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A new device, the avalanche transistor, is described. Its ■properties derive 
from the utilization of the multiplication inherent in the breakdown process 
of reverse-biased, semiconductor junctions. These junction transistors have 
regions of designoble alpha greater than unity and are similar in many re- 
spects to point-contact and hook-collector transistors. They should, however, 
have advantages in speed and designability. Large regions of negative re- 
sistance of moderate magnitude can also be obtained in appropriate circuits. 
The device should find wide application in both switching and transmission. 
Design information for avalanche transistors is given. 

1. INTRODUCTION 

It has been shown recently that reverse biased silicon and germanium 
junctions break down as a result of a multiplicative process which is 
analogous to multiplicative breakdown in a gas.1, 2' 3 Minority carriers 
which are thermally or otherwise generated diffuse to the high field 
region of the reverse biased junction, where they are accelerated, pro- 
ducing hole-electron pairs by collision with the atoms of the crystal 
lattice. As in the case of ionization of a gas, the rate of pair production 
is dependent upon the electric field distribution; however, it has been 
found that in the case of semiconductors holes and electrons are com- 
parably effective in producing additional current carriers. The holes and 
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electrons which are produced by collision may themselves produce ad- 
ditional pairs, and so on, resulting in an avalanche. As the junction re- 
verse bias is increased, the space charge layer widens, the maximum 
electric field increases, and the total rate of pair production increases. At 
a particular value of reverse voltage, called the breakdown voltage, the 
multiplication of the minority current carriers becomes essentially in- 
finite. The current then increases very rapidly, being limited only by the 
external circuit resistance. 

In semiconductors the number of minority carriers which are multi- 
plied may be augmented and controlled by means of an emitter junction 
which is placed in close proximity to the reverse-biased, multiplying 
collector junction. The result, of course, is a simple n-p-n or p-n-p junction 
transistor which with proper design may exhibit considerable multipli- 
cation of the emitter current at voltages well below the breakdown volt- 
age. The existence of this multiplication mechanism, which has been 
called avalanche multiplication, in reverse biased transistor collector 
junctions is of very great interest both from a transmission as well as 
from a switching point of view. So far as switching is concerned, it means 
that a simple junction device may have a current gain, or alpha, greater 
than unity and in appropriate circuits, be capable of exhibiting a nega- 
tive resistance just as point-contact or hook-collector transistors do. Such 
a device may be used as the active element in pulse generator, regenera- 
tive pulse amplifier, or counter circuits. The effect of this multiplicative 
process on transmission applications is also important. Large regions of 
designable negative resistance of moderate magnitude may be attained 
in two terminal circuits and used to reduce losses in transmission sys- 
tems. In general, the alteration in collector characteristics due to ava- 
lanche multiplication means that single stage amplifiers may be un- 
stable and/or may exhibit a high degree of distortion depending on the 
operating conditions. 

Further discussion of the negative resistance characteristic will be 
presented in a later section. Additional objectives of this paper are to 
indicate how an avalanche transistor can be characterized relative to its 
terminal behavior and to present design information which will enable 
the design of avalanche transistors for specific applications. The dis- 
cussion will be in terms of alloyed transistors; however, the ideas pre- 
sented are applicable to other structures. 

It should be pointed out here that many junctions break down at or 
near the surface at a voltage considerably below that expected from the 
bulk properties of the junction. In these cases the multiplication of the 
bulk junction never rises very much above unity before "surface break- 
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down" occurs. Even though the surface breakdown also is frequently 
multiplying, only a small percentage of the emitter current is multiplied. 
The discussion in this paper is primarily applicable to transistors which 
exhibit "body breakdown." 

2. THEORY 

The multiplication of reverse biased step junctions, such as those of 
transistors made by the alloy-diffusion method, closely follows the em- 
pirical expression3 

M = 1 - (V/VB)" Cl) 

where Vb is the junction body breakdown voltage and r is a parameter 
which varies with the resistivity and resistivity type of the material on 
the high resistivity side of the junction. In alloyed junction transistors 
this side is the base. Presumably the value of the parameter n varies 
also from semiconductor to semiconductor. For alloyed step junctions 
on p-type germanium, measured n values for different resistivities have 
ranged from 4.5 to (>.5. On n-typc germanium n is approximately 3 
throughout the investigated range. The breakdown voltage, Vb , rises 
monotonically with the resistivity of the base layer. 

Equation (I) says that the alpha of a transistor has the form (neglect- 
ing space charge layer widening effects) ' . 

a(F) = amv) = 1 _ (
a;/Fj)„ (2) 

where a„ is the value of the current gain at very low voltage, or, more 
accurately, the fraction of the emitter current which is collected, neg- 
lecting multiplication. This equation implies a designable alpha greater 
than unity for junction transistors. From equation (2) the voltage, Vb , 
at which alpha becomes unity is given by 

Vs = VbVT^O (3) 

Thus Vs is completely determined by the body breakdown voltage of 
the collector junction, the low-voltage alpha and the value of n for the 
particular junction. With proper design Fs can be made only a small 
fraction of Vb . Obviously a device designed to take advantage of the 
multiplication effect should have as high an ao as possible and as low a 
value of the parameter n as is available. The advantage clearly lies with 
the p-n-p as opposed to the n-p-n transistor in germanium. Another 
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requirement is that the transistor technology be sufficiently advanced 
that the body breakdown of the collector junction can be observed. At 
present this means roughly that the breakdown voltage must be kept 
low, that is, below about 50 volts. 

In linear applications which impose that a must remain below unity 
or that distortion be minimized, different requirements are necessary. 
For such applications high Vs is desired, which in turn calls for high base 
resistivity. Fulfilling this requirement, however, may necessitate a 
compromise, since high base resistivity results in limited frequency cut- 
off at low voltages because of space-charge layer punch-through. Base 
resistance considerations may likewise put an upper limit on permis- 
sable base resistivity. In such a case the use of n-p-n transistors seems 
advisable,5 and the operating voltage should remain always comfortably 
below Fs . 

In the circuit configuration of Fig. 1 the avalanche transistor behaves 
like a gas discharge device in several respects. Its characteristic includes 
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Fig. 1 — Avalanche transistor negative resistance circuit. 
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a high resistance region and a low resistance region separated by a re- 
gion of negative resistance. The origins of the negative resistance in the 
two cases, however, exhibit distinctions which should be pointed out. 
In the gas discharge, negative resistance results after breakdown pri- 
marily from the increased cathode efficiency due to changes in the field 
configuration because of the space charge effects of the carriers. In the 
solid state analogue, the charges already resident in the discharge region 
in the form of the ionized chemical impurities in the lattice outnumber 
the carriers traversing the high field region by many orders of magnitude 
at reasonable current densities. Hence the field configuration is not sig- 
nificantly current-dependent. Furthermore, there is no cathodic re- 
generative mechanism in the solid discharge (gamma process), and photo- 
regeneration in germanium is only ~ 10~4 efficient. Townsends' /3 mecha- 
nism has been demonstrated to be the dominant agency in maintaining 
the discharge.2,3 Therefore, the avalanche breakdown in the solid 
generally does not inherently lead to negative resistances. There would, 
however, be the possibility of negative resistance at very high current 
densities. 

The negative resistances observable are the result of the fact that with 
avalanche transistors it is possible to look across the discharge in two 
different ways. One is directly across the avalanche multiplication region 
alone (from the base to the collector of a transistor) and the other is 
across a source of minority carriers and the multiplication region in 
series (from emitter to collector with base floating). In the former case 
base-to-collector breakdown leading to near zero incremental resistance 
occurs at that voltage at which the avalanche multiplication becomes 
infinite. In the latter case, because of continuity of current requirements, 
emitter-to-collector breakdown occurs at Vs , that voltage at which the 
multiplication times the an of the transistor becomes unity. Any circuit 
configuration which in effect goes from the former to the latter condition 
with increasing current will exhibit negative resistance. 

Curve (a) in Fig. 1 is the normal reverse characteristic of the collec- 
tor junction, as measured collector to base with emitter open, indicating 
the breakdown voltage, Vb • For a theoretical transistor this curve is 
determined by the equation 

7 = = i _ [v/v.y (4) 

Since the emitter is open circuited it does not contribute any minority 
carriers to the discharge. Curve (b) in Fig. 1 is the reverse characteristic 
of the collector junction (as measured collector to emitter with base 
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open). According to the equivalent circuit of the transistor the current 
is given by the equation 

T — MI CO /r\ 
Ic - (5) 

and it is seen that current increases, subject only to limitation by circuit 
resistance, when the collector voltage reaches V3 , the voltage cor- 
responding to unity total alpha or aoil/ = 1. Since the emitter current of 
alloyed junction transistors is primarily made up of minority carriers 
emitted into the base region, the emitter efficiency in this case can be 
said to be high. It is apparent that if the emitter efficiency could be 
made to vary with current, then it would be possible to obtain a nega- 
tive emitter-to-collector resistance. This is the purpose of the base re- 
sistor shown in Fig. 1. For low currents the impedance of the emitter 
junction is high, since the voltage-current characteristic is exponential 
in character, and most of the current flows through the base resistor. As 
the voltage is increased essentially curve (a) is traced out. Near the 
breakdown voltage the current increases, the emitter-to-base voltage 
increases in the forward direction, and the impedance of the emitter 
junction becomes smaller in comparison with the base resistance. This 
process results in increased emitter current. Thus the characteristic, 
curve (c), begins to depart from curve (a), and as a larger and larger 
fraction of the total current is transferred from the base circuit to the 
emitter circuit, curve (c) approaches curve (b) asymptotically. 

3. CHARACTERIZATION 

In view of the above description of the multiplication properties of 
transistor junctions, it is clear that the collector characteristics of all 
transistors, in which a surface breakdown does not intervene, will look 
like those shown in Figs. 2(a) and 2(b). In Fig. 2(a), the measured col- 
lector characteristics for a representative n-p-n transistor are shown. 
Fig. 2(b) gives the same information for a representative p-n-p unit. 
The horizontal dashed line in each case indicates the voltage Vb at which 
a becomes unity. This voltage is of course a function of the particular 
value of ao for each transistor. Either of these transistor types would 
have somewhat more distortion as a common base amplifier than has 
hitherto been expected from transistor theory neglecting avalanche 
effects. 

As has already been emphasized, the p-n-p has a decided advantage 
for monostable, astable, or bistable switching apphcations. A suitable 
characterization for an avalanche transistor designed for switching use 
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Fig. 3 — Distributions of Vb and Vs for avalanche transistors, (a) Base re- 
sistivity = 0.2H-cm; (b) Base resistivity = O.SH-cm. 

would certainly involve the body breakdown voltage of the collector, 
Vb , and the voltage at which the total a of the transistor is unity, Vs , 
which can be thought of as a sustain voltage. The breakdown voltage is 
a function of the base layer resistivity, while the ratio of the sustain 
voltage to the breakdown voltage is a function of the low-voltage alpha 
of the transistor. Therefore, the ability to control these parameters in- 
volves only the ability to control base layer resistivity and aQ . These 
are problems which have already claimed considerable attention with 
good results in other transistor designs. 

Groups of such avalanche transistors have been made at Bell Tele- 
phone Laboratories. Figs. 3(a) and 3(b) give distributions of VB and 
Fs for groups of about 25 transistors made on 0.2 fi-cm and 0.5 fi-cm 
n-type material. In Figs. 4(a) and 4(b) are given the relations between 
7s and ao for the two groups. 

The spreads in 7B for both groups of transistors largely reflect slight 
deviations from the nominal resistivity. Although the germanium in 
both cases was zone levelled, it is estimated that there is a ±5 per cent 
variation in resistivity for individual wafers. Undoubtedly some varia- 
tion is due to surface breakdowns very close to but below the body 
breakdown. The spread in 7s is, of course, partially the result of the 

(a) 

Vs VB 

, 1 , 1 1 1 i i i 1 1 
0 5 10 15 20 25 30 

(b) 

Vs VB 11 

, 1 III 1 | 1 1 I 1 || 1 1 , , 

VOLTAGE 



ALLOYED JUNCTION AVALANCHE TRANSISTORS 891 

spread in Fb insofar as the variation in Fb is the result of variation in 
the bulk material. The remainder stems from the distribution of ao values. 
No vigorous attempt was made to control ao carefully or to hold rigid 
limits on base resistivity for these sample groups. 

From (3) it can be seen that log Va/Vb when plotted versus log 
(1 — ao) for transistors of different ao should yield a straight line of slope 
\/n. Solid lines of slope have been drawn in Fig. 4 along with dashed 
lines of slope %. The adherence to the n = 3 law is confirmed. 

Equation (2) gives the total a of a transistor when multiplication is 
taken into account. Values calculated from this equation are plotted in 
Fig. 5 in comparison with values determined by ac a measurements and 
with a values obtained from the measured static collector characteris- 
tics for a representative unit from the group having base layer resistivity 
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Fig. 4 — Plot of Vs/Vb vs 1 — ao • (a) Base resistivity = 0.2 n-cm. (b) Base 
resistivity = 0.5 Q-cm. 

- n==6-   — -- 

-     --  — 
  

• • 
• 
• - 

*1* 

r* 
•3 

1 

• 

1 . 1 

(a) 

i 1 

- n=6_.   —■ — 

-   — — -- 
  

3, 

— 
• • 

• 

• ■ 

, 
• 

1 i i 

(b) 

 1  1 



892 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1955 

2.6 

2/4 

2.2 

2.0 

1.8 
a 

1.6 

1.4 

1.2 

1.0 

0.8 

Fig. 5 — Alpha versus collector voltage for an avalanche transistor. 

of 0.2 ft-cm. The agreement is good. It is quite general for the formula 
to give a slightly lower value of a than is observed in this type of experi- 
ment. The functional form of the multiplication and especially the value 
of the exponent were determined from an experiment which minimized 
effects on of changes in the base current flow pattern.3 The experi- 
mental a as determined above would be expected to be higher than 
theoretical because when a goes above unity, the majority carrier flow 
from the collector to the base biases the emitter so that ao increases with 
increasing total a. This effect is the opposite of the effect in which ao 
decreases with increasing large emitter current in ordinary junction 
transistor operation with a less than unity. 

The frequency characteristic of the multiplicative increase in a is of 
great interest. Theoretically the multiplication process should be ex- 
tremely fast. The response time of the multiplication should be com- 
parable with the transit time for carriers across the high field region in 
the reverse biased junction. This time would be a small fraction of a 
millimicrosecond in all practical junctions. Therefore, the frequency 
cutoff of the total alpha should not be measurably smaller than the fre- 
quency cutoff of the ao. Actually the effect discussed above, which in- 
creases ao with increasing total a (when above unity), and therefore, with 
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increasing collector voltage, could have an even greater effect on the 
frequency cutoff of ao. Again it would be expected that the change 
would be in the direction of increasing fN . Fig. 6 gives measured fre- 
quency cutoffs of total a vs. the collector voltage for the same representa- 
tive unit which was used for Fig. 5. The theoretical curve was calcu- 
lated8 from 

U = 
h 

fi - ( ^ y/2T 
L \3.65 X lO-'W/A/ J 

(0) 

This equation merely takes into account the variation of base width 
due to widening of the collector space-charge layer with increasing volt- 
age.4, B There is a sharp departure upwards from the theoretical curve 
for the points corresponding to total a greater than one. This behavior 
is in line with the above explanation. Again, the reverse effect is observed 
with increasing large emitter currents in junction transistors operated 
in the ordinary manner. Thus the frequency characteristics of the multi- 
plied alpha are as good as, and can be better than, the frequency char- 
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Fig. 6 — Frequency cut-ofT of alpha versus collector voltage for an avalanche 
transistor. 
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acteristics of ao. This means that any device which utilizes the negative 
resistance inherent in the a greater than unity will be limited in fre- 
quency only by the dispersion in transit time across the base. 

The temperature variation of both Vb and Fs is comparatively small. 
The breakdown voltage of np junctions increases slowly with increasing 
temperature at the rate of about 0.1 per cent per degree centigrade. 
Aside from the change in Vb , V3 will be affected also by changes in 
1 — ao with temperature. In the case of p-n-p germanium transistors a 
drastic change of 1 - ao by a factor of two with temperature would give 
only a 25 per cent change in 7a • Data given by Ebers and Miller show 
that such changes would require very large temperature changes. How- 
ever, it should not be supposed that devices based on the avalanche prin- 
ciple would always be very temperature insensitive. For example, in the 
circuit shown in Fig. 1, the mechanism which switches from the high 
breakdown voltage to the low breakdown voltage path may be highly 
temperature sensitive, unless remedial steps are taken, because the satu- 
ration current is intimately involved. 

4. DESIGN DATA 

The principal designable features of an avalanche transistor are the 
Vb and 7s values. From the discussion in the next section, it will be 
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Fig. 7 — Resistivity and breakdown voltage versus net density of impurity 
centers. 
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Table I 

n High Resistivity Side of Step Junction 

4.7 0.15 R-cm, p type 
5.5 0.25 fi-cm, p type 
6.6 0.5 R-cm, p type 

~6 2.0 R-cm, p type 
3 0.1 R-cm, n type 
3.4 0.6 R-cm, n type 
3 2.0 R-cm, n type 

seen that some of the considerations in ordinary transistor design, like 
keeping the base resistance low, sometimes are no longer important. The 
control of Vb , as pointed out above, is simply a matter of controlling 
the base layer resistivity. Miller3 has given the breakdown voltage as a 
function of the net density of impurity centers on the high resistivity 
side of a germanium step junction like those made by the alloy process. 
These data are given in Fig. 7. This illustration also contains plots of 
the resistivity of the high resistivity side vs. the net density of impurity 
centers for n and p germanium material. These latter curves were re- 
drawn from data given by M. B. Prince.8 They represent the best 
available information on this subject at this time. 

Fs is a function of Fb , 1 — ao, and the pertinent parameter n. n is 
not completely independent of Fb since for a given type of transistor, 
n-p-n or p-n-p, both n and Fb are functions of the base layer resistivity. 
The experimental values of n for various base layer resistivities and 
resistivity types in germanium have been determined by Miller3 and 
are given in Table I. 

It is important that the space charge region of the collector not punch 
through the base layer below the breakdown voltage if the full interval 
between Fb and Fs is to be utilized. This requirement effectively puts 
an upper limit on the frequency cutoff for each base resistivity value, 
since the base width must be at least as wide as the space-charge region 
at the breakdown voltage. Fig. 8 gives the maximum frequency cutoff 
vs. the resistivity of the base region for p-n-p germanium avalanche 
transistors. 

It is conceivable that if base layer width could be controlled very ac- 
curately, this punch-through phenomenon could be used to determine 
the peak of the negative in the resistance curve shown in Fig. 1 instead 
of relying on uniformly well etched junctions to show exactly the same 
breakdown voltage. 
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Fig. 8 — Maximum low-voltage frequency cut-off of alpha versus resistivity of 
base region for alloyed junction pnp transistors. 

5. APPLICATIONS 

In the region of collector voltage for which the alpha of an avalanche 
transistor is greater than unity, its terminal characteristics are quite 
similar to those of a point-contact transistor or a hook-collector transis- 
tor.9- 10- 11 Hence most of the switching circuits designed for point-contact 
transistors could also use avalanche transistors. To provide a large 
voltage swing in such circuits the breakdown voltage of the collector 
junction should correspond to body breakdown and ao should be as 
large as possible in order to give a low value of the sustaining voltage, 
Vs ■ This latter requirement also leads to a low power dissipation when 
the transistor switch is in the on (closed) condition. 

One of the most serious limitations on the usefulness of hook-collector 
transistors is switching speed. Since the multiplication phenomenon 
involves the emission of minority carriers by the hook junction and the 
transport of these carriers across the hook region, a dispersion in transit 
time exists which results in a low alpha cutoff frequency for the device. 
In fact, the effective cutoff frequency may be an order of magnitude less 
than the cutoff frequency which would be calculated on the basis of the 
transport of the minority carriers across the base layer. As has already 
been pointed out, avalanche transistors exhibit alpha cutoff frequencies 
indistinguishable from those of non-multiplying devices. Frequency 
cutoffs of alpha in the range of 5 to 10 mc/sec are easily obtainable, even 
in pnp avalanche transistors, since the resistivity of the base layer can 
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be quite low and hence punch through is inhibited for the necessarily 
thin base layers. Since the initial rate of change of current or voltage in 
pulse circuits is proportional to both alpha and alpha cutoff frequency, 
the rise times obtainable with avalanche transistors easily fall in the 
tenth microsecond range. 

Another limitation on the switching speed of point-contact or hook- 
collector transistors results from the storage of minority carriers. This 
phenomenon manifests itself when one attempts to open the transistor 
switch after it has been driven into the current saturation region. In 
bistable type circuits using avalanche transistors the minimum collector 
voltage is automatically limited to the sustaining voltage, Fs , and the 
transistor never goes into the current saturation region. The collector 
junction never becomes forward biased, and there is none of the usual 
storage of minority carriers.12 

One of the most interesting applications of avalanche transistors is as 
a two terminal, negative impedance element. Such a circuit has many 
applications in both switching and transmission. The circuit analysis of 
this application will be presented since it exemplifies the usefulness of 
the large-signal junction transistor theory and since the negative resist- 
ance characteristic that is obtained is typical of that for avalanche 
transistors. 

The circuit to be discussed is shown in Fig. 1. An equivalent circuit, 
based on the work of Ebers and Moll,13 is also shown in Fig. 1. The 
quantities aNo and a/o are the low voltage normal and inverse alphas. 
The voltage is the voltage across the emitter junction. It is assumed 
that the base resistance is included in R. It is apparent that 

If (1) and (7) are combined the following equation can be obtained 

if it is assumed that the applied voltage, F, is large compared to $e . 
In order to plot a voltage-current characteristic it is necessary to have a 
relation between 1e and I. From the equivalent circuit 

I — a.\oMIe T MIco (7) 

(8) 

I = | + L (9) 

Since 

kT , /«+(!— aNo)I eo 
Ve = — In    

q 1'eo 
(10) 
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where the quantity 1'so is the reverse current of the emitter junction 
with the collector shorted to the base, it follows that 

I = 7g + ~ In ^ + (1 ~ aN°)I'B0 (u) 
Qlv 1 EO 

(8) and (11) completely determine the negative resistance characteristic 
of the circuit of Fig. 1. A measured curve for a particular transistor in 
this circuit is shown in Fig. 9. 

In some applications the slope of the negative resistance characteristic 
is of primary importance. It can be shown that 

., (IIb 
dV=_V_ 1 ~ IT (12) 
dl nl 1 — M 

or 

S)(t-)1 "I 

For values of R in the vicinity of 5,000 ohms and Ib greater than a milli- 
ampere, 

dls_ 1 ^ ! / n 

dl . , ^ 1 (14) 

^ qR Ib 

and 

This relation, in itself, is of very little utility since V and I are related 
in a complicated manner as can be seen by examining (8) and (11). How- 
ever, if a plot of the negative resistance characteristic is available, this 
equation provides a theoretical check on the negative resistance at a 
given operating point. For example, consider the negative resistance 
characteristic shown in Fig. 9. The transistor used in obtaining these 
data had the following characteristics: Fb = 36 and (1 — ao) = 0.047. 
From the curve, for an operating point of 16 volts and 6 milliamperes, 
the measured negative resistance is 450 ohms. Substitution of appro- 
priate values in equation (15) yields a negative resistance of 400 ohms. 
In every case that has been investigated a similar discrepancy has been 
found to exist. The higher value of negative resistance is attributed to 
an increase in ao due to the focusing effect of the voltage drop in the base 
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layer. Actually what happens is that the center of the emitter, under 
these conditions of operation, becomes more forward biased than the 
outer edge, thus improving the transport efficiency since there is pro- 
portionately less surface recombination. 

In some applications it would be very convenient if the type of nega- 
tive resistance characteristic described above could be obtained without 
resorting to external circuit elements; in other words, if a true two termi- 
nal negative resistance could be obtained. As was explained above, the 
purpose of the external resistance in Fig. 1 is effectively to switch the 
current from the base collector loop to the emitter collector loop. Another 
way of interpreting the effect of the resistor is that it changes the effec- 
tive alpha of the transistor by causing a higher percentage of the total 
current to be injected minority carrier current. A p-n-p (or n-p-n) struc- 
ture designed in such a way that the alpha increases with emitter cur- 
rent would yield the same result. Such a device is shown in Fig. 10 along 
with the negative resistance characteristic obtained between emitter 
and collector. It is observed that the structure is not significantly dif- 
ferent from a nonsymmetrical alloyed junction transistor in which the 
roles of the emitter and collector have been interchanged. For low values 
of current the alpha of the transistor is low and the peak voltage at- 
tained may be as much as 95 per cent of the breakdown voltage. As the 
current increases, a voltage drop occurs in the base layer. This drop biases 
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Fig. 9 — Measured avalanche transistor negative resistance characteristic. 
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Fig. 10. — Two terminal avalanche device characteristic. 
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the outside of the emitter less forward than the center, and the alpha 
increases, resulting in a negative resistance. 

It is worthwhile, in passing, to make a few statements concerning the 
typo of negative resistance obtained in the circuit of Fig. 11. Such cir- 
cuits, using point-contact transistors, have been amply discussed by 
Anderson.9 Therefore this circuit will be discussed with the objective of 
pointing out the differences in the behavior when avalanche transistors 
are used. The general features of the negative resistance characteristic 
are also shown in Fig. 11. First of all the peak point is depressed below 
the origin an amount equal to the emitter floating potential plus the 
MIcoRb drop in the external base resistance (neglecting internal base 
resistance). The initial slope of the negative resistance characteristic is 
governed by the collector supply voltage and how nearly it approaches 
the breakdown voltage, Va . Since the magnitude of the negative resist- 
ance characteristic is given approximately by (1 — a)RB , it is apparent 
that the negative resistance approaches zero as the collector voltage 
approaches the sustaining voltage, Fs . 

6. CONCLUSIONS 
A new device has been described which is similar in some respects to 

point-contact transistors and hook-collector transistors. Avalanche 
transistors should prove to be very useful in both switching and trans- 
mission applications. 

As has been shown, the behavior of avalanche transistors is quite well 
understood. In addition the terminal characteristics are sufficiently well 
related to the structure of the device to enable the design of devices to 
meet the needs of specific applications. It is believed that the presence 
of avalanche multiplication in transistor junctions may open up a whole 
new class of devices which can perform circuit functions not previously 
feasible with any single device. 
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Effect of Dislocations on Ultrasonic Wave 

Attenuation in Metals* 

By W. P. MASON 

(Manuscript received April 6, 1955) 

The causes of energy dissipation and mechanical instabilities of the 
elastic constants in metals can usually he traced to the presence of an im- 
perfection in the crystal lattice called a dislocation. Edge dislocations are 
regions in the lattice where an extra plane of atoms has been added or sub- 
tracted from an otherwise perfect crystal. Such dislocations can move through 
the crystal under the application of shearing stresses or because of thermal 
agitation. It is shown that the primary causes of energy dissipation in 
a metal are dislocation loops pinned at irregular intervals by impurity 
atoms. At very low temperatures these dislocations lie along minimum energy 
positions but at higher temperatures they can he displaced to the next mini- 
mum energy position. In going to the next position, the dislocation meets an 
energy harrier determined by the energy required to overcome the limiting 
shearing stress Tu0 and the energy to stretch the dislocation. This barrier 
causes a relaxation effect for which the dislocations lag behind the applied 
stress and abstract energy from the mechanical vibrations. By measuring the 
position and height of the relaxation peak as a function of frequency and 
temperature, evidence is obtained for the value of the limiting shearing stress, 
the number of dislocations per square cm., and the average loop length. The 
values obtained agree with other methods for measuring these quantities. 

At higher temperatures thermal agitation causes the loops to break away 
from their pinning impurity atoms. In the process, it is shown that a loss 
occurs which is independent of frequency and amplitude but which varies 
exponentially with the temperature. The activation energy found agrees with 
the calculated value for the binding energy of an impurity atom. Disloca- 
tions also occur at the boundaries between grains in the metal and produce 
a peak in the measured attenuation of a poly crystal which reaches a maxi- 
mum at high temperatures and low frequencies. The activation energy for 
this process is determined by the energy required for a vacancy to diffuse 

* Editor's Note: The present paper is a chapter of a new book entitled "Ultra- 
sonics in Solids", which is scheduled for publication by D. Van Nostrand in 1956. 
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from one position to another. This energy is somewhat less than the hulk 
diffusion energy on account of the strains in the grain boundary. 

Highly worked metals sho w two other effects due to dislocations, called the 
Koster effect and the viscosity effect. It appears that these are due to zig zag 
dislocations which do not lie in minimum energy positions. In the course of 
time free dislocations become pinned and the Koster effect disappears. 

INTRODUCTION 

Metals are used very considerably in conducting sound waves in such 
applications as mechanical filters, reed relays, low frequency delay lines, 
and ultrasonic processing devices. In all of these devices, the energy 
loss and the stability of the elastic properties of the metals are of prime 
importance. The causes of energy losses and instabilities in all solid 
materials are associated with the molecular motions that can take place 
under thermal agitation and under the stresses that are applied to the 
materials. For metals, most of the irreversible processes have been inter- 
preted in terms of a type of imperfection known as a dislocation. While 
it is not within the scope of this book to discuss dislocation theory in 
detail,1 a short introduction is given in order to provide a background 
for the ultrasonic measurements discussed in this chapter. 

Dislocations were first introduced into the theory of metals to explain 
the fact that the limiting shear stress required to cause plastic flow in 
very pure single crystals was such a small fraction oi the shear elastic 
constant of the crystal. Various measurements for very pure metals have 
shown that the limiting shear stress may be only 1/60,000 times the 
elastic shear modulus n at room temperature and not more than three 
times this value at absolute zero. Without invoking imperfections of 
some type it is very difficult2 to explain why the limiting shearing stress 

IMPURITY 
ATOM 

(a) (b) 

Fig. 1 — Edge dislocation showing position for small impurity atom. 
'Complete discussions of dislocation theory have been given in two recent 

books, A, H. Cottrell, Dislocations and Plastic Flow in Crystal^s, Oxford Univer- 
sity Press, 1953, and W. T. Read, Dislocations in Crystals, McGraw-Hill Com- 
pany, 1953. 2 See A. H. Cottrell, loc. cit., pp. 8-12. 
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should be less than 1 /30 of m- A type of imperfection known as an edge 
dislocation was first introduced by G. I. Taylor and E. Orowan to ex- 
plain this effect. An edge dislocation, as shown by Fig. 1, is a region in a 
crystal lattice where an extra row of atoms is either introduced or ab- 
stracted from an otherwise perfect crystal. This can be accommodated 
only if the crystal is severely strained in the joining region, with a high 
compression in the region of too many planes and a high tension in the 
region of too few planes. 

Experiment has shown that these dislocations are mobile and move in 
close packed atomic planes since the energy they have to overcome in 
these planes is less than in other planes. For face centered metals such as 
aluminum, lead, copper, and silver this plane is the (111) plane which is 
the plane perpendicular to the cube diagonal as shown by Fig. 2. The 
direction of motion is in the lOl direction which is the direction for which 
successive atoms are closest together. As can be seen from Fig. 2, the 
distance h that they are separated is 1/\/2 times the cube edge for the 
unit cell. Body-centered crystals glide along the (110) plane in the 
[111] direction. Table I shows3 the number of glide planes, glide direc- 
tions and atomic spacings for several types of crystal structures. 

Returning to the problem of the limiting shearing stress, it is obvious 

Fig. 2 — Glide plane, glide direction and glide distance b for a face centered 
metal. 

^ See W. T. Read, loc. cit., p. 22. 

| [ooij 
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Table I 

Structure Glide Plane Glide Direction 
Magnitude 
in terms of 
cube edge 

Number of 
glide directions 

Simple cubic  010 100 1 3 

Face-centered cubic  111 110 
1 

\/2 
6 

Body-centered cubic  110 111 HVs 4 

that with this type of imperfection it will require less force to move a 
plane of atoms to the next minimum energy position one molecular dis- 
tance b from the first minimum energy position. This follows from the 
fact that the large force required to push one atom by another one is 
partly cancelled by the attraction of the next atom for its opposite num- 
ber on the other side of the dislocation. This force depends on the width 
of the dislocation, i.e., the number of atom planes over which the dislo- 
cation is spread. Various assumptions are considered by Cottrell4 who 
finds that the limiting shearing stress should be in the range 

Tu0 = 4.0 X KT6 /x to 3.6 X 10-4 M (1) 

As discussed in the next section, an ultrasonic relaxation at low tempera- 
tures has been found which correlates with the energy required to move 
a dislocation from one minimum energy position to the next one at a dis- 
tance b from the first against the limiting shear stress Tu0 and it is found 
that 

Tn0 = 6.0 X lO"6 /x, (2) 

in satisfactory agreement with the lower limit of (1). 
In a pure single crystal there is evidence that the dislocations form a 

network which outlines mosaic blocks having slightly different orienta- 
tions from each other in the crystal. Evidence for such blocks is obtained 
from the width of X-ray reflections from a metal5 which can be inter- 
preted to indicate that the number of dislocation lines is of the order of 

No( = 108 dislocation per sq cm (3) 

Here No is the total number of dislocation loops per cubic centimeter and 
(is the average loop length as shown in the model of Fig. 4. If these dis- 

4 A. H. Cottrell, loc. cit., p. 62-64. 5 A. H. Cottrell, loc. cit., Chapter IV, pp. 99-102. 
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(4) 

locations form the edges of a network we must have 

W3 = 1 

and hence equations (3) and (4) would indicate 

yVo = 1012; I = 10-4 cm (5) 

Data from the etching of crystals6 for which pits are delineated at dislo- 
cation ends, however, indicate that for aluminum the number of disloca- 
tions per square centimeter is in the order of 

AV = 105 to 10° (6) 

For germanium' the number of dislocations per square cm. is about 104 

to 106 per sq cm. 
According to Mott8 the most likely form for a network of dislocations 

is one for which dislocations from three intersecting glide planes meet in 
a point as shown in Fig. 3. The Burger's vectors then add up to zero and 

(b) (c) 

Fig. 3 — Dislocation network forming crystal mosaic (after Mott) (a) A close 
packed plane, showing the Burgers vector for complete and half dislocations (b) 
Junction of three dislocations (c) Network of dislocations. 

0 I. and H. Suzuki, Dislocation Networks in Crystals, Rep. Res. Inst. Tohoku 
Univ. A6, No. 6, Dec., 1954. 

7 F. Vogel, private communication. 8 N. F. Mott, Phil. Mag., 43, 1151, 1952. 
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the nodes are stable. A network of such dislocations can outline the 
mosaic blocks as already discussed. However, the ultrasonic data pre- 
sented shortly indicate that the effective loops are delineated by im- 
purity atoms rather than by dislocation nodes. This is a possibility even 
with the model of Fig. 3 if impurity atoms settle along dislocation lines 
and clamp them at definite points. Impurity atoms having different radii 
than the solvent atoms are attracted to dislocations since they relieve 
energy by their presence. If the radius of the impurity atom is smaller 
than that of the solute atom, the former will take the position shown by 
the dotted line of Fig. 1 in the compressed region since this position cor- 
responds to lower energy. If the radius is larger than that of the solvent 
atoms, the impurities will settle in the region of crystal extension. 

Using elastic theory Cottrell9 has shown that the binding energy of an 
impurity atom is given by the equation 

rr 4: f I + nbr3e sin 6 ( ^ 
Ub - 3 \Y^-a)  R— (7) 

where r is the radius of solvent atom, c = (r' — r)/r where r' is the radius 
of the impurity atom, 6 is the angle between the glide plane and the line 
joining the dislocation center and the impurity atom and R is the dis- 
tance of the dislocation center from the impurity atom. At low tempera- 
tures the dislocation atoms will settle in the position of minimum energy 
which is sin 0 = — 1; /? = r. Equation (7) was calculated on the basis 
of elastic theory which is not strictly valid for such large strains. Com- 
parison with experimental values10 shows that the measured energy is 
about Vs to that calculated from (7). Hence we take 

u' = \ (i-^:) ^ ® 

for a face-centered metal for which r = h/\/2. Consequently the model 
considered for a pure single crystal is the one shown in Fig. 4. It consists 
of the basic network of dislocations shown in Fig. 3 with a distribution of 
impurity atoms along the dislocations determining the average loop 
length between pinning points. With this model 

N0C3 Z 1 (9) 

The ultrasonic data presented in the next sections indicate that, for 
aluminum, NoC3 = 0.08, while for lead it is about 0.5. 

The fundamental unit considered for ultrasonic attenuation is then the 
9 A. H. Cottrell, loc. cit., p. 57. 10 A. H. Cottrell, loc. cit., p. 134. 
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pinned dislocation of average length (o. Such a loop acts like a stretched 
string and it can be shown" to have a tension T equal to 

At absolute zero such loops remain stationary in their minimum energy 
positions, but as the temperature rises, thermal agitation occurs and a 
dislocation loop may become displaced to the next minimum energy 
position. When a dislocation moves from one minimum energy position 
it has to overcome the shearing stress tending to return it to the mini- 

T = (10) 

A B 

Fig. 4. — Dislocation model with impurity atoms. 

DISLOCATION 

KINK 

Fig. 5 — Dislocation loop with pinning atoms and form of dislocation loop. 
11 A. H. Cottrell, loc. cit., p. 53. 
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mum energy position; this is usually taken as a sinusoidal stress 

o_r 
T13 = TVisin^p (11) 

where Tu0 is the limiting Peierls shearing stress required to surmount the 
barrier and x is the loop displacement. In addition to this, energy is re- 
quired to stretch the dislocation against its tension T. The model that 
has usually been considered12 for this type of motion is the one shown by 
Fig. 5. This consists of a straight section of dislocation connected to the 
pinning points by two "kinks" or approximately straight sections of dis- 
locations cutting across between two minimum energy positions. The 
energy associated with the dislocation loop at any displacement d from 
a minimum energy position can be calculated as follows. If pt is the 
percentage of the total length of the loop covered by a "kink", the in- 
crease in length for a displacement d is 

.2 
Af = 2(V{ptr- + d2 - P0 (12) 

pc 

The work done against the tension T is 

Wi = TAC = ^ (13) 
pC 

Work is also done against the restoring force of (11) in an amount 

/" rd(-v) O-.!- 
dy sin dx (14) 

Jo o 

Performing the integration, we find that 

jjr Tntft f, 2xd 0 / Ivd b . 2^X1 /1K. 
w'= -^r L1 - cos T +2p (cos i) sssin -rjj {lD) 

Hence the total energy IF is the sum of (13) and (15). 
When the loop reaches the next energy minimum, cos 2ird/b = 1, and 

A = Tu0b
2pt + (16) 

TT pt 

To obtain the minimum energy, the length pt is determined by making 
TFmin a minimum with respect to pt. Differentiating IFmin by pt and set- 

12 This type of loop was first considered by N. F. Mott and F. R. N. Nabarro, 
Dislocation Theory and Transient Creep, Report of a Conference on Strength of 
Solids, published by The Physical Society, 1948, and has been elaborated by Read, 
loc. cit., p. 47. Read investigated the conditions for kink stability. 
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ting the result equal to zero, we find 

since d = 6 at this position. Hence this length is independent of the total 
loop length. For the ratio of Ti30/m found experimentally, i.e., 6.0 X 10-6, 
the length of each kink is about 

-pt = 7206 = 2.5 X 10~5 cm for lead (18) 

The energy for both kinks is from equation (13) 

IFj = 63 (19) 

The total energy at the first minimum A is then 

.4 = 263 (20) 

The energy //, at the maximum, which occurs when cos 2ird/b = — 1 
becomes 

H = Tl^1 (21) 
TT 

There are other minima at distances ±26, ±36, etc., on each side of 
the central position and it can be shown that the successive minima 
have values of 2A, 3A, etc., while the height of the energy barrier re- 
mains at H. The question arises as to whether these other positions should 
be included in the calculation. This model is an ideal situation in which 
no strains of any kind are permitted in the medium. Actually, impurity 
atoms above and below the glide plane introduce stresses which distort 
the dislocation from its straight line position and have the effect of in- 
creasing the energies at the bottom of the potential wells. This effect will 
be much larger for position of ±26, ±36, etc., and will probably wipe 
out these minimum energy positions. For the central line and for the 
positions ±6, the effect is smaller and hence it appears that the model 
should have only two alternate positions in addition to the central 
position. For an absolutely pure crystal these other energy positions 
would probably exist. Calculations including them show that the form 
of the Q_1 curve given by equation (37) is essentially unchanged but that 
the multiplying constant An/n is increased. 

The potential well model for a dislocation displaced from its minimum 
energy position to the next minimum on either side will then be that 
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' f \l 

t 
>- o cc LU z UJ 

-b o —-   +b 
DISTANCE    

Fig. 6 — Potential well model corresponding to dislocation loop. 

shown by Fig. 6. The two energy wells on either side are higher than the 
center one by the energy A of equation (20). In between these minimum 
energy positions there are potential barriers of height H given by equa- 
tion (21). The physical picture given for the process is then that the 
dislocation vibrates in its lowest potential well (2) until it acquires 
enough thermal energy to overcome the barrier H and land in wells 1 or 
3. According to reaction rate theory, the number of times per second 
that this process is likely to occur is given by the equation 

where y is the number of times that the dislocation attacks the barrier 
per second, U is the height of the energy barrier and RT the thermal 
energy. If U is expressed in calories per mole, then R the gas constant 
per mole is 2 calories per degree increase in temperature. The number of 
times that the dislocation attacks the barrier should be approximately 
equal to the resonant frequency of the dislocation in its potential well. 
Experimentally, it is found that 7 is close to 27r/ = w, the value for the 
natural vibration. 

The resonant frequency of a dislocation in its potential well can be 
calculated from the restoring force and the mass per unit length which13 

13 J. S. Koehler, Chapter VII, Imperfections in Nearly Perfect Crystals, Wiley, 
1952. Koehler considers dissipation to he due to dissipation of freely vibrating dis- 
locations. For the potential well model, freely vibrating dislocations do not exist. 

a = ye — UlRT (22) 
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is irpb2. The restoring force can be determined from the derivative of 
{Wi + Wi) with respect to d as d becomes small. The result of differenti- 
ation, using equations (13) and (15) is 

j^TrTn/ + h vVl'isoM — 3 ^ (23) 

Since the last term is much smaller than the first, we neglect it, and have 
the equation 

vpb-l ^ + 2rTi,/4 = 0 (24) 

For simple harmonic motion d2d/dt' = —u'd so that 

irph'fu)2 = lirTizJ (25) 

Hence the resonant frequency for a dislocation in its potential well is 
independent of the loop length and equal to 

' = 2T& l/— (28) 

For lead, copper, aluminum, and silver, using the value of Tu0 = 6.0 X 
10-6 m, the relaxation values of co for the metals arc 

Pb Cu AI Ag 

co = 2^/ = 7.8 X 10'J 2.8 X lO10 3.6 X 1010 1.9 X 1010 (27) 

All of these values are considerably higher than any angular frequencies 
co which have so far been used. For frequencies approaching these values 
resonance effects may be expected. 

The potential well model of Fig. 6 results in a relaxation type loss and * 
a change in the elastic constant. As with all relaxation effects, energy fol- 
low frequency vibrations has time to equilibrate among the various po- 
tential wells and is returned at a later part of the cycle without appreci- 
able loss. Since the dislocations can be displaced from their equilibrium 
positions, a plastic component of strain results and the metal has a greater 
elastic compliance than would occur without dislocation displacement. 
As the period of force application becomes comparable with the equilib- 
rating or "relaxation" time an appreciable fraction of the energy is not 
returned to the vibration but is converted into heat. In this frequency 
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range, the attenuation becomes a maximum and the elastic constant is 
intermediate between its high frequency and low frequency values. 
Finally if the frequency of vibration is sufficiently high there is not time 
for the dislocation to move from its potential well and the material be- 
comes stiffer and less lossy. At room temperature sufficiently high i'1A 

sonic frequencies have not been used to observe this complete proces.-. 
However, as one lowers the temperature, the relaxation frequency de- 
creases due to the activation energy term e~u"<T of (22); this process was 
first observed by Bordoni.14 An explanation in terms of dislocation loops 
was first published by the writer.15 

The loss and change in the elastic constant can be obtained by apply- 
ing reaction rate theory to the model of Fig. 6. The effect of applying a 
shearing stress along the glide plane is to lower one potential well and 
raise the other one as shown by the dashed line of Fig. 6. The effect of 
any other stress is to provide a component of shearing stress in the glide 
plane and the magnitude of the relaxation effect is then related to the 
relaxation in the glide plane as discussed in the next section. In general 
a relaxation measured in one stress system has to be multiplied by a fac- 
tor F to equal that in the glide plane. 

The lowering of the potential well 3 by the shearing stress Tu is equal 
to 

Potential well 1 is raised by a similar amount. This results in a redistri- 
bution of the number of dislocations in the three types of wells and 
hence a plastic strain equal to 

where (1 — p)hCis the area swept out by a single loop. The rate at which 
the shearing stress changes with time is determined by combining the 

• four transition probabilities for the three wells and since the details of 
the calculation have been given previously,11' only the final result is given. 

14 P. C. Bordoni, Elastic and Anelastic Behavior of Some Metals at Very Low 
Temperatures, J. Acous. Soc. Am., 26, July, 1954. 16 W. P. Mason, Dislocation Relaxations at Low Temperatures and the Deter- 
mination of the Limiting Shearing Stress of a Metal, Phys. Rev., 98, pp. 1136-1138, 
May 15, 1955. 16 W. P. Mason, Relaxations in the Attenuation of Single Crystal Lead at Low 
Temperatures and Their Relation to Dislocation Theory, J. Acous. Soc. Am., 27, 
July, 1955. For other measurements see also paper K4 by B. Welber, Program of 
the49th meeting of the Acoutica Society of America, July 2, 1955. The relaxation 
in lead at 50 kc was shown as a slide. 

A = Tl3h2t(l - p) (28) 

Sn1" = (N3 - iVOd. - p)h% (29) 

July, 1955. 
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For finite stresses the formula for the plastic strain takes the form 

'2e~AlRTNv{\ - sinh ^ 

Sj = 
1 - ^ 

/ , . aIrt \ jio I 1 -h e \ IH-a)Irt 
2y \cosh A/2kT/ ] 

, + A - t 

(30) 

• (4 + 2e~AlRT) cosh^.— + ^ e
2(^)/Br 

if H and A are expressed in calories per mole. For stresses such that 

_A_ = - p) << , 
kT kT 

we can replace the sinh by the argument and the cosh by 1. Hence equa- 
tion (30) reduces to 

Si/ 
Tu 

2e~AlRT (N0t\l - p)V 
1 + 2e~AlRT \ kT 

1 t-H 
I 

1 

(i+rV. b 

i 
i 

1 
/ jco / 3 ^ 
^ 7 \1 + 2e~AlRT/ 

le" 
ju (H-A)/RT} 

1 y J 
i 

(31) 

If we expand the right hand side of (31) into real and imaginary parts, 
we find 

Su 2e 
—A IR T |"W2(i - p)VJ 

Tu 1 + 2~AlRT 

2cAlRT + e-A,RT\ , . co [5 + 2e-AlRT - eA,RT 

1+ - /-Y (2eA'RT + e-A'RT\ co p 
\con/ V 1 + 2e-A"lT / "o L 2(1 + 2e~AlRT) 

/ 3(1 + eA,RT) \1 
^ Vcoo/ \2(1 + 2<r^r)/J 

co2 /10 + 4e-AIRT + 4e-2-4/BT\ (.Y ( 3 Y 
coo2 \ 1 + 4e-AlKT + 4e-*AlRT } \coo/ \1 + 2e-AlRTJ 1 H o COo 

and 
—(H-A)IRT coo = ye 

(32) 
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If .4 is small compared to RT this equation reduces to the usual expres- 
sion 

Sn" _ 2e~AlRT [iV./a - p)V1 1 + j 

Tu 1 + 2e~AlRT [ kT J i + 

An intermediate equation is obtained by expanding the three terms of 
(31) into a series for the two factors in the denominator divided by the 
factor in the numerator. The first two terms yield in the equation, 

. CO 
1+J- 2, i NoC il - pYb COo 

kT 
1 + 

Si3
p 2e-AIRT 

Tu 1 + 2e~AlRT V kT ^ ^1 + j j 

7g-(«-^)/«T 

Wo =  R  

and 

2 + 5eAlRT - iA,RT 

(33) 

F = 
2(2 + eAlRT) 

This equation will be used in evaluating the measurements to be discussed 
in the next section. 

If we add to this the purely elastic strains Su = Tu nE, the ratio of 
the total strain to the applied stress is 

Sn + Su* _ 1 _ 1 , 2e~j4/Rr ^<>(1 - pYbU2/ 1 + jco/wo \ n 0 

Tu n + 2e-AiRT kT Vl + (co/coo)2/ 

This equation shows that the elastic shear modulus // varies with fre- 
quency and the presence of an imaginary term indicates that there is a 
dissipation associated with this relaxation. For the real part we find 

/ - m _ Am _ / 2e-AlRT ^ «2(1 - p)'V K ( 1 
n \1 + 2e~AlR1) kT M Vl + w2/coo2 (35) 

The total change in elastic constant Am" which occurs when the fre- 
quency goes from zero to infinity is then 

iMo ^ \ iVo^d - pfbV 

i0 \1 + 2e~A,RT/ kT K ) 

Since the imaginary part of (34) represents the dissipation of energy it 

Am" 
m" 
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can be shown that 

1 _ Ap CO/cQQ /g-N 
Q M0 1 + (w/wo)2 ' 

These are the equations connected with a single relaxation which, in this 
case, would be associated with the displacement of a single length dislo- 
cation. Since there is a distribution of loop lengths about the most 
probable value, the activation energy, H, will vary and hence each length 
will have a different relaxation frequency. Equations (35) and (37) can 
be generalized to the forms 

j = y ^ / u/ui \ . ?_ = i + ^ (38) 
^ Mo \1 + (co/w,-)2/ ' mo .=1 Mo \1 + (w/w.)2/ 

As will be discussed in the next section, these equations can be used to 
evaluate the characteristics of a relaxation at low temperatures which is 
connected with the displacement of dislocations from their minimum 
energy positions to adjacent minimum energy positions. In the process 
they give experimental evidence on the limiting shearing stress in metals, 
on the number of dislocations per square centimeter in metals and on 
the average loop lengths. The values found are in good agreement with 
other methods for measuring these properties. 

EXPERIMENTAL EVIDENCE FOR DISLOCATION RELAXATIONS AT LOW TEM- 
PERATURES 

The first experimental evidence for a relaxation at low temperatures 
was provided by the work of Bordoni.14 Using an electrostatic drive 
method, Bordoni measured the inverse Q values for a number of metals 
down to liquid helium temperatures. All these measurements were made 
with very small strains, i.e., less than KT8, which are in themselves too 
small to displace dislocations from their minimum energy positions. They 
can, however, bias the potential wells of the model of Fig. 0. Then, tem- 
perature induced motions arise so that, for slowly applied motions, 
equilibrium of dislocation distributions can occur between the potential 
wells, with the applied stress thereby superimposing a plastic strain on 
the elastic strain. For very high frequencies there is not time for the dis- 
locations to redistribute themselves and only the elastic strain occurs. 
This process results in a relaxation which extends over a frequency range. 
As discussed in the previous section, the dislocations have too high a 
natural frequency for this process to be observed at room temperature. 

All of Bordoni's measurements were made for polycrystals or single 
crystals of a definite length, i.e., (U cms. The natural resonance fre- 
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angular relaxation frequencies coo = 27r/o can be represented by the equa- 
tion 

coo = 5.3 X 109 e_975/Br (40) 

so that we are dealing with a process having an activation energy of 
about 975 calories per mole. This is a very low activation energy and the 
only known process which has as low an energy as this is the one discussed 
in the previous section, namely, the displacement of a dislocation, by one 
atomic spacing, against the limiting shearing stress of the crystal. 

To show that this is of the right order of magnitude, we may evaluate 
the activation energy of the process from (20) and (21): 

«■> 

As will be shown presently, the energy average loop length is of the order 
of 4 X 10~4 cm and since it is known that 

b = 3.5 X 10-8 cm; and /x = 7.0 X lO1" dynes/cm" (42) 

we find for the limiting shearing stress a value of 4.8 X 10° dynes/cm2. 

CV0 = 277fo = 5.3Xl09e RT 

A 2A 
F = 2+5eRT~eRT ; A= nocal/mole 

2(2+eM) 

O PRESENT MEASUREMENTS 
• BORDONI 
□ WELBER 

I02 

O 0.005 0.010 0.015 0.020 0.025 0.030 0.035 
VALUE OF 1/T 

Fig. 9 — Plot of log of relaxation frequency against 1/2'. 
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Fig. 10 — Weighting factors for longitudinal and shear waves plotted against 
activation energies. 

Due to the factor, F, a slightly nonlinear relation is obtained between 
the relaxation frequencies and the reciprocal of the temperature as 
shown in Fig. 9. Hence we find 

T is $ = 4.8 X 10° dynes; TUq/h = (i.8 X 10" (43) 

values in good agreement with Peierls' lower theoretical value in (1). 
The value of 7 = 5.3 X 109 is within a factor of 1.5 of the calculated 
angular resonance frequency of a dislocation in its potential well as given 
by (26). 

In calculating Tu0 an assumed value was used for the average length 
of a dislocation loop. Some evidence on the size of the dislocation loops 
and their distribution around the average size can be obtained from the 
data of Fig. 8 for the attenuation measured in a lead single crystal. The 
form of the \/Q curve for a single loop length is given by (32). The best 
fit to the measured values is shown by the dashed curve of Fig. 8(a), 
and, as can be seen therein, a single relaxation does not agree fully with 
the measured values. If we assume a distribution of activation energies, 
the measured curves can be fitted by using the weighting function given 
in Fig. 10. This verifies the existence of loops shorter and longer than 
the mean value, in agreement with the model shown in Fig. 4. Since the 
measured activation energies, H — A, are nearly proportional to the loop 
lengths, the distribution in activation energies also corresponds to the 
distribution of loop lengths. The distribution function for the shear meas- 
urements is also shown in Fig. 10. The height of the shear curve is about 
9 times as high as that for the longitudinal measurement. It will be 
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evident from subsequent discussion of equation (45) that this is to be 
expected. The number of dislocations for the shear crystal is about 40 
per cent higher than for the longitudinal crystal. 

Some data on the average loop length can be obtained from the data 
of Fig. 8(a). If we consider a single loop length as shown by the dashed 
curve and increase the maximum until the area under the loop is equal 
to that under the measured curve, the value of the weighting factor 
Acn/cn becomes 

— = 8.4 X 10"4 (44) 
Cn 

Since all the formulas used in dislocation theory refer to isotropic ma- 
terials rather than cubic crystals, we take 

Cu = X + 2/i 

To determine how a measured change in Acu/cn , determines a weighting 
factor A/i/V, we note that the bulk modulus, B, does not have any relaxa- 
tion effect, i.e., a pure compression will cause no shearing motion in the 
glide plane. Since 

5 = X + % /x; AB = AX + ^ Am = 0; Hence AX = -% A^ 

Therefore 

Acn = AX + 2A/x = / ^A/A m 
Cu X -|- 2^1 \ /x / X + 2/x 

It is readily shown that the relation 
modulus and the shearing modulus is 

a relation needed later. 
From (35), (44), and (45), we have 

A/i _ 3 /X -f- 2/i\ Acn 

M 4 \ M / Cu 

between the change in Young's 

(46) 

and 

A/i _ 3/1 /A FO\ 

7 " FoVToV' 

4 3 X 10-3 = 2e"-4R/r0 r/ (47) 
1 + 2e~AlRTo |_ kTo J 

where N = Not is the number of dislocations per square centimeter, 
which is a measurable quantity if one uses the etch technique. 

Since i4 = 110 calories per mole, To = 140oK, (I — p)' = 0.90; b = 3.5 
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X KT8; k = 1.38 X 10~16 and / = 7.0 X 1010 dynes per sq cm we find 

Nt = 1.3 X 103 (48) 

Data from the mechanical hysteresis effect discussed in the next section 
indicate that 

iV = 3.1 X 106 (49) 

and hence the average loop length is about 

C = 4 X lO-4 cm (50) 

Hence we have 

^ = 4 X lO-4 cm, and Not3 = 0.5 (51) 

One can use the measurements of Bordoni shown in Fig. 7 to show that 
the present interpretation, attributing the relaxation to the displacement 
of a dislocation by one atomic spacing against the limiting shear stress 
of the crystal, is consistent for several face-centered metals. Since the 
temperature of maximum attenuation results when the measuring fre- 
quency equals the relaxation frequency we have 

ye—(H-A)lRT 

Since the ratio of each measuring frequencies listed in (39) to the cor- 
responding resonant frequency for dislocations (27) is nearly a constant, 
the activation energy, H — A, will be proportional to the temperature of 
maximum loss. The activation energy of lead was evaluated as 975 
calories per mole at a temperature of 350K. Hence, we can evaluate the 
activation energy of each metal; as shown in Table II, the average value 
of (Tisjn) is about 6 X 10-6. 

In view of the approximate nature of this calculation (including the 
tacit assumption that all the loop lengths are the same for the different 
metals), the results in Table II constitute satisfactory confirmation of the 

Table II 

Metal Temp, of 
Max. Atten. 

H-A in 
cals mole 

b in 
cm X 10« ii dynes/cm2 Tuo dynes/cm' TuoZ/i 

Pb. . . . 350K 975 3.5 7.0 X 1010 4.8 X 106 6.8 X 10-6 

Cu.... 850K 2360 2.55 4.6 X 1011 2.4 X 106 5.2 X 10-6 

AI  100oK 2760 2.86 2.5 X lO" 1.0 X 106 7.6 X 10-" 
Ag. ... 60oK 1710 2.88 2.7 X 10" 1.3 X 106 4.8 X lO-" 
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Fig. 11 — Higher temperature values of mechanical hysteresis effect (Bordoni 
and Nuovo). 

proposed origin of the relaxation frequency. The values found are in good 
agreement with the most probable values given by Cottrell.4 

TEMPERATURE ACTIVATED MECHANICAL HYSTERESIS MECHANISMS 

In addition to the relaxation mechanism discussed in the last section, 
the measured values in Figs. 8 show that there is another source of loss 
which is independent of frequency for a given specimen. Fig. II shows an 
extension of the measurements of Bordoni, by Bordoni and Nuovo,1' to 
a higher temperature for pure and commercial lead. Both materials show 
an increase in attenuation of the form 

C = 5.6; XJ = 4350 cal/mole. 

Above 350oK, this increase reaches a maximum and then drops off. A 
similar rise was found by K618 for aluminum single crystals at 0.8 cycles 

17 P. G. Bordoni and M. Nuovo, Sulla Diasipozione Delle Onde Elastiche Nel 
Piombo Ad Alta Tempetura, 11 Nuovo Ciraento, 11, pp. 127-140, Feb. 1, 1954. 18 T. S. Kd, Experimental Evidence of the Viscous Behavior of Grain Bound- 
aries in Metals, Phys. Rev., 71, p. 533,1947. See also C. Zener, Elasticity and An- 
elasticity of Metals, p. 151, Fig. 48, Chicago Univ. Press, 1948. 

Q-1 = Ce-U,RT 

with the values 

pure lead 

C = 1.1; U = 3000 cal/mole; and (52) 

commercial lead 
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as shown in Fig. 12. This rise follows the same formula with 

C = 0.37 and U = 5200 cals/mole (53) 

Since this effect is independent of frequency it is called a temperature 
activated mechanical hysteresis. 

The model of Fig. 4 admits only two possibilities. One is that the 
pinning points can momentarily be torn from the dislocation, thereby 
allowing energy to be transmitted from one loop to the other. The other 
possibility is that thermal energy will be sufficient to generate an unstable 
Frank-Read loop which will carry off energy. It is readily shown, how- 
ever, that it would require 10,000 times the activation energy to cause 
the loop breakdown and hence the Frank-Read loop cannot be the mech- 
anism. As discussed later, the energy required to remove an impurity 
atom is of the right order of magnitude and hence this is considered the 
cause of the hysteresis loss. 

The question is how a momentary breakaway of a pinning point can 
abstract energy from the vibration. All the loops undergo thermal vibra- 
tion with a velocity determined by the equation 

VzixTfrn = kT (54) 

where m is the mass of the loop which is irph where p is the density of 
the medium, and ir is the thermal velocity as the loop crosses the 
equilibrium position. For lead, with loops of 4 X 10 cm in length, 
the mass of the dislocation is about 1.7 X 10-17 grams so that the thermal 
vibration velocity is about 70 cm/sec at room temperature. This is large 

0'' = 0.376-"00/RT / 
N = I05 / 

- ■ 

O 1 1   — I 1 : :  
O IOO 200 300 400 500 600 700 800 

TEMPERATURE IN DEGREES KELVIN 

Fig. 12 —Temperature activated mechanical hysteresis effect in aluminum 
single crystal (after Kd). 
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compared to the velocity of any particle in the crystal. However, the 
particle velocity u can add to or substract from the thermal motion 
when u and Xt are in or 180° out of phase; hence the energy of vibra- 
tion may be written 

+ u)2m + — ufm = (xt + ufm 

since it is equally probable for the thermal velocity to add or to subtract 
from the particle velocity. As long as the loop is pinned at the ends, this 
energy is returned to the crystal vibration without loss since the vibra- 
tions are coherent. When a pinning point is broken, on the average, 
energy equal to 

M2 

/ (55) 

is abstracted from each loop and since two loops are involved for each 
impurity atom, an energy of um is abstracted from the crystal vibration. 

To calculate the acoustic loss to be expected from this source, consider 
a shear strain of the form shown in Fig. 13 to be propagated in the 
direction perpendicular to the glide plane. At I = 0, the particle dis- 
placement is zero at x = 0 and u at x = I. After an interval of time dl, 
the strain will be displaced a distance Vsdl, where VB is the shear velocity 
which is 8.0 X 104 cm/sec for lead. The particle velocity m is a constant 
over the time of the wave. The energy lost in going a distance ft = V,dt 
can be calculated as follows. The energy lost per dislocation vibration is 
m(u)2/2. For an interval of time dt this has to be multiplied by fdt where 
/ is the frequency of vibration of a dislocation. Hence the loss from a 

/ 
u—* 

  vsdt  A 
DISTANCE 

Fig. 13 — Form of shear wave for calculating mechanical hysteresis losses. 
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single unpinned vibration, in time dt is 

u%fy^dt (56) 

=  M 2  

To get the total loss we have to multiply this by the number of unpinned 
dislocation loops. From Boltzmann's principle, the number of unpinned 
loops per cc will be 

2N0e-u,RT (57) 

where No is the number pinned loops per cc and U the activation 
energy for tearing an impurity atom away. We have to multiply this by 
the volume of the disturbance which may be written Vldt if a unit cross- 
sectional area is considered. Hence the total loss in time dt is 

(ub'V^P /j/{dt)2 (58) 

The total input energy for the wave, in time dt, is 

Wo = uy/updt, (59) 

where Vmp is characteristic impedance of the medium. Hence the 
energy transmitted in the first interval of time dt takes the form 

W = W0 

^130 hViNo(e-™'^ 

2 dt 
(60) 

This is the first term of the expansion of the equation 
/ .v/2ri3o 6rjJMe-u/Br 

W = Woe-  2 = Woe~il 

where d is the decrement. Since the decrement 8 = ir/Q, we have finally 

! (62) 

Q 2t 

This loss is independent of frequency since it does not depend on It 
which determines the steepness of the displacement-time curve. It does 
not depend on the amplitude up to a strain which can cause breakaways 
due to the applied strain alone. 

To see if (62) yields a reasonable value for a single crystal, assume a 
temperature of 250oK for which measurements in Fig. 8 along the [100] 
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direction show that Q-1 = 1.55 X 10-4. Multiplying this by 5.2, [see equa- 
tion (45)], to give the value for a shear wave propagated along the [111] 
direction we have 

^ = 8.0 X 10-4 

(63) 
= 3.48 X 10~3 X 3.5 X 10~8 X 8.0 X 104 X 1.7 X 1Q~4(W) 

2ir 

Solving for Nof, the number of dislocations per sci cm, we have 

N = N0r = 3.1 X 10® (64) 

If we perform the same calculations with the data for polycrystalline 
lead, multiplying the resultant values of Q_1 by 

we find 

C. P. lead Commercial lead 

iV = 1.2 X 106 iV = 6 X 10° (66) 

Hence the number of dislocations for an unstrained single crystal or 
polycrystal appears to be in the neighborhood of 10'' to 0 X 106. 

A somewhat lower value is found for aluminum from the data of Fig. 
12. This curve shows an increase in Q_1 for a single crystal which can be 
represented by the equation 

CT1 = O.Zle'5™"17, (67) 

These measurements were made for a single crystal wire using a torsional 
oscillation of 0.8 cycles per second. Since this is for a shear vibration, no 
correction will be required in the isotropic approximation. To make this 
agree with equation (62) for b = 2.86 X 10~8 and l/r

s = 3 X 10a cm/sec, 
we must have 

N = N0( = 10" (68) 

which is in fair agreement with the values of 105 to lO1" determined from 
etch pit data. 

This temperature actuated mechanical hysteresis is a property of all 
the metals measured at high temperatures as is shown by the data of 
Ke19 given in Fig. 14(a). Here a peak associated with grain boundary 

19 J. S. K6, J. Appl. Phys., 21. p. 414, 1950. 
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Fig. 14 — (a) Mechanical hysteresis and grain boundary losses in several poly- 
crystalline metals, (b) Separation of losses for copper (after K6). 

motion (discussed in the next section) is followed by an exponentially 
rising value of internal dissipation as measured by Q The curve for 
copper is shown in detail in Fig. 14(b). We can separate out the grain 
boundary loss from the hysteresis loss as shown by the dashed line. This 
curve can be represented by the equation of the figure with a constant 
C = 3.5 and an activation energy of 7500 calories per mole. Analysis 
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similar to that outlined for lead and aluminum yields about 1.2 X 106 

for the number of dislocations per sq cm. 
It remains to be shown that the theoretical activation energy for un- 

pinning a pinning point is of the right order of magnitude to agree with 
experiment. The binding energy of an impurity atom is given by (8). To 
obtain U =3,000 to 4,350 calories per mole for lead, 5,200 for aluminum, 
and 7,500 for copper, we must have the following ratios of impurity atom 
radius to metal atom radius; 

Pb; € = 0.108 to 0.156: Al; €=0.102: Cu; € = 0.11 (69) 

These values are close to what would be expected for the principal im- 
purities which are bismuth and antimony for lead, iron and copper for 
aluminum, and silicon for copper. 

This process should be present for all metals but the activation energy 
is usually too high for this effect to be observed at room temperature. 
For lead, as seen from Fig. 11, the effect reaches a maximum at a tem- 
perature of about 350oK. This temperature is not far from the critical 
temperature To of a Cottrell atmosphere, for which the impurity atoms 
cease to be condensed around a dislocation but, due to thermal agitation, 
form a "Maxwell" atmosphere around the dislocation. The energy to pull 
the dislocation away from the atmosphere increases and the number of 
free dislocation loops decreases. This temperature20 is 

where Co is the concentration of impurities in the metal. 
For room temperature measurements for most single crystals and un- 

strained polycrystals, it appears that most of the loss is due to the relaxa- 
tion mechanism previously discussed. This loss becomes nonlinear with 
amplitude for large amplitudes as shown by the measurements of 
Nowick21 for copper single crystals. These results are shown in Fig. 15. 
For strain amplitudes above 1 X 10-7, the value of Q_I increases as a 
function of increasing amplitude. Similar results have been found by 
Read21 and others. This can be expected from the model of Fig. 6. When 
the value of 

the argument can no longer replace the sinh. For copper, this corresponds 
20 A. H. Cottrell, Dislocations and Plastic Flow in Crystals, p. 141. Oxford 

University Press, 1953. 21 A. S. Nowick, Phys. Rev., 80, p. 249, 1950. T. A. Read, Trans. A.I.M.E., 143, 
p. 30, 1941. 

To = U/R log (I/Co) (70) 

A _ 3^(1 -p) _ , 
kT kT 

(71) 
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to 

„ 1.38 X 10~16 X 300 , A ^ in5 j / 2 ,70N 
T" = (2.55 X 10-)' X 4 X 10-' = 16 X 10 <Wcm C72) 

Since the shear modulus is 4.6 X 1011 dynes cm2, this corresponds to a 
strain of 3.5 X 10-7. Furthermore, the potential well model is no longer 
adequate since the dislocations can be displaced by several atomic spac- 
ings and their ultimate displacement will be determined by the increase 
in length of the dislocation. Hence the nonlinear effect is consistent with 
consideration of the dislocation loop displacement as the cause of dissipa- 
tion in a metal crystal. 

It has been found that the larger the number of impurities, and hence 
the shorter the loop length (, the larger is the stress required to make 
Q_1 vary non-linearly. This is in agreement with (71). Also since the 
attenuation is proportional to the number of dislocations N times the 
average loop length C the effect of increased impurities is to lower I and 
also the attenuation. On the other hand the hysteresis loss depends di- 
rectly on the number of dislocations only, and should be independent of 
the impurity content. This appears to be borne out by the data for the 
pure single crystal, 99.99 pure, in Fig. 8 and for the commercial ma- 

E 
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C. AFTER 100 psi 
D. AFTER 125 psi 
E. AFTER 190 psi 

C    
B — 

2 4 6 8 10 
STRAIN AMPLITUDE x IO"7 

Fig. 15 — Internal friction in copper at room temperature as a function of cold 
work and strain amplitude (after Nowick). 
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terial in Fig. 11. An extension of the measurements of Fig. 8 to higher 
temperatures shows that the hysteresis attenuation reaches its maximum 
at 260oK and decreases for higher temperatures. This lowering of the 
peak from 350oK to 260oK, by the increased purity of the lead, is con- 
sistent with (70) for the Cottrell atmosphere temperature. Below the 
peak, however, when one multiplies the crystal value C = 0.92 by 5.2 
and the polycrystal value C by 1.2, to reduce them to the values for the 
glide plane, the two values are within a few per cent of each other. Hence 
the effect of impurities appears to be small for the hysteresis term. 

VISCOUS GRAIN BOUNDARY LOSSES 

For polycrystals, another dislocation relaxation effect occurring in 
grain boundaries, contributes to acoustic loss at high temperatures and 
low frequencies. The boundaries22 between grains of different orientations 
are regions of vacancies and considerable strain in the lattice. One of the 
simplest types of grain boundaries, called the Burgers boundary, is shown 
by Fig. 16. Here two slightly misoriented crystals are made to join by a 

H 

Fig. 16 — Burgers dislocation grain boundary with dislocations along cube 
edges (after Read). 

"A complete discussion of dislocation grain boundary models is given by 
W. T. Read, Dislocations in Crystals, Chapters 11 to 14, McGraw-Hill Co. 
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series of edge dislocations whose spacings depend on the angle of misfit. 
Such a grain boundary can be made to glide on the application of a 
shearing stress, as has been shown by Parker and Washburn.'3 More 
complex boundaries occur when the plane of joining is not a cube edge. 
For such boundaries as shown in Fig. 17, two sets of dislocations are 
required to join the two differently oriented crystals. This type of bound- 
ary is called a tilt boundary. If the two grains are given a relative rota- 

[TOO] 
4>-ie 

9 + te 

[too] 

Fig. 17 — Read-Shockley dislocation tilt boundary with two sets of dislocations. 
" Trans. A.I.M.E., 194, pp. 1076-1078, 1952. 
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tion with respect to each other, the dislocations connecting them are of 
the screw type and such boundaries are called twist boundaries. 

In the more complicated types of boundaries, the motion cannot be 
simple glide as in the boundary of Fig. 16 because, due to the various 
dislocation systems, glide requires sending one set of dislocations through 
the other and such a motion is strongly resisted. Such a boundary can 
move only if atoms diffuse into adjacent vacancies and this takes place 
only at high temperatures where thermal energies can overcome the high 
activation energies of diffusion. Hence when a cyclic stress is applied to 
a polycrystal, there is not enough time for a grain boundary to move 
appreciably so that the elastic constant of a polycrystal does not differ 
much from a single crystal at room temperature. 

Fig. 18 shows the measurements of Ke24 on the elastic and dissipation 
properties of polycrystals and single crystals of aluminum for a torsional 
vibration at 0.8 cycles, between 100oC and 450oC. The measurements 
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Fig. 18 — Elastic constants and internal dissipation in polycrystal and single 
crystal aluminum showing grain boundary effect (after K<5). 

24 T. S. K«5, Phys. Rev., 70, p. 105A, 1946, and 71, p. 533,1947. 
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show a relaxation for the polycrystal but none for the single crystal. 
Both crystal types, however, show the hysteresis effect. By measuring 
the temperature shift of the maximum attenuation as the driving fre- 
quency is changed, Ke found an average activation energy of about 
31,000 calories per mole, which is approximately 3.5 kilocalories under 
the self-diffusion constant of about 34.5 kilocalories per mole for alumi- 
num in aluminum. This decrease of the average value is probably due 
to the average shearing stress exerted along the boundary. Shearing 
stress can lower the activation energy for diffusion, as has been shown by 
the measurement of diffusion bonding in solderless wrapped connections."'5 

The measurements of K<5 confirm the fact that grain boundaries can only 
move by diffusion of their components under a stress bias. With an ac- 
tivation energy of 31,000 calories per mole, the equation for the angular 
relaxation frequency becomes 

^ W , —31,000/RT coo = 4 X 10 e (73) 

The value of 4 X 1012 is close to what one would expect for the vibration 
of a molecule in its own potential well and agrees with the idea that the 
fundamental process is the motion of the domain wall by diffusion of its 
separate parts. 

The breadth of the relaxation is greater than would be expected for a 
single activation energy. In fact it requires an activation energy distri- 
bution from 27.5 kilocalories to 34.5 kilocalories to account for the 
width. If we compare this with the measured25 activation energy# curve 
as a function of shear stress, shown in Fig. 19, this range can be explained 
by shear stresses ranging from 0 to 2000 pounds per square inch with an 
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Fig. 19 — Lowering of activation energy of diffusion in aluminum by the appli- 
cation of a shearing stress. 

26 W. P. Mason and O. L. Anderson, Stress Systems in the Solderless Wrapped 
Connection and Their Permanence, B.S.T.J., 33, pp. 1093-1111, Sept., 1954. 



936 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1955 

average value of 1,000 pounds per square inch. The strength of the re- 
laxation shows that when the motion of the domain walls can adjust in 
a time much less than one period, about ^ of the strain occurs by grain 
boundary motion and % by elastic straining. 

EFFECTS OF SMALL AND LARGE AMOUNTS OF COLD WORK ON ACOUSTIC 
ATTENUATION IN METALS 

The curves of Bordoni, shown by Fig. 7 and Nowick in Fig. 15 show 
that small amounts of cold work can increase the attenuation due to the 
relaxation effect previously discussed. Since the activation energy does 
not change, the indications are that this increase is due to the production 
of more dislocations lying along minimum energy positions. An increase 
in dislocations by factors of 10 or more can occur by this process. 

When large amounts of cold work are applied to metals, two other 
effects have been discovered by Koster26 and his collaborators. The first 
effect, as shown in Fig. 20, consists of a temporary decrease of the 
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Fig. 20 — Internal friction (solid circles) and dynamic Young's modulus (open 
circles) of Armco iron, measured at 20oC as a function of time after deformation. 
Degree of cold drawing: A — 25 per cent, B — 80 per cent. (After Koster.) 

20 W. Koster and K. Rosenthal, Z. Metallkunde, 30, p. 345, 1938; W. Koster, 
Arch. Eisenhiittenw, 14, p. 271, 1940-41; and F. Forster and W. Koster, Naturwiss, 
25, p. 436,1937. 
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Fig. 21 — Dependence of internal friction of heavily cold worked aluminum on 
the temperature of measurement, after a series of anneals. The corresponding 
annealing temperature is marked at the top of each curve (after K6). 

Young's modulus and an increase in the internal friction which relax 
out in several hours at room temperature, i.e., far below a recrystalliza- 
tion temperature. For very high values of cold drawing, i.e., 80 per cent, 
a permanent change occurs in the value of Young's modulus until the 
metal is recrystallized. Although complete measurements27 have not been 
made it appears that this effect is independent of amplitude for strains 
up to 10_B, and is not strongly dependent on frequency or temperature 
from — 100oC to 0oC. This effect has been called the Koster effect.27 

Heavily deformed metals, particularly aluminum, show another effect 
called the "viscosity" effect after the Koster effect has disappeared. A 
residual internal friction is observed provided that the measurements 
are made at sufficiently high temperatures or low frequencies. Fig. 21 
shows the internal friction of heavily worked aluminum after a series of 
anneals at the temperatures indicated in the figure. The most complete 
study of this effect is that of Ke"8 and Zener and Ke"8 in which low 
frequency (torsional pendulum) and static measurements (relaxation) 
were made. These curves show that the internal friction keeps on rising 
with temperature and shows no relaxation effect. At the recrystallization 

27 A. S. Nowick, Internal Friction and Dynamic Modulus of Cold Worked Met- 
als, J. Appl. Phys., 25. pp. 1129-1134, Sept., 1954. 28 T. S. Kd, Trans. A.I.M.E., 188, p. 575, 1950 and T. S. K6 and C. Zener, Sym- 
posium on the Plastic Deformation of Crystalline Solids, U. S. Office of Naval 
Research, Pittsburgh, 1950. 
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temperature, 300oC, this effect disappears and the normal grain boundary 
relaxation returns. This effect is not observable in brass or iron at these 
temperatures since the lower melting temperature of aluminum gives it 
a much lower activation energy. 

While sufficient data for the Koster effect has not been obtained to 
make certain any interpretation in terms of dislocation theory, two 
possibihties may be mentioned. When the material is highly worked, 
large numbers of new dislocations are produced principally along slip 
bands in the interior of the crystal grains. From the absence of a tem- 
perature dependence of the Koster effect they must be of the zigzag 
types29 which run across minimum energy positions, such as those illus- 
trated in Fig. 5, in a zigzag manner as shown in Fig. 22. Such dislocations 

RIGID DISLOCATION-, 

FLEXIBLE DISLOCATION 

POSITIONS OF   
HIGH ENERGY \ 

Fig. 22 — Form of zigzag dislocation that crosses lattice rows in a slip plane 
(after Cottrell). 

are not bound by potential wells and their frequency of vibration is 
determined by their tension rather than by the limiting shearing stress 
for a potential well which was discussed in the first section. The equation 
for a stretched dislocation, as discussed by Koehler,13 can be written in 
the form 

+ ^ = rls& (74) 
dt2 dt TT dy2 

where m, the mass per unit length, is Trpb2; B is a dissipation constant, 
T is the tension of the dislocation equal to yb2, x is the displacement of 
the dislocation at a distance y from one end, and Tu the applied shearing 
stress. The natural frequency for a vibration loop is obtained by setting 
B and Tu equal to zero. The preferred shape of a vibration is then 

x = A(y( - if) (75) 
a9 For a discussion of zigzag dislocations, see A. H. Cottrell, Dislocations and 

Plastic Flow in Crystals, p. 65, Oxford University Press, 1953. 
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which represents a zero displacement at ?/ = 0 and y = I with a para- 
bolic shape in between. The average displacement for the dislocation is 

* = 1 i ~ rf?/ = T" 

Inserting this value in (74) and introducing the value d'/dl' = -co", we 
have 

AirpbY) = 

6 TT 

Solving for the frequency we find 

(77) 

(78) 

When the zigzag dislocations are originally formed, some of them are 
probably relatively free from entanglement with other dislocations or 
with impurity atoms. In the course of time they gravitate towards other 
dislocations or atoms and form pinning points with them, thereby re- 
stricting their possible motion and the associated dissipation. 

While they are free to vibrate, one possible cause of loss is the damped 
vibrations of the dislocations discussed by Koehler.13 Koehler considers 
that the dislocations can be made to follow the applied stress and due to 
the damping constant B of (74) abstract energy from the vibration. rio 
a first approximation, the loss caused by this mechanism is proportional 
to the first power of the frequency and the fourth power of the loop 
length.13 Since no activation energy is involved, this loss should be inde- 
pendent of the temperature. As the loop length becomes smaller due to 
an increased number of pinning points, this loss rapidly decreases. 

If the Koster loss is independent of the frequency, another possibility 
may be the thermal type of hysteresis loss, i.e., loss independent of fre- 
quency. For the case of free dislocations it is supposed that they can 
move in loops but the pinning points are not fixed points. Hence, energy 
abstracted from the mechanical vibration by the motion of the loop will 
not be coherent and therefore will not be returnable to the vibration. 
The loss calculated from such a mechanism will be 

= vVptfNiV. C79) 

ttV pp 

Inserting / from (78) we find 

Q'1 = NoVa (80) 
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where No is the total number of loops present in the unpinned disloca- 
tions. This should be independent of the temperature at the time of 
forming. As these free dislocations gradually become pinned by other 
dislocations or atoms, the number, No, decreases and the attenuation 
decreases while the value of Young's modulus increases, since the degree 
of displacement diminishes as the loops become pinned. Since b = 2.5 X 
10 8; W = 3.2 X 10'' cm/sec for iron, Q1 should be multiplied by 1.2 
to transform from a Young's modulus strain along the axis to a shearing 
strain in the glide plane. Hence iYo should have a value of 

No = 1.3 X 107 (81) 

Some idea of the effect of such a model on the elastic constants can be 
obtained by calculating the ratio of the plastic to elastic shear for a 
static force. From equations (74) and (76) the average displacement x 
of a dislocation loop is 

irTiaC 
I2fib 

The total plastic strain, due to the displacement of N0 loops, is then 

(82) 

Sn = N0Sb = Noxfb = No (83) 

where S is the average area of a loop. To this we add the elastic strain 
so that 

'Sis'' + Si3E 1 , ttNQC3 1 /Q ^ 
 m  = "i + "To— = - 

J 13 M 12M M 

Hence the difference between two constants is 

HE — H ^ An _ TNOC3 ^ Am _ rNot3nE rQl.^ 

MMs MMk 12M 0r M 12M 

Using (46) to relate the change in elastic constant along the glide plane 
to the change in the elastic constant Yq for an isotropic material, we 
multiply the change in elastic constant of Fig. 20 by a factor of 1.2. 
Hence 

^ = 1.2 X 0.01 = (86) 
M 12 

Since 

6 = 2.5 X 10~8 cm (87) 
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we find 

N0t
3 = 0.046; t = 1.5 X 10~3 cm (88) 

where we have used the value of jVo = 1-3 X 10'. This appears to be a 
possible value for a free dislocation loop not pinned down by other dislo- 
cations. According to Nowick2' the permanent change in the elastic 
modulus for heavily worked material, which does not recover below the 
recrystallization temperature, stems from the lowering of the true 
Young's modulus due to the decrease in the average interatomic force 
constants resulting from the deformation. 

As soon as the free dislocations become tied down by other dislocations, 
this source of dissipation and modulus change disappears. As shown in 
Fig. 21, however, there remains another source of dissipation which 
appears to be related to the temperature actuated hysteresis effect 
previously discussed. If we take the difference between the actual at- 
tenuation curves and the grain boundary relaxation effect, which should 
always be present, the added attenuation can be represented by the 
equation 

Q-1 = Ce-^'mlRT) (89) 

where the constant C varies from 

C = 2.0 X 104 to zero (90) 

as the annealing temperature goes from 1250C to the recrystallization 
temperature. Since this effect does not reach a peak value in the manner 
of the grain boundary relaxation effect, this cannot be a relaxation effect. 

The mechanism considered here is that it is a temperature actuated 
hysteresis effect similar to that discussed previously except that the 
dislocations are not in a potential well and are bound by other disloca- 
tions rather than by impurity atoms. It is known that under conditions 
of severe deformations, each crystallite is broken into sub-grains by the 
production of slip bands. Hence the dislocations are present in these 
bands and in the course of time join into a network of dislocation loops. 
The slip bands are under a shearing stress equal to the limiting shearing 
stress of the crystal and under these conditions the data of Fig. 19 show 
that the activation energy for diffusion can be lowered to 10.5 kilocalories 
per mole. Hence the loss considered here is that due to thermal energy 
abstracted from the mechanical vibration by the incoherent energy of 
unpinned dislocation loops. 

From (80) it is readily seen that the form of the loss equation should 
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be 

^ = Vsb'V.N^10-5001^ (91) 

ir- 

From the value of C in (90), the number of loops per cubic centimeter 
should be 

No = 1015 (92) 

If we consider that the dislocations outhne the form of an approxi- 
mately regular mosaic structure, with Nof = 1; / — 10~5 cm; we find 

N0C. = 1010 dislocations per sq cm (93) 

which is a reasonable value for a hard worked material. In all prob- 
ability, the dislocations concentrate in the slip bands and have a consider- 
ably higher density and smaller average loop length than given by (93). 
This type of loss does not show up in the same temperature range for 
brass and iron, as found by Koster, since the activation energy for these 
materials cannot be reduced to such a low value as for aluminum. 



Magnetic Pulse Modulators 

By K. J. BUSCH, A. D. HASLEY and CARL NEITZERT 

(Manuscript received March 11, 1955) 

The impetus f07- the development of magnetic pulse modulators for radar 
gear stems from the extreme reliability possible for magnetic devices. Descrip- 
tions of magnetic modulators developed for this purpose are given. Mathe- 
matical treatments of both the ac and dc charged series type magnetic modu- 
lators add to the understanding of core resetting in the ac case and reveal new 
areas of operation in the dc case, such as a possibility of voltage amplifica- 
tion and automatic core reselling. Means are described for obtaining very 
short pulses and for absorbing unwanted stored energy in parasitics following 
the output pulse. These means may also be applied to other pidse modulators. 
Also, a way is suggested for operating the cathode of the thyratron at ground 
potential in a dc charged magnetic pulse modulator. 

INTRODUCTION 

Increasing emphasis on the reliability of the components used in elec- 
tronic equipment is leading component and system designers to greater 
use of magnetic devices to take advantage of their almost unlimited life. 
These devices have been used to replace limited life items, such as hydro- 
gen thyratrons, electron tubes, etc., or to relegate such items to a part 
of the circuit where long life can be obtained by operation well below 
rating. Examples of the application of magnetic devices to improve the 
reliability of radar system modulators are the ac and dc magnetic pulse 
modulators to be described herein. 

These radar modulators provide short-duration high-voltage high- 
current negative pulses to a magnetron which generates microwaves for 
the system. An essential function of the modulator, accordingly, is one of 
intermittently switching a high-voltage high-current source across a load. 
In a typical system, the duration of the switching action might be one 
microsecond ■ or less, and a thousand such switches a second would be 
required. A typical voltage might be 30,000 volts and the peak current 

943 
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quency or a sub-multiple of it. If the supply is dc and (Si is omitted, the 
repetition rate is equal to twice the frequency at which the charging 
inductor, L, and the capacitance of the pulse network resonate. If the 
switch is present, repetition rates which are less than this may be used. 
During the charging period of the network, &> is open and the network 
acts simply as a capacitor, C. When the network is fully charged and the 
charging current has fallen to zero, Si is closed. The network discharges 
through the pulse transformer into the magnetron load. Switch, Si, is 
then opened and the cycle is repeated. 

The switch, Si, must carry a large peak current during the discharge 
of the network. This switch may be a spark-gap, a thyratron or a thy- 
ractor. In order that a thyractor may be used, its core must be unsatu- 
rated during the charging of the network and must saturate at the in- 
stant the network is due to discharge. Also, after the thyractor func- 
tions as a switch, its core must be reset to be ready for the next pulse. 

This circuit, with a thyractor, would be a practical one except for the 
fact that the network must discharge through the saturated reactance of 
the thyractor. Since this reactance becomes part of the network during 
discharge, it limits the shortness of the pulse obtainable. As a practical 
matter, this reactance cannot be made arbitrarily small since the cross- 
sectional area of the core, the flux density and the number of turns of 
wire on the winding must satisfy the relation 

during the charging period without prematurely saturating the core. 
To avoid this difficulty, a step-by-step method of charging the net- 

work is used. The saturation flux linkages of the thyractors may be made 
smaller with each step providing a large enough ratio of saturated to un- 

NAB (3) 

INPUT SECTION TRANSFER CHAIN OUTPUT SECTION 

I I I DC BIAS 

Fig. 3 — Basic series type magnetic pulse modulator. 
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saturated inductance is provided in the thyractor. Fortunately, the 
permalloys are ideal for this use and three or four thyractors are all that 
are needed to cut the charging time of the network from the order of 
thousands of microseconds to the order of a microsecond. Referring to 
Fig. 3, the inductor, L, has the same function as it had in Fig. 2, and, 
neglecting losses, the capacitors, Ci , Ci and Cs each may have a value 
equal to the capacitance of the network. The thyractors X\ , Xi, X3 and 
X\ have descending values of saturation flux linkages. With this circuit, 
when the first capacitor is charged to its peak voltage, Xi saturates and 
connects C2 across C\ through the saturated inductance of XT . It will be 
shown later that all the energy stored on C\ will be transferred to Cj in a 
time equal to one-half cycle of the resonant frequency of the saturated 
inductance of Xi and the capacitance of Ci and C2 in series. Once (T is 
charged, X2 saturates and the charge on C2 is transferred to C3 in a shorter 
time than the previous transfer since the saturated inductance of X2 is 
less than that of Xi . This process continues until the network is charged. 
The time of charge of the network is so fast that thyractor, X4, needs 
only a few turns and its saturated inductance usually ends up being about 
that of a section of the network. 

It is seen from the above that the thyractors are designed to have 
descending values of saturated inductance as the energy is stepped from 
one capacitor to the next, until a value is reached in the last thyractor, 
X4, that is small enough to be incorporated into the pulse network. 
Under this circumstance, the switching action of the last thyractor may 
be considered as ideal. Referring again to Fig. 3, it is the section of the 
circuit labeled "Transfer Chain" that provides this desired decrease in 
charging time of the network or, in other words, pulse shortening action. 
This action and the way the thyractor cores are reset after each pulse 
will be given detailed attention in the Parts that follow. 

Part II — AC-Charged, Series-Type, Magnetic Pulse Modulator 

The circuit diagram of a typical ac charged modulator is shown in 
Fig. 4. Power transformer, TR\, transforms the voltage available from 
the source to the value best suited to the transfer chain. The linear re- 
actor Li may be on either the primary or the secondary side of the power 
transformer but placing it on the primary side generally results in a more 
economical design. The dc bias shown on the first thyractor is necessary 
if pulses of one polarity are to be obtained. Bias current would ordinarily 
be obtained from the ac source by means of a dry-disk rectifier. The linear 
inductance in the bias circuit decouples the bias supply from the first 
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thyractor and will be assumed large enough to keep the bias current 
constant. 

For purposes of analysis, the modulator will be divided into an input 
section, a transfer chain and an output section. The input section, up to 
and including the first thyractor, will be analyzed first. It will be shown 
how this portion of the circuit produces one negative current pulse 
through thyractor Xi for each cycle of the ac source. The action of a 
section of the transfer chain in converting this current pulse into a 
shorter current pulse will then be explained. A more detailed explanation 
of the transfer chain is included in Part III. With this as background, the 
special requirements imposed on the thyractor core material will be dis- 
cussed. The output section will then be analyzed in detail and a method 
given for producing shorter pulses than are possible with the circuit of 
Fig. 4. Finally, the core resetting action, which automatically takes 
place between main pulses, will be analyzed. 

In the actual design of a modulator, the effect of dissipation must be 
considered. This may be done by an approximate method, as given in 
Part III, or exact numerical computations may be made. However, in 
order to make the main action of the modulator more apparent, dissipa- 
tion will be neglected in this Part. 

Thyractors will be assumed to have zero reluctance cores when un- 
saturated. The core will be assumed to saturate suddenly when the core 
flux reaches its saturation value 4>s , after which the thyractor will have 
a constant saturated inductance L. In order to satisfy these assumptions, 
the idealized hysteresis loop must have the form shown in Fig. 5. 

INPUT SECTION 

If the power source and the charging inductance are referred to the 
secondary of the power transformer, the circuit of the first section will 
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Fig. 4 — Circuit diagram of a typical ac charged series-type modulator. 
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he that shown in Fig. 6. The apparent source, v.-, will be assumed to 
have no internal impedance and to provide a sinusoidal voltage 

Vi = Vi sin uti (4) 

where u/'Iir is the pulse repetition rate required at the magnetron. A set 
of initial conditions will be assumed for time U = 0 and will be justified 
by showing that the circuit returns to these conditions at the end of one 
cycle. These conditions are ft(0) = fi(0) = h , Pi(0) = ^(0) = 0 and 
<^(0) = —. In these relations, t,-, ii, vi and vz are the instantaneous 
currents and voltages labeled on the circuit of Fig. 6, h is a constant 
component of ii and ii which is to be evaluated, pi is the core flux of 
thyractor Xi and is the saturation value of pi . It is further assumed 
that all other capacitors in the chain are initially discharged and that all 
other thyractors are saturated in the direction of positive flux. These 
latter assumptions are approximate as will be seen when the resetting 
action is considered. 

*5 

NL- 

Fig. 5 — Idealized hysteresis loop upon which the theoretical analysis is based. 

U Li. 

A/ ) UL 

Fig. 6 — Input section of an ac charged modulator. This circuit produces one 
negative current pulse through Xi for each cycle of the ac source. 
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The differential equations for the circuit are 

Vi sin uti = Li + Vi (5) 

and 

(6) 

With the initial conditions assumed, and with Li chosen to make 
uLiCi = 1, the solutions to these equations are 

In solving for these equations, it is assumed that i\ remains constant 
at h . This is justified by the fact that vi becomes positive immediately 
after time /, = 0 causing the flux ^ of the first thyractor to rise into the 
unsaturated region. The high unsaturated inducatance of the thyractor 
then keeps the current constant. 

In the unsaturated condition the net mmf acting on the thyractor core 
must be zero, therefore the mmf of the main thyractor winding, due to 
the current Ib, must be balanced by the mmf of the bias winding. Since 
the bias current can be arbitrarily adjusted, the value selected should 
give optimum conditions in the remainder of the circuit. The proper 
value of /6 is 

This value of Ib makes the average value of U equal to zero and thus 
avoids dc saturation in the core of the power transformer. It has the addi- 
tional advantage of making the rms source current a minimum. This 
gives maximum source power factor and minimum copper loss in the 
charging choke and the power transformer. The value of the source power 
factor corresponding to this value of Ib is slightly over 0.96 and the rms 
value of U is 1.15 Tt/coL,-. 

During the time that (7) and (8) apply, the current lb flows through 
all the thyractors and the primary winding of the pulse transformer. 
Since none of these, except the first thyractor, have any core bias, their 

(7) 

and 

(8) 
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cores are all held at positive saturation which is their reset condition. If 
the windings are dissipationless, all capacitors, except Ci, are short 
circuited. 

With no voltage across Ci, the voltage vi is applied across the first 
thyractor. This causes its core flux ipi to vary in accordance with the 
equation 

= 1 / A 
(10) 

V = —(2 — 2 cos co/,- — toti sin uti) — $1, 
2uNi 

in which Ni is the number of turns on the main winding of Xi. 
Equations (7), (8) and (10) are plotted in Fig. 7 for two cycles of the 

source. The source voltage v, is included for reference. The charging cur- 
rent of capacitor Ci equals ii — h ■ This current is a sinusoid whose 
amplitude increases in direct proportion to time. During the first half 
cycle, Ci charges to a positive maximum voltage of irVi/2. The capacitor 
current then reverses and Ci discharges, becoming completely discharged 
when uti equals 4.49 radians. During the interval uti < 4.49, Vi , the 
voltage across Xi, is positive, causing ipi to increase. At coti = 4.49, <pi 
passes through a maximum value 

3.41 F. , 
Vlmax =  Tf  — (11) 

coAi 

To avoid saturation of the core at this time, the inequality 

2ioNi<bu > 3.41 F. (12) 

must be satisfied. Fig. 7 shows ^imax = . This calls for the least amount 
of core material but is not an essential condition. Ordinarily a small 
margin of safety should be allowed. 

For values of uU > 4.49, Ci charges in the negative direction. The 
capacitor voltage reaches a negative maximum value of — ttF,- at the 
end of the cycle. During this time, flux ipi decreases and, since the in- 
tegral of Vi over a complete cycle is zero, returns to its initial value, 
—4>ig , at the end of the cycle. The core of thyractor AT then saturates 
and C\ discharges through the saturated inductance into capacitor Ci. 
Under ideal conditions, (T discharges completely in a very small fraction 
of one cycle of the source, during which time ?,■ is held constant by the 
charging inductor. At the end of the discharge, T = A = /a, Pi = 0 and 
^5, = —(iJlg which are the same as the assumed initial conditions. Capaci- 
tor C'i then starts to recharge and the cycle is repeated. 
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If (12) were made au equality instead of an inequality, the thyraetor 
core would saturate and Ci would discharge at the end of each half cycle. 
Alternate pulses applied to the chain, would be of reverse polarity and a 
rectifier action would be necessary at some point. In this case no bias 
would be required on the first thyraetor and current h could be zero. 
However, the core resetting action, to be described for the chain thy- 
ractors, would be upset and those thyractors beyond the rectifier would 
require some other means of resetting. 

It is not possible to increase the charging period beyond one full cycle 

 rL U-7-, 

77V 

♦Pis 

4.49 2 77 

Fig. 7 — Waveforms of source voltage , first-capacitor voltage Vi , source 
current i,- and first thyraetor core flux fa for two complete cycles of the ac source. 
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if the initial thyractor core flux is to be —$1., . This can be seen from (10) 
which gives a negative maximum value in <pi of —— 2.96 Vi/uNi at 
a,/,. = 7.72 radians. This is not possible since the thyractor saturates and 
Ti discharges when vi = —$1* . The fact that is changing at its maxi- 
mum rate at a)/,- = 2ir is advantageous though in that it makes the design 
of the thyractor core less critical. 

Since the voltage Vi is also across the secondary of the power trans- 
former, the core flux of this transformer will be given by an equation 
similar to (10). If the average value of t,- is zero, the average value of this 
flux will also be zero. The transformer core must therefore be designed 
for a peak core flux of 

*pT\mhx — 
3.417.- 
uNa 

(13) 

in which N, is the number of secondary turns. The root-mean-square 
value of 1%, which is also the transformer secondary current, is 1.15 
Vi/u Li. 

The linear charging reactor must be designed for a maximum energy 
storage of 

= 1.82 7i2Ci joules (14) 

TRANSFER CHAIN 

The need for and the basic action of the transfer chain have been dis- 
cussed in Part I. A general analysis of a single section of the chain and 
of the chain as a unit is given in Part III. It will suffice here to set down 
the special conditions which apply in the case of ac charging. 

Figure 8 shows the 1st and 2nd sections of the chain. As previously 
stated thyractor Xi saturates once each cycle allowing Ci to discharge 
into Ci. This occurs when Vi has its maximum negative value. In the 
case of the ac charged modulator, it is desirable that Ci be completely 
discharged when AT becomes unsaturated. In the absence of dissipation, 

c,- - a, c2~ ^ V2 C3- 

Fig. 8 — Circuit diagram of the first two sections of the transfer chain. The 
chain serves to produce successively shorter current pulses through each thyrac- 
tor. 
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this requires that Ci = C2. In this case, all of the energy stored in Ci 
will be transferred to C2 and the peak value of vi will be the same as the 
peak value of v?, that is — ttF,- . 

During the discharge of Ci into C2, with a negligibly small error, 

ii = h — sin anh (15) 
onM 

vi = (1 + cos 0)1*1) (10) 

P2 = —(1 — cos 0)1*1) (17) 

and since also appears across thyractor Xi 

(p2 = 7^—Ty- (wi*i — sin 0)1*1) + ^ (18) 

In these equations i\, ?;i and vi are the current and voltages designated 
in Fig. 8, </)2 is the core flux of A'2, Ni is the number of turns on Xi, L] 
is the saturated inductance of X\, *1 is the time measured from the 
instant Xi saturates and coi is resonant angular frequency of the discharge 
circuit. 

Figure 9 shows curves of Vi ,V2, i\ and ^2 plotted versus *1 . The current 
pulse in ii is one half of a cycle of a sine wave superimposed on the 
constant value h • The duration of this pulse is n = Tr/oa . This circuit 
transfers the stored energy from Ci to C2. During this interval <p2 varies 
from positive to negative saturation. If thyractor Xi is designed to satisfy 
the equation 

4iV24,2« = TTF.-ti (19) 

<p2 will reach negative saturation at the same time that j)i = 0 and Vi — 
— irVi. Since at this time d = h, Xi will become unsaturated after 
which i\ will be held at h . When X2 saturates, C2 starts to discharge 
into the third capacitor. The current pulse through X2 is shown as i-i 
in Fig. 9. The duration of this pulse is 

. / L2C2C3 (0(\\ 
T' = »r*Vcr+ir3 

(20) 

in which C3 = C2 for optimum operation of the dissipationless ac charged 
modulator. 

The current pulse thus travels down the chain, becoming greater in 
magnitude and smaller in duration in each successive section. The ratio 
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of n to T2 can be shown to be approximately proportional to the satura- 
tion flux density and the square root of the core volume of thyractor Xa. 
It is also inversely proportional to the square root of the pulse energy. 
Theoretically this ratio can be made large at pleasure but it is generally 
more economical to use several sections to obtain the desired reduction 
in pulse duration. 

When dissipation is considered the capacitors should be graded in size 
and the peak capacitor voltage should increase toward the input of the 
chain. A simple approximate method of including dissipation consists of 
raising the peak voltage of say capacitor Ci so that it will have an excess 
of stored energy equal to the estimated copper loss in A'i and core loss 
in X2. An alternate approximate method is given in Part III. 

Neither of the above methods give a satisfactory account of the core 
loss in that portion of the chain where the pulse becomes very short. 
Unless the product of C2 and the shunt coreloss-resistance of X2 is large, 
the analysis of Fig. 8 should be made on an exact basis. This involves 3rd 

/rVi 

-A*r2-\ 

<P2S 

Fig. 9 — Curves illustrating the reduction in the current-pulse width from the 
first to the second thyractor. Capacitor voltages and thyractor core flux are also 
shown. These curves are typical of all of the transfer sections. 
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order differential equations and therefore should be done numerically for 
individual cases. 

CORE CONSIDERATIONS 

The cores of thyractors require special consideration. It has been 
previously assumed that the thyractor cores have zero reluctance when 
unsaturated and become suddenly and completely saturated at a certain 
value of flux. The practical approximation of this is a core that reaches 
complete saturation at a small value of magnetizing force. This inherently 
requires that the unsaturated permeability be high. Examples of core 
materials that meet this requirement are the nickel-iron alloys such as 
deltamax, molybdenum permalloy and supermalloy. Others of equal 
importance exist but they will not be discussed here. The chief advantage 
of deltamax over the other two is its high saturation flux density. Its use 
is therefore indicated when the saturating time is long, as in the case of 
the input thyractor. The fact that its hysteresis loop has a striking 
rectangular appearance is, in itself, no great virtue for this application. 

For thyractors following the first, the swing in flux linkage is much 
smaller and the high saturation flux of deltamax is not required. In all 
thyractors, the flux swings from saturation in one direction to saturation 
in the other and back again for each pulse applied to the magnetron. 
With respect to core loss, supermalloy is superior to both deltamax and 
molybdenum permalloy in that it has a higher resistivity and a much 
lower hysteresis loss. Supermalloy is also suitable for use in the first 
thyractor in certain cases where the repetition rate is high. 

In order to utilize the advantages of these high-permeability ma- 
terials, the thyractor cores must be of the gapless wound-tape type. In 
most cases, the tape thickness will be made smaller as the output of the 
modulator is approached and may reach values below one mil. 

OUTPUT SECTION 

When a rectangular voltage pulse of relatively long duration is re- 
quired for the magnetron, the output capacitor, Co of Fig. 4, is replaced 
by a line-type pulse-forming network having a total capacitance equal 
to the normal value of Co. During the relatively long charging period, 
the network acts like a capacitance Co, whereas during the relatively 
short discharge period it acts as a pulse-forming network. The saturated 
inductance of the output thyractor is in series with the network during 
discharge. This adds to the design complication. Either the thyractor 
saturated inductance must be made small enough to cause negligible 
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distortion in the pulse shape or the network must be designed to include 
the inductance as part of the network. In the former case, the reduction 
in pulse width by the output section of the modulator is appreciably less 
than could otherwise be obtained. 

As the required magnetron pulse width decreases, the output thyrac- 
tor, the pulse transformer and the shunt capacitance cause deterioration 
of the pulse shape to the extent that a pulse-forming network can hardly 
be justified. If a capacitor is used instead of a network, the output section 
can be designed as a unit in accordance with the following analysis. 

Fig. 10 shows the output section with all elements referred to the 
secondary of the pulse transformer. In this circuit Lo represents the sum 
of the transformer leakage inductance and the saturated inductance of 
the output thyractor, capacitance Cm is the sum of the transformer 
capacitance and the magnetron capacitance. Current is thus the total 

Fig. 10 — Output section with a magnetron load. All elements are referred to 
the secondary of the pulse transformer. 

magnetron current less the current required to charge the magnetron 
capacitance. 

For the period under consideration, Vo has an initial value — Fo and 
the initial values of to, Vm and iM are all zero. The thyractor saturates at 
the beginning of the period. Capacitor Co discharges through Lo into Cm 
until Vm reaches the magnetron firing voltage, — Vm . If the magnetron 
is approximated by a dissipationless diode in series with a biasing emf, 
vm then remains constant while Co continues to discharge through the 
magnetron. 

During the charging of Cm 

Lq Lo 

(21) 

where 

2 j C0CM 
woLocrrc7." 

(22) 
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VoCo VqCm . /r)Q\ 
Vo = ~r r ~ r -i- r COSWo^ (-23) Co "T Lj/ Co "T Ca/ 

and 

Vm = — n (1 - cos aj0<o) (24) 
Co + CAf 

in which is measured from the instant that Xo saturates. 
When Pa/ = — Vm at to = to , the magnetron fires. At this time 

VuM = -Vv = -„Vf° (1 - cos woro) (25) Co t- Cat 

from which 

In addition, 

. * 1^a/ I Cm COS U)o/o = 1 ^ 7;  (26) 
r o Co 

foW = -Fo + y,, (27) 
Co 

and 
^2"11/2 . , . -Fo f2FAf(C0 + Cm) Vm (Co + Ca/X , 

l'M = ^ I Fift  "  FW I (28) 

After the magnetron fires, Vm remains constant at — Vm and 

Vo(to) + Vm . U — To <0 — To 

VS7S sm VSCo +cos VZA ( 5 

If the magnetron current pulse has a width tm at its base, and it is 
assumed that Co is completely discharged and that t0 = 0 at the end of 
the magnetron current pulse, then from (29) 

yo(ro) + VM . tm . . / N t" n  /j—^r Sin /r— + ?o(ro) COS /TTr = 0 (30) 
V Lo/Co VLoCo VLoCo 

Also, since Pq = 0 the voltage across Ln must equal Vm , or 

dio 
dto | 1O=TO+TA/ 

T dio _ v ■Co — V m 

that is 

[yo(ro) + Vm] cos ;^7== - /|/^0 2"o(To) sin (31) 
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Combining (30) and (31) and substituting the values of yo(ro) and 
2o(to) from (27) and (28) respectively and simplifying gives 

CoVo* + = CoYvVu (32) 

The first term on the left is the energy initially stored in Co and the 
second term is the energy remaining in Cm at the end of the magnetron 
current pulse. The difference between these energies is the magnetron 
pulse energy Wm , that is 

CoFo2 _ CmV^ = Wm (33) 
z z 

When Cm is negligibly small these equations are identical since for 
this case To = 2Vm ■ In the case being considered here, however, they 
may be solved for To and Co giving 

y _ y ZWM + CmVm' /o .n 
7o - ^ w„ + cMv^ (34) 

and 

fy _ 1 {W M + C MV M2) 
Co VM

2 2Wm + CMVM
2 

If the chain capacitance is given, (35) fixes the pulse transformer turns 
ratio after which (34) fixes the chain voltage. On the other hand, if the 
chain voltage is given, these equations determine the turns ratio and the 
chain capacitance. 

It can also be shown that 

tm , CM . . 
°03 vwr1 - vz+ (36) 

and 

„ , /Co + Cm _ -I vM Co + Cm (rin\ 
cos r To -1 _ (37) 

from which Lo and to are found. 
Equations (34) through (37) assume that the magnetron pulse energy 

and pulse width are specified and that for a given magnetron, its shunt 
capacitance and firing voltage are known. If these quantities are not 
known, some other form of the equations may be more useful. 

The shape of the magnetron current pulse depends upon the fraction 
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of the total energy left in CM . Fig. 11 shows curves of to, iu and Vm 
versus to measured from the instant that the output thyractor saturates. 
During time r0, capacitor CV charges to the firing voltage of magnetron. 
During time r.u the magnetron conducts and to = t,v . Two curves are 
shown for iM during time tm . It is seen that if the energy stored in CM 

is less than 30.9 per cent of the magnetron pulse energy, the magnetron 
current pulse is a better approximation of a rectangular pulse. In the 
terminal case where Cm = 0, iM is a complete half cycle of a sine curve. 

For magnetron pulse widths less than 0.1 microsecond it becomes very 
difficult to make CmVJ1 < .GlSTF.w and as a result the magnetron cur- 
rent pulse deteriorates. In addition a large fraction of the energy is left 
in Cm at the end of the pulse and must be dissipated in the circuit. This 
reduces the overall efficiency of the modulator. A definite improvement 
can be obtained by separating the transformer capacitance from the 
magnetron capacitance by placing the output thyractor on the secondary 
side of the pulse transformer. Figs. 10 and 11 still apply, but now Cm 
is the total shunt capacitance across the magnetron and Co is the trans- 
former capacitance plus any added capacitance that may be required. 
The values of Fo, Co, L0 and to are again given by (34), (35), (36) and 
(37) respectively. The pulse transformer can be designed so that its ca- 
pacitance is equal to the required value of Co or capacitance can be 
added across the secondary to make the total equal to Co. The leakage 
inductance of the transformer is considered as a part of the saturated 
inductance of the previous thyractor. 

An alternate point of view is to consider the transformer capacitance 

: vCMVM
2> 0.618WM 

Cm <0.618 w 

 7-M *\ 

Fig. 11 — Waveforms of the magnetron current and voltage showing the effect 
of shunt capacitance upon the shape of the magnetron current pulse. 
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and leakage inductance, capacitance Co and the saturated inductance Lo 
of the output thyractor to constitute a pulse forming network. 

Placing the output thyractor on the secondary side of the pulse trans- 
former results in a more reasonable value of Lo unless a very high chain 
voltage is used. For chain voltages of the order of 10,000 volts and with 
very short magnetron pulses, the value of Lo required on the primary of 
the pidse transformer may be a fraction of a microhenry. A much larger 
value is required on the secondary side so that stray inductance is far less 
important. 

A disadvantage of placing the last thyractor on the secondary side of 
the pulse transformer is that the thyractor and any added capacitance 
across the transformer secondary must be insulated for a very high 
voltage, sometimes as high as 70,000 volts. 

The core of the output thyractor presents special problems for very 
short pulses. In order to keep eddy current loss from being excessive core 
tape as thin as 0.25 mil may have to be used. Because of the fragility of 
such thin core material and the high voltage encountered, a toroidal core 
mounted in a core box of a high dielectric strength material such as 
teflon is generally desirable. 

As previously mentioned, a considerable amount of energy is left in 
the magnetron capacitance. This energy must be dissipated in the modu- 
ator between main pulses. The result may be a considerable amount of 
ringing which may or may not have undesirable effects on the mag- 
netron. In Part III the use of a damping thyractor is described which 
discharges Cm at the end of the magnetron pulse. 

CORE RESETTING 

Consideration of the first section has shown that the core flux of the 
first thyractor returns to its initial value at the end of each cycle. No 
further consideration of the resetting of this core is required. In the case 
of other thyractors, however, the cores must be at positive saturation at 
the beginning of the pulse and are left at negative saturation at the end 
of the pulse. Between pulses the cores must be reset to positive satura- 
tion. This resetting action is provided by the component h of L which 
flows even though the first thyractor is unsaturated. 

The exact analysis involves long, complicated equations which add 
very little to a working knowledge of the modulator. To avoid including 
so much detail, the present analysis will be largely descriptive and only 
the important terms of the equations will be given. 

Resetting of the second thyractor core starts at the end of the main- 
pulse discharge of C2. At this time C3 is fully charged and C2 is dis- 
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charged. The voltage of C3 is therefore applied across the second thy- 
ractor and its polarity is in the resetting direction. The resetting action 
of this voltage is small, if C3 is allowed to discharge immediately, and 
will be neglected. 

The main resetting occurs as a result of current ii = Ib, which is given 
by (9), during the time that the first thyractor core is unsaturated. If 
time is measured from the instant C2 completes its discharge of the 
main pulse, the voltage Vo rises linearly according to the equation 

Since, except for the very short time during which C3 is discharging, V3 = 
0, V2 is applied across the second thyractor and causes its core flux to rise 
in the positive direction in accordance with the equation 

in which r,- is the charging time and ri is the discharging time of Ci. 
-■Wheni = vViTi, ^2 = andy2 = TrVi VVi/r,-. Assuming r./n = 

30 to be a typical value, this time is 0.183 r,- and the voltage is 0.183 ttF,- . 
When <p2 = , the second thyractor saturates and C2 discharges into 
C3 raising the voltage V3 to +irVi \/n/r,-. 

Fig. 12 shows curves of vi, w, V3 and ip3 plotted versus time measured 
from the end of the main discharge of C2. Starting with the main dis- 
charge of Ci , from a to b Ci discharges into C2, V2 goes negative to 
— ivVi and (p2 varies from -\-$2s to —^ . During this interval V3 is zero 
and (ps is constant at fhsg . At point b the core of X2 saturates. From b to 
c, C2 discharges into C3, ^2 makes a small excursion into the saturated 
region, and V2 returns to zero completing the main voltage pulse on C2. 
At the same time V3 goes negative to — ttF,- and ^3 varies from +$38 to 
—$3g . At point c the core of X3 saturates. Immediately following c Fig. 
12 shows the excursion of ^3 into the saturated region and the return of 
V3 to zero, thus completing the main voltage pulse on C3 . The effect of 
V3 upon ^2 during this discharge period 73 is neglected in Fig. 12. The 
resetting of the core of the second thyractor starts at c. The voltage and 
flux of the second thyractor rise according to (38) and (39) respectively. 
At d, the core of X2 saturates in the positive direction. Between d and e 

(38) 

(39) 

Using (19), this becomes 

(40) 
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Fig. 12 — Curves of capacitor voltages and core fluxes illustrating the re- 
setting action, of the cores of Xj and As , between main pulses. This action is 
made possible by the core bias of Xi . 

Ci discharges into C3. This discharge is of the same nature as the main 
pulse discharge in the interval b — c except that the variation is re- 
versed and the magnitude of the voltage is much smaller. The time re- 
quired, however, is the same, that is 7-2. The third thyractor does not 
saturate immediately at the end of this discharge because of the low 

Pa 
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(h) © 

717-, Tg U-  T. >" 1 'a 
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voltage. A charge is thus trapped on C\ for an additional time equal to 
ro/S -v/t./ti — . At f the core of A'a saturates and C* discharges into 
C4. 

A positive-going pulse is thus formed on (A in the interval c — d. This 
pulse is transferred to C3 in the interval d — e, to C\ in the interval 
f — g and so on along the chain. In the dissipationless case this pulse 
should reset all of the thyractor cores. 

However the current h given by (9) continues to flow through the first 
thyractor. At point e, therefore, Co starts to recharge and v-i again rises 
linearly. In the interval e — g the voltage across the second thyractor is 
the difference between Co and r3 . Since at first v* > vi, ip-> makes a small 
excursion into the unsaturated region. At g, Vz becomes zero and ip* re- 
turns to positive saturation at h. A second positive-going pulse is thus 
formed on C2 in the interval e — h. This pulse also moves down the 
chain. 

This action continues, each pulse being smaller and shorter than the 
preceding one. Beyond h Fig. 12 is not intended to be accurate but shows 
in a qualitative manner that all capacitor voltages approach zero and 
all core fluxes approach positive saturation as required for the initial 
condition for the next main pulse. 

In Fig. 12 the time intervals are not shown in their true relative magni- 
tudes but are, in each case, made large enough to show the curve shape. 
Actual oscillograms will also show considerable deviations from Fig. 12 
because of dissipation and because of small charges left on the capacitors 
by the main pulse. 

Part III. DC-Charged Series-Type Magnetic Pulse Modulator 

The dc-charged series-type magnetic pulse modulator to be discussed 
in this part draws power from a dc source and provides unidirectional 
high-voltage, short-duration pulses to a load. The basic differences be- 
tween the ac- and dc-charged magnetic modulators are the type input 
sections required, the resulting limitations imposed upon the first section 
of the transfer chain, and the manner in which the saturable elements 
of the chain are reset. 

Four input or charging circuits that periodically charge a capacitor 
from a dc source at a rate determined by an external trigger supply are 
shown in Figure 13. All these arrangements may be used for either 
resonant or linear charging. The first or input stage of the charging cir- 
cuits shown in parts a and b of this figure are familiar arrangements 
employed in other type modulators. The diode indicated in Figure 13(b) 
permits resonant operation when the charging period is much smaller 
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than the pulse repetition period, or when a variable inter-pulse period is 
required. After Ci in either of these two circuits has attained its desired 
voltage either by resonant or linear charging, the switching element is 
activated by an external trigger voltage and the stored energy is trans- 
ferred to C2 in a time interval short compared to the charging time of 
Ci . The switch is then re-opened by the completion of this transfer ac- 
tion and by the removal of the trigger voltage, and Ci again begins to 
charge while Co is discharged by the action of the transfer chain (not 
shown in the figure). 

The diode of Figure 13(b) can be replaced by the active switching de- 
vice since it, too, normally has rectifying properties. This arrangement 
shown in Figure 13(c) operates the switching device at a lower peak 
current since the charging time of Ci is long compared to that of C2. 
However, it does introduce an additional large delay between the start 
of the trigger pulse and the generation of the modulator output pulse. 

Figure 13(d) is a special charging arrangement suggested by Professor 
C. Neitzert that provides energy during part of the charging period of 
Ci to reset the saturable elements of the transfer chain, in a manner 
similar to the resetting action obtained in the pulse transformer of a line 
type modulator. In addition, it permits operation of one element of the 
active switch at ground potential, which is advantageous if filamentary 
power is required in this device. 

TRIGGER 
SOURCE 

s, L 

c? 

TRIGGER 
SOURCE 

000 s, 1 

TRIGGER 
SOURCE 

Si' 

C' Lt 

TRIGGER 
SOURCE 

(d) 

Fig. 13 — DC-charging circuits. 
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A typical dc-charged magnetic modulator, consisting of an input sec- 
tion, n transfer sections, an output section, a damping section, and load 
is shown in Figure 14.5 The remainder of this part will be restricted to 
the analysis and discussion of the input section, a typical transfer sec- 
tion, and the damping section, since the response of the output section 
and the characteristics of a magnetron load have been treated in detail 
in Part II. After this is done, a composite analysis of the input section 
and transfer chain will be made by drawing upon the results of the first 
two analyses. 

Before this is undertaken, certain assumptions that involve all sections 
and the modulator operation in general will be made. These assumptions 
embody an attempt to include the effect of losses which have pronounced 
influence on observed modulator performance. In order to facilitate the 
mathematical treatment of the problem, only series dissipative elements 
will be used. Generally, a good approximation is obtained by the follow- 
ing assumptions: 

1. The dc source will be considered ideal. 
2. The constant voltage drop generally associated with the active 

switching device during the charging period will be subtracted from the 
ideal source potential yielding a net source potential of Vi. 

3. No current will flow through either an open active switching device 
or an unsaturated thyractor. 

4. The core losses associated with any thyractor and transformer 

INPUT 
SECTION 

OUTPUT SECTION 

TRIGGER SOURCE 

0 TRANSFER SECTIONS 

*CE | X, X2 XL_ *01 A 
^r—J;-t- ■ 

Xd 

1 

p 

:c, :Ck 

DAMPING ' SECTION 

MAGNETRON 
l I 

Fig. 14 — Typical dc-charged magnetic modulator. 
6 In this figure, the typical modulator operates from a dc source of positive po- 

tential and employs the active switch in the first section. This potential is used, 
rather than a negative one which would appear more practical, in order to facili- 
tate the analysis that follows. The active switch could have been employed in the 
second section but since the only difference between such an arrangement and the 
one indicated is merely a matter of triggering no generality has been sacrificed. 
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will be represented by a series resistance in the preceding section, effec- 
tive only during the time the switch associated with this section is closed. 

5. The winding losses associated with any thyractor and transformer 
will be represented by a series resistance in the section associated with 
the element, effective only during the time the switch of this section 
is closed. 

6. All capacitors will be considered lossless. 
An equivalent circuit of the typical modulator based on the above as- 
sumptions is shown in Figure 15. In this figure the inductances Li, Li, 
Lj, Ln, Lo and Ld represent the saturated inductances of the thyractors. 
Inductance Li and capacitance Cd are the leakage inductance of the trans- 
former and the distributed capacitance of the transformer and mag- 
netron, respectively. The losses associated with the practical transformer 
have been included in resistances Rn and Rq as explained in the assump- 
tions. 

Assume that a pulse of energy has been initiated down the chain and 
this energy is now stored in a capacitor between Ci and Cj, while the 
preceding pulse has been completely dissipated in the damping section 
and load. Hence, the sections shown explicitly in Figure 15 are in an 
inactive or quiescent state. However, voltages may still exist on the 
capacitors of these sections, and these quiescent voltages are indicated 
in the figure. The energy storage associated with these voltages makes 
possible, as will be demonstrated later, a second method of stably operat- 
ing the saturable elements without the necessity of bias windings. Now, 

5j Lj Kj 
y^^-n^AArr 

''k ^ TRIGGER SOURCE 
Ck 

T 

Ln Rn S0 L0 R0 

Sd 
Cd 

Ce Ld 
Rd 

MAGNETRON 

Fig. 15 — Equivalent circuit of typical dc-charged magnetic modulator. 
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if the assumption is made that all thyractor switch closures are initiated 
only when the capacitor preceding the switch stores all the available 
pulsed energy and the switch is re-opened when this energy, less losses, 
is transferred to the following capacitor, the circuit operation will be 
completely defined. Such an assumption means that for each pulse of 
energy initiated down the chain by the switch Si, the switches close and 
subsequently re-open only once; that is, secondary saturations of any 
element are precluded.6 

INPUT CHARGING SECTION 

The input charging section of Figure 15 is shown in detail in Figure 1G. 
Observe that the rectifying property usually associated with the active 
switching device is indicated explicitly by the presence of an ideal diode 

Si LL Rl 

: L " 
rVL C

-S
 

j 
M 

I 

Lt 
- u, 

Fig. 16 — Equivalent circuit of input charging section. 

in this figure. Although this circuit has already been thoroughly analyzed 
in past work on charging circuits,' the resonant charging case will be 
briefly treated here in order to provide the necessary background ma- 
terial to support the later discussion on the over-all modulator per- 
formance. 

At the time switch Si closes, time U equals zero, the current through 
the charging inductor Lt- is zero, and the capacitor C'i is charged to vi . 
For these quiescent conditions, the current t,- through the switch is of the 
form 

ii =  v— e~aiti sin Uili (41) 
LjCOi 

6 Possibly it would be more desirable to store energy in either or both of the 
first and last capacitors of the chain that generate, during the period that the 
modulator is inactive, secondary voltage pulses of the proper polarity traveling in 
a direction which would tend to reset all magnetic elements. Such operation, 
however, will not be considered here. 7 G. W. Glasoe and J. V. Lebacqz, Pulse Generators, McGraw-Hill Book Com- 
pany, Inc., 1948. 
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where 

Vi > Pi (42) 

Ri 
ai " 21; (43) 

W.- = Vpi2 - a-2 (44) 

and 

^ = /S C45) 

for the oscillatory case. This is the only case of interest, since under this 
condition the charging current eventually tends to reverse, consequently 
initiating deactivation of the switch. This deactivation is completed by 
removal of the trigger voltage if it is still present. It is seen from equa- 
tion (41) that the current is unidirectional over the period r,-, the charg- 
ing time of the section, where r,- is 

TT 
Ti = — 

CO,' 
(46) 

-"i'i e (47) 

The voltage across Ci as a function of time tt is Vi, where 

Wi =Ti — [Vi — — sin Co,-/,- + cos co./i 
Lwi J 

Since, as previously noted the charging current through Ci has been 
unidirectional during the entire charging period, capacitor Ci will be 
charged to its maximum voltage Vi at the end of this period, that is, at 
time U equals r.-. From (47) this peak voltage is 

Vi = Vi + (Vi - vi)8i (48) 

where 5,-, the loss factor of the input stage, is 

5, = e"iT< (49) 

Equation (48) may also be written in the following form: 

^ - [r^J ^ + [ttl" pi (50) 

Upon normalizing the voltages of equations (48) and (50) and rearrang- 
ing the following simple linear functions result: 

Ui = (1 - pi)5,' + 1 (51) 
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Vi = (-5^ + (1 + 5.) (52) 

and 

Vi = [S./a + + 1/(1 + 5,) (53) 

In these three equations the underscored voltages indicate normalized 
values; the voltages of the first two equations have been normalized to 
Vi while those of the last equation have been normalized to Vi . Typical 
curves for equations (51), (52) and (53) are shown in Figs. 17, 18 and 19, 
respectively. Note that the ranges of the variables in the figures are re- 
stricted to represent only the practical cases where the energy stored in 
capacitor Ci is increased by the charging current (Vi > vi), and the loss 
factor is restricted to the realizable values (0 < 5,- < 1). These curves 
present an easy graphical means of determining any one of the following 
parameters when the other two are known: input voltage Vi, output 
voltages vi and Vi, and input loss factor 8i. Once all the above parame- 
ters are determined, it becomes a simple matter to calculate losses, effi- 
ciency, etc. 

UNREALIZABLE ARuA 
V, < 

4.0 "2.0 u 
X 

3.5 

-1.0 3.0 
-o.e 
-0.6 o 

2,5 -0,4 UJ 
-0.2 a 

2,0 
0,2 
0.4 

1.5 0.6 
o.s 

.0 

0.5 

0,9 0.3 0,4 0.5 0.6 0.7 
tfi , INPUT SECTION LOSS FACTOR 

Fig. 17 — Straight line plot for the input section for F,- equals unity. 
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Fig. 18 — Straight line plot for the input section for F.- equals unity. 
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Fig. 19 — Straight line plot for the input section for Fi equals unity. 



972 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1955 

Since the switch, Si, lias been opened at the end of the charging period, 
no current will flow through it until the switch is again triggered at time 
/, equals T. Under these conditions the average current, z,, through the 
switch is from (41) and (50) 

ii = Y (54) 

Although a simple graphical method for determining the functions of 
energy has been suggested, it is still noteworthy to write these relations 
explicitly. From (41), (50), and (54), the energy per pulse, IF, , that is 
dissipated in the series resistance, Ri, is 

= gg(i - (55) 

2Ci(l + Sd (5o) 

or 

v 

These equations may easily be solved for the input loss factor, 5i , yield- 
ing expressions that are useful for design purposes. 

Since explicit relations for the energy loss per pulse have been derived, 
an expression for the efficiency, tj, , of the energy transfer from the source, 
Vi, to the first capacitor, (R , may be written. From equations (55) and 
(56), respectively, two expressions for this efficiency, which is the ratio 
of the increase of energy stored in Ci at the end of the charging period 
to the energy supplied by the source during this period, are 

2Ci(i + sjv, - m - «,)*; 
 2C.(1 + 5,) V i  (07) 

or 

=  (1 + 8i)(7i + vi)  , 
,, (1 + JiKFi + n) + (1 - 5.) (7, - r.) K ' 

To summarize the preceding analysis, typical voltage and current 
waveforms for the input section are shown in Fig. 20. Observe that 
capacitor Ui after it has attained its peak voltage is not immediately 
discharged to its quiescent value by the action of the transfer chain. 
Instead this discharge is delayed by a period Gi , called the guard interval 
of the first transfer section. It was noted that the active switch at the 
end of the charging period, r, , was opened by a combination of circuit 
actions. Now some devices, such as a thyratron, require a definite time 
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<— rL—>| G i 

l^ii 
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Fig. 20 — Typical waveforms for the input section. 

period for deactivation to insure that the switch remains open. The guard 
interval, Gi , provides this period by forestalling the discharge action. 

An expression that completely defines the operation of the input 
charging section would greatly facilitate the following endeavor to syn- 
thesize the over-all modulator performance. Such an expression is easily 
constructed by writing equations (50) and (54) in the following matrix 
form: 

1/(1 + 5.) V(1 + £< 
Ci/T - C^/T 

Equation (59) relates the input and output conditions of the charging 
section in terms of the circuit constants independent of the time vari- 
able, ti. Note that there is a similarity between this equation and the 
equation that relates the input and output voltages and currents of a 
four-terminal linear passive network by its A BCD constants. The sim- 
ilarity is only in form; hence, the lower case letters abed will be used to 
denote the constants of the above equation in the following fashion: 

m- 1 [;:■] 
(59) 

where 

R] -1 a [:■] 

a.- = 1/(1 + 6.) 

hi = 5,/ (1 + 5,) 

Ci = C1/T 

(60) 

(61) 

(62) 

(63) 
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and 

di = —Ci/T . (64) 

These relations, as mentioned above, will be employed later. 

TYPICAL TRANSFER SECTION 

The ]th or typical section of the transfer chain of Fig. 15, is shown in 
detail in Figure 21. According to the assumptions concerning switch 
operation, switch Sj will remain open as shown until the total available 
pulsed energy previously initiated by the charging section is stored in 
capacitor C, . Consequently, at the time switch Sj closes, starting at time 
tj equals zero, the current through the saturated ]th thyractor is zero, 
and capacitor Cj is charged to its peak voltage Vj while C* is still at its 
quiescent value Vk . For these conditions, the current, ij, through the 

4 RJ 
■AAV 

^k. 
Ck 

At: "k 

Fig. 21 — Equivalent circuit of a typical transfer section, 

switch is of the form 

ij = V} ~ Vk e-ajlj sin Ujtj 
LjUj 

where 

Vj > n- 

Rj 
a- = 2L/ 

and 

wy = V/3y2 - a,-2 

X - ^ Xj ~ Ck 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 
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for the oscillatory case. This again is the only case of interest since the 
transfer current will eventually tend to reverse, driving the thyractor out 
of saturation and hence extinguishing the current. Under these condi- 
tions, it is seen from (65) that the period of current flow is r ,•, called the 
transfer period of the jth section, where 

TT 
Tj = — 

CO," 
(71) 

The voltages across C, and Ck as functions of time, tj, vj and vk re- 
spectively, may be shown to be 

Vj - vk Vj = Vj - 
1 + \j 

1 — ( — sin o)jtj + cos 
.wy 

and 

vk = vk + X^1
T/^ x Vk) [i - ^ Sin Ujlj + cos ujt^j e ajti 

(72) 

(73) 

Since as noted above the current has been unidirectional during the 
entire transfer period, the capacitor Cj will be charged to its minimum 
or quiescent voltage Vj and capacitor Ck will be charged to its maximum 
voltage Vh at the end of this period. Hence, at time tj equals Tj (72) and 
(73) become 

vj 

and 

Vk 

where, 5/, the loss factor of the ']lh transfer section, is 

dj = e~ajrj 

Rearrangement of equations (74) and (75) and normalization of the 
voltages to Vj (underscored voltages again represent normalized values) 
yield equations (77) and (78); 

(75) 

(76) 

- = [urs;0 " -0]Xj + [r+T-(1 +1)' 

-= [rrx(-" 1)]Xl + [r+^- ('+ & 

(77) 

(78) 

which are both families of straight line functions of the variables \j and 
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or n , respectively. These families result when a particular value of 
loss factor, 8j (any value between 0 and 1), is assigned and is given a 
set of values within its permissible range (its maximum range is from — 1 
to 1; however, it is further restricted as will be demonstrated below). 

Observe that both famihes of straight lines of equations (77) and (78) 
have the same zero intercept (X, = 0), namely 

yt(X, = 0) = niXi = 0) = (l + (79) 

Also, it may be shown that for any value of y/ the family of lines of 
equation (77) will go through the point 

(Xi.UO = Q-.l) (80) 

And similarly for any value of both vj and 8j the family of lines of equa- 
tions (78) will go through the point 

(Xy,^) = (-1,1) (81) 

Hence, equations (77) and (78) present an easily constructed graphical 
method of displaying all possible quiescent and peak voltages on the two 
capacitors, Cj and Ck , for a particular value of 8j and any value of 
capacitance ratio X;. Two such plots are shown in Figs. 22 and 23, one 
for the lossless case, 8j equals unity, and the other for a practical case, 
8j equals %, respectively. With the latter type plot that accounts for 
circuit dissipation, the loss and efficiency involved in the transfer can 
quickly be computed since the energy storage in the capacitors before and 
after the transfer action are readily determined. Both these figures sug- 
gest that peak voltage amplification can be realized if Xy is made greater 
than 1/8j. This interesting possibility will be discussed later. 

In Figure 23, the shaded area is unrealizable and is defined by the 
following considerations. At the start of the transfer action energy is 
stored in capacitor Cj and Ck . Although, depending on the capacitance 
ratio, the energy storage in Ck may be greater, n must always be less 
than unity as seen from (66). Now, at the end of the transfer period the 
only condition of interest is the case where the energy storage, despite 
circuit dissipation, has been increased in Ck ■ This means that Ffc must 
always be greater than | ^ |. A line that includes all the points for IT 
equal to | ^ | can readily be constructed graphically. Such a line is shown 
in Fig. 23, and all points below it represent conditions where Ft is less 
than |^|, and consequently are unrealizable. 

A figure that represents the general case with circuit dissipation is 
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shown in Figure 24. The four regions which are indicated in this figure 
are defined by the voltage conditions of Table I. A typical voltage wave- 
form for each region is shown in Fig. 25. In this figure, capacitor C, 
charges to its peak voltage over a time interval th , the transfer period 
of the hth section which precedes the ']th section in the transfer chain. 
Capacitor Ck is discharged in a time interval n , the transfer period of 
the following or kth section. Again it should be noted that both capacitors 
Cj and Ck are not immediately discharged once they attain their peak 
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Fig. 22 — Straight line plot for a lossless transfer section, 5y equals 1. 
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Fig. 23 — Straight line plot for a practical transfer section, 5, equals %. 

voltages but remain charged for a period of G} and Gi-, the guard in- 
tervals of the jth and kih transfer sections, respectively. This time delay, 
or guard interval, plays an important part both in permitting circuit 
operation without the necessity of bias windings on the thyractors and 
in designing these elements to operate properly even when wide pro- 
duction tolerances are allowed. This former aspect will be treated later. 
Capacitor Ci that was discussed in the charging stage and C* are dis- 
charged in the same manner as capacitor Cj . 

Since the switch, Sj, has been opened at the end of the transfer period, 
no current will flow through it until the switch is again closed at time 
tj equals 7'. Under these conditions the average current, ij, through the 
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Table I 

Region "J. vk_ 

I  >0 >0 
II  >0 <0 
Ill  <0 >0 
IV  <0 <0 

switch from (65), (74) and (75) is 

i, = % (Vj - -i) (82) 

or 

^ ^ (Vk - n) (83) 

Although again a simple graphical method for determining the func- 
tions of energy has been suggested, explicit forms of these relations will 
be written. From equations (65), (74) and (75), the energy per pulse 
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Fig. 24 — General straight line plot for a typical transfer section with losses, 
indicating the four regions of operation. 
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Fig. 25 — Typical voltage waveforms of a transfer section experienced in the 
four possible operating regions. 

Wj , that is dissipated in the series resistance, Rj, is 

Cj(Vj - vjYil + Xy)(l - 5y) 

or 

Wj = 

Wj = 

2(1 + dj) 

C.jVk - ^)2(1 + Xt)(l - 5,0 
2Xy(l + 5y) 

(84) 

(85) 

These equations may be solved for the transfer loss factor, 5y, which 
once again yield expressions that are useful in design computations. 

From equations (84) and (85), expressions for the efficiency, 77y, of the 
energy transfer from capacitor Cy to Ck may be written. The resulting 
expressions for this efficiency, which is the ratio of the increase of energy 
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in Ck to the decrease of energy in C j due to the transfer action, are 

(1 + 5j)(Fy + Vj) — (1 + Xj)(l — bj) (Vj — Vj) 
m (i + mvs + 

and 

X>(1 + bj)(Vlc + Vk)  /g-\ 
Vj ~~ XXI + 5y)(n + n) + (1 + Xy) (1 - S^iVk - n) 

Up to this point, little has been said about how the thyractors of the 
transfer chain switch in the manner as outlined in the assumptions. Such 
operation is now worth consideration. In order to realize the equivalent 
circuit of Fig. 21, the ]th thyractor must have the hysteresis loop shown 
in Figure 26. It was assumed that Sj closes at time tj equals zero when 
capacitor C,- is charged to its maximum voltage, Vj. The switch closure 
is associated with the saturation of the ]th thyractor. Assume the core 
at this time is at the positive saturation point designated by +Bs in 
Fig. 26. During the current discharge it moves out to some value of 
maximum field intensity represented by point e. For any practical core 
material this value of H, which can be derived from (65), is normally 
hundreds of times its coercive force. At time equal to ry the current is 
again zero, and hence the core has returned to +Bs • It was noted be- 
fore, in the discussion following (65), that the transfer current by its 
tendency to reverse drives the core into an unsaturated region. This 
region, lying between +BS and -Bs , has extremely high permeability; 
consequently, the high thyractor impedance cuts off the current. In order 

to 

"Bs 

Fig. 26 — Hysteresis loop of the jth thyractor. 
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to best utilize the core material, the core must be driven to some point 
near or equal to —Ba such as / before the next pulse that is initiated by 
the charging stage starts to recharge C, to its peak voltage. 

Rather than use a bias winding to establish a polarizing field as sug- 
gested by Melville, the resetting action can be accomplished by insuring 
that the proper voltage waveform exists across the thyractor. The flux 
density swing in the core is proportional to the time integral of voltage 
across the main winding. This voltage for the ]ili thyractor inductor, 
which is merely the difference of the voltages on capacitors Cj and Ck , 
over the pulse repetition period T can have any of the three forms shown 
in Fig. 27 depending on the quiescent values, v, and vu ■ To avoid con- 
fusion, the voltage across this element during the period ry is not shown, 
since it was demonstrated that the core over this period will experience 
no net flux swing due to such voltages. As can be verified from Figs. 22 
and 23, these waveforms are associated with the values Xy, indicated in 
the figure. 
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Fig. 27 — Possible voltage waveforms across the ]th thyractor. 
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If the net area under the voltage curve from time tj equals t, to T is 
zero, the core magnetization will have traversed a path similar to 
Bst/fgBs of Fig. 26. The subsequent saturation of the core and resulting 
transfer action will complete the cycle in the manner previously described 
by driving the magnetization from -\-Bs to e and returning to -\-Bs . 
The negative area in Fig. 27 swings the core on the first part of this path 
from +Bs to its smallest value of flux density represented by point /. 
This value of flux density must be greater than —B3 in order to avoid 
secondary saturations. Furthermore, for the most economical utilization 
of the core material, the core magnetization should reach this value 
approximately at the start of the charging period of capacitor C;- as in 
Figure 27(b) or (c). The flux swing resulting from the positive area up 
to the time capacitor Cj is charged to its peak voltage should bring the 
core to some point less than +Ba such as g on the loop. Capacitor Cj 
will then remain charged for a length of time Gj, the guard interval, 
such that the additional area causes the core to saturate completing the 
path in the unsaturated region. 

Now it can be demonstrated from (74) and (75) that the peak positive 
voltage across the thyractor is always greater than the magnitude of the 
peak negative voltage for any practical transfer section (Sj < 1). Since 
pulse shortening is required in successive transfer sections, that is, the 
transfer periods of successive sections must be smaller and smaller, it is 
obvious from Fig. 27(b), that for Xy equals 5y , the only manner in which 
to make the net area under the voltage curve exactly zero, as is required, 
is to make the guard interval of the following section, Gk , greater than 
the guard interval of the ']th section, Gj. 

From this line of reasoning, it is seen from Figure 27(a) that for Xy 
greater than 5y the guard interval Gk must be made even larger. However, 
for Xy less than 5y as in Fig. 27(c), guard interval shortening in addition 
to pulse shortening may be realized. The advantages of such operation 
will be discussed in the composite analysis of the input section and 
transfer chain that follows. 

To complete the analysis of the typical transfer section, it is possible 
to write an expression, similar to the one derived for the input section, 
that relates the peak and quiescent voltages on the capacitors Cy and CV . 
Rearrangement of equations (74) and (75) admits of the following: 

(88) 

* 1 ■ 'j 
-Xy(l + 5y) 

1 + Xy 1 + Xy 
x,(i + s,)J L" 
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or 

where 

and 

"ay hj "Fa" 

_Cy dj_ _Vk_ 

ay = 
1 +Xy 

bj = I - 

X,(l + «/) 

1 + Xy 

Cy = 

Xy(l + Sj) 

1 + Xy _ 1_ 
Xy(l + 5y) Xy 

= 1 + L _ 
+ Xy Xy(l + 8j) 

(89) 

(90) 

(91) 

(92) 

(93) 

More will be said later concerning the application of these equations in 
the evaluation of the modulator performance. 

DAMPING SECTION 

Since the magnetron current at the end of the RF pulse is extinguished 
when considerable energy is still stored in circuit inductances and 
capacitances, the magnetron voltage pulse decays in an oscillatory fash- 
ion.8 Normally, this oscillation will be reinforced by energy remaining in 
the energy storage device of the modulator. The resultant negative volt- 
age peaks generally give rise to low-power secondary RF pulses which 
are most undesirable since they occur during the listening period of the 
radar, masking even the strongest echos. 

The undesirable voltage transient may be avoided by minimizing the 
inductively stored energy and by dissipating the capacitively stored 
energy with the damping section shown in Fig. 14. In this section the 
thyractor, called a damping thyractor, is designed to saturate at the end 
of the main RF pulse. The resistance in series with this element is chosen 
to effectively terminate the energy storage device, discharging it before 
oscillations can arise. The saturated inductance of the damping thyractor 
is proportioned such that the distributed capacitance across the mag- 
netron is terminated in a slightly underdamped circuit in order to com- 
plete its discharge in a relatively short period. Hence, the magnitude of 

6 Pulse Generators, op. cit. 
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the positive voltage backswing across the magnetron is controlled by the 
degree of damping and can be reduced to such a value that no objection- 
able voltage reversal will follow. 

The damping circuit that exists across the distributed capacitance 
when the damping thyractor saturates could be analyzed in the same 
fashion as the two preceding type sections. However, since this occurs 
after the generation of the RF pulse, it would contribute little to the 
synthesis of the over-all performance of the modulator and hence only 
the results will be briefly noted. 

When the damping thyractor saturates, the distributed capacitance 
across the magnetron is charged to the magnetron firing voltage, — Vm . 
For an underdamped circuit, the current through the thyractor, similar 
to that of (41), discharges this capacitance over a period Td , the damping 
period. At the end of this period, the current is extinguished by its tend- 
ency to reverse through the thyractor, and the magnetron capacitance 
remains charged to some positive potential, Vd , where 

The loss factor, 8d , which is also the backswing ratio in this case, is de- 
fined in terms of the circuit parameters of the damping section similar 
to the form evolved for the input loss factor, 6,-, of (49). It may be dem- 
onstrated that the shortest damping period, irRrCd seconds, is realized 
when the total series inductance of the damping path is made equal to 
RrCd/Z henries, where Rt is the total resistance referred to the same 
winding as the distributed capacitance, C* . The backstving ratio for this 
condition is i", about four per cent. Hence, the damping circuit is com- 
pletely defined by the above relations since Rt 'is made to be the char- 
acteristic impedance of the energy storage device and Cd is fixed by the 
pulse transformer and magnetron combination. 

Finally the damping efficiency, vi, fhat is the ratio of the energy dis- 
sipated over the damping period to the energy originally stored in Cd is: 

For the condition of minimum damping time, the efficiency is 99.8 per 
cent. This figure was derived on the basis that no energy was left in the 
PFN at the beginning of the damping period. 

COMPOSITE ANALYSIS OF THE INPUT SECTION AND TRANSFER CHAIN 

In Part I it was explained that in order to obtain pulse shortening 
successive thyractors in the transfer chain must have descending values 
of saturating flux linkages. Part of these flux linkages in any thyractor 

Vd = SdV M (94) 

Vd = I — f>d (95) 
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are required for the charging of the input capacitor of the particular 
transfer section associated with the thyractor. The remainder provide 
the thyractor guard interval. In the first section the amount of flux 
linkages required for the guard interval may be quite small compared to 
those needed for the input charging time. However, if the successive 
capacitance ratios are such that increasing guard intervals must be em- 
ployed in order to operate without bias, the proportion of flux linkages 
needed for successive guard intervals becomes larger and larger. Even- 
tually, it will become necessary to increase the saturating flux linkages of 
successive thyractors, and hence not pulse shortening but pulse lengthen- 
ing will result. 

i-h = -y^Vh-Uh), 

i-h = -y-tYj-'j) = Kj^-y-CVj-^j), 
t- Ck = ^(Vk-^k) = i-k = -yHVk-^k), 

U=-^(vl-n) 

Lk 

vh 
• Ch :Ci 

Vk 
Xk 

Vi 

"i 
Ci 

Fig. 28—Illustration of current continuity by extension of the average 
current relations of equations (82) and (83). 

5 (5 

IV 

Fig. 29 — Representation of the possible operating regions of successive trans- 
fer sections of the transfer chain. 
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These conditions occur when the sections have capacitance ratios that 
are greater than their loss factors. The only advantage in such operation 
would be to obtain the peak voltage amplification which results when 
this ratio is increased to a value greater than the reciprocal of the loss 
factor. This further increase results in restricting the pulse shortening 
to a smaller number of sections if bias free operation is still to be main- 
tained. On the other hand, if the capacitance ratios are smaller than the 
loss factors, there is no theoretical limit on the number of sections in 
which pulse shortening can be realized since guard interval shortening is 
possible. However, the required voltage amplification would then have 
to be provided by a pulse transformer. 

From the average current relations of (51), (82) and (83), it is observed 
that current continuity through the successive sections does not depend 
upon the values of 5 and X. Fig. 28 illustrates this point. However, since 
the peak and quiescent voltages out of a section must equal the peak 
and quiescent voltages into the next section, there are restrictions on the 
regions in which two adjacent sections may operate. These restrictions 
can be seen by inspecting either Table I or Fig. 25. Fig. 29 indicates all 
the possible transfer chains in the following manner: any number of 
successive sections up to an entire chain that all operate in either region 
I or IV are possible. This is indicated by the arrowhead on the circle 
inscribing the Roman numerals I and IV in the figure. Beyond these 
possibilities, successive sections must be operating in the regions indi- 
cated by the arrows. For example, a section operating in region II must 
be followed by one that operates either in region III or IV. 

When these voltage restrictions are applied to a modulator consisting 
of an input section and a transfer chain of n sections, the following rela- 
tions result: 

KH: a::] 

CH: II] 

[IK: II] 

[IK; II] 

(96) 

(97) 

(98) 

(99) 
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from which follows: 

and 

>/ O'ln 6 in -F.I 

_ "I- _Cln dln_ _fo J 

VH _ Un h.-nlfFol 

ft J LC'" inJ UJ 

where 

r flin 5in~| ffli bi r 02 621 aj 6/1 r an bn 

\_Cln ^ 1" J LCi ^ J 1^2 U djj LCn dn_ 

and 

din bin di bi din bin 

_Cin din_ . 1 

1 _Cln dln_ 

(100) 

(101) 

(102) 

(103) 

Equation (100), which relates the input and output voltages of the trans- 
fer chain, can also be used to determine the voltages on any capacitor if 
the conditions on any one capacitor are known. This is readily accom- 
plished by letting n equal the number of sections that separate the two 
capacitors in question. The relation of (101) is of particular interest 
since the over-all operation is completely defined by the network parame- 
ters alone. If either the input or output conditions are given, the other 
is determined. 

Equation (101) was derived on the basis that energy is stored in the 
capacitors during inactive periods and that the thyractors do not ex- 
perience secondary saturations. Experimental evidence has verified that 
a modulator whose capacitors are initially discharged can build up to 
these stable conditions. But this cannot easily be predicted, hence em- 
pirical methods must be used to ascertain that reasonable guard inter- 
vals exist during this initial build-up period. 

Obviously, the special case that was originally discussed by Melville 
and was treated in Part II in which all quiescent voltages are zero will 
operate stably. As can readily be seen from Fig. 24, this requires that the 
capacitance ratio of each section be equal to the section loss factor. 
However, since such conditions do not facilitate pulse shortening when 
bias-free operation is desired, smaller capacitance ratios with the result- 
ing quiescent voltages should be employed. 

Since a number of transformers with any reasonable turns ratio can 
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be used, the voltage level in any portion of the modulator is not rigidly 
fixed by the input and output requirements. In choosing these levels, 
paramount consideration should be given to the operational require- 
ments imposed upon the active switching device, such as the peak 
inverse voltage, peak current, duty cycle, etc., so that long life may be 
realized. Since the size of the capacitors is primarily determined by the 
energy per pulse and the size of the thyractors by this, the over-all pulse 
shortening and the number of transfer sections, the voltage level affects 
these elements very little unless it is increased to a point where the 
end margins must be larger than those required for purely mechani- 
cal reasons. This may become important when the required output 
pulse is greater than 10,000 volts. It should be noted that although a 
larger number of sections may radically reduce the total amount of core 
material, and hence the losses, the size of the modulator will increase 
considerably since additional capacitors are required. These factors make 
any general theoretical attempt to ascertain the optimum design of little 
value. Present design experience on high-po\yer modulators has indicated 
that usually no more than three or four transfer sections are required. 

COMPOSITE ANALYSIS OF THE HOMOGENEOUS GEOMETRIC CASE 

A homogeneous geometric modulator, that is a modulator composed 
of sections that have identical loss factors and capacitance ratios, can be 
analyzed with much less difficulty than a completely general modulator 
wherein each section is different and distinct. Such an analysis may be 
useful as a first approximation to the response of any geometric modu- 
lator provided that the loss factor of the homogeneous modulator is 
judiciously chosen. Furthermore, it will indicate the best performance 
attainable when the loss factor is made unity, and the methods outlined 
will serve as a guide for analyzing any modulator. 

Consider a homogeneous geometric modulator composed of an input 
section and n transfer sections. For such a modulator9 

5,. = Si = 52 = ■■■ 8n = 8 (104) 

and 

Xi = Xa = • • • Xn = X (105) 

Since all transfer sections will now have the same network constants, 
3 The value of any capacitor and the sum of all the capacitance in the chain 

can be explicitly written in terms of either the input or output capacitor by em- 
ploying the well-known relations derived for a geometric progression. 
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abed, (102) can be written in the following form: 

a\n bin a b 

_C\n dln_ S d- 
(106) 

From equations (90) through (93) inclusive, it may be demonstrated 
that for this particular modulator: 

Oln = 

bln — 

Cln = 

din = 

(1 + X)(Xn - 1) X"-1 - I 
(1 + 5)(Xn+1 - X") X" - X''-1 

Xn - 1 (1 + X)(X" - 1) 
X" - X"-1 (1 + 5)(X"+1 - X") 

(1 + X)(x" - 1) X" - 1 
(1 + 6)(X"+1 - X") Xn+1 - X" 

Xn+1 - 1 (1 + X)(Xn - 1) 
Xn+1 — X" (1 + 5)(X"+1 - X") 

(107) 

(108) 

(109) 

(110) 

It is interesting to note that the determinant of the square matrix com- 
posed of the above elements equals l/X". In addition note that if X is 
made equal to S, Ci„ and din become zero and unity respectively. This 
means from equation (100) that the quiescent voltages on all capacitors 
are identical and will all be made zero if capacitor Co is completely dis- 
charged by the output and damping sections. This substantiates what 
has previously been deduced in the general discussion of the composite 
input section and transfer chain arrangement. 

The final matrix multiplication indicated in equation (103) can be 
performed with the aid of (61) through (64) yielding: 

fin = 

bin — 

1 + 5 

5 

+ 

1 + 5 

Cin = Cq/T 

din = -Co/T 

(1 - 5)(X - 1) 
(1 + 5)(Xn+l - X") 

(1 - ^(X" - 1) 
(1 + 5)(Xn+l - X") 

(HI) 

(112) 

(113) 

(114) 

The determinant of the square matrix composed of the above elements 
is —Co/T. 

From (101) and the preceding results the efficiency, rj, of the energy 
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transfer from the dc source to the output capacitor is 

1 (1 + 5)(X"+1 - - V) 
['+ft] 

(x"+1 - 1) 

1 
1 

+
 

r-H 
i 

i 
-(x " -1)] 

['+ftj 

For the special case previously discussed in which all quiescent voltages 
were zero, that is, the case which results when vo equals zero and X equals 
5, the efficiency becomes 

V = /■^"(^ + 1) (116) 

Part IV — Conclusions 

The analyses of the ac- and dc-charged modulators in the two pre- 
ceding parts, although approximate to some degree, do provide a reason- 
able understanding of observed performance. This work has indicated 
the manner in which automatic core resetting in both devices can be 
achieved in all thyractors but the first of the ac-charged arrangement. 
All the regions of operation of a section of the transfer chain have been 
explored and have yielded the possibility of obtaining voltage amplifica- 
tion. However, such operation limits the pulse shortening that can be 
attained in the modulator; consequently, a transformer is still employed 
to provide the necessary voltage step-up. 

Three practical innovations, in addition to the automatic core re- 
setting, have been suggested. First, in order to provide short duration 
pulses without undue complication of the pulse transformer, the output 
thyractor section has been placed on the load side of this transformer. 
Second, a damping thyractor is employed such that the residual energy 
stored in the modulator after the generation of the main RF pulse can be 
safely dissipated without causing RF after pulsing. Both of these inno- 
vations can also be applied to other pulse modulators. And last, a dc- 
charged arrangement that provides still another means of automatic 
core resetting is presented in which the thyratron that may be required 
can be operated with its cathode at ground potential. 

Several experimental ac- and dc-charged magnetic modulators that 
embody the automatic resetting feature without pulse amplification in 
the transfer chain have been developed. Fig. 30 illustrates an ac-charged 
modulator that provides an output pulse length of less than 0.1 micro- 
second. This very short pulse length has been achieved by placing the 
output thyractor, which has a ^ mil molybdenum permalloy tape core, 
on the load side of the pulse transformer. The damping thyractor prin- 
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Fig. 30 — Experimental ac-charged magnetic modulator for a pulse duration 
of less than 0.1 microsecond. 

ciple has been successfully employed in line type modulators as well 
as in these magnetic modulators. However, the grounded thyratron 
arrangement possible in the dc-charged case has not yet been incor- 
porated in any design. 

LIST OF SYMBOLS 

Quantity* 

a Section, chain or modulator constant 
A Area 
h Section, chain or modulator constant 
B Flux density 
c Section, chain or modulator constant 
C Capacitance 
d Section, chain or modulator constant 
G Guard interval 
i Instantaneous current 
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i Average current 
I Peak or constant current 
L Inductance 
n Number of sections in the transfer chain 
N Number of turns of wire 
R Resistance 
t Time 
T Pulse repetition period 
V Instantaneous voltage 
V Peak or constant voltage 
V Normalized peak or constant voltage 
w Energy 
X Thyractor reference designation 
<x Reciprocal of time constant 
p Constant, \/w2 + a2 

8 Loss factor 
V Efficiency 
X Capacitance ratio 
V Quiescent voltage 
V Normalized quiescent voltage 
T Time interval 

<t> Magnetic flux 
CO Angular frequency 

* All quantities are in rationalized MKS units. 
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CORRECTION 

A. Uhlir, Jr., author of the paper The Potentials of Infinite Systems of 
Sources and Numerical Problems in Semiconductor Engineering, which ap- 
peared in the January, 1955, issue of the B.S.T.J., pages 105 to 128, has 
brought the following corrections to the attention of the editors. 

In the last text sentence on page 107, for Q read P. 
On page 124, equation (37) contains the term 

.. . sinh irh/k 
- 2 In -jf- 

irX/k 
This term should be 

, sinh wX/k 
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CORRECTION 

A. Uhlir, Jr., author of the paper The Potentials of Infinite Systems of 
Sources and Numerical Problems in Semiconductor Engineering, which ap- 
peared in the January, 1955, issue of the B.S.T.J., pages 105 to 128, has 
brought the following corrections to the attention of the editors. 

In the last text sentence on page 107, for Q read P. 
On page 124, equation (37) contains the term 

_ , sinh ttX//.: 
- 2 In -jf- 

T\/k 
This term should be 

, sinh irX/k 



Conversion of Maxwell's Equations into 

Generalized Telegraphist's Equations* 

By S. A. SCHELKUNOFF 

(Manuscript received May 3, 1955) 

In this paper it is explained how Maxwell's field equations together with 
the appropriate boundary conditions may he converted into equations analo- 
gous to those for coupled transmission lines. This makes it possible to use 
the well-known techniques of dealing with transmission lines to solve certain 
field problems in those cases in which either the method of separating the 
variables fails or the boundary conditions are too complicated for the con- 
ventional method. For example, this method may be applied to studying 
waveguide to horn junctions, bending of waveguides, propagation of waves 
over an imperfect earth in the vicinity of the source, etc. Other applications 
are suggested in the course of the paper. 

On the theoretical side, this conversion of field equations into transmission 
line equations brings together two heretofore independent theories of wave 
propagation on wires, namely, Lord Kelvin's theory based on circuit con- 
cepts and Kirchhoff's laws and Mie's theory based on field concepts and 
Maxwell's equations. 

The "Generalized Telegraphist's Equations" derived in this paper differ 
from Kelvin's classical Telegraphist's Equations in two respects. Firstly, for 
a pair of conductors Kelvin obtained one pair of differential equations im- 
plying the existence of only one mode of propagation. For the same pair of 
conductors we obtain an infinite set of equations implying an infinite number 
of modes, from which Kelvin's equations are obtained by neglecting the 

* The substance of this paper was presented at a joint meeting of the Inter- 
national Scientific Radio Union (U. S. A. National Committee), the Institute of 
Radio Engineers (Professional Groups on Antennas and Propagation, and Micro- 
wave Theory and Techniaues), and American Geophysical Union (Section of Ter- 
restrial Magnetism and Electricity) on May 4, 1954, Washington, D.C., under the 
title "Solution of Field Problems with the Aid of Distributed Circuit Parameter 
Concepts." Subsequently, it was presented at a Conference on Fields held on 
January 31, 1955 during the Winter General Meeting of the American Institute of 
Electrical Engineers in New York. This paper was also presented at the University 
of Bristol, England, on May 25,1955, and at the Technische Hochschule in Zurich, 
Switzerland, on June 13, 1955. 
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coupling between the principal mode and the higher order modes. Secondly, 
our equations for some transmission structures contain additional "circuit 
parameters" which do not appear in the classical equations. These parame- 
ters are of the same nature as those in the corresponding equations for wave- 
guides of uniform cross-section with perfectly conducting walls and filled 
with heterogeneous dielectric medium. In the present case they arise from 
the boundaries of conductors rather from lack of homogeneity. 

The mathematics of converting Maxwell's Equations into Generalized 
Telegraphist's Equations is straightforward, although in the most general 
cases rather lengthy. The essential point is that a function, which for prac- 
tical purposes is sufficiently arbitrary, may be represented in numerous ways 
by a series of orthogonal functions; and that when some such series are non- 
differentiable, the required relations between the coefficients of series repre- 
senting the various field components may be obtained from Maxwell's equa- 
tions by integration rather than by conventional substitution followed by 
differentiation. 

CONTENTS 

1. Introduction    ■   ; ; •; • • • 
2. Heuristic discussion of conversion of field equations into generalized 

telegraphist's equations   
3. The form of generalized telegraphist's equations  
4. Uniform strip transmission lines — the principal mode  
5. Uniform strip transmission lines — higher order modes           
6. Strip transmission line with variable cross-section — the principal mode 
7. Strip transmission line with variable cross-section — higher order modes 
8. Bent strip transmission lines — the principal mode  
9. Bent strip transmission lines — higher order modes ■ ■ •   

10. Expanding strip transmission lines in curvilinear coordinates — a case 
in which Maxwell's equations are not separable  

11. Transverse electric modes between parallel planes  
12. Waves on infinite conductors    
13. Waves on semi-infinite conductors  
14. Waves over a plane impedance sheet.       ■; ■ 
15. Derivation of approximate telegraphist's equations for the TEn mode in 

a circular waveguide-to-horn junction  
16. Effect of coupling on degenerate or nearly degenerate modes  
17. Coaxial conductors — circularly symmetric modes  
18. Vane attenuators  
19. Arbitrariness of modal transverse field patterns  
20. Concluding remarks  

1. INTRODUCTION 

For certain structures Maxwell's equations together with boundary 
conditions can be converted into exact or nearly exact equations similar 
to telegraphist's equations for coupled transmission lines. These struc- 
tures include conventional dissipative wire transmission lines, dissipative 
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coaxial conductors, dissipative waveguides of either constant or variable 
cross-section, bent waveguides, plane and curved earth, etc. The coeffi- 
cients in these equations play the role of "distributed circuit parame- 
ters;" but they arc obtained from Maxwell's equations and boundary 
conditions rather than from consideration of static electric and magnetic 
fields. The distributed circuit parameters of some structures may be 
interpreted as distributed self and mutual series impedances and shunt 
admittances. But, in general, there are other distributed parameters 
which may be called "voltage and current transfer coefficients." The 
general equations are thus of the same form as the equations previously 
obtained by the author for waveguides of constant cross-section with 
perfectly conducting walls and filled with nonhomogeneous dielectric 
and magnetic media. 

The possibility of converting Maxwell's equations into generalized 
telegraphist's is important from theoretical and practical points of view. 
This possibility removes a nagging feeling that the classical telegraphist's 
equations, useful as they are in practice, are fundamentally inconsistent 
with Maxwell's field theory. We shall find that they are consistent al- 
though approximate. We shall find that for conventional transmission 
lines, such as coaxial pairs, the generalized telegraphist's equations re- 
duce to classical telegraphist's equations when the distributed coupling 
of the principal mode to the higher order modes is neglected. We also 
find that the classical equations can be used at much higher frequencies 
than one would expect from their conventional derivation based on the 
assumption of quasi-stationary fields. On the practical side, the general- 
ized telegraphist's equations represent a method for solving boundary 
value problems using the well-known transmission line concepts and tech- 
niques. In a gentle waveguide to horn junction, for instance, we can 
obtain in the first approximation the transmission equations for the 
dominant mode and then calculate the higher order modes, generated by 
the expanding boundaries, as "crosstalk" between the dominant and 
higher order modes in the same way we calculate the crosstalk between 
adjacent conventional transmission lines in a cable. Thus we can look at 
three dimensional wave propagation from another angle, from the point 
of view of one dimensional propagation. We can also treat problems in 
curvilinear coordinates when the variables are not separable. 

The conversion of Maxwell's equations into generalized telegraphist's 
equations brings together two independent theories of wave propagation, 
based on quite different concepts, which have merely "coexisted" for 
more than three quarters of a century. Lord Kelvin obtained his tele- 
graphist's equations for cables1 (transmission lines) ten years before 
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Maxwell formulated his field equations. In modern notation the tele- 
graphist's or transmission line equations for two conductors, Fig. 1, are 

_ nr rdli ar - tf' rdVi m 
-di--RI -L-dt' te--GV-C-dt (1) 

where R, L, G, C are respectively the resistance, inductance, conductance 
and capacitance per unit length along the line. The dependent variables 

V are the instantaneous values of the current in one conductor and 
the transverse voltage from it to the other conductor. The distributed 
circuit parameters R, L, G, C are computed from static considerations. 
In computing R it is assumed that direct current is flowing in one con- 
ductor and returning via the other. The same assumption is made in 
computing the magnetic flux linkage per unit length and hence in com- 
puting L. In computing G a constant voltage is assumed to exist be- 

lL(z) 

)vL(z) 

I (z) 

Fig. 1 — Parallel wires. 

tween two conductors. The ratio of the resulting transverse direct cur- 
rent per unit length to this voltage is G. Finally, in computing the capaci- 
tance per unit length, C, it is assumed that G = 0 and that there is a 
constant voltage between the conductors. The ratio of the charge to this 
voltage is C. 

On solving these equations for a sinusoidally varying applied voltage 
we find that the current and voltage are propagated with a finite velocity 
and that their amplitudes diminish exponentially with the distance 
from the generator. But in deriving these equations it has been assumed 
that these amplitudes are independent of the distance from the generator. 
Hence one would expect the equations to deteriorate steadily as the 
frequency increases. One derives the same impression from the point of 
view of Maxwell's theory. And yet experiments have shown that in 
many practical situations the errors are too small for detection even at 
very high frequencies. Since the "engineering theory," based on Kelvin's 
equations of Kirchhoff's type, is much simpler in practical applications 
than Maxwell's theory, it had continued to play the dominant role in 
electrical communication until the coming of radio and waveguides. To 
appreciate the difference in the "orders of complexity" of these two 
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theories one should glance at the forty-nine pages of Mie's paper on 
wave propagation along parallel wires' and compare them with the 
engineering solution of the same problem. In Mie's paper the reader is 
confronted with an elaborate and difficult mathematical analysis while 
the engineering solution is just a simple problem of elementary calculus. 
Mie's analysis is good only for an infinitely long pair of parallel metal 
cylinders imbedded in a homogeneous medium. On the other hand, the 
engineering solution applies to wires of variable cross-section, to twisted 
pairs of wires, to wires which are not straight and parallel, to wires 
insulated with layers of different media, to wires supported by insulators 
on poles — that is, to a wide range of cases in which an analysis based on 
Maxwell's field equations seems hopeless. On the other hand, there are 
problems of radiation whose solutions can readily be deduced from field 
equations and which apparently are not amenable to treatment with the 
aid of classical concepts of distributed circuit parameters. 

Thus, the two theories have coexisted side by side but not on "speak- 
ing terms with each other." This situation has been one of continued 
challenge to students of electromagnetic theory. John R. Carson,3 for 
instance, derived the classical telegraphist's equations from the Lorentz 
solution of Maxwell's equations in terms of retarded potentials and 
stated clearly the approximations he had to make. He then concluded 
that the accuracy of telegraphist's equations decreases with increasing 
frequency. Recently the author had an occasion to discuss the subject 
of this paper with A. Clavier. He informed me that many years ago when 
he taught electromagnetic theory at Ecolc Superieure d'Electricity, he 
became interested in the relation between Kirchhoff's type of theory of 
long lines and Maxwell's field theory. At that time he found that, in the 
case of simple geometry and no loss, the Lorentz solution of Maxwell's 
equations in terms of retarded potentials yielded a set of equations, 
identical in form with (1) but with a different meaning ascribed to V\ 
The same result may be obtained directly from Maxwell's equations4,5 

if in the case R = 0 we restrict ourselves to TEM waves, in which case 
Vi has the meaning identical with that ascribed to it by Lord Kelvin. 

For continuously coupled transmission lines, for several parallel wires 
for instance, telegraphist's equations are 

^ = -E ^. 
az " \ at/ (2) 

% = + C"" dac) 

where i j is the instantaneous current in the m-th line and Vm
l the in- 
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stantaneous transverse voltage associated with the m-th line. The co- 
efficients corresponding to n — m are the distributed circuit parameters 
for the m-th line, and those corresponding to unequal values of m and n 
are the distributed coupling parameters for the m-th and n-th lines. For 
steady state these equations reduce to a system of ordinary differential 
equations. This reduction is accomplished by regarding the instantaneous 
voltages and currents, Vm

l and Im\ as the real parts of complex voltages 
and currents, Vm exp (jut) and /,„ exp (jut). Thus (2) is transformed into 

^ = -E zmj„, ^ = -E Ymnvn (3) CtZ n ClZ n 

where the distributed complex impedances per unit length, Zmn , and 
complex admittances per unit length, Ymn , are 

Zmn ' Rmn "f" Jkl/v mn j 5 nm Gmn + juC vi n (4) 

The usefulness of (1) and (2) is severely restricted because even for 
relatively slowly varying currents the resistance Tr! of a conductor is not 
independent of time. The voltage drop across a section of a conductor 
depends not only on the current but on the second and higher time de- 
rivatives of the current. It is for this reason that (1) is properly named 
"telegraphist's" rather than "telephonist's" equations. However, (3) 
may be used even at quite high frequencies provided we use ac re- 
sistances Rmn , which include the skin effect, in place of dc resistances. 
A similar allowance should be made for the internal inductances of the 
conductors. 

It has been shown0 that for each mode of propagation in a perfectly 
conducting waveguide of uniform cross-section it is possible to obtain 
equations analogous to telegraphist's equations. Thus for TM waves the 
steady state equations of propagation are 

^ = -(W+^ = -(o+^ (5) 

dz \ g -\- jueJ dz 

and for TE waves 

dJ- = = -(g+ jae + A-V (6) 
dz dz \ juiiJ 

where the constant x depends on the shape and size of each conductor 
and on the field distribution in a typical transverse plane. The "voltage" 
V and the "current" I are related to the magnitudes of the transverse 
components of electric and magnetic intensities. 

In this paper we shall be concerned primarily with the steady-state 
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equations. This entails no loss in generality because the Laplace trans- 
form method would enable us to find the more general solutions from 
the steady state solutions. It is possible, however, to convert such 
equations as above into forms applicable to non-periodic time variations 
in the dependent variables. Thus (6) would become 

dV' dV dl' T7-i . dV* . -i 2 f1 jrt/ \ 7 /7\ 
ai=-gV +€W + f' x LrMdT (7) 

The first equation of the set (5) can be transformed either into 

dV1 . d'V1 dV , d2Il 2Ti (q\ 
g   he rrT- = Qv -^7 + Me -rvr - X \°) dz dtdz dl dt- 

or into 

^1! = -/X- xV I' dr (9) 
dz dt J-oo 

However, the steady state equations combined with Laplace transforms 
are, as a rule, more convenient for dealing with general time varying 
phenomena than the nonsteady state equations. 

2. HEURISTIC DISCUSSION OF THE PROBLEM OF CONVERTING FIELD EQUA- 
TIONS INTO GENERALIZED TELEGRAPHIST'S EQUATIONS 

Consider two coaxial conductors. If they are perfectly conducting, the 
field between them may be expressed in terms of TEM, TE, and TM 
modes. Each of these modes can exist independently of the others. 
Suppose now that we have excited a pure TEM mode. Let us then intro- 
duce a small resistive spot on one of the cylinders. Some current will 
flow across the spot and will give rise to a non-vanishing electric intensity 
tangential to the spot. This intensity will act as an impressed longitudinal 
intensity and will thus generate a large number of modes traveling in 
opposite directions from the spot. Let us introduce another spot, and 
then another and another until both cylinders are covered by resistive 
films. At each step various modes will be generated and regenerated. The 
argument suggests that we should be able to express the field between the 
imperfectly conducting cylinders in terms of modes appropriate to per- 
fectly conducting cylinders. However, none of the latter modes can now 
exist independently of the others. The surface impedance of the cylinders 
provides continuous coupling between various modes. 

In the case of imperfectly conducting cylinders the longitudinal 
electric intensity does not vanish at the surface of either conductor and 
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yet the above physical argument leads us to believe that we can express 
it in terms of functions which vanish there. Are we facing a contradic- 
tion? The answer is, no. The functions representing the longitudinal 
intensity over a given cross-section when the cylinders are perfectly 
conducting form a complete orthogonal set. This set is sufficient for 
representing arbitrary continuous functions, which do not vanish on the 
boundary of the cross-section, at all points except on the boundary itself. 
The situation is analogous to that existing in Fourier analysis. A function 
which is bounded and continuous in the closed interval (0, C) may be 
represented by a sine series in an open interval even when the function 
does not vanish at the ends of the interval. However, the series will be 
non-uniformly convergent and non-differentiable. For this reason such 
series cannot be substituted in Maxwell's equations when differentiation 
is required. However, there is a way of overcoming this difficulty which 
can best be illustrated by an example. As far as the representation of 
the longitudinal electric intensity is concerned, we shall have one 
series for points in the interior of the waveguide and another on its 
boundary. The latter is obtained from the boundary condition, that is 
from the product of the surface impedance and the tangential magnetic 
intensity. 

A waveguide with continuously varying cross-section may be regarded 
as the limit of a waveguide made up of a large number of very short wave- 
guides with constant but different cross-sections. Consider only one 
sudden change in the cross-section. The effect of this discontinuity on a 
wave in one mode is to produce waves in many other modes traveling in 
opposite directions from the discontinuity. Hence, the discontinuity 
couples various modes and an expanding boundary represents continuous 
coupling. Bending also represents continuous coupling. 

In some structures the modes of propagation will be spherical or sys- 
tems of spherical and plane modes. Take for instance a perfectly con- 
ducting cone. There will be two systems of spherical modes of propaga- 
tion, internal and external, completely independent of each other. If 
the perfectly conducting cone is replaced by a sheet of finite thickness 
and conductivity, there will exist a linear relation between electric 
and magnetic intensities tangential to the internal and external surfaces 
of the sheet; thus 

Etan
e = ZeeHt^ + ZeiHtJ (10) 

= ZieHtan* + Z iiH tan 

where the Z's are the surface and transfer impedances of the sheet. This 
equation expresses the coupling between external and internal waves. If 
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the conical conductor is deformed, further coupling arises from the de- 
formation. The cone may be deformed into a cylinder, in which case 
the external waves will still be spherical while the internal waves will 
become plane. 

We can make our calculations of fields step by step as suggested by 
the heuristic argument. For example, we can calculate the scattering from 
a typical resistive spot and integrate the scattered field over a continuous 
distribution of spots. Since we would be neglecting the second order 
scattering, our result would be approximately true only for a sufficiently 
small perturbation of the original field. This is the method used by S. P. 
Morgan8 to obtain mode conversion losses in transmission of circular 
electric waves through slightly non-cylindrical guides. If the first order 
perturbation is not good enough, one presumably could calculate higher 
order perturbations. However, this direct method, although very useful 
in some situations, has its limitations. For instance, no matter how small 
is the dissipation, the amplitude of the wave will be attenuated with 
the increasing distance from the source while the amplitude of the wave 
"unperturbed" by the resistance would have remained constant. 

In the next section we shall state the generalized telegraphist's equa- 
tions. The remainder of the paper will be devoted to the mathematical 
technique of obtaining them from Maxwell's equations. This technique 
is simple in principle but in general cases requires rather lengthy mathe- 
matical manipulation which might obscur the main ideas. For this rea- 
son the technique will be illustrated by a series of simple examples. 

3. THE FORM OF GENERALIZED TELEGRAPHIST'S EQUATIONS 

In a previous paper' we obtained from Maxwell's equations the follow- 
ing equations for waveguides of uniform cross-section, bounded by per- 
fectly conducting walls, and filled with nonhomogeneous dielectric and 
magnetic media 

^ = -E zmjn - E vTmv„ 
d* " " (ii) 
™ _ _ V yr y _ /7' j —-— — / > i vi n* n 1 mnLn 

(IZ n n 

The equations which we shall obtain in this paper are of the same form. 
They are more general than the classical telegraphist's equations, given 
in (3), for conventional transmission lines since, in addition to distributed 
series impedances Zmn and shunt admittances 1 , (11) contains "volt- 
age transfer coefficients" vTmn and "current transfer coefficients" 'Tmn . 
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Fig. 2 — Two parallel planes, perfectly conducting to the left of the junction 
AB and imperfectly conducting to the right of it. 

The voltages, Vm , and currents, Im , are related to the amplitudes 
of electric and magnetic intensities associated with each particular mode. 
To each pair, Vm and Im , there corresponds a certain field pattern in the 
transverse plane. The choice of these field patterns is essentially arbi- 
trary.* Often the most convenient choice is the one for which the mutual 
coefficients are as small as possible so that the corresponding modes 
are as independent as possible. But this is not always the case. For 
example, take a junction between a pair of perfectly conducting parallel 
planes and a pair of imperfectly conducting planes, Fig. 2. Consider what 
happens near the junction AB when the TEM mode is traveling from 
the left toward the junction. In this mode E is constant in the vertical 
direction. Between the imperfectly conducting planes we can represent 
the entire field in terms of certain independent modes by solving the 
appropriate boundary value problem.9 If the distance between the planes 
is sufficiently large in comparison with wavelength, there is no mode in 
which E is either constant in the vertical direction or nearly constant. 
No matter how small is the surface resistance of the planes (as long as 
it is different from zero), by spreading the planes we can reach a condition 
in which the vertical electric intensity is distributed almost sinusoidally 
with height, the maximum occurs half way between the planes, and the 
minima near the planes. It is quite evident that these modes are not the 
best for representing the field near the junction. From physical con- 
siderations we expect that after the TEM wave enters the space between 
the imperfectly conducting planes, it is still the same wave for consider- 
able distance except near the planes. If we expand the field to the right 
of AB in terms of modes appropriate to perfectly conducting planes, we 
will have a mode with constant vertical electric intensity. This mode will 
be feebly coupled to higher order modes. On account of this feeble 
coupling the field near the junction is not much different from that 
which would exist between perfectly conducting planes. However, under 
the postulated conditions there are many higher order modes which 
travel with almost the same velocity as the principal mode. For this 
reason the conversion from the principal mode to these higher order 

%///////////////////////////////////; 

^777777Z777777777Z^77777777777777777/. 
A 

* Just as arbitrary as the choice of "meshes" in writing Kirchhoff's equations. 
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modes will be cumulative and eventually the transverse field pattern will 
become totally unlike that near the junction. This final pattern is best 
obtained by solving the conventional boundary value problem; but 
there is a large region near the junction where the representation in 
terms of modes appropriate to perfectly conducting planes is much more 
practical. 

In some instances, particularly when the mutual impedances and ad- 
mittances are small and transfer coefficients vanish, it is possible to cal- 
culate the mutual coefficients from the power flow along the guide and 
the power absorbed by its wall. In the middle thirties this author ob- 
tained in this way the coupling between TM and TE waves in dissipative 
cylindrical waveguides. The result agreed with that obtained from the 
appropriate characteristic equation for hybrid waves (unpublished work). 
Much more important was the application of this idea by W. J. Alber- 
sheim10 to the propagation of circular electric waves round a bend. It 
is equally possible to obtain small coupling coefficients due to small ir- 
regularities in the dielectric medium from the unperturbed field which 
would exist if these irregularities were removed by calculating the 
response to the relative polarization currents. 

In general, (11) is simpler to work with than the original Maxwell's 
equations. In particular, when the mutual coefficients (those correspond- 
ing to the unequal subscripts) are small, we can solve the equations by 
successive approximations as in problems of cross-talk between con- 
ventional transmission lines in a cable. That is, we first neglect the 
coupling between various modes and obtain the first approximate solu- 
tion. Then we calculate the voltages and currents induced from each 
mode into every other mode in a typical element of length dz (that is, 
ZmJ„(0) dz, YmnVn

w dz, etc. where /n
(0) and Fn

(0) represent the first ap- 
proximations). These induced voltages and currents we regard as im- 
pressed voltages and currents exciting waves in the corresponding modes. 
The effects of these impressed voltages and currents are then obtained 
by integration. This process can be repeated indefinitely. But usually 
the second approximation is sufficient for practical purposes. 

However, if two or more modes have the same propagation con- 
stant, we have a situation analogous to that existing in directional 
couplers. No matter how small is the coupling, all power may pass from 
one mode to the other. In this case, on account of the coupling the 
common propagation constant will be split into several nearly equal 
propagation constants. 

In concluding this section we would like to call the reader's attention 
to a rather curious situation which existed before the present derivation 
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of generalized telegraphist's equations from Maxwell's field equations. 
The conventional derivation of classical telegraphist's equations (3) led 
one to expect that in general the mutual distributed parameters will 
differ from zero. The independent modes of propagation are obtained 
ajter these equations have been solved. On the other hand, in each case 
in which telegraphist's equations, such as (5) and (6), were obtained from 
Maxwell's equations, the modes were invariably independent. Obviously, 
this independence of modes was due to the fact that selected situations 
were rather trivial: Maxwell's equations were separable in the chosen 
coordinates and the boundary conditions were particularly simple. The 
independence was purely accidental, inherent in the popular method of 
solving Maxwell's equations, and limited to the problems which could 
be handled by that method. 

4. UNIFORM STRIP TRANSMISSION LINES — THE PRINCIPAL MODE 

The simplest mode of propagation between perfectly conducting 
parallel plane sheets is the TEM mode in which the electric lines of force 
are normal to the planes and the magnetic lines are parallel to them. Let 
us assume that the x and y axes are parallel respectively to electric and 
magnetic lines. The field of this mode will then be independent of the y 
coordinate, and Maxwell's equations reduce to 

dEl JJ | dlljz dHy / | • \jji 9\ — = -juyHy -f — , —— = —ig + jue) Ex (12) 
az ox dz 

E, = —^ (13) 
g + jue dx 

For the mode under consideration Ez vanishes identically and therefore 
Hy and Ex are independent of the x coordinate as well. Essentially the 
same situation will exist if we cut the planes as shown in Fig. 3 to form 
a strip transmission line with "guards" to keep the field from spreading 
into the outer space. 

If the sheets are not perfectly conducting, Ez does not vanish on their 
surface but is proportional to the linear current densities, that is, to the 
tangential magnetic intensities 

^(0, z) = Z.HyiO, z), Ez(a, z) = -Z,Hy{a, z) (14) 

The coefficients Zi and Z* are the surface impedances of the sheets. 
Hence, Ez will not vanish between the sheets. From the heuristic argu- 
ment expounded in Section 2 we attribute this effect of finite conduc- 
tivity to the production of higher modes of propagation. For good 
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JL 
a 
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Fig. 3 — Uniform strip transmission line. 

conductors Zi and Z? are extremely small so that while E, cannot vanish, 
it can be very small. This "almost TEM" mode is often called the princi- 
pal mode. 

The transverse components of the field between and on the impedance 
strips will now be expressed in the following form 

e, = YM + y: JW'r.Os) cos — 
(15) 

//„ = + 2 N-lIM cos 
b d 

where the summation index assumes all integral values from 1 to ». 
The normalization factors 

Nn = f f cos2 —— dxdy = i ah (16) Jo •'o a £ 

are chosen to make the expression for the power flow identical with that 
for a multiple-conductor conventional transmission line, that is, 

p = - T f" EM.* dxdy = 1 F„fe)/o*W + 5 E (17) 
2 Jo Jo ^ z 

When the strips are perfectly conducting the voltages and currents, 
Fn(z) and In(z), are independent of each other; otherwise, they are not. 
From the purely mathematical point of view we can regard expressions 
(15) as representations of the solutions between the impedance strips 
by cosine series. Such representations exist because Ex and Hu are con- 
tinuous functions of x in the closed interval (0, a). 

k--.. -b - 
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Similarly, we represent the longitudinal electric intensity by a sine 
series 

Ez = X) en{z) sin — , n = 1, 2, 3, • • • (18) 
a 

When the boundaries are not perfectly conducting, such a representation 
is possible only in the open interval 0 < ^ < a since the sine terms 
vanish at the ends of the interval while E, does not. On the boundaries 
we use (14) and (15), 

E.(0, z) = |! Uz) + E ZtN-llSz) 

(19) 

E.(a, z) = y Uz) + E (-)"+1Z2AV7,(2) 

In the closed interval the series (18) represents a discontinuous func- 
tion and therefore does not converge uniformly. Moreover, its coefficients 
diminish so slowly that after term by term differentiation, the series 
will diverge. Hence, we may not substitute this series in the first equation 
of the set (12) in order to obtain the relations between Vn{z), In{z), and 
en{z) in the usual way. There is another way, however. 

To obtain the equations for the principal mode we merely integrate 
(12) with respect to x from 0 to a and note that 

jf Ex dx = 70(2), Hydz = ^ h{z) (20) 

Thus we find 

dVM = Uz) + z) _ z) 

Z (21) 

= -(o + i^)v«(z) 

We now substitute from (19) into (21), 

dJUz)=/jj^a + Zj + ZA /o(2) 

dz \ 0 0 / 

dJo(z) = (g + jue)b 
dz a 

where the summation extends over the sequence n = 1,2,3, ••• . The 
classical form of telegraphist's equations is obtained if we neglect the 

_ ^ Zi +^-)% Uz) 

(22) 
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summation, that is, the coupling of the principal mode to the higher 
order modes. 

It is worth noting that (18) for the longitudinal electric intensity has 
not been used. 

5. UNIFORM STRIP TRANSMISSION LINES — HIGHER ORDER MODES 

Telegraphist's equations for the typical higher order mode will be ob- 
tained if we multiply equations (12) by iVm"1 cos (mirx/a) dxdy and in- 
tegrate over the cross-section of the strip line. Thus, we have 

f [ ~ cos "^dxdy= -juy f [ H„N„-1 

Jo Jo dz a Jo Jo 

j J i f" [b -i ?n7ra'd^' J J dxdy + / Nm cos  — dx dy 
Jo Jo a ox 

mirx 
cos   

a 
(23) 

In the first and second terms of this equation we substitute from (15). 
The last term we integrate by parts. Thus we find 

dVjz) 
= -jcoytljz) - bN^mO, z) + ( — ) E2(a, z)] 

dz , . 
(24) /* u /% u I t mir 

Jo "O ClN m 
+ I I E. sin ^ dxdy 

To evaluate the last term we substitute from (13), integrate once more 
by parts, and substitute from (15), 

ra rb mir „ . Vltrx , . mir f fb dHy 
i i —+ i. "aF 

. mirx . . mir fj-rr / \ • m7rX 

sin dxdy = , Ar bHy{x, z) sin  
a (g + jue)aNm I a 

mir r fb it Tfiirx , "1 wV" T , 
 / / cos dxdy = - -—^lm{z) 

a Jo Jo a J (^ + jaje)a2 

In view of this and (19), (24) becomes 

dVm(z) f . , vi'ir' (Zi -f Z2)6l j. / \ 
= - r"+ (T+T^ + nj jIM) 

I Zi + (-)'% , [Zi + (-)m+"Z2]b j 
+ K— /o(2) + ^ KK /"w■ 

(25) 

(26) 
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where the prime after the summation sign indicates that the summation 
is to be extended over the sequence n = 1,2,3, • • • exce/pt n = m. 

Similarly, we obtain from the second equation of the set (12) 

= -(9 + m = 1, 2, 3, • ■ • (27) dz 

Again it should be noted that in the above derivation we have not used 
the non-uniformly convergent series (18) for the longitudinal electric 
intensity. We could have used it. In that case, however, we would have 
been faced with the necessity of justifying certain steps. There is a 
theorem12 to the effect that a uniformly convergent series may be in- 
tegrated term by term. But the series (18) is not uniformly convergent. 
Hence, if we substitute from (18) in the last term of (24), we would 
have to prove that in this special instance the term by term integration 
is permissible. Actually the non-uniform convergence is only sufficient 
condition for term by term integration and not a necessary condition. 
Even the examplesgiven in Reference 12 to show that some non-uniformly 
convergent series may not be integrated term by term in certain closed 
intervals are somewhat misleading without an explicit qualification; for 
it so happens that these series may be integrated term by term in slightly 
smaller intervals and correct results then obtained by passing to the 
limit. Nevertheless in the present case there is no reason why we should 
have complicated our derivation by using steps requiring special justi- 
fication. 

To obtain the longitudinal electric intensity we substitute from (15) 
and (18) in (13) and differentiate term by term. This differentiation is 
permissible if the series of derivatives is uniformly convergent. In the 
present case this means that the differentiation should be restricted to an 
open interval 0 < .r < a. Thus 

= - TOVF. (28) 

and 

^ = - Z , ^ v, Uz) sin ^ (29) 
(0 + Jue)aNn a 

For x = 0, a Ez may be obtained from (19). Very near the boundaries 
the series (29) converges very slowly. However, we know that Ez is very 
small there and normally we would not be interested in it. If we are, the 
best way to find it is by interpolation from the boundary values (19) and 
the interior values sufficiently far from the boundaries where the con- 
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vergence of (29) is more satisfactory. The slow convergence of (29) 
near the boundaries does not affect, of course, the validity of our teleg- 
raphist's equations. 

6. STRIP TRANSMISSION LINE WITH VARIABLE CROSS-SECTION — THE 
PRINCIPAL MODE 

In this section we shall consider strip transmission lines with variable 
cross-section, Fig. 4, which exemplify horns and waveguide to horn 
junctions. Here we can use either cartesian coordinates or curvilinear 
while in the parallel plane case the former seemed obviously the most 

T 
2a 

I 
JL. 

i>(z) 

Fig. 4 — Strip transmission line with variable cross-section. 

appropriate. It appears that cartesian coordinates are still the most con- 
venient when the shape of the boundaries is arbitrary; in a subsequent 
section, however, we shall consider an example of curvilinear coordi- 
nates. 

For the sake of simplicity we shall confine ourselves to the symmetric 
transmission line, both in geometry and in the impedance of the strips 
(that is, we shall assume Zo = Z\). In the case of symmetric mode we 
can then insert a perfectly conducting plane yt)z in the middle of the 
strip transmission line without disturbing the field.* Hence the boundary 
conditions will be 

F,'z(0, z) = 0, Ei{a,z) = —ZHy(a, z) (30) 

where Z is the surface impedance of the upper strip and Et is the com- 

* In the case of antisymmetric modes we can introduce an infinite impedance 
sheet. 
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ponent of electric intensity tangential to the strip. Since 

Et = Ez cos & + Ex sin $ (31) 

where t?(z) is the angle between the axial plane and the plane tangent to 
the strip, the second boundary condition becomes 

Ez{a, z) = —Ex tan — Z sec dHy(a, z) (32) 

In line with the heuristic argument propounded in Section 2, we shall 
express the field in the present strip line with variable distance a(z) 
between the strips in terms of modes appropriate to the case of constant a 
and perfectly conducting boundaries. From the mathematical point of 
view this amounts to expanding the field intensities in a typical trans- 
verse plane in Fourier series in x. The coefficients of the series are to be 
determined from Maxwell's equations and boundary conditions. Thus 
we shall express Ex and Hv by series (15) and Ez by (18). The latter ex- 
pression will hold only for x < a. When x = a, wefindfrom (15) and (32) 

E.(a, 2) = - — YAz) -EC-rAV' tan * Yn(z) 
(33) 

- 7o(z) -E(-)"AV Z sec 7„(0) 
0 

To obtain the equations for principal waves we proceed as in Section 4 
and integrate (12) with respect to x, taking into consideration (15). Thus 
we obtain (21). Then we substitute from (33) into (21), 

dV^ = _/0j^a + Z sec tA /o(2) _ tanj? ^ 
dz \ b b ) a 

-E(-)n^n-1 Z sec d Uz) -Zi-TN-1 tan d Vn{z) (34) 

dh(z) = _ (g + juc)b y^) 
dz a 

Note the appearance of voltage transfer coefficients in addition to the 
mutual series impedances. 

7. STRIP TRANSMISSION LINE WITH VARIABLE CROSS-SECTION — HIGHER 
ORDER MODES 

The telegraphist's equations for higher order modes are obtained in 
much the same way as in Section 5. We must only remember that a is 
a function of 2. The variation of a with z will introduce extra terms in our 
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filial equations. Thus if we multiply the first equation of the set (12) by 
iVn-1 cos nirx/a and integrate over the cross-section of the line, we 
find first 

f f ^ Nm 1 cos dx dy 
Jo Jo dz a 

= - [>" + (Trfe] 7"(z) + * 

Differentiating the series for Ex as given by (15), we obtain 

dEx _ 1 d7o(2) _ a{z) 

(35) 

dz a dz 

\dVn ,, _i nirx Nn'(z) 
+ E|^-n N-1 cos ^ ^ V„ cos ^ (36) [_ dz a Nn2 a 

, mrxa'(z) T- . nirx 
+ Ar 0 Sm   Nnd- a 

Substituting from (36) in (35) and using (33), we have 

d-^f = —ZmmIn - Y.'Z^In - E "T^V. (37) 

where the prime denotes that the summation is extended over the se- 
quence n = 1,2,3, • • • except n = m, and 

Z™ = jaii + , f* , . + mx'z sec V {g + ju€)a2 

Zmn = { — T^N^Nn^bZ sec & if m 9^ n, m ^ 0, 5^ 0 
vTmn = {-)m+nN-lN-lhta.nd 

mra'(z) 
NmNnd- JO >10 U. U 

(2) f f mirx . nirx , . 
—r / / x cos  sin -— dx dy 
n a- Jo Jo a a 

m 9* n, m 9* 0, n y* 0, 

^ .T _2. , | ,, r,T -1 7mra'{z)h fa . 2nnrx , 
Tmm = Nm 5 tan i? + Nm Nm - 0 A. 0 2 / x sin dx 2Nm

2a2 Jo a 
Vri mm = iVm o tan -f i\m I\m — -^rr^r lo 

Zmo = { — Y'ZNvE1 sec d, m Q 

vrji _ (—)mb tan d wiO f. j NmCL 
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Similarly we find 

where 

'T = — -* mn 

-(y+jW)^.-E'w. 
dz 

nira (z) f C mirx . nirx , , 
——/ / x cos sin dx dy, 
a2NmNn Jo Jo a a 

m n, 7717*0, n 7* 0 

(39) 

■T AT'.y-' mm iymiym 2a?Nm*ioio 

'Tmo = 0 

. 2vnrx , , 
x sm dx dy 

o Jo a 

(40) 

8. BENT STRIP TRANSMISSION LINES — THE PRINCIPAL MODE 

Let us now suppose that the strip transmission line (with the guard 
strips) shown in Fig. 3 is bent uniformly in the xz plane. After bending, 
the x lines will be radii emerging from the axis of bending, the y lines 
will be straight and parallel to the axis, and the z lines will be circular 
arcs coaxial with the axis. The section of this structure by the plane 
y = Ois shown in Fig. 5. The curved z axis of the bent coordinate system 

* 

 O 

2-^ 

\ 

Fig. 5 — Uniformly bent strip transmission line. 



GENERALIZED TELEGRAPHIST'S EQUATIONS 1015 

will be chosen half way between the strips. The "distance" z between the 
radial xz planes will be measured along this curved z axis. The coordinate 
x is the shortest distance between the given point and the yOz coordinate 
surface. The differential distance between two points will then be 

di = dx -{• d if -\- (l+lp (41) 

where R is the radius of curvature of the z axis and is, in general, a func- 
tion of z. The last term is obtained from the fact that the distances along 
the z lines between radial planes are proportional to the radii of curva- 
ture. Hence, if dsz is the differential distance along a typical z line, the 
ratio dsz/dz should equal the ratio {R + x)/R, or dsz = (R + x) dz/R. 

In this bent cartesian coordinate system Maxwell's equations take the 
following form 

dEx . f,,x\rr,d 

dH_ 
dz 

dE 
Hz 

dHz 
dz 

K-iW 

(42) 

  1 / dHy dHx\ H — ^ 
jut \ aa) dy J ' 2 juy \ dx dy 

There is no loss of generality in the apparent assumption that <7 = 0 
since the general results may be obtained if we replace e by e + (g/ju). 
When the field is independent of the y coordinate, the equations become 

E-=]Ld-£ 

(43) 

We shall now express the field in terms of modes appropriate to per- 
fectly conducting plane strips. To do this we can use (15) provided we 
replace a: by a; + (a/2), the transformation being needed because x is 
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now measured from a different reference surface. Thus we obtain 

e, = YM + Y,N-1VMcoS™(x + %), n = I, 2, 3, • • ■ 
a V 27 (44) 

where the normalization factors are still given by (16). The boundary 
conditions are 

E. (-2 . ^) = y U') + E ZiN.-'lnM 
(45) 

Telegraphist's equations for the principal mode are obtained once 
more merely by integrating the first two equations of the set (43) with 
respect to x and using (44) and the boundary conditions (45). Thus we 
find 

dV^ = + Z' + Zi + (Z2 ~Z')al h(z) - E ZM) 
dz L b b 2Ho J 

dI^ = y0(z) _ 2 YmVM 
dz a 

(46) 

where 

{-YZt+Z, , [(-)nZ2 - Zja 
Zon Wn ^ 2RNn 

+ imC*°°°nihl)dlc (47) 

^ Cx cos (x+1)dx 

These equations are valid even if the strips are bent non-uniformly so 
that K is a function of z. 

9. BENT STRIP TRANSMISSION LINES HIGHER ORDER MODES 

To obtain telegraphist's equations for the higher order modes we mul- 
tiply the first two equations of the set (43) by 

,T _i mir i . - 
Nm cos — ( ^ ^ 

a I) 
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and integrate over the cross-section of the strip line. As in previous 
examples the last term in the first equation should be integrated by parts. 
Then we should substitute for Et under the integral sign the third equa- 
tion of the set (43) and once more integrate by parts. Finally, we should 
substitute for Hy its series representation. Thus we shall find 

dVm f. , mV2 , 2{Zi 4- Zz) , Zz — Zi~\ T 7 T —J— — — Join +   2 ' 4 5 2^1 ^rnnln 
dz L juw « ^ J /40. 

(48; 

^ = —jhifVm - E' Y„nV„ 
az 

where the summations are extended over the sequence n — 0,1,2, • • • 
excepting n = m and 

2[z1 + (-r+%i , (-r+%-Zi 
^ inn I r) a /t 

+ Ta fa + C X COS [(m _ n),r 6 + d] dX (49) 

+wa fa - m) fax cos [(m + n)T S+Mdx 

7-" = 2£e L'lx cos V (x + l) cos T +1) dx 

for n 5^ 0, m. For n = 0 the mutual parameters are given by (47). 
In the open interval —a/2 < x < a/2 the series for Hy may be dif- 

ferentiated term by term. Hence, the longitudinal electric intensity may 
be obtained from the last equation of the set (43). Thus, between the 
boundaries we have 

Ez{x, 2) = -E {mr/a)N~1In(z) sin ^ + f) > (50) 

— a/2 < x < a/2 

On the boundaries we have (45). 
The above equations are still valid when 22 is a function of z; but a and 

h must be constants. 

10. EXPANDING STRIP TRANSMISSION LINES IN CURVILINEAR COORDI- 
NATES — A CASE IN WHICH MAXWELL'S EQUATIONS ARE NOT SEPA- 
RABLE 

The separate sets of terms in the series representing various field 
components in all preceding problems satisfied Maxwell's equations. The 
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entire series were required to satisfy the boundary conditions. In the 
present section we shall express the field in terms of sets of functions 
which individually do not satisfy Maxwell's equations and which may 
or may not satisfy the boundary conditions. The example we are about 
to consider will illustrate a method for solving Maxwell's equations, 
when the variables are not separable, by reducing them to generalized 
telegraphist's equations. 

Let us assume that the boundaries of the expanding portion of the 
strip transmission line in Fig. 4 are circular cylinders tangential to the 
plane boundaries to the left of the xOy plane. This is, of course, a special 
case of the problem treated in Sections 6 and 7. In the present section, 
however, we shall use curvilinear coordinates. In such coordinates Max- 
well's equations are 

These equations have been arranged in a form convenient for problems 
in which wave propagation takes place along the w lines. In some cases 
it is convenient to treat the products eiEn , eiEv , e\Hu , eiHv rather than 
the field components themselves as dependent variables and the paren- 
theses around these products in the preceding equations are intended to 
call attention to this fact. 

The choice of a particular coordinate system for solving a physical 
problem depends on various factors. The cartesian system chosen in 
Sections 6 and 7 is good for several reasons: Maxwell's equations have a 
particularly simple form, boundary conditions are easy to express for 
almost arbitrary boundaries, the basic transverse field patterns con- 

(51) 

1 f d{eiEu) _ djezEy) 
161621 du 
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T - c  

W-CIRCLE 

,r-. ' 

■U - CIRCLE 

23 -I 

Fig. 6 — Biaxial coordinates. 

form to those in waveguides of uniform cross-section. For this last 
reason, the cartesian system is particularly convenient for the analysis of 
junction sections between two waveguides of rectangular cross-section. 
Biaxial coordinates13 are more convenient in some respects for the 
analysis of junctions between two-dimensional waveguides and two- 
dimensional horns, Fig. 6, although we are not prepared to say that they 
arc more convenient than cartesian coordinates when all factors are 
taken into consideration. Here we shall use biaxial coordinates solely to 
illustrate the conversion of Maxwell's equations in curvilinear coordi- 
nates into generalized telegraphist's equations. 

Biaxial coordinate system consists of two orthogonal systems of 
circular cylinders perpendicular to a system of parallel planes. A section 
by one of these planes is shown in Fig. 6. Circles of one system are non- 
intersecting and their centers lie on the horizontal axis. Circles of the 
other system intersect at the foci F\ and Fi\ their centers lie on the 
vertical axis. The non-intersecting circles will be called the w-lines (lines 
of constant u and varying w), and the intersecting circles the n-lines. The 
coordinate u is the shortest distance between the w-circle and the vertical 
axis; w is the intercept of the w-circular arc on the vertical axis (each 
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w-circle will be split for our purposes into two arcs, one above and the 
other below the focal line F1F2). 

The radius of a typical te-circle is 

\((i - u. 
2 \u t, 

and the distance between the center and the vertical axis 

The radius of a w-circle is 

-W- + - 
2 W w 

and the distance of its center from the horizontal axis 

1 /w> _ A 
2 \/ wj 

Depending on whether this distance is positive or negative, the center 
is above or below the horizontal axis. In this coordinate system 

_ 1 + (w/C)2 p — ] p — ^ ~ (^/^) (r;o) 
61 " r+ {uw/py • 2 ' 3 i + (uw/i') 

A section of a waveguide to horn junction is characterized by the 
following parameters: the length h, the width of the narrow aperture 
2a, the width of the wide aperture 2c, and the horn angle 2^ at the wide 
aperture. If /i/a and ^ are given, then 

c/a = 1 + (/i/a) tan f/a = [1 + {2h/a sin ^)]1/2 (53) 

From the last equation we determine the semi-focal distance ( for the 
coordinate system. The coordinate wq of the "wave-front" at the wide 
aperture may be obtained from 

aw0/f = tan (54) 

As in Sections 6 and 7 we shall consider those modes for which the 
field is independent of v and for which (51) becomes 

(csEw) 
dW dU - (55) 

dHv ■ r , v 1 dH" 
—— = —ju€(ez/ei)(eiEu), Ew = T—73— 
dw ■ JtoeCi ou 



GENERALIZED TELEGRAPHIST'S EQUATIONS 1021 

We have already examined several cases with imperfectly conducting 
boundaries and in the present example we shall assume that the bound- 
aries are perfectly conducting. We shall confine ourselves to symmetric 
modes for which Eu is perpendicular to the vw plane. We shall express 
our field in the form analogous to (15); thus 

r, Vo(w) , ^ -r _lT. , , niru 
eiEw = —  1- 2^ Vn(w) cos — 

a a 

Io(w) , AT-It r...\ ^nTU (56) Hv = + X NrT'Uw) cos 
o a 

Nni= ah/2, n = 1,2,3, 

where b is the width of the strips. Substituting in the last equation of 
the set (55) we find 

„ W7r T / \ • nwu jueeiElc = - 2^In{.w) sm(57) 

The boundary conditions are thus satisfied automatically. If we integrate 
the first series in the set (56) along a typical w-line, we obtain 

f eiEu du = [ Eu dsu = Vn(w) (58) 
Jo JO 

Hence, Vo(w) is the transverse voltage from the middle plane of the 
strip line to the upper strip, measured along a M-line. It should be noted 
that in the narrow aperture w = 0, a = x, ci = 1 and series (56) are 
identical with (15). 

To obtain telegraphist's equations for the principal mode we integrate 
the first two equations of the set (55) along a a-line and substitute from 
(56); thus we have 

-j—^ — —Zoolo — Zoih Znolz — • • 
dw 

= -FMy„ - YoiVi - Y02V2 - 
dw 

(59) 

where 

du 
ei 

y jun r „ „ v - fe3 

Zoo — -r- / C1C3 du, 100 —   / — 
b jo a Jo Ci 

„ icon f" niru , jueb fa 63 niru , ,rrt~. 
Zltn=

J— CjCg cos du, To„ = — / -cos du, (60) 
Nn Jo a J\„ Jo Ci a 

n> 0 
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The integrals for Zoo, Zoo, and Fo„ may be expressed in terms of ele- 
mentary functions, and the integrals for Zon by power series since 

6163 = [1 + + {uw/t2f]-2 (61) 

= [1 + {w/tf][l - - Huw/ff + 3(W^)4 - •••] 

In practical cases u/t and uw/t2 are relatively small and a few terms of 
the series will suffice. 

To obtain the corresponding equations for the higher order modes 
we should multiply the first two equations of the set (55) by Nm 

1 cos 
(mru/a) and integrate over the cross-section of the strip line by the uv 
surface. Thus, we find 

juub r" miru niru . 
Zmn = exe3 cos — cos —- du 

NmNn Jo a a 

mnvh f" 63 . miru . niru , 
+   0,r ^ / - sm  sin du (62) juiecPNmNn Jo Ci a o- 

jueb r €3 miru niru ,   / — cos  cos du 
mn NmNnJo ex a a 

for all m, n not equal to zero. 

11. TRANSVERSE ELECTRIC WAVES BETWEEN PARALLEL PLANES 

Let us now see what happens in the case of TE modes. Again we shall 
consider the simplest case, the case of parallel planes, Fig. 3, and assume 
that the field is independent of the ij coordinates. The only non-vanishing 
field components are Ev , Hx and Hz , and Maxwell's equations become 

dEv . u dHx ,dHz 

(63) 

H, = 
JCJ3H OX 

For perfectly conducting planes the general solution is of the following 
form 

Ey = ^Nn^Vniz) sin (nrx/a), Hx= -J^Nn~llniz)sm{mrx/a) (64) 

where the normalizing factors are given by (16). We now assume that 
between (0 < x < a), the imperfectly conducting planes the general solu- 
tion has still the same form. Putting it differently we expand the new 
solution in a sine series. Since the sine terms vanish on the boundaries, 
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the series will represent the new solution only between the boundaries. 
Since these series represent discontinuous functions, their coefficients 
will ultimately vary as 1/w; therefore the derivative series will diverge. 
Hence, we cannot obtain Hz by substituting from (64) into the third 
equation of the set (63). For this reason, we assume an independent series 
for Hz , 

Hr = y. Nn~lin(z) cos (nrx/a) (65) 

On the boundaries the ratios of the tangential electric and magnetic 
intensities equal surface impedances of the boundaries, with appropriate 
signs, 

Eu(0,z) = -ZJIz{0,z) = -Z Z.N-'iniz) 
(66) 

Ey(a, z) = Z2Ht{a, z) = £ {-)nZtN~lin{z) 

The cosine series (65) represents a continuous function and its coeffi- 
cients will decrease fast enough to make the derivative series conver- 
gent. So we substitute from (64) and (65) in (63), combine the terms 
containing similar sine terms, and equate the coefficients of the resulting 
sine series to zero. Thus we obtain 

= -jvnUz). = -(? + M)VM + — (67) 
dz dz a 

We now multiply the third equation in the set (63) by iVm
_1 cos 

(mirx/a) and integrate, 

/7' Jo Jo 
H,Nm cos dx dy 

a 
6 a (68) 1 f f dEy _i mirx 

= — — I / —— Nm cos dx dy 
juy Jo Jo ox a 

On the left we substitute from (65), and on the right we integrate by 
parts, 

. / \ b mirx „ , v f im(z) = - .—rr- cos Ev{x, z) 
a (69) 

1 f f n tutt . mirx , , — ^— / / Ey -rzr- sin dx dy 
7a)U Jo Jo fliVm a JW/X 

In the first term on the right we substitute from (66). In the second term 
we substitute the series for Ey . Since this series is not uniformly conver- 
gent in the closed interval 0 ^ a; ^ a, we cannot be sure that we shall 
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get the right answer by integrating the series term by term. What we can 
do is to integrate in a slightly smaller interval in which the series con- 
verges uniformly, and then pass to the limit. In the present case the 
answer turns out to be the same as that obtained when we integrate 
term by term in the dosed interval. Thus we find 

iM = -bEZl + '■»(*) - ^rm(2) (70) u jo}iiNmNn juna 

If we solve this set of equations for in{z) and substitute in (67), we shall 
obtain telegraphist's equations. 

Rearranging the terms in (70), we have 

r j + 2(z. + a)! iM + •£'2[Zl mw 
juna J 

(71) 
mir 

. VM) jco^a 

Neglecting the summation, we obtain an approximate solution 

i.(z) = _^IL f 1 + 2(Zi + ZJV Vm(z) (72) 
jw/ia L juna J 

and approximate telegraphist's equations, 

dVn . T —— = -JUHlr 
dz 

dK f , ■ , 1 V 
lU ~ ^ + 2(Z1 + Z2)aJ n 

(73) 

Instead of solving (70) for ^(z) we can obtain Vm(z) from (70) and 
substitute it in (67), after replacing n in (73) by m. 

12. WAVES ON INFINITE CONDUCTORS 

In this section we shall consider waves on two semi-infinite conductors 
tapering to a point, Fig. 7(a), and waves outside a certain sphere (S), 
Fig. 7(b), which encloses the terminals of conductors which are not 
tapered to a point. In the latter case the sphere (S) will enclose a source 
of power; in the former case we assume an idealized point source of 
power at the origin 0. For simplicity we shall assume that the structure 
possesses circular symmetry about 0.4 and plane symmetry about the 
plane perpendicular to OA at 0. In this case there will be waves in which 
the magnetic lines are circles coaxial with the axis of the structure. In 
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A Q 

102.5 

J= Tp 

(a) (b) 

Fig. 7 — Infinite conductors excited by a point source (a) and by a source of 
finite size (b). 

spherical coordinates the appropriate field equations are 

j- irEe) = —jionirHj + ^ (rHv) = -(g + jwe) (rEe) or ov or 

Er = 
1 

id + jue)r2 sin 0 dd 
^ (sin 6 rHv) 

(74) 

Let T3 be a typical point on the upper half of the structure and \J/ be 
the angle between the radius OP and the axis 0.4. Let t? be the angle from 
the radius to the tangent plane PQ. Then the boundary conditions are 

Er{r, \f/) cos i? — Eg(r, \p) sin t? = ZHv(r,\l/) 

Er(r, ir — \J/) cos t? + Eg(r, iv — \J/) sin t? = —ZH^r, tt — ^) 
(75) 

where Z is the surface impedance. Thus, at the surface of each conductor 
the radial electric intensity may be expressed in terms of the meridian 
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electric intensity and the magnetic intensity 

Er{r, i) = Ee(r, t) tan t? + Z sec dH^r, \p) 
(76) 

Er(r, tt — if/) = —Erir,\l/) 

Let us further confine ourselves to the symmetric modes in which the 
currents passing through the cross-sections of the upper and the lower 
conductors equidistant from 0 are equal and similarly directed. Then we 
shall represent the field by the following series 

rE. = + E rn(r)N-l{r) dM^°S ^ , 
iVo(r) sin 0 

tk Q = k — ^ 

rH, = -ML + E h{r)N-\r) aM^°s^ , (77) 
27r sin 6 ov 

^ 6 tk T t 

E, = -E , Lir ! ^ «). i<e 
(g + J0>e)r2Nm{r) 

where 

M„ (cos 6) = ^[P„ (cos 0) - Pn (-cos 0)] (78) 

and the P-functions are Legendre functions. The summations are ex- 
tended over the roots n of the following equation; 

Mn (cos i/O = 0 (79) 

The normalizing factors are 

f' ^ dd d<p 0 . t 
No = / -r-Z = 2 log cot - 

sin 6 2 

Nn
2 = 2* j ^ M„(cos 0) J sin 9 d9 (80) 

= 2irn(n + 1) / M„(cos 0)]2 sin 9 d9 
J^, 

Each individual term in (77) will satisfy Maxwell's equations and the 
boundary conditions if the conductors happen to be perfectly conducting 
cones. Otherwise we need the entire series. The function Fo(r) is the trans- 
verse voltage between the conductors along a typical meridian; /o(r) 
is the current in the upper conductor associated with the principal 
wave. The remaining functions, F„(r) and /„(r), are proportional to the 
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electric and magnetic intensities of various modes. In view of (77) the 
boundary conditions become 

„ ( tan T/ / a . tai1 ^ dMJicos xf/) rr. , . 
R(r'w 7o(r) + E TVT w VM 

(81) 
. Z sec $ T , . . ^ Z sec t? 6Mn(cos V') r /■ \ 

+ ^ •—r Io(r) + 2- —n —— ^(r) 27rr sin xp rNn dxp 

Equations for the principal mode are obtained as in previous examples 
by integrating the first two field equations (74). Thus, we find 

= Iog cot * 7o(r) + Er( - Er(r, t) 
ar tt 2 

(82) 
dh{r) = 7r(ff + jcoe) y / n 

dr log cot (xl//2) 0 

Substituting from (81), we obtain the final result. 
To obtain the equations for the higher mode we shall multiply the 

field equations by the normalized characteristic functions and integrate. 
It is important to remember that p, and therefore n and Nn are func- 
tions of r. On one occasion we shall have to integrate by parts as follows 

II 
-1 dMm{cos e) . dEr .. . 

—-—sme — dedv 

= ^N-'Er{r. 6) aM"'C°S 9) sin B 
ad (83) 

(m + l)Mm{cos 6) sin 6 dQ dxp 

mint + 1) Ur) + 2lfNm-xEr{ri 9) dMm(cos 0) ^ ^ 

(9 "b i^cjr2 1 de 
On another occasion we have to take into consideration the above- 
mentioned dependence of n and Nn on r, 

// N-> e) sin 9 1 [y„(r)iVr'W de dv 

= 7.(r) // ^ k-W aMf 0e a)1 
(84) 

sin 0 d0 d^, if n ^ m, 

= £1^0 + VM 11aiUoos e) a ^m_1(r) aM„(cos 9) j 

sin 0 dO dtp 
if n = m. 
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In the end we shall obtain (11) with the following values of the trans- 
mission line parameters, 

Z^^1ogcotW/2)+^ 

7r(g + Jto) 
log cot (\f//2)' 
ng -T JUJ r _ n 

1^00 = i TTTToN > ^T-oo — u 

rrp _ tan t? 
r sin \p log cot (i/'/2) 

v , 2 tan & dMnicos $) ^ ^ n 

^ 2Z sec j? aMn(cos i/') 
Zon VN7~ di 

Yon = It g„ = 0, n 5^ 0 

z = jW + ^ + 4,rZ 860 * pJUcos 0)T sin Zm JW + (g + ywe)r! -I- rNj L J 

m ^ 0 

v _ 47rZ sec t> aM„t(cos dMn{cos j) h ^ m 

rNmN„ di di 

m^O (85) 

r ir tan aMm(cos rp) dMn(cos \p) ^ 
"" _ rNmNn d* d\P mn 

+ If Nm-> 1 [ivr'w aM-(;r
oa sinarf^ 

m 9^ 0, n 9^ 0; 

Zm0 — Zom, Zmn — Znm, 

= 27r tan ai¥n(cos i/') m ^ 0 
:rm0 log cot (^/2) dp 

Ymm = g + jut, Ymn = Ynm = 0, n* m 

= // ^ s sin e 

m 9* 0, n 9* 0 
JTm0 = 0 
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13. WAVES ON SEMI-INFINITE CONDUCTORS 

The telegraphist's equations for a single conductor, the upper con- 
ductor let us say, may be obtained by a few modifications of the equa- 
tions in the preceding section. There will be no terms outside the sum- 
mation signs in (77). The function Mn (cos 6) should be replaced by 
Pn ( — cos 6). The integrals with respect to 0 should be evaluated from 
6 — \j/ to 0 = tt rather than from 6 = ip to t — \f/. 

14. WAVES OVER A PLANE IMPEDANCE SHEET 

Under some conditions a plane earth may be approximated by an im- 
pedance sheet. Such a sheet is a cone of angle p = ir/2 and the teleg- 
raphist's equations for it will be obtained if we replace Mn (cos 0) by 
Pzn+i (cos 0) where n = 0,1,2, •• • . The integrals should be calculated 
over the upper hemisphere. Of course, t? = 0, and hence all the voltage 
and current transfer coefficients vanish. 

The normalization factor becomes 

+ 11 (86) V2w + 1 

If the distributed self-impedance of a typical mode is expressed as 

Zmm = Zmm
0 + Zmm' (87) 

where Zmm
0 is the distributed self-impedance for a perfectly conducting 

sheet and Z,nm' is due to the finite surface impedance, then 

m{m + 1) 
Zmm = jufl + 

((J + jue)r- 

7 ' - f-y+i (2m + 1)(1.3.5 - • •m)2Z 
{ w(m + l)[2.4.6---(m - 1)]V 

(88) 

The distributed mutual impedances are given by 

Z mn = \/ ZmmZnn (89) 

The distributed admittances are independent of the surface impedance 
of the sheet; hence 

Ymm = g jcoe, Ymil — 0 if m ^ n (90) 

In all these equations m and n are odd integers. 
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15. DERIVATION OF APPROXIMATE TELEGRAPHIST'S EQUATIONS FOR THE 
TEn MODE IN A CIRCULAR WAVEGUIDE-TO-HORN JUNCTION 

It is probably safer not to make approximations sooner than abso- 
lutely necessary provided we are willing to tolerate a mass of detail which 
later turns out to be unnecessary. Still, if the technique of conversion of 
Maxwell's equations into telegraphist's equations is thoroughly under- 
stood, it may be possible to make ah initio approximations without undue 
risk of omitting something more important than we are willing to neglect. 
To illustrate such ah initio approximations we shall obtain telegraphist's 
equations for the dominant mode in a gentle waveguide-to-horn circular 
junction. At the start we shall neglect all the coupling coefficients except 
those between TEn and TMu modes. Even these will be retained only 
part of the way in order to explain what we should do if we neglect them 
from the beginning. In the next section we shall discuss cases in which 
we should not neglect all the coupling coefficients. 

First of all we shall exhibit azymuthal variation of the field. 

The factor tt 1/2 has been introduced to normalize the sine and cosine. 
If we retain only the first radial TE and TM modes, we have 

Ep = tt 11sin <p 

Hv = Tr~luHlp sin ip 

Ep = 7r-1/2&v COS <p 

Hp = ir~il2Hp cos tp 

Ez = sin (p 

Hz = TT 112Hz cos <p 

(91) 

&p ^ i\r17(z)(xpr1Jri(xp) + tf'VWJx'ixp) 

H? = Ar_1/(z)(xp)_1-/i(xp) + N~1i(.z)Ji(xp) 

Ev ^ Ar1F(z)Ji'(xp) + frlV{z){xprxJi{xp) 

Hp ^ N~xI{z)Ji{xp) - ir17(z)(xp)-1./1(xp) 

(92) 

where 

xa = 1.841*-- xa = 3.83* •• (93) 



(94) 
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and 

N2= f ([J/Cxp)]2 + (xp)-2[^i(xp)]2)pdp 

= [ [^:(xp)]2p dp = i a2 [l - [Ji(1.84)]2= (0.345a) 

N2= r ([//(xp)]2 + (xp)-2[Ji(xp)]2)p dp 
Jo 

= [ [di(xp)]2pdp = ^a2[Jo(3.83)]2 = (0.285a)2. 
Jo 

Maxwell's transmission equations for transverse field components in 
cylindrical coordinates are 

rr ■ dE2 — - -j^Hr + — 

aH* ,• w j_ dH- 
^ 

SE, ■ „ , aE. (95) 

— = jO}pHp + — 
OZ pop 

dH, • w j_dH, — = jcceE, + — 

In addition we have the following equations for the longitudinal field 
components 

rP "it" w _ fr= jac',E- (96) 

In view of (91), (95) becomes 

^ = -jwd, - p-'tt, 
OZ 

8P - (97) 

= jupHp + P 1fit 
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while from (92) and (96) wc obtain 

Hz = V(z)(j^NyixJi(yp) ^ 

Ez = -mU^NT'xJxixp) 

The expression for E:, even when completed by inclusion of the higher 
order radial modes, is valid only in the interior (p < a) of the junction. 
On the boundary we have 

Ez{a,z) = —Ep{a,z) tan t>(z) (99) 

To obtain the telegraphist's equations we multiply the first column of 
(97) by 

N 1(xp) lJ\{xp)pdp 

and 
N~1JI{xp)P dp 

respectively, add and integrate from p = 0 to p = o. The second column 
is similarly treated. The following are auxiliary calculations. In view of 
(92) 

f lHrN-l(xp)"Uxp) + dp = -/{*) (100) 
JO 

The terms involving I(z) have disappeared after integration. To obtain 

f N~1{xp) lJi(xp)p dp + [ (xp) dp (101) 
Jo dp Jo 

we integrate the first term by parts 

ti.N-'x-'Uxp) " - I" ^ATVAxp) dp (102) o Jo 

The last term of this expression cancels the last term in (101); thus the 
total is 

Bz(a,z)x~1H~1Ji(xa) = -EP(a,z) tan^(z)x^E~lJi(xa) 

= (xA^)_V1[Ji(xa)]2 tan &V(z) 

- (xNN)~lJi(xa)Ji(xa) tan #V(z) (103) 

At this point let us note that if we had decided to neglect the TMn 
mode at the beginning, we would have set %]z = 0 in equations (98). But 
in obtaining the telegraphist's equations from (97) it would still have 
been necessary to retain until after the integration has been per- 
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formed and the boundary condition utilized. To obtain 

h^Jiixp^pdp (104) 

we also integrate by parts. This time expression (104) is found to equal 

- f HifT'xpJJxp) dp = -A- 7W (105) 
Jo JUfX 

In the calculation of 

J° [f N-XxpT'Uxp) + a-^ ATVXxp)] P dp (106) 

and a similar integral involving II# and flp we must remember that 
a, x, and N are functions of z. Thus, this integral will be equal to 

+ V{z) ^xNprlJ1(xp) ^ [(xNpylJi(xp)] 

+ N-Wixp) jz [N-'J^xp)]) P dp 

do?) 

+ V(z) /o ((xNpr'Jrixp) ^ [N-W(xp)] 

+ A^'Ji^xp) ^ [(xiVp)_1./i(xp)]^ p dp 

At this point we should point out another reason why we temporarily 
retained V(z). Each equation in a complete set of telegraphist's equations 
contains only one derivative of either a voltage function or a current 
function. To derive such a set of equations we must perform a weighted 
integration of Maxwell's equations with appropriate weighting factors 
as in (10G). When F(2) is retained and wrong weighting factors are used, 
the derivative of V^z) with respect to z will not be eliminated and, hence, 
we shall be warned of our error. But when we neglect V(z) ah initio, we 
lose this self-checking feature. However, after we acquire some experi- 
ence with this technique, we should not need the self-checking inherent 
in the retention of other modes. 

The final equations for the dominant mode in a wave-guide-to-horn 
junction are 

= -zi - v TV, ~ = — YV - 'TI 
dz dz 

(108) 



1034 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1955 

where 

lT = T, VT = T + 

Z — jun, Y = jue + 
(1.841)2 

junlaiz)]2 

[Ji(xa)]2 tan d{z) (109) 
x J - x*N2a 

= T + 0.837a-1 tan d{z), 

with T given by the integral assoicated with V(z) in (107). 

16. EFFECT OF COUPLING ON DEGENERATE OR NEARLY DEGENERATE 

Degenerate modes are the modes which have the same velocity of 
propagation when the coupling is absent. With such modes the coupling 
may be very important even when its magnitude is small. The reason is: 
the transfer of wave motion from one such mode to the other will be 
cumulative in the direction of propagation. This effect is illustrated by 
directional couplers or by beats in two coupled pendulums having the 
same resonant frequencies. In such cases the resistance of the waveguide 
wall should not be neglected for it may have an important effect aside 
from introducing attenuation. Thus, no matter how small is the coupling, 
the degenerate modes should be considered as a group even though their 
coupling to other modes may be neglected. 

The same is true of nearly degenerate modes as in the case of waves 
over a plane impedance sheet at large distances from the source, such as 
the current element in Fig. 8. 

17. COAXIAL CONDUCTORS-CIRCULARLY SYMMETRIC MODES 

Heretofore, we have considered waves in waveguides completely 
shielded from the external space. A complete shielding implies a coating 
of that surface of a waveguide which is exposed to the external space 
with a substance which is either a perfect electric conductor or a perfect 
magnetic conductor. In practice such a perfect shielding is impossible. 
The foregoing equations are thus approximate, even through the effect 
of approximations on waves in the guide may be negligible for all prac- 
tical purposes. On the other hand, the effect of imperfect shielding on 
the "cross-talk" or interference between two waveguides may be im- 

MODES 

Fig. 8 — A vertical current element above an impedance sheet. 
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portant, especially at relatively low frequencies, even though the mag- 
nitude of cross-talk is small. The most practical way to calculate this 
cross-talk between two parallel waveguides, let us say, is to solve the 
above approximate telegraphist's equations for one waveguide. Then, we 
can obtain the tangential electric intensity on the outer surface of this 
waveguide from that on the inner surface. This electric intensity will be 
impressed on the "two-wire line" formed by the two waveguides. Re- 
sulting currents can be calculated, and from them one can obtain the 
tangential electric intensity on the inner surface of the second wave- 
guide. Finally, we can obtain the waves in the second waveguide which 
are stirred up by the tangential electric intensity. This method is illus- 
trated elsewhere.14 

The same method can be used for a single waveguide in empty space — 
an impractical situation — if we wish to calculate the first approxima- 
tion to the feeble external field. The rest of this section is of theoretical 
interest only. Our object is to show that it is possible to obtain a set of 
telegraphist's equations for a waveguide which includes external waves 
as well as internal. 

As a concrete example we shall take a pair of coaxial cylinders and 
consider circularly symmetric modes. First, we shall derive the equations 
for the internal waves only — as we did in the preceding sections — and 
then point out the modifications which must be introduced in order to 
include the external waves. As usual we start with Maxwell's equations 

dEp . jj . dEz dlhp / i • N 77i 
—— = -J<anHv + ~~7. , -T— = -{g + jue)Ep dz ap dz 

Ez = 1 d(pHv) 
(g + jue)p dp 

and the boundary conditions 

Ez{a,z) = Z\Hv{a, z), Ez{b, z) = -£2/^(6,2) (111) 

It is the boundary conditions that we shall have to modify when we wish 
to include the external modes. The rest of the derivation follows along 
the lines already discussed. We have the expansions for the transverse 
field components in terms of modes appropriate to perfectly conducting 
coaxial cylinders 

E' = I7'^; . + E p log (o/a) 
(112) 

JL = + E N-lU(z)Rj(p) 
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The radial functions are defined by 

P ^ ^ + x» pR- = o, RM = Rjb) = 0 (113) 
dp- dp 

Hence, 

Rm(p) = Jo(Xmp)No(Xmh) — No(XmP)Mxmh) (114) 

where Xm is a root of 

Jo(Xm(l)No(Xmb) — No(Xma)Jo(Xmb) = 0 (115) 

The normalizing factors are obtained from 

Nm
2 = 2r f [Rm

,(p)l2pdp = 2irxm [ [Rm(p)]2pdp (116) 
J a Ja 

The longitudinal electric intensity may be obtained (in the present in- 
stance) from the third equation of the set (110) and from (112), 

E- = T" w IMRM, 0 s p < a (117) (ff + JO}e)Nm 

However, we should remind the reader that the telegraphist's equations 
may be obtained without this equation since we can eliminate Ez from 
(110) before embarking on their derivation. 

Multiplying the first equation of the set (110) by Np~1Rp'{p)p dp dip 
and integrating, we find 

[" f N-'r;(p)p <IP dv = 2TR,(p, z)N-'R„\p)p " 
JO Ja Op <• 

- [" f" K-'E.J-[pRp'(p)]dpdv Jo Ja dp 

= 2irEz{b,z)N.jr
lbRp(l>) - 2irEz(a,z)Np~1aRp

f(a) (118) 

+ XpNjT1 [ [ EzRp(p)p dp dip JO Ja 
2 

= 2rEz(b,z)N-1bRp
,(b) - 2irEz{a,z)N-1aRp\a) - - Ip(z) 

Using the boundary conditions (111) and treating the second equation 
of the set (110) in the already familiar manner we obtain the distributed 
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parameters for the internal modes 

Zrp = juii + + 2TrNp~2{Zia[Rp' {a)]2 + Z26[K/(i.)]!), 
g + jue 

ZPo = N-'iZrfr'iz) + Z2Rp'm 

V _ lnf. (h ,n\ , Z1 Zo _ 2ir(g + jue) Zoo - ^log(6/a)+— log(6/a) 

Ypm = 0 + jut- 

To include the external modes we shall pick a center for their origin. 
For a semi-infinite coaxial pair this center may be chosen on the axis 
near the end of the pair. For coaxial cylinders extending to infinity in 
both directions the center may be chosen arbitrarily on the axis but 
preferably near the source of internal waves. The external modes are 
then defined as in Sections 12 and 13 and the coupling between the ex- 
ternal and internal modes is given by 

Ez
x = — (rj,. coth ach)Hv

l -f (vc csch (Tch)Hv
e 

(120) 
Ez

e = — (i]c csch (rch)Hv -f- (rjc coth ach)Hv
e 

where Ez and II^ are taken at the inner surface of the outer cylinder 
and Ez and at the outer surface. In these equations -qc and (tc are 
respectively the intrinsic impedance and propagation constant of the 
substance from which the outer cylinder is made. The thickness h of 
this outer cylinder is assumed to be small compared with its radius. 
Otherwise, the self and mutual impedances in (120) should be expressed 
in terms of the modified Bessel functions. Another assumption is that 
uc is very large compared with the propagation constants of various 
modes under consideration. For metal walls this assumption is highly 
satisfactory for all modes except those of exceedingly high order. In 
(118) we must substitute Ez for Ez{b,z). In a corresponding equation 
for external mode we should use Ez as given by (120). 

18. VANE ATTENUATORS 

Our last example will be the "vane attenuator" in a rectangular wave- 
guide, Fig. 9. The dotted line passing through AB represents a thin 
resistive sheet, so thin that the vertical current under the influence of a 
vertical field is distributed uniformly through the thickness of the sheet. 
Hence, the vertical electric intensity is continuous across the sheet. It is 

p 7* 0 

(119) 
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■X 

Z 

Fig. 9 — A rectangular waveguide with a thin resistive sheet. 

not difficult to solve an appropriate boundary value problem. If we 
assume for simplicity that the guide walls are perfectly conducting and 
confine our attention to waves whose intensities are independent of the 
7/-coordinate, Maxwell's equations separate in two sets, one involving 
Ey , Hx, and Hl and the other Hv , Ex , and E2. We shall consider the 
first set [see (63)]. The resistive sheet implies a discontinuity in Hz, 

where Y is the admittance of a unit area of the sheet. This will include 
not only the conductance of a thin metallic film but also the capacitance 
of a thin plastic film on which the metal may be deposited. The usual 
solution of the boundary problem will be obtained by assuming two 
separate fields, one for the region to the left of the sheet and one for the 
region to the right of it. Taking into consideration the continuity of Ey 
and the discontinuity in H,, we shall find a transcendental equation for 
the propagation constants of the various modes appropriate to the wave- 
guide with a thin resistive sheet. 

Here, however, we shall express the field in the waveguide with the 
sheet in terms of modes appropriate to the same waveguide without the 
sheet. Thus we assume expansions (64) for Ey and Hx and (65) for Hz. 
Since Ey and Hx are continuous functions, their sine series are uniformly 
convergent as well as differentiable. On the other hand, Hz is discontinu- 
ous and neither differentiable nor uniformly convergent. This non- 
differentiability affects the calculation of the following integral 

Hzid - 0, z) - Hz(d + 0, 2) = YEy(d, z) (121) 

(122) 

needed in the conversion of Maxwell's equations into telegraphist's 
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equations. First we have to split it into two integrals 

%6 rd—0 rb /.a na—u /%o r>a 
+ (123) 

•'O Jd+o 

Then we have to integrate it by parts, 

d-0 
Pm = bHtNm sin a 

+ bHzNm sin 
a d+0 . 

b a (124) f f rriT TT mirx , , 
— / / — Hz cos dx dy 

Jo Jo (l CL 

And finally we have to substitute Hz from the third equation of the set 
(63) into the integrand of (124) and integrate by parts once more before 
substituting the series for Eu from (64). In this way we find 

Pm = bN-\HM - 0, z) - HM + 0, 2)] sin 2^ + (125) a JMna 

The bracketed term may be expressed in terms of Fn's if we use (64) and 
(121). In this way, we obtain the following telegraphist's equations 

dVm . T 

ST = 

dim ( . . . in TV ,27. 2Wi7rd\ , . 
-i— = - & + .7we + : ; H sin   1 Vm (126) dz \ junn- a a / 

E,2Y . mird . nird ,r — sin sin Vn 
n a a a 

where the prime after the summation signs signifies the omission of the 
term corresponding to n = in. 

19. ARBITRARINESS OF MODAL TRANSVERSE FIELD PATTERNS 

In almost all examples considered by us the variations of transverse 
field components in transverse planes were expressed in terms of func- 
tions associated with orthogonal modes in waveguides of uniform cross- 
section and with perfectly conducting walls. An exception was made in 
Section 10 where we used curvilinear coordinates. The guiding principle 
in selecting the basic set of transverse field patterns for general field rep- 
resentation should be in most cases, but not in all cases, the minimization 
of coupling coefficients. That there are exceptions was made clear in 
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connection with the junction between two waveguides, one with per- 
fectly conducting and the other imperfectly conducting walls, Fig. 2 (see 
remarks toward the end of Section 3). Aside from convenience the choice 
of transverse modal patterns is rather arbitrary. A set must be complete, 
that is, adequate for representing any field which can exist inside the 
guide. It should be an orthogonal set; this will enable us to obtain a set 
of telegraphist's equations in which each equation contains only one 
derivative with respect to the direction of propagation. But, as we have 
already seen, the sets of terms representing the individual "modes" do 
not have to satisfy either Maxwell's equations or the boundary condi- 
tions. The situation is similar to that which confronts us when we choose 
a set of meshes in a network in order to write Kirchhoff's equations in 
terms of mesh currents. 

In the case of circular waveguides, for instance, we can express Ep and 
H.P in terms of the "sawtooth" functions in which case Ez will be ex- 
pressed in terms of "square sine" functions. It is not a convenient set; 
but, certainly, it is a permissible set. 

20. CONCLUDING REMARKS 

In the preceding sections we have illustrated the technique of conver- 
sion of Maxwell's equations into generalized telegraphist's equations by 
several typical examples. In many instances this technique is a practical 
method for solving field problems. This method may be valuable even 
when the more conventional methods can be used. Consider a slightly 
deformed rectangular waveguide in which two faces are arcs of coaxial 
cylinders and the other two faces are radial planes, Fig. 10. If we use 
cylindrical coordinates, we can separate the variables and obtain a set 
of orthogonal modes in which fields are expressed in terms of Bessel 
functions. As the curvature decreases these modes become more and more 
like the corresponding modes in a strictly rectangular waveguide. Never- 
theless the mathematical machinery remains different. No matter how 

Fig. 10 — A deformed rectangular waveguide. 
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small is the curvature we still have to deal with Bessel functions rather 
than with sines and cosines. We can and will, of course, replace Bessel 
functions by their asymptotic expansions. This will simplify mathe- 
matics. But we still would be left with a "discontinuity in thinking" 
about the zero and non-zero curvature cases. At any rate it seems that 
we can gain something in understanding the effect of the gradual defor- 
mation on the field, particularly if this deformation is varying along the 
guide, by formulating the problem in terms of "deformed cartesian" 
coordinates. Then the effect of deformation will be thought of as coupling 
between various modes in a strictly rectangular waveguide. The coupling 
coefficients can be evaluated and numerical results thus obtained for 
more general conditions than is possible by the conventional method. 

In other cases, numerical calculations, although possible in theory, 
would perhaps be prohibitive in practice. Even then this technique may 
contribute toward the qualitative understanding of physical phenomena. 
Consider two wires diverging from the terminals A, B of a generator, 
Fig. 11. Let us imagine a family of spheres concentric with the midpoint 
of the segment AB. Let us consider the sections of wires intercepted by a 
typical sphere as sections of two cones with their apices at the center of 
the spheres. For such cones we can obtain a set of orthogonal modes. 
The transverse field distributions associated with these modes we now 
take for representing the field distribution in the actual case, just as we 
did in previous examples. One of the infinite system of such modes will 
be the principal mode which at sufficiently large distances from A,B will 
be the usual "transmission line" mode for two parallel wires (that is, 
when the wires actually do become parallel). It would not be difficult 
as a matter of fact to obtain telegraphist's equations for this mode to- 
gether with coupling coefficients to the higher order modes. For perfectly 
conducting wires these coupling coefficients become progressively smaller 

A' 

Fig. 11 — Wires diverging from the terminals of a generator. 
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V 

A 
'X' 

(b) 

Fig. 12 — Parallel wires with a generator at A. 

as the distance from the generator increases. Thus the higher order modes 
will be generated largely in the vicinity of the generator if we define the 
"vicinity" as the interior of a sphere whose radius is a reasonably large 
multiple of the final distance between the wires. These are the modes 
which will carry off to infinity what we usually call the "radiated energy." 
There will be very little radiation if the distance between the wires never 
exceeds a small fraction of the quarter-wavelength. This is because the 
higher order modes are substantially non-propagating at distances close 
to the center of their origin. 

For thin wires the calculation of transverse patterns needed for teleg- 
raphist's equations requires the solution of a transcendental equation.15 

To use this equation in the present case we should replace the oval 
traces of the wires on a typical "wavefront" sphere by equivalent circles, 
that is, circles giving the same shunt capacitance in the principal mode. 
A more accurate analysis would be possible but hardly worth the effort. 

c B 

Fig. 13 — Parallel wires and a succession of primary and secondary waves. 



GENERALIZED TELEGRAPHIST'S EQUATIONS 1043 

An analysis of waves on two parallel wires, such as Mie's," is not realis- 
tic since he assumed that his generator is at infinity. Sometimes such an 
assumption is not objectionable; but at other times one is better off 
without it. If two parallel wires are infinite in both directions and a 
generator is connected to one wire, Fig. 12(a), and if the distance between 
the wires is small, one can conveniently replace the impressed voltage by 
the sum of push-push and push-pull voltages, Fig. 12(b), to take ad- 
vantage of the symmetry. Then outside some sphere concentric with the 
mid-point 0, we have four wires "diverging" from 0 and the analysis may 
proceed along the lines suggested for two wires. If, however, the distance 
between the wires is large, we shall find it more expedient to consider 
waves on a single wire generated at point A, Fig. 13, which in their turn 
generate waves on the second wire at points where the spherical wave- 
fronts intersect it. Those waves impinge on the first wire and generate 
tertiary waves. . ,, , ,« . * 

Many other examples will occur to the reader in which the telegra- 
phist's equations will be useful to a greater or lesser extent. 
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The theoretical basis of sequential circuit synthesis is developed, with 
particular reference to the work of D. A. Huffman and E. F. Moore. A new 
method of synthesis is developed which emphasizes formal procedures rather 
than the more familiar intuitive ones. Familiarity is assumed with the use 
of switching algebra in the synthesis of combinational circuits. 
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1. INTRODUCTION 

i.i Foreword 

The designer of a sequential switching circuit — a circuit with storage 
or "memory" —faces a far more difficult problem than is faced by the 
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designer of, say, a simple translating circuit. In the latter case, compara- 
tively simple and straightforward methods of synthesis are known.1 

In the former case, the designer frequently does not even know how to 
begin to solve the problem. Only recently did D. A. Huffman develop 
a method which, at an early point in the design, gives rather explicit 
procedures for carrying the design through to completion.2 The method 
relies for its success on a tabular method of presenting the circuit re- 
quirements. This table, called a flow chart, may be subjected to simple 
manipulations which remove redundancies in the verbal statement of 
the circuit requirements. When supplemented by somewhat more com- 
plicated procedures, 'the flow chart is reduced to a form which leads 
directly to a circuit having a minimal number of storage elements. This 
process will be called reduction in this paper, and direct manipulation 
of the flow chart will be called merging. 

Independently, E. F. Moore investigated the abstract properties of 
sequential circuits.3 In particular, Moore asked what can be said about 
a circuit when one knows nothing about it except what may be inferred 
by performing experiments involving only the input and output ter- 
minals of the circuit. A by-product of Moore's theory was a general 
method for reducing (if necessary) a circuit whose description is com- 
pletely known.* This method is essentially the same as Huffman's 
methods, sans flow chart manipulation. 

The situation, then, is the following: Once a flow chart, or some 
equivalent statement of circuit requirements, has been obtained, one 
may use Moore's procedure for reducing the circuit. Once the circuit 
has been completely reduced, the remainder of the synthesis procedure 
is fairly uncomplicated. On the other hand, one may use the merging 
process of Huffman on the flow table. Very often this will result in com- 
plete reduction; less often it will be necessary to use additional procedures 
equivalent to the Moore process. Merging, when it is possible, is easier 
to use than is the Moore procedure, hence one would like to find a method 
which is as simple as merging and at the same time results in complete 
reduction more often than does merging. 

Huffman's method was originally developed in connection with relay 
circuits, although it is applicable in other instances. It does not, how- 
ever, always work in its unmodified form when applied to switching 
circuitry of the type that is commonly used in the design of digital 
computers.4'5 One then asks, how can Huffman's method be extended 
to cover such instances? 

* We shall use the word "circuit" to refer both to physical circuits and to 
abstract representations of circuit requirements (such as flow charts). The latter 
of course, may correspond to many physical circuits. 
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This paper offers one possible solution to both questions. After de- 
scribing an abstract model for sequential circuits, we develop Moore's 
method for reduction, as it applies to our model. We then develop a new 
method applicable to synchronous circuitry, which is commonly used 
in computer design. Finally, the method is extended to relay circuitry 
as an example of asynchronous circuitry. The relationship between our 
method and Huffman's method, as they are applied to this class of 
circuits, is then explained. 

1.2 Introductory Remarks 

It is very tempting at the outset to make the flat statement: there 
is no such thing as a synchronous circuit. This would be strictly true 
if we defined a synchronous circuit as one with the properties: 

(51) Any lead or device within the circuit may assume, at any instant 
of time, only one of two conditions, such as high or low voltage, pulse or no 
pulse. 

(52). The behavior of the circuit may be completely described by the 
consideration of conditions in the circuit at equally-spaced instants in time.* 
Because it is quite clear that no physical circuit satisfies (SI) and (S2), 
such a blanket statement would be a quibble, for the engineer does recog- 
nize a certain class of circuits which he calls synchronous. The unfor- 
tunate fact is that the distinction between a synchronous and an asyn- 
chronous circuit is very hazy in many cases of actual engineering interest. 
Roughly, we may say that the more nearly a circuit satisfies (SI) and 
(S2), the more likely will an engineer be to identify it as a synchronous 
circuit. 

As intuitive guides to the usual properties of a synchronous circuit, 
these characteristics are offered: 

(1). There is a so-called clock which supplies timing pulses to the cir- 
cuit. 

(2). Inputs and outputs are in the form of voltage or current pulses 
which occur synchronously with pulses from the clock. 

(3). The repetition rate of the clock pulses may be varied, within 
limits, without affecting the correct operation of the circuit, so long as 
input pulses remain synchronized with the clock. 

Another assumption that is commonly made, although it does not 
bear on the distinction between synchronous and asynchronous circuits, 
should nevertheless be mentioned. If this assumption is made, then we 
may distinguish between combinational and sequential circuits. 

* Actually, these need not be equally-spaced. However, the instants con- 
sidered must not depend on any property of any sequence of inputs presented to 
the circuit, such as the duration of a pulse. 
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■AB...C AND GATE 

■ A + B+... + C OR GATE 

AB' AND GATE WITH 
INHIBITING INPUT 

V ONE UNIT OF DELAY 

Fig. 1 

{!)). Certain circuits contain no time delay — their input combinations 
in every case completely determine their output combinations. 

We will be concerned mainly with a technology in which these as- 
sumptions are nearly satisfied — that of the type employed in Leiner 
et al.*'5 In this technology, one uses AND gates (with or without in- 
hibiting inputs), OR gates, delay lines, and amplifiers. For our purposes, 
we may ignore the need for amplifiers. The other basic circuits are as 
shown in Fig. 1. The properties of these circuit blocks are defined by the 
algebraic expressions in the illustration.* 

The familiar switching (or Boolean) algebra is used, where 0 stands 
for no pulse, 1 for pulse, -f- for OR, • for AND and ( )' for NOT. It is 
assumed that the reader is familiar with switching algebra and its use in 
practical design problems. We recall from switching algebra: 

(1) A switching function is any (finite) expression in switching algebra. 
(2) A minimal polynomial of n variables is any product of the form: 

<i i ao n Xi Xi " • • • Xn 

where 

Xi* = 
[xi a,- = 0 

I r, a— 1 

(3) We define 
Pfli ao a,i j = Xi 'X2 • • •• Xn 

* The unit of delay is the interval between the start of two successive clock 
pulses. The notation "A", used in Fig. 1, will be explained in Section 2.1. 
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where J is the decimal form of ciido • • • an , considered as a binary number. 
For example, if n = 3, Po = X1X2X3, Pi = x^x-lxz, etc. 

(4) Every switching function of n variables may be brought into a 
unique canonical form: 

on—i 
f{Xl , ,Xn) = S fiPi 

t=0 
where 

fj — f{al > a2 , * * * , On) 

(5) Corresponding to each function is a truth-table which displays 
the value of the function for each set of arguments. For n = 2, the truth- 
table corresponding to the canonical form is found in Table I. The 
correspondence between the truth-table and canonical form is one-to-one. 

For further infoimation about switching algebra see, for instance, 
Reference 9. 

As an example, consider the function 

/Or, y) = x' + y' 

Its truth-table is Table II, and, therefore,/) = fi = fa = 1 and/a = 0. 
The canonical form is 

/Or, y) = x'y' + x'y + xy' 

2. A MODEL FOR SEQUENTIAL CIRCUITS 

2.1 The Model 

We begin by giving an abstract definition of a switching circuit : 
A switching circuit is a circuit with a finite number of inputs, outputs. 

Table I 

Xi X-2 fixi, Xi) 

0 0 fa 
0 1 fa 
1 0 fa 
1 1 fa 

Table II 

x y fix, y) 

0 0 1 
0 1 l 
1 0 1 
1 1 0 
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and {internal) states. Its ■present output combination and next state are 
determined uniquely by the ■present input combination and the present state. 
If the circuit has one internal state, we call it a combinational circuit; 
otherwise, we call it a sequential circuit . 

We have now to explain what we mean by this definition when we 
apply it to the technology introduced in Section 1. First, we assume a 
circuit has n binary-valued input variables, Xi , X2, • • • , xn ; m binary- 
valued output variables, yi, y*, ■ • • , ym ; s binary-valued excitation 
variables, <Zi , 92 ,•••,?» ; and s binary-valued state variables, qi , qz, 
• • • , qt , corresponding one-to-one with the excitation variables. In 
order to facilitate discussion, we note that a set of minimal polynomials 
may be associated with each set of variables. Specifically, corresponding 
to the input variables, we have the input combinations, X, ; associated 
with the output variables are the output combinations, Yi ; correspond- 
ing to the excitation variables are the next slates, Qk ; and with the 
state variables, we associate the present states, Q» • For example, if 
to = m = s = 3, we have: 

X4 = X1X2X3 

Yz = yi'yzyz 

Qi = qi'qfqz 

Qi = qiq^qz 

We will use this notation and terminology for convenience. Rather 
than stating that, at some time, X\ = 1, xz = 0, and X3 = 0, we will say 
that input combination X4 (or its equivalent — input combination 100) 
is present. That is, X, = 1 and thus the inputs are, respectively, 1, 0, 
and 0. 

Now, according to the definition given above, to each circuit we must 
be able to assign some set of equations relating the (/, and ?/,• to the x,- 
and qi. These equations will have the general form: 

Qk = QiQoXj) 

Y( = Y(Qi, Xj) 

That is, k and ( must be uniquely determined by f and j. Each circuit 
is associated with a truth-table with its columns headed (in order): 

qi 1 ' ' ' 1 Q* 1 •I'l J ■ ■ ■ > J'n > Ql 1 1 Qi > 2/l > ' ' ' > Urn • 

The number of circuits having to input, m output, and s internal vari- 
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ables is equal to 
2(m+«)2(n + '> 

since the truth table has 2(n+s) rows and 7R + s columns which must be 
filled in with 0's and 1's. 

The interpretation of this model is now fairly straightforward. We 
have assumed (SI), (S2), and (D) and know that, physically, the delay 
unit provides storage. We assign the <?,, the excitation variables, to the 
inputs of delay lines, and we assign the q,, the state variables, to delay 
line outputs. The present state of the circuit is the combination of con- 
ditions on the delay line outputs. The next state is the combination of 
conditions on the delay line inputs, since one time unit later this com- 
bination will be present on the outputs. 

To make the discussion concrete, consider Fig. 2. The circuit equations 
are: 

qi = tfiV + x'qi' 

q* = qm' + xqi 

V = ?iV 

From these equations, we write Table III. 

2.2 State Diagrams 

It is usually not clear from an examination of the circuit diagram 
or circuit equations just what a sequential circuit does. The truth-table 

x — 

.-q 
V 

— y 

Fig. 2 
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Table III 

?1 32 X ?1 92 y 

0 0 0 1 0 1 
0 0 1 1 0 1 
0 1 0 0 0 0 
0 1 1 0 0 0 

1 0 0 1 1 0 
1 0 1 0 1 0 
1 1 0 0 0 0 
1 1 1 0 1 0 

is more helpful and tells the whole story if we put it in a different form, 
called a state diagram. In this diagram, circles will represent states. Each 
line of the truth-table will be represented by an arrow going from the 
present to the next state. A label on the arrow will give the correspond- 
ing input and output combination. The state diagram for the circuit 
discussed in Section 2.1 is given in Fig. 3. 

The arrows in the state diagram correspond to changes of state of the 
associated circuit, and both the arrows and the changes of state are 
called transitions. A transition begins at a present state and ends at the 
next state. The transition is labeled X/Y. X is an input combination and 
Y is the corresponding output combination. 

As an example, consider Table IV, which gives the sequences of states 
and outputs which correspond to each initial state of the circuit and the 
input sequence 100. Depending upon what state the circuit is started in, 
the input sequence 100 produces three different output sequences. It is 

oo 

0/0 
0/1 0/0 
1/t I/O 

0/0 I/O 

Fig. 3 
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Table IV 

X 0 0 1 1 0 0 1 0 0 1 0 0 

Qi 
92 
Qi 
h 

0 0 1 
1 0 0 
0 1 1 
0 0 1 

1 0 0 
1 1 0 
0 0 1 
1 0 0 

1 0 0 
0 1 0 
0 0 1 
1 0 0 

0 1 1 
0 0 1 
1 1 0 
0 1 0 

V 0 1 0 0 0 1 0 0 1 1 0 0 

difficult and probably of little value to put into words exactly what this 
particular circuit does. However, given any initial state and any sequence 
of inputs, we can immediately tell what happens from the state diagram. 
(The truth table may be used for the same purpose, but less easily. It is 
far more difficult to determine circuit behavior by chasing signals around 
the circuit diagram.) The problem of circuit analysis is now completely 
solved. Given any circuit, we may immediately write its circuit equa- 
tions. A truth-table is easily obtained from the equations. Given the 
truth-table or given the associated state diagram, we may determine 
exactly how the circuit behaves for any initial state and input sequence. 

Conversely, once a state diagram or truth-table is found for a proposed 
circuit, the above steps may be traced backwards in order to arrive at a 
circuit diagram. The only problem here is designing combinational cir- 
cuits economically. The really significant problem in sequential circuit 
synthesis is finding a suitable state diagram or truth-table. This problem, 
in turn, may be subdivided into two problems: 

(1) finding any state diagram or its equivalent which fulfills the cir- 
cuit requirements and 

(2) reducing this to the state diagram which is to be used for the final 
part of the design process. 

The next section of this paper develops Moore's method of reduction 
and is basic in justifying the methods developed in the succeeding sec- 
tions. 

3. CIRCUIT EQUIVALENCE 

3.1 Moore's Theory 

The key to the synthesis of sequential circuits is the concept of circuit 
equivalence which was discovered independently by Huffman2 and 
Moore.3 We are concerned mainly with the portions of Moore's theory 
which have direct application to synthesis; certain differences in treat- 
ment are necessary since Moore's model for sequential machines is differ- 
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ent from ours. All of Moore's arguments carry over with only slight 
changes. 

Roughly speaking, we call two circuits equivalent if we cannot tell 
them apart by performing experiments involving only their inputs and 
outputs. Once we have solved the first problem of synthesis by finding 
any state diagram which fulfills the circuit requirements it will usually 
be found that the state diagram has more states than are necessary to 
perform the assigned task. In such a case, we usually wish to simplify 
the circuit by removing redundant states in such a way that the final 
circuit is equivalent to the original one. 

We must now make the concept of equivalence more precise. We 
define: 

(1) Two states, Q, in circuit S and Qy in circuit T, are called equivalent 
if, given S initially in state Q, and T initially in state Qj, there is no 
sequence of input combinations which, when presented to both S and T, 
will cause S and T to produce different sequences of output combinations. 

{2) Two circuits, S and T, are called equivalent if, corresponding to 
each state Qi of S, there is at least one state Qj of T such that Q, is equivalent 
to Qj; and corresponding to each state Qj of T there is at least one state Qk 
of S such that Qj is equivalent to Qk . 

In (1), it should be noted that T may be a copy of S. Hence (1) is also 
a definition for equivalence between states in the same machine. Moore 
has shown that even if no two states in a given machine are equivalent, 
it is not always possible to find out what state the machine started in by 
some experiment. That is, there is not always a sequence of input com- 
binations which will result in a different sequence of output combina- 
tions for each possible initial state of the circuit. The state diagram of 
Fig. 3 is the example used by Moore to prove this; state 11 may not be 
distinguished from state 10 by any experiment which begins with a 1, and 
state 01 may not be distinguished from state 11 by any experiment which 
begins with a 0. 

If there are two states in a circuit which are equivalent, it should be 
possible to eliminate one of them. This will result in a circuit equivalent 
to the original circuit. This is indeed possible, and the process of reduc- 
tion may be carried out in an essentially unique manner, as is stated by 

Theorem 1 {Moore). Corresponding to each circuit, S, is a circuit T 
which has the properties: (!) T is equivalent to S, (2) T has a minimal 
number of states, (3) no two states in T are equivalent, and (4-) T is unique, 
except for circuits that result from T by relabeling its states. T is called the 
reduced form of S. 

We shall state the procedure to be followed in deriving T from S, 
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referring the reader to Reference 3 for a complete proof of Theorem 1. 
First, divide the states of S into sets such that (1) all states in a given set 
are equivalent, (2) if a state is in a given set then all states equivalent to 
that state are also in the same set, and (3) no state is in two different 
sets. These sets are called equivalence sets or classes. Now, assign a 
state of T to each equivalence set of states. If there is a transition, 
bearing the symbol X/Y, from a state in one equivalence set of 5 to a 
state in a different equivalence set of S, insert a transition bearing the 
same symbol X/Y between the corresponding states in T. If there is a 
transition between two states in the same equivalence set of S, insert a 
transition in T which begins and ends at the corresponding state of T. 
Do this for all transitions in S. 

We have not given as yet an effective procedure for determining the 
equivalence sets. This procedure will be provided by the method of proof 
of the next theorem. Before stating the theorem, we state a precise defi- 
nition of what we mean by "experiment." By an experiment of length k, 
we mean the process of presenting a circuit which is in some specified 
initial state with a sequence of k successive input combinations. By the 
result of an experiment, we mean the sequence of output combinations 
produced by the experiment. We say that two states are indistinguish- 
able by any experiment of length k if for all experiments of length k the 
result does not depend on which was the initial state. We may now state 

Theorem 2 {Moore). Given a circuit S whose reduced form has a total 
of p states, then for any two states, Q,- and Qj, in S, Q, is equiialent to Qj if 
and only if Qi is not distinguishable from Qj by any experiment of length 
(p - 1).* 

Proof: Consider all experiments of length k. All states may be divided 
into equivalence sets by the rule: put two states in the same equivalence 
set if and only if they are indistinguishable by any experiment of length 
k. For each k, there is now defined a set of equivalence sets which we will 
call Pk . 

Consider two states, a and b, that are not equivalent but are indis- 
tinguishable by any experiment of length k. Since a and b are not equiva- 
lent, there is an experiment of some minimum length, say n, that will 
distinguish a from b. Consider the two states, a and b, that a and b arc 
taken into by the first (n — k - 1) input combinations of the experi- 
ment. a and b are then distinguishable by an experiment of length 
(/o + 1) but by no shorter experiment. 

We have now proved that Pi. is not already the set of equivalence sets 

* This theorem is a trivial extension of Moore's result. 
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Table V 

h 92 X 9i 92 V 

0 0 0 0 0 0 
0 0 1 1 0 0 
0 1 0 0 0 1 
0 1 1 0 0 1 
1 0 0 0 1 0 
1 0 1 0 1 0 
1 1 0 
1 1 1 

As a more complete example, including the construction of a reduced 
machine, consider Fig. 4(a). Applying Rule I, we get; 

P, : (0) (1, 2, 3, 4) 

t—. T 1 
P* : (0) (2, 4) (1, 3) 

To construct the reduced circuit, assign state A in the new circuit to (0), 
B to (1, 3), and C to (2, 4). The resulting circuit is shown as Fig. 4(b). 

In order to develop a physical circuit, it is necessary to assign a binary 
code to the states. The assignment is more or less arbitrary for syn- 
chronous circuits, but will in general affect the number of circuit ele- 
ments used. In this instance, we choose to make the assignment: 

A —> 01 

B —> 00 

C-> 10 

Rewriting the state diagram as a truth-table, we get Table V. Two rows 
in the right half of the truth-table are blank, since state 11 does not 
appear in the state diagram. It is legitimate to fill these rows in in any 
way, and it is preferable to fill them in in a manner that results in sim- 
plification of the final circuit. Taking advantage of this fact, we may set: 

qi = qi'qi'x 

q* = qi 

y = qi 

The final circuit is shown in Fig. 5. Fig. 6 shows the state diagram for 
the completed circuit. As it happens, state 11 is not equivalent to any 
other state. 
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rx ? 
q.i q.2 

—u ̂  i 
V 

a 
V —c J 

Fig. 5 

© 

Fig. 6 

This concludes the material on circuit equivalence. In the following 
section, we develop the method for synchronous circuits. As will be seen, 
an essential feature of the method is the use of truth-tables rather than 
state diagrams (which become unmanageable for circuits with more than 
a few variables) and a very much simplified form of Rule I which may be 
applied directly to truth-tables. Our program will be (1) to describe the 
kind of argument used in going from verbal circuit requirements to a 
truth-table; (2) to restate Rule I in a form (Rule II) which is adapted to 
synthesis and applies to truth-tables; (3) to develop Rule III, a gen- 
eralized form of Huffman's merging process; (4) to discuss "don't care" 
situations, familiar to the reader from the study of combinational cir- 
cuits; and (5) to give a summary of the method. A complete design ex- 
ample will be given in Section 5.5, following application of the method to 
asynchronous circuits. 

4. DEVELOPMENT OF THE METHOD FOR SYNCHRONOUS CIRCUITS 

4.1 Introductory Remarks 

As seen in the last section, the first problem in synthesis is finding some 
state diagram that will behave according to the circuit requirements. The 
state diagram need not be very efficient in the sense that it may have far 
more states than are actually needed, for the procedures developed in 
the last section give a straightforward procedure for removing redundant 
states. Unfortunately, the initial step in the process relies heavily on 

I/O 
00 

o/i 0/1 
1/0 

0/1 
1/1 
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the designer's ingenuity. However, we can outline procedures that are of 
some assistance in finding an initial state diagram. 

The simplest case, and indeed the only wholly straightforward case, is 
that in which the circuit must always return to its initial state after it 
has received some fixed number of input combinations. Essentially, this 
case is simple because we may consider all possible input sequences. We 
assign a new state any time anything happens, up to the last input. The 
last input then takes us back to the initial state. For instance, suppose 
that we want a circuit which receives sets of three binary digits in serial 
form and puts a pulse out on one of eight leads during the third digit to 
indicate the number that was received. The state diagram may immedi- 
ately be written down, as shown in Fig. 7. Rather than write sets of 8 
binary digits for the output symbols, we have designated the lead that 
should be energized, if any, and otherwise have written "0". 

It is immediately clear that this is even a reduced machine — no two 
states are equivalent. This is an extreme case; usually there will be cer- 
tain sequences of inputs which will never occur and/or certain sequences 
of inputs for which (in Huffman's words) we do not care to specify the 
circuit action. More often, however, there will be patterns of successive 
input combinations that will produce the same circuit action. For in- 
stance, suppose that in a sequence of 4 inputs we wish to have a final 
output only if the input sequence is 1010 or 0101. Then we can draw a 
state diagram showing all sequences which is shown as Fig. 8(a). How- 

i/y? 
o/ye 

Fig. 7 
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10 

i l/o 

J/O 

14 

To/O 1 0/0 T0/1 0/0 1 0/0 
1/0 1/0 1/0 I/O I/O 

\— v y 

(a) 

1/0 0/0 

1/0 0/0 0/0 1/0 

0/0 1/0 0/0 1/0 0/0 I/O 

13 

0/1 0/0 0/0 
1/0 1/0 1/1 

(b) 

Fig. 8 

ever, with a modest amount of ingenuity, we might have drawn Fig. 
8(b) as our first attempt. In fact, it is clear that Fig. 8(b) shows the re- 
duced form of the diagram in Fig. 8(a). 

On the other hand, if there is no state which is entered cyclically, as 
above, no really explicit directions may be given for drawing an initial 
state diagram. In practice, one starts to draw a branching diagram such 
as the above. To terminate each branch, it is necessary to recognize that 
each transition from the state at the end of the branch may terminate in 
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Table VI 

Input combination.... 0 1 0 1 

Present State Next State Output Combination 

1 2 3 0 0 
2 4 5 0 0 
3 6 7 0 0 
4 8 9 0 0 
5 10 11 0 0 

6 12 13 0 0 
7 14 15 0 0 
8 1 1 0 0 
9 1 1 0 0 

10 1 1 0 1 

11 1 1 0 0 
12 1 1 0 0 
13 1 1 1 0 
14 1 1 0 0 
15 1 1 0 0 

some state which is already in the diagram. To the author's knowledge, 
no more specific directions for this are possible. 

In practice, large state diagrams become very messy to draw. Where 
this is the case, it is better to revert to the truth-table, recast in a matrix- 
form with states corresponding to rows and input combinations cor- 
responding to columns. One of the most valuable features of this mode of 
presentation is that the truth table may be used directly to perform a 
large part of the reduction process. To illustrate the truth-table in a 
simple case consider Table VI which is the truth-table corresponding to 
the state diagram of Fig. 8(a). Of the two portions of the table, the left 
hand one represents the next states and the right hand one gives the out- 
put combinations. 

4.2 Modification of First Reduction Process 

At this point, we give an extension of Rule I which applies to truth- 
tables. It was noted above that Moore's theory assumes that each ma- 
chine is completely specified, although the specification is not known to 
the experimenter. In our restatement of Rule I, we must allow for the 
possibility of blank entries in the truth-table. This provision amounts to 
calling two circuits equivalent if there is no evidence for believing that 
they are not equivalent.* 

* This procedure is essentially that stated in Reference 2, pp. 183-185. 
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Rule II: Separate the rows of the truth-table into sets such that two 
rows are in the same set if and only if no corresponding entries in the 
right-hand portion of the rows are contradictory. (A blank entry is not 
considered to contradict any entry.) Call these sets "Ri^' Given the set 
of sets Pa , find if possible two rows in the same set of Pa such that for 
some input combination the two rows have row designations (next 
states) which are not blank and correspond to rows in different sets of 
Pa . Put one of these rows into a new set in Pa+i together with all rows 
in the original set of Pa which go into the same set in_PA for the given 
row and input combination. Leave the other sets in Pa fixed in Pa+i . 
If this is not possible, the process terminates. Now apply the truth-table 
analog of the process described following Theorem 1. 

Except for the stipulations concerning blank entries, Rule II is merely 
a reworded form of Rule I. 

4.3 Second Reduction Process 

Rule II, given above, seems rather complicated. Although this com- 
plication is more apparent than real, one still wishes to find a reduction 
rule that has both the effect and the appearance of simplicity. Presum- 
ably, one must pay for this in one way or another — the surprising thing 
is that one is not required to pay too heavily. In point of fact the re- 
duction rule given below, when applied to asynchronous circuits, is 
somewhat more powerful than Huffman's rule for merging. 

We ask, then, what are the simplest circumstances in which a state 
may be eliminated by using Rule II? Is it possible to consider only pairs 
of states instead of considering larger sets of states? To answer these 
questions, consider any pair of rows that are in the same set of Pi. That 
is, no corresponding entries in the right-hand portion of the rows may be 
contradictory. Now if in addition no corresponding entries in the left- 
hand portion of the rows are contradictory, then the two states have the 
same output combination for a given input combination and the next 
state is the same, or may be made to be the same by filling in a "don't 
care" entry, for any given input combination.* Therefore, the two states 
are equivalent. This means that we may eliminate one and keep the 
other. If we eliminate state A in favor of state B, then any appearance 
in the table of "A" must be changed to read "B". 

We restate the above more formally as Rule III. This process is called 
merging, after Huffman, since we will sec that it is a general form of his 
merging process. 

* Or the present state is also the next state in both cases. 
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Table VII 

Input combination.... 0 1 0 1 

Present State Next State Output Combination 

1 2 3 0 0 
2 7 5 0 0 
3 6 7 0 0 
5 10 15 0 0 
6 15 13 0 0 

7 15 15 0 0 
10 1 1 0 1 
13 1 1 1 0 
15 1 1 0 0 

Table VIII 

Input combination.... 0 1 0 1 

Present State Next State Output Combination 

1 1 2 0 0 
2 3 1 0 1 
3 2 4 0 1 
4 4 3 0 0 

Rule III: To merge state A with stage B, change all appearances of 
"A" in the table to read "B" and copy the entries of row A into row B. 
Eliminate row A. 

Rule III may be used whenever, after the "A's" have been changed 
to "B's", to each entry in row A corresponds either the same entry in 
row B or a blank in row B. 

As an example, consider Table VI. We see that states 8, 9, 11, 12, and 
14 may be merged with state 15. Then state 4 may be merged with state 
7. The resulting table, Table VII, now corresponds to the state diagram 
of Fig. 8(b).* 

Note that Rule III may not always give complete reduction. An 
example is Table VIII, to which Rule III may not be applied. However, 
Rule II leads to the conclusion that states 2 and 3 are equivalent, as are 
states 1 and 4. 

* The reader is urged to write out the intermediate truth-tables derived by 
carrying out the mergers step by step. 
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4.4 Blank Entries-, Uniqueness of Reduction 

The provision for blank entries in Rules 11 and III corresponds to 
"don't care" situations, which usually result from restrictions on the 
input sequences. The result of merging rows in different orders is not 
always unique. The reason for this is simple — when truth-tables have 
blanks, they may usually be filled in in different ways so as to result in 
circuits which are not equivalent. Since merging usually results in filling 
in blanks, different orders of merging may result in blanks being filled 
in differently. This situation is not in contradiction with Moore's theory; 
there it is assumed that the state diagram is completely specified at the 
outset. 

As an example, consider Table IX(a). Here, there are four output leads. 
The designation of which lead is to be energized is given in the right 
portion of the table — a dash indicates that no lead is to be energized. 
Clearly, we may merge 8 and 9 with 7; 4 and 5 with 3; and G with 1. The 
result is shown in Table IX(b). A final merging of 7 with 3 and 2 with 1 
leaves the table of Table IX(c). On the other hand, if we merge 2 with 1; 
4 with 3; 6 with 5; and 8 and 9 with 7 we get Table IX(d) instead, and 
Rule II tells us that this is a completely reduced circuit. 

We have, incidentally, demonstrated that reduction is not necessarily 
unique even if only Rule II is used, since Rule III is a restricted form of 
Rule II. Therefore, Theorem 1 is not necessarily valid unless the initial 
truth-table has no blank entries. Again, this does not mean that the 
theorem as originally stated is false — it means only that we are applying 
it under conditions which are somewhat more general than those ob- 
taining in Moore's theory. Actually, we are really considering sets of 
circuits in synthesis. Each circuit is described only partly by the initial 
truth table and the truth table is, in a mathematical sense, a kind of 
domain of definition for the circuits in the set considered. Within this 
domain all circuits in the set are identical while outside this domain the 
circuits are specified only by "don't cares" and therefore may differ. 
Moore's theory applies to each individual circuit. We, on the other hand, 
are applying it to sets of circuits and must therefore be prepared to find 
some differences in detail. 

4.5 Summary of Method 

In general we start synthesis by writing either (1) a state diagram or 
(2) a truth-table, as outlined in Section 4.1. Following this step, we use 
Rule I supplemented by stipulations concerning "don't cares" or Rule 
III followed by Rule II to achieve reduction. In case (1), the state dia- 



Table IX (a) 

Input 
Combination.... 00 01 11 10 00 01 11 10 

Present State Next State Output Combination 

1 
2 
3 

4 
5 
6 

7 
8 
9 

1 6 2 
3 2 

4 3 5 

1 4 
1 5 

6 7 

9 7 8 
1 8 
1 9 

— AA AB 
— AB 

DB — DA 

— DB 
— DA 

AA — 

DB — DA 
— DA 
— DB 

Table IX (b) 

Input 
Combination.... 00 01 11 10 00 01 11 10 

Present State Next State Output Combination 

1 
2 
3 
7 

117 2 
3 2 

13 3 3 
17 7 7 

— AA — AB 
— AB 

— DB — DA 
— DB — DA 

Table IX(c) 

Input 
Combination.... 00 01 11 10 00 01 11 10 

Present State Next State Output Combination 

1 
3 

113 1 
13 3 3 

— AA — AB 
— DB — DA 

Table IX(d) 

Input 
Combination.... 00 01 11 10 00 01 11 10 

Present State Next State Output Combination 

1 
3 
5 
7 

15 3 1 
13 3 5 
15 7 5 
17 7 7 

— AA — AB 
— DB — DA 
— AA — DA 
— DB — DA 

1066 
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gram must now be translated into a truth-table. At this point in the 
process binary coding must be assigned to the states in order to complete 
synthesis with two-valued storage elements. Two remarks are in order 
here: 

(1) The simplicity of the final circuit will be affected by the exact 
coding assigned as well as by the truth-table finally chosen, if reduction 
is not unique. 

(2) Using a minimum number of storage elements is not always wise. 
In practical situations, the choice of components dictates one's criterion 
for minimality, and this criterion must ultimately be based on considera- 
tions of economy and reliability. For instance, the present writer has 
seen an example in which it was much more economical to use seven, 
rather than three, storage elements in order to achieve eight states. In 
fact one has doubts that complete reduction, itself, is always desirable. 

5. THE METHOD APPLIED TO ASYNCHRONOUS CIRCUITS 

5.1 Introductory Remarks 

In this section we carry out the transition from synchronous to asyn- 
chronous circuitry. A more exhaustive treatment of the subject of asyn- 
chronous circuitry is contained in Huffman." 

We agree (1) that no clock will be used and (2) that "1" in switching 
algebra will correspond to a high voltage or current, an energized relay 
coil, or operated relay contacts. We must now pay careful attention to 
circuit conditions at every instant of time. One very real difficulty arises 
since time delays inherent in the "combinational" circuit elements may 
frequently be of the same order of magnitude as the time required to 
change the state of a storage element. This may mean that spurious in- 
puts to flip-flops may be produced by changes of input combination 
solely because of nonuniform delays in portions of the "combinational" 
circuitry. These difficulties will not be considered further since little can 
be said about them over and above noting their existence. Another prob- 
lem— that of race conditions (a definition of this term will be given 
below) — can be resolved by logical methods; we shall treat this problem 
in moderate detail. 

5.2 Interpretation of the Model 

For the purpose of illustrating the pertinent facts and methods which 
relate to asynchronous circuits, we use relay circuitry as being typical of 
asynchronous circuitry. Fig. 9 illustrates our conventions and notations. 
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? f  X'  BACK OR BREAK CONTACT ON (X) 

FRONT OR MAKE CONTACT ON (X) 

(X) 

x—y  

 Q W 
C0IL 0F (x) 

x+ y 

xy 

1 

0 

PARALLEL CONNECTION 

SERIES CONNECTION 

SHORT CIRCUIT 

OPEN CIRCUIT 

Fig. 9 

Our interpretation of the abstract model for sequential circuits given 
in Section 2 must be changed somewhat. To be concrete, consider the 
circuit of Fig. 10. We think of this circuit as having two types of relays 
— to 'primary relays correspond input variables and to secondary relays 
correspond excitation and state variables. The general situation is shown 
in Fig. 11. The primary relays are controlled directly by the inputs; we 
shall use "x" to denote both the fth input and the contacts on relay 
{xi) . The secondary relays are controlled by contacts on any or all 
relays; they furnish the storage in the circuit. Considering relay (g,), we 
shall say that g,- = 1 whenever the coil of (g.) is energized and that g,- = 1 

X [I(X) 

r: I q2. 

—y 

■q." 
n (92 

■hi 

Fig. 10 
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CONTACT NETWORK 

(Xl) 

Xn — 

(xn) (q. (qs) 

—y. 

 ym 

UhL 

PRIMARY 
RELAYS 

SECONDARY 
RELAYS - 

Fig. 11 

whenever (g.) is fully operated. Note carefully the distinction between 
these two statements! 

5.3 Race Conditions; Coding of States 

The meaning of "present state" is clear enough — it is determined by 
which secondary relays are operated. We shall say that the "next" state 
is determined by which secondary relays are energized. However, the 
"next" state may never be realized as a present state! We shall now 
reconsider the circuit of Fig. 10. On the basis of our previous agreement, 
we may draw a truth-table and state diagram. The truth-table is that 
given by Table X, and the state diagram is shown in Fig. 12. 

In order to study the action of asynchronous circuits, it is often con- 
venient to make use of sequence diagrams.6 These are essentially pic- 
tures of what happens in a circuit as a function of time;* a line opposite 
a relay or lead designation represents an operated relay or a grounded 
lead. For instance, assume that both relays in Fig. 10 are released, a 
ground is applied and then released later on, and moreover that (qi) is 
faster in operating than (qz). The corresponding sequence diagram is 
shown in Fig. 13(a). Clearly, in this case, the circuit does almost what 
one would expect from consideration of the state diagram, except that 
the circuit goes from state 00 to state 11 by way of state 10! The situa- 
tion is quite different if (92) is faster in operating than (qi), as shown by 
Fig. 13(b). In this case, although state 11 is the "next state," it is never 
reached, since ((72) in operating breaks the operating path of (q-i). A situ- 
ation such as this is called a race condition. Whether it is harmful or not 
depends on the circuit requirements. 

* The time scale is usually distorted, sequence of events being more important 
than their duration. 
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Table X 

h <12 X Qi 12 y 

0 0 0 0 0 0 
0 0 1 1 1 i 
0 1 0 0 0 0 
0 1 1 0 1 0 

1 0 0 0 0 0 
1 0 1 1 1 i 
1 1 0 0 1 0 
1 1 1 1 1 1 

We say that a race condition exists in a circuit for input combination 
Xi and present state Qj if the next state Qk is such that the binary forms 
of j and k disagree by more than one binary digit. For, if they do, more 
than one relay is attempting to change its state of operation, and differ- 
ences in operate and/or release times may lead to differences in circuit 
behavior. 

In order to avoid races, it is necessary and sufficient that any distinct 
states directly connected by a transition disagree in exactly one binary 
digit. We can always avoid races if we add enough extra states. On the 
other hand, if a race condition is not harmful, removing the race condi- 
tion generally decreases circuit operating speed. 

One further remark must be made: it is often very helpful to assume 
that only one input variable may change its value at any given in- 
stant and to arrange connecting circuits in a system so that this condi- 
tion is satisfied. To appreciate why this might be the case, consider a 
system containing two interconnecting circuits. These circuits may be 
viewed together as a single, larger circuit. If the above condition on the 
interconnecting leads is not fulfilled, then race conditions may be present 
in the over-all circuit even though they are not present in either circuit 
considered by itself. 

o/o 01 )i/o 00 

i/i 
o/o o/o 

1/1 1/1 

Fig. 12 
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XI  

Qj  

q2   

qii  

^2| 1 

(a) 

Fig. 13 

The usual state of affairs in an asynchronous circuit is this: upon a 
change of input combination, if the "next" state of the circuit is different 
from its present state, the states of the individual storage elements will 
change until a final state of the circuit is reached in which no further 
change of state is possible. Two remarks are in order here. First, we have 
already seen that in the presence of race conditions the final state, if 
any, may depend on operate and release times as well as on the truth- 
table for the circuit. Second, there may be no final state — this is the 
case for certain pulse-generating circuits.* Usually however, if the new 
input combination is maintained for a sufficiently long interval, a final 
state will be reached. Since in most cases of practical interest the time 
required to reach the final state is much less than the interval during 
which any given input combination is held, design effort is fixed on the 
final states, rather than any possible intermediate states. 

For the above reasons, the formal part of synthesis — that part of 
synthesis which ends with writing out circuit equations — is both 
different and more difficult in the case of asynchronous circuitry. Al- 
though it is true that we need not consider the possibility of race condi- 
tions until that point in synthesis in which we assign binary coding to 
the states, it is not true that the same truth table may always be used 
for both a synchronous and an asynchronous realization of a given 
circuit. (That this is possible for the circuit of Table IX is only ac- 
cidental). The reason for this is tied in very closely with the fact that 
we speak of presence or absence of pulses in synchronous circuits but of 

x 

q.1 

^2 

q.1 

q2 

y 

(b) 

* See Reference 6, Chapter 18, for examples. 
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quasi-steady-state conditions on leads in asynchronous circuits. A pulse 
on lead xi, for instance, might be represented by X2 in a synchronous 
circuit but as Xo followed by X2 followed by Xo in an asynchronous cir- 
cuit. 

5.4 Huffman's Method 

The purpose of this section is not to outline Huffman's method of 
synthesis2 but, rather, to support our claim made above that Rule III 
represents a slight generalization of Huffman's merging process. We 
shall assume familiarity with the contents of Reference 2. 

The justification for this claim is immediate, if not already self-evident 
to the reader. Namely, suppose that an initial flow table is written down. 
By going immediately to the associated truth table, Huffman's rule for 
merging becomes the same as Rule III, except that Rule III allows 
somewhat more latitude for merging in that it is permissible to change 
the symbols corresponding to certain next states. In Huffman's method, 
it would be necessary to resort to equivalence arguments in such in- 
stances. We are considering here that the use of equivalence arguments 
is separate from the purely mechanical merging process, although there 
is evidence in Reference 2 that Huffman considers the use of such argu- 
ments to be a part of merging. Our point is that such arguments may be 
avoided in many cases if we work directly with the trath table and 
Rule III. 

5.5 Summary of Method 

We have now disposed of the basic principles of our method as ap- 
plied to asynchronous circuits. The synthesis steps are: 

(1) Write a truth-table which satisfies the circuit requirements. 
(2) Use Rules II and III in reverse order, as applicable, to obtain a 

reduced truth-table. 
(3) Code the states in a binary code. If possible, assign the code so 

that no harmful race conditions are present. Otherwise, add states in 
such a way as to make eliminate harmful races.2,6 

(4) Write the circuit equations. 
(5) Synthesize the combinational networks. 
As our final example, we consider the following problem, taken from 

Reference 6 (Problem 8-9): 
A rotating shaft carries a single grounded brush which makes contact 

with three stationary commutator segments arranged symmetrically 
around the shaft. A relay circuit is required which will indicate the direc- 
tion of shaft rotation by lighting a lamp when the shaft is rotating in the 
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clockwise direction. The shaft may reverse its direction at any time. 
Assume that the shaft is driven so that a brush contact closure is 0.25 
second and that the open time between the brush leaving one segment 
and reaching another is 0.25 second. When the shaft changes direction, 
the output indication must change as quickly as possible, at most within 
2 seconds. 

Let the brush be grounded and the three segments be labelled "xi" 
"xz" and ux3" respectively. For the output indication, let ?/ = 1 when 
the shaft is rotating in the clockwise sense. Now, in order to write the 
initial truth-table, we may first consider what the circuit must do to 
keep track of the brush while it is rotating in only one direction. This 
situation is clearly taken care of by Table XI(a). All that remains is to 
enlarge the table to enable (say) the circuit to go from states 1-6 to 
states 7-12 when the direction is changed from clockwise to counterclock- 
wise. A usable strategy is this; as one segment, say xi, is passed the cir- 
cuit expects x-i to come up next. If xs comes up before X2, we can cause 
the circuit to go to the counterclockwise state in which X3 has occurred 
and X2 is expected next. This has been done in Table XI (b). 

With regard to the output note that it is sufficient to assign y = 0 
to states 7—12 and y = 1 to states 1 — 6, regardless of input com- 
bination. 

The possibilities for merging, (using Rule III), are obvious: merge 2 
with 3, 4 with 5, 6 with 1, 8 with 9, 10 with 11, and 12 with 7. The 
result is Table XI(c). Now use Rule II to determine whether reduction 
is complete. Actually, literal use of Rule II is a waste of time, for we may 
use this argument: 

?! : (1, 3, 5) (7, 9, 11) 

By examining input combination 100, we split off both 5 and 9 from the 
sets above, arriving at: 

P2 : (1, 3) (5) (7, 11) (9) 

By examining input combination 010, we see that 1 and 3 (7 and 11) 
are distinguishable. Hence, the circuit is completely reduced. 

We now have to code the states. To assist in this process, we draw the 
state diagram shown in Fig. 14(a). Since there are two triangles in the 
diagram, we cannot assign codes to avoid races, and therefore extra 
states must be added. One way to do this is to insert new states between 
5 and 1 and between 11 and 7 in such a way that the circuit will treat the 
new states as transient states. This has been done and coding has been 
assigned in Fig. 14(b). The corresponding truth-table is shown as Table 
XII. 



Table XI (a) 

Input 
Combination.... 000 100 010 001 (All) 

Present State Next State Output 
Combination 

1 
2 
3 
4 

1 
3 
3 
5 

2 
2 

4 
4 

1 
1 
1 
1 

5 
6 
7 
8 

5 
1 
7 
9 

6 
6 
8 
8 

1 
1 
0 
0 

9 
10 
11 
12 

9 
11 
11 

7 
12 
12 

. 10 
10 

0 
0 
0 
0 

Table XI (b) 

Input 
Combination.... 000 100 010 001 (All) 

Present State Next State Output 
Combination 

1 
2 
3 
4 

1 
3 
3 
5 

2 
2 

10 

4 
4 

8 

1 
1 
1 
1 

6 
6 
7 
8 

6 
1 
7 
9 

12 

4 

6 
6 
8 
8 

1 
1 
0 
0 

9 
10 
11 
12 

9 
11 
11 
7 

2 

12 
12 

10 
10 

6 

0 
0 
0 
0 

Table XI (c) 

Input 
Combination.... 000 100 010 001 (All) 

Present State Next State Output 
Combination 

1 
3 
5 
7 
9 

11 

1 
3 
5 
7 
9 

11 

3 
3 
7 
7 
3 
7 

11 
5 
5 
5 

11 
11 

1 
9 
1 
9 
9 
1 

1 
1 
1 

, 0 
0 
0 
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The circuit equations may be written as: 

qi = (V/oV/a'.To + qiqzXy + q-i'qiXz + 9i) • (qz'qi'xa + q^'q^Xi + q-q^)' 

72 = (qiq&t + qiq/xi + f/2) • (q/xs + qiXs)' 

q-A = {q\q2Xi + f/i72.ri + 73)-(7/72% + qiqi'xi)' 

In this particular case, if shunt-down operation6 is not objectionable, it 
is even possible to dispense with primary relays.* A circuit that satisfies 
the stated conditions is given in Fig. 15. (The author does not guarantee 
that the circuit is minimal!) 

6. DISCUSSION 

Like any "systematic" method for synthesizing certain classes of 
switching circuits, our method leaves much to be desired. First, the 
problem of synthesizing really large circuits has not been touched — one 
wonders whether it is really possible to do this with any method that 

Table XII 

Input 
Combination.... 000 100 010 001 (All) 

Present State Next State Output 
Combination 

000 
001 
011 
010 

000 
001 
011 
d 

001 
001 
111 
d 

100 
011 
011 
d 

000 
101 
010 
000 

1 
1 
1 
1 

100 
101 
111 
110 

100 
101 
111 
d 

110 
001 
111 
111 

100 
100 
011 
d 

000 
101 
101 
d 

0 
0 
0 
0 

relies on the use of a truth-table without making use of automatic design 
aids inasmuch as large truth-tables become unmanageable. Second, the 
first step of the process, as described in Section 4, has in no sense been 
eliminated — this is probably the step that asks the most of the de- 
signer's ingenuity and skill. Third, the process of coding the states may 
have a great effect on the final cost of the circuit — despite this, there 
are at present no rules for carrying out the coding in an optimal manner. 

To compare our method with that of Huffman,2 several pertinent com- 
ments may be made. First, our method applies equally well to synchron- 

* This was pointed out to the writer by A. H. Budlong. 
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ous and asynchronous circuit synthesis whereas Huffman's method was 
formulated specifically for asynchronous circuit synthesis. We hasten to 
add, however, that the basic concepts of Huffman's paper are valid in 
both cases. Such changes in detail as are required to adapt his method 
to synchronous circuit synthesis would almost certainly result in a 
method identical with the method of this paper. Second, for asynchron- 
ous circuits, the initial truth table we write down is different only in 
appearance from the initial flow table that we might have written — 
neither method offers any advantage in this respect. Third, the ease of 
using Huffman's merging rule as opposed to the use of Rule III must be 
weighed against the necessity of translating the final flow table into a 
truth table in order to develop circuit equations. Finally, the present 

l i I i — X, Xz X3 

 qa qa 1 

—q'^ f q? 1 qi 
(^0 

qi-i qa 
IT 

T 
— qa—T—<12 

X q3 

qa—r—q^ 

I-O.J q'2—r qa-q 
qa 

T 

-qn —n',—1 

qa) 
qi—r q{ qi 

X qa q. qa 
X 

q* few) 

Fig. 15 
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method is more often successful (in principle, at least) in achieving 
complete reduction without the use of auxiliary equivalence arguments. 
Nevertheless, it is always advisable to use Rule II in order to test for 
complete reduction. 

Finally, it should be pointed out that there are many cases where 
other, more intuitive, methods are more useful. Such methods for asyn- 
chronous circuit design are given in Reference 6. 

In fact, the place of formal methods, such as that outlined in this 
paper, in the every day practice of synthesis is much smaller than might 
appear at first glance. It is probably fair to say that the theory furnishes, 
at present at least, only generalized methods of attack on synthesis to- 
gether with a small handful of particularized tools for design. It is the 
author's belief that these methods are genuinely useful insofar as they 
aid in understanding the nature of sequential circuits and furnish a uni- 
fied way of thinking about circuits during their design. It would be a 
mistake, however, to believe that they provide detailed design methods 
in the same sense in which such methods are available for electrical 
network synthesis. The engineer must make a judicious selection of his 
design tools and, most likely, must invent methods and diagrammatic 
devices which fit the particular problem at hand. 

A few words should be said about the comparative originality of the 
author's treatment of this subject. The model proposed in Section 2 was 
suggested to the writer by the content of E. F. Moore, Reference 7, and, 
in the case of synchronous circuits, is almost identical with the discrete 
transducer of information theory.8 Independently, S. H. Washburn 
proposed essentially the same model in an unpublished memorandum. 

Our interpretation of the model for asynchronous circuits and conse- 
quences of that interpretation with relation to race conditions were inde- 
pendently treated by Huffman.2 Our use of Rule III in the method owes 
much to Huffman's work. 
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Arcing of Electrical Contacts in Telephone 

Switching Circuits 

Part V — Mechanisms of the Short Arc 

and Erosion of Contacts 

By M. M. ATALLA 

(Manuscript received March 4, 1955) 

This is a presentation of a study of the mechanisms of the short arc be- 
tween closely spaced contacts and its erosion effects. The study is based on 
optical measurements of the erosion obtained on contacts after repeated arcing 
on closure or opening. Most experiments reported here are essentially of the 
probing type designed to lest specific postidatcs and assumptions. For short 
arcs initiated at 250 volts, clean palladium, iron and nickel contacts have 
shown a reversal, with arc duration, in the direction of net transfer. Net anode 
losses were obtained with short duration arcs and net cathode losses with 
longer duration arcs. This reversal, however, did not occur with silver, gold 
or copper. For longer arcs initiated as air breakdowns from 500 volts, all the 
above metals indicated a net loss from the cathode. For arcs initiated at 250 
volts between fidly activated contacts, shallow cathode losses were generally 
observed with little or no buildups on the anode. 

The first section of this paper is a summary of the experimental work 
done and the results obtained. In the second section, the data are analyzed 
and a tentative working model is proposed for the short arc and its erosion 
effects. 

INTRODUCTION 

The problem of contact erosion due to arcing has been the subject of 
a large number of investigations. The literature includes a considerable 
accumulation of data on the erosion characteristics of many contact 
materials. Due, however, to the vast variations in testing conditions 
adopted, there are considerable disagreements and discrepancies among 
results from different investigations. Inconsistencies even within one 
investigation are not uncommon. 

1081 
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In general, the erosion behavior of contacts depends, to varying 
degrees, on the following main parameters: the physical properties of 
the contact material, surface conditions, contact geometry and separa- 
tion, arc duration, arc current ano the surrounding atmosphere. In our 
study, most of these parameters were considered separately, whenever 
possible, with the primary objective of clarifying the mechanisms in- 
volved. Most experiments reported here are, in effect, of the probing 
type designed to test specific postulates and assumptions. The first sec- 
tion of this paper is a summary of the experimental work done and the 
results obtained. In the second section, the data are analyzed and a 
tentative working model is proposed for the short arc and its erosion 
effects. Because of the rather extreme complexity of the phenomena and 
the lack of basic data on the conduction properties of metal vapors, this 
model is at best a simplified one and is probably incomplete in some re- 
spects. 

NOTATION 

F Field strength 
I Total current \ 
M Mass of an atom 
N Gas concentration 
T Temperature 
T0 Ambient temperature 
Tb Boiling temperature 
ATb Tb - To 
7 Voltage 
7,- Minimum ionization potential of a metal atom 
Vc Voltage drop in cathode fall 

Qi Ionization cross-section 
Qe Excitation cross-section 
w Atomic weight 
a Radius of arc spot 
d Contact separation 
e Electron charge 

j Total current density at cathode 

j- Electron current density at cathode 

j+ Ion current density at cathode 
k Boltzmann's constant 

V Gas pressure 
t Time 
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v Arc voltage 
z Distance from anode surface 
0 Angular location of a point between contacts with respect to the 

center of the anode arc spot, 
X Thermal conductivity 

MEASUREMENTS 

Contacts tested were made of crossed cylinders 0.050 or 0.125 cm 
diameter. Their surfaces were prepared by fine polishing followed by 
washing with alcohol and distilled water. They were mounted on a 
sound-head* and operated at 60 cycles/sec. Care was taken to avoid 
additional arcing by eliminating chatter of the contacts on closure. In 
the low-voltage experiments this was done satisfactorily by mechanical 
adjustment of the contact separation and by choosing a proper charging 
resistor to avoid excessive recharging during chatter opening. For the 
high-voltage experiments, however, it was necessary to adopt a me- 
chanical switching scheme which prevents recharging until the contacts 
were fully open. The behavior of the contacts was regularly observed on 
an oscilloscope. 

In most experiments, the circuit consisted of a coaxial cable with a 
characteristic impedance of 75 ohms and a period of 3.5 X 10-9 sec per 
foot. The cable was charged, during contact opening, to any desired 
voltage through a proper resistor. All lines were matched with a 75-ohm 
resistor at the contact end, thus allowing only one discharge per closure 
without spurious reflections. In all cases, therefore, constant arc current 
pulses were obtained. Their amplitudes were controlled by varying the 
charging voltage. Their periods were controlled by varying the cable 
length.f The use of this constant current pulse scheme makes the inter- 
pretation of the data far simpler and more direct. In each experiment, 
the contacts were subjected to 20,000 to one million operations, depend- 
ing on the arc energy. 

Since the main interest was in the contribution of each electrode to 
the maintenance of the arc, conventional weight measurements would 
have been of little significance. An optical measurement scheme was 
therefore adopted. It allowed a discrimination between losses and gains 

* To avoid contact activation by organic vapors, the construction of these units 
was free of organic materials except for varnish insulation on the winding. From 
observations of the eroded surfaces and oscilloscope traces, as discussed in a 
following section on activated contacts, these contacts were free of activation. 

f The velocity of closure of the contacts is estimated at about 5 cms/sec. During 
the longest duration arc. of 10-6 sec used in these experiments, the contact motion 
is only 500 A compared to an initial separation of about 25,000 A. 
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as indicated by craters and build-ups. It also permitted examination of 
the geometries involved. This was particularly important in cases where 
each electrode indicated both loss and gain and the detection of matched 
patterns for one pair of contacts was quite significant in determining the 
most probable directions of transfer. A microscope was used, with mag- 
nifications as high as 740, and a quantitative measure of metal loss was 
made. The losses measured were of the order of 10^' cc and the accuracy 
is better than ±50 per cent. 

1. EXPERIMENTS WITH VARYING ARC DURATION ON CLOSURE 

Test contacts were operated in laboratory atmosphere, using matched 
cables in lengths ranging between 5 feet and 260 feet. In all cases they 
were charged to a fixed voltage of 250 volts and allowed to discharge on 
closure. The arc durations for these cables varied between 17.5 X lO"''1 

and 910 X 10-9 sec. For control of the current, separately matched mul- 
tiple cables were used in parallel. In most cases, at least three runs were 
made for each cable length. The volume of metal loss, appearing as a 

Table I — Erosion of Palladium Contacts on Closure by Short 
Arcs Initiated at 250 volts, 3.2 amps 

Arc 
Duration 
10-° sec 

(I) 

No. of 
opera- 
tions 

lO-'' 

(2) 

Erosion; (loss, gain) 10 7 cc Loss/total loss Rate of loss 10"" cc/erg 

Anode 

(3) 

Cathode 

(4) 

Anode 

(5) 

Cath- 
ode 
(6) 

Anode 

(7) 

Cathode 

(8) 

(1) 17.5 540 0.72, n* n, build- 1.0 0.0 1.7 
upf 

(2) 35 430 2.01, n 0.08, 0.96 0.04 2.9 
buildup 

(3) 52.5 320 1.9, n n, buildup 1.0 0.0 2.5 
(4) 70 430 2.02, 0.85, 0.7 0.3 1.8 0.75 

buildup buildup 
(5) 87.5 108 0.21, 0.21, 0.5 0.5 0.5 0.5 

buildup buildup 
(6) 105 108 0.43, 0.57, 0.43 0.57 0.83 1.1 

buildup buildup 
(7) 140 108 n, buildup 1.79, n 0.0 1.0 2.7 
(8) 280 108 0.6, 2.67, n 0.18 0.82 0.69 3.2 

buildup 
(9) 385 18 n, buildup 0.54, n 0.0 1.0 2.7 

(10) 912 36 n, buildup loss, n 0.0 1.0 not meas- 
ured 

* "n" denotes no loss or no gain or those that are too small to measure, 
f Volume of buildups were not measured. In general, they match the geometry 

of a hole on the opposite electrode. This includes observations on lines 4 to 6 
where each electrode showed both gain and loss. 
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Table II — Erosion of Palladium Contacts on Closure by Short 
Arcs Initiated at 250 volts, 1.6 amps 

Erosion: (loss, gain) Loss/total Rate of loss 
Arc No. of l(|-; cc loss 10 14 cc/erg 

Duration operations 
III-' sec 10' 

Anode Cathode Anode Cathode Anode Cathode 
(1) (2) (3) (4) (5) (6) (7) (8) 

m 35 650 1.8, n* n, buildup* 1.0 0.0 3.5 
(2) 105 108 0.97, n n, buildup 1.0 0.0 3.8 
(3) 140 360 1.84, 0.51, 0.78 0.22 1.6 0.45 

buildup buildup 
1.23 (4) 280 540 1.86, 4.17, 0.31 0.69 0.55 

buildup buildup 
3.7 (5) 385 51 n, buildup 1.6, n 0.0 1.0 

* See footnotes below Table I. 

depression or crater on an electrode surface, was measured and the 
geometry sketched. 

Tables I and II show the results obtained for palladium contacts with 
currents of 3.2 and 1.6 amperes. In both cases, a characteristic change in 
the direction of transfer is observed. In Table I, for instance, for arc 
durations 52.5 X 10~'"' sec and less, lines 1 to 3, the losses were pre- 
dominantly from the anode. The geometries observed generally con- 
sisted of a rather irregular yet definite buildup on the cathode and a 
corresponding hole on the anode. The geometrical resemblance between 
the anode hole and the cathode buildup was in many cases rather striking. 
This and the absence of buildups surrounding the cathode hole, strongly 
suggest that the arc was mainly maintained through vapor from the 
anode. This, however, does not necessarily exclude the possibility of some 
evaporation from the cathode. These arcs are called anode arcs. For arcs 
of longer duration, 70 X 10 J to 105 X 10 9 sec in the case of Table I, 
lines 4 to 6, the observed erosion was distinctly different. It was charac- 
terized by the appearance of both a hole and a buildup on each electrode. 
The geometrical resemblance between a hole on one electrode and a 
buildup on the opposite electrode is a strong indication that both elec- 
trodes were contributing more or less equally to the maintenance of the 
arc. This stage of the arc is called the mixed arc stage. Further increase 
in the arc duration, above 140 X 10"'"' sec in the case of Table I, lines 7 
to 10, the erosion character changed once more. Holes were obtained on 
the cathodes and matching buildups on the anode. These arcs are called 
cathode arcs. They probably still involve some evaporation from the 
anode. Table II shows similar data for palladium contacts at 1.6 amp 
where a reversal in transfer is also indicated. Fig. 1 is a plot of columns 
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Fig. 1 — Reversal of transfer between Pd contacts on closure. Short arcs 
initiated at 250 volts. 

5 and 6 from Tables I and II. It is shown that the reversal of transfer 
occurred later for the smaller current. It is believed, however, that due 
to the difficulty of premature closure, discussed below, not much empha- 
sis should be given to the exact relative locations of the transition points 
for the different currents. 

It should be pointed out that, while this observation of reversal in the 
arc transfer is unmistakable, its exact location is rather difficult to ob- 
tain with great consistency. This is because of the extreme proximity of 
the contacts when an arc strikes and the tendency of occurrence of pre- 
mature closures. These are caused b}' the formation by the arc1,2 of 
mounds which decrease the separation and the closure time. This diffi- 
culty was particularly noticeable with the longer cables. However, by 
proper adjustments such as the use of various retardation schemes for 
the moving contact, it was possible to satisfactorily decrease the fre- 
quency of premature closures. It is evident that the effect of premature 
closures is to allow only short duration arcs irrespective of the desired 
duration as set by the cable length. In extreme cases, where premature 
closures predominate, the phenomenon of reversal of transfer can be 
completely missed. The use of higher voltage presents additional means 
for decreasing the frequency of premature closures by initiating the arcs 
at wider separations. For experiments in air, however, one is limited by 
the minimum sparking potential of air. 

Columns 7 and 8, Tables I and II, give the measured rate of metal 
loss from each electrode. This is defined as the volume of metal loss per 
unit arc energy. For instance at 3.2 amp, Table I, the rate of loss for 

1 L. H. Germer and F. E. Haworth, J. Appl. Phys., 20, p. 1085, 1949. 
2 M. M. Atalla, B.S.T.J., 32, p. 1503, 1953. 
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Table III — Erosion of Silver and Gold Contacts Under 
Conditions Beyond the Reversal Point of Palladium, 

Initial Voltage 250 

Current 
Amp 

Arc 
Duration 
10"° sec 

(1) 

No. of 
opera- 

tions 10a 

(2) 

Erosion: (loss, gain) 
10-' cc Loss/total loss Rate of loss 

lO"14 cc/erg 

Anode 
(3) 

Cathode 
(4) 

Anode 
(5) 

Cathode 
(6) 

Anode 
(7) 

Cathode 
(8) 

Ag, 1.6 
Ag, 3.2 
Ag, 6.4 
Au, 3.2 

385 
385 
140 
140 

430 
270 

79 
90 

4.3, n* 
5.8, n 
3.5, n 
1.7, n 

n, buildup* 
n, buildup 
n, buildup 
n, buildup 

1.0 
1.0 
1.0 
1.0 

0.0 
0.0 
0.0 
0.0 

1.15 
1.25 
3.5 
3.0 

* See footnotes below Table I. 

both the anode and cathode arc stages is between 1.7 X 10 14 and 3.0 X 
10-14 cc/erg. For the mixed arc stage, lines 4 to 6 of Table I and lines 
3 and 4 of Table II, the rate of loss is consistently lower. This is an 
indication of considerable exchange of metal between the two electrodes 
during this arc stage. 

The aforementioned erosion behavior of palladium, as characterized 
by the reversal of transfer with arc duration, was also obtained for iron 
and nickel contacts. These tests were performed at 250 volts and 3.2 amp 
for two cable lengths of 10 and 110 feet. For silver, gold and copper, on 
the other hand, no reversal in transfer was observed at 250 volts for var- 
ious currents. Table III shows some quantitative data for silver and gold 
obtained under conditions which would normally cause cathode erosion 
for palladium contacts. As indicated, the losses for both silver and gold 
were from the anode. By raising the arc current to 6.4 amps, silver still 
failed to indicate a reversal. A tentative explanation of this behavior 
is proposed in a later section. 

2. EXPERIMENTS WITH LONGER AIR BREAKDOWN ARCS ON CLOSURE 

To study the effects on erosion character of a gas present between 
the contacts in the arc channel, the following experiment was performed. 
Instead of the 250 volts used in the aforementioned experiment, cor- 
responding to a separation of about 25,000 A, a voltage of 500 was used. 
Arcs obtained were therefore initiated as air breakdowns. The cor- 
responding separation at which an arc is initiated in air is about 3 X 10 
cm which is of the order of CO mean free paths of an electron in atmos- 
pheric air. In these experiments this large separation eliminated the 
previous difficulty of premature closure. Table IV presents erosion data 
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Table IV — Erosion Data for Palladium Contacts on Closure 
by Arcs Initiated at 500 volts as Air Breakdowns* 

Current 
Amp 

Arc 
Duration 
10-» see 

(1) 

No, of 
opera- 

tions to3 

(2) 

Erosion: (loss. f?ain) 10 7 cc Loss/total loss Rate of loss 
lir'< cc/erj,' 

Anode 
(3) 

Cathode 
(4) 

Anode 
(S) 

Cathode 
(6) 

Anode 
(7) 

Cathode 
(8) 

3.2 35 184 n, buildupf 0.72, nf 0.0 1.0 2.5 
3.2 280 36 n, buildup 1.85, n 0.0 1.0 4.0 
3.2 385 18 n, buildup 1.2, n 0.0 1.0 3.8 
6.4 17.5 216 n, buildup 0.55, n 0.0 1.0 1.6 
6.4 35 108 n, buildup 0.82, n 0.0 1.0 2.4 
6.4 70 54 n, buildup 1.6, 71 0.0 1.0 4.7 

* In the course of these experiments, some metal loss from the anode was oc- 
casionally observed. This was believed to be due to the statistical time lags of air 
breakdown which would cause a decrease in the contact separation at which the 
arc was initiated. By illuminating the contacts with ultraviolet this difficulty was 
eliminated. 

f See footnotes below Table I. 

for palladium contacts obtained at 3.2 and G.4 amp. The direction of 
transfer was independent of arc duration and consistently from cathode 
to anode. Each anode generally showed a well defined buildup closely 
matching a hole on the cathode. In contrast to the buildups obtained 
with short arcs, which were usually irregular and sometimes had more 
than one peak, these were more regular and usually had a single peak. 
This difference may be attributed to differences between the initiation 
mechanisms of short arcs and air breakdowns. Short arcs are initiated 
by field emission and a sharp point on the cathode surface determines 
the location of the arc. This point does not necessarily correspond to 
the smallest separation and on successive closures the arc channel is 
more or less randomly located. For air breakdowns, on the other hand, 
surface irregularities are not as significant and the location of the break- 
down channel is mainly at the cathode point nearest to the anode. 

The rate of cathode erosion for palladium contacts by 500-volt air 
breakdowns, Table IV, Column 8, is between 1.6 X IfT14 and 4.7 X 10-14 

cc/erg depending on current and arc duration. 
For silver and gold contacts, the same erosion behavior was obtained. 

For the 500-volt air breakdowns, holes were obtained on the cathode 
and buildups on the anode. Table V shows typical data obtained from 
two test runs with silver and gold contacts. It is of interest to note that 
their rate of erosion is 4 to 5 times less than for palladium at similar 
conditions. 
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Table V — Erosion of Silver and Gold Contacts on Closure by 
500-volt Air Breakdowns 

Current 
Amp 

Arc- 
Duration 
10"9 sec 

No. of 
Opera- 
tions in3 

Erosion: (loss, gain) 10 7cc Loss/total loss Rate of loss 
10"14 cc/erg 

Anode Cathode Anode Cathode Anode Cathode 

Ag, 3.2 385 230 n*, build- 3.4, n 0.0 1.0 0.85 
up* 

Au, 3.2 140 90 n, buildup 0.64, n 0.0 1.0 1.1 

* See footnote below Table I. 

3. EXPERIMENTS WITH SHORT ARCS BETWEEN ACTIVATED CONTACTS ON 
CLOSURE 

Contacts activated by organic vapors3 have been shown to arc more 
readily than clean contacts. They are initiated at appreciably lower 
fields4 and maintained at appreciably lower currents.3 The following 
experiments were carried out to study the erosion behavior of activated 
contacts. For such contacts an arc is initiated at fields as low as 10' 
volts/cm. For an initial voltage of 250 this corresponds to a separation 
of 2.5 X 10~3 or about 50 mean free paths of an electron in atmospheric 
air. This indicates that activation experiments performed in atmos- 
pheric air at such a voltage would give erosion results that may be in- 
fluenced by the presence of air in the arc channel as discussed in the 
previous section. This difficulty was eliminated by operating the con- 
tacts in a vacuum of 10 microns. Organic materials left in the construc- 
tion of the sound head used for operating the contacts provided sufficient 
organic vapors for rapid activation of the contacts. The voltage transient 
across the contacts during closure was observed on an oscilloscope. At 
the beginning of the test, when the contacts were clean, a certain fre- 
quency of premature or early closures was observed. As the contacts 
became more active the frequency of premature closures decreased and 
finally disappeared. This was an indication that gradual activation 
initiated the arcs at progressively increasing separation. The period of 
activation was usually between 2 and 5 minutes, at 60 operations/sec, 
with the test continued for about one hour thereafter. Further evidence 
of contact activation was the formation of considerable quantities of 
black sooty deposits which were not metallic as indicated by fuming 
solubility tests. 

3 L. H. Germer, J. Appl. Phys., 22, p. 955, 1951. 1 M. M. Atalla, B.S.T.J., 32, p. 1493, 1953. 
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Tests were performed on the more or less noble metals palladium, silver 
and gold and on the base metals copper, nickel, tungsten, iron and 
aluminum. Not only did the noble metals become active but also the 
base metals copper, nickel and tungsten. The sooty deposit which is 
typical for activated contacts was observed on all these metals. Contacts 
of iron and aluminum, however, failed to show any sign of activation 
even after as many as 6 X 105 operations. 

The metals that were activated have shown one common erosion be- 
havior. Metal loss was almost entirely from the cathode in the form of a 
shallow depression spread over a considerably larger area than obtained 
with clean metals. The anode showed little or no metallic deposits in 
contrast to the sizable buildups obtained with clean metals. For ac- 
tivated palladium the rate of erosion was measured at about 1.0 X I0~14 

cc/erg which is about one-half to one-fourth the rate of erosion for 
clean palladium. 

Additional experiments were performed on activated palladium and 
silver contacts in the presence of air at 50 volts. The degree of activation 
of the contacts was controlled by varying the concentration of d-limonene 
vapor in air. Only one result of these experiments is repotted here con- 
cerning a characteristic difference between the erosion of activated palla- 
dium and silver contacts. Palladium contacts showed loss from the 
cathode even for concentrations of d-limonene vapor as low as 4 per cent 
of the saturation concentration. Silver, on the other hand, did not show 
erosion from the cathode until appreciably higher concentrations, 10 to 
20 times that for palladium, were introduced. 

4 EXPERIMENTS ON BREAK 

The objects of these experiments was to compare the erosion of con- 
tacts by arcs obtained on opening with the erosion of similar arcs ob- 
tained on closure. This was done by allowing a cable to discharge from 
approximately the same voltage of 250 through two pairs of contacts, 
one during closure and the other during opening.* Palladium contacts 
were used with arc durations of 35 X 10-9 and 380 X 10~J sec at 3.2 amp. 
The erosion behavior was almost identical for both pairs of contacts. 
For the short arc duration both contacts exhibited anode loss whereas 
for the long arc duration cathode loss occurred in both cases. 

Measurements on Pd were also made with air breakdown arcs initiated 
during contact opening at 500 volts. Cathode loss, observed in similar 

* The discharge on opening was obtained during the charging of the cable 
following first separation of the contacts. By adjusting the charging resistor it 
was possible to control the breakdown voltage. 
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Fig. 2 — Erosion of Pd contacts on break of inductive circuit; 7 = 0.1 amp, 
F = 6 volts. 

arcs on contact closure, was duplicated here. From these data one 
concludes that there is no basic difference between the arcs and erosion 
effects occurring during the closure or opening of contacts, provided that 
the initiation conditions are the same. 

Another experiment was carried out on contact erosion due to arcing 
on break. While the results of this experiment did not yield additional 
basic information, beyond confirming the above findings, they are of 
some practical interest. A contact was made to open a 6-volt circuit con- 
taining a 60-ohm resistance and a variable inductance. Arcing on opening 
occurred in the form of a succession of short breakdowns whose duration 
varied with the circuit inductance. Three inductances, 200, 500, and 1000 
microhenries, were tried with palladium contacts. The metal loss results 
are shown in Fig. 2. At 200 microhenries most of the arcing occurred at 
small contact separations thereby producing anode loss. At 500 micro- 
henries, arcing was a mixture of short arc breakdowns and longer air 
breakdowns which caused loss from both electrodes. At 1,000 micro- 
henries, arcing was predominantly due to air breakdowns at wider sepa- 
rations which gave loss mainly from the cathode. The results of this 
experiment should be useful in indicating the role of arcing in distorting 
results in low voltage experiments designed to study bridge transfer 
during contact opening. 

In the following section an analysis of the data is presented, and a ten- 
tative mechanism of the short arc and contact erosion is proposed. 

O. DISCUSSION —• TENTATIVE MECHANISM OF THE SHORT ARC AND CONTACT 
EROSION 

Germer and Smith0 have attempted to record the voltage transient 
across a pair of contacts during the initiation of a short arc on a high 

5 L. H. Germer and J. L. Smith, J. Appl. Phys., 23, p. 553, 1952. 
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speed oscilloscope. Their results have shown a rapid drop to the final 
arc voltage in a time less than the time resolution of the scope (about 
2 X 10~9 sec). It was concluded that the arc initiation time was probably 
less than 10~9 sec. This indicates that in our experiments, all the dis- 
charges at small separations must have been maintained at the arc 
voltage for almost their entire duration, the shortest duration being 
17.5 X 10-9 sec. 

It has also been shown that short arcs in air'1 or in vacuum7 are initiated 
by field emission electrons. Furthermore, from the size of arc pits ob- 
tained by Germer and Haworth, Kisliuk8 has concluded that in the 
short arc, the electrons are emitted from the cathode primarily by field 
emission and the arc is maintained by ionization of the metal vapor from 
the electrodes by electron collision. For a metal with work function ^ 
and minimum ionization potential V, , the observed arc voltage usually 
exceeds the sum F, -f- ^ by a volt or less. One may, therefore, postulate 
the existence of a cathode dark space, where electrons acquire enough 
energy to produce ionizing collisions, followed by an arc column where a 
plasma is maintained. 

If V, is the voltage drop through the cathode dark space, j- the 
electron current density emitted from the cathode and j+ the ion current 
density at the cathode edge of the plasma, the field strength F on an 
infinite plane cathode, is given by Mackeown's9 equation: 

F2 = 7.57 X lOb{Vc)1'2j- ^ (1845IF)1/2 - 1 (I) 

where W is the atomic weight of the ions, F is in volts per cm, Vc in 
volts and j- is in amp/cm2. For the short arc, where the separations are 
very small, the observed current densities indicate that the width of the 
arc is usually considerably larger than the contact separation or arc 
length. It is not too unreasonable, therefore, to neglect the edge effect 
and apply the above equation. Furthermore, this steady state equation 
should still be applicable to a changing arc, as will be shown to be the 
case for the short arc, provided that the changes occurring within an 
ion transit time are very small. 

The cathode electron current density , for an arc maintained by field 
emission, is further related to the field F at the cathode by the Fowler- 

a M. M. Atalla, B.S.T.J., 34, p. 203, 1955. 7 W. S. Boyle, P. Kisliuk, and L. H. Germer, J. Appl. Phys., 26, p. 571, 1955. 8 P. Kisliuk, J. Appl. Phj's., 25, p. 897, 1954. 9 S. S. Mackeown, Phys. Rev., 34, p. 611, 1929. 
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Table VI — Relation Between ,/+ and j+/j- at an Infinite Plane 
Cathode; Fc = 10 volts, W = 100 and ^ = 5, 4.5 and 3 e. 

VOLTS. 

i+U— 0.05 0.1 0.2 0.4 0.6 1.0 

ip = 5 
j+ f = 4.5 
10# amp/cm2 ^ = 3 

10.5 
6.93 
1.43 

8.40 
5.64 
1.22 

7.07 
4.85 
1.04 

6.04 
4.15 
0.905 

5.53 
3.77 
0.844 

5.00 
3.45 
0.780 

Nordheim equation:10 

j- = 1.54 X 10"6-exp[-6.83 X \ti<pwS{y)/F] (2) 
>p 

where J{y) is the Nordheim elliptic function11 of the variable y = 3.79 
X 10~4 Fxl'/(p and ^ is the work function of the cathode metal. 

Physically, (1) and (2) must be satisfied simultaneously at the cathode. 
By combining the two equations one may eliminate the field term F 
and obtain a unique relation between j+ and j+/j- for a fixed value of 
<p.* Table VI presents calculations made at <p = 5, 4.5 and 3 e. volts. This 
is essentially the same procedure previously followed by Wasserab.12 

One observes from Table VI that for a wide range of j+/j- (at constant 
(p) the change in the ion current density is relatively small. For instance, 
a 2-fold decrease in j+ corresponds to a 20-fold increase in j+/j- . Short 
arcs, therefore, and more generally all field emission arcs, are maintained at 
approximately a constant ion current density at the cathode. For most con- 
tact metals this density is of the order of 10r' amp/cm2. 

It has been shown6,7 that the short arc is initiated when the power 
density of the field emission electrons bombarding an anode spot becomes 
sufficiently high to cause anode evaporation. From this, one may con- 

10 A Sommerfeld and H. Bethe, Handbuch der Physik (Verlag. Julius Springer, 
Berlin) 24, p. 441, 1933. 11 L. W. Nordheim, Proc. Roy. Soc., A121, p. 626, 1928. 

* A third equation may be introduced relating jV/j- to the collision cross-sec- 
tions and the gas density distribution in the gap. For the one-dimensional case, 
neglecting recombination, the equation is given by: 

t - q^T>. ['--p (-(«. + «jf H] 

where Q. and Qc are the ionization and excitation cross-sections of the metal 
vapor. Due to lack of data on atomic cross-sections and the physical complexity 
of the pressure distribution between the contacts, no attempt has been made to 
calculate ionization rates in the gap. Instead, the analysis was carried out by 
leaving,/+/j_ as an adjustable variable. 

12 T. Wasserab, Z. Physik, 130, p. 311, 1951. 
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elude that in its earliest stages, an established arc runs primarily in 
anode metal vapor. The evaporating spot on the anode is then minimum 
in size. For a constant current arc, which also operates at constant 
power, the corresponding rate of anode evaporation must, therefore, be 
a maximum since the maximum rate of heat conduction into the anode 
is proportional to the size of the anode spot, its boiling temperature and 
thermal conductivity. Fig. 3 is a diagrammatic representation of the 
conditions between a pair of contacts at an early stage of the arc. For 
radius a of the boiling anode spot, an approximately equal area on the 
cathode must constitute the electron emitting area, since the cathode 
field is maintained by the approaching positive ions which have been 
formed by electron collisions with the anode vapor. For a plane at a dis- 

y/////////////////;. 

!< 2a ->( 

^///////////////A 

METAL 
* 

GAP 

Fig. 3 —Vapor density distribution due to a small evaporating spot. 

tance z from the anode, the density of vapor, originating at a small 
anode spot of radius a, is roughly inversely proportional to both z and 
(cos 0)3. From this, one should expect the electrons approaching the 
anode to have a strong tendency to scatter to the periphery. The re- 
sultant redistribution of the energy of the bombarding electrons over a 
larger area causes the boiling area to expand in size. On the average, 
therefore, the effective length of an electron path before reaching the 
anode will increase. The number of collisions, including ionizing colli- 
sions, will increase. Hence the ratio i+Zi- increases with the size of the 
anode spot. This growth of the anode spot with time has been observed1' 
by examination of the sizes of anode pits produced by single arcs of dif- 
ferent durations. 

According to Table VI, an increase in 2+/j-, where both and j- 
are measured at the cathode, corresponds to a proportionate decrease in 

13 W. S. Boyle and L. H. Germer, J. Appl. Phys., 26, p. 571,1955. 
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j_ , since the decrease in j+ is relatively small. The rate of evaporation of 
the anode will decrease for three reasons: (1) the rate of energy dissipa- 
tion by conduction increases with increase in anode spot size, (2) the 
electron current density is decreasing, and (3) the average energy of an 
electron reaching the anode is decreasing due to the increase in inelastic 
collisions. The cathode spot on the other hand, being approximately 
equal in size to the anode spot, is bombarded by ions of practically con- 
stant current density. Furthermore, each ion reaching the cathode 
will have the same high energy corresponding to the potential drop in 
the cathode fall. All 'prevailing conditions, therefore, will tend to decrease 
the rate of energy dissipation at the anode while increasing it at the cathode. 
If the ion current becomes sufficiently high, cathode evaporation occurs. This 
corresponds to a critical ratio j+/j- which is calculated in the following 
section. ( 

For a plane cathode spot of radius a, the boiling temperature is 
reached at its center when 

j+{Vc + Vi - <p)a/\ATb = 1, (3) 

and evaporation takes place when it exceeds 1. The term in brackets 
is the energy of condensation of an ion on the cathode surface,14 X is an 
appropriate average thermal conductivity of the cathode metal for the 
temperature range between ambient and boiling, and ATs is the tem- 
perature rise of the cathode to boiling. The total arc current I, in terms 
of j+ and j- at the cathode, is given by: 

I = Tra2(j+ + jJ) (4) 

Combining Equations (3) and (4) to eliminate a, the critical condition 
for maintenance of the cathode spot at boiling becomes: 

U+) _ tt (x-An)2 fs1 

^ u-) nv.+ Vt-v) 

In a previous section it has been shown that a combination of the 
emission and space charge equations, (1) and (2), gives a relation of the 
form j+ = f(j+/j- , '?); See Table VI. This can be combined with (5) to 
eliminate j+ , thereby expressing j+/j- in terms of the cathode physical 
constants. This is the critical ratio of j+/j- which must he exceeded to 
cause evaporation of the cathode spot. Unfortunately, however, data on 
thermal conductivity above the melting point, are only available for the 
low melting point metals. For the majority of these, the change in the 

14 K. G. Compton, Phys. Rev., 37, p. 1077, 1931. 
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thermal conductivity with temperature is rather small except at melting 
where a sudden substantial decrease in conductivity occurs. In Table 
VII values of Xo, Xb and Xo/Xb are given for various metals as obtained 
from the references indicated. For copper and silver, thermal conductivi- 
ties were calculated from electric resistivity data using the Franz-Wiede- 
mann15 relation with the theoretical constant 2.45 X ICT8 (volt/0C)2. 

For metals whose thermal conductivities at high temperatures are not 
available, Xh was taken as 0.5Xo as suggested by the last column in Table 
VII. Table VIII is a summary of calculations of the critical ratio j+/j- 
for a number of metals. In these calculations, Vc was replaced by V,- + cp 
and the term Vc -h V,- — <p in (5) by 2Fi. The error involved is only a 

Table VII — Thermal Conductivities of Some Metals 

Metal Xo" Xfc Xft/Xo 

walt/cm'C 
Cd  0.933 0.451b 0.45 
Pb  0.352 0.209b 0.59 
Sn  0.657 0.324b 0.49 
Zn  1.13 0.602h 0.53 
A1  2.03 0.84b 0.41 
Ag  4.19 2.1° 0.50 
Cu  3.88 1.9" - 0.49 

u Reference 16. b Reference 17. c Calculated from electric resistivity data for 
Ag (Reference 18) and Cu (Reference 19). 

fraction of a volt8 and, furthermore, one can carry out the calculations 
for metals for which the arc voltage is not certain. The thermal con- 
ductivity X is taken as the arithmetic mean of Xo and X6 . 

Column 6 gives the minimum values of j+OV/i-) which satisfy both 
the cathode emission and space charge equations, (1) and (2). This mini- 
mum value is a function of the work function and atomic weight of the 
cathode metal. Column 7 gives the values of j+(j+/jJ) required for 
cathode evaporation as determined by the thermal conduction equation, 
(5). For a given current, these values are a function of the boiling tem- 
perature, the thermal conductivity and the minimum ionization potential 
of the metal. Column 8 gives values of j+/j- obtained from (1) and (2) 
at the given values of j+(j+/j-) of Column 7. These values of j+/j- must 
be exceeded in an arc discharge before cathode evaporation can occur. 

16 A. Sommerfeld and H. Bethe, Elektronentheorie der Metalle. Handbuch 
der Physik von Geiger und Scheel, Aufl. 24/2 (Berlin, Julius Springer, 1933). 16 International Critical Tables. 

17 C. J. Smithells, Metals Reference Book, Interscience Publ. Inc., p. 576, 1949. 18 Handbook of Metals. 
19 Handbook of Physics and Chemistry, p. 2247, 1953-1954. 
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Table VIII — Critical Ratio j+/j- Which Must be Exceeded to 
Cause Cathode Evaporation. Total Current I = 1.0 amp. 

Term "INST" Signifies Instantaneous Cathode 
Evaporation from Beginning of Arc. 

Metal. 0JU e. 
volts 

(I) 

ATb "C 

(2) 

wat/cm oc 

(3) 

X 
watt/ 
cm °C 

(4) 

2Vi e. 
volts 

(5) 

j+U+/J-) min. in arc. Eq. 
(1). (2) amp/cm! 

(6) 

j+(j+/J-) evap. Eq. (5) 
amp/cm2 

(7) 

U+/J-) evap. Eq. 
(1). (2), (5) 

(8) 

(1) Pd, 4.8 2200 0.34 0.51 16.66 1.9 X 105 1.42 X 10' INST 
(2) Ni, 4.84 2900 0.29 0.435 15.27 3.6 X 10a 2.13 X 104 INST 
(3) Fe, 4.36 3000 0.31 0.465 15.79 2.5 X 105 2.45 X 104 INST 
(4). Pt, 5.29 4300 0.35 0.525 17.92 1.6 X 105 4.97 X 104 INST 
(5) Ag, 4.3 1950 2.1 3.15 15.19 1.2 X 105 5.12 X 106 0.11 
(6) Au, 4.58 2600 1.5 2.25 18.45 9 X 10' 3.15 X 106 0.072 
(7) Cu, 4.47 2300 1.9 2.85 15.45 2.5 X 105 5.62 X 105 0.065 

It is evident that for any metal if the entry in Column 7 is less than that 
in Column 6, some cathode evaporation will take place even during the 
earliest stages of the arc. As shown in Column 8, this is the case for Pd, 
Ni, Fc and Pt. For Ag, An and Cu, on the other hand, the arc may he 
initiated as a true anode arc and only when relatively high ratios j+/j- are 
obtained in the discharge will evaporation from the cathode take place. 
This ratio is highest for silver, 0.11, followed by gold, 0.072 and then 
copper, 0.065. Unfortunately, the present analysis cannot be carried 
further to determine whether such ionization rates can or cannot be ob- 
tained in a discharge, due to the lack of data on collision cross-sections 
for vapors of these metals. The analysis as such, however, establishes 
some basic differences among metals in their erosion behavior, by show- 
ing some to have stronger tendencies than others for cathode evapora- 
tion.* Our observations are in accordance with this conclusion where 
with Pd,t Fe and Ni it was possible to have enough cathode evaporation 

2U H. B. Michaelson, J. Appl. Phys., 21, p. 456, 1950. 
* II is of interest to pgint out that Froome21 has observed similar differences 

for arcs at low gas pressures on Hg and Cu cathodes. For 10"7 sec. arcs on Hg, 
multiple non-stationary cathode spots were observed while with Cu the spots were 
not visible and often non-existent. From heat conduction calculations, similar to 
the above, Froome concluded that while Hg could be easily vaporized, Cu would 
not even be heated to red heat. For 30 X lO-6 sec arcs, however, cathode spots on 
Cu were observed. 

f For Pd, the observed time for the reversal of the transfer is of the order of 
10~7 sec, Fig. 1. This time is appreciable in terms of the electron and ion transit 
times and is attributed to thermal relaxation of the contact metal. It is of the 
same order as the observed time lags preceding the initiation of the short arc 
which were shown6 to correspond to the heating time of the anode spot. 

21 K. D. Froome, Proc. Phys. Soc., (London) 60, p. 431, 1948. 
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to exceed that of the anode while for Ag, Au and Cu this reversal was 
not obtained.* 

When evaporation from a cathode spot occurs, it modifies the gas 
density distribution between the contacts by introducing a high density 
region near the cathode. This causes additional scattering of the emitted 
electrons which enhances the spread of the bombarded anode spot and 
decreases its rate of evaporation. It is, therefore, conceivable that a con- 
dition could be reached where the anode spot, radius a+ , becomes large 
enough compared to the cathode spot, radius a_ , that the rate of evapo- 
ration of the cathode exceeds that of the anode. The conditions under 
which this may occur will now be derived. The power dissipated at the 
cathode is j+(ira_2)(2Ft), and the power dissipated at the anode is 
(j+ + j_)iraJ<p, where both j+ and j- are measured at the cathode. The 
specified anode power is actually a lower limit since all the electrons are 
assumed to reach the anode with zero kinetic energy. This rate of evapo- 
ration is assumed to correspond to the difference between the power 
delivered by electrons or ions and the power dissipated by conduction 
through the corresponding electrode. The heat dissipated by metal 
melting is neglected.f For two hemispherical spots, one on each elec- 
trode, maintained at boiling temperature, the rate of cathode evapora- 
tion exceeds that of the anode if: 

j+TraJl{2Vi — <p) — 27ra_X■ ATb > 

(j+ + j-)TraJ<p — 2ira+\-ATb (6) 

Combining with (4) and assuming that j~/j+ 1.0, one gets 

&>!+ * (7) 
a_ 2X-A7 b L J-Xv /JLJ+ * . 

If ionization is due mainly to ionizing collisions between electrons and 
metal atoms, it can be shown that (for electron energies slightly above 
Vi), the maximum ion to electron ratio obtainable is Qx/{Qi + Qe), 
where Q, and Qe are the ionization and excitation cross-sections. No data 
is available to permit a calculation of this ratio for any of the metals in 
this investigation. For mercury, however, this ratio is about 3-f, for elec- 
trons at 0.2 volt above the minimum ionization potential of mercury. 

* This statement is not meant to exclude the possibility of some cathode evapo- 
ration for these metals since our testing method is not capable of detecting cathode 
evaporation if it is much less than that of the anode. 

t This is metal leaving the cathode surface. The error involved is discussed 
later. 
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This was obtained from ionization data"2 and excitation data.23 A tenta- 
tive calculation was, therefore, carried out for Pd at the two values of 
0.1 and 0.2 for j+/j- . The corresponding values of j+ are 7 X 106 and 
6 X 10'' amp/cm2 respectively. At j+/j- = 0.1, the calculated ratio 
a+/a_ is between" 6 and 12, the lower value based on Xo and the higher 
value at \b. At j+/j- = 0.2, «+/«- is between 3.5 and 6.* 

For metals such as Pd which exhibit a reversal to the cathode arc 
by showing cathode loss, one can make another estimate of the probable 
ratio j+/j- for such" arcs from the measurement of the rate of erosion.'If 
a_ is the radius of the cathode spot, the power used in evaporation is 
taken as the difference between the power dissipated at the cathode and 
the power dissipated by conduction to maintain the cathode spot at the 
boiling temperature. This neglects the energy carried away by molten 
metal which may escape the cathode spot and deposit elsewhere. Obser- 
vations on single arc anode pits, however, have shown1 that each pit 
was surrounded by a rim which contains most of the metal from the pit. 
For Pt the volume of this metal was less by a factor of three than the 
amount which can be melted by the arc energy. To correct for this 
melting effect in calculating the rate of metal evaporation, one must not 
assume that the melting energy of the displaced metal is lost since this 
metal still remains on a rather narrow rim surrounding the pit.f From 
the photograph in reference 1, it appears that the average width of the 
rim is 10 to 15 per cent, the diameter of the pit. The effect of displacing 
this molten metal, therefore, is a redistribution of the initial arc energy 
where 70 per cent of the energy is dissipated in the pit area and 30 percent 
dissipated on a surrounding rim 10 to 15 per cent the diameter of the pit. 
For the degree of accuracy desired in our calculations, it appears justi- 
fiable to neglect this effect. 

22 W. B. Nottingham, Phys. Rev., 55, p. 203, 1939. /rx r 23 H. Massey and E. Burhop, Electronic and Ionic Phenomena, p. 62. (Oxford, 
Clarendon Press, 1952). 

* Single arc pit measurements were also made for Id contacts at 3.2 amp arc 
of 0.39 X 10-6 sec duration initiated at 250 volts. The single anode pit observed had 
an average diameter of 16 X lO-4 cm corresponding to a current density of only 
1.5 X 106 amp/cm2. Comparing with Table VI, one finds that unless the cathode 
emitting spot is considerably smaller than the observed anode spot, this low 
density may be obtained only if high ratios of j+/j- , higher than 1.0, are attain- 
able. This is unlikely for the low energy electrons in the short arc. Actually 
cathode observations, with 1,700 magnification, have shown a number of smaller 
individual pits, probably an indication of a non-stationary cathode spot in ac- 
cordance with previous cathode observations,24 of an average diameter of 2^4 
X 10-4 cm. If only one of these pits carried the total current at any one time, the 
current density would be 70 X 106 amp/cm2 corresponding to a j+/j- of about 0.1, 
Table VI. The measured ratio a+/a_ is 6.7. 24 J. D. Cobine, Gaseous Conduction, McGraw-Hill, 1941. 

f It is evident that no correction is needed if the molten metal is not displaced. 
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No correction is needed for the heat of condensation of the metal de- 
posited on the cathode spot in the form of neutral atoms, since these 
will be reflected, with or without loss of identity, from the cathode spot 
which is already at the boiling temperature. 

The ratio of the evaporation power to the input power Iv is given by: 

Evaporation power = 1 j ■ j.(2Fi) _ 
Input power Iv 

Eliminating a_, through the introduction of the total current /, and 
setting x = j+/j+ + j_ , one gets: 

Evaporation power _ ^ 2Vi 2\ ATb /ttx V 2 

Input power ' v v \Ij+/ 

For any value of j+/j- , or of x, j+ is determined from Table VI for palla- 
dium and the power ratio in (8) may be obtained. From the physical 
properties of Pd* the volume evaporated per unit energy is about 
1.8 X 10 12 cc/erg. If it is assumed that 50 per cent of the evaporated 
metal from the cathode is redeposited on the cathode, one can calculate 
the cathode loss per unit input energy from (8), for each value of j+/j- . 
Results of such calculations for Pd are given in Table IX. The erosion 
rate of the cathode of Pd contacts was measured at about 3.5 X 10~14 

cc/erg, Tables I and II. These were obtained from measurements with 
arcs of durations sufficient to allow erosion reversal. During the first 
portion of each of these arcs, as much as 50 per cent of the total arc 
duration, metal was transferred from the anode to the cathode at an 
average rate of about 3X10"14 cc/erg. The rate of cathode lossf is prob- 
ably as high as 

(3.5 X I0-14) + (3 X 10"14) = 0.5 X 10~14 cc/erg. 

From Table IX, one may therefore conclude that for the latter stage or 
cathode stage of the short arc in Pd, an upper limit of 10 per cent of the 
total current is carried by positive ions. 

In the section on measurements, it was noted that for the longer arcs, 
initiated as air breakdowns, the erosion was consistently from the 
cathode for all the metals which were investigated. These experiments 
were performed in laboratory air at 500 volts and the corresponding 
contact separation was about 3 X 10"'' cm. At the high value of pd or 
Nd prevailing in the gap, the anode is, from the beginning, sufficiently 

* Reference 17, p. 419. 
t It is possible that this observed loss is not all due to surface evaporation but 

may be partly due to some metal leaving the surface in the molten stage. The 
calculated ratio j+/j- is only, therefore, an upper limit. 
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Table IX — Ratio of Evaporation Power to Input Power, and 
Rate of Pd Metal Loss for a Cathode Arc at Different 

Values of j+/j-. Calculations are for / = 1.0 amp. 
X = (Xo + X6)/2 = 0.51 watt/cm0C 

j+/j- 0.04 0.06 0.08 0.10 0.20 
1 j+ + j- 26 17.7 13.5 11 6 
x ■>+, /+ = amp/cm2 9.5 X 10fl 8.3 X 10fl 7.6 X 108 7 X 108 6 X 108 

Evap. power 0.028 0.044 0.060 0.076 0.15 
Input power 
Cathode loss, rate, 10-14 6.8 13 2.4 3.9 5.4 

cc/erg (based on 50 per 
cent of total evap.rate) 

shielded while the cathode is being continuously bombarded over a rela- 
tively small area by high energy ions dropping through the cathode fall. 
If rto is a number of electrons leaving the cathode and Q is the total 
collision cross-section, then the number of electrons n,/ reaching the anode 
without any collisions is given by: 

riri/no = exp ( — NQ d) (9) 

At 10 volts, Q for both 02 and N* is about 10~15 cm2.25 For atmospheric 
air at 300oK and d = 3 X 10~3 cm, (9) shows that practically no electron 
will reach the anode without an clastic or inelastic collision. Those having 
only elastic collisions will undergo little change in energy but will be 
scattered to an anode spot larger than the cathode emitting spot. If one 
assumes the inelastic collision cross-section to be 15-20 times less than 
the total collision cross-section, less than 1-3 per cent of the electrons 
will reach the anode with full energy. One concludes, therefore, that for 
arcs initialed as gas breakdowns at small separations, erosion is generally 
confined to the cathode, provided thai the product Nd is high enough to 
provide sufficient anode shielding. These arcs initially run primarily in 
the gas between the contacts until cathode evaporation occurs when 
cathode vapor will contribute to the maintenance of the arc. The erosion 
data for palladium in air given in Table IV do substantiate this by 
showing an increase in the rate of cathode evaporation with increasing 
arc duration. At 3.2 amps, the rate of erosion increases from 2.5 X 10^' 
cc/erg. for 35 X 10"u sec arcs, to 4.0 X 10"14 cc/erg. for 280 X ICT9 sec. 
At 6.4 amp, it increases from 1.6 X 10 14 cc/erg. at 17.5 X 10 9 sec to 
4.7 X 10-14 cc/erg. at 70 X 10 9 sec. 

For fully activated contacts of Pd and Ag, erosion was also obtained 
25 R. B. Erode, Revs. Modern Phys., 5, p. 257, 1933. 
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from the cathode. Since these experiments were performed at a vacuum 
of 10 microns, anode shielding must have been provided by means other 
than air between the contacts. Activated contacts are characterized by 
the sooty products deposited on the contact surfaces, the lower fields 
for arc initiation and the lower currents at which the arc can be main- 
tained.3,4 The activation deposits are organic and have poor conduction 
properties and probably low boiling temperatures. When the arc is 
initiated, the anode surface will present, at least temporarily, the physical 
properties of the deposit rather than those of the substrate. The anode 
arc stage, discussed above, will therefore be maintained in vapor from 
the anode deposit. Due to the low conductivity, boiling point and heat 
evaporation of the deposit, the evaporation rate and the rate of growth 
of the anode spot must be appreciably higher than for the clean metal.* 
Furthermore, according to (5), the cathode deposit Mill boil more readily 
and the transition to the cathode arc stage will occur sooner. Shielding 
of the anode metal is provided, therefore, first by vapor from the anode 
deposit and then by vapor from the cathode deposit which may finally be 
mixed with cathode metal vapor. Arc voltage transients across activated 
contacts, reported by Germer and Smith,5 do substantiate this by show- 
ing a gradual transition, within one arc, from the higher arc voltage of 
the activating substance,3 to the lower arc voltage of the contact metal. 
Finally, the lower cathode erosion rates observed for activated contacts 
are readily explainable as due to the arc energy expended in decomposing 
and evaporating the organic deposits. 

* This is substantiated by the observation that arcs between active contacts 
can be maintained at much lower currents than for clean contacts. This indicates 
that at these lower currents, corresponding to lower dissipated power, enough 
vapor pressure was maintained between the contacts to provide the necessary 
ionization. 
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