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Measurements of induced noise currents along drifting cylindrical elec- 
tron beams have shown that noise fluctuations propagate as space-charge 
waves in the same fashion as RF signals of the same frequency. On many 
such beams, however, the regular standing-wave noise pattern is interrupted, 
after some drift distance, by a smooth steep increase in noise current, fol- 
lowed by slow, shallow undulations. This "growing noise" phenomenon, 
discovered by Smullin and his co-workers at M.I.T. several years ago, is 
the subject of study in this paper. Its importance is considerable, in a nega- 
tive way, because it has hampered the development of medium-power travel- 
ing-ivave-lube devices with acceptably low noise figures. 

The experimental measurements show the growing noise pattern to be the 
result of a two-stage process. Its primary cause is rippled-heam amplifica- 
tion of noise fluctuations over a wide band of microwave frequencies, much 
higher than the usual observation frequency. This explains its elusiveness. 
In the second stage, noise energy is transferred to lower frequencies, due to 
inter modulation and other non-linear processes within the gain band. As 
the beat-frequency noise increments are excited by continuous arrays of fre- 
quency pairs, their standing-wave patterns overlap one another, resulting in 
a smooth growing-noise pattern. 
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In Part II of this paper, measurements of the noise spectrum of a rippled 
beam in the UHF region are described. These measurements reveal 
the presence of additional forms of instability. Calculations are made to 
account for some of these, and for aspects of rippled-beam amplification not 
previously understood. 

Part I — The Growing Noise Phenomenon* 

I INTRODUCTION 

When an RF probe is moved along a magnetically-focused electron 
beam in a drift region, the noise power is at first found to vary periodi- 
cally with distance from the electron gun.1 For a sufficiently long beam, 
however, the periodic pattern is succeeded by an exponential rise, culmi- 
nating in an irregular plateau. This so-called "growing noise" phenome- 
non has been extensively investigated by its discoverers, L. Smullin and 
his colleagues at the M.I.T. Research Laboratory of Electronics.2"3 

They have established that this noise will begin to grow at a plane nearer 
the gun, and tend to grow at a faster rate, for electron beams (a) of 
higher perveance, (b) with less space-charge neutralization by positive 
ions, and (c) issuing from convergent, partly-shielded guns, rather than 
those immersed in the magnetic field. 

The growth of microwave noise power in drifting beams has hampered 
the development of high-power, traveling-wave tubes with acceptably 
low noise figures, as such devices generally have convergent, partly- 
shielded electron guns. The problem has been evaded in the design of 
low-noise, low-power traveling-wave tubes, by resort to confined-flow, 
parallel beams. 

Several theories have been proposed to explain the growing-noise 
wave: 

(1) Excitation of higher-order modes with complex propagation con- 
stants, by electrons threading the beam transversely ;4 

(2) Slipping-stream amplification, due to either longitudinal or trans- 
verse velocity gradients;6 

(3) Rippled-beam amplification;0, 7" 8 and 
(4) Electron-electron interactions leading eventually to equipartition 

of thermal energy, and thus an increase in longitudinal velocity fluctua- 
tions. 

In Part I of this paper, measurements are presented which show that 
the principal cause of growing noise appears to be space-charge wave 

* Presented at the I.R.E. Electron Tube Research Conference, Boulder, Colo- 
rado, June 27-29, 1956. 
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amplification due to beam rippling. The mechanism is studied in some 
detail, as its connection with the usually-observed exponential rise of 
noise is not immediately apparent. In Part II, the UHP noise spectrum 
and its spatial distribution in beams with large-amplitude, long wave- 
length ripples, arc described. In addition, some of the underlying proc- 
esses are analyzed. 

II APPARATUS 

As sketched in Fig. 1, the heart of the apparatus consists of an electron 
gun, drift tube, and movable probe, all enclosed in a demountable, con- 
tinuously-pumped vacuum system. Outside of the vacuum envelope 
there is a shielded solenoid, extending the entire 18-inch length of the 
drift tube. The annular gap between the solenoid pole face and the mag- 
netic shield about the gun is nearly all taken up by a soft-steel section of 
the vacuum envelope. 

The electron gun is of the convergent Pierce type, with oxide-coated 
cathode and a coiled-coil filament heater producing negligible flux at 
the cathode surface. Surrounding the gun, and inside of the magnetic 
shield, is a small copper-wire coil that permits variation of this flux over 
a small range, either aiding or opposing the leakage flux due to the main 
focusing solenoid. The flux density at the cathode has been approxi- 
mately calibrated in terms of currents in both coils. Throughout the ex- 
periments described below, the gun is pulsed with a 1,000 cps square 
wave of 2,200 volts on its anode, supplying 38 ± 1 ma peak current in 
space-charge-limited emission. 

The novel feature of the probe is that its annular RF pickup gap 
couples to a 50-ohm coaxial line leading to the receiver, rather than to a 
resonant cavity. This permits RF power measurements over a wide 
range of frequencies. The inner conductor of the coaxial line serves as 
current-collector, being isolated and biased positively about 40 volts 
with respect to the outer conductor to prevent escape of slow secondaries. 
An adjustable vane can be locked in position in front of the probe (whose 
entrance aperture is 0.100 inch in diameter), so that circular apertures 
of various smaller sizes are fixed on the probe centerline, about 0.070 
inch in front of the probe. With these apertures, measurements of col- 
lector-current variations along the beam furnish a rough picture of 
beam-ripple amplitudes and locations. In addition, the current-density 
variation across the beam can be estimated by moving a pinhole aperture 
in a broad arc through the beam centerline. Both the inner conductor 
of the probe and the intercepting vane are liquid-cooled. 

The noise powers coupled to the coaxial probe are considerably smaller 
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than for a tuned coaxial cavity, because of the lower RF gap impedance 
of the former. To compensate for this drawback, a sensitive noise re- 
ceiver is employed, similar in principle to the radiometer invented by 
R. H. Dicke.9 The input noise power is replaced periodically by a 
matched load at room temperature by pulsing the beam on and off 
with a 1,000 cps square wave, and placing an isolator in front of the re- 
ceiver. A synchronous detector eliminates gain-fluctuation noise and 
converts the receiver output to a dc voltage. 

Noise power variations at various microwave frequencies are measured 
in terms of the changes of attenuation, between probe and receiver, re- 
quired to keep the receiver output constant. These rapid adjustments in 
attenuation are performed by a servo amplifier-motor loop, and recorded 
on a chart, whose speed (1? inches per minute) is synchronized with that 
of the moving probe. In the same way, records of collector current as a 
function of probe position can be obtained, and correlated with those of 
noise power. The probe can be moved a distance of about 17 inches, its 
position nearest the gun {z = 0 inches) corresponding to a distance of 
0.95 inch between the anode and the input plane of the RF gap. 
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Fig. 1 — Cross-section of experimental tube, showing electron gun, probe, and 
two solenoids. The isolated current-collector electrode serves as inner conductor 
of a coaxial line. The induced RF power can be measured over a wide range of 
frequencies. 
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III EXPLORATORY MEASUREMENTS 

The electron gun used in these experiments had been designed for use 
in a helix traveling-wave tube with a longitudinal focusing field of 600 
gauss. Noise-power and collector-current curves, therefore, were first 
taken with 600 gauss to study a typical state of affairs in an operational 
beam. As seen in Fig. 2, the noise power at 3.9 kmc varies periodically 
with distance for about 4 inches from the gun, then climbs rather 
smoothly by nearly 23 db to an irregular plateau, where it undulates 
slowly, and finally levels off. The initial part of the growing noise curve 
at 10.7 kmc is missing because of inadequate receiver sensitivity, but its 
later portion is similar to that at 3.9 kmc, with about half the rate of 
noise climb. With the 0.020-inch aperture, the collector-current varia- 
tions decrease in amplitude chiefly in the drift region preceding the noise 
climb; whereas those for the 0.100-inch aperture decrease afterwards. 
Both curves show a flattening in the growing-noise region itself, as well 
as a decrease in their average values after that region, signifying an in- 
crease in the average beam diameter. 

A similar set of curves is shown in Fig. 3, for a focusing field of 279 
gauss (about twice the nominal Brillouin field). Noise growth at 3.9 kmc 
starts later, and proceeds less steeply, than at 600 gauss. The noise-power 
curve for 10.7 kmc is much more articulated, with a semblance of peri- 
odicity, throughout the drift region. Collector-current curves for both 
0.020- and 0.050-inch apertures show considerable reduction in current- 
ripple amplitude with distance, reaching virtually zero in the former case. 

Another type of survey measurement is illustrated in Fig. 4. With 
the probe stationary at the far end of the drift space (about 18 inches 
from the gun anode), the main solenoid current is varied smoothly to 
change the focusing field from 0 to over 600 gauss, and synchronized 
records are made of collector current and noise power. (In this instance, 
the current in the auxiliary solenoid was +3.2 amperes.) At low mag- 
netic fields, both the current and noise-power curves have large ampli- 
tude variations, which diminish as the field increase. At first glance, the 
noise peaks and valleys seem to coincide with those of collector current; 
certainly, some do. Closer inspection, however, reveals significant mis- 
alignments which cannot be accounted for by experimental error. When 
the three noise curves, at 3,050, 3,930, and 4,730 mc, respectively, are 
compared with each other, some characteristic features emerge: 

(1) An average curve drawn through each pattern has one or two 
broad maxima, which tend to move toward higher field strengths with 
increasing frequency. 
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Fig. 2 — Typical smooth steep growing-noise patterns, near 4 and 10.7 kmc, 
respectively, with customary focusing field of about four times the Brillouin value. 
Collector-current traces through small and large apertures reveal decreases in 
ripple amplitude and increase in average beam diameter. 
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Fig. 3 — At about half the focusing fields used in Fig. 2, the growing-noise 
pattern is much the same at 4 kmc, but shows significant articulation at 10.7 
kmc. The collector-current traces show pronounced decreases in ripple amplitude, 
and differences in ripple patterns obtained with different apertures. 
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(2) The lower the frequency, the lower the field strengths at which 
noise amplitudes change most violently with field. 

(3) The three noise curves resemble each other in small details. 
The results of a great many records of the kind illustrated by Figs. 

2 and 3 can be summarized as follows: 
(1) There is always a decrease in beam-ripple amplitude associated 

with noise growth at any frequency. (Sometimes the ripple amplitude 
increases afterwards, as in Fig. 3.) 

(2) The higher the frequency, for a given field, the more articulated 
or scalloped the noise pattern. 

(3) No correlation can be found between rate of noise growth and 
either (a) distance from gun to take-off plane, or (b) net gain at the end 
of the drift region. The trends, as a function of magnetic field, are differ- 
ent at different frequencies. 

(4) Greatest noise growth does not, as a rule, occur with zero flux 
threading the cathode. Sometimes two nearly equal peaks occur for two 
values oi Bc, each of opposite polarity, referred to the sense of the main 
field. 

(5) The noise-distance patterns change very slowly with frequency. 
(6) No beam entirely ripple-free throughout its length has ever been 

observed by the writer. 

IV ORIGIN OF GROWING NOISE 

If noise growth is due to some amplification process, it should be 
possible to adjust the beam-focusing conditions so that the noise currents 
start increasing at the anode, and attain the greatest possible over-all 
gain at the end of the drift space. The enhanced activity of the unknown 
gain mechanism should presumably help identify it. The curves of Fig. 
4 show that maximum noise occurs at different values of the focusing 
field, for different values of field at the cathode, and different probe posi- 
tions. With the anode voltage and receiver frequency fixed, therefore, 
the conditions for greatest net noise growth can only be found by a series 
of trial settings of both magnetic fields, each followed by a recording of 
the noise-distance pattern. Eventually, a set of fields can be found for 
which the greatest total gain occurs; and such patterns are usually found 
to show fairly steady noise-amplitude increase, on the average, over the 
entire length of probe travel. 

The results of this procedure for noise power near 4 kmc, as well as 
the patterns of collector-current versus distance with the same fields, 
using the 0.100-, 0.050-, and 0.020-inch apertures fixed at the probe 
centerline, are shown in Fig. 5. A similar set of records, for noise power 
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near 10.69 kmc, is shown in Fig. 6. The significant features of both sets 
of records can be summarized as follows: 

(1) In both cases, the beam-ripple periods are equal to the RF scallop 
periods; i.e., the half-wavelengths of the space-charge standing waves. 
The noise minima tend to occur at planes where the collector currents 
are at their average values and decreasing; i.e., where the beam diame- 
ters are at their average values and increasing. The noise-current maxima 
occur where the beam diameters are about to decrease. These are the 
classical conditions for rippled-heam amplification.^' 7's 

(2) In Fig. 5, the ripple amplitudes and peak values of all three col- 
lector-current curves decline appreciably with distance, the rate of de- 
cline being greatest for the smallest aperture. (Similar curves, not shown 
here, have displayed little or no such decline in the absence of noise 
growth.) This suggests that the RF noise power is amplified at the ex- 
pense of dc energy associated with radially-directed electron velocities. 

(3) In Fig. 6, the disparity among rates of decline of current-ripple 
amplitudes and their peak values, for the three aperture sizes, is even 
more pronounced. In addition, the ripple wavelength barely changes 
for the 0.100-inch aperture, but increases with drift distance for the 
smaller apertures, resulting in an increasing "phase shift" among them. 
Thus the current-density variations at different radii in the beam can 
contribute unequally to space-charge wave amplification, depending on 
their local ripple amplitude and phase. In this instance, the variations 
in current density along the beam are initially greatest near the axis, 
and suffer the greatest reduction there. It is worth noting that this 
"inner rippling" would be missed entirely in beam-size measurements 
with a large aperture.* 

The decrease of beam ripple and the increase in average beam diame- 
ter, shown in Figs. 5 and 6, has been found to accompany rippled-beam 
amplification of impressed signals by T. G. Mihran.8 Another corrobora- 
tion of the identity of this gain mechanism can be obtained by comparing 
the measured noise gain per scallop with that predicted by theory for 
idealized conditions.6, ' For a beam with stepwise alternations of maxi- 
mum and minimum beam diameters (ratio jyVi), and with noise maxima 
and beam-diameter maxima coinciding, the gain per scallop is as follows: 

Here, V is the beam potential, and p the reduction factor a)g/cop . Al- 
though the actual rippled beam is far removed from cither Brillouin or 

* More information about "inner rippling" will be presented in Part II. 
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Table I — Measured Versus Calculated Maximum Noise Gain 

Freq. mc. 

3,990 

10,690 

Ripple Data 

Iris Dia. Inches 

0.020 
0.050 
0.100 
0.020 
0.050 
0.100 

ri/ri 

3.4 
3.2 
1.9 
2.5 
1.8 
1.1 

Gain in db per Scallop 

Brillouin Flow Confined Flow Measured 

6.1 
6.3 
4.0 
6.4 
4.8 

<1.0 

5.0 
5.4 
3.3 
5.6 
4.4 

<1.0 

4.3 

4.9 

confined flow, the published values of reduction factor for both extremes 
can be used as first approximations.10,11 The ratio can be estimated 
by assuming the current density to be uniform over the beam cross- 
section near the middle of the drift region, for each of the three apertures 
used. The potential variations can be neglected. The results of such cal- 
culations are given in Table I. 

As the computed gains are expected to be somewhat greater than those 
measured, because of the optimum conditions assumed, the best cor- 
respondence between measured and computed gain rates appears to be 
for the ripple data taken with the 0.050-inch iris at 3,990 mc, and that 
with the 0.020-inch iris at 10,090 mc. This distinction is in accord with 
previous qualitative comparison of Figs. 5 and 6, showing that most of 
the beam cooperates in the ripples of the former, but that "inner rip- 
pling" characterizes the latter. 

Another calculation that reveals which part of the beam is interacting 
with the RF noise field in each case is that of the space-charge half- 
wavelength, as follows: 

X. 
2 

irb 

where 
P-Ppb' 

ab = 17471/2/73/4. 

(2) 

(3) 

Here f3p is the plasma wave number, b the beam radius, and p the reduc- 
tion factor, which can be evaluated as previously for the smooth beam 
in either ideal Brillouin or confined flow. For the gun used here, the 
square root of the perveance is 

or 
r'yv = 0.G06 X 10 J MKS units, 

X./2 ^ 29.8 b/p. (4) 
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Table II — Measured Versus Calculated Space-Charge 
Half-Wavelengths 

Iris used, 
inches dia. 

Avg. beam 
y rad./in. 

X,/2, inches Ripple 
Freq. mc. radius ro 

inches Brillouin 
Flow 

Confined 
Flow Meas'd 

Wavelength 
L, meas'd 

3,990 
10,690 

0.050 
0.020 

0.057 
0.033 

22.9 
61.2 

3.2 
1.6 

2.7 
1.3 

3.0 
1.47 

3.06 
1.52 

Thus, agreement between this expression and the measured value 
requires the correct choice of the effective beam radius, b. It turns out 
that the suitable value for Fig. 5 (3,990 mc) is the average beam radius 
obtained from ripple data taken with the 0.050-inch iris, and that for 
Fig. 6 (10,690 mc) is obtained with data taken with the 0.020-inch iris. 
The results are summarized in Table II. 

With this mechanism as the primary source of the noise gain, it be- 
comes clear why nearly equal noise maxima were found, with some 
values of the main focusing field, B, for two values of cathode flux den- 
sity Bc of opposite polarity. From approximate analyses of beam ripples 
when flux threads the cathode, such as those provided by McDowell12 

and others, it is found that the ripple wavelength depends nearly alto- 
gether on B. Its amplitude and spatial phase, however, depend on Bc, 
as this affects the beam geometry at the drift-space entrance. For a 
sufficiently wide range of variation of Bc, the spatial phase of the ripples 
can be varied from the proper relation with the space-charge standing 
wave for gain, through the positions for de-amplification, and back to 
gain again. 

V THE GROWING-NOISE MECHANISM 

Although many earlier noise records can be understood in the light of 
the rippled-beam amplification (RBA) process, this is not yet true ol 
the smooth, steep noise growth usually observed, as in Figs. 2 and 3. 
The simple theory predicts that a space-charge wave will be amplified 
when, for small ripples, a "resonance" condition exists between the rip- 
ple wavelength, L, and the space-charge half-wavelength 

L ^ riX,/2, (5) 

where n is an integer, usually unity. In addition, as mentioned earlier, 
there is an optimum phase relation between ripple and standing wave 
for maximum gain. These conditions are not satisfied by the records of 
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Figs. 2 and 3, except possibly for the 10.7 kmc noise current in Fig. 3 
(at a relatively low magnetic field). 

To establish a connection between the two types of noise growth, the 
noise record of Fig. 6 (for 10.7 kmc with greatly expanded gain region) 
is compared with that near 4 kmc under the same conditions, in Fig. 7. 
The growing noise region for 4 kmc does not start until at least four scal- 
lop wavelengths past the earliest observed 10.7 kmc noise growth. More- 
over, the 4-kmc noise pattern resembles that for 10.7 kmc in many de- 
tails. (The resemblance in details of noise patterns at nearby frequencies 
has been remarked before, in connection with Fig. 4.) 
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Fia. 7 — The pattern of growing noise in Fig. 6, near 10,690 mcs, is compared 
with that near 3990 mc for the same fields. The gain region of the latter curve 
starts much later and is much smoother than the former. The small irregularities 
on the 3,990 mc curve resemble the scallops of the 10,690 mc curve, in a blurred 
way. 
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This information suggests that the growing-noise mechanism is really 
a two-stage process: amplification of a broad band of microwave fre- 
quencies, located far above the observation frequency, followed by a 
transfer of noise energy to lower frequencies. 

(a) First stage 

At low magnetic fields, there are few ripples per unit length, but their 
amplitude is usually large; whereas at moderate to large magnetic fields, 
the ripple amplitude is small, but so is the ripple wavelength. In either 
case, the bandwidth of RBA is large, usually many thousands of mega- 
cycles. 

The increase of both bandwidth and gain per scallop with ripple 
amplitude has been explained by Pierce13 by analogy between the gain 
band of a rippled beam and the stop band of a transmission line filter: a 
sharply varying periodic disturbance on the latter will reflect short as 
well as long waves, whereas smoother perturbations will not reflect the 
shorter waves to any extent. 

Another way to study the amplification bandwidth is to derive the 
equations for RF current in a one-dimensional beam with sinusoidal varia- 
tion of the reduced plasma wave number, /35 = p-fip, as Heffner,14 

Bloom,16 and others16,17 have done. This leads to a Mathieu equation, 
whose solutions may be studied on the Mathieu stability plot {A, q): 

^ (A — 2q cos 2x)I = 0. (6) 
dx2 

Here I is the RF current, q a measure of the perturbation amplitude, 
x = trz/L, and A = (2L/Xg)2, where L is the ripple wavelength and X9 

the reduced plasma wavelength. Bloom has shown that, if n is the in- 
tegral number of scallop wavelengths between initial and final planes, 
the greater the product nq, the greater the total amplification or deam- 
plification, and the less critical the phase relation between RF standing 
wave and ripple for amplification. Ultimately, for very large nq, ampli- 
fication will take place for all values of this phase angle. 

At higher magnetic fields, both the ripple amplitude and ripple wave- 
length are decreased. This means that q is reduced, but n increased over 
any fixed span. This combination usually tends to increase the product 
nq up to some fairly high field, after which it may decline. More impor- 
tant, the reduction in ripple wavelength shifts the band of amplification 
to higher frequencies, and greatly increases the frequency band. This 
occurs because the "resonant" space-charge wavelength is shorter, 
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and short space-charge wavelengths correspond to high frequencies, 
where the former change very slowly with frequency. 

(6) Second stage 

When noise power over this large band has been amplified sufficiently, 
electron bunching becomes non-sinusoidal, and the beam becomes non- 
linear. Harmonics and beat-frequencies18 of the fundamentals, and pos- 
sibly sub-harmonics,19 are excited. As the beat-frequencies are excited 
by a continuum of pairs of frequencies, their standing-wave patterns 
overlap one another, resulting in a "wash-out" of the noise minima, and 
a smooth growing-noise pattern. Eventually, the same non-linear proc- 
esses take place within this subsidiary band, leading to a gradual leveling 
of the entire noise spectrum. The initial rates of rise of the intermodula- 
tion products, however, should take place closer to the gun and be 
greater, for a lower frequency. They will depend on both the spectrum 
of noise power in the primary band and, so to speak, the spectrum of 
"beam non-linearity" within that band. 

To simulate this intermodulation process, two low-level klystron sig- 
nals (9,050 and 12,275 mc, respectively) were simultaneously permitted 
to modulate the electron beam as it entered the drift tube, by means of 
a short length of lossy helix. The magnetic fields at the cathode and in 
the drift space were adjusted to produce a beam ripple which amplified 
both of these signals simultaneously over most of the drift space, as 
shown in Fig. 8 (a, b, c).* Noise-power records were then made at the 
difference-frequency, in the presence of the two modulation signals, 
Fig. 8(d), and in their absence, Fig. 8(e). The difference between the 
noise levels in the latter two records increases with distance, as both 
parent space-charge waves grow in amplitude, and the degree of beam 
non-linearity increases. Naturally, the contribution to 3,295-mc noise 
in the absence of modulating signals is far greater than that of the latter 
two alone, as the primary bandwidth of noise amplified is very great, 
and that of the signals very small. 

There are several reasons why exponentially-growing noise should 
stop growing and level off, and sometimes even decrease slightly: 

(1) depletion of dc kinetic energy in the beam ripples; 
(2) de-amplification in the fundamental band, due to departure from 

the proper phase relation for gain between standing wave and ripple, 
if only over part of the band (Fig. 3); 

* The fine ac detail superimposed on the pattern of Fig. 8(b) is due to inter- 
ference between the waves traveling along the beam and that propagating as a 
waveguide mode in the drift space. 
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with and without the signals (b) and (c) present. The difference in ordinates of 
the two curves increases with distance from the gun, as the impressed signals 
grow and the beam becomes more non-linear. 

(3) sufficient phase shift between inner and outer ripples in the beam 
for one to de-amplify as much as the other amplifies; and 

(4) interference among the intermodulation products excited at differ- 
ent positions along the beam.* 

The last effect is illustrated in Fig. 9, in exaggerated form. The beam 

* Suggested by C. C. Cutler of Bell Telephone Laboratories. 
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is simultaneously modulated as before with two klystron signals (8,400 
and 11, 590 me, respectively), but now at fairly high level; and the fo- 
cusing field is made large. The interference dips in the pattern of 3,120-mc 
noise are quite deep, and are spaced irregularly and farther apart than 
the space-charge wavelength of any of the three frequencies involved. 
The third dip is shallower than the previous two because of the growth 
of 3,120-mc noise other than that due to the signals, as shown in Fig. 
9(c). The latter pattern of noise in the absence of the two high-level, 
high-frequency signals suggests that the characteristic first gentle dip 
following the growing-noise region is indeed of the same nature as the 
artificially-produced interference dips, and has nearly the same quasi- 
period. 

The pattern of dips agrees with simple calculations, based on this 
model, in which the amplitude of the difference-frequency intermodula- 
tion product, excited at any plane f, is assumed proportional to the prod- 
uct of the amplitudes of the two high-frequency space-charge standing 
waves, as follows: 

I dis | cc | f,(f)-t2(f) df |, (7) 

where 

in = In sin p„/3pf ■ sin un{t - f/w), (n = 1,2). 

The total current at f = 2 is the sum of contributions from all the stand- 
ing waves excited to the left of it: 

I *31 « 7/1/2 f cos p$p{z - f)[cos (pi - p2)/3pf 4 Jo (8) 

- cos (pi + p2)/3Pf] df. 

This expression is readily integrated and evaluated. 

VI CONCLUSIONS 

Synchronized measurements of electron-current density and noise 
currents at several microwave frequencies have shown that the "growing 
noise" pattern in drifting cylindrical beams is the result of a two-stage 
process. In the first stage, rippled-beam amplification of noise fluctua- 
tions takes place over a very broad band of microwave frequencies, 
much higher than the usual observation frequency. In the second, noise 
energy is transferred to lower frequencies by intermodulation and other 
non-linear processes within this band. The element of non-linearity is 
supplied when primary noise gain is sufficient to make electron bunching 
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non-sinusoidal. Other sources of non-linearity are thermal velocities, 
non-laminar beam flow, etc. As the beat-frequency noise increments at 
any plane are produced by continuous arrays of frequency pairs, in- 
creasing in numbers and amplitude in various ways as primary amplifica- 
tion proceeds, the multiple standing-wave patterns at the observation 
frequency progressively overlap one another. This results in the smooth 
steep rise of noise power usually observed. 

Phase correlation among the space-charge waves excited at succes- 
sive planes on the beam by the same set of frequency pairs is indicated 
by gentle dips, due to their destructive interference, in the plateau 
following the initial noise rise. 

Rippled-beam amplification occurs whenever the ripple wavelength 
and half the space-charge wavelength are nearly equal, and bear a 
favorable spatial relation to each other. However, this "phase" relation 
becomes less critical with an increase in either the number of ripple 
wavelengths over which synchronism persists, or the ripple amplitude, 
or both. Noise amplification by this mechanism, therefore, is probably 
present to some degree in all rippled streams, particularly at high fields. 
The extreme difficulty encountered in focusing ripple-free beams from 
convergent, shielded guns has to this date prevented the detection oi 
any other primary gain mechanism, which may conceivably co-exist in 
such beams. 

A conspicuous feature of rippled-beam amplification is the decrease 
in ripple amplitude due to conversion of dc into ac kinetic energy. Such 
changes in beam structure emphasize the inadequacy of beam-flow com- 
putations based entirely on dc force equations. A more detailed descrip- 
tion of this dc-ac energy conversion is given in Part II. 
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Noise Spectrum of Electron Beam in 

Longitudal Magnetic Field 

Part II — The UHF Noise Spectrum 

By W. W. Rigrod 

(Manuscript received January 21, 1957) 

Sharp peaks are found in the UHF spectrum (10 /o 500 me) of an elec- 
tron beam, emanating from a shielded diode. In the presence of a longitudi- 
nal magnetic field, the strongly rippled beam displays an additional set of 
peaks whose frequencies are proportional to the field strength. The largest 
of these, just above the cyclotron frequency, is connected with (he overlap of 
a dense cluster of particle orbits, passing close to the beam axis. It can attain 
amplitudes of 65 db above background noise. 

The transverse distribution of UHF noise power is found to agree with 
that for ideal Brillouin flow, even in rippled beams. With long ripple wave- 
lengths, two noise maxima are found to flank each beam waist. A small- 
signal wave analysis explains this pattern, and affords some insight into the 
energy-exchange processes in rippled-beam amplification. The reduction in 
ligrowing noise" due to positive ions is attributed to increased cancellation 
of net radial beam motion, due to overlap in particle orbits near the axis. 

I INTRODUCTION 

The reader is referred to Part I1 for a description of the experimental 
apparatus and its operation. In this paper, measurements of noise power 
in the same electron beam are described, with frequencies chiefly in the 
10- to 500-mc range, and relatively weak magnetic fields. For the UHF 
measurements, a calibrated coaxial step attenuator and a super-regenera- 
tive receiver (the Hewlett-Packard 417-A VHF Detector) are used. Rela- 
tive noise-power amplitudes at fixed frequencies are measured as before, 
in terms of changes in attenuation between probe and receiver required 
to restore constant receiver output. To obtain qualitative information, 
however, such as the location of noise maxima along the beam, the series 
attenuation is fixed. The receiver output is amplified, rectified, and per- 
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mitted to register itself directly on the chart recorder, whose motion is 
synchronized with that of the probe. Very roughly, the detector output 
varies as the log of input power. 

Measurements are described (a) of the UHF noise spectrum in the 
beam, just outside the gun anode; (b) of this spectrum at the end of the 
drift region, in a longitudinal magnetic field; (c) of the noise-power dis- 
tribution along the axis; and (d) transverse to the axis of the rippled 
beam in the drift region. Two calculations are then outlined, one of wave 
propagation along the rippled beam (to explain the observed distribution 
patterns), and the other to account for some spectacular peaks in the 
beam spectrum (b). 

II FIELD-INDEPENDENT PEAKS 

When the noise spectrum of an electron beam is scanned by a tunable 
receiver, it is found that an irregular array of narrow-band peaks char- 
acterize the UHF region, below about 1000 mc. Of these peaks, some are 
due to spurious modulation effects,' and can be eliminated as follows: 

(1) Transit-time oscillations due to positive ions, secondary electrons, 
or both. Such frequencies vary with probe (collector) position. 

(2) Resonances in the probe and receiver, excited by the pulsed- 
voltage supply. These are unaffected by changes in collector current. 

(3) Ion oscillations in the electron gun or beam. Their frequencies vary 
with anode voltage. 

The remaining narrow-band peaks fall into two classes, depending 
on whether their frequencies vary with the magnetic field. 

Well-defined peaks can be detected with the RF probe stationed one 
inch from the gun anode, with or without any focusing field. When the 
beam is focused by a longitudinal magnetic field, these disturbances 
propagate along the beam, and tend to increase in amplitude with dis- 
tance, but not to change in frequency. A typical set of such frequencies, 
within the range of the tunable receiver is as follows: 15.9, 24.3, 31.2, 
34.0, 48.5, 63.4, 77.0, 108, 151, 166, 270.5, 372 and 481 mc. (During this 
measurement, the anode voltage was 2,200, and the peak current about 
40 ma.) 

No consistent relation could be found between these frequencies and 
either the anode voltage or the cathode temperature, although unmis- 
takable frequency changes did occur when these parameters were ma- 
nipulated. Failure to establish such a relation may have been due to 
uncontrolled drift in cathode activity. In any case, the measurements 
did serve to narrow the field of possible mechanisms, by eliminating the 
following: 
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(1) Transverse positive-ion oscillations,3 for which the frequencies 
vary as the square root of anode voltage. 

(2) Transverse electron plasma oscillations (near or beyond the 
anode), for which the frequencies would be too high. 

(3) Longitudinal electron plasma oscillations at the potential mini- 
mum, for the same reason (should be near 2,500 mc). 

(4) Longitudinal diode oscillations.4 When the electron transit angle 
through the diode is approximately (n + periods, where n is an in- 
teger, the real part of the diode conductance becomes negative, permit- 
ting oscillations to occur. Again the frequencies of such oscillations would 
be too high, (2,200 mc and higher) for the gun used, to conform to the 
observed values. 

There is, however, one published theory for which an order-of-magni- 
tude correspondence does exist between the measured and calculated 
frequencies. Klemperer5, 6 has shown that a strip beam tends to break 
up into clusters of "pencils" at the cathode. He ascribes these to standing 
waves resulting from transverse oscillations in the space-charge cloud, 
and offers an expression for the wave velocity in this medium. Applica- 
tion of his formula to the cathode used in the present experiments results 
in a least frequency of 31.3 mc. Other observers, such as Smyth' and 
Veith,8 have also reported evidence of interaction between electrons in 
a retarding-field region and RF fields, which may underlie these oscilla- 
tions. 

Ill FIELD-DEPENDENT PEAKS 

With the RF probe stationed ten or more inches from the gun anode, 
narrow-band peaks can be found in the noise spectrum of the beam. 
The amplitudes of these peaks increase and their frequencies decrease 
with decreases in the magnetic field. For each probe position, the process 
of finding the peak of greatest amplitude involves repeated adjustments 
of the focusing field, the magnetic field at the cathode, and the receiver 
frequency. 

When the fields have been so optimized, it is found that the probe is 
located at or near the first beam-diameter minimum, following that at 
the entrance to the drift space. When the field is doubled, and the 
"tuning" process repeated, the greatest peak is found to have about twice 
the frequency of the first, and the probe is found to be located at or near 
the second beam waist. It is convenient, therefore, to think of these 
peaks as "proper" frequencies of the N = \, etc., modes of the rippled 
beam, where N is the number of ripple wavelengths between gun and 
probe. 
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Pig 1 — Frequencies and amplitudes of several narrow-band UHF peaks 
measured at a fixed probe position, about 16 inches from the gun anode. N is the 
number of beam-ripple wave-lengths between anode and probe. Other peaks have 
been observed at higher harmonics of the "proper" frequency (encircled points), 
and at about half that frequency. 

As shown by the encircled points in Fig. 1, these frequencies range be- 
tween 1.03 and 1.06 times the calculated cyclotron frequency, and have 
amplitudes as high as 65 db above the background noise. The amplitudes 
decrease with increasing N, falling off as the minus two-thirds power oi 
the frequency. 
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At each of these optimum field settings, several weaker "satellite" 
peaks can also be detected, most readily those at the cyclotron frequency 
itself, and at 0.707 times the latter; i.e., the "plasma" frequency, as 
shown in Fig. 1. In addition, smaller peaks have been repeatedly ob- 
served at harmonics (up to the sixth) of the proper frequency, and one 
at slightly less than half of that frequency. (When a proper frequency 
was simulated by means of a signal generator, only its first harmonic 
could be detected in the receiver output.) 

At the fields corresponding to N = 4 in Fig. 1, the cyclotron frequency 
(312 mc) was found, but not the proper frequency. The highest proper 
frequency observed was 240.5 mc, in the N = 3 mode. The proper- 
frequency peaks decrease with increasing focusing field, whereas the 
field-independent peaks excited in the electron gun tend to increase, at 
the far end of the drift region. 

IV SPATIAL DISTRIBUTION OF UHF NOISE CURRENTS 

In Figs. 2 to 5 are shown synchronized chart records of collector cur- 
rent, one or more UHF narrow-band peaks, and microwave noise power 
near 4,000 mc— all as functions of distance from the electron gun, for 
the A = 1 to 4 modes, respectively. In all runs, the beam was pulsed 
with a 1,000-cycle square wave, and the collector aperture set at a 0.100 
inch diameter. The magnetic fields at the cathode and in the drift space 
were adjusted before each set of readings, with the probe at a common 
reference position, for greatest amplitude of some UHF peak. In Figs. 
2 and 3, these were proper frequencies, whereas in Figs. 4 and 5 they were 
field-independent frequencies. 

The content of these distribution curves can be summarized as follows: 
(1) At the low fields employed (none quite equal to the nominal 

Brillouin value), the beam ripples are quite large, both in amplitude and 
wavelength. 

(2) The proper-frequency traces have two or three maxima near each 
beam waist, and their amplitudes grow more rapidly with distance from 
the gun than any of the satellite frequencies. 

(3) The patterns of the cyclotron and "plasma" frequencies do not 
differ significantly from those of the field-independent frequencies, and 
usually display two peaks near each beam waist. 

(4) The collector-current maxima decrease with distance from the gun, 
although their minima change little. (The first maximum is sometimes 
flat-topped due to beam interception before it enters the drift space.) 
The rate of decrease of these maxima, and the rate of increase of proper- 
frequency amplitude, are greater, the longer the ripple wavelength. 
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(5) The patterns of microwave noise power resemble blurred envelopes 
of the UHF traces. 

Some idea of the transverse distributions of UHF noise power and 
electron-current density, in a region of strong proper-frequency exci- 
tation, is given in Figs. 6 and 7. The measurements were taken by mov- 
ing a small aperture in a broad arc through the probe centerline, just 
in front of the probe aperture. In both illustrations, the relative noise 
power has been "normalized" to compensate for variations in electron 
current traversing the RF gap. 

The curves of Fig. 6 are typical of most such measurements. The beam- 
current density varies smoothly through a single broad maximum, and 
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Fig. G — Simultaneous point-by-point measurements of collector current and 
relative noise power, obtained by moving an 0.013-incli diameter aperture in a 
broad arc through the probe centerline. The probe is stationary, about 18 inches 
from the gun anode, and the fields have been adjusted for maximum amplitude of 
the proper frequency, 148.5 mc. The cyclotron frequency is 143.8 mc. 



PAKT 11 THE UHF NOISE SPECTRUM 

the noise-power density is greatest at the rim of the beam so defined, 
and least near its center. No evidence of azimuthal periodicity was 
found. The curves of Fig. 7, which are less typical, indicate five distinct 
peaks of RF power, despite a nearly symmetrical pattern of collector cur- 
rent. At the time of this measurement, cathode emission may have been 
uneven, due to coating damage by ion bombardment. 

In the rippled beam on which these measurements were made, the 
ratio of flux encircled at the cathode, to that in the drift space, was 
very small for most electrons. One would, therefore, expect the trans- 
verse noise-power distribution in this beam to resemble that in a smooth 
Brillouin beam.9 The noise power expected when a pinhole aperture 
is located at the beam center can be compared with that when the aper- 
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Fig. 7 — Transverse distribution measurements similar to those of Fig. G. 
This pattern was obtained a week later than that of Fig. 6, and the cathode was 
operated at a higher temperature. The cyclotron frequency would be 153.2 mc 
for the field used. 
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ture straddles the beam rim, by taking the beam area exposed in the 
first case to be that of a sector of angle 9, and the length of beam sur- 
face in the second case to be that of the corresponding arc: 

Rf current sample inside of beam ^ _ bju — fHu) •/o(/3b) 
Rf current sample at rim of beam 2dbGz 2ul\{^b) 

Here h is the beam radius, and Jz, Gz the longitudinal components of 
volume and surface current densities, respectively, h and h are modi- 
fied Bessel functions, /3 is the propagation constant, u the beam veloc- 
ity, and co the radian frequency. For the frequencies and beam radii 
employed in these measurements, this ratio is very much less than unity. 
Thus the pattern of Fig. 6 is in accord with this mode distribution. The 
multiple peaks of Fig. 7, however, do not conform to this picture, and 
are not understood at present. 

As most of the RF power is concentrated near the rim of the beam, 
the question arises whether the double and triple peaks, in the longi- 
tudinal distribution patterns of Figs. 2 to 5, are not due to the probe 
aperture breaking through the beam rim. However, the dip between 
adjacent noise peaks is too great to be explained on the basis of reduced 
partition noise or weakened gap coupling, assuming the beam diameter 
there to be less than the gap diameter (0.100 inch). Moreover, double 
peaks occur even when the beam diameter exceeds the RF gap diameter; 
for instance, near the last three beam waists of Fig. 5. (When all of the 
beam is transmitted by the 0.100 inch aperture, the collector-current 
peak is flat-topped.) It seems likely, therefore, that the double and 
triple peaks correspond to peaks of amplitude over the entire beam 
cross-section. 

V PROPAGATION ALONG THE RIPPLED REAM 

To find an explanation for the multiple peaks of space-charge cur- 
rent, a small-signal, slow-wave analysis of wave propagation along the 
rippled beam can be made, in which the special features of these experi- 
ments are exploited: long ripple wavelength, effectively no flux at the 
cathode, and low frequencies. The first of these features suggests that 
the propagation constants can be evaluated at each cross-section plane 
as though the beam were uniform, despite the presence of radial ve- 
locities. In addition, the space-charge density is assumed constant at 
each cross-section, and the electron flow laminar. 

With these assumptions, the beam can be regarded as a fluid of mov- 
ing charge, with a single-valued velocity at each point in space, as fol- 
lows: 
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VQ = {Vr, Ve, vz) (1) 

where 

Vr = r-f(z), or 
dvr _ vr 

dr r (2) 

a ve = rd = r —, (3) 

u. (4) 

Here, r, 0, z are the polar cylindrical coordinates, = -qB the angular 
cyclotron frequency corresponding to the longitudinal focusing field B, 
and /(z) a function describing the amplitude and spatial periodicity of 
the beam ripple. The experimental data indicates that the potential 
variations along the beam axis are negligible, permitting the assumption 
that the longitudinal velocity, u, is constant. MKS units are used. 

Consistent with the distribution pattern of Fig. 6, the ac field can 
be represented by an axially-symmetric potential function, similar to 
that for the smooth Brillouin-flow beam: 

The ac equations of fluid motion are obtained by adding a small ac 
increment to each of the steady-state velocity components. In addition 
to the space-charge field, the ac electric field contributes forces acting 
on the charged medium; those contributed by the ac magnetic field 
are neglected: 

The ac velocity is distinguished by a tilde, and the dc velocity by a 
zero subscript. Here q = e/m is the charge-mass ratio of the electron, 
a positive quantity. As all ac quantities are functions of spatial positions, 
their time differentiation (indicated by a dot) is equivalent to multi- 
plication by j(a) — /3r), written jub for brevity. 

The components of the force equation are expanded as follows: 

V ~ Ia{yr) exp — /3z), 

E = — grad V. 

(5) 

(6) 

^ (wo + P) = -f/t-grad V - grad Fo -{- (vo + P) X B]. (7) 

+ (Pf + Pr) JT" (Pr + Pr) + (w + Pz) » (Pr + Vr) — — ot or OZ 
(ve + Pfl)2 

r 
(8a) 
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• , f 5 i 1 
jm + "' 1 ^ + 7 

. , ,'avr\ ar 
^dz) 1 dr' 

at + {v' + 'A6 + at 
dvg 

+ U ^ + (fr + 5r)( 0 + - 
dz \ r 

j-. + vAi + l 

dP, . dv, . dv, 
— + Vr^- + M F" = V T~' dt dr dz dz 

^jo)b + IV vz = -jvPV. 

dV / , „ \ 
= »? ^- + Wc(lV + fr), 

09 = 0, 

ay 

(8b) 

(9a) 

(9b) 

(10a) 

(10b) 

An expression for the ac space-charge density, p, can be obtained in 
terms of its steady-state counterpart, po, by means of the charge-con- 
servation equation: 

^ = — i-o-grad p — P ■ grad po — po div 0 — p div Vo 
dt - _ (11) 

—ro-gi'ad po — po div Wo • 

As the beam diameter changes slowly, the dc space-charge density at 
each plane is taken to be inversely proportional to the square of the 
radius, b: 

| grad po i = <9po 
dz 

2po db 2Vr 
i az = ~mp°t 

wo-grad po 
div Wo —    

po 

2wr 

/• 1 

(12) 

(13) 

[j™ + v. + i)] ? - -P. ~ (rtr) - m (l ^,)] • (W) 

At low frequencies (the UHF region), 

dr r 

as {-yrf « 1. This inequality is also true of other ac quantities pro- 
portional to F, such as v, and p, and with a small error can be assumed 
to be true for vr. When the operator d/dr is omitted from (8), (9), (10), 
and (14), it is possible to solve explicitly for p in terms of po and V. 
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The laminar-flow rippled beam can be described by the particle 
trajectories, as follows: 

r, = ro,(l + 5 cos 0rz), 

where ro, is the maximum radius for the particle considered, and 
0 < 5 < 1. For this model of the beam, 

/V _ /> _ — 5a)c sin pcz 
r h 1+5 cos /3c2' 

1 dvT _ — wc/3c5(5 + cos ficz) 
r dz (1 + 5 cos /3c2)2 

(15) 

(16) 

(17) 

The region of interest, judging from the observed peak locations, is 
not at the mid-plane of the beam waist, where Vr = 0, but on either side 
of that plane, where | yr/r \ is greatest. It is readily found that, at these 
positions (1/r) {dvjdz) is zero, and (14) can be written 

P = 
tipoF 

i - i — LOhl' 

-P 
('-'if) 

This can be combined with Poisson's Equation, 

AF = (t2 - S'W = -p/e, 

to furnish a relation between y and /3: 

\ ^ pu r J 1 - 
/f 

V OibfJ _ 

i - 

(■-e) J 

(18) 

(19) 

(20) 

where R = cj/yW and to,,' = — rjpo/e, the square of the angular plasma 
frequency. 

At the beam boundary, r = b, the continuity of the tangential field 
components and the change in radial electric displacement can be ex- 
pressed in the form of an admittance equation: 

[K5H)]: = 

]_ dVT1 

_V dr Jb 
(21) 

Here I refers to the beam, 0 ^ r ^ b, and II to the space between beam 
and the concentric conducting tube, b ^ r ^ a. The surface charge 
layer, a, takes account of the surface ripple, of amplitude f: 
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a = por = — jpoVr 

-?/e = — 

0)b 

RjdV/dr) 

1 - i — CObV 

(22) 

The appropriate potential functions in I and II are reduced by means 
of the low-frequency, or thin-beam, approximation, as follows: 

f * dVT — yliiyb) 
\_V drjb /o(7^) 

y'b 

f 1 aTl11 = rii{pb)K0(pa) + Jo(/3a)/CiW"1 /93) 

IV dr Jfi ^ \_Io(J3b)Ko{f}a) - /o(^o)/Co(/36)J 

ffh 
— 2 5 In a/6 

where the following small-argument approximations have been used* 

Kq{x) ^ —In x, 

Xi(x)s2lnx + i, 
z X 

(24) 

The boundary equation thus provides a second relation between 7 and 
2? 7 0 

"2" 
1 - 

2? 

1 - i mr/_ 

fPb 
2 

6 In j 
b 

(25) 

For the smooth beam in Brillouin flow {vr = 0), the boundary equa- 
tion, to the same low-frequency approximation, is as follows: 

2 9. 
27n = (oi — (Sow)2 a 

m* In ^ 
(26) 

To see how the beam ripple affects the propagation constant, it is 
sufficient to find its first-order effect; i.e., to assume relatively small 
radial velocities and find a solution for which is not very different 
from its value, /3o, for the smooth beam: 

/3 = /3n + ^ = /3c ± + 5, (27) 

where 
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In addition, | iv/W | is less than unity, and | 2vr/l3ur \ can be neglected 
entirely. With these assumptions, the boundary and characteristic 
equations can be combined to solve for 

y* _F(F - R) - (t) Ro (28) 
P F2 — R F - R ' 

where 

Utilizing the low-frequency condition, ( I?2 | > \ R \ > 1, this equa- 
tion can be reduced and, after some algebra, solved: 

fh /KoV'2 = ~ 1 _ ■ 
PKrJ (ft + S)(±W_ 3 2mr' 

ftSA+ /3, - (29a) 

PtSilS, - 13, +(29b) 
2ur 

These expressions show that the current in the slow wave (Is) will 
grow when (vr/r) is negative; i.e., when the beam is contracting, and 
decrease during its expansion. The fast wave (I/) will do the opposite. 
In probe measurements along the beam, the detected ac power is pro- 
portional to the square of the total space-charge current, which has 
the following dependence on time and distance when the amplitudes of 
both waves are initially equal: 

(/„ + If) = 2/mnx cos (ut - l3ez)-cos (/V)-sinh (30) 

In UHF noise-power measurements along beams with long ripple 
wavelengths, the two planes of maximum ± (vr/r) are separated by 
only a small fraction of a space-charge wavelength. Therefore, cos (iqz 
at the first of these planes is only slightly larger than at the second. 
Thus, two peaks of current are observed, in agreement with (30). By 
contrast, in rippled-beam amplification at microwave frequencies, 
shorter ripple wavelengths and smaller ripple amplitudes are employed. 
Then (tv/r) varies nearly sinusoidally over the ripple wavelength. For 
maximum net gain per ripple, maximum negative (fr/r) is adjusted to 
coincide with the plane of cos (iqz = 1 (maximum current), and maxi- 
mum positive {vT/r) at the current minimum, half a wavelength beyond. 
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The gain constants in (29) are independent of frequency. The net gain 
per ripple wavelength, however, will vary with frequency, depending on 
how closely both the current maxima and minima coincide with the 
regions of maximum ± (vr/r), respectively. This is a statement of the 
"resonance" condition between ripple wavelength and half the space- 
charge wavelength, which emerges from one-dimensional analyses1 of 
this gain mechanism based on transmission-line analogies. 

Such analyses generally assume small-amplitude sinusoidal variations 
of the reduced plasma wave number, /39, along a one-dimensional beam 
in a longitudinal ac field with no losses. Periodic variations in either beam 
or wall diameters, or beam velocity, cause the beam "impedance" to 
vary periodically, imparting to it narrow-band filter-like properties 
equivalent to narrow-band signal gain. From another point of view, 
these periodic impedance changes couple the fast and slow space-charge 
waves to each other intermittently, thereby effecting an energy trans- 
fer from the fast to the slow wave. As this coupling is lossless, L increases 
and If decreases with drift distance, in such a way as to keep their product 
constant. Then the product /max/mm increases, and the ratio Imax/min 
correspondingly decreases. In the case of noise-power amplification^ two 
uncorrelated space-charge standing waves are present. Because the two 
slow waves cannot simultaneously be amplified at the expense of the two 
fast waves, the product /max/min must remain constant. 

The observed noise-current patterns in rippled-beam amplification,1 

however, are characterized by a nearly constant ratio Ima*/Imin , and an 
increase in the product /max/min along the beam, despite the fact that 
the beam voltage is fixed. This apparent contradiction can be resolved 
by a closer look at the energy-exchange processes. 

Chu12 has shown that the kinetic power flow in space-charge waves 
(the major part of the total power) is equal to the difference in powers 
carried by the fast and slow waves. This is equally true of beams with 
transverse motions and fields.13 In rippled-beam amplification, whether 
analyzed as a modulated linear beam or at each beam cross-section sepa- 
rately, as here, the propagation constants are found to be complex con- 
jugate quantities, whose real parts describe the ordinary fast and slow 
waves of a uniform beam. From either point of view, therefore, a de- 
crease in If and an increase in /s signifies an increase in the negative 
kinetic power flow carried by the waves, or a decrease in the total kinetic 
energy of the beam. 

As shown in (29), the gain constants are proportional to vr, indicating 
that the dc energy transferred to the waves when the beam contracts 
could only have come from the radial kinetic energy, not the longitudinal. 
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The direction of energy transfer is reversed during the subsequent beam 
expansion. If the ripple were perfectly symmetrical, therefore, and the 
dc-ac energy exchange perfectly reversible, the net effect of a beam ripple 
would be zero. Neither of these conditions is quite true in actual beams. 
Rippled flow is never truly laminar, and | tv/r | usually decreases with 
drift distance as the flow loses coherence; i.e., it is greater in beam con- 
traction than in the next expansion. This by itself would produce a net 
gain per ripple in Ia , and a net loss in 7/ , of equal amounts. In addition, 
however, unavoidable small non-linearities in electron motions prevent 
all of the ac energy in a de-amplified wave from being converted back to 
dc kinetic energy. Thus it is possible for both the fast and slow waves to 
increase in a ripple wavelength, the latter always more than the former. 

The greater gain of the slow wave entails a loss of radial kinetic energy, 
in agreement with the observation that the ripple amplitude always 
decays more rapidly when rippled-beam amplification takes place. The 
incomplete reversibility of the ac-dc energy exchange probably accounts 
for the observed increase in ImnxImin for noise currents. Finally, the net 
amplification of all of the space-charge waves, fast as well as slow, is in 
accord with the observed near-constancy of the ratio /„,ax/7n.in for 
microwave-frequency noise, despite increases in the product Inmxhnin of 
30 db and more. 

VI ORIGIN OF THE PROPER-FREQUENCY PEAKS 

Of the various peaks in the beam's noise spectrum, described in Sec- 
tion III and Fig. 1, those with "proper frequencies," slightly above the 
cyclotron value, are so large in amplitude that even an approximate 
analysis should be able to account for them. To do so, a "working model" 
of the beam is needed, which conforms to the experimental conditions 
which existed during the observations: 

(1) The peak intensities were greatest near the middle of each beam 
waist, and decreased with decrease in ripple amplitude. 

(2) The focusing field was below the nominal Brillouin value. The 
field at the cathode, Be , was finite and opposed to the main field, B. 

(3) Collector-current measurements along the beam axis showed the 
ratio of maximum to minimum current to be greater, the smaller the 
aperture. 

(4) The gas pressure was about 10-' mm Hg. The beam was pulsed 
with a 1,000-cycle square wave. 

Item (3) indicates that the flow was non-laminar; and Item (4) in- 
dicates the presence of positive ions. All the items are consistent with 
the following picture: 
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In a beam with large ripples, nearly all electrons have their maximum 
radii and zero radial velocity at the same 2-plane. Those with sufficiently 
large maximum radius will have enough transverse kinetic energy to 
surmount the space-charge forces at the beam waist, and pass through 
or close to the axis. Others, with smaller maximum radii, will spiral 
about that axis. Bolder and Klemperer14 have observed a similar di- 
vision of electrons into "crossovers" and non-crossovers, in electron- 
optical systems without magnetic fields. 

Positive ions tend to neutralize the electronic space charge at the 
beam waists, broadening the region in which crossover occurs. The cross- 
over trajectories thereupon overlap one another, resulting in multi- 
valued transverse particle velocities in this region. In a first-order 
(linearized) study of wave propagation along the beam, one must re- 
place the actual multivelocity charge motions with a single "fluid" of 
charge, whose velocity at any point is the average of the particle ve- 
locities there. It is clear that the z-velocity of the stream is u, and the 
radial velocity zero. The tangential velocity, ve = (0r)av , however, is 
more complicated. 

Owing to the partial or total neutralization of electronic space charge 
at the beam waists, and their large radii elsewhere, the crossover elec- 
trons will encounter virtually no space-charge forces in their paths. Their 
transverse paths will consequently be circles about fixed centers, de- 
scribed with angular velocity equal to the cyclotron frequency. Their 
angular velocity about the beam axis is given by Busch's Theorem: 

is a positive quantity, as Bc/B is negative. Here, rc is the radius at which 
a particular electron left the cathode, and r is its radius in the drift 
region. The angular velocity, 0, is greater than co(./2 at all times, and 
exceeds coc in the waist region of the beam. The average value of vg at 
any point here, therefore, is greater than c^r and presumably varies from 
point to point in some unknown way. 

If vg is left unspecified, and the assumptions adopted of zero space- 
charge forces and radial velocity over a finite length of beam: 

where 

(31) 

(32) 

the radial component of the force equation (7) in Euler coordinates can 
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be written as follows: 

©,= -7 = (33) 

t's = 0 and a;cr. (34) 

Thus, the radial "balance" conditions (32) are consistent with either of 
two values for vg, of the equivalent stream with single-valued velocities. 
As it develops that either of these values leads to the same result, the 
first one will be used here for simplicity, vg = 0. 

An ac traveling wave along this beam cannot have any ^-dependency, 
because the beam has no single value of angular velocity <?, which might 
remain in synchronism with that of the wave. Thus, the perturbed 
dynamics equation (7) can be expanded, with the assumptions of an 
axial-symmetric ac field given by (5) and (6), a stream with steady- 
state velocity (0, 0, u), constant space-charge density po, and no space- 
charge forces, as follows; 

ddr , d~r dV 
-TT + W— = 77- UcVg , 
dt dz dr 

dvg . d'g 
— + ^7— = 0}0"r , dt dz 

di)z . dvz dV 
-rr + U 7— = V "7 • dt dz dz 

These are solved for the ac velocity components: 

.r = _^aF (35) 

ojfa- — Wc dr 

v, = (36) 
(Jib 

Vt = -VJL v. (37) 

With grad po = div ^ = 0, the charge-conservation equation (11) can 
be solved for p; 

»»— 
JL = — vq • grad p — po diviJ, 

/ * 
r ' C38) 

0)6 L6^ — OJc 0)6 J 

At very large ripple amplitudes, it is a fair assumption that the density 
of non-crossover electrons is negligible relative to that of crossovers in 
this region. Poisson's equation (19) can then be combined with the 
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above expression to obtain the characteristic equation: 
2 

(39) 

In a frame of reference moving with the stream, u' is 0, /5'w' is 0, and 
o>b = w. Then, 

and /3' becomes an infinite imaginary quantity when co is a)c. The phase 
velocity in the moving frame is infinite, as the real part of is zero; 
therefore the phase velocity Vp in the rest frame is also infinite. Thus, 
there is no Doppler shift in the "resonant" frequency observed in the 
rest frame: 

As the actual beam has a 2-velocity spread, the field is never perfectly 
uniform, and as the calculation is valid for small ac quantities only, the 
discrepancy between this result and the observed "proper" frequencies, 
which were 1.03 to 1.06 times the cyclotron value, is not unexpected. 

The singularity in (40) is seen to disappear when oj,,2 = 0. This indi- 
cates that an exact calculation would show the gain constant (—.7/3) 

" to increase with po, the density of the crossover electrons. Their tra- 
jectories, described by (31), and the absence of space-charge forces are 
such that K = rmaxrmia ; that is, the greater rmnx , the smaller rmin , 
the distance of closest approach to the axis. Thus, a larger ripple ampli- 
tude (permitted by a lower magnetic field) produces a greater electron 
density in the waist region, and accordingly a greater oscillation ampli- 
tude at the resonant frequency, as observed. 

The foregoing mathematics describes a form of resonance, the infinite 
phase velocity corresponding to longitudinal "cutoff" in a waveguide. 
Unlike a waveguide, however, the disturbance increases rather than 
attenuates along the axis, due to the transfer of dc kinetic energy (repre- 
sented by ve2/r) to the ac fields (excited by noise fluctuations at the 
cathode), at the cyclotron frequency uc. 

Except for the direction of energy transfer, the situation is analogous 
to that of a low-pressure gas in a uniform magnetic field, when stressed 
by an impressed ac field of varying frequency. It has been found that 
the breakdown field at the cyclotron frequency is very much less than 

(40) 

= lOc. 
(41) 
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at other frequencies.10 Here the energy supplied by the ae field is coupled 
most effectively to the free electrons at the resonant frequency, increas- 
ing their dc kinetic energy until the gas breaks down. The circular ac 
charge motions due to the dc magnetic and the ac electric fields are 
superimposed on high-velocity random motions, similar to the radial 
motions in the drifting beam. 

The UHF peaks observed at harmonics of the proper frequency may 
simply be due to the non-linear character of the beam, when excited by 
the high-level fundamental oscillations. The other faint satellite peaks, 
near 0.5 ov and 0.707 Uc , seem to be associated with the unneutralized 
space-charge density at the beam waist. 

The conspicuous role played by crossover electrons in the waist region 
of rippled beams, due to the tendency of their orbits to overlap there, 
leads one to re-examine their influence on rippled-beam amplification. 
As seen in the previous section, this gain process depends on the average 
value of (vr/r) at each cross-section plane of the beam. The fraction of 
all electrons which penetrate to the beam axis depends on competition 
between the unneutralized space-charge forces and the particle's trans- 
verse kinetic energy. An increase in positive ion density tends to make 
the potential depressions at beam waists broader and shallower, and 
thereby increase the number of crossover electrons as well as the axial 
distance over which they reach the axis. The net effect is to reduce the 
average value of | iv | over a greater portion of the ripple wavelength, and 
thus reduce the net gain of the space-charge wave. This may explain 
why the "growing noise" phenomenon tends to be inhibited by an in- 
crease in positive ion density. 

VII CONCLUSIONS 

Evidence is found of oscillations with frequencies in the 10- to 500-mc 
region inside of an electron-gun diode. There is some basis for associating 
them with electron-field interaction in the retarding region of the diode. 
Another type of narrow-band noise peak is found near the waists of a 
strongly rippled beam in a longitudinal magnetic field, with frequencies 
proportional to the field strength. The strongest of these, at about 1.05 
times the angular cyclotron frequency, coc, as well as its harmonics, can 
be explained by the resonant behavior of a short section of the beam, in 
which the average transverse velocity is nullified by overlap in particle 
orbits. Fainter satellite peaks, near 0.5 , 0.707 coc, and ajc, respectively, 
accompany the dominant frequency. 

In a drifting beam launched from a shielded electron gun and focused 
by an axial field, the transverse distribution of noise (or signal) intensity 
is found to agree with that predicted for ideal Brillouin flow. Despite 
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the presence of thermal motions and beam ripples, the ac power is found 
to be concentrated chiefly at the rim of the beam. Occasionally, several 
concentric rings of noise maxima are found within the beam, possibly 
due to unusual cathode conditions. 

When the ripple wavelength is very long, two maxima of noise power 
are observed to flank each beam waist. A first-order calculation of wave 
propagation along a rippled laminar-flow beam accounts for this pat- 
tern by showing that space-charge waves grow at the expense of dc 
kinetic energy in the radial charge motion. In rippled-beam amplifica- 
tion of noise, the product /raax/min has been found to increase, and the 
the ratio /max/^min remain nearly constant, because both fast and slow 
waves are amplified, the former less than the latter, and because the 
wave coupling is not lossless. 

Positive ions tend to collect at the waist of rippled beams, thereby 
extending the region in which electrons pass close to the axis, instead 
of circling about it. The overlap of their orbits leads to net cancellation 
of radial charge motion, and hence a reduction in rippled-beam ampli- 
fication. This may explain why positive ions tend to inhibit the "grow- 
ing noise" phenomenon. 
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Distortion Produced in a Noise Modulated 

FM Signal by Nonlinear Attenuation 

and Phase Shift 

By S. O. Rice 

(Manuscript received December 6, 1956) 

A expression is given for the FM distortion introduced by a transducer 
whose attenuation and phase shift depend upon the frequency in an arbitrary 
way. This expression appears to be difficult to evaluate, but it yields useful 
approximations for the second and third order modulation terms. In all of 
the work, it is assumed that the distortion is small compared to the signal, 
and that the signal can be represented by a random noise having the same 
power spectrum. 

INTRODUCTION 

A number of workers have been concerned with the problem of com- 
puting the distortion introduced by a transducer when an FM wave 
passes through it. Some of the earliest results were published by Carson 
and Fry1 and by van der Pol.2 Several contributions to the subject have 
been made recently in connection with studies of microwave radio 
systems. 

An excellent paper on this subject has been published recently by 
R. G. Medhurst and G. F. Small.3 Although their results differ consider- 
ably in form from those given here, they are nevertheless closely related 
to ours — their "sinusoidal variations of transmission characteristics" 
being special cases of our "nonlinear attenuation and phase shift." 

Here we treat the problem by applying a method used in a recent 
paper4 to study the distortion produced by an echo. Two assumptions 
are made, (1) that the distortion is small compared to the signal, and (2) 
that the signal can be represented by a random noise which has the 
same power spectrum as the signal. In Section I, we review some known 
results and put them in a form suited to our needs. Sections II and III 
are devoted to the derivation of our main formulas. The principal result 
is given by the triple integral (3.2) for the power spectrum of the dis- 
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tortion. Unfortunately, the integrals are difficult to evaluate. However, 
it is possible to obtain approximations for the second and third order 
modulation terms. These are given in Section IV. Some miscellaneous 
comments are made in Section V. 

I APPROXIMATE EXPRESSION FOR THE DISTORTION d{t) 

Let the FM signal be v'it) = d<p/dt (for phase modulation the signal 
would be Then the FM wave is the real part of 

Vi{t) = g-wo (1.1) 

where p = 2Tfp is the carrier frequency. Let this wave pass through a 
transducer having attenuation a and phase shift 0, where a and ft are 
even and odd functions, respectively, of the frequency /. When a unit 
impulse of voltage b{t) is applied to the transducer input, the output is 

g{t) = r e-a-W/ldf. (1.2) 
J—CO 

For physical systems, g{t) is zero for negative t. 
When Vi{l) is applied to the transducer input, the output is 

VoiO = [ Vi{t')g{t — /•') dt'. (1.3) 
J—CO 

When vait) is applied to an FM receiver, the detector output consists of 
the original signal plus the distortion d'{t) introduced by the trans- 
ducer. Comparison with (1.1) shows that B{t) may be obtained by 
solving 

V{t)eipt+i*{t)+i6(t) = Vo(0 (1-4) 

when p, vo{l) are assumed to be known, and F(<), Bit) unknown. 
When 7(0 is taken to be positive, (1.4) determines B{t) except for an 
additive term of 27m where n is an integer. 

We now assume that the transducer acts like a good transmission 
medium in that the output differs but little from the input. More pre- 
cisely, we assume 

WO - Vi{t) | « 1. (1.5) 

Since | Vi{t) ] = 1, it follows that j v0{t) | « 1. Transducers having ap- 
preciable attenuation and delay may be regarded as two transducers in 
tandem, one with constant (independent of /) values of a and fi/f which 
are roughly equal to those of the original transducer, and the second 
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with variable a and /3//. The first transducer produces no distortion of 
the signal, and if condition (1.5) is satisfied by the second, the con- 
siderations of this paper will apply. 

Equation (1.4) may be written as 

F(0e"(" = viMMt) 

so that 

When we write 

Vo(t)/Vi(t) = 1 + MO - Vi(t)]/Vi(t), 

expand the logarithm in (1.6), and use (1.5), we obtain our approximate 
expression for d(t): 

0(0 = Im [.oW - Vi(t)]/Vi(t) = Im vo(0/y.(0 

= Im [..(or1 J_ Vi{t") g{t - t') dt' ^ 

= Im f exp [ip(i' — 0 + — i<p(t)]g{t — t') dt'. 
J—oO 

So far there is nothing essentially new in our work.5 

II AUTOCORRELATION FUNCTION OF 0(0 

In Section I, <p'(t) could be any reasonable sort of signal. In the follow- 
ing work we assume that it is a Gaussian noise whose power spectrum, 

«'»>'(/)> ^ given to us. The power spectrum of <p(t) is 

wv(J) = wV'(f)/(2irf)\ (2.1) 

and its autocorrelation function is 

tr = [ w^f) cos 27r/r df. (2.2) 
''o 

We have written \J/T instead of ^(r) or Rv{t) to simplify the appearance 
of the formulas which occur in our work. 

Our problem is to find the power spectrum, We(f), of the distortion 
0(0, given wv(f). The method of solution is much the same as that used 
in Reference 4. We first find the autocorrelation function Mr) of 0(0 
and then obtain we(f) by taking the Fourier cosine transform of Mr). 
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Let the last integral in (1.7) be F(t) so that 0{t) = Im F{t). Ihen 

e(t)e{t + r) = i Re {F{t)F*{t + r) - F{l)F(t + r)} (2.3) 

where F*{1 + t) is the complex conjugate of F(t + r). The autocorrela- 
tion function of 0(0 is obtained by averaging over the ensemble of the 
noise functions <pit): 

Reir) = av d(t)d{t + r) 

= av i Re dt' J dt" exp [fp(0 — 0 + 

■g(t - t')g(t + t - *")[exp [-ip(l" - t - t) (2.4) 

— ifit") + i<pit + t)] — exp [ipil" — I — t) + 

— iip{t + t)]|. 

Since ^(0 is real, g*{t) = g{t). The averaging process may be carried 
out by a method analogous to that used in Reference 4. The formula to 
be used is 

av exp [i<p{t') — + icupit") — ia<p(t + r)] 

= exp [ — ^0(1 + ci') + ipr-t — a\J/t'-t-T (2.5) 

a\pt-t" — a\pr + aVc-e-r] 

where a is either -1 or +1, and \I/T is an even function of r. When (2.5) 
is used in (2.4) a double integral for /^(r) is obtained. The substitutions 

x = t - t', 

y = t t — t", (2.6) 

Rv ^ ^T+x-y ^T+x ^r+x ^T-y "L 

convert the double integral into 

(27) 

■g{y)[eipu+Rv - e-im-*v]. 

The symbol Rv is chosen to agree as closely as possible with the notation 
of Reference 4. There Rv was the autocorrelation of the random func- 
tion, v(t), where v{t + T) = <p{t) - <p{t + T), T being the echo delay. 
Here, Rv is the average value of the product, 

[<p{t) - <pit + y)] [(p{t + r) - <p{t + t + x)] 

which becomes the autocorrelation function of v(t) when y = x = T. 
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It may be verified that the expression (2.7) for Reir) is an even func- 
tion of t, as it should be. Expression (2.7) is the autocorrelation func- 
tion we set out to find. 

The distortion 6(t) has an average value, d, whose square is 7?e(oo). 
Since <p{t) is a noise function, its autocorrelation function \J/T goes to 
zero as r approaches oo. Hence, Re(,x) is given by the expression ob- 
tained from (2.7) by setting Rv = 0. The autocorrelation function of 
9{t) - 0 is 

Re-eir) = Reir) — /?fl(°o) 

= ^ Re dx dy g{x)e-ipx-^+^ (2.8) 

■(j{y)WP\e^ - 1) - - 1)]. 

III POWER SPECTRUM OF THE DISTORTION 

Since 0(0 has an average value which is generally not zero, its power 
spectrum, we{j), has a spike of infinite height at / = 0 corresponding to 
the power in the dc component 0. When this spike is subtracted from 
we{f) the remainder is the power spectrum of 0(0 — 0 given by 

we- (/) = 4 f ii*e_ij(r) COS 2irfT dr. (3.1) 
^0 

When we use (2.8) and note that Re-eiT) is an even function of r, we 
obtain 

we-e(f) = f dx [ dyg(x)g(y)e~24'a+'t'z+4'u f [cos (px - pij) 
J-cc J-x j-m (3.2) 

■ (e"1' - 1) - cos (px + py)(e~Rv - 1)] cos 27r/r dr. 
Reasoning similar to that given in Reference 4 shows that the inter- 

channel interference spectrum, wc(f), (i.e., wc(f)Aj is the average amount 
of distortion power received in an idle channel of width Af centered on 
the frequency /, all other channels being busy) may be obtained from 
(3.2) by replacing (e*"" - 1) by {e±Rv ^ Rv - 1). 

The power spectrum of 0(0 — 0 may be regarded as made up of 
modulation products of all orders. It turns out that the contribution of 
nx order products is given by the integral of the Rv

n terms obtained 
from the power series expansions of exp [±/?t,]. 

IV FIRST AND SECOND ORDER MODULATION TERMS 

Here we shall study the first and second order modulation terms. 
These arise from the first and second powers of Rv in the expansion of 



88-1 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1957 

the quantity within the square brackets in (3.2): 

22?,. cos -px cos py + i?„2 sin px sin py. (4.1) 

The integrations with respect to r may be performed with the help of 

J \f/T+b cos 2nrfT dr = "He e l2'fb, (4-2) 

/ \pr+i,y}/r+c cos 2tJt dr 
(4.3) 

= Re- f du wJu^Wpif — u) exp {—i2*Um + c(/ — u)]} 
4 J—oo 

which follow from (2.2) and the fact that we have defined w{-f) to be 
equal to w(f). In our notation the total power in a random noise function 
is the integral of w{f) from / = 0 to / = « . 

The first order modulation term is obtained from (3.2) by replacing 
the term within the square bracket by 2R,. cos px cos py. When the ex- 
pression (2.6) for Rv is used, the integration with respect to r may be 
performed with the help of (4.2): 

jf R. cos 2rfr dr = ^ Re Ke^'" - l)(eiW - 1)1. (4.4) 

This leads to the following expression for the first order modulation 
term in (3.2) 

wv{f) I f dxg{x)e"i'0+ilx cos px{e~iTllf - 1) . (4.5) 
I J—00 

This is the quantity which is to be subtracted from iCfl_o(/) to obtain 
the interchannel interference spectrum wc{f). 

The second order modulation term is handled in much the same 
manner. With the help of (4.3) it may be shown that 

J R 2 cos 2t/t dr = Re ^ J du w^(u)wv(/ - u) 

.(e-2'izu - 1) ((^
2"■'('-u, - 1) (4'6) 

•(e2x,Vu - 1) (e2Tivl/-u) - 1). 

From this it follows that the second order modulation term in (3.2) is 

[ duwv(u)wr(f- u) [ dxg(x)e-*0+*z sin px 
2! 2 J—oo 00 

(e-2rtiu _ l)(e-2,.x(/-u) _ j) 
(4.7) 
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When xf/o — \f/x is so small that exp (— + xf/x) may be replaced by 
unity, as it is in some important practical cases, approximations may 
be obtained for (4.5) and (4.7). The integral in x may be expressed as 
the sum of integrals of the type 

f dx. = 
J —00 

= Go + iBa , (4.8) 

r g(x)eip'-2riaxdx = G-a- zB^. 
J—oo 

The values of the integrals follow from (1.2) and the Fourier integral 
theorem. G and B are, respectively, even and odd functions of frequency, 
and Ga , Ba are their values at the frequency / = /p + a where fp = p/2ir 
is the carrier frequency: 

G at frequency /p + a = Ga, 

B at frequency/p + a = 5n . 

In this way we get the approximation 

4-V(/) [((?/ - 2G0 + G-/)2 + (B, - B-,)2] (4.9) 

for the first order modulation term, and 

1 r00 

— / duwMwyif - u)[(Gu - G-u + Gf-u - G-f+u - Gf r ^ 
2! 8 J-oo (4.10) 

+ G-f)' + {Bu + B-u + Bf-.u + B_/+u — Bf — B-f — 2Bo)2] 

for the second order modulation term. 
Expression (4.10) is an approximation to the second order modulation 

term (4.7). When most of the interchannel interference is due to second 
order modulation products, (4.10) is also an approximation to wc{j), the 
interchannel interference spectrum. The following remarks may be of 
some help in deciding whether (4.10) may be used. 

1. For the case of phase modulation and a "flat" signal band, the 
first of equations (5.3) shows that yfo and \pr may be made as small as 
we please by choosing the signal power (as measured by Pq) small 
enough. Since Rv is proportional to Po, Pa may be chosen small enough 
to make RY and higher order terms negligible in the expansion of the 
integrand of (3.2) (unless there is some sort of symmetry which causes 
the second order terms to vanish). In this case the interference is mostly 
second order modulation and (4.7) is a good approximation to wc{f). 
Furthermore, as Po approaches zero, exp ( —+ i^x) approaches unity 
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and (4.10) becomes a good approximation to (4.7). Just how small Po 
has to be depends upon the signal bandwidth, fb, and the characteristics 
of the transducer. 

2. For the case of FM and a flat signal band, the second of equations 
(5.3) shows that even if Po is small, the difference \po — \pr approaches co 
as 1 r | approaches oo. To justify the use of (4.10) in this case it is neces- 
sary to take into account the behavior of g{l), the response of the trans- 
ducer to the unit impulse S(t). For example, if the duration of g{x) in 
(4.7) is so brief that g{x) becomes negligibly small before —\f/o + \px be- 
comes appreciably different from zero (which may be achieved by mak- 
ing Po small enough) then (4.10) is a good approximation to (4.7). 

3. When the attenuation, a, and phase shift, /3, are given for any 
particular transducer, the corresponding g{t) may be obtained from (1.2). 
Once g{t) and ^o - >Pr are known, the conditions under which exp (-^o + 
i/'O may be replaced by unity in (4.7) and 0{RV

3) terms neglected in (3.2) 
may be determined by direct examination of the integrals. 

As might be expected, the third order modulation results are quite 
complicated. The third order modulation term in (3.2) is 

Jta r v r rf/'w/wrKt/"') 
^ J-M 2 (4.11) 

I f dxg(x) cospx e~','0+*x(2/' — l)(z/ — l)(z/ — 1) 
| J—oo 

where/'" =/-/'-/" and z = exp (-i2irx). When fa is small this is 
approximately 

•nU f" df [' df"wv(f')wv(f")wv(f
,")[H2 + n (4.12) 3 ! lU J—00 J—CC 

where 

H = m(f') + m(f') + m(f) + m(f - f - /") 

- mif - f) - m(f - n - ^(0) - m(f + /"), 
(4.13) 

m{f) = Gf + G-/, nif) = Bj — B.f, 

and K is an expression obtained from H by replacing n by m. 

V MISCELLANEOUS COMMENTS 

Here we make some miscellaneous comments related to the foregoing 
results. 
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If the transducer is perfect except for an echo, its response to a unit 
impulse 8{t) is 

g(t) = 8(t) + r8(t - T) (5.1) 

where r and T are the amplitude and the delay of the echo. The results 
obtained using (5.1) agree, as they should, with the results obtained in 
Reference 4. Of course, r must be assumed small compared to unity in 
order that condition (1.5) may hold. 

When the power spectrum of the signal is equal to a constant Fq over 
the band (/„, fb) and zero elsewhere we have for phase and frequency 
modulation, respectively, 

PM: wv(f) = Pa, fa < f < fb , 

FM: wM) = Po/frff, fa<f<fb. 

When fa = 0 the autocorrelation functions are 

PM: tr = Pofb{sin v)/v, 

(5.2) 

FM: to — tr = A[—1 + cos v + ^£h'(y)], 

v = 2TfbT, A = Pofb(2irfb)~
2 = (a/fb)\ 

(5.3) 

The mean square values of the signals are Pofb (radians) for PM and 
Pofb (radians/sec)2 for FM. If, for FM, a is the rms frequency deviation 
in cps (so that the "peak" deviation is, say, 4cr cps) then {2ira)2 = Pofb . 
The difference ta — tr is used in the FM case to avoid difficulty at/ = 0. 
It will be noticed that our formulas are such that the i^-'s may be re- 
placed by {t — to)'s without altering the values of the various ex- 
ponents, etc. In microwave systems the quantity A is often small in 
comparison with unity. 

As an example of the use of the second order modulation approxima- 
tion (4.10) consider the case where the attenuation, a, is zero and the 
phase shift /3 = ciiif — /p)2/2 radians, a-t being small. Then, since G 
1 — a, p —(3, we have Gu ~ 1 and 

B,, -[p for / = /„-+- m] 

V, (5-4) 
= — flow /2. 

When we take the FM case of (5.2) and substitute in the approxima- 
tion (4.10), the interchannel interference power spectrum is found to be 

i rfl 

2! Si/-. ^>0 [0 + (2aou(f — ?f))2] du ■/„ (2iru)2 (2ir)2(f - w)2 " (5 5) 

= (27r)-4(a2Po/2)2(2/6 - /). 
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Dividing by «v(/) = A/(2x/)2 gives the ratio of the interference power 
to the signal power 

(a2<rf/2)\2 - f/fb) (5.6) 

where the relation P0 = {2irc)2/fb has been used to eliminate Po. Here 
a is the rms frequency deviation of the FM signal in cps. The expression 
(5.6) agrees with results of some earlier work done at Bell Telephone 
Laboratories. In that work the second order modulation products were 
summed directly. 

It is interesting to apply the formulas given here to some of the 
cases considered by Medhurst and Small.3 They have shown that when 
(in our notation) a = —r cos 2irfT and /? = 0 the power spectrum of the 
distortion is 

Wg-e{f) = sin2 irfT[wg-e{f)]CCho , (5-7) 

and when a = 0 and /3 = r sin 2x/7,, 

Wg-g{f) = COS2 7r/T[w'0_fl(/)]cciio • (5.8) 

Here [u-<)_?(/)]echo is the power spectrum of the distortion due to a simple 
echo of amplitude r and delay T (corresponding to a = -r cos 2x/7' 
and (3 = r sin 2xf71). Expressions (5.7) and (5.8) may also be obtained 
by setting the impulse response g{t) equal to 

m + lM- d ±|J((+ T) 

in (3.2). 

The second order modulation approximation for the a = -r cos 
2irfT, /3 = 0 case may be obtained from (4.10) and turns out to be 

/*00 •» 
J Wyiifiw.pif — u)[2r sin pT sin irfT sin tuT sin x(/ — u)T] du. (5.9) 

It is seen that this contains the factor sinirfT predicted by (5.7). When 
(5.9) is applied to the FM case of (5.2) an integral something like (5.5) 
(but more complicated) is obtained. The ratio ot the second order 
modulation interference power to the signal power is found to be 

2[r sin pT sin irfTfia/fbYUK (5.10) 

where K is the quantity 

K = 2a2 r \^rY-y)/2]'dy (5ii) 
Ja~u L ?/(« - y> J 
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tabulated in Table 4.2 of Reference 4 and 

a = 2irfT, U = 2irfbT. (5.12) 

The parameters a and k that appear in the table are defined by 

a = f/fb and k = 8fbT. 

These formulas serve to supplement the formulas and curves given by 
Medhurst and Small. 
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Self-Timing Regenerative Repeaters 

By E. D. SUNDE 

(Manuscript received March 29, 1956) 

In self-timing regenerative repeaters, a timing wave for control in pulse 
regeneration is derived from the binary pidse train at each repeater with the 
aid of a resonant circuit tuned to the pulse repetition frequency. The timing 
wave can he made to exercise complete control in retiming of pulses inde- 
pendent of the received pulse train, or it can be combined with the received 
pulse train to provide partial retiming. The timing principles are discussed 
here for a particular type of self-timed regenerative repeater invented by 
Wrathall, in which a timing wave derived from cither the received or the re- 
generated pidse train is combined in a particular way with the received pulse 
train. The regeneration characteristics of such repeaters as determined by 
various design parameters are investigated, together with the cumulation 
of timing deviations in repealer chains and the circuit requirements that 
must be met to insure satisfactory performance. 

INTRODUCTION 

Pulse transmission systems employing binary codes, such as PCM, 
have two inherent properties that are desirable from the standpoint of 
avoiding excessive transmission impairments by noise and other imper- 
fections in the transmission medium. For one thing binary pulse codes 
permit substantial transmission distortion of pulses within certain 
tolerable limits with negligible degradation of received signals. For 
another, regenerative repeaters can be used at intervals along a route to 
prevent accumulation of transmission distortion of pulses from various 
sources, so that virtually the entire allowable distortion can be permitted 
in each link or repeater section. 

The above desirable properties are secured in exchange for increased 
channel bandwidth, and can be used to full advantage in applications of 
binary pulse systems to such transmission media as radio and wave 
guides, where transmission is at such high frequencies that increased 
channel bandwidth does not entail increased attenuation. In wire cir- 
cuits, however, where baseband transmission is the more economical 

891 
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method, attenuation increases nearly in proportion to the square root of 
the channel bandwidth. For this reason, rather short repeater spacings 
may be required for binary pulse systems, so that for economical appli- 
cations to wire circuits it is imperative to have reliable regenerative 
repeaters of simple design. 

In their principle of operation regenerative repeaters are by nature 
more complicated than ordinary repeaters. In addition to providing gain 
to off-set attenuation in the transmission medium, as in ordinary re- 
peaters, they must also perform gating operations for sampling and 
regenerating the received pulse train. This, however, does not pre- 
clude the possibility that these operational principles can be implemented 
in repeater design by instrumentation that is simpler than required lor 
ordinary repeaters. 

The possibility of simple instrumentation resides partly in the cir- 
cumstance that equahzation circuitry for regenerative repeaters can be 
substantially simpler than for ordinary repeaters, owing to less exacting 
requirements on equalization. Furthermore, satisfactory performance 
in pulse regeneration can be achieved without very precise timing in 
sampling and regeneration of pulse trains. It is thus possible to secure 
nearly the same performance as for ideal regenerative repeaters by par- 
tial rather than complete exact retiming of pulse trains at each repeater. 
This facilitates simple gating arrangements for regeneration of pulses. 
Moreover, it permits a timing wave for control of gating operations to 
be derived from either the received or regenerating pulse trains with the 
aid of a simple resonant of circuit. 

The simplicity of instrumentation permitted by these considerations 
is exemplified in a self-timed regenerative repeater for baseband pulses 
invented by L. H. Wrathall of Bell Telephone Laboratories. The cir- 
cuitry of the repeater together with the results of tests on laboratory 
models are dealt with elsewhere1 and not considered here. The purpose 
of this paper is an analysis of the timing principles underlying this type 
of repeater together with its regeneration characteristics as deter- 
mined by various basic design parameters, on the assumption of ideal 
implementation of the timing principles by appropriate instrumentation. 
In the Wrathall repeater "quantized feed-back" is employed as a means 
of reducing the effect of low-frequency cut-off in transformers. Since this 
is not an essential feature of self-timing repeaters and has no direct 
bearing on the timing principles, it is disregarded herein. 

1 L. R. Wrathall, Transistorized Binary Pulse ReKenerator, B.S.T.J., 35, pp. 
1059-1084, Sept., 1956. 
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I REGENERATION AND RETIMING 

1.0 General 

In an ideal regenerative repeater the received pulse train is sampled 
at proper fixed intervals, to determine whether a pulse is present. The 
regenerated pulses transmitted into the next repeater section are all 
of the same shape and amplitude, independent of the shape of the input 
pulses. Thus pulse distortion from noise and other system imperfec- 
tions is removed, provided the maximum distortion is held within proper 
limits. Errors in the form of pulses in place of spaces, or conversely, are 
encountered when these limits are exceeded. In a repeater chain there 
will be cumulation of errors in proportion to the number of repeater 
sections in tandem. However, the rate of errors in each section and thus 
in the whole chain can be limited by a relatively small increase in the 
signal-to-noise ratio of each section as the number of repeaters in tandem 
is increased. This increase in signal-to-noise ratio with increasing length 
of the repeater chain is much less than with ordinary nonregenerative 
repeaters. For this reason regenerative rather than ordinary repeaters 
are desirable, though not essential for systems employing binary codes. 

An ideal regenerative repeater with the above features would entail 
rather complicated instrumentation for precise timing, sampling and 
pulse regeneration. With partial rather than complete exact retiming 
the repeaters can be simplified, in exchange for some sacrifice in per- 
formance, as shown later. 

1.1 Regeneration Without Retiming 

It would be possible to have a repeater in which pulses would be re- 
generated in amplitude and shape, but without retiming. Pulses would 
in this case be regenerated when the amplitude of the pulse exceeded a 
certain triggering level L. If the pulse shape is given by P{t), this would 
occur at a time tn such that 

P{h) = L. (1.1) 

This would permit simple instrumentation, since regenerated pulses 
would be triggered without separate sampling of the received pulse 
train. With this method, however, timing deviations in the regenerated 
pulses would result from transmission distortion of the received pulses 
by noise and other system imperfections. These timing deviations would 
cumulate in a repeater chain and cause a reduction in the tolerance of 
the repeaters to noise, such that the signal-to-noise ratio would have to 
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be increased with the number of repeaters in tandem in the same way 
as for ordinary repeaters. 

1.2 Regeneration with Complete Retiming 

With complete retiming, the instants of pulse regeneration would 
be controlled by a periodic retiming wave, R{t), with a fundamental 
period equal to the interval between pulses. The received pulse train 
would be sampled at instants when the retiming wave had a certain 
level L, . The sampling instants U would thus be given by 

R{h) = Le. (1.2) 

Rita) would satisfy this equation for U = nT ± AT, where T is the 
nominal interval between pulses, n is an integer and AT is a certain 
tolerable deviation from the desired sampling instants. Pulses would be 
regenerated provided P{to) > L and would be omitted if P{to) < L. 

With this method the timing deviations in regenerated pulses would 
be limited to ±AT, regardless of the timing deviations in received pulses. 
There would be no cumulation of timing deviations in a repeater chain. 
However, the tolerance of the repeaters to noise would be somewhat 
reduced by the timing deviations ±AT. 

1.3 Regeneration with Partial Retiming 

Partial retiming is obtained by a combination of the above two 
methods, by triggering regenerated pulses without sampling at instants 
la determined by 

P{ta) + R{t*) = L. (1.3) 

To permit regeneration without sampling and without a marked reduc- 
tion in the tolerance of the repeaters to noise, the timing wave R{t) 
must meet certain conditions illustrated in Fig. 1. One is that it must be 
a nearly periodic function as for complete retiming. The second condi- 
tion is that Rit) must be zero near the sampling points to obtain sub- 
stantially the same tolerance to noise in the presence of a pulse as in 
the absence of a pulse. A third condition is that R{t) must have sub- 
stantial negative values between sampling points in order that the 
repeater be rather insensitive to noise between sampling points, as with 
complete retiming. It will be recognized that, in general, the maximum 
value of R{t) need not necessarily be zero, as in the above illustration. 
It can be greater or smaller than zero, provided the triggering level is 
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modified accordingly. A maximum value of zero is, however, convenient 
from the standpoint of instrumentation. 

A limiting shape of retiming wave that would result in complete re- 
timing, but without the need for special sampling is also illustrated in 
Fig. 1. 

14 Derivation of Timing Wave from Pulse Train 

As shown above, the retiming wave must be essentially periodic, with 
a fundamental frequency equal to the pulse repetition frequency / = \/T, 
where T is the interval between pulses. The simplest form is a sinusoidal 
wave, which can be derived from the pulse train at repeaters with the 
aid of a narrow band-pass filter, such as a simple resonant circuit cen- 

PULSE 
TRAIN 

T  

P + R 
TIMING 

WAVE 

PARTIAL RETIMING 

✓TN /1 
/ 1 \ / i / 1 i \ / 1 
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iX /\ 1 \ / ' \ 7 4 

\ \ 1 \ 1 \ \ 
/ i / i / i 

\ i 
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/ / / / / / / / / / 

J / 
k \ / 

\y 

\P + R 
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i / / / / / ! / / / / / s 

L>. 
\ \ \ \ \ \ \ \ \ \ V 

COMPLETE RETIMING 

Fig. 1 — Principle of partial retiming method. 
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tered on the pulse repetition frequency. This possibility resides in the 
circumstance that a random "on-off" pulse train can be resolved into 
two components. One is an infinite sequence of pulses of the same 
polarity and equal amplitude, the other a sequence of randomly positive 
and negative polarity. The response of a resonant circuit to the first 
component is a steady state sinusoidal wave of the pulse repetition fre- 
quency. The second component gives rise to random variations in ampli- 
tude and phase, which in principle can be limited to any desired extent 
by limiting the band of the resonant circuit and the deviation in the 
resonant frequency from the pulse repetition frequency. 

A principal feature of this method of "self-timing", aside from its 
simplicity, is that the timing wave becomes a slave of the pulse train. 
Thus, if there is a fixed delay in pulse regeneration at a repeater, the 
same delay is imparted to the timing wave derived from the pulse train 
at the next repeater. This prevents a cumulation of such fixed delays 
with respect to the timing wave, but not with respect to an absolute 
time scale; i.e., with respect to an ideal timing wave transmitted along 
the repeater chain and independent of the pulse train. 

1.5 Self-Timed Repeaters with Partial Retiming 

A timing wave derived from the pulse train with the aid of a resonant 
circuit can be used in conjunction with complete or partial retiming. 
With complete retiming, pulses could be regenerated at the zero points 
in the timing wave, and the effects of amplitude variations in the timing 
wave can thus be avoided. Timing deviations in the regenerated pulses 
would in this case depend only on phase deviations in the timing wave, 
caused partly by the component of randomly positive and negative 
polarity in the pulse train and partly by timing deviations in the pulse 
train from which the timing wave is derived. 

With partial retiming the situation is more complex. Timing devia- 
tions in regenerated pulses in this case depend not only on amplitude 
and phase variations in the timing wave, but also on the regeneration 
characteristics of the repeaters. 

1.6 Types of Timing Deviations 

In a regenerated pulse train there will be fixed and random timing 
deviations. Of the latter there are three types. One is the timing devia- 
tion taken in relation to an exact timing wave with a period T equal to 
the nominal pulse interval. The second is the timing deviation taken in 
relation to the timing wave derived from the pulse train, which in itself 



SELF-TIMING REGENERATIVE REPEATERS 897 

will contain random deviations. The third type is random deviations in 
the interval of adjacent pulses. If the first type is held within tolerable 
limits, this will also be the case for the second and third types. For this 
reason only the first type is considered herein. 

II REGENERATION CHARACTERISTICS WITH PARTIAL RETIMING 

2.0 General 

With partial retiming, there will be timing deviations in the re- 
generated pulses as a result of timing deviations, amplitude variations 
and distortion by noise of both the received pulses and the timing wave. 

N(0) = P (0)-L 
\\ P(K)-L = N(r0) 

p t) 

k- 1 
P+R 

_N(r0)_ PG&)-L 
N(O) P(0)-L 

R t 

Fig. 2 — Reduction in tolerance to noise by displacement in timing wave. 
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The conversion of these variations into timing deviations in the re- 
generated pulses depends on certain relationships between the pulse 
train and the timing wave, discussed in the following sections. 

2.1 Tolerance to Noise 

From Fig. 2 it can be seen that if the timing wave is displaced by to , 
the value of P(t) + R(t — to) in the presence of a pulse exceeds the 
triggering level by a maximum amount 

[Pit) + Rit - to) - L]max ^ [F(to) - L\. (2.1) 

It will be recognized that the right-hand side of this equation represents 
the tolerance to noise of negative amphtudes with instantaneous sam- 
pling at t = to , as in an ideal repeater with complete retiming. 

With partial retiming, the tolerance to noise will be less than the above 
maximum value. However, it will be greater than the average of Pit) + 
Rit — to) - L in the range where the latter difference is positive. Let it 
be assumed that it is smaller than the maximum by a factor k somewhat 
smaller than unity. The tolerance to noise with a displacement to in the 
timing wave is then smaller than without a displacement (i.e., to = 0) 
by the factor 

_ k[Piro) — L] _ P(to) — L 
M ~ k[PiO) - L] PiO) - L " 

The tolerance to noise will thus be reduced in a way similar to that 
for an ideal repeater with complete retiming. The absolute tolerance to 
noise will be less than for a repeater with complete retiming by a factor 
k somewhat smaller than unity, say in the order 0.8, corresponding to 
about 2 db. 

2.2 Conversion of Timing Deviations 

With partial retiming, timing deviations in received pulses and in the 
timing wave are converted into smaller deviations in regenerated pulses. 

Let Tp be a time displacement in a received pulse and Tr in the timing 
wave, both in the positive direction. Pulses will then be regenerated 
at a time to given by 

Pito — Tp) + Rilo' — Tr) = L (2-3) 

where the minus signs are used since this corresponds to a displacement 
of P and R in the positive direction. Subtracting (1.3) from (2.3), 

Pito' - Tp) - Pito) 4- Rito - Tr) - Rito) = 0. (2.4) 
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By adding and subtracting P{to) + ^(^o') and rearranging terms, (2.4) 
can also be written 

[P{t0') - P{to)] + [RW) - R{t0)] 

= [P{t0') - PC/o' - rp)] + m0') - R{to' - rr)l. 

For small values of tp and tv , such that 5r = t0' — to is sufficiently small, 
both sides of (2.8) can be represented in differential form as 

bT[P'{tQ) + P'(/o)] = TpP'%) + rfP'(/o) (2.6) 

where P'(fo) = dPo(t)/dl at t = to, and R' is correspondingly defined. 
Equation (2.9) can be written in the form 

5r = VrTp + TtTt (2.7) 

where 

and 

_ P (^o) _ P (to) (o Q) 
p'ito) + R'(t0y 

rT p'{to) + R'W 

Pr + rT = 1. (2.9) 

With random uncorrelated displacements of rms values fp and f, , 
the rms value of 5T is 

8r = {jprfp + rr
2fr

2),/2 (2.10) 

Equation (2.9) and (2.10) gi\'e the timing deviations in regenerated 
pulses in terms of the deviations Tp and Tr in the received pulses and 
in the timing wave. To limit timing deviations in the regenerated pulses, 
it is necessary to make pr and the product rrTr small. This will entail 
the use of a timing wave comparable in amplitude to that of the pulses, 
or greater, in conjunction with a small timing deviation t, in the timing 
wave. 

2.3 Conversion of Amplitude Variations Into Timing Deviations 

With partial retiming there is a conversion of amplitude variations 
in the received pulses and in the timing wave into timing deviations in 
the regenerated pulses. 

Let the pulses have an amplitude variation ap and the timing wave ar 

expressed as fractions of the normal values. Pulses will then be regen- 
erated at a time /»' given by 

(1 + ap)P{to') + (1 + ar)R{to') = L. (2.11) 
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Subtracting (1.3) from (2.11), 

[P{t0') - P{t0)] + mo') - R{t0)] = -apP{t0') - arP{to'). 

For small values of ap and ar, such that 8,, = - h is sufficiently small, 
the same procedure as in Section 2.2 gives 

8a = (Paap + raar), (2.12) 

and 

— Pill}) ^ _ Ritp) ^9 
" pw+im' p'w + B'M ■ ^ ' 

For uncorrelated variations of rms amplitude ap and gr the correspond- 
ing rms timing deviation is 

8a = (PaQp + ra'Qr)112. (2.14) 

Equations (2.12) and (2.14) give the timing deviations in regenerated 
pulses resulting from amplitude variations in the pulses and in the 
timing wave. 

2.4 Resultant Timing Deviations in Regenerated Pulses 

For small variations in the pulses and in the timing wave as considered 
previously, the resultant timing deviation in a particular regenerated 
pulse is 

A = 8T 8a. (2.15) 

Considering a large number of pulses, the resultant rms timing devia- 
tion in terms of the rms deviation in the received pulses and in timing 
wave is 

A = + SW". (2.16) 

These expressions can also be written 

A = Ap -b Ar, (2.17) 

A = (Ap2 + A,2)1'2. (2.18) 

Ap = PrTp "F PaUp , 

A/ = PrV + PaW, (2-19) 

Ar 
= 7'tTT "F Vattr , 

AF = r/fr2 + ra
2gr

2. (2.20) 
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III ILLUSTRATIVE REGENERATION CHARACTERISTICS 

3.0 General 

in this section the general equations given in the preceding sections 
are applied to a particular case, in order to obtain specific expressions 
for the regeneration characteristics and illustrative curves, as an aid 
to further analysis. The particular case selected for illustration approxi- 
mates the conditions in experimental Wrathall repeaters, and may be 
regarded as an idealized model of such a repeater, in which certain effects 
to be discussed later are ignored. 

3.1 Pulse Shape 

It will be assumed that the pulses are transmitted at intervals T 
and that the shape of the received pulses after equalization is given by: 

This is the familiar "raised cosine" type of pulse. With 77= 1 the pulse 
width is the maximum that can be tolerated without intersymbol inter- 
ference. With tj = 4, the amplitude of a pulse train at a point midway 
between two success pulses is equal to half the peak amplitude of a 
pulse. The latter assumption will be made here, for reasons discussed 
later. 

3.3 Retiming Wave 

The retiming wave is assumed to be given by 

This type of retiming wave can be obtained if a sinusoidal wave of the 
pulse repetition frequency / = \/T is applied to a resonant circuit to 
reduce distortion of the timing wave by noise. The resonant circuit 
would have a nominal resonant frequency / = 1/T, but because of mis- 
tuning it would actually be /o. The output of the resonant circuit after 
appropriate adjustment of amplitude would be of the form [Appendix I, 
equation (2)): 

P(t) = ^ 1 + cos 
TT t 
v T_- 

(3.1) 

B{t) = cos r// j^l - cos ^2ir ^ • (3.2) 

(3.3) 

where 1/ is the phase shift of the resonant circuit at the frequency /, 
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given by: 

tan ^ = ^ _ f)' 

and Q is the loss constant of the resonant circuit. If the peaks of the 
wave given by (3.3) are held at zero potential, a retiming wave as given 
by (3.2) is obtained. This type of retiming wave can also be obtained by 
applying an infinite sequence of rectangular pulses of equal amplitudes 
with spacing T to a resonant circuit. 

3.3 Triggering Instants 

With a pulse shape and retiming wave as assumed above, the resul- 
tant wave is given by 

P(t) + R(l) = i[l + cos^tj _ ^ ^ _ cos (2^ - *)]. (3.5) 

This wave is shown in Fig. 3 for xp = 0 and ±60°. For \f/ = ±90° the 
retiming wave disappears, so that the combined wave is P{t). 

T = 360 

P(t)=l[. + cosf i] 

v\-L=i 

'<b 

/ to 1/ \ ^ f / / I \P + R 

i 

' 1 

p-60 -H«-60 

±^=90° 

\ /R(t) 

R(t) = -^-^[l-COS(27T^--^)j 

Fig. 3 — Illustrative example of pulse shape and retiming wave. 
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The triggering instants to are obtained from the relation 

P{to) + R{to) = L. (3.6) 

With complete retiming the optimum performance, with positive and 
negative noise amplitudes of equal probabilities, is obtained with a 
triggering level 5. With partial retiming, optimum performance is ob- 
tained with a somewhat lower triggering level, but this is of secondary 
importance in connection with the present analysis. For this reason 
L = ^ is assumed, in which case the following equation is obtained for 
determination of to : 

if to 1 I 1 cos - — — COS ^ I I — cos 
V I 

[l - cos(2,r^-f)] =0. (3.7) 

\ \ s s. 
/ 
i 
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Fig. 4 — Triggering times versus phase shifts in timing wave. 
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Table I — Values of t0/T for v - * and 77 = ! 

* -90° -60° -30° 0 30° 60° 90° 

V — t 
V = 1 

-0.375 
-0.50 

-0.322 
-0.391 

-0.258 
-0.293 

-0.198 
-0.215 

-0.156 
-0.170 

-0.17 
-0.15 

-0.375 
-0.50 

Table II — Values of pr and 7v for 77 = f 

* -90° -60° -30° 0 30° 60° 90° 

Vr 
Tr 

1 
0 

0.61 
0.39 

0.43 
0.57 

0.32 
0.68 

0.32 
0.68 

0.50 
0.50 

1 
0 

This equation is satisfied for the values of U/T given in Table I. The 
values of to/T are also shown in Fig. 4 as a function of rp. 

3.1+ Conversion Factors for Time Deviations 

The conversion factors defined by (2.8) become: 

Pt = Z)sin ^ ^ = 1 _ rT' 

rr = -^ 277 cos \p sin ^27r ^ > (3.9) 

and 

D = sin - j, + 2t] cos ^ sin ^27r ^ ^ (3.10) 

where to/T has the values given previously as a function of \p. 
For various values of \p, the factors for 77 = 4 are given in Table II and 

in Fig. 5. 

3.5 Conversion Factors for Amplitude Into Time Deviations 

The conversion factors defined by (2.13) become 

* = -v5[1 + cos;fl' (311) 

and 

ra = ^ cos iA |^1 - cos ^27r ^ (3-12) 

where D and lo/T are defined as before. 
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Fig. 5 — Conversion of timing deviations in received pulses and in timing 
wave into timing deviations in regenerated pulses, for pulse shapes and timing 
waves shown in Fig. 3. Timing deviations in regenerated pulses in relation to 
timing deviation lv in pulses and t, in retiming wave is -f r,<r . 

For various values of \p the factors for r? = f are given in Table III 
and in Fig. 6. 

3.6 Correlated Amplitude and Time Deviations 

The amplitude and time deviations in the pulses are generally uncor- 
related, but this does not always apply to the timing wave. In particular, 
if a deviation rr in the timing wave is the result of a change in the phase 
yp, it will be accompanied by a given amplitude variation. A change in 
phase by is related to the corresponding time deviation rr by 

W =YTr- (3.13) 

Table III — Values of pa/T and ra/T for v = i 

-90° -60° -30° 0 30° 60° 90° 

Pa/T -0.24 -0.185 -0.175 -0.19 -0.22 -0.325 -0.24 
rJT 0 0.035 0.055 0.072 0.106 0.14 0 

\ / 

\ / 
\ 

/ 

/ 

/ 

/ 

/ 
\ 

/ \ 

/ \ 
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With this change in phase, the factor cos \p of (3.2) is modified to 

cos + A^) = cos \J/ cos A\p — sin ^ sin A\J/, 

2ir . (3-14) 
= cos yp — ~ Tr sin ip 

where the approximation applies for small values of \p. The amplitude 
variation resulting from the above change in phase is accordingly 

ar = -tty sin (3.15) 

Considering both the time deviation tv and the corresponding ampli- 
tude variation cu , the resultant time deviation in regenerated pulses is 
in accordance with (2.20) 

Ar = TtTt + Tattr . (3.16) 

The resultant equation can be written 

Ar = /3rr (3-17) 
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Fig. 6 — Conversion of amplitude variations in received pulses and in timing 
wave into timing deviations in regenerated pulses, for pulse shapes and timing 
waves shown in Fig. 3. Timing deviations in regenerated pulses for amplitude 
variations aP and ar in received pulses and in timing wave is paap + raar . 
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£a/T 
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where 

- 2t] COS \f/ i . to .N 

= D I8"1 \ T ~ , 

t ' ■ (3J8) 

+ sin yp \ — cos (^tt ^ — \p 

and D and lo/T are defined as before. 
The factor 13 indicates the time deviation in regenerated pulses in 

relation to the time deviation tv in the timing wave which results from 
a phase shift A\p as given by (3.13). It may be regarded as a timing feed- 
back factor that is of interest in connection with timing from regenerated 
pulses as discussed later. The factor 13 is shown in Fig. 4 for 77 = f and 
77 = 1. 

3.7 Reduction in Tolerance to Noise by Timing Deviations 

When the pulse shape is given by (3.1) and the timing wave is dis- 
placed by ro , the tolerance to noise is in accordance with (2.2) reduced 
by the factor 

M = 1 /1 , ^ 1 
2 \ co® ij ^rj 2 (3-19) 

* I 1 I ^ ro \ 1 - I 1 + cos - —j — ^ 

TT To 
= cos - - . 

17 I 

For a phase displacement yp, 

to = Tp/2ir, (3.20) 

and 

M = cos (3.21) 
277 

For 77 = f, the factor y and the corresponding reduction in the toler- 
ance to noise in db are as follows: 

^ = 0 ±30° ±45° ±60° ±90° 

M = 1 0.94 0.866 0.766 0.5 
MR. = 0 0.5 1.2 2.3 6 



908 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1957 

IV DERIVATION OF TIMING WAVE FROM PULSE TRAIN 

4.0 General 

The retiming wave R{t) must have a fixed relation to the received 
pulses, with certain tolerable fixed and random deviations to be con- 
sidered later. Such a timing wave can be derived from the pulse train 
with the aid of a sufficiently narrow band-pass filter, the simplest form 
of which is a resonant circuit consisting of a coil and capacitor in series 
or in parallel. 

A train of rectangular "on-off" pulses is shown in Fig. 7 as it would 
appear at the output of a regenerative repeater and at the input of the 
next repeater, (dotted) with uniform intervals T between sampling 
points. 

As indicated in Fig. 7, the pulse train can be regarded as being made up 
of two components. One of these is an infinite sequence of pulses of one 
polarity, the other an infinite sequence of randomly positive and negative 
polarity. 

It will be recognized that the first of the above components at the out- 
put has a fundamental frequency equal to the pulse repetition fre- 
quency, / = l/T, and the forced response of a resonant circuit to this 
component will be the pulse repetition frequency, regardless of any im- 
perfections in tuning. In order that this frequency be present in the re- 
ceived pulse train, it is necessary that the spectrum of the received pulses 
extend beyond the pulse repetition frequency, so that there will be a 
ripple in a long sequence of received pulses of one polarity, as indicated 
in the illustration. 

The second random component of the pulse train will have a fre- 
quency spectrum that is nearly uniform over the band of the tuned 
circuit, and which will vary in amplitude depending on the composition 
of the pulse train. The response of the tuned circuit to this component 
is thus rather complex, and must be treated on an approximate statistical 
basis. It will consist of an almost periodic wave with random amplitude 
and phase modulation, and with mean frequency equal to the resonant 
frequency. 

Owing to the presence of the second component, there will be a 
variation with time in the amplitude and phase of the response of a mis- 
tuned resonant circuit, and resultant deviations in timing. The re- 
generated pulses will thus not be uniformly spaced, but will in general 
have random deviations from the desired exact positions. Such deviations 
can be created by superposing on a train with uniform spacing a random 
dipulse train, as indicated in Fig. 7. The resonant circuit response to this 
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dipulse train would be expected to be smaller than to the random ampli- 
tude component of the pulse train. It may be regarded as a third compo- 
nent representing a second order effect resulting from the second com- 
ponent. 

In the Appendix, this method of superposition has been used as a basis 
of an analysis of a resonant circuit response to a random binary pulse 
train. This problem has also been dealt with by somewhat different 
methods in prior unpublished work by W. R. Bennett and J. R. Pierce, 
both of Bell Telephone Laboratories. 

In this analysis it is assumed that the regenerated pulses are of suffi- 
ciently short duration to be regarded as impulses. The response of the 
resonant circuit to the second and third components above, when taken 
in relation to that for the first component will, however, remain very 

TRANSMITTED r\ L_ I V t_l 

fcdLk±>d^dlL 

T T |l| V L--4 

y 

STEADY STATE 
OR SYSTEMATIC 

COMPONENT 

RANDOM COMPONENT 

-j M l^l*" 

1 

I + 2 
"ON-OFF" PULSE TRAIN 

WITHOUT -PULSE 
DISPLACEMENTS 

DIPULSE COMPONENT 

1 + 2 + 3 
"ON-OFF" PULSE TRAIN 

WITH PULSE 
DISPLACEMENTS 

Fig. 7 — Resolution of "on-off" pulse train with timing deviations into sys- 
tematic component (1), random component (2), and time displacement compo- 
nent (3). 
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nearly the same for other pulse shapes, provided the frequency spectrum 
of the pulses can be regarded as approximately constant over the im- 
portant portion of the band of the resonant circuit. This approximation 
is legitimate for resonant circuits with a loss constant Q and pulse shapes 
at the input of repeaters as considered here. 

4.1 Resonant Circuit Response to Steady State Component 

The first component consists of an infinite sequence of impulses of 
amplitude \ and all of the same polarity, at intervals T. This sequence 
has a fundamental frequency / = 1/T. When it impinges on a resonant 
circuit with resonant frequency /o = f — A/ and loss constant Q, the 
response is of the form 

As{t) = cos ip cos (w/. — i^), (4.1) 

and 

tan f = Q(f/fa - M) = W j • (4-2) 

The response is thus a steady state sinusoidal wave of frequency f 
displaced from the fundamental component of the input wave by the 
phase shift xp and reduced in amplitude by cos \p. This is the phase 
shift and amplitude reduction of the resonant circuit at the frequency / 
when the resonant frequency is/o . 

4.2 Resonant Circuit Response to Random Signal Component 

The second component consists of an infinite random sequence of im- 
pulses of amplitude ±§, at intervals T. The response of the resonant 
circuit to this component will be a randomly fluctuating wave Ar{t) of 
mean value 0. The maximum positive amplitude is obtained when all 
impulses of the second component arc positive and is .4r(0 = A,. The 
maximum negative amplitude is Ar{t) = — .4, . Owing to the presence 
of this component the total output of the resonant circuit .4S + Ar(t) 
can thus fluctuate between the limits 0 and 2A, , but the actual fluctua- 
tions of significant probability will be smaller. 

The above fluctuations can be resolved into a component in phase 
with the steady state response given by (4.1) and another component at 
quadrature with the steady state timing wave. The rms values of these 
components taken in relation to the amplitude of the steady state wave 
are 

a; = Ar'M. = (Cj" [1 - ^/2]"! c-A?, (4.3) 
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and 

a/' = A/'/A, (4.4) 

These relations apply for small values ot 4/ and for ir/Q « 1. 
The resultant rms amplitude variation in the timing wave is qr = a/ 

as given by (4.3). 
The rms phase error ipr resulting from the quadrature component qr" 

is given by 

With regard to the probability of exceeding the above rms values by 
various factors the normal law can probably be invoked with reasonable 
accuracy. As mentioned before, the maximum possible amplitudes are 
Ar{t) ~ AzAs which would correspond to a peak factor (2Q/ir)U2. With 
Q = 100, the factor is about 8, while with Q = 1000 it is about 25. 
Based on the normal law the probability of exceeding the rms value 
by a factor of 4 is about 5 X 10-5, and by a factor of 5, about 10-'. The 
normal law would be expected to apply, since the limiting peak values 
are substantially greater than the peak values expected with significant 
probabilities. 

4.3 Resonant Circuit Response to Pulse Displacements 

Because of the random components given by (4.3) and (4.4), the 
timing wave will contain small random amplitude and phase deviations 
from a sinusoidal wave represented by (4.1). This will result in small 
random deviations in the positions of regenerated pulses triggered from 
the timing wave, which is represented by the third component shown in 
Fig. 7. When the rms deviation in the pulse positions is there will be 
an additional random quadrature component in the timing wave which, 
when taken in relation to the steady state component, is given by 

tan (pr = ipr = a/'. 

The corresponding rms time deviation is {T/2ir)ipr or 

(4.5) 

(4.6) 

(4.7) 

The corresponding rms phase deviation is given by 

<ps = qs" ■ (4.8) 
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The resultant rms time deviation is (T/2x)^5 or 

ds = l}a, (4.9) 

and 

s = WQ)"2. (4.10) 

The above factor a applies to a single resonant circuit. When the rms 
timing deviations represented by (4.9) are present in the regenerated 
pulse train, the rms deviation at the output of the second resonant 
circuit is 

5i.2 = , 
where 

«i = a. 

With n resonant circuits in tandem, 

§5,7. = • • • gn ■ (4.11) 

The factors an are given by 

"i = s = (.k/Q)11', (4.12) 

n l^1/2 
S2 = (1 - f) , 

n i\112 
^ = (1 - T) , 

= (1 — -s-)1'2) etc. 

21-3-5 • • • [2(n — 1) — 1] 
lai ■ 32 * S3 • • • «nj = a  , n ?r7   (.4.14) 2-4-G • 2(n - 1) 

2 (2n)! = a 
22n(n!)2 

1 \1/2 

(4.15) 

2 — a 
,7rn ) 

when n»1. (4.16) 

The factors aj for j ^ 2 represent the reduction in timing deviations 
resulting from the reduction in bandwidth as resonant circuits are 
added in tandem. If resonant circuits with a narrow flat pass-band were 
used, the bandwidth of any number of resonant circuits in tandem 
would be the same as for a single resonant circuit. In this case at = 
QS = Qn = 1. 



SELF-TIMING DEGENERATIVE REPEATERS 913 

4 .4 Deviations in Timing Wave 

The timing wave derived from an "on-off" pulse train with the aid of 
a resonant circuit will in accordance with the expressions given in the 
previous sections contain three types of amplitude and timing devia- 
tions. 

The first type is a fixed amplitude reduction by a factor ao and a fixed 
time deviation to given by 

ao = cosi/', (4.17) 

and 

To = ^TT (4-18) 

where \p is given by (4.2). 
The second type is a random amplitude and time deviation resulting 

from the random amplitude component of the pulse train, which have 
rms values 

0. S (Dj" [1 - -Lj, (4.19) 
\2Q/ cos ^ 

a,^(Vr^L. (4.20) 

and 

27r \4Q/ cos \p' 

The third type is a random amplitude and time deviation resulting 
from random timing deviations fp = 8 in the pulse train. The amplitude 
variation can be disregarded and the rms time deviation is 

8s — QiTp, a = I 7. I . (4.21) 

The total rms amplitude variation is accordingly given by (4.19). 
The total rms timing deviation obtained by combining (4.20) and (4.21) 
is 

fr =5r
2 + aV)1/2. (4-22) 

The expressions for 5r and fr are the quantities appearing in (2.20) for 
Ar, the total rms timing deviation in regenerated pulses resulting from 
random amplitude and timing deviations in the timing wave. 
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V SELF-TIMED REPEATERS WITH PARTIAL RETIMING 

5.0 General 

As shown in the preceding section, timing for pulse regeneration can 
be derived from the pulse trains, with certain random phase and ampli- 
tude variations in the timing wave that can be reduced by increasing the 
loss constant Q of the resonant circuit. This method of "self-timing" 
can be combined with partial retiming, and the regeneration charac- 
teristics of this type of repeater will be discussed in the following sections. 

For purposes of numerical illustration, the same type of pulse shape 
and timing wave will be assumed as in the previous numerical illustration 
in Section III. This pulse shape and timing wave closely approximates 
those in experimental Wrathall repeaters, in which timing is derived 
from the regenerated pulse train. In the following discussion timing 
from the received pulse train will also be considered. 

o.l Timing from Received Pulse Train 

It will be assumed that the timing wave is derived from the received 
pulse train with the aid of a resonant circuit and that random timing 
deviations are absent. The response of the resonant circuit is then a 
sinusoidal wave as given by (4.1). From this wave it is possible to obtain 
a retiming wave of the form 

This can be accomplished by holding the peaks of the timing wave from 
the resonant circuit at zero potential with a diode. This is the form of 
retiming wave previously considered in Section III, in conjunction with a 
pulse shape given by (3.1). 

As shown in Section 3.7, the tolerance to noise will vary with the 
phase shift \f/ of the resonant circuit, in accordance with (3.21). If a 
reduction in the tolerance to noise of about 2 db is allowed, the maxi- 
mum permissible phase shift would be about \p = 1 radian (57.6°). On 
this basis the maximum permissible deviation A/m„x in the resonant fre- 
quency from the pulse repetition frequency / as obtained from (4.2) 
with }J/ = 1 radian becomes 

(5.1) 

/ 
max tan \f/ _ 1.58 

"W ~ W 
(5.2) 

For various values of Q in the range that can be realized by simple 
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resonant circuits, the permissible deviations are as follows: 

915 

Q 10 25 50 100 200 

A/mas-/f 0.08 0.030 0.016 0.008 0.004 

This assumes that there are no random timing deviations and that the 
tolerance to noise is reduced by not more than 2 db. 

5.2 Timing from Regenerated Pulse Train 

It will again be assumed that there are no random timing deviations. 
Without a phase shift in the resonant circuit, let the regenerated pulses 
be triggered at a time U . When there is a phase shift \p', the pulses will 
be triggered at a time W. The timing wave derived from the regenerated 
pulses will then have a time shift 

A f ' i A ^ l' A = to — 2^ 

This time shift will cause pulses to be regenerated with a time shift 
/3'A, which must equal to — to . Accordingly, 

to' — to — fi' {^to — 27r ^0' 

and 

to - to = 
T PV 
2t1 - 0' 

(5.3) 

With timing from the received pulse train with a phase shift \p in the 
resonant circuit, the following relation applies: 

to - to =1^. (5.4) 

If to — to is to be the same in both cases, so that the timing wave and 
tolerance to noise is the same, the following relation must exist between 
the phase shifts in the resonant circuit : 

= ^(1 - 0')^. (5.5) 

In this expression, 0 and 0' are the factors shown in Fig. 4. It will be 
recognized from (5.5) that the smallest permissible phase shifts are ob- 
tained for large values of 0'. From Fig. 4, it is seen that the largest 
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values of ^ are for phase shifts between 0 and —60°. For ?? = j, 0 = 0.7 
and for 77 = 1,8 = 0.9. 

For 77 = f and 77 = 1 the tolerable maximum phase shifts i/-' in the 
resonant circuit with timing from the regenerated pulse train, in rela- 
tion to the maximum tolerable ^ with timing from the input, are 

yp' = 0.3i/' for 77 = f, (5.6) 

and 

xp' = O.lxp for 77 = 1. 

Although greater phase shifts can be tolerated when \p is positive, and 0' 
is smaller than above, the requirements on the resonant circuit must be 
based on the worst condition that can be encountered, as above. 

From (5.6) it follows that for 77 = 1 the requirements on the per- 
missible phase shift in the resonant circuit are much more severe than 
for 77 = f. For this reason the latter value of 77 is decidedly preferable 
for the particular case in which the peak amplitudes of the pulse train 
and the timing waves are equal, as assumed here. A value 77 = f is also 
desirable from the standpoints of avoiding intersymbol interference 
between adjacent pulses at the triggering instants, to permit the timing 
wave to be derived from the pulse train and to permit self-starting of 
the repeaters, as discussed later. 

In accordance with (5.6) the maximum tolerable frequency deviation 
for 77 = f will be less than with timing from the received pulse train by 
a factor of about 0.3. The maximum permissible frequency deviation for 
a phase shift of about one radian in the timing wave and 0.3 radian in 
the resonant circuit, will accordingly be about as follows: 

Q 10 25 50 100 200 

A/max// 0.025 0.009 0.005 0.0025 0.0012 

For a repeater with complete rather than partial retiming, the factor 
0 would be unity, and timing from the regenerated pulse train would 
not be possible. 

5.3 Random Timing Deviations 

In combining random timing deviations from various sources at a 
particular repeater, it will be assumed that there is no correlation be- 
tween the various deviations, so that they will combine on a root-sum- 
square basis. 



SELF-TIMING REGENERATIVE REPEATERS 917 

In accordance with (2.21) the rms timing deviation at the output is 
then: 

A2 = (PrV + VaQp) + {TtTt + rflV), (5.7) 

where in accordance with (4.13) and (4.16) 

= (5-8) 

Tr = (5r' + a2rp")1/2> (5.9) 
.1/2 

(5.10) TT 
a = \Ql ' 

= i5-u) 

When (5.9) is inserted in (5.7) 

A2 = (P.2 + «V)rP
2 + va

2aP
2 + rT

2§r2 + raW. (5.12) 

This expression gives the rms timing deviation at the output in terms ol 
the rms deviation fp at the input and the various repeater parameters. 

With timing from the output, rather than the input as assumed above, 
fp is replaced by A in (5.9), and the following relation is obtained: 

A2(l - *V) = PrV + puV + VrV + r0V. (5.13) 

In the above expressions pi = 0.15, rr2 = 0.4 and g = 0.03 (Q = 
100). The term aVT

2 can thus be neglected in comparison with pr
2 in 

(5.12) and in comparison with 1 in (5.13). 
The following expression is thus obtained with timing from either the 

input or the output; 

A2 = (PrV + PaW) + (/VSr2 + ^V) 
(5-14) 

= Ap" + Ar • 

5.4 Magnitude of Random Timing Deviations 

The first two terms of (5.14) represents the rms timing deviations in 
the regenerated pulses resulting from timing deviations and amplitude 
variations in the received pulses. The last two terms represent the timing 
deviations resulting from timing deviations and amplitude variations in 
the timing wave. The conversion factors Pr, Pa, rT and rn are discussed 
in Section II and representative values given in Figs. 5 and 6. The values 
of Qr and 5r are obtained from (5.8). 
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Table IY — Rms Deviations from Timing Wave 
Distortion for Q = 100 

-60° -30° 0° 30° 60° 

VrSr/T 0.011 0.005 0 0.006 0.015 
raqr/T 0.006 0.007 0.009 0.014 0.024 
*r/T 0.0126 0.009 0.009 0.015 0.028 
Vr 4.5° 3.2° 3.2° 5.4° 10° 

In Table IV are given the values of the two last terms in (5.14), which 
represents the rms deviations 4r owing to random deviations in the 
timing wave. The results are given for the particular case in which 
Q = 100, and for other values of Q are inversely proportional to Q11'2. 
The table shows the deviations as a fraction of the interval T between 
pulses, and also as the corresponding rms phase deviation . 

In Table Y are given the values of the first two terms in (5.14), which 
represents the rms deviation A„ in the regenerated pulses resulting from 
random amplitude and timing deviation in the received pulses. In binary 
systems it is customary to limit the rms pulse distortion to Up = to, 
corresponding to to the peak amplitude of the received pulses, or -5- the 
triggering level (17 db signal-to-noise ratio). The corresponding rms 
phase deviation would be about TV radian, corresponding to an rms 
deviation fp in the pulses of 0.016 the pulse spacing, or fp/T = 0.016. 
The total rms timing deviation obtained from (5.14) and the correspond- 
ing rms phase deviation are given in Table VI. 

Table V — Rms Deviations Resulting from Pulse Distortion 

-60° -30° 0° 30° 60° 

Va^p/T 0.019 0.018 0.019 0.022 0.032 
Prrp/T 0.010 0.007 0.005 0.005 0.008 
£v/T 0.021 0.020 0.020 0.023 0.033 
Vp 7.5° 7.2° 7.2° 8.2° 12° 

Table VI — Total Rms Deviations from Timing Wave 
and Pulse Distortion 

* -60° -30° 0° 30° 60° 

A/T 0.025 0.022 0.022 0.028 0.043 

& 9° 8° 8° 10° 16° 
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The probability that random phase deviations will exceed the above 
rms values by a factor of more than 4 is small enough to be ignored. On 
this basis the sum of the fixed and random deviations would be limited 
to about 70°, if the fixed phase shift \p is less than ±30°. With this re- 
quirement on the fixed phase shift for satisfactory performance, the 
values of A/max would be about half as great as previously given in Sec- 
tions 5.1 and 5.2, for a single repeater as considered here. 

VI REPEATER CHAINS 

6.0 General 

In the previous section, a single self-timed repeater was considered, 
from the standpoint of fixed and random timing deviations, as deter- 
mined by various repeater design parameters. In a repeater chain there 
will be some cumulation of random timing deviations as the number of 
repeaters in tandem is increased, and a resultant reduction in the 
tolerance to noise of repeaters toward the end of the chain. Exact evalua- 
tion of such cumulation is rendered difficult by the circumstance that 
timing deviations from various sources may not follow the same law of 
combination along the repeater chain. In the following, expressions are 
given based both on root-sum-square and direct addition of random 
timing deviations, which can be regarded as lower and upper limits. 

6.1 Combination of Random Timing Deviations 

To determine the rms value of random timing deviations at the end 
of a repeater chain, it is necessary to combine random deviations from 
various repeaters. Random deviations from various sources at a repeater 
do not necessarily follow the same law of cumulation along a repeater 
chain. Since there is no correlation between timing deviations caused by 
noise in various repeater sections, these can be combined on a root-sum- 
square basis. This, however, may not be appropriate as regards the 
combination of timing deviations resulting from imperfections in the 
timing wave. Thus, with perfect tuning of all resonant circuits, the 
timing waves at various repeaters would have virtually identical ampli- 
tude variations, but no phase deviations. While in this case there would 
be complete correlation between the timing wave variations at the 
repeaters, it does not follow that the resultant timing deviations should 
be combined directly rather than on a root-sum-square basis along the 
repeater chain. The timing deviations at the end of a chain of N re- 
peaters resulting from amplitude variations in the timing wave of the 
first repeater will be modified by N intermediate resonant circuits. Those 
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resulting from amplitude variations at subsequent repeaters will be modi- 
fied by N-\, N-2 etc. intermediate resonant circuits. The situation is 
similar to that of applying identical noise waves at the input of each of 
N resonant circuits in tandem. At the output the N noise waves will have 
different shapes owing to restriction of the band and increasing phase 
distortion as the number of resonant circuits in tandem increases. For 
this reason combination on a root-sum-square basis appears justified also 
in this case, particularly with various degrees of mistiming of the res- 
onant circuits, so that the amplitude variations in the timing waves 
will differ in phase among repeaters. 

6.2 Propagation of Timing Deviations 

To determine the cumulation of timing deviations along a repeater 
chain, it is convenient to first consider a single repeater as a source of 
timing deviations, and to determine the propagation of these timing 
deviations along a repeater chain. In the following, 7n will designate the 
rms propagation factor for n repeaters in tandem; i.e., the factor by 
which the rms timing deviations at the end of a chain of n repeaters is 
smaller than at the first repeater, with timing deviations originating at 
the first repeater only. 

Let the rms timing deviation at the output ol the first repeater as 
given by (5.14) for convenience be taken as unity. At the output of the 
second repeater the squared rms timing deviation is then reduced by the 
factor 

722 = Vr + 21V, 21 = «• (6-l) 

As indicated symbolically in Fig. 8, the first term represents the reduc- 
tion owing to partial retiming. The second term is the additional devia- 

- REPEATERS 
2 

A = 1 Pr 
gi^T-Pr 
gtPrCr 

a.ryasrr 

2,Pr a1r7-a2 

V RESONANT CIRCUITS   

Fig. 8 — Propagation of random timing deviations along repeater chain. 
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tion resulting from the effect on the timing wave of unit rms deviation 
in the received pulse train at the second repeater. 

At the output of the third repeater, the squared rms deviation is 
smaller than at the output of the first repeater by the factor 

73" = (p/ + QI'I't2)PT' + PT'OII'V r" + QiWoe^W (0.2) 

= Pr4 + '2oi{pT'rr + SlW^r4. (G.3) 

As indicated in Fig. 8, the first term in (6.2) represents the reduction 
owing to partial retiming of the received pulse train at the third repeater. 
The second term, (prairT)2, is the additional rms deviation resulting from 
the effect on the timing wave at the third repeater of an rms deviation 
Pr in the received pulse train. The third term (apvo^rr)2 is the additional 
deviation caused by the effect on the timing wave of an rms deviation 
QiTr in the received pulse train. The factor ao'V represents the modifica- 
tion in the rms deviation apv by a second resonant circuit, with as de- 
fined as in Section 4.3. 

At the output of the fourth repeater, the rms timing deviation is 
reduced by the following factor, obtained in the same manner: 

742 = p? + 3ai2pT
4rr

2 + 3giJa2
3pr

2/v4 + aiWgiTrA (6.4) 

At the output of repeater n, the squared rms timing deviation is 
smaller than at the output of the first repeater by the propagation 
factor 

„ 2 _ 2(;.—l) ■ (ft — 1) 2(7.-2) 2 2 = Pt H Yi— PT rT -1 

. (n — l)(w — 2) 2(71-3) 4 2 2 
+ 2! p' r'sisi (6.5) 

(n — l)(n — 2) (n — 3) 2(7.-4)„ i 2 2 2 
H g-j  Pr rT gi go g;i 

. | ^ 2(71-1) 222 2 + ■ • • + rr gi go 2,3 ■ ■ • "..-i, 

where Pt and rT are defined as in Section 2.2, and ai, as ■ • • an as in 
Section 4.3. 

In the above formulation the rms deviation at the output of the first 
repeater was assumed given by (5.14), which is an approximation of 
(5.12) in which the term Q2rT'fp' was neglected. This term will have a 
different propagation factor p„ , the expression for which differs from 
that for 7,. as given by (6.5) in that the subscripts of the factors g7- are 
raised by one unit. Thus, 
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_ p+ p «-V,V (6 6) 

, 2(n—1) 2 2 2 + • • • + rT a* Q-i • • • a,. . 

The rms deviation at the output of repeater n thus becomes 

A,,2 = (Ap2 + A,2)7„2 + sVT
2fp2p,2. (G.7) 

In the case of repeaters with partial retiming the last term in (6.7) can 
be neglected, in which case the cumulation of timing deviation will be 
virtually the same when the timing wave is derived from the regenerated 
as when it is derived from the received pulse train. 

The above expressions apply for resonant circuits consisting of a coil 
and capacitor which have a gradual cut-off. If resonant circuits with a 
flat pass-band and sharp cut-offs were used, 0:2 = "3 = and (6.5) can 
be simplified to 

7„2 = (1 - + mW + r.Y-11. (6.8) 

6.3 Cumulation of Timing Deviations 

The cumulation of random timing deviations from various repeaters 
in a chain can be determined from the propagation constant given above 
for any prescribed law of combination of timing deviations from various 
repeaters. When equal rms deviations are contributed by each of A 
repeaters, and they are combined on a root-sum-square basis, the rms 
deviation at the end of a repeater chain is greater than for a single 
repeater by the cumulation factor 

/ N \ 1/2 
C = (E T»2) ■ (6-9) 

An upper limit to C is obtained by taking ql-> = qa = a„ = 1 in (6.5) 
in which case 7n

2 is given by (6.8); (6.9) then becomes for N = * 

(1 _ ai=) + 2i
! j _ p\ _ rJ (6.10) c = 

I ^ 
1 - Pr2 

2 2 

(6.11) 

where the terms in gi2 have been neglected in (6.11), since gf - of « 1, 
about 0.03 for Q = 100. 

From Fig. 5 it will be seen that when \p < ±60°, pr < 0.6. Hence 
C < 1.25. Cumulation of random timing deviations can thus for practical 
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purposes be disregarded, with root-sum-square combination as assumed 
above. The value of C obtained from (6.11) will differ from that obtained 
from (6.9) when yn is given by (6.5), by a small fraction of one per cent. 

Although root-sum-square combination appears justified for reasons 
given before, it is of interest to determine an upper limit to the cumula- 
tion based on direct addition of random timing deviations. The maxi- 
mum cumulation factor thus obtained is 

AT 
Cma* = Z 7n . (6.12) 

Employing (6.8) for yn and neglecting the terms in qi, the upper limit 
to the cumulation factor for N = x becomes 

CV„ = (6.13) 
1 - Pt 

With Pr < 0.6 for t < ±60°, Cmax < 2.5. 
If the above maximum cumulation factor is applied to random timing 

deviations resulting from amplitude variations in the timing wave, as 
given in Table IV of Section 5.4, the resultant rms phase deviation at 
the end of a long repeater chain could be as great as 25°, rather than 10° 
for a single repeater, when \p = 60° and Q = 100. To attain satisfactory 
performance it would in this case be necessary to limit the maximum 
fixed phase shift to substantially less than ±60°, which would entail 
greater frequency precision than indicated in Sections 5.1 and 5.2. 

If i/' < ±15°, pr < 0.40 and Cmnx < 1-7. In this case the rms phase 
deviation as given in Table I for a single repeater is ^ 4°, and the 
rms phase deviation in a long repeater chain would be less than 7°. In 
a long repeater chain the rms phase deviation resulting from pulse dis- 
tortion would be greater than given in Table II by an rms cumulation 
factor C = 1.08 for pT = 0.4, and would thus be about 8° when \f/ < 
±15°. The total rms phase deviation would thus be about (72 -f- 8")1/J = 
110. Random phase deviations exceeding 4 times the latter value, or 
about 45°, would be rather unlikely. The sum of the fixed and random 
phase deviations would thus be limited to about 60°, so that satisfactory 
performance would be expected when the fixed phase deviation is 
limited to about ±15°. 

With the approximations for 7,, employed above, the rms cumulation 
factor for a chain of V repeaters as obtained from (6.9) is less than for 
N — ^ by the factor (1 — p,-2A)1/2 = 0.99 for pT = 0.5 and V = 3. The 
maximum cumulation factor obtained from (6.12) is less than for N = x 
by the factor 1 — p/ = 0.99 for N = 6. Thus, cumulation of random 
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timing deviations is virtually completed in a chain of 3 to 6 repeaters, 
so that for experimental determinations of the degree of cumulation it 
suffices to operate a few repeaters in tandem. 

£.4 Repeaters with Complete Retiming 

In the particular case of complete retiming, pr = 0 and rr = 1 in 
(6.5) and (6.6) so that 

7n = «lQf2«3 ■ • • Qin-l , (6.14) 

Pn = 0:20:3 • ■ • On . (6.15") 

For n » 1, approximation (4.16) can be employed, in which case 

(6.16) 
T-=aty ■ p"=(^) ■ 

In this case (5.14) simplifies to 

^ ^ = Sr2, (6.17) 

since pa = 0, ra = 0, pr = 0 and rT = 1. 

Hence (6.7) becomes 

d„2 = 5r
2
7n

2 + fPVp„2. (6.18) 

With approximations (6.16), 

A.! = (5.! + f.V(4j'!. (6.19) 

At the output of the first repeater, 

4i2 = §r2 + Qi'fp . (6.20) 

For n » 1 the squared propagation factor is accordingly 
- 2 . _ 2 / , \ 1/2 

■ (6-21) 

The squared rms cumulation factor for N y> 2 repeaters becomes 

In the particular case of perfect tuning of all resonant circuits 5r — 0 
and 
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(6.23) 

(6.24) 

The last expression gives the factor by which the rms timing devia- 
tion at the output of repeater N is greater than at the output of the first 
repeater. The rms deviation at the output of the first repeater is greater 
than at the input by the factor a. The rms deviation at the output of 
repeater N is thus greater than at the input of the first repeater by the 
factor, 

For this particular case (§r = 0) expressions equivalent to those 
above have been derived in unpublished work by H. E. Rowe of Bell 
Telephone Laboratories. 

In accordance with (6.22) and (6.24) the cumulation of random timing 
deviations increases indefinitely with N when retiming is complete. The 
cumulation factor as given by (6.24) is in fact the same as would be ob- 
tained if a timing wave were transmitted on a separate pair, with a 
resonant circuit at each repeater to limit noise and with amplification of 
the timing wave at each repeater to obtain the same amplitude of the 
timing wave as when it is derived from the pulse train. With partial 
retiming cumulation is limited, for the reason that there is partial re- 
generation of both the pulse train and the timing wave. 

Although with complete retiming the cumulation factor increases 
indefinitely with N, this is of but little practical significance, because of 
the slow rate of cumulation. At the output of a chain of N repeaters an 
rms deviation approximately equal to that at the input of the first re- 
peater could be tolerated, in which case Ci = 1. On this basis the per- 
missible number of repeaters would be 

(6.25) 

(6.26) 

^ 800 when Q = 100. 

This assumes exact tuning of all resonant circuits. With mistuning of 
the resonant circuits, the permissible number of repeaters in tandem 
for a specified rms deviation at the output of the final repeater can be 
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determined with the aid of the cumulation factor given by (6.22). For 
example, if the rms deviation at the output of repeater N is assumed the 
same as at the input of the first repeater, the permissible number of 
repeaters in tandem is less than given by (6.26) by the factor [(1 — m )/ 
(1 m

2)]2, m = $r/fp . When the fixed phase shift is 30°, m = 0.5 and 

N ^ 300. 

6.5 Self-Starling of Self-Timed Repeaters 

With self-timing it is necessary that repeaters be sell-starting it the 
timing wave should be absent for any reason. If each repeater is self- 
starting, this will also be the case for a repeater chain, since starting will 
be progressive along the chain. Initially, before the timing wave has 
reached the appropriate amplitude at all repeaters, there will be a high 
rate of digital errors. 

With timing from the received pulse train, the resonant circuit will be 
excited by every pulse and the timing wave will reach its normal ampli- 
tude in about n ^ Q pulses. With timing from the regenerated pulse 

Fig. 9 — Progression of repeater starting in absence of timing wave when 
timing is derived from regenerated pulse train. 
O Triggering points with timing wave absent. Noise prevents triggering at cer- 

tain points, n. Timing wave reaches fraction of normal value, Ri . 
A Triggering points with timing wave R,. Timing wave increases to normal am- 

plitude R. 
• Triggering points with normal timing wave. 

TIMING 
WAVE 

PULSE 
TRAIN 

L 

0 
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train the resonant circuit will not be excited by every pulse, unless the 
shape of the received pulses is such that there are virtually no overlaps 
between pulses so that the triggering level will be penetrated by each 
pulse. 

With a pulse shape as assumed in the previous analysis, the amplitude 
of a pulse train midway between pulses is half the peak amplitude of the 
pulses, as indicated in Fig. 9. In the presence of noise, triggering will in 
this case occur on the average for every second pulse, as indicated in the 
above figure. If it is assumed that the resonant circuit has the maximum 
permissible phase shift of about 20° allowed with timing from the output, 
the amplitude of the timing wave with excitation from every pulse will 
be virtually equal to the peak pulse amplitude. With excitation from 
half the pulses, the amplitude of the timing wave will rapidly reach half 
the peak amplitude of the pulses. When this initial timing wave is com- 
bined with the pulse train, triggering will occur for virtually all pulses, 
as indicated in Fig. 9. It will thus reach its normal value. If the phase 
shift is greater than 20° as assumed above, say 60°, the initial amplitude 
of the timing wave will be ^ the peak pulse amplitude. Combination of 
this initial timing wave with the pulse train will increase the number of 
pulses exciting the resonant circuit, which in turn increases the amplitude 
of the timing waves, etc. 

Self-starting with a pulse shape as assumed in this analysis is thus 
insured. 

VII SUMMARY 

In self-timing regenerative repeaters as considered here, a timing 
wave is derived from either the received or regenerated pulse train with 
the aid of a simple resonant circuit tuned to the pulse repetition fre- 
quency. This timing wave is combined linearly with received pulse trains 
as indicated in Fig. 1, and pulses are regenerated when the combined 
wave penetrates a certain triggering level. 

It is concluded that if these tuning principles are implemented by 
appropriate repeater instrumentation, a performance can be realized 
that approaches that of ideal regenerative repeaters. To this end it is 
necessary to meet certain requirements with regard to the loss constant 
Q of the resonant circuit, its frequency precision, the shape of received 
pulses and the amplitude of the timing wave in relation to that of re- 
ceived pulses. 

Equalization of each repeater section should preferably be such that 
the received pulses have a shape and duration in relation to the pulse 
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interval as indicated in Fig. 3, and the peak amplitude of the timing 
wave should be about equal to that of the received pulses. Under these 
conditions the pulse repetition frequency will be present in the received 
pulse train in sufficient amplitude to permit derivation of the timing 
wave from the received pulse train, and to permit rapid self-starting in 
the absence of a timing wave if it is derived from the regenerated pulse 
train. 

A loss constant of the resonant circuit Q = 100 appears desirable. 
This value is sufficiently low to be readily realized with simple resonant 
circuits consisting of a coil and capacitor in series or parallel, without 
unduly severe requirements on its frequency precision. It is also ade- 
quately high from the standpoint of avoiding excessive random timing 
deviations in regenerated pulses from amplitude and phase deviations 
in the timing wave. 

The tolerable deviation in the resonant frequency from the pulse 
repetition frequency with Q = 100 is about 0.2 per cent when the 
timing wave is derived from the received pulse train, and about 0.06 
per cent when it is derived from the regenerated pulse train. These 
frequency precisions correspond to a maximum fixed phase shift ot 15° 
in the timing wave, and allow for the possibility that random timing 
deviations resulting from amplitude variations in the timing wave may 
cumulate directly along a repeater chain, rather than on a root-sum- 
square basis. With root-sum-square cumulation of timing deviations 
from all sources, the frequency deviations could be about twice as 
great. 

When the above requirements are met the reduction in the tolerance 
to noise owing to timing deviations in a repeater chain is limited to 
about 2 db. If the requirements on frequency precision of the resonant 
circuit are met, substantial degradation or improvement in performance 
would not be expected as a result of moderate changes in the other 
design parameters. 
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Appendix 

IX RESONANT CIRCUIT RESPONSE TO RANDOM BINARY PULSE TRAINS 

1 General 

In the following analysis of the response of a resonant circuit to a 
binary "on-off" pulse train, the pulses are assumed of sufficiently short 
duration to be regarded as impulses. This is a legitimate approximation 
when the duration does not exceed about half the interval between 
pulses. 

The pulse train is regarded as made up of three components, as indi- 
cated in Fig. 10. The first is a systematic component consisting of pulses 
of amplitude This component gives rise to a steady state response at 
the fundamental frequency of the pulse sequence. The second com- 
ponent consists of pulses of amplitude ±|, with random ± polarity. 
This component gives rise to a random component in the resonant cir- 

$t $ i if. a ij] 

qt q q 

A = B + C 

B 

♦ —T—! 

m 

FIRST COMPONENT 

SECOND COMPONENT 

1 

!F 

h"T"' 

THIRD COMPONENT 

1 

F = A + D 

Fig. 10 — Components of random binary on-off pulse train. A. — Transmitted 
"on-off" pulses. B. — Steady state pulse train of fundamental frequency / = l/T. 
C.— Random pulse train with zero mean value. D. — Random pulse train with 
displacements ±5. F.—"On-off" pulse train with displacements ±5 from av- 
erage pulse interval T. 
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cuit response; i.e., a fluctuation about the steady state value derived 
from the first component. 

The third component consists of a train of dipulses. Each dipulse 
consists of a pair of pulses of amplitude 1 and —I, displaced by an 
interval ±5. The response of the resonant circuit to this component 
gives the effect of random displacements ±5 in the original "on-off" 
pulse train. 

2 Impedance of Resonant Circuit 

The impedance of a resonant circuit consisting of 7?, L and C in 
parallel is 

= Z(tco)e-,v, (1) 

Z(fco) = M , n2, , R = -K cos (2) 
[1 + Q2(&Vwo — coo/co)2]1' 

tan \f/ = Q(a)/«o — ^o/of), (3) 

Q = u0RC = Loss constant, (4) 

coo = (l/LC)1'2 = Resonant frequency. (5) 

The above expressions also apply for the admittance ot a resonant 
circuit consisting of R, L and C in series, except that in this case Q = 
(J3QL//R . 

3 Impulse Response of Resonant Circuit 

When a rectangular pulse of unit amplitude and sufficiently short 
duration 5o is applied to a resonant circuit, the impulse response for 
Q » 1 is of the form 

P{t) = P(0) cos uQte~U0ll2Q, (6) 

where 

P(0) = coo5oP/Q. (7) 

P{t) designates voltage in response to an impulse current in the case 
of a parallel resonant circuit, or the current in response to an impulse 
voltage in the case of a series resonant circuit. 

where 

and 
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4 Response to Steady State Impulse Train 

Let a long sequence of impulses of amplitude \ and the same polarity 
impinge on a resonant circuit at uniform intervals T. The response after 
N impulses is then 

A.it) = 5 E P(< - nT) (8) 2 i,=0 

= ^ cos m{t - nT)e~UoU~nT)l2Q. (9) 
2 n=0 

The subscript s indicates a systematic component. 
The above series is conveniently summed by taking the real part of 

the series 

Aa'(t) = £ e.a.o(/-nr)e-a,o(e-nr)/2« 
2 K =0 

With t = NT + t0,0 < to < T: 

j wo'o/20 ^i'uo<(W—n)^—UoHN—n)I2Q (l l) 
2 „=0 

When N —* x , the steady state responses becomes 

4 '(/) = i<o0to -u0i0m ]  /i o") 
2 1 _ e«-0/e-o.0«/2Q- KLZ) 

The interval between pulses can be written 

T = 'lir/u, (13) 

where w is the fundamental frequency of the impulse train, or the pulse 
repetition frequency. 

Let 
GJO = w — Aw, 

so that 

wo = ^ (1 — Aw/w). (14) 

The following approximations then apply: 
+iw0T   2xi —2wiAuIiii   —ixiAuloi '— C C — o . 

= 1 — 2irtAw/w; 
-TlQ +(TlQ)/\oiloi t c , 

= 1 — tt/Q when ir/Q <3C 1. 

-oi0TI2Q _ -rtQ +(tIQ)\OIU C C- c 

(15) 

(16) 
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With these approximations 

I - e-oVUoT/2e [1 +t>], 07) 

where 

t = ~Q, (18) 
O) 

will be recognized as the phase shift of the resonant current at the fre- 
quency co, as obtained from (3) with co = coo + Aco. 

A further approximation that can be introduced in (12) is 
^'"o'o^-^o'o/2^ _ io>t0 -iAo>t0 -u0t0l2Q (it   £> C C 7 

^ e,w'0, 09) 

since to < T and Acoto and cooto/2Q <3C 1. 
With the above approximations (12) becomes 

A,' = ^ Q e'16"0-*1 cos t. (20) 
2 TT 

The real part of this expression is 

A* = ^-7^ - cos {uta - t) cos (21) 2 TT 

which is the response to the steady state component of the pulse train. 

5 Response to Random Component of Impulse Train 

Let a sequence of impulses of amplitude ^ and randomly positive and 
negative polarity impinge on the resonant circuit at intervals T. The 
response is then, 

AM = ^ E ± COS 0>„(i - nVe-'""™. (22) 2 n=0 

This expression for the random component differs from (9) lor the sys- 
tematic component in that the impulses have random =b polarity. If 
all signs are chosen the same, the values of Ar(t) will be either — As(£) 
or + A8(0- The resultant response of the resonant circuit, i.e. Ag(0 + 
Ar{t), can thus vary between the limit 0 and 2As{t). Ar{t) represents a 
random fluctuation about As(t) as a mean value. In the following the 
rms value of this fluctuation is evaluated. 

In order to determine the components of Ar(t) in phase and at quadra- 
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ture with the steady state response as given by (21), it is convenient to 
write 

ojo = w — Aw, 

cos uo(t — nT) = cos [a)(/ — nT) — ^ + t/- — Aco{< — nT)\ 

= cos [a)(/ — nT) — 4/] cos [\p — Aa)(/ — nT)] (23) 

— sin [a)(f — nT) — sin — Aw(/. — nT)]. 

With i — NT h , and uT = tt, (22) can be written: 

Aril) = cos (co/o - -A) Z ± COS frA, - Aa)T(Ar - ri)]e-
wo(n(A'-n)/2<? 

";0 (24) 
- sin (cu/o - 'Z') z ± sin [^i - AcoT(/V - 

71 = 0 

where yp\ = \p Aco/n = ^ = \p, since a)/n/2Q < ir/2Q « 1. 

With equal probabilities of a plus or a minus sign in the summations, 
the rms value of the in-phase component becomes 

Ar = [Z cos2 - AuT{N - 7i)]e_a"or,Ar_")/0l 

T/2 ^ 
= [Z ^ (1 + cos 2{\{/ - AuTiN - n)]e-

Uor(Ar-n)/0) J . 

The rms value of the quadrature component becomes 

Ar" = [Z sin2 [i - AuT(N - n)]e_"o!r(Ar-")/cJ 
11/2 

r 'v i i"2 

= I Z ^ (I - cos 2[\f/ - AuT(N - R)]c-u»r(Ar-n)/0)J . 

(26) 

These expressions can be transformed into sums of geometric series 
by writing 

cos T = Ueiz + e-'1), x = 2^ - AcoT(iV - n)]. 

Evaluation of (25) and (26) by this method gives 

Ar = 
F(0) 1 r 1 . ^il/2 (97) 

21/2 [l _ g—uoTlQ ^ /)J ' 

A" = m±\ i _N, ( . 
(2) 21/2 [l - e-"*™ Dj ' V ; 

1/2 
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where 

N = cos 2^(1 - cos 2AuTe~UoTl2Q) + sin 2* sin 2Au'Z7ra,or/2Q, (29) 

Z)=l + e-2uoTIQ - 2e~0'oTlQ cos 2Ao)T. (30) 

With the same approximations as used previously in connection with 
(12) and with 

cos 2Ao}T — 1 — 2(Aco7,)", sin 2Awl = 2AwT, 

(31) 

D ^ (|J [1 + A (32) 

1 _ e—"« = 2t/Q. (33) 

With these approximations in (27) and (28), 

A,' S ^ (^)"! [! - A21"', (34) 

which apply when \p is small and (2^/Q) « 1. 

6. Response to Random Dipulse Train 

Each dipulse is assumed to consist of two impulses of unit amplitude 
and opposite polarity, displaced by an interval 5, which in general will 
be a function of the pulse position; i.e., b = 5(n). The response of the 
resonant circuit to a train of such dipulses, obtained by taking the dif- 
ference in response to the two impulses, is given by 

(3G) 
As{t) = .P(O) [£ cos wo(t - nT)e Wo(' "T)I2Q 

- cos w0[t - nT + . 

In determining the response, mistuning of the resonant current can be 
disregarded; i.e., coo = w. Furthermore, in the second term of (36) it is 
permissible to take 

exp [—w08{n)/2Q] ^ 1. 



SELF-TIMING REGENERATIVE REPEATERS 935 

With the following further approximations 

cos coo(i — nT) — cos ajo[< — nT + 6(71)] 

= sin coo[f + 5(w)/2] 2 sin [a)o5(w)/2], (37) 

= aJo5(w) sin cooi, 

expression (36) becomes: 

Aiii) = P(0)coo sin uot jr 5(n)e-W0<'-nT)/2Q 

(38) 

= P(0)«, sin mh E SWe—""-"""1, 
n=0 

where the substitution t = AT + /o has been made as in previous ex- 
pressions. 

The above expression shows that the resonant circuit response will be 
at quadrature with the steady state timing wave cos co<o. 

In the above expressions, the dipulses are assumed to be present at 
intervals T, whereas in a random pulse train they will be present at 
average intervals 2T. The rms value of the quadrature component with 
randomly positive and negative dipulses at intervals 2T, with an rms 
displacement 5, is 

[N -U/2 £ e-2.or(*-n)/0J 

^1- 
(I) 

(39) 

In (38) the function e O'otl-<i will be recognized as the impulse response 
function of a circuit with impedance 

z(.iv) = 3-T. P = "«/2Q, (40) 

= (41) 

(42) 

tan yf/ = co/Q. (43) 

It will also be recognized that (39) corresponds to the rms response of 
such a circuit, when impulses 5(«) of random amplitude with an rms value 
5 are applied to average intervals 2T. Thus (39) can alternately be ob- 
tained from 
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A'; = P(0M / ^ lZ(i»)l! 

r « I1'2 

= P(0)^ 3(tan-W«:„J («) 

_l Y" 
= P(0)^ ymJ 

= ^0) ^ (QY'2. (45) 
2 \7r / 

Let the output of the first resonant circuit be applied to a second 
resonant circuit, and in turn to n successive resonant circuits, with an 
amplitude amplification /3 between successive resonant circuits. At the 
output of the 7ith resonant circuit, the rms amplitude of the response 
is then obtained from 

[aUti - 1) /"O "l1'2 

L[rM]n n 

= P(0)a)o5 [4^2 /_M (1 + a>2/^2)n] (46) 

.1/2 
Pin) JQY r _ A."f —^— WoQ \ ~ f ' •'n — ill J-n j 

2 \7r / 

where 

/ 2 = _L r  ^ , (47) 
" ir/3 i-w (1 + coV/S2)"' 

= 1, n = 1, 

= ^^1) ^ 2' (48) 

= " 2^ -1))' 

I* = (i - 5), /31 = (1 - i}h\ 1? = (i - 

Thus (46) can be written: 

A = AjV^a •••««, (49) 

where 
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2(r - 1) 
1 

1 • 3• 5• 7 ••• [2(n - 1) - 1] 
(52) 

2-4-G-8 2(w - 1) 

(2n)! 
(53) 

22"(n!)2" 

When n » 1, (51) approaches the value 

ai'ai • • • g[n' = (54) 

The latter approximation is based on the following expression, for 
x = —%, given in Whittaker and Watson's:"Modern Analysis" page 259: 

where r is the gamma function, r( —^ + 1) = tt1 

The above analysis assumes that the timing wave at each resonant 
circuit is applied directly to the next resonant circuit, except for the 
amplification between resonant circuits. This would be the case if the 
timing wave were transmitted on a separate pair, in which case A 
would be the rms quadrature component owing to noise in the timing 
circuit. 

In regenerative repeaters, deviations in the timing wave resulting 
from the quadrature component are imparted at intervals T into the 
next repeater section as deviations in the spacing of pulses. These 
timing deviations occurring at intervals T will have a certain random 
amplitude distribution, which can be regarded as having a certain 
frequency spectrum. When the deviations are discrete and occur at inter- 
vals T, the spectrum will extend to a maximum frequency fmas: = 1/27', 
or Wn.nx = t/T = uo/2. In this case the upper and lower limits of the 
integrals above would be replaced by ±uo/2, except for the first repeater 
section. The recurrence relation (48) is then no longer exact, but the 
resultant modification is insignificant and can be disregarded. This will 
be seen when the value wo/2 is inserted for w in the integrand of (47), 
which then becomes 1/(1 + Q'), as compared with 1 for oj = 0. Thus 
the contribution to the integrals for w > uo/2 can for practical purposes 
be disregarded. 

lira (1 + x)(l + t/2)(1 + x/3) •••(!+ x/n) = 





A Sufficient Set of Statistics for a Simple 

Telephone Exchange Model 

By V. E. BENES 

(Manuscript received October 17, 1956) 

This payer considers a simple telephone exchange model which has an 
infinite n umber of trunks and in which the traffic depends on hoo parameters, 
the calling-rate and the mean holding-time. It is desired to estimate these 
parameters by observing the model continuously during a finite interval, 
and noting the calling-time and hang-up time of each call, insofar as these 
times fall within the interval. It is shown that the resulting information may, 
for the purpose of this estimate, be reduced without loss to four statistics. 
These statistics are the number of calls found at the start of observation, the 
number of calls arriving during observation, the number of calls terminated 
during observation, and the average number of calls existing during the 
interval of observation. The joint distribution of these sufficient statistics is 
determined, in principle, by deriving a generating function for it. From this 
generating function the means, variances, covariances, and correlation co- 
efficients are obtained. Various estimators for the parameters of the model 
are compared, and some of their distributions, means, and variances pre- 
sented. 

I THEORETICAL PROBLEMS AND METHODS OF TRAFFIC MEASUREMENT 

Four important kinds of theoretical problems arise in the measurement 
of telephone traffic. These are: (1) the choice of a mathematical model, 
containing parameters characteristic of the traffic, to serve as a descrip- 
tion; (2) the devising of efficient methods of estimating the parameters; 
(3) the determination of the anticipated accuracy of measurements; 
and (4) the assessment of actual accuracy, after measurements have 
been made. 

The present paper deals with aspects of the second and third kinds of 
problem, for the simplest and least realistic mathematical model of tele- 
phone traffic. Specifically, for this model, we treat the problems of (i) 
complete extraction of the information from a given observation period, 

939 
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without regard to costs of observation, and (ii) determination of the 
anticipated accuracy of certain methods of estimation which arise natu- 
rally from the discussion of complete extraction. 

The method by which we attack problems (i) and (ii) in this paper 
has three stages. First we choose a small number of significant properties 
of, or factors in, the physical system we are studying. Then we abstract 
these properties into a mathematical model of the physical system. Fi- 
nally, from the properties of the model, we derive results which may be 
interpreted as answers to the two problems treated. The advantage of 
this method is that we can use the precise, powerful apparatus of mathe- 
matics in studying the model; its limitation is that it yields results which 
are only as accurate as the model in describing reality. 

A method similar to the above forms the theoretical underpinning ol 
telephone traffic engineering itself. To design equipment effectively, the 
traffic engineer needs a description of the traffic that is handled by central 
offices. He decides what properties of the entire system of telephone 
equipment and customers will be most useful to him in describing the 
traffic. He then designates certain parameters to serve as mathematically 
precise idealizations of these properties, and in terms of these parameters 
constructs a model of the traffic, upon which he bases much of his engi- 
neering. 

In choosing a mathematical model for a physical system, one is con- 
fronted with two generally opposed desiderata: fidelity to the system 
described, and mathematical simplicity. The model may involve impor- 
tant departures from physical reality; a model that is sufficiently amena- 
ble to mathematical analysis often results only after one has introduced 
admittedly false assumptions, ignored certain effects and correlations, 
and generally oversimplified the system to be studied. However, the 
abstract model will be an exact and simple tool for analysis. 

We can construct a simple mathematical model for the operation of 
a telephone central office by leaving out of consideration many impor- 
tant facts about such systems, and by concentrating on factors most 
relevant to operation. Since we are interested in telephone traffic and 
in the availability of plant, it seems natural to require that a realistic 
model take account of at least the following five significant factors: (1) 
the demand for telephone service; (2) the rate at which requests for 
service can be processed and connections established; (3) the lengths of 
conversations; (4) the supply of central office equipment; and (5) the 
manner in which the first four factors are interrelated. Unfortunately, 
the mathematical complexity of such a realistic model precludes easy 
investigation. Therefore, the model used in this paper is based only on 
factors (1) and (3). 
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The demand for telephone traffic is usually made precise by describing 
a stochastic process which represents the way in which requests for tele- 
phone service occur in time. A realistic description will take account of 
the facts that, the demand is not constant, but has daily extremes, and 
that in small systems, the demand may be materially lessened when 
many conversations are in progress. Since taking account of the first fact 
leads to a more complicated model in which our investigations are more 
difficult, we ignore it, with the proviso that the results we derive are 
only applicable to systems and observations for which the demand is 
nearly constant. The second kind of variation in demand becomes insig- 
nificant as the number of subscribers increases and the traffic remains 
constant. Hence, we further confine the applicability of our results to 
systems with large numbers of subscribers, and we assume that the de- 
mand does not depend on the number of conversations in existence. 

With these assumptions, a mathematically convenient description of 
the demand is specified by the condition that the time-intervals between 
requests for service have lengths which are mutually independent posi- 
tive random variables, with a negative exponential distribution. 

A telephone central office contains two kinds of equipment: control 
circuits which establish a desired connection, and talking paths over 
which a conversation takes place. The time that a request for service 
occupies a unit of equipment, be the unit a control circuit or a talking 
path, is called the holding-time of the unit. A request for service affects 
the availability of both kinds of equipment but, except for special cases, 
the holding-times of talking paths are usually much longer than the 
holding-times of control units such as markers, connectors, or registers. 
In view of this disparity, we assume that the only holding-times of con- 
sequence are the lengths of conversations; i.e., the holding-times of 
talking paths. We assume also that these lengths are mutually inde- 
pendent positive random variables, with a negative exponential distribu- 
tion. 

For the simplest mathematical model of telephone traffic, we may 
consider the arrangement of switches and transmission lines which con- 
stitutes a talking path in the physical office to be replaced by an abstract 
unit called a "trunk". A trunk is then an abstraction of the equipment 
made unavailable by one conversation, and we may measure the supply 
of talking paths in the office by the number of trunks in a model. The 
word "trunk" is also used to mean a transmission line linking two central 
offices, but as long as we have explained our use of the word there need 
be no confusion. Often the number of transmission lines leading out of 
an office is a major limitation on its capacity to carry conversations, 
and in this case the two uses of the word "trunk" are very similar. Un- 
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fortunately, we do not take advantage of this similarity, since we make 
the mathematically convenient but wholly unrealistic assumption that 
the number of trunks in the model is infinite. 

The model we investigate thus depends on only two of the factors 
previously listed as essential to a realistic model: namely, (1) the demand 
for service, and (3) the lengths of conversations. In view of the simplicity 
and inaccuracy of this model, the question arises whether much is gained 
from a detailed analysis. Such scrutiny may indeed reveal little that is 
of great practical value to traffic engineers. It is important methodologi- 
cally, however, to have a detailed treatment of at least one approximate 
case. We undertake this detailed treatment largely for the insight that 
it mdy give into methods which could be useful in dealing with more 
complex and more accurate models. 

Once a designer has chosen a model and has specified the parameters 
he would like to have measured, it is up to the statistician to invent effi- 
cient means of measurement, by choosing, for each parameter, some 
function of possible observations to serve as an estimate of that parame- 
ter. One measure of efficiency that is of mostly theoretical interest is the 
observation time required to achieve a given degree of anticipated ac- 
curacy; the most realistic measure of efficiency is in terms of dollars and 
man-hours. It may often be more efficient, in the sense of the latter 
measure, to spread observation over enough more time to compensate 
for the inability of an intrinsically cheaper method of measurement to 
extract all of the information present in a fixed time of observation. For 
example, periodic scanning of switches in a telephone exchange is usually 
less costly than continuous observation. As a result, telephone traffic 
measurement is usually carried out by averaging sequences of instan- 
taneous periodic observations of the number of calls present, rather than 
by continuous time averaging, although it can be shown that continuous 
observation is more efficient at extracting information. Thus statistical 
efficiency, which may be expensive in terms of measuring equipment, 
can be exchanged for observation time, which may be less costly. This 
exchange brings about a reduction in cost without impairing accuracy. 

Our concern in this paper is with the less practical problems of com- 
plete extraction, and of the anticipated accuracy of estimation methods 
based on complete extraction. Let us consider how our mathematical 
model can shed light on these problems. A mathematical model may or 
may not be a faithful description of the behavior of real telephone sys- 
tems. Nevertheless random numbers, with or without modern computing 
machines, enable one to make experiments and observations on physical 
situations which approximate, arbitrarily closely, any mathematical 
model. Thus we can speak meaningfully of events in the model, and of 
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making measurements and observations on the model. The mathematical 
model elucidates our problems in the following ways: (1) it enables us 
to state precisely what information is provided by observation; (2) it 
enables us to explain what we mean by complete extraction of informa- 
tion; and (3) it enables us to derive results about the anticipated ac- 
curacy of measurements in the model. These results will have approxi- 
mately true analogues in physical situations to which the model is 
applicable. 

The calls existing during the observation interval (0, T) fall into four 
categories: (i) those which exist at 0, and terminate before T-, (ii) those 
which fall entirely within (0, T); (iii) those which exist at 0 and last 
beyond T; and (iv) those which begin within (0, T) and last beyond T. 
For calls of category (i), we assume that we observe the hang-up time 
of each call; for category (ii), we observe the matching calling-time and 
hang-up time of each conversation; for category (iii), we observe simply 
the number of such calls; and for category (iv), we observe the calling- 
times. Table I summarizes the kinds of calls and the information ob- 
served about each. 

What we mean by the complete extraction of information is made 
precise by the statistical concept of sufficiency. By a statistic we mean 
any function of the observations, and by an estimator we mean 
a statistic which has been chosen to serve as an estimate of a particular 
parameter. Roughly and generally, a set <S of statistics is sufficient for a 
set P of parameters when S contains all the information in the original 
data that was relevant to parameters in P. If S is sufficient for P, there 
is a set E of estimators for parameters in P, such that the estimators in 
E depend only on statistics from 5, and such that an estimator from E 
docs at least as well as any other estimator we might choose for the same 
parameter. Thus we incur no loss in reducing the original data (of speci- 
fied form) to the set S of statistics. It remains to state what it means for 
S to contain all the relevant information. We do this in terms of our 
model. 

The mathematical model we are adopting contains two distribution 

Table I — Information Observed 

Types of Calls Start in (0, T) Start before 0 

End in (0, T) (ii), matching calling-times and 
hang-up times known, num- 
ber of calls known 

(i), hang-up times known, num- 
ber of calls known 

End after T (iv), calling-times known, num- 
ber of calls known 

(iii), number of calls known 
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functions, that of the intervals between demands for service, and that 
of the lengths of conversations. We have supposed that these distribu- 
tions are both of negative exponential type, each depending on a single 
parameter. Thus we know the functional form of each distribution, and 
each such form has one unknown constant in it. Since the mathematical 
structure of the model is fully specified except for the values of the two 
unknown constants, we can assign a likelihood or a probability density 
to any sequence 2 of events in the model during the interval (0, T). 
This likelihood will depend on the parameters, on 2, and on the number 
of calls in existence at the start 0 of the interval. If the likelihood 1/(2) 
can be factored into the form L = FH, where F depends on the param- 
eters and on statistics from the set S only, and H is independent of the 
parameters, then the set S of statistics may be said to summarize all the 
information (in a sequence 2) relevant to the parameters. If L can be 
so factored, then S is sufficient for the estimation of the parameters. 

The mathematical model to be used in this paper is described and 
discussed in Sections II and III, respectively. Section IV contains a 
summary of notations and abbreviations which have been used to sim- 
plify formulas. 

In Appendix A we show that the original data we have allowed our- 
selves can be replaced by four statistics, which are sufficient for estima- 
tion. In Appendix B and Sections Y-VIII we discuss various estimators 
(for parameters of the model) based on these four statistics. To determine 
the anticipated accuracy of these methods of measurement, we consider 
the statistics themselves as random variables whose distributions are 
to be deduced from the structure of the model. 

A primary task is the determination of the joint distribution of the 
sufficient statistics. In view of the sufficiency, this joint distribution tells 
us, in principle, just what it is possible to learn from a sample of length 
T in this simple model. By analyzing this distribution we can derive 
results about the anticipated accuracy of measurements in the model. 

The joint distribution of the sufficient statistics is obtainable in prin- 
ciple from a generating function computed in Appendix C, using methods 
exemplified in Section X. This generating function is the basic result of 
this paper. The implications of this result are summarized in Section 
IX, which quotes the generating function itself, and presents some 
statistical properties of the sufficient statistics in the form of four tables: 
(i) a table of generating functions obtainable from the basic one; (ii) a 
table of mean values; (hi) a table of variances and covariances; and 
(iv), a table of squared correlation coefficients. (The coefficients are 
all non-negative.) 
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II DESCRIPTION OF THE MATHEMATICAL MODEL 

Throughout the rest of the paper we follow a simplified form of the 
notational conventions of J. Riordan's paper11 wherever possible. A sum- 
mary of notations is given in Section IV. The model we study has the 
following properties: 

(i) Demands for service arise individually and collectively at random 
at the rate of a calls per second. Thus the chance of one or more demands 
in a small time-interval A/ is 

aAt + o{At), 

where o{At) denotes a quantity of order smaller than At. The chance of 
more than one demand in At is of order smaller than At. It can be shown 
(Feller,2 p. 364 et seq.) that this description of the demand is equivalent 
to saying that the intervals between successive demands for service are 
all independent, with the negative exponential distribution 

i —a t 1—6 . 

This again is equivalent to saying that the call arrivals form a Poisson 
process;2 i.e., that for any time interval, t, the probability that exactly n 
demands are registered in I is 

c-a\at)n 

n\ 

Thus the number of demands in I has a Poisson distribution with mean 
at. 

(ii) The holding-times of distinct conversations are independent vari- 
ates having the negative exponential distribution 

I - c-7', 

where y is the reciprocal of the mean holding-time h. This description of 
the holding-time distribution is the same as saying that the probability 
that a conversation, which is in progress, ends during a small time- 
interval is 

7 A/ -f o(A/.), 

without regard to the length of time that the conversation has lasted 
Feller, p. 375). 

(iii) The model contains an infinite number of trunks. Thus, at no time 
will there be insufficient central office equipment to handle a demand 
for service, and no provision need be made for dealing with demands that 
cannot be satisfied. 
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The original work on this particular model for telephone traffic is in 
Palm,9 and Palm's results have been reported by Feller3 and Jensen.4 

The results have been extended heuristically to arbitrary absolutely con- 
tinuous holding-time distributions by Riordan,11 following some ideas of 
Newland8 suggested by S. O. Rice. 

Let Pijit) be the probability that there arc j trunks busy at t if there 
were i busy at 0. And let Pi(t, x) be the generating function of these 
probabilities, defined by 

Pi(t, x) = X X3Pij{t). 
7—0 

Then Palm9 has shown (pp. 56 et seq.) that 

Pi{t, x) = [1 + (.r - 1) e~7'r exp {(a: - l)ah (1 - e~yt)}. 

This is formula (12) of Riordan11 with his y replaced by e-7'. It can be 
verified that the random variable N(t) is Markovian; the limit of P,(/, x) 
as t —* sc is 

exp ((a- - 1) ah], 

so that the equilibrium distribution of the number of trunks in use is a 
Poisson distribution with mean b = ah. The shifted random variable 
[N{t) — 5] then has mean zero, and covariance function be"*1. 

For additional work on this model the reader is referred to F. W. 
Rabe,10 and to H. Stormer.12 

Ill DISCUSSION OF THE MODEL 

Let us envisage the operation of the model we have described by con- 
sidering the random variable Nit) equal to the number of trunks busy 
at time t. As a random function of time, Nit) jumps up one unit step each 
time a demand for service occurs, and it jumps down one unit step each 
time a conversation ends. If Nit) reaches zero, it stays there until there 
is another demand for service. If Nit) = n, the probability that a con- 
versation ends in the next small time-interval At is 

nyAt 4- oiAt), 

because the n conversations arc mutually independent. A graph of a 
sample of Nit) is shown in Fig. 1. 

The model we described departs from reality in several important 
ways, which it is well to discuss. First, the assumption that the number 
of trunks is infinite is not realistic, and is justified only by the mathe- 
matical complication which results when we assume the number of trunks 
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216 

N{t) 

200 

Fig. 1 — A graph of N{t). 

to be finite. It can also be argued that unlimited office capacity is ap- 
proached by offices with adequate facilities and low calling rates, and 
therefore, in some practical cases at least, the model is not flagrantly 
inaccurate. 

Second, the choice of a constant calling rate for the model ignores the 
fact that in most offices the calling rate is periodic. Thus, the applica- 
bility of our results to offices whose calling rates undergo drastic changes 
in time is restricted to intervals during which the normally variable 
calling rate is nearly constant. Finally, although the assumption of a 
negative exponential distribution of holding-time affords the model great 
mathematical convenience, it is doubtful whether in a realistic model 
the most likely holding-time would have length zero, as it does in the 
present one. 

IV SUMMARY OF NOTATIONS 

a = Poisson calling rate 

k = mean holding-time 

7 = hrl = hang-up rate per talking subscriber 

b = ah = average number of busy trunks 

N{1) = number of trunks in use at t 

{0, T) = interval of observation 

n = N{0) = number of trunks in use at the start of observation 

A = number of calls arriving in (0, T) 

H = number of hang-ups in (0, T) 

K — A A- H 
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Z = f N(t) dt 
Jo 

M = ZIT = average of Ar(0 over (0, T) 

!;>„} = the (discrete) probability distribution of n, the number of 
trunks found busy at the start of observation 

An estimator for a parameter is denoted by adding a cap (A) and a 
subscript. The subscripts differentiate among various estimators for the 
same parameter. We use dr = A/T, yc = i//Z, di = K/2T, 
^ = K/2Z, and 72 = A/Z. 

Also, it is convenient to use the following abbreviations: r for yT, and 
C for (1 — e~r) /r, where r is the dimensionless ratio of observation-time 
to mean holding-time. The symbol E is used throughout to mean mathe- 
matical expectation. 

V THE AVERAGE TRAFFIC 

We have adopted a model which depends on two parameters, the 
calling rate a, and the mean holding-time h, or its reciprocal 7. Before 
searching for a set of statistics that is sufficient for the estimation of 
these parameters, let us consider the product ah = b. This product is 
important because, as we saw in Section II, the equilibrium distribution 
of the number of trunks in use depends only on b, and not on a and h 
individually. Indeed, the equilibrium probability that n trunks are busy 
is 

(TV 
nl ' 

and the average number of busy trunks in equilibrium is just 6. 
The average number of trunks busy during a time interval T is 

M =^1* Nil) dt; 

i.e., the integral of the random function N{t) over the interval T, divided 
by T. This suggests that for large time intervals T, M will come close 
to the value of b, and can be used as an estimator of b. Since 71/ is a ran- 
dom variable, the question arises, what are the statistical properties of 
71/? This question has been considered in the literature, the principal 
references being to F. W. Rabe10 and to J. Riordan.11 Riordan's paper is 
a determination of the first four semi-invariants of the distribution of 71/ 
during a period of statistical equilibrium, but without restriction on the 
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assumed frequency distribution of holding-time. It follows from Rior- 
dan's results that M converges to 6 in the mean, which is to say that 

lim E {\M - b |2( = 0. 
T-.oo 

It also follows that M is an unbiased estimator of 6; i.e., that E{M\ = b, 
and that M is a consistent estimator of b, which means that 

lim pr{ \ M — b \ > s] =0 
T-»oo 

for each c > 0. 

VI MAXIMUM CONDITIONAL LIKELIHOOD ESTIMATORS 

As shown in Appendix A, the likelihood Lc of an observed sequence, 
conditional on Ar(0), is defined by 

In L,. = A In a + // In y — yZ — aT. 

According to the method of maximum likelihood, we should select, as 
estimators of a and y respectively, quantities dc and 7,. which maximize 
the likelihood Lc. Now a maximum of Lc is also one of In Lr, and vice 
versa. Therefore a, and yc are determined as roots of the following two 
equations, called the likelihood equations: 

i-lnL. = 0; In L, = 0. 
da ay 

The solutions to the likelihood equations are 

A a H 
ac T, 7c z- 

These are the maximum conditional likelihood estimators of a and 7. 
The estimator dc is the number of requests for service in T divided by T; 
this is intuitively satisfactory, since dr estimates a calling rate. 

Since maximum likelihood estimators of functions of parameters are 
generally the same functions of maximum likelihood estimators of the 
parameters, we see that AZ/HT is a maximum likelihood estimator of b. 

VII PRACTICAL ESTIMATORS SUGGESTED BY MAXIMIZING THE LIKELIHOOD 
L, DEFINED IN APPENDIX A 

We obtain as likelihood equations 

— In L = 0, ~ In L = 0. 
da dy 
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Fhese may be written as 

n + A 
a ~ h + T' 

H + ? 
y=  ^ 

Z + - 
7 

The first of these shows the estimated calling rate as a pooled combination 
of the conditional estimate A/T, considered in the last section, and an 
estimate n/h based on the initial state. This latter estimate has the form 

calls in progress 
mean holding time' 

and so is intuitively reasonable, since b/h = a. The second equation 
exhibits our estimate of 7 as a pooled combination ot the conditional 
estimate H/Z and the ratio a/n. This ratio is acceptable as an estimate 
of 7, since a/b = 7 and b = E{n] is the average value of n. 

If we substitute, in the right-hand sides of these equations, the condi- 
tional estimators A/T, H/Z, and Z/H for a, 7, and h, respectively, we 
obtain simple, intuitive estimators which include the influence of the 
initial state n, and show how it decreases with increasing T. Thus 

11 A- A 
estimates a, 

estimates 7. 

VIII OTHER ESTIMATORS 

Additional estimators may be arrived at by intuitive considerations, 
or by modifying certain maximum likelihood estimators. Some estimators 
so obtained are important because they use more of the information 
available in an observation than do the conditional estimators ac and 
7C, without being so complicated functionally that we cannot easily 
study their statistical properties. 
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It seems reasonable, and can be shown rigorously (Appendix C), that 
for an interval (0, T) of statistical equilibrium, the distribution of A 
and that of H are the same. Thus we can argue that, for long time inter- 
vals, A and H will not be very different. This suggests using 

A H K 
1 2T 2T 

as an estimator of a. This estimator does not involve y, and it uses not 
only information given by A, but also information supplied by arrivals 
occurring possibly before the start of observation. 

Similarly, since b = a/y, and M is a consistent and unbiased estimator 
of b, we may use 

K 1 
71 2Z h, 

to estimate y, and its reciprocal to estimate h. Finally, since for long (0,7') 
we have A ~ H, we may try 

A 1 
72 ^ L 

as an estimator of y, and its reciprocal as an estimator of h. 

IX THE JOINT DISTRIBUTION OF THE SUFFICIENT STATISTICS 

The basic result of this paper is a formula for the generating function 

E {znxN(' T)wAuHe~tz) (9.1) 

for the joint distribution of the random variables n, N{T), A, H, and Z. 
This formula is derived in Appendix C, by methods illustrated in Section 
X. For an initial n distribution {p,,}, the generating function is 

x- n f (f* + T-C - yu)e~^+y) T + yu 
1. PnZ 'I f + 7 ^ (9.2) 

(aw(£x + yx — yu)[l — e_(f+7)r] aywuT ,rl 

•exp 1  + TT^-aTl 

It is proved in Appendix A that the set of statistics {«, A, H, Z] is 
sufficient for estimation on the basis of the information assumed, which 
was described in Section I. Thus the generating function (9.2) specifies, 
at least in principle, what can be discovered about the process from an 
observation interval (0, T), for which iV(0) has the distribution {pn}. 
All the results summarized in this section are consequences of (9.2). 
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Table II 

In £( A') 

1. e-fz 

2. e-f^ 

3. \lK 

4. e_f"i 

5. )/*e-r-v 

h + 

fef-f+ 

f-T f2(l - e-(r+->')r)' 
f + 7 (f + T)2 

f2 f2(l - e Cf+r))-| 
f + r (f + r)2 J 

2aTC(y - 1) + aTd - C) (y2 - 1) 

2aTC{e~in T - 1) + aTCl - C) (e-t'r - 1) 

By substitution, and by either letting the appropriate power series 
variables —> 1, or letting f —> 0, or both, we can obtain from (9.2) the 
generating function of any combination of linear functions of the basic 
random variables n, N{T), A, H, and Z. Some of the generating func- 
tions thereby obtained are listed in Table II, in which the entries all 
refer to an interval (0, T) of equilibrium. 

Since, for equilibrium (0, T), the generating functions are all exponen- 
tials, it has been convenient to make Table II a table of logarithms of 
expectations, with random variables X on the left, and functions In 
E{X} on the right. C as a function of r is plotted in Fig. 2. 

Entry 1 of Table II is actually the cumulant generating function of 
Z for equilibrium (0, T); similarly, Entry 2 is that of M, and depends 
only on the average traffic b and the ratio r. The form of the general 
cumulant of M is 

K = i n(n~ ^ f (T - x)x-'e-" dx. in Jo 

This result coincides with a special case (exponential holding-time) ot 
a conjecture of Riordan.11 This conjecture was first established (for a 
general holding-time distribution) in unpublished work of S. P. Lloyd. 
The cumulant generating function permits investigation of asymptotic 
properties. We prove in Section X that the standardized variable 

y = {yT/2b)m {M - b) 

= (r/2b)in (M - b) 

is asymptotically normally distributed with mean 0 and variance 1. 
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to 

0.6 

'c 
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0.2 

c = 

6 8 
r 

12 

Fig. 2 — C as a function of r. 

From Entry 3 of Table II it can be seen that K is distributed as 
2m + v, where u and v follow independent Poisson distributions with the 
respective parameters aT(l — C) and 2aTC. The probability that K = 
n for an interval of equilibrium is 

rn = exp [aT{C - 1)} S 
(2aTC)n~2j (aT - aTCY 
{n - 2j)! j\ 

where the sum is over /s for which 0 ^ 2j ^ n. 
The estimator for a is equal to K/2T, and has mean and variance 

given by 

E{di] = a, 

var {d,} = ^ (2 - C). 

The distribution of di is given by 

prfdi ^ x] = S r„ , 

the summation being over n ^ 2Tx. 
From (9.2) one can obtain, by substitution of the stationary 71 distribu- 

tion for jp,.}, and subsequent differentiation, the means, variances, 
covariances, and correlation coefficients of the sufficient statistics, for 
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Table III — E{X, F) 

I n A U K 7. 

1 1 b aT aT 2aT 67' 
n 6(1 + 6) baT aT{C + 6) aT(C + 26) bT(C + 6) 
A aT(l + aT) aT(l - C + aT) ar(2 - C + aT) 67(1 - C + o7) 
H aT(l + aT) aT(2 - C + aT) 67(1 - C + a7) 
K 2aT(2 - C + 2aT) 267(1 - C + <J7) 
Z 67A(2 - 2C + aT) 

Table IV — cov{Z,F} 

n A H K Z 

b 0 aTC aTC bTC 
A aT aT{\ - C) aT{2 - C) bT{l - C) 
H aT aT(2 - C) bT{\ - C) 
K 2aT{2 - C) 2bT{\ - C) 
Z 2bTh(,\ - C) 

equilibrium intervals (0, T). It has been convenient to display these in 
three triangular arrays, the first consisting of expectations of products, 
the second comprising the variances and covariances, and the third 
exhibiting, for simplicity, the squared correlation coefficients, since the 
correlation coefficients are never negative for these random variables. 

In Table III, the entry with coordinates (X, F) isE{XY] for equilib- 
rium (0, T). All three tables are expressed in terms of a, b, T, h, r, and 
C, the last of which is plotted in Fig. 2. 

The variances and covariances of the sufficient statistics are listed in 
Table IV; the entries are of the form: 

cov {X, F} - E{XY} - E{X]E{ Y\. 

Table V, finally, lists the squared correlation coefficients; i.e., the 
quantities 

2 _ cov2 {X, F} 
p 1 ' ' var {X} var {F}' 

For any time interval (0, T), A has a Poisson distribution with param- 
eter aT, so that Tdc does also. Therefore the distribution of dc is given 
by 

f - i e aT(a'E)' pr {fl.c ^ x] = 2-j  . 

where the summation is over n ^ xT. Evidently 
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E{AC} = a, 

and 

i -> i a 
var {ac} = 

so that dc is an unbiased and consistent estimator of a. We now compare 
the variances of estimators dr and di. From Table IV we have 

var {di} = ^ (l - ^) < ^ = var 

so that di is a better estimator of a for any T > 0, in the sense that its 
variance is less. 

X THE DISTRIBUTIONS of Z AND 71/ 

Since we have defined 

Z = [ N{t) dt, 
Jo 

we can regard Z as the result of growth whose rate is given by the ran- 
dom step-function N{t) \ when N{t) = n, Z is growing at rate n. An idea 
similar to this is used by Kosten, Manning, and Garwood6, and by Kos- 
tcn alone.5 Now the Z{T) process by itself is not Markovian, but it can 
be seen that the two-dimensional variable {A(/), Z{t)\ itself is Marko- 
vian. Let Fn{z, t) be the probability that N{t) = n and Z{t) ^ z. Since 
the two-dimensional process is Markovian, we can derive infinitesimal 
relations for Fn{z, t) by considering the possible changes in the system 
during a small interval of time A^. 

Table V — p\X ,Y) 

n A H K Z 

n 1 0 1 - e~r rC2 rC* 
2 - C 2(1 - C) 

A 1 1 - C 2 - C 
2 

1 - C 
2 

H 1 2 - C 
2 

1 - C 
2 

K 1 1 - C 
2 - C 

Z 1 
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If N{1) = n, then the probability is [1 — ynAt — aAt — o(A0] that 
there is neither a request for service nor a hang-up during At following 
t, and that Z{t + At) = Z(t) -f nAt. Therefore the conditional proba- 
bility that N{t + At) = n and Z{t At) g z, given that no changes 
occurred in At, is 

For N{t) = (n + 1), the probability is 7(n + l)At + o(A/) that one 
conversation will end during At following t. The increment to Z{t) 
during At will depend on the length x of the interval from t to the point 
within At at which the conversation ended. The increment has magni- 
tude (n + 1).t + n(At - x) = x + nAt, as can be verified from Fig. 3, 
in which the shaded area is the increment. Since x is distributed uniformly 
between 0 and At, the increment x + nAt is distributed uniformly be- 
tween nAt and (71 + 1)A^. Therefore the conditional probability that 
N{t + At) = n and Z{1 + At) ^ z, given that one conversation ended 
in At, is 

By a similar argument it can be shown that the probability that one 
request for service arrives in A^ is a At + o(At), and that the conditional 
probability that N{t At) = n and Z{t + At) ^ z, given that one 
request arrived during At, is 

Define F„(z, t) to be identically 0 for negative n. Adding up the probabil- 

Fn0 - nAt, t). 

Fn+1iz - u, t) du. 

x 

t t+At 

Fig. 3 — Increment to Z in At. 
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ities of mutually exclusive events, we obtain the following infinitesimal 
relations for Fn{z, t): 

*(n+l) A < 
Fn{z, t + M) = y(n + 1) / F„+i(z - n, t) du 

J nM 
/•nA I 

+ a / F„-\{z — u, i) du + Fn{z — uAt, t) 
J (n—1) A I 

•fl — Atiyn + a)] + oiAt), for any n. 

Expanding the penultimate term of the right side in powers of nAt, 
and the left side in powers of At, we divide by At, and take the limit as 
At approaches 0. Now 

J /•(n+l) A / 
lim — / Fn+i{z - u, t) du = Fn+l(z, l). 
Af-O At J ii A ( 

Thus, omitting functional dependence on z and t for convenience, we 
reach the following partial differential equations for Fn(z, I): 

- En = y{n + l)Fn+i + aFn_i - n - Fn (l0 ^ 

— [yn + a]Fn , for any n. 

Since Z(0) = 0, we impose the following boundary conditions: 

^,,(0, t) = 0 for n > 0 and t > 0, 

F„(z, 0) = pn for 2^0, (10.2) 

Fn{z, 0) = 0 for 2 < 0, 

where the sequence 1 p„ j forms an arbitrary iY(0) distribution that is 
zero for negative n. 

To transform the equations, we introduce the Laplace-Stieltjes in- 
tegrals 

^(f, t) = I dFn(z, t), I ^ 0, Re (f) > 0, Jo- 

in which the Stieltjes integration is understood always to be on the 
variable z. We note that 

I" e-f-F„(z, t)dz=\ Vn({, I), 
Jo- i 

and that 

t) = F„(0, t) + f e~'' | F„ b,t) dz. 
Jo oz 
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Applying now the Laplace-Stieltjes transformation to (10.1), we obtain 

= y(,n + lVn+i + a<pn-i — nfan + n£Fn{0, t) (10 3) 

- [yn + o\<pn , 

in which we have left out functional dependence on f and t where it is 
unnecessary. By the boundary conditions (10.2), nfF„(0, 0 = 0 lor 
n ^ 0 and I > 0; in (10.3) we may therefore omit this term in the region 
/ > 0. Let <p be defined by 

<p{x, r, o = S •r'V" (r. '■)• ;i=0 

The series is absolutely convergent for | x ( < 1, since 

| ¥5n(f, t) | ^ 1, for all n. 

The following partial differential equation for ip is obtained from 
(10.3): 

^ + to + y{x - 1)1 jr = - l)f- d0-4) at OX 

If we integrate out the information about Z by letting ^ approach 0 in this 
equation, we obtain the equation derived by Palm (loc. cit.) for the gene- 
rating function of N{t). Therefore our equation has a solution of the 
same form as Palm's. For the boundary conditions (10.2), this solution is 

[a[I - <r(r+7)'] ri. . , att 
40 = exp { (f + 7)! lf-r + - 1)1 - r+y, (10 

^ rto + y(x - l)]fi-<f+1'}' + 71" 
S p" L FFv J ' 

Actually <p contains more information than we want since it yields the 
joint distribution of N and Z. We may integrate out the former variable 
by letting x approach 1 in 10.5. Then, 

(-m- »»' - n?;} 

is the Laplace transform of the distribution of Z for an arbitrary N{0) 
distribution Jp,,). This result is not restricted to an interval (0, T) 
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of statistical equilibrium; however, if the sequence {p„} does form the 
stationary distribution discussed in Section II, then 

2 x"vn = exp {b{x - l)j, (10.6) 

and 

jbfte-'1-*"' - 1) a£T \ ,in„ 

^ = exp 1 (r + 7)' - (10'') 

is the Laplace transform of the distribution of Z for an interval (0, T) 
of statistical equilibrium. 

The Laplace transform is a moment generating function expressible as 

where win is the n"1 ordinary moment of Z. Differentiation of 10.7 then 
gives a recurrence relation for the moments upon equating powers of 
(-f). Thus, 

(f + T) 
(-f) 

= ^•(2af(l - <r(t+T>r) + (f + y)baT + 

and 

73m„+i - 3y2nmn + Syn(n - l)m„_i - n(n - l)(n - 2)m„_2 

= ay'Tvin — (2a + ayT)nmn-\ + lane yT(rn + T)" 1 + n (10.8) 

•(n-DaTe-^m + T)"2 - n(n - l){n - 2)bTe-''\m + T)"'3, 

where {m + T)n is the usual symbolic abbreviation of 

E(;)r.-„ 

From the recurrence (10.8) it is easily verified that 

nil = bT, 

9hT 
nii = {bT) + — [1 - C], 

7 

from which it follows that the variance of Z is 

9hT 
var [Z} = t£i [1 - C]. 

7 
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Since \f/ is the Laplace-Stieltjes transform of the distribution of Z 
over an interval of equilibrium, In ip is the cumulant generating function, 
and has the following simple form: 

In ^ = 6 
2f-({+y)T Vie - 1) 

(r + t)2 

-4- 
[T + 

r2r 
r + T 

ytT ] 

r + TJ 

f'd - e-«+*T) 
(r + t)2 i 

(10.9) 

M is a linear function of Z, so we may obtain the cumulant generating 
function of M in accordance with Cramer1 (p. 187). This function is 

M "f + r + r 
rd - trvo 

(r + n2 (10.10) 

and depends only on b and r. 
The mean and variance of M for an interval of equilibrium are respec- 

tively given by 

E{M} = b, 

var {M\ = — [1 - C], with C = 
1 — e~ 

results which were first proved in Riordan.11 A normal distribution having 
the mean and variance of M has the cumulant generating function 

[- 
,+

r'+e*-T-" 
r r- ]■ 

(10.11) 

which is to be compared to (10.10). Since var [M] goes to 0 as T ap- 
proaches oo, we may expect that a suitably normalized version of Z will 
be asymptotically normally distributed as T approaches oc. The cumu- 
lant generating function of the normalized variable (2bhT)~il2{Z — bT) 
is 

/_2_V/2 

\aT) + 2 

exp 
1 + 

- - 1 

(r- 

which approaches f2/2 as 2' —^ . It follows that the normalized variable 
is asymptotically normal with mean 0 and variance 1, and that 
(r/2b)\M — b) is also asymptotically normal (0,1). 
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Appendix A 

PROOF THAT [n, A, H, Z] IS SUFFICIENT. 

We observe the system during the interval (0, T), and gather the in- 
formation specified in Section I, and summarized in Table I. From this 
information we can extract four sets of numbers, described as follows: 

Sa the set of complete observed inter-arrival times, not counting 
the interval from the last arrival until T 

Sh the set of complete observed holding times 
*Si the set of hang-up times for calls of category (i) 
^4 the set of calling-times for calls of category (iv) 

In addition, our data enable us to determine the following numbers; 
n the number N (0) of calls found at the start of observation 
k the number of calls of category (iii); i.e., of calls which last through- 

out the interval (0, T) 
x the length of the time-interval between the last observed arrival 

and T 
In view of the negative exponential distributions which have been 

assumed for the inter-arrival times and the holding-times, and in view 
of the assumptions of independence, we can write the likelihood of an 
observed sequence of events as 

L = e-kyT-ax
Vn-Y[ ae-au Ylye-yz li 

ueSa ztSh uifSi i/«S4 

so that 

In L = —ykT — ax -f In pn + A \n a — ^ au 
ufSa 

+ # In 7 — 23 7Z — 23 — S yiT — y) 
ztSh u)«Si W'S-j 

It is easily seen that the summations and the two initial terms can be 
combined into a single term, so that we obtain 

In L = In pn + A In a + 7/ In 7 — yZ — aT. 

This shows that L depends only on the statistics 7i, A, H, and Z; it 
follows that the information we have assumed can be replaced by the 
set of statistics [n, A, H, Z], and that these are sufficient for estimation 
based on that information. 

The likelihood is sometimes defined without reference to the initial 
state, by leaving the factor p,, out of the expression for L. Strictly speak- 
ing, this omission defines the conditional likelihood for the observed 
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sequence, conditional on starting at n. We use the notation: 

A definition of likelihood as Lc has been used by Moran.7 Clearly 

In Lc = A hi a + 77 In 7 — 7Z — a?1. 

Appendix B 

UNCONDITIONAL MAXIMUM LIKELIHOOD ESTIMATES 

The definition of likelihood as L leads to complicated results which 
are of theoretical rather than practical interest. For this reason these 
results have been relegated to an appendix. 

The results of setting d/dy In L and 6/da In L equal to zero lead, re- 
spectively, to the likelihood equations 

a — y{n — H) — yZ = 0, 

7W — a + yA — ayT = 0. 

Considered as a system of equations for y and a, this pair has the non- 
negative roots 

A H-n-M+{(H-n - M)2 + 4MK}1/2 

7 ~ 2Z 

d = Y - 7A/. 

These are the unconditional maximum likelihood estimators tor y and a. 
Although dc depended only on A and T, and 7c only on H and Z, the 
unconditional estimators depend on all of n, A, H, Z, and T. We may 
obtain a maximum unconditional likelihood estimator for b as well, 
either by considering L to be a function of b and 7, or from general 
properties of maximum likelihood estimators. Since b = a/y, we expect 

that b = d/y, as can be verified by an argument similar to that used 
above for d and . 

The estimators d, b, and 7 obtained in this Appendix may turn out to 
be useful in practice, but their complicated dependence on the sufficient 
statistics n, A, H, and Z makes a study of their statistical properties 
difficult. As a first step along such a study, we have derived the gen- 
erating function of the joint distribution of the sufficient statistics in 
Appendix C. The greater simplicity of the conditional estimators of 
Section VI makes it possible to study their statistical properties. This 
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fact gives them a practical ascendancy over the unconditional estimators, 
even though the latter may be more efficient statistically by dint of 
using all the information available in an observation. 

Appendix C 

THE JOINT DISTRIBUTION OF N(t), 71, A, H, AND Z 

By methods already used in Section X one can obtain a gen- 
erating function for the joint distribution of all the random variables n, 
N{t), A, H, and Z. Let 

$ = E{xN{l)wAuBe-*z}. 

Then $ satisfies the differential equation 

$$ (5(|j 
^7 + + yx - yu\ — = a{wx - 1)$, dl dx 

whose solution has the form 

$ = + yx — 7M]e~(r+7>'} 

/aw[£x -f yx — 7u][l — e~^+y) 'J . aywul \ 

•expV (T+^F + rry-at)} 

where the function R is determined by the initial distribution {pn} 
through the relation 

Rfl) = E Pn PA-T- "go Lf + 7 J 

From these results it follows that the generating function 
Zj i 71 N(,T) A B —tZ\ 'j\z x w u e } 

is given by 

V" ^ „n /(fa + yx - 7")e_(r+T,r + yu\ 
2-1 P"Z I 5-1 / "go \ f + 7 / 

faw(l;x + yx — 7m)[1 — e_<f+7)T] , aywuT 

■exp V (f + y)2 + TTy 

If {pn j forms the stationary distribution, this reduces to 

exp 

- aT^j. 

reduces to 

+ 7.r - yu)e~(*+y)T + yuz _ ^ 

aw{£x + 7.r - 7u)[l - e~^+y,T] , aywuT 
+  + Y+y-al J- 
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If, in this last expression, we let x approach 1, 2 approach 1, and u ap- 
proach 1, we obtain 

as the generating function E{wAe fz) for an interval of equilibrium. 
Alternately, if instead we let x approach 1, 2 approach 1, and w ap- 
proach 1, we obtain (C) with u substituted for w; this implies the not- 
surprising result that for an interval of equilibrium, the two-dimen- 
sional variables (.4, Z\ and {H, Z] have the same distribution. From 
this and (C) it follows that for equilibrium (0, T), (i) A and H both 
have a Poisson distribution with mean aT, and (ii) the estimators he and 
hi have the same distribution. 
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Fluctuations of Telephone Traffic 

By Y. E. BENES 

(Manuscript received November 9, 1956) 

The number of calls in progress in a simple telephone exchange model 
characterized by unlimited call capacity, a general probability density of 
holding-time, and randomly arriving calls is defined as N{t). A formula, 
due to Riordan, for the generating function of the transition probabilities 
of N{t) is proved. From this generating function, expressions for the co- 
variance f unction of N{t) and for the spectral density of N{t) arc determined. 
It is noted that the distributions of N{t) are completely specified by the co- 
variance function. 

I INTRODUCTION 

The aim of this paper is to study the average fluctuations of telephone 
traffic in an exchange, by means of a simple mathematical model to 
which we apply concepts used in the theory of stochastic processes and 
in the analysis of noise. 

The mathematical model we use is based on the following assumptions: 
(1) requests for telephone service arise individually and collectively at 
random at an average rate of a per second; (2) the holding-times of 
calls are mutually independent random variables having the common 
probability density function h{u); and (3) the capacity of the exchange 
is effectively unlimited, and no call is blocked or delayed by lack of 
equipment. This telephone exchange model has been described by J. 
Riordan.5 

As a measure of traffic, it is natural to use the number of calls in prog- 
ress in the exchange. We are thus led to consider a random step-function 
of time N{t), defined as the number of calls in progress at time t. N{t) 
fluctuates about an average in a manner depending on the calling-rate, 
a, and the holding-time density, h{u). 

II PROOF OF RIORDAN's FORMULA FOR TRANSITION PROBABILITIES 

Let Pm%n{t) be the probability that n calls are in progress at t if m 
calls were in progress atO. Define the generating function of these prob- 

965 
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abilities as 

Pm{t,x) = S Pm,n{t)xn, 
n SO 

and let 

}{u) = f h(x) dx, 
J u 

so that the average holding-time, h, is given by 

h = [ f(.u) du. 
Jo 

Riordan5 has given the following formula for Pm{i, x): 

Pmit, x) = [1 + {x - l^Wl'" exp |(.r - l)ah[l - (1) 

with 

g(t) =11 M du. 

For exponential holding-time density, this formula had already been 
derived (as the solution of a differential equation) by Palm.2 

In private communication, J. Riordan has suggested that his proof of 
(1) is incomplete. We therefore give a new proof of (1). 

We seek the generating function of N(t), conditional on the event 
iV(0) = rn. We obtain it by first computing the joint generating function 
of N(0) and N(i); that is, 

BU/V"]. (2) 

The desired conditional generating function is then the coefficient of 
//" in (2), divided by the probability that iV(0) = m. 

To obtain a formula for (2), we exhaust the interval (—*>, 0) by 
division into a countable set of disjoint intervals, /„ , the nth having 
length T„ > 0. Let Sn be the sum of the first n lengths, Tj. Let £n(0, 
for I > — Sn-i , be the number of those calls which arrive in /„ and are 
still in progress at t. And let ri{t) be the number of calls arriving during 
(0, t), t > 0, and still in existence at t. Then 

AKO) = E {.(0), (3) 

N{t) = 7/(0 + E £„(0, t > 0. (4) 
nSl 

Since calls arriving during disjoint intervals are independent, we know 
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that T]{t) is independent of all the ^'s, and that £„(£) is independent of 
^•(t) if n 9* j. Of course, £„(<) and ^„(r) are not independent. It follows 
that if the infinite product converges, then for t > 0 

n^{?ytn(Vn(<)}. (5) n=l 

We now compute the terms of the product. If a call originates in in- 
terval /„ , it still exists at 0 with probability 

Qu [ /(« + Sn-i) du = ~ [ f(u) du. 
1 n JO ln Jsn-i 

Hence if Ic calls arrived in /„ , the probability that m of them are still 
in progress at 0 is 

pr{£„(0) = m \ k calls arrive in /„} 

= <3"(1 - mSk. 

Similarly, if a call originates in /„ and exists at 0, it also exists at ^ > 0 
with probability 

Kn = (QnTn) 
1 f f(u + f + Sn—i) du. 

Jo 

Therefore 

1 ^n(0) = tn and k calls arrive in /„{ 

= [! + (*- l)Kn]m, 

and so 

E{y*n{0)x(n(l) | k calls arrive in /„} 

= 11 + <!/[l + (x - 1)X.] - 1>Q„)' 
k = a . 

The number of calls arriving during /„ has a Poisson distribution with 
mean oTn ; hence 

E{y*nmx*nlt)} = exp {aTn{a - 1)} 
(6) 

= exp [aTnQnW + (x - 1)^.] - I)}- 

By reasoning like that leading to (6), it can be shown that 
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(7) 

E aT„Q„K„ = o E ["/(« + « + S-i) du, n S 1 >. S 1 JO 

= a / f{u) du = ahg{t). 
t 

Therefore the infinite product is convergent, and 

E{yNmxN{"] = exp {ah(x - 1)[1 - g{t)] 

+ J2aTnQn{y[\ + {x - \)Kn] - 1)1 (8) 

= exp {ah{{x — 1)[1 — git)] + iy — 1) + yix ~ 1)^(0)1 • 

Thus the generating function of the joint distribution of iV(0) and Nit) 
is independent of the division of (— oo, 0) into intervals /„ . By letting 
x approach 1 in (8) and finding the coefficient of y" in the resulting limit, 
we find that 

and so using (9) we find that the required conditional generating function 
of Nit), given NiQ)) = m, is given by Riordan's formula (1). 

Ill THE AUTOCORRELATION 

In terms of Nit) one can define various stochastic integrals which 
will be characteristic of the process. A simple one which has been ex- 
tensively treated in connection with estimating the average traffic is 

—ah/ j \m 
( \t/r\\ 1 6 tafl) pr{A(0) = m] = ———. (9) 

The coefficient of y'" in (8) itself is 

[1 + (x - DffWr exp (Or - DaWl - 
m! 
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the average of N(t) over an interval (0, T). The chief references in the 
literature on M are References 3 and 5. If we consider N{1) during an 
interval (0, 7' + t), a measure of the coherence of N{t) during this in- 
terval, i.e., of the extent to which N{t) hangs together, is given by the 
integral 

U(T, r) = i T N(t) Nit + r) dt, 
1 Jo 

depending on values of N(t) taken r apart. When the limit ^(t) of u as 
T approaches =c exists, it is usually called the autocorrelation function; 
most statisticians, however, reserve the term "correlation" for suitably 
normalized, dimensionless quantities. It can be shown that this limit 
exists and is the same for almost all N{t) in the ensemble. It then coin- 
cides with the ensemble average, i.e., 

^(r) = lim U(T, r), almost all Nit), 
T-ao 

= E{Nit)Nit+ r)}. 

The function, \J/, for the system we are discussing is derived by Riordan,5 

and we reproduce his argument for ease of understanding. For equilib- 
rium, and b = ah, we have 

ElNiDNil + r) I = I: C-^- m A Pmir, x)] . 
ni=o ml dx Ji=i 

Now 

~ Pm(r, t)1 = mgir) -f b[l - gir)], 
dx Jz=i 

so that 

xj/ir) = 2 e-^f mlmgir) + Ml - g(r)]}, ^ 

= b2 + bgir). 

(Cf,5 p. 1136) 

The limiting value of ^(r) for r approaching x is the square of the 
mean occupancy, b, and the limiting value of ^(t) for r approaching 0 
is the mean square occupancy, b' + b, the second moment of the Pois- 
son distribution with mean b. 
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IV THE CO VARIANCE AND SPECTRAL DENSITY 

The average value of N(t) is 6 = ah. One way to study the fiuctuations 
of N(t) about its average is by means of the power spectrum used in the 
analysis of noise. (Cf. Rice.4) We resolve the difference [N(t) - 5] into 
sinusoidal components of non-negative frequency, and postulate a noise 
current proportional to this difference dissipating power through a unit 
resistance. The spectrum w{f) is then the average power due to frequen- 
cies in the interval (/, f df). 

More formally, we consider the Fourier integral 

S(/, T) = fT [NiO - Jo 
dt. 

and we recall, for completeness, the relationship between S(J, T) and 
the covariance function, /?(t), of [N{t) — 5]. If 

T)'2 

T 

then 

T—co 1 

(/) = 4 f R{t) COS 27r/r dr, 
Jo 

(11) 

R(t) = [ w(f) cos Stt/t df. 
Jo 

fCf. Rice,4 p. 312 ff.) 

At the same time, we have 

R(t) = E{[N(t) - b]lN(t + r) - 5]} 

= tKr) - b2 

= bgir). 

Let X(t) be any stochastic process which is known to be the occupancy 
of a telephone exchange of unlimited capacity, having a probability 
density of holding-time, and subject to Poisson traffic. From the pre- 
ceding result it can be seen that the covariance function of X(l) deter- 
mines the distributions of the X(t) process completely, since 

dR 
a=-^. 

/(r) = J h(u) du = —a 1^. 

If the holding-times are bounded by a constant, k, then readings of 
N{t) taken further apart than k are uncorrelated. In fact, such values 
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are independent, because no call which contributes to N(t) can survive 
until (f + A;), with probability 1. 

Using (11), we see that 

wif) = 4 f cos 2irfTR (r) dr 
Jo 

= 46 / cos lirfTgij) dr 
Jo 

poo /too pec 
= 4a / cos 27r/r / h(u) du dy dr (12) 

Jo Jr Jy 

2a r r00 

= —. sin 2irfT / h(u) du dr 
TTJ Jo Jt 

= [^1 — jo COS 2rfTh(r) drj. 

Equation (12) expresses the mean square of the frequency spectrum of 
the fluctuations of the traffic away from the average in terms of the call- 
ing-rate and the cosine transform of the holding-time density, k(u). 
The calling-rate appears only as a factor, and so does not affect the shape 
of w(f). The function w(f) is what Doob1 (p. 522) calls the "spectral 
density function (real form)." 

V EXAMPLE 1. N(t) MAKKOVIAN 

Let the frequency h(u) be negative exponential, so that 

h(u) = i e-"h, (13) 

where h is the mean holding-time. It is shown in Riordan5 p. 1134, 
that N(i) is Markovian if and only if h(u) has the form (13). From page 
523 of Doob1 we know that the covariance function of a real, stationary 
Markov process (wide sense) has the form 

R(t) = R(0)e~c'T, a. constant. (14) 

Under the assumption (13), the covariance of N{t) is 
7 r00 r00 

Rij) = 6(7(7) = ^ J J h{u) du dy 

= bl I ^^dudy 

= be -T/h 
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in agreement with (14). The spectral density can now be obtained from 
(11) or (12); it is 

U,(/) 1 + 4Tr2fW 

This is the same as would be obtained for a Markov process that alter- 
nately assumed the values +\/ah, —y/ah at the Poisson rate of (2/i) 
changes of sign per sec. (Cf. Rice4 p. 325.) 

VI EXAMPLE 2. HOLDING-TIME DISTRIBUTED UNIFORMLY IN (Q!,/3) 

Let h(u) be constantly equal to (/3 — a)-1 in the interval (a, /3), and 
constantly 0 elsewhere. Then by (12), 

a r sin 27r//3 — sin 27r/a~| 

~W2l 27r/(/3 - a) J" 

Now we see that 

fiy) = [ h(u) du = Jy 

1 for y ^ a 

P - y 
P — a 

0 for y ^ P 

for a ^ y ^ 

so that 

Rir) = 

a j^a — r + 

a (P — r)' 
2 P - a 

0 

- J 0 ^ r ^ a 

a = T ^ P 

T ^ P 

(15) 

is the covariance function of the process N(t) when holding-time is dis- 
tributed uniformly in (a, p). 

If, formally, we let (p - a) approach 0 while keeping + P) fixed, 
then the holding-times become concentrated in the neighborhood of the 
mean, h; in the limit, as h{u) tends to a singular normal distribution 
with mean, h, and variance zero, we obtain 

wif) = -^2 [1 - COS 27r//i] 
T J 

(16) 
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as the spectral density function for the N{t) process with constant hold- 
ing-time, h = + /3). Similarly, from (15), we note that as the hold- 
ing-times become singularly normal with mean, h, and variance zero, 
the covariance function becomes 

and note that this is exactly like the power spectrum of a random tele- 
graph wave constructed by choosing values + \/ah, — \/ah with equal 
probability and independently for each interval of length, h. (Cf. Rice,4 

page 327.) 
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High- Voltage Conductivity-Modulated 

Silicon Rectifier 

By H. S. VELORIC and M. B. PRINCE 

(Manuscript received May 1, 1957) 

Silicon -power rectifiers have been made which have reverse breakdown volt- 
ages as high as 2,000 volts and forward characteristics comparable to those 
obtained in much lower voltage devices. It is shown that the magnitude and 
temperature dependence of the currents can he explained on the basis of 
space-charge generated current with a trapping level 0.5 eV below the con- 
duction band or above the valence band. The breakdown voltage of a P+ 

IN+ diode is computed from avalanche multiplication theory and is shown 
to be a function of the width of the nearly intrinsic region. A simple diffusion 
process is evaluated and shown to be adequate for diode fabrication. The 
characteristics of devices fabricated from high-resistivity compensated, 
floating-zone refined, and gold-doped silicon are presented. The surface limi- 
tation to high inverse voltage rectifiers is discussed. 

I INTHODUCTIOX 

The desire for high voltage rectifiers in the electronic industry has 
pushed the peak inverse voltage of solid state rectifiers to higher and 
higher values. The purpose of this paper is to present some of the con- 
siderations necessary in designing a device with a high inverse voltage 
and an excellent forward characteristic. In many cases the device charac- 
teristics are predictable. Conversely, high voltage diodes are excellent 
tools for studying many solid state phenomena. 

It has been shown1 that it is possible by the use of the conductivity 
modulation principle to separate the design of the forward current-volt- 
age characteristic from the reverse current-volt age characteristic of a 
silicon p-n junction rectifier. Units have been fabricated by the diffusion 
of boron and phosphorus into high resistivity material, that have reverse 
breakdown voltages in (he range of 1,000 to 2,000 volts. 

The reverse currents are of the order of a microampere per square cen- 
timeter at room temperature and increase approximately as the square 

975 
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root of the applied voltage. The magnitude, voltage dependence, and 
temperature dependence of the reverse currents can be explained as due 
to space-charge generated current2 with a trapping level 0.5 eV from 
either the conduction or valence band. Those effects will be discussed 
in Section II. 

In Section III the breakdown voltage and its dependence on the re- 
sistivity and width of the high resistivity region of the rectifier will be 
considered. 

In the next section the forward current is discussed and explained by 
considering both a space-charge region generated current and a diffu- 
sion current that takes into account high levels of minority carrier in- 
jection.3 

Device processing information is given in Section V, together with an 
evaluation of different sources of high resistivity silicon. The devices 
to be discussed in this paper have been processed with high resistivity 
p-type material, although some devices have been made with n-type ma- 
terial. 

Finally, a discussion of some surface problems associated with high 
voltage rectifiers is given in Section VI. 

Although this paper is entitled "High-Voltage Conductivity-Modu- 
lated Silicon Rectifier", the theoretical arguments are applicable to all 
semiconductor diodes. However, the experimental results have been 
limited by considering only high voltage diodes. 

II REVERSE CURRENT-VOLTAGE CHARACTERISTIC 

2.1 Theory 

The simple theory4 for a y-n junction yields an expression for the re- 
verse saturation current density (/o) which is: 

(2-i) 

where q is the electron charge, np is the equilibrium electron density in 
p-type material, p,. is the equilibrium hole density in n-typc material, 
Dn and Dp are the diffusion constants for electrons and holes, and t„ 
and Tp are the minority carrier lifetimes for electrons and holes. 

When reasonable numbers are substituted into (2-1), /o at room tem- 
perature is of the order of KT10 amperes per square centimeter. This 
quantity doubles with every increase of 4° C. The theory also contains 
no voltage dependence of this current. Even when breakdown multi- 
plication5 is taken into account, there is essentially no voltage dependence 
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at voltages less than half the breakdown voltage. The magnitude and 
temperature and voltage dependences of measured diodes do not agree 
with these theoretical values at room temperatures. 

Recently, Pell6 has shown that the reverse currents at low temperatures 
in germanium, and at room temperatures in silicon, are dominated by 
space-charge generated current. The space-charge generated current 
density {Iac) is given by 

Is,- = q W G M, (2-2) 

where W is the width of space-charge region, G is the generation rate of 
hole-electron pairs in the space-charge region, and M is the breakdown 
multiplication (il/ ~ 1 except near the breakdown voltage). G is given 
by2 

G = — , (2-3) 
TpoRi + rnoPi 

where nj and pi are the densities of electrons and holes respectively if 
the Fermi levels were at the energy level of the recombination centers, 
and tno and Tpo are the minority carrier lifetimes of electrons and holes 
respectively in heavily doped p-type and n-type silicon. This expression 
assumes constant generation over the space-charge region. Thus, 

and 

ih = Nc exp — (Fr - Vc) = Hi exp 0(Vr - Vt), (2-4a) 

pi = Nv exp — (Vv - Vr) = Hi exp - /3(Fr - V,), (2-4b) 

where Vr is the recombination level above the valence band edge Vv , 
Vi is the midband intrinsic level, /3 = q/kT, Nc and Nv are the effective 
densities of states in the conduction and valence bands ^ 2.4 X 1019 

(V'/SOO)9, Vc is the conduction band edge, k is the Boltzmann's constant, 
and T is the absolute temperature. 

Substituting (2-4) into (2-3), one obtains: 

G= 
2V^« cosh r3(yr _ y.) + l ln ' 

L rnoJ 
(2-5) 

For the diffused silicon junctions under consideration, it has been found' 
that Tno equals 1.2 X 10-6 seconds and r^o equals 0.4 X 10-6 seconds. 
Also, iii = 3.74 X 101'' 7,3/2

e
_6250/1 anfj y. = q 54 volts. Using these 
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numbers, (2-6) becomes: 

cosh [.38.62 (Vr - 0.54) - O.55J ' 

G = GmiVr)f(T, Vr), 

/ J, \ 3/2 
1.25 X 1016 ( ^qq j e20Ml-mlT) ,20.8(1-300/7) 

(2-6ft) 

and 

(2-6b) 

where 

(2-7a) 

and (2-7b) 

20.8(1-300/7) cosh [38.62(1^ - 0.54) - 0.55] 

cosh j^38.62 (V, - 0.54) - 0.55J 

In (2-6b), (j3oo(T/r) is the generation rate for a recombination level at 
Vr equal to 300° K, and f{T, Fr) is the temperature variation of G for a 
recombination level at Vr normalized to 300° K. 

Curves of/(T, Fr) are given in Fig. 1 for several values of Vr with a 
curve g(T) which is the temperature variation of the reverse saturation 
current (/o). Table I gives values for Gsoo for various Fr. 

In the reverse biased diffused junctions made with high resistivity ma- 
terial, the junction may be considered abrupt. Therefore, the width (IF) 
of the space-charge region, when the junction is reverse biased to a volt- 
age F, is given by 

where the units after the first equal sign are electrostatic, and k is the di- 
electric constant. In the second expression, F is in volts, and pp , the base 
material resistivity, expressed in ohm-centimeters. Thus, 

/se = 4 X KT24 Gm{VT)f{T, Fr)[Fpp]1/2 amperes-cm-2. (2-9) 

It is seen that /gc varies theoretically as the square root of the reverse 
voltage for values of F less than ^ VB , the breakdown voltage, in which 
range avalanche multiplication is negligible. The quantity ISc varies in- 
versely with Na112 and will be large for high voltage devices with small 
Na ■ The Igc at 300° K for a rectifier with 40 ohm-centimeter base ma- 

W = ( = 3.14 X 10-5(Fpp)1/2 cm (2-8) 
K^NaJ 
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terial and a reverse bias of 100 volts is given in Table I as a function of 
V,. The numbers compare with 8 X 10~10 ampere per square centimeter 
for /q . Thus, from diode measurements at room temperature and above, 
one could not observe Vt less than 0.3 eV from either the conduction or 
valence band. In fact, from a measurement of the temperature depend- 
ence of the reverse currents, one can determine only the recombination 
level lying closest to the center of the forbidden band. This can be seen 
more clearly from the following argument: There will be a contribution 
to the reverse current from the diffusion current losooffiT) which varies 
with temperature as fif(T). There will be contributions to the reverse cur- 
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Fig. 1 —The temperature variation of the generation rate,/(7', Vr), for several 
values of the recombination level, Ur . 
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Table I — Values of G and Space Charge Generated 
Current at 300° K for Various Values 

of the Trapping Level Vr 

T = 300° K Ea = 1.08eF wp = 3 X 1020 cm-6 

Tno = 1.2 X 10"6 sec tpo = 0.4 X lO"6 sec 

Vr Volts above Valence Band Gioo cm'3 sec'1 f,c {V = -100 volts, P = 40 ohm-cm) 
microamperes/ cms 

0.10 5.92 X 108 1.88 X lO"7 

0.20 2.84 X 1010 9.03 x nr6 

0.30 1.35 X 10ia 4.29 X lO"4 

0.40 6.5 X 1013 2.06 X lO"2 

0.50 3.02 X 101S 0.96 
0.54 1.08 X 1016 3.43 
0.58 8.1 X 101B 2.58 
0.68 1.95 X 1014 6.2 X lO"2 

0.78 3.96 X 1012 1.26 X lO"3 

0.88 8.45 X lO10 2.69 X lO"6 

0.98 1.78 X 109 3.75 X lO"7 

rent by the individual trapping centers given by /,c3oo(Vr)/(T, Vr), where 
/Sc3oo(Vr) is the current at 300° K due to generation at recombination 
centers located at the level Vr, and/(T, Vr) is the temperature variation 
of the generation rate. Thus, the total reverse current is given by 

/reverse = WCD + Z^m(Vr)fiT, Vr), (2-10) rr 

where the summation is over all recombination levels. The relative cur- 
rents at 300° K are given in Table I. The greatest contribution at 300° K 
is due to the level nearest the center of the forbidden band. As the tem- 
perature increases, all the terms under the summation sign approach each 
other. Before a second recombination level contributes significantly to 
the reverse current, however, the saturation current will have become 
the most important component. 

£.2 Experimental Results 

To evaluate the theory for the reverse currents in silicon N+P junctions, 
careful measurements were made on five typical units for the reverse 
current-voltage characteristics at various temperatures from 300° K 
to 435° K. The curves were taken with a X-Y recorder. The voltage 
ranged from 0 to 200 volts so that multiplication effects were completely 
negligible. 

From the recorded data, curves of E versus 1,000/7'° K were plotted 
for V = -10, -40, and -160 volts. The set of curves for diode No. 3 
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Fig. 2 — The temperature variation of "reverse current" for a typical diode 
at —10, —40, and —160 volts. 

is given in Fig. 2. The slope of these curves indicates that the recombina- 
tion level lies near 0.5 eV below the conduction band or above the val- 
ence band. The junction area of this device is 0.015'cm2; thus, the cur- 
rent density at 300° K and at —100 volts is 4.4 microamperes per square 
centimeter. This compares with the order of one microampere as listed 
in Table I. This suggests that the (r„oTno)J is overestimated. The agree- 
ment of this measurement with theory is reasonable. 

The voltage variation of the reverse currents does not agree with 
theory as well as the magnitude and temperature dependence. The ex- 
perimental results give, as the voltage dependence, an expression: 

IT ~ V UN 

where N equals 2.9. This compares with the theoretical value of iV = 2. 
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Some of this discrepancy can be attributed to the fact that the junction 
is not truly an abrupt junction. A "graded" junction would yield N 
equals 3. Measurements of capacitance versus voltage, which essentially 
measure the width of the space-charge region, yield N equals 2.4. Thus, 
these devices in the relatively low voltage range still have some contri- 
bution from the gradation of the diffused junction. 

The highest temperature points in Fig. 2 deviate above the straight 
lines. This deviation can be attributed to the onset of the contribution 
from the /o component. Calculations indicate that, by T = 220° C, the 
contribut ion to the reverse current by the space-charge current is equaled 
by the saturation current and that, by T = 320° C, the space-charge- 
generated current is negligible compared to the saturation current. 

Ill BREAKDOWN VOLTAGE OF PN AND PIN JUNCTIONS 

3.1 Theory 

It has been demonstrated that, in germanium8,9 and silicon, reverse 
biased junctions breakdown as a result of a solid state analogue of the 
Townsend Avalanche Theory. Multiplication and breakdown occur 
when electrons or holes are accelerated to energies sufficient to create 
hole-electron pairs by collisions with valence electrons. The breakdown 
phenomena in silicon for graded and step junctions has been previously 
considered.8, 10 Depending on the impurity distribution, the field in the 
junction will be a function of distance and will have a maximum value in 
the region of zero net impurity concentration. The breakdown voltage is 
a critical function of the space-charge distribution. 

In this section the existing multiplication theory is extended to the 
case of PIN junctions. It is shown that relatively wide intrinsic regions 
are required to obtain breakdown voltages greater than 1000 volts. 

Fig. 3 is a plot of the impurity, charge, and field distributions in PIN 
and PttN junctions. Fig. 3(a) schematically illustrates the geometry of 
the three region devices considered, and Fig. 3(b) is a plot of the impurity 
distribution. In this analysis step junctions will be assumed. For the 
PIN junction there are no uncompensated impurities in the intrinsic 
region, and no net charge. At low reverse voltage, the field will sweep 
through the intrinsic layer and will increase with increasing reverse bias 
until the breakdown field is reached. 

Absolutely intrinsic material is not yet available, and devices are 
made from high resistivity ir-type material. In this class of devices there 
is some uncompensated impurity and charge in the center region. The 
field will have a maximum value at the N+ tt junction and will decrease 
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with increasing distance into the tt region. At sufficiently high reverse 
bias the field may sweep into the P+ region. 

Breakdown in silicon8 is a multiplicative process described by 

i-ijf aidx, (3-1) 

where M is the multiplication factor, W is the space-charge width, and 
ax is the rate of ionization which is a strong function of the field in the 
junction. For a PIN structure, the field is constant, at breakdown 
M approaches =o, and 

axTF = 1. (3-2) 

The ionization rate at breakdown is then a simple function of the width 
of the intrinsic region. McKay8 and Wolf11 have considered ax as a func- 

< w  
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Fig. 3 — Impurity, charge and field distribution in PIN and PttN junctions. 
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tion of the field. If ai is fixed, the field at breakdown can be determined. 
fW 

The breakdown voltage is / Ed.v. 
Jo 

Fig. 4 is a plot of breakdown voltage as a function of space-charge 
width for PN and PIN diodes. The PIN values are calculated; the PN 
data is previously unpublished data supplied by K. G. McKay. 

Some interesting observations can be made from Fig. 4: 
1. The plot of breakdown voltage versus barrier width for a PN step 

junction assumes that the space-charge region does not extend through 
the high resistivity side of the junction. For this class of junctions the 
breakdown voltage is determined by the impurity concentration as shown 
in Fig. 5. The plot of breakdown versus space-charge width for a PIN 
diode assumes that the space-charge region extends from the P to N 
region at very low bias, and that it is limited by the width of the I re- 
gion. If a constant field is assumed in the I region, the breakdown volt- 
age is a function of the barrier width. 

2. Although the space-charge region can reach through the I region 
at low bias, the avalanche breakdown voltage is a function of the width 
of the I region. 

3. For the devices considered here with tt regions in the order of KT2 

cm, the maximum breakdown voltage is in the order of 2,000 volts. 
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Fig. 5 — Breakdown voltage versus impurity concentration for silicon step 
junctions. 

3.2 Experiment 

Fig. 5 is a plot of breakdown voltage versus impurity concentration 
for silicon step junctions. The plot above 300 volts is extrapolated from 
the data of Miller10 and Wilson.9 

Capacity data, discussed in Section V, indicates that many devices 
show body breakdown. A few rectifiers break down at voltages as high 
as 2,000 volts. In many high voltage devices the breakdown voltage is not 
limited by geometry but by surface problems. 

IV FORWARD CURRENT-VOLTAGE CHARACTERISTIC 

4.1 Theory 

It will be shown in this section that the forward current-voltage char- 
acteristic as well as the reverse characteristic can be completely explained 
by considering both a space-charge region generated current and a diffu- 
sion current. The diffusion current component must also take into con- 
sideration the effect of high injection levels of minority carriers. 

According to the Shockley-Read2 theory, the rate of recombination, 
[/, of holes and electrons in a semiconductor is given by: 
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where p, and n are the instantaneous concentrations of holes and elec- 
trons, respectively. When a PN junction is forward biased, holes and 
electrons are injected into the space-charge region which has been re- 
duced in width. Some of these carriers diffuse through the space charge 
region and give rise to the normal diffusion current when the excess 
minority carriers recombine with majority carriers in field free regions. 
The other carriers recombine according to (4-1) in the space-charge re- 
gion giving rise to what is called the space-charge generated current. In 
the reverse biased junction, the current is due to carriers generated in the 
space-charge region; whereas, in the forward biased junction, the current 
is due to recombination of carriers. The quantity U is large in the space- 
charge region since both p and n are large in this region. In the field free 
regions, however, one of these quantities is usually small and the product 
deviates only slightly from n,2. 

The space-charge generated current, I.c, is given approximately by:12 

r _ 2qWni 
sinh^2 (4-2) 

8C (Tnorpo)1/2/3(7fl - V)n 

where Vb is the built-in potential of the junction, and/(b) is discussed 
in Reference 12 and is approximately 1.5 for recombination centers near 
the intrinsic level as is the case for the diodes under consideration. For 
shallower recombination levels the function/(b) is much smaller and de- 
pends strongly upon the forward applied voltage. 

For the forward-biased junction, the space-charge region is narrow, 
the concentration gradient can be considered linear and W is given by 
the following expression:4 

W = 4.35 X io/Z=y£?Y'! cm, (4-3) 

whereFjunction is the total potential across the junction in volts and a 
is the concentration gradient at the junction in cm-4. These are given 
by: 

Fjunction = Fbuilt-in f 

= k.T/q In iNAND/nf) - V (4-4) 

= 0.792 - V. 

Also, a = e~Xj2liDt for diffused junctions, (4-5) 
VirDt 

where Co = surface concentration of diffusant = 3 X 101J cm 3, 
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D = diffusion constant = 3 X 10-12 cm2/sec, 

I = diffusion time = 5.7 X lO4 sec, 

Xj = junction depth below surface = 0.003 cm. 

When these numbers are substituted into the equations, at 300° K: 

W = 9.25 X 10~4(0.792 - V)m cm. (4-6) 

For the diodes under consideration: 

Tno = 1.2 x I0"6 sec, tpo = 0.4 X 10_6 sec. 

When these expressions are substituted into (4-2), one obtains at 300° C: 

/„ = 2.8 X 10-' (
S

c;
n41!-3^. amp/cm'. (4-7) 

In order to fit the experimental data, it is necessary to multiply (4-7) 
by a factor of 5. This may be due to an overestimation of (T„orpo) . There- 
fore, the equation which shall be used in the remainder of this section 
will be: 

r i xy ta-6 sinh 19.31 F ,2 /, 0-. /flC = 1.4 X 10 (0 792 _ v)2/3 amp/cm . (4-8) 

A plot of this expression is given in Fig. 6. 
The normal diffusion current for low level diffusion,4 /DL , is given by 

/dl = Me"''11 - 1) (4-9) 

where /o is given by (2-1). To for the diodes under discussion is approxi- 
mately 8 X 10~10 ampere/cm2 at 300° K. When the injected minority 
carrier density approaches the equilibrium majority carrier density, the 
form of (4-9) changes. The high injection level diffusion current, Tdh , 
is then given by3 

/d„ = Mm{e"ntT - 1), (4-10) 

where /duo equals qn^s/r, and s equals the width of the high resistivity 
region. For the diodes under discussion, Tdho is approximately 2 X ICT6 

amperes/cm2 at 300° K. A current-voltage plot of these currents at 
300° K for Vr = 0.50 is given in Fig. 6 together with their sum. It can 
be observed that the resulting characteristic starts with slope of qV/kT 
and bends over to a slope of qV/2kT near 0.10 volt. The slope increases 
again to near qV/k'T at 0.35 volts and decreases once more to qV/2kT 
above 0.40 volts giving a bump to the over-all characteristic. 
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Next, consider the temperature dependence of the coefficients of the 
forward current components 

Isco ~ riiiT), 

... . .^2 

lo nf  n.-CT)2 

and 

/t 

rn{T) 

nl'T) 
r{T) 

(4-1la) 

(4-1 lb) 

niiT). (4-11c) 

The largest variation of these coefficients is due to the variation of 
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Fig. 6 — The two components of current for a forward biased junction. 
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Hi with temperature. Fig. 7 gives a plot of this variation. The tempera- 
ture variations of the other parameters are all small compared to that 
of Hi. Thus, as in the case of the reverse currents, at sufficiently high 
temperatures, the diffusion current makes the more important contribu- 
tion. 

In the case of the forward current, he is relatively insensitive to the 
distribution of impurities; therefore, the results of this section are im- 
portant for all forward-biased diodes. In high-voltage diodes, to keep the 
resistive voltage drop small, it is necessary to maintain high minority 
carrier lifetime in the center region. The diffusion length of injected 
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Fig. 7 — The variation of n,- with temperature. 
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minority carriers should be the order of or larger than the center region 
width. 

Jf..2 Experimental Results 

The forward characteristics of the five typical high voltage rectifiers 
mentioned in Section 2.2 were measured with a X-Y recorder, and all 
showed similar shapes. Diode No. 3 will be discussed in detail in this sec- 
tion. 

The forward current-voltage characteristic was measured at three 
temperatures: 220° K, 300° K, and 375° K. Measurements below cur- 
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Fig. 8 — The calculated and observed current-voltage characteristic of a for- 
ward biased junction at 300° K. 
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rents of one microampere were made only at 300° K. Currents above 10 
milliamperes were not measured since internal power losses would cause 
temperature variations. The unit has a junction area of 0.015 cm2, junc- 
tion lifetime of 4 microseconds at 300° K, S equal to 0.008 cm, and Na 
equal to 3 X 1014 cm 3. When these numbers are substituted into the 
expressions for the coefficients, one obtains, at 300° K, 

I,co = 1.4 X 10-8 amperes, 

/o = 1.2 X 10-11 amperes, 

/dho = 3.0 X 10-8 amperes. 

Fig. 8 shows a semilogarithmic plot of the current-voltage characteristic 
at 300° K over a range of 6^ decades. The circles represent measured 
points and the solid line is the theoretical curve. 

Using the variation of n,- given in Fig. 8 and the temperature variations 
as given in (4-11), one can obtain the coefficients for any temperature. 
This has been done for two temperatures, 220° K and 375° K. Figs. 9 
and 10 show the theoretical and experimental plots at 375° K and 220° K 
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Fig. 9 — The calculated and observed current-voltage characteristic of a for- 
ward biased junction at 375° K. 
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respectively. The circles represent measured points and the solid lines 
are the calculated theoretical curves. It is observed that the fit in Fig. 
9 is quite good; whereas, the fit in Fig. 10 is not as good as at the other 
temperatures. However, even this figure shows good qualitative agree- 
ment of the deviation from a straight line. Some of the factor of two dis- 
crepancy in Fig. 10 can be ascribed to the temperature variation of the 
other parameters, and some to a possible error in the measurement ot 
temperature which would be reflected in the value of n,-. 

It should be noted that at all temperatures the IR drop in the high 
resistivity region is not observable to the limits of the experimental 
measurements of forward current, 10 milliamperes. This is due to the 
fact that the region has been conductivity modulated by the forward 
current. This requires a sufficient minority carrier lifetime in the region 
so that most of the injected carriers diffuse across the region before re- 
combining. Such lifetimes can be maintained in diffused junctions' 
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Fig. 10 — The calculated and observed current-voltage characteristic of a 
forward biased junction at 220° K. 
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to permit the high resistivity region to be at least as wide as 0.025 cen- 
timeters. Thus even in high voltage rectifiers it is still possible to design 
the forward and reverse current voltage characteristics independently. 

V DEVICE PROCESSING 

5.1 Silicon Material 

Fig. 5 shows that step junctions which break down at over a thou- 
sand volts must have a background impurity concentration ^ 10u 

atoms/cm3. The highest grade commercial semiconductor silicon has 
5 X 10" impurities/cm3 (20-50 12 cm P type). This material must be 
processed to reduce the impurity level. To date, high voltage devices 
have been processed from four types of high resistivity material: float- 
ing zone refined, compensated, gold diffused, and horizontal zone refined 
silicon. 

Some silicon was prepared by adding N-type impurities to reduce 
| ./Yd — | < 10". Maintaining this delicate balance in material where 
Nd ^ Na is difficult. The boron is relatively uniformly distributed since 
the distribution constant is close to unity. N-type impurities are less 
uniformly distributed in the crystal since the distribution constants are 
considerably less than unity. High resistivity compensated silicon is full 
of N- and P-region striations. The units processed from this material 
generally had poor electrical characteristics. 

Table II is a typical contour of a compensated crystal. The resistivity 
varies around the crystal and changes along the length of the crystal. 
At the bottom of the crystal the resistivity goes through a maximum. 
The tail end is converted from P to N type. 

A number of devices have been fabricated from silicon processed with 

Table II — A Typical Contour of a High 
Resistivity' Compensated Crystal 

Crystal A-161, Oriented 111, Rotated | RPM 

Distance from 
seed (inches) 

Resistivity (t2 cm) at Angle 
Impurity Type 

0° 90° 180° 270° 

h 28 33 23 30 P 
25 31 31 32 P 

U 41 22 27 34 P 
1? 57 51 63 37 P 
2 1(50 160 87 200 P 
21 510 520 —   
2* — — 1200 —   
2* 2.9 1.2 0.8 0.8 N 
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Table III — The Characteristics of Some High Voltage 
Rectifiers Processed from Gold Diffused 

and Zone Refined Silicon 

Units1 
Er (volts)2 Ef (volts)' 

r (Msec)4 Silicon-Type 
lO/io lOO/ja 1 ma 10 ma 100 ma 1.4 

Me-512 30 120 500 0.8 1 1.3 1.61 
Gold diffusion 513 22 200 600 1.0 1.2 1.5 0.6 

514 300 600 1000 0.8 1 1.5 2.1 p ~ 16,000 cm 
515 300 500 1000 0.8 1 1.4 1.2 J 

Me-375 1200 1500 2.5 3.5 <1] Floating zone refined 376 70 300 800 2.5 4.0 <M 
377 16 120 700 3.5 7 p ~ 6,000 n cm 
378 320 400 800 2.5 3.5 J 

1 These units have an area ^ 10 3 cm2. 2 This is the reverse voltage at which these units pass the indicated current. 3 This is the forward bias at which the units pass the indicated current. 4 This is the lifetime measured at 30 milliamperes forward current by the pulse 
injected technique. The lifetime did not seem very sensitive to small variations 
in injected current. 

the floating zone apparatus.13 This technique removes impurities from 
molten silicon by treatment with hydrogen containing water vapor. The 
material obtained from this process has an impurity level in the range 
of 1012 to 5 X 1013 acceptors/cm3 (2,000 to 16,000 12 cm P type). 

Table III gives the characteristics of some of the better diodes made 
from such floating zone silicon. The reverse currents are larger than that pre- 
dicted by (2.10). The lifetime at high injection ism the order of 1 mscc. 

N-type silicon with a resistivity range of 10 to 30 12 cm was diffused 
with gold at 1,200° for sixteen hours. With this diffusion program the 
gold is uniformly distributed in the material.11 The resistivity after gold 
diffusion was in the range of 2,000 to 15,000 12 cm. The characteristics 
of several devices processed from this material are given in Table III. 
This technique has many attractive features; however, additional work 
was not done because the lifetime in the diffused material was consist- 
ently lower than that required for conductivity modulation. 

One successful purification technique is horizontal zone refining of 
silicon in a quartz boat. With the number of passes used, the background 
acceptor concentration is observed to be in the order of 5 X 10 to 10 
(100-1,000 12 cm P type). Most of the devices reported in this paper are 
fabricated from this material. 

Capacity data for devices fabricated from various types of high re- 
sistivity silicon is shown in Fig. 11. The plot shows that the high resistivi- 
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Fig. 11 — Capacity/cm2 for high voltage rectifiers processed from various types 
of high resistivity material. 

ties measured by the four point probe before diffusion are indicative of 
the impurity level after processing. The water vapor floating zone re- 
fined material has an impurity level of 101" acceptors/cm3; the other 
material is in the range of 1013 to 1014. The breakdown voltage line was 
calculated from the data in Fig. 5. 

5.2 Diffusion 

In this section some of the practical difficulties observed in utilizing 
the diffusion technique will be considered. In the fabrication of transis- 
tors close geometry control is necessary in order to obtain the desired 
device characteristic. It has been shown1 that in conductivity modulated 
rectifiers the only geometry requirement is that the width of the center 
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region be less than the diffusion length of the minority carrier. High sur- 
face concentration of diffusant is desirable since this facilitates the con- 
tact problem. This suggests that the diffusion system can be much less 
involved than that required for diffused transistors.15 Some of the data 
presented in this section will show that the open tube diffusion tech- 
nique16 can lead to variations in diffusion parameters. 

The diffusion of impurities into silicon is complicated by variations in 
the boundary conditions at the surface. Frosch15 has shown that surface 
concentrations can be varied over six decades. 

5.2.1 Device Diffusion Theory 

Several important impurity distributions have been considered17. Two 
distributions are important in the open tube process; 

1. Error Function Complement, ERFC, Distribution or Infinite Diffus- 
ant Source. If the diffusant is deposited on the silicon and serves as an 
infinite source, the added impurities will have an erfc distribution. For 
one diffusant and a fixed diffusion program this distribution will result 
in the deepest penetrations and smallest sheet resistances of all possible 
distributions. The sheet resistance is a measure of the total number of 
added impurities. The data presented later indicates that the added im- 
purities frequently have an erfc distribution. 

2. Gaussian and Modified Gaussian Distribution. A number of impurity 
atoms enters the solid, and a surface barrier builds up with time which 
prevents additional atoms from entering.1' Initially, the diffusant is as- 
sumed to be present in an infinitely thin layer at the surface with diffu- 
sion into or out of the material possible. In the range of silicon doping 
levels and surface concentrations used, a Gaussian, modified Gaussian 
or erfc distribution for a given diffusion program lead to approximately 
equal junction depths. ^ 

The sheet resistance and the diffusion depth have been related1 to 
the surface concentration for an erfc distribution. If the distribution is 
Gaussian instead of erfc, then for the same value of sheet resistance and 
diffusion depth the surface concentration should be reduced by one-third. 
Since the sheet resistance is related to the total number of impurities 
through a mobility term, quantitative interpretation of the data for any 
case other than erfc or Gaussian distributions would be difficult. 

5.2.2 Experimental Results 

The sheet resistance was measured by the four-point probe method, 
and the diffusion depths, by angle lapping and staining.19 Surface con- 
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Fig. 12 — Distribution of surface concentration of 28 PoOs diffusions by the 
open tube deposition technique. 

centrations were calculated assuming an erfc distribution.18 All the 
diffusions are on lapped silicon surfaces in the temperature range of 1,200 
to 1,300° C. 

Fig. 12 shows the distribution of surface concentration of 28 PoOb 
diffusions by the open tube process.1" The surface concentrations vary 
from 1019 to 5 X lO20 atoms/cm3. These values are about a decade lower 
than the closed tube values of surface concentrations reported by Fuller.19 

The measured diffusion depths were in the order of 2 X 10~3 to 
5 X lO-1 cm. Fig. 13 shows the distribution of diffusion depths normalized 
with the calculated diffusion depth as unity. The diffusion depths were 
calculated from the measured surface concentration assuming an erfc19 

distribution. 
The observed variation in diffusion depth is difficult to explain. Some 

of the possibilities which have been considered are: 
1. The diffusion temperature from lot to lot would have to be from 0 

to 50 degrees below the expected value to explain the variations. Dis- 
crepancies this large have not been observed. 

2. One impurity distribution which may explain some of the results 
is a modified Gaussian with considerable out diffusion. There are some 
runs with high sheet resistance and diffusion depths which are consistent 
with this picture. Generally the sheet resistances are so small that there 
could not be much out diffusion. 

3. Some workers have suggested the possibility of the diffusion con- 
stant being a function of the surface concentration. Fig. 13 does not 
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indicate any correlation between surface concentration and diffusion 
constant. 

The variations in diffusion process control have not been observed to 
effect the production of rectifiers. If better geometry control is necessary, 
more sophisticated diffusion techniques are required. 

VI PULSE PROPERTIES AND RELIABILITY 

Important considerations in all diode applications are the pulse prop- 
erties and reliability in operation. In this section some problems which 
are associated with avalanche breakdown are described and the results 
related to recent work on surface and body breakdown. 

6.1 Theory 

Several workers20 have considered the possibility of a negative resist- 
ance in the avalanche region for reverse biased junctions in which one 
side is either intrinsic or so weakly doped that the space charge of the 
carriers cannot be neglected. A negative resistance might be observed 
at very high current densities in an N+7r junction. 

One possible source of a negative resistance would be a large tempera- 
ture rise due to current concentration at a few points instead of a uni- 
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Fig. 13 — Distribution of diffusion depths for diffusion by the open tube depo- 
sition technique. 
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form flow through the junctions. This case is of particular significance 
in high voltage rectifiers where small reverse currents result in relatively 
large power. It has been pointed out in Sections 3.2 and 5.1 that body 
avalanche breakdown is frequently not observed in these devices. 

Avalanche breakdown current in silicon5 is carried by discrete pulses 
of about 50 fin at their onset and increasing with increasing current to 
about 100 fia. Approximate calculations21 show that the ionizing regions 
of these microplasmas are about 500 A in extent, have a current density 
~ 2 X lO11 amp/cm2, and have a net space-charge density ~ 1018/cm3. 
These pulses for junctions with Ema*. less than 500 kv/cm appear to be 
independent of junction width and built-in space-charge. Rose considers 
the statistical problem associated with a large number of pulses and pre- 
sents a picture which is consistent with most of the experimental data. 
He calculates the temperature rise, assuming the avalanche power is 
1 X 10~2 watts and is dissipated uniformly in a sphere. The maximum 
temperature rise for a cluster of two or three pulses is in the order of 
25° C. For the picture Rose presents, the temperature rise due to the 
microplasma should be relatively insensitive to the breakdown voltage. 
Thermal collapse of rectification, i.e., increase of temperature until the 
silicon is intrinsic, will probably not occur in the region of avalanche 
multiplication. Two important conclusions can be obtained: 

1. Avalanche breakdown should occur as a random process with a uni- 
form probability over the junction. Large temperature rises due to a 
breakdown of microplasma will probably not occur since the resulting 
temperature rise would cause the breakdown voltage in that spot to 
increase. The power is dissipated throughout the path of the current 
pulse in the space-charge region. 

2. A thermal effect in silicon due to heating by the small plasma has a 
very short time constant of the order of 10~IU seconds.21 It is not possible 
to separate a thermal effect of this type by reducing the pulse width. 
The heating and cooling time is short compared to the pulse time in these 
experiments. 

The pulse properties of a j unction would be quite different if the break- 
down occurred at one spot instead of many spots distributed over the 
junction. Breakdown at a single spot on the surface has been observed.22 

6.2 Experimental Results 

Many rectifiers were given a voltage pulse which carried them into 
breakdown. There was a wide distribution of V-I characteristics. Many 
diodes did not show a negative resistance up to the maximum instan- 
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taneous power the pulser could deliver, 5kw. These diodes are not con- 
sidered in the subsequent analysis. 

The diodes were subjected to 50 usec triangular voltage pulses which 
would send them into breakdown. Variations in pulse conditions did not 
effect the I-V characteristic until large pulses destructively damaged the 
unit. 

Fig. 14 is a sketch of a typical V-I characteristic and Fig. 15, shows the 
voltage-versus-time characteristic for a diode with a negative resistance. 
The V-I curve can be broken into four regions: 
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Fig. 14 — A typical V-I characteristic for a diode in which a negative resistance 
is observed. 
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Fig. 15 — A typical V-T characteristic for a diode in which a negative re- 
sistance is observed. 
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1. A high impedance state before the breakdown voltage is reached. 
2. A current required to turn on the negative resistance; this cur- 

rent varies from lO 3 to 1 amp. 
3. The transition to a low impedance state. 
4. The low impedance region in which the current is probabl3r limited 

by the circuit impedance. 
The V-T curve can be broken in four regions: 
1. The time it takes the pulse to reach the breakdown voltage. 
2. The time the diode can maintain the breakdown voltage less than 

1 mscc. This is beyond the resolution of the oscilloscope. 
3. The time required to fall to the low voltage (low impedance) state, 

is less than 1 /xsec. 
4. The remainder of the pulse in the low voltage state. 
Fig. 10 is a plot showing the current and voltage required to turn on a 

negative resistance in several power rectifiers (area ~ KT2 cm2). To 

u I0"3 

400 600 
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Fig. 16 — Current and voltage required to turn on a negative resistance in 
several power rectifiers (A ~ 10-2 cm2). 
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consider the spread of breakdown voltage, the data was normalized to 
the instantaneous power required to turn on a negative resistance. This 
turn-on power was the turn-on power multiplied by the voltage. 

Fig. 17 is a plot of the distributions of turn-on power for the rectifiers 
which had a negative resistance plotted as a log normal distribution on 
probability paper. The median value for the turn-on power is 1.2 watts. 
Eighty per cent of these diodes went into a negative resistance condition 
at powers between 0.1 and 10 watts. Many diodes could dissipate several 
kilowatts with no negative resistance. These were not included. 

Experiments show that devices which show surface breakdown will 
collapse at power levels which are orders of magnitude below that ob- 
served for devices in which body breakdown is observed. 

The picture is more cloudy with smaller area rectifiers (area ~ 10 3 

cm2). In these devices it was not possible to predict the pulse properties 
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Fig. 17 — The distribution of turn-on power for rectifiers {A ~ 10 2 cm2) in 
which a negative resistance is observed plotted as a log normal distribution on 
probability paper. 
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of the device from the reverse I-V characteristic. This may be attributed 
to the decrease in power capabilities of the body breakdown process in 
the smaller devices. This also suggests that the smaller devices have a 
less severe surface problem. 

The distribution of turn-on power for a few hundred small area recti- 
fiers {A ~ 10~3 cm2) is shown in Fig. 18. The median of the distribution 
occurs at 40 watts. Eighty percent of the units will show a negative re- 
sistance when pulsed at power levels between 3 and 500 watts. 

VII CONCLUSION 

High voltage rectifiers have been fabricated using several sources of 
high resistivity material employing an uncomplicated diffusion process. 
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Fig. 18 — The distribution of turn-on power for small area rectifiers (A 
cm2) plotted as a log normal distribution on probability paper. 
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The most consistent results were obtained using horizontal zone refined 
silicon. The open tube diffusion technique has sufficient control to satisfy 
the fabrication requirements. 

The magnitudes, voltage and temperature dependences of both the 
forward and reverse currents of silicon rectifiers can be explained by in- 
cluding a recombination level near the middle of the forbidden energy 
gap. Design equations for the forward and reverse characteristic of a 
diode are presented for several important cases. The breakdown voltage 
of the high voltage devices was shown to be a function of the width of 
the high resistivity region. 

One unsolved problem is the surface limitation of breakdown voltage 
and reverse currents. This has been observed to decrease the breakdown 
voltages and increase the reverse cm-rents to undesirable levels. 
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Coincidences in Poisson Patterns 

By E. N. GILBERT and H. O. POLLAK 

(Manuscript received August 3, 1956) 

A number of •practical problems, including questions about reliability of 
Geiger counters and short-circuits in electric cables, reduce to the mathe- 
matical problem of coincidences in Poisson patterns. This paper presents 
the probability of no coincidences as well as asymptotic formulas and simple 
bounds for that probability under a variety of circumstances. The probability 
of exactly N coincidences is also found in some cases. 

INTRODUCTION 

A number of practical problems are questions about what we call 
"coincidences" in Poisson patterns. In d-dimensional space, a Poisson 
pattern of density X is a random array of points such that each infinitesi- 
mal volume element, dV, has probability \dV of containing a point, 
and such that the numbers of points in disjoint regions are independent 
random variables. Then a volume, V, has probability 

(\V)k -xv 
k\ 

of containing exactly h points. A coincidence, in our usage of the word, 
is defined as follows: We imagine a certain fixed distance 5 to be given 
in advance; two points are then said to be coincident if they lie within 
distance 5 of one another. 

Examples 

The best-known case of a coincidence problem concerns Geiger coun- 
ters. In the simplest mathematical model, there is a short dead-time 6 
after each count during which other particles can pass through the 
counter without registering a count. In our present terminology, a count 
is missed whenever two particles traverse the counter with coincident 
times of arrival. The same problem is encountered with telephone call 
registers. 

1005 
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Another example arises in the manufacture of electric cable. Each 
wire in a cable is covered with an insulation which contains occasional 
flaws. When the cable is assembled it will fail a short circuit test if it 
contains a pair of wires such that a flaw on one wire lies within some 
distance 5 of a flaw on the other wire. In a similar way, coincident flaws 
in the insulation of the wire from which a coil is wound can lead to fail- 
ure of the coil. 

There are also some problems in the development of certain military 
systems which lead to the consideration of coincidences in Poisson pat- 
terns. 

Outline of Work 

Our primary aim is to study the probability of no coincidences under 
various circumstances. In Part I, we examine coincidences of two differ- 
ent Poisson patterns, of densities X and n respectively, on a line of length 
L. Here we do not count two points of the same pattern within a distance 
5 as giving a coincidence. A set of integral equations yields the probabihty 
of no coincidences as well as an asymptotic formula and upper and lower 
bounds. 

In Part II, we study the probability, Eo(L), of no coincidences for a 
single one-dimensional Poisson pattern of density X. These results may 
also be interpreted as the distribution function for the minimum distance 
between pairs of points of a Poisson pattern. Sample formulas are the 
asymptotic formula (for large L) 

Fo(L) ^ (X - a)[l + S(X - a)] 6 

and the bounds (valid for all L) 

^ -aL-la-\)S ^ ^ 

where s = — a is the largest real root of 

s X — Xe 

The problem of n Poisson patterns, all of the same density X, is ex- 
amined in Part III. Coincidences are now counted between points of any 
two distinct patterns. 

The one-dimensional problems of Parts I-III succumb readily to ana- 
lytic techniques. We can find exact expressions for the probabilities of 
no coincidences in Parts I-III. Two entirely different methods of deriving 
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exact results are available and are illustrated in Parts II and III. Un- 
fortunately, the exact formulas, although they are finite sums, contain a 
number of terms which grows with L. Much of our effort has been di- 
rected toward finding good, easily computed bounds and asymptotic 
formulas. 

The probabilities of having exactly N coincidences are also obtainable 
but they have more complicated formulas. A detailed derivation is given 
only in Part II. 

In Part IV, we consider the probability of no coincidence in higher 
dimensional problems. The methods of Parts I-III fail in higher di- 
mensions, but we are still able to derive some bounds. An exact formula 
is derived for the probability of no coincidences within a single two- 
dimensional Poisson pattern in a rectangle with sides ^ 25. We also give 
particular attention to coincidences in a three-dimensional cylinder. 

Part V contains numerical results. 

Reduction of the Examples to the Theory 

We now wish to see how answers bearing on the practical problems 
previously listed may be found from this study. 

The literature on Geiger counters (see bibliography in Feller3) is con- 
cerned with statistics of the number of counts registered in a given long 
time, t. The basic problem is to test the hypothesis that the particles 
arrive in a Poisson sequence. To this problem, then, are relevant the 
formulas for the probability of N coincidences in one pattern given in 
Part II, and the bounds and asymptotic results there derived. 

The problem of coincident flaws in an electric cable is three-dimen- 
sional, and we have various approaches leading to the probability of no 
coincidences which are valid under different circumstances. If the cable 
contains only two wires (with possibly different flaw densities), then the 
problem reduces to the one-dimensional case of coincidences between 
two Poisson patterns treated in Part I. If the diameter of the cable is 
small with respect to 5, and if the density of flaws is the same on each of 
the n wires in the cable, we have the situation of n identical patterns 
treated in Part III. If, in addition, n is very large, we may ignore the 
fact that coincident flaws on a single wire do not cause short circuits, 
and think of coincidences within a single pattern (Part II). Without the 
assumption that the diameter of the cable is small with respect to 5, the 
problem is no longer reducible to a one-dimensional form. Section 4.4 
is especially devoted to thick cable, and to producing a lower bound for 
the probability of no coincidences in this three-dimensional situation. 

The literature on Poisson patterns in a line segment contains the fol- 
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lowing related papers. C. Domb1 finds the distribution function for the 
total length of the set of points lying within distance 5 of a pattern point. 
P. Eggleton and W. O. Kermack2 and also L. Silberstein5 consider ag- 
gregates, which are sets of k pattern points all contained in an interval 
of length 5. In the special case k = 2, aggregates are our coincidences. 
These authors find the expected number of aggregates but not the prob- 
ability of N aggregates. 

I CONCIDENCES BETWEEN TWO PATTERNS 

1.1 Integral Equation 

Consider two Poisson patterns of points on the real line, the first with 
density X (points per unit length) and the second with density m- We want 
the probability F(L) that in the segment from 0 to L there is no coinci- 
dence between a point of pattern No. 1 and a point of Pattern No. 2. 
F{L) will be formulated in terms of the conditional probabilities 

Pi(L) = Prob (no coincidence, given Pattern No. 1 has point at L), 
P2{L) = Prob (no coincidence, given Pattern No. 2 has point at L). 
If L ^ 5, Pi(L) and PziL) are the probabilities that patterns No. 2 

and No. 1 are empty: 

PiCL) = e '\ P,(L) = <r". if i g 5. (1-1) 

If L > 5 and Pattern No. 1 contains a point at L, there are two ways 
that no coincidences can occur. First, Pattern No. 2 may fail to have any 
points anywhere in the interval [0, L]. The probability of this event is 
exp - nL. The second possibility is illustrated in Fig. 1 (using circles for 
points of Pattern No. 1 and crosses for points in Pattern No. 2). Pattern 
No. 2 has points in (0, L); the one closest to L is at y < L — 8. Since 
the interval (y, L) contains no points of Pattern No. 2, the probability 
of finding this closest point, y, in an interval, dy, is 

exp [-y{L - y)]y dy. 

The interval (y, y + 8) must be free from points of Pattern No. 1 (prob- 

NO COINCIDENCES EMPTY NO CROSSES 
/ 1  1 v/ 1 . 

I *-* 1—0^—® 
o y y+£/" L 

Fig. 1 — Patterns without coincidence. 
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ability exp ( —X6)) and the interval (0, y) must contain no coincidences 
(probability P-iiy)). One obtains finally 

JMi) = <r" [^1 + /xe-" jf1 ' e'Tziy) dy^, (1-2) 

and similarly 

1 + \e-" [L ' S-P^y) dy 
Jo 

PM = e (1-3) 

The solutions Pi{L) and P^iL) are determined uniquely by (1-1), 
(1-2) and (1-3). For (1-1) determines them for 0 ^ L ^ 5 and the in- 
tegrations indicated in (1-2) and (1-3) will provide the solutions in 0 ^ 
L ^ (n + 1)6 when they are known in 0 ^ L <; nb. Pi(L) and P2{L) 
are piecewise analytic; the analytic form of the solution changes 
each time L passes an integer multiple of 6. These analytic expressions 
soon become complicated and are less useful than the bounds and ap- 
proximations given later on. 

To compute F{L), consider the last place before L at which either Pat- 
tern No. 1 or No. 2 has a point. The probability that this last point lies 
between x and x + dx and belongs to Pattern No. 1 is exp [—(X + y) 
(L - a:)]X dx (Fig. 2). This term multiplied by P^x) and integrated from 
0 to L gives the probability of no coincidences if the last point is a circle. 
A similar integral gives the probability if the last point is a cross. Finally 
there is probability exp [-(X + y)L] that neither pattern has a last 
point [i.e., (0, L) empty]. Then 

F(L) = e-a+"L [l + e'
w+'"i\Pt(x) + yPM) . (1-4) 

1.2 Solution by Laplace Transforms 

For i = 1 or 2, let 

pM = [ P<(L)e-,L dL. (1-5) 
Jo 

Replacing P\{L) in (1-5) by (1-1) for 0 ^ L ^ 5, by (1-2) for 8 ^ L, 

NO COINCIDENCES EMPTY 

@0 ■+- X >( I , | 1  
x x + dx 

Fig. 2 — Patterns without coincidence. 
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and interchanging the order of integration of a double integral, 

(s + n)pi{s) = 1 + Me_(X+''+')ap2(s)- 

Similarly, 

so that 

and 

(s + \)p,{s) = 1 + 

/ >. _ s + \ pe '■x+>l+8)6 , . 
Pl^ _ (s + X)(5 + /x) - Xm6-2(x+m+')4' 

/ \ s + m + Xe   /i 7-) 
P2(S) " (S + X)(s + m) - XMe-21^5' 

Likewise, using (1-4), the Laplace transform/(s) of F{L) is 

f( x _ 1 + Xpi(s) + MP2(s) 
X + M + S 

As one might expect from the piecewise analytic character of Pi{L) 
and PziL) there is no convenient way of transforming f{s) back to F(L). 
By evaluating residues of /(s) exp (sL) at the poles of /(s) one might ex- 
press F{L) as an infinite series of exponential terms. The most slowly 
damped term in this series can be expected to approximate F{L) when L 
is large. The poles of f{s) are at the zeros of the denominator D(s) of 
Pi(s) and p2{s): 

D(s) = (s + X)(s + M) - (1-9) 

Since D{x) > 0 for x ^ 0 and both D{-\) and are negative, 
it follows that D{s) has a real zero s = —a with a < Min (X, p). 

The zero s = -a of D{s) is the one with the largest real part. For, 
letting s = .t T iy, we have in the half plane x ^ —a 

| (s + X) (s + m) I - Xm | e~2(X+''+s)41 

= I s + X I • I s + M | — ^pe~1{X+fl+l)& 

^ (x + \)-{x + p) - XMe"2(X+M+x)i ^ 0. 

Also, if y 5^ 0 the ^ sign in the above proof can be replaced by > and 
one concludes that all other zeros of D{s) = 0 satisfy 

Re s < —h 
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for some b > a (note that the left hand side of the preceding inequality 
does not approach 0 as y approaches ± =o). 

The pole of /(s) at s = —a contributes to F(L) a dominant term 

FiD* X2 + - (x + ria + 
(X + m — a)[X + m — 2a + 25(X — fl)(M — C[)] 

In (1-10) the error is 0(exp — bL) for large L. 
When 5 is small, we find a = 2X^5 + 0(52) and (1-10) becomes 

F{L) « [1 + 0(52)] exp - [2\nS + 0(52)]L. (1-11) 

It is interesting to note that a simple heuristic argument also leads to a 
formula like (1-11). When 8 is small and L is large, one expects that the 
intervals of length 25 which contain points of Pattern No. 1 at their cen- 
ters will comprise a total length near (XL) (25) of the line segment (0, L). 
The probability that a set of length 2XL5 shall be free of points of Pat- 
tern No. 2 is exp — 2\n8L. 

1.3 Bounds 

In this section we derive some relatively simple expressions which are 
good upper and lower bounds on F{L). Both bounds have the same func- 
tional form: 

if U. J5; L) = 44 + + (l - X4 + ^ ) e-!X+"i. (1-12) 
X + ^x — a \ X + m — a/ 

In (1-12), a is again the smallest real solution of D( —a) = 0. d and B 
are positive constants which are related by 

— = _ a)a __ X a e<.\+F-a)i Q 
B n — a X 

K{A, B, L) becomes an upper bound or a lower bound depending on ad- 
ditional restrictions which will be placed on A and B. 

To get the lower bound, we restrict A and B by the inequalities 

A < e"-'", B < e'-™, (1-14) 

and 

A < (l — ?) e", B < ^1 - c". (1-15) 

We first prove that (1-13), (1-14), and (1-15) imply 

Pi{L) > Ae~a'', P2(L) > Be'al\ (1-16) 
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When 0 ^ L g 5, (1-16) holds because of (1-1), (1-14), and the in- 
equalities a < X, a < /x. If (1-16) were not true for all L there would be 
a smallest value, say L = X > 5, at which at least one of the inequali- 
ties (1-16) would become an equality. Suppose the inequality (1-16) on 
Pi{X) fails. Using (1-16) for L < X, and (1-2), 

( (/j-aHX-i)   i\ 
1 + ^ - a ) 
(-M \ 

1 - V"1 by (1-13), n — a/ 

> Ae-aX by (1-15). 

This contradicts our assumption that (1-16) fails for Pi{X). A similar 
proof shows (1-16) cannot fail for Pi{X). 

Having proved (1-16) we now substitute these bounds into (1-4) and 
integrate to get F(L) > K(A, B\ L). 

To make (1-12) into an upper bound it is only necessary to replace 
(1-14) and (1-15) by 

A > I, B> 1, (1-17) 

and 

A > (i — 2) e"', B > (l - ^ e". (1-18) 

The proof that now F{L) < K{A, B, L) proceeds exactly as before 
but with all the inequality signs reversed. 

Both bounds are dominated by an exponential term exp — aL, as is 
the asymptotically correct formula (1-10). In typical numerical cases the 
coefficients multiplying this term in the three formulas agree closely. A 
numerical case is given in Part V. 

14 Probability of N Coincidences 

The methods of Sections 1.1 and 1.2 can also be used to find the prob- 
ability Fn{L) that there be exactly N coincidences in the interval (0, L). 
It might appear most natural to define N to be the number of pairs of 
points (.r, 2), x from Pattern No. 1, 2 from Pattern No. 2, such that 

| .r — 2 | <5. (i) 

However, we add the additional requirement that x and 2 be "adjacent" 
points; i.e. 

the interval {x, 2) is empty. (ii) 
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For example, in Fig. 3, we would count iV = G coincidences even 
though there are 18 pairs which satisfy (i). In cable problems it appears 
reasonable to count coincidences as above. If we assume that all flaws 
are equally bad, then a short circuit is likely to develop only across an 
adjacent coincidence; our N is the number of places on the cable at 
which a short circuit can form. Another interpretation is that the cable 
can be cut into exactly N + 1 pieces each of which contain no coinci- 
dences. 

Let Pi.jv(L) be the conditional probability of having N coincidences 
in (0, L) knowing that there is a point of Pattern No. 1 at L. The Lap- 
lace transform of PiiN{L) turns out to be the coefficient of tN in a generat- 
ing function of the form 

Vl(t. S) = X + s + MS! 
(X + S)(M + s) - X/AP ' 

where 12 = e^<x+M+s,5(l — I) -\- t. Interchanging X and m one gets the gen- 
erating function piit, s) for the Laplace transform of the probability 
P2,n{L) of N coincidences, given a point of Pattern No. 2 at L. Finally 
the Laplace transform of FN{L) is the coefficient of tN in the generating 
function 

i - s) + s) 
fit, s) = 

X -f M + S 

Since/(/, s) is a rational function of /, it is easy to find the coefficient of 
tN. The poles of this function are again just zeros of D{s). Now, however, 
the poles are higher order poles. For large L an asymptotic formula for 
Fn{L) has the form exp — aL times a polynomial in L with degree de- 
pending on N. 

For more details about this method we refer the reader to Part II 
where a similar, but less involved, calculation is carefully done. 

II SELF-COINCIDENCES IN ONE POISSON PATTERN 

2.1 Integral Equation 

In this part we shall consider a single one-dimensional Poisson pattern 
with density X and ask for the probability FN{L) that in the interval 
(0, L) the pattern have exactly N coincidences. We count coincidences 

| (T, 'X *—I— x x x—0 ^-0 1 

Fig. 3 — Patterns with six coincidences. 
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as in Section 1.4; a pair {x, z) of pattern points contributes one coinci- 
dence to the total number N only if both \ x — z \ <8 and the interval 
between x and z is empty. 

Note that Fo{L) is related to the distribution function for the mini- 
mum distance between the points of the pattern in (0, L): 

Prob (min. dist. ^ 5) = 1 — Fo{L), 

where it must be remembered that Fo{L) is a function of 5. 
As in Part I, we first define the conditional probabilities PniL) = 

Prob (exactly N coincidences in (0, L), given a point at L). We then 
have the following equations: 

If L S i, PAL) = <r", all N. (2-1) 

If i S i. PAL) = Nil- (2-2) 

If L > 8, and N ^ I, the probability of exactly N coincidences in (0, L) 
equals the probability of N coincidences up to the last point of the pat- 
tern in the interval (0, L) - and if there are to be any coincidences, there 
must be points of the pattern in (0, L). Hence, ii L > 8, N ^ 1, 

FAL) = fL PAL - y)e~Xv\ dy. (2-3) Jo 

If TV = 0, the same argument applies, but there is also the possibihty 
that there are no points at all of the pattern in (0, L). Hence, if L > 5, 

Fo(L) = <rXL + T Po(L - y)e-h'\ dy. (2-4) 
Jo 

Now let us consider the case where there is a point of the pattern at L. 
Then if the last point preceding L is between L — 8 and L, this point 
and the point at L will create a coincidence; if there is no point within 
(L — 5, L), then all coincidences are within (0, L — 8). Hence, if L > 5, 
and TV ^ 1, 

PAL) = [' P*-i(L - y)Xe-Xu dy + e^FAL - 8). (2-5) 
Jo 

For the case N = 0, we cannot allow a point in the interval (L - 8, L), 
and hence, if L > 8, 

Po(L) = e-uF0{L - 8). (2-6) 
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2.2 Laplace Transform of FN{L) 

To analyze the system of equations which is given by relations (2-1) 
through (2-6), we introduce the generating functions 

S(L, I) =t FADt", 
N=0 

and 

pa, t) = i; pal)!". 
JV=0 

If L > 5, we obtain from (2-3) and (2-4) the relation 

eXLf{L, 0=1+/ p{w, t)eXwX dw, (2-7) 
Jo 

and from (2-5) and (2-6) the relation (again if L > 8) 

eLp{L, t) — XI f p(w, t)eXw dw + e'"'~i)f{L — 8, t). (2-8) 
J L-i 

If we differentiate (2-7) and (2-8) with respect to L, and then apply 
(2-7) differentiated to simplify the last terms of (2-8) differentiated, we 
obtain, still only for L > 8, 

f'{L, t) + X/(L, t) = Xp{L, t), (2-9) 

p'(L, () + X(1 - t)p(L, I) = Xe-
M(l - t)p(L - 6, t). (2-10) 

It is easy to check from (2-1) and (2-2) that if L ^ 8, then 

p(L, t) = e"^1"0, 

and 

f(L, t) = e"" 0 + l), 

and hence (2-9) is valid for all L, but the left side of (2-10) vanishes if 
L ^ 8. Hence we may take Laplace transforms of (2-9) and (2-10). If 
we define 

A(s,l) = ['f(L, t)e-L'dL, 
Jo 

and 

/i(s, I) = ( p(L, t)e-L- dL, 
Jo 
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we obtain from (2-9), which we now know to be valid for all L, 

(X + s)A(s, t) — 1 = \B(s, t), (2-11) 

and from (2-10), by recalling that the left side vanishes for L ^ 8, 

sB(s, () - 1 + X(1 - t)B(s, t) = X(1 - 0e""+W'B(s, t). (2-12) 

Hence 

B(s' () = s + X(1 - oil - e-1-™]' (2'13) 

and 

A(s, t) = —J— (1 + \B(s, 0). 
X + s 

If we denote the Laplace transforms of Pn{L) and FN{L) by Pn{s) and 
fN{s) respectively, then 

\'vri _ 
pM = [s + X - Xe-(»+x)i]"+1' (2'14) 

and 

Ms) = —1— (xp.(s) + D, A "T S 

= r-3—P-W for 
X "T S 

(2-15) 

2.3 Exact Formula for Fo{L) 

It is possible to solve (2-1) through (2-6) in piecewise analytic form by 
computing recursively from each interval of length 5 to the next one. We 
shall obtain the piecewise analytic form for Fo(L) by a direct derivation 
essentially due to E. C. Molina.4 

Suppose k is the number of pattern points which fall into (0, L). Let 
Xi denote the distance between the i — l8t point and the i1 point (rci is 
the distance from 0 to the first point) as shown in Fig. 4. The configura- 

x, x; xk 

I 0 CD ^+3-0—0 Q 0-0—0—0- 
012 L-l I k 

Fig. 4 — Definition of x,- . 
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tion of points 1, ■ • • , /c on the line is represented by a single point 
Oei , • • ■ , Xk) in the polyhedron T in A:-dimensional space defined by the 
inequalities 

T: 0 ^ , • • • , 0 ^ , a:i + ^ + ■ • • + xu ^ L, 

and the probability distribution of the point (tj , • • •, Xk) in T is uni- 
form. The configurations with no coincidences lie in a smaller polyhedron 
T' consisting of all points of T for which b ^ Xz, • • •, b ^ Xk . Given k, 
the conditional probability that there be no coincidences is the ratio of 
two ^-dimensional volumes Vol (7")/Vol {T). 

For larger values of L let yi ~ Xi , ijz = Xi — 5, ?/3 = .r3 — b, • • ■, i/k = 
Xk — b. Then T' becomes a polyhedron of the form 

T": 0 ^ , 0 ^ t/o , • • 0 ^ t/, , Z/i + v/2 ■ ■ • + yk ^ L — (k — 1)5. 

Since the transformation from x's to y's has determinant equal to one, 
T" has the same volume as T'. However, T" is now seen to be similar 
to T but with sides of length L — (k — 1)5 instead of L. The volume 
ratio sought must be 

(L-(k- DbJ 

Since k has the Poisson distribution with mean XL we obtain finally 

The piecewise-analytic character of F0(L) is evident; increasing L by 
an amount 5 increases the upper limit on the sum by one and thereby 
adds a new term to the analytic expression for F(L). 

24 Asymptotic Formula for FN{L) 

Similar exact formulas could be found for all the FN(L), but they are 
both complicated and inconvenient for computing if L/b becomes large. 
It is thus natural to aim for asymptotic results and for bounds connected 
with them. 

The Laplace transform of FN{L) is given through (2-14) and (2-15) 
above. The pole of fN{s) with largest real part is a pole of order N 1 

Vol (r) =0 if L ^ (k- 1) 5. 

l+[ LlS] r\k / 
Fo(L) = e-

xt E ^-( 
fc=o k ! \ 
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at a real negative point 

s = —a > —X. 

For large L, the asymptotic behavior is given by 

f aL 7 
tN{L) ^ (x _ a)[1 + g(x _ a)]Ar! ^ + g(x _ a)J , 

where the error term is OCZ/-1 e~aL) ft N ^ I. Such a formula, then, is 
a good approximation for fixed N as L increases; for fixed L, however, 
it will fail to be good for sufficiently large N. 

li N — 0, the asymptotic form is 

but the error term now decreases at a more rapid rate, as may be seen 
by including the contributions of some of the complex poles of /o(s). To 
find these poles, set 

I -V -V s + X = Xe 

If 

s = —X + r exp (id), 

one obtains the simultaneous real system 

2irm - 6 = 8r sin d (m integer), 

log (r/X) = — 5r cos d. 

The first equation defines an infinite family of curves in the s-plane (see 
Fig. 5). The second equation defines a single curve which intersects the 
family at poles of p(s). 

2.5 Bounds on Fo(L) 

As in Part I, we may derive bounds on Fa(L) from the integral equa- 
tion, and obtain 

^ -aL-tn-VS ^ ^ -aL-la-W 

Since a = X25 + 0(52) for small 5, the bounds are very close if X5 is not 
too large. 
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Fig. 5 — Solution of s + X = Xe (' + x)J 

III COINCIDENCES BETWEEN tl POISSON PATTERNS 

3.1 Integral Equation 

In this part we consider n one-dimensional Poisson patterns and ask 
for the probability, F{L), that in the interval (0, L) no pair of points 
from different patterns are coincident. Unlike Part I, we now consider 
only the case in which all n patterns have the same density X. Let P{L) 
be the conditional probability, given that Pattern No. 1 has a point at 
L, that there are no coincidences in (0, L). 

If 0 ^ L g 5, P{L) = exp - (n - 1)XL. 

If 5 < L, 

P(L) = er^-^L ^1 + {n - i)xe-
X5 jf1, eu-1)X"P(y) dy^j 

by the same sort of argument used in Part I. Then F(L) will be given 
by 

F{L) = e-nXL (^1 +n\ enXxP{x) dxj. 
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3.2 Bounds and Asymptotic Formula 

The Laplace transform of P{L) is 

p(s) = {s + (w — 1)X(1 — e-("'k+«)s)j 1 (3_1) 

which has one real pole at a negative point s = —a, a < (n — 1)X. 
Again it is this pole which contributes the dominant term to both P(L) 
and F{L) for large L. We find 

•x —aL 
FiL) nU 

(1 + [(n — 1)X — a]8){n\ — a)' 

To bound P(L) by expressions of the form A exp( —aL) one finds 
that A > 1 will give an upper bound and 

A < 0 (n- l)x) 
e

X8 

will give a lower bound. The corresponding bounds on F(L) are of the 
form 

n\A \ —n\L i WXA —ai- 
1   ]e +— e 

rik — a/ nk — a 

3.3 Exact Solution 

As in Part II an exact formula for F{L) may be given as a finite sum. 
We now derive it from the Laplace transform, 

/(s) = (s + nX)_I (1 + nkp{s)), 

of F{L). We may use (3-1) to expand/(s) into the series 

if., ^ ((^ " l)Xe-(nX+s)a)<:\ 0, 
/(«) = i1 + WX 5 (s + (n — 1)X)*+1 J' (3-2) 

The identity 

(s + nky'is + in - l)k)-k~l 

i * , . . (3-3) 
= - E (-X)~fc+y(s + in - DX)-'"1 + i-ky^is + nk)-1 

X 3-0 

provides a partial fraction expansion for the A;th term of the series (3-2). 
Transforming (3-2) term by term with the help of (3-3) we find 

FiL) = e-nXL[-in - l)][L/SI+1 

+ ne-"-mL e' [ — (n -l)e^T E 1~X(L " ^ ■ 
k—0 3=0 J! 

This is the desired formula for FiL). 
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IV MULTIDIMENSIONAL PROBLEMS 

.ft.l Two-Pattern Lower Bound 

Wo now derive some results on the probabilities of no coincidences in 
some multi-dimensional situations. The simplest one is a lower bound 
for the case of two Poisson patterns. 

Theorem: Consider a d-dimensional region of volume V containing two 
Poisson patterns with densities X and n- Let S{8) he the volume of the d-di- 
mensional sphere of radius 5. The probability of no coincidences between 
the two patterns has the lower bound 

G , 

Proof 

Let the pattern with density X be called the X-pattern and the other 
the ^-pattern. Given any X-pattern of k points there will be no coinci- 
dences provided only that a certain region T contains no points of the 
^-pattern. T consists of all points of the volume V which lie in any of 
the spheres of radius 8 centered on the k points of the X-pattern. Since 
these spheres may overlap and may extend partly outside the volume 
V, we have 

volume of T ^ k S(S), 

and 

Prob (no coinc., given k points) = exp ( —^ volume of T) 

^ exp (- k/x S(5)). 

Since the number, k, of points of the X-pattern has the Poisson distribu- 
tion with mean XF the (unconditional) probability of no coincidences 
has the lower bound 

(xy)fc —xv -fc/iS(S) 
TTi C 6 

x-=o K! 

Summing the series one proves the theorem. Interchanging X and y in 
the theorem gives another lower bound. The one stated above is the 
better of the two if X < n- 

The difference between the lower bound and the true probability 
comes from two sources: (a) The overlap between the k spheres; this 
will be a small effect if \'S{28)V is small, and (b) the spheres which 
extend partly outside the volume F; there will be relatively few such 
spheres if only a small fraction of the volume F lies within distance 8 
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of its boundary. Hence in some cases the lower bound will be a good 
approximation to the correct value. 

It may also be noted that no real use was made of the spherical shape 
of the volumes S{8). If one wants to consider a point of the ^-pattern 
to be coincident with a point of the X-pattern if it lies in some other 
neighborhood, not of spherical shape, the same lower bound applies 
but with S{8) replaced by the volume of the neighborhood. 

4.2 Single-Pattern Lower Bound 

A similar derivation in the case ot a single Poisson pattern leads to: 
Theorem: Let a Poisson pattern of density X he distributed over a d-di- 

mensional region of volume V. Let S{8) be the volume of the d-dimensional 
sphere of radius 5. Then the probability of no coincidences is at least as 
large as 

e-xv\l + \S(d)}r,s{S). 

The theorem will follow from another bound which is slightly more 
accurate but much more cumbersome. 

Lemma 

In the above theorem a lower bound is 

/ [V/S(6)l \ 
e'"" ( 1 + xy + L ^ n [1 - jSW/V] . (4-1) 

\ k=1 rC! 3=1 / 

Proof of Lemma 

The probability sought is of the form 

(4-2) 
k '> ! 

where pk is the probability that, when exactly k points are distributed 
at random over F, there are no coincidences. To estimate pk , imagine 
the k points to be numbered 1, 2, ■ • • A- and placed in the region one at 
a time. If no coincidences have been created among points 1, j 
(which is an event of probability pj) the probability that the addition 
of point j + 1 creates no coincidence is just the probability that this 
new point lies in none of the j spheres of radius 8 centered on points 
1, The union of these j spheres intersected with the volume F 
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is always of volume ^ jS(8). Hence 

Pi+i ^ P>[1 - jSWV], 

or 

S 11 [1 - jSM/n (4-3) 
7=1 

When {k — 1)<S(5) > V the above argument fails because the later 
terms of the product are negative; in this case we use the trivial bound 
Pk ^ 0. Combining (4-2) with (4-3) the lemma follows. 

Once more the bound may be expected to be almost correct if X2F7S(26) 
is small and if most of the region V lies farther than 8 away from its 
boundary. The bound is also correct for non-spherical neighborhoods 
(see discussion of previous theorem). 

When 7/5(5) is large, the sum (4-1) is unwieldy. If we let H equal 
V/5(5), we may rewrite the typical term in the sum as 

n (1 - j/H) = H(H — 1) ■■ ■ (H — k + 1). 

If H happens to be an integer, this equals 

so that the complete sum (4-1) equals 

(. - ay. 

We will now prove that if // is not an integer, the sum always exceeds 
(4-4), so that (4-4) is a lower bound in all cases. We wish to prove that 

i "i+i fc 
1 + H r, H(H - i) •••(#- fc + !) ^ d + x)H (4-5) fc=l K\ 

for any positive H, in which event the theorem follows with 

x = ~ and H = 7/5(5). 
tl 

The inequality (4-5) will be proved by induction on [H]. If [H] = 0, 
then we are required to show that 

1 + Hx ^ (1 + x)" 
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for 0 tk H < 1 • This follows immediately from the concavity of 
(!+*)" . u L 

Suppose now that (4-5) holds for a value H. If we integrate both 
sides of (4-5) from 0 to .t, we obtain 

[H]+l k+1 (1 _l_ r)U+1 — 1 
.+ + +

H>+1 , 

which may be rewritten as 
[ff+l]+l k 

1+ X; r-.W + 1)(H) ■ ■ ■ (H — k + 2) (1 + a:) . 
k=i k! 

This completes the induction, and the proof of the theorem. 

4.3 Another Lower Bound (Any Number of Patterns) 

Another kind of lower bound can be derived which sometimes will 
be better than the above bounds when the region V has a large fraction 
of its volume within 5 of the boundary. For example, V might be a 
three-dimensional circular cylinder (a cable) with a radius which is com- 
parable to 5. 

To derive this bound one first finds the expected number, E, of co- 
incidences in V. An upper bound on E will also suffice. Then it is noted 
that 1 — A1 is a lower bound on the probability of no coincidences. For 
if Qn is the probability of finding N coincidences, 

A = X) NQ» ^ L <3* = I - Qo . (4-6) Ar=i 

4-4 Thick Cable 

For example, we now give a lower bound which is of interest in con- 
nection with the problem of a cable with many wires. 

Theorem: Let a Poisson ■pattern of points with density X be plated in a 
cylinder of length L and radius R > 8. The probability of finding no co- 
incidences in the cylinder is at least as great as 

1 2 2 (2R28z Rrf 85\ 

Proof 

Introduce cylindrical coordinates r, <p, Z so that the cylinder is de- 
scribed by 

r ^ R, 0 ^ Z ^ L. 
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Consider first any pattern point (r, <p, Z) with Z-coordinate satisfying 
8 ^ Z ^ L — 8. Let arrows be drawn from this point to all other pat- 
tern points (if any) within distance 8. The expected number of arrows 
drawn from this point will be \G(r) where G{r) is the volume of the 
intersection of the cylinder with a sphere of radius 8 centered at the 
point. For points near the ends of the cylinder (Z ^ 8 or L — 8 ^ Z), 
the expected number of arrows will be less than \G(r). Since the proba- 
bility of finding a pattern point in a little volume element dV is \dV, 
we conclude that the expected number of arrows drawn in the entire 
cylinder will be less than 

If the cylinder has N coincidences, there will be 2N arrows (each point 
of a coincident pair appears once at the head of an arrow and once at 
the tail). Hence the expected number of coincidences is 

Since an exact formula for (j(r) is rather cumbersome, we are content 
with a simple but close upper bound. If r ^ ft — 5 then clearly G{r) = 
4x53/3. If r > ft — 5 we get an upper bound on G{r) by computing the 
shaded volume in Fig. 6; the intersection of the sphere with a half-space. 

Substituting these expressions for G{r) in (4-7), integrating, and using 
(4-G) the theorem follows. 

The approximation to G(r) which was made above is bad when ft is 
much less than 5, but in this case good estimates may be obtained from 
the one-dimensional results of Part II. Note also that if X is large enough, 
the bound becomes negative and is therefore useless. 

Ill dV- 
cylinder 

(4-7) 

G(r) ^ [253 + 3(ft - r)82 - (ft - r)3] x/3. 

PLAN 

.^-CYLINDER 

Fig. 6 — A region for estimating G(r). 
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4-5 Upper Bounds 

Good upper bounds appear even harder to get than lower bounds. 
One procedure is to divide the region V into a number of smaller cells. 
If each cell has probability, p, of no coincidences and if there are K 
cells, then pK is the probability of no coincidence in any cell. If there is 
no coincidence in V there will be none in any cell; hence pK is an upper 
bound on the probability of no coincidence in V. 

Of course, pK is too large because of the possibility of a coincidence 
between two points in different cells. It follows that ph will be a close 
bound only if the cell size is made large; but then p becomes hard to 
compute. 

For example, consider self-coincidences in a single Poisson pattern in 
a large region of area V in the plane. Cover this area with an array of 
hexagonal cells of side 5/2 as shown in Fig. 7. The area of each hexagon 
is 3\/3 52/8 so the number of cells used will be about K = 8F/3\/3 52. 
A cell has no coincidence if it contains at most one pattern point, hence 

p = (1 + X3V3 52/8) exp - 3\/3 X52/8. 

The upper bound is 

3 \/3 , 

which has an interesting resemblance to the lower bound 

<rAK(l + 7rX5") 2-. r/xss 

Fig. 7 — Pattern for studying coincidences in a plane region. 
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4.6 An Exact Calculation 

The upper and lower bounds in Section 4.5 are not very close, largely 
because of the small size of the hexagonal cells. An improved upper 
bound may lie obtained using square cells of side 25. We can calculate 
p for small rectangular cells but only if we redefine our notion of coin- 
cidence in terms of square neighborhoods instead of circular neighbor- 
hoods. That is, points (.ri , yi) and {xi, yJ) are now considered coincident 
if simultaneously 

I Xi — X2 ( ^ 5, and \ yi — y^l ^5. 

The result we get is the only exact calculation of a non-trivial multi- 
dimensional coincidence probability known to us. 

Consider the rectangle 0^x^L,0^y^M with L and M both ^ 
25. If L is less than 5, two points are coincident if and only if their p-co- 
ordinates differ by less than 5. The problem then reduces to a one-di- 
mensional coincidence computation such as we gave in Part II. There- 
fore, suppose both L and M are greater than 5. 

There is probability 

{\LM)k —xljw 
(,k = fc! 6 

that the rectangle contains k points. We therefore subdivide the problem 
into cases of the form "given k, find the probability that the k points 
have no coincidences". Only five of these cases have a non-zero answer. 
To show this, divide the rectangle into four rectangles of sides L/2, M/2; 
if k ^ 5 one of these rectangles must contain more than one point, and 
so a coincidence. The remaining cases k = 0, 1, 2, 3, 4 may be further 
subdivided according to which pairs of .r-coordinates are less than 5 
apart. Let us number the k points (.ri , yi), • • •, (.r* , p*) in such a way 
that the .r-coordinates are in order Xi ^ .1-2 ^ ^ r* . If, for some i, 
r,+2 ^ Xi -t- 5, then the subcase in question contributes zero to the 
probability of no coincidences because all of | r, — r,+i |, | r,+i — rl+2 (, 
| rl+2 - Xi | are ^ 5 and at least one of | //,- - p.+x |, | p.+x - y,+21, 
| yi+2 — y, | is ^5. The only subcases which remain to give a non-zero 
contribution are the nine listed in Table I. The number in the "subcase" 
column is k. The next column contains the r-inequalities which define 
the subcase. The probability that the k ordered r-coordinates satisfy the 
stated inequalities is listed as probz . If the r-inequalities are satisfied 
there will be no coincidences if and only if | yt — i/a I > 5 for every in- 
equality | xi, — Xa | ^ 5 given in the r-inequality column. These p-in- 
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Table I 

Subcase x inequ. probx y inequ. proby 

0 — 1 — 1 

1 — 1 — 1 

2(a) X2 — Xi > 5 (i - 5/Ly — 1 

2(b) x* — Xi ^ 5 28L - 52 

L2 I Hi - l/i 1 > 5 (1 - S/M)2 

3(a) X2 — xi g 5 fd - 5/L)3 | 1/2 — 1/1 I > 5 (1 - S/M)2 

Xs — Xo > 5 

3(b) X2 — XI > 5 fd - 5/L)3 | 1/2 - 2/3 1 > 5 (1 - S/M)2 

3(c) Xt — Xi ^ 5 K1 - 5/L)2 (|5 - l) | 1/2 - 1/3 | > 5 §(1 - S/M)3 

Xz — X2 ^ 8 1 2/1 - 1/2 | > 5 

X} — xi > 8 

4(a) Xz — Xz ^ 8 HI - S/LV I 1/2 - 2/1 1 > 5 ^(1 - S/M)* 

X3 — Xi > 8 | 2/3 — 1/2 | > 5 

Xi — X2 > 8 | 2/4 - 2/3 I > 5 

4(b) X3 — Xi > 8 id - s/Lr I 2/2 - 2/i 1 > 5 (1 - S/M)* 

| 2/4 - 2/3 1 > 5 

equalities are listed in the third column and the probabilities that they 
are satisfied are fisted as prob„. The probability of no coincidences is 

X) gk probx prob„ 

where the sum is over all nine subcases. The sum is 

exp (— \LM) |l + \LM + [L'M2 - 52(2L - 8){2M - 8)] 

+ — (L — 8)2{M - 8)2(2LM + L8 + M8 - 452) 
27 

+S(l-5)4(m-s)1- 

If L = M = 28, this reduces to 

exp (—452X) j^l + 45JX + ^ 54X2 + ^ 66XJ + ^ 58X4J . 
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A sample of one of the above computations may be instructive. Con- 
sider, for example, Case 4(a). We have 0 5S Xi ^ Xo ^ .T3 ^ .1-4 ^ L, 
and require: 

*3 - X2 ^ 8, 

X3 — Xi > 8, 

Xi — .To > 8. 

The probability of this is 
rL *L—6 /1X3—6 pL 

(L4/8)_1 / / / / dxi dxi dxo dx3 *'X3=5 •'j'2as-c3~5 Jxi=0 »'X4=X2+5 

8 fIj 

= 77 / / (L — T2 — 5) (.Ts — 5) dxg dxz ■Lj JX3'=S •'I2=X3—3 

8 (L - 5) 
L4 24 ■-K-i)' 

In the 7/-direction we require 12/2 — 2/11 > 5, 12/3 — 2/21 > 6, 12/4 — 
2/3 ( > 8, and there are no order restrictions. Assume first that 2/2 < 2/3 • 
Then the probability that 2/1 and 2/4 satisfy their restrictions is 

Hence, the probability for satisfying all the conditions is 

r r~s (y* - ^ (M - y* - 8\ ^ ^ = A _ i.Y 
Js Jo \ 4/ /\ M /MM 24 V m) ■ 

Interchanging 2/2 with 2/3 and 2/1 with 2/4 shows that the assumption 2/2 > 
2/3 yields the same answer, so that the required probability is 

_ ±Y 

V NUMERICAL WORK 

5.1 Coincidences between Two Patterns 

5.1.1 Machine Computation of F(L) 

To compute the probability of no coincidences in a line of length L 
directly, it is convenient to transform equations (1-2) through (1-4) into 
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the following differential difference equations: 

[0 if .r ^ 5 
Pl'{x) + fiP^x) = 

Pi'(x) + XP2(.r) = 

lP2(.x- - 6)MC-(X+M)i 

10 if x fS 5 

[P^x - 

F'{x) + (X + n)P(x) = XP i(.r) + nPi(,x), 

Pi(0) = P2(0) = P(0) = 1. 

if x > 5, 

if x > 5, 

These have been solved on a general purpose analog computer with 
the aid of a lumped-element approximate delay line for a number of 
cases. We have chosen for illustrative purposes the parameters X = 5, 
fi = 10, S = 0.02, and L ^ 1. The exact solution, together with various 
approximations to be described in the sequel, is plotted in Fig. 8, where 
the exact solution is labelled //i. 

y, = EXACT SOLUTION 
yz= ASYMPTOTIC SOLUTION 
y3= LOWER BOUND 
y4= UPPER BOUND 
y5= DISCRETE MARKOV BOUND 

1.0 

0.9 
y4 

0.8 

0,7 

0.6 
y,&y3 

0.4 

P 0.3 

0.2 

0.1 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.9 1.0 

Fig. 8 — Probability of no coincidences between two one-dimensional Poisson 
patterns with X = 5, /* = 10, if 5 = 0.02. 
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5.1.2 The Asymptotic Formula 

An approximation to the probability Fix) of no coincidences is given 
by the asymptotic formula (1-10) which, of course, becomes a better 
approximation the larger L becomes. If X = 5, m = 10, and 8 = 0.02, 
the smallest value, a, such that 

(X - a) (/i - a) = X/ie~2(X+'i_a,a 

is a = 1.548. The asymptotic formula for F(L) now becomes 

F(L) « 1.013e~1-548L, 

which is found in Fig. 8 as ?/2. 

5.1.3 Bounds Using the Asymptotic Exponent 

Formulas (1-12) through (1-18) give a scheme for computing both 
upper and lower bounds for F(L) which have the right behavior for 
large L, and also agree with the solution at L = 0. They become 

F(L) ^ l.OOTe"1'5481, - 0.007e_15A, 

and 

F(L) ^ l.lOSe-1,5481, - 0.195e_15L, 

respectively, and are represented by y^ and y^ in Figure 8. 

5.1.4 An Upper Bound by a Discrete Markov Process 

If we mark on the positive .x-axis the points nb/2, n = 0, 1, 2, • • •, 
we can assign to each interval of length 5/2 thus created a state {ij), i, 
3 = 0 or 1, as follows: t = 0 if no point of the X-process is present in the 
interval, f = 1 if one or more points of the X-process are present, and 
similarly for j and y. An interval of length 5, made up of two adjacent 
intervals of length 5/2, may then be represented by a number between 
0 and 15 in binary notation, where 3, 6, 7, 9, and 11-15 represent a 
coincidence within the interval of length 5. We now define a Markov 
process as follows: in the interval 0 ^ ^ < 5, let p/0*, i = 0, 1, 2, 4, 5, 
8, 10, be the probabilities of occurrence of the zth state, so that, for exam- 
ple, po<0) = e^V2"4, and p/0' = e^V^l - e""4). These are the 
states in which there is no coincidence in (0, 5). In addition, let qm 

represent the probability of all the other states put together; i.e., of a 
coincidence in (0, 5). We now define p1

U), i = 0, 1, 2, 4, 5, 8, 10 as the 
probability of the fth state in the interval {nb/2, (n + 2)5/2), where we 
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require in addition that all states in the intervals {l-b/2, (k + 2)6/2), 
k < n, are from the same "no coincidence" index set. We define q as 
the probability of a state 3, G, 7, 9, or 11-15, in some interval (A-5/2, 
(Jc + 2)5/2), k ^ n. There are then transition probabilities from states 
in the n - lat to states in the nh interval. For example, 

(n) _ (n-l) , „ (n-D i „ ("-!)> 
Po"*' = e -c + p/n-1, + TV"-1'). 

and 
-X5 

)(1 " « 
-pi i)(potn~1, + Pi""1' + Ps"'1') gM = q(n~l) + (! _ e 

+ (1 - e'^ip^ + p^-") + (1 - ^(P^-1' + Plo(n'1,). 

The quantity 1 — g1"' is then an upper bound for the probability of no 
coincidences (upper because it is possible for a coincidence to occur in 
the process which is not counted in this subdivision of it). The curve 
ps in Fig. 8 is drawn through points at L = n6/2 computed in this 
manner. 

To summarize the results, we see that the asymptotic formula and 
the lower bound are both indistinguishable from the right answer; the 
upper bounds are fairly far off. The upper bound derived by the Markov 
process is better than that derived from the integral equation until 

in 0.8 

u z 
5 0-6 
o 
o z 
IL o 
> 0.4 

  

Pk 

V' 

s^CORF ECT 
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Fig. 9 — Probability of no coincidences in a 2d X 2s square; neighborhoods are 
square. 
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about L — 0.5 (25 iterations), when the integral equation upper bound 
becomes better. 

5.2 A Single Pattern in a Square 

ro test our higher-dimensional bounds, we consider again coincidences 
in a single Poisson pattern in a square of side 25. The exact probability 
ot no coincidences was given in Part IV assuming square neighborhoods. 
The lower bound (Sec. 4.2) 

applies using I = (25)" and *§(5) = (25)" for square neighborhoods. To 
use the lower bound I — E we note that the exact expected number of 
coincidences is 

where A {x, ij) is the area of the intersection of the given square with 
the square neighborhood centered at (.r, y). The lower bound is 1 - 7? = 
1 — 9X254/2. The upper bound pK can be used if the square is cut into 
/£ = 4 squares of side 5, each with a probability p = (1 -|- X52) exp - 
X52 of no coincidence. 

These bounds, together with the exact probability, are plotted as 
functions of X52 in Fig. 9. When X52 is small, the \ — E bound is correct 
to terms of order 0(X356). This might have been predicted from (4-6) 
since it seems reasonable that Q2, Qa, • • ■ should be of higher order in 
X than Qi when X is small. Ultimately the first lower bound becomes a 
better estimate. It must be recognized that this other lower bound is 
being tested under very severe conditions. Since every point of the 
square has a neighborhood which intersects the boundary, the errors 
from source (b) of Part V are considerable. 

The authors wish to thank D. W. Hagelbarger and H. T. O'Neil for 
their assistance in the course of the calculations reported in this section, 
and Miss D. T. Angell for preparing some of the figures. 
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