
symbol interference is of principal interest. In other systems where peak 
intersymbol interference is controlling, it may usually be estimated with 
engineering accuracy by applying a peak factor. 

When the pulse shape is known, peak intersymbol interference may 
be determined by methods outlined in Section 13. Comparison of peak 
intersymbol interference evaluated in this manner with rms pulse dis- 
tortion, for some cases in which the pulse shapes in the presence of phase 

* L. A. Meacham originally proposed this method is an unpublished memoran- 
dum. 
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distortion were determined, indicates that the peak factor is about 3 
when phase distortion is appreciable and the pulses are substantially 
prolonged in duration. 

Returning to equation (8.17) and assuming a = 0, the following rela- 
tionship is obtained for rms intersymbol interference due to phase devia- 
tions 

U = i (±r / 2Ao2(.l — cos /3) dco 
Jo 

1/2 
(10.01) 

P(0) \7rri/ 

where 13 = i3(aj) is the deviation from a linear phase characteristic. 
For transmission systems with a linear phase shift, the peak amplitude 

of the pulses is given by (8.23) and with this relation in (10.01) 

U = (—)m\} (10.02) 
\WlTj/ 

where 
r rum&x "l1'2 / r /•"max "l 

= coi y 2yio2(l — COS /3) dcoj / Ao dec j . (10.03) 

UNDISTORTED PULSE 
"(NO BAND-EDGE PHASE DISTORTION) 

AMPLITUDE 
CHARACTERISTIC 

RESULTANT PULSE 

DELAY DISTORTION 
/ 

n 
-af2 

MAX 

0.32 0.32 
O.Ol 0,01 ' t 

L— MAX 2 2 
dMAX^MAX = 8 

T ME 

■ PULSE DISTORTION FROM 
BAND-EDGE PHASE DEVIATION 

Fig. 36 — Pulse distortion from band-edge phase deviation for particular case 
of linear hand-edge delay distortion. 
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AMPLITUDE CHARACTERISTIC 

PHASE  DISTORTION,/i 

PHASE 
CHARACTERISTIC 

DELAY 
DISTORTION I t 

4- 

FREQUENCY, U 
Fig. 37 — Constant amplitude characteristic with band-edge phase distortion. 

If there is no phase distortion, i.e., /3 = 0, between w = 0 and co', equa- 
tion (10.03) becomes 

X = Wi 
/: J 0)' 

2Ao2(1 — cos 13 du 
1/2 / pnmx 
/ / Ao dco 
/ -•'O 

(10.04) 

As an example, consider a parabolic deviation from a linear phase 
characteristic between a/ and wmax , in which case delay distortion would 
vary linearily in this band, as indicated in Fig. 37 for a constant ampli- 
tude characteristic for which umax = ui . In this case 

\a)i — co / 
(10.05) 

where /h is the maximum phase deviation, obtained for co = coi . 
Equation (10.04) in the above case becomes: 

= l 
C0i /:[ 

1 — cos /3i 

2(coi — 
COi 

2(coi — CO 

vC0i — CO 
f rPl1'2 

dco, 

cos u2 du 
I 

(10.06) 

COi 

where R + iX = erf (/3i1/2e"r/4) in which erf is the error function. 
For a constant amplitude transmission characteristic as assumed 

above, (tt/coiti) = 1, so that (10.02) becomes £7 = X, which may also 
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be written: 
t'\l/2 

^ " j -ftft). and (10.07) 

FW = 21/2 [l - I (K + X)]"2. (10.08) 

For various values of the maximum phase deviation /3i in radians the 
function F becomes: 

|S1 0 0.25 i 4 - 

F 0 0.14 0.43 1.24 1.42 

If, for example, phase distortion were confined to 10 per cent of the 
transmission band, then (coi — a/)/coi = 0.1. For a maximum phase 
deviation of 1 radian at the edge of the transmission band, F = 0.43 and 
U = 0.135. For a maximum phase distortion of 4 radians, F = 1.24 and 
U = 0.39. Since peak intersymbol interference may exceed the above 
rms values by a factor of about 3, and the maximum tolerable peak 
intersymbol interference in a system employing two pulse amplitudes 
would be less than 1, it is evident that band-edge phase deviations must 
be held at rather small values, less than about 3 radians, in the upper 
10 per cent of the transmission band. 

The above severe tolerances on band-edge phase distortion can be 
overcome by employing a transmission frequency characteristic of the 
type shown in Fig. 38 and previously discussed in Section 5. If the phase 
characteristic is linear between w = 0 and an , and phase distortion 
between an and 2an varies as 

= (ia09) 

equation (10.04) can be written 

x2= i r (l + cos ^Yll-0.^(1 -"-)>, 
0)1 JU1 \ 2an/ L \ toi/J (1010) 

= ^ — s^n ^ (1 cos &w2) du. 

Pulses may also in this case be transmitted at intervals n = x/wj 
without intersymbol interference in the absence of phase distortion, so 
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that (10.02) becomes U = \ or 

t/ = y ^ — sin (1 — cos Piu"2) du 
1/2 

(10.11) 

The maximum delay distortion at the edge of the transmission band, 
i.e., to = 2coi, is dmax = 2/3i/aji. The product of this delay distortion 
with the maximum frequency/ra„x = 2fi is dmaX/max = ZPi/tt. For various 
values of maximum phase distortion /3i and the corresponding product 
dmax/mnx , the following values of rms intersymbol interference are ob- 
tained by numerical integration of (10.11). (This integral can be ex- 
pressed in terms of a number of Fresnel integrals, but numerical integra- 
tion is simpler and sufficiently accurate for the present purpose.) 

(9. ■K lir 4ir 

dmax /max 2 4 8 00 

u 0.070 0.120 0.185 0.330 

The particular case dmilxfmax = 8 is similar to that shown in Fig. 36, 
except that this figure applies to a Gaussian characteristic, for which 
the amplitude at cj = coi has been taken as 0.32 rather than 0.5 in the 
case considered here. For this reason rms intersymbol interference from 
phase distortion would be greater in the present case. 

AMPLITUDE 
CHARACTERISTIC 

PHASE DISTORTION,/! 

PHASE CHARACTERISTIC 

I ^ 

DELAY 
"DISTORTION 

CUMAx =2ClI, FREQUENCY, U 
Fig. 38 — Typical transmission frequency characteristic with phase equaliza- 

ion over 50 per cent of transmission hand. 
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t 
< -j 
S 
Q Z < 
LU Q D 

0- 
5 < 

\ AMPLITUDE CHARACTERISTIC 
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\delay distortion 
j/f \ 

i i \ 
U- \ 

1 1 \ 
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1 SUB-CHANNEL -» 1 

FREQUENCY  *• fpn 

Fig. 39 — Sub-channel with nearly linear delay distortion. 

Peak intersymbol interference may exceed the above rms values by a 
factor of about 3. In a system employing two pulse amplitude (1 and 
— 1), the maximum tolerable intersymbol interference is 1. This value 
would thus be attained in the above case for dmoxfmax = 00 ■ Hence, in a 
system employing two pulse amplitudes, and in the absence of noise 
and intersymbol interference from other sources, there would be no 
limitation on phase distortion for co > wi, provided the phase charac- 
teristic is linear between oi = 0 and wi. 

11. BAND-PASS CHARACTERISTICS WITH LINEAR DELAY DISTORTION 

In Fig. 39 is shown a transmission frequency characteristic together 
with an assumed delay distortion d\p/du. When a portion of the trans- 
mission band is employed for pulse transmission, as lor example in pulse 
signalling, data or telegraph transmission over portion of a voice channel, 
there may be an appreciable component of substantially linear delay 
distortion, as indicated in the above figure. The departure from a linear 
variation can usually be approximated by a cosine variation in delay, 
and the system can then be regarded as made up of two components in 
tandem, one with linear the other with cosine variation in delay. The 
effect of the latter can be evaluated by the methods outlined in Section 6, 
and the effect of a linear variation by methods established in this section. 

In Fig. 40 is shown a symmetrical amplitude characteristic with linear 
delay distortion over the transmission band. Phase distortion with 
respect to the midband frequency is in this case 

^{u) = fill and 4,(—w) = fill, (11.01) 
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and delay distortion 

d&(u)/du = 2f}u,d<Sf{—u)/du = —2f3u. (11.02) 

(The symbol /3, together with a, rj, a and h used later in this section do 
not have the same meaning as in earlier sections.) With (11.01) in (2.10) 
and (2.11), the in-phase and quadrature components in (2.09) become 

R- + R+ = — I Ct(w) cos ut cos (in2, and 
TV Jo 

(11.03) 
r 

Q- + Q+ = — / Ci(u) cos ut sin /3a2. 
TT Jo 

The in-phase and quadrature components can accordingly be identi- 
fied with the real and the negative imaginary component of the integral 

J = — f (x(u) cos ule~'puI du. (11.04) 
TV Jo 

The solution of this integral is rather simple for the particular case of a 
Gaussian transmission characteristic 

a (u) = e-a"\ (11.05) 

in which case 

J = — f e <0+,'s)"J Cos ul du, 
TV JQ 

(11.06) 

[tT (Q! "f" 2/3) ]1/2 
-/2/4(a+ifl) • 

/PHASE CHARACTERISTIC,/3U2 

/ / 
DELAY DISTORTION, 2/3U 

AMPLITUDE CHARACTERISTIC 

FREQUENCY 

-2/3U 
Fig. 40 — Symmetrical hand-pass amplitude characteristic with linear delay 

distortion. 
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The real and negative imaginary components of this expression are 

R_ + R+ = 28 ^ j1/2 e~al2 cos (0 - hi1), and 

- Q+ = 25 ( M' e""'2 sin (0 - ht2), 

(11.07) 

where 

a = C=(a! + 02)"! 

4 (a2 + /32) 4 (a2 + /32) 

tan 20 = (i/a = h/a 

The impulse characteristic obtained with (11.07) in (2.09) becomes 

P{t) = 28 (C-)m c~a'2 [cos (urt - ypr) cos (0 — ht2) 
\r / (11.08) 

+ sin {urt — ipr) sin (0 — ht2)]. 

From (11.08) it is seen that the envelope is 

P{t) = 25 (^Y e—'. (11.09) 

The peak of the envelope obtained with f = 0 is smaller than without 
delay distortion (/3 = 0) by the factor 

1 
V = 

[1 + OVa)2]1/2 ' 
(11.10) 

The constant a is smaller than without delay distortion by the factor 
rj*. If to designates the time required for the instantaneous amplitude of a 
pulse to decay from its peak to a given value without delay distortion, 
the time ti to reach the same amplitude with delay distortion is 

h = h/v = (oil + Wocf\m- (1111) 

If Wmax indicates the frequency at the 40 db down point on the trans- 
mission frequency characteristic, acomax

2 = 4.6, The corresponding delay 
distortion is dmriX. = 2co„ias/3. Thus fi/a = -68 dmnfma* so that (11.11) 
becomes: 

i, = io[l + 0.46 (d„^f.„)1"2. (11.12) 

The effect of a linear delay distortion across the transmission band is 
thus to disperse or broaden the envelope of the received pulses, as illus- 
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trated in Fig. 41. For a specified pulse overlap or intersymbol interference 
the pulse spacing must accordingly be increased by the factor ti/to, so 
that for a given transmission performance the transmission capacity is 
reduced by the factor to/h . About the same effect would be expected for 
other pulse shapes or amplitude characteristics resembling the Gaussian 
shape assumed in the above derivation. 

Comparison of (11.08) with (2.13) shows that the function (p(l) with 
respect to the midband frequency is 

^(t) = e - hi2. (11.13) 

If the reference or carrier frequency is displaced from the midband by 

AMPLITUDE CHARACTERISTIC 

- 

MAX 

u fMAX  FREQUENCY 

— — DELAY DISTORTION 

(6) TRANSMISSION FREQUENCY CHARACTERISTIC 

WITHOUT DELAY DISTORTION-/ \W1TH DELAY DISTORTION 

7^ TIME !♦-1 
L—-1, — 

(b) IMPULSE CHARACTERISTICS WITHOUT AND WITH DELAY DISTORTION 

t1=to[l + 0.46(dMAXfMAX)
2]2 

fi. A * — FREQUENCY FROM MIDBAND AT WHICH AMPLITUDE OF TRANSMISSION FREQUENCY CHARACTERISTIC IS REDUCED 40 DECIBELS 
dMAX = DELAY DISTORTION AT fMAX IN SECONDS 

Fig. 41—Lengthening of impulse envelope by linear delay distortion for 
Gaussian transmission characteristic. 
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a;,,, the in-phase and quadrative components are in accordance with 
(2.18) 

R- + R+ = cos (0 - ta2 + Oyl — h) P(t), and 
_ (11-14) 

QJ — Q+' = sin (0 — h{' + Uyt — yf/y) Pit), 

where xf/y = and P{t) is given by (11.09). 
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