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This issue of The Bell System Technical Journal is devoted 
to a selection of articles dealing with various phases of math- 
ematical statistics and quality control. The Editorial Board 
and Editorial Staff of the Journal present this "all statistics" 
issue in the belief that the growing importance of statistics 
to communication technology warrants the simultaneous pub- 
lication of these articles. 

The Editors are pleased to include in this series of papers on statistical 
subjects one by Dr. Walter A. Shewhart whose pioneering work in statistical 
quality control has served as an impetus to under use of statistical methods 
in the Bell System. This paper, which dates hack to 1935, was one of a series 
of internal technical memoranda of the Quality Assurance Department of 
the Bell Telephone Laboratories, Inc. It was prepared by Dr. Shewhart in 
the course of a series of departmental group discussions having to do with 
the development of the fundamental philosophies of quality control and 
quality assurance. 

Nature and Origin of Standards of Quality 

By W. A. SHEWHART 

(Manuscript received September 25, 1957) 

This paper discusses the importance, from the viewpoint of judging 
quality, of: the end to be served by a standard of quality; the nature of the 
accepted binding force of the standard upon the acts of those interested in 
the standard; and the role of the judge of quality in shaping the standard in 
terms of natural law, authority, specification, custom, and precedent. 
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I. OBJECT 

The control of quality of manufactured product involves three co- 
ordinate functional steps: the specification of the aimed-at standard of 
quality; the production of pieces of product that will be of standard 
quality; and the determination of whether or not product thus made is 
of standard quality. These three steps are respectively legislative, execu- 
tive, and judicial in character. The object of this paper is to consider the 
nature and origin of standards of quality from the viewpoint of judging 
the quality of product. 

Such a judgment as herein considered is made the basis of one or the 
other of two kinds of action: (1) the acceptance or rejection of a piece 
of a given kind of product for service; and (2) the adjudication of a 
complaint about the quality of a piece of product in service. The two 
judgments are of the type: Ja — this piece of product (or this lot of N 
pieces of product) is (or is not) of standard quality, and J a — this piece 
of product (or this lot of N pieces of product) was (or was not) of stand- 
ard quality. In either case, it should be noted that the judgment is 
rendered in respect to the quality of a piece of product that is already in 
existence at the time the judgment is rendered — it is a judgment after 
the act of specifying and after the act of making the piece of product in 
question. This problem of judging the quality of a piece of product after 
it is made is definitely different from the legislative problem of specify- 
ing prior to the making of a piece of product what its quality should be 
in the light of information then available; and different from the co- 
ordinate executive problem of making a piece of product that will have 
the standard quality. 

Judgment, in the sense here used, implies a comparison of the quality 
of a piece of the given kind of product at some particular time with the 
standard for the piece at that time in the light of the evidence then 
available. If it were possible to specify completely and in an opera- 
tionally definite and verifiable sense the standard of quality for things 
of a given kind, and if it were possible to specify the operational tech- 
nique that would determine with certainty whether or not the quality 
of a given thing was that specified, the problem of judging would be 
routine in nature. But neither of these operations is possible. Hence in 
judging the quality of product, we must take account of the fact that a 
standard cannot be specified in this rigorous sense and that the practical 
standard of quality is determined not alone by written specifications of 
the quality characteristics prior to the making of a particular piece of 
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product hut also by natural law, authority, custom, and precedent, 
existing at the time the particular piece of product is being judged. In 
other words, the quality judge is not, as it were, handed a standard of 
quality already made with which to compare the quality of a given piece 
of product. Instead he is only handed the stones with which to build 
such a standard. Through his interpretation of specifications, custom, 
precedent, natural law, and authority, the quality judge in a sense 
gives operational meaning to the standard of quality in much the same 
way that a judge gives operational meaning to the law of the land, 
whether it be statutes, custom, precedent, or constitution. 

Obviously, therefore, before a quality judge may render a judgment 
of either type JA or Js , ho must "determine" the standard that is to 
be used. But what is there to guide such determination? It goes without 
saying that he is not free to act as he pleases. In what follows we shall 
see how the acts of the quality judge in determining the standard depend 
upon: (a) the intent of the standard; (b) the nature of the binding force 
that the standard is presumed to have upon those concerned; and (c) 
the available source or sources from which a standard must be derived. 

To begin with, we shall consider the nature of a standard of quality 
as a means to an end, as this will give us a background for considering 
in turn the binding or constraining force of a standard upon the acts of 
those making use of it and then the origin of a standard in natural law, 
authority, specifications, custom, and precedent. 

II, STANDARD AS MEANS TO AN END 

Dr. Gaillard of the American Standards Association defined a standard 
as: "A formulation established verbally, in writing or by any other 
graphical method, or by means of a model, sample or other physical 
means of representation, to serve during a certain period of time for 
defining, designating, or specifying certain features of a unit or basis of 
measurement, a physical object, an action, a process, a method, a prac- 
tice, a capacity, a function, a performance, a measure, an arrangement, 
a condition, a duty, a right, a responsibility, a behavior, an attitude, a 
concept, or a conception." 

This definition stresses one important characteristic which is com- 
monly attributed to a standard, namely, that it is something fixed. The 
definition of standard here is very broad indeed; it would seem to include 
the rules of mathematics and formal logic, the rules of syntax of a 
language, and even legal statutes. In fact, it also includes social mores 
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assumed policy objective of production, any evidence which may have 
come to hand, particularly in the processes of production, inspection, and 
analysis of complaints, indicating the present specifications to be incom- 
plete in that they do not include requirements on certain variables 
which it seems desirable to control. Quite naturally such requirements 
will sooner or later find their way into specifications, but the quality 
judge must, insofar as possible, act in accord with what he considers to 
be potential changes if the policy of accepting only quality that may 
reasonably be expected to be satisfactory, adequate, dependable, and 
economic is to be met. In other words, the quality judge must fill in the 
gaps in existing specifications in so far as new evidence obtained since 
such specifications were written would indicate to be reasonably de- 
sirable. 

(b) If the quality judge is to accept the theory that a specification is 
but a means to an end and is to take account of the fact that the justi- 
fication of a specification rests upon an ever-changing body of evidence, 
it is necessary for him to use discretion in judging quality of product to 
be either acceptable or rejectable upon the basis of specifications alone. 
In other words, certain non-conformance cases may arise in respect to 
specified quality characteristics which may have under certain condi- 
tions little effect upon the experienceable quality of such equipment in 
use. In such a case it may likely be uneconomical on the part of all con- 
cerned to reject such product. Such action on the part of the quality 
judge is not, as it were, ignoring a specification but rather making a judg- 
ment upon evidence which was not available at the time the specifica- 
tion was written. 

(c) If any one of the four items in Sxi and S y,- are omitted in the 
written specification, it is necessary that such be supplied by the quality 
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ment should lie if it is to be that which he believes will prove to be 
wanted. True enough, he is likely to give weight to the data constituting 
his previous experience of production methods which indicates limits 
within which variability may be expected under production. Obviously, 
however, such evidence is likely to be very meagre indeed as compared 
with the cumulative evidence obtained after production starts. Ex- 
perience shows that there is an economic limit to the allowable varia- 
tion in the quality of product turned out in a given process. In other 
words, it is often found that it is more economical to discover and 
eliminate assignable causes of variation of quality than it is to leave 
these in the production process and reject that portion of the product 
that does not meet the required limits. The quality judge has an im- 
portant role to play in devising techniques which will indicate the 
presence of assignable causes and of using these in helping the production 
department to establish economic control limits which serve as standards 
for future production. 

(e) We now come to what is perhaps the most important r6Ie of the 
judge of quality in giving operational meaning to a specification. Even 
though an operationally definite and verifiable meaning of quality is 
given in the specification, there are two reasons why it is often necessary 
to resort to sampling in order to determine whether or not quality 
meets the specification: (a) it is often uneconomical to give 100 per cent 
inspection, particularly where defective parts would be weeded out in 
final assembly or at the time of installation, and (b) it is often not 
feasible to give 100 per cent inspection because of the destructive nature 
of the method of verification of the quality, as, for example, in testing 
the tensile strength of materials and the blowing current- for fuses. In 
such a case the quality judge must supply an inspection" specification 
which will insure the following two things: (1) that a satisfactory amount 
of data or evidence will be accumulated upon which to render judgment 
as to the nature of the quality of the unsampled portion of the lot, and 
(2) that an operation will be indicated to determine whether or not it 
should be rejected whenever the degree of belief in the satisfactoriness 
of the unsampled portion of the lot upon the basis of evidence thus ac- 
cumulated is insufficient to justify the acceptance of the lot. The ques- 
tion, How much data?, depends in general upon the degree of economic 
control of quality previously obtained and hence the inspection operation 
specified must be such that it keeps abreast of the continual supply of 
information obtained in the process of inspecting product if such an 
operation is to give adequate assurance of quality at a minimum of cost. 

We are now in a position to turn our attention to a consideration of the 
nature of the binding force of specification. In the first place, a specifica- 
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fcion may be made the basis of a contractual agreement between two 
parties, in which case it takes on certain legal as well as moral binding 
force characteristic of a contract. One of the conditions usually assumed 
for the validity of a contract is that the two parties to the contract be 
cognizant of the contents thereof. Of course, in many instances specifi- 
cations of quality are extremely involved from a scientific and engineer- 
ing viewpoint and hence it is to be expected that parties to a contractual 
agreement involving highly technical specifications of quality must be 
capable of arriving at a common meaning of such specifications. This 
limits the field in which technical specifications may be made the basis of 
valid contracts. The second source of binding is, of course, the require- 
ment that the quality accepted as meeting the specifications be judged 
in the end as satisfactory by those making use of the product. In this 
case, however, we should note that the binding force is not so much that 
requiring that the quality of product meet the specifications as it is that 
requiring that the quality be found in the end to be satisfactory by 
those making use of the product. In this case, however, it must not be 
overlooked that there is a growing tendency on the part of the majority 
of users of most kinds of goods to place reliance upon the judgment of 
men or groups of men whom they accept as being technical authorities, 
such, for example, as national or international standardizing commit- 
tees. 

In the third place, as previously noted, a producer is sometimes bound 
because of his own future interests to adhere to a specification even when 
such adherence would not be demanded at the time by those whose 
wants the quality is supposed to satisfy. For example, the appreciation 
of high quality often comes through experiencing high quality. One who 
has never heard what a technician would consider to be good music, 
good quality of radio transmission, good quality of telephone transmis- 
sion, or good quality of some musical instrument, might never have the 
desire to experience such. Progress, therefore, often comes by living 
up to a specification of quality even beyond the limits wanted by the 
majority of those concerned at a given time. In other words, the pro- 
ducer's1 personal interest is often more binding than either or both the 
bindingness of a specification made a part of a eontractural relation and 
the immediate interests of the consuming group, if he is to lead the way 
in evolving standards that will later be wanted by the majority. 

4.4 Custom 

All of us are more or less creatures of habit; all of us are more or less 
influenced throughout life by the habits and the common methods of 
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acting of those around us. We early learn that society always takes a 
revenge of one form or another for a breach of any of its common ways 
of acting and hence as members of any group we feel more or less bound 
to follow the conventions of that group. For example, in our methods and 
means of communicating one with another, we are bound to a large ex- 
tent to the customary use of symbols, either written or spoken. Even 
the meaning of a written specification of quality so far as the majority 
of a group or society is concerned inherently depends to a large extent 
upon the customary interpretation of words and other symbols used 
therein. It is to be expected that custom should play a part in the pro- 
duction of standards. Thus a long while before the development of 
written specifications of standards of quality there existed unwritten 
standards, as it were, fixed by the customs of certain groups. At least 
the meaning of certain words was sufficiently common to members of a 
group to enable the interchange of goods. 

With the development of mass production practices first introduced in 
the eighteenth century, there has grown up an ever-increasing apprecia- 
tion of the economic advantages to be attained by securing a high degree 
of unifonnity in the quality characteristics of a given kind of thing. It is 
significant for what follows that there exist at least three ways in which 
customary quality may differ from specified quality in such a way as to 
constitute a part of the standard which is inherently binding upon the 
group. 

In the first place, a given kind of product produced over an extended 
period of time in considerable quantities may exhibit a uniformity in 
quality characteristics not specifically expressed in the specifications of 
the form (ST, and S n • In the second place, one or more quality charac- 
teristics may be specified to have magnitudes lying within a definite 
range although experience has shown that over a certain period in the 
past in which many pieces of this kind have been produced the magni- 
tudes of the particular quality characteristics thus specified have differed 
from their specified values but in a way which has been acceptable from 
the viewpoint of use. For example, take the case where the production of 
a new kind of product is started in which the specification of one of the 
important quality characteristics, such as length of life, is that it shall 
not be less than some specified value. Let us assume that N pieces of this 
kind of product have been made and put into service and that the ex- 
perience thus obtained shows that the lengths of life of these N pieces of 
product have been distributed uniformly about an average length L 
considerably above the specified length S. Particularly if the number N 
of pieces of this kind of product that have gone into service is large and 



20 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958 

if those making use of this kind of thing come to expect an average life 
of approximately L, even though the specification simply calls for a life 
not less than S, most producers would feel_bound in certain ways to 
maintain a quality not assignably less than L. It is quite likely, to say 
the least, that some consumers of this kind of thing might feel justified in 
registering a complaint if they should find in the future that the length of 
life of this kind of thing was significantly lower than L even though it 
did not fall below S. In the third place, even though no specific mention 
is made of the fact that in the specification, users of a given kind of 
product may reasonably expect that observed variability in the quality 
characteristics specified should be no larger than that which for economic 
reasons should be left to chance. For example, consider the class of users 
of a given kind of thing such as an automobile. If we find upon compar- 
ing notes with our neighbors or others using the same make of car that 
ours differs from theirs in a way which we consider undesirable, we are 
likely to feel like registering a complaint. 

In rendering quality judgments the quality judge must take into ac- 
count at least these three ways in which custom may effectively consti- 
tute a part of the standard of quality binding in a given case. In fact, 
he not only must take into account custom in certain instances but in 
fact, as we have seen in the previous section, he must also in certain ways 
help in establishing custom, as, for example, in the analysis of results of 
inspection and the determination of economic limits of variability. 

The ultimate source of binding force in maintaining uniformity is quite 
naturally the consumer's desire for uniformity. Such a common want, 
however, is in a certain sense potentially of legal binding in the sense that 
many statutes as well as common law have their origin in custom. In 
any case, the degree of binding depends among other things upon: the 
available evidence of the existence of a custom; how long and how con- 
tinuously it has existed; whether or not the custom has been peaceably 
enjoyed; to what extent those affected have regarded it a duty to follow 
the custom; and whether or not the custom in question is consistent 
with all other accepted customs. 

4.5 Precedent 

To begin with, it is desirable to clarify the distinction here made be- 
tween custom and precedent. Custom, as we have seen, is of the nature 
of an established practice that has more or less gradually come into 
existence. Precedent, on the other hand, arises in the judgment in re- 
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spect to the quality of product that has already been produced as to 
whether or not it is or was of standard quality. Precedent arises, in 
other words, in the finding of the quality judge. If it were feasible to 
write specifications of quality that were ideally necessary and sufficient 
for satisfaction, adequacy, and dependability at an economic cost, and 
if it were feasible to determine with certainty whether or not the quality 
of a given article met such specifications, there would be little, if any, 
occasion to consider the role of precedent. Since, however, this is not 
feasible, there are three types of judicial findings which are important 
in quality control. 

Cases of non-conformance with specified requirements are bound to 
arise where the information available at the time justifies the judge of 
quality in concluding that, under the specific conditions existing in the 
case, the quality, even though non-conforming, is acceptable. Likewise, 
conditions are bound to arise where, oven though the quality of a given 
thing does conform to specifications, it may not be acceptable. This 
follows at once from the fact that we are not able to state the necessary 
and sufficient quality requirements. This class of precedent arises as a 
natural consequence of looking at a standard as a means to an end, rather 
than as an end in itself. 

Just as common law arises for the most part in the judicial recognition, 
interpretation, and formulation of custom, so also does the effective 
control of custom in standardization come about through the recogni- 
tion, interrelation, and formulation of custom on the part of the judge 
of quality. Thus judicial declarations or recognitions of the existence of a 
custom constitute another source of precedent. In quality control one 
of the very important examples is the judicial decision as to whether or 
not a custom has been established with regard to the degree of varia- 
bility which should be left to chance. 

A third source of precedent is interpretation; first, interpretation of 
the operational meaning of a standard even in so far as it is specified; 
second, interpretation of the sampling technique required in order to 
give adequate information upon which to render a judgment; and third, 
interpretation of the rales of judging and interpreting evidence as to the 
quality of product. 

V. CONCLUSION 

The practical meaning and significance of a standard of quality is 
largely determined by the end which it is supposed to serve in use and by 
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the nature and degree of the binding force or sanction accorded it by the 
group interested in or affected by the standard. The standard itself may 
originate in one or more of the five sources: natural law, authority, speci- 
fication, custom and precedent. In any case the judge of quality is not 
handed a standard ready made with which to compare the quality of 
any given kind of manufactured goods — instead he of necessity plays 
an important role in shaping and determining the standard as derived 
from these sources. 



Contribution of Statistics to the Develop- 

ment Program of a Transformer for 

the L3 Carrier System 

By G. J. LEYErSTBACH 

(Manuscript received August 20, 1957) 

Statistical methods played a significant part in the development program 
of the L3 system. Experiments were designed to assist in improving the 
manufacture of the input and output transformers of the amplifiers. De- 
tailed analysis of a few of these experiments is presented. 

1. INTRODUCTION 

In previous issues of The Bell System Technical Journal the 
problems in design, development and manufacture that were encountered 
in building the L3 coaxial carrier system are described. This system 
provides 1,860 one-way telephone channels or 600 one-way telephone 
channels plus one TV channel over each coaxial tube. The L3 system is 
capable of transmitting a television signal over a distance of approxi- 
mately 1,000 miles and telephone signals, approximately 4,000 miles. 

From the start of the development program, statistical methods have 
played a significant part. Special acceptance procedures have been set up 
to assure that the shipped product would meet certain distribution re- 
quirements.1 Control chart techniques were generously applied both in 
the manufacture of component parts and for subassemblies.2 This paper 
gives in part a case history of one of the difficult components. The view- 
point is that of the experiments designed to overcome difficulties in the 
initiation of the manufacturing process and to explore possibilities of 
improvement of the component. 

A detailed discussion of the present manufacturing techniques of this 
component, the input and output transformer of the amplifier, has al- 
ready been presented by Earle.3 That paper will be used freely to pro- 
vide the technical details and pictures necessary for an understanding of 

23 
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the experiments. No basically new statistical designs were employed in 
this development. The main interest lies in the fact that these experi- 
ments together with the engineering design and the manufacturing opera- 
tions, including the appropriate process controls and inspection tech- 
niques, were integrated in the development program. 

An endeavor is made in this paper to point out the logical link between 
the statistical analysis and the engineering consequences. Advantages 
of the use of statistical methods in experimental work are as follows: 

1. In designing an experiment (the adjective "statistical" will be im- 
plied from now on), the type of analysis to be performed on the data is a 
major consideration from the start. In some experiments one might wish 
to determine one or several of a larger number of factors which have an 
important effect. In this case the analysis should yield a statement about 
the significance of the effects of the operating factors, with a predeter- 
mined small risk of being wrong. In other cases one looks for quanti- 
tative measures of one or more properties and then the statistician will 
estimate intervals within which, on the basis of the experimental results, 
one can expect with a high probability, the true (unknown) value of these 
measures to lie. 

2. Under the limits set by the requirements in the preceding para- 
graph the design will be such that the experimental effort is minimized. 

3. The design will take into account the adverse effects on the preci- 
sion of the experiment caused by known ambient conditions which are 
not completely under control of the experimenter. 

4. In so far as possible, safeguards against effects from unknown fac- 
tors will be incorporated in the designs. 

The preceding points require that quantitative notions be intro- 
duced as much as possible, not only for the things measured but also for 
the operating factors and disturbances. The experimenter and the stat- 
istician try to agree on a statistical model, describing the expected 
behavior of the physical items in the experiment. Given the model, the 
statistician can suggest experimental arrangements, in an efficient way 
with respect to the experimental effort, which should yield reliable in- 
formation about the problem at hand. 

In many cases it turns out, when the observations become available, 
that the model has to be modified or that the experiment has not been 
performed according to the design. This usually increases the burden on 
the analysis. It happens occasionally that the data do not show definite 
results, and further experimentation is needed. In that case the careful 
statistical analysis might yield clues in what direction to proceed as well 
as useful quantitative information about disturbing factors, experi- 
mental errors, etc. 
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It has been pointed out that a difference between agricultural and in- 
dustrial experiments lies in the time factor involved.4 Extension or repeti- 
tion of agricultural experiments is in most cases only possible at yearly 
intervals. In industry the time schedule is much less restricted. There- 
fore it pays to use involved designs in agriculture even at the cost of com- 
plex analyses. Where it is comparatively easj'" to start a new or partly new 
experiment, complexity may be too high a price to pay. Moreover when 
experimentation goes on parallel to a production process, speed in obtain- 
ing the results of an experiment is of prime importance. Simplicity of 
design is also valuable when the underlying model is not yet well under- 
stood, as in the early stages of exploratory development. 

In the early stages of the manufacture of a complex component, the 
actual specification has to be written on the basis of the results on a com- 
paratively small number of samples. It can hardly be expected that 
these samples are fully representative of the production items which 
will be manufactured. Nevertheless the design engineer will have to 
determine workable limits to give the manufacturer the opportunity to 
get his production rolling without producing too many items not accept- 
able for use. In the L3 system, studies of the over-all requirements of 
the system had indicated in which way they had to be broken down into 
the requirements for the components and subassemblies in order to as- 
sure satisfactory operation. In the case of the transformer under discus- 
sion the electrical transmission requirements were more or less fixed. It 
was the task of the design engineer to translate these requirements into 
mechanical tolerances which could be controlled during manufacture. 
On the basis of the equivalent diagram (Fig. 1) for the transformer, ex- 
tensive calculations had been made to determine the relation between 
the variations of the electrical parameters and the over-all transmission 
response.5, 6110 Each of the electrical parameters as shown in Fig. 1, a 
simplified picture of the equivalent diagram, does not necessarily cor- 
respond to a discrete part of the physical transformer, but the diagram 
can be considered to represent a model, which lends itself to mathemati- 
cal treatment. Mathematical considerations, statistical or otherwise, on 
the basis of the model, help to establish the mechanical requirements 
for the manufacture, as will be shown later. 

A few of the experiments performed to quantify the underlying rela- 
tionships will be presented in a logical order. Although, through the pres- 
sure of circumstances, the actual experiments did not proceed in a 
strictly orderly fashion, the general line of experimentation was that 
described in this article. Production was progressing in parallel with 
this experimental program and, as described elsewhere,2 control charts 
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showed several assignable causes of variation in the parameters, which 
were removed by improvements in manufacturing techniques. 

The experiments selected to illustrate the development program will be 
discussed in some detail. In terms of their most important results these 
experiments can be described as follows: 

1. Pinpointing the input and output network (Fig. 2) as the major 
source of variation. The transformer (Fig. 3) is the main component in 
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Fig. 1 — Coupling networks circuits, (a) Physical elements, (b) On ground 
equivalent circuit, adequate for gain and feedback computations in an amplifier 
configuration employing ground coupling networks. 
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Fig. 3 — Transformer and separate inner and outer winding forms with wind- 
ings. 
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these networks so that subsequent experimentation was concentrated 
on the transformer. 

2. Determining the required manufacturing limits for the wall thick- 
ness of the outer winding form of the transformer, {Fig. 5,6). 

3. Determining the required manufacturing limits for the "cutback" 
of the shield under the outer winding of the transformer. (The term 
"cutback" will be explained later.) 

4. Comparing the over-all measured response of the complete amplifier 
with its predicted performance as based on a detailed knowledge of the 
components obtained from the designed experiments. 

II. FINDING THE NETWORK CAUSING MOST OF THE UNWANTED VARIATIONS 

From the first series of amplifiers manufactured, it appeared that the 
differences between the measured transmission gain curves for the various 
amplifiers were larger than could be tolerated. 

For this discussion it is sufficient to represent the amplifier as in Fig. 2. 
The blocks represent subassemblies which are mechanically designed 
so that a high degree of reproducibility in the location of the components 
and the connected wiring is achieved. It is therefore feasible to inquire if 
one or two of the subassemblies are responsible for the bulk of the varia- 
bility in measured gain. It is worth noting that the "large" variations 
are not large when compared to the capabilities of the measuring equip- 
ment. The over-all admissible amplifier gain variations are in the order of 
0.2 to 0.3 db corresponding to voltage variations of less than 3 per cent. 

FIRED 
OUTER 

Fig. 6 — Outer winding form and detail to show "wall thickness." 



30 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958 

Consequently, to be able to discriminate between the contributions of 
the individual components one must be able to measure reliably to as 
close as, say, 0.01 db, i.e., to detect voltage variations in the order of 0.1 
per cent. This approaches the presently attainable precision of these 
types of measurements. Finally, these subassemblies are fairly expensive 
and were not in plentiful supply at the time these experiments had 
to be run. 

Practically, it was reasonable to treat the input and output amplifiers, 
as indicated in Fig. 2, as separate entities. Each of these two subarnplifiers 
can be measured accurately for its transmission gain in the same way 
as can be done with the completed amplifier. In this fashion a direct 
relationship exists between the results of sub- and complete amplifiers. 
This favorable condition does not exist with respect to the relationship 
between sub-amplifiers and its subassemblies which are also indicated 
in Fig. 2. To determine if the subassemblies meet the over-all require- 
ments, it is necessary to combine them into sub-amplifiers and measure 
those. 

Input and output amplifiers consist basically of the same subassem- 
blies. The type of designed experiment used for both sub-amplifiers was 
identical so that a detailed example for the input-amplifier tells the main 
story. It was felt from engineering considerations that interactions be- 
tween the various subassemblies in an input or output amplifier would 
be of a considerably smaller magnitude than the variations of interest 
and therefore could be neglected. 

Four types of subassemblies make up a sub-amplifier, so these four 
should enter as factors in our experiment. As was pointed out above, a 
set of subassemblies has to be assembled into an amplifier to make 
transmission measurements possible. To evaluate this procedure, every 
time the set of available subassemblies was combined into sub-amplifiers 
it was considered a run. This gives the following factors to be used in 
the experiment: 

Runs 
Coupling Networks 
Interstage Networks 
Beta Networks 
Chassis 

The number of levels for each of the factors is determined below. 
The experimental design should incorporate five factors and minimize 

the number of required subassembly units; however it does not have to 
measure interactions. An experimental design that lends itself to this 
type of situation is a hyper graeco-latin square.7 

Assigning, as is shown in Table I, the rows to the different runs and 
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Table I, — Hyper Graeco-Latin Square Layout 

31 

Chassis 
No. 

l 2 3 4 5 6 7 

1 Ala B2/3 C37 D4«? E5e F6t G7ri 
2 D30 E4y F5<? G6e A7f Blq C'2a 
3 G5Y A6i? B7€ cir D2TJ E3a F40 
4 C7t7 Die E2f F3v G4a A5/3 B67 
5 F2e G3r A4IJ B5a C60 D77 Eli? 
0 B4f C5»? D6a E7/9 Fly G2«? A3e 
7 E6>7 F7« Gl/3 A 27 C4e D5f 

Latin letters—Coupling Networks 
Greek letters—Beta Networks 

Numerals—Interstage Networks 

the columns to the different chassis, we can allocate the coupling net- 
works, identified by latin letters, so that each occurs exactly once in 
each column and row. This results in a latin square. If we add to this 
structure two more arrays, one composed of greek letters, identifying the 
beta networks and one composed of numbers identifying the interstage 
networks, such that each letter or number occurs only once with each 
other symbol we have an (incomplete) system of "orthogonal squares". 
Data from such a pattern will allow us to obtain unbiased estimates of 
the main effects of the five factors incorporated, in the absence of inter- 
actions. Moreover, the estimates for one factor will bo statistically un- 
correlatcd with those for other factors. 

The square in Table I is of size 7X7. This is the smallest practical 
size that could be applied. For 5 factors a square of size 5X5 could in 
theory he used as four different orthogonal squares of this size exist,8 

but we would have only four degrees of freedom to estimate our error. 
No orthogonal squares of size 6X6 exist. In a 7 X 7 we have 49 ob- 

servations and 18 degrees of freedom for error. For this experiment 7 
units of each type had to be assembled 7 times into a set of 7 amplifiers 
each. The first set of 7 amplifiers was numbered 1 to 7 in random order, 
thus at the same time identifying the subassemblies. The complete lay- 
out of the experiment is given in Table I. 

Measurements on the completed input amplifiers were made at the 
highest frequency of interest in the transmission band, 8,3 mc, and are 
listed in Table II. The analysis of variance computed in the usual manner 
from these data is presented in Table III. Apparent measurement stand- 
ard deviation a = \/0.000254 = 0.016 db. 

It is evident from the sums of squares column in the latter table that 
the coupling networks contribute a very sizeable part of the total varia- 
tion. The experimental error as estimated from the residual mean 
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Table II. — Transmission Measurements at 8.3 Mc in db 

Chassis No. 
Run No. 

l 2 3 4 5 6 7 

1 4.739 4.799 4.935 4.713 4.824 4.998 4.870 
2 4.759 4.841 5.044 4.820 4.870 4.852 4.896 
3 4.819 4.749 4.878 4.933 4.719 4.873 4.986 
4 5.003 4.749 4.866 5.001 4.797 4.761 4.836 
5 4.978 4.824 4.722 4.820 4.945 4.797 4.898 
6 4.804 4.910 4.774 4.916 5.013 4.819 4.714 
7 4.897 5.056 4.861 4.701 4.827 4.913 4.743 

Table III. — Analysis of Variance 

Source D/F Sums of Squares Mean Square Significance Level 

Coupling 
Networks 

Interstage 
Networks 

Beta 
Networks 

Chassis 
Runs 
Residual 

6 

6 

6 
6 
6 

18 

0.376359 

0.037422 

0.003410 
0.003075 
0.003381 
0.004634 

0.062726 

0.006237 

0.000568' 
0.000512> 
0.000564 
0.000254 

^1% 

51% 

not significant at 5% level 

Total 48 0.428281 

squares amounts to 0.016 db. This disregards the effect of reassembling, 
as indicated by runs, which, however, is not significant at the 5 per cent 
level. It would be possible to pool the run, sum of squares, with that for 
error as estimated from the residual mean square to get more degrees 
of freedom for error but no new insight would be gained by this proce- 
dure. In the type of investigations described a level of significance of 5 
per cent or smaller is generally applied. This implies that the chances 
are 5 per cent or less that, on the basis of the analysis, effects would be 
singled out for further engineering consideration when actually these 
effects are nonexistent. 

To further illustrate the engineering implications, the results of Table 
III can be written in terms of the projected model for this experiment. 
It was assumed that the effects of the members of each of the subassem- 
blies on the amplifier gain were normally distributed. The average value 
of the amplifier gain can be interpreted as the performance of an amplifier 
consisting of subasserablies of exact nominal values. The interesting 
part, however, is the gain variation from amplifier to amplifier, caused 
by the deviations from nominal of the subassemblies. These deviations 
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Table IV. •— Standard Deviation Estimates for the Variations 
Due to the Different Networks 

Coupling Networks 0.094 dh 
Interstage Networks 0.029 dh 
Beta Networks 0.007 dh 
Chassis 0.006 db 
Runs 0.007 dh 

Table V. — Approximate 1)0 Per Cent Confidence Limits for the 
Variations Due to the Different Networks 

Lower Limit Upper Limit 
(db) (db) 

Coupling Networks 0.065 0.181 
Interstage Networks 0.019 0.056 
Beta Networks 0.0 0.016 
Chassis 0.0 0.015 
Runs 0.0 0.016 

can be measured by the standard deviation of their respective distribu- 
tions. These standard deviations as derived from Table III are listed in 
Table IV and their approximate 90 per cent confidence limits in Table V.9 

It appears again that the coupling networks contribute most to the 
variations in the transmission of the subamplifier. The interstage net- 
works are of secondary importance, whereas the other three factors 
can be neglected. A similar picture emerged from the companion ex- 
periments on the output amplifier. It was therefore logical to concentrate 
first on trying to decrease the variability of the coupling'network of 
which the transformer was the main part. 

m. wall-thickness studies on the outer coil form of the trans- 
former 

The transformer, even in its simplified form as in the equivalent cir- 
cuit of Fig. 1, involves many parameters. By numerical evaluation the 
changes in transmission gain due to specified changes in these parameters 
were calculated on the basis of this circuit.5- 6 As has already been 
pointed out, not all of the parameters in the equivalent diagram are 
directly represented in the physical transformer; therefore a relationship 
between the parameters and physical dimensions is not easy to establish. 

From evaluation of the electrical circuit it was felt that the capaci- 
tance at the high inductance side of the transformer, Cz in Fig. 1, would 
be a major contributor to the gain variation. Direct correlation between 
the behavior of this capacitance and various mechanical properties on 



34 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958 

the basis of control charts did not yield sufficiently strong clues, partly 
due to the fact that the measurement accuracy in the production process 
was marginal in view of the small variations concerned. On the basis of 
engineering experience one of the strongly suspected mechanical variables 
was the wall thickness of the outer coil form of the transformer. The 
exploded views in Fig. 5 and Fig. 6 show that the outer form carries the 
winding with the highest number of turns. These turns are ground into 
the vycor glass body and they are subsequently copper plated. A silver 
shield is spra3red on the inside of the vycor glass form and fired subse- 
quently. The "thickness" of the wall as measured between the bottom of 
the groove and the inner face is about 0.031" and the geometry of the 
situation leads us to expect a strong dependence of the high side capacity 
on the wall thickness. (Fig. 6.) 

The experiment to estimate the quantitative influence of wall thickness 
variations on electrical properties was set up as follows: 

Two batches of 9 transformers each were produced in accordance with 
current production specifications except that batch "A" contained outer 
coil forms with "thick" walls and batch "B" with "thin" walls. On a 
nominal thickness of about 0.031" batch A was on the average about 6 
ten thousandths thicker than batch B. Due to the difficult grinding 
process it was impossible to make all coil forms of the same batch exactly 
alike to the limit of measurement, i.e., to within half a ten thousandth. 
The resulting variation in this thickness within a batch is indicated by 
the standard deviation of 1.5 X 10-4. 

All these transformers were measured in the same standard amplifier 
and the gain was observed at a number of frequencies. In addition, 
various short-circuit and open-circuit impedances were determined on 
the isolated transformers. Since these impedances bear a direct relation 
to the magnitude of the parameters in the equivalent diagram, one ob- 
tains information about the variations in the parameter values from the 
observed variations in the impedances. Allowing for these variations in 
predicting the performance of the circuit on the basis of the equivalent 
diagram, it is possible to compare the observed gain with that pre- 
dicted. An example of such a comparison will be discussed later. 

After a complete first run of measurements had been made on the 
transformers as manufactured, a second run was performed after the 
thick walled and thin walled coil forms had been interchanged between 
the transformers of batch "A" and "B". 

Identifying the transformers without a coil form by capital letters and 
the forms by lower case ones in accordance with the batch to which they 
originally belonged, the actual set-up is given in Table YI. This table 



STATISTICS IN DEVELOPMENT OP L3 TRANSFORMERS 35 

Table VI. — Basic Design for Wall Thickness 
Dependency Determination 

Coil f''orm 
Transformer Batch 

A B 

a 
b 

Run 1 
Run 2 

Run 2 
Run 1 

represents the experiment only "batchwise". It is important to note 
with respect to the model given below, that the interchange of one pair 
of coil forms (one thick and one thin) did not in general take place within 
one pair of transformers (one from batch A and one from batch B). If 
this had been done, a different analysis could have been performed on 
the same amount of data. 

The mathematical model underlying this design takes into account the 
following effects: 

fi = average level j = 1,2. 
= batch f = 1, 2, • • • , 9 

(pi, j = transformer i in batch j j = 1, 2. 
aa = wall thickness k — 1, 2. 
pi = runs I — 1, 2. 

e,-, j, k. i = residual, being the difference between the measurements of 
the iih transformer in the jth batch and its prediction from 
wall thickness, batch and run effect. 

With these definitions the observations y,, >, *, i can be expressed as 
follows: 

Vi, j, k, i ~ M T ft- + <pi, j + iOk + Pi + €». j. k, i. 

From Table VI it is apparent that the wall thickness is measured by 
the row differences, the batch effect by the column differences and the 
run effect by the diagonal differences. The latter is indistinguishable 
from the row by column interaction, but there were reasons to believe 
that the interactions were of a smaller order of magnitude than the run 
effect. 

The results of the gain measurements at one of the frequencies em- 
ployed, 8.3 mc, are presented in Table VII, which gives only the frac- 
tional db, expressed in thousandths of db. A constant whole number of 
db is omitted throughout. This incorporates the fixed gains and attenua- 
tions of the measuring set up. 
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Table VII. — Gain Measurements at 8.3 Mc. Effect of Different 
Wall Thickness of Outer Form 

Batch A Batch B 

Trans- 
former X 0.001 db Trans- 

former X 0.001 db 

1 744 I 531 
2 778 2 510 
3 723 3 437 
4 698 4 487 

Run 1 "Thick" Wall 5 738 "Thin" Wall 5 447 
C 644 6 008 
7 711 7 562 
8 670 8 476 
9 604 9 470 

1 645 1 674 
2 582 2 700 
3 556 3 634 
4 577 4 711 

Run 2 "Thin" Wall 5 582 "Thick" Wall 5 512 
6 524 6 725 
7 550 7 658 
8 483 8 680 
9 547 9 070 

Table VIII. — Analysis of Variance of Wall 
Thickness Experiment 

Source Sum of 
Squares 

Degrees 
of Free- 

dom 
Mean 

Square Significance Level 

Between batches 20 449 1 20 449 5%+ 

Between transformers, 75 126 16 4 695 1% 

not significant at 5% Between runs 880 1 880 
level 

Between wall thickness 203 401 1 203 401 <1% 
Within transformers cor- 20 888 16 1 305 

rected for runs and wall 
thickness (error) 

Total 320 744 35 

The analysis of variance of these data is presented in Table VIII. 
It is readily seen from Table VIII that the wall thickness accounts for 

most of the variations, and that the effect of runs is indistinguishable 
from the error. It is possible just as was done in Table V to calculate the 
variance components for these effects and its limits. Both however are 
only based on one degree of freedom which makes this procedure hardly 
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profitable. The hatch effect is tested against the "transformer within 
batches" variation, and the level of significance is a little over 5 per cent. 
This indicates that there was a systematic difference between the two 
batches. 

An estimate of residual variation can be obtained from the two obser- 
vations on the same transformer corrected for the estimated differences 
due to wall thickness and run effects. The standard deviation for error 
is a = s/1305 = 36 or 0.036 db in actual units. This can be compared 
to the stated goal of 0.01 db and the result of the preceding experiment 
0.016 db. The two averages computed for the different wall-thickness 
groups, y.-k , provides us with an estimate of the effect of the average 
change in wall thickness on the gain; 

For the "thick" wall the estimated gain is 0.682 db. 
For the "thin" wall the estimated gain is 0.532 db. 
Average increase of 0.006" in wall thickness results in an increase of 

0.150 db at 8.3 mc. In order to find out if the experiment was sensitive 
enough to find the dependence on wall thickness of the transmission 
measurements of the individual transformers, the residuals, as calculated 
from the equation on page 35, are plotted against the measured wall 
thickness, Fig. 7. The measurements of the wall thickness could lie read 
to the nearest 0.00005", but as seen in Fig. 7, the variations are too great 
to show any significant correlation with the fine structure of the wall 
thickness. 
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Fig. 7 —• Residual variations, after the systematic effects have been removed, 
as a function of the wall thickness variation. 
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This experiment showed that it was necessary to control the wall 
thickness as closely as would be economical. The practical limit was 
known and the resulting transmission variations as estimated from the 
findings in this experiment, would be satisfactory from the over-all 
systems point of view. 

TV. STUDY OF SHIELDING AND WINDING TERMINATION 

Another mechanical variable to be considered is related to the ter- 
mination of the winding on the outer form. One side of the winding (ter- 
minal No. 4) is connected to the shield that covers the inside of the 
coil form (Fig. 8). The other end has to be connected to one of the ter- 
minals (No. 5) on the body of the transformer. Electrically this latter 
point is sensitive and should be shielded as much as possible. On the 
other hand, in order to be able to connect the terminal lead to the wind- 
ing a tab is inserted on the form. The shield must be cut back sufficiently 
to avoid short circuiting the winding via the tab. Originally a 0.160" 
cutback was employed. Mechanical limitations make variations around 
the nominal cutback value unavoidable. The following experiment was 
set up to find out which nominal cutback value would result in the small- 
est variations in the transmission gain of the transformer. 

ENLARGED SECTION 
THROUGH A-A 

VARIATIONS 
IN CUTBACK 
DIMENSIONS 

TERMINAL NO.5 
TO BE SOLDERED--./ 
INTO THIS NOTCH 

METALLIZED SHIELD ON 
INNER CYLINDRICAL 

SURFACE EXCEPT — 
ON THESE AREAS 

EMBEDDED PLATED 
" COPPER WINDINGS 

^METALLIZED 
SHIELD 

,oP0,. 

|95 

iliig 

■A 

TERMINAL NO. 4 
SHIELD CONNECTION 

RUN OUT 
DIMENSION 

Fig. 8 — Side view of outer cylindrical spool, as per Fig. 6. 
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Another variable had been introduced into the problem inadvertently 
in the manufacturing process. This variable was related to the same sensi- 
tive point of the winding, and consisted of the amount of run-out or extra 
winding cut by the grinder beyond the point where the terminal tab 
No. 5 was connected to the winding. The run-out is measured in degrees 
of arc. Originally the run-out was kept close to 28°. After some manu- 
facturing changes required for other reasons, the run-out variations be- 
came much larger. It was thought important to examine cutback and 
run-out at the same time to find any interaction effects if present. 

An experiment to determine effects of cutback and run-out faces a 
difficulty similar to the previous one. The only hope to detect these 
effects is to try out the same transformer with different cutback and 
run-out values. This implies disassembling and re-assembling the trans- 
formers as many times as changes in the variables are made. In addition 
the change in variables can only go in one direction: the cutback can be 
increased by taking away a little bit of the shield and the run-out can 
be decreased by removing part of the run-out winding. 

In accordance with these conditions an experiment was designed as 
indicated in the flow chart of Fig. 9, covering the possible combinations 
of applied changes in cutback and run-out in a systematic manner. 

The cutback value of O.ldO" and the 28° run-out were the standard 
values in the manufacture at the time of the experiment. The stages of 
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Fig. 9 — Flow chart of applied changes. 
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reassembly are indicated in order. The starting point for each trans- 
former was 0.100,/ cutback and 28° run-out. 

This is an example of an experiment where several mishaps distorted 
the original design—■ a not unusual occurrence. Due to the time and 
costs involved the experiment was not repeated but a special effort was 
made to recover the information sought. 

As in the previous experiment the transformers were measured in an 
amplifier to determine the gain characteristic as a function of frequency. 
In addition a few characteristic parameters were measured on the trans- 
former itself. 

m 

3* 

& 

i 

■ 

Fig. 10 — Jig for transformer measurement. 
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Table IX, — Gain Measurements at 7.3 Mc in Thousandths of db 

Run-Out 

0 
28 
0 

28 
0 

28 
0 

28 
0 

28 
0 

28 

Cut-Back X 0.001" 

100 120 130 ISO 195 

— 203 226 — 377 

154 166 216 — 360 

    242 _ 344 
— 216 240 — — 
— — — — 351 
— 193 264 340 .—. 

243 184 227 — 333 
z         377 
— 184 242 324 — 

At the second stage of the experiment, Fig. 9, it appeared that the 
precision of measurement was rather poor due to the differences occur- 
ring when the transformer was disconnected from the amplifier and after 
the change in cutback and/or run-out reconnected by means of soldering. 
It was therefore decided to construct a contact fixture allowing the 
transformer to be plugged in and out of the amplifier. 

For the first time after the fixture shown in Fig. 10 became available 
the transformers were measured twice — once soldered into the ampli- 
fier and once plugged in. This was done after the second reassembly and 
the previous measurements were adjusted to the fixture readings on the 
basis of this comparison. Almost all of the initial measurements (State 0) 
had to bo discarded. 

An additional deviation from the design occurred in the final stage 
when some of the transformers were cut back too far, to 0.195" instead 
of 0.180". 

As an example the gain measurements at 7.3 mc are listed in Table IX. 
When considering results such as in Table IX for further analysis the 

question arises what type of model should be fitted to the data. It goes 
without saying that apart from fitting the data the choice of the model 
must primarily make sense from an engineering standpoint. For designs 
like the hyper graeco-latin square of Section II and balanced designs in 
general the computational part of the analysis is small, measured in 
man-hours on a desk calculator. Changing the model in those designs 
by incorporating more factors or discarding alleged superfluous ones is 
simple, as the estimates of the effects of these factors in balanced situa- 
tions are independent of the others. 

In a case like in Table IX where no reasonable balance is left but whore 
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the operating factors (cutback, etc.) are measurable or quasi measurable, 
regression models are indicated. The computational effort on a desk 
calculator to estimate the parameters in the regression model is consider- 
able for three operating factors, as in our case. To explore a sufficient set 
of modifications of a model for four or more factors is only practical if 
an automatic computer is available. 

As a first step in the analysis a linear multiple regression equation on 
three variables was calculated, the independent variables being; 

.rj ; number of resolderings 

Xz : run-out 

X3 : cut-back. 

The model fitted was: 

Y — y — /3I(.TI — £1) + fizixz — £2) + 03(0:3 — £3). 

Estimates h of the 0's resulted in 

hi = —0.023 db/step 

62 = —0.0028 db/degree 

63 = 0.0052 db/mil. 

The corresponding analysis of variance table is Table X. Having a set 
of numbers it is ahyays possible to go through the calculations and obtain 
estimates of the 0's. The important part, however, is to determine how 
well the model fits. Looking at the analysis of variance Table X it appears 
in this case that a substantial part of the total observed variation as 
measured by the total sum of squares is explained by the model. The 
variations taken care of by the model are accounted for by the sum of 
squares for regression. The remainder measures our error. The esti- 
mated <t from the residual is s/0.000630 — 0.025 db. 

Table X. — Analysis of Variance for Linear Regression 
on 3 Variables 

Source SS D/F its 

Regression 
Residual 

0.102845 
0.012596 

3 
20 

0.034282 
0,000630 

Total 0.115441 23 
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Table XI. — Analysis of Variance for Linear 
RECfRESSION ON Xj AND 

Source ss D/F US 

Ilegression Xs alone 
Improvement due to Xi added 

0.096059 
0.002085 

1 
1 

0.096059 
0.002085 

Residual 
0.098144 
0.017297 

2 
21 0.000824 

0.115441 

Estimated a — 0.029. 

It is of importance to find out the magnitude of the contribution by 
the individual independent variables Xi to our model. The general way 
of doing this is to drop one or more of the independent variables, recom- 
pute the estimates for the regression coefficients for the remaining vari- 
ables and study the result in a new analysis of variance table. 

As an example consider the simplified model 

Y — y = & (£3 — xi) 

and ask for the importance of incorporating the reassembly variate rci 
into this model. We can list the results as in Table XI. The improve- 
ment due to the addition of aa is not significant at the 5 per cent level. 

Fig. 11 illustrates this procedure for a number of possibilities. What- 
ever model for fitting is chosen the total sum of squares is the same. The 
horizontal line at the top of the picture corresponds to this value of 
0.115441 (db)2 (Table X). The length of the bars shows the part that is 
explained by incorporating in the model the variables listed at the bot- 
tom of each bar. 

The run-out x* by itself does not appear to contribute anything ap- 
preciable, although in combination with resoldering a-'i it shows up a 
little. Cutback .ra alone accounts for the bulk of the variation. Resolder- 
ing Xi also shows up alone, but once Xs is incorporated, addition of Xi is 
not too important. This behaviour corresponds to the very strong 
correlation (correlation coefficient = 0.93) between the independent vari- 
ates Xi and Xs. This correlation stems from the fact that an increase in 
cutback necessarily corresponds to a later resoldering. 

Engineering considerations suggested that the amount of non-linearity 
due to the cutback variable X3 should also be examined. Cutbacks 
smaller than about 0.150" do not reach under the first turn of the wind- 
ing (Fig. 8) so they do not influence the shielding operation as strongly 
us when the cutback exceeds 0.150". 
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Fig. 11 — Contributions of various factors to the sums of squares of regression. 

Introducing a quadratic term in the model 

{Y — y) = ft (£3 — x-i) + 0u(.T32 — .T32) 

gives the best lit to date as shown in Fig. 11. Run-out and resoldcring 
are now left out, the former making no significant contribution and the 
latter being sufficient^ taken care of by its correlation with the cutback. 
After all the resoldering was only of interest in the experimental situa- 
tion, and did not occur in actual production. 

Estimating the parameters yields 

Y - 0.470 - 0.005 xz + 0.000023 x? dh 

when Xz is the cutback in 0.001 ^ The residual error standard deviation 
a = 0.023 db. Predicting some values 

Cutback Gain 

0.120" 
0.150" 
0.180" 

0.201 db 
0.238 db 
0.315 db 

shows that 0.030" less cutback with respect to 0.150" makes a difference 
of about 0.04 db, whereas 0.030" increase changes the gain by almost 
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0.08 db. Since gain should be insensitive to the variations in cutback 
which occur in manufacture, it was decided to keep the nominal cutback 
value at O.^O''. 

In the analysis of each of the above experiments only one set of meas- 
urement results has been discussed. With the particular type of measur- 
ing set used, the gain of the amplifier is obtained as a continuous curve 
over the whole frequency range of interest. At about ten different fre- 
quencies ranging from 0.3 to 8.5 me the results have been analyzed in 
the way described. In addition several discrete impedances in the trans- 
former closely related to the elements in the equivalent diagram, Fig. 1, 
were measured directly. 

In such a situation a very important check can be made about the as- 
sumptions underlying the experimentation and the analytical approach. 
On the one hand, we have the measurements of the performance of the 
transformer in the circuit and the measurements of various impedances 
connected with leakage, stray capacitances, etc. of the transformer. On 
the other hand, we have the analytical study of the model in the form 
of the equivalent diagram, Fig. 1, which provides us with a prediction of 
the over-all performance from the values of these impedances. If this 
prediction is sufficiently close to the measured over-all performance we 
can use control of the impedances to control the performance. In addi- 
tion we can use the model for studying the consequences of contemplated 
major changes in the design. 

From the point of view of guaranteeing reliability of complex systems 
it seems to he essential that a model as close to reality as possible be em- 
ployed for prediction. 

Comparisons between prediction from the equivalent diagram, Fig. 1, 
and measured curves have been made for the different experiments in the 
development program. Fig. 12 presents such a comparison for the pre- 
viously described "wall-thickness" experiment. The changes in imped- 
ances observed corresponding to a change in wall thickness of 0.0006" 
were fed into the formulas derived5- 6 for the equivalent diagram. The 
resulting predicted gain values, together with the measured gain values, 
are plotted as a function of frequency in Fig. 12. Remembering the order 
of magnitude of the estimates for the error standard deviation, a few 
hundredths of a db in this type of transmission measurements, the agree- 
ment is satisfactory. 

V. FINAL EVALUATION OP THE TRANSFORMER 

The results of experiments like the ones described contributed to the 
tying down of specifications and controls in the manufacture of the 
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Fig. 12 — Comparison between measured and predicted transmission for a 0.6 
mil increase in wall thickness. 

transformer. As the measures derived from each of the experiments re- 
lated only to a detail of the transformer, it was considered necessary to 
set up an experiment incorporating the results of the various tests, in 
order to examine the over-all performance of the transformer, in a 
complete amplifier. 

In other words, it would be useful to confirm that the gain variations 
in the amplifier dependent on the (uncontrollable statistical) variations 
in the electrical parameters of the transformer are small enough to 
satisfy the systems designer. The experimental scheme adopted for this 
purpose called for a fair sized number of transformers basically belong- 
ing to two groups: 

a. One group of transformers conforming to the current specifications 
and of recent manufacture at the time of this experiment. 

b. One group of transformers consisting of recent rejects and all other 
old transformers that could be found, all having one or more parameters 
outside the specifications. 

These transformers would be very carefully measured in the Labora- 
tories, taking special care and using the best measuring equipment 
available. (The previous experiments described in this paper had been 
conducted in Western Electric factories.) 

From the measured values of the parameters such as leakage induct- 
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ance, stray capacitances, etc., the predicted gain would be computed, 
again using the formulas derived on the basis of the equivalent diagram. 
The computed gains would finally be compared to the measured ones. 
It was hoped that this experiment would show two things: 

1. That recently produced transformers which showed satisfactory 
parameter-measurement results would yield good amplifiers. 

2. That the parameters chosen for control measurements in the trans- 
former manufacturing process were adequate to reasonably predict the 
over-all transmission performance in the amplifier. 

The experiment was preceded by a pilot experiment to test the gain- 
measuring equipment. In both steps of experimentation two jigs for gain 
measurements were to be used, consisting of almost identical sub-ampli- 
fiers, and measurements at 15 frequencies between 0.3 and 8.5 mc were 
to be made. The pilot experiment was designed such that an estimate of 
the jig differences and of the influence of time could be made. In addi- 
tion the magnitude of residual error could be determined. 

Eight transformers were measured twice in each of the two jigs in the 
following sequence. (Table XII.) 

As an example let us again choose the results at a high frequency, as 
the sensitivity of the transformer and amplifiers for small deviations 
from the ideal increases with frequency. 

The time effect will be judged by the difference between the first and 
second half of the experiments, called Hi and H2 respectively. 

Disregarding the time sequence in each half, which can always be 
recovered if so desired by examining the residuals, the results coded as 
before in thousandths of db are given in Table XIII. The analysis of 
variance is given in Table XIV. Using the three-way interaction as a 
measure of residual variation Table XIV shows that the transformer by 
time and the jig by time interactions are unimportant. The transformer 
by jig interaction although not significant at the 5 per cent level is dis- 
turbing in an experiment of this kind. This might indicate that contact 
trouble exists between the transformer and the jig. The transformers 
were not soldered in the jigs but contact was made by means of springs. 

Table XII. — Transformer Numbers in Time Sequence of 
Measurement from Left to Right 

Hi 

Jig 1 L 2, 6, 5, 7, S, . 4, 3, 
3, 4 8, 7 6, 6 2, 1 

Jig 2 5, 6, 2, 1, 3, 4, 8, 7, 
7, 8 1, 2 6, 5 
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Table XIII. — Pilot Experiments 8.3-Mc Gain Measurements 
on "Microbel" Test Set. Units 0.001 bb 

Jig i Jig 2 

Hi Hi ill n-i 

Tr. 1 765 777 890 888 
2 652 672 797 777 
3 812 814 920 910 
4 760 747 915 927 
5 832 840 961 938 
6 776 743 909 887 
7 75G 757 889 878 
8 698 705 832 820 

Average for Jig 1 756 Average for Jig 2 884 

Table XIV. — Analysis of Variance of Pilot Experiment 

Source 55 D/F us Significance 
Level 

Between Jigs 
Between Transformers 
Between Time 
Transf X Jigs 
Jig X Time 
Transf X Time 
Transf X Jigs X Time 

129159 
79930 

256 
2684 

229 
602 
803 

1 
7 
1 
7 
1 
7 
7 

129159 
11419 

256 
383 
229 
84 

115 

«1% 
«1% 

>10% 
~7% 

>10% 
>25% 

Tbtal 213663 31 

In the main experiment following this pilot one, contact trouble arose 
again. Moving up in the table the time effect appears negligible. The sig- 
nificant differences between transformers do not have to be considered 
as this reflects only the differences in their nominal gain, but the jig 
effect is highly significant even with respect to the transformer by jig 
interaction. 

It would have been unrealistic to expect the jigs to be equal because 
of their complexity. What was hoped was that the difference between the 
two would be substantially constant. From the averages listed in Table 
XIII, we estimate the difference between Jig 1 and Jig 2 as 0.128 db, 
with 90 per cent confidence limits of 0.114 to 0.142 db based on standard 
deviation for the average difference of 0.008 db with 15 degrees of free- 
dom. For this latter estimate the jig interactions were pooled with the 
"error" variance. 

If the variations between jigs would remain within the above limits in 
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the main experiment yet to be made, this would be reasonable. However, 
the jig by transformer interaction tells us to be on guard. 

The main experimental design following this pilot study is presented 
in Table XV. The intent was to obtain units with as wide a spread of 
properties as possible. Then, as explained in the beginning of this sec- 
tion, we could see if the formulas which predict the over-all gain from 
the detailed impedances of the transformer would hold over a wide 
enough range. In each period all the transformers listed were measured 
in one jig and then in the other. The jig sequence was varied from 
period to period. Transformers meeting specifications and rejects were 
collectively randomized over serial numbers. Therefore 50 good trans- 
formers of recent production were combined with 33 rejected ones. The 
latter were rejected for a variety of reasons and over a considerable 
period of time. In principle, no special design is necessary to obtain ob- 
servations for comparing detailed measurements of a transformer to the 

Table XV. — Measuring Schedule for Transformers 
in Teems of Their Serial Numbers 

Runs ^ Days l 2 3 4 

Jigs 

1 2 I 2 1 2 1 2 

Morning 1 10 22 25* 43 50 64 72 
2 3 23 26 44 46 65* 73 
3 2 24* 27 45 44 66* 71 
4 1 25* 28 46 45 67 64 
5 6 25 22 47 49* 68 66* 
6 5* 27 29 48* 47 69 67 
7 4 28 30 49* 48* 70 65* 
8 8 29 31 50 51 71 69 
9* 7 30 23 51 52 72 70 

10 9 31 24* 52 43 73 68 
24* 40* 49* 57* 65* 80* 9* 20* 
35* 25* 59* 48* 77* 66* 14* 5* 

Afternoon 11 20* 32 35* 53 59* 74 79 
12 13 33 36 54 57* 75 80* 
13 11 34 34 55 58 76 78 
14* 12 35* 38 56 62 77* 82 
15 16 36 32 57* 60 78 83 
18 14 37 39 58 61 79 74 
17 15 38 37 59* 63 80* 81 
18 19 39 42 60 53 81 76 
19 21 40* 33 61 56 82 77* 
20 17 41 40* 62 54 83 84 
21 18 42 41 63 55 84 75 
40* 24* 57* 49* 80* 65* 20 9 
25* 35* 48* 59* 66* 77* 5 14 
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performance of an amplifier containing the same transformer. But the 
time involved in measuring more than 80 transformers in each of two 
jigs is several days, so the possibility of time effects had to be watched. 
First, the numbers in the design were assigned at random to the pool of 
good and rejected transformers. Second, to keep a running check on the 
precision of the measurements a number of observations were repeated 
on different days (runs). In each pair of adjacent runs, and in the last 
and the first, a set of four transformers was replicated both in Jig 1 and 
Jig 2. From Table XY it can be seen that these linking sets are the 
following: 

As a further precaution, which it was found not necessary to use in the 
analysis, half of the transformers in the sets above were replicated in the 
same period of the day, the other half in different periods. For Runs I 
and II we find from Table XV, in Jig 1, transformers 24 and 40 in the 
same periods, transformers 25 and 35 in different periods, in Jig 2, 
transformers 25 and 35 in the same periods, transformers 24 and 40 in 
different periods. A typical analysis for one linking set disregarding the 
period allocation, is shown in Table XVII for the observations taken at 
8.3 mc and listed in Table XVI. 

Both the interactions of jigs and runs and jigs and transformers are 
significant at the 5 per cent level. The run main effects mean square is 
not significant but the interactions with the jigs are disturbing. These 
interactions showed up to a greater or lesser extent in all the compari- 
sons, both in those similar to this one and in the pilot experiment. The 
importance of the jig by run interaction can be illustrated if we list the 

Table XVI. — Typical Set of Linking Measurements Included 
in Main Experiment. Units in 0.001 db 

Run I and II Transformers 24, 25, 35, 40 
Run II and III Transformers 48, 49, 57, 69 
Run III and IV Transformers 65, 66, 77, 80 
Run IV and I Transformers 5, 9, 14, 20 

Run III Run IV 
Transformer 

Jig 2 Jig 2 

65 
66 
77 
80 

-4 
-65 
-45 

4 230 
191 
92 

152 

15 
10 

-47 
-18 

195 
195 
75 

148 
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Table XVII. — Analysis of Variance. Typical Linking Set in 
Main Experiment 

Source 55 D/F Af5 Significance 
Level 

Between Jigs 127449 1 127449 «1% 
Between Runs 20 1 20 >25% 
Between Transformers 22975 3 7658 «1% 
Jigs X Runs 931 1 931 <5% Jigs X Transformers 2262 3 754 <5% 
Transformers X Runs 337 3 112 20% £ 
Jigs X Runs X Transf. 170 3 57 

Table XVIII. — Jig Comparison 

Jig 2 - Jig 1 (in db) 90% Confidence Limits in db 

Pilot 0.128 0.1X4 to 0.142 
Run I & 11 0.114 0.054 to 0.174 
Run II & III 0.149 0.037 to 0.201 
Run III & IV 0.170 0.120 to 0.220 
Run IV & I 0.121 0.040 to 0.201 

average differences between the jigs as observed in the various pairs of 
runs and in the pilot experiment. In Table XVIII are also calculated 90 
per cent confidence limits for the jig difference based on a variance esti- 
mate incorporating the variances for the jig interactions. It was originally 
hoped to use an estimate of difference between the jigs to eliminate the 
jig effect from all the individual observation. The wide confidence limits 
of the jig difference estimates compared to the 0.01 db order of magni- 
tude we are interested in, do not allow us to do this. Therefore the sub- 
sequent analysis was made separately for both jigs. 

In addition to the gain measurements the following impedances were 
observed on all transformers: Resistive and Reactive component of 
leakage (Rh and Rt); Capacitance over the high winding (Ch); Stray 
Capacitances {CSl and Cs2). These impedance results introduced in the 
formulas for the equivalent diagram of the amplifier yield a predicted 
gain, which should represent, if everything is all right, the measured 
gain values. 

Using the coefficients ?«,•,«= 1, 2, ■ ■ • 5, as computed from the 
equivalent diagram, wc predict the transmission gain to be: 

Y = wio + miRn + m VC, + m^Cn + m.tC3l + m6C52. 
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Here, m0 is an arbitrary constant, not important in these considera- 
tions, as in measuring amplifiers of this type, frequency-independent loss 
networks are often introduced, which add an additional constant in mo . 

Calling the measured transmission gain y, we will try to fit the model 

y = a + 0Y. 

The Y is taken as the independent variable as the transformer parame- 
ter measurements are more precise than the transmission measurements. 
In general for this tj'pe of regression line fitting the independent variable 
should be known without error. 

If the equivalent diagram is adequate p should be equal to 1; our esti- 
mates b of 0 therefore should not differ significantly from that value. 
Table XIX lists for 8.3 mc the estimates of the slopes, their standard 
deviations, and the estimated standard deviations of the residual varia- 
tions not accounted for by the regression. The intercept a like the 
parameter mo in the prediction equation, is of no interest as explained 
above. 

It is seen that the agreement of the .slopes with the theoretical value 
1.00 is reasonably good, especially for Jig 2. 

The rejects selected for this experiment fall into two classes, those in 
one set of recent manufacture not meeting the manufacturing specifica- 
tions, but not too far removed from them, and the others left-over from 
the development program. Even for such groups with wide variations in 
their parameters not meeting the end requirements the agreement be- 
tween prediction and measurement is reasonable. The Jig 1 results gen- 

Table XIX. — Comparison Between the Begression Parameters 
Estimated from the Measurements in Both Jigs. 

Frequency 8.3 Mc 

Slope b db/db Standard error of 
slope sj, db/db 

Standard error 
residual (db) 

Jigl Jig 2 Jig 1 Jig 2 Jig 1 Jig 2 

Standard production 50 1.38 0.97 0.18 0.11 0.04 0.02 
units 

Rejects from production 0.90 1.11 0.11 0.07 0.18 0.08 
18 units 

Rejects from development 0.78 0.82 0.18 0.08 0.07 0.03 
15 units 

All S3 units pooled 0.84 1.05 0.06 0.04 0.05 0.02 
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crally show a bigger deviation from the ideal value of 1 for the slope and, 
also, larger residual variations as indicated by the estimates of the vari- 
ance. It will be remembered that from the pilot experiment and the 
"built-in" control in the main experiment it appeared that the differ- 
ence between Jig 1 and Jig 2 was not constant. Subsequently a poor 
contact in Jig 1 was identified. However, the general result of the ex- 
periment was satisfactory, in that the feasibility of maintaining the over- 
all performance of the amplifier within the required limits by controlling 
the parameters of the transformer was demonstrated. 

VI. CONCLUSION 

The foregoing describes some highlights in the statistical aspects of 
the development program of one of the critical components in the L3 
system. It will be clear that statistics can be a very powerful help, when 
integrated in the engineering efforts. 
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Runs Determined in a Sample by an 

Arbitrary Cut 

By PAUL S. OLMSTEAD 

(Manuscript received August 9, 1957) 

This paper, after making a critical review of the literature pertaining to 
runs above and below in a fixed sample, provides the following extensions: 

1. Sample arrangement distributions for runs of length at least s on one, 
each, and either side of any selected cut for samples of 10 and 20, 

2. Sample arrangement distributions for runs of length at least s on one, 
each, and either side of the median for samples of 10, 20, 40, 60, 100, and 
200, 

3. Sample arrangement distributions for runs of length at least s on each 
side of all possible cuts for samples of 10, 20, 40, and 100, 

4. Asymptotic values of the probabilities of such arrangements when the 
sample size and length of run are large, 

5. Convenient charts and tables for probabilities of 0.01, 0.10, 0.50, 0.90, 
and 0.99 to facilitate use by engineers and scientists, and 

6. Discussion of a simple application. 
The inclusion of the case for runs of length at least s on each side of all 

possible cuts should prove very useful because it provides a quantitative 
measure for a common operational procedure for which the exact proba- 
bilities were heretofore unknown. 

I. SUMMARY 

This paper discusses certain nonparametie measures for use in de- 
tecting the presence of assignable causes in experimental data. Specifi- 
cally, it assumes that a sample of n observations of a characteristic, X, 
has been obtained and that a particular arrangement, Xj, A2, ■ • ■ • Xn , 
e.g., by the time order of determination or other considerations, increases 
the value of the sample as evidence. Assuming a cut at a particular value 
of X, such as A, such a series may be divided into groups of consecutive 
observations that lie, alternately, above and below the cut. The length 
of such a group is called a run. 

55 



50 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958 

The paper also presents charts, tables, and formulas relating to such 
sample arrangement distributions for runs above and below any selected 
and all possible cuts or demarcation values. Specifically, it contains: 

a. A review of the literature relating to runs above and below (Sec- 
tion II). 

b. Appropriate charts and tables for the convenience of the engineer 
or other user (Section II and III), 

c. An example (Section III) and reference to others (Section II). 
d. A procedure for obtaining the probability that a randomly selected 

arrangement of a sample of size n will contain one or more runs of length 
at least s on each side of at least one of all possible cuts or demarcation 
values that do not coincide with one of the numerical values in the 
sample (Section VI). 

e. Relationships between n and s for constant probability (Section 
VIII). 

f. The probability that a randomly selected arrangement of a sample 
of size n will contain one or more runs of length at least s on each side 
of a selected cut or demarcation value such that ni numerical values are 
above and numerical values are below (n ~ nx + nz). Similar prob- 
abilities are given for arrangements with runs above, with runs below 
and with runs on either side of such a cut or demarcation value (Section 
IV). 

g. Simplified formulas for runs above and below the median that are 
equivalent to those given by Mosteller4 (Section V). 

h. Asymptotic values of these probabilities for both n and s large 
(Section VII). 

II. HISTORICAL BACKGROUND AND DISCUSSION 

Runs above and below the average, the median, or some other selected 
value have been used by a number of engineers to assist in detecting and 
identifying assignable causes of variation in connection with research 
and development work. In order to have a clear picture of the problems 
of such work, it may be worthwhile to set down some statements which 
characterize it: 

a. A repetitive process that has not been examined for control by 
statistical methods and that has not subsequently been brought into 
control is very unlikely to be in statistical control, 

b. Causes of lack of control often occur sporadically, being present for 
relatively short intervals of time, 

c. Such causes of lack of control may often be detected by taking ac- 
count of order either in manufacture or in taking observations, and 
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d. A basis for determining what fractions or portions of the observa- 
tions may have been affected by an undesired cause is the application of 
statistical tests to the pattern of the individual values of the measure- 
ments in the order in which they were obtained. 

Runs above and below have been particularly useful in assisting in 
the identification of such assignable causes. Their use in engineering has 
progressed through the following steps: 

1. Using a procedure based on the work of Cochran,2 Shewhart showed 
the distribution with respect to length of the runs above and below the 
average. It was his observation that a run of length 7 was often asso- 
ciated with a cause that could be found. Cochran had derived the dis- 
tribution of runs of lengths s (our notation) of two complementary events 
Ei and of known probability, p, and g ~ 1 — P, respectively. In 
applying Cochran's formula, Shewhart chose two statistics, X and p, 
from his observed data. Recognizing that this might invalidate the use 
of Cochran's formula, he suggested to the writer that this loophole could 
be avoided by working out the distribution for run lengths relative to 
the median. This distribution was worked out and recorded in a mem- 
orandum dated October 14, 1940. 

2. About the same time, Mood'5 was working on his "Distribution 
Theory of Runs" for which the distribution relative to the median is a 
special case. He included in his results expressions for the variances and 
covarianccs. Campbell1 made use of the distribution of lengths of run 
relative to the median. 

3. The next slop was to obtain the distribution of possible arrange- 
ments with runs of at least a given length relative to the median. Mood 
gave a general analysis of the problem, which was supplemented in a 
form more easily comprehensible to the engineer by Mosteller.4 Hosteller 
gave criteria based on sample size at given probability levels for length 
of run on one side and on either side of the median. While this paper was 
in preparation, Olmstead had been examining the problem of the prob- 
ability of arrangements with runs of at least a given length on each side 
of the median. When this was brought to Hosteller's attention, his paper 
was revised to include this case which had its inception in the engineering 
idea that if two cause systems were operating in separate periods they 
would be likely to produce separate groups of high and low values. 

4. Following this, attention was given to the distribution of arrange- 
ments, as indicated in Section V of this paper, where division for runs 
above and below was made at some location other than the median. 
Validity in use of the prohabililies calculated on this basis was dependent 
on the choice of division location prior to the test and often left the on- 
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gineer and the statistician uncertain concerning the risks that were being 
taken when the division location was chosen after looking at the data. 
Because of assumption (a) above, this did not worry the engineer as 
much as it did the statistician, particularly when the engineer could find 
a cause associated with long runs identified in this way. The fact that 
he usually found such a cause indicated that some other way of consider- 
ing the problem from the viewpoint of mathematical statistics would be 
fruitful. 

5. The obvious next step was to find a procedure for counting all of 
the possible arrangements of n numbers, no two alike, that would have 
one or more runs of length at least s on each side of at least one of all of 
the possible division points that do not coincide with one of the numeri- 
cal values in the sample. One way of doing this is first to write down or 
plot all (n!) possible arrangements of the n numbers. Assume that the 
numerical values of the numbers are the ^/-coordinates and the order 
in which they occur in an arrangement is indicated by the x-coordinates 
of such a plot. All such plots could then be examined to see what y-divi- 
sion not at one of the y-values would give the longest run of consecutive 
y-values on each side of the division. In this way, each arrangement 
would be assigned to a category where a particular length of run was 
equalled or exceeded on each side for at least one of the possible y-divi- 
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Fig. 1 — Length, s, of run on one side of median versus sample size, n, for se- 
lected values of probability, P. 
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Fig. 2 — Length, s, of run on each side of median versus snmple size, n, for 
selected values of probability, P. 
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Pjp, 3 — Length, s, of run oa either side of median versus sample size, n, for 
selected values of probability, P. 

sions. The process presented in Section VI is the mathematical equivalent 
of carrying out such a count. This process is gratifying to the engineer 
and the statistician alike because of the freedom permitted in setting the 
division location after examining the data so as to obtain the longest 
lengths of run on each side of the selected value. Use of this information 
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Fig. 4 •— Length, s, of run on each side for any cut versus sample size, n, for 
selected values of probability, P. 

was made first in an article by Walker and Olmstead.6 Its part in de- 
tecting the type of an assignable cause appeared first in an article by 
Olmstead.7 

6. In connection with the investigation undertaken for this paper, 
the asymptotic relationships for determining probabilities when n and s 
are large have been obtained (Section VII) and the results compared 
with those given by the exact relationships. The exact relationships ap- 
plying to the median have been calculated for sample sizes of 60, 100, 
and 200 extending this information beyond the range usually covered 
by research workers. For the convenience of such workers, four charts 
(Figs. 1, 2, 3, and 4) have been prepared to show the relationships be- 
tween s and n for P — 0.01, 0.10, 0.50, 0.90, and 0.99 for the primary 
types of runs. 

Ill, WORKING TECHNIQUES 

As just mentioned, Figs. 1, 2, 3, and 4 present graphically five per- 
centage points of each of the four "above" and (or) "below" run dis- 
tributions for all sample sizes from 10 to 2,000. The same information is 
furnished in tabular form in Tables I, II, III, and IV. How these are de- 
rived and calculated is discussed later (Sections V, VI, and VIII). Spe- 
cifically, the four types of distribution thus made available are: 

a. The probability, P, of the event that the length of the longest run 
on one pre-chosen side of median equals or exceeds s; if above, the prob- 
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ability is designated Pis/—, medium); if below, Pi — /s, median). The 
notation, Pis/-, median) may be road — the probability that an ar- 
rangement will contain a run of length at least s above the median. 

b. The probability of the event that the length of the shorter of the 
longest run above and the longest run below the median equals or ex- 
ceeds s: designated P(s/s, median), where s/s means that there is a run 
of length at least s, on each side of the median. 

c. The probability, P, of the event that the length of the longer of 
the longest run above and the longest run below the median equals or 
exceeds s: designated P(s, median), where s means the longer of is/— 
median) and i—/s, median). 

d. The probability, P, of the event that the length of the shorter of 

Table I 

Minimum sample sizes, n, that exceed selected probabilities, P, for a 
given length, s, of run on one side of median calculated from Table 
XVI and equations (23) and (27) to three significant figures. 

Probability, P 
Run Length 

s 
0.01 0.10 O.SO 0.90 0.99 

1 2 2 2 2 2 
2 4 4 6 8 12 
3 6 6 12 22 38 
4 8 10 22 54 100 
5 10 16 46 116 230 

6 14 26 92 260 490 
7 
8 

18 44 182 530 1044 
26 78 360 1104 2140 

9 38 142 714 2240 4370 
10 56 256 1424 4530 8980 

11 86 480 2850 9190 18240 
12 140 930 5680 18540 37200 
13 234 1838 11330 37600 75500 
14 410 3630 22700 75700 151700 
15 748 7100 45300 151700 303000 

16 1446 14190 90600 303000 607000 
17 2830 28100 181200 607000 1214000 
18 5530 56100 362000 1214000 2430000 
19 10860 117300 725000 2430000 4850000 
20 21500 235000 1450000 4850000 9710000 

Examples of use: 
Observed Dala 

Case I n = 96 
2 54 
3 56 

Probability, P 
s = 4 0.90 < F < 0.99 

10 P < 0.01 
10 0.01 < P < 0.10 



Table IT 
Minimum sample sizes, w, that exceed selected probabilities, P, for a 
given length, s, of run on each side of median calculated from Table 
XVI and equations (24) and (27) to three significant figures. 

Run Length 
.s 

Probability, P 

0.01 0.10 0.50 0.90 0.99 

1 2 2 2 2 2 
2 4 4 6 10 14 
3 6 8 14 26 44 
4 8 14 30 68 116 
5 12 26 68 152 252 

. 6 20 50 140 322 552 
7 34 98 290 676 1164 
8 62 194 596 1390 2390 
9 116 390 1208 2830 4930 

10 216 782 2440 5650 10140 

11 446 1182 4910 11750 20700 
12 884 2360 9840 23800 42500 
13 1762 4720 19890 48600 86700 
14 ' 3510 9450 39900 98600 174200 
16 6990 18900 80500 197300 348000 

16 13930 37800 161300 395000 697000 
17 27900 75600 323000 789000 1394000 
18 55500 151200 645000 1678000 2790000 
19 111000 302000 1290000 3160000 5570000 
20 222000 605000 2580000 6310000 11150000 

Table III 

Minimum sample sizes, ??, that exceed selected probabilities, P, for a 
given length, s, of run on either side of median calculated from Table 
XVI and equations (25) and (27) to three significant figures. 

Run Length 
Probability, P 

5 
0.01 0.10 0.50 0.90 0.99 

■ ,f n 

1 
2 
3 
4 
5 

2 
4 
6 
8 

10 

2 
4 
6 
8 

14 

2 
4 
8 

16 
30 

2 
8 

16 
36 
76 

2 
10 
28 
64 

136 

6 
7 
8 
9 

10 

12 
16 
22 
32 
42 

20 
32 
52 
86 

150 

58 
106 
200 
388 
758 

152 
296 
580 

1174 
2350 

282 
568 

1150 
2310 
4640 

11 
12 
13 
14 
15 

62 
94 

156 
256 
418 

262 
500 
962 

1876 
3670 

14S8 
2920 
5860 

11250 
22600 

4720 
9460 

10660 
21300 
42600 

. 9330 
18730 
37700 
75700 

151600 

16 
17 
18 
19 

766 
1472 
2860 
5570 

7330 
14090 
27900 
55500 

45200 
90100 

180300 
361000 

85300 
170500 
341000 
682000 

303000 
606000 

1213000 
2430000 
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Table IV 

Minimum sample sizes, n, that exceed selected probabilities, P, for a 
given length, s, of run on each side of any cut calculated from Table 
XVI and equations (26) and (27) to three significant figures. 

Run Length 
s 

Probability, P 

0.01 0.10 0.50 0.90 0.99 

I 2 2 2 2 2 
2 4 4 6 8 12 
3 6 8 12 22 34 
4 8 12 22 48 76 
5 12 IS 46 96 162 

6 16 34 86 192 380 
7 24 58 166 382 668 
8 38 108 324 760 1342 
9 66 204 638 1518 2690 

10 118 400 1266 3030 5410 

11 228 790 2530" 6070 10870 
12 444 1568 5050 12130 21600 
13 878 3130 10070 24300 43100 
14 1750 6220 20100 48500 86200 
15 3480 12490 40300 97000 172300 

16 6790 25000 80600 194100 345000 
17 13860 49000 161100 388000 689000 
18 27700 99900 322000 776000 1379000 
19 55400 199800 644000 1553000 2760000 
20 110800 400000 1289000 3110000 5510000 

Table V 

Speedometer readings at one minute intervals. 

Time MPH Time MPH Time MPH Time MPH 

1 48 15 55 29 52 43 60 
2 50 16 53 30 58 44 58 
3 48 17 48 31 55 45 55 
4 50 18 50 32 57 46 57 
5 52 19 50 33 58 47 57 
6 49 20 56 34 58 48 53 
7 50 21 55 35 58 49 57 
8 47 22 55 36 58 50 58 
9 51 23 55 37 58 51 58 

10 50 24 55 38 58 52 56 
11 49 25 51 39 55 53 58 
12 52 26 53 40 56 54 63 
13 53 27 52 41 57 55 60 
14 53 28 51 42 56 56 50 
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the longest run above and the longest riin below a cut chosen to maxi- 
mize this length equals or exceeds s: P{s/s, any cut) with meaning similar 
to that for P{s/s, median) but for the case where the cut has been 
chosen to maximize the shorter of the longest runs on each side. 

The use of these distributions can be illustrated by the calculation of 
the various run length statistics for a specific example. The 56 speedom- 
eter readings presented in Table Y and Fig. 5 were observed at one 
minute intervals during a driver's first trip on a toll highway with 

• i • • • K 58 

56 
MEDIAN 
"ANY CUT" 54 

2 52 
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45 10 15 20 25 30 35 40 
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Fig. 5 — Readings ut one-minute intervals. 
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2 -4 
O 
< -6 
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50 60 

Fig. 6 — Chart for deviations from trend line. 
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separate traffic lanes. In this instance, nine observations occur at the 
median (55) with 22 above and 25 below. This is not unusual in experi- 
mental work where ties are likely at or near the median. (It should be 
pointed out that the occurrence of ties makes this a difficult example. 
Later, this example will be modified by removing a trend and then it 
will be simpler. Consideration will first be given to runs with respect to 
the median and then to "any cut.") Various methods of resolving such 
ties are possible. The most conservative is to use a tied median to termi- 
nate a run. The least conservative is to use the tied median or medians 
for inclusion in the run. Intermediate between these is to consider all 
possible allocations and their effects on run length. Here, in order to ob- 
tain 28 above and 28 below the median, it is necessary to allocate the 
nine tied at the median so that 6 will be above and 3 below. The run 
length associated with each such combination would then be obtained 
and, if desired, the average computed. In this case, the lengths of the 
various runs obtained by these three methods are as follows: 

Type ot Run 
Most Con- 
servative 

lun Lengths, 

Average Least Con- 
servative 

Limit for P £ 0.01 
Per 

Cent 
Below 
Limit 

7 13.7 18 11 (Table I) 33 
14 15.8 21 11 (Table I) 0 

Each Side 7 12.8 18 8 (Table II) 1 
Either Side 14 16.6 21 11 (Table III) 0 
Each Side, Any Cut 14 — — 9 (Table IV) 

It will be observed that only one answer results for the "each side of 
any cut." Also, three of the five tests on the most conservative basis are 
above their respective limits for a F of 0.01 and all on the other bases. 
This happens quite frequently in engineering problems. 

It is apparent, however, in this case, that there is a consistent trend 
throughout the set of data. In Fig. 6, this has been removed and the 
median lies between the 28 points above and the 28 points below. The 
following statistics are obtained: 

Type ot Run 
Run Lengths, y 

P for Observed Run 
Observed 

Run 
Limit for 
P £ 0.01 

9 11 (Table I) 0.03 
Below 5 11 (Table 1) 0.60 
Each Side 5 8 (Table II) 0.42 

9 11 (Table III) 0.05 
Each Side, Any Cut 0 9 (Table IV) 0.008 
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In this case, only the statistic for the longest run on each side of any 
cut has a P as low as 0.01. Two others were of the order of 0.05 and the 
remaining two near 0.50. The explanation of the indicated nonrandom- 
ness was identified with human behavior under conditions of learning. 

This example raises a question about the treatment of odd sized sam- 
ples, where the median is a single observation. These may all be reduced 
to even sized samples by omitting the median. This is unnecessary in the 
case of the longest run on "each side of any cut" where the P values for 
a given s for the odd sized sample lie between those for the adjacent even 
sized samples. 

IV. SOME SPECIFIC SAMPLES 

Table VI presents the values of probabilities P(s/ —, ni/no) and 
P(—/s, rii/ni), for every possible separation of 10 = ?ii + no observa- 
tions into ni on one .side of a cut and nz on the other. Table YII does the 
same for 20 — ni no observations. Similarly, the values of P(s/s, ni/n^) 
and P(s/ — or —/s, ni/ws) are given in Tables YIII and IX, and Tables 
X, and XI, respectively. 

In Tables XII, XIII, and XIV, the table presented by Mosteller4 for 
the three kinds of runs with respect to the median, that is, where rq = W2, 
has been extended to include samples of 60, 100, and 200. 

The values of P{s/s, any cut) for n — 10, 20, 40, and 100 are given in 
Table XV. It will be noted that the values of the probabilities in this 
table differ only slightly from those in Table XIII for P(s/s, median). 
For large sample sizes, other considerations suggest that the s-values 

Table VI 
Probability of an arrangment with a run of length at least s on "one 
side" of a demarcation value for T ni = 10 calculated from equation 
(1) or (2). 

Length of Run 
Total on the "one side", i.e., «i or «j 

J 
9 8 7 6 5 4 3 2 1 

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 0.976 0.833 0.533 0.200 
3 1.000 1.000 0.967 0.786 0.500 0.233 0.067 
4 1.000 0.933 0.667 0.357 0.143 0.033 
5 1.000 0.667 0.333 0.119 0.024 
6 0.800 0.400 0.133 0.024 
7 0.600 0.200 0.033 
8 0.400 0.067 
9 0.200 
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Table VIII 

Probability of an arrangement with a run of length at least s on "each 
side" of a demarcation value for Wi + /is = 10 calculated from equation 
(4). 

Length of 
Run 

5 
»j or 
ni or ni 

1 
9 

2 
8 

3 
7 

4 
6 

5 
S 

1 I. GOO 1.000 1.000 1.000 1.000 
2 0.200 0.533 0.833 0.960 
3 0.0C7 0.224 0.333 
4 0.029 0.056 
5 0.008 

Table IX 

Probability of an arrangement with a run of length at least s on "each 
side" of a demarcation value for rq + n? = 20 calculated from equation 
(4). 

Length 
of Run 

s 
«i or «2 I 2 3 4 5 6 7 8 9 10 
ni or m 19 18 17 16 IS 14 13 12 11 10 

1 1,000 1.000 1.000 1.000 1.000 1.000 1,000 1.000 1.000 1.000 
2 0.100 0.284 0.509 0.718 0.871 0.96S 0.990 0.999 1.000 
3 0.016 0.060 0.140 0.260 0.413 0.581 0.727 0.784 
4 0.004 0.017 0.046 0.100 0.179 0.245 0.274 
5 0.001 0.006 0.012 0.042 0.056 0.064 
6 0.000 0.002 0.007 0.011 0.013 
7 0.000 0.001 0.002 0.002 
8 0.000 0.000 0.000 
9 0.000 0.000 

10 0.000 

Table X 

Probability of an arrangement with a run of length at least s on "either 
side" of a demarcation value for % + rr. = 10 calculated from equation 
(5). 

Length of 
Run 

s 
mi or ni 
ni or ks 

1 
9 

2 
8 

3 
7 

4 
6 

5 
5 

1 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 0.992 
3 1.000 1.000 0.967 0.795 0.667 
4 1,000 0.933 0.667 0.362 0.230 
5 1.000 0.667 0.333 0.119 0.040 
6 0.800 0.400 0.133 0.024 
7 0.600 0.200 0.033 
8 0.400 0.067 
9 0.200 



Table XI 

Probability of an arrangement with a run of length at least « on "either 
side" of a demarcation value for m + >1-2 = 20 calculated from equation 
(5). 

Length 
of Run 

.! 
«i or tii 
tti or "1 

1 1!) 
2 
IK 

3 
17 

4 
16 

5 
is 

6 
14 

7 
13 

8 
12 

9 
U 

10 
10 

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1,000 1.000 
3 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.989 0.966 0.956 
4 1.000 1.000 1.000 1.000 0.996 0.971 0.901 0.787 0.684 0.640 
5 1.000 1.000 1.000 0.986 0.920 0.790 0.622 0,452 0.337 0.293 
6 1.000 1.000 0.982 0.889 0.721 0.527 0.351 0.217 0.134 0.106 
7 1.000 0.995 0.898 0.707 0.492 0.309 0.177 0.092 0.046 0.032 
S 1.000 0.947 0.751 0.509 0.307 0.167 0.082 0.035 0.014 0.007 
9 1.000 0.853 0.579 0.341 0.179 0.083 0.034 0.012 0.003 0.001 

10 1.000 0.711 0.421 0.217 0.098 0.038 0.012 0.005 0.001 0.000 
11 0.900 0.568 0.295 0.130 0.049 0.015 0.004 0.001 0.000 
12 o.soo 0.442 0.196 0.072 0.022 0.005 0.001 0.000 
13 0.700 0.332 0.125 0.036 0.008 0.001 0.000 
14 0.600 0.237 0.070 0.015 0.002 0.000 
15 0,500 0.15S 0.035 0.006 0.000 
16 0.400 0.095 0.014 0.001 
17 0,300 0.047 0,004 
18 0.200 0.016 
19 0.100 

Table XII 

Probability of an arrangement with a run of length at least s on "one 
side" of median calculated from equation (1) or (2). 

Sample size, n 
Length of Run 

s 
10 20 40 60 too 200 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
2 0.97619 0.99994 1.00000 1.00000 1.00000 I.00000 
3 0.50000 0.86973 0.99225 0.99956 1.00000 1.00000 
4 0.14286 0.45713 0.79S85 0.92695 0.99049 0.99994 
5 0.02381 0.17849 0.44954 0.63645 0.S42S0 0.98093 
6 0.05960 0.20733 0.33935 0.54439 0.82160 
7 0.01703 O.OS697 0.15952 0.29185 0.54174 
8 0.00395 0.03438 0.07046 0.14251 0.30295 
9 0.00065 0.01290 0.02996 0.06642 0.15529 

10 0.00006 0.00458 0.01235 0.03015 0.07621 
11 0.00IS3 0.00494 0.01344 0.03656 
12 0.00047 0.00192 0.00589 0.01731 
13 0.00014 0.00072 0,00255 0.00813 
14 0.00004 0.00026 0.00108 0.00378 
15 0.00001 0.00009 0,00045 0.00175 
10 0.00000 0.00003 0.00019 0.00080 
17 0.00000 0.00001 0.00008 0.00037 
IS 0.00000 0.00000 0.00003 0,00017 
19 0.00000 0.00000 0,00001 0.00007 
20 0.00000 0.00000 0.00000 0.00003 
21 0.00000 0.00000 0.00001 
22 or over 0.00000 0.00000 0.00000 

69 
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Table XIII 

Probability of an arrangement with, a run of length at least s on "each 
side" of median calculated from equation (6) or (4). 

Length of Run 
Sample Size, n 

J 
10 20 40 60 100 200 

1 1.00000 1.00000 1.00000 1,00000 1.00000 1.00000 
2 0.96032 0.99989 1.00000 1.00000 1.00000 1.00000 
3 0.33333 0.78582 0.98519 0.99912 1.00000 1.00000 
4 0.05556 0.27412 0.66809 0.88729 0.98159 0.99987 
5 0.00794 0.06356 0.24933 0.44250 0.72496 0.96284 
6 0.01288 0.06820 0.14723 0.33308 0.68619 
7 0.00249 0.01647 0.03992 0.10591 0.31377 
8 0.00045 0.00379 0.00992 0.02919 0.10573 
9 0.00008 0.00085 0.00238 0.00747 0.03027 

10 0.00001 0.00019 0.00056 0.00185 0.00800 
11 0.00004 0.00013 0.00045 0,00203 
12 0.00001 0.00003 0.00011 0.00051 
13 0.00000 0.00000 0.00002 0,00013 
14 0.00000 0,00000 0.00000 0.00003 
15 0.00000 0.00000 0.00000 0.00001 
16 or over 0.00000 0.00000 0.00000 0.00000 

Table XIV 

Probability of an arrangement with a run of length at least s on "either 
side" of median calculated from equation (5). 

Sample Size, n 
Length of Run 

s 
10 20 40 60 100 200 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
2 0.99206 0.99999 1.00000 1.00000 1.00000 1.00000 
3 0.66667 0.95564 0.99931 1.00000 1.00000 1.00000 
4 0.23016 0.64014 0.92961 0.98660 0.99938 1.00000 
5 0.03968 0.29342 0.64975 0.83041 0.96082 0.99901 
6 0.10632 0.34646 0.53147 0.75569 0,95701 
7 0.03157 0.15747 0.27911 0.47779 0.76970 
8 0.00741 0.06497 0.13100 0.25582 0.50017 
9 0.00122 0.02495 0.05754 0.12538 0.28031 

10 0.00011 0.00897 0.02414 0.05846 0.14443 
11 0.00302 0.00976 0.02642 0.07108 
12 0.00093 0.00380 0.01108 0.03411 
13 0.00028 0.00144 0.00506 0.01613 
14 0.00008 0.00052 0,00216 0.00753 
15 0.00002 0.00018 0.00090 0.00349 
16 0.00000 0.00006 0.00038 0.00160 
17 0.00000 0.00002 0.00016 0.00074 
18 0.00000 0.00000 0.00006 0.00034 
19 0.00000 0.00000 0.00002 0,00014 
20 0.00000 0.00000 0.00000 0.00006 
21 0.00000 0.00000 0.00002 
22 or over 0.00000 0.00000 0.00000 
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Table XV 

Probability of an arrangement with a run of length at least s on "each 
side" of at least one of all possible demarcation values calculated from 
equation (22). 

Length of Run 
s 

Sample Size, n 

10 20 40 100 

I 1.00000 1.00000 1.00000 1.0000 
2 0.97937 0.99997 1.00000 1.0000 
3 0.46190 0.89748 0.99713 1,0000 
4 0.08413 0.44121 0.83760 0.9986 
5 0.00794 0.12994 0.43401 0.9125 
6 0,02943 0.15840 (0.5S63)* 
7 0.00559 0.04544 (0.2561)* 
8 0.00093 0.01179 0.0876 
9 0.00013 0.00277 0.0263 

10 0.00001 0.00066 0.0073 
11 0.00016 (0.0020)* 
12 0.00003 (0.0005)* 
13 0.00001 (0.0001)* 
14 or over 0.00000 (0.0000)* 

* Values in parentheses were interpolated or extrapolated. 

will increase by unity. All this is in accord with the experience of the 
engineer who did not hesitate to use available information for P(s/s 
median) as being a good first approximation to P(s/s, any cut). 

V. SAMPLE ARRANGEMENT DISTRIBUTIONS WITH RUNS OF LENGTH AT 
LEAST S ABOVE AND BELOW ANY SELECTED CUT 

Assume a finite sample of n = rq -(- n2 numbers, of which ni have 
the common property of being above the selected cut and, similarly, 
77.2 are below. Clearly, the ns numbers may be considered as providing 
(n2 + 1) cells or partitions of the ni numbers above. Some of these cells 
or partitions will, of course, be empty, particularly when Wi is less than 
(??,2 + 1). If at least s of the tii numbers are to be in one partition, it 
would first appear that the number of ways would be proportional to 
the number of possible partitions, ra + 1, and also to the number of ways 
in which the partition boundary points, n2, may be selected from the 
remaining numbers, n — s, i.e., the combination of (n — s) things taken 
no at a time. This, however, gives an over-estimate because it counts 
twice each arrangement that has two partitions of s each, three times 
for each arrangement that has three partitions of s each, etc. Taking 
these factors into account, it is found that the number of ways of par- 
titioning the ni numbers by means of the w> numbers so as to obtain one 
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or more partitions that contain s or more elements is: 

c| 

Having this, we may write down the probability of an arrangement of 
n numbers that will contain at least one run of length s or more among 
the ni numbers that are above our demarcation value by dividing by 

(:}■ 

- i ¥<-■>"' {"*■) (" ;")■ 

\nj 

In a similar manner, we may, by interchanging rh and n2, write down 
the probability of an arrangement of n numbers that will contain at 
least one run of length s or more among the numbers that are below 
our demarcation value: 

"-'"'"■■-AS'-'-f'r) (";')■ e> 
\ni' 

To assist in determining the probability that an arrangement will 
contain at least one run of length s or more on each side of the demarca- 
tion value, let us assume that we have partitioned the % numbers above 
into r runs of which at least one is of length at least s. These r runs may 
be associated with (r — 1) runs or partitions of the n?. in only one way, 
with (r + 1) runs of the ni in only one way, but with r runs of the na 
in two ways. Each of these sets of possible runs must contain at least 
one run of length s or more. The resulting partitioning count for s, rij, 
and r is; 

* Some readers may wish to note that 

is the coefficient of x"i in the expansion of (l x + x2 + ■ • •)n2"H — (I + i + 
x2 + ■■■ + z*-1)"'4"1 
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[i=r] 
B(ni,r)= g (-l)i+1^.)(('!l"1

r
)2J

1
(S"1))forI--l,2 (3)* 

and B{n2 ,r— 1) and B^/u , r + 1) are obtained by substituting (r — 1) 
and (r -f 1) respectively for r in (3). All that is needed to secure the 
desired probability is to find the count of the possible arrangements in 
both th and corresponding to each r, sum with respect to r and divide 
by the total possible arrangements: 

1 "i-'+i 
P{s/s, ih/no) = —-r J2 Bith , r)[B{tu , r — 1) + 2B{nt , r) 

I n \ r=l 
\nj 0) 

+ Bin*, r + 1)]. 

To find the probability that an arrangement will contain at least one 
run of length s or more on either side of the demarcation value, it should 
be noted that (4) is counted in both (2) and (1). Thus, this probability 
is simply: 

Pis/— or ~/s,ni/n2) = Pis/-, njni) 
(5) 

+ Pi-/s, ni/n/} - Pis/s, ni/n/) 

where the probabilities on the right hand side of (5) are given by (1), 
(2), and (4) respectively. 

When the median is used as the demarcation value, ni = nz, so that 
Pis/—, median) = P( —/s, median). In addition, by rearranging terms, 
Pis/s, median) may be written in the simplified form: 

Pis/s, median) = ^ , r) + Bini , r -f I)]2 

where Binx, r) and B(-Ri, r + 1) are defined by (3) as before. Equation 
(6) has been used for the new calculations reported here. (See Section IY) 

VI. SAMPLE ARRANGEMENT DISTRIBUTIONS FOR RUNS OF LENGTH S OR 
MORE ON EACH SIDE OF AT LEAST ONE OF ALL POSSIBLE DEMARCATION 
VALUES 

When this derivation was first discussed with a mathematical statis- 
tician, he questioned whether anyone would want a criterion based tm 

* Here, B(/i,, r) = r, s) is the coefficient of x"i in 
(a; + 22 + • ■■)n*+1 ~ (x + xs +■■• + x*-')"^1 
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such a distribution. To make it clear that the engineer does want it, 
assume that we have a set of data and Tables VI to XI, inclusive. The 
engineer might look for the longest run on either side of the median. 
Having found it, he might pick a demarcation value that would just 
include this run. This would give him, for instance. 

on one side of his demarcation value and 

on the other side. He might then look for the longest run on the ni side. 
This would give him two long runs that might be equal in length or one 
shorter than the other. In either case, he could obtain a value of s for 
the length of run that is equalled or exceeded on each side of his de- 
marcation value. If his total sample happened to be 20, he could obtain 
P{s/s, ni/ni) from (4) or Table IX for ni, na, and s. This probability, 
however, is based on his having chosen ni and n-i before the experiment 
and therefore does not indicate what the true probability associated 
with this process is. At the same time, it is reasonably certain that this 
is a procedure that many engineers would be inclined to follow if they 
did not have prior knowledge concerning where to set the demarcation 
value. 

To facilitate the solution, it will be assumed that no two of the n 
values in a sample of size n are identical. For the analysis given here, 
n is taken to be even. Study of small samples shows that when n is odd, 
P(s, - l)g P{s, n) ^ P(s, n + 1). Taking (6) (with the median as 
initial cut) as a starting point, assume that the demarcation value is 
moved so that (% + 1) values are on one side and (ni — 1) values on 
the other. This adds a fraction of the total arrangements with runs of 
length s or more on each side of the new demarcation value equal to: 

AiPis/s,ni + l/ih — 1) 

. Ih + 712 
712 <  A  

+ 2A(?h + 1, r) + A(ni + 1, r + 1)] 

where B(rii — 1, r) is given by (3) above and 
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A(?ii + 1, r) = r X (-1)1^ + s — Oh + 1) 
7=0 

+ (i + Dfc - i)] ^ 

'^i + i - « - i(s - i)^ 

_ ^ni + 1 - 25 - i(s - 1)^J 

+ rfr - 1) g (-1)'(r T ^ 

+ 1 - s - j{s - 1)^ 

_ ^Ih A- 1 - 2s - jis - 1)^ 

The essential points in the derivation of (7) and (8) may be perceived 
most easily by considering some typical computations. Suppose that 
we wish to derive AiF(4/4, 6/4), having previously derived all of the 
values of P(s/s, 5/5) from (6). The possible combinations with a run of 
at least 4 on each side of a cut with G above and 4 below have the follow- 
ing orders: 

1. (5 above and 4 below, or 4 below and 6 above, 
2. 5 above, 4 below, and 1 above, or 1 above, 4 below, and 5 above, and 
3. 4 above, 4 below, and 2 above, or 2 above, 4 below and 4 above. 
The simplest of these is the first. Starting with the value of P(4/4, 5/5) 

as given by (6), we now wish to determine how much additional proba- 
bility is associated with moving the cut from the median to a point where 
G are above and 4 are below. Since there are 6 possible locations in the 
new arrangement for the value that was moved from below to above 
the cut and ('g) ways for arranging 6 above and 4 below, the total pos- 
sible combinations of these provides the factor given in the denominator 
of (7), in this case G(l"), Since there is only one combination possible 
for 4 items taken 4 at a time, ii(4, I) as given by (3) is as might be ex- 
pected unity. Then, since we must have at least one run above the cut, 
.4(6, 0) must be 0. The first important question relates to the value of 
4(C, 1). Since there is only one run of C, it is easy to see that a run of 
length 4 or more must have occurred above the median if the value 
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moved from below is now in position 1, 2, 5, or 6 in the new run. Hence, 
there are only two possible locations for the value moved that give new 
combinations that have not been counted with respect to the median. 
At this point, it will be observed that for this case, r = 1, this value is 
given by 2s — (m 1). Since there is" exactly one run on each side of 
the new cut, the coefficient 2 appears before the A(wi + 1, r) in (7) to 
take account of the two ways that these runs may be arranged, namely, 
6 above followed by 4 below and 4 below followed by 6 above. 

Now consider the ways in which we may have two runs with the 
restriction that one must be of length 4 or more. This is to be given by 
.4(6, 2). In this case, there are two such run combinations, one with inns 
of lengths 5 and 1, and one with runs of lengths 4 and 2. Obviously, the 
value that was moved could not have been in the short run in either case 
because these arrangements would have had long runs of length 4 or 
more that would have been counted with respect to the median. In the 
case of the run of length 5, it could not be on either end but in the run 
of length 4, it could be at any one of the positions in the run. We also 
observe that with two runs of dissimilar lengths, the positions of the 
runs may be interchanged. This gives in this case a factor 2. Hence, we 
find that A(6, 2) is2• 3 + 2-4, or 14, Toconform with (8), thissum would 
have to be written as 2 ■ 3 ■ 2 + 2 • 1, although, at this point, it may not be 
clear that this is a reasonable thing to do. However, by extending the 
investigation step by step, it is found that the various terms in (8) are 
required. Specifically, the J becomes necessary when ?h + 1 becomes 
greater than 2s — 1 and the binomial coefficients with terms in 2s are 
introduced so that any combination that already has a run of length s 
on the basis of the median will not be counted again. 

Obviously, this process may be continued by moving the cut to in- 
clude (ni + 2) values on one side and leave (n, - 2) values on the other. 
Proceeding in this way, the fraction added in going from (ni + i — 1) 
values above and (m — i + 1) values below to (m + i) above and 
(ni — i) below is given by: 

A,P(s/s, 7ii + i/ni — i) 

I 
(9) 

■ [A (ni + i,r — 1) + 2.1 (rq + i,r) + A (th + i, r + 1)] 

where B{ni — i, r) is defined by (3) above and 
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A(«i + i, r) = r S (—l)J[r + s — (ni + i) + (j + l)(s - 1)1 

/ Ar/)11 + i_^_j(s_1)N 

(10) 

-("1+'Y-r" 5'-»■('7") 

"^i A- i - s - j{s - 1)^ _ - i - 2s - j(s - l)^j 

One of each of these A's is added in going from the median to each 
side. Therefore, the desired probability of an arrangement with runs 
of length s or more on each side of at least one of all possible demarcation 
values is: 

n j—s 
i'is/s, any cut) = F{s/s, rii/ni) + 2 AiF^/s, m -f i/ni — i). (11) 

i=i 

VII. ASYMPTOTIC DISTRIBUTIONS 

Intuitively, the asymptotic distribution of arrangements with 0, 1, 2 
etc., runs of length s or more for ni/n = Cx, a constant, would be ex- 
pected to become Poisson Exponential as n becomes large. Referring to 
Mood,3 the expected number of runs of length s or more on one side of a 
demarcation value is his expression (3,13), which may be written: 

n (8> 

E{ru) = («2 + 1) —-r-r ~ neiCi for «i and m large (12) 
n(S) 

whore 7?(ris) is the expected number of runs of length s or more on the 
side of the cut designated 1; superscript (s) designates a factorial mo- 
ment, e.g., 

a"0 = n{n. - 1)(« - 2) •••(»- s + 1) (13) 

and c-i and e-, are written for njn and n«/n, respectively. 
The variance is his expression (3.15), or 

/„ I i \ (2) (2«) (s) («2 + 1) , / _j_ -."v 
"Vun. = W + 1)—^ 

(l - (n. + 1) (14) 

« /, 2 s—1 2 nei 62(1 — s ci Co — ei ) 

hcj'go — EO'u) for s, ?ii, and large. 
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Corresponding expressions for the side designated 2 may be obtained 
by interchanging the subscripts, 1 and 2, in equations (12) and (14). 

Mood3 also derives an expression (3.18) for the covariance of num- 
bers of runs equal to or greater than specified lengths on the two sides 
of the demarcation value. For runs of length s or more on each side, this 
becomes: 

2n1"W' in, + Din, + DnfW 
"'I.'f „(!.) nf2r-I> n,''>nM 

, 2 , (15) ~ n eie2 {s — s + l; 

^ 71 s2eig+1e2,+1 for s, ni, and n2 large. 

From (14) and (15), it is clear that the covariance between long runs 
on the two sides becomes negligible for s, ni, and na large and the occur- 
rence of long runs on each side may be treated as independent. 

Since Mood3 has shown (his Theorem I) that the distribution of the 
number of runs of length s or more on one side is asymptotically normal 
and by (12) and (14) above, the first two moments are those of a Poisson 
Exponential, the asymptotic probabilities of arrangements with runs of 
length s or more may be approximated by: 
On side T. 

P(s/-,ni/n2) = 1 - (16) 

On side 2: 

PC-AVO ^ 1 - (17) 

On each side: • 

P(s/S, 7i3/?i2) = (1 - e-"e*et')(l - (18) 

On either side: 

Pis/- or -a, m/m) = 1 - (19) 

When the median is being used as the demarcation value, that is, when 
€i = €2. these become: 
On side 1 or on side 2 alone: 

P(s/—, median) = P(—/s, median) = 1 — (T""2 U (20) 

On each side: 

P{s/s, median) = (1 — c_n"2 ' ") ; (21) 

On either side: 

Pis/— or — /s, median) = 1 —• e ''"2 . (22) 
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Asymptotic relationships of this type do not add much to the solution 
of the practical problem of calculating probabilities associated with 
samples of 100 or less. They do, however, suggest that doubling sample 
sizes for a given probability should increase s by unity. This is in close 
agreement with the calculations for finite sample sizes. This observation 
suggested the treatment in the next section. 

VHI. RELATIONSHIPS BETWEEN S AND n FOR CONSTANT PROBABILITY 

From (20), (21), and (22), it is clear that, for constant probability, s 
is asymptotically a simple function of n for each of the arrangement dis- 
tributions considered for runs relative to the median. Specifically, we 
obtain: 
On side 1 or on side 2: 

log n ~ log (- log, (1 - P)) 
s LP 1 

where P = P(s/—, median) 

= P(~/s, median); 

On each side: 

s ^ log n - log (- logc (1 - VP)) __ 1 

log 2 (24) 

where P — P(s/s, median); 

On either side: 

s ^ log n - log (- logs (1 - P)) 
'og 2 (25) 

where P = P(s/— or —/s, median). 

After considering equations (23), (24), and (25), it is quite obvious that 
an equation similar to (24) in the same way that (25) is similar to (23) 
could be written, i.e.; 

s log n - log (- logf (1 - VP)) 
•og 2 (26) 

where P = P[{s/— or — /s)/(s/— or —/s), median] 

but what is the meaning of P? It is clear that the P in (26) is approxi- 
mately the square of the P in (25). So far, however, no analytic justifi- 
cation for (20) has been obtained, although the P in (20) is obviously 



Table XVI 

Constants for equation (27) calculated from equations (23) to (26) and 
tables VII to X 

Eq
ua

tio
n 

| 

Table p A B c 
Differences at »i equal to 

10 20 40 60 100 200 

23 VII 0.001 5,151 126.6 -266.5 0 0 0 0 -0.01 +0.01 
0.01 4.863 53.19 -105.1 0 + 0.02 -0.02 -0.01 0 +0.02 
0.02 4.445 39.61 -79.16 0 +0.01 -0.01 -0.01 0 +0.02 
0.025 4.306 35.34 -71.08 0 +0.01 -0.01 -0.01 0 +0.02 
0.05 3.127 28.03 -57.71 0 +0.01 -0.01 -0.01 0 +0.02 
0.10 3.127 13.95 -32.83 0 +0.01 -0.01 -0.01 0 +0.01 
0.50 0.5297 -3.126 -0.1306 0 0 0 0 0 0 
0.90 -2.576 -6.757 10.96 0 0 0 +0.01 0 0 
0.95 -3.442 -7.244 13.84 0 0 0 0 0 0 
0.975 -4.227 -7.185 15.44 0 0 0 0 0 -0.01 
0.98 -4.441 -7.326 16.29 0 -0.01 0 0 0 -0,01 
0.99 -5.128 -7.164 17.78 0 -0.01 +0.01 0 0 -0.01 
0.999 -7.829 0.3596 8.278 0 0 -0.01 -0.01 +0.06 -0.04 

24 VIII 0.001 -0.3002 23.36 -32.54 0 -0.01 +0.02 0 0 -0.01 
0.01 0.0467 10.93 -13.30 0 0 0 0 0 0 
0.02 0.0048 8.596 -11.14 0 0 0 0 0 0 
0.026 -0.0005 7.612 -9.868 0 0 0 0 0 0 
0.05 -0.0672 4.695 -6.288 0 0 0 0 0 0 
0.10 -0.2136 1.668 -2.139 0 0 0 0 0 0 
0.50 -1.573 -4.142 6.576 0 0 0 +0.01 0 -0.01 
0.90 -3.660 -6.518 13.04 0 0 0 0 0 -0.01 
0.95 -4.408 -6.591 14.75 0 0 0 0 0 -0.01 
0.975 -5.039 -6.665 16.21 0 0 0 0 0 -0.01 
0.98 -5.218 -6.728 16.72 0 0 0 +0.01 0 -0.01 
0.99 -6.822 -7.068 18.19 0 0 0 +0.01 0 -0.01 
0.999 -7.430 -6.861 23.26 0 -0.01 0 +0.01 0 -0.01 

25 IX 0.001 4,879 154.6 -324.2 0 0 +0.01 0 -0.02 +0.01 
0.01 4.902 73.86 -146.9 0 +0,01 -0.01 -0.01 0 +0.02 
0.02 4.764 55.83 -109.5 0 +0.01 -0.01 -0.01 0 0 
0.025 4.611 51.88 -102.6 0 +0.01 -0.01 -0.01 0 +0.02 
0.05 4.432 35.72 -71.31 0 +0.02 -0.02 -0.01 0 +0.02 
0.10 3.847 25.64 -54.79 0 +0.01 -0.01 -0.01 0 +0.02 
0.50 2.524 1.680 -13.88 0 +0.01 -0.01 0 0 +0.01 
0.90 1.141 -9.694 7.601 0 0 0 0 0 0 
0.95 0.759 -12.16 12.83 0 0 0 0 0 0 
0.975 0.422 -14.08 17.14 0 0 0 0 0 0 
0,98 0.356 -14.74 18.61 0 0 0 0 0 0 
0.99 0.081 -16.61 22.91 0 0 0 +0.01 0 0 
0.999 -0.600 -21.68 34.97 0 -0.01 +0,02 0 -0.02 +0.01 

26 X 0.001 -4.176 60.34 -69.24 +0.01 -0.01 0 — +0.01 — 
0.01 -2.176 39.32 -40.98 +0.01 +0.01 -0.01 — 0 — 
0.02 -1.762 34.71 -47.65 0 +0.01 -0.02 — -0.02 — 
0.025 -1.427 32.01 -45.06 0 +0.02 -0.01 — -0.01 — 
0.05 -0.830 26.26 -41.04 0 +0.02 -0.01 — -0.02 — 
0.10 -0.356 21.25 -38.10 0 +0.01 -0.01 — -0.01 — 
0.50 1,069 1.932 -14.67 0 +0.01 -0.01 — 0 — 
0.90 1.136 -10.65 5.014 0 +0.02 -0.02 — 0 — 
0.95 1.369 -17.16 18.39 0 +0.01 -0.02 — +0.02 — 
0.975 1.222 -19.89 24.12 -0.01 +0.01 -0.02 — +0.02 — 
0.98 1.007 -19.78 24.69 -0.01 +0.01 -0.02 — +0.01 — 
0.99 0.679 -21.66 30.15 -0.01 0 -0.02 — +0.02 — 
0.999 0.408 -29.73 48.79 0 0 -0.02 +0.02 

80 
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Fig. 7 — Differences between interpolated values of s computed from Tables 
XII to XV, inclusive, and appropriate equations (23) to (26), inclusive, forP = 0.01 
and 0.!)!). 

the maximum value possible for P{s/s, any cut). Nevertheless, as we 
shall see below, it appears to predict empirically the large sample be- 
havior of runs above and below any cut even better than (23), (24), and 
(25) predict the large sample behavior of the other types of run. 

For this comparison, values of s corresponding to particular values of 
P were interpolated (in a few cases, extrapolated) from the exact deter- 
minations of Tables XII to XV. Since the distributions for each sample 
size in these tables had been found to be mildly deviant from log-normal, 
the interpolation process first obtained a three point log-normal rela- 
tionship in the P area of interest by changing the s-scale to an (s + a)- 
scale. Here, a is the constant that must be added to s to produce the log- 
normal relationship in the interval under consideration. Values of s for 
each P, n, and type of run were obtained to four decimal places. 
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In each case, the difference between the interpolated value and that 
given by the appropriate equation (23), (24), (25), or (26) was calcu- 
lated. At this point, it was found that some of these differences for a par- 
ticular P and type of run could be approximated by linear equations in 
1/n or l/\/n. In view of this, all have been fitted by the equation: 

As = aL + - + CL (27) 
V n n v n 

The constants, A, B, and C, have been recorded in Table XVI. The 
agreement between the values given by this equation and the differences 
on which they were based seldom exceed 0.02. Thus, it was assumed that 
(27) provided a reasonable approximation for extrapolation to the 
larger sample sizes for which values are shown in Tables I to IV and in 
Figs. 1 to 4. 

To illustrate the agreement with (27), some typical results for P's of 
0.01 and 0.99 are given in Fig. 7. All show that the differences converge 
in a reasonably uniform manner to zero at infinity. 
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Properties of Control Chart Zone Tests 

By S. W. ROBERTS 

(Manuscript received September 10, 1957) 

This paper is concerned with the statistical properties of tests com- 
posed of the standard control chart test supplemented by one or more 
tests for runs of points in various zones into which the control chart is 
partitioned. The basic properties of the resultant tests, called zone tests, are 
illustrated graphically. A procedure for determining the properties of many 
zone tests of practical interest is described. 

I. INTRODUCTION 

1.1 General 

In using an X control chart to maintain control of a process average, 
we periodically measure n units of the product and plot the average 
measurement A'n on the control chart in its chronological position. The 
control chart presents a pictorial summary of production history that is 
useful in: (a) detecting changes in the process average, and (b) pro- 
viding clues to the causes of such changes. Various run tests have proved 
useful in application (b).1 Most of the literature on run theory pertains 
to this application. There are tests for runs up and for runs up and down; 
there are tests for the number of runs and for the lengths of runs. The 
control chart is particularly suitable for run tests. We shall consider the 
use of a particular type of run test in application (a). 

In application (a), as each point is plotted we decide whether or not 
to look for trouble (to take action to eliminate the cause of the change 
in the process average). Using the standard control chart test," 3 we look 
for trouble if a point falls in a zone outside of two control limits sym- 
metrically placed on either side of a line representing the nominal proc- 
ess average. The control limits, called the So- (3-sigma) limits, are placed 
at AV ± SfcW"), where AV and a' are the nominal process average 
and standard deviation, respectively, and n is the sample size, or num- 
ber of units of product measured for each point. We shall assume that 
AV and a' are known, ami that o' remains fixed. 

83 
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In using a statistical test to decide at each point whether or not to 
look for trouble, we are subject to two types of errors: 

(1) We make Type 1 errors when we decide to look for trouble when 
in fact none is present. 

(2) We make Type 2 errors when we decide not to look for trouble 
when trouble is actually present. 
Few Type 1 errors are made when the standard control chart test is 
used — an average of about one point in 370 falls outside of the 3o- limits 
when the process average is at its nominal level. Type 2 errors occur at 
consecutive points following a change until the test used indicates that 
a change has occurred. Small changes may result in long sequences of 
Type 2 errors because the probability of a point falling outside of the 
So- limits may be small, though larger than it was when the process aver- 
age was at its nominal level. This definition of the two types of errors 
makes a sharp distinction between the presence and absence of trouble — 
a distinction more theoretical than practical — in order to simplify the 
exposition of the subject. 

Experience indicates that, in general, the standard control chart test 
maintains an economic balance between the two types of errors in a 
wide range of industrial applications (Reference 2, pp. 276-7; Reference 
3, p. 11). However, other tests may be more attractive economically in 
applications where early detection of relatively small changes is impor- 
tant. It has been suggested (Reference 4, p. 128) that supplementary 
run tests may prove useful in such applications. Various run tests are 
used in practice to supplement the standard control chart test,* but 
little has been published on the properties of the resultant tests, t though 
it is quite apparent that each additional supplementary run test em- 
ployed decreases the number of Type 2 errors made and increases the 
number of Type 1 errors. 

There are several alternative ways to reduce the number of Type 2 
errors made; we can: 

(1) Set the limit lines closer to the nominal process average AV. 
(2) Increase the sample size.5,7 

(3) Replace the standard test with a single test for runs of points 
outside of appropriate limits.6 

(4) Supplement the standard test with one or more run tests. 
(5) Temporarily modify the sampling procedure — e.g., increase the 

sample size or frequency of sampling — whenever a point falls outside 
of "warning" limits but inside of the "action" limits (•Tr limits).4,7 

* See footnote, page 89. 
t After the page proofs of this paper had been received, the author was advised 

of Reference 9, which deals primarily with the test TniLi, L2). 
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(6) Use a control chart for a statistic other than X„ ; for example, plot 
points representing the moving average of k consecutive AVs. 
The improvements generally require extra information or more com- 
plicated tests, or they result in an increased frequency of Type 1 errors. 

In this paper we study the properties of various run tests that either 
replace or supplement the standard control chart test in application (a). 
We limit our study to a particular type of run tests which we call "zone 
tests" because they test for runs of points in various zones into which 
the control chart is partitioned. For example, we study such tests as 
T12' (3, 2),t which calls for action if a single point falls outside of the So- 
limits or if two of three consecutive points fall outside of a 2tr limit line. 
We limit our studies to tests used on charts of the statistic Xn ; zone 
tests can he useful on other charts, hut their properties depend on the 
properties of the particular statistic plotted. Our results apply for any 
sample size and frequency of sampling. 

We use Tk(Lk) to denote a test for Ic consecutive points outside of one 
of the pair of limit lines at Xo ± LkW/y/n), and!ZV(iU) to denote the 
test for k. out of k + 1 consecutive points outside of the limit lines. If 
we combine two tests, we let , Li-2) denote the combined test 
that calls for action on the occurrence of either type of run; h and h arc 
integers less than nine, eit her primed or imprimed. 

For simplicity of notation wc may eliminate the brackets on the test 
notation if the subscripts provide sufficient information. For this purpose, 
we adopt standard limits for certain runs. Thus we may use Ti rather 
than Ti(3) to denote the standard control chart test. Also, we use the 2a 
limits, the lo- limits, and AV itself as standard for runs of lengths 2,4, and 
8, respectively. Thus means 7'i2'(3, 2), and 'i'8 means 7's(0), We use 
an asterisk to denote one-sided tests — those with limit lines on only one 
side of AV- Test T* has a single limit lino, at AV + 'Sia/s/n). 

1.2 Process Model 

We use a process model in which the process average is X' = AV + A, 
where A is subject to change. A picture showing how A changes with time 
would show a series of rectangular pulses (positive or negative) of vari- 
ous heights, separated by periods with A = 0. The beginning of a pulse 
corresponds to the occurrence of an assignable cause of variation, and 
the height of the pulse is a function of the particular cause. The pulse 
ending corresponds to the elimination of the trouble. The distribution of 

t Read subscript as 1,2'. 
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the lengths of the pulses depends on the test we use to detect changes; 
the test should be designed to keep the lengths reasonably short. 

The sample average, Xn , is assumed to have a normal distribution 
defined by its expected value X' and standard deviation a'/-\/n. 

Whenever A = 0, the process average is at its nominal level, and we 
say the process is in State 1. Whenever A ^ 0, there is trouble present, 
and we say the process is in State 2. We assume that no additional 
changes occur while the process remains in State 2. 

At each point we look for certain runs that rarely occur in State 1. 
In the absence of such runs there is no indication that the process is not 
in State 1, and accordingly we do not look for trouble. We do not at- 
tempt to define the probability that the process is in State 1 at any 
point. In this model, we stop the process to look for trouble on the first 
occurrence of a run for which we are testing. When the process starts 
again it is assumed to be in State 1; consequently, the testing procedure 
ignores previous points. 

Relatively straight-forward mathematics can be used to describe the 
properties of certain tests acting within the framework of this process 
model. Alternative, and perhaps more realistic, assumptions can easily 
lead to much more complicated problems of description. In many cases 
the results obtained here can be used to describe qualitatively the prop- 
erties of tests applied to more complex processes. 

1.3 Measuring the Two Types of Decision Errors 

As each point is plotted on the control chart wc decide either that the 
process is in State 3 — in which case we leave it alone — or that it is 
in State 2 — in which case we look for trouble. We make a Type 1 error 
when we say that the process is in State 2 when actually it is in State 1; 
Type 1 errors initiate needless action. Wc make a Type 2 error when we 
say that the process is in State 1 when actually it is in State 2; Type 2 
errors fail to initiate needed action. We generally make a series of con- 
secutive errors of Type 2 before detecting the change in state. 

Let the random variable y denote the number of points plotted while 
the process remains in State 2, Then y — I consecutive errors of Type 2 
are made. Let E{y) denote the expected, or average, value of y, then 
E{y — 1) is the average length of a series of Type 2 errors. 

E{y) depends on A, the amount by which the process average changes; 
wc sometimes note this dependence by writing E{y, A). E{y\ A) is a 
monotonically decreasing function of the magnitude of A; that is, the 
larger the change, the smaller is E{y). In other words, tests are more 
sensitive to large changes than to small changes. 



PKOPKHTIES OF CONTROL CHART ZONE TESTS 87 

3000 

2000 
1500 

1000 
600 
600 
500 
400 
300 

200 
1 50 

E(y) 
100 

00 
60 
50 
40 
30 

20 
15 

lO 
B 7 
6 
5 
A 
3 

2 
1.5 

I 
0 0.5 1.0 1.5 2.0 2,5 3.0 3.5 

A IN UNITS OF -~ VfT 

Fig. 1 — Eiy) versus A for Ti{Li) for various limits. 

Fig. I shows curves of E(tj) versus A for ?\(Li) for Li — 2, 2.5, 3, and 
3.5. Note on the curve for F1(3), for example, that E{y) = 15 at A = 
1.5 (tr'/Vw); this means that following a change of this magnitude, an 
average of 15 points arc plotted before a point falls outside of a 3(r 
limit. Note that as A approaches zero, Eiy) approaches 370, which cor- 
responds to the average number of points between consecutive Type 1 
errors while the process remains in State 1. 

In Fig. 1 and later figures the abscissa is A, and it is measured in units 
of c'/\/n, which is the standard deviation of Xn . The particular ab- 
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scissa that applies to a change of a given physical magnitude is propor- 
tional to Vn; for example, if n is doubled in the above example where 
A = /y/n), then the appropriate abscissa on Fig. 1 increases from 
1.5 units, with ordinate E{y) = 15 on curve r}\ , to l,5-v/2 = 2.121 
units, with E{tj) — 5.4. The positions of the curves relative to one an- 
other are independent of n. 

If the process were to remain in State 1 indefinitely, E{y, 0) would 
represent the average number of points between consecutive Type 1 
errors, and \/[E{y\ 0)] would be the asymptotic probability of a Type 1 
error. In comparing tests with respect to Type 1 errors, we compare 
their values of E{y; 0). 

In comparing tests with respect to Type 2 errors, we compare their 
values of E{y), or E{y — 1), for various non-zero values of A. 

I.4 Comparing the Statistical Properties of Various Zone Tests 

We are primarily interested in the distribution of y. The distribution 
of y for all of the zone tests we consider can be adequately summarized 
by one parameter — its average value E(y) (see Section 3.1). Therefore, 
in comparing the statistical properties of various tests, we compare their 
curves of E{y) versus A. From such curves we can determine the asymp- 
totic probability of Type 1 errors, l/[E(y, 0)], and the average number 
of consecutive Type 2 errors, E{y — 1; A), for any A different from zero. 

Figure 1 illustrates how the properties of zone tests can be changed by 
changing the limit lines. By changing the limit lines of Ti(Lt) from Li = 3 
to Li = 2, we reduce E{y) for all values of A: when A > 0, this means 
that the Type 2 errors are reduced; when A — 0, this means that 
Type 1 errors are increased. 

A choice between two tests should be based partially on the relative 
values of the two types of decision errors. We can fix the Type 1 errors 
at any desired level by an appropriate setting of the zone limits; then 
the Typo 2 errors alone serve as a basis of comparison. 

II. SUMMARY OF RESULTS 

Section 4 shows how to determine the distribution of y, and in partic- 
ular its average value E{y), for one-sided tests Tk*{Lk) and Tk'*(Lk), 
for any k. Simple substitutions into equations for the above one-sided 
tests allow us to determine the properties of any test of type , Lk) 
or Tik*{Li , Lk)' We then determine the properties of two-sided tests 
from the properties of the corresponding one-sided tests. 

We show that the average values of y in any two separate tests provide 
upper and lower bounds to the average value of y in their combined test. 
Thus with subscript h denoting test Tty , h denoting Ti„, and hh de- 
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noting the test Tlll2 combining T^ and T, we have upper bounds 

E^Jy, A) ^ Etl{y, A), Eilh(y] A) ^ Eh{y, A), (lj 

and a lower bound 

An application of (2) to the determination of the properties of two-sided 
tests in terms of the properties of their component one-sided tests yields 

where the asterisks denote one-sided test results. 
We can determine the properties of the following tests: Tk{Lk), 

7V(Lt), Tu-iLi, Lk) and TwiLi, Lk), for any k. With Li = 3, the last 
two types of tests supplement the standard control chart test ^(S) 
with one other zone test. 

Equations (1) support the logical conclusion that the more criteria 
wo have to indicate the presence of trouble, the more quickly we will 
look for trouble when it is present as well as when it is not present. Thus, 
in supplementing the standard control chart test with other tests, we 
decrease the Type 2 errors at the expense of more frequent Type 1 er- 
rors. The question of how far to go in supplementing the standard control 
chart test must be answered in light of the relative importance of the two 
types of errors in the particular application considered. 

Section III presents a series of charts to show the properties of several 
particular tests, including T\ , Tu , TV, Tw, and Tins ■ The last test* 
illustrates the effect of supplementing Ti with more than one additional 
test; its properties were determined through the use of Monte Carlo 
techniques. We also show E{y) versus A for several tests when their zone 
limits are translated away from the center line so that their Type 1 
errors are comparable to those of Tj . It is through such translations of 
zone limits that we can offset the undesirable effect on Type 1 errors 
that occurs when we add new tests to our testing procedure. 

III. CHARTS SHOWING PUOFEUTIES OF VARIOUS ZONE TESTS 

3.1 Distribution Function of y 

The cumulative distribution function of the random variable y, 
Q. = Prob {y > is shown in Figs. 2 and 3 for various zone tests. 

* This teat is similar to one that has been used by the Western Electric Company 
in its quality control training program; somewhat different criteria for taking 
action are used and therefore the statistical properties differ. 

(2) 

^(i/;A)"i?*(t/;A) + E*(?/;-A) 
(3) 
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The curves are applicable only at integral values of j. 11 y > j, there 
have been no indications of a changed process average in the first j 
points following the change from AV to Ao' + A. 

Fig. 2 shows curves for 2\ , TV, TV, and T'a for A = 0, cr'/Vn, and 
2(<r'/v/n)- Fig. 3 compares IT,, Tr , Tw , and TVo-s for A = a'/s/n; 
it illustrates the effect of additional tests on the distribution of y. 
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Fig. 2 — Cumulative distrilmtion of y for Ti , Ti', 'I\' , and 2'B for A = 0, a'/y/n, 
and 2(<r'/Vft)- 
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The curves of Figs. 2 and 3, plotted on scmilogarithmic paper, can 
be approximated for practical purposes by straight lines. Thus, the dis- 
tributions are approximately geometric, or discrete exponential, dis- 
tributions that can be described by a single parameter E{y) and an 
initial value. It is for this reason that E{y) adequately summarizes their 
statistical properties. 



92 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958 

Figs. 2 and '6 illustrate the fact that single tests for long runs, such as 
Tb , do not become fully effective immediately following a change. 

3.2 Curves of E{y) Versus A for Tests with Standard Zone Limits 

Figs. 4, 5, and G illustrate typical curves of Eiy) versus A. Fig. 4 
shows curves for Tj , 7V , 7V , and Tg. Fig. 5 shows the effect of broad- 
ening the criteria for looking for trouble — Tb calls for action only if 
two consecutive points fall outside of a 2cr limit, whereas 7V calls for 
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Fig. 5 — E(i/) versus A for Ti , Ti , T*' , Tis , and Ti*' . 

action whenever T* does and also whenever two points falling outside a 
2cr limit are separated by a single point not falling outside of the 2<r limit. 
Eiy) is less for 7V than for T-. for all values of A; this dilTerence is re- 
flected in the curves for Ty> and 7V>' , which supplement 7\ with T? and 
Ty , respectively. 
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Fig. 6 — E{ij) versus A for T\ , Ts, Tis , and Tu'Vs ■ 

Fig. 6 illustrates the efTect of supplementing T] first with Ts and then 
with Ta, Tv , and T.v . Notice how the Type 1 errors become more 
frequent as Type 2 errors decrease. 

3.3 Curves of E{y) Versus A vnih Limits Set for a Selected Probability 
of Type 1 Errors 

Fig. 7 shows curves of E{y) versus A for tests for k (k = I, 2, 3, 4, 0, 8) 
consecutive points outside of limits that are set for each k so that the 
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probability of a Type 1 error is comparable to that of Ti. Tests for long 
runs clearly are most effective against small process changes, while Ty 
itself is most effective against large process changes. 

Fig. 8 shows curves for Ty , T8{0.0tio), and TisfS.lO, 0.19). The last 
test is composed of the first two tests with all zone limits translated away 
from AV- Notice that T, and T8(0.0{>5) taken individually are more 
effective than TVGTTJ, 0.19) in certain ranges of A. Fig. 9 illustrates 
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PiK. 7 _ Eiu) versus A for Ti{Lk) for k = 1, 2, 3, 4, 6, and 8 with limits set for 
the same probabilities of Type 1 errors. 
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Fig. 8 — E(y) versus A for Ti , Ts{La), and Ti8{Li , Lg) with limits set for the 
same probabilities of Type 1 errors. 
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the same general ideas as Fig. 8, with the addition of Twys with its zone 
limits translated away from AV- 

Because logarithmic scales are used for Ety), the differences 
Ei(y) - Et{y) between curves for Ti and other tests are distorted; 
Fig. 10 shows the difference on an arithmetic scale for two of the curves 
of Fig. 9. 

Fig. II supports the theory that Tk.(Lk.) is slightly more sensitive 
to small changes than Tk{Lk) when the limits are set so that the two 
tests have the same probabilities of Type 1 errors. Further graphical 
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Fig. 11 —E{y) versus A for T\(Li) and Ti'iLi') with limits set for the same 
probabilities of Type 1 errors. 

support is given by curves for 7V(1.93) of Fig. 9 and To(1.78) of Fig. 7. 
No analytical proof has been developed. 

IV. DETERMINING THE STATISTICAL PROPERTIES OF ZONE TESTS 

4,1 General Procedure 

With the control chart partitioned into mutually exclusive zones A, 
B, C, D, we represent a sequence of points falling consecutively 
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into zones B, C, D, and B, for example, by the sequence hcdb. The lower 
case letters such as 6 serve a dual purpose — they denote the fact that a 
point falls into a particular zone, and they denote the probability of that 
particular event, or out come. For example, the probability of a particular 
sequence hcdbcdb is h3cd'. Where there is danger of confusion, wo may 
denote outcome 5 by eb and its probability by pb. A sequence hcdb is 
considered to represent the outcome of a sequence of independent trials, 
each of which has fixed probabilities of outcomes a,h,c, ■ ■ - , r. 

Since the control chart points represent an average measurement A'n 

that has a normal distribution with average AV + A and standard de- 
viation a'l\/n. we use normal probability tables to determine the proba- 
bility b, which remains constant from point to point as long as the proc- 
ess remains in a given state. If $(rr) is the area under the normal curve 
above x, and if zone B is between limit lines at AV + WVV/n) and 
A'n' A- LiWI-y/n), where JV ^ L\ , then probability 

When the process changes from State i to State 2, the probabilities 
of points falling into the various zones change. At the first point in State 
2, zone tests see one point from State 2 preceded by a sequence of points 
from State 1; at each subsequent point in State 2 a single point from 
State 1 is dropped from consideration, until at last all points considered 
are from State 2. The zone tests are such that the probability of a point 
from State 2 falling into a critical zone is greater than the probability of 
a point from State 1 falling into the same zone. Consequently, the proba- 
bility of the occurrence of a run of points in a critical zone is greatest if 
all of the points are from State 2. For simplicity and clarity we neglect 
points from State 1 while considering the results of testing points 
from State 2, This means that r8, for example, does not become effec- 
tive until the eighth point in State 2 appears. This simplifying assump- 
tion will affect the results little; its effect can be eliminated by calculat- 
ing the probability of detecting the change in the first few points and 
adjusting our results. As an illustration, TgCO.OGS) of Fig. 7 should ap- 
proach 7.1, rather than 8, as A approaches infinity. 

If a control chart is partitioned into three mutually exclusive zones 
A, B, and C, outcomes a, h, and c are associated with the events that 
points fall in the respective zones, and probabilities a, h, and c 
(a + 6 + c = 1) are the corresponding probabihties of the events, or 
outcomes. The possible outcome of the first j trials, or points, can be 
enumerated by the ordered expansion of the multinomial (a + 6 + c)'. 
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For example, with j — 2, we have: 

{a -{■ h c)' = aa + 06 + nc + + bh + 6c + ca + ch + cc. 

The probabilities ol" the various sequences occumng are obtained simply 
by multiplying the individual terms; for example, sequence aa has prob- 
ability a. The probability of a particular event such as the event that 
either a or b occurs at least once in the first two trials is determined by 
selecting those sequences in which this event occurs and cumulating 
their probabilities; in this case it is a' + 62 + 2a6 + 2ac + 26c. 

If we wished to determine the probability Qj of no occurrences in the 
first j trials of an event € (a run of eight consecutive points in zone .4, 
for example), we could enumerate all of the 3J possible outcomes, pick 
out those we were interested in, and determine their probabilities. This 
procedure becomes very tedious as j increases, and we soon look for 
shortcuts. We attempt to find a recursion equation defining Qj in terms 
of a limited number of terms , Qj~>, etc. If we can find such an 
equation, we need to enumerate all pertinent outcomes only to the point 
where the equation becomes effective. 

A recursion equation for Qj, together with a set of initial conditions, 
leads to a generating function Q{s) whose power series expansion ex- 
hibits Qj as the coefficient of sb 

Q{s) = 14- QiS -f Qis' + ■ ■ ■ + QjSJ -(-•• = y./Lp Q isj. (4) 

The generating function is useful in obtaining moments of the distribu- 
tion of y. In particular, we obtain E(y) by setting s = 1 in the equation 
for Q(S); E{y) = Q{1). 

The simplest zone tests are those in which a point is classified in one 
of two categories; it represents either event tp with probability p or 
event t,, with probability rj = 1 — p. We arbitrarily call ep a success 
and tq a failure.* We call a test for success runs a simple run test. A 
compound run test is composed of more than one simple run test; for 
example, a test for a run of two consecutive points above the +2a limit 
is a simple run test, hut a test for a run of two consecutive points above 
the 4-2(t limit or below the ^2(7 limit is a compound run test composed 
of two simple run tests. A simple run test classifies points in two ways; 
a compound run test classifies points in more than two ways. 

The test for a run of two consecutive points above the 4"2<r limit is a 
one-sided zone test; the test for a run of two consecutive points above 

* This terminology may seem incongruous, since we hope for events tg , which 
we term failures. Alternatively, we could change the definition, and say that we 
tost for failure runs, hut this conflicts with standard terminology. 
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the -f2o- limit or below the -2a limit is a two-sided zone test. We derive 
the properties of two-sided tests from those of one-sided tests. 

In Sections 4.2 and 4.3 we present recursion equations and generating 
functions for Qj, the probability that y > j, for the following simple 
run tests: 

(1) A; consecutive successes k — 1, 2, 3, 4, • ■ • , 
(2) k successes in & + 1 (or k) consecutive trials k = 2, 3, and 4. 

In addition, we describe a procedure for extending k in (2) to any value. 
Equations for E{y) are also presented. The results apply to one-sided 
zone tests. 

Section 4.4 describes a procedure for determining the properties of 
two-sided zone tests from the properties of one-sided zone tests. 

Section 4.5 presents a procedure for determining the properties of any 
run test combined with a test for a single point in a critical zone. Simple 
substitutions into the equations for a particular one-sided zone test lead 
to a description of the properties of that test in combination with the 
standard control chart test Ti*. 

Section 4.6 develops upper and lower bounds to E{y). Section 4.7 
shows how to determine easily the properties of some tests whose zone 
limits are non-standard. Section 4.8 discusses the use of Monte Carlo 
techniques for determining the properties of tests more complex than 
those considered here. 

4.2 The First Occurrence of k Consecutive Successes 

We separate those sequences of outcomes having no occurrences of k 
consecutive successes in the first j trials (that is, y > j) into mutually 
exclusive categories according to whether the last failure occurred on 
trial j, j — 1, j — 2, • • • orj — k + 1. With Qj denoting the probability 
that y > j, we let Q,-,denote the probability that y > j and that trial 
j — i resulted in a failure and the succeeding i trials resulted in successes. 
Then, since i can be no greater than k — I, we have the equation: 

Qj — Qj.o + Qj.i + Qj,2 -b • • • + Qj.k-i • (5) 

We enumerate the possible results: 

Probabilities of Occurrence 
Qi.o — 9(C/-i.o + Qj-ia + •'• + Qi-i.k-i) 
Qj.i — pqiQi-t.o + 0/—2.1 + •" + Qj—2,fc-i) 
Qi.2 = P2giQi-3.B + 0}-3.1 + *■■ + Qj-l.k-l) 
Qi.a = p^iQi-i.o + + ••• + 

qpp p Qi.i-I = V^qiQi-k.o + Qi-i,\ + •■■ + Qj-k.t-i) 
k — 1 p's 

Sequence 
Endings 
 9 
 gp 
 qpp 
 QPPP 
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The equations on the right reduce to Q},t = p'qQj-i-i . We obtain the 
desired recursion equation by summing over all values of i, 

Qi = qQi-i + vqQj-i + p2qQ}--i + • - - + p* lqQj-k • (6) 

We can use (6) to calculate Q, for j i k, noting that Q, = 1 for j < k. 
We obtain the generating function of Q, from (6), 

= i 1 ~/s\ k+i ■ (7) 1 — s + qpKs'l+l 

Then E(y) is obtained by setting s = 1 in (7), 

E{«) =   jr- ■ (8) qpk 

These results are well known.8 

4.3 The First Occurrence of k Successes in k + 1 Consecutive Trials 

As in the preceding section, we separate those sequences having no 
occurrence of the event in question — in this case k successes in k + 1 
consecutive trials —• into mutually exclusive categories according to 
whether the last failure occurred on trial j, j — l,j — 2, yorj — k f- 1. 
In the current problem, however, we are also interested in the location 
of the next-to-the-last failure since if the event in question has not oc- 
curred there must be at least two failures in the preceding k 1 trials. 
If the last failure was on trial j — (k — 2), for example, there must be 
at least one other failure in the preceding two trials. Here an enumera- 
tion of possible results yields: 
Sequence 
Endings Probabilities of Occurrence 
 9 Qi.o = 9(Q/-i.o + Qj-i.i + •** + Qi-i.k-2 -t (9-0) 
 QP Qj.i = + Q/-2.1 + • * • -j- Qj—2,k—i) (9-1) 
 QPpQi.2 - PiqiQi-a,o -j- ■■■A Qz-a.i-s) (9.2) 

qp ■■■ ppp Qi.k-2 = Pk 2g(Qj-(k-i).o + Qmi-iKi) {9.(k - 2)) 
qpp pppQs.k-x = pk lQ(Qi-k.Q). (9.(k - 1)) 

A — 1 p's 

Each equation in (9) has one term less than the equation immediately 
above it. We adopt a standard procedure for deriving a recursion equa- 
tion for Qj from equations (9). First we find from (9.0) that; 

Qj.o = qQj^ . (10) 

Then we substitute (10), with j reduced by k, into (9.(fc — 1)): 

Qit-i = pk~lq2Qj-k-i . (11) 
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Next we translate the final term on the right-hand side of (9.0) to the 
left-hand side, and substitute (10) and (11), the latter with j_ reduced 
by one. Then, if we multiply through the new (9.0) by -p and reduce j 
by one, its right-hand side is identical to that of (9.1). Then we have 

Qj.i = pqQj-*- - pkq3Qj-k-? ■ (12) 

We substitute (10) and (12), with j reduced by {k — 1), into (9.(/c - 2)) 
to obtain 

Qj.k-i ~ pk~2q2Qj~k + pk~lqQ.j-k-i — P'k VQj-2*-2 ■ (I3) 

We proceed step by step, taking equations from the top and then from 
the bottom, to find equations for the Q/.i's in terms of Q/s. Then we 
add all of the equations together to obtain the recursion equation for 
Qj, which will depend on some of the k(k + l)/2 immediately preceding 
Q/s. The recursion equation is used with k{k + l)/2 initial Q/s to de- 
rive the generating function Q{s). 

4.31 The First Occurrence of Two Successes in Three Consecutive Trials 

As in (9), we have: 

Sequence Endings Probabilities of Occurrence 
• q Qj.o = ?(Q/-i.o + Qj-i.i) (14.0) 
qp Qi.i — pqiQi-i.v)- {14.1) 

Then Q;.o = qQj-i ,Qj.i = pqQj-z, ^ the recursion equation is 

Qj = qQj-i + pq2Qj-z ? J > 2- (15) 

With (15) and the initial conditions Qb = Qi = 1 and Q2 = 1 — p , 
we derive the generating function for Qj : 

= l+ps+ pf (16) 

I — qs — pqs* 

E(y) is obtained by setting s = 1 in (16); 

(17) 

4.32 The First Occurrence of Three Successes in Four Consecutive Trials 

The initial conditions arc: 

Qo — Qi — Qs — 1, 

Qa = 1 - p\ 

Qj - 1 - p3 - 3p% 

Qs = 1 — p3 — 3p3q - 3pV. 
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For j > 5 wc follow the standard procedure to find a recursion equation 
for Qj in terms of the 3-4/2 = (» preceding Q/s: 

Qi = + vuQi-* + pYQj-i - pV^y-s, j > 5. (18) 

The generating function is 

c w = 1 Pv+/gs3.-,/i5<7 . (.») 1 — (?.S — ptys p-ry-s4 + p3<y3s3 

and the expected value of y is 

^) = 1 (2o) p3(l + ^ + 2) 

4.33 The First Occurrence of Four Successes in Five Conseculive Trials 

Here the 4-5/2 = 10 initial Q/s arc: 

Q(» = Qi = Qi = Qs = l, Qi = ] — j)\ 

Qb = Qi — 4p42, 

Ob = Qb - 4pV, 

= Q& — 4pV — 3PV, 

Q* = Qt - 4pV/ - 7p523 - 2pV, 

Osi = Qs - 4pV - llpV _ 9/>V - P¥- 

For./ > 9 the following recursion ecjuation holds: 

Qi = qQj-i + pfjQs-i + v'Q'Qi-* + 2pV^y-5 
4 3/-j 5 4.. 

~P 2 VJ-T ~ V Q Qi-io- 

The generating function of Qj is 

1 + ]>'> T p's2 + p2s3 + 2p3qsi — p4qs5 

„4,2 6 6,2 8 6 fl 9 
QW = T (22) I — (js — pqs- — p-q-s* — Zp^q-s6 

I 4,6 7 i 6 4 10 -r p q s -\r p q s 
Then 

F(ij) = li I> + '2p2 + 2pA<l " ~ pV ~ F6?2 - P6?3 /2on 
P3(l + 2 - 2(/2 + pfy3 + pV) 

4.4 Properties of Two-Sided Zone Tests 

The results presented in Sections 4.2 and 4.3 are applicable to the 
study of the statistical properties of one-sided zone tests for runs of 
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points in the zone above an upper limit line at AV + £*07\rn)- Gen- 
erally, we also test for the same types of runs below a lower limit line 
at Xa - LkW/Vn), in which case the test is a two-sided zone test and 
each point falls into one of three mutually exclusive zones. 

Let A denote the zone above the upper limit, B denote the zone be- 
tween the two limits, and C denote the zone below the lower limit. Con- 
sider an infinite sequence of independent trials having possible outcomes 
a, 5, and c with fixed probabilities a, 6, and c. When the outcome of the 
jth trial completes a pattern of outcomes describing an event e we say 
that € occurs on the jth trial. Event e is defined by a set of outcome pat- 
terns and a counting, or testing, rule. If when e occurs on the jth trial 
we treat trial j + 1 as though it were the first trial, ignoring the results 
of the first j trials, then e is a recurrent event.8 

Let 
Uj- = Probability that f occurs on the jth trial, 
fj = " " " " for the first time on the jth trial, 
Qj = Probability that < does not occur in the first j trials. 

Denote the generating functions of uj, fj, and Qj by U(s), P(s), and 
Q{s), respectively. 

The following equation can be used to determine the Q's in terms of 
the f's: 

Q(s) = 1 "" F(s) - 1 <s <1. (24) 
1 — 5 

If c is a recurrent event the following equation holds [Reference 8, 
p.243j: 

ui " Si A- fj-iUi + fj- 2U2 + • • ' + ■ (25) 

Equation (25) leads to the following identity (setting/o = 0, Wo = 1): 

^ (26) 

From (24) and (26) we have 

'[jl - S) u{s) =^ry - 1 < s < 1. (27) 

for recurrent event t. We shall consider only recurrent events which have 
finite recurrence times; in these cases F(l) = /i + /z + • ■ • = 1, and 
U{1) is infinite. The limit of (1 - s)U(s) as s approaches unity from 
below is (using L'HospitaPs Rule): 

Urn (1 - S) Vis) =11=^. (28) 
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where y denotes the number of the trial of the first occurrence of c, and 
E{y) denotes its expected value. E{y) is also the average recurrence time 
(average number of trials between consecutive occurrences) of recurrent 
event o 

Consider recurrent events ti, eo, and £j2, defined, respectively, by the 
sets of outcome patterns cc, (3, and a or /3 and a counting rule that re- 
quires counting to start from scratch on trial j(j > 1) if and only if the 
event under consideration occurs on trial j — 1. Assume that ei and t2 
are mutually exclusive — that is, they cannot both occur on the same 
trial. 

For an example, let the single pattern a c a define the set a and the 
pattern c a c define the set (3 — then the set a or f3 has the two patterns 
a c a and c a c. Consider an outcome sequence: 
trial number: 12 3 456789 
trial outcome: acacacaba 
The event ei occurs on trials 3 and 7; the event €2 occurs on trial 4; and 
the event en occurs on trials 3, 6, and 9. 

Let Eiijj), E2(y), and Euiy) denote the average recurrence times of 
ei, €2, and £12, respectively. Under what conditions can we determine 
En{y) from known values of Ei{y) and 

Consider events ei" and £2" defined by outcome patterns a and /3, re- 
spectively, and a counting rule that requires counting to start from 
scratch on trial j if and only if either e" or €2" occurs on trial j ~ 1. 
Events efi' and £2" differ from £1 and £2 only in counting rules. In the 
example previously considered, we see that ei" occurred on trials 3 and 
0, and to" occurred on trial (i. Either f/' or €2" (but not both) occurs on 
every trial on which £12 occurs; this leads to the equation 

where , and 1/2,/' denote, respectively, the probabilities that 
£12, ei", and £2" occur on trial j. 

Multiplying (29) through by s} and summing over j from one to in- 
finity, we obtain an equation relating the generating functions of the 
probabilities in (29): 

The constant appears because ;/« = 1 in all cases. 
Events £1" and £2" are recurrent events, and equations (25) through 

(28) can he used to determine their mean recurrence times Ei"{y) and 
AV'(y). (The fact that (25) applies allows us to call d" and £2" recur- 
rent events). 

= Kl/ + W' (29) 

UK(s) - USis) + U2"(s) - 1 (30) 
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If we multiply through (30) by (1 — s) and take the limit of each side 
as s approaches unity (see (28)), we obtain 

+ (31) 
Eu{y) ESiy) ESiyY 

In any setjuence of trial outcomes, if a pattern in a occurs for the first 
time on trial j, then ci occurs for the first time on trial j, and <i" occurs 
for the first time either on trial j or on a later trial; ci" will occur for the 
first time on a later trial if &/' occurred while this first pattern in a was 
being formed. Thus we have 

Ei{y) EY'iy) (32) 

where the equality sign holds if and only if no pattern in /3 overlaps a 
pattern in a. A pattern in /? overlaps a pattern in a if the terminating 
outcomes of the former correspond to the beginning outcomes of the 
latter. Thus outcome pattern cac overlaps aca because the terminating 
outcomes a c of the former correspond to the beginning outcomes a c of 
the latter. If no pattern in (3 overlaps a pattern in a then the occurrence 
62" does not "cancel out" the beginning of any patterns in a, and there- 
fore €1 and €1" always occur on the same trials. 

From (31) and (32) we have 

SS -Am Trh, (33) 
EM Eiiy) EziyY 

where the equality sign holds if and only if ex and to are defined by non- 
overlapping patterns, in which case we shall say that ei and 62 are non- 
overlapping events. From our example it is clear that mutually exclusive 
events are not necessarily non-overlapping. 

We can use (33) to find E{y) for two-sided tests in terms of the E*{y)'s 
of the component one-sided tests. Note that a given change A looks like 
a —A to one of the component tests. Then 

_i  < 1  +  I . (34) 
E{ym, A) = E*{y;*) E*{y,-A) 

For A — 0, E(y, 0) ^ {E*{y, 0)/2). The equality sign holds in (34) for 
Tk{Lk) and , U). For Tk-{Lk) and TV^x, Lk), (34) defines lower 
bounds which are very close approximations to /?(?/). For 7V equation 
(34) leads to a lower bound of 510.(5, which compares with the true 
value /?(//; 0) = 510.7. The degree to which the approximation ap- 
proaches the true value depends on the probability of overlap, which in 
cases we consider is very small; for this reason we can consider (34) to 
be an approximation rather than a lower bound. 
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4.5 Properties of Tests Combining Ti(Li) with One Other Test Whose 
Properties A re Known 

Consider any test T for which we partition the control chart into mu- 
tually exclusive zones A, B,C, • ■ ■, R. The possible outcomes of the first 
j trials can be enumerated by an ordered expansion of 

(a + 6 + c + ■ • • + r)3. 

With the letters denoting the probabilities of points falling into the 
various zones (a + fe + c + ■ ■ ■ + r = 1), we pick out all of those 
terms corresponding to outcomes in which the event e does not occur, 
and denote their sum by 

Qi.j = ffXa, b, c, r). (85) 

Clearly Qij, or (jj, is the sum of a series of terms such as a he ■ • • , 
representing the probabilities of particular outcomes. 

If we wish to find the probability Qnj of no occurrences of event e and 
no occurrence of a point falling in zones A or B, say, we simply eliminate 
from Qj those terms in which either a or h occurs. We can do this by sub- 
stituting zeros for a and h wherever they occur in f/j : QUj = <^(0, 0, c, 
d, • • ■ , r). By multiplying and dividing each remaining term in gfi), 0, c, 
d, ■ ■ ■ , r) by {I — a — b)3, we derive an alternative expression: 

QllJ = gi(o,0,T-±_,T-±-l, 

(36) 

showing that the conditional probability of no e given no points in .4 
or B uses the same function required for Qi.j . This enables us to write 
the generating function of Quj as 

Qu(s) = h (o, 0, ?5 f , - A  , 
\ 1 — a — b I ~ a — b 

(37) 

where h{a, b, c, ■ ■ ■ , r; s), defined for a + 6 + c + • • ■ + r = 1, is the 
generating function of Qu . 

The principles are best illustrated by an example. Consider the prob- 
lem of finding A'u*!//), the expected number of the trial of the first occur- 
rence of /r consecutive points above X/ + LAa'fs/n) or a single point 
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above Xo + Ia(<rVVn), where Lk < Li. We use an asterisk to denote 
the fact that a function applies to a one-sided test. We let a be the 
probability of a point falling above both limits, b be the probability of 
falling between the two limits, and c be the probability of falling below 
both limits. Then we substitute a + 6 for p, and c for q in (7) to obtain 

^ n 1 - (a + b)ksk 

Qk ^ I - s + c(a + 6) V+1" ( 

Following (37), we find Qu*(s) by substituting 0 for a, 6/(1 - a) for 
6, c/{l — a) for c, and (1 — a)s = (6 + c)s for s in (39), 

= I - (6 + c)5 + cbh^1 ' (40) 

We set s = 1 in (40) to obtain 

(4ij 

The properties of any test combining Ti{Li) with one other test whose 
properties are known can be determined in a similar way. 

4.G Limits of E(y) in Compound Tests 

A development similar to that in Section 4.4 will show, for example, that 

1 <^+^ + 7^, (42) 
Em(y) = EM EM EM' 

where Em{y) pertains to recurrent event em , whose set of outcome pat- 
terns is composed of those of recurrent events €i, tz, and 63 ■ 

It can also be shown that 

Entiv) S En{y) S EM (43) 

for example. Clearly we cannot increase the recurrence time of an event 
by increasing the different outcome patterns which define the event. 

4,7 Translating Limits to Obtain a Selected Probability of Type 1 Error 

By supplementing Tx with other tests, we increase the probability of 
Type 1 errors. We can adjust the probability of Type 1 errors to any 
desired level by resetting the zone limits. With more than one set of limit 
lines, we have some freedom in setting the limits. A procedure that has 
the important attribute of simplicity translates all of the limit lines away 
from the central line Xo' by the same amount. The properties of the re- 
sultant test can be derived directly from the properties of the original 
test. 

We first determine the properties of one-sided tests whose limits are 
translated; from these results we determine the properties of the cor- 
responding two-sided test. 
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If Qt*(Lkx, Lk2; A; s) is the generating function of Qj for test T* 
with limits at AV + Lk^W/y/n) and Xo' + Lki{a'/y/n) and with the 
process average X' = Xo' + A, then (neglecting points from State 1): 

Qt*{Lkl, L.2; A; s) = Qt* + h, Lk„ + h-, A — h . (44) 

This equation says that the probabilities involved are identical if we 
translate the limits by a given amount or if we translate the process 
average in the opposite direction by the same amount. The truth of this 
stems from the fact that the probabilities depend on the position of the 
process average X' relative to the zone limits. 

If we wish to set the limits so that the probability of a Type 1 error 
is -g-g-g-, say, for a two-sided test, we can proceed as follows: 

(1) draw the curve of E{ij) versus A for the corresponding one-sided 
test (the abscissa is assumed to be in units of a'/y/n), 

(2) translate this curve to the right (or left) until E{y\ 0) = 1000, 
(3) measure the amount h of the translation, and translate the zone 

limits away from (or toward) XV by an amount h(a'/y/n) (control 
chart units). 
The translated E(y) versus A curve represents the new one-sided test. 
The curve for the corresponding two-sided test can be derived using 
(34); it will have a value E{y; 0) = 500. 

4.8 Monte Carlo Techniques to Determine the Properties of Zone Tests 

We can determine approximately the properties of zone tests by using 
Monte Carlo techniques on modern high-speed computers. First we 
generate a random series of numbers with a known distribution. Then, 
using the appropriate correspondence between limits within the distri- 
bution and zone limits, we translate the random numbers into a random 
sequence of zone designations, which we test for occurrences of the events 
in question. We keep score of the number of points until the event finally 
occurs. We then start counting again as though the sequence were just 
starting. By running through a great many cycles, we obtain an approxi- 
mation to the distribution of the cycle length y, and an approximation 
to E{y) for the particular value of A that applies to the limits we used. 
We repeat the process with different limits for different values of A. 

Within the limitations of the computer, this technique can be used 
for any zone test. We used it to approximate the properties of Tirrs 
for A = 0, (r'/y/n, 2{(T'/y/n), and 3(o-'/\/n). 

V. CONCLUSIONS 

If we supplement the standard control chart test with another zone 
test, we increase its sensitivity to process changes at the cost of more 
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frequent errors of Type 1 and a more complicated testing procedure; 
sec Figs. 5 and 6. We can restore the original probability of Type 1 
errors by changing the zone limits; in the following discussion we shall 
assume that this has been done, thereby simplifying the comparison of 
various tests. Wc shall say that a zone test Ti of the type we are con- 
cerned with is better than Ti for a particular value of A if tttiy) < Hi(y) 
for that A. 

In general, the curve of E{y) versus A for a test T, is below the cor- 
responding curve for Ti for A in a range 0 < A < Af, and above for 
A > A;. The crossover point A, in the eases we considered varied from 
1.7 (cr'/Vn) for ^(0.065) (Fig. 7) to over 3.5 (a'/Vn) for 7^(3.13, 2.13) 
(Fig. 9). 

Consider a test 7\t that combines Tj and T, and has its zone limits set 
so that its probability of Type 1 errors is the same as tor Ti and foi 
Tt. In the cases we have considered (see Figs. 8 and 9) 7\t essentially 
effects a compromise between Ti and T< — for small changes it is better 
than Ti but not as good as T- ; for large changes it is better than Tt 
but not as good as Ti ; for A near A; it is better than Ti and better 
than Tt . 

In the cases we have considered, tests 7V(La-') appear to be slightly 
better than tests Tk(Lk) for small changes. 

The reason that zone test Tt is better than Ti for small changes seems 
to be due to the fact that it bases its decisions on a history of k consecu- 
tive points; in effect, it makes some use of a sample size kn rather than 
7i. The cost of the increased effective sample size is paid during the first 
k - 1 points in State 2, where Ti has a higher probability than Tt of 
detecting a change. The probability that a point falls outside of a So- 
limit remains fixed from sample to sample, and after the initial k 1 
points in State 2, this probability is less than the probability that Tt 
will detect a run. Large changes are likely to be detected by T\ before 
Tt becomes effective; but when changes are small the corresponding 
values of E{y) are large, and we can expect T, to detect the change be- 
fore Ti does (see Fig. 7). 

Wo have assumed that sample averages X„ are plotted on the control 
chart. In light of the above discussion the possibility of pooling data 
from k consecutive samples and plotting a statistic based on the kn 
measurements involved appears promising. 

A preliminary study of zone tests on charts of moving averages of k 
consecutive equal-sized samples has been made. The statistic (or point) 

Y kn J = {Xnj + XnJ-l + " * ' + Xn,j-k+l)/k 

can easily be determined graphically in many cases. For example, the 
point Ytn.j is halfway between points Xnj-x and X„,on the straight 
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line comiectiiig them — vertical rulings on cross-section paper ordinarily 
used will spot points exactly. Points can he similarly derived from 
points ¥2,1.j-2 and . Fig. 12 shows curves of E{y) versus A for Ti 
used on points Yknjik = 1, 2, 4); limit lines were assumed to be at 
AV ± 3 (a'/s/kn) ■ The curve for k = 1 is, of course, the curve Ti of 
earlier figures; the curve for k = 2 was derived using tables of the bi- 
variate normal distribution; the curve for fc = 4 is an approximation 
based primarily on the results of a study making use of Monte Carlo 

k=i 

3.0 1.5 2.0 2.5 0.6 
A IN UNITS OF 

Fio. 12 — Eiy) versus A for Ti applied to moving averages of k{k = 1, 2, 4) 
consecutive sample averages. 
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techniques. We cover the possibility that the first point in State 2 will 
fall outside of its control limits by assuming the existence of prior points 
in State 1; all three curves approach E{y) = 1 as A approaches infinity. 

In comparing Fig. 12 with Figs. 7, 8, and 9, it appears that used 
"on moving averages provides an effective test for detecting shifts in 
process averages. Further study is required to determine the effective- 
ness of other run tests and of combinations of run tests applied to various 
moving averages. 

In summary, it is possible to devise zone tests which — within the 
constraints of our model: 

(1) indicate changes in process averages when none has occurred with 
the same average frequency as the standard control chart test Ti, 

(2) detect small changes in process average — up to l.Za', say, for 
n — 5 — sooner on the average than Ti , and 

(3) detect larger changes inappreciably later on the average than Ti. 
Such tests require an appropriate setting of zone limits — generally at 
non-integral multiples of <r'f s/n. If run tests are used to supplement Ti 
without a compensating setting of zone limits, an increased frequency 
of false indications of process changes results. 

The standard control chart test Ti (or T\{Li)) is slightly more effec- 
tive than alternative zone tests in detecting relatively large changes; 
in addition, it has the important virtue of simplicity — a virtue that 
extends the range of economic application of rI\ into areas where alterna- 
tive tests have better statistical properties. It is difficult to recommend 
a-single alternative test to ri\ for general application, though it is clear 
that alternative tests may be profitably used in many applications 
where early detection of relatively small changes is important. 
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A Criterion to Limit Inspection Effort 

in Continuous Sampling Plans 

By R. B. MURPHY 

(Manuscript received September 12, 1957) 

In continuous sampling plans of the type known as CSP-1, the amount 
of screening has an important bearing on the total inspection effort. To limit 
this effort an inspector may be required to take special action if the number 
of inspected units in one screening sequence exceeds some specified value 
or "critical length". The aim of the special action is to bring about improve- 
ment in the production process. This effect is possible also when the produc- 
ing shop is required to do any screening called for by the inspection plan. 

A procedure for calculating critical lengths may be based on simple ap- 
proximations derived from the theory of runs. 

I. INTRODUCTION 

i.i Continuous Sampling Plans 

The CSP-1 continuous sampling plans introduced by H. F. Dodge1 

are designed for continuous or "belt" production of discrete units of 
product. To apply such a plan, inspected units must be classified as 
either "defective" or "nondefective". The inspector begins by inspecting 
each unit made in succession until a specified number, i, of consecutive 
units are found nondefective. A sequence of units so inspected is called 
a screening sequence and the number i the clearing number. After the 
initial screening sequence has ended, the inspector samples a fraction / 
of the units presented to him. He continues to sample until he finds a 
defective unit. At this point he again resorts to screening, following the 
same procedure as before, so that he alternates between screening and 
sampling inspection. The inspector rejects (or sets aside for correction) 
any inspected unit found to be defective and accepts all others. 

Two refinements of this plan, CSP-2 and CSP-3, have appeared2 

as well as generalizations of CSP-13'4'5 entailing two or more levels of 
sampling inspection. In addition, various sequential continuous inspec- 
tion plans have been proposed.6 

115 
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The characteristics of these different sampling plans — such as AOQL, 
fraction inspected, or characteristic curves — have been explored under 
a variety of assumptions. Of these assumptions, the statistical behavior 
of the production process has the greatest effect on the results. There are 
three alternatives which have been used (but which may not cover all 
plausible situations): 

(I) The production process is Bernoullian: each unit has the same 
probability of being defective independent of any other unit; the pro- 
portion of defective units converges almost certainly to this value as 
the number of units produced increases. It is therefore known also as 
the process average. 

(II) The production process represents a stationary Markov chain; 
each unit has a probability of being defective which depends only on the 
defectiveness or non-defectiveness of the previous /c(i? 1) units produced 
and is otherwise independent of time. 

(III) The production process represents a discrete stochastic process 
of an arbitrary nature. 

Not all the continuous sampling plans introduced have been examined 
under each assumption. 

Assumption (I) leads to the simplest mathematics and will be adopted 
here. Its use does not imply that the CSP-1 plans — with or without the 
criterion proposed below — are invalid if the production process goes 
out of control. These plans were designed with this condition in mind. 
The effect of lack of control is to alter the stated characteristics of such 
plans, but the author has no evidence from actual production processes 
that such deviations are wide. 

Another factor that influences the characteristics of continuous sam- 
pling plans is the kind of sampling used when sampling is required. 
Again there are three alternatives commonly used: 

(i) The sampling is Bernoullian; each unit bears a probability / of 
being sampled independent of any other unit; in this case and in (iii) 
below screening is usually required to begin with the next unit after a 
known defective. 

(ii) One unit in each (disjoint) set of 1// consecutive units produced is 
randomly chosen from the set for inspection. Screening, when required, 
may begin within the same set in which a defective unit is found, or it 
may begin with the first unit of the next set. One or the other method of 
starting to screen is usually specified. 

(iii) Every l//th unit is inspected. 
In most characteristics of CSP-I it makes little difference whether (i), 

(ii), or (iii) is used provided (I) is assumed. Again the mathematics is 
simpler with (i), and accordingly we shall follow it. 
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A third assumption is sometimes made about the operation of CSP-1: 
each defective unit inspected is replaced by a nondefective one. This 
assumption affects only the character of outgoing quality. It will have 
no bearing on the criterion for inspection effort discussed below. 

1.2 Inspector's Risk 

With this brief background we may take up the main subject of this 
paper. In using any inspection plan there are three areas of risk: one 
area pertains to the consumer's operations, another to the producer's 
operations, and the third to the inspector's operations. One risk in the 
third area is that the inspector may be called upon to perform an exces- 
sive amount of inspection for the amount of protection he furnishes. 
The CSP-1 plans, although admitting the necessity of high inspection 
rates on occasion, are not really intended to be used when inspection 
will continue indefinitely at a high rate. In general such a high rate 
would not. lead to economical and effective inspection nor to economical 
manufacture: screening alone does not guarantee that the level of in- 
coming quality will improve enough to diminish the amount of screen- 
ing significantly in the future. Neither is there so much confidence in 
the outgoing quality, which poor incoming quality may affect adversely 
in spite of intensified screening. Indeed, the existence of such a situation 
may imply some basic difficulty in the process of design or manufacture 
that cannot be properly handled by inspection methods alone. Not only 
the inspector but the customer may be undergoing a special risk. Fur- 
thermore, the producer often does any screening required (as Dodge 
originally recommended1). He too might find an appropriate special 
action economically preferable to a great deal of screening. 

Thus the inspector needs a special alarm signal to indicate that unless 
he takes special action a high rate of screening may continue. The fol- 
lowing sections show how such a special alarm signal for CSP-1 plans 
may be devised on the basis of the number of units inspected in any one 
screening sequence. If this number exceeds a "critical length", n*, 
chosen in advance, the inspector is to take an appointed special action. 

A similar type of criterion could be evolved for other types of con- 
tinuous sampling plans. The effectiveness of this type of criterion alone 
might be lessened if it were applied to other types of plans in which 
screening is not so promptly reinstated after a defective is found as in 
the CSP-1 plans. It seems certain that the "most sensitive criterion" 
for any of these plans, including CSP-1, would take account somehow 
of the observed per cent defective. On the other hand simplicity and 
convenience would have to be sacrificed to some extent to do so. For the 



118 THE BELL SYSTEM TECHNICAL JOURNAL, JANUAEY 1958 

CSP-1 plans it is hoped that the proposed criterion of critical length is 
a satisfactory compromise between theoretical and practical require- 
ments. 

The special action to be taken when required by this criterion should 
depend upon the situation. It might be to notify the customer's pur- 
chasing or contracting department; it might go so far as to cause the 
inspector to stop inspection, effectively halting purchase of product. If 
such a severe action is specified, the manufacturing unit may rightly 
feel entitled to be informed in advance whenever such action appears 
imminent so that it may begin to adjust the process and to screen prod- 
uct ahead of the inspector. Using a different criterion from the one 
proposed here, an existing government inspection plan7 does, in fact, 
require the inspector to stop inspecting. It is not our purpose, however, 
to discuss in detail any particular special action since its wisdom could 
be confirmed only by reference to the nature of the application. It is 
intended only to point out that such actions have already been devised 
and used. 

There is no reason to adjust published AOQL figures for CSP-I plans 
because of the addition of this special action criterion to their operation. 
If the special actions are suitable, there is no reason to expect anything 
but an improvement in the outgoing quality level. 

II. THE CRITICAL LENGTH OF A SCREENING SEQUENCE 

2.1 The Basis for Choosing Critical Lengths 

It is generally possible for an inspection agency to state what it con- 
siders a reasonable upper limit to the amount of inspection it should be 
required to perform under a given CSP-1 plan. Let us call this limit F*. 
Under our assumptions Dodge1 has shown that, when the probability of 
a defective unit is p, the average amount of inspection (i.e., limiting 
fraction of units inspected) is 

^ = /+ (/- W W 

if an inspector uses a CSP-1 plan with clearing number i and sampling 
frequency /. It is clear that placing an upper limit F* on F is equivalent 
to placing an upper limit p* on p. Indeed, if 

a - p*y = = K' d') 



CONTINUOUS SAMPLING PLANS 119 

the inequality F ^ F* implies and is implied by p ^ p* according to 
(D-t 

Having specified F* as the upper limit to the amount of inspection, 
we need a measure of the price the inspection agency should be nailing to 
pay to enforce it. For our purposes it will be convenient to choose as a 
meavsure the maximum probability a* of taking special action when 
F ^ F*. It is equivalent to say that a* shall be the fraction of all screening 
sequences in which the inspector takes special action when F = F* or 
when p = p*. In practice the choice of F* or a* or both may be some- 
what arbitrary. In the author's experience, the choice of F* — 0.5 and 
a* — 0.10 has proved reasonable. 

We may now choose a critical length n* so that special action is taken 
in accordance with the risk specified above. First, the inspector is to 
take special action whenever a screening sequence has not terminated 
after the n*th consecutive unit in the sequence has been inspected. Sec- 
ond, n* is to be chosen so that when F = F* the fraction a* of all screen- 
ing sequences have not terminated after ?i* units. 

This second condition cannot in general be fulfilled exactly. Instead, 
if we call the probability that a screening sequence has not terminated 
after n units T„{p, i), we shall find n* satisfying 

Tnt{p*,i) g ** < 'iV-FpVO- (2) 

It can be easily demonstrated that for any a* and p* satisfying 
0 < a* < 1 and 0 < p* < 1, there is a solution, n*, to (2). 

It is sensible to desire that the higher the "true" limiting fraction F 
of units inspected, the more likely it is that a screening sequence will 
exceed its critical length. The truth of this statement can be easily 
shown also. This guarantees that a* is a maximum probability of taking 
the special action incorrectly. 

The mathematical problem, as we have stated it, is covered by the 
theory of runs. Its solution has long been known8 and will be discussed 
in the following section, as well as in the Appendixes. Briefly, in terms 

t Certain variations of CSP-1 lead to different expressions from those given 
here. For instance, if the producer does all screening, the inspector will often in- 
spect a fixed proportion, /, of all units — including those already screened. It is 
then more sensible to apply F* as an upper limit only to the average amount of 
screening, which is the product of 1 - qi and the right side of (I)_. Solving for p* 
or K then requires that / be added to the denominator (1 — f)F* in (I')- Another 
variation arises when defective units inspected are repaired and reinspected. If it 
were assumed that the proportion defective a,mong repaired units is again p, it 
would be necessary onlv to divide the right side of (1) by 1 — p and to replace 
F* by /''*(! — p*) in (!')• Then p* or K would be found by iteration. The effects 
of these two variations may be combined but not without further assumptions. 
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of this theory, we may restate our problem as follows: Given a Bernoul- 
lian process with "success" probability 5* = 1 — 7?*, to find the least 
number of trials, n*, in which the probability of having had no runs of 
i (or more) "successes" is less than or equal to a*. 

Common sense demands that the special action never be taken until 
there has been some chance to complete the screening sequence. That 
is, the critical length of a screening sequence must be larger than the 
clearing number. It is shown in Appendix A that it is equivalent to re- 
quire 

7?* — f 
a* < (1 - f)F*' 

This restriction is usually minor. For instance, if, as above, F* — 0.5 
and a* = 0.10, then according to (3) / < 9{g = 0.474". For a* S 0.5 
it is more convenient generally to use the inequality 

F* A / + 0.70a*. (3') 

As is shown in Appendix A, (3) is satisfied whenever (30 is. 
In any case the value computed for n* will depend upon the assump- 

tions discussed in Section I. If these are inexact, the probability state- 
ments outlined above will generally be inexact also. Nevertheless, the 
same value of n* may still be used with good prospect of limiting screen- 
ing effort without added penalty to the manufacturer. 

2.2 Computation of n* 

As" noted above, the exact relation between n*, i, p* and a* is known, 
but it is difficult to use. To simplify computation it has been found ad- 
visable to resort to an approximation for n*, which assumes the form 

n* = aii + ao, (4) 

where ao and ai depend only on K, defined in (1'), and a*. A derivation of 
this approximation is given in Appendix B. It is based on asymptotic 
results for large n* and i. 

It is interesting to note that K, when defined in terms of p* and i, 
is the probability of terminating a screening sequence in exactly i trials. 
For the purposes of this paper we shall determine K in terms off and F*. 

For convenience the coefficients ao and ai are presented in graphical 
form in Fig. 1 with values of K on the abscissa and with separate curves 
for a* = 0.01, 0.05, 0.10. The requirement (3) is observed by plotting 
these curves only over the interval of values of K satisfying 
a* < 1 — 7C < 1. While the immediate field of interest is inspection, the 
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Fig. 1 — Tlie coefficients Qa and Oi as functions of iv = /(I — F*)/F*{1 — /) for 
a* = o.Ol, 0.06, 0.10. The critical length n* is approximated by Oil" + no , 

values of aQ and ai read from this chart obtain equally well in other uses 
of the theory of runs. Therefore, the range of K in Fig. 1 is consider- 
ably larger than would be necessary to handle this particular problem 
alone. Given the values/, i, F* and a*, the value K may be computed 
from (I')- If = 0.01, 0.05, or 0.10, we may choose the proper curve 
for Oq , read off its ordinate at the computed value of K, follow a similar 
procedure to find Oj, and compute n* from (4). 
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In order to compute the coefficients cto and ai for any values of a* and 
F* satisfying (3), it is necessary to compute 

w = -\nK = In y~~f* ~ ln 

and to solve 

we"'1' = ve~v, (v ^ w for w ^ I), (6) 

for v, the letters •'In" indicating the logarithm to the base e. It is usually 
easiest to solve (6) by the following convergent iterative procedure: 
If «) 1, put 

—W I'm /T\ v0 - zee , vm+] -- Voe ; {7) 

if w S 1, put 

Vo — w — In w, vm+i — v0 + In . (7') 

In either case v may be obtained with as much accuracy as desired by 
simple iteration with formulas (7) or (7'). 

The coefficients no and a-i then may be expressed as 

:[■ 
x , , w — v , wof 

ai = _' 12cnw)_ 1 IT 

w — v v -F w —2 
do — cu • 

(8) 

— 1 (u) 
2(1 - v) 2(1 - vY ' 

The limiting values of a, and an as w and v approach unity are given by 
(B9), (Bll), and (B12) in Appendix B. 

The accuracy of the approximation (4) has been investigated and found 
to be adequate. For small i and / and large F* slightly greater precision 
is possible with the Ilspensky approximation9, computation of which is 
simplified by Feller's iterative procedure10 (see Appendix B). Both ap- 
proximations lose accuracy as a* increases. 

For F* = 0.5 and a* = 0.1, Table I presents a comparison of the exact 
integral value satisfying (2) with the two approximations, in which the 
value of n* satisfies the equation concerned as precisely as possible and 
is therefore not integral. For this table the exact recursion formulas (A3) 
and (Co) were used. The latter was found by Miss M. N. Torrey and 
the writer and appears to be new. 

2.3 Some Properties of the Criterion of Critical Length 

According to the previous discussion, it is proposed to take special 
action whenever a screening sequence exceeds its critical length. Since 
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Table I — Table of Critical Numbers n* for Upper Limit of 
Fraction Inspected F* — 0.5 and Maximum Probability 

of Error a* = 0.1 f 

Sampling Frequency,/ 
Number, f 

0.05 o.io 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

5 88 47 32 24 19 15 12 10 8 
87.8 46.6 31.5 23.4 18.2 14.5 11.7 9.4 7.4 
85.7 45.9 31.2 23.3 

10 153 84 58 44 35 28 23 19 16 
152.2 83.3 57.5 43.5 34.4 27.8 22.8 18.6 14.8 
161.2 83.0- 57.4 

20 283 158 110 84 67 55 45 38 31 
282.5 157.3 109.8 83.7 66.7 54.4 44.8 36.9 29.8 
282.0- 157.1 

50 675 380 267 205 164 135 111 94 75 
674.7 379.6 266.8 204.5 163.6 134.1 111.0+ 91.9 74.6 
674.5 

100 1329 761 529 406 326 268 221 187 150 
1329 750.3 528.6 405.8 325.2 266.8 221.4 183.5 149.3 
1329 750.2 267.0- 

300 3946 2233 1576 1212 973 800 661 560 450 
3947 2234 1577 1212 970.9,797.0- 662.7 550.1 448.0+ 
3946 2233 1576 1212 971.9798.4 662.9 

f The triad of numbers appearing for / and i combinations are, reading down, 
the exact value, the Uspensky approximation, and the approximation (4) to (9). 
The last is omitted if it agreesVith the second to 0.1. Approximate values less than 
1,000 should be rounded to the next higher integral value to obtain the result cor- 
responding to the exact value of n*. This method was followed in rounding approxi- 
mate values greater than 1,000. 

the aim of such action would be to bring about improvement in the proc- 
ess, it might be justifiable to resume inspection with sampling after the 
special action has been taken. There is a question in any case whether 
the screening sequence, once interrupted by special action, should be 
resumed at the point it was stopped. A cautious procedure would be to 
resume inspection with a new screening sequence not involving any pre- 
viously inspected units. This course would load to a lower AOOL but a 
higher fraction inspected, Fr, than the original plan4 Resumption with 
sampling would have the opposite effect, but the changes in either case 
should he slight in practice. 

We shall consider in detail only the effect of increasing the total amount 
of inspection when inspection is resumed with a new screening sequence 
after special action has been taken. With this alteration in the CSP-1 
inspection plan, the limiting fraction inspected, Fc, according to our 

f There is no change from the original values if the inspector takes special 
action us soon as he finds a defective unit after n* — i units in a single screening 
sequence and before that sequence is ended. 



124 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958 

mathematical model, is given by {D24) in Appendix D. Furthermore, 
the upper limit to this fraction is according to (D34) 

pc* =  —  (10) 
F* + (1 — F*)$*' K ) 

where 

= (1 - a*)/(1 - ci*K - T„.+,(p*, i)) (11) 

and all other quantities are as defined previously. The comparatively 
minor change from F* to F'* in the range of interest can be illustrated 
by noting that if F* = 0.5, a* = 0.1, and / ^ 0.05, we will have 
0.5 < Fc* < 0.51. 

Under these same assumptions two other characteristics of the modi- 
fied CSP-1 plan can be readily computed: The average number of special 
actions per 10,000 units produced and the average number of special 
actions per 10,000 units inspected. These may he computed by multi- 
plying C in (D27) and C1 in (D32) respectively by 104. The first of those 
two averages may be the more useful to the practitioner, who can use 
the value of this average at p = p* as an added measure of the price 
paid for using the criterion of critical length. In some cases he may prefer 
it to a*. For F* = 0.5, a* = 0.1, and p = p* this number varies from 
about 0.4 for / = 0.05 and i = 5 to about 15 for / = 0.45 and i = 100. 

Another more theoretical use may be made of these two averages. 
We may wish to compare the operation of the criterion of critical length 
with that of any other criterion adopted for the same purpose. The 
parameters of the criterion to be compared to the present one could be 
adjusted so that one or both of these two averages agree for the two 
schemes when p = p*. Then the average number of special actions per 
10,000 units produced could be plotted against p or F in both cases. On 
the other hand one may wish the fraction inspected to be the same at 
p — p* for the two schemes. However, criteria calling for special action 
at certain times when the last inspected unit was defective lead to the 
same fraction inspected as found in the original CSP-1 plan. In such 
cases it is not possible to obtain equal fractions inspected, since Fc > F. 
It appears better in general to deal with the two averages C and C' 
for the purpose of comparing criteria. At any event, as has been men- 
tioned above, such formal comparisons are not complete measures of 
practical value in themselves. 
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APPENDIX A 

Some Properties of (he Run Probahilitj/ T„(p, i) 

As before let Tn{p, i) be the probability that a screening sequence 
with clearing number i and process average p has not terminated after 
the ?dh consecutive unit has been inspected. This is the same as the 
probability of no run of i or more "successes" each having probability 
q = 1 — p in n independent trials. Except when necessary for clarity 
to do otherwise, wc shall abbreviate Tn{p, i) by Tn . 

Tt. is easy to see that 

Tn = 1, n = Q,\, ,i - I, (Al) 

Ti = 1 — (/, {q = 1 - p), (A2) 

Tn_i - Tn = pq'Tn-{-i , (n > i). (A3) 

From these relations it appears that the generating function of T„ , 

T(x) = Y/nZ0x
nTn, 

satisfies 

TO) = -—t ~ m ■ (A4) 

1 — a: + pqlxt+l 

in which both numerator and denominator have the common factor 
1 — gx. 

If it is required that Ti > a*, we have directly from (A2) 

1 - q*' > a*. (A5) 

From (1') and (AS) the inequality (3) follows. In turn F* — f is seen 
from (3) to exceed a*f{l - /)/(! - a*(l - /)). Maximizing this quan- 
tity with respect to /, we have 2(1 —\/l — a*)/a* — 1, which is less 
than a* for 0 < a* < 1. This maximum and its derivative with respect 
to a* are increasing in this interval, and the former assumes the value 
3 _ 4/2"'12 < 0.35 at a* = 0.5. The inequality (3') follows immediately. 
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APPENDIX B 

Derivation of an Approximation for Critical Length 

From the expansion of (A4) in partial fractions, Uspensky has shown 
that as ?i approaches infinity, 

Tn ~ 
1 ~ & ■ 1 (B1) 

p(i + l - H) tn+l 

with t the unique positive root of 

E (qxY = -1-. (B2) 
s=0 px 

The Uspensky approximation for Tn leads to the approximation (4) 
for n* satisfying (2) for any given a* (0 < a* < 1), i, and p*(0 < p* < 1). 
It can, in fact, be shown that 

n* ~ af + ao + a-it'1 + + • ■ • . 

If in (Bl) and (B2), we put p = p*, q = g*, and n = n*, it follows 
from (!') and (B2) that 

r., ~ 1 ~ g{'.,vr" ■ (B3) 
(t + 1- it) 

Likewise, making the same substitutions in (B2) it follows that 

/v(l - KUi)xi+i - x + 1 = 0 (B4) 

has two and only two positive real roots, xi = 1/q* and xn = t- 
We shall consider a system of equations in five variables equivalent 

to the system (B3) and (B4) in the five variables K, i, t, «*, and Tn* • 
We shall call the new variables w, z, v, <p, and a*. The new system of 
equations is 

= 1 - e~"(l - vz) 1/2 j(1 _ vzy,^ (B5) 
1 — y — vz 

and 

e~wil - - vz)'112 = vz, (B6) 

where only finite positive values for all variables are going to be con- 
sidered with vz < I and 0 < a* < 1. If in (B5) and (B6) we put 
w = —In K, z = i~l, v = i(t — l)/t, <p = ^{n* + 1), and a* = Tn*, the 
result is (B3) and {B4) Avith the symbol replaced by in (B3) 
and Avith x = ^ in (B4). 
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Like (B4), (BG) has one "extraneous" root, v^o, 2) = (1 — e-*")/2- 
Either positive root, i>i{w, z) or v*(w, z), is such that there exists a finite 
function r,o(ty) = lim v^WyZ), {s = 1, 2). Indeed, rio(?p) — w and 

P2o(ta) = i'oiw) satisfy the limiting form of (B6) given b}' (6). Clearly either 
0 < w ^ 1 ^ ?'o(ie) < qo or 0 < va(w) < 1 g w < «>, the equality 
signs holding simultaneously. 

Taking logarithms of both sides of (Bo), we have 

»■ = ( 1" «* + 111 I Tz)-'"])/2 ln(1 " ^ 

As 2 approaches zero, <p approaches 

(111^ +In 
'w(l — Vq(w)) 
_ W — Vq{W) 

We may differentiate (BG) and (B5) to obtain respectively 

(B7) 

dv(iv, 2) 

and 

<Po '(w, a*) = 

dz 

d<p 
~dz 

= ro(w) fa2(tr) - w) 

2=o 2 (1 — yoM) 

w — voiw) , yo(if) + w — 2 ■ipAw, a*) - 

(B8) 

2(1 - roM) " ' 2(1 - h{W)Y ' 

Substituting the values = — In/v, z - i and y = i~l(n* + 1) in 
ip = (poiw, a*) + Z(po{w, a*) + - • ■ and putting 

r()(ia) - v, (h = foiw, a*), On = <po'{w, a:*)— 1, (B9) 

we have the approximation given by equations (4) through (9). 
If both sides of equation (6) are divided by d = vo(w) — w, we get 

w = d/(ed —1). 

From (B7), (B8), and (BIO) we find 

tpaiw, a*) = In 2 — In a* + Oi(d), 

a*) = <pa(io, «*) — § + 02(d). 

(BIO) 

(BII) 

(B12) 

The related approximation for T„, as n and i approach infinity, is of 
the form 

-s(B+r)/(i+/J) Tn — .4e" 

where A, B, C, and D depend only on q\ 

(B13) 
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APPENDIX C 

A Recursion Formula for Tn{p, i) 

In order to investigate the error in n* computed from the Uspensky 
approximation (Bl) or the approximation (4), a convenient form of 
the exact value of Tn(p, i) was needed. Such an expression is 

min(k,r) 
T.= E (-irCXpg'rT^.,.; (Cl), 

«=>0 

where n — ki -j- r and /.: ^ 1 and 0 S r S i- This may be established 
easily by an inductive argument. Indeed, if & = 1 and r — 0, (Cl) 
yields an identity. By adding successive expressions of the form of 
(A3), we obtain 

Tki+r = TV- - pq' ES T1,.,, (C2) 

For k = 1, (C2) yields with the aid of (Al) 

Ti+r = Ti - rpq, 

substantiating (Cl) for A- = 1 and I S r = Next we assume (Cl) 
to be true for some h ^ 1 and some r, (0 ^ r ^ i). We wish to show that 
(Cl) is true for n = (k + \)i + r. From (C2) and the induction as- 
sumption 

r— I mill (fc.a) 
J'a+Ui+r = T(k+\)i — vq ^ ( — !)'(<)• 3=0 

If the order of summation is reversed, the double sum becomes 
min (I;, r—I) t—1 

-pq' E (-D'CmYtV-o.-EC) i = 0 
inin(A:+l,r)-l 

= E (li)'+W)'+,TV«.(.u (=0 

so that 
iii in (fc+l.r) 

Ta+l)i+r = X) ( — irOCPi/TT {*:+1-3)1 • 
8=0 

The special form of (Cl) used in checking accuracy was that with 
r — i and 1 ^ k ^ i: 

T*,t+i)i = E (-DViXpsO'T-,,.-.,.. (C3) 
8=0 
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APPENDIX D 

Some Characlcrislics of the CSP-1 Plan With and Wiihonl the Criterion 
of Critical Length 

The use of generating functions is helpful in characterizing the original 
CSP-1 plans. The theory of Markov chains, applied somewhat as in 
Reference 4, also leads to some of the results found here. While this 
theory is convenient to show the validity of the strong law of large 
numbers as applied to fraction inspected and other ratios, the tusk of 
computing (to which we restrict ourselves here) appears generally 
simpler with the generating function technique. Let Pr be the probability 
that the rth unit produced is the first one in some sampling period, and 
let Qr be the probability of being in a sampling period on that unit. Then 

PV = 0, (0 g r ^ «), P1+i = q, 

Pr = qp[l - (1 - /)Qr_,--l], (?■>»+ 1), 

and 

Qr = Z:-o P.O - fp)"', fr a 0). (D2) 

If P{x) and Q(x) are the corresponding generating functions, we have 
from (Dl) and (D2) respectively 

Pix) = ~—— [1 - qx - p(l -/)(!- x)Q{x)] (D3) 
1 — x 

and 

Q(a:) = P(;r)/[1 - (1 - fp)x], (D4) 

whence 

(D5) Qix) - ^— 1 - p(] - f)x W"! . 
I — X 1_ ,K=-0 J 

With some manipulation of partial fractions we obtain 

QW^V-[7j
1
(^T,. + |:^]. (DC) 

where it can be shown that cr approaches zero as r approaches infinity. 
It follows that 

(D7) 
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and, therefore, the limit of Pr exists as does the limit of 

Fr = 1 -(1 - f)Qr, (D8) 

the probability that the rth unit produced will be inspected. From (D7) 
and (D8) we may obtain (1). i 

There are similar results in terms of units inspected. Let PT and Qr 
correspond to Pr and Qr with r in the former pair indicating the ordinal 
number of the unit inspected. Thus 

Pr = 0, (0 ^ r ^ f), P.+If = q\ (D9) 

Pr - q'p, (r > 2 + 1), 

and 

Qr ~ 0}{Q Sr S i), (D10) 

Qr = ZU P/(l - PY" - q, (r ^ i + !)• 

Before passing to the modified CSP-1 plan, we observe that we may 
write the expression for Pr in (Dl) and (D3) in a different way. First, 
let Rr be the probability that screening is stopped for the first time after 
the rth unit produced (i.e., a run of i nondefectives has been completed 
for the first time with that unit). The generating function of Rr, R{x), 
then satisfies 

R{x) = 1- (I- x)T(x) = 1 ^ 

where T{x) is given by (A4). Next we may put 

Pr = /?r_i + JpiQoRr-l ■+-*•■+ Qr-|Po), (D12) 

or 

P{x) = xR{x)[l + fpQ(x)], (D13) 

and 

Q(x) = xR(x)/[l - x + fpx{l - R{x))]. (D14) 

We now take up the case in which a criterion for the length of screen- 
ing sequences is applied in the operation of the CSP-1 plan. To simplify 
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notation a little, we will hereafter call the (fixed) critical length n rather 
than n*. Also the probabilities corresponding to /A and Qr will be de- 
noted by Pt

l and Qr
c. We shall treat the occurrence of an incomplete 

screening sequence of length n as a recurrent event; as soon as such a 
sequence occurs, the whole inspection procedure begins anew with the 
next unit produced. 

Now let Rr
c be the probability that screening is stopped for the first 

time after the rth unit produced. Then 

K.+i" = rJ'MRr_.[rM, (D15) 

and the generating function is 

ltcix) = - 7V1), (DIG) 

where 

R'i*) (D17) 

If the superscript C is attached to the symbols P, Q, and R in (D2) 
and (D12), we arrive at valid equations. Therefore, we may write down 
the generating function Q c(x) by placing the superscript C on the same 
letters in (D14). Using the identity 

R*ix) = 1 - TV - (1 - x)T*(x), (D18) 

where 

T*(x) = S-o1 TrX, (D19) 

we have 

Qc(x) = ^ _ T^, + /pcT4(t)r. (D20) 

i — X 

Again wo find by the use of partial fractions 

= xR*(x) [—
+ 

(D2i) 

where it can be shown as before the er' approaches zero as r approaches 
infinity. Hence, 

(D22) 
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and the limit of the probability of inspecting the rth unit produced, 

Ft
c = 1 - (1 - f)QrC, (D23) 

FC lim F C (D01) F =^F- - 1 - 'A + fpT*(l) ■ (D24) 

We may likewise compute the probability CV that the criterion of 
critical length will be applied on the rth unit produced: 

Cr = Dr + MQr-^Tn™ + " " ' + Qr-^T^ + Qr-n'Tn), (D25) 

where Z)r = Tn
k if r = nk and is zero otherwise. The generating function 

is 

so that 

C(x) - (1 + WM), (D2e) 

c ~ XIZC'~ iV-T„qC 1 - rf+Zpr^i)- (D27) 

As with the original CSP-1 plan we may find the probabilities P/c 

and QrC corresponding to Pr
c and QT

C in terms of inspected rather than 
produced units. We may also obtain C/, the probability of applying 
the criterion on the ?-th unit inspected. The generating functions are 
easily seen to satisfy 

Plc{x) - xRc{x)[l + pQ'cix)], (D28) 

Q'CW = Tjc(.t)/(1 - qx), (D29) 

and 

C\x) = C + C330' 

We find, using the previous methods, 

r>'c — r n IC — ^ r^n  a - nm I _ rn + VT*{1) (D31) 

c' = ^c' = i-r:+^(1)- 
(D32) 
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It is possible to obtain the limiting probabilities (D27) and (D32) 
indirectly as the reciprocals of expectations of recurrence times, although 
the method of generating functions allows a more complete characteriza- 
tion. If m is the mimber of units produced until the criterion of critical 
length is applied and vu is the number of units inspected until the same 
event, it is interesting to note from (D24), (D27), and {D32) that 

Fc = C/C' = E(ai/)/E(m), (D33) 

where E is the expectation operator. 
The values of these same limiting probabilities arc of particular in- 

terest when p = p*. Then Tn = a* and 

p*KT*{\) = \ - K - Tn.+i, 

assuming an exact solution to (2). From (D24), for instance, we have 
for p = p* 

Fc = Fc* = i-  (D34) 
/ + (1 — f)Kp*' ^ 

and 

C! = C'* = a*p*p*K/(l - a*), (D35) 

where j3* is given l>y (11). The denominator of 13* can be fairly well 
approximated by 

1 - a*{K + O, 

where v is defined by (0). Finally (D33) may be used to find C*. 
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Nonparametric Definition of the Repre- 

sentativeness of a Sample—with Tables 

By MILTON SOBEL and MARILYN J. HUYETT 

(Manuscript received October 4, 1957) 

The problem is to determine how large a random, sample is needed in 
order to attain a preassigned probability P*(| ^ P* < 1) that the sample 
will possess a certain amount (or degree) of representativeness of the true 
unknown {cumulative) distribution F under study. The definition of repre- 
sentativeness involves two preassigned constants k and P*(k 2: 2 is an 
integer). For example, for k = 2 and any 13*{0 < /3* g |) the sample 
is defined to he representative if the proportion of the total sample size fall- 
ing 071 each side of the population median differs from % by at most (3*. 
In this case the degree of representativeness is defined as de* = 1 — 2(3*. 

This idea can be extended to any number k of disjoint, exhaustive cells 
equi-probable under F; tables and graphs are given for finite and infinite 
populations for selected values of k, 13* and P*. The definition is also 
extended to cases in which the experimenter is particularly interested in 
parts of F which are not equi-probable and/or parts of F which do not ex- 
haust the whole sample space; tables and graphs accompany each applica- 
tion. 

These results are non-parametric, i.e., if the prescribed sample size is 
used then the experimenter's requirements for representativeness will be 
satisfied whatever the unknown distribution. Derivations of exact and ap- 
proximate formtdae used in computing tables are given in the Appendices. 

I. INTRODUCTION 

This paper deals with the problem of determining how large a random 
sample is needed in order to guarantee with preassigned probability P* 
that the sample wall have a specified amount (or a specified degree) of 
representativeness of the true, unknown (cumulative) distribution F 
under study. No k priori information is given about F and no assumptions 
are made about the form of F. The solution given is nonparametric (i.e., 
distribution-free) so that the results obtained and the tables and graphs 

135 
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constructed are valid for any true underlying distribution. The case of a 
finite population as well as that of an infinite population is considered; 
in the latter case it is assumed only for ease of exposition that those 
percentiles of F which enter the discussion are uniquely defined and have 
probability zero under F. (This will, in particular, be the case when F 
has a density function without zero-stretches between points having 
positive density.) 

A definition of representativeness (and also a degree of representative- 
ness) is given with respect to those parts of F which are between certain 
percentiles which we denote by F^ipi), the values of pi being pre- 
assigned. The intervals between these percentiles will be called cells and 
we shall only consider collections of pairwise disjoint cells. For example 
the experimenter may want to guarantee with probability at least 
P* = 0.90 that between 40 per cent and 60 per cent of his sample will 
lie on each side of the population median. In this case we are interested 
in the part of F (or the cell) between F_1(0) and F_1(0.5) and also the 
part of F (or the cell) between F_1(0.5) and F_1(l). By the definitions 
below the common allowance /3* is 0.10 and the degree of representative- 
ness dg* is 0,80 (or 80 per cent). Then we enter Table I (or II) with 
/c = 2, P* = 0.90 and 0* = 0.10 and find that the smallest sample size 
needed to satisfy the experimenter's requirement for representativeness 
is n = 60. (It is instructive to note that the same solution would 
hold for any two disjoint, exhaustive subsets of the sample space having 
a common probability of | under F. However, the cases in which we 
consider disjoint cells and, in particular, disjoint cells which start 
from one end or both ends of the distribution are of considerably more 
practical interest. The cell terminology will be used in the body of 
the paper while the subset terminology will be used in the appen- 
dices.) 

In the above example the sample space is broken up into two dis- 
joint, exhaustive cells which are equi-probable under F. This idea of rep- 
resentativeness can be extended to any number k of pairwise disjoint, ex- 
haustive cells equi-probable under F and in the numerical work the values 
k = 2, 3, 4, 5 and 10 are considered. The idea of representativeness can 
also be used with cells that are not equi-probable and/or with cells that 
do not exhaust the whole sample space. As an example of the first type 
(cells not equi-probable) we might be concerned about whether a sample 
is large enough to be simultaneously representative of a single tail with 
preassigned probability p < § under F and of its complement which has 
probability (1 — p) > I under F. As an example of the second type 
(non-exhaustive cells) we might be concerned about whether a sample 
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is large enough to be representative of both tails (each having (say) a 
common preassigned probability p < j under F), without any concern 
about the middle cell between the two tails. For each problem tables 
and graphs throughout this paper give the smallest required sample 
size for selected values of P* and specified amounts (or specified degrees) 
of representativeness. 

Assuming for the moment that the density of F is known and that all 
of its deciles are finite then we can plot an observed bar diagram (i.e., 
rectangles with different widths under the dashed lines in Fig. 1) and 
the true density on the same diagram as shown in Fig. 1 to illustrate the 
idea of a representative sample. By definition of a decile each of the ver- 
tical strips bounded above by the curve has an area (or probability under 
F) of 0.1. The observed sample is considered representative relative to 
this pattern of ten disjoint, exhaustive and equi-probable cells to within 
a common allowance (3* if simultaneously the areas of all vertical rectangles 
differ from the theoretical value of 0.1 by at most ^*(0 < (3* ^ 0.1). 
Then the degree dg* of representativeness as defined in Section III is 
equal to 1 — 10/3*. We are interested in finding the smallest sample size 
needed to guarantee a probability of at least P* that the above condition 
will hold in a sample drawn at random from F. 

This problem is related to the well-known problem1 of Kolmogorov- 
Smirnov since they both have the common purpose of determining 
the sample size required to obtain a representative sample. Since their 
definition of representativeness is different from the one treated here, 
it is difficult to make a proper comparison of the two procedures. Another 
remark on this comparison is made in Appendix IY. 

II. DEFINITION OF REPKESENTATIVEXESS 

Let F denote the true unknown cumulative distribution and let Fn* de- 
note the observed sample distribution based on n observations. For any 
given k let Ci,Ci, • ■ ■ , Ca- denote pairwise disjoint cells (not necessarily 
exhaustive or equi-probable under F) which arc defined by certain per- 
centiles. The cells (F , C2, - - - , Ca are not known but their probabilities 
under F are given positive numbers; let F{C,) denote the probability 
assigned to C.- by the distribution F{i = 1,2, • • ■ , k). (We are using F 
and F* as symbols for both point functions and probability measures 
which are set functions; clearly, the nature of the argument will prevent 
any confusion.) Let [3* denote specified positive numbers (which we shall 
call allowances) such that 

0 < ^ ^ W,) (i = 1,2, •■■ ,^). (I) 
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We shall be particularly interested in the special case p* — fa* = • • • = 
fa* = &* (say), whether or not the quantities F{Ci) are all equal. Then 
a sample is defined to be representative relative to a fixed pattern of 
k disjoint cells Ci, C2, • • • , Ck to within the allowances fa*, fa* , fa*, 
respectively, if we have simultaneously 

III. DEFINITION OF DEGREE OF REPRESENTATIVENESS 

Although the quantities & *{i = 1,2, ■ ■ ■ ,k) are basic to the idea of 
representativeness it may be useful, in a given problem, to combine them 
to define a measure of the degree of representativeness. We define 

where the subscript g denotes the fact that d* is a geometric mean. It 
follows from (1) that 0 ^ dg* < 1 and that dg* can take on all the values 
in this interval 

It should be noted that for any fixed set of values of F((7,) 
{i ~ 1,2, ■ ■ • , k) if there is a common ft* then the right hand member of 
(3) is a strictly decreasing function of ft* for fa* ^ min F(C,). Hence, if 
there is a common fa* the values of dg* and fa* uniquely determine each 
other. When this is the case we may be interested sometimes in specify- 
ing dg* (instead of fa*) and then using (3) to solve for the common fa*. 

We shall say that a random sample is representative relative to a fixed 
pattern of k disjoint cells Ci, (A , • • • , C* to a degree d0* if for the com- 
mon P* = P*(d0*) satisfying (3) we have 

It should be emphasized that the chief interest of this paper is in the 
concept of representativeness as formulated in Section II and that the 
present definition of the degree of representativeness is to be regarded 
as supplementary. 

One possible criticism of the definition of dg* is that it may require a 
positive (and sometimes substantial) number of observations to attain a 
zero degree of representativeness (see, for example, the last and third 
from last columns in Table III). However, since the practical use of the 
concept of degree of representativeness is mainly for large values of dg* 
this objection is not serious. 

I FSiCfa - m) | ^ pi* (f = 1, 2, • • • , k). (2) 

(3) 

1 F*{CX) - FiCi) \^P* (i = 1,2, ■■■, k). (4) 
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It is possible also to define the degree of representativeness as an 
arithmelic mean da* of the bracketed quantities in (3) but then for a 
common 0* and dilTerent F(C,), because of (1), the value of da* is re- 
stricted to an interval J ^ da* < 1 where J is 'positive and depends on 
the values of the F(C1) {i = 1,2, •••,&). Clearly, if the F(C,,•) are all 
equal and there is a common 0* then d * = da*. 

IV. CONSTRUCTION OF TABLES 

The problem is to find the smallest sample size n such that the joint 
probability of all the inequalities (2) [or (4)] is at least equal to a specified 
value P* < 1, i.e., such that 

P{ | Fn*{C<) - F(C,) j ^ 0i*(i = 1, 2, • ■ • , fc)} ^ P*- (5) 

The reader is cautioned that it does not necessarily follow that (5) 
holds for any integer greater than n; however, since Fn* converges almost 
certainly to F (see page 20 of Reference 2), it follows that there exists 
in each case a smallest number n' ^ n such that (5) holds for every 
integer greater than or equal to n'. For example, with /c = 2, a common 
0* = 0.20 and P* = 0.75 the condition (5) is satisfied for n = 3, for 
G and for any integer greater than or equal to n' = 9. 

Since the cells C,- are pairwisc disjoint and the values of F(Ci) are given 
(i = 1,2, ■ ■ • , k) the left member of (5) is determined for any particu- 
lar sample size whatever the unknown distribution F. In the case of an 
infinite population we use the multinomial distribution with h or /c -{- 1 
disjoint cells depending on whether or not the h disjoint cells are exhaus- 
tive, i.e., on whether or not = 1. For the case of two dis- 
joint, exhaustive cells this clearly reduces to a problem of the binomial 
distribution which is closely related to the problem of finding confidence 
limits on a population percentile by the use of order statistics. Similarly 
in the case of a finite population we use the hypergeometric distribution 
with k or k + I categories depending on whether or not = 1. 
The exact and approximate formulae for computing the left member of 
(5) arc given in Appendices I and II, respectively. The approximate cal- 
culation involves several interesting geometrical digressions which are 
discussed in Appendix III. 

Table I gives for k = 2 and selected values of 0* and P* the required 
sample sizes n and n' and also the maximum drop in probability below 
the specified P* for all sample sizes between n and ?if. In the romaming 
tables only the values of n are given. Table II gives the required sample 
size for k - 2, FiCJ = p, F{C,) = 1 - p for p = 0.5, 0.2 and 0.1 (for 
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Table I 

Sample size required to attain a probability P* that a sample will be 
simultaneously representative to within a common allowance /3* of two 
disjoint and exhaustive cells separated by the median for any true dis- 
tribution. 
In each set the first entry is the smallest sample size required to satisfy 
(4); the second entry is the smallest size required such that for all 
sample sizes at least as large, (4) is satisfied; the last entry is the maxi- 
mum deviation in probability below P* obtained for all sample sizes 
between the first two entries. 

0.01 0.05 0.10 0.15 0.20 0.25 0.40 

0.50 1051 
1199 

(0.0264) 

31 
59 

(0.1271) 

5 
14 

(0.2266) 

5 
10 

(0.1875) 

2 
5 

(0.1250) 

2 
2 

(0) 

2 
2 

(0) 

0.60 1700 
1850 

(0.0162) 

60 
79 

(0.0704) 

5 
24 

(0.3266) 

5 
10 

(0.2875) 

3 
8 

(0.2250) 

3 
3 

(0) 

3 
3 

(0) 

0.70 2600 
2750 

(0.0124) 

100 
119 

(0,0382) 

20 
29 

(0.1049) 

8 
16 

(0.2078) 

3 
8 

(0.3250) 

3 
6 

(0.0750) 

3 
3 

(0) 

0.75 3251 
3399 

(0.0077) 

120 
150 

(0.0407) 

25 
39 

(0.0769) 

U 
16 

(0.1377) 

3 
9 

(0.3750) 

3 
6 

(0.1250) 

3 
3 

(0) 

0.80 4051 
4199 

(0.005S) 

151 
179 

(0.0328) 

35 
44 

(0.0430) 

14 
24 

(0.0518) 

9 
12 

(0.0266) 

4 
7 

(0.0750) 

4 
4 

(0) 

0.85 5100 
5250 

(0.0052) 

191 
219 

(0.0269) 

45 
54 

(0.0434) 

17 
27 

(0.0879) 

10 
15 

(0.0766) 

4 
10 

(0.1250) 

4 
4 

(0) 

0.90 6700 
6850 

(0.0029) 

260 
279 

(0.0129) 

60 
74 

(0.0299) 

28 
33 

(0.0360) 

13 
18 

(0.0796) 

8 
11 

(0.0797) 

5 
5 

(0) 

0.95 9551 
9699 

(0.0012) 

371 
399 

(0.0070) 

90 
9Q 

(0.0114) 

37 
47 

(0.0230) 

20 
28 

(0.0284) 

12 
15 

(0.0423) 

6 
6 

(0) 

0.99 16500 
16650 

(0.0003) 

651 
679 

(0.0013) 

160 
169 

(0.0022) 

71 
76 

(0.0028) 

39 
42 

(0.0015) 

24 
26 

(0.0046) 

8 
12 

(0.0017) 

For n ^ 150 the entries are all exact; for n > 150 the entries involve approxi- 
mations. The pattern of increases and decreases of the probability as a function 
of n was also used to obtain the first two entries for large n. 
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selected values of /3* and P*). Table III gives the required sample size 
for the case of k pairwise disjoint, exhaustive and equi-probable cells 
(Ci, C2, • • • , Ck) for k = 2, 3, 4, 5 and 10 (for selected values of (3* 
and P*). Table IV gives the required sample size for k = 2, F(Ci) = 
F{C2) = p for p = 0.2, 0.1 and 0.05 (here the cells are disjoint and equi- 
probable but not exhaustive). Table V considers the same problem as 
in Table III and compares the required sample sizes for infinite popula- 
tions, N = cc, with those for finite populations of size V for N = 60, 
120, 360. Tables VI and VII give illustrations of the error involved in 
using the approximations used in Tables IV and V, respectively, instead 
of an exact probability calculation. 

Fig. 2 shows for selected values of P* that the sample sizes in Table I 
and in the first portion of Table II can be "linearized" for large n on a log- 
log plot of n versus 0*. Figs. 3 and 4 show the same result for the last 
and middle portion of Table II, respectively. 

Table II 

Minimum sample size required to attain a probability of at least P* that 
a sample will he simultaneously representative to within a common 
allowance d* of two disjoint and exhaustive cells separated by the 100 
pth percentile for any true distribution. (The degree of representative- 

ness is then defined as dg* = ~ 

50 th Percentile (Median) 
(p = 0.50) 

20tli or 80th Percentile (p = 0.20 or 0.80} 
IDth or 90th Percentile 

= 0.10 or 0.90) 

v* c.\ 0,01 0.0s 0.10 0.15 0.20 0.01 0.05 0.10 0.1s 0.20 0.01 0.05 0.10 

0.50 
0.60 
0.70 
0.75 
0.80 
0.85 
0.90 
0.96 
0.99 

1,051 
1,700 
2,600 
3,251 
4,051 
5,100 
6,700 
9,551 

16,500 

31 
60 

100 
120 
16! 
191 
251 
371 
651 

5 
5 

20 
25 
35 
45 
60 
90 

160 

5 
5 
8 

11 
14 
17 
28 
37 
71 

2t 
3t 
3t 
31 
9 

10 
13 
20 
39 

662 
1,062 
1,662 
2,062 
2,562 
3,262 
4,262 
6,100 

10,562 

12 
32 
52 
72 
92 

120 
160 
232 
420 

7 
7 

10 
10 
20 
27 
37 
50 

100 

6 
6 
9 
9 

12 
12 
15 
20 
40 

It 
It 
It 
It 
It 
3t 
5 

10 
20 

355 
500 
900 

1,100 
1,400 
1,800 
2,355 
3,400 
5,900 

14 
14 
20 
40 
40 
60 
80 

120 
220 

It 
1 
1 
1 
1 
It 
It 

10 
15 

For n S 150 the entries are all exact; for n > 150 the entries are based on ap- 
proximations together with a knowledge of the monotonicity pattern of the 
probability of representativeness as a function of n. 

t Small entries for certain pairs (&*, P*) indicate a condition too weak for prac- 
tical usage. 



Table III 

Minimum sample size required to attain a probability of at least P* that 
a sample will be simultaneously representative to within a common 
allowance j3* of k equi-probable disjoint and exhaustive cells for any 
true distribution. (The degree of representativeness is then defined as 
dg* = 1 — kd*). 

k = 2 A = 3 4=4 4 = 5 k = 10 

\/5* P.\ 0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 

0.50 31 5 2 102 21 6 120 26 9 120 30 5 100 20 
0.60 60 5 3 141 30 6 140 38 9 140 30 5 100 20 
0.70 100 20 3 180 47 12 180 43 12 180 40 5 120 30 
0.75 120 25 3 222 51 14 200 52 14 200 50 10 120 30 
0.80 151 35 9 240 60 15 240 60 14 220 SO 10 140 30 
0.85 191 45 10 300 72 15 280 66 16 240 60 15 160 30 
0.90 251 60 13 360 90 21 320 80 18 280 70 15 160 40 
0.95 371 90 20 480 120 29 400 100 27 360 90 23 200 50 
0.99 651 160 39 741 180 45 600 146 38 500 120 35 260 60 

For ^.^3 probabilities were computed exactly only for n £ {200/k); for 7i > 
(200/A:) the approximation in Appendix 2 was used together with a knowledge of 
the monotonicity pattern of the probability of representativeness as a function 
of n. 

Table IV 

Minimum sample size required to attain a probability of at least P* 
that a sample will be simultaneously representative to within a common 
allowance (3* of any two disjoint equi-probable cells defined by percen- 
tiles and having a common probability p under the true, unknown dis- 
tribution. (The degree of representativeness is then defined as dB* = 
1 - S*/p.) 

Applicalion 

0.50 
0.60 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
0.99 

Below 20tb and Above 
80th Percent ties 

(P = 0.20) 

1,700 
2,262 
3,000 
3,500 
4,100 
4,900 
6,000 
7,900 

12,562 

0.05 

52 
72 

112 
132 
152 
180 
232 
300 
492 

o.io 

10 
10 
20 
30 
30 
40 
50 
70 

120 

Below 10th and Above 
90th Percentiles 

(p = 0.10) 

0.01 

900 
1,265 
1,655 
1,955 
2,300 
2,700 
3,355 
4,455 
7,000 

0.05 

20 
40 
54 
60 
80 

100 
120 
160 
274 

10 
20 
35 
65 

Below Sth and Above 
95th Percentiles. 

(p = 0.05) 

450 
600 
850 

1,000 
1,150 
1,400 
1,750 
2,250 
3,650 

If 
1 
1 
1 
1 
1 
It 

80 
130 

Another _ 
Application 

Between 30th and 50th 
percentiles and be- 
tween 50th and 70th 
percentiles 

Between 40th and 
50th percentiles and 
between 50th and 
60th percentiles 

Between 45th 
and 50th per- 
centiles and 
between 50th 
and S5th per- 
centiles 

For n ^ 40 the entires are exact; for n > 40 normal approximation theory 
was used. 

f Small entires for certain pairs (/3*, P*) indicate a condition too weak for 
nrnfU.iriftl nantrfi 



REPRESEXTAT1V EXESS OF A SAMPLE 143 

Table Y 

Minimum sample size required to attain a probability of at least P* 
that u sample from a population of size N will be simultaneously repre- 
sentative to within a common allowance j3* of k equi-probable disjoint 
and exhaustive cells for any true population. (The degree of represen- 
tativeness is then defined as dg* = 1 — &£*). 
The four entries in each set below correspond to Y = 60, 120, 300, oo, 
respectively. 

k = 2 k = 3 4 = 4 k = S k = 10 

X/?* p*\ 0.05 0.10 0.20 o.os 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0,20 o.os 0.10 

0.50 20 5 2 40 19 6 40 20 7 40 20 3 34 10 
20 5 2 55 21 6 60 20 7 60 20 b 54 15 
20 5 2 81 21 6 80 20 7 80 24 5 74 15 
31 5 2 102 21 6 120 26 7 120 30 5 100 20 

0.75 40 15 3 47 28 12 47 26 12 46 27 8 40 20 
60 20 3 76 37 14 74 38 12 72 30 8 60 25 
91 25 3 136 49 14 130 40 14 120 40 10 94 25 

120 25 3 222 51 15 200 52 14 200 50 10 120 30 

0.85 51 2,5 9 53 30 14 50 32 14 49 30 10 40 20 
71 30 10 84 49 15 80 40 14 80 40 10 60 25 

120 40 in 162 60 15 150 58 16 152 50 13 100 30 
191 45 10 300 72 15 280 66 16 240 60 15 160 30 

0.90 51 30 10 54 37 15 50 38 16 51 30 13 40 25 
80 40 13 93 51 19 90 46 16 80 40 13 74 25 

151 50 13 180 72 21 170 60 18 160 60 15 114 35 
251 60 13 360 90 21 320 80 20 280 70 16 160 40 

0.95 51 35 16 54 42 21 50 38 18 52 37 15 47 25 
91 50 19 94 60 25 90 58 20 92 50 15 74 30 

180 70 20 201 88 27 190 80 25 180 70 18 120 40 
371 90 20 480 120 30 400 100 27 360 90 20 200 50 

0.99 60 45 23 55 48 27 57 43 25 53 40 20 49 30 
100 70 30 102 72 30 100 66 29 98 60 23 80 40 
231 110 36 240 120 42 220 100 34 212 90 25 154 50 
651 160 39 741 180 45 600 146 37 500 120 30 260 60 

f or uniiepopujjixitmsttii eiitiics wnu»(. = .ho, 
the entries with n > 2/&* are based on the approximation in equation (A17) of 
Appendix II. Another simpler approximation is given in equation (A18) of Ap- 
pendix II. 



Table VI 

Comparison between the exact value of and the normal approximation 
to the joint probability that in a sample of size n from an infinite popu- 
lation the number of observations falling in each of two tails with com- 
mon probability p is between n{p — fi*) and n{p + $*), inclusive. 

p = 0.10 
jS* = 0.05 

p = 0.20 
j3* = 0.05 

p = 0.20 
/S* = 0.10 

n = 10 Normal Approx. 
Exact 
Error 

0.1628 
0.1510 

+0.0118 

0.0973 
0.0941 

+0.0032 

0.5910 
0.6014 

-0.0104 

71 = 20 Normal Approx. 
Exact 
Error 

0.5432 
0.5566 

-0.0134 

0.3654 
0.3648 

+0.0006 

0.7075 
0.7171 

-0.0096 

n = 40 Normal Approx. 
Exact 
Error 

0.6608 
0.6731 

-0.0123 

0.4655 
0.4669 

-0.0014 

0.8574 
0.8736 

-0.0162 

Table YII 

Comparison between the exact value of and the normal approximation 
to the joint probability that in a sample of size n from a population of 
size N the number of observations falling in each of k equi-probable cells 

is between and + -Q , inclusive. 

AT = co (Infinite Population) 

k = 2 k = 3 k = i k = 5 fe = 10 

n = 20 Normal Approx. 
Exact 
Error 

0.4977 
0.4966 

+0.0011 

0.1166 
0.1145 

+0.0021 

0.1600 
0.1618 

-0.0018 

0.1172 
0,0956 

+0.0217 

0.0698 
0.0669 

+0.0029 

n = 40 Normal Approx. 
Exact 
Error 

0.5708 
0.5704 

+0.0004 

0.2196 
0.2181 

+0.0015 

0.2388 
0.2363 

+0.0025 

0.1962 
0.1904 

+0.0058 

0.1775 
0.1478 

+0.0297 

n ~ 60 Normal Approx. 
Exact 
Error 

0.6338 
0.6338 
0.0000 

0.3974 
0.3982 

-0.0008 

0.3230 
0.3174 

+0.0056 

0.2876 
0.2979 

-0.0103 

0.3325 ♦ 
* 

N = 120 {Finite Population) 

-fe = 2 it = 3 4 = 4 k = 3 fe = 10 

n = 20 Normal Approx. 
Exact 
Error 

0.5357 
0.6368 

-0.0011 

0.1397 
0.1359 

+0.0038 

0.1984 
0.1801 

+0.0183 

0.1550 
0.1547 

+0.0003 

0.1092 
0.1011 

+0.0081 

n = 40 Normal Approx. 
Exact 
Error 

0.6651 
0.6670 

-0.0019 

0.2822 
0.3084 

-0.0262 

0.3705 
0.3679 

+0.0026 

0.3413 
0.3313 

+0.0100 

0.4291 
0.3357 

+0.0934 

n = 60 Normal Approx. 
Exact 
Error 

0.7969 
0.7989 

-0.0020 

0.6338 
0.6104 

+0.0234 

0-6115 
0.6003 

+0.0112 

0.6228 
0.5972 

+0.0256 

0.8507 * 
* 
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/ 

F-1(0) F-MttZ) F-,(0,4) F-'tO-B) F*M0-8) F-'d.O) 

Fig, 1 — Pictorial diagram of representativeness using deciles {k = 10). 

0,3 0 

0.20 

0.80 0,1 0 
0.09 
O.oa 

A 0.07 
0.06 

0.90 0.O5 

0.92 D 4 

0,94 0.O3 

0.96 0.02 

0,98 O.O 

Fig. 2 — Minimum sample size « required to attain a probability of at least P* 
that a sample is simultaneously representative to within a common allowance /3* 
of two disjoint and exhaustive cells each having probability p = 34 under the true 
unknown distribution. (The degree of representativeness is dB* = 1 — 2^*.) 
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Fig. 3 — Minimum sample size n required to attain a probability of at least 
P* that a sample is simultaneously representative to within a common allowance 
P* of the two disjoint, exhaustive cells separated by the 10th (or the 90th) per- 
centile for any true distribution. [The degree of representativeness is dp* — 
(r) V(o.i - p*) (0.9 - n.) 

O.IO 
0.09 
0.08 
0.07 
0.06 
0.05 

0-04 

0.03 

\ 0.O2 

0.01 

0.66 

0.94 

Fig. 4 — Minimum sample size n required to attain a probability of at least P* 
that a sample is simultaneousty representative to within a common allowance P* 
of the two disjoint, exhaustive cells separated by the 20th (or the 80th) per- 
centile for any true distribution. [The degree of representativeness is dg* = (|) 
\/(0.2 - 0*) (0.8 - (3*).] 
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V. EMPI1UCALLY OBSERVED MONOTONICITIES 

It is interesting to note in Table III that for fixed 0* and increasing 
k the sample size n required is noi monotonic but appears to reach a 
maximum and then decrease. As a result of this it becomes possible to 
to speak of the sample size n required for a sample to be representative 
for any specified 0* regardless of the number k of pairwise disjoint, ex- 
haustive, equi-probable cells considered, provided only that h S 1/0*. 
For example, for 0* = 0.1 it appears likely from Table III that 90 ob- 
servations would be sufficient to have a confidence of at least P* = 0,90 
that the sample is representative in the sense of (2) for any one valve of 
k(k = 1,2, ■■■ , 10). 

Table VIII, some of whose entries are taken from Table III, shows 
numerically that/or fixed d* the required sample size is a monotonically 
non-decreasing function not only of P* hut also of k; for fixed 0*. Table III 
shows numerically that only the monotonicity with P* holds. The former 
result is again shown in Figs. 5 and G which also emphasize the possi- 
bilities of interpolation on k. 

The above monotonicities and lack of monotonicities have not been 
demonstrnted mathematically. 

Table VIII 

Minimum sample size required to attain a probability of at least P* that 
a sample will be simultaneously representative to a degree dn* = 1 — k0* 
of k equi-probable disjoint and exhaustive cells for any true distribu- 
tion. 

1" 
dg' = 0.80 V = 0,90 

k = 2 fe = 4 i = 10 k = 2 i = S A = 10 

0,50 5 120 600 31 800 2500 
0.G0 140 700 60 950 2800 
0.70 20 180 800 100 1150 3200 
0.75 25 200 850 120 1250 3400 
0.80 35 240 900 151 1400 3700 
0.85 45 280 1000 191 1600 4000 
0.90 60 320 1100 251 1850 4400 
0.95 90 400 1250 371 2250 5100 
0.99 160 600 1650 651 3150 6600 

In comparing results for a fixed degree dg* it should be noted that the sample 
size appears to be a monotonically non-decreasing function of P* and also of 
for & fixed common allowance 0* only the monotonicity with P* holds as is evident 
in Table 11. The remarks at the bottom of Table III apply here also. 



148 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958 

VI. CONFIDENCE BANDS—•INFINITE POPULATION CASE 

The experimenter will usually be interested in the confidence state- 
ment that the above formulation allows him to make after the observa- 
tions are taken. Suppose, for example, that he was interested in representa- 
tiveness in each of k — 10 pairwise disjoint, exhaustive and equi-probable 
cells and that he specified /3* = 0.02 (so that da* — 0.80) and P* = 0.85 
and that he has taken 1,000 observations in accordance with Table YIII. 

7000 

3000 

2000 

it, 

bOQ 
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dr. =0.90 300 

t20O 

1100 

1000 

9; 

000 

/( 

600 

: 

400 
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00 

/ 
J * . dg = 0.80 
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/ 
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/ r?/ 
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/ / $ 

V / ff/t 
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//? / ' So\A. 
s*- 

10 / 

/ //, 

///T/ 

'A 
sy 
' 

Fig. 5 — Minimum sample size ii required 
to attain a probability of at least P* that a 
sample will be simultaneously representa- 
tive to a degree = 0.90 of fc equi-proba- 
ble, disjoint and exhaustive cells for any 
true distribution. The common allowance 
P* is given hyp* = (I — da*)/k — 0.10/Au 

Fig. 6 — Minimum sample size n required 
to attain a probability of at least P* that a 
sample will be simultaneously representa- 
tive to a degree dB* = 0.80 of k equi-proba- 
ble, disjoint and exhaustive cells for any 
true distribution. The common allowance 
p* is given by^* = (1 - d0*)/k = 0.20/k. 
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He can then make a number of confidence statements about the popula- 
tion deciles F~\0.2), ■■■ , F^O.O) (and also about I^\0) 
and F^^l) defined as the greatest lower bound of all x for which F{x) > 0 
and the least upper bound of all .r for which F{x) < 1, respectively). 
For example, if .r,„ denotes the 7?jth (smallest) ordered observation, it 
follows from the condition of representativeness that we have simul- 
taneously with joint confidence greater than P* all of the inequalities 

— CO < Xi ■TlOOO < F-'d) 
< F_1(0.9) 

< 00 

.Tai g /^(O.l) < .T121 xm 2'92(l 

•Tien ^ F~\0:2) < X-M 
und 

XTW < F^(0.8) 1C840 

•Tew < r'io.s) < ;i'96i a'39 < F~1(0.2) < iCaeo 

•1'720 < /^'(O.O) < 00 — 00 < ^(0.1) •^280 

.ITlono ^ F~l{l) — 00 — CO ^ F"\()) •-Ci 

For example, F_1(0.2) must be greater than or equal to xm and less than 
X2u in the confidence statement since under the condition of represen- 
tativeness all cells and, in particular, the last two cells on the left con- 
tain between 80 and 120 observations, inclusive. 

The right hand set of inequalities are in reverse order since they arc ob- 
tained by similar reasoning as the left hand set except that we start at 
the right end of the distribution and work backwards. If we keep only 
the stronger results in (6) for each decile and disregard the weaker ones, 
then we obtain eleven (finite or infinite) line segments as in Fig. 7. We 
can then state with joint confidence greater than P* that the unknown 
distribution F has a (finite or infinite) point of contact with (or a salfcus 
passing through) each of the line segments; the two end segments are 

1.001  —       
Lll 
^ 0.60 - 
u _    in 
> Q.60 - H _     _l 
5 0.40 -   <   
§ 0.20 -   

o[. ! ' I U I——L-]—I l—l—!—-i-J 1 -1—1 ^  
^ao 1 X24Q'\ I:320 I , W a80 ) 1009 

X) X|21 Xjfil X4B1 XI0I ^651 ^161 XB4t 

Fig. 7 — Confidence intervals for the deciles with joint confidence level F* = 
0.85 for k - 10, 11 = 1000 and 0* = 0.02 (which implies that dg* = 0.80). 
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actually half-lines and in these cases we must allow -f- oo and — oo as 
possible "points" of contact. 

The above result then gives rise to two "staircases", as in the middle 
diagram of Fig. 8, such that any distribution contacting every line seg- 
ment in Fig. 7 must everywhere lie between (or on the boundary of) the 
two "staircases". Hence we can state with confidence greater than P* 
(see explanation below) that the two "staircases" form a confidence 
band on the unknown distribution. 

If we keep k and P* fixed and decrease j9* (or increase da* = 1 — 10*) 
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Fig. 8 — Confidence banals which include the true distribution function with 
confidence greater than P* = 0,85 for k = 10 and da* = 0.5, 0.8, 0.9. Small circles 
between the confidence bands represent ordinates of the sample distribution 
function. The three figures above were constructed with observations obtained 
from a table of random normal deviates (with different horizontal scaling applied 
in each case). 
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then the required sample size increases and the confidence band becomes 
narrower. This is illustrated in the three diagrams of Fig. 8. 

It should be noted that the inequalities (6) are implied by but do not 
imply (i.e., they are not equivalent to) the condition of representative- 
ness. Hence the confidence level associated with (6) is greater than the 
specified P*. To illustrate this we note from (6) the stronger inequalities 

a-ao ^ F_I(0.1) < .Tm and ®ibo ^ F-1(0.2) < Xm . (7) 

These inequalities (7) allow as few as 40 and as many as 161 observations 
between ^(O.l) and F_l(0.2), including endpoints. On the other hand 
we have confidence P*, under the condition of representativeness, that 
every such cell contains between 80 and 120 observations, inclusive. This 
shows that the confidence level associated with the confidence band is 
greater than the probability achieved for the representativeness of the 
sample. 

This method of obtaining a confidence band for the unknown dis- 
tribution would be more valuable if we could obtain a simple way of 
computing (or estimating more accurately) the actual confidence level 
attained. For example, with = 3, d* = 0-10 (so that da* = 0.70) 
and P* = 0.60 we obtain n = 30 from Table III, the probability achieved 
for representativeness is 0.6369 and the confidence level associated with 
the two "staircases" is 0.0825. The latter is obtained by using inequali- 
ties similar to (6) and computing the probability exactly with a multi- 
nomial distribution. The reader should note that the idea of a confidence 
band containing the true, unknown distribution is not the main theme 
of this paper but only an interesting by-product of the idea of the repre- 
sentativeness of the sample. 

APPENDIX I 

Exact Formulae ■— Finite and Infinite Populations 

The concept of the representativeness of a sample can be applied to 
finite as well as infinite populations. Let N denote the total size of a 
finite population; conceptually we may regard the population as being 
partitioned into h subsets iS.- of size F{Si){i — 1, 2, , k). We shall 
assume that the sets Si arc pairwise disjoint and, to simplify the discus- 
sion, we also assume that the quantities Ni - NF{Si){i = 1, 2, - ■ ■ , k) 
are positive integers. 

Let Xi ^ 0 denote the random integral number of observations in the 
observed sample of size n which fall in the set Sfi = 1, 2, • • ■ , k). li 
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UV)r 

the k sets Si are exhaustive then 

2ZLi Xi = n and Ni = N. (Al) 

We define for i = I, 2, • ■ ■ , k 

a = n[F(Si) - p?] and d{ = ?i[F(^) + p*], (A2) 

which are non-negative but need not be integers. Then for a finite popu- 
lation the probability corresponding to the left number of (5), using the 
hypergeometric distribution, is given exactly by 

Ua.-.M*' = 1 = En£')/0 {A3) 

where is the usual binomial coefficient and the summation in (A3) 

is over all vectors x = }.Ti, x-<, • • • , Xt] for which 

d ^ Xi 5; di {i = 1, 2, • ■ • , k). (A4) 

If the k sets are not exhaustive then we define another set Sk+i which is 
the complement of the union of the k sots Si and use (A3) with k replaced 
by k 1 in (Al) and (A3) but not in (A4), i.e., no condition is applied 
to the {k + l)th variable. 

In the case of an infinite population we use the multinomial distribu- 
tion, If the k sets Si are exhaustive, then using (A2) and letting p,- = 
F(Si)(i — 1, 2, ■ ■ • , k) the left hand member of (5) is given exactly by 

P-Jf [Pi, »i* (i = 1,2, ■ • •. k)] = E ~ir~ n(p.") (A5) 
n feo 

where the summation is again over all vectors x = (rci, X2, •••,%} 
satisfying (Al) and (A4). If the k sets are not exhaustive then we define 
Sk-n as above and the same expression (A5) is obtained with k replaced 
by k + 1 in (Al) and (A5) but not in (A4), i.e., no condition is applied 
to the {k + l)th variable. 

It is interesting to note that the results for the infinite case (W = qo) 
can be obtained from those of the finite ease by letting N tend to in- 
finity. Table V illustrates this numerically since the four entries in each 
set correspond to iV = 60, 120, 360 and qo , respectively. 

APPENDIX 11 

Approximate Solutions — Infinite and Finite Populations 

Let Xi denote the random integral number of observations in a sample 
of size n which fall in the fth cell (i = 1, 2, ■ • • , /c). If we let 
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(AG) 

are equivalent. Let denote the largest integer not greater than x. 
We shall consider only the case of the cqui-probablc exhaustive sets. 

In the case of an infinite population we wish to compute 

If we introduce a continuity correction and use (AG) then wc obtain 

I> = p\-hi ^ Vi S ai(i = L2, ■■■ , k) 123^1 V: = 0) (A8) 

where for each {(i - 1,2, • • • , k) 

If n/k is an integer and /3* is the common value of f3i*(i = 1,2, ■••,!•) 
then aj = a2 = • • • - ak = h = 62 = • • ■ = h = a (say) and (A8) 
reduces to 

P - P{ | yi 1 g o(i - 1, 2, ■ ■ ■ , k) I^Li Vi = 0] (A10) 

where a = § + ln/3*]. 
To compute (AID) two approximations are made. The A'-variate multi- 

nomial probability is first transformed by an orthogonal transformation 
into a (k — l)-variate distribution with homoscedastic and imcorrelated 
variables and the first approximation is to replace the latter distribution 
by a multivariate normal distribution with independent variables. The 
region of integration is the intersection of the hypercube | yi \ S a 
centered at the origin with edge-length 2a and the hyperplane (AC); 
the orthogonal transformation merely rotates this intersection about the 
origin. These intersections are convex figures symmetric with respect to 
the origin; for example, it is a regular centered hexagon for k = 3. These 
intersections, called Stott figures, are discussed in Appendix III. The 
second approximation made in computing (A 10) was to replace the 
Stott figure by a {k - 1)-dimensional central sphere whose radius R 
is determined by equating the two hypervolumes. Values of R for k = 
2(1)12 for any a are given in Table IX. 

(A7) 

and (A 9) 
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Table IX 
Intersection 3 of the hypcrcube of edge-length 2o centered at the origin 
and the hyperplane xi + .1*2 + ■ • ■ + Xk = 0. 

Dimension k of 
hypcrcube 

Jik) = Number of equally large 
simpliccs in 0 

Radius R of sphere with content 
equal to that of 3 

2 1 1.4142 a 
3 6 1.2861 a 
4 4 1.3655 a 
5 230 1.4436 0 
6 66 1,5225 a 
7 23,648 1.5995 a 
8 2,416 1.6733 a 
0 4,675,014 1.7443 a 

10 156,190 1.8126 a 
11 1,527,092,468 1.8786 0 
12 15,724,248 1.9422 a 

The content I{h) of <j for all k is given by 

Kk) = ^ - 2)i_1 + {\){k - 4)^ - 
(fc - 1)! 

where the terms continue only as long as the arguments k,k — 2, are positive. 
The radius R of a (fe — 1)-dimensional sphere of equal content is obtained by 

equating !(k) and (flvT)*-1 / T 

The orthogonal transformation referred to above is 

y' = v?(f+TT (y + y+ ■■■ + y< - t+l) (aid 

a = 1,2, ■■■, k) 

where ijk+i is defined to be identically zero. Then i/h is identically zero 
7t * 

by (A6). The remaining y/ all have a common variance y since for each 
ft 

i(i ^ 1, 2, ■■■, k - 1) 

2 1 ^ A - 1 
V'/i' = 77T i{i + 1)71 

i{i 1) [ \ k2 

(A12) 

and are pairwise uncorrelated since for 1 < j 
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  1 jni{k — 1) 
= = VW+IZJ+T) l *2 

-fA2+»-«(-?)}="■ 

If we let v = h — 1, let r = R/a = R^/kfn and let S denote the 
central sphere of radius r then the approximate probability (dropping 
primes) is given by 

75=I • • • / (s)"oxp H s!/i!} d'ji dih ■ ■ ■' (A 14) 

= P {x/ ^ r2| 

where x/ denotes a. chi-square random variable with v degrees of freedom. 
In the case of a finite population of size N the only change in the above 

discussion is to replace (A12) by 

= I (f^i) (^ = r 2, ■ • • . - 1V (AI5) 

thus increasing the value of r and the value of P; this decreases n if P 
is held fixed at any P*. If we let Un and n« denote the required values 
for a finite population of size N and an infinite population, respectively, 
for the same fixed k, /3* and P* then we obtain from (A14) and (A15) 

_T)' (A10) 

or, taking the smaller solution in Hn , we have for large iV 

^ - 40V (A17) 
2 

Replacing A" - 1 by N in (A1G) we easily obtain for large N the simpler 
result 

(A18) 
nN N 

The error in P involved in both of the above approximations (A14) 
and (A17) is evaluated in Table VH for N - 120 and A = ■» for se- 
lected values of n, 13* and k. 

If 7i/l: is not an integer then the above discussion may not apply since 
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a,- may not equal b, in (AO). Assuming again a common /3* then we have 
a common "a" and a common "b" in (A9). In this case, averaging the 
approximate probabilities obtained by using 2a and 2h alternately as 
the edge-length of the hypercube was found to be satisfactory for com- 
puting the tables of this paper, 

APPENDIX III 

Geometric Results and Eulerian {Diamond) Numbers 

The problem here is to find the (/(• — 1)-dimensional content (or hyper- 
volume) of the intersection d of the centered A-dimensional hypercube 
| 'iji | < a{i — 1, 2, ■ • • , k) and the (k — 1)-dimensional hyperplane 
y{ -|- 1/2 -H ■ ■ ■ + tjk = 0. The geometry for even k and odd k is quite 
different. The number of vertices of 3 for even k and odd k, respectively, 
is 

G/2) and 'C (a/-"!)1^); (A19) 

for example, for k — 3 we obtain the 3 = 6 vertices (a, —a, 0), 

(—a, a, 0), (a, 0, —a), (—a, 0, a), (0, a, — a) and (0, —a, a). The vertices 
are all equally distant from the origin. All the edges of 3 have a common 
length d = d(k) which equals 2av/2 for even k and a-\/2 for odd k. The 
intersection 3 is a convex figure which is symmetric with respect to the 
origin and is known as a Btott figure 6 The Stott figure can be parti- 
tioned into an integral number J{k) of (k — l)-dimensional simplices 
which are not necessarily regular but are such that each simplex has the 
same content as a regular {k — 1)-dimensional simplex with edge- 
length d. Hence, using a result on page 125 of Reference 8, the content 
I(k) of 3 is given by 

m = {d^T (A20) 

The integers J(k) are given in the middle column of Table IX; for ex- 
ample, the integer 6 for k — 3 indicates that there arc six equilateral 
triangles in the centered hexagon. 

D. Slepian7 has shown that for even k the integers J(k) can be found 
by generating a "triangle" of numbers using the recurrence relation 

Sij — jSi-u + iSij-t (i, j = 1,2, • • •) {A21) 

with boundary conditions S\j — Sj.i = 1 for all j; then the desired 
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quantities arc 

S!li = J{2i) {i = 1,2, • • •)• (A22) 

Similarly for odd k he showed that we can use the recurrence relation 

Tij = C2j + im--!.,- + (2f + DTij-i (i, j = 1, 2, • • ■) (A23) 

with boundary conditions To,; — T;,o = 1 for all j; then the desired 
quantities are 

Ti,i = J(2i + 1) (i = 1, 2, • • •)• (A24) 

Fig. 9 shows these numbers in two diamond-shaped patterns and ex- 
plains another interesting way of obtaining these numbers. 
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pig. 9 — Combinatoric derivation of certain Eulerian (diamond) numbers. 
The number at any vertex V is obtained by considering any one path from the top 
vertex to F, multiplying the circled numbers encountered in this path, and sum- 
ming the results obtained over all possible downward paths from the top vertex 
to V. In particular, the values on the vertical diagonal (of the diamond) are the 
values of J{k) in Table IX. It is interesting to note that the sum of all the un- 
circled numbers in the /nth row is 2m-1 (w - 1)! for the odd case and ml for the even 
case. This ia shown above for m = 1, 2, 3, 4, 5 and would hold for all in if tins 
pat tern were continued indefinitely. The circled numbers are obtained by num- 
bering the parallel diagonal lines starting with one at the "top," using all pos- 
itive integers in the even rase and only odd integers in the odd case. 
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The integers J(/>") arise in connection with combinatorial problems. 
As an example for even k, suppose we draw at random m balls in suc- 
cession from an urn containing m balls marked 1,2, • ■ ■ , m. Let X de- 
note the number of times that the observed number increases, (say) 
always counting the first draw as an increase. Then it can be shown that 

P{X = j] = S/.m+i-yM! (j = 1, 2, • ■ m), (A25) 

i.e., the wth row of the left diamond Fig. 9 divided by the sum ml of 
that row gives the elementary probability distribution of X. 

The problem of computing (A25) also arose in the work of V. H. 
Moore and W. A. Wallis4 and M. MacMahon3 who referred to it as 
Simon Newcomb's problem. J. Riordan6 has studied the numbers J(k) 
for even k and Carlitz and Riordan5 call them Eulerian numbers (to 
be distinguished from the classical Euler numbers); an explicit formula 
as well as a generating function appears in these papers. The Si,,- are 
related to the Eulerian numbers /l n (defined in Reference 5) by Si, y = 
A f+y—i. y . 

Explicit expressions for J(k) for odd and even k are obtainable from 
(A22), (A24) and the more general results 

= E (-DTiOC - ay+i" (A2c) «=o 

= i: (-l)°('+i+')[20' - a) + l]i+i (A27) 
a-0 

due to D. Slepian.7 It is easily shown that these formulae satisfy the 
corresponding recurrence relations as well as the bomidary conditions. 
By an induction and symmetry argument applied to (A21.) and (A23) 
and the boundary conditions it is easy to prove that 

Sij = S/.i and T,-.y = Tjj . (A28) 

Substituting (A26) and (A27) in (A28) gives rise to interesting, non- 
trivial identities. For completeness we also give the generating functions 
derived by D, Slepian7 

V- S.-.y/V _ iu(e' - eu) 
■ /=! (t + J — 1)! teu ~ uel 

v Suw , r t 
•S (T+T)! = log' bu 

— U 
— uel (A30) 

V ^''.y^3 _ (t — u)e'+" /A oi\ 
A (i -b j)l te2" - ue2t ' ^ ; 
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The final result for the content /(&) d can, using the above be 
written as a single expression 

for all k where [a:] denotes the largest integer not greater than x. It has 
been pointed out by J. W. Tukey that (A32) can also be obtained by proba- 
bilistic considerations and that it appears in Laplace's "Theorie Ana- 
lytique" (Book 2, page 260). 

APPENDIX IV 

Remarks on the Confidence Bands 

It should be remarked that other assumptions on the true, unknown 
distribution can be used in conjunction with the confidence bands ob- 
tained in Section VI. It has been pointed out by J. W. Tukey, for example, 
that in the case of the first diagram in Fig. 8 the experimenter might be 
willing to assume that the true distribution is unimodal and that the 
mode av is such that av ^ a-64. Then on purely geometrical considera- 
tions it can be shown that the confidence band can be modified as shown 
in the first diagram of Fig. 10. Briefly, if the true distribution enters any 
one of the three deleted triangles with any slope s then in order to get 
out again without leaving the confidence band the slope must get larger 
than s. But this contradicts the assumption that the density steadily 
decreases after Xm ■ 

Similarly, with the same problem, if the experimenter assumes that 
the true distribution is unimodal and that .T73 = xm ^ av then the first 
diagram of Fig. 8 can be modified as in the second diagram of Fig. 10. 
The assumption of unimodality is reasonable in many different practical 
applications but has not often been utilized in statistical techniques. 

It is possible to formulate a problem for fixed P* and n which requires 
the determination of that k which makes the maximum (or some average) 
vertical width of the confidence bands as small as possible. For example, 
for P* = 0.85 and n — 240 the value k = 10 minimizes the maximum 
vertical width. It should lie pointed out that if the experimenter's prin- 
cipal interest is in finding confidence bands with small vertical widths 
then this procedure appears to be quite inefficient compared with that 
based on the Kolmogorov statistic.1 

A proper comparison is difficult since the nominal P* is a lower bound 
and not the correct value of the confidence level associated with the pro- 

t /1 \ fc-i ■%/ k 
m = a (k^i) 

(k - 2a)k l (A32) 
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Fig. 10 — Modified confidence bands which include the true distribution func- 
tion with confidence greater than P* = 0.85 for ft = 10 and da* = 0.5. 

posed confidence bands. As mentioned in the body of the paper the de- 
velopment of a confidence band is just a by-product of the main theme 
of this paper which is the representativeness of the sample. 

VII. CONCLUSION 

Definitions of reprcsentativness and of degree of representativeness are 
given and tables are included which give the sample size required to 
guarantee with preassigned probability P* that a random sample will 
satisfy a condition of representativeness, the definition of which is 
agreed upon in advance. Thus, for experimenters who wish to know in 
advance how many observations will be needed for a distribution study, 
the problem has been given a precise nonparametric formulation and the 
solution has been found for some cases. 

This formulation also leads to confidence bounds on the unknown 
distribution after the observations are taken. Examples are given to illus- 
trate this. 

The tables for the case of pah wise disjoint, equi-probable and exhaus- 
tive cells maj' also prove to be useful for the problem of determining the 
sample size required to obtain simultaneous confidence limits (on a 
preassigned level P*) for all of the cell probabilities of a multinomial 
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distribution. Further investigation is needed to state precisely the con- 
ditions under which these tables can be used for this related problem. 
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Fluctuations of Random Noise Power* 

By D. SLEPIAN 

(Manuscript received September 4, 1957) 

The probability disiribntion of the power, y, of a sample of Gaussian 
noise of time duration T is considered. Some general theory is presented 
along with curves for the cumulative distribution and probability density of 
y for several different power spectra and values of T. 

I. INTRODUCTION 

A random quantity of interest in many communication and detection 
systems is the average power, 

V = ^ f' N\t) dt, (1) i J—T/2 

of a sample of finite time duration, T, of a Gaussian noise, N{1). This 
quantity has been discussed in some detail by Rice in his classic paper1 

where he obtains expressions for the first few moments of y and an ap- 
proximate probability density function. 

In this paper the exact probability density function, /(y), and the 
cumulative distribution function, F{y), of the average power are com- 
puted for a number of ergodic Gaussian noises and for a number of 
values of T. The results are presented as a series of curves which are dis- 
cussed in the next section. It is hoped that they will be of use to those 
designing specific systems. 

II. SUMMARY OF COMPUTATIONAL RESULTS 

Fig, 1 shows the probability density function, f{y), for the random 
variable y of equation (1) when N{t) has mean zero and power spectrum 

w(f) = , ^ , -a ^ / ^/co . 
a- -\~ 421-7- 

Xoise with this spectrum will be referred to as 11C noise (see 5.1). 

* The research reported here was supported in part by the Office of Naval 
Research under contract Nonr 210(00). 
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Fig. 1 — Probability density,/(y), for RC noise. 

The curves are labelled by values of /3 = aTj'l. The curve marked 
/5 = 0 is the probability density function for \j = iV2(0- Fig- 2 shows the 
corresponding cumulative distribution functions, ¥(&). 

For any /3 > 0, as \j approaches zero, j{y) and F{y) approach zero 
more rapidly than any power of y. 

As 0 becomes large, the density function f{y) peaks up around unity 
which is the average power of N{t). The variance of y is given by 
(2iS)-2[4/3 —l-b e-4P]. It approaches zero for large 0 like 0~\ 

Figs. 3, 4 and 5 show f{y) when N(i) has mean zero and power spec- 
trum 

s j-\ 2Q a-2 

w{S) = Tn\*  " 
Wo 2 , / y \ / 2 2x2 . . 

W + I — j — Wo } (0) 

03 = 2ir/, — ao f S <*>• 

Noise with this spectrum will be referred to as RLC Noise (see 5.2). 
The figures are respectively for the cases Q = 1, 10 and 100. The curves 
are labelled by values of s = woT. The curves marked s = 0 are the 
density function for y = N-{i). The corresponding cumulative density 
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Fig. 2 — Cumulative distribution, /''(?/), for RC noise. 

functions, Fiy), are shown on Figs. 6, 7 and 8. The spectra for Q — 1, 
10 and 100 are plotted on Fig. 9. 

For any s > 0 and for any finite Q > 0, as approaches zero, both 
fiy) and F(y) approach zero more rapidly than any power of y. 

For any fixed Q, as s becomes large, the density function f(y) peaks 
up around unity which is the average power of Nit). The variance of y 
is given by 

/ = ? [r - ! + iT + sin21 V4<? - l], 

(3) 
s 

t~Q' 

For fixed Q, it approaches zero for large s like 2Q/s. 
If, however, s = mT is held fixed and Q is permitted to increase, Figs. 

3, 4 and 5 show that f(y) becomes less concentrated; that is, with 
fixed integration time and fixed resonant frequency, fluctuations in 
power become more pronounced as the relative width of the spectral 
peak is decreased. Indeed, one has 

2 , i sin2 s hm <r = 1 T ——, 
(j-'» s~ 

/ 10 

w(f) = . g>-e a2 + 477'2fs /3 = P 

MJ 

J 

so that 
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lim liin a = 1, 
a-*as Q-*oo 

whereas, as already noted, 

lim lim cr2 = 0. 
Q-»so »-»06 

In the limit Q = 00, the Gaussian noise can be taken to be the single 
frequency ensemble N{i) = a cos woi -h b sin oiot, where a and b are in- 
dependent normal variates with mean zero and variance unity. The 
density for y in this case is 

f{y) — sec (pe~v BLC * Joiiy tan <p sec <p) 

where sin <p = sin s/s and Jo is the usual Bessel function (see Appendix 
1). This density is plotted for several values of s in Fig. 10. It is to be 
noted that this limiting noise, although stationary, is not ergodic. It is 
this fact that causes the variance of y to be bounded away from zero as 
s —» oo. Quite generally, if iV(/) has a purely continuous spectrum, the 
variance of y will approach zero as the integration time becomes infinite. 
If the spectrum of N{t) has line components, this will not be the case. 

It is not difficult to give a qualitative argument as to why power fluc- 
tuations in a fixed time interval increase as the power spectrum becomes 

POINTS FROM RICE'S APPROXIMATION 

O S = 27r 
□ 5 = tOV 

r 

s/o f k \ 

i = t07T 

a'Yy 

/ / 

fa ZTT \ 

1/ 
/ s= D 

0 4 O.e 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 
y 

Fig. 3 — Probability density, fiy), for RLG noise, Q = 1.0, s — uoT. 
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f(y) 

0.4 

i 

A 

k \ 5 = 10077 

A 

/^C 

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 
y 

Fig. 4 — Probability density, J{y), for RLC noise, Q = 10, 8 = wo?1. 
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f(y) 

S =2007" 

1 j 

StlOTT 
2 TT > 

^ZTT/* 
5=0"" 

_ b  
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3,2 3.6 4.0 

y 

Fig. 5— Probability density,/(?/), for RLC noise, <3 = 100, s — woP. 
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POINTS FROM RICE'S APPROXIMATION 
A S = 2 77/5 
o s = i07r fy. 

/ & 

A
? 

- 

Cj 
O 0-4 O.a 1-2 1-6 2.0 2.4 2.8 3.2 3.6 4.0 

Fig. 6— Cumulative distribution, F(y), for HLC noise, Q = 1.0, s — wqT. 

more peaked. Noise with the power spectrum (2) can be thought of as 
the noise voltage produced across the resistor in a series RLC circuit 
when the applied voltage to the circuit is white Gaussian noise. The 
larger the Q of the circuit, the more it tends to "ring" in response to an 
impulse input; i.e., the longer the transients persist. An atypical excur- 

/ 

Vva 
17 / Vl 

l/jy 
7J 

o 0.4 0.8 1.2 1.6 2.0^ 2.4 2.8 3.2 3.6 

Fig. 7 — Cumulative distribution, F(i/), for RLC noise, Q = 10, s = waT. 
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Fig. S— Cumulative distribution, /•'(]/), for RLC noise, <3 = 100, s = uoT. 

sion of the input voltage will therefore have a longer lasting effect in the 
output of a circuit with a large Q than in a circuit with a small Q. To 
obtain the same variance in power, then, the integration time must be 
longer in the circuit with the large Q value. It would seem reasonable to 
expect this argument to apply for any peaked spectrum, not solely for 
(2).* 

If the Q of the spectrum (2) is increased, how much must the integra- 
tion time be increased to maintain roughly the same power fluctuations? 
From (3), it is seen that for large Q, a-2 is approximately 2r2[r — 1 + e_T], 
i.e., a function of 

r - t ^ T 
Q Q 

alone. Now Q measures the relative sharpness of the spectral peak, so 
that ua/Q is a measure of the absolute width of the peak in radians/sec. 
As a rough rule, then, power measurements from different members of 
the family (2) will have the same fluctuations if their products "integra- 
tion time" times "absolute spectral bandwidth" are the same. Fig. 11 
shows cr2 as a function of r for $ — 1,10, and 100. That r is a good meas- 
ure of the fluctuation in power can also be seen by comparing the / 
curves of equal r value in Figs. 3, 4 and 5. They are almost identical. 

* It seems to be very difficult to make any other qualitative statements re- 
garding the relation between the shape of the noise spectrum and the density 
function for y. 
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On Fig. 11 the variance of y for bandpass noise with spectrum 

| / ± /o | ^ 5 

0, I / ± /o | > 5 

w{f) = 45' 

is plotted versus 

2irfot 
Qb Qb 

Here the Q of a bandpass circuit is defined by 

Qb = T2S 
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Fig. 8 — RLC spectra, <2 — 1, 10, 100. 
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Fig. 10 — Probability density, f(y), for RLC noise, Q = <*>. 

and measures the relative width of the spectrum. This definition of Qb 
causes the a2 curves of this noise power to agree asymptotically with 
those of the RLC noise power; namely a2 — 2/t in both cases. Again, 
when it is not too small, r seems to be a good measure of power fluctua- 
tions. The variance in this bandpass case is given by 

(Tb = 4 f (1 - y) 
JQ 

cos Qbrysin ^ 

irry 
2 

dy 

which can be readily evaluated in terms of Si and Ci functions. The curve 
for Qb = 100 coincides so closely with the curve for Qb = 10 it could not 
be shown on Fig. 11. 

The asymptotic agreement of the variance of noise power for band- 
pass and RLC noise permitted defining the Q of the bandpass circuit as 
Qb = 7r(/o/2(5). These same considerations suggest defining the band- 
width IF of the RLC spectrum by IF — w0/2Q. For, in the bandpass 
case, r = 2(25)7' which is 2T times the bandwidth of the spectrum. For 
the RLC noise, r = tooT/Q = 27Xloo/2Q), whence the definition of IF 
follows. 
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Fig. 11 — ff2 for RLG noise and bandpass noise, Q = 1, 10, 100. 

The curves shown in Figs. 1-8 are believed to be accurate to two sig- 
nificant figures. For comparison, some points computed from Rice's 
approximate formula for f{y) (equation 3.9-20 of [Ref. 1]) are shown on 
Fig. 3. Rice's formula is seen to fit the tails of f{y) well for large y, but 
the central portion of the distribution is given accurately only for large 
values of r. However, the approximate cumulative distribution obtained 
by integrating Rice's formula agrees quite well with F(y) for a wide 
range of r values as is seen in Fig. 6. 
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The approximation in question assumes a x2 type distribution 

(*/2)-l -(z//2g2) 
m ^ r. 

(29!) "'T Q'j 

The parameters q and n are chosen to make the first two moments of 
this density agree with the true first two moments of y. That is, for the 
normalization Ey = 1 adopted here, the equations q2n = 1 and 2n?4 = <r2 

serve to determine q and n. These formulae give n = 2fa-. Since for 
large r, it2 ^ 2/r for bandpass noise, n ~ r = 2(25)7". That is, for large 
r, the bandpass noise acts like a x2 variate with 2(25)7" degrees of free- 
dom in agreement with an argument easily derived from the sampling 
theorem. 

III. GENERAL THEORY 

Let N{t) be a Gaussian noise with mean zero and eovariance 

pit, t') = E[N{t)N{t')] 

where as usual E denotes expectation. In studying properties of Nit) in 
a finite time interval, say ( — 7' '2, 772), it is convenient to make an ex- 
pansion in terms of an orthonormal set of functions, <pn{t),n = 0,1,2,... . 
We write 

Nil) - f; nm(t), I i I S ^ 
n E 

where 
* Til 

n. = NiOviit) dl, 7 = 0, 1,2, ••• 
J~T/2 

and 

f 71 ■ 
/ <Pi(i)<P}it) di = bij, 7,i = 0,1,2, • • • . J- Til 

As is well known,2 it is particularly convenient in this description of 
the noise to choose as the orthonormal set, (pi, the solutions of the 
homogeneous Frcdholm equation with p{i, i') as kernel. That is, the ^'s 
are chosen so that 

Kv,(0 = f pit, I'MO <II', 1 i 1 s L i = 0,1.2,•••. (4) J—Tli E 



174 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958 

For, with this choice of the ^'s, it is easily shown that the nt are inde- 
pendent Gaussian variates with mean zero and variance Eijii) = , 
i - 0, 1,2, We assume in all that follows that the X's are so labelled 
that Xo § Xi ^ X2 S • • ■ ■ 

Consider now the average power, y, of a finite sample of the noise. It 
follows that 

} cTl- 1 00 „ 
L / N\i)dt = t-E^- 
i J-Tl2 i 0 y = 

= S 

(5) 

where 

and 

ni 
Xi = 

vx;- 

rp • (6) 

Equation (5) exhibits y as a linear combination of independent random 
variables. The Xi are independent Gaussian variables all with mean zero 
and variance unity. The characteristic function, C(l-), for y then follows 
readily. One has 

C{tj) = Eeilv = Ee^'**2 = ft 
(7) 

= H (1 - Sifa,-)-"2. 
7=0 

Here, as throughout this paper, the positive square root of a complex 
quantity is taken to have an angle between — 0/2) and +{7r/2) radians 
(the cut line is along the negative real axis). 

From the characteristic function (7), the semi-invariants of y can be 
calculated. By definition3 of the semi-invariants, k, , 

log C(^) =23-7 (#)'. 
i f- 

From (7) and the expansion 

log (1 - rc) = -ft 
n=I n 
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it follows that 

log C(f) = -1 i; log (1 - 2^) ='EE ^ A j=0 6 k=l 7=0 A 

where 

= (k — (8) 

From, the semi-invariants, the moments of y can be found as in Refer- 
ence 3. 

The formula (8) for the semi-invariants can be put in a convenient 
form not involving the a,- explicitly. From the well known expansion4 

The determination of the higher order iterated kernels generally becomes 
difficult in practice. 

The expression (9) is of the form conjectured by Rice1 on the basis of 
computing the first four semi-invariants of y. The formula (7) was given 
by Kac and Siegert2 and (9) was noted by Arthur5 in a special case in 
connection with the analysis of a frequency discriminator. 

The probability density function for y is obtained as the Fourier 
transform of ('(£), 

pit, f) = Br lit)#At') 

and the orthonormal properties of the y's, one finds 

(10) 

}=o 

and the cumulative distribution function can be written as 

!/ 
(U) 
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Much of the remainder of this paper will be concerned with evaluating 
(10) and (11) for specific noises. 

IV. COMPUTATIONAL FORM FOR fiy) 

The evaluation of the integral (10) presents many difficulties even 
with modem computing machinery. From the physical origins of the 
problem under discussion, it is clear that for small values of T, /(?/) 
must be a rather broad function (non-localized), whereas for large values 
of T it must approach a 5-function centered at the point y — p(0, 0) 
when the noise is assumed ergodic. The behavior of (10) therefore de- 
pends in detail on the manner in which the aj approach zero with in- 
creasing j. 

One seemingly attractive approach to the problem is to truncate the 
sum in (5) at i = M and correspondingly obtain a product with j run- 
ning from 0 to M in the denominator of the integral in (10). Procedures 
are described in the literature6'7 for computing the distribution of a 
finite quadratic form in Gaussian variables. Estimates of the error due to 
truncation can also be obtained rather readily. Unfortunately, the best 
such estimates obtained by the author showed that for small values of 
0 or r, M must be taken quite large (50 or 60) to obtain answers guaran- 
teed accurate to two decimal places. Furthermore, the convergence of 
the computational schemes described6-7 turned out to be very slow. The 

^ PLANE 

Re £ — 

(U 

'JN-lba 
c 

\U-ib3 

Fig. 12 — Cut lines and contour in complex g plane. 
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following alternative approach which can also be applied to finite sums 
of the form (5) was used to obtain the curves presented here. 

The function n(l — 2^a>)s/2 in the denominator of (10) has branch 
points at —ibj, where 

^0'1>2 (12) 

The h's are real positive quantities, for the X's are eigenvalues of a real 
symmetric positive definite kernel and must be real positive numbers. 
Line segment cut-lines are inserted in the complex £-plane from —ib-.j to 
—ib-2j+i, i = 0, 1, 2,... as shown in Fig, 12. When y < 0, the value of 
(10) is zero as can be seen by closing the contour in the upper half plane. 
When y ^ 0, the contour of integration in (10) is displaced from the 
axis of reals to the contour, C, shown in Fig. 12. This displacement of 
contour is easily justified if 11(1 — 2^aJ)

!/2 is of exponential order less 
than unity, a condition which will be fulfilled in the examples to be 
treated. The change of variable f = rotates the contour of Fig. 12 by 
90° in the positive direction. If one now collapses the closed contour 
curves about the cut-lines and takes proper care of the convention al- 
ready set forth for the square root sign, there results, 

m =^"-(-1)^ 

where 

1 fbn-k+i e~yl dt 
h = T L,, VYrn]' ^ }= 0. !, 2. ... 

and where 

(13) 

D(t) is closely related to the Freeholm determinant (Reference 4, Chap- 
ter 11) of p. 

In the application to be treated below, 

D(t) = H{z) (14) 

where 

2 = g{t) (15) 

is a non-negative monotone increasing real function of t for i ^ bi,. De- 
note its inverse by i — h{z). Let 
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tk = g{hk) 

Ck = Ifeft+i - Zik) 

dk — ^(zik+i 4- Zik) 

for A; = 0, 1, 2, ... and let 

z = Ck cos kx + dk. 

Tiien straightforward substitution yields 

(-yh<^h'{z) dx 
h = f ■Jo 

l/ 

mz) 
(z — Z2k)(Z2lc+l ~ z) 

/£ = 0,1,2,..., (10) 

(17) 

Similarly, one obtains 

F(V) = 1 -IXot-l)'^ 
with 

Jk = f Jo 

e~ :'h(')h' (z) dx 

h(z) 
v7! 

mz) 
(z — Z2k)iZ2k-i.l — z) 

(IB) 

(19) 

Equations (16) to (19) were used to compute the curves discussed in 
Section 11. The denominators of the integrals in (16) and (19) have no 
zeros in the range of integration. By use of Gauss's method of numerical 
integration,8 evaluation of the integral at rr = 0 and x — 1 where the 
denominator is an indeterminate form was avoided. In the applications 
made, it can be shown that for sufficiently large k, Ik and Jk decrease 
monotonely. Since the series (17) and (18) are alternating, an estimate 
of the error made by terminating the series at a finite value of k can 
be obtained. In all cases computed, it was never necessary to take k 
larger than 18, to obtain 1 per cent accuracy in the final result. 

Y. DETERMINATION OF EIGENVALUES AND H(z)* 

For stationary processes, the kernel of the integral equation (4) be- 
comes a difference kernel; that is, p(t, t') — p{t — t') where p{x) is a 
positive definite function. The Fourier transform of p, namely 

!»(/) = r e2"7lp(x) dx J—00 

is non-negative and is the power density spectrum of the processes. 

* An alternative method of evaluating H{z) is described in Reference 12. 
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Analytic solutions to the integral equation (4) are known in this case 
only for a relatively small class of kernels. Fortunately, this class is one 
of considerable interest in communication applications. It is the class 
of p whose spectra tc(f) are rational functions of /2; i.e., ratios of poly- 
nominals in f2. Such spectra are obtained by passing white noise through 
a finite passive physical electrical network with lumped constants. De- 
tails of the met hod of solution are given in References 9 and 10. It 
must be pointed out that, even in this case, solutions can be carried out 
practically only for polynomials of small degree. 

5.1 RC Noise 

If white Gaussian noise is applied to a series RO circuit, the voltage 
across the capacitor has a power density spectrum proportional to 

»(/) = (20) 

where a = 1 /RC is the nominal cut-off frequency of the circuit. The co- 
variance function corresponding to (20) is 

P(f) = e-41. (21) 

Solutions to (4) with this kernel are given in detail in both References 
9 and 10. 

Let 

Then 

(3 = ^ ■ (22) 

h = .4; IP + ^1. fc = 0,1, 2  (23) Zp 

where the zk are non-negative roots of either of the equations 

0 tan 2 = /? (24) 

2 cot 2 = —0. (25) 

If the Zk are labelled so that 20 < zi < 22 < ..., then it is readily seen 
that Zk Ic (x/2), so that hk ~ k2(Tr2/S0). The convergence exponent (see 
Reference 11, p. 14) of the sequence hk is therefore |. It follows then (Ref- 
erence 11, 2.0.5, p. 19) that D(t) as given by (13) is an entire function of 
order 4. 

Now the function {c~20/0)[0 cos 2 + ^ sin 2] (cos 2 + je(sin2/2)], where 
s = \/20t — 0'2, is an entire function of t of order Its only zeros arc 
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at the points t = hi,, k = 0, 1, 2,..., given by (25), (24) and (25). At 
I — 0, it has the value unity. It is, therefore, equal to D(l) as can be seen 
from Hadamard's Factorization Theorem (Reference 11, 2.7.1, p. 22). 

The quantities necessary to evaluate (1G) and (19) arc therefore all 
known for this case: 

e-w 
H{z) = — cos z — z sin z] 

1 r 02 , 2i 

I o 8,11 2 
cos z -t 0  

h(z) = ^ ^ J 

and the z* are given by the positive roots of (24) and (25). 
The first two semi-invariants of y arc found to be 

ki = Ey = 1, 

)2 =n2 = 
4/32 « = B(y - I)2 = ^ = -L [4^ - 1 + e-'% 

5.2 RLC Noise 

If white Gaussian noise is applied to a series RLC circuit, the voltage 
across the resistor has a power density spectrum proportional to 

»(/) = 20 

2 ./ U V, •> 9.9 (29) •z , /Q \ / 2 Z\ 0} + I — ) (w — Uo ) 
V'o/ 

where w = 27r/, Q = woL/R and wo2 = 1 /LC. Introducing parameters u 
and v defined by 

U T ^ — Wg 
ft-] 

iw — W, Re u ^ 0, Re v ^ 0, 

one finds 

(f) = 2(m + v)(/ 
WKJ) (w2 + O)2)^2 + a>2) 

and 

p(T) = _i_ - re-'1'1]. (27) 
11 — V 
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In the special case Q - ^ 

p(r) = (1 - 0,0 1 r Deo-"0 (28) 

Solution of (4) with (27) or (28) as kernel is relatively straightforward 
by the methods of References 9 and 10, although quite laborious. Details 
can be found in Appendix 2. 

Suppose Q and wo are positive real quantities. Then the eigenvalues 
Xi- = T/2bk are given by 

h = ^ F + zA, /t= 0,1.2,... (29) 
2r 

where the zk are non-negative roots of either 

, 2 sin 2 , / 2 , 2n sin V22 + s' /.jn\ 2r cos z = {z - r )  + (2 -f r ) . n . o (80) 
2 Vs- + s2 

or 

/2 2\ sin 2 /j. , 2^ sin V^2 + s2 

2?- cos z — {z — r ) — (2 + r ) - ■ wi; 
2 Vz + s2 

Here 

-w' s = ""7'- (32) 

The eigenfunctions belonging to roots of (30) are of the lorm 

Ak cos \{zk + "v/zfe2 -f s5)i! + Bk cos l(zk — \/Zk2 + ■s2)^ 

while those belonging to roots of (31) are of the form 

Ck sin ^{zk 4" "v/Zfe- + s^t 4- /h sin 5(2*- — -y/zk'1 4- s2)(- 

It is interesting to note that when the X's are ordered in the usual way, 
the corresponding eigenfunctions do not in general alternate between even 
and odd functions of t. 

The infinite product (13) with the b's given by (29), (30) and (31) 
can bo written in closed form by arguments similar to those used in 
Section 5.1. From (30) and (31), it is seen that asymptotically succes- 
sive Zk- are separated by t/2, so that hk grows like A"2 and one is again 
dealing with an entire function of order k.* For the pertinent, quantities 

* More generally, it can he shown that for rational spectra if w(f) then 
Xn ~ n~2''. (Private communication to author by A. Beurling.) 
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of (10) and (19), one finds 

^- r!) ~ - 2r 00s z 

+ (z! + r,) sm^rFI 

V^2 + S2 J 

f r'l 2X sin z 0 , 2 , sin Vz2 + s2l • (2 — r }  — 2r cos z — yz -\- r)  , 
L ^ V22 + s2 J 

h{z) = [z2 + r2] (35) 

with the Zk given as roots of (30) and (31). 
The first two semi-invariants of y are 

Ui = Ey = I 

112 = ^ = 2r2 [2r ~ 1 + C"2r + 2^Erj2^h2 Vr2 - s2J. 
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appendix 1 

Let N(t) = a cos ud T b sin uoi, where a and b are independent Gaus- 
sian variates with mean zero and variance unity. Then y as defined by 
(1) is obtained by direct integration as 

y = aa + 0 

where 

1 /G . sin s\ 0 1 A sin s\ 
a = 2V1+—I' " ^ 2 V s /■ 

Since y is the sum of independent random x variables, the density for y 
can be obtained as the convolution 

Kv) = [ Jo 

V -Ix/lo) -((y-r)/2jS) 
6 6 dx. 

'0 V2 wax Vz-n-piy - x) 

The substitution x = (y/2)(l + cos 6) in this integral leads to 
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ffy) = C_    1 / co80 ^ 
9.\/rvR IT JO 2v/ a(3 

„-(v/4)I(l/a)+(l/«l 

2\/raj3 

Finally, if sin ip — sin .s/s, 

f{y) = sectpe^^Jo(iy tan <P sec <p). 

APPENDIX 2 

The power spectrum corresponding to the covariance (27) can be 
written as 

2{u + v)p2 

w = ~ 
{p- — u2)(p2 — a2) 

where p = fw = 2irif. From Reference 9, then, solutions to (4) with 
the kernel (27) must satisfy the differential equation 

(d2 \ (i r,N _ 2(w + v) d2 ( ) 

\dt-U)\di*-'V)(p{t)- X dt2 

or 

(|-«)(|-'32)^=0' (i) 

where 

2 , ^2 2 i 2 2(M -h a) 
« + /32 = + a" - 

X 
2^2 2 2 4 a ~ uv = cco . 

We choose a and (3 so that Re a ^ 0, Re ^ 0. If a ^ & then ^ is a 
linear combination of the elementary functions e e , e , e 

It is easy to verify that if ^ is a solution to (4) with a kernel pit, t') = 
p{ | t - t' I ), then ip{i) + <p{-t) and <p{t) - v(-0 are also solutions. 
We can, therefore, restrict attention to even and odd solutions of (4). 
On substituting 

ipii) = A cosh at A- B cosh fit 

into (4), one finds 

x = 1*1  (ii) 
T " (u* - a2)(y2 - a2) {u- - /32)(v2 - /32)' 
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,<xT. . . <*T uPT y a - u PT 

u cosh — + a sum u cosh — + psmh — 
A ^ \ T-i ^ 2 ^ 
 2 2—— ^ B m  ' 0, W2 — o:2 U2 — 0* 

(iii) 
l.aT i ■ UaT l PT t o ■ uPT v cosh + a smh — v cosh + /3 smh!:— 

A —i   + ^   = 0. V* — a1 v1 — p1 

The determinant of the system (iii) must vanish. A bit of algebra shows 
this to be equivalent to 

o v. i / 2 2\ sinh x . , 2 2\ sinh V-x2 — s2 n \ 2r cosh x + {x + r ) + (.-c — r) — = 0 . (iv) 
x \/ X2 — s~ 

where x — {a -{■ 0){T/2). It is not difhcult to show that for positive wo 
and Q, this equation has roots only if a and 0, and hence x, are pure 
imaginary. Writing x — iz, (iv) become (30) and (ii) yields (29). 

The substitution of 

<p(l) = C sinh otf + D sinh 

into (4) again yields (ii) and equations analogous to (iii) with sinh and 
cosh interchanged. A similar analysis then gives (31). 

If a = ^3, then from (i), v must be of the form A cosh at -{- Bt 
sinh at or C sinh at -f Dt cosh at. Substitution of these forms into (4) 
yields equations which cannot be satisfied for positive cjo and Q except 
by the trivial solution A — B = C = D = 0. 

REFERENCES 

1. S. O, Rice, Mathematical Analysis of Random Noise, Section 3.9, B, S. T. J. 
23 and 24. Also as part of Noise and Stochastic Processes, Dover Publ., N. Y., 
1054. 

2. M. Kac and A. J. F. Siegert, Ann. Math. Stat., 18, p. 438, 1947. 
3. H. Cramer, Mathematical Methods of Statistics, Princeton University Press, 

Princeton, N. J., p. 185, 1946. 
4. Whittaker and Watson, Modern Analysis, Macmillan Co., N. Y,, p. 227, 1947. 
5. G. R. Arthur, The Statistical Properties of the Output of a Frequency Sensi- 

tive Device, Convention Record of the I.R.E., Part 8, pp. 80-90,1953. 
6. J. Gurland, Distribution of Definite and Indefinite Quadratic Forms. Ann. 

Math. Stat., 26, pp. 122-127, 1955. 
7. H. E. Robbins, Distribution of a Definite Quadratic Form, Ann. Math. Stat., 

19, pp. 266-270, 1948. 
8. J. B. Scarborough, Numerical Mathematical Analysis, Oxford Press, p. 131, 

1930. 
9. D. Slepian, Estimation of Signal Parameters in the Presence of Noise, Trans. 

I.R.E., PGIT-3, pp. 82-87, 1954. 
10. D. Youla, A Homogeneous Wiener-Hopf Integral Equation, Trans. I. R. E., 

IT-3, pp. 187-193, 1957. 
11. R. P. Boas, Entire Functions, Academic Press, N. Y., 1954. 
12. A. J. F. Siegert, Problems in the Theory of Noise, Trans. I.R.E., IT-3, No. 1, 

pp. 38-43, 1957. Also Trans. I.R.E., PGIT-3, pp. 4r-25, March, 1954. 



The Measurement of Power Spectra from 
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The measurement of power spectra is a problem of steadily increasing im- 
portance which appears to some to be primarily a problem in statistical esti- 
mation. Others may see it as a problem of instrumentation, recording and 
analysis which vitally involves the ideas of transmission theory. Actually, 
ideas and techniques from both fields are needed. When they are combined, 
they provide a basis for developing the insight necessary (i) to plan both the 
acquisition of adequate data and sound procedures for its reduction to mean- 
ingful estimates and (ii) to interpret these estimates correctly and usefully. 
This account attempts to provide and relate the necessary ideas and tech- 
niques in reasonable detail. Part II of this article will appear in the March 
issue o/The Joukkal. 
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Index of Notations  
I. INTRODUCTION 

Communications systems and data-processing systems are generally 
required to handle a large variety of signals in the presence of noise. 
The design of these systems depends to a large extent upon the statisti- 
cal properties of both the signals and the noise. In most cases, the noises 
may be represented, or approximated, as stationary Gaussian random 
processes with zero averages, so that all of their relevant statistical prop- 
erties will be contained by the autocovariance function or the power 
spectrum. In many cases, the signals may also be represented, or ap- 
proximated, as stationary Gaussian random processes with zero averages. 

Noises, signals, or other ensembles of functions (given continuously or 
at intervals) which are approximately stationary but not Gaussian are 
often also usefully studied in terms of autocovariance functions or power 
spectra. Although the average and the spectrum are no longer the only 
relevant statistical properties, they are usually the most useful ones. 
Thus, we shall do well to keep as much of our treatment generally appli- 
cable as possible. 

In almost every case, the autocovariance function or power spectrum 
of either the noise or the signal will be of interest and importance. 

To determine the autocovariance function or power spectrum of an 
(approximately) stationary random process, we are often reduced to 
the necessity of measurement and computation. Exact determination 
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would require a perfectly-measured, infinitely-long piece of a random 
function (or a collection of pieces of infinite total length), and would re- 
quire infinitely detailed computations. Both of these requirements are, 
of course, impractical. Approximate determination, on the other hand, 
raises the questions of how much data of a given accuracy will be re- 
quired, what computational approach should be used, and how much re- 
liance may be placed upon the results. Practically useful answers to 
these questions may be found by combining results from transmission 
theory and the theory of statistical estimation. These answers prove to 
be relatively simple. The only major difficulty in their practical applica- 
tion is the extensiveness of the data required for highly precise estimates. 
This requirement is an inherent, irrevocable characteristic of such ran- 
dom processes. 

In this account we shall treat only the measurement of spectra of in- 
dividual noises or signals. The measurement and utilization of the cross- 
spectra of pairs of series is also important, but is beyond our present 
scope. Questions of distribution and anticipated variability of cross- 
spectral estimates, and of certain estimates derived from them, have re- 
cently been cleared up by Goodman.1 

It is natural to feel that the measurement of power spectra is simple, 
and that no problems deserving extended discussion arise. After all, are 
there not commercial "wave analyzers" of many sorts; have not Fourier 
series served for many years to analyze the frequencies of many signals, 
(musical instruments, human voices, etc.)? Why should there be a serious 
problem? 

There are two reasons why elementary methods fail us rather fre- 
quently. On the one hand, the signal may not be available in indefinitely 
long time stretches. Either the conditions of observation, experimental 
or otherwise, or the difficulties of careful recording may make it imprac- 
tical to have so much data that we can afford to analyze carelessly. (The 
examples of Sections 26 to 28, involving spectra of radar tracking, 
noise in very short-lived devices, and irregularities in the earth's rota- 
tion, respectively, all illustrate this point). Even if observation and 
recording can be afforded, the cost of computation often forces careful 
analysis. 

On the other hand, the random nature of much noise, and some sig- 
nals, in which the relative amplitudes and phases of different frequencies 
are not stably related (in contrast to voices and musical notes), intro- 
duces much more difficulty with sampling fluctuations and provides 
much more significant appearing, thus much more misleading statistical 
artefacts than experience with simpler signals would lead investigators 
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to expect. (In postwar oceanography, for example, high mechanical in- 
genuity was expended in the construction of simple and effective wave 
analysers to produce detailed spectra of ocean waves. The results were 
quite misleading, because the frequency resolution obtained was too high 
for the limited length of records used, and almost the entire appearance 
of the resulting spectra was an illusion due to the particular fluctuations 
of the particular record. The use of broader filters has since led to mean- 
ingful results which could be related to physically satisfying theories.) 
All too often, the practical study of spectra requires care. 

Effective measurement of power spectra requires understanding of a 
number of considerations and action guided by all of them. Explaining 
each individual consideration is necessary, but it is equally necessary to 
explain how they fit together. The general structure of this description 
of spectral measurement is the following: an introduction to the concepts 
(Sections 1-3), brief accounts of individual considerations (Sections 
4-19), accounts of how these considerations are assembled in analysis 
(Sections 20-21), and planning for measurement (Sections 22-28, 
which include discussion of examples), and Sections in Part II giving 
the details supporting the earlier sections. 

We have attempted to provide, somewhere, most of the facts and atti- 
tudes that are needed in the practical analysis of (single) power spectra. 

Readers interested in either completing their present knowledge or in 
gaining a brief overview of the subject may wish to proceed next to Sec- 
tions 20ff, whence they can be referred to specific sections of interest. 
For some, reading of Sections 1-3 may he a helpful preliminary for Sec- 
tions 20ff. For others, who want to build more solidly as they go, reading 
straight through, perhaps with considerable cross-reference to Part II, 
may be best. 

A function of time Ar(0 generated by a random (or stochastic) process 
is one of an ensemble of random functions which might be generated by 
the process. The value of the function at any particular point in time is 
thus a random variable with a probability distribution induced by the 
ensemble. Furthermore, the values of the function at any particular set 
of points, say f = i\, U , A , have an w-dimensional joint probability 
distribution also induced by the ensemble. Such probability distributions 
have an important bearing on the design of any communication system 
or data-processing system which must handle an output from such a 
random process, be this output "signal" or "noise". 

We shall often, but not always, assume that the random process is 
Gaussian. This means that, for every n, k , b , • • •, A , the joint proba- 
bility distribution of 



190 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958 

Xih), Xih), ■ ■X(tn), 

is an n-climonsional Gaussian or normal distribution. Each such distribu- 
tion is completely determined by the ensemble averages 

X(ii) = ave (X(b)|, 

and by the covariances 

C.i = cov {XiU), X(ts)] 

= ave {[XiU) - XM-iXitj) - . 

As a matter of convenience in development we will assume that the 
averages X(ti) are zero. The covariances then reduce to 

Cij - ave 

Throughout, we will assume that the random process is stationary (that 
is, temporally homogeneous) in the sense that it is unaffected by trans- 
lations of the origin for time. The covariances C.y now depend only on 
the time separation £,• — t; so that 

Ca = CiU - t}). 

Thus, the noise is completely specified by a single function of a single 
variable. In particular, C(0) is the variance (for zero average, the average 
square) of X(t). 

If the process were stationary, with zero averages, but were not 
Gaussian, then knowledge of the covariance as a function of lag, although 
providing a very large amount of useful information, would not com- 
pletely specify the process. The results of this paper fall into two cate- 
gories: (i) those relating to average values of spectral estimates, and 
(ii) those relating to variability of spectral estimates. The average-value 
results apply generally under the assumptions of stationarity (and zero 
averages), and do not depend upon the Gaussian assumption. The varia- 
bility results are exact under the Gaussian assumption, and are usually 
rather good approximations otherwise. Thus, our results have practical 
value for noises and signals which are not closely Gaussian. 

Results about variability are naturally used: (i) for planning the ap- 
proximate extent of measurement effort, (ii) for indicating the presence 
of changes, during a series of measurements, in the quantities estimated, 
and (iii) as a means of judging the precision of an over-all estimate. The 
results given here are mainly for the first planning use. The additional 
uncertainties in actual variability due to either non-normality of distri- 
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bution, or to changing of conditions between runs, or to both, are often 
all too real, but are rarely large enough to affect planning seriously. The 
same is true of mild nonstationarity. The Gaussian, stationary results 
can also be applied to the second use, the detection of changes in the true 
spectrum, but considerable caution is in order. The precision of final 
over-all values is ordinarily far more wisely judged from the observed 
consistency of repeated measurements (as by analysis of variance of 
logarithms of various spectral density estimates at the same nominal fre- 
quency) than from any theoretical variability based on a Gaussian as- 
sumption. 

Communications engineers are more accustomed to work with a single 
time function of infinite extent than with an ensemble of finite pieces (of 
such functions). It is perhaps fortunate, therefore, that averages across 
an ensemble are equivalent (ergodicity) to averages over time along a 
single function of infinite extent, whenever a process is stationary, 
Gaussian, has zero averages, and has a continuous power spectrum (no 
"lines"). (If the process were not stationary the single function approach 
could not be used in this way.) 

Since we seek to make this account as intuitive as possible for com- 
munications engineers, we shall define transforms, and make many other 
computations in terms of averages along a single function (as limits of 
integrals over centered intervals). In dealing with more specifically sta- 
tistical issues, however, we shall write "ave" for average value, "var" 
for variance and "cov" for covariance, and shall do nothing to hinder 
the interpretation of these operators as acting across the ensemble. 
(Those who wish can also think of them in single function terms.) 

The covariance at lag r, in single function terms, is given by 

The function C(r) is frequently called the autocorrelation function, 
although historical usage in both statistics and the theory of turbulence 
(Taylor2) shows that this name should be applied to the (normalized) 
ratio C(t)/C(0). We shall call C(t) the autocovariance function. This 
name is appropriate to our formal definition of C{t) because we have 
assumed that the averages of our process are all zero. Whenever we give 
up the assumption of zero averages, as we must almost always do when 
dealing with actual data, we shall use 

In ensemble terms, we would write merely 

C(r) = ave {Ar(0-A7'(« + t)}. 
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are {X(i) ■ X(t + t)} = average lagged product, 

ave {[X(0 — A'] ■ [.Y{t + r) Xj} — autocovariance function, 

where X is the common value of ave [ X (t) { and ave + r)}, thus 
preserving accurate usage. 

Because of the direct relationship of the joint probability distribution 
to the autocovariance function, much of the statistical attention given 
to Gaussian stationary time series (time-sampled random functions) has 
been expressed in terms of serial-correlation coefficients (corresponding 
to lag-sampled autocovariance functions). 

A stationary Gaussian random process may be regarded (e.g. Rice2) as 
the result of passing white Gaussian noise through a fixed linear network 
with a prescribed transmission function. White Gaussian noise, in turn, 
may be regarded as the superposition of the outputs of a set of simple 
harmonic oscillators (continuously infinite in number) with 

(a) a continuous distribution in frequency,* 
(b) uniform amplitude over the significant frequency range of the 

transmission system, and 
(c) independent and random phases. 

This point of view is particularly suited to the techniques employed by 
communications engineers. It is therefore not surprising that communi- 
cations engineers have dealt with stationary Gaussian random processes 
almost entirely in terms of power spectra. 

Because the autocovariance function and the power spectrum are 
Fourier transforms of each other, it would at first appear to be purely 
a matter of convenience which one is used in any particular situation. 
Indeed, optimum filter characteristics for the protection of signal against 
noise in communications systems and in many types of computing de- 
vices have, on occasion, been determined by the use of the autocovari- 
ance function. In practice, however, the filter designer almost invariably 
turns to the power spectrum as the final criterion of adequate design 
and performance. 

In practice also, where the autocovariance function or the power spec- 
trum must be determined by measurement and computation, and then 
interpreted, the choice is now heavily weighted in favor of interpretation 
of the power spectrum. Although a great deal of theoretical work has 
been done on the probability distribution of the serial-correlation co- 
efficients for Gaussian stationary time series of finite length, with a view 
to the estimation of the confidence which may be placed upon practical 

* The term "frequency" is used throughout this paper in the communications 
engineer's sense, viz., cycles per second of a sinusoidal wave. (Exceptional uses 
in the statistician's sense are explicitly noted.) 
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results, the criteria which have been developed along this line are so 
complicated that it is extremely difficult to apply them in practice, 
where the joint distribution must be considered. On the other hand, the 
situation with respect to the power spectrum is now very satisfactory 
for practical purposes. This stems from results obtained by Tukey,4 

and in part independently by Bartlett,5 about nine years ago, when 
studies were made of the effects of sampling, of finite length of series, 
and of choice of computational procedure on the behavior of the esti- 
mated power spectrum. Since that time, applications to such diverse 
fields as ocean waves (Marks and Pierson6), aerodynamics (Press and 
Houbolt7), meteorology (Panofsky8), and seismology (Wadsworth, 
Robinson, Bryan, and Hurley9), have shown the practical applicability 
of these results to a wide variety of physical time series. 

Shortly after these studies first reached the stage of practical useful- 
ness, the theoretical analysis was reformulated by Blackman, who ex- 
pressed it from the point of view of transmission theory, for presentation 
to members of the technical staff of Bell Telephone Laboratories 
(Out-of-Hours Courses 1950-1951, Comnumications Development 
Training Program 1950-1952). 

More recent contributions (1950-1957) to the theory of power spec- 
trum estimation have been reviewed by Bartlett and Medhi,10 by Bart- 
lett,11 and by Grenander and Rosenblatt.12 

2. AUTOCOVARIANCE FUNCTIONS ANT) POWER SPECTRA 

First, let us consider the ideal case. The autocovariance function which 
was defined in the preceding section by 

C(t) = lim ^ f X(t) -Xd + r) •<& 
r-»«) i J-TIZ 

may be reduced to the form 

C(t) = r P(f)-e"-"'df J-DO 

where 
i "P f ^ 2 

P(/) = lim i, f X(t)-e'i2"'dt 
T-*ao I | -l—TlZ 

(cp. Section B.2). The function of frequency F(/) describes the power 
spectrum of the stationary random process considered. More precisely 
P(f) df represents the contribution to the variance from frequencies be- 
tween/ and (/ + df). If we think of Xit) as a voltage across (or current 
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through) a pure resistance of one ohm, the long-time average power dis- 
sipated in the resistance will be strictly proportional to the variance of 
X(t). This important special case is the excuse for the adjective "power". 
The pure statistician might prefer to refer to the covariance spectrum or 
to the second moment spectrum rather than to the power spectrum. 
For precision, we shall often refer to P(J) as the spectral density or 
power spectral density. When no confusion is likely, we may call P{f) 
merely the power spectrum. 

The relation exhibiting the autocovariance function as the Fourier 
transform of the power spectrum may be inverted to express the power 
spectrum as the Fourier transform of the autocovariance function. Thus, 
we have 

Pif) = (" CM-e-'1'" dr. J—oo 

The autocovariance function C(t) and the power spectrum P(f) are, 
formally at least, even functions of their respective arguments. Hence, 
the relation between them may be expressed more simply as two-sided 
cosine transforms, viz. 

C(r) = ^ P(f)-cos 2rrfT-df, 
J—CO 

and 

Pif) = [ P(T)' cos 2irf-T'dr] J—CO 

or perhaps even more simply, as one-sided cosine transforms, viz. 

F(r) = 2 I .P(/) -COS 2irfT-df 
Jo 

and 

P(f) — 2 / C(t)-cos 27r/T-dT. 
Jo 

Results are usually more conveniently developed in terms of the two- 
sided forms than in terms of the one-sided forms. In Sections A.3 and 
B.4 for example, the use of the two-sided forms with exponential kernels 
will be found to simplify considerably the expression of the operation of 
convolution between functions of lag or of frequency. In Section B.6, the 
use of the two-sided forms with exponential kernels avoids some compli- 
cated manipulations of trigonometric identities in the early stages of the 
development. 
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It should be particularly noted that 

ave {X(«),X(i + r)} = f 2P(/) • cos 27r/r • df 
Jo 

and that (setting r = 0) 

var [X(t)] = r2P(f).df. 
Jo 

Thus, it is evident that our definition of the power spectrum differs from 
the usual one which associates the power spectrum only with positive 
frequencies. References to the power spectrum in practice are usually 
in terms of a density 2P(/) over 0 ^ / < ® only. 

3. THE PRACTICAL SITUATION 

In practice we can obtain only a limited number of pieces of X(t) 
of finite length. Each piece may be regarded as a sample drawn from a 
population or universe of pieces of X(t) of the same length. The reduc- 
tion of the data will therefore yield no more than estimates of the auto- 
covariance function and of the power spectrum — estimates which are 
subject to sampling variations and to biases in the usual statistical sense. 
This situation is further complicated in those cases in which we can 
measure, or desire to use, only values of X(t) at uniformly spaced values 
of t within each piece of X{t}; in other words, those cases in which we 
are dealing with classical time series (discrete time) rather than with 
time functions (continuous time). 

The theoretical study of sampling variability and bias is much simpler 
in the case of the estimates of the power spectrum than in the case of 
the estimates of the autoeovariance function (or of serial-correlation co- 
efficients). This reflects the fact that, as we consider longer and longer 
records, and two narrow frequency bands with an arbitrarily small but 
fixed separation, we may find estimates of the power in these frequency 
bands which both (i) become arbitrarily precise, and (ii) become arbi- 
trarily nearly (statistically) independent. The existence of such esti- 
mates is another particular consequence of the Gaussian character, as 
expressible in terms of "random and independent phases", of the ran- 
dom process from which we have one or more samples. 

Use of the power spectrum has an additional advantage over use of 
the autoeovariance function. In almost all practical situations, the data 
analyzed does not represent the actual output of the random process. 
In such cases the data will have been modified, appreciably if not radi- 
cally, by the transmission characteristics of the devices employed to se- 
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cure the data. This modification of the data may in fact be intentional, 
as we shall see when we come to the discussion of "pr®whitening" in 
Section 15. In any case, the estimates will have to be corrected for the 
effects of this modification of the data. For estimates of the power spec- 
trum, the correction procedure is a simple division of a frequency func- 
tion by another frequency function. For estimates of the autocovariance 
function, however, the correction procedure will require a Fourier trans- 
formation, division of the resulting frequency function by another 
frequency function, and an inverse Fourier transformation. This whole 
sequence of operations on the autocovariance function is the only prac- 
tical procedure for the inversion of the convolution (see Appendix A.3) 
which is the effect to be corrected for. (Details are given at the end of 
Section B.3.) 

As we shall see, the measurements and computational operations may 
involve the use of either analog or digital computation and handling of 
either continuous "signals" or discrete data. (Whatever be its rela- 
tion to some communication or data-handling system, we shall call con- 
tinuous-time signals or noise which we are analyzing "signals", while dis- 
crete-time signals or noise, or discrete-time samples thereof, will be 
called data.) In actual practice, and for well-defined reasons of in- 
strumentation and computation engineering, only a few of the many 
possible combinations are used. 

Spectrum analysis by analog computation is almost always applied 
to continuous "signals", and makes use of filtering rather than going 
through autocovariance or mean lagged products. Digital computation 
must be carried out on discrete data, perhaps time-sampled from a 
continuous "signal", and preferably uses an indirect route via mean lagged 
products rather than trying to isolate individual frequency bands di- 
rectly. In either case, each data value must enter several computations, 
and it is rarely economic to carry these computations out directly in real 
time, especially since there will not usually be enough such analysis on a 
regular basis to saturate the working capacity of the analog or digital 
computer used. Consequently, recording, either of "signals" or of data or 
of both, is almost inevitable. 

Thus, five stages will be important in nearly every case: 
(1) sensing (pick-up, conversion, etc.) 
(2) transmission (to recorder or, possibly, to computer) 
(3) recording (including play-back, and, perhaps, time-sampling) 
(4) computation (formulas, computing circuit performance, etc.) 
(5) interpretation. 

In every one of these stages, quality of performance (noise level, dis- 
tortion, etc.) will be of importance. 
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The present account concentrates on the computational and inter- 
pretational stages, but indicates, from time to time, those considerations 
in the other stages which are peculiar to power spectrum analysis. 

We have been unable to find a wholly satisfactory arrangement for 
the material we wish to present. In order to facilitate a relatively easy 
once-over, these introductory sections now continue into a condensed 
account, from which proofs, some reasons, and many helpful remarks 
have been postponed to the Appendix and sections in Part II. Readers in- 
terested in a survey may find it adequate to read only the condensed 
account. Others may find it best to skim this condensed account first, to 
read Appendix A next, and then to study similarly numbered sections of 
Part II and the condensed account. 

The continuous record of finite length will be treated first (Sections 
4-11); the modifications required for the discrete equally spaced record 
arc covered next (Sections 12-21), and the opening account concludes 
with a "discussion of the planning and analysis of measurement programs 
(Sections 22-28). 

Appendix A (Sections A.l to A.6) treats fundamental Fourier tech- 
niques, and the transform-pairs most closely associated with diffraction, 
in both the continuous and equi-spaced cases. 

Each section of Part II relates to the similarly numbered section of 
the main body, and contains details of derivations, further reasons, and 
additional helpful remarks. 

Definitions of the technical terms, arranged alphabetically for ref- 
erence, are included at the end of Part I. Similar definitions of the nota- 
tion will be given at the end of Part IT. 

Continuous Records of Finite Length 

4. fundamentals 

Given a continuous record of finite length, it is clear that we cannot 
estimate the autocovariance function C{t) for arbitrarily long lags. 
Surely, no estimate can be made for lags longer than the record. Fur- 
thermore, as we will find in due course, it is usually not desirable to use 
lags longer than a moderate fraction (perhaps 5 or 10 per cent) of the 
length of the record. Thus, in place of 

1 fTl2 

C(t) = limM X{t)-X{t + r)-dt 
T->*> i J —Til 

for all values of r, we will have at our disposal 

r.r,(i.= 1 , /"" ' xit- Ax ((+:).,/( = c.»(-r) 
i ^ | r | J-(rn-|r|)/2 \ 2/ \ 2/ 
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only for \ t \ ^ Tm < Tn , where Tn is the length of the record, and Tm 

is the maximum lag which we desire to use. We will call Coo(t) the ap- 
parent autocovariance function, since (on account of ergodicity) its 
average value is C(t) for j t \ ^ Tm . 

The class of estimates for the power spectrum with which we are chiefly 
concerned will be derived from a modified apparent autocovariance function 
by Fourier transformation. While the modified apparent autocovariance 
functions, which are obtained by multiplying the apparent autocovari- 
ance function by suitable even functions of r, are often far from being 
respectable estimates of the true autocovariance function, their trans- 
forms are very respectable estimates of smoothed values of the true spec- 
tral density. 

Let Bfj) be a prescribed even function of r, subject to the restrictions 
£),(()) = 1, and Dfr) = 0 for | r | > Tm, (where a = 0, 1, 2, 3, 4, de- 
pending upon the shape of Dfr) for | t | < Tvi}, and let the correspond- 
ing modified apparent autocovariance function be defined by 

Gfr) = Z>1(r).Coo(r). 

We may regard Dfir) as a window of variable transmission which modi- 
fies the values of Coo(r) differently for different lags. It is therefore 
natural to call D^t) a lag window. 

For any lag window which meets the conditions stated above, Ci(r) 
is calculable from the data. Further, it is clear that Cfr) = 0 
for | r | > Tm although Coq(t) was not defined there. Because C,(r) 
is defined for all values of r, it has a perfectly definite Fourier transform 
P,•(/), which should satisfy the symbolic relation, 

Piif) = Qiif) * Poo(f) 

where Qff) is the Fourier transform of Z),(t), the asterisk indicates con- 
volution (see Appendix A.3 for discussion), and Poo(/) is the Fourier 
transform of Coo(r). However, Poo(/) is not determinate because Coo(t) 
is not specified for | r j > Tm (and its definition cannot be directly ex- 
tended beyond | r [ — Tn). Nevertheless, since 

ave {C,-(t)} = Z>,-(t)-C(t) 

where C(t) is the true autocovariance function, it follows that 

ave {P.-(/)} = Qiif) * P(f) 

where P(/) is the true power spectrum, that is, the Fourier transform 
of C(t) . The average may be thought of as either across the ensemble, or 
along time. (The latter type of averaging would correspond to replacing 
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X(i) by X(t — X), thus changing the stretch of X(i) which is observed, 
and then averaging over X.) The corresponding explicit relation, viz. 

avc [Pm] = r Qiifx- 
J—CO 

exhibits the average value of P,(fi) as a smoothing (average-over-fre- 
quency) of the true power spectrum density P(f) over frequencies "near" 
fi with weights proportional to Qtifi — /). In a manner of speaking Pi(/i) 
is the collected impression of the true power spectrum P{f) obtained 
through a window of variable transmission Qi(fi — /). It is therefore 
natural to call Qi(J) the spectral window corresponding to the lag window 
Diir). 

The form just given for ave } is natural for our two-sided defi- 
nition of power spectra, but, in order to view the result from the stand- 
point of transmission theory for real-valued signals, it is convenient to 
express the result in a form appropriate to a one-sided definition of power 
spectra. Taking advantage of the fact that Qi(f) and P{f) are even func- 
tions, we may write 

ave {2Pi{fi)) = C IIi{f;fi)-2P{f)-df 

where 

//.(/;/.) = QM + h) + Qiif - fd 

and where we recall that 2P(/) df is the amount of power between / 
and (/ T- df) in the one-sided true power spectrum. Similarly, 2P1(/) df 
is the amount of power between / and (/ + df) in the one-sided estimated 
power spectrum. The function //,(/;/i) has one of the necessary proper- 
ties of a physically realizable power transfer function inasmuch as it is 
an even function of / as well as of /i . In general, however, it does not 
have the property of being non-negative at all frequencies /. Neverthe- 
less, it is a convenient function to use in the analysis of the variability 
of the estimated power spectrum. It will be convenient to regard the 
average value of the smoothed power density estimate ave {2P1(/j)} 
as the result of passing the true power spectrum, through a "network" 
with power transfer function //.(/; ff). 

We see that our procedures will lead us to estimates whose average 
values are a smoothing (average-over-frequencjO of the true power spec- 
tral density P(/) over frequencies "near" /i, and not to estimates of 
P(/i) itself. The problem of choosing the shape of the lag window Dfr) 
so that its Fourier transform Qff) will he concentrated near / = 0 is 
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almost idGntieal to the problem of choosing an intensity distribution 
along an antenna so that most of the radiation from the antenna will 
fall in a narrow beam. From this analogy we will use such terms as mam 
lobe and side lobes for the principal maximum and subsidiary extrema 
of (Indeed, any attempt to confine the power transfer function to 
too narrow a frequency band — too narrow in comparison with the re- 
ciprocal of the longest lag used — would be analogous to an attempt to 
construct a practical hyperdirective antenna.) 

It is not surprising that we are led to estimate a smoothed power spec- 
trum. With only a finite length of X(0 available, we should not expect 
to be able to identify frequencies exactly, and are, indeed, unable to do 
so. (The presence of neighboring frequencies with random phases will 
have effects similar to those of noise in preventing such identification.) 

5. TWO PARTICULAR WINDOW PAIRS 

In order to specify a particular family of estimates within the class 
of estimates defined in the preceding section, we have only to specify 
Diir) or Qi{f). We would like to concentrate the main lobe of Q,(/) 
near / = 0, keeping the side lobes as low as feasible. In order to concen- 
trate the main lobe we have to make D,(r) flat and rather blocky. In 
order to reduce the side lobes, however, we have to make Ddr) smooth 
and gently changing. Since -D,(r) must vanish for ( r ) > Tm we must 
compromise. So far, cut-and-try inquiry has been more powerful in find- 
ing good compromises than has any particular theory. 

A simple and convenient compromise is represented by the lag win- 
dow (whose use is called 'Tanning") 

(Window pairs 0 and 1 are discussed in Section B.6.) An alternative 
compromise is represented by the lag window (whose use is called "ham- 
ming") 

for I r I < 

- 0 for I r I > . 

Dz{t) = 0.54 + 0.46 cos — for ) r | < T, 

= 0 for | r | > T, 

These lag windows and the corresponding spectral windows are illus- 
trated in Fig. 1. Notice that the main lobes are four times as wide as the 
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SPECTRAL WINDOWS LAG WINDOWS 

> o.e 

0.4 

0 
-1 

CHAN 
VERTIO 

i 
vv 

\S. Q2 /"hn // // 
/ s 

v. 

Q3/Ci.c 
\\ 

eTm) \ D3 

// // // 
yv* 

\\ 

\\ \\ \ \ \\ \ \ 

2 -0.8 -0.4 0 0.4 O.B 1. 
SE IN r/Tm 
m SCALE 2% OF PEAK 

 2 i OF PE 

\ s 
AK sV _ vs. 

ill 

V«.: - 
' 

m 
ill 

, 0 
-A. 11111 

'"W' / 
iiil 

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 
fTm 

Fig. 1 — Lag windows D2 and Ds. Spectral windows Qs and Qs. 

side lobes (excepting the split side lobes nearest the main lobes), and 
that the (normal) side lobe width is l/(2!rm). 

The general nature of the spectral windows in these two pairs is the 
same: a main lobe, side lobes at most 1 per cent or 2 per cent of the 
height of the main lobe. There are differences, which are sometimes rele- 
vant, but these may not be obvious. The two most important of these 
differences are: 

(a) The highest side lobe for the "hamming" (spectral) window is about 
§ the height of the highest side lobe for the "banning" window, 

(b) The heights of the side lobes for the "harming" window fall off 
more rapidly than do those for the "hamming" window. 
One difference favors one pair, and one the other. 

These and several other window pairs are discussed in Section B.5. 

6. CO VARIABILITY OF ESTIMATES — BASIC RESULT 

It is shown in Section B.6 that, strictly only under Gaussian cir- 
cumstances, the covariance of any two power density estimates of the 
sort we have been considering is given to a good degree of approxima- 
tion by 
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cov (2/M/i), JAOO! « C HM-JJ-HiU-JJ-mn-df 
Jo 

where the power-variance spectrum T{f) depends only on the true power 
spectrum P{f} and the effective record length Tn , as described below. 
Thus, we may regard the covariance of the two power density estimates 
as the result of passing the power variance spectrum r(f) through two 
networks in tandem, one with power transfer function #*(/; /i), the other 
with power transfer function Hfff; /2) • In other words, we may regard 
the covariance (of the estimates of the power spectrum) as the power 
remaining from the power-variance spectrum V{f) after passing through 
the two windows HJJ) and Hfff; /a) associated with the estimates 
themselves. If the windows do not overlap, the estimates do not covary 
(at least not in terms of second moments). 

In particular, of course, 

var {2Pi(/1)l = cov {2Pl(/I), 2P1(/i)} 

Jo 

to wrhich we can give a similar interpretation. 
These results would become exact if we were to replace (7oo(r) by 

where) t \ ^ Tm < Tn .In Coo (r) we averaged X(i — (r/2))-Z(i -f- (r/2)) 
over an interval of t of length Tn — ] r |, varying with r. In Coo(t) we 
would be averaging X(t — (r/2))-XC + (r/2)) over an interval of t of 
length Tn — Tm independent of r. We could actually do this because 
| t ± (r/2) ( S Tn/2 for | r | g Tm . However, for values of | r | less 
than Tm , Coo(t) would not make use of some values of X{t — (r/2))- 
X{t + (r/2)) which are used in Coo(r). Thus, (?oo(r) would be wasteful. 
It seems best, therefore, to use Cofl(r) for computation, but to approxi- 
mate its variability by the variability corresponding to a Coo(r) which 
could not be calculated from the actual values. This "approximate" 
hypothetical Coo(r) involves a fixed range of integration Tn part way 
between Tn — Tm and Tn . The situation is illustrated in Fig. 2, where 
the ranges of integration are shown for the actually "feasible" <?oo(r), 
for the Coo(r) which "wastes not", and for the Coo(r) which we use to 
"approximate" Coo(r). The shaded areas delineate the products which 
are actually available. 
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The best choice of an intermediate value depends somewhat upon the 
Diir) and jDj(r) involved, and is discussed in Section B.6. In practically 
useful cases we may take 

rp'   rp   \rn ■in -*n z-L m • 

The power-variance spectrum is given approximately and closely by 

r(/) = 4 £ p(f + /') p(f ~ /')' df' ("' = 2*f')- 

If we have p pieces of total length Tn , and if, in computing our estimate 
of C(t) for each r, wecombineall available lagged products 

X{t — (r/2))-X0 + (r/2)) 

without regard to which piece they came from, then we may use this for- 
mula for r{f) with 

t'. = Tn-^rm 

as a satisfactory approximation for the effective total length. 

Tn-T T„—T n 'm n m 
7777 

Tn 1 ! T, •n 

Tn-T Tn-T 

1 
Tn' Tn' 

C on (7") 

CqoC7"! 

C'ootrj 

Fig. 2 — Range of integration over I as a function of r in Cnofr), Coo(r), ami 
Coi(T). 
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7. COVARL^BILITY OF ESTIMATES — APPROXIMATE FORMS 

In assessing the covariability of estimafces of the smoothed power spec- 
trum, the relative magnitudes of three distances along the frequency- 
axis are important: 

(a) the distance \/T'n , the reciprocal of the effective length of record, 
(b) the least distance over which P{j) changes by an important amount 

for / near /i, and 
(c) the least distance over which //,(/; /i) changes by an important 

amount for / near/i (this is of the order of l/Tm and is usually much 
larger than l/Tn)- 

If P(/) changes slowly enough to make (b) larger than (a), we may 
use the approximation 

ro «iPinf 
n 

whence, approximately, 

coy {P.Oi),-PiC/at ^ [" PM)-PAf)-df 
1 n ■>0 

where 

PM) = Hiif; /i)P(/) 

Pdf) - tfi(/;/2)W). 

In the same terms we have 

ave IP.C.)) = [' PM)-df 
Jo 

and 

ave {PsUM = r Pdf)-df. 
Jo 

The relation of covariances to averages thus established may be rea- 
sonably interpreted as meaning that any cancellations occurring in the 
average values also occur in the covariances and variances. To the ac- 
curacy of this approximation, then, we appear to be using the data rather 
efficiently. 

If, on the other hand, the true spectrum, P(f), consists of a single 
sharp peak at / = fa, we may use the approximation, derived in Sec- 
tion B.7, namely 

cov (P.u,). PiUi) I « |X P.i(/) -rf/] • X PM)-df] 

~ ave (F,(/i)} -ave {iM/z)}, 
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a result which is not influenced by T'n (so long as T'n does not become 
large enough for l/T'n to become comparable with the width of the peak). 

8. VARIABILITY —• EQUIVALENT WIDTHS 

If P{j) changes slowly in comparison with 1/T'n , then, since 

var {P.Oi)} = cov P.C/i)}, 

we may write down the dimonsionless variability of Pj(/i) itself as 

var {P;(/i)} _ 1 
[ave {P.(/i)j]2 

where 
2 

WK = 
f Pn(f)df 

Jo 

[PnU)]2-df 

is naturally called the equivalent width of Pii(/) = Hi(f; f{)-P(f). 
The longer the record, and the wider the equivalent width, the more 

stable the estimate. (Increasing the width also of course makes the esti- 
mate refer to an average power density over a wider frequency interval.) 

If, on the other hand, P(/) consists of a sharp peak, then, by the con- 
cluding remarks of the preceding section 

var {Pi(fi)] = , 
[ave {Piihm ' 

The equivalent widths of some simple cases are as follows: 
1. If Pnif) is a rectangle of width IT which does not cross / = 0, 

then TTp = IF. 
2. If Puff) is a triangle of base IT which does not cross / = 0, vertex 

anywhere over the base, then We = 0.75 IT. 
3. If Pnif) is proportional to 

w T wi . w —' a>i 
sin—r- +

sm--w- 
a> -F ^ 

w~ "F" 

i.e. has the shape of where IT = T^main — 2TTBide (these being 
the widths of main and side lobes, respectively), and if/i ^ 1/Tm then 
ITe = 0.5 IT = 0.5 TTmain = TTgide • 

4. If Paif) has the shape of H.if-Ji), i.e. is proportional to a banning 
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(0.25, 0.5, 0.25) window, and if ji ^ l/Tm , then We — 0.67 PTmam = 2.67 
Wgide . 

5. If Puif) has the shape of Haiflfi), i.e. is proportional to a hamming 
(0.23, 0.54, 0.23) window, and if/i g l/Tm} then We = 0.63 PFmain = 
2.52 Wsido . 

These cases are illustrated in Fig. 3, a single sketch sufficing for the 
last two. Note that We is close to %Wmaia for practical windows, if 

For our standard window pairs, hanning or hamming, the width of 
the normal side lobes is l/(2rm) and, consequently, IFe ^ 1.30/Tm , 

These last three equivalent widths decrease somewhat as fi becomes 
small, and the values given should be halved for /i = 0. 

If P{f) varies linearly across #,-(/; /i), then a calculation discussed 
in Section B.8 shows that TFC will tend to fall in the range from 1.15/^ 
to 1.23/Tm . (A rather peaked case gives 0-M/Tm .) When we allow for 
the fact that we are likely to be concerned with processes which are not 
quite Gaussian, whose variances of estimate are consequently likely 
to be somewhat larger than for the Gaussian case, a change correspond- 
ing to the use of a decreased equivalent width in the formula, the choice 

which introduces a small factor of safety (not more than 1.3) seems de- 

/i ^ l/T, 

if /i ^ l/T, 

J. m 

0 0 
 We ^ k— We k 

Fig. 3 — Equivalent widths of some spectral windows. 



MEASUREMENT OF POWER SPECTRA 207 

sirable for planning purposes. Consequently, we shall plan according to 

var {iM/OI 
[ave 

If we plan to hold the RMS deviation of each of our estimates below 
one-third of its average value, we must, accordingly, keep TmITn below 
jf. Thus, as noted above, we shall ordinarily keep Tm to a small fraction 
of Tn. 

In making more detailed studies of the variability of spectral esti- 
mates, further approximation will be convenient. It is important to 
note several reasons why we need not be too precise in making such ap- 
proximations. First, as noted earlier, the variability results depend on 
the noise being exactly Gaussian. Real noises (and especially real signals) 
need not be exactly Gaussian. Thus, even exact results in Gaussian 
theory would be approximations in practice. Second, the chief purposes 
of studying variability are first to choose, once for all, effective methods 
of analysis, and then, in each situation, to determine about how much 
data will be required for the desired or given accuracy. Again, approxi- 
mate results will be adequate. Third, it would not be safe to use the ad- 
vance estimates of variability as firm, guaranteed, measures of the sta- 
bility of the actual computed results in a practical situation, since other 
sources of variability may well contribute to the deviation of a particu- 
lar spectral density estimate from its long run value. (Non-constancy 
of total power level, even with distribution-over-frequency remaining 
constant, and failures of stationarity are two simple examples.) We 
must rely on observed changes from trial to trial as basically the safest 
measure of the lack of stability of our spectral density estimates. 

Thus, the purposes of variability theory are well served if its results 
are approximate •— deviations of actual variability from theoretical 
variability of ±5 per cent, ±10 per cent or even ±20 per cent Mill be 
quite satisfactory. Judged by this standard, the variability theory based 
on (i) the Gaussian assumption and (ii) treating the distribution of the 
spectral density estimates as if they followed so-called "chi-square" 
distributions, as we shall do in the next section, will usually be very 
satisfactory. 

9. CHI-SQUARE •— EQUIVALENT DEGREES OF FREEDOM 

If iji, yo, ■ ■ ■ , ijk are independently distributed according to a stand- 
ard normal distribution, that is, according to a Gaussian distribution 
with average zero and unit variance (and, consequently, unit standard 
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deviation), then 

Xk = y\ + yi + • • • + yk\ 

which is obviously positive, follows, by definition, a chi-square distri- 
bution with k degrees of freedom. The coefficient of variation of xt, 
the ratio of RMS deviation to average value, is {2/k)in, so that, as k 
increases, x* becomes relatively less variable. This statement also ap- 
plies to any multiple of x*- 

A convenient description of the stability of any positive or nearly- 
positive estimate is its equivalent number of degrees of freedom, the num- 
ber of degrees of freedom of that Xk some multiple of which it resembles 
(in average and variance unless othenvise specified). We can find such a 
k from 

^ _ 2 (average)2 _  2  
variance (coefficient of variation)2 

Interpretation is aided by Tables I and II. These tables are possible 
because the distribution of the ratio of any multiple of Xk to the aver- 
age value (of that multiple) depends only on k. Thus, if fc = 4, individual 

Table I 

Distribution of quantities which are distributed as fixed multiple of chi- 
square. Ratios of individual value to its average value exceeded with 
given probabilities. 

Degrees of freedom Exceeded by 90% of 
all values 

Exceeded by SO % of 
all values 

Exceeded by 10% o! 
all values 

1 0.016 0.46 2.71 
2 0.10 0.70 2.30 
3 0.19 0.79 2.08 
4 0.26 0.84 1.94 
5 0.32 0.87 1.85 

10 0.49 0.93 1.60 
20 0.62 0.96 1.42 
30 0.69 0.98 1.34 
40 0.73 0.98 1,30 
60 0.75 0.99 1.26 

100 0.82 0.99 1.18 
200 0.873 1.00 1,139 
500 0.920 1.00 1.081 

1000 0.943 1.00 1.057 

Examples: (1) If the long run average is 10 voltsVcps, then among estimates 
with 10 degrees of freedom, 10 per cent would fall below 4.9 
volts2/cps, and 50 per cent would fall above 9.3 voltsVcps. 

(2) If a single observed estimate, with 5 degrees of freedom, is 
observed to be 2 voltsVcps, then we have 80 per cent confidence 
that the true long-run value lies between 2/1.85 = 1.08 
voltsVcps and 2/0.32 = 6.25 voltsVcps. 
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Table II —• Behavior of Xt2 on Decibel Scale 

209 

Fraction of 
distribution 

40% 
60% 
so% 
90% 
96% 
98% 

Spread* of intervalf in dbt 

6/Vfc - 1 
10/Vk - 1 

1G*/Vk - I 
20/vT^I 
25/Vk - 1 
2a/\/F^l 

A required for intervalf of spread 

10 db 

1 
2 
4 
5 
8 

10 

s db 

3 
5 

11 
IS 
27 
34 

2 db 

11 
28 
63 

104 
161 
207 

l db 

42 
105 
250 
410 
640 
820 

* Accurate to nearest integer in numerator for k ^ 4, except for 80 per cent, 
where 16 should be replaced by 15 for A ^ 11. Based on Tulcoy and Winsor.13 

(Spread is the difference between the upper boundary expressed in db, and the 
lower boundary expressed in db.) 

f All intervals are symmetric in the probability sense, half of the non-included 
probability falling above and half below the interval. 

X Since we are dealing with measures of variance, analogous to power, lOdb = 
(factor of 10), and (number of db) = (10 logic ratio of variances). 

values of any particular multiple of Xi will, in the long run, fall below 
0.26 times their average value in 10 per cent of all cases (will be 5.8 db 
or more below average in 10 per cent of all cases). Similarly, individual 
values will, in the long run, fall below 0.84 times their average value (be 
0.7 db or more below average) in 50 per cent of all cases, and in 90 per 
cent of all cases will fall below 1.94 times their average value (be 2.9 db 
or less above average). Thus, in the long run, 80 per cent of all values 
will fall in an interval of spread (2.9) — ( — 5.8) = 8.7 db. 

Thus, for example, to obtain 4 chances in 5 that a single observed 
value will lie within ±30 per cent of the true value we require (see Table 
I) about 40 degrees of freedom, while to obtain 4 chances in 5 that a 
single observed value will lie in a prescribable interval of length 5 db, 
wc require (see Table II) at least 11 degrees of freedom. 

The results of the preceding section indicate that, for an estimate of 
smoothed spectral density, when P{f) is smooth, the number of degrees 
of freedom is given by 

k = 2T'nWe = Wg 
A/' 

where the latter form expresses the number of degrees of freedom as the 
number of elementary frequency hands, each of width 

A/ = 
1 

2T'n ' 

contained in the equivalent width TF, 
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For design purposes, the relation of the last section (including the 
small safety factor) indicates that 

2 _ 27-; 
,C ~ (var {iM/iWlave [Piifi)]]2 ~ Tm 

when P(J) varies slowly. (This will usually be the case if (i) /c > 3 or 4, 
say, and (n) Paif) is a moderately smooth single hump. For, under these 
circumstances, Pa(f) will not change rapidly in a frequency interval 
1/T'n and the same property can then be inferred for P(/) itself.) 

When, on the other hand, consists of a single sharp peak, we 
find, using the last result of Section 7, that k ~ .2, so long as 1/in 
is not small enough to be comparable with the width of the peak. At 
first glance, this result may appear a little surprising, but when we 
notice that a single spectral line corresponds either (a) to frequency 
-F/o and to frequency —/o, or (b) to cos oxJ, and to sin uot, or (c) to ampli- 
tude and to phase, it appears quite natural that a sharp line carries two 
degrees of freedom and not merely one. 

We may summarize the semi-quantitative study of the stability of 
estimates of the smoothed power spectrum as follows: 

(a) It is not necessary to judge stability with very high accuracy. 
(b) It is convenient to measure stability by analogy with the number 

of degrees of freedom associated with a multiple of a chi-square variate. 
(c) The equivalent number of degrees of freedom can be regarded as 

the number of elementary bands of width A/ in the equivalent width IFe 

of the filtered spectrum 

2PM - P.(f;/i)-2P(/) (f^O) 

if the result is not too small (say > 3 or 4) and Pfi(/) is moderately 
smooth. 

(d) If the filtered spectrum approaches a single sharp peak, the 
equivalent number of degrees of freedom for the corresponding estimate 
approaches two. 

In interpreting the concept of equivalent number of degrees of freedom, 
it may be helpful to imagine the continuous density of the filtered spec- 
trum replaced by a discrete set of ordinates, one per elementary fre- 
quency band. If these ordinates are po , pi, Pi, • • ■ > the natural approxi- 
mation to the number of degrees of freedom is 

, _ (po P pi -\- P2 -P • • ■ )2 

Po2 + Pi2 T P22 + • ■ ■ 

as illustrated in Fig. 4. This approximation will usually be satisfactory 
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ACTUAL POWER 
SPECTRUM -s 

POWER AT SPECIFIC 
FREQUENCY   

Tv 

FREQUENCY 
ONE 

ELEMENTARY FREQUENCY BAND 
FREQUENCY YIELDING 7 DEGREES 
BANDWIDTH OF FREEDOM 

FREQUENCY BAND 
YIELDING 5.55 DEGREES 
OF FREEDOM , WHERE 

5 __ (0.5+I.O+1.7+2.3-E3.H-3.4 +3.7)z 

0.32+l.02+ l.72+2.32 + 3.l2+3.42 + 3.72 

Fig. 4— Equivalent degrees of freedom. 

as long as the effect on k of moving each ordinate around within its 
elementary frequency band can be neglected. (In more extreme cases, 
an approximation based on two ordinates per pair of elementary fre- 
quency bands is more precise.) 

10. DIRECT ANALOG COMPUTATION ■— GRADED DATA WINDOWS 

Wc have been dealing thus far with continuous time, and the com- 
munications engineer will naturally ask, "Why introduce autocovarianee 
functions and all that, why not measure the spectrum by filtering, recti- 
fying, and smoothing?". The only fair answer is "By all means, do so if 
you can obtain, and maintain, the necessary accuracy economically!" 
Let us apply our results to such a measurement technique. 

Let X(t) be the noise or signal whose power spectrum P(f) we wish 
to study. Let us pass it through a filter of transfer function F(/), and 
designate the result by Xout(0. Its power spectrum, Poutif), will be given 
by 

PUf) = I Y{f) |2.P(/) 

and if a section of AroUt(0 of length Tn is applied to an ideal quadratic 
rectifier and smoothed by a smoothing circut of infinite time constant, 
the result will be 

f'" [Xaut(0]2dt. Jo 
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The average value of this result divided by TT is 

[ 2P0Af)df, Jq 

and the number of equivalent degrees of freedom is the number of 
elementary frequency bands, of bandwidth l/(2Tn), contained by the 
equivalent width of J K{/) \2-P(f)- This last function is of the form 

(power transmission function) (original power spectrum) 

just as before. We see that the ideal process of filtering, rectifying, and 
smoothing the actual input has produced the same accuracy as the ideal 
process of calculating, modifying, and transforming the apparent auto- 
covariance, provided that | Y(f) J2 = #<(/; fi) for a suitable choice of 
Tm , /, and /i. This is what we ought to have expected, since we believe 
that either method extracts nearly all the information about the spectrum 
which the data provides. 

A few practical considerations deserve mention. They center around 
the actual switching sitations which can arise, especially when we have 
only a finite sample of the original noise. In Fig. 5, the watt-second meter 
includes quadratic rectification and integration functions which we think 
of as ideal. (It may be very important to allow for the fact that the 
"ground" position of switch a is not quite at the same potential as the 
zero of the input noise, but we shall neglect this effect for the moment.) 

Some four sorts of operation can arise according to the times at which 
switch b is operated. The watt-second meter may be connected either at 
the beginning of the running period T or after some interval of time 
(to allow initial transients to become negligible), and may be discon- 
nected cither at the end of the running period T or after some interval of 
time (to allow the meter to reach a maximum). These four modes of 
operation are illustrated in Fig. 6. 

In Mode I, providing the initial waiting period is long enough to allow 
transients to become negligible, the filter output is essentially stationary, 
and the earlier discussion in this section applies. 

STATIONARY 
RANDOM 
PROCESS 

WATT-SEC METER 
A . FILTER n B ^ 

DUMMY 
LOAD 

Fig. 5 — Schematic analog circuit. 



MEASUKEMENT OF POWER SPECTRA 213 

PRE-RUN RUN POST-RUN 

ALL MODES 
SWITCH A DOWN SWITCH A UP SWITCH A DOWN 

FILTER CLEAN 
METER ZEROED 

LENGTH OF RECORD=T 

MODE I 

S 
FILT 

WITCH B DOWN WHILE 
:R TRANSIENTS DIE OUT 

■« T' » 
READ WATT-SECS 
DIVIDE BY T' 

MODE H < B UP  —»-TO MAX. READING 
DIVIDE BY T 

MODE in 
READ AND DIVIDE BY T 

MODE 12 
B, 

* 
DOWN (AS IN MODE I) 

■* T - DIVIDE BY T' 

Fig. 6 — Time histories of operation for different modes. 

In Mode II, all of the energy output is recorded on the meter, but the 
reading is divided only by the length of the input data. This mode is 
amenable to exact and complete analysis which is given in some detail 
in Section B.10, The results differ from those of Mode I in that the 
transform of the boxcar function of length T (running period) is con- 
volved twice into the spectral window. (Convolution is defined and dis- 
cussed in Appendix A.3.) If T is not large, the effects may be somewhat 
uucomfortable in that the spectral window becomes wider and more 
ragged. 

Mode III, discussed briefly in Section B.10, differs from Mode II 
by an additional convolution whose effect again disappears as T —> «. 

Mode IV resembles Mode I in that the noise input is passed through 
the filter until transient effects have become negligible, when the meter 
is switched on at the filter output. It differs from Mode I in that the 
meter is read after a final waiting period. This seems to offer no advan- 
tages over Mode I, and will not be discussed further. 

The contrast between Mode I and Mode II is another example of what 
should now he becoming familiar. Mode I has no additional convolution 
in the spectral window. Mode II provides data economy by making it 
possible to integrate over the whole length of the available record. Wc 
should really like both advantages. 

We can, indeed, obtain most of both advantages, but only by replac- 
ing the sharp edges of the switched data window by the smoothed outlines 
of a graded data window. In other words, we need to introduce 
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Xin{t) = B{t)-X{i) 

at the input of the filter, where B{t) vanishes except for 0 < f < 'i\ and 
is smooth enough to have its Fourier transform J (/) concentrated near 
/ = 0. Details are discussed in Section B.XO. 

Difficulties arising from the fact that the zero of the X{i) input might 
not be at ground are shown in Section B.10 to behave similarly to 
those arising from switching transients, namely, no effect in Mode I, 
possibly uncomfortable in Modes II and III, usually negligible when a 
well-chosen graded data window is used. 

Another device is sometimes used to make maximum use of a finite 
noise record. The record is merely closed into a continuous loop, and the 
rectifier-smoother output averaged. It is shown in Section B.10 that 
here, too, we must use a graded data window B{t). 

11. DISTORTION, NOISE, HETERODYNE FILTERING AND PREWHITENING 

Another group of very important practical considerations center 
around the spectrum of the "signal" as it is handled (either instan- 
taneously, or in recorded form). We have spoken of "filtering, rectify- 
ing and smoothing" and have treated all these steps as ideal. No atten- 
tion has been given to the equally vital "gathering" and "transmission 
and recording" steps. Tacitly, they too have been treated as ideal. 
Realistically, we must expect a certain amount of distortion (non- 
linearity, inter modulation, etc.) and the addition of a certain amount of 
background noise in all three of the first steps: gathering, transmission 
and recording, filtration. It often proves to be most important to lessen 
the ill effects of such distortion and noise addition. 

In a perfect system, and with a fixed spectral window, the fluctuations 
of an estimate are proportional to its average value. If we have a fixed 
uniform noise level, it will do the least additional damage if all the 
average values of the estimates are of about the same size, for then no 
low estimate can "disappear" into the noise. 

Intermodulation distortion will have the greatest effect on the signal 
being transmitted when two strong frequencies combine to produce a 
modulation product whose frequency falls in a very weak region of the 
spectrum, for it is in such situations that the fractional distortion of the 
spectrum reaches its maximum. To minimize possible effects of intermod- 
ulation distortion it is again desirable to transmit, record and generally 
handle signals with a roughly flat spectrum. 

To these noise and intermodulation considerations another sort of 
consideration may be added. Many frequency analyzers use a hetero- 



MRASUIIEMENT OF POWER SPECTRA 215 

dyne system, bringing the frequency band to be studied to a fixed filter, 
rather than tuning a filter across a wide frequency band. The power trans- 
fer function of the combination of heterodyne modulator and fixed 
filter, referred to input frequency, will depend only on A/, the deviation 
of | / | from \fo\, where/o is the nominal frequency of the fixed filter, and 
will be denoted by Qi{Af). If demands at different frequencies differ, 
the shape of Qj(Af) may have to be a compromise. One sort of demand 
arises when P(J) varies very rapidly. The net contribution near frequency 
fi to the average value of the spectral density estimate is measured by 
i7i(/;/i)-P(/), where, as elsewhere, = &(/ + fi) -j- (fi(/ - fi). 
If our estimate is to be useful, only f's near fi should have a substantial 
net contribution. If P(/) rises steeply as / leaves fi, we may have to 
requirea very rapid fall-off in //,{/;fi), here practically equal to Qi(f — fi), 
in order to attain this as / leaves fi. We may thus be forced to compro- 
mise properties of (fi(A/) useful near other frequencies. The simplest 
way to avoid such problems is to arrange for the P(f) of the "signal" 
analyzed to be fairly constant, or at most slowly varying. 

Thus, for a variety of reasons, we can often gain by introducing "com- 
pensation" or "preemphasis" to make more nearly constant the spec- 
trum of the "signal" actually transmitted or recorded, and analyzed. 
Since the ideal would be to bring the spectrum close to that of white 
noise, it is natural to refer to this process as prewhitening. Such flattening 
of the spectrum need not be precise, or even closely approximate. We 
need only to make the rate of change of P{f) with frequency relatively 
small. 

Because of advantages related to the noise and intermodulation dis- 
tortion introduced in various steps of the sequence, it will be best, other 
considerations aside, to carry out such prewhitening at as early a point 
in the measurement-analysis sequence as possible. Sometimes this can 
even be done in the pick-up or sensing element. 

This whole philosophy of prewhitening, which appears quite natural 
to the communication engineer familiar with preemphasis and other 
techniques for increased information transfer within a given frequency 
interval, comes as a groat change to the instrumentation engineer, whose 
clients ordinarily require "faithful" reproduction of an input at the out- 
put, by which they mean phase shifts nearly linear with frequency, and 
a nearly constant amplitude response up to some high frequency. It will 
be rare indeed, in practical spectrum analysis, that the ideal response 
for the initial transducer and amplifier will be flat. Instead it should 
have a characteristic contributing to prewhitening. This characteristic 
will, of course, have to bo measured separately and the corresponding 
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adjustments to the estimates of the spectral density will have to be made 
so that these estimates, instead of applying to the "signal" actually 
analyzed, apply to the original "input signal", but such labor will often 
be many times repaid. 

One further consideration about frequency responses in measurement 
now enters naturally. In almost every power spectrum problem there is 
an upper frequency beyond which there is no appreciable interest. In 
most components used in measurement, transmission, recording, etc., 
the noise level, and often the level of intermodulation distortion, is 
roughly a fixed fraction of the peak useful level. If substantial power is 
present at frequencies so high as to be uninteresting, then the need to 
keep total power below the peak useful level forces us to handle the 
interesting frequencies at a power level below that which could other- 
wise be used. The ratio of noise and intermodulation distortion to inter- 
esting signal is thus raised — the quality of the analysis and its results 
degraded. The appropriate remedy is to filter out the uninteresting high 
frequencies at as early a stage as possible. This is a further reason why a 
carefully tailored frequency response is an important part of a power 
spectrum measuring process. 

Together with the need for adequately wide filters (we can of course 
use narrower filters when we are prepared to average over homogeneous 
records of sufficiently long total duration) to provide enough equivalent 
degrees of freedom, and hence enough stability for the estimates, this 
tailoring of frequency response is often the crucial part of a power spec- 
trum measuring program. Indeed, there may sometimes be no reason- 
able way to measure power spectra with an ill-tailored frequency re- 
sponse, even if this response be "flat". 

Equally Spaced Records 

We come now to treat a modified situation of great practical impor- 
tance, where the observations are used for analysis only at equally spaced 
intervals of time — not as a continuous time record. Two new and im- 
portant features enter: there is aliasing of frequencies, and practical 
analysis will involve digital rather than analog computation. In general, 
however, the situation is surprisingly similar to the case of a continuous 
record, with limitations on data-gathering effort still forcing us to com- 
promise resolution and stability. Advantages of convenient calculation 
and noise reduction still lead us to prewhitening. Filtering of equi-spaced 
data must involve transversal filters (see Glossary of Terms for defini- 
tion) whose transmission properties (in frequency) exhibit a periodic 
symmetry. This exerts additional pressure toward prewhitening. 
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Questions regarding computational techniques arise anew because 
of the nature of digital computation. These include means for reducing 
the effects of a displaced (perhaps drifting) zero, smoothing by groups 
to economize arithmetical operations on the whole, and preliminary 
rough estimation as an aid to planning. 

12. ALIASING 

We now suppose that X(t) is available, or is to be used, only for uni- 
formly spaced values of t, which we may as well suppose to be 

if soluble at all, can always be satisfied by a P,t(/) which vanishes for 
f > fs = 1/(2A^), although the power spectrum P(/) of the original 
process (for which the C(r) was defined) might actually cover a much 
wider frequency range. (We shall reserve the notation Pa(/) for such a 
function, vanishing for 1 / j > /.v .) While frequencies between / = 0 
and / = /jv are clearly distinct from one another, we face a problem of 
aliasing, since frequencies above/a- usually contribute some power. Each 
frequency, no matter how high, is indistinguishable from one in the 
band from 0 to/w . 

The essential, unavoidable nature of this problem is made clear by 
Fig. 7 which illustrates how equally spaced time samples from any 

t = 0, M, 2At, 3At, nAt, 

so that C{t) can only be estimated for 

| r | = 0, Ai, 2At, ■ ■ nAt. 

Now, the equations 

r ] = qAt, q = 0,1, - ■ - , n, 

f = 4 f = i 

U  ONE SECOND    

Fig. 7 — Sampling of sinusoidal waves. 
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cosine wave could have come from each of many other cosine waves. 
(The familiar stroboscope uses a particular expression of this fact in 
apparently "slowing down" rapidly rotating or oscillating machinery.) 

The logical position about PaU) depends very much on whether X{t) 
is thought of as having any real existence for \t \ ^ qM. 

If X{t) really exists for continuous t, although we have (f) failed to 
observe or record it, or (ii) failed to "read" the record, or (Hi) decided 
to neglect the available values, then there is a well-defined P(f) cor- 
responding to the process from which each X(t) is a sample, and we must 
be very careful about the relation between P(f), which is our true con- 
cern, and PaU), which is clearly all we can strive to estimate directly 
from the data. It can be shown (see Section B.12) that, in the form 
appropriate for a one-sided spectrum, if we set 

2PM) = 2P(/) + 2P(2/a' - /) + 2P(2fN + /) 

+ 2P(4/W - /) + 2P(4f* +/)+■■■ 

0 ^ |/! 

otherwise 

where /,v = 1/(2AO is the folding (or Nyquist) frequency. We naturally 
call the frequencies /, 2fN — /, 2/// + /, 4/^ — /, 4/,v + /, and so on, 
aliases of one another, / being the principal alias. The aliased spec- 
trum Pa(f) is the result of aliasing P(/). The principal part of the 
aliased spectrum Pa(/) is the part of Pa(f) which corresponds to 
principal aliases, positive and negative. 

(If X(t) has no natural existence for fs which are not integral multiples 
of AO then P(/) is not uniquely defined, and we are at liberty to choose 
any normalization we desire. In particular, we may decide to limit P(/) 
to the interval | / ( ^ 1/(2AO, in which case we will be enforcing P(f) = 
PA(f) without any trace of aliasing. We mention this case for logical 
completeness, but remark that it seems to occur infrequently in practice, 
whatever the field.) 

If the Gaussian noise we are considering has a power spectrum P(f) 
which extends outside | / j S 1/(2AO, then the Gaussian noise with 
spectrum P^(/) is not the same for continuous time. However, if we con- 
sider these two noises only for equi-spaced times 

t = 0, Ai, 2AO  

they are identical. For all first moments vanish and all second moments 

then we may take 

P.4 ( / ) = 
(Pc(/), 

i o , 
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coincide, which implies coincidence of the joint distributions of any 
finite set from • • •, X-g, • • •, Z_i, X0, Xi, ■ • ■, Xq, • • ■, and this is our 
definition of the coincidence of two noises. (If a result concerning such 
equally spaced values can be established for a Gaussian noi.se restricted 
to have P{f) vanish outside |/1 1/{2XI), it must trivially hold, under 
the same restriction, when all occurrences of P{j) are changed to Pa(/)- 
It is a consequence of the identification just established that the result, 
when expressed in terms of P_4(/), must also hold for any Gaussian noise 
whatever.) 

The frequency interval from 0 to jN contains a certain number of 
elementary frequency bands in the sense of our treatment of variability. 
The total length of record is Tn = nM, and if we write T'n = n' M for 
the effective length, then, since 

there are n' elementary frequency bands between 0 and /* . As a statisti- 
cian would have anticipated, we gain one elementary frequency band — 
one degree of freedom — for each added observation. 

It is perhaps natural to base a hope on this result — a hope that 
taking data more frequently over the same time interval would gain us 
many degrees of freedom and reduce our difficulties with variability. 
However, this is not the case (as the expression for the width of an ele- 
mentary frequency band l/(2T,

n) should have warned us). Taking ob- 
servations twice as frequently yields twice as many elementary fre- 
quency bands, but also doubles the folding frequency Jn and, thus, 
doubles the frequency interval occupied by principal aliases. The density 
of elementary frequency bands is not increased one iota. (Clearly, iota 
was the Greek word for bit!). 

It is usual for aliasing to be present and to be of actual or potential 
importance. This is an inescapable consequence of data taken or read 
at uniform intervals. (It is not infrequently suggested that there should 
be a workable scheme of taking discrete data in some definite, but not 
uniformly spaced pattern, and estimating the power spectrum without 
aliasing. No such scheme seems so far to have been developed). 

13. TRANSFORMATION AND WINDOWS. 

Given uniformly spaced values of X{i) —values which we shall now 
designate Xq , Xi, • • •, X„ , as well as X(0), X{Al), ■ ■ ■, X{nAt) — wo 

In 
1 

2At 
elementary frequency bandwidth 
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expect to calculate "sample autocovariances", modify them, and then 
Fourier transform the results. There is no possibility of calculating auto- 
covariances for lags other than 0, At, • ■ •, nM, and so we may as well 
write Co, Ci, •••, Cm in place of Ci(0), C^At), CiimAl). If we 
Fourier transform these m + 1 numbers, as obtained or modified, we 
might obtain a smoothed spectral estimate for any frequency between 
0 and/at = l/{2At) that we may wish. It is not surprising, however, that 
we lose no information (and little explication) if we calculate only m -fi 1 
such estimates (one for each Cr). Nor is it surprising that we regularly 
take these estimates equally spaced over 0 ^ ^ /jv , and hence at 
intervals of fx/vi = I/{2mAt). As a consequence we have to deal with 
finite Fourier (cosine) series transformation (classical harmonic analysis) 
rather than with infinite Fourier integral transformation, but the cor- 
respondence between multiplication and convolution persists. 

The question of modification also requires discussion. In the continu- 
ous case we Fourier transformed 

Ci(r) = D^r) ■Coo(r) = I>,(t) •Co(r) 

where Co(t) coincided with Cqq(t) wherever the latter was defined, and 
is zero otherwise (cp. Section B.5). The result was, consequently (e.g. 
see Appendix A.3), the convolution of the Fourier transforms of Z>i(r) 
and Co{t). So long as time was continuous and computation was pre- 
sumably by analog devices, there was a real advantage to modification 
before transformation. Now that time is discrete and computation pre- 
sumably digital, the advantage is transferred to first transforming and 
then convolving. Indeed, because the Th(r), for i > 1, are finite sums of 
cosines, so that their transforms are simply sums of spikes (Dirac delta- 
functions) at the appropriate spacing, convolution means only smooth- 
ing with weights 

0.25, 0.5, 0.25 {i =2, banning) 

0.23, 0.54, 0.23 {i = 3, hamming) 

and is very simply carried out. 
In discussing this program, we gain some generality by using m -\- \ 

lags separated by Ar = hAt for an integer h > 0, while our results are 
no more complicated than if we were to confine ourselves to h = 1, 
which is the practical case. Thus, we first compute the mean lagged 
products 

1 l=n—rh 
Cr =  r S Xq'Xg+rh n — rh g=o 
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for ?• = 0, 1, 2, • • •, in, where ink < n. Note that CV is heuristically as 
close as we can come to the apparent autocovariance Coo(±rAr) with the 
available (equi-spaeed) data. Note further that, so far as functions of 
the Cr are concerned, our effective folding frequency is 

f * = J- = 1 /• Jn 2At }In' 

We will usually need to adjust the Cr somewhat to improve very-low- 
frequency performance, as discussed in Section 19, but this need not 
concern us for the moment. 

Applying a discrete finite cosine series transform to the sequence Co, 
Ci, ■ • • , Cm, we find 

Vr = At■ 
m—i "I 

Co + 2 S C9-cos — + Cm-cos rr . 
0=1 m J 

(We may regard this as arising from replacing Co(r) in the expression for 
Po(/) as its Fourier integral transform by a finite sequence of spikes 
(Dirac delta functions) of intensities (areas) proportional to the corre- 
sponding values of Ca(r).) If we put 

then it is shown in Section B. 13 that 

{PoA/)l = CM/ — /'; At)-p(/')-df ave 

where 

Qo(f; At) = Ar-cot ^^-sin muAr. 
£ 

In terms of QoC/), which is treated in Section B.5, we have 

jw/; At) = (3o (/-£) = 

Just as the average value of Po(/) in the continuous case is the cor- 
responding value of (bCf) * P(/), so here the average value of Po,i(/) is the 
corresponding value of Qo(/i Af) *P(f). Thus, we may consider Po,i(/) as 
estimating the result of "smoothing" P(/) with a window Qnif; Ar) which 
has repeated major (and concomitant minor) lobes at intervals of 
2/a'* — (At)-1. This is not the most convenient way to consider matters, 
and in Section B.13 it is shown that there are two equivalent forms for 
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ave { Pqa (/) [ and, correspondingly, two other, equally appropriate, ways 
to consider the situation. 

These arise from the three-fold identity 

CU/) *P{J) = Qoif)*Pa(f) ^ QoA{f)*PA(f), 

any member of which represents the average value of PoA(f)- Thus, we 
can also consider PoA(f)- (i) as estimating the result of smoothing the 
infinite, periodic aliased spectrum Pa(f) with the same window as for 
the continuous case, or (ii) as estimating the result of smoothing the 
principal part of the aliased spectrum P.iif) with the aliased window 
QoA{f)- The latter choice is usually the most helpful of the three possi- 
bilities, and is the one we shall adopt. 

All this has been discussed for the immediate results of transforming 
unmodified CT's. This is only the case f = 0 of the identity 

QiA{f)*P{f) - Qi(f)*Pa{f) - Qu(f)*PA(f) 

which holds in general. We should thus usually be concerned with Qa(/) 
and with Pa (J)- 

The case i = 2 (hanning) corresponds to the following smoothing after 
transformation: 

Uo = 0.5 Vo + 0.5 Fx, 

Ur = 0.25 Vr-i + 0.5 Fr + 0.25 Fr+1, 1 ^ r ^ m - 1, 

Um - 0.5 Fm-i + 0.5 Fm, 

for which QzaU) has the form shown in Fig. 8. The curve is for m, — 12, 
and the circles are for m — <*>, which corresponds exactly to the con- 
tinuous case. Clearly, for usual values of m, the modification in the lobes 
due to aliasing is almost surely unimportant. 

The frequency separation between adjacent estimates is 

1 __ 1 
2Tm~ 2mAT' 

but the equivalent width of the windows (for 1 g r ^ m — 1) is about 

1.30 _ 1.30 
Tm mAr' 

just as for the continuous case (see Section 8). For most purposes we 
may again take the bandwidth corresponding to each estimate as 1/Tm, 
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Fig. 8 — Aliased spectral window for m = 12. 

so that m satisfies 

— = (bandwidth of estimates)-(Ar). 
m 

If we had neither modified before Fourier transformation, nor 
smoothed after transformation, we should have faced the uncomfortable 
minor lobes of QoaH) shown in Fig. 9 for m = 12 (with circles for m = «»). 
Generally speaking, all we learned about desirable lag windows for the 
continuous case carries over with minor modifications, at most. The 
only serious effect of going to uniformly spaced values is the aliasing 
(and this may bo very serious indeed). 

It is well worth noting that the possible spectral windows Quif) are 
now restricted to be finite Fourier series in cos wAr, cos 2wAt, ■ • • , 
cos mwAr, or equivalently, to be polynomials in cos coAr of degree m at 
most. 

14. VARIABILITY AND COVARIABILITY 

We now extend all our other notation: //,-(/; /j), Piifi), etc. to cor- 
responding Huif) fi), Puifi), etc. for the uniformly spaced case as 
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Fig. 9 — Aliased spectral window Qoa for m = 12. 

specified in Sections B.13 and B.14. It is show in the latter section that 
we now have 

cov 2Pi.(/!!)l = f HaU-ti-HuU-.a-ZVUn-d} 
Jo 

where 

TUD^iiy^'+n-PAS' 

(a)' — 2t/'), with a very slightly different determination of Tn than be- 
fore. The only essential change has been the introduction of a new 
factor, corresponding to aliasing, 

/sin oj'aA"2 

\ co'Ai / 

into the integrand of the power-variance spectrum rAiCf). For usable 
values of n, this factor will vary much more slowly than 

(sin 
\ o/n / 

Ar, m = 12 

lQ.0A/2Tm 

*■' -m = 00 

W<^ A iSSiiZ 
2% OFF EAK 

i / 
L .. Y'iYS/tu 

v 
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uud can usually be treated as sensibly equal to unity. All the approxi- 
mate analysis of covariability and variability given for the continuous 
case now goes through without essential change. 

15. PREWHITENIXG 

If the equally spaced data is sampled from a continuously transmitted 
"signal" or "read" from a continuous recording, then all the points 
made in Section 11 in favor of early prewhitening are still applicable. 
If the equally spaced data arises more directly, as by photographing a 
physical situation, we may not be able to apply prewhitening early. In 
either case it may still be desirable to prewhiten after the data is obtained 
at equal intervals, either as a supplement to, or as a partial replacement 
for, early prewhitening. 

The average value of a power density estimate PiA(fi) is 

We want this quantity to tell us about the values of F{f) for/ near/i . 
To do this wo must: (i) reduce variability, (ii) ensure that /3.-i(/) re- 
sembles /,(/) sufficiently, and (iii) concentrate Pi.nif) near f = fi ■ We 
must be concerned with: (i) adequately broad windows, (ii) sufficiently 
weak aliasing, and (iii) enough sharpness in the effective filter. This 
sharpness can he obtained in a combination of ways. 

Note that we asked for P,At(f), which measures the net contribution 
to the average value, to be localized. We did not merely ask that //,a(/;/i) 
should be localized. For, if 

where 

PUD = //a(/;/iWM/). 

P,(/2) >>> PAD), 

although 

II .AD ;/.) < < Hi.Afi ;/x) 

it is still possible for 

PUD) iii-4 (/2 Jd-P-Ah) 

to outweigh 

PUD) = H,AD-Ji)-PAfi) 

so that our estimate tells us more about P(/) near / — fz than it does 
about />(0 near / = .A . To avoid such unfortunate situations either we 
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must choose our window pair in a very particular manner (so as to make 
HiA{h ! fi) exceptionally small) or we must avoid P^C/a) > > > P-iifi)- 
Both courses are possible and sometimes necessary. Usually, the second 
course is simpler. 

Following the second course is simple in principle. Given actual values 
A',, we apply a selected linear procedure to obtain new values Xq and 
analyze these. The aliased spectrum F^(/) of the XQ differs from the 
aliased spectrum P.//) of the Xq by a known multiplicative function of 
frequency. (Sec Section B.15 for details.) Thus, (i) we may convert 
estimates of P^Cf) into estimates of P,i(/), and (ii) we may choose the 
linear procedure to make the aliased spectrum P,,(/) of the Xq reasonably 
flat. 

The simplest linear procedures are probably the formation of moving 
linear combinations and the construction of autoregressivc series. A 
simple example of a moving linear combination is 

Xg = Xg — aXg-l — &Xg-1 — 7^-3 

for which the relation between the spectra is 

^ = 1 1 - - Be~^1 - I2 

PaU) P(/) 1 

= a cubic in cos uM. 

A suitable moving linear combination will generate any desired non- 
negative polynomial in cos wA/. 

A simple example of an autoregressive combination is 

Xg = Xg + XXg-l T ^.X q^l + vX q-.i 

for which the relation (reciprocal to that just considered) between the 
spectra is 

IAD = W = fl l - xe-'"
Ai - ue"'""4' - [V1 

P.U) P(/) n 

= (a cubic in cos wAf) 1. 

A suitable autoregressive combination mil, when indefinitely continued, 
generate the reciprocal of any desired non-negative polynomial in 
cos coAi. 

By combining a suitable moving linear combination with suitable auto- 
rcgression, as for instance in 

Xq = Xg- aXg^ + XAr
?_i, 
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which may also be written 

A. ^ XA^_i .A(y o!A , 

for which 

PaU) _ P(f) _ i - 2 

PaU) P{f) 

I ~f" o? — 2Q: cos oiAt 
1 + X2 - 2X cos wAt 

= a rational function of cos uAt, 

we can modify iA(.f) by multiplication by an arbitrary non-negative 
rational function of cos wAt. 

Freedom to multiply by any (simple) non-negative rational function 
of cos wAt is very substantial freedom. If we have a rough idea (see Sec- 
tion 18) of the behavior of and if this behaviour is moderately 
smooth, though perhaps quite steep in places, we can usually do a very 
good job of flattening the spectrum by pre whitening after obtaining dis- 
crete (digital) values. Unless still bothered with steep slopes, we will 
usually then find that hanning, with its (0.25, 0.50, 0.25) weights and 
lower outer lobes is slightly preferable to hamming, with its (0.23, 0.54, 
0.23) weights and reduced first minor lobes. 

The main purpose of prewhitening after data has been obtained in 
digital form at equally spaced intervals is to avoid difficulty with the 
minor lobes of our spectral windows. We may regard the whole process 
of prewhitening, analysis with standard spectral windows, and, finally, 
compensation of estimate, as a means of constructing a set of specially 
shaped spectral windows, one for each center frequency, specially adapted 
to the data we are processing. This point of view is illustrated in Fig. 10. 
The uppermost curve shows the power transfer function of a hypothetical 
prewhitening filter, one which enhances mid-frequencies in comparison 
with those lower and higher. The next line shows two standard spectral 
windows, with symmetrical side lobes. The third line shows the effective 
spectral windows when prewhitening is followed by standard analysis, 
as given by the product of prewhitening power transfer function and 
spectral window. In either case, the side lobe toward mid-frequencies is 
higher than the corresponding side lobe on the opposite side, which is 
lower than for the standard. The lowest curve shows alternative spectra 
for time series which might reasonably be processed by the combination 
of prewhitening and standard analysis shown (since the prewhitened 
spectra would change only slowly). In every case, the side lobes of the 

i - cur-*' 
1 - \e~'"A 1 

1 + a2 - 2a 
1 + X2 - 2X 
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special spectral windows are automatically so related to these spectra, 
as to balance and reduce the amount of leakage through them, as given 
by the product of special spectral window side lobe and original spectral 
density. 

(a) 

(b) 

XL 

(d) 

Fig. 10 — Illustration of prowhitening; (a) prewhitening power transfer func- 
tion, (b) standard spectral windows, (e) effective spectral windows, and (d) typi- 
cal input spectra to which (a) might be applied. 

Easing of requirements for accuracy (number of significant figures, 
etc.) during computation are ordinarily quite secondary, though pleas- 
ant, advantages of prewhitening during digital calculation. 

16. REJECTION FILTERING AND SEPARATION 

If the difficulties in handling P{f) are due, wholly or in part, to one or 
more quite narrow and very high peaks ("lines" or "narrow bands") 
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then we cannot expect either to afford, or to be able to estimate, the 
great number of accurately chosen constants which would be required to 
obtain a rational function whose reciprocal has a shape very close to the 
given narrow peak. We must adopt a slightly different approach, and 
plan to make at least two analyses of the data — one to estimate the 
behavior at the peak, and another to estimate the behavior away from 
the peak. 

In order to separate the bulk of the information in the data from the 
variation associated with the sharp peak which may be troubling us, we 
may apply to the data a moving linear combination (possibly combined 
with autoregression) whose power transfer function (the factor by which 
the spectrum is altered) has one or more zeroes near the peak. The 
resulting sequence will be largely free of contribution from the peak and 
hence will be suitable for further prewhifcening (if required) and analysis. 
(This operation can often, of course, be combined with further prcwhiteu- 
ing so far as actual calculation goes. It will of course be necessary to 
compensate for the effects of this transformation at frequencies away 
from the peak, when preparing the final spectrum estimates for interpre- 
tation.) 

There remains the estimation of the power in the peak, and possibly 
some inquiry into its width. A number of approaches are possible: 

(1) We may analyze the original data as well as the data with the 
peak rejected, obtaining an estimate at the peak and possibly confirma- 
tory estimates far from the peak. 

(2) We may subtract a suitable multiple of the modified data from the 
original data so as to retain the peak and partially reduce other fre- 
quencies; and then analyze the difference. 

(3) We may apply a band-pass filter to isolate frequencies at and near 
the peak, and then analyze the result. 

Any of these techniques may be applicable in suitable circumstances. 
Other related procedures are sometimes more natural than the use of 

moving linear combinations. Rejection of zero frequency, for example, 
is more naturally, and computationally more easily, accomplished by 
subtraction of the mean of all the data from each A', than by the sub- 
traction of a moving linear combination from each. 

Rejection filtration has been applied in oceanography by Groves," 
Seiwell,15 Seiwell and Wadsworth,16 to the elimination of various well- 
defined tides from records. It almost always has to be used to eliminate 
possible peaks at zero frequency (see Section 19 below). 

In electronic measurements we may also anticipate its possible use in 
measurements: (i) close to a substantial harmonic of 60 cycles per 
second (such as 120 cps or 1380 cps), or (ii) near some strong "carrier". 
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17. SMOOTHING BY GROUPS 

The cost of digital power spectrum analysis, once initial investments 
in programming, etc. have been made, and assuming records to have 
already been made and "read", is likely to be associated with the number 
of multiplications involved in computing the mean lagged products (in 
original or modified form). If there are n observations, and m lags are 
used, then there will be roughly ntn multiplications. 

Ways of reducing this number substantially are naturally of interest. 
Most of these must depend for their efficacy on our interest in something 
less than the whole spectrum. We have already discussed (in passing) a 
situation which would naturally arise only when we are interested only 
in the lower part of the aliased spectrum. This is the use of lags which 
are multiples of Ar — hkt with /i > 1. The use of lags up to mAr — hm&t 
allows us to explore the spectrum down to frequencies almost of the 
order 1 /hmAt, which, had we used all multiples of At up to hm, would 
have required hm I values of Cr (or of its modifications) instead of 
m + 1 • The price of doing this is the aliasing of the spectrum with fold- 
ing frequency 1/(2At) = (l/h) (l/{2At)), which is h times as much 
aliasing as if all multiples of At up to hm had been used, yielding a fold- 
ing frequency of 1/(2A{). 

If such intensive aliasing is bearable, this procedure with Ar > At is 
simple, even though it is not necessarily economical. Indeed, if so 
much aliasing were permissible, we need only have "read" every hth 
data value. In many situations, however, especially where At has been 
taken as large as aliasing will permit, such further aliasing is unbear- 
able. If we are to look at the low frequency part of the aliased spectrum 
Px(/)with computational economy, another course will have to be found. 

Our use of linear schemes in pre whitening shows us a possible course. 
Let us begin by applying a linear scheme to the given values Xg, which 
attenuates all high frequencies. Then we can face further aliasing, and 
proceed apace. 

If simplicity is controlling, then we take 

for which the relation between the spectra (the power transfer function 
of the smoothing) is 

Xg = Xg -f- Xg_J Xg-fc+l (A: terms) 

— i(t—l)a>A( |2 

. kwAt 2 

sin — 

. o)A( 
sm -2- 
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This will give us zeroes at frequencies which are multiples of \/I'M, and 
we can avoid folding the first two side lobes of this function onto the 
main lobe and still take a folding frequency as small as 2/kAi. Such a 
choice will fold the second, fifth, sixth, etc. side lobes onto the first side 
lobe, and it will fold the third, fourth, seventh, eighth, etc. side lobes 
onto the main lobe. We obtain such a folding frequency by retaining 
only one in every A'/4 of the X7'y. These decimated* Xg's may, in par- 
ticular, be obtained by summing the AVs in non-overlapping blocks of 
/c/4, and then summing these block sums in all possible (overlapping) 
sets of four successive blocks. (This requires {k + 8)/7c additions per 
original value.) The estimated spectrum below X/kAt has to be multi- 
plied by 

. oiAf 
sm — 

. kwM ' 
_Sin 

and only aliases which are usually negligible will have been superposed 
on the principal aliases. About one /cth of the original principal spectrum 
will be available for analysis. 

The stability obtained by this process can be easily compared with 
that obtained by using all Xq and taking At = /cAA/4. In each case, the 
width of the elementary frequency bands is approximately l/2jPn 

where T'n has slightly different, but not substantially different values. 
The process just described yields nearly the same stability as At = kAt/4, 
and usually involves much less computation, besides avoiding serious 
aliasing. It will almost always lie preferred to using At = hAt with h > 1. 

Other schemes of smoothing by groups are discussed in Section B.17. 

18. PILOT ESTIMATION 

The prewhitening procedure demands a rough knowledge of the spec- 
tmm for its effective use. Sometimes this rough knowledge can be ob- 
tained from theoretical considerations, or from past experience, but in 
many cases it must be obtained from a preliminary (pilot) analysis of 
the data. Such pilot analyses should be as simple and cheap as possible. 
We now discuss a pilot analysis giving very rough results quite easily. 

Table III exemplifies a form of calculation which is easily carried out 
either entirely by hand, or with a desk calculator. The symbols "5" and 
V refer to differences and sums of consecutive numbers in non-over- 
lapping pairs. Taking the numbers in non-overlapping pairs is not neces- 

* Although this word should refer strictly to the deletion of only every 10th 
item, we shall apply it to the retention of only every jth item, for whatever j may 
be relevant. 
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Table III — Computation of Pilot Estimates 

9 Xg SXg (sxqy aXg S<rXg (SaXq)'2 cXg SaWg («<**,)2 

1 3 
2 4 1 I 7 
3 -1 
4 -2 -1 1 -3 -10 100 4 
5 2 
£ 7 5 25 9 
7 5 
8 -1 -6 36 4 -5 25 13 9 81 
9 -3 

10 2 5 25 -1 
11 5 
12 4 -1 1 9 10 100 8 
13 7 
14 3 ~4 16 10 
15 4 
16 -1 -5 25 3 -7 49 13 5 25 
17 -4 
18 2 6 36 -2 
19 4 
20 0 -4 16 4 6 36 2 
21 1 
22 -1 -2 4 0 
23 1 
24 2 1 1 3 3 9 3 1 1 
25 4 
26 3 -1 1 7 
27 0 
28 -4 -4 10 -4 -11 121 3 
29 -1 
30 -2 -1 1 -3 
31 -2 
32* -2 0 0 -4 -1 1 -7 -10 100 

Totals 205 441 207 

Continuation of Table III to the Right (Compressed) 

9 0*Xg Sa'Xg (5»8A'9)2 <HY, <r4r. (<X6Yff)2 

8 17 
16 21 4 16 38 
24 5 
32 -4 -9 81 1 -37 1369 39 1521 

97 1369 1521 

(* Note: 32 = 26.) 

saiy, but saves much calculation at little cost in accuracy. (In this table 
sums and differences are entered in the lower of the two lines to which 
they correspond.) 

The final sums of squares are roughly proportional to the power in 
successive octaves coming down from the folding frequency. They differ 
by only a constant factor, equal to the number 2^ of values Xq used, 
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from the mean squares of a nested analysis of variance. For many pur- 
poses they can bo used as they come. 

For the example of Table III we obtain sums of squares of 205, 441, 
207, 97, 1369, and 1521. These are plotted in Fig. II for the successive 
octaves /.v to /,v/2, fx/2 to /,v/4, fx/4 to fx/8, fx/8 to /,v/lG, /a/16 to 
fs/32, and the remaining range /,v/32 to 0. We see that the spectrum is 
roughly flat. 

When medium or large stored-program digital computers are available, 
and the data is already available in machine-proeessable form (so-called 
diamond copy), it will often pay to use less elementary pilot calculations. 
Possible alternatives are discussed in Section B.IS. 

ID. VERY LOW FREQUENCIES 

The change from continuous "signals" processed in analog equipment 
to e(pially spaced "data" processed digitally has another important 
practical effect. Analog equipment, unless special care is taken, docs not 
respond all the way down to zero frequency, and this automatically filters 

WT-7T- 
it 

f 

*N/a fN/l6 fN/2 fN/32 

Fig. 11 — Pilot-estimated power spectrum. 
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out the very lowest frequencies. This fact allowed us, in dealing with 
continuous records, to treat the "signals" being processed as if they had 
zero means. In dealing digitally witli equally spaced data, all frequencies 
down to zero are transmitted, unless we take special precautions. Conse- 
quently, we must give serious attention to the very lowest frequencies. 

(We must now distinguish between power (in the sense of a line) at 
zero frequency and power density at zero frequency. The power spectrum 
of a stationary random process with zero means may have finite power 
density at zero frequency without having finite power there. However, 
finite power at zero frequency may be introduced into the data in meas- 
urement. It would then be desirable to filter out the power at (exactly) 
zero frequency without affecting the power density at and near zero 
frequency due to the stationary random process, but this cannot be done 
perfectly.) 

The need for such attention becomes clear when we consider the effect 
of "small" displacements of the average. Suppose that most of the ob- 
servations (say about 999 in 1000) lie between —100 to -f-100, with a 
few falling outside one limit or the other. This would be the case when 
the standard deviation is about 30, the variance about 900. If the average 
of the observations were 5 or even 10, we might or might not detect at a 
glance its failure to be zero. 

The total power is the square of the average (do power) plus the vari- 
ance. Numerically, perhaps 25 4- 900 = 925 or 100 4- 900 = 1000. All 
the dc power belongs to the very lowest frequency band, whose width is 

Af = Wn' 

If we have data at one second intervals for a period of 15 minutes, a total 
of 900 points, we will have a folding frequency of one-half cycle per 
second, and 900 elementary frequency bands before we reach the folding 
frequency. Thus up to one tenth of all the power may be concentrated in 
one 900th of the spectrum, so that the lowest frequency band has a power 
density up to 90 times that of the average of the 899 others. It is not 
surprising that precautions need to be taken to deal with such possi- 
bilities. (After all, our standard spectral windows have side lobes more 
than 1 per cent the height of the main lobe.) 

Slow trends, which may reasonably be regarded as zero-frequency sine 
waves, just as constant displacements are regarded as zero frequency 
cosine waves, are not nearly so likely to involve quite so substantial 
excesses of power density, but instances of this may and do arise. 

Any way of dealing with these effects must essentially remove the 
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lowest elementary frequency band, or both this band and the next to 
lowest one. In the process it will also have to eliminate some parts of the 
next higher elementary bands as well, since we cannot design a filtering 
procedure entirely free of side lobes. Two classes of ways of doing this 
are important. Either the X/s can be linearly altered, as by subtracting 
the mean of them all from each of them, before the mean lagged products 
are calculated — calculated from modified data as if they were original 
data — or additional computations may be made and combined with 
either the mean lagged products or their cosine series transforms. Thus, 
for example, the mean of all data may be calculated and the square of 
this mean subtracted from each and every mean lagged product. The 
effect of all of these modifications can, however, be summarized as apply- 
ing the finite cosine series transform to 

CT - Ekr 

where k identifies a specific method of modification, rather than to the 
Cr alone. 

In place of 

ave [IXaW] = QiAif) *PaU), 

we shall now have 

ave {/W/)} = Qou-C/WM/) = [QiM) - Rik(f)]*PAf) 

where Rik{f) is related to the Ekr in the same way that Qi(j) is related to 
the Cr. 

Details for certain special choices for Ekr arc given in Section B.19. 
It is there concluded that, among others, satisfactory choices for prac- 
tical calculation appear, for the present, to be, for removing possible 
constants, 

Ear = (I)2 (independent of r) 

and, for removing the effects of both possible constants and possible 
linear trends, 

ft. = (X)! + 4 (i - (W - x -)! 

lb \ n- n n- ' 

where X+ and A"- arc the means of the right- and left-hand thirds of the 
X values. 
Warning: It will almost never he wise to fail to use some Ekr in a digital 
computation. 
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Analysis in Practice 

The two sections which follow discuss the questioning and planning 
required whenever a digital analysis of equally spaced data is to be 
made, and exhibit a sample sequence of calculation formulas which 
might result from such planning. They are intended to summarize the 
previous material in its application to analysis. (Application to planning 
for measurement is treated next after this.) 

20. PRACTICAL ANALYSIS OF AN EQUALLY SPACED RECORD 

We may logically and usefully separate the analysis of an equally 
spaced record into four stages — each stage characterized by a question: 

(a) Can the available data provide a meaningful estimated spectrum? 
(b) Can the desires of the engineer for resolution and precision be 

harmonized with what the data can furnish? 
(c) What modifications of the data are desirable or required before 

routine processing? 
(d) How should modification and routine processing be carried out? 

Failure to adequately consider any one question properly, or failure to 
apply any one answer, can make the entire analysis worthless. 

The data presented will have come about by measuring some physical 
phenomenon at regular intervals. Thus, 

1. the spectrum of the phenomenon 
2. the frequency response of the instruments used to make the meas- 

urements 
3. the probable magnitudes of measuring, and recording or reading 

errors, and 
4. the time separation between adjacent values 

are all relevant. 
The first stage of consideration is to inquire generally about these quan- 

tities, and to determine whether either aliasing (see Section 12) or back- 
ground noise is so heavy as to make the values almost wholly useless. 
Thus, if the spectrum is believed to extend up to 10 megacycles with 
substantial intensity, if the measuring equipment is flat to 1.2 kilocycles 
and is 60 db down at 5 kilocycles, and if the values are measured every 
aio- of a second, we may as well stop here and go no further, since the 
whole available spectrum (up to 100 cycles) will be aliased more than a 
dozen times over. (The 1.2 kilocycle measurement bandwidth, which will 
be aliased 12 layers deep, will control rather than the 10 megacycle 
phenomenon bandwidth.) 

If, on the other hand, the equipment was flat to 10 cycles, down about 
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G db at 20 cycles, 15 db at 30 cycles, and 60 db at 50 cycles, we would 
not expect any irremovable aliasing difficulties, and would expect to be 
able to estimate the spectrum up to some moderate frequency — up to, 
say, 20 cycles, 30 cj^cles, or 40 cycles, depending upon how much back- 
ground noise was present. (The energy above 100 cycles would not be 
recorded.) 

In the next stage we should inquire into 
1. the frequency resolution required 
2. the fractional accuracy of estimation required, and 
3. the total duration of data available, and the number of pieces into 

which it falls. 
Items 1 and 3 can be combined and converted into the approximate 

number of elementary frequency bands (number of degrees of freedom 
— see Section 9 which is based on Sections 6 to 8) possibly available for 
each of the proposed estimates. This number can then be compared with 
the number of degrees of freedom required (also see Section 9) to give 
the desired fractional accuracy. If these are consistent, or if the desired 
accuracy, or the desired resolution, or both can be modified to make 
them consistent, then there is a good chance that the data can be per- 
suaded to yield the desired results, and further inquiry is indicated. If 
not, wc should stop here. 

Explicit relations among duration, resolution, and fractional ac- 
curacy, the latter expressed in terms of 90 per cent interval (cp. Tables 
I and II), are given in Section B.23. These lead to an approximate 90 
per cent spread, expressed in db (decibels), of 

14 

-%/(total duration in sees) (resolution in cps) — \ — * (number of pieces) 

a result which may often be conveniently used in such an inquiry. 
At the beginning of the third stage, information should be sought as to 
1. over what range of frequencies the spectrum is desired, and 
2. whether any lines or high and narrow peaks are to be expected, 

and at what frequencies. 
Guided by this information, it should be possible to decide whether either 

a. smoothing by groups (as in Section 17) to reduce computation 
without loss of low-frequency information, or 

b. rejection filtration (as in Section 10) to suppress well-established 
lines or high and narrow peaks, 
or both, are desirable. If desirable, they are then carried out before or 
during the next step. 

Unless advance information about the spectrum is exceedingly good, 
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a pilot analysis (see Section 18) to establish the rough form of the spec- 
trum will now be very much worthwhile. The result (or the very good 
advance information, if available) will now make it possible to choose a 
reasonable prewhitening procedure (or, possibly, to choose not to pre- 
whiten). Once suitable prewhitening (see Sections 11 and 15) has been 
chosen, and cither carried out or planned for, the third stage is complete. 

Finally, the information on resolution and accuracy combine to specify 
the width of spectral window desired, and hence (see Section 13) the 
number of lags for which mean lagged products should be calculated. 
When these are in hand, they are modified and transformed (or, perhaps 
more simply, transformed and convolved — see Section 13), adjusted to 
screen out very low frequencies, and the resulting power density esti- 
mates are corrected for the prewhitening, and 'for grouping and/or re- 
jection filtration (if any) used. The final estimates are best plotted on a 
logarithmic power scale, since their accuracy will be roughly constant 
on this scale. Crude confidence limits can then be calculated from the 
number of degrees of freedom (see Section 9) which would be present 
in the individual estimates if: (i) the process were Gaussian, and (ii) 
the prewhitened spectrum were flat. (The factor of safety of Section 
8 will ordinarily be adequate.) 

21. SAMPLE COMPUTING FORMULAS 

We cannot prescribe one set of computing formulas for general use, 
since there are rational reasons for different choices. All we can do is 
illustrate a procedure which may work fairly well in many cases. (And 
our example is not likely to be the only one with such properties. If the 
reader understands, by comparison with adjacent sections, just why we 
do what we do, he can compare other procedures with this example in a 
meaningful way. He will have to understand much of what is said in 
order to do this.) 

If Xt , t = 0, 1, ■ ■ • , n are the given observations, which we will treat 
as if at unit spacing, it is likely that Pa(J) decreases substantially as/ 
goes from 0.0 to 0.5 = /.v . (If it does not, then aliasing is likely to have 
been serious, and satisfactory analysis at this spacing may be impossible.) 
Prewhitening by 

Xt = Xt- 0.6 Xt^ 

which multiplies P,t(/) by 

1.36 - 1.20 cos 2rf, 
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a factor increasing from 0.16 to 2.56, may be a wise prewhitening. (The 
index t will now start at 1, and not. at zero.) 

We calculate next 

c; = — E AVY£+r -i-t x)\ 
n — r j \n i 

namely mean lagged products with an adjustment for the mean. (Further 
adjustment for a linear trend might have been necessary. See Section 
19.) Let us suppose that we do this for r = 0, 1,2, • • • , 2-4 = m. 
(Some other choice may have been appropriate.) 

Next we calculate the finite cosine series transform 

Vr = Tco + 2 E Cvcos ^ + Cl-cos rx] 
L W J 

and the results of hanning (see Sections 5 and 13) 

u0 = uvo + v1) 

Ur = jVr-l + Wt + Wr+l , I ^ T S m — 1, 

Um = kVm-l + hVm . 

These can then be corrected for both prewhitening and the correction 
for the mean by forming (see Section B.21) 

1 Uo. 
n — m , 1 OA 2x 

1,36 — 1.20 cos — 
bwi 

Ur, 1 ^ r ^ m — 1, 
1.30 - 1.20 cos 2m 

1.36 - 1.20 cos ( 1 - 2t 
U,. 

dm/ 

as smoothed estimates of the power density. Estimates with subscript 0 
will apply in the range just above zero frequency, those with subscript r 
near a frequency of r/(2m) cycle per observation, and those with sub- 
script m in the range just below a frequency of 0.5 cycle per observa- 
tion. 

In interpreting these estimates four cautions are important: 
(a) abasing of frequencies (see Section 12) may have taken place, 
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(b) the estimates are smoothed with a crudely isosceles triangular 
weighting function (see Sections 5 and 13) of full width 4/(2?n), 

(c) no estimate will he more stable than chi-square on (2n)/m degrees 
of freedom and, wherever the spectrum is not smooth, the stability of 
the estimates will be appreciably less (see Section 9), 

(d) adjacent estimates will not have independent sampling errors, 
though those not adjacent are at least very close to being uncorrelated. 

The units involved are such that the smoothed one-sided, aliased power 
density on 0.0 g ^ 0.5 is approximated by twice the estimates. The 
pieces into which the variance would be divided, each coming from, a 
frequency band of width l/(2m) cycles per observation, are estimated 
by 1 /{2m) times the corrected estimates. 

Planning for Measurement 

Up to this point, with the exception of part of Section 11, our discus- 
sion has been concerned (i) with what happens when certain operations 
are performed, and hence (ii) with how we should make the best of 
what we already have. 

The third aspect — planning the measurements or observations to 
meet requirements — has not been adequately treated. (Both statis- 
ticians and engineers concerned with measurement will agree that this is 
the most vital aspect of all, but will, unfortunately, also have to admit 
that, all too often, "salvage3' work will be required because this third 
aspect was omitted, and the observations made unwisely.) 

In discussing "What data shall we take?", "How shall we measure it?", 
the same considerations will recur as in discussing "How shall we analyze 
it?", but (i) they will be looked at from quite different aspects and (ii) 
they will be even more important. Now, by planning in advance of data- 
gathering, we may be able cither to replace useless or difficult-to-analyze 
measurements by usable ones, or to avoid making measurements which 
could never provide the desired information. 

The first basic decision has to do with the type of recording and analy- 
sis to be used. Three types are in use today: 

(1) Spaced: Analog use of intermittent recorders (photography of 
situations or of dials, etc.) or digital recording at equally spaced inter- 
vals (electronic reading of dials, photography of counters, etc.). 

(2) Mixed: Continuous recording (on film, calibrated paper rolls, etc.) 
with the intention of analyzing equally spaced values to be "read" from 
these continuous records. 

(3) Continuous: Continuous recording (FM recording on magnetic 
tape, etc.) with the intention of making an analog analysis. 
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The choice among these types will depend on their particular advan- 
tages and disadvantages, and on the availability of equipment, both for 
recording and analysis. In almost every case, however, the detailed 
problems will be surprisingly similar. 

22. CHOICE OF FREQUENCY RESPONSE 

In each instance there will bo a problem of the response of the ob- 
serving and transmitting or recording elements to high frequencies. 
When less quantitative studies are made, it is usual to worry whether 
the high-frequency response is large enough to "follow" the phenomena 
precisely. To be sure, if recording is only at intervals, and the needle is so 
blurred as not to be read, the high-frequency response may indeed be 
reduced by filtering. Such filtering is too likely to be regarded as un- 
fortunate rather than helpful. Effort tends always to be applied for 
"faithful" recording. This is appropriate for recording specific individual 
time histories for visual study, but is often most inappropriate for re- 
cording sample time histories for statistical study with the aid of sensitive 
Jilters (analog or digital). (When the recording is continuous, be it on film, 
oscillograph paper, or magnetic tape, the "writing" means has a limited 
frequency response, and this will usually help to keep the record from 
blurring.) 

When the analysis is to be made on equally spaced data, whether the 
recording be continuous or equi-spaced, there is a real problem of aliasing. 
And there is need for a basic choice of a frequency cutoff, usually in terms 
of two frequencies such that (i) the experiment is only concerned with 
frequencies up to the lower one, and (ii) frequencies beyond the upper 
one will not be recorded. The need for such a choice in a continuous 
system may not appear to be so acute, since only problems of noise or 
non-linear distortion are involved (see Section 11). Yet in practice, it 
will almost always be made — indirectly — by the choice of a writing 
speed (which implies a frequency cutoff for a continuous recorder). 
Economic pressures to reduce both the volume of record, and the extent 
of measurement and computation, act to lower the frequency cutoff, while 
desires to follow the spectrum to higher frequencies act to raise it. The 
proper choice comes from balancing these pressures. 

Sometimes in mixed systems, when continuously recorded data is to 
be subjected to equi-spaced analysis, an attempt is made to compromise 
matters by recording with a high cutoff, and then asking that the 
measurements of this record be "eye averages" over periods long enough 
for the record to show considerable variation. Such compromises do not 
seem to work nearly as well in practice as their proponents suppose. Re- 
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placing the "averages" by the results of "reading to the line" at equi- 
spaced points often seems to give better results, even though a smaller, 
but unknown amount of aliasing is thus replaced by a larger, known 
amount. Putting the filtering into the observing and writing equipment, 
rather than into the (human) measurer and transcriber, will usually do 
even better — better by a large margin. 

If one can be confident of the upper limit, beyond which the power 
spectrum will not be needed, it is usually best to record with a related 
frequency cutoff, thus reducing noise complications, aliasing difficulties, 
and the necessary bulk of the record. 

Conversely, however, points must be recorded or measured fre- 
quently enough (or a high-enough writing speed used) so that aliasing 
(or loss of high-frequency response) is not serious. (For a given maximum 
usable frequency, the sharper the cutoff, the less stringent this require- 
ment.) 

To summarize, the problems surrounding aliasing should lead to the 
choice of a frequency cutoff which is usefully described by two frequencies 
(which may reasonably be in the ratio of 1 to 2): 

(a) a lower frequency, which is the highest at which important power 
spectrum estimates will be made, and 

(b) a higher frequency, at and above which no serious amount of re- 
cording is done. 
Both of these need to be chosen before settling finally on observing and 
recording equipment. If equi-spaced data is produced, the folding fre- 
quency may be as low as half-way between these two frequencies, 

A prime essential to keep in mind is that all measurement, transmis- 
sion, and analysis systems are essentially band-limited. It is always in- 
advisable to try to cover too many octaves of log frequency while using 
exactly the same techniques. 

23. DURATION OF DATA REQUIRED 

Instead of trying to compromise resolution and stability within the 
limitations of available data, we may now consider the costs and ad- 
vantages of getting still more data, or, perhaps, somewhat less data. 
We face a three-way compromise among effort, resolution, and stability 
(precision) of estimate. 

Effort has to be measured in various ways, but the duration of initial 
record will almost certainly have to be considered as one measure. It is 
shown in Section B.23, where both precise definitions of the quantities, 
and a corresponding formula for the necessary numbers of pieces of a 
given length will also be found, that 



MEASUREMENT OF POWER SPECTRA 243 

1  200  . (pieces) 
. . i \ 2 (90% range in db)2 3 

(totul durahon m second^ = (solution |*JopS; 

If, for example, a resolution of 0.1 cps is to be obtained from. 6 pieces of 
record and is to furnish stability of ±2 db for (on the average) tu of 
the individual estimates, then the necessary duration will be 

1 200 . 6 
9 d- *4    = 150 seconds. 

0.1 

This applies equally to analog processing of continuous records or to 
digital processing of spaced records, so long as we apply the best methods 
which we know to a shape of spectrum which is not exceptionally diffi- 
cult to handle. 

24. AMOUNT OP DIGITAL DATA-HANDLING REQUIRED 

If spaced data are to be digitally processed, both the number of data 
points to be used and the number of multiplications involved are of 
interest. 

If we can easily build in the desirable frequency cutoff, and have to 
resolve a number of equally spaced bands spaced evenly from zero fre- 
quency to some maximum frequency, then we will require about 

- 4-    — -4- (pieces) (number of bands resolved) 
J2, (90% range in db)2 J 

dala points and, roughly about 

4- -— r- + 3 (pieces)) (number of bands resolved)2 

\2 (90% range in db)2 / 

m ultiplicaiions. 
These last two results often give only preliminary indications. Aliasing 

difficulties will increase these numbers. The possibility of smoothing by 
groups will decrease them. Details and possible modifications of the 
proposed system of data gathering and analysis need to be studied care- 
fully before final estimates of the number of data points and the rough 
number of multiplications are finally settled upon. 

25. QUALITY OF MEASUREMENT AND HANDLING 

In every case, careful consideration should be given to the quality of 
measurement and data handling required (in terms of the dangers of, 
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e.g.; time-varying frequency response, introduced noise, intermoduhition 
distortion, etc.)- An extensive catalog would be out of place here, since 
the problems are basically those of instrumentation engineering. But a 
few reminders may indicate the diversity of problems which might arise. 

A camera may be "clamped" to some object to record the relative 
orientation of that object and something visible to the camera. The 
mounting of the camera is never perfectly rigid, and vibrations will 
occur ordinarily at frequencies far above the data-taking rate. Whatever 
the frequency, these vibrations will introduce "noise" into the record. 
At least an order-of-magnitude calculation of the effects of likely vibra- 
tion is needed. 

Storage of a signal oh magnetic tape will be a part of many measure- 
ment-analysis systems. Because only rough spectra are wanted, AM 
(amplitude modulation) recording may be planned. If the fact that AM 
recording and playback is subject to considerable fluctuation in over-all 
gain (db's, not tenths db) is neglected, measurement planning may be 
quite misleading. 

In a complex analysis, where several spectra and cross-spectra (whose 
analysis we have not specifically discussed) are involved, it might be 
planned to plot the estimates of each spectrum and cross-spectrum 
against frequency, draw smooth curves, and compute derived quantities 
from values read from these curves. Such a process has led to great 
difficulties in certain actual situations, because of the "noise" introduced 
by such visual smoothing which appears to have distinctive but unknown 
properties. Such a graphical step may appear to bo good engineering, 
but it cannot be high quality data handling. Its use may nullify the 
careful selection of other data processes, some of which are delicately 
balanced. 

Graphical analysis should ordinarily be reserved for: 
(a) display of whatever spectrum or function of spectra is really a 

final output, 
(b) description of the actual effects of computational procedures, and 
(c) trouble-shooting. 

20. EXAMPLE A 

Suppose first that the spectrum of some aspect of the angular tracking 
performance of a new radar is to be obtained; that angular tracking can 
only be studied by photographing the target with a camera clamped to 
the antenna; that frequencies near 0.27 cps are of special interest; that 
the spectrum of tracking performance at higher frequencies is relatively 
flat up to 10 cps and then falls rapidly enough to be negligible beyond 40 
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ups; that estimates at all frequencies up to 25 cps are desired; and that 
stability to ±1 db is derived. What are the requirements? 

The total amount of tracking required is fixed by the resolution re- 
quirement near 0.27 cps, which we may suppose to be either 0.03 cps or 
0.02 cps. These lead, respectively to durations of 

and 

•i + 50 + i)o^5> 1000 seconds 

^ + 50 + l) 0^2 > 2500 KeL'ollds- 

Single stretches of either 16 or 40 minutes continuous tracking are al- 
most certain to he out of the question. The length of piece available 
would depend on the aspect of tracking performance studied, but a fair 
figure for this illustration might be 200 seconds. Going to Section B.23 
for the necessary formula, we find 

5 + 50 50.5 
(number of pieces) = r = = 5.2 

(200) (0.05) - ^ 

I + 50 50.5 
(number of pieces) =   t = jv-p — 13.7. 

(200) (0.02) - i ^ 

From a purely experimental point of view, these amounts of data are 
moderately hard to substantially hard to obtain, but we may suppose 
them available as far as radar and target availability are concerned. 

We come next to data taking and availability problems. We must 
study the spectrum up to 25 cps. Since the spectrum is negligible only 
above 40 cps, our folding frequency must be at least 32.5 cps, which 
would fold 40 cps exactly back to 25 cps. Hence we need at least 05 
frames a second. Consideration of available frame rates bring us to 04 
frames a second as probably reasonable. This is 12,800 frames in each 200 
second piece, a total film reading load of between 50 and 150 thousand 
frames. This will require some hundreds of man-days ot film reading, 
but may perhaps be faced. 

To calculate dircclly the rough number of multiplications involved, we 
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may begin by assuming that we are going to require the 0.05 or 0,02 cps 
resolution all the way from 0 to 25 cps. Were this the case, then we would 
require to resolve from 

m ^500 

to 

m ^ 1-250 

frequency bands. The corresponding numbers of multiplications range 
from 

[4.5 + 450 + 3 (pieces)] (500)2 W 120 million 

to 

[4.5 T 450 + 3 (pieces)] (1,250)2 750 million. 

The running time of an IBM 650 calculator on such a problem is about 
10 hours per million multiplications, so that between 

1,200 hours = 30 shift-weeks 

and 

7,500 hours = 188 shift-weeks 

would lie required. Clearly these machine times are out of line, and 
attention should be given to ways of reducing this aspect of effort. 

An application of smoothing by groups seems most likely to be effec- 
tive, especially since the high resolution is only wanted near the low fre- 
quency of 0.27 cps. Let us suppose that, in view of the supposed rather 
flat spectrum out to 10 cps, the engineers concerned will be content with 
two spectrum analyses, one with 0.5 cps resolution extending all the way 
to 25 cps, and the other with 0.02 cps resolution extending only to 1 cps. 
What effect will this have on the computational load? 

Notice first that it will have no effect on the radar-and-target operat- 
ing and film-reading loads. These were fixed by the resolution-precision 
requirements, and by the combination of this with the upper limit of the 
actual spectrum affecting the camera. Replamiing details of the analysis 
will save nothing on either of these. 

The broad-frequency low-resolution analysis will resolve about 

^ = 50 bands 
u.5 
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and require roughly 

[4.5 + 450 + 3(14)]-(oO)2 = 1.24 million multiplications 

(since we shall need 14 pieces to obtain the required precision at a resolu- 
tion of 0.02 cps). This would require about 12.4 hours machine time, a 
quite reasonable amount. 

The preparation of data for the low-frequency high-resolution analysis 
— if we follow the suggestion of Section 17, requires less than 1.5 
additions per original frame, since each datum contributes to four means. 
This is at most 0.2 million additions and can probably be combined with 
the next step so as not to involve substantial machine time. 

The conduct of the low-frequency high-resolution analysis will resolve 
about 

0~0§ = 30 ba,lds 

and will require about another 12.4 hours of machine time. 
Thus we have reduced machine time to about 25-30 hours, in pleasant 

contrast with the remaining requirements of some hundreds of hours of 
film reading and 14 test runs of 200 seconds each. The balance is ap- 
proximately restored. 

Our apparently blind use of the multiplications-required formula has 
concealed one important point. Our calculation of the time required for 
the high-frequency low-resolution analysis tacitly assumed that we have 
processed no more of the data than is required to meet the actual resolu- 
tion-precision requirement. 

The loosening of resolution from 0.02 cps to 0.5 cps in this part of the 
analysis has reduced by a factor 25 the amount of data which must be 
processed to meet the ±1 db (90 per cent) requirement. Hence the two 
hours machine time is predicated on processing only of the available 
data. If only about of the data is to be processed for the high frequency 
analysis, then it will be desirable to take the most typical 8 or 10 sec- 
onds from each piece. The losses due to end effects will be somewhat 
greater, it is true, but the advantages of increased coverage of the effects 
of unplanned variation, consequent on using parts of all 14 runs, far 
outweigh such considerations. 

It would be possible to use onty one run for the high-frequency analy- 
sis, a possibility which emphasizes the fact that yfths of the film reading 
is done to obtain the raw material for averaging, for filtering out high 
frequencies. If the hundreds of man-days of film reading look out of 
line, and if the line from the radar to the target is known not to change 
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rapidly (with respect to an inertial frame of reference), then we are driven 
to consider whether the "clamping" of the camera to the antenna could 
modified in such a way as to provide a frequency cutofi" between antenna 
position and camera position. What would be desired would be a reliable 
mechanical filter with a cutoff at 1 or 2 cps, and substantial, reproducible 
transmission up to, say, 0.5 cps. If such a mount could be taken down 
from the shelf, then it would suffice to make (a) one 200-second run with 
a stiff mount and 04 frames per second, and, say, (b) thirteen 200-second 
runs with a mount of such designed softness, and, say 4 frames per sec- 
ond. The total number of frames for reading would now be 12,800 for 
run (a) and 800 for each run (b), a total of about 23,000 frames. This 
might require about a man-month to read, a saving of several man- 
months. Unfortunately, such a sharply-tuned low-pass mount would not 
be likely to be on the shelf. 

27. EXAMPLE B 

As a second example, suppose a new solid-state device develops a noise 
voltage with a power spectrum roughly proportional to I//2 when under 
test under most extreme circumstances — circumstances so extreme that 
its average life is 30 to 50 milliseconds, and suppose that the detailed 
behaviour of this spectrum is believed likely to provide a clue to the 
proper theoretical treatment of some of the properties of this device. 
Suppose further that, while it was believed that the shape of the spec- 
trum of the noise from different examples of this device was the same, 
the voltage levels of different devices were quite different. It might be 
reasonable to ask for spectra! measurements to ±0.25 db resolving 1 cps 
and covering from I cps to 500 cps. Direct measurements are likeh' to be 
most difficult, for the power between 499 and 500 cps is about , oolono^ 
the power between 1 and 2 cps, a difference of 51 db in level. Our re- 
cording and processing equipment is not likely to have the dynamic range 
required for direct analysis. 

Clearly we should prewhiten our noise as early in the measurement and 
analysis system as we reasonably can. Fortunately, pre whitening here is 

R 

Fig. 12 — RL voltage divider. 
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operationally simple. A RL voltage divider, as indicated in Fig. 12 will 
introduce an attenuation of voltage, if the load impedance is high, 
amounting to 

j R + jtcL 

\ juL 

If the original spectrum wore 

= 1 + 
(jjij 

then the prewhitened spectrum would be 

47r"A 
to" dr'AL" 

& R2-\- 
4 O f 2 WL" 

which will be initially constant, and then decrease 6 db per octave, with 
a corner at wc = li/LJc - R/2tL. As a first step in measuring a spectrum 
out, to say, / = 2R/2^L, at which frequency the prewhitened spectrum 
would be down about 7 db, such a change would be useful. The range of 
frequencies which could be usefully studied would not be appreciably re- 
duced by such a change, even though the low frequency power level 
would be greatly reduced by the prcwhitening network, since the low- 
frequency power level would not be seriously reduced below the former 
power level at the corner frequency. If one could have been studied, 
the other can be studied. 

28. EXAMPLE C 

The irregularities in the earth's rotation have been studied by Brou- 
wer,17 who reduced the available observations (times of occultation and 
meridian passage) by averaging over individual years. He states "oc- 
cultations so reduced in recent years have been demonstrated to yield 
annual means essentially free from systematic errors if the observations 
arc well distributed over the year. . . . The S's may themselves be the 
accumulations of numerous smaller random changes with average inter- 
vals much smaller than a year. The astronomical evidence throws no 
further light on this, though perhaps something may be gained by an 
analysis of residuals in the moon's mean longitude taken by lunations." 
These comments suggest that astronomical data can supply values once 
a year, possibly no more frequently, and may bo able to supply values 
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about 13 times a year (once per lunation), certainly no more frequently. 
Let us accept the first possibility as a basis for an example. (This is the 
best example we know of a situation where equally spaced data cannot, 
in principle, be had at a finer spacing.) 

The information most nearly directly supplied by the astronomical 
observations is At, the difference between ephemeris time and mean solar 
time. Brouwer discusses two statistical models for its structure, both of 
which are most easily described in terms of the behavior of the second 
differences of the observations. In the first, the true second differences 
are constant over periods of varying length. In the second model, the 
true second differences are independently and randomly distributed. In 
either case, observational errors, independent from observation-period 
to observation-period also contribute to the observed Ai's. 

If we were to plan an observational program to decide between these 
hypotheses by spectral analysis we need first to specify the alternative 
spectra. The first model seems never to have been made as precise sta- 
tistically as the second. Brouwer's fitted curves correspond to constancy 
over periods of from 4 to 15 years. We should like to get a general idea 
of the possible spectra corresponding to this model without making the 
model too specific. Consider first a situation in which, except for the 
effects of second differences of experimental errors, the observations are 
constant in blocks of five, and where the values assigned to different 
blocks are independent. The successive average lagged products (start- 
ing with lag zero) are proportional to 5, 4, 3, 2, 1, 0, 0, 0, . . . and it fol- 
lows that the power density is proportional to 

1+1 cos irf/fu + I cos 2irf/fN + | cos Sirf/fy + | cos 47r///A-. 
5 o 5 5 

Calculation shows that this is high near zero frequency, falling rapidly 
until, beyond about f/fN = 0.3, it consists of ripples with an average 
height of less than -gVth the low frequency peak. If, instead of "constant 
by fives", the specific model were "constant by eights" or "constant by 
tens", still with independence between blocks, this peaking would be 
more pronounced and confined to still lower frequencies. If the lengths 
of the blocks were to vary at random, according to some distribution, 
still with independence of value, the spectrum would be the correspond- 
ing average of such spectra for fixed block lengths. The spectrum to be 
expected for second differences of annual average observations then should 
consist of a sum of two components: 

(1) a "true" component peaked at low frequencies, faffing rapidly by, 
say, f/fv = 0.2 or 0.25, and continuing to f/fN = 1.00 with an average 
height perhaps 1 per cent or 2 per cent of the low-frequency value, 
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(2) an "observational eiTor" component, corresponding to inde- 
pendent errors in the animal averages, and hence proportional to (1 — 
COS (X/Z/AT))2. 
In case, the second model should apply, the first component would be 
replaced by one with a flat density. 

Fig. 13 shows the shapes of the three possible components. The natural 
way to try to distinguish between the two models by spectral analysis 
is to compare the spectral density in the middle range, say///a- = 0.25 
to 0.5 with that in a lower range, say below ///,v = 0.25. According to 
Model I, the low-range density should be substantially higher than the 
middle-range density, the latter consisting of the effects of observational 
error (whose strength can be well estimated at the upper end of the spec- 
trum). According to Model II, the middle-range density should be 
slightly to somewhat greater than the low-range density, the increment 
representing effects of observational error. 

Without more detailed estimates of the relative sizes of the compo- 
nents, it would be difficult to specify exactly how many observations 
would be required to separate Model I from Model 11, but 10 to 20 
degrees of freedom in each of the ranges discussed should be quite help- 
ful. This suggests 100 values of annual second differences, corresponding 
to 102 years of careful astronomy, as likely to be helpful. Since Brouwer 
gives annual values for 131 years, some 129 annual second differences are 
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Fig. 13 — Components for two models of carfch-rotation irregularities: (1) "true 
irregularity" component for first model, (2) "observational error" component for 
either model, (3) "true irregularity" component for second model. 
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available for trial, and it may be possible to answer the ({iiestion without 
waiting for many more years to pass. 

It might well suffice to estimate smoothed densities over octaves such 
as 0.0625 ^ f/fN ^ 0.125, 0.125 g f/f* ^ 0.25, 0.25 ^ f/fN S 0.5 and 
0.5 S S/Jn S 1. Thus we might consider using the add-and-subtract 
pilot estimation method for initial exploration. The actual analysis of 
Brouwer's data is considered further in Section B.28. 

FUNDAMENTAL FOURIER TECHNIQUES 

In this appendix we review briefly certain aspects of Fourier transfor- 
mation. These aspects may be regarded as dealing mainly with diffrac- 
tion by slits, rectangular or graded, and by analogs made up of discrete 
"lines". Convolution and the so-called Dirac functions are specially 
important as convenient tools. Some parts of the discussion will have no 
direct bearing on the analysis of procedures for power spectrum estima- 
tion, but are intended to familiarize the reader with analytical tools 
which are used frequently throughout the remainder of this paper, and 
which may be used to advantage in many other analyses of a similar 
nature. 

a.i Fourier Transformation 

There are several formulations of Fourier transformation which differ 
according to custom, convenience, or taste. The formulation which we 
will adopt here is the one used by Campbell and Foster.19 Given a func- 
tion of time, G{t), its Fourier transform is a function of frequency, and is 
given by the formula 

Conversely, given a function of frequency, S(f), its Fourier transform is 
a function of time, and is given by the formula 

The term "frequency" is used here, not in the probability or statistical 
sense, but in the sense of sinusoidal or eisoidal functions of time (cos wt, 

t iut\ sm cot, e ). 
Our preference for the Campbell-Foster formulation is based on the 

Appendix A 

'-co 
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following points, urmngcd approximately in the order of increasing 
weight. 

1. Frequencies are expressed in cycles per second more naturally and 
much more frequently than in radians per second. (In our analysis we 
use co only as an abbreviation of 27r/, and only if it is typographically 
convenient.) 

2. Except for the sign of the exponent in the kernels, the transforma- 
tion formulae are symmetrical. The assignment of the signs here is the 
conventional one in transmission theory. 

3. In most of the applications to communications problems, the fre- 
quency functions arc rational functions of p = fw, with real coefficients. 
Hence, the reformulation of the transformation of S(f) to G(t) as 

is a natural and convenient step in the calculation of the integral by the 
method of residues. 

4. The transformation formulae correspond to the conventional rela- 
tions between the impulse response (response due to a unit impulse ap- 
plied at ^ = 0) and the transfer function (ratio of steady-state response to 
excitation, for the complex excitation e'0") of a fixed linear transmission 
network. These network functional relations are commonly regarded as 
Laplace transformations rather than Fourier transformations. As a 
matter of fact, however, the circumstances in almost all practical appli- 
cations are such that there is no essential difference between Laplace 
transformations and Fourier transformations. Impulse responses are 
zero for / < 0 and vanish exponentially as / —» co , and transfer functions 
are analytic on and to the right of the imaginary axis (including the 
point at infinity) in the complex p-plane. On the very rare occasions 
when a communications engineer might be interested in the behavior of a 
network under energetic initial conditions, he has ways of introducing the 
initial conditions without using Laplace transforms (Guillemin ). 

It should be noted that, since Git) must be a real function, the real 
part of S{f) must be an even function, and the imaginary part of S(f) 
must be an odd function. The even part of G(t) and the even (real) part 
of S(f) are cosine-transforms of each other. The odd part of G(t) and the 
odd (imaginary) part of S{f) are negative sine-transforms of each other. 
It should be noted also that if G(t) and S(f) constitute a transform-pair, 
then G(—t) and S{—f) also constitute a transform-pair. Further, >S(—/) 
is equal to £*(/), the complex conjugate of S{f). 



254 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958 

A.2 Some Transform-Pairs 

We will now turn our attention to some transform-pairs which we will 
require directly or indirectly in the analysis of procedures for power spec- 
trum estimation. We will use special symbols for some of these trans- 
form-pairs. For later reference, these transform-pairs will be collected in 
Table IV. 

The first transform-pair, which is easily worked out, involves a sym- 
metrical rectangular time function (box car of length 2Tm), viz. 

Doit) = 1, \t \ < Tm, 

= 2, \t \ = Tm, 

= 0, \t\> Tm. 

Table IY 

1. Do(0 = 1, | < 1 < TV 
„ , sin «rm Qoif) = 27V ^ col m 

= 0, \i\ > Tm 

= 2Tm dif 2fTm 

2. VII I II 
II o
 

IIV
 = 7V (dif /TV)2 

3. 8(1 - <o) e~iuto 

4. COS aiol ■j U(/ + /o) + 8{f — /o)l 

5. Vm(f, At) = ^ S{t + mAt) 
£ 

g=m—1 
+ At- S 8(t - gAt) 

q—- m-}~l 

+ — - mAt) 

Qo(J; AO 

oiAi . 
= Af-cot sin mwAl 

2 

, _ x dif 2/(m-A0 
= AO cos (irf-At) ———  

dif J-At 

6. 

1
 I "a 

fl 
8 

l
w
i

 
3 II 1> A = Jj {f - ^ k 

7. A (t; At) 

'- 11 
<

 

> 
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The corresponding frequency function is 

(?o(/) = - = 2Tm-dil2fTm. 031 m 

(The values assigned to Doit) at the end points ] i ] — Tm are those re- 
sulting from the transformation of Qnif) to Doit). Of course the values 
assigned at these two points do not influence the result of the transforma- 
tion of Doit) to Qo(/)). Except for scale factors, this frequency function 
is the function dif u = sin tu/tu which recurs constantly in this subject. 
It is often convenient to regard it as the diffraction pattern (in frequency) 
due to passage through a rectangular slot (in time). The behaviour of 
dif 2fTm is shown in. Fig. 14. 

The second transform-pair, which is almost as readily worked out as 
the first, involves a symmetrical triangular time function, viz. 

= 1 - d-J, \t\£Tm, m 

= 0, \t\^Tm. 

The corresponding frequency function is 

Qlif) = T.„ (sin vrA2 = Ttn(diIfTj\ 
\ vTm / 

Except for scale factors, this frequency function behaves as shown in 
Fig. 14. 

The third transform-pair involves a so-called Dime function as the 
time function. The Dirac function is not a function in the strict mathe- 
matical sense. It is called a "measure" by L. Schwartz.21 For our pur- 
poses, it will only be necessary to identify 6{i — to) ■ dt formally with 
dhit — to) where h(J, — U) is Heaviside's unit-step function, viz., 

hit - to) = 0, t < to 

= 1, t> to 

and to interpret all integrals as Stieltjes integrals. Hence if the time 
function (to use the term loosely) is 

Git) = 8it - to) 

then, the corresponding frequency function is 

S(f) = e-iui0. 

It should he noted that while 5(£ — if) is easily formally transformed 
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into a frequency function, the latter is not so readily transformed into 
the original time function. 

The fourth transform-pair involves a symmetrical pair of Dirac func- 
tions as the frequency function. Thus, the time function 

G[t) — cos idfyt (ojo = 27r/o) 

corresponds to the frequency function 

>S'(/) = M5{/ + /o) + 5(/ - /„)]. 

If the reader is disturbed over the fact that we are evidently going to 
base our analysis, at least initially, on the use of Dirac functions, he 
should note that Dirac functions are always paired with functions which 
are used widely and freely in transmission theory although they are not 
realistic in a physical sense. Functions of time, such as cos wni, which 
represent an infinitely long past and future history of activity, are not a 
bit more realistic in a physical sense than are "infinitely sharp" lines in 
the frequency spectrum. Similarly, functions of frequency, such as 
exp(—foiio), whose absolute values do not vanish as/—> oo, are not a bit 
more realistic than impulsive "functions" of time. Nevertheless, as we 
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will see later on, these unrealistic pairs may be used as convenient bases 
for a wide variety of realistic pairs. They thus serve a very useful purpose. 

The fifth transform-pair involves a finite Dirac comb as the time func- 
tion, viz. 

Vm{/; At) = ^ dit + mAt) + At- 15 8{t - qAt) + ^ 5^ - mAt). 

This is clearly a discrete approximation to Z)o(0 for Tm — m-At. The 
corresponding frequency function, which is easily worked out with the 
help of the third transform-pair (summing the exponential terms before 
introducing trigonometric equivalents), is 

Qo{f;At) = At cot <^-shimuAt = 2(m-At) cos Uf-At) 

Except for a scale factor, the initial behaviour of this frequency function 
is illustrated in Fig. 9. Clearly, since cos 0 = dif 0 = 1, the limit of 
Q0(/; AO, when At ^ 0 with m-At = Tm held constant, is Qo(f). This 
corresponds to the formal convergence of Vm{0 AO to A(0- 

We have defined this finite Dirac comb with a half-sized Dirac func- 
tion at each end because the corresponding frequency function has 
smaller side lobes, relative to the main lobe, than for the finite Dirac 
comb with a whole Dirac function at each end. This is easily seen from 
the fact that the effect of adding a further half-sized Dirac function at 
each end of Vm(0 AO is to add At • cos muAt to QoOl ^0- 

The frequency function Cb(/; AO is periodic, with a period of 1/At cps. 
It is symmetrical about every integral multiple of 1/(2A0 cps. Thus, it 
has an absolutely maximum value of 2m ■ At at the integral multiples of 
l/At cps. It is zero at the integral multiples of l/{2mA0 cps which are 
not integral multiples of 1/At cps. For large values of m and small values 
of wAt, it behaves approximately like Quij)- 

The sixth transform-pair involves an infinite Dirac comb in time, and, 
as it turns out, also an infinite Dirac comb in frequency. The time func- 
tion is the formal limit of Vm(0 AO as m — > <», namely, 

q=oO 
V(0 At) = At- 22 - ?A0. 

The corresponding frequency function is 

40 
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This may be surmised from the fact that 
* 1/(2 A () 
/ Qoif; At) df = 1 for any m 
J-l/(2AO 

while 

lim [ Qo(f;dt) dj = - lim >Sf(2x»ieA0, ( where Siix) = [ dy 
m-t-co 1—e IT m-*oo \ " 

= 1 for any « in 0 < e < . 
ZAt 

The result may indeed be obtained by applying the fourth transform- 
pair with Tm — m- At to the formal Fourier series representation of the 
infinite comb 

Af) = 1 + 2 S cos . ?=i At 
Since 

Vm(i; At) = Z)o(0'V(i; At) 

we also have, as we shall see in the next section, 

Qoif', At) = Q„if) * A (/; 1) 

The seventh transform-pair arises from the sixth by dividing by At 
on both sides. 

a.3 Convolution 

If G(t) = Gi(t)-Gi{t), then the Fourier transform of G{t) may be ex- 
pressed in terras of those of Gi{t) and G^t) as follows. 

S{f) = r Grit)-G.iD-e-^ dt, 
V™qo 

= r Giio ■ r r &© • e-""• e-'- v—oo _ V—QO ^_\ 

= f_l [£ dt, 

= r Stij- s2{it) di J—CO 
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This relation, in which 5i(/) and &>(/) are interchangeable, is commonly 
expressed in the symbolic form 

S{f) - £,(/) * S2{f). 

The implied operation on Si{f) and >?2(J) is called a convolution. In par- 
ticular, iS(/) is said to be the convolution of Syif) with S2U). 

Similarly, if S{f) = Si<J) ■ S^f), then 

G(t)= I Gi(i — X) • GoM d\ 

— Gi(0 * Gzit). 

Thus, multiplication and convolution constitute an operational trans- 
forni-pair. 

(Convolution is often called by a variety of names such as Superposi- 
tion theorem, Faltungsintegral, Green's theorem, Duhamel's theorem, 
Borel's theorem, and Boltzmann-Hopkinson theorem.) 

It may be noted in the detailed derivation above (putting / - 0), 
that 

f G,(l)-G,{t) dl = SCO)•&(/)•# 

where <S,*:(/) is the complex conjugate of »Si(,f). This is Parseval's theorem 
of which a very useful special case is 

f ' [GWl2 dt= [j S(f) r df. 

An example of convolution is supplied by the symmetrical triangular 
time function in the second transform-pair. This time function is the 
convolution of two symmetrical rectangular time functions from the 
first transform-pair, with appropriate scalar adjustments. Another 
example is the infinite Dirac comb V(t; At), which may be regarded as 
the convolution of the finite Dirac comb Vm(t; At) with the infinite 
Dirac comb A (I; 2mAt), that is 

V(/; At) = Vm(t; At) * A(t; 2mAt). 

As the reader may easily verify, this corresponds to 

Convolution of time f unctions occurs in communications systems when- 
ever a signal is transmitted through a fixed linear network. If the input 
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signal is Gi{t), and if the impulse response of the network is W{t), then 
the output signal is* 

Git) = I Wit - X) • GiiX) d\ 

= IF it) * Giit). 

The so-called linear distortion of the signal due to transmission through 
the network can be (and occasionally is) examined in terms of the effects 
of convolution, but the common practice among circuit engineers is to 
conduct the examination in terms of the corresponding frequency func- 
tions. There are good reasons for this common practice. The most im- 
portant of these reasons are: 

1. The relation between the frequency functions is simpler, viz. 

Sif) = V(f)-Siif) 

where V(f) is the transfer function of the network. 
2. The effects of amplitude distortion of the signal and of phase dis- 

tortion (of the unmodulated signal) may be examined independently. 
While phase distortion is critical in the transmission of pictures (fac- 
simile), it is relatively unimportant in the transmission of speech or 
music. 

3. The transmissiqn characteristics of fixed linear networks are most 
easily calculated or measured accurately in terms of frequency rather 
than time. 

4. Fixed linear network design techniques based on frequency func- 
tions are today much further developed (simpler, more powerful, and 
more versatile) than those based on time functions. 

Convolution of frequency functions occurs in communications systems 
whenever a carrier wave is amplitude-modulated by a signal. If the input 
signal is Cti(0j and if the carrier wave is cos ud, then the output signal, 
with suppressed carrier, is 

Git) = Giit) - cos ud 

* It may be of some help here to think of X as "excitation time", and of i as 
"response time". In the equivalent formulation 

Git) = f W(r)-Gi(l - t) (It 
J—00 

we may think of r = i — X as the "age" of input data at response time. 
At this point attention is called to a device which will be used many times to 

simplify analysis, which is to use — and + w as limits of integration, letting the 
integrand take care of the effective range of integration. In this case, if (?i(X) = 0 
for \ < It, , and TF(t) = 0 for r < 0, the effective range of integration would be 

< X < f or 0 < t < < — . 
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and the relation among the corresponding frequency functions is 

The convolution of frequency functions corresponding to the amplitude- 
modulation of a carrier wave is so naturally visualized simply as shifting 
the signal spectrum (frequency function) that it is almost never vis- 
ualized in any other way. It should be observed, however, that this 
point of view depends critically upon the two-sided specification of the 
signal spectrum, in amplitude and phase, to give the correct picture of 
the sidebands, whether the amplitude-modulation scheme under con- 
sideration be double-sideband, single sideband, vestigial sideband, or 
two-phase (as in TV chrominance signals). Further, the two-sided specifi- 
cation of the modulated-carrier spectrum is essential for a correct picture 
of the demodulation process used to recover the signal. 

For present purposes we will be interested in convolution not only as 
a tool for the synthesis of new transform-pairs but also as an analytical 
tool. For example, by regarding a time function G(i) as the product of 
two other time functions Gi{() and GbO) we can make use of the re- 
lation S{f) = Si{f) * S'-if) to reach insights about S(f) which do not 
come easily from the explicit form of S(f). 

To make convolution a useful analytical tool, we have to visualize it 
in some convenient way. This may be done in three ways. The relative 
merits of these three points of view depend upon the circumstances in 
any particular case. 

In the first place, convolution may be visualized as a stretching process. 
For example, in the equation 

we visualize G2{\)-dX as a rectangular element of originally con- 
centrated at t X. This rectangular element is then stretched into the 
area under the elementary curve Gi{t — X) • 6'l>(X) -dX regarded as a func- 
tion of t. This elementary curve has the shape of Gi{t) with origin shifted 
to i — X. The total effect at any particular value of t is then obtained 
by integration over X. In this example, we have regarded G\{t) as the 
"stretcher" operating on each element of G2{t). Of course, since convolu- 
tion is commutative, we may interchange the roles of the two functions. 

In the second place, if one of the functions in the convolution consists 
exclusively of Dirac functions, each Dirac function may be regarded as 
a "shifter" operating on the other function in the convolution. For ex- 

W) = SlU) * I W + /o) + <5(/ - /o)] 

- I Slif + /o) + hSxif-fo). 
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ample, 

5{t — a) * G(t) = f 8(t — a — X)-G(X) dX = G(i — a). 
J—oO 

In the third place, convolution may be visualized as a weighted inte- 
gration with a moving weight function. For example, in the equation 

G(t) = p GiG - X)-(?2{X) dX 

we regard G{t) as the integral of (^(X) with weight function Gi{t — X). 
The position of the weight function with respect to the X scale depends 
upon the value of t. In the event that the weight function has unit area, 
G(t) may be regarded as the moving weighted average of GiiX). (As 
previously noted, the roles of the two functions may be interchanged.) 

As an example of the use of the ideas described above, let us assume 
that we have a function Go{t) which is zero outside of the interval 
0 < i < T, and for which the frequency function is Sa(f). Let us gen- 
erate a periodic function G(i) by convolving Goit) with A {I; T). Then, 
since 

G{i) = Go(0 * A{1\ T) 

the frequency function corresponding to G{t) is, from Item 7 of Table IV, 

S(S) = &(/)-v(/; i). 

As we expect, S{f) consists of "lines" (of infinite height but finite area) 
at uniform intervals of 1/T cps. The complex intensities (areas) of these 
lines represent the amplitudes and relative phases of the terms in the 
conventional Fourier series representation of G{i). Thus, 

G{t) = r S(f)-eiutdf 
J—oo 

As a second example, which is in a sense the dual of the first, let us 
assume that we have a function Goit) for which the frequency function 
Soif) is zero outside of the band -/o < f < fo ■ Let us generate a discrete 
time series G{t) by sampling Goit) at uniform intervals of l/(2/o) seconds. 
If we regard sampling as a multiplication by (or as amplitude-modula- 
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tion of) an infinite Dirac comb, then 

Gil) = aw-A {t-, 20. 

Hence, the frequency function corresponding to G{t) is 

S(/) = &(/) ♦ V(/;2/o), 

or, explicitly, 

S(/) = 2/„. E S„u - 2qfa). q=—oo 

If this frequency function is multiplied by a frequency function Siif), 
where 

Si(/) = L 1/1 </o 
4/o 

-0, 1/| >/o 

it will revert to So(f). Thus, 

Si(f) ■ S{f) = Soif). 

Hence, if Gi{t) is the time function corresponding to namely, 

aw^fe COot 

then 

Cnit) * G(t) = ^(O- 

Thus, sampling Go{i) to get the discrete time series G{t), and convolving 
(7(0 with Gi{t), restores Go(0 exactly. This result reflects the well-known 
sampling theorem in information theory. The effect of sampling (?o(0 at 
uniform intervals of other than l/{2/o) seconds is readily visualized. 

a.4 Windows 

If a time function is even (and of course real), the corresponding fre- 
quency function is real (and of course even), and conversely. These cir- 
cumstances will prevail when we deal with autocovariance functions, 
power spectra, and appropriate weight functions. Under these circum- 
stances, the weight functions will be called windows. Such windows will 
1)0 considered in transform-pairs, and the members of any pair will be 
distinguished as the lag window, and the spectral window. 
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Time windows convolved with periodic functions of time have been 
used by Guillemin,22 under the name "scanning functions", to examine 
the behavior of weighted partial sums of Fourier series. We use them in 
Sections B.4 and B.10 where we call them data windows, and their 
Fourier transforms (which may be complex) frequency windows. 

a.5 Realistic Pairs from Unrealistic Pairs 

Transform-pairs which involve Dirac functions are very easily con- 
verted into a wide variety of realistic pairs. As an example, let us con- 
sider the sixth pair (infinite Dirac combs) which requires two convolu- 
tions for conversion to a realistic pair. If we convolve the time functions 
of the first and sixth pairs, taking Tm « At, we get a time function 
which represents an infinite train of narrow7 rectangular pulses of unit 
height. The corresponding frequency function still consists of Dirac 
functions but these now do not have a uniform intensity. If we next 
multiply the time function of this pair by the time function of the first 
pair, taking Tm » At, we get a time function which represents a long but 
finite train of narrow rectangular pulses. The corresponding frequency 
function is continuous and consists chiefly of very narrow peaks of finite 
height approaching zero as / —>• qo . 

A sinusoidal carrier wave of finite though great length may be repre- 
sented as the product of the time functions of the first and fourth pairs 
with Tm » l//o • The corresponding frequency function is continuous 
and consists of very narrow peaks at ±/o, with much lower subsidiary 
peaks of height approaching zero as / —> «. 

If the time function of the third pair is convolved with the time func- 
tion 

Git) = 0 t <0 

= ^-"T oo 

the resultant frequency function is 

1 —italn 
Sif) - 

1 -J- icoT 

of which the absolute value falls off asymptotically like l/f as / —► «>, 
however small !r(>0) might be. 

In line with this discussion, it should be noted that a realistic "white 
noise" spectrum must be effectively band-limited by an asymptotic fall- 
off at least as fast as 1 //2. Under certain circumstances, however, we may 
assume that the spectrum is flat to any frequency. Let us suppose that 
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the spectrum is in fact 

cr" 

'+© 

where cr" is the variance. The autocovariance is 
fit \ 2 —UcITI C(r) = o- -e 

If we transmit this noise through a network with an effective cutoff fre- 
quency well below/c, we may assume for an approximation that 

2 

and, therefore, that 

Kf) ^ ~F 
TTJc 

C(t) 4 S(r) 
TTJc 

although such an assumption is unrealistic if carried to indefinitely high 
frequencies (the input noise would have infinite variance). Hence, if the 
impulse response of the network is TFff), the autocovariance of the out- 
put noise is 

Coniik — tj) = a-ve | J W(Ti)X{ti - n) dn 

■f W(72) • X(ij - ro) dr2| 

QO 

— II 'Citi — ij — ri + 7-2)^x1 dr-i 

^ [ IF(ri)-TT^fn — ti fi- tj) dn. TTJr J-a. 

In particular, the variance of the output noise is 

Co„t(0) ^4 r [TrfrOfdn 
TTJc J-oo 

which by Parseval's theorem is equivalent to 

Cout(0)«4 r I n/) l2df irjc J—M 

where )'{/) is the transfer function of the network. These results are 
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realistic. (The variance of the output noise is finite and approximately 
correct). 

a.6 Some Trigonometric Identities 

In this section we develop some trigonometric identities which will be 
needed later on. We start with the equation 

t cos + 2hu) = Sin (" + 6 + 1)" cos {*+{b- a)u] 
sm u 

which is easily obtained by substituting 
ix i —i* e e 

cos x =    
z 

in the left-hand member, summing the exponential terms and making 
some elementary trigonometric substitutions. By substituting ip ± r/2 
for $ we then get 

sin {ip + 2hu) = ^ ^)u sin -j- (5 _ a)w], 
-a sin u 

Now, setting u — irf, and using the function introduced in Section A.2, 

sin pw _ (sin pTf)/pirf = dif pf 
p sin u (sin irf)/irf dif / 

which, on differentiation, yields 

(f (dif pf) = (dif pf\ ( dif pf _ dif A 
df (dif/) V dif/A dif p/ dif//' 

Before we rewrite our summation formulas in terms of such ratios of 
"dif" functions, we need to appreciate their behavior. For p not very 
small, (dif p/)/(dif /) behaves much like the numerator for pf small 
and moderate. The effect of the denominator is to force symmetry around 
integer multiples of so that the peak at / = 0 is repeated at / = 1,2, 
3, ■ • ■ , thus making its behavior consistent with aliasing. For 0 ^ f S 2 
its other effects are minor, since in this range (2/*-) g dif / g 1, while 
the extrema of dif pf have shrunk from +1 to ±2/(p7r). For most con- 
siderations, therefore, we can approximate this ratio by the numerator. 

We now rewrite our summations as means, introducing (dif p/)/(dif/), 
finding 

!, X) cos (^ + 2hirf) = d-lf-- cos {rp + {b - a) irf] 
a + 0 + 1 -a dif / 

^ H sin (^ + 2Ax/) = dlf ^ + ^ sin 1^ + (5 - a)x/]. 
ci -h o -p 1 —0 un J 
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Differentiating with respect to f, and multiplying through by 

— (a + 6 + 

we get 

t h sin + 2hrf) = ^ ^ ^ 

^ 2 a (a + ^ + 1) sin hp + Q> — a) it/] 

'(a + 6 + I)2 dif (a + 6 + 1)/ 
2ir dif (a + 5 + 1)/ 

a + 6 + 1 dif A \ a wi 
— 2ir dif/ / COS ( a)7r^]^ 

with a similar formula for 
h 

T. h cos {-p + 2hvf). 
~~a 

We shall now use these formulas to obtain results about the average 
values of certain quadratic functions of chance variables X,}, Xi, ■ • ■ , 
Xn . The average value of any such quadratic function can be repre- 
sented in terms of a corresponding spectral window Q(f) in the form 

r Q{f)-2Pif)df 
•JO 

whenever 

ave = [ cos 27rqf-2P{f) df 
Jo 

for all suitable integers t and q, since the quadratic function can be 
expressed as a sum of multiples of terms of the form XtXt+q . To deter- 
mine the height, Q(/n), of the spectral window corresponding to a specific 
quadratic function, it suffices to consider the special case 2P(f) = 
5(/ — /o), for which ave (X/Xi+2} = cos 2-71-5/0, when the average value 
of the quadratic function for such a special set of Xt is exactly Q(/o)- 

If ave ! XtX, +„ j = cos 2irgf, we easily find that 

ave 

1 6 . d 
= ,; , t y , ,, . y cos 2-70/(5 - h) 

a + O+ l-aC-i-O-Tl -c 
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1 •sp dif (c + d.H- 1)/ / 0 r, , /j \ a\ = 2^   rf .   cos {~2irfh H- (rf — cjirf) 
C5 -r O -p 1 —a CllI J 

^ dif (a + b + l)/dif (c + + l)/cos id_c_a + b)rf 

an /air / 

^ dif (a + ?> + 1)/ dif (c + + 1)/ cos (d — c — a + 5)7r/ 

any of these expressions being the spectral window corresponding to 

GrAiipinArrtU 

Making the same assumption, we find that (where n = 2£ + I) 

ave hXhj 

c ( 
= migh cos 2irf{g - h) 

-i -( 

■sp /dif nf\ (n1 dif nf n dif' A . 0 , 
| §9 (difjj diuj " s dif?Jsm 2t/9 

= n
4 /dif w/V /l dif nf _ dif A2 

4 \ dif / / \rr dif nf nir dif / / ' 

These expressions therefore represent the spectral windows correspond- 
ing to 

t \ 2 
E nxA. 
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Glossary op Terms 

A dd-and-subiraci method 

A method of roughly estimating spectra based on successive additions 
by non-overlapping two's followed by a differencing. (18, B.18 and 
B.28.) 

Alias 

In equally spaced data, two frequencies are aliases of one another if 
sinusoids of the corresponding frequencies cannot be distinguished by 
their equally spaced values (this occurs when /j = 2kfN ± /2 for integer 
k); the principal aliases lie in the interval -~fN 5= / ^ fN. (See also 14.) 
(Also aliased, aliasing, etc.) 

Aliased spectrum 

See Spectrum, aliased. 

Analysis, pilot 

Any of a number of methods of obtaining a rough spectrum, including 
the add-and-subtract method (18, etc.) the cascade method (B.18), the 
complete add-and-subtract method (B.18). 

Autocorrelation function 

The normalized autocovariance function (normalized so that its value 
for lag zero is unity). 

A utocovariance function 

The covariance between X(t) and X{i + r) asa function of the lag r. 
If averages of X(t) and X (f, r) are zero, it is equal to the average value 
of X{t) 'X{t + r). It can be defined for a whole ensemble, a whole func- 
tion stretching from — =o to + w, or for a finite piece of a function; in 
the latter case it is called the apparent autocovariance function (see 4). 
Certain related functions are called modified apparent autocovariance 
functions (also see 4). 

Autoregressive series 

A time series generated from another time series as the solution of a 
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linear difference equation. (Usually where previous values of output se- 
ries enter into determination of current value.) 

Average 

The arithmetic mean, usually over an ensemble, a population, or some 
reasonable facsimile thereof. 

Band-limited function 

Strictly, a function whose Fourier transform vanishes outside some 
finite interval (and hence is an entire function of exponential type); 
practically, a function whose Fourier transform is very small outside 
some finite interval. 

Box-car function 

A function zero except over a finite interval, in the interior of which it 
takes a constant value (often +1). 

Cardinal theorem (of interpolation theory) 

A precise statement of the conditions under which values given at a 
doubly infinite set of equally spaced points can be interpolated (with the 
aid of the function (sin {x — Xi))/{x — Xi) to yield a continuous band- 
limited function. (See B.l.) 

Cascade pi'ocess (of spectral estimation) 

A process of spectral estimation in which a single step is repeated 
again and again, each step yielding both certain estimates and a con- 
densed set of data (ready for input to the next step). (See B.18.) 

Chi-square 

A quantity distributed (strictly exactly, but practically approxi- 
mately) as ckj2 + -Ta' + • ■ ■ + xf1 where Xi, x-i, are independent 
and Gaussian, and have average zero and variance unity. 

Continuous power spectrum 

A power spectrum representablo by the indefinite integral of a suit- 
able (spectral density) function. (All power spectra of physical systems 
are continuous.) 
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Convolution 

The operation on one side of a Fourier transformation corresponding 
to multiplication on the other side. (See A.3 for detailed discussion.) 

Cosine transform 

A series (sec 13) or integral (see 2) transform in which a cosine of 
the product of the variables is the kernel. 

Covariance 

A measure of (linear) common variation between two quantities, equal 
to the average product of deviations from averages. (See 1.) 

Cross-spectrum 

The expression of the mutual frequency properties of two series analo- 
gous to the spectrum of a single series. (Because mutual relations at a 
single frequency can be in phase, in quadrature, or in any mixture of 
these, cither a single complex-valued cross-spectrum or a pair of real- 
valued cross-spccira are required.) (Also cross-spectral.) 

Data 

As specifically used in this paper, values given at equally spaced 
intervals of time (often called time series). 

Data window 

A time function which vanishes outside a given interval and which is 
regarded as multiplying data or signals defined for a more extended 
period. (Data windows are usually smooth (graded) to improve the final- 
ity of later frequency analysis.) 

Degrees of freedom 

As applied to chi-square distributions arising from quadratic forms in 
Gaussian (normal) variables, the number of linearly independent squared 
terms of equal size into which the form can be divided. In general, a 
measure of stability equal to twice the square of the average divided by 
the variance. 

Delta-component 

A finite contribution to the spectrum at one frequency (B.10 only). 
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Diffraction function 

UIX =   • 
TTX 

Dirac comb 

An array of equally spaced Dirac functions, usually most of which 
are of equal height. 

Dirac function 

The limit of functions of unit integral concentrated in smaller and 
smaller intervals near zero. (See A.2 for fuller discussion.) 

Distortion 

Failure of output to match input. (Often specified as to kind of failure 
as linear, amplitude, phase, non-linear, etc., cp. A.3.) 

Effective record length 

Actual length of record available reduced to allow for end effects. 
(See 0.) 

Elementary frequency band 

An interval of frequency conveniently thought of as containing "a 
single degree of freedom", equal to the reciprocal of twice the duration 
of observation or record. (Since both sines and cosines may occur, it 
requires two elementary frequency bands to contain "an independently 
observable frequency.") 

Ensemble 

A family of functions (here functions of either continuous or equi- 
spaced time) with probabilities assigned to relevant sub-families. 

Equivalent number (of degrees of freedom) 

See second sentence under degrees of freedom. 

Equivalent width 

The extent of a function regarded as a window as expressed by the 
ratio of the square of its integral to the integral of its square. (See 8.) 

Filtered spectrum 

Spectrum of the output from any process which can be regarded as a 
filter. 
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Folding frequency 

The lowest frequency which "is its own alias", that is, is the limit of 
both a sequence of frequencies and of the sequence of their aliases, given 
by the reciprocal of twice the time-spacing between values, also called 
Nyquist frequency. 

Fourier transform 

Operations making functions out of functions by integration against a 
kernel of the form exponential function of -%/— 1 times frequency times 
time. Often, including here, defined differently for transforming time 
functions into frequency functions than for transforming frequency 
functions into time functions. (See A.l for details.) 

F requency 

A measure of rate of repetition; unless other vase specified, the num- 
ber of cycles per second. The angular frequency is measured in radians 
per second, and is, consequently, larger by a factor of 27r. 

Frequency window 

The Fourier transform of a data window. 

Gaussian 

A single quantity, or a finite number of quantities distributed accord- 
ing to a probability density representable as e to the power minus a 
quadratic form. (Also called normal, Maxwellian, etc.) Also, a function 
or ensemble, distributed in such a way that all finite sections are Gaus- 
sian. (See 1.) 

Hamming 

The operation of smoothing with weights 0.23, 0.54 and 0.23. (After 
R. W. Hamming.) 

Hanning 

The operation of smoothing with weights 0.25, 0.50 and 0.25. (After 
Julius von Hann.) 

Hyper directive antenna 

An antenna or antenna system so energized as to have a more compact 
directional pattern than naturally corresponds to its extent (as measured 
in wavelengths). 
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Impulse response 

The tinie function describing a linear system in terms of the output 
resulting from an input described by a Dirac function. 

Independence (statistical, of estimates) 

In general, two quantities are statistically independent if they possess 
a joint distribution such that (incomplete or complete) knowledge of 
one does not alter the distribution of the other. Estimates are statis- 
tically independent if this property holds for each fixed true situation. 

Independent phases 

An ensemble has independent phases when it can be approximated by 
ensembles consisting of finite sums of (phased) cosines (of fixed fre- 
quencies) whose phases are mutually independent. Continuous spectrum 
and independent phases imply Gaussian character. Every Gaussian 
ensemble has independent phases. 

Inter modulation distortion 

Non-linear distortion, especially as recognized in the output of a 
system when two or more frequencies enter the input simultaneously. 

Joint probability distribution 

Expression of the probability of simultaneous occurrence of values of 
two or more quantities. 

Lag 

A difference in time (epoch) of two events or values considered to- 
gether. 

Lag window 

A function of lag, vanishing outside a finite interval, and either mul- 
tiplying or regarded as multiplying the quantities of a family of quantities 
with differing lags. 

Lagged product 

The product of two values corresponding to different times. (In a 
mean lagged product the lags are usually all the same.) 

Lead 

The negative of lag. 
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Line {in a ■power spectrum) 

Theoretically, and as used in this paper, a finite contribution asso- 
ciated with a single frequency. Physically, not used here, a finite con- 
tribution associated with a very narrow spectral region. 

Lobe 

A bulge, positive or negative, especially in a spectral window. (In most 
spectral windows, a large central main lobe is surrounded on both sides 
by smaller side lobes.) 

Mcan lagged product 

The (arithmetic) mean of products of equally lagged quantities. 

Moving linear combination 

A transformation expressing the values of an output time series as 
linear combinations of values of the input series in specified relations of 
lag (or lead). 

Negative frequencies 

When sines and cosines are jointly represented by two imaginary ex- 
ponentials, one has a positive frequency and the other a negative fre- 
quency. (Not specifiable for a single time function in real terms.) 

Network (linear) 

In this account, an otherwise unspecified physical device which con- 
verts an input function (of continuous time) linearly into an output func- 
tion (of continuous time). 

Noise 

In general, an undesired time-function, or component of a function. 

Non-normality 

Failure to follow a normal or Gaussian distribution. 

Normality 

The property of following a normal or Gaussian distribution. 

Nyquiet frequency 

The lowest frequency coinciding with one of its own aliases, the re- 
ciprocal of twice the time interval between values (same as folding fre- 
quency) . 
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Octave 

An interval of frequencies, the highest of which is double the lowest. 

Pilot (analysis or estimation) 

A process yielding rough estimates of spectral density intended mainly 
as a basis for planning more complete and precise analyses. 

Population 

A collection of objects (in particular, of numbers or of functions), with 
probabilities attached to relevant subcollections. 

Power transfer function 

The function expressing the ratio of output power near a given fre- 
quency to the input power near that frequency. 

Power-variance spectrum 

A function of frequency, in terms of which the variances and covari- 
ances of a family of spectral estimates can be expressed in standard 
form. (See 6 and 14 for details in the continuous and equi-spaced 
cases, respectively.) 

Preemphasis 

Emphasis of certain frequencies (in comparison with others), before 
processing, as an aid to the quality of result. 

Prewhitening 

Preemphasis designed to make the spectral density more nearly con- 
stant (the spectrum more nearly flat). 

Principal alias 

An alias falling between zero and plus or minus the folding or Ny- 
quist frequency. 

Process (random or stochastic) 

An ensemble of functions. (Often composed of functions of time re- 
garded as unfolding or developing.) 

Protection ratio 

The ratio of transmission at a desired frequency to the transmission 
at an undesired alias of that frequency. 
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Recording 

Is spaced when originally taken at equal intervals, mixed when taken 
continuously and processed at equal intervals, continuous when taken 
and processed on a continuous basis. 

Resolution 

A measure of the concentration of a spectral estimate expressed in 
frequency units, here taken (for the important cases) as equal to the 
width of the major lobe. (See B.23.) 

Resolved bands {number of) 

The ratio of the Nyquist or folding frequency to the resolution. 

Sampling theorem (of information theory) 

Nyquist's result that equi-spaccd data, with two or more points per cycle 
of highest frequency, allows reconstruction of band-limited functions. 
(See Cardinal theorem.) 

Serial correlation coefficients 

Ratios of the autocovariances to the variance of a process, ensemble, 
etc. 

Signal 

A time function desired as (potentially) carrying intelligence. 

"Signar 

A function of continuous time, which may be either a signal, a noise, 
or a combination of both. (Contrasted with data, a function of discrete 
time.) 

Single function approach 

A mode of representing certain ensembles by the translations of a 
single time function (in single function terms). 

Smoothed function 

The result of weighted averaging of nearby values of the original 
function. 

Smoothing 

In the narrow sense, forming (continuous or discrete) moving linear 
combinations with unit total weight. 
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Smoothing and decimation 'procedure 

A procedure which may be regarded as the formation of discrete mov- 
ing linear combinations, followed by the omission of all but every kth 
such. (See 17 and B.17.) 

Spectrum (also power spectrum) 

An expression of the second moments of an ensemble, process, etc. (i) 
in terms of frequencies, (ii) in such a form as to diagonalize the effects 
on second moments of time-invariant linear transformations applied to 
the ensemble or process, (adjective: spectral). 

Spectrum, aliased 

For equally spaced data, the principal part of the aliased spectrum 
expresses contributions to the variance in terms of frequencies between 
zero and the Nyquist or folding frequency, all contributions from fre- 
quencies having the same principal alias and sign having been combined 
by addition. (The aliased spectrum repeats the principal part periodically 
with period 2fN . See 14.) 

Spectral density 

A value of a function (or the entire function) whose integral over any 
frequency interval represents the contribution to the variance from that 
frequency interval. 

Spectral density estimates 

Estimates of spectral density, termed raw when obtained from equi- 
spaced mean lagged products by cosine series transformation, refined 
when banned or hammed from raw estimates or obtained by an equiva- 
lent process. (See B.13.) 

Spectral window 

A function of frequency expressing the contribution of the spectral 
density at each frequency to the average value of an estimate of 
(smoothed) spectral density. 

Stationary (enseiiible or random process) 

An ensemble of time functions (or random process) is stationary if 
any translation of the time origin leaves its statistical properties un- 
affected. 
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Superposition theorem 

A statement that the output of a linear device is the convolution of its 
input with its impulse response. (See B.2.) 

Temporally homogeneous 

Sometimes used in place of stationary, especially when speaking of 
stochastic processes. 

Transfer function 

The transfer function of a network or other linear device is a complex- 
valued function expressing the amplitude and phase changes suffered by 
cosinusoidal inputs in becoming outputs. {See A.5.) The square of the 
absolute value of the transfer function is the power transfer function, 
which expresses the factors by which spectral densities are changed as 
inputs become outputs. (See 4.) 

Transmission 

The coefficient with which power at a given frequency contributes to 
power at the (new) principal alias as a result of the application of a 
smoothing and decimation procedure. 

Transversal filtering 

Time domain filtering by forming linear combinations of lagged values, 
use of moving linear combinations for filtering. (See Kallmann32 for the 
origin of this term.) 

Trend 

A systematic, smooth component of a time function (time series), as, 
for example, a linear function of time (a linear trend). 

True 

Often used to refer to average values over the ensemble, as contrasted 
with mean values over the observations. 

Universe 

A collection of objects (numbers, functions, etc.) with probabilities 
attached to relevant subcollections. 

Variance 

A quadratic measure of variability, the average squared deviation 
from the average. 
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White noise 

An ensemble whose spectral density is sensibly constant from zero 
frequency through the frequencies of interest (in equi-spaced situations, 
up to the folding or Nyquist frequency). (The values of equi-spaced 
white noise at different times are independent.) 

Window 

A function expressing, as a multiplicative factor, the tendency or 
possibihty of the various values of some function to enter into some 
calculation or contribute to the average value of some quantity. (See 
data, lag, spectral, etc. for specific instances.) 

Windowless quadratic 

A quadratic expression is windowless if its average value vanishes 
for every stationary ensemble of finite variance (See B.19). 

Window pair 

Two windows related by a Fourier transformation, as lag and spectral 
windows or data and frequency windows. (See A.4 and 4.) 

Zero-frequency waves (cosine and sine) 

The limiting forms of very-low-frequency cosinusoids, namely con- 
stants and linear trends. (See 19.) 

ACKNOWLEDGEMENT 

Many persons have contributed by discussion, questioning and sug- 
gestion to the development of these ideas and techniques. An attempt to 
list all those who have helped during the eight years or so of growth and 
development could not succeed. Thus, we must express our thanks, gen- 
erally, to many colleagues interested in transmission theory, statistics 
or computation, here in Bell Telephone Laboratories, and at Princeton 
and other universities, and to many scientists and engineers who have 
used the techniques to solve their own problems, and by real examples 
have shown us what had to be considered. Special thanks must go to 
Miss Dorothy T. Angell for patient and careful computations during 
numerical exploration, and to R. W. Hamming for continuing active 
discussion, especially of computational and expository problems. A 
careful reading of the final draft by S. 0. Rice led to the elimination of 
many slips and ambiguities (of course those which remain are the authors' 
sole responsibility). 



MEASUREMENT OF POWER SPECTRA 281 

REFERENCES (PARTS I AND II) 

1. N. R. Goodman, On the Joint Estimation of the Spectra, Cospeclnun and Quadra- 
ture Spectratn of a Tivo-Dimensional Stationary Gaussian Process, Scientific 
Paper No. 10, Engineering Statistics Laboratory, New York University, 
1957. {Ph.D. Thesis, Princeton University). 

2. G. I. Taylor, Statistical Theory of Turbulence, Proc. Roy. Soc. (London), 
A151, pp. 421-17S, 1035. 

3. S. O. Rice, Mathematical Analysis of Random Noise, B.S.T.J., 23, pp. 282- 
332, July, 1944; 24, pp. 46-156, Jan. 1936. (This article also appears in >Se- 
lecied Papers on Noise and Stochastic Processes, edited by N. Wax, Dover 
Publ., New York, 1954, pp. 133-294.) 

4. J. W. Tukey, The Sampling Theory of Power Spectrum Estimates, in Sym- 
posimn on Applications of Autocorrelation Analysis to Physical Problems, 
Woods Hole, June 13, 1949. NAVEXOS-P-736, Office of Naval Research. 

5. M. S. Bartlett, Poriodogram Analysis and Continuous Spectra, Biometrika, 
37, pp. 1-16, 1950. 

6. W. Marks and W. J. Pierson, The Power Spectrum Analysis of Ocean-Wave 
Records, Trans. Am. Geoplp'sical Union, 33, pp. S34-844, 1952. 

7. H. Press and J. C. Houholt, Some Applications of Generalized Harmonic 
Analysis to Gust Loads on Airplanes, J. Aero. Sciences, 22, pp. 17-26, 1955. 

8. H. A. Panofsky, Meteorological Applications of Power Spectrum Analysis, 
Bull. Am. Meteorological Soc., 36, pp. 163-166, 1955. 

9. G. P. Wadsworth, E. A. Robinson, J. G. Bryan, and P. M. Hurley, Detection 
of Reflections on Seismic Records by Linear Operators, Geophysics, 18, pp. 
539-586, 1953. (Also see later reports, Geophysical Analysis Group, M.I.T.) 

10. M. S. Bartlett and J. Mehdi, On the Efficiency of Procedures for Smoothing 
Periodograms from Time Series with Continuous Spectra, Biometrika, 42, 
pp. 143-150, 1955. 

11. M.S. Bartlett, An Introduction to Stochastic Processes, Cambridge Univ. Press, 
Cambridge, England, 1955. 

12. U. Greuandor and M. Rosenblatt, Statisiical Analysis of Stationary Time 
Series, Wiley, New York, 1957. 

13. J. W. Tukey and C. P. Winsor, Note on Some Chi-Square Normalizalinns, 
Memorandum Report 29, Statistical Research Group, Princeton, 1949. 

14. G. Groves, Numerical Filters for Discrimination Against Tidal Periodicities, 
Trans. Am. Geophysical Union, 36, pp. 1073-1084, 

15. II. H. Seiwell, The Principles of Time Series Analysis Applied to Ocean Wave 
Data, Proc. Nat. Acad. Sciences, 35, pp. 518-528, Sept., 1949. 

16. H. R. Seiwell and G. P. Wadsworth, A New Development in Ocean Wave 
Research, Science, 109, pp. 271—274, 1949. 

17. D. Brouwer, A Study of Changes in the Rate of Rotation of the Earth, Astro- 
nomical J., 57, pp. 126-146, 1952. 

IS. Brouwer, pp. 135, 138. 
19. G. A. Campbell and R. M. Foster, Fourier Integrals for Practical Applications, 

B.S.T.J., 7, pp. 639-707, 1928; also, Van Nostrand, New York, 1942. 
20. E. A. Guillemin, Introductory Circuit Theory, Wiley, New York, 1953,p. 267. 
21. L. Schwartz, Theorie des Distributions, Vols. I and II, Hermannet Cie, Paris, 

1950. (See also Halperiu; Friedman; and Clavier, noted in Bibliography.) 
22. E. A. Guillemin, The Malhemalics of Circuit Analysis, Wiley, 1949, pp. 485-501. 
23. H. Nj'quist, Certain Topics in Telegraph Transmission Theory, Trans. 

A.I.E.E., pp. 617-644, April, 1928. 
24. J. M. Whittaker, Interpolatory Function Theory, Cambridge Univ. Press, 

Cambridge, England, 1935, Chapter IV. 
25. W. R. Bennett, Methods of Solving Noise Problems, Proc. I.R.E., 44, 1956. 
26. II. W. Hamming and J. W. Tukey, Measuring Noise Color, unpublished 

memorandum. 
27. C. L. Dolph, A Current Distribution for Broadside Arrays Which Optimizes 

the Relationship between Beam Width and Side-Lobe Level, Proc. I.R.E., 
34, pp. 335-348, 1946. 

28. P. Jaquinot,QuelquesrecherchessurIesruiesfaibledans les spectres optiques, 
Proc. Phys. Soc. (London), 63B, pp. 969-979, 1950. 

29. P. Boughon, B. Dossier, and P. Jaquinot, Determination des fonctions pour 



282 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958 

1'amelioration des figures de diffraction dans le spectroscope, C. R. Acad. 
Sci. Paris, 223, pp. 061-663, 1946- 

30. L. Isserlis, On a Formula for the Product-Moment Coefficient of Any Order 
of a Normal Frequency Distribution in Any Number of Variables, Bio- 
met rika, 12, pp. 134-139, 1918- 

31. H. Hotelling, Relations Between Two Sots of Variates, Biometrika, 28, pp. 
321-377, 1936. 

32. H. E. Kallmann, Transversal Filters, Froc. I.R-E., 28, pp. 302-310, 1940._ 
33. H. Wold, A Study^ in the Analysis of Stationary Time Series, 2nd Edition, 

Almquist and Wiksell, Stockholm, 1954. 
34. Daniel B. DeLury, Values and Integrals of the Orthogonal Polynomials np to 

n = $6, Toronto, University Press, 1960. 
35. Ronald A. Fisher and Frank Yates, Staiistical Tables for Biological, Agricul- 

tural and Medical Research, Edinburgh, Oliver and Boyd, 4th Ed. 1953, 
(especially Table XXII). 

36. William E. Milne, Numerical Calculus, Princeton University Press, 1949. 
37. Cornelius Lanczos Tables of Chebyshev Polynomials S„(x) and Cn(x), Nat'l. 

Bur. Stds. App'd. Math. Series 9, Washington, Gov't. Print. Off., 1952, 
(especially pp. xiv to xvi). 

38. Cornelius Lanczos, Trigonometric Interpolation of Empirical and Analytical 
Functions, J. Math. Phys., 17, pp. 123-199, 1938. 

39. Robert C. Minnick, Tshehycheff Approximations for Power Series, J. Assoc. 
Comp. Machinery, 4, pp. 487-504, 1957. 

40. J. C. P. Miller, Two Numerical Applications of Chebyshev Polynomials, Proc. 
Roy. Soc. Edinb., 62, pp. 204-210, 1946. 

41. II. Labrouate and Y. Labrouste, Harmonic Analysis by Means of Linear 
Combinations of Ordinates, J. Terr. Magnetism, 41, 1936. 

42. H. Labrouste and Y. Labrouste, Analyse des graphiques resultant de la super- 
position de sinusoides, Mem. Acad. Sci. Inst. France, (2), 64, No. 5, 1941. 
(See also Ann. de ITnst. de Phys. du Globe de Univ. de Paris, 7, pp. 190-207; 
9, pp. 99-101; 11, pp. 93-101; 14, pp. 77-91, for much of this material.) 

43. H. Labrouste and Y. Labrouste, Tables Numeriques precedes d'un expose de la 
melhode d'analyse par combinaison d'ordonnees, Presses Univ., Paris, 1943. 

BIBLIOGRAPHY 

In addition to the articles cited in the text, the reader's attention is called 
to the additional titles below. 

P. Boughon, B. Dossier, and P. Jaquinot, Apodisation des raies spectrales au 
raoyen d'ecrans absorbents, J. Recherches C.N.R.S., No. 11, pp. 49-69, 1950. 

P. A. Clavier, Some Applications of the Laurent Schvvarz Distribution Theory 
to Network Problems, Proceedings of the Symposium on Modern Network 
Synthesis, I!, Polytechnic Institute of Brooklyn, 1955. 

L. Couffignal, La Methode de H. Labrouste pour la recherche des periodes, Ciel 
et Terre, 66, pp. 78-86, 1950. 

B- Friedman, Principles and Techniques of Applied Mathematics, Wiley, New 
York, 1956, Chapter 3. 

I, Halperin, Introduction to the Theory of Distributions, University of Toronto 
Press, Toronto, 1952. 

B. Mazelsky, Extension of the Power Spectrum Methods of Generalized Har- 
monic Analysis to Determine Non-Gaussian Probability Functions of Ran- 
dom Input Disturbances and Output Responses of Linear Systems, J. Aero- 
nautical Sciences, 21, pp. 145-153, March, 1964. 

H. A. Panofsky and I. van der Horen, Spectra and Cross-Spectra of Velocity 
Components in the Mesometeorological Range, Quart. J. Roy. Meteorol. Soc., 
81, pp. 603-605, 1955. 

H. A. Panofsky and R. A. McCormack, The Vertical Momentum Flux at Brook- 
haven at 109 Meters, Geophys. Res. Papers (USAF, Cambridge Research 
Center), No. 19, pp. 219-230, 1952. 

H. Press and J. W. Tukey, Power Spectral Methods of Analysis and Their 
Application to Problems in Airplane Dynamics, Flight Test Manual, NATO, 
Advisory Group for Aeronautical Research and Development, IV-C, pp. 1- 
41, June, 1956. (Reprinted as Bell System Monograph No. 2606.) 



Recent Monographs of Bell System Technical 

Papers Not Published in This Journal* 

Asiikin, A. 

Electron Beam Analyzer, Monograph 2868. 

Biscker, G. E. 

Dependence of Magnetron Operation on Radial Centering of Cathode, 
Monograph 2850. 

Bowers, F. K. 

What Use is Delta Modulation to the Transmission Engineer? Mono- 
graph 2852. 

Boyet, H., see Weisbaum, S. 

Buoyer, A. P., see Schlabach, T. D. 

Brown, G. C., see Rose, D. J. 

Buck, T. M., and McKim, F. S. 

Experiments on the Photomagnetoelectric Effect in Germanium, 
Monograph 2869. 

Buehlbr, E. 

Contribution to the Floating Zone Refining of Silicon, Monograph 
2870. 

Chynoweth, A, G., and McKay, K. G. 

Internal Field Emission in Silicon p-n Junctions, Monograph 2871. 

Clemency, W. F., Romanow, F. F. and Rose, A. F. 

The Bell System Speakerphone, Monograph 2853. 

* Copies of these monographs maj' be obtained on request to the Publication 
Department, Bell Telephone Laboratories, Inc., 463 West Street, New York 14, 
N. Y. The numbers of the monographs should be given in all requests. 

2S3 



284 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958 

Emling, J. W. 

General Aspects of Hands-Free Telephony, Monograph 2855. 

Garn, P. D. 

Automatic Recording Balance, Monograph 2849, 

Glass, M. S. 

Straight-Field Permanent Magnets of Minimum Weight for TWT 
Focusing, Monograph 2873. 

Harker, K. J. 

Nonlaminar Flow in Cylindrical Electron Beams, Monograph 2857. 

McCall, D. W. 

Cell for the Determination of Pressure Coefficients, Monograph 
2872. 

McKay, K. G., see Chynowcth, A. G. 

McKim, F. S., see Buck, T. M. 

Mendizza, A., see Sample, C. H. 

Montgomery, H. C. 

Field Effect in Germanium at High Frequencies, Monograph 2858. 

Rider, D. K., see Schlabach, T. D. 

Rose, A. F., see Clemency, W. F. 

Rose, D. J. and Brown, S. C. 

Microwave Gas Discharge Breakdown in Air, Nitrogen, and Oxygen, 
Monograph 2861. 

Romanow, F. F., see Clemency, W. F. 

Sample, C. II., Mendizza, A. and Teel, R. B. 

Corrosion Behavior and Protective Value of Electro-Deposited Zinc 
and Cadmium, Monograph 2862. 

Schlabach, T. D., Wright, E. E., Broyer, A. P. and Rider, D. K. 

Testing of Foil-Clad Laminates for Printed Circuitry, Monograph 
2863. 



MONOGRAPHS 285 

Seidel, H. 

Synthesis of a Class of Microwave Filters, Monograph 2835. 

Teel, R. R., see Sample, C. H. 

Sherwood, R. C., see Williams, H. J. 

Weisbaum, S. and Bo yet, H. 

Field Displacement Isolators at 4, 6, 11, and 24 Kmc, Monograph 
28GG. 

Williams, H. J. and Sherwood, R. C. 

Magnetic Domain Patterns on Thin Films, Monograph 2867. 

Wright, E. E., see Schlabach, T. D. 

Contributors to This Issue 

R. B. Blackman, A.B., California Institute of Technology, 1926; 
Bell Telephone Laboratories, 1926-. From 1926 to 1936, Mr, Blackman 
was engaged in physical research in hearing, acoustics and electro- 
mechanical filters. Since 1936, he has been engaged in applied mathe- 
matical research, and in military problems, specializing in linear circuits, 
and in data-smoothing and prediction. He is a member of Tau Beta Pi 
and I. R. E. 

Marilyn J. Huyett, A.B., Susquehanna University, 1954; Bell Tele- 
phone Laboratories, 1954-57, At the Laboratories, Miss Huyett was 
concerned with statistical research for the reliability group at Allen- 
town, where she had a great deal of experience with IBM computing 
machines. She is a member of the American Statistical Association. 
While at Susquehanna University, she received the Stine Mathematical 
Prize, an award for proficiency in mathematics. Miss Huyett is now 
studying toward an advanced degree at Stanford University. 

Gerald Kronacher (Erratum) — In the November, 1957, issue of 
the Bell System Technical Journal, Mr. Kronacher was listed errone- 
ously us Assistant Professor at the Federal Institute of Technology, 



MONOGRAPHS 285 

Seidel, H. 

Synthesis of a Class of Microwave Filters, Monograph 2835. 

Teel, 11. B., see Sample, C. H. 

Sherwood, R. C., see Williams, H. J. 

Weisbaum, S. and Boyet, H. 

Field Displacement Isolators at 4, 6, 11, and 24 Kmc, Monograph 
2860. 

Williams, H. J. and Sherwood, R. C. 

Magnetic Domain Patterns on Thin Films, Monograph 2867. 

Wright, E. E., see Schlabach, T. D. 

Contributors to This Issue 

R. B. Blackman, A.B., California Institute of Technology, 1926; 
Bell Telephone Laboratories, 1926-. From 1926 to 1936, Mr. Blackmail 
was engaged in physical research in hearing, acoustics and electro- 
mechanical filters. Since 1936, he has been engaged in applied mathe- 
matical research, and in military problems, specializing in linear circuits, 
and in data-smoothing and prediction. He is a member of Tau Beta Pi 
and I. li. E. 

Marilyn J, Huyett, A.B., Susquehanna University, 1954; Bell Tele- 
phone Laboratories, 1954-57. At the Laboratories, Miss Huyett was 
concerned with statistical research for the reliability group at Allen- 
town, where she had a great deal of experience with IBM computing 
machines. She is a member of the American Statistical Association. 
While at Susquehanna University, she received the Stine Mathematical 
Prize, an award for proficiency in mathematics. Miss Huyett is now 
studying toward an advanced degree at Stanford University. 

Gerald Kronaciier (Erratum) — In the November, 1957, issue of 
the Boll System Technical Journal, Mr. Kronaeher was listed errone- 
ously as Assistant Professor at the Federal Institute of Technology, 



28G THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958 

Zurich, Switzerland. Mr. Kronacher was actually Assistant to a Pro- 
fessor at that Institute. 

George J. Levenbach, E.E., University of Technology, Delft, 
Netherlands, 1933; Philips Telecommunication Industries, Netherlands, 
1934-39, 1951-53; Governmental Telephone Administration, Bandung, 
Indonesia, 1940-50; Bell Telephone Laboratories, 1953-. Mr. Levenbach 
is involved in the application of statistical methods in the development 
of components. He is a member of I. R. E., American Society for Quality 
Control, American Statistical Association, Royal Institute of Dutch 
Engineers, Association of Delft Engineers, Netherlands Association for 
Statistics and Netherlands Association of Radio Engineers. He served 
as a part-time professor in Electrical Engineering at the University of 
Indonesia from 1948 to 1950. 

R. B. Murphy, A.B., 1943, Ph.D., 1951, Princeton University; In- 
structor and Assistant Professor, Carnegie Institute of Technology, 
1949-52; Bell Telephone Laboratories, 1952-. A member of the Quality 
Assurance Department, he specializes in the statistical aspects of quality 
assurance. During World War II, Mr. Murphy served as a radar officer 
in the U. S. Marine Corps. He is a member of Phi Beta Kappa, Sigma Xi, 
Institute of Mathematical Statistics, American Statistical Association, 
Econometric Society, American Mathematical Society and American 
Society for Quality Control. 

Paul S. Olmstead, B.S., 1919, Ph.D., 1923, Princeton University; 
Western Electric Co., 1922-25; Bell Telephone Laboratories, 1925-. He 
is a consulting analyst on major military projects. He has l.cen concerned 
with statistical consultation work on chemical problems; matters in- 
volving telephone equipment used outside buildings; carbon research for 
transmitters; inspection engineering and statistical quality control. Mr. 
Olmstead served as lecturer in Engineering Statistics for Stevens Insti- 
tute of Technology, 1939-42, and Consultant in Quality Control at 
Princeton University, 1945. He was appointed an Honorary Professor of 
Statistical Quality Control at Rutgers University in 1954. Author of 
some thirty articles for scientific and technical magazines. Fellow, 
American Physical Society, A.A.A.S., American Statistical Association 
and American Society for Quality Control. Member, American Math- 
ematical Society, Institute of Mathematical Statistics, Econometric So- 
ciety, American Society for Testing Materials, American Institute of 
Physics, Biomctric Society, Operations Research Society of America 
and Sigma Xi, 



CONTRIBUTORS TO THIS ISSUE 287 

Spencer W. Roberts, B.S.E. (E.E.) and B.S.E. (Math.), 1947, M.S., 
1948, University of Michigan. Univ. of Mich. Engineering Research 
Inst., 1947-50; General Motors Corp., 1950-51; Vitro Corp., 1951-52; 
Bell Telephone Laboratories, 1952-. Mr. Roberts began his work in 
systems engineering, and now is engaged in quality assurance studies. 
He is a member of Tau Beta Pi, Sigma Xi, Phi Kappa Phi, American 
Statistical Assn., and the lust, of Math. Statistics. 

Walter A. Siiewiiart, B.A., 1913, M.A., 1914, University of Illinois; 
Ph.D., 1917, University of California. Instructor in Physics, LaCross 
(Wis.) Normal School, 1917; Western Electric Company Research De- 
partment, 1918; Bell Telephone Laboratories, 1925-1956 (retired). Mr. 
Shewhart has specialized in the application of statistics in engineering, 
and in the theory and practice of quality control. While at the Labora- 
tories, he developed the statistical quality control chart which bears his 
name. Mr. Shewhart has been a lecturer on applied statistics at educa- 
tional institutions here and abroad, and from 1936-1944 was a consultant 
on ammunition specifications for the War Department. He has served in 
an official capacity on numerous other government and professional com- 
mittees, and is the author of two books and many articles on quality 
control. Among a long list of awards are the 1955 Holley Medal pre- 
sented by the American Society of Mechanical Engineers, and the first 
recipient of the Shewhart Medal, an award established in his honor in 
1948 by the American Society for Quality Control. In 1954, Mr. Shew- 
hart was appointed the first Honorary Professor in Statistical Quality 
Control at Rutgers University. Mr. Shewhart retired from Bell Labora- 
tories on April 1, 1956. 

David Slepian, University of Michigan, 1941-1943; M.A. and Ph.D., 
Harvard University, 1946-1949; Bell Telephone Laboratories, 1950-. 
Mr. Slepian has been engaged in mathematical research in communica- 
tion theory, switching theory and theory of noise. Parker Fellow in 
physics, Harvard University 1949-50. Member of I.R.E., American 
Mathematical Society, the American Association for the Advancement 
of Science, Society for Industrial and Applied Mathematics and 
Sigma Xi. 

Milton Sobel, B.A., 1940, College of the City of New York; M.A., 
1046 and Ph.D., 1951, Columbia University. U. S. Census Bureau, 
.statistician, 1940-41; U. S. Army War College, statistician, 1942-14; 
Columbia University, department of mathematics, 1946-48; Wayne 
University, assistant professor of mathematics, 1950-52; Columbia Uni- 
versity, visiting lecturer, 1952; Cornell University, fundamental research 



288 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958 

in mathematical statistics, 1952-54; Bell Telephone Laboratories, 1954-. 
He has been engaged in fundamental research on life testing and re- 
liability problems with special application to transistors. Consultant on 
many Bell Laboratories projects. Member of Institute of Mathematical 
Statistics, American Statistical Association and Sigma Xi. Fellow of 
Inst. of Math. Statistics. 

John W. Tukey, Sc.B. Chem., 1936, Sc.M., 1937, Brown University; 
M.A., 1938, Ph.D., 1939, Princeton University. Mathematics Depart- 
ment, Princeton U., 1939-. Bell Laboratories, 1945-. Mr. Tukey's work 
has covered development of new statistical techniques; broad systems 
analysis and synthesis problems in studies of highly complex weapons 
systems; and other problems with mathematical or statistical aspects, 
He is the author of numerous articles, and is a co-author with W. G. 
Cochran and Frederick Mosteller of The Statistical Problems of the Kinsey 
Report. Mr. Tukey is co-inventor with C. E. Shannon and J. R. Pierce 
of a cathode ray device. He is a member of the American Statistical 
Assoc., American Assoc. for Adv. of Science; Amer. Soc. for Quality 
Control, Sigma Xi, Biometric Society, Amer. Math. Soc., Math. Assoc. 
of America, Inst. of Math. Statistics, N. Y. Academy of Science, Econo- 
metric Society, Amer. Society for Human Genetics, Assoc. for Computing 
Machinery, Royal Statistical Soc., Amer. Assoc. of Univ. Prof., Oper- 
ations Research Soc, of America, Amer. Assoc. of Math. Teachers, Soc. 
for Industrial and Applied Math., International Statistical Inst., and the 
Cosmos Club. 


	bstj37-1-1
	bstj37-1-23
	bstj37-1-55
	bstj37-1-83
	bstj37-1-115
	bstj37-1-135
	bstj37-1-163
	bstj37-1-185
	bstj37-1-283
	bstj37-1-285

