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A new experimental artificial larynx, which makes use of transistors and 
miniaturized components to provide a voice for those who have lost the use 
of their vocal cords hy surgical removal or paralysis, is described. The 
larynx operates hy introducing a suhstituie for the sound of the vocal cords 
into the pharyngeal cavity hy means of a vibrating driver held against the 
throat. The acoustic principles of normal and artificial speech production 
that were followed in arriving at the new design are presented, along with 
descriptions of the transistor circuit and its operating characteristics. 

I. INTRODUCTION' 

It is sometimes necessary, for the health of an individual, to remove 
his entire larynx by surgery. His trachea is then terminated at an open- 
ing (stoma) in the throat , and no connection between the lungs and the 
vocal tract remains. Since the normal source of energy for the speech 
process is provided by the lungs, such an individual loses his natural 
means of speaking. 

These persons are usually advised by their surgeons and speech thera- 
pists to learn esophageal speech, and classes for this purpose are set up in 
various centers. In producing esophageal speech, the upper end of the 
esophagus serves as the substitute larynx and provides the necessary 

1337 



1338 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1959 

complex tone at an appropriate point in the vocal tract — the bottom 
of the pharynx. The esophageal speaker must learn to swallow air, or 
force air into the esophagus and then control its escape, in such a manner 
as to cause sustained vibrations of tissues at the upper end of the esopha- 
gus. Not all patients can do this successfully. In fact, surveys have 
shown that about a third of all larnygectomized patients are unable to 
master esophageal speech for one reason or another.1 In addition, the 
quality of speech produced by this method is generally rather unpleas- 
sant — to such a degree that, in a comprehensive comparison test, lis- 
teners were unanimous in their preference for speech produced by a reed- 
type artificial larynx rather than esophageal speech.2 

The use of an artificial larynx is therefore frequently desirable, and is 
often a necessity if the laryngectomized patient is to communicate by 
speaking. At the present time, there are several different artificial laryn- 
ges available, including the Western Electric reed-type which has been 
distributed by the Bell System since 1930. However, both doctors and 
users are generally agreed that there are various deficiencies in the per- 
formances of all the available models, and that none are really efficient 
in their function. In the past few years, suggestions for the improvement 
of the Western Electric reed-type larynx have been received with in- 
creasing frequency, along with suggestions that a totally different design 
making use of transistors could provide improved performance. Accord- 
ingly, it was decided to investigate the problem further to see how mod- 
ern .components and techniques might be used to make an improved 
artificial larynx. 

The experimental artificial larynx to be described here is a result of 
these studies. Its characteristics are such that it provides an efficient 
means of communication for laryngectomized patients, while being more 
convenient and less conspicuous in use than the Western Electric Model 
2 or other available larynges. It includes, in one small hand-held unit, a 
modified telephone receiver used as a vibrating driver that is held against 
the throat, a transistorized pulse-generating circuit and a battery power 
supply. When the pulse generator is switched on, vibrations are trans- 
mitted through the throat wall into the pharynx cavity and transformed 
into speech by the normal use of the articulatory mechanisms of the 
vocal tract. The loudness of the speech obtained with this unit is com- 
parable with that of a normal person speaking conversationally. The 
artificial speech so produced sounds somewhat mechanical, but it is 
quite intelligible. By the use of an easily operated inflection control, a 
degree of naturalness heretofore unobtainable in artificial larynges may 
be achieved. 
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ir. HISTORY OF BELL SYSTEM ARTIFICIAL LARYNX WORK 

There is substantial evidence that artificial larynges were used as 
early as 1874, but it was not until 1925 that the Bell System became con- 
cerned with this area of communications. F. B. Jewett, who was presi- 
dent of Bell Telephone Laboratories at that time, suggested the develop- 
ment of an artificial larynx. His suggestion was prompted by discussions 
with a friend who had been laryngectomized and had impressed him 
with the need for a device that was more satisfactory than any then ob- 
tainable. 

The Laboratories' initial efforts resulted in an instrument that cm- 
ployed rubber bands stretched in a manner to simulate the vocal cords, 
and was designated type 1A. These rubber bands deteriorated rapidly 
and were a source of considerable dissatisfaction. Consequently, during 
1929 a new larynx, designated type 2A, was developed that incorporated 
several refinements,3 including the substitution of a vibrating metallic 
reed for the elastic bands. It is this model, with a few minor changes, that 
is currently being manufactured by the Western Electric Company and 
distributed by the Bell System operating companies. The method of 
operation of the 2A artificial larynx is illustrated by the sagittal section 
view of the head in Fig. 1, The metallic reed is connected by tubing to 
the stoma in the throat, so that the user's breath can actuate the reed. 
The sound of the vibrating reed is conducted through another tube into 
the mouth, and this sound is used in the production of artificial speech 
sounds with normal tongue, lip and jaw movements. 

In all, about 200 of the Model 1A larynges were made between 192G 
and 1930, and about 5500 of the Model 2A larynges have been made to 
date. Since about 1950, the demand has remained constant at approxi- 
mately 300 per year, although the number of laryngeetomies performed 
annually has increased steadily. This leveling-off has occurred partly 
because there has been a marked increase during the last ten years in the 
use of esophageal speech, with the establishment of many speech clinics 
for the purpose of training laryngectomized patients in this method of 
speaking. 

However, as noted previously, about a third of the total number of 
laryngectomized patients are unable to use esophageal speech, and con- 
sequently the need for an improved artificial larynx has become more ur- 
gent. In response to this need an advisory committee on artificial laryn- 
ges was set up in 1056 by the Xational Hospital for Speech Disorders in 
New York, and its recommendations have provided helpful stimulation 
and guidance in the development of the new experimental model. 
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III. DESIGN OBJECTIVES FOR AN IMPROVED ARTIFICIAL LARYNX 

In determining objectives toward which artificial larynx experimenta- 
tion should be directed, preliminary discussions were held with the com- 
mittee mentioned above, whose members include several surgeons, speech 
therapists and postlaryngectomized patients. To supplement the in- 
formation obtained from them, all of the artificial larynges that were 
commercially available were studied and analyzed to ascertain their in- 
dividual advantages and deficiencies. 

The primary requirements, of course, were that the artificial speech be 
loud enough and natural enough so that the speaker could be easily 
understood. For the speech to sound natural, it should have pitch in- 
flection, and, like the natural voice, should have a suitable fundamental 
pitch accompanied by harmonies that can be used to produce the various 
vowel sounds. These objectives were discussed in some detail in a recent 
paper.4 

Secondary to the above, but still of great importance to the user, were 
the objectives that the device be inconspicuous and hygienic. It is in 
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Fig. 1 — Sagittal section showing method of operation of reed-type larynx. 
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these respects that most of the presently available devices are deficient. 
If the user has to insert a tube into his mouth, it not only calls attention 
to his disability, but is also hygienically undesirable. Any connection at 
the opening in the throat, such as that required for the Western Electric 
Model 2, leaves much to be desired from the hygienic standpoint. In 
electrical devices, dangling wires leading to battery cases are also em- 
barrassing and are liable to become entangled with other objects. The 
importance of making prosthetic devices inconspicuous may be inferred 
from the great efforts that hearing aid manufacturers have expended to 
make their product less noticeable in use. 

Other desirable characteristics were simplicity of operation, reliability 
and low cost. Simplicity of operation is very desirable so that the patient 
will require only a minimum of training and, as soon as possible, gain the 
psychological benefits of vocal communication with his family and 
friends. Reliability and low cost can probably be attained most easily by 
the use of components that are already available commercially. 

The design objectives, therefore, can be listed as follows: 
(1) having output speech volume equal to that of a normal speaker, 
(2) having output speech quality and pitch inflection like that of 

normal speech, 
(3) inconspicuous, 
(4) hygienically acceptable to the user, 
(5) simple to operate, 
(0) reliable, 
(7) inexpensive. 

IV. ACOUSTIC FACTORS IN PRODUCTION OF ARTIFICIAL SPEECH 

4.1 Types of Sound Source Needed 

In the production of normal speech, two types of sound energy are 
involved. One is a periodic tone produced by the vocal cords. It is varia- 
ble in frequency and rich in harmonics, and is introduced int o the pharyn- 
geal cavity of the vocal tract. Except in whispered speech, this tone is 
always used in vowels and semivowels, including the nasal consonants, 
and is present in some other "voiced" consonants. 

This normal vocal cord tone is completely lost when the larynx is re- 
moved. The csophageal speaker has learned to substitute the vibration 
of membranes at the mouth of the esophagus. But, if this sound cannot 
be produced and controlled adequately, another tone source must be 
supplied, and this is the chief function of the artificial larynx. For intel- 
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ligibility of the speech produced, it is essential that the tone contain a 
wide range of harmonics, and, for naturalness, the harmonic amplitudes 
should fall off toward higher frequencies at the same rate that the real 
vocal cord tone does. Also, the tone should match that of the normal 
larynx in fundamental frequency and in frequency variability. 

The second type of sound energy in speech is random noise, which is 
produced when the breath stream passes through a constriction formed by 
tongue or lips. It is present in stop and sibilant consonants, sometimes 
alone and sometimes in combination with the vocal-cord tone. These 
sounds are vital for the intelligibility of speech. 

The normal means of generating random noise by the breath stream is 
also lost in the usual laryngectomy. However, it is not necessary to sup- 
ply a substitute in an artificial larynx. Air trapped in throat and mouth 
can be forced out in such a way as to take the place of the normal breath 
stream in forming most of these sounds. Some deficiencies occur, such as 
a shortening of continuants like "s" and "sh", due to an insufficient 
volume of the trapped air; and the sound "h" is usually completely lost. 
The Western Electric reed-type artificial larnyx improves the ability to 
make some of these sounds, by allowing some breath stream to pass 
through the reed chamber into the mouth. 

4.2 Point of Application of Substitute Tone 

To match as nearly as possible the natural speech process, the artifi- 
cial tone should be applied in the pharyngeal cavity. This requirement is 
not met in the Western Electric reed-type artificial larynx, yet under- 
standable speech is produced. It is of interest to see just what changes in 
the quality of speech sounds result from a change of source application 
from pharynx to mouth. 

It may be shown theoretically that a change from throat to mouth 
application, keeping the vocal tract configuration constant for a given 
vowel, docs not change the resonant frequencies characteristic of that 
vowel. It does, however, change the relative amplitudes of the different 
resonances. The extent of the change depends upon the degree of con- 
striction imposed by the tongue, which is different for different vowels. 
Another manifestation of the change is the appearance of antiresonances, 
which are not present when the source is in the throat. 

To confirm these conclusions, two experiments were performed. In 
the first, an artificial tone was introduced into the pharynx of a human 
subject. A tube was attached to a transducer that produced the tone, 
and passed through the nose of the subject and into his pharynx until 
the opening of the tube was not far from his vocal cords. 
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NORMAL SPEECH 
ARTIFICIAL SPEECH. 

SOUND SOURCE 
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Fig. 2 — Sound spectra of vowel sound "oo" (as in "book") spoken normally 
and as produced artificially with sound source in pharynx, and in mouth. 

Fig. 2 shows spectra taken as the subject made the vowel sound of 
"book". The first was made with his own vocal cords. The same vowel 
made with the artificial source yields the second spectrum. Although 
some pains were taken to make the spectrum at the output of the tube 
approach that of the real cord tone, some differences can be seen. The 
third spectrum was produced with the artificial source withdrawn from 
the pharynx and placed in the mouth of the subject. Particularly to be 
noticed are the change in relative amplitudes of the first two resonances 
and the "holes" in the mouth spectrum due to the antiresonances. 

The second experiment made use of the Electrical Vocal Tract,616 an 
analog of the vocal tract in which cavities are represented by lengths of 
transmission line and constrictions by inductances placed in series with 
the line (the tongue), or at its termination (the lips). An electrical com- 
plex tone can be applied easily to either throat or mouth cavity. Settings 
of such a device can be held constant more easily than a human subject 
can maintain a particular vocal tract configuration. On listening to the 
output of the artificial tract, it was found that vowel sounds changed 
considerably in character when the source was moved to the mouth. 
However, some but not all of their original naturalness could be restored 
by manipulation of the settings. It seems likely that the reed-type larynx 
user makes these readjustments naturally under the guidance of his 
own hearing, and that this accounts for the fact that his speech is still 
very intelligible. 

Fig. 3 shows transmission measurements made with a sine-wave input 
on the Electrical Vocal Tract, in the three settings determined by previ- 
ous listening tests: (1) the vowel "00" (as in "fool") with a source in 
throat, (2) the same settings with source in mouth and (3) with controls 
readjusted to restore "oo" as nearly as possible. 
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Fig. 3 — Transmission vs. frequency characteristic of electrical vocal tract: 
(1) adjusted for vowel "oo" (as in "fool") with source in throat position; (2) same 
settings, but with source in mouth position; (3) with source in mouth, but with 
controls readjusted to restore the "oo" sound as nearly as possible. 

Although it would seem that excitation in the mouth is not as disad- 
vantageous as it at first appears, pharynx excitation is still preferable. It 
is, of course, not practicable to introduce the sound through the nasal 
cavities as was done for the subject in the experiment described. In 
fact, insertion of any outside bodies into throat and mouth tends to be 
unhygienic. However, sound can be introduced into the throat from out- 
side by transmission through the throat wall. This principle was used 
in an artificial larynx designed by Wright.7 In the present development, 
it has been found possible to produce an adequate spectrum in the 
pharynx by this method, while at the same time limiting to a reasonable 
level the sound radiated directly from the device. 

4.3 The Use of a Throat Vibrator to Provide Substitute Vocal-Cord Tone 

The experiments just described indicate that the preferred position 
for the sound source is in the pharynx. Some thought was given to the 
use of a transducer surgically embedded in the throat. However, this 
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would require a second operation for those who already had been laryn- 
gectomizedj and the opinions of doctors consulted on the subject were 
divided as to its advisability. Accordingly, it was considered to be out- 
side the scope of the present artificial larynx project. The problem then 
became one of transmitting through the flesh and cartilage around the 
pharynx a complex signal with a broad frequency spectrum. In order to 
obtain natural-sounding speech, the source spectrum must have strong 
low-frequency components. The total frequency range required extends 
from about 100 to several thousand cycles per second. 

Experiments were conducted using a variety of vibrating devices 
held against the outside of the throat. Some of these were constructed 
especially for these tests and the rest were devices obtainable commer- 
cially. Of all these, the HA-1 telephone receiver used in the type 300 
telephone sets proved the most promising.8 However, when pressed 
against the throat, the loading on the diaphragm was far different from 
what it is when working into air, since the characteristic mechanical 
impedance of flesh is some 4000 times that of air. This heavy loading 
made desirable a number of modifications in the receiver to enable it to 
give a greater amplitude of vibration into the throat. These modifica- 
tions are described in Section 5.4, 

V. CIRCUIT AND MECHANICAL CONSTRUCTION 

The circuit of the new experimental artificial larynx uses a highly effi- 
cient arrangement of transistors powered by mercury batteries to pro- 
vide a compact, self-contained unit. In its design, an objective was to use 
commonly available, inexpensive components wherever possible. Fig. 4 
illustrates the cylindrical configuration of the unit, -with the combined 
on-off switch and pitch-inflection control knob arranged for operation 
by thumb or forefinger. 

5.1 Transistor Circuit 

A schematic diagram of the circuit is shown in Fig. 5. It is essentially 
a two-stage relaxation oscillator followed by a power stage that works 
into a transducer. The relaxation oscillator uses a p-n-p transistor, Ch, 
and an n-p-n transistor, Q2, coupled together with regenerative feedback. 
The frequency of oscillation is determined by the pitch-control resistance, 
Ri, in combination with capacitance Ci. The output of the relaxation 
oscillator appears across resistance Rs as a series of short periodic pulses. 
The width of these pulses is determined by resistance R2 and capacitance 
Ci. The values shown in Fig. 5 give a pulse width of 0.0005 second. 
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Fig. 4 — Picture of artificial larynx showing thumb-operated on-off switch and 
inflection control. 

The periodic pulses generated in the relaxation oscillator are trans- 
mitted through the semiconductor diode, CRi, to the base of power 
transistor Qs. The HA-1 receiver is connected in the collector circuit of 
Qs, and receives short periodic current pulses of about 0.45 ampere peak 
value at the oscillation frequency. 

The range of oscillating frequency may be adjusted by changing the 
range of resistance Ri available in the pitch-control rheostat, to simulate 
either a man's or a woman's pitch range. For men, the range is from 100 
to 200 cycles and, for women, it is from 200 to 400 cycles. This is an oc- 
tave range in either case, and is sufficient to duplicate the pitch inflection 
used in normal speech. The on-off switch and pitch-control rheostat are 
arranged so that the switch is closed at the lowest oscillating frequency, 
and further movement of the control causes the frequency to increase. 
The control knob is spring-loaded so as to return it to the off position 
when released. 

Two 5.2-volt mercury batteries in series provide the necessary power 
to operate the circuit. Although the peak is 0.45 ampere, the pulse duty 
factor is so small that the average current drain from the batteries is 
only about 22 milliamperes. The rating of the batteries is 250 milliampcre 
hours. 

As an alternative to the self-contained mercury batteries, a small 
rectifier operated from 115-volt, 60-cycle line voltage may be substitued. 
This arrangement may be useful at an office desk or other fixed location. 
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When the rectifier power supply is plugged into the auxiliary power jack 
shown in Fig. 5, the batteries are disconnected from the circuit. 

5.2 Selection of Pulse Duty Cycle 

The average current drain on the batteries, the spectrum of the acous- 
tic output of the artificial larynx and the loudness of the output, are all 
functions of the pulse width, assuming a fixed supply voltage. For widths 
of a few tenths of a millisecond, the average current drain would be low, 
and the spectrum would have a vide frequency band with strong har- 
monics running up to several thousand cycles per second, but the acous- 
tic output would be weak. Fig. 6 shows the relation between acoustic 
output and pulse width, and also the relation between current drain 
and pulse width. The acoustic outputs displayed were obtained by meas- 
uring the output from a single subject saying "ah" at a distance of 3 
feet from the sound level meter. Pulse widths of 0.5 to 0.6 millisecond 
gave near-maximum output. For wider pulses, the acoustic output de- 
creased, and the speech became somewhat muffled and nasal in quality. 
A pulse width of 0.5 millisecond was adopted. Correspondingly, the aver- 
age current drain was 22 milliamperes at a frequency of 100 pulses per 
second. Sound spectrograms of speech using the 0.5-millisccond pulse 
width indicated a satisfactory spectrum. 

5.3 Mechanical Construction 

For simplicity of construction, a cylindrical container was chosen to 
house the artificial larynx. The dimensions of the experimental model are 

MODIFIED 
HA1 

RECEIVER 

AUX 
SUPPLY 

JACK 
  

C2 \ 
ZOO^IF' 

Hi 
10 V 

+ 

\ 0.32/iF 
Q 1 cc 

Fig. 6 — Schematic of artificial larynx circuit. 
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Fig. 6— Characteristics of acoustic output vs. pulse width, and average bat- 
tery supply current vs. pulse width. 

If inches in diameter and 3i inches long. The weight, including batteries, 
is 8 ounces. To package all the components in this volume, a modular 
type of construction was used, as shown in the exploded view in Fig. 7. 

The HA-1 receiver is at the front end of the unit, with the diaphragm 
flush with the end of the cylinder. The back of the receiver is wrapped 
with sponge rubber, and two discs of sponge rubber and one of thin 
brass sheet are placed between it and the adjacent components to at- 
tenuate the backward radiation of sound. Were it not suppressed, this 
direct radiation back through the shell and into the surrounding air 
would tend to mask the speech sounds and contribute a buzzy, mechani- 
cal quality to the over-all effect. 

The next two modules back of the receiver contain the pitch-control 
rheostat, the transistors and associated circuit elements. The last module 
contains the two mercury batteries in a plastic shell and the jack for the 
external power supply. The back plate may be removed by unscrewing a 
single machine screw which has a slot large enough so that a thin coin 
may be used in place of a screwdriver. This permits convenient access 
to the mercury batteries for changing them without disturbing the rest 
of the circuit. 

While the experimental model is a compact unit, some further mini- 
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aturization could be achieved by the use of printed circuit techniques 
and closer component spacing. 

5.4 HA-l Receiver Modifications 

The HA-l receiver as normally used in a telephone set has a protective 
metal grid and cloth cover over the diaphragm. Tor use in the artificial 
larynx these are removed. And, in order to achieve greater efficiency in 
terms of output volume of artificial speech for a given battery supply 
power, several additional modifications were made. 

The permanent magnets were magnetized to full strength, instead of 
being only partially magnetized. The diaphragm was correspondingly 
shimmed out from the pole pieces, so that it would not be pulled into 
contact with them. The spacing between diaphragm and pole pieces in 
this condition measures between 0.002 and 0.003 inch, and a slight 
push on the diaphragm is sufficient to make it adhere to the pole pieces. 
The electrical pulses from the transistor circuit are so poled as to oppose 
the permanent magnet field and release the diaphragm to spring outward. 
This driving polarity gives higher speech volumes than the opposite one. 

In order to obtain sufficient current from the 10.4-volt supply to coun- 
teract the permanent magnetization, it was necessary to decrease the 
impedance of the receiver winding by connecting its two coils in parallel 
instead of in the usual series arrangement. In order to improve the 
match of mechanical impedances between the receiver and the throat, 
a diaphragm of 0.00S3-inch permendur was used in place of the stand- 
ard 0.011-inch thickness provided in the HA-l. A series of tests was 
made with a range of thicknesses from 0.0065 to 0.011 inch, and it was 
found that the highest, speech volumes wore obtained with a thickness in 
the order of 0.0083 inch. 

Fig. 7 — Exploded view of artificial larynx, showing modular construction. 
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In order to reduce the magnetic saturation of that area of the dia- 
phragm bet ween the pole pieces, a small center patch of permendur, 0.54 
inch in diameter and 0.011 inch thick, was spot-welded to the diaphragm 
before heat treatment. This addition improves the magnetic circuit and 
does not materially affect the stiffness of the diaphragm. 

The HA-1 receiver normally has a small resonance damper provided 
by a cloth-covered hole in the plastic back under the diaphragm. This 
damps the natural diaphragm resonance, which in air falls at about 3000 
cycles. The cloth covering this hole is removed in the artificial larynx, 
and diaphragm damping is obtained by contact with the flesh of the 
throat. Removal of the cloth damping patch slightly increases the output 
of high-frequency harmonics in the artificial speech. 

5.5 On-Off Switch and Inflection Control 

The arrangement of the on-off switch and inflection control was de- 
signed for ease of manipulation. With practice on the present arrange- 
ment, either rising or falling inflection can be achieved at the beginning 
or ending of voicing. 

Several other methods of control were tried. One made use of a rack 
and pinion gear arrangement, in which a button was pushed straight 
into the shell of the unit. Precise control of frequency was not easily 
obtained with that method. It was found more satisfactory to push the 
control sideways over a distance of a half-inch or more. Another early 
version depended for control on application of pressure along the longi- 
tudinal axis of the artificial larynx. This seemed satisfactory from the 
functional standpoint, but was more difficult to implement mechanically 
than the arrangement finally adopted. 

VI. ACOUSTIC PERFORMANCE 

Tests of the acoustic performance of the new artificial larynx have been 
made to find how nearly it meets the original design objectives with re- 
spect to output volume and speech quality. 

6.1 Loudness 

A little practice is required to find the proper pressure and placement 
on the throat that yield the best results. Output volume measurements 
on subjects who have acquired a moderate amount of proficiency show 
sound pressure levels on the vowel peaks of 70-75 db above 0.0002 mi- 
crobars at a distance of three feet from the speaker's mouth. This is 
approximately a normal conversational level. However, in an environ- 
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meat so noisy as to require a speaker to raise his voice appreciably above 
the normal level, this volume would limit the separation between talker 
and listener to shorter distances than those possible for a normal speaker. 

G.2 Frequency Spectra 

Speech quality has been checked by comparisons of frequency spec- 
tra, and by measurement of the ratio of speech signal to directly radiated 
buzz. Spectrograms9,10 of the words "artificial larynx" and amplitude 
sections of ten vowel sounds were made from the speech of one subject, 
using both the new artificial larynx and his natural voice. These arc 
reproduced in Figs. 8 and 9 respectively. In Fig. 8, it may be seen 
that the "f" and "sh" sounds in the word "artificial" are shorter in dura- 
tion for the artificial larynx speech than for the normal speech. With the 
artificial larynx, the speaker must make such sounds by means of the air 
trapped in his mouth and pharynx since his normal air supply is cut off. 
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Fig. S — Sound spectrograms of the words "artificial larynx" as spoken nor- 
mally ami with the new experimental artificial larynx. 
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Fig. 9 — Sound spectra of ten sustained vowel sounds as spoken normally 
and with the new experimental artificial larynx. 
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This small air supply thus tends to shorten fricatives and sibilants, but 
the spectrogram indicates that they can be made satisfactorily. Some 
practice was required to make the "sh" sound in "artificial" as long as 
that which is shown. 

In using the artificial larynx it is more convenient to leave it turned 
on through several syllables or words than to turn it on and off as one 
does in natural voicing. That this does not make the speech as unnatural 
as one might expect is indicated also in Fig. 8. The instrument was 
turned off between the two words, but it can be seen that, for the "t", 
"f", "sh" and "x" sounds, very little of the voicing comes through, al- 
though the device was operating while those sounds were being produced. 
For the unvoiced fricatives and stop consonants, the sound transmission 
path from the pharynx is evidently nearly closed off. 

In the comparison of the vowel spectra shown in Fig. 9, it is apparent 
that the new artificial larynx is able to transmit sufficient power into the 
pharynx throughout the spectrum to permit satisfactory development of 
the high-amplitude regions (formants) of the vowel sounds. It has been 
indicated4 that the harmonics in the source spectrum of the natural voice 
are strongest at the low frequencies, dropping in amplitude toward the 
high frequencies at about the inverse 1.5 power of the harmonic number. 
A cross comparison in Fig. 9 shows that, for some vowels, the difference 
in the high- and low-frequency amplitudes is greater for the natural 
source, and, for others, it is greater for the artificial source. This observa- 
tion leads to the conclusion that, on the average, the artificial source has 
approximately the right spectrum. 

G.3 Externally Radiated Interference 

Some of the sound produced by the vibrating diaphragm does not pass 
through the speaker's throat but is radiated directly by the instrument 
itself or from areas of the throat around the place where the unit is 
pressed. This external radiation, of course, would interfere with the intelli- 
gibility of the speech if it were not well suppressed. Measurements taken 
in an anechoic chamber with the unit pressed against the throat but with 
the mouth closed showed an intensity level for this interference 20-25 db 
below the level when the vowel "ah" was being voiced. When the unit is 
operated with the vibrating end working into a sound-absorbing cavity, 
the level is about 6 db lower still, indicating that most of the interfering 
sound is from the throat areas immediately adjacent to the artificial 
larynx rather than from the instrument itself. If it should be desirable to 
reduce this noise still further, the end held against the throat might be 
specially shaped to reduce the external vibration of the throat tissues. 

6.4 Reactions of Laryngectomizcd Users 

In collaboration with the Advisory Committee on Artificial Larynges 
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tions. Four units of the new design were used in the field test; two were 
assigned to two laryngectomized patients for the entire period of four 
weeks, and the other two units were used for shorter periods by several 
other patients. In all cases, favorable comments were made on the speech 
quality and the lack of externally radiated buzz. Comments of friends 
and relatives of the patients using the new model generally indicated 
that they liked the intelligibility and speech quality of the artificial 
speech produced by it. 

One comment was made to the effect that, for optimum comfort in 
use, the diameter of the unit should be somewhat less. Adoption of this 
suggestion would preclude the use of the HA-1 receiver. The Advisory 
Committee on Artificial Larynges of the National Hospital for Speech 
Disorders felt that, for nearly all patients, the present diameter of If 
inches would be satisfactory, and did not recommend such a change. 

Battery life was indicated to be satisfactory in these tests. The new 
units were used alternately with other models by the two patients who 
had them for the entire test period, and it is not known just what their 
cumulated operating times were. One of the two patients estimated that 
he had used the new unit for about half of his talking. None of the four 
units in the limited field test required a change of batteries during the 
four-week period. 

VIE. ARTICULATION TESTS 

Articulation tests using speech produced by practiced talkers with 
previously available artificial larynges have been carried out. These 
tests were intended as a guide in the development of the new instrument. 
A second' set of tests was made after the new experimental model was 
available, comparing it with previous types. 

7.1 Tests with Previous Types 

For the first test, it was possible to obtain two experienced users 
of osophageal speech, of the reed-type artificial larynx, and of an 

Table I — Percentages of PB Words Heard Correctly, from 
Natural and Substitute-Larynx Speech 

N atural voices 97.3 
96.6 

Esophageal speech 79.0 
64.1 

Reed-type artificial larynx 63.4 
40.3 

Throat-type artificial larynx 58.1 
40.3 
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available type using throat application. These individuals were asked to 
read five of the Harvard PB (phonetically balanced) lists of 50 mono- 
syllabic words.11 Their utterances were recorded on tape and presented 
later, in a suitably mixed order, to a crew of seven listeners who re- 
corded their responses. Two speakers with normal voices were included 
for comparison. The percentages of words heard correctly are given in 
Table I. 

To understand the significance of these scores, it has been found that 
a 60 per cent articulation from such isolated words corresponds to a sen- 
tence intelligibility of more than 95 per cent, and that even 40 per cent 
in the word score means that more than 90 per cent of sentences would 
be understood. 

In a test supplementary to the above, it was found that the articula- 
tion score with the throat type tested could be improved to about 70 
per cent if the directly radiated sound were reduced about 20 db. 

The number of individuals in the tests was too small to indicate an 
over-all ranking for the different types. It can be concluded, however, 
that either the reed type (with mouth application) or the external throat 
type could be sufficiently intelligible to give good conversational ability. 
The choice between these types could therefore be made by other criteria. 

7.2 Comparison of Mew with Best of Older Types 

The second set of tests was abbreviated, and was intended to provide 
a comparison between the new larynx and the previous types. Thus, 
only the higher-scoring individuals using the reed and throat types in 
the previous tests, with two PB lists (100 words) each, were incorporated. 
These utterances were compared with 100 words from the new experi- 
mental model. Because of changed conditions (principally the use of a 
crew of listeners who were less familiar with laryngectoraized speech) 
the results shown in Table II are not directly comparable with the pre- 
vious tests. They are comparable with each other, however. 

With regard to population averages, these figures cannot be considered 
indicative. The differences, however, are favorable for the new model. 

VIII. CONCLUSIONS 

An artificial larynx has been developed that is hygienic, convenient 
and inconspicuous. It has a fundamental tone that is similar in pitch 

Table II — Articulation Scores from New Experimental 
Artificial Larynx and from the More Successful 

Users op Older Types 

Older throat type 
Reed type 
New experimental model 

43 per cent 
52 per cent 
59 per cent 
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range and variability to the real voice, and near enough in spectrum to 
produce natural-sounding speech. The loudness of the speech produced 
with it is comparable to that used in normal conversation, and the speech 
is generally free of masking effects of directly radiated noise. The essen- 
tial characteristics and performance of this experimental model will be 
incorporated into a commercial design to be manufactured by the West- 
ern Electric Company. Distribution of the new model, beginning some 
months hence, will be through the Bell System operating companies, fol- 
lowing procedures similar to those used with the Model 2 reed-type 
larynx for the past 30 years. 
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Ideal Binary Pulse Transmission 

by AM and FM 

By E. D. SUNDE 

(Manuscript received May 18, 1959) 

In binary pulse transmission by carrier amplitude or frequency modula- 
tion it is ordinarily desirable, both for efficient bandwidth utilization and for 
improved performance under adverse noise conditions, to use bandpass chan- 
nels of the minimum practicable bandwidth, as determined by considerations 
of inter symbol interference and filter design. It is shown that inter symbol 
interference can be avoided in binary pulse transmission by FM without the 
need for a wider channel band than in double-sideband AM, for equal pulse 
transmission rates. Explicit general expressions are derived for the appropr i- 
ate shaping of the bandpass channel and for the shapes of received pidses, for 
cases in which rectangular binary pulses are transmitted by FM, without 
premodulation or postdetection pulse shaping by low-pass filters. Illustra- 
tive comparisons are made of binary pulse transmission by AM and FM 
for two special cases of general interest in communication theory and pulse- 
system design. The more general case of partial pulse shaping by premodula- 
tion and postdetection low-pass filters is also considered. 

The performance of FM and AM systems in the presence of noise de- 
pends on the division of channel shaping between transmitting and receiving 
filters. The optimum division with FM and AM is determined for random 
noise, and comparisons are made of signal-to-noise ratios for optimized FM 
and AM systems. It is shown that there is a single universal relation between 
error probability and signal-to-noise ratio, applying to an infinite universe 
of optimized baseband systems and optimized AM systems with ideal syn- 
chronous detection, and that this relation is the same as for baseband trans- 
mission over an idealized fiat channel of minimum bandwidth. The analysis 
indicates that, with binary FM and appropriate postdetection low-pass fil- 
ters, it is possible in principle to realize an improvement in signal-to-noise 
ratio over bipolar double-sideband AM with synchronous detection (phase 
reversal), for equal channel handwidths, average signal power and pulse 
transmission rates, although this may not he feasible with practicable filters. 

1357 
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I. INTRODUCTION 

Transmission of digital or analog information by binary rather than 
by multilevel pulses offers significant advantages in systems design. 
For one thing, it simplifies the implementation of regenerative repeaters 
and various kinds of terminal equipment, such as carrier modulators and 
demodulators, and devices for timing-wave provision, coding and stor- 
ing of messages and automatic error-checking or correction. For another 
thing, binary pulse transmission imposes less severe requirements on the 
transmission medium with respect to signal-to-noise ratio, amplitude and 
phase deviations over the channel band, and tolerable transmission- 
level variations. Because of these advantages, binary rather than multi- 
level pulse transmission is ordinarily the more practical and economical 
method, even in existing channel facilities designed primarily for voice 
or other analog transmission, where consideration of the rather high 
signal-to-noise ratio alone would permit a much greater number of pulse 
amplitudes and, thus, a substantially greater channel capacity than 
could be economically realized. 

The three principal methods of binary pulse transmission by carrier 
modulation now in use are double- and vestigial-sideband AM, in the 
form of "on-off" keying with envelope detection, and FM in the form 
of "frequency-shift" keying. With synchronous or homodyne detection 
in AM, other methods are feasible that afford a bandwidth saving or 
improved signal-to-noise ratio or, like FM, have the advantage over "on- 
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off" AM that they facilitate rapid automatic compensation of trans- 
mission-level variations. Among these binary methods are bipolar double- 
sideband AM, also referred to as phase reversal or two-phase modulation, 
and bipolar vestigial-sideband AM. Another method is bipolar double- 
sideband AM on each of two carriers at quadrature, also referred to as 
quadrature double-sideband AM or four-phase modulation. 

For optimum performance in binary pulse transmission by AM or FM 
it is essential that the transmission-frequency characteristics of the chan- 
nels be appropriately shaped with respect to amplitude and phase, so 
that intersymbol interference is avoided or at least reduced to a practi- 
cable minimum. A second requirement for optimum performance in the 
presence of noise is an appropriate division of channel shaping between 
transmitting and receiving filters. In addition, there are various other 
requirements not pertaining to the channel, such as exact timing in the 
transmission and reception of pulses and ideal AM and FM modulators 
and demodulators. 

The purpose of this presentation is a determination of these optimum 
channel characteristics and the optimum signal-to-noise ratios for vari- 
ous error probabilities in binary pulse transmission by AM and FM, with 
particular emphasis on FM. 

The analysis of both analog and digital pulse transmission for FM is 
more complex than it is for AM, since FM is a nonlinear modulation 
method. For this reason, the sideband spectrum of a given signal is wider 
than it is in double-sideband AM, and a wider bandpass channel is re- 
quired for analog signal transmission without distortion. 

In analog transmission it is possible to realize improved performance 
in the presence of noise in exchange for the increased bandwidth. In binary 
pulse transmission, however, it is ordinarily desirable, both for optimum 
performance under adverse noise conditions and for efficient bandwidth 
utilization, to use the minimum channel bandwidth practicable from the 
standpoint of intersymbol interference and filter design. 

While a wider bandpass channel than in AM is required for distortion- 
less analog transmission, this docs not preclude the possibility that, un- 
der appropriate conditions, pulses can be transmitted by FM with no in- 
tersymbol interference, without the need for a greater channel band 
than is required in double-sideband AM. This depends on the possibility 
of controlling pulse distortion resulting from bandwidth limitation so 
that zero points in the received pulses occur at uniform intervals from 
the peak pulse amplitude. When pulses are transmitted by AM, this 
can be accomplished by appropriate shaping of the transmission-fre- 
quency characteristic of the channel, as shown elsewhere.1 •• The analysis 
is extended herein to ideal binary pulse transmission by FM. 
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A basic criterion for performance in digital transmission through noise 
is the error probability as related to the signal-to-noise ratio, which has 
been dealt with elsewhere for baseband transmission,3 "on-off" double- 
sideband AM with envelope detection,4-5 bipolar AM or carrier phase 
modulation with synchronous detection5•6 and frequency modulation.5-7 

In the above analyses random noise is assumed and the signal-to-noise 
ratio is stated in terms of signal power during a steady "mark" or 
"space," which, in bandlimited channels, is usually not equal to average 
signal power, even in binary phase or frequency modulation systems. 
Moreover, ideal flat baseband or bandpass channels of the minimum 
bandwidth required to avoid intersymbol interference are assumed or 
implied in AM, although they are not practicable in actual systems. In 
the case of FM, no consideration is given to bandwidth requirements 
and channel shaping for optimum performance. 

As an aid in systems design, specific consideration is given in Sections 
II through XI of this presentation to appropriate bandwidths and chan- 
nel shaping for AM and FM systems. The remainder of the analysis is 
concerned with signal-to-noise ratios as related to channel shaping and 
to appropriate filter shaping for optimum performance in the presence 
of random noise. 

II. FREQUENCY AND AMPLITUDE MODULATION BY BINARY PULSES 

The original signal ordinarily would consist of rectangular baseband 
pulses of duration T, with a negative polarity to indicate "space" and a 
positive polarity to indicate "mark," or conversely. These rectangular 
pulses may be applied directly to the frequency modulator, or they may 
be applied to a premodulation low-pass filter for preshaping. 

The modulator output is apphed to a bandpass channel with a certain 
transmission-frequency characteristic, which, in the ideal ease, would be 
symmetrical about the midband frequency and have a linear phase char- 
acteristic. The envelope of the received pulses at the channel output and 
the frequency modulation of the carrier within the envelope depend on 
the shape of the modulating pulses and on the transmission-frequency 
characteristic of the bandpass channel. With an ideal detector at the re- 
ceiving end, the demodulated signal is proportional to the time deriva- 
tive of the phase of the carrier within the envelope, i.e., to the "instan- 
taneous frequency deviation." 

Detection of the phase derivative is facilitated by conventional fre- 
quency discriminators or zero-crossing detectors when the channel band- 
width is narrow in relation to the carrier frequency, but this is not a basic 
theoretical requirement if appropriate detectors are postulated. Nor, 
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with appropriate ideal balanced FM detectors as assumed herein, is a 
limitcr necessary for elimination of amplitude modulation effects, al- 
though it is highly desirable with unbalanced detectors and for preven- 
tion of undesirable effects of sudden level changes. 

At the detector output, a postdetection low-pass filter may be used for 
final pulse shaping, but it is not essential for this purpose. Such a 
filter may be required to eliminate unwanted demodulation products 
(carrier ripple), but the bandwidth required for this can be much greater 
than that of the bandpass channel, particularly when the channel band- 
width is small in relation to the midband frequency. This condition can 
always be realized by frequency translation before demodulation, which 
may also be required for optimum performance with conventional fre- 
quency discriminators or zero-crossing detectors. 

A more important function of the postdetection filter in conventional 
analog signal transmission is elimination of higher frequency noise com- 
ponents, in order to realize the inherent FM noise advantage. In binary 
pulse transmission with a bandpass channel of no greater bandwidth 
than is required to avoid intersymbol interference, as considered here, 
the noise advantage that can be derived from the use of a low-pass filter 
may be rather limited. To realize a significant noise advantage the filter 
must, in this case, have the appropriate shape, depending on its band- 
width, to avoid excessive intersymbol interference, as will be shown 
later. 

In frequency modulation, the signal applied to the input of a band- 
pass communication channel is of the general form 

where wo is the radian frequency of the unmodulated carrier, <p is the 
carrier phase and ^.(O is related to the modulating voltage F,(£) by 

with wx the frequency deviation in radians per second per volt. 
In the case of bipolar binary pulse transmission, the original signal, 

Fo(0> ^ ordinarily in the form of rectangular pulses of amplitude Vq and 
duration T, of either positive or negative polarity. In this case, the origi- 
nal signal is constant during a signal interval of duration T and is 
given by 

Ei(t) = sin [ud -f- ^ (1) 

(2) 

Fo(0 — dbFo . (3) 

In general, with a premodulation low-pass filter, the carrier modulating 
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voltage, 7,(0, differs from 7o(0- Without such a filter, as assumed here, 
7,(0 - 7o(0 = ±7o and 

^.(0 — ±t3i j Vo dt 
Ja (4) 

= ±wi5, 

where the frequency deviation w is 

6) = OJx7o . (5) 

The voltage applied to the input of the bandpass channel in this case 
is, in accordance with (1), 

^•(0 = sin [(wo ± u)t -h y]. (0) 

Equivalent performance could accordingly be obtained if the outputs 
of two oscillators of frequency wo + w and wo — w were gated by the 
voltage 70(0) so that carrier step pulses of duration T and one or the 
other of the above two frequencies would be applied directly to the band- 
pass channel. If the latter method is actually used, the two oscillators 
must be interlocked to avoid excessive phase discontinuities and resultant 
transmission impairments that would otherwise be likely to occur in 
switching from one oscillator to the other. 

With phase modulation, rather than frequency modulation as con- 
sidered above, ^,(0 in (1) is related to the modulating voltage by 

tiit) = (7) 

where i/'i is the phase modulation in radians per volt. 
In the case of bipolar binary pulse transmission, (1) becomes 

Ei(i) = sin [woi + y ± ^i7t(0] /0. 
(o; 

= sin (woi -b y) cos [^^(i)] d= cos (woif d- <p) sin [^'i7,(0]j 

where the negative sign is used for a space and the positive sign for a 
mark, or conversely. 

The first component in (8) is independent of the pulse polarity. In 
an optimized system this component must be minimized and the second 
component, which depends on the pulse polarity, be maximized. The 
optimum condition is obtained when ypi is so chosen that = 

where is the peak amplitude of 7.(0 • In the particular case of rec- 
tangular modulating pulses, 7,(0 = = 7oand (8) becomes 

Ei(t) — ±cos (wo^ + v), (9) 

which represents a sudden phase reversal from space to mark. 
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In amplitude modulation, the signal applied to the bandpass channel is 

Ei{t) = [ao + aiVii^/Vi] cos (wo^ + <p), (10) 

where Co and ai are constants that determine the degree of modulation, 
as discussed below for two special cases. 

In unipolar or "on-off" binary pulse transmission, (h = Oo and, in the 
particular case of rectangular modulating pulses, 

Ei{i) — ao(l ± 1) cos (woi + <p) 

= 0 for space (11) 

= 2ao(cos coo^ + f) for mark. 

In bipolar AM, ao = 0 and, for rectangular modulating pulses, (10) 
becomes 

Ei(t) ~ rtui cos (oiof A <p), (12) 

which is identical to (9) with ^ = 1. 
With phase reversal or bipolar AM, the signal can be recovered with 

the aid of a product demodulator, i.e., by homodyne or synchronous de- 
tection. To this end, a synchronous demodulating carrier, cos (ml + <p), 
must be derived from or controlled by the signal, which may entail more 
complicated instrumentation at the receiving end than is required with 
frequency modulation. Unipolar AM permits the use of simple envelope 
detection in exchange for a sacrifice in signal-to-noise ratio compared to 
the other methods. A further disadvantage of unipolar AM is that it is 
more susceptible to errors during sudden level changes than is bipolar 
AM or FM. 

With any of the above modulation methods the shape of the received 
pulses depends on that of the modulating pulses and on the transmission- 
frequency characteristic or "shaping" of the bandpass channel. The ap- 
propriate shaping for avoiding intersymbol interference is well known1,2 

for baseband transmission and amplitude and phase modulation systems, 
and is determined in the following sections for binary FM. 

The particular case of rectangular modulating pulses will be considered 
in detail, and explicit expressions will be derived for appropriate channel 
shaping to avoid intersymbol interference. The more complicated cases 
of premodulation and postdetection pulse shaping will be discussed later. 

III. TRANSMITTED FREQUENCY-SHIFT WAVE 

Let a continuing "space" be represented by a steady-state transmitted 
wave 

Es{t) — sin [(ojo — (j})t -L ¥>] (13) 
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and a continuing "mark" by 

Em
0{t) = sin [(wq + u)t + <p], (14) 

where t is the time from the beginning of a signal element of duration T 
and is related to the time with respect to the midpoint of a signal ele- 
ment by 

t — U T/2. (15) 

With (15) in (13) and (14): 

Ea
D(to) = sin [(coo — w)(^o + T/2) + -p] 

(lf3) 
= sin [(wo — w)io + Vo ~ wT/2], 

Em
0(U) = sin [(coo + + toT/2], (17) 

where 

Po — ^ + ojqT/2, (18) 

It will be assumed that 

uT = tt, (19) 

in which case the frequency difference between mark and space in cycles 
per second is 2co/27r = l/T, or equal to the bit-rate. This assumption 
need not be made at this point, but it turns out later to be a condition 
for avoiding intersymbol interference and simplifies the analysis. With 
the above assumption, 

Es
0{tf}) = —cos [(coo — w)io + ^ol, (20) 

Em
0(to) = Tcos [(coo T w)io T yol- (21) 

Assume that a single mark of duration T is preceded and followed by a 
continuing space. The resultant transmitted wave can be regarded as 
made up of two components. One is a steady-state component given by 
the following expression applying for — «> < to < <*>: 

EB
0(to) = —cos [(wo — a))^ + «po]. (22) 

The other is a transient Esm
0 = —Eg + Em

0 given by the following ex- 
pression applying for —T12 < k < T/2: 

Esm
0(to) = cos [(wo — o})io + ^o] + cos [(cuo + w)io -f Vo] 

= cos (uoto tpo)2 cos coto. 
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The spectrum of Eem
0 is given by 

rTlz 

S*m
0 = 2 / cos (&Vo + fo) cos uto e^'wl0 dio 

J-TI2 
fTlZ 

= en f cos uto cos coto dfa (24) 
J-T/2 

/Tl2 
cos (2coo + cos co^o dto, 

-r/2 

where m = w — cuo is the frequency from midband. 
When the bandwidth of the channel is small in relation to the midband 

frequency, the spectrum need only be considered for w « wo. The second 
integral in (24) can then be disregarded in comparison with the first, and 
the amplitude of the spectrum becomes independent of s he., inde- 
pendent of the phase of the carrier with respect to the modulating pulse. 
On this assumption, the amplitude of the spectrum of the carrier en- 
velope at the frequency u from the midband frequency wo is given by 
the first integral in (24), and becomes 

».»=«.)=! pyygF+-^-y].» 

With coT = r in accordance with (19), (25) becomes 

S-(u) = S'(-u) = t ! CCS (W2a,) ^ (2G) Z TT 1 — {U/O))* 

For m = ±w, the value of (26) is* 

S"(±1;)=|. (27) 

IV. FREQUENCY-SHIFT PULSE TRANSMISSION CHARACTERISTIC 

Let the phase characteristic of the channel be assumed to be linear, 
and let T(w) be the amplitude characteristic of the channel as a function 
of the frequency w — w — wo. At the channel output, the spectrum of 
the received wave resulting from Eam

0(t«) given by (23) is then 

S(u) = AM&M. (28) 

If the amplitude characteristic is symmetrical, i.e., if A (— u) = A (u), 
the spectrum is also symmetrical; i.e., 

S(-u) = S(u). (29) 

* This result is obtained by determining the value of the limit 0/0 as u —» u. 
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When the above conditions are satisfied, the shape of a received pulse 
in response to EBm

0(to) is given by2 

Etm(io) = cos [Wo + <po]Esm{to)7 (30) 

where E,m is the envelope of the received pulse. The shape of the en- 
velope is the same as that of a demodulated pulse in AM, when the pulse 
spectrum is S(u), and is given by2 

p(<o) = Esmik) = - f SM cos uto du, (31) TT J~u0 

where the lower limit can, for practical purposes, be replaced by — qo , 
since S(u) ^ 0 for u — —o)0 when a> « wo ■ The received wave in re- 
sponse to the steady-state component E°{to) given by (22) is 

Ea{to) = —A(-o}) cos [(wo — u)t0 + ^o] 
(oJ) 

= — A (—cIj)[cos (Wo T ^fo) cos uto sin (Wo H- (po) sin W], 

where A(—w) = A(w) is the amplitude of the transmission-frequency 
characteristic A(w) at u = i.e., at the frequencies wo T a>. 

The resultant received wave when a mark of duration T is preceded 
and followed by a continuing space is 

(34) 

E{to) = Ea{to) + Eam{t0) (33) 

— —cos (wo^o + ¥'o)[A(—«) cos Wi — p(^o)] 

-A( —■ o.') sin (coo^o T* Vo) sin coto. 

This can be written in the form 

E{to) — £{(.0) cos (Wo + ^0 + ^0), (35) 

where the envelope is given by 

E(to) = A(~-w) {[cos uta — up]2 + sin2 W{1/2 

— A( —w) {l + li'p2 — 2np cos w^o}1'2 

and the phase modulation ^0 is given by 

tan^o(fo) = ^(37) cos wio — pp 

where p = p(to) and 

n = 1/A(—ia) = l/A{oi). (38) 
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With an ideal detector, the received signal is proportional to fa' — 
(hl/c/dt, which becomes 

. / _ 1 — rp cos wto + (fiv'/u) sin wk /finN v'o = —w ——j-—— ^— , toy; 
sm-wJo + [cos uta — ppj-2 

where p' = dp(io)/dla. 
Relation (39) gives the frequency deviation from the midbaud fre- 

quency coo, in which case a continuing space is represented by a fre- 
quency deviation — oi and a continuing mark by w. If the frequency 
wo — ^ is instead used as reference, the frequency deviation at the re- 
ceiving end is 

t'iU) = w + (40) 

The ratio }p'{to)/2<x> represents the pulse transmission characteristic of 
the channel in response to a sudden frequency shift 2w of duration T, 
from wo — w to wo + w, and is given by 

p(f ) = M MP2 — cos w<q — (p'/co) sin wtp 
0 2 sin2 wto + (cos uU — pp)2 

From (39) or (41) the conditions for binary pulse transmission with- 
out intersymbol interference can be established, as is discussed in the 
next section. 

V. IDEAL FREQUENCY-SHIFT TRANSMISSION CHARACTERISTICS 

In order to transmit binary pulse trains without intersymbol inter- 
ference, it is necessary that the transmission characteristic Pito) for a 
single mark or pulse as considered in the preceding section be zero at 
sampling instants to = d=mT, m = 1, 2, 3, etc., and that, at to — 0, 
P = 1. 

In view of (19), cos (±?moT) = ( — 1)"' and sin (imwT) = 0. Hence 
at sampling points (41) becomes, form 5^ 0, 

^ +7-1P (42) 

and 

p(()) = ■ (43) 

Thus P(mT) = 0 provided 

p(mT) = 0, (44) 
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S,(u 

-LO 

co co„-co 

-w 

s, w) 

So(-w) = -5,(W) 

5 = 5, +Sp 

Fig. 1 — Properties of spectra at detector input such that, in double-aideband 
iplitude modulation, p(0) = 1, p{mT) — 0, T = tt/w, m — 1, 2, 3, ■ - • . amplitude 

and P(0) = 1 provided 
MP(0) = 2. (45) 

The above conditions (44) and (45) can be satisfied provided that 
S{u), in addition to being symmetrical as required by (31), has the 
further property illustrated in Fig. 1. This property is the same as that 
required for double-sideband transmission of pulses at intervals T with- 
out intersymbol interference,112 and can be satisfied by an infinite variety 
of spectra. Among these it is convenient from the standpoint of theoreti- 
cal evaluation of pita) to assume spectra of the form shown in Fig. 2 
given by the following expressions. 

In the range 0 < u < u — o)x : 

S(u) = S(—u) 
T 
2 

(46) 
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-u 

a>0-a; 

-a>x 

 i X I 2 

U}~U)T 

-u 

Cxi+COx 

Fig. 2 — Special case of spectra with properties indicated in Fig. 1. 

In the range w + Wx > m > w — : 

S(u) = S(~u) - ~ cos2 ^ ^ ^ . (47) 

At u — o), (47) becomes 

S(v) = S(-w) = I". (48) 

The required amplitude characteristic of the channel obtained from 
(28) is 

S(u) 
A{u) = 

S°(u) ■ 
(49) 
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In view of (27) and (48), A{ — u) = so that (38) gives 

li — 2. (50) 

When the spectrum is given by (46) and (47), evaluation of (31) 
gives2 

/. \ To) sin wto cos lOxto /ki \ 
vito) = EM) = r— r: /0 , / s, > (51) TT uto 1 — {ZUJO/TT)2 

where Tw/ir = 1, in view of (19), so that 

sin oitu cos Uxto 
pita) = 

oj/O 1 — (2o}Jo/ir)2 

= 1 for fo = 0 

— 0 for ta = mT, m — 1, 2, 3, 

(52) 

Hence, np{0) = 2 and p{mT) = 0 so that conditions (44) and (45) 
are satisfied, and single binary pulses can be transmitted without inter- 
symbol interference. This is also the case for pulse trains, as is shown 
in Section XI. 

To find the shape of the received pulses, it is necessary to employ (41) 
for other values of h than = 0 and mT, as is illustrated in the next 
sections for two limiting cases of general interest. 

VI. SPECIAL CASE OP FLAT SPECTRUM AT DETECTOR INPUT 

The amplitude characteristic A{u) of the channel and the frequency- 
shift pulse transmission characteristic P(fo) will be determined here for a 
channel of minimum bandwidth, in which case the spectrum S{u) will 
be flat for 0 < w < w, and will be zero for u > w. 

With sharp cutoffs at u = ±w, wx will be zero in (46) and (47), so that 

S{u) = S{-u) =% 0 ^ u £ o> (53) 
£ 

= 0 w > to. (54) 

The required amplitude characteristic of the channel, as obtained 
from (49), is 

. / V _ TT 1 — {u/d))2 

4 cos (7m/2co) 

= ^ for u = 0 (55) 

= 1 for u = ±6> 

= 0 for | m | > wo. 
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In the case of double-sideband AM, the spectrum of a pulse of dura- 
tion T with respect to the midband frequency is 

^ ^ T sin (uT/2) 
sM=2^T72r' (56) 

where, as before, it has been assumed that the channel bandwidth is 
small in relation to the midband frequency. 

To obtain a flat spectrum of amplitude T/2 at the detector input, the 
required amplitude characteristic of the channel is 

uT J2 7rw/2w 
a(u) — 

sin {uT/2) sin (?r?</2oj) 

— 1 for = 0 (57) 

^ for u — w. 
£ 

The amplitude characteristics A{u) and a(i«) are shown in Fig. 3. 

1.6 
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< 0.0 
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\a(u) / 

- \ fK\A/ S 
Aturvs^ 

S(u) 
AM & FM "T 

- 

SPECTRUM 

- 

&>0-W 
SPACE 

£^0 
RADIAN FREQUENCY 

Wo + oJ 
MARK 

Fig. 3 — Ideal transmission-frequency characteristics of bandpass channels in 
AM and FM for rectangular modulating pulses and flat spectrum of minimum 
bandwidth at detector input. 
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For purposes of direct comparison, the value of A{u) as obtained from 
(55) has been normalized to A(u) = 1 for m = 0, by multiplication by 
4/7r. 

With a channel characteristic as given by (55), p(ia), as obtained from 
(52) with w.,. = 0, is 

p(fo) = ^-0, (58) 

'/- 1 / sina;A)\ /Kn-. p /o) = — \ cos 0)1(1 —— I. (59) 
60t0 \ MlQ / 

With (58) and (59) in (41), the frequency-shift pulse transmission 
characteristic of the channel becomes 

. .. 3 - 2 cos wfo 
POo) = v . (60) 

Wto ) . sin uto {sin o)to .. \ 1+4 ( -—rr cos uto) 
OJitO \ uto / 

The function P{to) is given in Table I and shown in Fig. 4. 
The term sin uto/uto in (60) represents the pulse-transmission charac- 

teristic for double-sideband transmission over a channel with an ampli- 
tude characteristic a{u). In Fig. 4 the double-sideband AM and the 
frequency-shift transmission characteristics are compared. It will be 
noted that they differ appreciably in shape, but have the common prop- 
erties of unit amplitude at ^ = 0 and zero amplitude at intervals such 
that uto = thitj m = 1, 2, 3, • • • . 

VII. SPECIAL CASE OP RAISED COSINE SPECTRUM AT DETECTOR INPUT 

In actual communication systems, channels with sharp cutoffs as as- 
sumed in the previous example are impracticable for various reasons, 
such as excessive phase distortion near the band edges and relatively 

Table I — Frequency-Shift Transmission Characteristic P{to) for 
Flat Spectrum op Minimum Bandwidth 

uIO/TT 0 0.20 0.40 0.60 0.80 1.0 

0 1.0 0.7860 0.5468 0.4182 0.2746 0 
1 0 -0.3026 0.0072 0.1629 0,1454 0 
2 0 -0.1540 -0.0330 0.0940 0.0985 0 
3 0 -0.1023 -0.0339 0.0646 0,0743 0 
4 0 -0.0766 -0.0303 0.0488 0.0597 0 
5 0 -0.0611 -0.0267 0.0391 0.0499 0 

10 0 -0.0304 -0.0160 0.0194 0,0274 0 
19 0 -0.0160 -0.0091 0.0101 0.0151 0 
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Fig. 4 — Shapes of demodulated pulses in FM and AM for rectangular modu- 
lating pulses and for flat spectrum of minimum bandwidth at detector input, as 
in Fig. 3. 

large oscillations in the received pulses that entail precise synchronized 
sampling at fixed intervals to avoid intersymbol interference. A prefer- 
able type of channel characteristic is one that results in a "raised cosine" 
spectrum of the received wave in response to the transmission of a single 
rectangular pulse of duration T, as considered below. With this type of 
channel characteristic, the bandwidth is twice the minimum possible con- 
sidered in the previous limiting case. 

With ojx — w in (47), 

S(u) — Si—u) — ^ cos2 11 ^ 2d) 
(01) 

= 0 m > 2d). 

The required amplitude characteristic of the channel as obtained from 
(49) is 

A(tl) = ^q-005/"'/2/ [i - (u/iTi 
4 2 cos {ini/2o}) 

for u = 0 (62) 

= 0 

for u = o} (fj. = 2) 

for u ^ 2dj. 
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The amplitude characteristic required for double-sideband transmission 
without intersymbol interference is, in this case, given by 

= - for w — cli 
4 

— 0 for w 2u). 

The amplitude characteristics A (u) and a(u) are shown in Fig. 5. 
For convenient direct comparison, the value of A(w) obtained from (C2) 
has been normalized to A(u) = 1 at u = 0. 

With (jjx = w in (52), 

cos2 (tu/^)tvu/2w 
sin (Tru/2u}) 

TTI t/4:OJ 
tan (iru/4:0}) 

= 1 for u = 0 
(63) 

f{\ _ Olil AUJLQ 
V{ 0) " 2^o[l - (2^o/7r)2l ' 

sin 2wio 
(64) 

where the relation cos ca^o sin coto — 4 sin '2cbto has been used. 

1,2 

u>0~zui a>0-io 
space 

a;Q 
RADIAN FREQUENCY 

<DQ+a) 
MARK 

w0+2a5 

Pig. 5 — Ideal transmission-frequency characteristics of bandpass channels in 
FM and AM for rectangular modulating pulses and raised cosine spectrum at de- 
tector input. 
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Tablf. II — Frequency-Shift Transmission Characteristic F(/.o) 
fob Raised Cosine Spectrum at Detector Input 

uto/fT 0.2 0.4 0.5 0.5 0.8 

0 1.0 0.8053 0.5769 0.4887 0.4030 0.2035 
1 0 -0.0175 0.0301 0.0265 0.0109 -0.0108 
2 0 0.0035 -0.0048 -0.0053 -0.0027 0.0025 
3 0 -0.0012 0.0016 0.0019 0.0011 -0.0009 
4 0 0.0005 -0.0007 -0.0009 -0.0005 0.0004 

Differentiation of (04) yields 

V _ 2 cos 2uiio 0 sin 2c^o[l — 3(2^o/7r)2] 
w 2a)/oll — (2ajio/ir)2l (2a)^o)2ll — {2b)to/ir)-]- 

For uto — ir/2, p'/w — — 3/(2ir). 
With (C4) and (65) in (41) the frequency-shift transmission charac- 

teristic P{to) given in Table II and shown in Fig. 6 is obtained, for a 
channel with an amplitude characteristic A (u) as shown in Fig. 5. 

For comparison with P(k), Fig. G also shows the pulse-transmission 
characteristic p{to) obtained from (64) for double-sideband transmission 
over a channel with the amplitude characteristic a(u) shown in Fig. 5. 
In both cases, the oscillations in the received pulses are quite small, and 
for this reason the transmission-frequency characteristics shown in Fig. 5 
are preferable to those in Fig. 3 in practicable AM and FM systems. 
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Fig. 6 — Shapes of demodulated pulses in FM and AM for rectangular modu- 
lating pulses and raised cosine spectrum at detector input, as in Fig. 5. 
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VIII. PRBMODULATION PULSE SHAPING 

In the preceding analysis the modulating pulses were assumed to be 
rectangular in shape and of duration T, in which case the modulator 
input in response to a change from space to mark was given by (23) 
and the corresponding spectrum by (24). In the more general case of 
premodulation pulse shaping, these equations are replaced by 

EgJ'iio) = 2 cos (uato + yo) cos \f/i (to), (60) 

S0(u) — 2 [ cos rpi (to) cosutodto, (C7) 
•>o 

where, as before, the second component in (24) has been neglected, and 
the phase modulation ^ is related to the modulating voltage Vi(to) by 
(2), or 

^pi(to) — Wl f Vido) dto . (68) 
Jo 

The above relations apply provided a continuing space is represented by 
a constant frequency deviation — w and a continuing mark by w. To 
this end, it is necessary that the individual modulating pulses F,-(^) 
overlap and be of such form that 

t, FK/o + kT) = y.-(0). (69) 71=—CC 

For example, the latter relation is satisfied when impulses are applied to 
a fiat low-pass filter of bandwidth u and linear phase, resulting in a 
modulating voltage Vi(t) — F,(0) (sin wt^/uto. The simpler case of 
overlaps between adjacent pulse intervals only is illustrated in Fig. 7. 

^MODULATING PULSE ✓ 1 1 1/1 1 1 1 1 

1 A / ^ 
J 1 v j 

% \ 1 

-T -V2 > >t:) T/2 T 

Fig. 7 — Modulating pulses with overlap between adjacent pulse intervals. 
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The amplitude characteristic of the channel required for a spectrum 
S{u) at the detector input is, as before, given by 

(70) 

To avoid intersymbol interference, it is necessary to satisfy (45); 
i.e., iipiO) = 2. To this end, it is necessary, in accordance with the dis- 
cussion in Section V, that S(dz&j) = T/4 and that T(w) = Hence, a 
requirement imposed on S0{u) as given by (67) is that 

s°(») = t. (71) 

There is an infinity of pulse shapes, F,-(^o), that satisfy (69), and the 
corresponding \f/i(to) can be determined formally from (68) and, in turn, 
S0{u) can be determined from (67). The principal problem is to deter- 
mine pulse shapes, other than the rectangular shape considered pre- 
viously, which also have a spectrum that satisfies (71). The solution of 
this problem will not be attempted here, but two pulse shapes of general 
interest in pulse transmission theory will be considered. 

A familiar example of modulating pulses that overlap into an infinite 
number of pulse intervals is represented by the idealized pulse shape 
obtained by applying impulses to an ideal flat low-pass filter with linear 
phase characteristic. It will be assumed that the filter bandwidth is u, 
in which case the modulating voltage is 

FiCo) = Y(0) S^-. (72) 
wfo 

With (72) in (68), and with uiTi(O) = w, 

Mto) = Si (Mo) (73) 

where Si is the sine integral function. 
In Fig. 8 the phase modulation, \J/i, obtained from (73) is compared 

with that for rectangular modulating pulses, for which = wto for 
wio ^ ?r/2 and ipi = t"/'^ for c^o > 7r/2. 

With (73) in (67) and uto = r, uT = r, a — u/u: 

S0(u) — ^ - f cos Si (r) cos ar dr. (74) 
2 TT JO 

For r > 17 the following approximation applies: 
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The peak amplitudes, p(0), required to produce an error when an 
impulse occurs midways between sampling points is greater than when 
they occur at a sampling point by a factor of 2m in FM and a factor of 
2 in AM. With a Gaussian amplitude distribution of the pulses, the 
probability of an error from a pulse midway between two sampling 
points is in the order of 1 per cent of the probability of an error from a 
pulse at a sampling point in the case of FM, and is substantially smaller 
for AM. Hence, virtually all the errors will be caused by pulses that 
occur near sampling points. The AM advantage over FM for equal error 
probability is 3 db for impulses that occur at sampling points, and would 
be expected to be only slightly greater, about 4 db when impulses oc- 
curring at all instances with respect to a sampling point are considered. 

The above comparisons apply without a postdetection low-pass filter 
in FM. With an optimum bandpass receiving filter characteristic in FM, 
the reduction in peak impulse noise afforded by low-pass filter would be 
expected to be about the same as the reduction in average random noise. 

appendix c 

Optimum Receiving Filter Characteristic 

The optimum receiving filter characteristic in AM and in FM with- 
out a postdetection low-pass filter can be determined from the solution 
of the more general case considered here, of FM with a postdetection 
filter. 

In the latter case, the optimum R{u) is obtained when the product 
of the two integrals in (125) is a minimum, or for the minimum value 
of the product: 

J = JJi, (256) 

where Ji and J2 are functions of R{u) given by 

J, = r L2(u)R2(u)(1 + u/u)2du, (257) 
J—oo 

j2 = f wri du = 2 f Crid"- (258) J-co R2(u) Jo R2(u) 

In (267), L(—u) ^ L(u), so that it is convenient to resolve the 
integrand into one component with even symmetry with respect to u 
and one with odd symmetry. The integral of the latter component van- 
ishes and that of the component with even symmetry becomes 

Ji = f H2(u)R2(u) du, 
Jo 

(259) 
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raised cosine pulse, which overlaps into adjacent pulse intervals, and 
is considered in the next section. With the latter type of pulse it turns 
out that S0(u) = O.OOd T/2. It can thus be conjectured that there is 
some intermediate shape of overlapping modulating pulses for which (71) 
is satisfied. For practical purposes, this is the case with modulating 
pulses given by (64) or for the raised cosine pulses considered in the 
next section. 

IX. RAISED COSINE MODULATING PULSES 

Raised cosine modulating pulses have the shape indicated in Fig. 9, 
and can be derived conveniently by appropriate gating of a biased 
steady-state sine wave, with the total pulse duration, 2T, equal to one 
cycle of the sine wave, which may have advantages from the standpoint 
of instrumentation. 

(a) 2 

A 
x 1 / \ i / \ i / \y 

/ i \ 
s i X 
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FT -T/2 T/2 3 /2 2T 

1,2 
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/ / / -SPECTRUM AT 

" / / / DETECTOR INPUT 
/// 
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\\\ 

CJ0-2CO 
SPACE 

U>0 
RADIAN FREQUENCY 

a>0 + Cc! 
MARK 

U)Q+2CAf 

Fig. 9 — Comparison of transmission-frequency characteristics of bandpass 
channel in FM for raised cosine modulating pulses (solid curve) and rectangular 
modulating pulses (dashed curve), with raised cosine spectrum at detector input 
(dotted curve) in both cases. Pulse shapes are same as those for FM in Fig. 6. 
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With a raised cosine modulating voltage, 

Fife) = ^ [1 cos (rt,/T)l — 1 < ia/T < 1 
z (78; 

= 0 -i > (o/r > i. 

In accordance with (2), the resultant phase modulation is, for uto ^ ir, 

ipi(to) = [ [1 + cos (irto/T)i dio 
£ -'o (79) 

= ^(w^o d" sin ^o). 

For wio ^ tt, 
The spectrum of cos i/v(£o) is obtained from (67) with the upper limit 

equal to T, since cos if/iiU) = 0 for to > T. The following relation is 
thus obtained: 

S0{u) = 2 / cos |(^o + sin wto) cos uto dta. (80) 
Jo 

With wto — x, iaT = ir and u/u = a, (80) becomes 

2 r 
Sa{u) ^ - I cos {x/2 + | sin x) cos ax dx 

03 Jo 

t r 
— — cos (viX + | sin x) dx (81) 

TT Jo 

t r 
+ — / cos {viX + | sin a:) dx, 

tt Jo 

where 

vi — \ — a, V2 = | + a. 

The above relation can be written 

S0{u) = T [JVl(-h) + Jni-h)], (82) 

where Jr(z) is a so-called Anger function, which is associated with Bessel 
functions and is defined by8 

1 f 
Jr{z) = - cos (vx — z sin «) dx, (83) IT Jo 
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r ^ _ SHI fjr | t 2 , 2 
AZ> vir L 22 — v2 (22 - v-) (4i2 - v2) 

(22 - ^2) (42 _ ^(62 _ ,,2) + 

^ sin w P 2 
^ TT [l2 - f2 (I2 - 

(84) 

f2)(32 - J^2) 

+ (P - v2) (32 - P){52 

The spectrum as a function of a obtained from (82) and (84) is given 
in Table III, together with that for a rectangular modulating wave, as 
obtained from (26). 

Table III — Values of {2/T)S0{u) for Raised Cosine and 
Rectangular Modulating Pulses 

a = ufZt 0 0.5 l 1.5 2 

Raised cosine  1.58 1.39 0.994 0.544 0.282 
Rectangular  1.28 1.20 1.000 0.720 0.425 

To obtain a raised cosine spectrum at the detector input, as given by 
(61), the required amplitude characteristic of the bandpass channel ob- 
tained from (70) is 

A{-u) = A{u) =  cos2 (7m/4ci)) (85) 
2[J,l(-|)+/*,(-*)]' 

which gives for various values of a = u/w 

a = u/u: 0 0.5 1 1.5 2 

A{u): 0.63 0.61 0.503 0.275 0' 

Since .4(w) = 0.503, rather than 0.50, the factor ju = 2 in (43) is re- 
placed by ^ - 2.012. The peak pulse amplitude at ifo = 0 as obtained 
from (43) is, in this case, 

Pm = 5 2^"1 = a994- 

Thus, intersymbol interference in this case results in a slight reduction 
in the peak amplitude of a pulse. 
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In Fig. 9 the above channel characteristic is compared with that for 
rectangular modulating pulses. In both cases the shape of the demodu- 
lated pulses would be as shown in Fig. 6 for FM, aside from the slightly 
smaller peak amplitude, 0,994 rather than 1.00. It can be shown that, 
with raised cosine modulating pulses, the error involved in neglecting the 
second integral in (24) is not appreciable, even when the total channel 
band width is equal to the midband frequency. Hence, the channel shap- 
ing shown in Fig. 9 for raised cosine modulating pulses applies without 
restriction on channel bandwidth relative to midband frequency. 

X. POSTDETECTION PULSE SPECTRA AND FILTERING 

At the detector output a low-pass filter may be desirable for final 
pulse shaping, elimination of unwanted demodulation products or higher- 
frequency noise components, as noted in Section II. The appropriate 
transmission-frequency characteristic of such filters depends on the spec- 
tra of the demodulated pulses, as discussed here. 

Let P{*o) be the shape of the pulses at the detector output in FM as 
given for rectangular modulating pulses by (41) and illustrated in Figs. 
4 and 6 for two special cases. These pulses have a baseband spectrum 
given by 

SoW = f PMe-'"" dlo (80) 

or, since P(—io) = P(^), by 

Saico) ^ 2 [ P(to) cosutodto. (87) 
Jo 

In accordance with the definition in Section IV, P(to} = ^'(to)^. 
Hence, for w = 0, (87) becomes 

<So(0) = ^ [ t'(k) dlo 
Zo) O0 . 

(88) 

= i — vK — ^ )]• JiOJ 

In view of (19), the phase change caused by transmission of a mark 
preceded and followed by a, continuing space, is ^(°o) — ^( — «>) = 
2uT = 2ir. Hence (88) becomes 

jSO(O) = T. (89) 
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In the case of AM, the spectrum of the baseband pulses is equal to 
the spectrum at the detector input above the midband frequency multi- 
plied by a factor of 2, because of the direct addition of the two sideband 
spectra. From Fig. 2 it follows that, in this case, 5o(0) = T. Relation 
(89) thus shows that the dc component of the demodulated pulses is 
the same in FM as in AM. That is, the areas under the FM and AM 
pulses shown in Figs. 4 and 5 are equal. 

For equal spectra at the detector input in AM and FM, the pulse shape 
P(ta) has a nonlinear relation (41) to the pulse shape pita) in AM. For 
this reason, the bandwidth of the demodulated pulses will be greater in 
FM than in AM, and, in view of the appearance of p{to) in the denomi- 
nator of (41), the bandwidth is theoretically infinite. For this reason, 
part of the spectrum will be eliminated by any postdetection low-pass 
filter, and intersymbol interference is thereby introduced unless the filter 
has an appropriate amplitude characteristic. 

With the aid of a postdetection low-pass filter having an amplitude 
characteristic and a linear phase characteristic, it is possible to 
modify the spectrum So into a desired spectrum Sm with such proper- 
ties that intersymbol interference is absent. To this end, the amplitude 
characteristic would be so chosen that 

Ao(co)Ao(") = Sm (w). (90) 

For example, by appropriate choice of Aofw) the pulse shape shown in 
Fig. 4 for FM could be modified into that shown for AM, or into other 
shapes. The principal difficulty resides in the determination of the spec- 
trum SM from (87), which entails numerical integration, in view of 
the fairly complicated expressions for P{lo)■ 

The spectrum obtained by numerical integration of (87) is given in 
Table IV for the special case of a fiat spectrum of minimum bandwidth 
at the detector input, as considered in Section VI. In the numerical inte- 
gration, contributions to the integral were neglected for wfo = r > 20. 

The above spectrum is shown in Fig. 10, together with the baseband 

Table IV — Soio>)/T for Flat Spectrum at Dectector Input 

u/ai 0 0.25 0.5 0.75 0.9 

0 1* 0.8779 0.7661 0.6254 0.6385 
1 0.4755 0.2932 0.0626 -0.2370 -0.4609 
2 -0.1321 0.2S71 0.2031 0.4186 -0.0696 
3 0.0396 -0.0233 -0.0529 -0.0220 0.0418 
4 0.1106 0.0650 0.0270 0.0003 — 

* Based on (89); compares with computed value of 0.99999654. 
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Fig. 10 — Spectra, So{u), of demodulated FM (solid curve) and AM (dashed 
curve) pulses shown in Fig. 4 for flat spectrum at detector input. 

spectrum of the AM pulses. It will be noted that the spectrum is nega- 
tive in certain ranges for w > l.Od). This places a restriction on the choice 
of the modified spectrum Sm and on the filter bandwidth, if Ao(» is to 
be positive and finite for all values of w in the filter band. To this end, 
it is necessary that the filter bandwidth be less than 1.6w. 

In Fig. 11 is shown the amplitude characteristic Ao(a>) of the post- 
detection low-pass filter obtained from (90) when Sm(u) is assumed to 
be equal to the AM baseband spectrum. With the amplitude characteris- 
tic Ao(w) shown in Fig. 11, the FM pulses shown in Fig. 4 would be con- 
verted into pulses of the same shape as shown for AM. 

With a raised cosine spectrum at the detector input, as considered in 
Section VII, the spectrum of the demodulated pulses obtained by nu- 
merical integration of (87) is given in Table V. In the numerical integra- 
tion, contributions to the integral for uta = t > 5 were disregarded. 

The above spectrum is shown in Fig. 12, together with that of the 
AM pulses. 

The circumstance that So(w) is negative in the approximate range 
1.9w < w < 2.1ai in this case limits the filter bandwidth to less than 1.9&J, 
if Ao(w) is to be positive and finite for all values of co in the filter band. 
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Fig. 11 — Amplitude characteristic, -Ao(w), of postdetection low-pass filter re- 
quired to convert spectrum So(w) into modified spectrum Sm{u). 

Table V — Sq{o))/T for Raised Cosine Spectrum at Detector Input 

«/u 0 0.25 0.5 0.7S J.o 

0 1* 0.9492 0.8092 0.6147 0.4159 
1 0.4150 0.2438 0.1063 0.0208 -0.0069 
2 -0.0069 0.0131 0.0582 0.0926 0.0742 
3 0.0742 0.0302 0.0093 0.0032 0.0052 
4 0.0052 0.0096 0.0121 0.0114 0.0084 

* From (89); actual computed value = 0.99999951. 
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Fig. 12 — Spectra Soiv) of demodulated FM (solid curve) and AM (dashed 
curve) pulses shown in Fig. 6 for raised cosine spectrum at detector input. 

By way of illustration, an appropriate type of modified spectrum of 
bandwidth 1.75w is given by the following expressions. 

For 0 < oi/d) < I: 

SM = T. (91) 

For | < la/o) < !■: 

&.(») = T cos' (92) 

The above spectrum Sm is shown in Fig. 13, together with the spec- 
trum <So(w) and the amplitude characteristic /lo(c») of the low-pass filter 
obtained from (90). The shape of the pulses at the output of the filter 
for the above spectrum Sm{o)) can be obtained from (52) with = fu, 
but it does not differ significantly from that shown in Fig. 6 for AM. 

With a low-pass filter having a linear phase and an amplitude charac- 
teristic Ao(w) as shown in Fig. 13, intersymbol interference is avoided, 
and some improvement in signal-to-noise ratio is realized by elimination 
of higher-frequency noise components in the detector output, as will be 
shown later. 

XI. PULSE TRAINS 

In the preceding analysis, transmission of a single mark of duration 
T was assumed. When a pulse train consisting of a sequence of marks 
and spaces is transmitted, (33) is modified into the following expression 
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Fig. 13 — Amplitude characteristic, Ao(w), of postdeteetion low-pass filter re- 
quired to convert spectrum So(t>) of Fig. 12 into a modified spectrum 

for the received wave at the detector input: 

= —cos (woto + ^o) U(—w) cos u(io — mT) 
CO 

— S amp(io — mT)] — /1(—w) sin (w^fo + ^o) sin u(4 — mT), 
(93) 

where am = 0 for a space and 1 for a mark, and m is an integer. The 
above expression can be written in the form 

WM = Wi(io) (cos coofo + ^ + ^o), (94) 

where the pulse train envelope is given by the following expression in 
place of (36): 

Tr,(fo) = /l(-w)[l + m2 S am
2ps(io — mT) 

— 2/i amp(to — mT) cos w(to — mT)]U2, 

where S indicates summation between the limits = - co and m = co, 
as in (93). Expression (37) for the phase SI>o is replaced by 

sin — mT) 

(95) 

tan 'Fo — 
cos co(to — mT) — d X) amP(M — mT) 

(96) 
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Expression (39) for the time derivative of is replaced by 

^o' = —~ 1 — j" S — rnT) cos w(fo — mT) 

(97) 

+ ^ ]C OmVila — wT) sin co(A) — mT) , O) J 

where 

D — sin2 w(io — mT) + [cos <o(^ — mT) — n — mT)l2. (98) 

Expression (41) is replaced by the following expression for the demodu- 
lated pulse train: 

TEU) = ~ «mP(«o - mT)]2 - 23 «mp(io - mT) 

■cos w(*o — mT) — r S amVik — mT) sin <i(io — mr)|. 

(99) 

At the sampling points U = 0, sin wmT = 0 and cos wmT = ( —l)m, 
so that (99) becomes 

W(0) - ^ TtamPimT)   (100) 2 m £ amp{mT) - (-l)m 

Since p{mT) = 0 except for w = 0, (100) becomes 

^0)=2-^^W^T (101) 

where p — 2 and p(0) = 1, so that 

^(0) = ao 

2ao — 1 

= 1 for ao = 1 (mark) 

= 0 for ao = 0 (space) . 

(102) 

There is thus no intersymbol interference when a pulse train is trans- 
mitted. 

In (99) the denominator D depends on the composition of the pulse 
train. For this reason the shape of the demodulated pulse train between 
sampling points cannot be obtained by direct superposition of individual 
demodulated pulses, such as those shown in Fig. 4 and Fig. 6. 
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XII. AVERAGE SIGNAL POAVER 

The preceding analysis Avas concerned with the ideal shaping of the 
over-all transmission-frequency characteristic of the bandpass channel 
required to avoid intersymbol interference in FM and AM systems. 
This over-all shaping Avill ordinarily be divided between bandpass filters 
at the transmitting and of the receiving ends. While the division betiveen 
the two ends is immaterial from the standpoint of intersymbol inter- 
ference, it does affect signal poAver at the transmitting end and inter- 
ference of various kinds at the receiving end. In order to determine the 
optimum proportioning and shaping between transmitting and receiving 
ends, it is thus necessary to consider both signal power and interference. 

In analog systems for voice transmission and other purposes, the peak 
signal power is ordinarily substantially greater than the average signal 
power, by 10 db or more, and is usually a limitation in systems design. 
In binary pulse systems Avith representative transmission-frequency 
characteristics,* hoAvever, peak signal power is not much greater than 
aArerage signal power, and the latter is ordinarily a limitation, either 
from the standpoint of repeater design or interference Avith other sys- 
tems. For this reason, average signal power AArill be considered here in 
comparing FM and AM binary pulse systems. 

Let the amplitude characteristic of the transmitting filter be T{u) 
and that of the receiving filter be R{u),in Avhich case T{u)R(u) = A(u), 
Avhere A{u) is the over-all amplitude characteristic and u the frequency 
from midband. 

Let the peak amplitude of the carrier for a continuous mark or space 
at the output of the transmitting filter be E, in which case the signal 
power for a continuous mark is 

P„ = y. (103) 

In Appendix A it is shoAvn that the average signal poAver for random 
pulse trains Avith FM and with bipolar AM are given by 

Pfm = P„4ifl2G) f irl J-oo 

Pam = H 

where T is the pulse interval or duration, and S{u) is the spectrum at 

(io4) 

(io5) 

* This excludes idealized flat channels of minimum bandwidth. 
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the channel output, or detector input, in response to the transmission of 
a single pulse, i.e., in response to the transmission of a mark preceded 
and followed by a continuing space. 

By way of illustration, in the case of a raised cosine spectrum as given 
by (61) 

_ j-. T D2/-\ /"2w COS4 (7rw/4cj) , . /ir,r\ 
PFm = Pm - $ (") ——du' '106) 

■n J—2S K£\U) 

(108) 

If the receiving filter has a half-cosine shape as given by 

R{u) = cos Tm/dw for —2o)<u<2u> 

= 0 for \u\ > 

expressions (106) and (107) become, with R(ja) = |1/2 and S(0) = 1, 

rp I'ZS 
. — / cos2 2rw/4co) du 
27r J-iz (109) 

- 

P FM — P AM — P T. 

(110) 

In this particular case the average signal power of a random pulse train 
in both FM and bipolar AM is equal to the signal power for a continu- 
ous mark or space. 

Consider next a flat receiving filter, in which case 

R{u) = 1 for —2co < u < 

= 0 for | m | > 2w. 

In this case (106) and (107) yield 

rp ntv 
Pfm = Pm — I cos4 iru/4:0} du IT J—25 

_ 3 p "2" ^ m j 

Pam = I PFM = f (112) 

Finally, let the receiving filter have a raised cosine shape as given by 

R{u) = cos2(7m/4oj) for —2u<u< 2w 
(US) 

= 0 for w > 2w. 

(Ill) 
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In this case /?(«) = f and 

T f25 

PFM = Pm -f f dll 47r j—2S (114) 

= Pm, 

Pam = 2Pfm = 2Pm. (115) 

The above relations show that, for equal signal power in FM and bi- 
polar AM during transmission of a continuing mark (or space), there 
may be appreciable difference in average signal power for a random 
pulse train, depending on the shape of the transmitting filter. For this 
reason, signal power during a continuing mark, which is often used in 
specifying signal-to-noise ratio, may not be an appropriate reference 
signal power. 

To determine the optimum division of channel shaping between trans- 
mitting and receiving ends, it is necessary to consider the effect of ran- 
dom noise or other interference, such as impulse noise. The effect of any 
particular type of interference depends on the shape of the receiving filter, 
as discussed in the following sections for random noise. Impulse noise is 
discussed briefly in Appendix B. 

XIII. RANDOM NOISE IN FM AND AM SYSTEMS 

Certain basic equations relating to noise and interference on FM and 
AM are given in Appendix B and applied to the particular case of single- 
frequency interference. In the case of a sinusoidal interfering voltage at 
a frequency u from midband and of amplitude e(u) at the input of the 
receiving filter, rms interference in FM and bipolar AM taken in rela- 
tion to the peak-to-peak signal amplitude at the detector output is given 
by 

^ e(u)R(%i) , ... /1irv 

^ - ^M(^ (1 + wA,)' ( ^ 

_ e(u)R(u) . 
'?AM 2ER{0) U ^ 

where e{u) = e(w)/21/2, R(u) is the amplitude characteristic of the re- 
ceiving filter and E is the peak amplitude of the carrier for a continuing 
mark or space. The above relation for jjFM is a first-order approximation 
applying if e(n) is small in relation to E, as is required for transmission 
without excessive error rates. 

The equations give the rms amplitude of the interfering voltage at the 
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detector output, taken in relation to the peak-to-peak difference in pulse 
amplitudes for mark and space, considering all possible phases of the 
interfering voltage equally probable. The slicing or threshold level is 
ordinarily half this difference, and rms interference voltage taken in 
relation to the slicing level would be twice as great. 

Random noise can be regarded as the sum of a very large number of 
sinusoidal waves of different frequencies, with both the amphtude and 
phase of each component wave varying with time. For a single sinusoidal 
wave at a frequency u from midband and peak amplitude e, the rms 
amplitude is e = e/2I/2. When the sinusoidal wave varies in amplitude 
with time there will be a certain rms amplitude e over a long interval, 
and a corresponding average noise power e2 for each sinusoidal compo- 
nent. The corresponding average noise power per unit of bandwidth at 
the receiving filter input will be designated n{u). In the case of white 
thermal noise as assumed in the following, n{u) — n is independent 
of u. 

The ratio of noise power to signal power at the output of the detector 
can be obtained from (116) and (117) for single-frequency waves, by 
integration of the noise power density over the channel band. Thus, in 
the case of FM, the ratio of average output noise power JVo to the output 
peak-to-peak signal power (So between mark and space, as obtained by 
integration of (116), becomes 

(jVo/A)™ = gp f -RV)(1 + ^ (118) Oi m-O' \ ^1/ "—"S 

=«p ^ rjR2(w)(i+u'i^) du>(ii9) 
8Pmff2(-w} 

where the last expression follows since R{—u) = R{u), so that the in- 
tegral of R22u/w vanishes. 

In case of bipolar AM, the corresponding ratio obtained by integration 
of (117) is 

du- (120) 

Relations (119) and (120) can be expressed in terms of average signal 
power in FM and AM with the aid of relations (104) and (105). The 
following expressions are thus obtained: 

(Ao/^ow=, ^ r r r\u){i+u3/**) du] 
LJ-~ -1 (121) 

r r tf(u) , "i 
r2(w) _r 
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(N0/So) AM ^tTP Am 
n 

(i22) 

The above expressions for FM apply without a postdetection low- 
pass filter. As discussed in Section X, it is possible to modify the pulse 
shape in FM without causing intersymbol interference, with the aid of a 
low-pass filter of appropriate amplitude characteristic A.o(w) that de- 
pends on the bandwidth. Such a filter reduces the noise power in a nar- 
row band at w by the factor Ao2(w). On a carrier basis, this is equivalent 
to multiplying the noise power in a narrow band at a frequency u from 

Fig. 14 — Frequency modulation with postdetection low-pass filter having 
transmission characteristic Ao(w)- Noise power in the narrow band at frequency 
u from midband is reduced by the factor L2(«) = Ao2(w + u) during transmission 
of space with carrier at «o — "j as assumed above. 

midband by Aa(oj + u) during transmission of a space, as indicated in 
Fig. 14, or by Ao2( —+ u) during transmission of a mark. This equiva- 
lent representation on a carrier basis is legitimate, provided the carrier 
power at the detector input is substantially greater than the noise power, 
in which case the ratio No/So obtained from (121) is much smaller than 

SPACE 

I LOW 
/ CH/ 

/ / 
/ 

one. 
The following notation indicated in Fig. 14 will be used: 

L(u) = A.o(co + u). (123) 

With such a filter, (118) is modified into 

J L2(u)R2(u)(l u/co)2 du, (124) 
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and (121) is modified into 

(ft/A)™ = [ H l2(u)R2(I + «/")2 rf"] 

s2 , 
-xWdu 

\ 

(125) 

where L, R and S are functions of u. 
Comparison of (125) with (121) shows that, for a given R{n), a post- 

detection low-pass filter reduces the ratio (iVo/tfoW by the factor 

[ L2RHl + u/^)2 dii 
p = ^ , (126) 

[ R2(l + uZ/a) du 
J—OO 

where L and R are functions of u. 

XIV. OPTIMUM AM SYSTEMS 

The minimum value of (/Vo/^o) for a given average power P = Pam 
is obtained when the product of the two integrals in (122) is a minimum. 
As shown in Appendix C, this is the case when P (u) is such that the two 
integrals are equal, in which case the optimum R{u) is given by 

R0{u) = c&ll\u), (127) 

where c is an arbitrary constant independent of u that can be chosen to 
give R{u) the appropriate dimension. 

With (127) in (122), the optimum ratio iVo/$o becomes 

(ft/A)" = [/_" S{u) du^. (128) 

When S{u) has the properties previously discussed and illustrated in 
Fig. 1 and Fig. 2, the integral in (128) is always equal to the area under 
the rectangle in the upper part of these figures, or 2wP/2 = coT = tt. 
Furthermore, with (127) in (105), it follows that Pm = Pam ~ P• 
Hence, for all spectra S{u) of the form previously assumed, (128) be- 
comes 

(N /< V = (129) (Wo/fto) 4p 4pm, 
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where 
N = nco = average noise power in a flat band w at input of receiv- 

ing filter, 
P = average signal power at receiving filter input, 
Pm = signal power for continuous mark (or space), 
No = average noise power at detector output, 
/So = peak-to-peak signal power at detector output. 
In (129) N is the average noise power in a fiat band equal to that of 

the minimum possible bandwidth w over which pulses can be transmitted 
at intervals T = tt/w without intersymbol interference, i.e., the noise 
power in a band 1 /IT cps. With the above definition of N and for the 
above pulse transmission rate, (129) applies for all spectra at the detector 
input with the properties illustrated in Figs. 1 and 2. There is thus no 
noise penalty, but only a bandwidth penalty, in modifying the spectrum 
that was indicated in Fig. 2 and discussed previously to obtain pulses 
whose shape is more appropriate shape than that of systems with the 
minimum possible bandwidth. Moreover, (129) also applies for optimum 
bipolar baseband systems with base band spectra equal to those shown 
on the right-hand side of wo in Figs. 1 and 2. Thus there is no noise pen- 
alty in bipolar double sideband AM, but the bandwidth of the carrier 
channel is twice that of the baseband channel. 

This two-fold increase in bandwidth for a given transmission rate can 
be overcome by providing two independent channels on two carriers at 
quadrature, a method sometimes referred to as four-phase transmission. 
With 3-db reduction in noise power, because of the two-fold reduction in 
bandwidth, and with 3 db less signal power per channel, so that the 
average signal power P is the same as for a single channel in bipolar AM, 
(129) applies with N defined as above An alternate means of avoiding 
the two-fold increase in bandwidth is to use bipolar vestigial sideband 
AM1,2 with homodyne detection, in which case (129) also applies. The 
last two methods are thus equivalent to bipolar baseband transmission, 
both as regards bandwidth and signal-to-noise ratio. 

At the detector output the pulses may be bipolar or may be biased 
into unipolar (on-off) pulses, and (129), in terms of the peak-to-peak 
signal power £0 at sampling instants, applies regardless of any bias. 

In the particular case of a raised cosine spectrum as given by (71), 
the over-all amplitude characteristic of the channel is given by (63) or 

a(«) = T;'/4" • (130) tan (ttm/4co) 

The optimum receiving filter characteristic as obtained from (127) is 

R0{u) = cos (7rw/4w). (131) 
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The corresponding optimum transmitting filter characteristic is T" = 
a{u)/R0, or 

7rw/4<i 
r{u) = 

for if — 0 

sin {ttu/Alu) 

— 1 

— ^ 21''2 = 1.12 for u = w 
4 

— - for u = 2m. 

(132) 

These characteristics are shown in Fig. 15. 
In the case of vestigial-sideband AM, the carrier would be at wo + ^ 

or wo — w rather than at wo. Pulses can then be transmitted at twice the 
double-sideband rate, provided homodyne detection is used so that the 
effect of the quadrature component is eliminated." The optimum shape 
of the receiving filter is again given by (131), but the shape of the asso- 
ciated optimum transmitting filter is modified, since the spectrum at the 

T (u) 

A(u) = R (u) T (U) 
'n 

< 0.8 

0.6 

' /R0{u) 
0.4 

0.2 

MARK SPACE 
2 0) o)o+o> 0)0+20" 

Fig. 15 — Double-sideband AM with raised cosine spectrum at detector input; 
jjo = optimum shape of receiving filter; T" = optimum shape of transmitting filter; 
A — RoT" — combined transmission characteristic. 
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channel input is now caused by a rectangular carrier pulse of frequency 
wo ± w rather than wo. The optimum transmitting filter characteristic 
is given by 

mo/ \ ( /i-\ 7r(w zb w)/4w /ioo\ T (u) = cos {Tru/io}) —jr-p— (133) 
sin [ir{u zt w)/4wj 

The positive signs apply when the carrier is at wo — w and the negative 
signs apply when it is at wq + w; the expression applies for — 2w ^ m ^ 
2w. 

If the carrier is assumed at wo + oj, 

mos \ / IA-\ 7r('?< ~ w)/4a) T (u) = cos (iru/4w) .  -\/a-\ 
sin [7r(w — w)/4wj 

= 0 for u < —2(1) 

= - 21/2 for u = — w 

(134) 

= ^21/2 for ^ = 0 
4 

= ^21/2 for w = w 

= 0 for u ^ 2a). 

In actual systems, it may be expedient from the standpoint of design 
to employ transmitting and receiving filter characteristics that differ 
from the optimum characteristics shown in Fig. 15. This results in some 
penalty in signal-to-noise ratio, as shown below. 

By way of illustration, it will be assumed that the transmitting filter 
has the shape shown in Fig. 5 for the channel transmission-frequency 
characteristic, in which case the receiving filter could be flat and given 
by 

R(u) = 1 for — 2a) g w fS 2w 
(135) 

= 0 for —2a) > w > 2a). 

In this case, (122) for AM becomes 

Nq/(So = 
dirTP 

3 N 

T 
— cos4 (?m/4aj) du 

2 4P (136) 
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where N, P and Pm are defined as in (129) and the last relation follows 
from (112) for the above case; i.e., P = |Pm . 

Comparison of (136) with (129) shows that, for equal average signal 
power P, the ratio No/So is greater here than for optimum division of 
filter shaping by a factor of | (or 1.8 db), while comparison of (137) 
with (129) shows that, for equal continuous mark power Pm , it is 
greater by a factor of 2 (or 3 db). This illustrates that the penalty in- 
curred in departing from the optimum division of channel shaping be- 
tween transmitting and receiving filters can be significant. 

XV. OPTIMUM FM SYSTEMS 

The minimum ratio No/So is obtained when the product of the two 
integrals in (121) is a minimum. As shown in Appendix C, this is the 
case when R(u) is such that the two integrals are equal, resulting in the 
following expression for the optimum R(u) without a postdetection low- 
pass filter: 

R0(u) = c5i/2(w)(1 + u2/*2)-11*, (138) 

where c is an arbitrary constant. The corresponding optimum No/$o ob- 
tained with (138) in (125) is 

(N,/S,y= 2n I" (1 + u/vY'Siu) diij Hl39) 

= ^-y, (wo) 

irTP 

4P 

where P = Pfm , N is defined as in (129) and 

X0 = 2 [i -co 
u) dwj 

1 Li 
( S(u) duj 

(141) 

Comparison of (140) with (129) shows that, for equal average signal 
power, the optimum ratio No/So is greater in FM than in bipolar AM by 
the factor X0. Inspection of (141) shows that X0 > 2, without a postde- 
tection low-pass filter. 

With (138) in (126), the factor p, by which the noise power is reduced 
by a postdetection low-pass filter, becomes 

r (1 + u/u2)ll2S(u) du 
J—CO 

where L{u) is defined by (123). 

P = (142) 
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With a postdetection low-pass filter, (140) is replaced by 

(No/So)" = (143) 

(144) 

is the factor by which the optimum ratio IVo/S'o differs in FM from bipolar 
AM, for equal average signal power at the receiving filter input. 

The above factor y is not the minimum (optimum) factor with a post- 
detection low-pass filter, but rather the factor applying when a low-pass 
filter is applied to a system in which R(u) is optimized without such a 
filter. If a postdetection low-pass filter of specified amplitude character- 
istic To(w) is assumed, the optimum Ii(u) is related to A.o(w), as dis- 
cussed below. 

With a postdetection low-pass filter, the minimum ratio No/So in 
terms of average signal power is again obtained when E(u) is such that 
the two integrals in (125) are equal. As shown in Appendix C, R(u) is 
in this case given by 

= u.2(<5 + mKI + u/i)s + A,2(w - u)(l - u/i)2]"1. (147) 

In the last relation, dn(w ± u) designates the amplitude characteristic 
of the low-pass filter at w = co ± w. 

The optimum ratio obtained with (145) in (125) can be written 

R0(u) = c21/4iSI/2(w)[tf(w)r1/2, (145) 

where 

H(u) = [L2(u)(l + u/u)2 + L2(-r.)(1 - w/")T2 (146) 

(No/So)" = ~ (148) 

where 

7 
a (149) 

(150) 
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where (150) follows from (149) since i7(—w) — H{u) and S{—u) = 

'S(w)- 
For the reasons discussed in Section X, the bandwidth of the low-pass 

filter must be less than 2w. Hence, for m ^ w, d.o(ca + w) = 0, so that 
the first term in (147) vanishes and 

^(w) ^ ilo(0)(l - w/w) for w/w^l 
(m) 

= 0 for u = co. 

Thus, for w ^ w, (145) becomes 

nof ^ r s{.u) ~\1 
R(u)_2 c[4(i(0)(1 _ u/ii)\ 

= 00 

The corresponding transmitting filter characteristic is T0{u) = 
A{u)/R0{u) = 0 for w = w. 

With i20(dh w) = «>, the noise power at the detector input would be- 
come infinite and the signal-to-noise ratio at the detector input would 
be zero. Hence, the basic premise of adequately high signal-to-noise 
ratios underlying the representation in Fig. 14 and expression (125) 
would be violated. In this case, AT/^o, without a postdetection low-pass 
filter as given by (121), would become infinite. To limit the noise power 
at the detector input, so that (125) is a legitimate approximation, it is 
necessary to modify R0{u) near u = ±w in such a way that i?0(zba)) ^ oo 
and Wo/>§o, as obtained from (121) without a postdetection filter, be- 
comes appropriately small. The value of iVo/$o obtained from (125) after 
such modification of R{u) will be greater than that obtained from (150), 
but may be smaller than that given by (144). The factor Y is thus to be 
regarded as a lower bound that cannot be fully realized but may be 
closely approached, at least for small ratios N/P in (148), by appropriate 
modification of R0{u) near u = ±co. (An example of such modification 
is indicated by the dotted curves in Fig. 17, to be discussed later.) 

for u/ib ~ 1 

for u = cb. 

(152) 

XVI. OPTIMUM FM SYSTEMS OF MINIMUM BANDWIDTH 

In the limiting case of a channel of the minimum possible bandwidth, 
as considered in Section YI, the channel characteristic is given by (55). 
When normalized to unit amplitude for u = 0, this characteristic is 

A(u) = 1 ~ (u^y.. (153) 
cos (tTW/Yoi) 
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With a spectrum as given by (53) and (54), the optimum receiving filter 
characteristic obtained from (138) becomes, with c chosen as (2/T)1'2, 

R0{u) = (1 + w2/w)"1/4. (154) 

The corresponding optimum receiving filter characteristic, 

T0(u) = A{u)/R\u), 

is 

= [i - + ^2)"t (155) 

cos {tu/2co) 

The above expressions apply for — 1 < w/w < 1. 
The factor X0 defined by (141) becomes 

(1 + u/rfy^du1 

X" — 2 ^-,2 [£ 

[/>-]' 

= |[21/2 + log. (1 + 21/2)32 

^ 2.65. 

(156) 

This corresponds to about 4.2 db disadvantage in signal-to-noise ratio 
for an optimum FM system without a postdetection low-pass filter, as 
compared to an optimum bipolar AM system, for equal average signal 
power. 

In the above case the spectrum So{w) of the demodulated pulses is as 
shown in Fig. 10. With a low-pass filter having the amplitude character- 
tic shown in Fig. 11, this spectrum is converted into a flat spectrum of 
the minimum permissible bandwidth. With the above type of filter, 
L(u) = do(oj + w) = 0 for u > 0. Since S{u) — 0 for w < u < —u, 
(142) becomes 

P = 
/: 

0 /i 2/ - \ (1 + u/(j) 
A' ^ ~ U) (1 + y?/if)^iU 

fd + uWdu (157) 

^ 0.38 (by numerical integration). 

With the above low-pass filter, (144) gives 

7 = X^p 1.0, (158) 
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so that the signal-to-noise ratio is virtually the same as for an optimum 
bipolar binary AM system, for equal average signal power. 

The factor y0 given by (150) becomes 

[j 
Ao(« — u)(l - w/co) duj 

) '>] 
2 

= 0.60 (by numerical integration). 

For reasons mentioned in Section XY, the minimum factor 7 that can 
be realized will be less than that given by (158) but greater than that 
given by (159), which is to be regarded as a lower bound. Since this 
minimum factor 7 is less than one, some advantage in signal-to-noise 
ratio can be realized with FM, as compared to an optimum bipolar base- 
band or AM system with synchronous detection, for equal average signal 
power at the input of the receiving filter. This advantage would be 
small, and is principally of theoretical interest as an indication that a 
noise advantage can be derived from the unavoidable two-fold increase 
in channel bandwidth with FM as compared to baseband transmission 
or equivalent AM methods. 

1.2 

1.0 

LU 
§ o.a K 
_l 0- s 
< 0.6 
LU > 

uj 0,4 K 

0.2 

0 
coQ-2.to UQ-CI) U>O co0 + a; C>Jq + zco 

Fig. 16 — Frequency modulation with raised cosine spectrum at detector input 
and no postdetection low-pass filter: R" — optimum shape of receiving filter; 
T" = optimum shape of transmitting filter; A = R0To = combined transmission 
characteristic. 

T (u) 

\ A (u) = 
\\ R0(u) T°(u) 

RD u 

MARK SPACE 
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XVII. OPTIMUM FM SYSTEMS WITH RAISED COSINE SPECTRUM 

With a raised cosine spectrum at the detector input, as considered in 
Section VII, the over-all amplitude characteristic of the bandpass chan- 
nel is given by (62). When normalized to unit amplitude for u = 0, the 
characteristic is 

AO,) = 1 + oos W) (1 _ uV.^ 
2 cos (7m/2w) 

(100) 

The optimum characteristic of the receiving filter as obtained from 
(138) is, in this case, 

cos (im/4aj) 
R" = 

(I -f m2/«2)1/4* 
(161) 

The corresponding optimum characteristic of the transmitting filter is 
T0 - A{u)/R0, or 

r = cos a - u'/^d + ttVir)1" 
cos (7rw/2w) 

= 1 

- - (|)1/4 ^ 1.09 
TT 

= 0 

for w = 0 

for m = co 

for u = 2co, 

(162) 

The above filter characteristics are shown in Fig. 16. 
With a raised cosine spectrum in (141), 

X0 = 2 [i: 
(l + u/u) "cos" (jru/4 

J 
w) (III 

[/:: 
cos2 {irH/4co) du 

-[r 

(163) 

(1 + x') cos" (irx/'i) dx 

^ 2.8 (by numerical integration). 

With the aid of a postdetection low-pass filter, the noise power in the 
output is reduced by the following factor p obtained from (142): 

f2 w 
G(u) cos2 (7rii/4u) du 

P = , (164) 
(1 + u/w2)11' cos2 (iru/Ao}) du 

2Z 
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where 

G(u) = hit) (1 + UJ% (165) 
(1 + wYw2)1'2 

The factor 70 given by (150) in this ease becomes 
U25 "12 

il{iC) cos2 (7ru/4o;) du 

r  nA. (166) 

[/: 
cos (?m/4oj) du 

where, as in (147), 

H{u) = [-4o2{w + «)(! + u/o))2 + ylo2(w — w)(l — w/w)2]t/2. 

The optimum receiving filter characteristic is, in accordance with 
(145), 

R0iu) - c2lli cos (nu/^miu)]-112. (167) 

With a raised cosine spectrum at the detector input, the spectrum of 
the demodulated pulses is as shown in Fig. 12, For a low-pass filter with 
a transmission-frequency characteristic as shown in Fig. 13, approximate 
values of L(u) — ^4o(w -f u), G(u) and H{u) are given in Table YI by 
way of illustration. 

Table VI — Illustrative Values of L, G and H 

—h/W 

-0.15 -0.5 0 0.5 0.75 1.0 1.5 2.0 

L(u) 0 0.65 1.2 1.15 1.05 1.00 1.15 1.2 
G(u) 0 0.8 1.44 0.30 0.05 0 0.185 0.51 
Hiu) 0.27 1.1 1.7 1.1 0.27 0 0.58 1.2 

For the particular low-pass filter above, the optimum receiving filter 
characteristic obtained from (167) and the corresponding transmitting 
filter characteristic T0{u) = A{u)/R0(u) are as shown in Fig. 17, where 
they are normalized to unity for w = 0. It will be noted that, for u = ±w, 
R0 — & and T" — 0. Hence these optimum characteristics cannot be re- 
alized physically, though they can be approached, as indicated by the 
dotted lines near u = d=(i. 

For the above low-pass filter, numerical integration of (164) and (166) 
gives p = 0.5 and y" = 0.84. 
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The significance of the above various numerical results are, in sum- 
mary, as follows. 

The factor X0 = 2.8 indicates about a 4.5-db disadvantage in signal- 
to-noise ratio, for an optimum FM system without a postdetection filter 
as compared to an optimum bipolar AM or baseband system, for equal 
average signal power at the input of the receiving filter. The factor 
p = 0.5 indicates a 3-db improvement in signal-to-noise ratio obtained 
with the aid of the particular postdetection low-pass filter assumed 
above, so that the above FM disadvantage is reduced to 1.5 db; i.e., 
7 = X0p = 1.4. 

In accordance with the discussion in Section XV, a somewhat lower 
factor 7 could be realized when the division of channel shaping between 
transmitting and receiving bandpass filters is optimized for this particu- 
lar low-pass filter. The lower bound is represented by 70 = 0.84, and the 
minimum value that could be realized with an appropriate modification 
in filter characteristics near u — to would be greater than 0.84 but less 
than 7 = 1.4. With the modification indicated in Fig. 17, it turns out 

Fig. 17 — Frequency modulation with raised cosine spectrum and post-detec- 
tion low-pass filter with transmission characteristic ytaC") shown in Pig. 13; R0 = 
optimum shape of receiving filter; T" = optimum shape of transmitting filter; 
A = R°T0 = combined transmission characteristic. 

(U;D+-2fi> 
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that the ratio No/So obtained from (125) is smaller than that for bipolar 
AM by a factoid = 0.94. Thus, with optimum design in FM, the signal- 
to-noise ratio would be very nearly the same as for an optimum bipolar 
AM or baseband system. 

If the spectrum .S'o(aj) shown in Fig. 12 is converted into a flat spectrum 
of bandwidth 2c«j by an appropriate low-pass filter, it turns out that 
7° = 0.64, corresponding to about a 2-db advantage in signal-to-noise 
ratio over an optimum bipolar AM or baseband system. 

As an illustration of the penalty incurred in departing from the opti- 
mum division of channel shaping between transmitting and receiving 
bandpass filters, it will be assumed that R(u) is given by (135), as pre- 
viously considered for AM. In this case, the receiving filter is flat be- 
tween —2d> < w < 2co, and (125) becomes 

On r2" 
No/So = J 2_ A2(w)(l + n/w)2 du 

2- , (168) /2cij 
~ cos (iru/iw) du, 
4 

which can be written as 

with 

T — \- 

JVo/$o — 7, (169) 

(^4^ [ L~(u)(l u/co)2 du- [ cos4 (7rM/4w) dw (170) 
\o)/ J—25 Jo 

= 1.66 (bj'" numerical integration), 

where the numerical result applies for a postdeteetion low-pass filter 
with the same amplitude characteristic as assumed previously. 

The value y = 1.66 corresponds to a 2.2-db disadvantage in signai-to- 
noise ratio as compared to an optimum bipolar AM system, and about a 
0.7-db disadvantage compared to an optimum FM system (7 = 1.4). 
With the above type of flat receiving filter, about a 1.8-db penalty in 
signal-to-noise ratio was incurred in AM, as shown in Section XIV. 

XVIII. SIGNAL-TO-NOISE RATIOS AND ERROR PROBABILITIES 

In the case of baseband transmission or AM with homodyne detection, 
the probability of exceeding the rms noise amplitude by a specified factor 
follows the normal law. 
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If the polarity of the noise voltage is specified, (i.e., positive or nega- 
tive) the probability of exceeding the rms noise amplitude by a factor 
k is 

p = i erfc (i/21'2), (171) 

where erfc is the error function complement. 
If the noise amplitude at a sampling instant t is [Aro(0]1/2, an error 

will occur if the ratio [Noity/So]1'2 exceeds ^ in the presence of a space 
or negative pulse, or exceed — f in the presence of a mark or positive 
pulse. The rms ratio, (No/So)1'2, must be held smaller by an appropriate 
factor l/k. The probability of an error in a digit is accordingly p — Pe, 
as given by (171), provided 

(jv./A)1'2 = fT Ifra) Zfb 

In accordance with (120), 

(P/N)" = USo/No). (173) 

From (172) and (173), 

Ic = (P/N)1'2. (174) 

Hence, for an optimum AM system as assumed above, the error prob- 
ability in binary bipolar pulse transmission is, with (174) in (171), 

p, = i erfc (P/2A01/2. (175) 

In Table VII the signal-to-noise ratios P/N obtained from (175) are 
shown for various probabilities of an error in the digit. In accordance 
with (129), under the optimmn condition the average signal power P 
in bipolar AM is equal to the continuous mark power Pm . 

Ideal synchronous detection, as assumed above, cannot be fully real- 
ized with symmetrical bipolar AM methods. Derivation of a demodulat- 
ing carrier from the signal wave, or adequate phase control of a locally 
supplied carrier, entails some increase in either signal power, noise power 
or bandwidth, depending on the particular method used, and thus en- 
tails a somewhat greater ratio P/N than that given in Table VII. 

In the case of unipolar or "on-off" baseband or double-sideband AM 
with homodyne detection, the maximum tolerable peak noise power is 
G db less than it is with bipolar transmission, but the average signal 
power is reduced by 3 db, so that the ratio P/N must be increased by 
3 db, as indicated for unipolar AM in Table VII. The average signal 
power is, in this case, 3 db less than the signal power during a continu- 
ous mark. 
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Table VII — Optimum Signal-to-Noise Ratios P/N in Decibels 
for Binary AM and FM Systems4 

Probability of an Error 
in a Digit 

10-z 

10-4 

10-15 

10-8 

IO-10 
10-12 

AM with Ideal Synchronous 
Detection® 

Bipolar 
(Two-Phase) 

7.3 
11.4 
13.6 
15.0 
16.0 
17.0 

Unipolar 
(On-Off)C'D 

10.3 
14.4 
16.6 
18.0 
19.0 
20.0 

(11.3) 

(16,9) 

FM with Ideal Frequency Discriminator 
Detection 

No Low- 
Pass Filter1, With Low- 

Pass Filter13'F 

11.8 
15.9 
18.1 
19.5 
20.5 
21.5 

12.9 
15.1 
16.5 
17.5 
18.5 

With Low- 
Pass Filter®.G 

6.5 
10,6 
12.8 
14.2 
16.2 
16.2 

P = Average signal power at input of receiving filter 
N = Average noise power in flat band W = 1/2T cps at input of receiving 

filter 
T = Interval between pulses, in seconds 

Notes: 
A Signal-to-noise ratios in terms of noise power 2N in double-sideband channel 

of bandwidth 2W are 3 db smaller than in table. B Applies for baseband transmission, double-sideband, double-sideband on two 
carriers at quadrature and vestigial-sideband AM. c Signal-to-noise ratios in terms of steady mark power are 3 db greater than in 
table. 0 Values in brackets are for double-sideband with optimum envelope detection. B Band-pass filter shaping as in Fig. 16. p Low-pass filter shaping as in Fig. 13. a Band-pass filter shaping as in Fig. 17. 

For the reasons discussed in Section XIV, the optimum signal-to- 
noise ratios shown in Table VII for bipolar AM apply for bipolar base- 
band transmission, for bipolar double-sideband AM (phase reversal or 
two-phase transmission), for bipolar quadrature double-sideband AM 
(four-phase transmission) and for bipolar vestigial-sideband AM. Sim- 
ilarly, the ratios shown for unipolar AM with synchronous detection 
apply for unipolar baseband, double-sideband, quadrature double-side- 
band and vestigial-sideband transmission. Furthermore, with optimum 
division of channel shaping between transmitting and receiving filters, 
the above optimum signal-to-noise ratios apply for all spectra of the 
pulses at the detector input with the properties illustrated in Figs. 1 
and 2. Moreover, the signal-to-noise ratios apply not only for pulses of 
duration T equal to the pulse interval, as assumed in the previous anal- 
ysis, but also for pulses of shorter duration. When the duration of the 
pulses is less than T, the receiving filter characteristic remains un- 
changed, but the shape of the transmitting filter is modified because of 
the different spectrum of the modulating pulses. This also applies with 
other than rectangular shapes of the modulating pulses. 
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There are thus an infinite number of optimum AM systems with a 
performance from the standpoint of signal-to-noise for a given error 
probability equivalent to that of a baseband system of the minimum 
possible bandwidth, provided ideal homodyne (synchronous) detection 
is used, in which the pulse train is applied to a product demodulator 
together with a constant demodulating carrier of proper phase. 

The ratios shown in Table YII for unipolar AM also apply in a first 
approximation to "on-off" double-sideband AM with envelope rather 
than homodyne detection. However, in the latter case both the average 
noise power and the probability distribution at the detector output differ 
between mark and space.4 During a mark, the rms noise amplitude, and 
the probability that this noise amplitude is exceeded by a factor A;, is 
virtually the same as it is with homodyne detection, for large signal-to- 
noise ratios. During a space, however, the rms noise amplitude is in- 
creased by a factor of 21/2, and the probability that the rms amplitude 
is exceeded by a specified factor k follows the Rayleigh law 

p = e~k2 (176) 

rather than the Gaussian law (171). 
For the above reason, the optimum slicing or threshold level is not 

one-half the peak pulse amplitude, but slightly greater, depending on 
signal-to-noise ratio and error probability. The optimum slicing levels 
with binary double-sideband AM and envelope detection and the cor- 
responding optimum signal-to-noise ratios versus error probability have 
been determined elsewhere,4 and are indicated in Table YII for two 
cases. For an error probability of 10~6 the optimum threshold level is 
about 52 per cent of the peak pulse amplitude and the signal-to-noisc 
ratio is about 0.3 db greater than for unipolar AM with homodyne de- 
tection. Hence, for error probabilities in the range ordinarily considered 
acceptable, the difference in signal-to-noise ratio with envelope and ho- 
modyne detection is insignificant. 

Comparison of binary FM and AM on the basis of signal-to-noise 
ratios is legitimate provided that, for a given ratio No/ So, the error 
probability is the same in FM and AM. For high signal-to-noise ratios, 
this is approximately the case, since the normal law (171) is then closely 
approximated in FM.9 On this premise, comparison on the basis of sig- 
nal-to-noise ratios is legitimate for small error probabihties. 

In accordance with the discussion in Section XV, the optimum signal- 
to-noise ratio in binary FM without a postdetection filter is related to 
the optimum ratio in bipolar binary AM by 

(P/AOW = X0(P/iV)0AM (177) 
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where X0 = 2.65 (4.2 clb) for a flat spectrum as considered in Section 
XVI and X0 = 2.8 (4.5 db) for a raised cosine spectrum at the detector 
input, as considered in Section XVII. In Table VII the latter case is 
assumed as being the more representative, and the signal-to-noise ratios 
are taken 4.5 db greater than they are in bipolar AM. 

With the aid of an appropriate postdetection low-pass filter, the sig- 
nal-to-noise ratio can be improved such that 

(P/WM = PX0(P/W)1M. (178) 

With a postdetection filter having an amplitude characteristic as 
shown in Fig. 13, p — 0.5, corresponding to 3-db improvement in signal- 
to-noise ratio, and this case is assumed in Table VII. 

As discussed in Sections XV, XVI and XVII, when a postdetection 
low-pass filter is used, it is possible with FM to realize some improvement 
in signal-to-noise ratio over bipolar AM. In this case, a lower bound is 
given by 

iP/N)0
FM = y0{P/N)lM, (179) 

where y° = 0.84 with the type of filter shown in Fig. 13. This corresponds 
to about an 0.8-db improvement in signal-to-noise ratio over bipolar 
AM and entails transmitting and receiving bandpass filter character- 
istics as indicated in Fig. 17. This lower bound is given in the last column 
of Table VII, but it cannot be fully realized, for reasons discussed in 
Section XV. 

As noted before, the optimum signal-to-noise ratios given in Table 
VII for synchronous AM are universal and apply to a variety of op- 
timized systems, including the special case of ideal flat channels of min- 
imum bandwidth assumed in other analyses of baseband,3 synchronous 
AM or PM systems.6,6 With appropriate allowance for different defini- 
tions of signal power (continuous mark versus average power) and of 
the bandwidth used in specifying noise power (flat single-sideband 
versus flat double-sideband), the results given in Table VII for syn- 
chronous AM conform with those in the above references. 

In the case of FM, however, the optimum signal-to-noise ratio depends 
on several factors that need not be considered in AM, such as the shape 
of the spectrum at the detector input and the shape of the post-detection 
low-pass filter. There is thus no universal optimum signal-to-noise ratio 
for a given error probability in FM, and the ratios given in Table VII 
for FM apply for the particular conditions indicated. For this reason, 
significant comparisons cannot be made with signal-to-noise ratios for 
FM given elsewhere5,7 that are based on simplified mathematical models 
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that ignore the various factors above. One analysis5 indicates about a 
1-db advantage of bipolar AM (or phase reversal) over FM for an error 
probability of 10~4. 

XIX. SUMMARY 

It has been shown that binary pulses can be transmitted without 
intersymbol interference by FM over a channel of the same bandwidth 
as is required for double-sideband AM. To this end, a first requirement 
is that the total frequency shift between space and mark be equal to 
the pulse transmission rate, for example 500 cps for 500 bits per seconds. 
A second basic requirement is that the pulses at the input of the fre- 
quency modulator have the appropriate shape, a condition that is met 
with rectangular modulating pulses of duration equal to the interval 
between pulses. A third requirement with rectangular modulating pulses 
is that the channel bandwidth be small in relation to the midband fre- 
quency. A fourth requirement is that the bandpass channel must have 
the appropriate amplitude-versus-frequency characteristic and a linear 
phase characteristic. 

The appropriate amplitude characteristic of the bandpass channel is 
not the same as for AM, nor is the shape of the received pulses the same. 
By way of illustration, a comparison is made in Fig. 3 of the amplitude 
characteristic of the bandpass channels for FM and AM, for a channel 
of the minimum possible bandwidth, if intersymbol interference is to be 
avoided. With the channel characteristics shown in Fig. 3, the transmis- 
sion of a single pulse, (i.e., transmission of a mark, preceded and fol- 
lowed by a continuing space) will give rise to a flat frequency spectrum 
at the detector input with both FM and AM, as indicated in Fig. 3. 
Such a fiat spectrum at the detector input will give rise to a pulse at 
the detector output, but the pulse shape is not the same in FM and AM, 
as illustrated in Fig. 4. However, a common property of the pulse shapes 
shown in Fig. 4 is that they have zero points at intervals T equal to the 
duration of the rectangular modulating pulses. Thus, pulses can be trans- 
mitted at these intervals without intersymobl interference by FM or 
AM. 

In actual pulse systems, channels of the minimum possible bandwidth 
are not practicable for various reasons. In Fig. 5 comparison is made of 
the appropriate amplitude characteristics with FM and AM for chan- 
nels with twice the minimum bandwidth. In this case, transmission of a 
single pulse by FM or AM gives rise to a "raised cosine" spectrum at the 
detector input and to pulse shapes at the detector output, as shown in 
Fig. 6. Because of the small oscillations in the tails of the received pulses, 
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the channel characteristics shown in Fig. 6 are desirable for FM and 
AM systems. 

In the above illustrations, rectangular modulating pulses were as- 
sumed. With modulating pulses of other shapes that overlap between 
pulse intervals, certain restrictions are imposed on the shape of the pulses 
if intersymbol interference is to be avoided, which renders determination 
of the exact appropriate shapes difficult. For example, (sin x)/x modu- 
lating pulses, which are often considered in AM, are inappropriate in 
FM. However, with raised cosine modulating pulses, as shown in Fig. 9, 
it is possible by appropriate channel shaping to virtually avoid intersym- 
bol interference. With such modulating pulses and a channel characteris- 
tic as shown in Fig. 9, the shape of the demodulated pulses will be 
virtually the same as those shown in Fig. 6 for FM. Although intersymbol 
interference cannot be avoided with raised cosine modulating pulses, it 
is small enough to be disregarded (less than 1 per cent). 

The pulses at the output of the FM detector, such as those shown in 
Figs. 4 and G, have baseband spectra of infinite bandwidth, as in Figs. 
10 and 12. It is possible to modify the shape of the pulses in such a way 
that intersymbol interference is not introduced, with the aid of a post- 
detection low-pass filter having the appropriate amplitude characteris- 
tic. For example, the FM pulse of Fig. 4 has a spectrum as shown in Fig. 
10. This spectrum can be converted into a flat spectrum of minimum 
bandwidth "with the aid of a postdetection low-pass filter having the 
amplitude characteristic shown in Fig. 11 and a linear phase characteris- 
tic. The pulse shown in Fig. 4 for FM would thereby be converted into 
the same shape as shown for AM, 

The ideal amplitude characteristics of the bandpass channels in FM, 
such as those exemplified in Figs. 3 and 5, are obtained with the aid of 
an appropriate combination of transmitting and receiving bandpass 
filters. From the standpoint of intersymbol interference, as considered 
above, the division of channel shaping between these filters is immate- 
rial, but there is an optimum division from the standpoint of perform- 
ance in the presence of noise. 

By way of example, for the over-all amplitude characteristics of the 
bandpass channels shown in Fig. 5 for AM, the optimum division of 
channel shaping between transmitting and receiving filters is shown in 
Fig. 15 for the case of random noise. As discussed in Section XVIII, 
with optimum division of channel shaping and ideal synchronous (homo- 
dyne) detection, there is an infinity of optimum AM systems with per- 
formance equivalent to that of a baseband system of the minimum pos- 
sible bandwidth, as regards signal-to-noise ratio for a given pulse trans- 
mission rate and error probability. 
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With an over-all channel characteristic as shown in Fig. 5 for FM, the 
optimum division of channel shaping is as shown in Fig. 16, assuming no 
postdetection low-pass filter. Such an optimum FM system has about 
a 4.5-db disadvantage in signal-to-noise ratio compared to an optimum 
bipolar AIM or phase reversal system, for equal average signal power. By 
providing a postdetection low-pass filter with a transmission characteris- 
tic as shown in Fig. 13 and linear phase, the signal-to-noise ratio is im- 
proved about 3 db, and the FM disadvantage of 4.5 db is reduced to 
about 1.5 db. This assumes the same division of bandpass channel shap- 
ing as without a low-pass filter. However, the optimum division with the 
above low-pass filter is different, and is approximately as indicated in 
Fig. 17, except near wo ± u. With an optimum division, it appears possi- 
ble, in principle, to realize an advantage in signal-to-noise ratio of at 
most 0.8 db over an optimum bipolar AM or baseband system, for equal 
average signal power. 

With appropriate postdetection low-pass filters of the minimum per- 
missible bandwidth, it is possible in principle to realize an advantage in 
signal-to-noise ratio of at most 2 db over an optimum bipolar AM or 
baseband system. However, the above FM advantages cannot be fully 
attained in practice. They are principally of theoretical interest in that 
they indicate that an advantage in signal-to-noise ratio can be derived 
from the unavoidable two-fold increase in channel bandwidth with FM 
as compared to baseband transmission, or equivalent AM methods. 
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APPENDIX A 

Pulse Train Envelopes and Average Signal Power 

In Section IV the transmission of a single mark or pulse was con- 
sidered, and the resultant wave at the channel output (detector input) 
was, in this case, given by (35) and (36), or 

E{k) = cos (wofo + + fa)E{i\i), (180) 
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where 

E(t0) = A(-u)[l + up2(to) - 2vp(tQ) cos iota]112 (181) 

and 

n = lA4(-w) = l/d(w). (182) 

When a train of pulses is transmitted, the resultant envelope is given 
by (95) or 

wa0) - A(-o>) |^1 + p2 am2p2(to - rnT) 

00 "ll/Z 
— 2/i X amp(to — mT) cos u(to — mT) , 

»i=—oa J 

(183) 

where T is the interval between pulses and 

am = 0 for space 
(184) 

— 1 for mark. 

In view of (184), the rms value of the envelope at a particular time, 
£0, with respect to a sampling point is for equal probability of marks 
and spaces: 

W(t0) = d(—w) |^1 + ^- P2(^0 — mT) 

-11/2 

— M X/ jP(^ — mT) COii ^(^o "" mT) » 

(185) 

where the limits of the summations are as in (183). 
The mean squared value of the envelope taken over a pulse interval 

T is 

i rTI2 

W2 = ~ / W2(to) dto 
l J-T/2 -r/z 

2 r [2 r772 
1 +a-/ 2Vtto — mT)dk (186) 2 J-th 

/tiz n 
pUo ~mT) cos Coiio — mT) dk , 

r/z J -r/2 

which can bo transformed into 

IT2 - A2(-w) j^l +^T / dt ~fj Tiio) cos dioj . (187) 
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In (32) for pi to), the lower limit of integration, — ou , can be replaced 
by — 00, since S{u) = 0 for u S — , in which, case (32) can be written 

1 r" 
pito) — r— / 2S(u) cos uto du (188) ZTT J-oo 

or, by inversion, 

2S{u) = j p(t0) cos uto dto. (189) 

In view of (189), the last-bracket term in (187) with u = ca becomes 
—2nS{o))/T. Since S{oi) — T/i., in accordance with (48), and p = 2, 
in accordance with (50), the last-bracket term becomes —1, and (187) 
simplifies to 

W'- = A'(P!('o) • (IflOt 

In view of (189), 

[ p'ito) (Uo = rj- f [2S(u)]2 du. (191) 
J—oo •iir J—oo 

Hence (190) can be written 

jj?2 = A'i-u) -M- f S2(u) du. (192) 
TJ J-00 

This is the mean squared value of the envelope at the output of a 
channel with an over-all amplitude characteristic A(u). If the trans- 
mitting filter is assumed to have an amplitude characteristic T(u) and 
the receiving filter to have a characteristic R(u), then 

T(u)R(u) - A(u). (193) 

The spectrum at the transmitter output, or at the input of the re- 
ceiving filter in a channel without transmission loss, is in this case 
T(u)S(u) = S(u)/R(u). The mean squared value of the envelope at 
the transmitter output is obtained by replacing by T(w) and 
S(n) by S(u)/R(u) in (192), so that in this case 

whore .4 (w) = f. 
When a continuous mark with unit amplitude of the carrier at the 

input of the transmitting filter is transmitted, the envelope of the car- 
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rier at the output is T(to). It will be assumed that the carrier amplitude 
at the input is so chosen that the peak amplitude at the output is E 
for a continuous mark or space. With T{oj) replaced by E in (194), and 
with -4(a>) = 

K (195) 

vT j-=o R2{u) 
W2 = E2 

The average signal power within the envelope is, in view of the factor 
cos (wo^o + yo + ^o) in (180), smaller by a factor of or 

P FM — ^^rm.du. 4m 
TTT EooR2(U) 2 irT Loo R~{U) 

In bipolar AM (183) is replaced by 

Tf(*o) = A(0) Yj (inviU - mT), (197) 
fn=—co 

where am = —1 or 1. 
Equation (190) is replaced by 

(198) 

IF2 = A(0)2i f p2(to} dtQ 1 00 

= 4!(0) ~ f S'fW du, ttJ J-oo 

and (194) is replaced by 

-T2W CW)*- (199) 

When the peak amplitude of the transmitted carrier for a continuous 
mark is E, the average signal power in this case is, with A (0) = 1, 

APPENDIX B 

Interference in AM and FM Systems 

b.i. General 

B.i.i Frequency Modulation 

Let a carrier of frequency wo — <5 representing a space be transmitted, 
and let its peak amplitude at the input of the receiving filter be E. If 
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the receiving filter has an amplitude characteristic R{u) as a function 
of the frequency u from midband, the signal at the detector input is 

CsOo) = —ER{—w)[cos (coq — co)fo d" ^o]- (201) 

An interfering voltage at the detector input can be written in the 
general form 

~ ri(to) cos (coo/o d- v^o) d- ?j(^o) sin (cooilo d- <po)' (202) 

The signal at the detector input in the presence of interference is then 

es d- e,- = —cos (udo d- <pd)[ER( — u)) cos uto — r,(io)] 
(203) 

— sin (coo^o d- <po)[ER{~o)) sin uto — ^(^o)]- 

The phase at the detector input in the presence of interference is given 
by 

tan fo.,- = -A"1 d" "" l"'1' • (204) 
cos co«o — Mt'r» 

where 

1 
ER(-u) ' 

(205) 

The demodulated signal in presence of interference is proportional to 
dipQ,{/dto, which becomes 

(206) 

cos d- Qi sin uta) 

+ ~ (r/ sin o)to — q< cos uk) d- (g/r,- — n'qi) , 
CO w J 

where ?•/ = dri/dk , q/ = dqi/dh and 

D = (sin win — mqi)2 d- (cos wio — mri)' 
(207) 

= 1 + + ql) — cos + qi sin wh). 

The frequency deviation with respect to the frequency wo — w is = 
w + and the ratio tj, = ^//2w becomes 

riiih) = coswio - Qi sin uio 

— - (n sin uto — q/ cos d)fo) — ~ (g/fi — r/qi) . 
w w J 

(208) 
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This is the amplitude of the interfering voltage taken in relation to the 
peak amplitude of a demodulated pulse. 

At sampling points U = mT, sin uto = 0 and cos uto = ( —1)OT. At 
these points 

ruimT) = + Qi2) - (-1)™^ - I 

- ^ (q/ri - , 
w J 

(209) 

D{mT) = - (-1 )m2fiiri + + q'). (210) 

If second-order terms are neglected, which is permissible for ade- 
quately low amplitudes of the interfering voltage, the above expression 
reduces to 

, n,\ ~ 1 ri(niT) - q-{mT)/u , . 
2ERi-w)l - {-iy'iri(mT)/ER{-'^) { ) 

a -orp! [TiimT) - qi'(m.T)/i>]. (212) —oj) 

B.1.2 Bipolar AM or Two-Phase Modulation 

In bipolar AM with homodyne detection, let a carrier —E cos (wo^o + 
^o) represent a space and a carrier E cos {ojitu + fo) a mark. The sig- 
nal plus interference at the detector input during a space in this case is 

63 + €i = —cos (coo^o + yo)[A1i^(0) — fi] + sin (wofo + <po)qt (213) 

The demodulated output after elimination of high-frequency demodula- 
tion products by low-pass filtering is 

Va+i = -M^(0) - riito)]. (214) 

If a space is represented by 0 at the output, rather than by —^(0)72, 
the demodulated output is Vg+f + ER{0)/2, or r,/2. The resultant 
interference taken in relation to the amplitude ER{0) of a mark is 

Tiik) 
Vi = 2ER{0) ' 

(215) 

b.i.3 Unipolar AM with Envelope Detection 

In unipolar or "on-off" pulse transmission with envelope detection, 
the demodulated interference voltage in the presence of a space (zero 
carrier) is 

Via) = {fi + q?)x,\ (216) 
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The amplitude of the interfering voltage taken in relation to the ampli- 
tude of a demodulated mark is 

/„ 2 I . 1/2 ,o, __ (Ti + Qi ) 
Vi ER(0) 

(*) (217) 

When a mark is transmitted, the voltage at the detector input is 

Cs./"0 = cos (coq^o + ¥'o)[^^(0) + r,] + sin (w^o + <Po)gi (218) 

and at the detector output is 

Vjm> 4)[B«(0) + r,]2 + s/i"3 " 
(21J) 

= ER{Q) + ri. 

The amplitude of the interfering voltage taken in relation to the ampli- 
tude of a demodulated mark in this case is 

"'"-mo)- (220) 

B.2 Single Frequency Interference 

In the particular ca.se of a sinusoidal interfering voltage of frequency 
ojo T u and amplitude e{u) at the input of the receiving filter, the inter- 
fering voltage at the detector input is 

Ciik) — g(u)R{u) cos [(^o + lO^o + ^x] (221) 

= e(u)R{u) cos (woifo + v?o) cos (uto + <p) 

— e{u)R(u) sin (wo^o + <Po) sin (uto + tp), 

where tp — <pi — tpa. 
In this case, 

riik) = e{n)R{u) cos {uto + f), 

Qiik) = —e{u)R{u) sin (uto + (p). 

(222) 

(223) 

B.2.1 Frequency Modulation 

In the case of FM, (212) becomes 

e{u)R{u) 
2ER{-1) 

^1 + cos {uto + tp). (224) 
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The rms interference in FM with all phases, equally probable is 
11/2 e(u)R(u) , 1 _|_ r . . , r) j"- [ cos2 (vio + v) d<p] 

2ER(-u)\ w) [_ir *o J 

_ &{u)R{u) ( , 
2ER{-C:) \ <s>} ' 

where 

(225) 

«(«) = ' (226) 

;b.3.2 Bipolar AM 

For bipolar AM, (215) gives 

e{u)R{u) cos (uto + (p) 
Vi = 2ER(0) 

and the rms value with all phases <p equally probable is 

eiu)R(u) 
Vi = 25^(0) ' 

(227) 

(228) 

b.2.3 Unipolar AM with Envelope Detection 

For unipolar AM with envelope detection, (223) in (217) yields, for 
the interference during a space, 

(i) e{u)R{u) 9i/2 e{u) . Q. 
^ = ER{0) =v<wm { ' 

and (220) gives, for interference during a mark, 

^(m> = COS (Mi° + ^ ' (230) 

with an rms value 

- ('") „ e{_iC)R{_u) /o^i ^ 
^ " ^(0) 1 (231) 

b.3 Impulse Noise 

In the case of idealized impulse noise, the interfering voltage is of 
the general form 

ei(U) = pi{to) cos (cooio + <p{) 

= pi(to) cos<pcos (ciV'O + v'o) — Pi(to) sin<psin (cooio + <pq), 
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where = y ; — and p,(io) is the envelope of the noise pulse at the 
detector input. The shape of the latter will depend on the receiving 
filter characteristic, /?( »)• The phase p represents the difference between 
the phase of the carrier within the noise pulse envelope and the phase 
of the carrier within the signal pulse envelope. This phase difference 
depends on the instant at which the impulse occurs and can have any 
value. 

B.3.1 Frequency Modulation 

Comparison of (232) with (202) shows that, in this case, 

ri{U) = Viik) cos <p, 
(233) 

qi{U) = — Pi(fo) sin tp 

In (208) the various quantities become: 

r/ + q? = Viik), (234) 

fi cos uk + qi sin uk = pi{k) cos (w4 + <p), (235) 

Ti sin w/o — ql cos uk — Vi'ik) sin (coifo + <p), (236) 

qhi - r/qi = 0. (237) 

With these values in (208), the amplitude of a noise pulse after de- 
modulation becomes 

Viik) = -fi PiPi2(k) - pi(k) cos (kk + <p) 

,(f , ^ (238) 
pi ik) . . s •— —r— sin (co^o d" f) 

to 

D — 1 + fii2pi2(k) — 2piPi(k) cos (w/a + <p) * (239) 

An error will occur if, at the sampling instant, n^ik) ^ i, which gives 
the following relation for determining the peak amplitude of a noise 
pulse at the detector input that will produce an error in the demodu- 
lated signal: 

Pi(k) 1 
l/ii ^Pipi (k) - Piik) cos {o>k -\- p) - <o sin (coio + ^)J (240) 

^ £[1 + mpiik) — 2p.iPi{k) cos {osk + ^)] 

With y.i = l/ER{—w), this can be written 

Piik) cos (oj/o + ^5) — - Pi'ik) sin {iak + <p) 
 ^ 1 

2ER{-w) 2" 
(241) 
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b.3.2 FM vs. Bipolar AM 

In the case of bipolar AM, the corresponding relation is 

PiUo) cos (win -f (p) _ j 
2ER(0) 2" 

If it is now assumed that the impulses occur at sampling instants 
U = 0, then Pi'(la) = 0 and the following relations apply. 

For FM: 

(242) 

For bipolar AM: 

Pi(0) COS (a4 + y?) _ i 
2ER{-u) 2- 

Pi(0) cos (coto + <f>) _ i 

(243) 

(244) 
2ER{Q) 

The peak amplitudes of the impulses that will cause errors are thus 
smaller in FM than in AM by the factor 

p(0)FM _ -R(-Co) 

P(0)AM ^(0) 
(245) 

In accordance with (104) and (105), the following relation applies 
between the average signal powers in FM and AM: 

^=2^1 (246) 
PAM L P(0) J 

From (245) and (246) it follows that 

?>(0)f FM 
^(0), 

_ /PFMY/2IV2 
\Pam/ 2 " 

(247) 

Thus, for equal probability of errors when the impulse occurs at 
sampling instants and equal average signal power PFm = Pam , the 
impulses at the detector input can be greater in AM than in FM by a 
factor 2l/2, corresponding to 3 db. 

As another limiting case, assume that the impulses occur midways 
between sampling points corresponding to wio = r-/2 or to — 7r/2w. In 
this case (241) and (242) become 

for FM and to — r/2w: 

-piik) sin (p + (l/co)p/0o) cos y = 
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for AM and = tt/Sw: 

~P<(to) s^n y _ i (^49) 
2BR(0) 2' 

Since 9? may have any value, it is permissible in (249) to substitute 
^ _ 7r/4) = cos r/4 sin ^ + sin ttM cos in which case, for 

AM 

—pi(to)(siap + cos _ ii 
 7-,' rj r, /rx \  — 2 

1/2 
. - (250) 

2ER(0) 

The following approximation applies for a representative pulse shape* 
and /q = 7r/2d): 

- \ pi (to) = Piik) = |pi(0), (251) 
CO 

where 7>i(0) is the peak pulse amplitude at the detector input, which 
will occur at a time U — ir/2a) from a sampling point. 

Hence (248) and (250) can be written 

for FM: 

for AM: 

(252) 

-pi(0)Ti|(ip = 21'3- (253) 

The peak amplitudes that will cause errors are thus smaller in FM 
than in AM by the factor 

p(0)fm ^ i?( — w) 
p(0)am 21/2i?(0)' 

(254) 

In view of (24G), 

p(0) F-M _ 1 /-PFM(255) 

?»(0)am 2 \PAM/ 

Thus, for equal probability of errors when the impulses occur mid- 
ways between sampling points and equal average signal power PPm = 
Pam , the peak amplitude of the impulses at the detector input can be 
greater in AM than FM by a factor of 2, corresponding to 6 db. 

* In the case of a pulse shape obtained with a raised cosine spectrum, pdlo) = 
^ p,(0) and Pi'{to)ci = 0.475 Pi(0). 



1424 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1959 

The peak amplitudes, p(0), required to produce an error when an 
impulse occurs midways between sampling points is greater than when 
they occur at a sampling point by a factor of 2m in FM and a factor of 
2 in AM. With a Gaussian amplitude distribution of the pulses, the 
probability of an error from a pulse midway between two sampling 
points is in the order of 1 per cent of the probability of an error from a 
pulse at a sampling point in the case of FM, and is substantially smaller 
for AM. Hence, virtually all the errors will be caused by pulses that 
occur near sampling points. The AM advantage over FM for equal error 
probability is 3 db for impulses that occur at sampling points, and would 
be expected to be only slightly greater, about 4 db when impulses oc- 
curring at all instances with respect to a sampling point are considered. 

The above comparisons apply without a postdetection low-pass filter 
in FM. With an optimum bandpass receiving filter characteristic in FM, 
the reduction in peak impulse noise afforded by low-pass filter would be 
expected to be about the same as the reduction in average random noise. 

appendix c 

Optimum Receiving Filter Characteristic 

The optimum receiving filter characteristic in AM and in FM with- 
out a postdetection low-pass filter can be determined from the solution 
of the more general case considered here, of FM with a postdetection 
filter. 

In the latter case, the optimum R{u) is obtained when the product 
of the two integrals in (125) is a minimum, or for the minimum value 
of the product: 

J = JJi, (256) 

where Ji and J2 are functions of R{u) given by 

J, = r L2(u)R2(u)(1 + u/u)2du, (257) 
J—oo 

j2 = f wri du = 2 f Crid"- (258) J-co R2(u) Jo R2(u) 

In (267), L(—u) ^ L(u), so that it is convenient to resolve the 
integrand into one component with even symmetry with respect to u 
and one with odd symmetry. The integral of the latter component van- 
ishes and that of the component with even symmetry becomes 

Ji = f H2(u)R2(u) du, 
Jo 

(259) 
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where 

H\u) = L\u)(l + u/*)2 + L~( — w)(l - w/^)2- (260) 

When a small variation, 6R(u), is made in R(v), the resultant vari- 
ation in J is 

or 

(261) 
8J — J ihJ i "h </2 

r« 
= J2 / 2}i{u)H2(u)8R(u) du 

Jo 

-j'i2 (2o2) 
Jo L^3(w)J 

The optimum R(u) is obtained when dJ — 0, or 

J' du = 0, (263) 

which is the case when 

JtRMH'-M - = 0 (264) 

-9l/4 Q'/2/ \ 
E(u) = R'M = , (265) 

where c — {Ji/Jz)11* is a constant. 
With (265) in (258) and (259), 

Ji - c22,/2 C S{u)Hiu)du, (266) 
Jo 

J2 = I2
1'2 f S(u)H(u) du, (207) 

c- Jo 

J1J2 = 2 ^ S{u)Hiu) duj , 

= ^/ S{u)H(ii) dtij . 

The optimum ratio, No/So, obtained with (268) in (125) becomes 

(NO/SOTfu = T
?p [ S(u)ff(u) dwl . (269) 

J * fm L*'—«J j 

(268) 
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In the case of FM without a postdetection filter, L{u) — 1 and, in 
this case, 

H\u) = 2(1 + ), (270) 

in which case (265) gives (138). 
In the case of AM, the term u/u is absent in (270) and 

H\u) - 2, (271) 

so that (265) gives (127). 
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Gyromagnetic Modes in Waveguide 

Partially Loaded with Ferrite 

By H. SE1DEL and R. C. FLETCHER 

(Manuscript received June 26, 1959) 

Analysis is made of all the 'propagating modes of a vanishinglg small rec- 
fangidar waveguide partially filled with transversely magnetized ferrite. 
Each of these modes is shown to propagate in only one direction and to fend 
to he lossy. Use of these properties can be made in the design of a novel non- 
resonance isolator. All but one of the propagating modes vary in amplitude 
along the dc magnetic field. Yet they can apparently be excited experimen- 
tally at a boundary by an incident mode, with none of the modes having any 
variation along the dc field. Theoretical considerations indicate that finite 
condnclivity in the waveguide walls may he responsible for this coupling. 

The unidirectional properties of these modes suggest the possibility of 
building purely reactive isolators, but these can be shown nonexistent from 
general energy considerations. Experiments are described that show that 
nature resolves this 11 paradox" by absorbing power, even in low-loss ferrite, 
rather than reflecting it. Some possible explanations of this behavior are set 
forth. 

I. INTRODUCTION 

It has been shown that, for certain ranges of transverse magnetic 
field, there are an infinite number of propagating modes in a waveguide 
completely filled with ferrite,1'2'3 no matter how small the guide. These 
modes we will call gyromagnetic modes, since they have no analog in 
waveguides filled with isotropic material. For symmetrical structures, 
the modes of these completely filled waveguides show no nonreciprocal 
behavior. It is the intention of the present paper to study a similar set 
of gyromagnetic modes for a waveguide only partially filled with ferrite. 
Here there are displayed some interesting nonreciprocal effects, which 
we will describe. 

The procedure used will be first to derive explicit expressions for the 
propagating modes for the partially filled waveguide for a given range 

1427 
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of magnetic fields. We will then show how the nonreciprocal modes ob- 
tained can be used in a straightforward fashion to construct a novel 
isolator. Experimental evidence will be presented that indicates that 
these higher order modes may be excited from the dominant TE mode, 
even with boundaries that have no variation in the direction of the 
applied magnetic field. Some theoretical considerations will indicate that 
finite conductivity in the waveguide walls may be responsible for this 
coupling. 

Finally, we will consider the possibility of building purely reactive 
isolators. These will be shown to be nonexistent from general energy 
considerations. But, as Button and Lax4 have pointed out, there are 
modes which propagate in one direction but are cut off in the reverse, 
suggesting the possibility of reactive isolation. Some experiments will 
be described which show that nature resolves this "paradox" by absorb- 
ing power rather than by reflecting it. Some possible explanations of 
this behavior will be set forth, 

11. GYROMAGNETIC MODES IN PARTIALLY FILLED RECTANGULAR WAVEGUIDE 

We wish to find all of the propagating modes of a rectangular wave- 
guide partially filled with ferrite (Fig. 1). In order to simplify the analysis 
we will find it convenient to consider the waveguide's transverse dimen- 
sions to be small compared to a free-space wavelength. Although this 
assumption will cut off all of the conventional TE modes, the TE "fer- 
rite dielectric" mode may still propagate, as well as other gyromagnetic 
modes. 

<—{/—> 
x=o 

a — 

Fig. 1 — Rectangular waveguide partially filled by ferrite slab. 
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111 a loss-free feromagnetic medium, Maxwell's equations are given by- 

curl H = fcueE, 

curl E — —ioifioT-R, 
(1) 

where E and H are the usual field vectors, the time dependence is as- 
sumed to be etu' and the tensor T can be written in the Cartesian frame 
ix,yfz) as 

(2) 
u in 0 

T = I —ik u 0 1. 
0 0 1 

Combining the two equations (1), we obtain the wave equation 

V X V X H - o/W-H = 0. (3) 

This has two plane wave solutions, e fkl'R and e ',k2"R. In the limit for 
which k*, ky and k? ^>> wVoe, these solutions are governed3 by the equa- 
tions 

kxi 4- kyx -[— /c-j — 0, 
fi 

kx2 + kyz 4- kz22 — 0. 

(4) 

(5) 

Equations (4) and (5) determine individual parallel plane-type modes. 
We will solve these equations for the situation shown in Fig. 1. The fields 
in the ferritc which satisfy the boundary conditions in the z direction, 
Ex = Eu = 0 at y = 0 and z = h, can be derived from (1) through (5) 
as in Ref. 3. For the ferrite mode1 corresponding to (4): 

Ex/ = Fx± 

j^- cos <pi ± i sin tpx J si 

KN') sin (fi -f- i cos J sii 

■n-mz 
"V 

irmz 
~b~ 

irmz 
(6) 

in 1/2 cos 

I TTlfl -1/2/ , - I \ 
•exp | n x sm <pi + y cos r1 
3xpl - 
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= Ff 
lirm 

o)Holxb \ 
(i- 

where 

sm y?] cos 
irmz 

■wmz 
cos tpi cos 

+1/2 • Ttmn —u sm —;— 
0 

(7) 

■exp fx 1/2( ± x sin <pi + y cos ¥>i) J, 

fc. = ^ (m - 1,2,3 

, . mir —i/2 
kyi = t-^n COS^l, 

. . mir -i/2 - 
kxi = i M sin (pi, 

and the variable <pi is introduced for convenience, as in Ref. 3, in place 
of the propagation constant to be determined by the boundary condi- 
tions in the x direction. The superscript + or — on field quantities re- 
fers to the two solutions e and ,+''fci respectively, describing the x 
variation for the same y variation e~lkvV. The constants F+ and are 
the corresponding amplitude constants. Note that m — 0 is excluded. 
The assumption of kz being very large does not apply to m = 0 and 
hence this will be treated separately. For mode 2 corresponding to (5); 

■,2/ -F2 
titm 
laeh 

. irm z 
± sm <pi sm — 

o 

cos <p2 sm 
mnz 
T 

irmz 
cos 

•exp j^~ (± x sin w + y cos ^2) J, 

(8) 
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12/ 

(cos ipi ± 
IK 

M — 1 
sm vi ) cos 

itrnz 

, . , %k \ mnz 
(=b sm pi -j   cos pi) cos 

jU — 1 0 

m . irmz 
 1 sin T n — 1 o i 

where 

(9) 

[mir / . • . \ 
— (± .x sm <P2 + 2/ cos pi) , 

. m-K 
k* - T, 

1 . mr 
k,j2 = i cos pi, 

, . mir . lcX2 = i sin pi, 
b 

and pi is the convenient dependent variable for mode 2. Note that, in 
order for modes 1 and 2 to have the same y variation, 

COS pi — n 1/" COS Pi . (10) 

For the fields in the air region, the two independent plane-wave solu- 
tions are both governed by the same equation, which, in the small wave- 
guide approximation, is also the same as the ferrite mode 2 given by (5). 
For convenience in satisfying the air-ferrite interface boundary condi- 
tions, we will not use the usual resolution of these two modes into trans- 
verse electric and transverse magnetic. Instead, we will choose one mode 
so that its tangential electric held can be made continuous with ferrite 
mode 1 across the interface and the second made so that its tangential 
magnetic field can be made continuous with ferrite mode 2 across the 
interface. Thus, for air mode 1 we obtain 

1 — u , . . \1 ■ irmz 
— cos pi ± i sm pi j sm 

± _ = ^ 

f —1/2 sin pi / _ 
L sin pi \ 

1 - — sin T f ens pi 
. irmz 

sm 
o 

.-1/2 irmz 
ixt cos —^— 

o 

(11) 

•exp I ^ ± x sin ^2 + y cos ^2) 
]• 
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■iirm /l ~ fi 
canonb \ K 

cos 

, COS ifii 
± — COS 

sin (p-z 

1 . 
— sin , 
sin ip2 o 

■Kinz 
T 

irmz 
~r 

irmz 
(12) 

•exp ( =b a; sin ^2 + 2/ cos ^2) J . 

where we have used div E = 0 and div H = 0 to evaluate Ex and Hx 

and (10) is employed to simplify the expression. For air mode 2 

E2a± " -^2± ITTW 
oieob 

— sm <p2 sin 

T cos <p2 sin 

T cos 

irmz 
~b~ 

irmz 
~T 

irmz 
(13) 

H20
± = A2

± 

3- COS ip2 

sin <P2 dr 
(14) 

■exp (± x sin ^2 + 2/ cos ^2)J, 

u . \ irmz    sm (pi) cos 
M — 1 / 0 

in \ irmz 
   cos <P2 J cos 
M - 1 / 0 

in . irmz 
T   sm — 

fi — 1 0 . 

■exp (± re sin ^2 + y cos ^2)J • 

It is easy to verify that these modes satisfy the Maxwell equations in the 
air region. 

The boundary conditions in the x direction now require E,, and Ez to 
vanish at both metal walls and Ey , Ez, Hy and Hz to be continuous 
across the ferrite-air interface. This will give us eight linear homogeneous 
equations to determine the eight unknown constants d.i,2± and FyA, 
leading to the secular equation determining the propagation constant. 

We wish to concentrate only on those modes that are propagating, 
i.e., those for which cos <p2 is imaginary. We will also restrict our atten- 
tion to those modes for which ^ > 0, so that cos <pi will also be imaginary. 
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This will cause real values for both sin <pi and sin <p2, so that all the 
modes will have real exponential decay in the x direction. If we further 
assume that the waveguide width, a, is much larger than the height, h, 
we need only consider those modes which decay away from the bound- 
aries. 

Thus, at the metal-ferrite wall we need only consider Ej/- and Eo/~ 
(taking the sign of sin ipi and sin ^2 as positive). This leads to exactlj' 
the same mode found in Ref. 3 for a completely filled waveguide, 

We can call this the ferhte-raetal (FM) mode since it has a maximum 
amplitude near the ferrite-metal wall. Notice that there is a solution for 
this partially filled waveguide only for one direction of propagation for 
a given value of k. 

At the air-metal wall we need consider only Eia+ and £20+ . Since these 
have exactly the same x dependence there is no nontrivial propagating 
solution for this case. 

At the ferrite-air (FA) interface we need consider only the plus modes 
in the ferrite and the minus modes in the air. The requirements of con- 
tinuous Ev , , Hy and Hs lead to the relations 

cot <pi = —i • 
K 

With the use of (9a) and (10), (15) can be solved for ky : 

(15) 

(15a) 

(Ff + ArKif""2) 

(16) 

4" {Fi~ + A 'i ) ^— sin > 4 j cos — 0, 
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For solution, the determinant of the coefficients multiplying Fi+, A-r, 
F2

+ and A2~ must vanish. The factoring of this determinant leads to 
two values of <pi : 

tan ip! = —i- , (17) 
M 

tan (pz + i* tan = —u. (18) 

These can be solved for the propagation constant with the aid of (9a) 
and (10): 

FAI: /c. = - -1 ^ a/^-2; (17a) 
K 0 Y K fJr 

FAII: /j/+ V + M ^ + V = (18a) 

We will call these the ferrite-air modes (FAI and FAII), since the 
fields fall off exponentially from the ferrite-air interface. 

The modes FAI, FAI and FAII represent all the propagating modes for 
/i > 0 except for the case m - 0, for which the approximations used above 
are not valid. However, m = 0 represents a TE mode such as was treated 
by Button and Lax.4 In the limit of small waveguide [b2 <K l/(w2/ioe)] 
the only TE mode that is not cut off is the "ferrite dielectric" mode. 
Its propagation constant is given by 

(fj.2 ~ k )A'o coth ka(a ~ 8) = nky — nkm coth km8, (19) 

where 

/w. = ii/j/l (20) 

and 

and where 8 is the ferrite thickness and a the guide width. 
A sketch of the propagation constant as a function of magnetic field is 

shown in Fig. 2 for the various propagation modes. It can be shown from 
(15a), (17a) and (18a) that the FM mode propagates in the plus y 
direction between p — k and ^ = 0, that the FAI mode propagates in the 
minus y direction between n = k and /x = 0 and that the FAII modes 
propagate in the minus y direction between /x = k — 1 and /x — 0. The 
FD mode has more complex behavior. For small values of (a — 8)/8 
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ifej-. 
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Fig, 2 — Typical mode spectrum of partially filled small guide as a function 
of magnetic field. 
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[less than 1 + w/CtttM) for material obeying Polder's relations,5], the 
FD mode has a group velocity in the +y direction between n — k and 
n = k — 1, but the propagation constant is either plus or minus depend- 
ing on whether 

is positive or negative. For large (a — 8)/S [greater than 1 + w/(yirilf)], 
the FD mode has both group velocity and phase velocity positive be- 
tween p — k and n = k — 1, but it is double-valued between /* = «—! 
and /x = 0, having a positive group velocity at whatever magnetic fields 
it has a negative group velocity. 

These gyromagnetic modes tend to be lossy, particularly for the 
higher orders. This can be demonstrated by allowing fi and k to be 
slightly complex: m = m' — Jm", k = k' — jn". Then the expressions for 
the propagation constant can be expanded to give 

In all the expressions for /cB , FAI, FAII, and FM, dkv/dn and dku/dtc 
can be seen to be proportional to m. That is, the attenuation increases 
linearly with the order number, m. 

III. GYROMAGNETIC MODE STRIP LINE ISOLATOR 

We can use these gyromagnetic modes to make a novel isolator. As a 
design objective we will try to excite a high-order gyromagnetic mode 
for one direction of propagation, thus obtaining loss, but will try not to 
excite any in the opposite direction. To do this we will use a strip line 
TEM mode incident on a ferrite section, as shown in Fig. 3. The TEM 
mode has magnetic field components that are symmetric in the z direction 
and will not couple to the TE mode of the ferrite. However, they are 
appropriate to couple to the gyromagnetic modes. 

To get maximum coupling we need spatial harmonics of the TEM 
mode to have appreciable amplitudes at the gyromagnetic propagation 
constant. One way to accomplish this is to break up the ferrite along 
the y direction. 

Now, since the fields fall off in the x direction away from the strip 
line, we would expect the ferrite-air modes to be excited more than the 
ferrite-metal modes. Since the FA modes exist for only one direction of 
propagation and the FM modes for the other, we should get appreciable 

j / \ t f ' '\ ■ n . dky n Kin, K) = kyiv ,K ) - J H ~ 3 -Q^K- (22) 
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—w— 

r 

<- a >■ 

Fig. 3 — Strip line isolator employing periodically broken ferrite slab. 

attenuation for the direction of propagation of the FA modes, but little 
attenuation in the reverse direction. 

A physical embodiment of this idea has been built, and a plot of the 
forward and reverse loss as a function of frequency is shown in Fig. 4. 
Ratios of reverse to forward loss of greater than 10 can be obtained over 
a 30 per cent bandwidth. It should be emphasized that this is not a 
resonance-type isolator. The absorption does not depend on circular 
polarization, nor does it occur at the ferromagnetic resonance (approxi- 

H = 1750 GAUSS 
47TM = 2175 GAUSS 

VSWR < 1.25 
OVER BAND 

    
    

FREQUENCY IN KILOMEGACYCLES PER SECOND 

Fig. 4 — Typical characteristic of the gyromagnetic mode strip line isolator of 
Fig. 3; a = 0.900 inch; b = 0.400 inch; 5 = 0.170 inch; S = 0.155 inch; W — 0.588 
inch; t = 0.155 inch. 
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mately 4.4 kmc for the case indicated). On the other hand, the maximum 
absorption does occur between the frequencies for which fx = 0 (6.2 
kmc) and n = k — I (4.5 kmc), as would be expected for coupling to 
the FAI mode. The small forward loss is believed mainly due to the ex- 
citation of the FM mode. 

IV. EXCITATION OF GYROMAGNETIC MODES FROM A UNIFORM* TE MODE 
THROUGH WALL LOSS 

We have been surprised to discover experimentally that uniform* TE 
modes can couple to modes with different symmetry, even when the 
boundary is uniform.* For instance, let the dominant TE mode of a 
rectangular guide be allowed to impinge on another rectangular guide 
containing a slab of ferrite as shown in Fig. 5. The slab completely fills 
the waveguide in the z direction and ends abruptly on an xz plane. Thus, 
neither the original mode nor the boundary has any quantity which 
varies along the magnetic field (z direction). We then insert a probe in 
the ferrite to probe for nonuniform modes. This probe consists of a 
metallic plate inserted in the middle of the ferrite slab in the xz plane 
with metal leads running out in the x direction. Energy will be coupled 
to this probe only if the average of Hz along the z direction is nonvanish- 
ing or if a component Ex appears at 2 = 5/2; i.e., only if nonuniform 
field components appear. 

Fig. 5 — Ferrite slab geometry with enibodded strip line terminating in coaxial 
lines. 

* By "uniform" we mean to indicate that there are no variations parallel to the 
applied field. 
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Fig. 6 — Power transmitted to coaxial line with TE incidence on embedded 
strip line geometry. 

In Fig. 6 the fraction of the power coupled to the probe is plotted as a 
function of magnetic field. In the absence of the field, this fraction is 
below —37 db, the residual presumably being due to small errors in 
alignment. However, for a particular applied magnetic field this fraction 
can increase to —15 db, an increase of 22 db. The fact that there are 
irregularities in the coupling as a function of field suggests an inter- 
ference between some of the excited modes. 

A similar experiment was performed with a full height slab in the 
center of a square waveguide, away from both side walls (Fig. 7). A 
dominant mode of a rectangular guide is made incident on this square 
guide, exciting one polarization. The transverse electric field is probed 
by examining the transmitted power into a rectangular waveguide at 
right angles to the first one. Again, if only uniform modes were excited, 
there should be no transmission. Yet, as shown in Fig. 8, the transmis- 
sion increases from — 47 db at if = 0 to as high as —16 db with an ap- 
plied magnetic field, an increase of 31 db. That this transmission was not 
Faraday rotation in a small axial magnetic field component could be 
assured by observing the transmission to be relatively insensitive to a 
slight tilting of the magnetic field with respect to the waveguide. Both 
of these experiments indicate the possibility of coupling appreciable 
power into nonuniform modes. 

The only mechanism we have been able to discover which leads to a 



1440 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1959 

compatible model for such a coupling has been the finite conductivity of 
the walls. Let us consider then what would happen to a TEM wave that 
was started through a two-dimensional ferrite media contained between 
metal plates of finite conductivity (Fig. 9). The TEM mode has initially 
the components Ez and Hx , whose amplitudes are independent of 2. As 
the mode moves through the medium, a magnetic field is developed at 
right angles to M and Hx ; i.e., a field Hu is developed. This field Hy 
induces currents, n X jJiy, in the metal walls. If the walls have a finite 
conductivity, <t, an electric field will therefore appear equal to 

Since at the top face this is opposite in direction from the bottom, the 
induced electric field in the ferrite medium, Ex , has a z variation which 
is antisymmetric about the middle of the waveguide, as indicated in 
Fig. 9, 

As the wall conductivity is made ever larger, this antisymmetric com- 
ponent tends to disappear. The limiting processes as this field disappears 
are, however, very unclear. For instance, we have considered (in Ap- 
pendix A) the infinite spectrum of modes in the ferrite medium that 
would be excited by an incident TEM mode perturbed by the finite 
conductivity of the walls. Under the simple perturbation assumed, we 
find an unlimitedly large amount of scattered energy is predicted. Since 
this is impossible, we conclude that the simple perturbation picture is 

Fig. 7 — Square guide with uniform ferrite slab terminating in orthogonal 
output. 

- H X YaHy . 
a 
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Fig. 8 — Transmission characteristic to orthogonal output by means of a uni- 
form ferrite slab. Solid curve is forward direction; dashed curve is reverse. 

incorrect. This leads to the suggestion that modes with variations along 
the magnetic field are excited at the boundary even in the limit of in- 
finite wall conductivity. 

One might wonder why this process of assuming a finite wall resistivity 
yields a coupling in the limiting process, whereas a starting assumption 
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Fig. 9 — Transversely magnetized ferrite slab bounded by finitely conducting 
parallel planes. 
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of a loss-free medium does not. It must be remembered that uniqueness 
of the field representation is obtained only by recognizing the existence 
of loss terms, however small. Therefore, any reactive physical system 
has meaning only through this limiting process. Some classical "para- 
doxes" have owed their existence to the failure to recognize this fact. The 
above discrepancy in results arrived at by the two processes should 
therefore not be disturbing. 

Thus, although we have not been able to show rigorously that these 
gyromagnetic modes must be excited from an incident uniform mode in 
the limit of resistanccless walls, we have demonstrated their excitation 
experimentally and have produced a plausible explanation of how this 
might be possible. 

V. GENERAL THEOREM ON THE NONEXISTENCE OF PURELY REACTIVE ISO- 
LATORS 

We can see from the analyses of Section II and have shown in Fig. 2 
that, for k > jU > x — 1, the situation described by Button and Lax is 
manifested for the ferrite dielectric (FD) mode: it propagates in only 
one direction. It should be noticed that the same thing is true for any 
one of the other gyromagnetic modes. This suggests that a lossless de- 
vice could be made which would be perfectly transmitting in one direc- 
tion (assuming one could match into one mode, e.g., the ferrite dielectric 
mode), but be nontransmittlng in the opposite direction. However, we 
can show that such a device is impossible. 

Let us consider two reference planes in a waveguide that are so far 
removed on either side of an arbitrarily loaded section that all modes of 
the waveguide except a dominant one are vanishingly small. We may 
then set up a scattering matrix between these reference planes, which we 
designate 1 and 2, to relate the incident waves, u, and reflected waves, 
y, at each of these points: 

= Sll^l + S12W2 , 
\Z6) 

Vi = SziRi + S22W3 , 

or, operationally, 

v — su. (24) 

In a loss-free network under steady-state conditions, s is unitary, so 
that 

1 Su \2 + I S12 J2 = 1, 

I s22 !2 + | ** I2 = 1, (25) 

S11S21* T 512*522 = 0. 
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By algebraic manipulation of these relations (and assuming S22 and S21 
to be nonvanishing), we find 

I i2 - I ^2 I2 = | s211
2 - I Sl2 I2, 

(26) 
su I I S12 
822 821 

and thus 

! S21 
( I S21 P — I 8x2 I2) — ! Si2 |2 - | Sal |2. (27) 

| S22 1 

The only way for this last relation to be true is for 

I S12 [2 = j S21 |2. (28) 

Hence, 

i su T = IS22I2. (29) 

These two equations state that the transmission and reflection look- 
ing from one direction must equal in magnitude the transmission and 
reflection, respectively, looking from the other. That is, no isolator ac- 
tion is possible in such a loss-free network, 

VI. EXPERIMENTAL BEHAVIOR OP SOME "REACTIVE" ISOLATORS 

We have attempted to set up experimentally two situations which 
were designed to give "reactive" isolation. The first is based on the 
ferrite dielectric mode described by Button and Lax.4 A rectangular 
waveguide partially loaded as shown in Fig. 1 was made small enough 
so that all the conventional TE modes were cut off. A junction was made 
between this section of small loaded guide with standard unloaded guide, 
with suitable tuning screws for matching. The reflection and transmis- 
sion in both directions are plotted in Fig. 10 as a function of the trans- 
verse magnetic field. We observe the predicted "one-way" transmission 
but note that the loss in the reverse direction is attributable primarily 
to an absorption, not reflection. 

A second type of reactive isolator can be made out of a field-displace- 
ment isolator7 (Fig. 11). In this type of isolator the dominant mode can 
be made to have an electric field null at one face of ferrite for one direc- 
tion of propagation. If we were to place a copper sheet at this point 
(see Fig. 11) it should not affect the propagation in this direction. 
However, for the reverse direction the field of this mode does not have 
a null. We would expect, therefore, that if the forward direction were 
well matched it could be made perfectly transmitting, while one might 
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expect a strong reflection would occur in the reverse direction, contrary 
to the theorem proved in Section V.* 

The experiment was tried on a variant of the geometry shown in Fig. 
11, using a partial height slab with the final dimensions shown in Ref. 7. 
In Fig. 12 the transmission and reflection in the forward and reverse 
directions are shown as functions of magnetic field. One can see that we 
can arrange just what we expected in the forward direction with a trans- 
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Fig. 10 — Characteristics of a ferrite-dieleetric mode "reactive" isolator, show- 
ing that loss is caused by absorbtion rather than reflection: (a) insertion lossj (b) 
return loss. 

* It may be shown that the discontinuity in H* at the ferrite interface permits, 
to first order, coupling of an electric dipole to the mode having a null E field at 
the interface. This statement in itself might be viewed as a thermodynamic viola- 
tion. 
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mission loss of less than 1 db. But in the reverse direction, instead of 
reflection, we obtain an absorption of greater than 30 db at some fields. 

We thus find that when one attempts to build a theoretically impossi- 
ble loss-free isolator, nature resolves the paradox, not by equalizing the 
transmission in both directions as predicted by the theorem in Section 
Y, but by absorbing power in at least one direction, thus violating the 
assumptions of the theorem. 

VII. POSSIBLE EXPLANATIONS OF "REACTIVE" ISOLATOR BEHAVIOR 

It seems to us that the most reasonable explanation of the absorption 
that appears when a "reactive" isolator should be reflecting is caused by 
the excitation of gyromagnetic modes, which, as shown in Section II, 
tend to be lossy. It should be noticed that, for the range of magnetic 
fields investigated (m > 0) in Section II, there is no magnetic field for 
which there are propagating modes in one direction and not in the op- 
posite direction. 

Thus, it is tempting to suggest that a possible resolution of this para- 
dox of Section VI is that, if we really had a zero loss material, we would 
get transmission in both directions, one set of modes carrying the power 
in one direction, but a different set carrying it for the opposite direction 
when the first set cannot propagate. For example, the FD mode in Fig. 
10 could carry the power in one direction, whereas the FA modes would 
carry it in the other. 

It can be appreciated that this suggestion requires a simple boundary 
to perform some rather startling feats. It must excite one mode for one 
direction of propagation that has one distribution of fields, say the FD 
mode with a uniform distribution in the z direction, while for the other 
direction a different mode must be excited, e.g., the FA modes with a 
sinusoidal variation in the z direction. In defense of the suggestion, we 
offer the experimental evidence described in Section IV that a simple 
boundary apparently can perform startling feats. 

An alternate possible explanation has been offered by Walker.8 He 
has proposed that power may be transmitted through cutoff modes. 
Thus, if the FD mode is coupled for one direction of propagation, a set 
of cutoff TE modes will carry the power in the reverse direction. This 
similarly requires some extraordinary behavior at the boundaries. In 
order for a cutoff mode to have appreciable amplitude at the far end, it 
must have an amplitude at the near end that is exponentially larger, the 
exponent being proportional to the length of the cutoff section. In the 
presence of a little loss in the material, such large amplitudes would give 
rise to large absorption, explaining the observed loss. Our reason for 
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flavoring the gyromagnetic mode resolution rather than the cutoff modes 
is that we have experimental evidence for the coupling to the gyromag- 
netic modes, but probing has thus far not indicated the existence of ex- 
cess fields in the vicinity of the boundary. 

Another suggestion for resolving the dilemma of the Button-Lax reac- 
tive isolator was originally given us by R. L. Martin. This same sugges- 
tion is attributed independently to some work of A. D. Bressler in this 
matter. The viewpoint expressed was that the position of the ferrite slab 
should be viewed as a limiting process as the ferrite slab approaches 
contact with the wall. Under this situation, there is an FD mode prop- 
agating in both directions that can carry the power. Since we have con- 
sidered the case mathematically in which the slab exactly contacts the 
wall, such a limiting procedure does not appear to have any justification. 
Nevertheless, if we apply this process to the TE mode equations of Lax, 
Button and Roth,9 the propagation constant of the returning FD wave 
approaches 

ky = ^ arctanh (k — n), (30) 
o 

where 5 is the air separation of the ferrite from the metal wall. This mode 
has maximum fields at the ferrite surface which fall off exponentially 
away from it as e~kuX. Thus, most of the energy in this mode is confined 
within a distance !//.■„ of the ferrite surface. As S goes to zero, we would 
not be able to excite this mode from an impinging TE mode which has 
zero transverse field components at the only values of x where the FD 
mode has any amplitude. Thus, this does not appear to us a valid resolu- 
tion of this paradox. 

VIII. CONCLUSION 

We thus see that the consideration of the gyromagnetic modes in a 
partially filled waveguide has led to some unusual nonreciprocal effects. 
Nonresonance isolation can be obtained without the deliberate introduc- 
tion of loss material. Coupling to these modes tends to violate the usual 
symmetry arguments. Finally, they seem capable of resolving the But- 
ton-Lax "paradox" concerning reactive isolation. 

We should like to acknowledge, with appreciation, the help of W. A. 
Dean and J, J. Kostelniek in the experimental studies. 

APPENDIX A 

Scattering of a TEM Mode from a Vnifonn Semi-Infinite Ferrite Inter- 
face Contained between Walls of Finite Resistivity 

Properly, we should find the gyromagnetic modes corresponding to 
(G) through (9) for walls of finite conductivity. This is an extremely in- 
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volved process when we attempt to solve the partially filled waveguide 
problem of Section II. Since we are interested only in showing the break- 
down of symmetry arguments for predicting coupling, in what follows 
we will consider a semi-infinite medium (Fig. 9) bounded by walls of 
finite conductivity. 

We will assume no variation in the fields in the x direction (kx = 0) 
and confine our attention only to those modes for which [ | and | Icu | 
in the ferrite are large compared to w2toAto. The plane wave fields in the 
ferrite are then given3 by 

E,r ~ 
i^) 

-1 

±ifi -1/2 

exp (dzikzjZ — ikvy), (31) 

E2f± = —1 exp (±ikZ2z - ikyy), 

,±2, 

(32) 

_ ikzi /1 - 
WHO \ KfX / 

±1 exp — ikyy), (33) 

W 
+1/2, 

^coe 
H2F* = + 

k. M - 1 

IK 

exp (±:ikl2z — ikyy). (34) 

"M- l 

The relations corresponding to (4) and (5) are 

kZl = 

klQ = iky . 

We will take the origin of the z-axis midway between the metallic bound- 
aries. Note that the plus and minus (±) now refer to ^-directed waves, 
which is different from the convention used in (G) through (9). 

In the metal for a- » we, Maxwell's equations reduce to 

(35) 

(36) 

curl Hro == o-Em , 

curl Em = IWUoH-m , 
(37) 
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and the wave equation [corresponding to (3)] yields the relation 

Let us first ask under what conditions the modes (6) through (9) are 
distorted by the resistive walls. This will happen when the electric fields 
caused by the induced current flowing in the resistive walls become 
comparable to the maximum electric field of the mode. Now the induced 
electric field is just (l/6ef)(n X Hu,), where n is the surface normal, H,„ 
is the magnetic field at the wall, and 8 is the skin depth. Thus, (6) 
through (9) with sin ^ — 0 yield 

We see that the induced fields for mode 2 decrease for large kz so that 
this mode is little affected by a finite conductivity. However, for mode 
1, when k: » unufiaB, the induced fields are large and the mode 1 is 
greatly modified. 

To get the correct fields for this condition we must combine the plane 
wave fields of (31) through (34). The problem can be simplified in this 
large /c« limit by noting that, for mode 1, the ratio of electric fields to 
magnetic fields varies as l/kz, whereas for mode 2 this ratio varies as 
kz. This means that, if the electric fields of the two modes are compar- 
able, we can neglect Hi, while if the magnetic fields are comparable, we 
can neglect Ei. But in this latter case we have already shown that, if 
we retain both Ei and II■>, we can satisfy the boundary conditions for 
large kt by the unmodified mode 2 (without including Hi). Therefore 
we will seek the modified mode 1 from a mixture of the electric fields of 
mode 1 and mode 2 and neglect Hi. 

This considerably simplifies our problem, since we note that Hu — 0, 
By continuity across the metal-ferrite interface this also implies that 
Hmi = 0. Therefore, from (35) we see that in the metal we have a TE 
mode: 

(38) 

Ei (induced) _ kzi (39) 
Ei (max) o}fiona8 

Ei (induced) _ 1 cce 
(40) 

Ei (max) (t8 kZ2 

Since div H vanishes in the metal, 

(41) 
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and the relation (39) with the use of (38) reduces to 

Em='pH.,io\. (42) 

The wave we will select in each of the two metal regions will be that 
which falls off exponentially away from the metal-ferrite interface. Thus, 
in the +2 region, if we take the root of kzm that has a positive imaginary 
part, we must select the wave which varies as e+,kzmz In the —z region 
we select e 

In the ferrite the total field for a particular mode (characterized by a 
y variation of e~lkv,/) is given by 

Eip'r\ + /Eip+\ /EIf 

m/j \//i// \H1f 

E2f
+\ /Ei 

(43) 
, , ~'2F \ / 

+ ^( o f 

The boundary conditions require that Ex, Ey and Hy be continuous 
across the ferrite-metal interface. Let 6 = (kzb)/2. At z — +6/2, con- 
tinuity of Ex and Hv requires that 

Ax+e'""1 + = ifi- (rix+e'"01 - ACe'^) (44) 

and, at 2 = —6/2, 

A1
+e-iei + Ai~e+iei = - (A^1 - At'e^). (45) 

For large kz (/.:/ oifxoa), 

kZM = —iky — kZ2 = +i/2/c2i . (40) 

With this relation, (44) and (45) have a solution 
n- 1/2 

tan 20i — —3—7— (47) 
1 + M 

and 

A + 
4^=-!. (48) Ax 

In order to evaluate A2± we require Ey to vanish at 2 = ±6/2: 
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AUV'31 + A1-e-iei + A2
+e+iBi + Are'**2 = 0, (49) 

JLxV9' + Afe*61 + A2V
i92 + Al2

_e+'02 = 0. (50) 

These have the solution 

AS = —AS = Ai + sin 0i 
sin 02' 

(51) 

Collecting (31), (32), (33), (43), (48) and (50), we obtain the result- 
ant fields in the ferrite: 

Ei/ = Fi 

—i 
A - 

sin k2iz 

sin hi ~ 
sin kziz —  sin k22Z 

sin hi g 

■ z b 
sm kA - 

—1/2 T ^ l fi COS ICziZ —    COS ICa2Z 
■ 1 b 

sm hi ^ 

0^ 

Hi/ = Fl I _Cos hiz I 

o-ikvV (52) 

UflQH K 
1/2 • , (i sm kziz/ 

where 

, mr . i , , 2m1'2 

'-1 = a + aarct:inh r + i 

/Cj2 = kzi — iky, 

m = 1, 2, 

(53) 

(54) 

(55) 

and the s-axis is now considered to have its origin halfway between the 
metal walls. 

If the normal modes of the finite conductivity guide are enumerated, 
Ej and Hy, we can expand the incident wave, (E/H), in terms of them 
according to the relation 

p„)=5(j>iya 
(56) 

where the amplitude Aj is given in terms of the modes of the adjoint 
set e/ and h/, (Appendix B) by 
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[ (E X h/ + e/ X H)-dS, (57) 

and the lower case vectors ej, hy, represent a normalized set of modes? 
which obey the normalization condition: 

From (27) it can be seen that A, is nonvanishing for the modes Ei/ of 
large wave number [(22) and (23)], when the TE mode (E/H) is inci- 
dent; i.e., these modes will be excited even though there is no variation 
of the boundary in the direction of the magnetic field to excite them. 

It is of interest to evaluate the total amount of power contained in 
these higher-order modes. By our simplification of the problem to a 
semi-infinite plane, all of the higher-order modes are cut off [equation 
(25)]. In order to calculate a power flow, therefore, we need to introduce 
a little loss into the ferrite medium. We do this by allowing the com- 
ponents, m and k, of the permeability tensor to take on the complex 
values, fi' — i/j." and k' — in" and the dielectric constant, e, to become 
e' — ie". 

The total power across a cross section, Sy , is given by 

p = 1 E /" (E, X Hi* + E,* X H,) -dS. = E Pit- (59) 
2 i,l J },l 

From Maxwells' equations (1) one can obtain the identity 

div (E, X Ki* + E* X Hj) = to[Mo(HrT*-He* - Hj* T H,) 

+ (Ere*Ei - Et* ■ eEy)] (60) 

= 2Wl>oHrT-HI* + e"ErEi], 

where r is the tensor — Tt) and is given by 

j / i/ 0\ 

r = | —in" n" 0 . (61) 

\ 0 0 0/ 

The application of Gauss' theorem to (30) in a small-volume element 
bounded hy Sy{y), and Sy{y + dy) yields 

(58) 

(62) 

= 2^ j" (mHi-r-H,* + e'Ei-E;*)^., 
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whereupon, from (29), 

io> J (moHj -t-H,* + e" ErEt*)dSy tUi 
Pit = /, _ * "v,- 'vyi 

iuAjAj* j (/iohj-T-hy* + f:"ej-e*)dSu 

(63) 

i- — h * 

Let us examine just a part of the power expended in the diagonal 
power components, Pj,, for the resistive wall modes, (22) and (23), 
which we will call Pmm . Here we will be interested in the dependence on 
m for large m to normalize (22) and (23) according to (28). The ampli- 
tudes I<\ for the. normal modes must vary as 

F1F1
] ~ m. (64) 

If we evaluate A ,* for the TEM mode as modified by the ferrite and 
resistive wall (as discussed earlier) we find 

AjAj* ~ —. 
m 

Finally, the component of power, Pmm, in the wt-h mode varies as 
n 1/2 n 

P„ ~ E? ~ Hy*. mo) m ma2 

If we sum over all the modes, m, we find that the total power contained in 
these higher-order modes has a logarithmic singularity. This means that 
the reflection and transmission coefficients at the boundary must have 
been such as to reduce the amplitudes of the higher-m modes. This is 
true no matter how high the conductivity becomes. Thus, a reasonable 
interpretation of this divergence is that there must be a finite coupling 
to the gyromagnetic modes, even those of lower m, at the boundary. 
This argument leads to the suggestion that, if we have the proper ex- 
planation of the observed coupling, this coupling might become inde- 
pendent of wall conductivity at high enough conductivities. 

APPENDIX B 

Orthogonality Relationships 

Orthogonality relations in generalized media are well covered in the 
literature.f Nevertheless, to show explicit forms, we include derivations 

t See, typically, Refs. 10 and 11. 
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specifically directed to gyromagnetic media of the form discussed in this 
paper. 

A real medium supporting electromagnetic propagation is character- 
ized by free space parameters, /^o and to, and by relative electric and 
magnetic susceptibilities. Given only a magnetic anisotropy produced 
by an applied magnetic field in gyromagnetic media, we further charac- 
terize the medium by the Polder tensor T, as well as by the ordinary 
scalar relative dielectric constant, c. 

The Polder tensor contains components which are all complex because 
of losses. Nevertheless, the transverse off-diagonal terms of this tensor 
are perfectly skew, and the sign associated with either component is 
prescribed by the direction of precession. The transpose of this tensor 
simply reverses the signs of the off-diagonal components and corresponds 
to time reversal in the dynamic classical equation of the spin. 

Let us define a medium reciprocal to the real medium of the guide 
such that the following transformations hold; 

Mo —> Mo, 

€0 —* ~ *0 , 

T —» T', 

where T' is an operator yet to be defined. The reciprocal fields are E' 
and H' and satisfy the Maxwell equations 

curlH'=-WE', (67) 

curl E' = iufivT' ■ H'. (68) 

We have the identity 

div (E X H' + E' X H) 
(69) 

= (E-curl H' + E'-curl H) - (H-curl E' -{- H'-curl E). 

From (67) and (68), the right-hand side of (69) becomes 

ffa>[€oe(—E-E' + E'-E) -f Mo(H,-r-H - H-r-H')]- 

If T' is defined such that T' = Tt, the right-hand side of (69) vanishes 
identically, and 

div (E X H' + E' X H) = 0. (70) 

The reciprocal system bears the relation to the real system of creating 
solutions identical to those of the real system but having a negative time 
variation. If, then, there exists a solution of form in the real 
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system there exists solutions 

0) _ €—»[(— 

in the reciprocal system, implying, for the reciprocal propagation con- 
stant 

0' = ~i3. (71) 

We now perform an integration of (70) over a differential volume of 
a cylindrical waveguide formed by two mfiuitesimally separated planes 
normal to the guide axis along the y direction, and intersecting the guide 
walls. From Gauss' theorem, 

I (E X H' -H E' X H) -dS = 0. (72) 

Since E X dS vanishes on the guide wall, the surface integral takes on 
value only over the two transverse planes normal to the axis. The left- 
hand side of (72) has a value equal to the difference of the surface inte- 
grals over these adjacent planes, viz.: 

di/^ f (E X H' + E' X H) -dA = 0, (73) 
dy J 

where A is the transverse cross section of the guide. 
Let us assume a mode of order k for E and order j for E': 

E = Ek(x,y)e-i0kV 

E' = Eu)(x,7/)e-^'('\ 

Then, from (73), 

(ft - ft) / [Ei X H01 + E0) X Hil-dA = 0, (74) 

where we have employed (71) to transform to — j3j ■ Equation (74) 
provides the final result: 

f [Ej; X H(i) + E0) X Hd-dA 
J-  = 8jk. (75) 

J [Et X n(k) + E(k) X Hi] • dA 

The notational change to that employed in (57) is evident. 
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Waveguide Bending Design Analysis 

Theory of Bending and Formulae for 
Determination of Wall Thicknesses 

By F. J. FUCHS, JR. 

(Manuscript received June 4, 1959) 

The art of rectangular tube bending is analyzed, with particular attention 
being given to tube wall thickness variations. Effects of these variations on 
tool design are discussed, and methods and formulae for determination of 
wall distortions are presented. 

I. INTRODUCTION 

For many years, waveguide bends for most microwave installa- 
tions have been difficult and expensive to produce. The art of tube 
bending was not sufficiently advanced to make economically possible 
the extremely close tolerances required in waveguides. This was true 
even when waveguides were first introduced into radar equipment. It 
later became evident, as increased power, higher aircraft speeds and 
missile applications made waveguide requirements more severe, that 
the bending technique would have to be improved. First, a faster method 
of bending had to be found, since the best of existing methods required 
about 30 minutes to make one bend. Second, to reduce transmission 
losses, the new method had to produce bends that met closer internal 
cross-sectional tolerances. Third, bends of much smaller radius, more 
closely spaced compound bends and bends adjacent to swaged and 
twisted sections had to be made to meet new design demands. In addi- 
tion to these specific improvements and innovations in the bending 
technique, production uniformity was desirable, since it is only through 
uniformity that statistical quality control can be realized. 

At the Western Electric North Carolina Works the development of 
waveguide bending began in 1951 and continued for the next five years. 
This article describes the new bending process and indicates how internal 
cross-sectional accuracy is maintained despite material flow due to the 
bending action that changes the tubing's external dimensions. This in- 

1457 
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formation is of paramount importance to the bending tool designer and 
can also greatly aid the waveguide component designer who may wish 
to apply assembly details or machining in the region of the bend where 
wall thickness changes. 

The several methods of bending that existed prior to this development 
are briefly reviewed. One of these, draw bending, is explained in some- 
what more detail, because it was chosen as the basic method on which 
the improved technique was developed. The tooling used is shown and 
explained to acquaint the reader with terms used later in the analysis 
of effects of wall distortions on bend accuracy. 

The material flow patterns and cross-sectional distortions are shown 
qualitatively and related to the individual tool parts. Corrective con- 
touring evolves from these relationships to compensate for such distor- 
tions. Then, methods and formulae are advanced to make it possible to 
calculate accurately the wall thickness changes at any point in the bend 
region. For several of the more common sizes of waveguide, graphs are 
presented for reference in designs in which wall thickness must be evalu- 
ated. 

Most of the formulae used in this discussion contain empirical con- 
stants. Therefore, an Appendix is given to explain the derivation of 
equations and provide supporting data for the constants. 

II. TUBE BENDING METHODS 

All tube bending methods consist basically of filling a tube with some- 
thing to prevent its natural tendency to collapse and then bending it 
around a form, meanwhile constraining the outside of the tube by vari- 
ous methods to keep it from losing shape. There are three common 
methods of tube bending, all of which have been used to bend wave- 
guides: compression bending, form bending and draw bending. 

In compression bending, as shown in Fig, 1, the tube is filled with a 
close-fitting mandrel, laminated strips, low-melting-point alloy or other 
material. Then one end of the tube is clamped against a form die and 
the other end is wrapped around the curved portion of the die. 

In form bending a filler is placed in the tube, and the bend is made by 
use of a punch and die in a manner similar to that employed in a sheet 
metal press brake. The tube is constrained at its sides by plates mounted 
on the form die. 

These two methods of bending require a filler that is free to bend but 
will hold the cross section of the waveguide to close tolerance. A soft 
metal filler (lead, for example) will bend, but it cannot preserve the 
accuracy of cross section. Laminated strip filler will both bend readily 
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and maintain cross section, but it is extremely difficult to load and un- 
load. Also, edges of the laminations mar the sidewalls of the tube. The 
link-type mandrel filler works well for large-radius bends in thick-walled 
tubing, but in thin-walled waveguide the tube wall tends to "oil can" 
in between the links, as shown in Fig. 2. These are the problems that 
make form and compression bonding impractical for economical, accu- 
rate waveguide bends. 

The third common tube bending method is draw bending, illustrated 
in Fig. 3. Fig. 4 is a photograph of a typical draw bending tool. 

It can be seen that this process is very similar to compression bending, 
and the tooling is almost identical. The important difference is that the 
tube is clamped against the straight portion of the form die and both 
are rotated, thus pulling the tube through the wiper and pressure dies 

FORM DIE- 
ROTATE 
ABOUT 
CENTER CENTER 

MANDREL 
OR - 

FILLER 

jt.--PRESSURE 
^ D1H 

PUNCH 

4" F-- 

FORM D E 

Fig. 1 — (a).Compression bending; (b) form bending. 
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/ 

'fl' MANDREL 

Fig. 2 — Nondrawing bending operation. 

as it wraps around the curved form. This makes possible a drawing ac- 
tion of the tube over the mandrel, which prevents the tube wall from 
buckling because it is being ''ironed" by the mandrel links. 

When the draw bending process was selected to develop waveguide 
bending, many improvements had to be made to meet the problems pre- 
sented. Distortion of the tubing exerted such extreme forces on the man- 
drel links that breakage was prohibitive on all but very large radius 
bends. Thin walls of waveguide wrinkled in almost every case, and no 
mandrels were available to make compound bends. Another fault more 
pronounced in draw bending is tube breakage on small radius bends, 
where pulling action subjects the tube to more axial tension. One way 
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CENTER 

FORM 
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A MANDREL 

PRESSURE 
DIE 

Fig. 3 — Draw bending. 
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1 

Fig. 4 — A typical bending die. 

of preventing this breakage is to employ a "booster" to compress the 
tube axially as it is bending. However, boosting, while decreasing the 
tensile forces, increases the wall build-up. Fig. 5 illustrates this effect. 
These are the specific problems that were the main targets of the devel- 
opment work. 

III. REFINING THE DRAAV BENDING TECHNIQUE 

Now it will be shown how the draw bending technique is refined to 
give satisfactory performance. 

Wall distortions are obviously detrimental to accurate tube bending, 
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but the nature of the process (the necessary application of tensile forces 
to the outside wall and compressive forces to the inner wall) makes it 
impossible to eliminate wall distortion. Assuming that the next best 
thing to elimination is accommodation, it appears that bending tools 
might be modified to allow for wall build-up in such a way that an 
accurate internal tube cross section could be preserved. Fig. 6 shows a 
bend being formed in the tool. The inner wall of the tube, which lies 
against the wiper and form die, tends to thicken, due to the compressive 
force involved in the bend. Designs of these parts of the tool are critical, 
because they must prevent buckling under great pressures. The top and 
bottom walls of the tube bend thicken toward the inner radius and be- 
come thinner at the outer radius. Therefore, the top and bottom plates 
must prevent the inner parts of these walls from buckling, even though 
they do not even touch the plates at the outer parts of the walls. The 
outer portions of the bend are in tension and pull in against the mandrel, 
which must be strong enough to withstand the forces involved and 
accurate enough to maintain size. 

After investigation of sample bends by cutting and measuring wall 
thickness at various points in and around the bent portion, a definite 
pattern of distortion was revealed, as shown in Fig. 7. The distortions 
do not end at the tangent lines, but extend outward along the straight 
ends in an elliptical shape, and the wall thickness varies within this 
pattern. Fig. 8 is a more dramatic illustration of wall distortion. It is a 
152° bend made in |-by i|-inch waveguide on a die with |-inch radius. 

f 
/ -> BOOSTER 

SLEEVE 

L BOOSTER 
MOVEMENT 

vNEUTRAL AXIS 
WITH BOOSTING 

Fig. 5 — Effect of "boosting". 
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FORM DIE 

WIPER DIE 

TOP PLATE 

MANDREL' 

Fig. 6 — Wall distortions in relation to tooling. 

These wall changes severely distort the cross section of the tube when 
an unrefined die is used. Fig. 9 shows what can happen, especially in 
small-radius bends. The thickening inner wall pushes the mandrel out- 
ward, and thus opens up a space behind the mandrel stem and allows 
the tube to wrinkle. The inner top and bottom walls thicken against the 
plates, moving them away from the form die and allow the top and 
bottom walls to bulge away from the mandrel. If the tooling and ma- 
chinery is made extremely rigid in an attempt to prevent wrinkling and 

TENSION 
-COMPRESSION 

Fig. 7 —• Distortion patterns in a bend. 
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Fig. 8 — Wall distortions in a typical "H" bend. 

bulging (this is often done), the mandrel is severely crushed by the 
thickening walls of the waveguide, while the flexible links, limited in 
strength, break off. On the other hand, the tools can be carefully con- 
toured to allow for wall build-up, and the tube can maintain its internal 
cross section and simply ''grow" into the recesses provided in the dies. 

Fig. 10 shows how this is done. The form die is made smaller in radius 
by the same amount as the wall thickens. The wiper die is tapered off 
at the end to match the tapered wall of the tube, and the straight por- 
tion of the form die at the clamp end is similarly tapered. Radially ta- 
pered recesses are cut into the top and bottom plates to match the wall 
changes there. This scheme was tried experimentally and proved to be 
successful when the contouring of the die was accurate in location and 
amount. The pressures against the tools were greatly relieved, and the 
internal dimensions of the tube were held accurately. However, in order 
to contour the dies to sufficient accuracy, a great deal of cut-and-try 
work was involved. Mathematical evaluation of wall distortions in 
amount and location thus arises as a practical design necessity, and is 
undertaken in the following section. 
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Fig. 9 — Wrinkles caused by wall distortions. 
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Table I — Equations for Wall Thickness Calculations- 
Conditions I AND II 

Condition 1 
0,0175 a IRd + S1 - O-ST) > 5 + <4 or 0.0175a IRD + O.oT) >5+^1 

(Special case: Tci — T = T — Tti) 

Tn = —0.263// 4- 

0.069//2 0.626ATRa 

RD + 0.5/' + 1515 
(rd + o.sry 

Tr = -0.263// + 0.069//2 0.52QATRc 
Rp + S - 0.5T 

As = 0.5H + i/o.25//2 + l.QATRc 

Rd + 0.5T + 0.161S 

AT = 0.5H + 
lA 

25H2 + l.QATRc 
Ro + S - 0.67' 

Condition II 
0,0175 a (Rd + 0.57) <54 .4 or 0,0175 a {Rd + 5 - O-oT1) <5 + ^1 

„ . , . rs + A - 0.0175 a {Rd + O.bTmTa- - T2) i c\ - I c A / 1 TcHS + ^ 

Equation 
Number 

(See i Appendix) 

Ab\= H A (As — H) 

■I 
' [,S + A — 0.0175 aiRp + - H)2 - {2T)2] 

1 {Ab - H)2iS + A)2 

TT1 = 27' - (2T - TT) 

/ [.S + 4 - 0,0175 aiRp + >S' - 0-571)]2[(271 - Tr)2 - T2] 
y 1 (s A Amr ~ TTy 

An = 2A - H - (2A - AT - H) 
/" [S + A - 0.0175 a{Rn - QST)f[{2A - Ar - //)2 - (A - H)2] 

y (S + A)2(2A - A7 - H)2 

LV. MATHEMATICAL EVALUATION OF WALL DISTORTIONS 

For explaining the evaluation procedures worked out, the notation of 
the various quantities shown in Fig. 11 will be used. 

In order to evaluate the changes in wall thickness due to cold-flow 
from the bending stresses, a large number of parts were cut open and 
measured at several points, and the quantities Tc , Tt , An and Ar were 
recorded. From analysis of these data a mathematical procedure for 
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accurate evaluation was derived. It was found that two basic conditions 
exist for bends due to variation in angle of bend and radius. Table I 
defines these two conditions and also provides equations to bo used to 
calculate the dimensions needed. The two conditions are: 

i. If the angle of bend, a, and radius of the midpoint of the inner wall 
thickness, Ro + 0.5T, are such that the arc length is larger than the 
sum of the two nominal dimensions of the waveguide, 5 + T, Condition 
I exists. In the formulae for this condition the angle of bend is not used, 
since the changes in wall thickness do not increase with further increase 
in bend angle. 

T 

E BEND H BEND 

^WV.HV\\\\\\\v 
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' t c 
r R \ \ 
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*r — 
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A-N0M1NAL HEIGHT OF TUBE 
AB-HEIGHT OF TUBE AFTER BENDING 
AT-HEIGHT OF TUBE AFTER BENDING 
H-HEIGHT OF TUBE INSIDE 
T- NOMINAL WALL THICKNESS 
Tc-MAXIMUM WALL THICKNESS AFTER BENDING 
Tt-WINIMUM WALL THICKNESS AFTER BENDING 

Rc-CENTERLINE RADIUS 
RQ-RADIUS OF FORM DIE 
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Ot-ANGLE OF BEND IN DEGREES 

Fig. 11 — Definitions of terms used in waveguide bend analysis. 
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Fig. 12 — Variation of wall build-up with angle of bend. 

ii. If the radius of die, RD , and angle a are such that the arc length 
(7r/180)a(jRo + O.ST) is less than S + A, Condition II exists. Here the 
wall thickness changes are increasing with angle and, therefore, a is 
used in the calculation. Fig. 12 displays Conditions I and II. 

The equations shown are partly analytical and partly empirical; their 
derivation and verification appears in the Appendix. By use of these 
calculations a series of graphs has been prepared for quick reference in 
determining wall thickness values. Figs. 13, 14 and 15 are examples of 
these graphs. They are based on the assumption that the neutral axis 
is located such that the outer wall thins down an amount equal to Tc — 
T. This is a condition that normally exists when a standard booster is 
used or when the form die radius is large enough to make the booster 
unnecessary. 

There are several uses for these charts and evaluation procedures. In 
the case of new designs of bends, it is desirable to determine whether 
the bend can be made without breaking the tube, and how much dis- 
tortion can be expected. The wall-thickness values may be needed to 
determine the feasibility of assembling details (such as tuning slugs, 
soldered brackets or clamps) to the guide in the vicinity of the bend. 
In compound bends, design specifications of the bend spacing can be 
affected by the wall thickness changes. These points are often overlooked 
in waveguide designs. In the design of tools for bending, as has already 
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been discussed, these wall thickness dimensions are essential. The follow- 
ing example will serve to illustrate the use of these data. 

A now "H "-plane bend is to be designed out of by 1-inch copper 
waveguide with an 0.050-inch wall thickness. The center line radius is 
1.5 inches (nominal 1-inch form die radius), and the angle of bend is to 
be 180°, To determine if the bend can be made by standard procedures, 
it is necessary to know how thin the outer wall, 7V , will become, using 
standard tooling. For annealed copper, the maximum elongation before 
rupture is 30 to 35 per cent. Therefore, the wall thickness cannot de- 
crease by more than 30 per cent of 0.050, down to 0.035 inch, or the 
tube will probably split. To determine which condition and thus which 
formula to use, it is necessary to calculate (x/180)a{A,i, + 0.57'): in 
this case, 3.15. Consequently, the arc length is greater than S -f- A, 
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Fig. 13 — Wall thickness, 7V , vs. angle of bend. 
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Fig. 14 — Wall thickness, Tc , vs. angle of bend. 

(1.5 inches), and Condition I can he used for calculations. By substitut- 
ing the proper values into the formulae in Table I for the given bend, 
the three dimensions Tc , Tt and AB arc determined: 

Tc = 0.095 inch, 

Tt = 0.037 inch, 

.4« = 0.521 inch. 



WAVEGUIDE BEXDIXG DESIGN ANALYSIS 1471 

A? 
o- 

0.6 65 

0.660 

0,675 
0.625 

0.670 

0-750 
2 0.665 

B 0.660 

.000 
< 0.655 

0.650 
.500 

^ 0.645 
2.000 

0.640 2.500 
3,000 

0.535 
R0 =4.000 

0 20 40 60 80 100 120 140 160 180 
ANGLE OF BEND, £X, IN DEGREES 

Fig. 15 — Height of tube vs. angle of bend. 

Since Tt is greater tlian 0.035 incli no rupture will occur and the 
bend can be made economically. 

The wall thickness that might be needed for assembly purposes is 
available from this same calculation. It should be noted, however, that 
the side wall thickness, .4s — H '2, is measured only at the form die 
radius, and tapers down to the nominal value at the neutral axis and 
to a proportional amount at the outer radius (refer to Fig. 11). Also, 
in the vicinity of the tangent lines of the bend the wall thicknesses taper 
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from those calculated (Tt , Tc) down to nominal in zones, as shown in 
Fig. 12(a). If the exact values are needed in these regions simple propor- 
tions can be used, because the variations are, for all practical calcula- 
tions, straight tapers. The wall thickness at the center line of the bend 
is increased or decreased close to three-fourths of the maximum distor- 
tion and tapers into the straight portion of the tube for a distance that 
may be evaluated as S + A. At the end of this distance, the wall thick- 
ness resumes its original value. These same data are used to contour 
the tools to afford the accuracy required for the particular bend. The 
nominal 1-inch form die radius is ground undersize an amount equal to 
Tc — T, or 0.013 inch, for the build-up. The straight clamping portion 
of the form die is tapered from the tangent point for a distance of 5 -b A 
to reflect the tapered wall at the clamp end, and the wiper die tip is 
tapered similarly. Now the inner wall of the tube can thicken naturally 
and exert no undue pressures on the mandrel (see Fig. 10). The top 
and bottom plates are contoured to fit the side walls of the bend by 
means of a circular groove whose inside radius coincides with the 0.986- 
inch radius of the form die and whose outer radius coincides with the 
radius of the center line of the tube, in this case, 1.5 inches. The depth 
of this groove is 0.010 inch at the 0.980-inch radius and tapers to zero 
at the center line of the tube. These circular grooves hold the thickened 
portion of the sidewalls flat. 

It should be noticed that the above contouring design is accurate for 
the bend only when the angle of bend is great enough so that Condition 
I exists. If the angle is small, the tube may be in Condition II, where 
the wall distortions are not fully developed, and, in order to preserve 
accuracy, a specially contoured die is used. However, in most cases the 
fully contoured die will produce a small-angle bend whose electrical per- 
formance is good. 

In very small radius bends, the tools are not only contoured with 
nominal shapes as described, but they are also refined to reflect the 
elliptical pattern of distortion shown in Fig. 7. This is done by measur- 
ing a tube at several points after bending and tailoring the tools to fit. 
Since the above example was in Condition I, the angle of bend had little 
importance in build up, but, as the radius becomes smaller, the angle 
becomes more and more important. This is quite evident on inspection 
of Figs. 13, 14 and 15. The slope of each curve increases with decrease 
in Ru . In any design work, product or tooling, it becomes more impor- 
tant to recognize these wall distortions in smaller radius bends. Tool 
contouring must be done for smaller ranges of angles. To take the most 
extreme case — a zero radius bend — the die can be contoured and used 
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Table II — Equations for Wall Thickness Calculation- 
General Case 

General Case 
Equation 
Number 

(See^ 
Appendix) 

Tc = —0.263// + 

0.069//2 0.526.4 T Rn i / O.uourt - i    I nAU\c 
V Ru + 0.5T + 0.1.32(i?,v - Rd - 0.52') ( ^ ) 

(11) 

Tt = -0.263// + 

0.069//2 0.526.4 TRN 
RD + .S - 0,57' - 0.132(Wfl + S - 0.57' - ltN) 

.( ^ y-1 

\RD + S - 0.52V 

(12) 

An — 0.57/ + 

0.25//- 1.9.42'^ 

Rd -h 0.52' - 0.132(7/A- - RD - 0.5T} * 
(13) 

At = 0.5// + 

l/' 
0.25/72 + 

1.9.4 777v 
RD + S - 0.5T - 0.132(7,7, + S - 0.52' - RN) 

.( ^ y- 
\Rd + S - 0.527 

(14) 

to bend no more than a 5° variation in angle to maintain an internal 
accuracy of 0.004 inch. 

The equations shown in Table II are used in the same way as those 
in Table 1. The necessity for two different systems of calculations, along 
with the method of derivation, is explained in the Appendix. 

The charts shown in Figs. 13, 14 and 15 can be used for all bends whose 
outer walls lose as much in thickness as the inner wall gains, but if a 
small-radius bend is to lie made, and the neutral axis must be boosted 
outward to prevent splitting, then the wall values must be computed for 
the specific case. 

Perhaps it would be helpful to present such a case here. Assume a 
design involving quite a small radius— a h- by 1-inch waveguide with a 
00° "H" bend and a 0.25-inch Rd . With this radius, Condition I calcu- 
lations may be applied for the outer wall, since its length is less than 
S + A. To check the possibility of making the bend by standard proce- 
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dure the value Tt is calculated using (8). It is found to be 0.033 inch 
and, since this is less than the breaking point of 0.035 inch, special tool- 
ing will probably be necessary. Although the bend could be made by 
bending 45° and then annealing before finish-bending, this practice is 
undesirable, because it is more costly and produces a weaker product. 
A better procedure is to use the boosting principle to move the neutral 
axis outward until the wall thickness is greater than 0.035 inch. By sub- 
stituting this value into (12) and solving for RN, the new neutral axis 
position is found to be 0.778 inch. The neutral axis found using 0.033 
inch for Tt was 0.732 inch. The difference, 0.046, is the amount of ad- 
justment necessary for the booster. Now, by using 0.778 inch, any of 
the values can be determined from (11) and (7) for TV and from (13) 
and (3) for AB , and the tools can be accurately contoured. 

Compound bends are often designed with close spacing between bends. 
When this spacing becomes less than the >S + A dimension of distortion 
beyond the bend, there is an overlap of stress patterns and the wall 
thickness at any point in this region must be computed for each bend; 
the resultant change in wall thickness at any point in that area will be 
the algebraic sum of the individual bend changes, a minus value for 
decreased wall and a plus value for a thickened wall. Usually, when the 
bonds are spaced this closely, it is also necessary to hold the spacing 
quite accurately. This is reflected in centerline-to-centerline dimensional 
tolerances that often are less than ±0.005 inch. Fig. 16 is an illustra- 
tion of such a product. In designing dies to make the second bend for 
parts such as this it is necessary to provide a clamping nest that will 
support the first bend. This will prevent damage from the ensuing bend- 
ing action and will accurately position the part to insure meeting of the 
desired centerlinc tolerance. The clamping nest must be contoured to 

Fig. 16 — A close-coupled compound bend. 
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fit the first bend's wall distortions and the build-up of both bends must 
be allowed for in locating the nest. Contouring of the nest can be readily 
prescribed from the contours of the die used to make the first bend; 
these values are calculated as previously described. The distortions for 
the second bend are calculated in the same manner, but the section of 
the die corresponding to the place where overlapping distortions between 
the two bends occur is dimensioned accordingly. 

This product illustrated in Fig. 16 consists of an "E" and an "H" 
bend spaced 0.312 inch apart in by Ij-tubing. The "E" bend has 
a centerline radius of | inch, and the "H" bend's centerline radius is 2 
inches. The centerline offset dimension required is 3.062 ± 0.005 inch. 

Fig. 17 shows how the die for the product in Fig. 16 is contoured from 
the values taken from Figs. 13, 14 and 15. In addition to the contoured 
form die and top plate as shown, the clamp die is similarly faced, and a 
curved clamping block is used to back up the outer wall of the nested 
bend. The subscripts 1 and 2 on the values in Fig. 17 refer to the nested 
bend and the second bend, respectively. 

V. CONCLUSION 

These procedures and techniques developed in the waveguide bending 
project have had a marked effect on production costs, quality and uni- 
formity. 

The cost of waveguide bends had been quite high, because of the 

(AB,-Al)-(TC2-T2) 

(AI-AT1)+(TC2-T2) 

Fig. 17 — Dio contours for a compound bend. 
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amount of labor involved in the loading and unloading of tube fillers 
and because of the very high spoilage rate. The new methods of contoured 
dies, permitting use of draw bending mandrels, have lowered the aver- 
age cost of bends from over $7.00 to less than $2.00 each. Also, the 
capacity of the bending shop has increased tenfold per man hour. 

Electrical transmission and physical appearance of the new bends are 
markedly improved. The elimination of hand work has considerably re- 
duced surface scars and irregularities that not only were objectionable 
from a visual standpoint but also impaired electrical performance. It 
has been found that the uniformity of the process is reflected in an elec- 
trical performance from part to part which is exceptionally constant. 

APPENDIX 

This Appendix is used to explain the derivations of equations and 
present the experimental data used. 

The basic method of computing wall thicknesses of bent tubing is to 
compare the length of the bent wall to the length of the neutral axis of 
the bend, and assume that the volume of the wall after bending is the 
same as it was before. The formula for T,-, Fig. 11, would be derived 
as follows: 

Volume before bending: 

v-*B~woAT- 

Volume after bending: 

V = ir(RD + 0.5T)^AbTC. 

Equating the two: 

vRv £0AT = iriRn + -OF) ^ A.Ta- 

Solving for T r : 

T -- ATRk ic {Ro + 0.5T)Ab- J 

This basic calculation was made with two assumptions: first, that the 
distortion of the thickening wall ends abruptly at the two centerlines 
of bend; second, that wall increase is the same for any angle of bend. 
Neither of these conditions is found to be true, although the two are 
interrelated. It is found that the wall thickness changes beyond the 
tangent point of bend, as shown in Figs. 7 and 12. This distance beyond 
the centerline, Zone C, is approximately equal to 8 + A in over-all 
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Fig. IS — Wall thickness, Tc , for a typical bend. 

length. Fig. 12 also shows a Zone D, which is in the bent portion of 
the waveguide. This zone is also reasonably constant in length, approxi- 
mating 0.5(6' + A). Since the wall distortion is a maximum at the end 
of Zone D and something less at the centerline of bend (found to be 0,75 
of the maximum by experiment), it is evident that the wall thickness 
will change from nominal to its maximum value only after the bend has 
progressed sufficiently to provide an arc length, center to center, greater 
than S 4- A. Fig. 18, a curve of measured values for a typical bend, 
shows this effect clearly. The wall increases from nominal at 0° bend to 
a maximum at about 75° bend. For this inner wall, the angle of bend 
that gives an arc length of 6 + A, (1.875 inches in this case) is 

(S + A) 180 - 73c 

viRo + 0.5 T) 

In order to describe this build-up effect mathematically, use is made 
of the equation for an ellipse, 

<+fi=i. «- b- 

that fits the wall distortion curve very well. Referring to Fig. 19, b is 
equal to TV at Ar = 0. At the known point of 0° bend, X — S A 
and y = T. By substituting these values into the general equation for 
an ellipse, the value cf can he found: 

(6 + A)2 ,T"-_ 
o * rry o 1 T a- J C" 
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At any other point between A' = 0 and X = <S + A, A' would be 
equal to the arc length of bend subtracted from S + A: 

a- = 5 + A — (72D + 0.5r)^. 

For the purpose of clarity, the value of y at this point is denoted Tci ■ 
Bj' substituting these values and the value of a" as above, the equation 
for an ellipse can be again rewritten: 

S + A - {Xc + 0.57> m 

(iS + A) Tc 
+ ^=1. ^ 7V 

Tc- - T- 

After solving for 7Vi , the equation appears as: 

• [>S' + A ~ 0,0175 / " 7 ^ ^ri2r m 2 ^ 
VC'S + A)- 

This is the equation that was used for Tci in Table II. The accuracy 
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Fig. 19 — Ellipse used to derive equation (2). 
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of this calculation is within 0.002 inch on sizes of waveguide ranging 
from 0.391 by 0.702 inch to U by 3 inches. In Fig, 18 the curve shows 
the calculated values in relation to the experimental values for a typical 
bend. 

The foregoing derivation was for the inner wall thickness only. The 
sidewall thickness is calculated in exactly the same way to evaluate the 
height of tube after bending, A B . The only variation is that the calcu- 
lated sidewall thickness is doubled and added to the internal height of 
the tube, //. This variation of (2) becomes 

Ajii — H + (As — H) 

/ [ST.! - 0.0175a(FD + OATmAs - HY - (2T)2] (g) 

'r (.4b- Hr-{S + Ay • 

Another value needed for bend analysis is the outer wall thickness, 
Tt ■ The same method of setting up an equation is used, with Zones C 
and D being the same length for tension as they are for compression. 
After solving the equation for the ellipse as shown in Fig. 20, the ex- 

X 

/ 

t 
\ 

/ 

UX=S+A 
Y 

ZERO DEGREE 
BEND 

Y = WALL THICKNESS 
X = S + A MINUS ARC LENGTH OF BENT WALL 

Fig. 20— Ellipse used to derive equation (4). 
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pression for Tt, is as follows: 

Tt1 = 2T ~ {27 - Tr) 

' [.S + .4 - 0.0175a(^ + 5 - 0.5J')]2[(27' - Tr)2 - T2] (4) 
(S + Ay-i2T - Tr)2 

The only remaining value to determine is the height of tube after 
bending at the outer wall. This is derived from the same type of ellip- 
tical function as the foregoing, and is 

AT1 = 2A - II - (2A - AT - H) 

1 - 

[5 + A - Q.0175{Rd - O.ST)]2 (5) 
 •[(2A - Ar-ff)2 - (A — H)2] 

(S + A)2(2A - AT - H)2 

Equations (2), (3), (4) and (5) evaluate the wall distortions of a 
bend which is still in Condition II. The equations all include the values 
Tc, A a, Tt and AT, which must be determined first. Equation (1) 
expresses the wall distortions assuming no distortion beyond the bend. 
By rewriting the equation, the fact that the wall does thicken beyond 
the centerline is represented by an empirical addition to {Rd + O.ST7). 
Measurements of samples which were boosted by standard methods 
were substituted into (G) and the value K was obtained: 

rf — ATRx  , . 
Ab[{RD + 0.577) + K]' w 

By assuming R* equal to Re and plotting K against various parame- 
ters, it was found that K equals 

, 0.564 
o.ms1 Rd + O.ST'J 

Re 

for Tc and close to zero for Tt . Therefore, equations for Tc and Tt 

appear as follows: 

AT Re 
Tc~ * \r, , , .^^/^ + 0.5TX0-564" AH 

TT - 

Rd + 0.5T7 + 0A5LS . 
\ Re 

ATRc 
AARD + .s - 0.5T1) 

From Table III, it is evident that the sidewalls after bending assume 
a value close to 0.95 times their adjacent walls. From this, AB = // + 
l.OT'c and Ar = /T + 1.9TV , and final equations for Tc and Tt can be 
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Table III — Measurements of Wall Thicknesses Taken 
from Sample Production Bends 

Description of Bends Tc TT AB At 
Ratio 

AB —B 
Ratio 

AT — B 
Tc Tt 

0.391 X 0.702 E, 0,196 Ra 90° 
0.391 X 0.702 E, 0.562 Rd 150° 
0.391 X 0.702 H, 0.351 Rd 90° 
0.5 X 1 0.5 RD 90° 
0.5 X 1 15, 0.348 Rd 90° 
0.5 X 1 H, 0.625 Rd 90° 
0.5 X 1 H, 0.625 Rd 180° 
0,625 X 1.25 E, 1.5 Rd 180° 
0.625 X 1.25 H, .5 Rd 90° 
0.625 X 1.25 H, 0 Rd 45° 
0.625 X 1.25 H, 1.5 Rd 90° 
0.625 X 1.25 H, 2 RD 90° 
1.273 X 2.418 E, 6,86 Rd 90° 
1.273 X 2,418 E, 6.29 RD 90° 

0.050 
0.047 
0.052 
0.060 
0.063 
0.066 
0.068 
0.071 
0.088 
0.083 
0.076 
0.075 
0.069 
0.073 

0.030 
0.033 
0.030 
0.040 
0,037 
0.035 
0.035 
0.056 
0.043 
0.044 
0.0523 
0.053 
0.059 
0.056 

0.714 
0.712 
0.412 
1.014 
1.017 
0.525 
0.530 
1.260 
0.667 
0.655 
0.640 
0.645 
2.423 
1.285 

0.678 
0.687 
0.367 
0.976 
0.969 
0.467 
0.473 
1.226 
0.575 
0.592 
0.587 
0.593 
2.399 
1.250 

1.84 
1.91 
1.90 
1.90 
1.86 
1.93 
1.86 
1.94 
1.96 
1.90 
1.88 
1.95 
1.93 
1.92 

1.87 
1.97 
1.86 
1.90 
1.86 
1.92 
1.97 
1.86 
1.95 
1.90 
1.91 
1.86 
1.85 
1.88 

1.90 1.89 

found by substituting H + l.QTc and H + 1S)Tt into the above and 
solving for the values Tc and TT : 

Tc - —0.263// + 

0.526^1 TRc (7) 
a009H +7^D + 0.5^ + 0.151S(^±^)"'!,' 

Tt = -0.203// + ^0.069//2 + W 

The sidewall thicknesses AB and AT can be evaluated similarly: 
l.dATRc 

Ab — H A- 
AB 

Solving for A a : 

AB = 0.5// + 

'/ij + 0.5T + 0.151/;(
K° + 0-5r)°M']- 

/no.„. ,  1.9 AT Be  (9) / {J.zotl -j- /p _|_ n s:/7i\ 0.564 • 
Y Rd + 0.5T + 0.151<S ^ +a57) 

Similarly, 

- 0.5// + /0.25//2 + ^ ■ (10) 
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These equations can be used to determine wall thicknesses within 0.002 
inch for a range of waveguide sizes of from 0.391 to 2.418 inches and 
for any radius of bend. 

Equations (7), (8), (9) and (10) can be used only where the tube 
wall distortions of outer and inner walls are almost equal. Fortunately, 
this is the normal situation, and these equations are very useful because 
they cover the great majority of cases. However, in cases where it is 
desirable to determine the neutral axis, RN , or where Rk is known, it 
would also be desirable to have expressions for T, T T , Ab and A t in 
terms of RN . 

These expressions are written in general form as: 

m _ AT RN 
1 C — 

Tr - 

Ab = H + 

AT = H + 

Ab{RD + O.ST + IC) ' 

atrn 

At(Rd + S - 0.5T - K) ' 

2ATR„ 
AB{RD + ,8 - 0.5T - K) ' 

2ATRn 

AriRn + 5 - 0.5T — K) ' 

where K has the same significance as previously explained. By substitu- 
tion of Tc and Tr taken from experimental samples in Table III and 
solving for Rn and K simultaneously, K is found to be equal to 

0.132(/?.* - Ro - OAT) 

and 

0A32(Rd + S - OAT) 

Ro + 0.57ix0 2 

Rj 

R 'N 
Rd + s - OAT 

for the respective cases. 
Finally, Tc and Tr are evaluated by: 

ATRi 
Tc - 

^Rn + 0.5T + 0.132(Bff - Ro - OAT) ^ ^ Q-5T 

Substituting rig = if + l.OTc and solving for Tc 
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Tc = -0.263// + 

/ j 0.52QATRn 
0.069//' + ^ + 0.571 + 0.132(/?Ar - RD - 0.5T) 

T 
ATR N 

T rRD AS- 0.5/' - 0.132(flo AS- 0.5T - R„) 
A-. ' .( ^ Y2 

\RDAS-0.5Tj 

Substituting At = H A 1.9TV , and solving for Tr ■ 

TT = — 0.2G3// + 

/ 
0.069//2 + 

0.526A2,/?Jv 
/fD + S - 0.5T - 0.132(^o + £ 

- 0.5T - Rn) + ^ 1 0.571) 

■ (12) 

The sidewall thicknesses are found to be less than the outer and inner 
wall thicknesses. Table III shows this relationship to be a constant 
ratio: the sidewalls are 0.95 times the outer and inner walls. By use of 
this ratio, formulae for A a and AT are written as: 

AB = H A 
1.9 ATR, 
[/R A 0 STV-2"! 

Rd A 0.5T + 0.132(/^a' - Rn- 0.5T) 0 ' j J. 

Solving for A B : 

AB = 0.5// + 

/ 0.25H2 + 
1.9 ATR,v 

Similarly, 

At = II A 

Rd A 0.5T + 0.132(i?1v - Rd - 0.5T) 
/rd + o.srv-- 

V Ry ) 

l.QATRv 

. (13) 

^ 5 - 0.5T - 132(/?d + S - 0.57' - R„) + f 1 q 57.) "j. 
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Solving for A t '• 

AT = 0.5H + 

/0 25H- A l$ATRjt_  / 
/ u- 0 ^ RD + S- 0.521 - 0.132(i?D + ^ - 0.5T - RN) ' v 7 

4/ ( Rn Y'2 

y \RD + S - 0.5T) 

Here, At and As have been shown as separate calculations, but where 
Tt and Tc are already known or computed At and AB can be evaluated 
by: 

At = H + 1.9TT, (15) 

Ad = H+1.9Tc. (16) 

These relations are found to be true for both Conditions I and II. 



Error-Correcting Codes — A Linear 

Programming Approach 

By E. J. McCLUSKEY, JR. 

(Manuscript received June 5, 1959) 

Two theorems are proved that characterize the matrices used to construct 
systematic error-correcting codes. A lower bound on the number of required 
check hits is derived, and it is shown that, in certain cases, this hound for 
systematic codes is identical with Plotkin's hound on the size of any error- 
correcting code. A linear program whose solutions correspond directly to a 
minimum-redundancy error-correcting code is derived. This linear program 
can he solved by an algorithm that is essentially the simplex method modified 
to produce integer solutions. Explicit solutions in closed form that specify 
the codes directly are derived for the cases when the specified code parameters 
satisfy certain restrictions. Several theorems are proved about minimum re- 
dundancy codes with related parameters. 

I. INTRODUCTION 

This paper is concerned with the problem of transmitting binary 
signals over a noisy channel. Some situations in which this problem 
occurs are: when telephone lines are being used to transmit data in 
binary form; when an imperfect medium such as magnetic tape or a 
photographic emulsion is used to store binary data; or when operations 
on binary signals are being carried out by means of circuits constructed 
of devices such as relays, diodes or transistors, which have a probability 
of error. It has been shown by Shannon1 that it is possible to add redun- 
dant bits to the transmitted messages so as to reduce the probability 
of error in the received messages to an arbitrarily small quantity. Since 
Shannon did not exhibit efficient codes for achieving this reduction in 
error probability, considerable attention has been devoted to the search 
for useful coding schemes. The usefulness of a coding scheme is deter- 
mined by the number of redundant bits that must be added, by the 
complexity of the equipment required for inserting the redundant bits 
before transmission and for removing the redundant bits and correcting 
errors after transmission, and by the error-correcting capabilities. 

1485 
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In 1950, Hamming2 published schemes for constructing codes for (a) 
detecting the presence of an error in one out of n bits, (b) correcting 
an error in one out of n bits or (c) correcting an error in one out of n 
bits and detecting errors in two out of n bits. In all these codes, it is 
possible to separate the transmitted message into information or message 
bits and redundant or check bits. Hamming defined codes that have 
this property as systematic codes, and proved that all systematic codes 
can be constructed by means of parity constraints on the transmitted 
bits. He also proved that the codes that he constructed contained the 
minimum number of check or redundant bits. While Hamming did not 
obtain any codes for correcting more than one error, he did show that 
a code for correcting e errors can always be changed into a code for 
correcting e errors and detecting e -\- 1 errors by adding one extra check 
bit that makes the over-all parity of the transmitted message always 
even. 

A procedure for constructing codes for multiple errors was obtained 
by Reed3 and Midler.4 The resulting codes are commonly called Recd- 
Muller codes, since they were obtained independently by both Reed 
and Muller. A Reed-Muller code can be constructed for detecting e 
errors whenever e is a power of two (e = 2X). The number of bits in the 
resulting code will also be a power of two. This paper presents a method 
for constructing minimum-redundancy codes for correcting or detecting 
any specified number of errors. 

II. THE HAMMING MATRIX 

A binary word is defined as a sequence of n binary digits, x — X1X2 ■ ■ ■ 
Xa ; and the distance between two binary words is defined as d(x, y) = 
Ot © ih) + (x-i @ y2) + ••• + (xh @ Vn),* which is equal to the 
number of bit locations in which the two words differ. An e-error-correci- 
ing code' is a collection of binary words for which the distance between 
any two words is greater than or equal to 2c + 1. If an error-correcting 
code consists of all binary words whose digits satisfy certain parity- 
check requirements, the code is called a systematic error-correcting code. 
For example, the collection of six-bit binary words that satisfy © 
x4 © x5 = 0, .To © T4 © Te = 0 and Ti © x6 © t6 = 0 forms a one-error- 
correcting code. The problem of obtaining a systematic error-correcting 
code is equivalent to that of finding a set of parity-check requirements 
that will generate a set of words with the required distance property. 

The parity-check requirements can be specified by a matrix of zeros 
and ones in which the jth column corresponds to the jth bit of the 

* The symbol © represents addition modulo two. 
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binary code words and the ith row corresponds to the ?th parity check. 
The entry in the ?th row and jth column is one if the jth bit is involved 
in the tth parity check and is zero otherwise. This matrix will be called 
a Hamming matrix, and its elements will be represented by the symbol 
h,, . This is the Hamming matrix for parity rules x3 ® a-4 © xb = 0, 
Xo © Xi © .Te — 0, Xi ® X5 © Xg = 0: 

= [hij\. 

The first problem considered in this paper is that of characterizing 
Hamming matrices by determining the necessary and sufficient condi- 
tions that a matrix of zeros and ones be a Hamming matrix for a code 
with minimum distance d (between any two code words). 

In the following, the binary code words will be represented by column 
matrices, 

X\ Xi ^3 ^4 Xf, Xe 

0 0 1 1 1 0" 
0 1 0 1 0 1 
1 0 0 0 1 1 

t] = 
Xi 

and the Boolean product of two matrices with elements an and hn will 
be defined as a matrix [c,^] = [a,-y] a [hn] with elements c/j — Qikh-j 

(modulo 2). 
Example 1: 

Definition: A matrix of zeros and ones with k rows and n columns is 
the Hamming matrix for a code of minimum distance d if and only if 
d(x, y) ^ d for all x and y {x ^ y) for which [H]ox] = 0] and [H]oy\ = 
0], where 0] represents a column matrix of k zeros. 

Definition: The weight of a matrix, «?[«, .■], is equal to the number of 
entries of the matrix which are equal to one (for matrices of only zeros 
and ones). 

Lemma 1: c/(0, .r) = w[.r], where 0 represents a sequence of n zeros. 
Definition: The sum {modulo 2) of two or more columns of a matrix 

is the column matrix with each element equal to the sum modulo 2 of 
the elements in the same row of the columns being summed. 
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Lemma 2: If d{x, y) = di, then ?/] = » 0 z], where ■w;[2] = di. 
Theorem 1: H is the Hamming matrix for a code of minimum distance, 

d, if and only if [H]oz] ^ 0] for all z] {z] ^ 0]) for which w[z] < d. 
Proof: First suppose the H is a Hamming matrix for a code of minimum 
distance d and that w[z] < d; then [H]o0] = 0] and d(0, z) < d, so that 
[H]oz] cannot equal 0], by the definition of a Hamming matrix. Next 
suppose that [H]oz] 0] for all z] (2] ^ 0J) for which w[z] < d, and 
d(x, y) < d. Then y] can be expressed as x ® z], where w[z] < d; and 
[H]oy] — [H]ox © z] = [//]ox] + [H]°z]. Thus, if x is a code word, [H]°x] = 
0], y cannot be a code word, since [H]°y] = [i/]orr] + [H]oz] = 0] + 
[H]oz] 9* Oj. This shows that, if [H]oz] ^ 0 for all z] with wlz] < d, then 
d{x, y) must be equal to or greater than d for all x and y with = 0 
and [H]oy] = 0. 

Corollary 1: H is the Hamming matrix for a code of minimum distance 
d if and only if no set of d — 1 or fewer columns sums to the all-zero 
column. 
Proof: If d — 1 or fewer columns sum to zero there is a corresponding z 
with iv{z\ < d such that [//]oz] = 0]. 

This theorem makes it possible to attack the problem of finding a 
systematic code with the specified d by constructing a matrix satisfying 
the given conditions. However, no satisfactory procedure for construct- 
ing such a matrix directly is known, and the construction procedure to 
be developed here is based on Theorem 2, which characterizes the parity- 
check matrix, a submatrix of the Hamming matrix. 

III. THE PARITY-CHECK MATRIX 

Hamming showed that a Hamming matrix can always be put in the 
form of a k X h unit matrix (matrix with ones on the main diagonal 
and zeros elsewhere) and a /c X n — /c arbitrary matrix called the parity- 
check matrix (see Ref, 2, Section 7). This form of the Hamming matrix 
will be called the standard form. In the following it will be assumed that 
the Hamming matrices are always in standard form. 

It is customary to use the term redundant bits or check bits for the 
bits of the code words which correspond to columns of the unit matrix 
part of the Hamming matrix. The remaining n — k = m bits are called 
information or message bits. This usage derives from the fact that each 
of the check bits occurs in only one of the parity checks, and therefore 
the values of each check bit can be calculated directly from the values 
of the information bits, independent of the values of the other check 
bits. If the elements of the parity-check matrix are denoted by pa , 
the check bits {ui) are obtained from the message bits {xf) according 
to the following expression: 
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S Pa xi (modulo 2). 
y=i 

(1) 

A systematic error-correcting code is thus completely specified by the 
parity-check matrix. The main object of this paper is to present methods 
for obtaining parity-check matrices corresponding to systematic codes 
that have a specified minimum distance d between any pair of code 
words and requiring the minimum number of check bits. 

The following is an example of a systematic code of minimum distance 
3 (one-error-corrccting code) having two message bits and three cheek 
bits. 

Example 2: 

"l 1" 
Matrix: P ~ 10 

0 1 

equations: 
Ui - a:i © ;C2, 
U2 = xi 
Us = *2 

Ui U2 Us Xi X2 

0 0 0 0 0" 
1 0 1 0 1 
1 1 0 1 0 
0 1 1 1 1 

code: 

The method to be used for constructing parity-check matrices depends 
on the following theorem. 

Theorem 2: P is a parity-check matrix for a code of minimum distance 
d if and only if: 

i, the weight of each column of P is greater than or equal to d — 1; 
ii. the weight of the sum (modulo 2) of ./ columns is greater than 

or equal to d — J. 
Proof: First, suppose that the conditions of the theorem are not satisfied, 
and consider the Hamming matrix made up of a unit matrix and the 
given P matrix. If there is a column of P with weight vh < d ~ I, then 
the sum of this column and wi of the unit columns (one unit column for 
each one entry of the column of P) will be equal to zero. Since the total 
number of columns involved in this sum is Wi + 1 < d, the conditions 
of the Corollary I are violated and F cannot correspond to a code of 
minimum distance d. Similarly, if the sum of J columns has weight 
Wj < d — J, these J columns of P plus wj unit columns will sum to the 
all-zero column. The total number of columns summed is ./ + «'/< ./ + 
d — J = d, again violating the conditions of the Corollary 1. Thus, 
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unless conditions i and ii are satisfied by P it cannot be the parity-check 
matrix for a code of minimum distance d. 

Next, suppose that conditions i and ii of this theorem are satisfied, 
and consider which combinations of columns will sum to the all-zero 
column. No combination involving only unit columns can sum to zero, 
since these are linearly independent. As discussed in the preceding 
paragraph, any combination involving only one of the columns of the 
P matrix will contain tf] + 1^ d columns, and any combination involv- 
ing more than one of the columns of the P matrix will contain./ + Wj ^ 
J d — J ~ d columns. Thus, any combination of columns that sums 
to the all-zero column must involve at least d columns. The conditions 
of Corollary 1 are satisfied and P corresponds to a code of minimum 
distance d. 

In this paper the construction of error-correcting codes will be based 
on finding matrices which satisfy the conditions of Theorem 2. The 
matrices will be obtained directly from the solutions to a set of linear 
inequalities. 

IV. FORMATION OF LINEAR PROGRAM 

In order to check that a given matrix P satisfies the conditions of 
Theorem 2, it is necessary to form the sums modulo 2 of all pairs of 
columns of P, compute the weights, and compare the weights with 
d — 2; then this must be repeated for all triples of columns, comparing 
with d — 3; all quadruples of columns, comparing with d — 4, etc, A 
systematic procedure for doing this can be given in terms of the following 
definition. 

Definition: Pj (■/ = 1, 2, • • • m) is the matrix formed from P by 
taking, as the columns of Pj , the sums of all possible combinations of J 
columns of P {Pi is identical with P). 

Example 3: P is the parity check matrix for a code of minimum dis- 
tance 3 since the weight of each column of P is at least 3—1=2, and 
the weight of each column of Pa is at least 3 — 2=1: 

0 111" 

o
 

o
 

o
 

T 1 

T-H 

i-H "0 0 0 1" T 
10 11 10 0 110 0 0 10 i 
1 1 0 1_ 1 

i-H 

o
 

l-H 

o
 

i-H 

o
 0 1 0 0_ 

(a)P (b)p2 (c)P3 (d)P 

A method for checking a matrix P is to form Pa, Pj, • • • and then to 
verify that the weight of each column of Pj is at least d — J. While 
this method is quite satisfactory for verifying that a given matrix 
satisfies the conditions for a parity-check matrix of a code of minimum 
distance d, it is of little use for the more important problem of construct- 



ERROR-CORHECTING CODES 1491 

ing a matrix satisfying these conditions. For this reason, a modified 
method for testing a matrix will be presented as a preliminary to the 
discussion of methods for constructing parity-check matrices. 

In any k X in parity-check matrix there are only 2'" — 1 different 
rows that can occur, since the all-zero row never appears in such a 
matrix. This does not mean that the total number of rows cannot be 
larger than 2"' — 1, since the same row may appear more than once. 
For any given m, it is possible to compute the rows of Pa, -Ps, ■ ■ ■, Pm 

(hat correspond to each possible row of P. Any specific P matrix with 
m columns can then be tested by selecting the appropriate Pj rows, 
taking into account any multiple occurrences of rows in the P matrix 
being tested. This procedure can be stated more precisely in terms of 
the following definitions. 

Definition: P'" is the matrix having m columns (and 2"' — 1 rows) in 
which each possible w-bit binary word, except the all-zero word, appears 
exactly once. The rows are ordered in the following fashion: 

First, all the rows containing a single one are written down. These 
rows are ordered so that, when the rows are interpreted as binary 
numbers, they occur in decreasing arithmetic order (this means that 
the first m rows form a unit matrix). Next, the rows containing exactly 
two ones are written down, with these rows arranged so that they occur 
in decreasing arithmetic order. This procedure is repeated by writing 
down the rows with three ones, four ones, etc. until finally the row with 
m ones is written down. Within each set of rows that all contain the 
same number of ones, the rows are arranged in decreasing arithmetic order. 

Example 4- 

1 0 0 
0 1 0 
0 0 1 

10 0 0 
0 10 0 
0 0 10 

P3 = 110 P4 = 0 0 0 1 
1 0 1 
0 1 1 
1 1 1 

110 0 
10 10 
10 0 1 
0 110 
0 10 1 
0 0 11 
1110 
110 1 
10 11 
0 111 
1111 
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By making use of this definition of Pm, a concise specification of any P 
matrix having m columns can be given by listing which rows of P 
occur in P. 

Definition: If P is a parity-check matrix having in columns, then 
zfP), i — 1, 2, ■ ■ • 2"' — 1, is equal to the number of times that the 
fth row of Pm occurs in P. Usually ^-(P) will be written simply as Zi 
when the appropriate P is clear from the context. 

Example 5: 

1 0 0" zfP) = 1 
0 1 0 22(P) = 2 
1 1 1 , *3(P)=0. 
1 0 1 24(P) = 0 
0 1 0 28(P) = 1 

zs(P) = 0 
Z7{P) = 1 

It is now possible to state the requirements for parity-check matrices 
in terms of zfP), Pm and P/1, where P/1 is the matrix formed of all 
sums of J columns of Pm. 

Theorem 3: A matrix P with each entry equal to zero or one is a 
parity-check matrix for a code of minimum distance d if and only if 

[zfP) z2(P) ■ • • *2™-i(P)] [Pjm] ^ [d — J, d — J, ••• ,d — J]* (2) 

for \ S J = m. 
Proof: For J = 1, 

[2l(P) z2(P) ■ ■ ■ ^-i(P)] [pr] 

is just equal to the weights of the columns of P, since each row of P"1 

is multiplied by the number of times it occurs in P [2t(P)] and then a 
sum for each column is formed. Similarly, for ■/ ^ 1, 

[Zt(P) ZfP) ■ ■ ■ 22".-l(P)] [PjI 

is equal to the weights of the columns of Pj . By Theorem 1, these 
weights must be greater than or equal to d — J. 

* The multiplication here is ordinary matrix multiplication. The inequality is 
satisfied if, and only if, each element of the row matrix obtained by the multiplica- 
tion is at least as large as the corresponding element of the row matrix given on the 
right side of the inequality. 
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Example 6: 

P = 

[21*2 • • • ZrHiVl = [0001 111]. 

[2i22---2JHP23] = [0001111] 

1 0" Zi ~ 0 
0 1 22 = 0 
1 1 y 23 = 0' 
1 1_ 24 = 1 

*5=1 
*6=1 
27—1 

"l 0 0" 
0 1 0 
0 0 1 
1 1 0 

All 
CO 
CO 
CO II 

1 0 1 
0 1 1 

_1 1 1_ 

"1 1 0" 
1 0 1 
0 1 1 
0 1 1 = [222] ^ 
1 0 1 
1 1 0 

_0 0 0 

T 
1 
1 
0 = [1] ^[d- 31. 
0 
0 
1 

[2i22---27]-[P331 = [0001111] 

Thus, P is the parity-check matrix for a code of minimum distance 4. 
Theorem 3 is merely a restatement of Theorem 2 using different 

notation. The reason for introducing this new notation is that, by means 
of Theorem 3, the problem of constructing minimum redundancy codes 
can be formulated as an integer linear programming problem. 

Lemma 3: 
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Proof: By definition, k equals the number of rows in the matrix P and 
Zi equals the number of times that row i of Pm occurs in P. Since each 
row of P is identical with some row of Pro, the total number of rows of 
P just equals 

2m—1 
S Zi- i=l 

Theorem 4: The problem of finding a minimum-redundancy, systematic, 
error-collecting code for specified values of m (the number of message 
bits) and d (the minimum distance between any pair of code words) 
is equivalent to the problem of solving the following linear program: 

minimize: 
27n—1 

k = Zi 
»=i 

subject to: 

(LP) 
(1) Zi integers, 

(2) ^ 0, 

(3) [zi So ' 22'»-i] • [Pj'"] ^ [d — J, d — J, • - ',d — J] 

for J = 1, 2, • • • m. 

Proof: The solution to (LP) will be a set of values for , Zi, - - ■, Zs^-i. 
These values can be used to construct a matrix P by interpreting them 
as Zi{P). By Theorem 3, these values for z./(P) must satisfy (LP-3) 
and by the definition of z,(P) they must satisfy (LP-1, 2). Since a 
minimum-redundancy code is desired, it is necessary to minimize k. 
Lemma 3 establishes the expression for k in terms of zfP). 

The remainder of this paper will consist mainly of obtaining solutions 
to this linear program. 

V. BOUNDS ON REDUNDANCY 

Iii a certain sense, the formulation of (LP) solves the problem of 
constructing the desired codes, since a numerical procedure exists for 
solving this type of integer linear program.0 Practically, this procedure 
is of limited usefulness, since the size of the program to be solved soon 
exceeds the capability of the largest electronic computer. Also, numerical 
solutions do not provide information about the interrelations among 
various codes with different parameters. A much more desirable solu- 
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tion would be a closed solution of (LP) in which the values of 2x, 22, ■ ■ - , 
22'»-i and k are expressed as functions of m and d. The derivation of such 
closed solutions and of various properties relating solutions for different 
parameters will constitute the remainder of this paper. 

The first step in obtaining solutions of (LP) will be to remove the 
matrix notation and express (LP-3) as a set of simultaneous inequalities. 
This is done to simplify the proofs of the theorems to follow. 

The inequalities represented by (LP-3) can be. expressed in terms of 
a single matrix by defining a matrix Am in which all of the columns of 
Pi'", Pa", • • Pm" appear.6 

Definition: The matrix A'" is formed as follows: 
(1) The first m columns of .4"' are identical with P'". 
(2) The jib column of -4(j > m) is formed by taking the sum 

modulo 2 of the columns of P"' that have one entries in the jih row of P'". 
When the value of m is clear from the context, A'" will bo written as A. 

Example 7: For m — 3, 

1 2 3 4 5 6 7 

1 0 0 1 "10 0 110 1 
0 1 0 2 0 10 10 11 
0 0 1 3 0 0 10 111 
1 1 0 4, A3 = 110 0 110 
I 0 1 5 10 110 10 
0 1 1 6 0 11110 0 
1 1 1 7 1 1 1 0 0 0 1 

P3 - 

The fifth column of A is formed from the sum modulo 2 of the first 
and third columns of P'1 since the fifth row of P3 has ones in the first 
and third columns, etc. 

Definition: Let efim) be defined as follows: 

e/m) - 1 

efim) = 2 

efim) — s 

fj(m) = m 

for 1 ^ j ^ m, 

for 1 + m g i g m + (^j , 

3-1 
for X! 

^=0 yr = j ^ 
s(:)' 

m—I / \ 
for Z (W) ^ i ^ 2m - 1. 

p=0 \ f/ 

Theorem 3 can be stated in terms of .4as follows: 
Theorem 3': A matrix P is a parity-check matrix for a code of mini- 
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mum distance d if and only if: 

[2l(P) z2{P) ■ ■ ■ ^-i(P)l • \Am] w^-i], (2') 

where Wj = d — ey(m). 
Some properties of Am are stated in the following lemmas, in which 

a,/" represents the element of the fth row and jth column of A "l. When 
there is no ambiguity possible, di™ is written simply as an . Proofs 
will be given in the Appendix. 

Lemma k: The matrix Am can be partitioned into submatrices as 
follows: 

AM = [P™ \ P2
m : Pz" \ \ P»"'"]■ 

Lemma 5: 

an = andji © © • • • © aimajm for j > m. 

Lemma 6: The transpose of A is identical with A: AT = A, 01 aji = 
an . 

Lemma 7: 
om-! 2m-l 
E„ m '"O nrn—l ttij — / , a%j Z 
.=1 /=1 

Lemma 8: 
m 
X) an™ = €j(m). i=l 

Lemma 9: The inverse of A, A'1, is obtained from A by replacing 
each one entry of A by 21-"' and replacing each zero entry by -21"m : 

aif1 = 2l_," if an — 1, and 

an'1 = — 21~m if an = 0. 

Theorem 3 can be stated directly in terms of the a,-™ as follows: 
Theorem S": A matrix P is a parity-check matrix for a code of mini- 

mum distance d if and only if: 
a™—i 
S anZi ^ Wj, (2//) 1=1 

where Wj — d — ej(m). 
The corresponding formulation for the program (LP) is 

minimize: 
V"—i 

/c = X) Zi 1=1 
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subject to: 
(LPO 

(1) Z{ integers, 

(2) 2£- ^ 0, 
2m—1 

(3) 2 CLijZi = , 
1=1 

where w, = rf — ej{m). 
The following theorem presents a lower bound on k, the number of 

check bits that are required for specified values of m, the number of 
information bits and d, the minimum distance between code words. 

Theorem 5: For an error-correcting code having minimum distance d 
and 7n message bits, the number of check bits, k, must satisfy 

m. (3) 

Proof: By (2"), 
2m-l 
£ dijZi ^ 
t=i 

Wy, 

a"1-! 
E 3=1 

2n>-l 

1=1 

2m—1 
E 3=1 

Wj, 

2m—1 
E i=i 

2"'—1 
S «0'2i ^ 3=1 

2m—1 
E 
3=1 

Wj, 

2"'—1 
E 1=1 

2171—1 
2 ai3 = 3=1 

2m—I 
E 
3=1 

Wj. 

But, by Lemma 7, 
2m-l E.-im—1 

a.v = 2 , 
3=1 

SO 
2m—1 2m—1 

2m-1 Zi ^ S Wj, 
i=i j=i 

and 
2m—l 2m—1 

k = X) ^ = 21_m S w3) by Lemma 3. (i) 
i=l 3=1 

By the definition of wj, 

%w'= S t)d ~ t)s = (2" - ^d ■ S 0s 
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but 

s = m2m-1 

so 

E Wf - (2m - l)d-m2m~l. 

Substituting this in (?) yields 

k ^ 21_m[(2'" - 1) d - 

or 

k > d — m. 

Since the total number of bits in each code word, n, is just equal to 
m + k, this bound on k yields a bound on n. 

Corollary 3: For an error-correcting code having minimum distance 
d and m message bits, the total number of bits in each code word must 
satisfy: 

If d < m, the bounds given in (3) and (4) can be improved, since 
some of the ioj in (2") will be negative and should be replaced by zeros. 

Corollary 3: When d < m, k and n must satisfy the following incquali- 

but when wj < 0 it can be replaced by 0. This is equivalent to defining 
w/ = d — €j(m) for d ^ e^m) and w/ = 0 for d < Then, 

(4) 

ties: 

Proof: From (ii) of Theorem 5, 

E1= t ('") (d - S) 
J=1 8=1 \ S / 

for d < m 
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or 

2"'—1 
S WJ = S (d — s) £ (m\ (s — d) for d < m 3=1 e=l \ S / 8=<f+l \ S / 

n (2" - 1) d - + E ("9 (s-d). 
s=<f+l \ S / 

By (?) of Theorem 5, 

k ^ tjl—HI 
"'—i 
£ wj 
J=I 

> S w/ 3=1 

> (2ra - 1) nHl—1 i — 7n2 + 
m 
E 
=J+i 

(T - l\ . 
1 —n—^— ) d — m \ 2"'^1 / 

jn 
+ 2W"' E 

(:) 

(:)<.-«] 

' {s - d). 

Whenever d ^ h'Z"1 the bounds (3) and (4) are not integers and 
therefore cannot he met exactly. 

Definition: Let {N\ equal N if N is an integer and equal the smallest 
integer larger than N if iY is not an integer. 

Definition: Let 

k*(m,d) = ((^."r1) d -"l 

and 

n*im,d) = • 

Since the total number of bits per code word and the number of check 
bits must both be integers, the following inequalities follow directly 
from Theorem 5 and Corollary 2. 

Corollanj For an error-correcting code of minimum distance d and 
having m message bits: 

h ^ h* 

and 

n > n* 
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VI. MINIMUM-REDUNDANCY CODES 

Since n and k must be integers, the bounds given by (2) and (3) can 
be met exactly only when d is divisible by 2m 1, that is, when d can be 
written as d = h2m~\ where /us a positive integer. The following theorem 
shows that the bounds can always be achieved in these cases. The ap- 
propriate P matrix is formed by including each possible distinct row h 
times, except for rows of weight one, which are included only h — 1 
times. 

Theorem 6: Whenever d = h2m~\ where h is any positive integer, a 
minimum-redundancy code exists with 

k - h{2m - 1) - w, 

n = h{2m - 1) 

and 

Zi = h — I for 1 ^ ^ to 

= h for m-fl ^ i S 2™ — 1. 

Proof: Let Zi = h - 1 for 1 S i ^ m and Zi = h for m + I ^ i S 
2m - 1. Then, 

2'"—1 2m—1 m 
^ ' (lijZi ~ ^ i ^ i Oiij, 
1=1 i=l i=l 

2m—1 2m—l 
hau = /i S = k2'n~i by Lemma 7, 

i-1 t=I 
m 
Yl an = €j(m) by Lemma 8. 
i=l 

Thus, 
2m—\ 
Yl a-ijZi = h2m~l — €j{m). 
»=i 

But, by Theorem 3", this is exactly the condition for a code of minimum 
distance h2m~1. 

The number of check bits, k, is given by 

2m—1 2m—1 m 
k = 22 z* = 22 h — 22 (i) 

i=i 1=1 i=i 

= h(2m - i) ~ to. 
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By Theorem 5, 

k > fe-1) {h2m 1) — 7)i 

^ (2m - l)h - m. 

Therefore, the code is a minimum-redundancy code. 
Example 8: For m = 3, d = 8 = = 2-23-1: 

k = h(2m - 1) - m - 2(23 - 1) - 3 = 11, 

1 0 0" 
0 1 0 
0 0 1 
1 1 0 
1 1 0 

P = 10 1 
1 0 1 
0 1 1 
0 1 1 
1 1 1 

1 1, 

and 

Zi = Zz = Zt = 1, 

Zi == Zft Zg z^ 2. 

Theorem 5 can be extended to the case when d = h2,n~1 — 1 by 
means of the following theorem, which has originally proved by Ham- 
ming.2 

Theorem 7 (Hamming): From any minimum-redundancy code* con- 
taining 7i bits per code word and having minimum distance d, with d an 
even number, it is possible to obtain a minimum-redundancy code con- 
taining n — 1 bits per code word and having minimum distance d — 1 
by removing one of the bits from each of the code words (the same bit 
must be removed from each word). If the original code was a systematic 
code, the bit removed should be one of the check bits. 

Conversely, from any minimum-redundancy codef containing n bits 
per code word and having minimum distance d, with d an odd number, 
it is possible to obtain a minimum-redundancy code with n + 1 bits 
per code word and having minimum distance d + 1. This is done by 

* Not necessarily a systematic code. 
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adding a check bit that is a parity check over all of the bits of each code 
word. 

Corollary 5: \i Zi, Zi, • • •, specify a minimum-redundancy syste- 
matic code for d, where d is an even number, it is possible to obtain a 
minimum-redundancy code for d — 1 by decreasing any nonzero z, by 
one. 

Corollary 6: Whenever d = h2""~x — 1, where h is any positive inte- 
ger, a minimum-redundancy code exists with 

k = /t(2," - 1) - {m - 1), 

n -- /i(2"' - 1) - 1. 

This follows directly from Theorem 7 and Corollary 5. 
There is a large class of codes for which 

is not an integer, but for which minimum-redundancy codes with k = k* 
can be derived. 

Theorem 8: Whenever d = hi 2m~1 — 2ft2, where hi is a positive integer 
and hi is a positive integer with h < m — 1, there exists a minimum- 
redundancy code with 

k = /ii(2"1 - 1) - 2'2+1 - m + 1, 

= /ii(2"1 - I) - 2hl+l + 1 

and 

Zi = Zi — Zi", 

where 

z/ = hi — 1 for 1 ^ i ^ m 

= h for m + 1 ^ ^ 2"' - 1, 

and 

z" = I if the corresponding row of A"1 has all zeros in its 
first m — Ih — I columns 

— 0 if the corresponding row of Am does not have 
all zeros in its first m ~ hz — I columns. 

Proof: Let Zi, z/ and z " be defined as in the statement of the theorem. 
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By the methods used in proving Theorem G, it follows that 

J2 anz/ = - €j(m). 
1=1 

Consider 
2m—1 
53 aifii"' 1=1 

This is equal to 
2»2+l—1 

1=1 

where the ha arc the entries of a matrix B, which is made up of those 
rows of A for which the corresponding z" are equal to one. The first m — 
hi — 1 columns of B contain all zeros. Therefore, 

ofta+i—i 
X) 5,-; — 0 for 1 = j = wi — hi — 1. 
i=i 

The next hi + 1 columns of B are identical with /■>''2+1, since each com- 
bination of zeros and ones (except the all-zero combination) occurs 
exactly once. Thus, since the weight of each column of p*2"*"1 is 2''2, 

2^2 + 1 — 1 
X) ha = '2h~ for m — hi ^ j ^ m. i=i 

Every other column of B is formed from the sum modulo 2 of some of 
the first m columns. Since the all-zero columns do not have any effect 
on the sum modulo 2 operation, every other column of B is equal either 
to one of the columns for m — ih S j ^ m or to the sum modulo 2 of 
several of these columns. Thus, every remaining column of B is identi- 
cal with some column of d,'2+I. Therefore, for m + 1 ^ j S 2"' — 1, 

OA2+1 —1 '>^2+1 — 1 
" e = a,y+i = ^. 1=1 i=i 

Thus, 
ora-i 2fi2 + I_l 
X) anZi" = Z bij — 0 for I ^ j S in — Jh — 1 
1=1 i=i 

- 2''2 for m - ^2m ~ 1, 

and 
21,1—1 
Z, aaZi - — ej(m) — 0 for 1 j S m — hi — 1 1=1 

- hiA"-1 - ej(m) - 2"= for m - h 2"* - 1. 
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Thus, 

z' aijZi ^ k^-1 - 2h2 - ej{m), 1=1 

or the given Zi satisfy the requirements for a code with d = h 2m~I — 2h'i. 
This proves that a code constructed from the given Zi will have d = 

— 2A2. A proof must now be given for the fact that the result- 
ing code is minimum-redundancy 

—1 2'"—1 2m—l 
k = Z Zi = Z 2/ — Z 2/'. 

1=1 1=1 1=1 

The z/ are the same as the z,- of Theorem 6; therefore, 
2"»—1 
Es/ = Ai(2" - 1) - ft 1=1 

Since there are 2'!2+1 — 1 rows of A"1 that have all zeros in the first 
m — hi — 1 columns, 

'z Zi" = 2h2+1 - 1 i=i 
and 

k = hi(2m - 1) - m - 2h2+1 + 1. 

Now, 

k* - ?') = {(^r) C1'2""1 - ^ - m}. 

which can be rewritten as 

k* = {{2'" - I)hi - 2h2+1 + 21+A^m - m], 

but, since m > 1 + /is, 
2l+h2-m < ^ 

so that 

k* = (2m — l)hi — 2h2+1 - m + 1, 

and therefore k = k* and the code is minimum-redundancy. 
Corollary 7: Whenever d = hi2m~l — 2fe5! — 1, where hi is a positive 

integer and hi is a positive integer with h* < m — 1, a minimum- 
redundancy code can be obtained from the code of Theorem 8 by the 
method given in Corollary 5. 

Minimum-redundancy codes for d = 2, 3 and 4 were given in a paper 
by Hamming.2 A code for d = 2 can be obtained by using all n-bit words 
that contain an even number of ones, since Theorem 2 just requires each 
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column of P to contain at least one one. Thus, the minimum-redundancy 
codes for d — 2 all have k = 1. 

For codes of distance 3, Theorem 2 requires that each column of P 
contain at least two ones and that no two columns be identical. In this 
case, m is equal to the number of different columns having k rows, and 
at least two entries equal to 1; or m = 2k — k — 1. 

VII. RELATIONSHIPS AMONG CODES 

For values of d which are greater than 4 and do not satisfy the condi- 
tions of either Theorem 0 or Theorem 8, it has not been possible to 
obtain closed solutions of the linear program (LP). Computation using 
Gomory's algorithm5 is necessary to obtain minimum-redundancy 
codes for these values of d. The following theorems present various 
general properties of minimum-redundancy codes that are useful in 
obtaining codes for new values of d from the codes obtained by use of 
the algorithm. 

Definition: Let K(m,d) be the minimum value of k that is possible 
for a code having m message bits and minimum distance <1. 

Definition: Let N{m,d.) be the minimum value of n that is possible 
for a code having m message bits and minimum distance d. 

Lemma 10: 

Proof: A parity-check matrix for m — 1 can be obtained from the ma- 
trix for m by simply removing one column. Since the conditions of 
Theorem 2 must be satisfied by the reduced matrix if they were satis- 
fied by the original matrix, the reduced matrix corresponds to a code of 
distance d if the original matrix corresponded to a code of distance d. 

Theorem 9: For m fS d < 2'" 2, 

K(m — \,d) ^ K{m,d). 

N(ni,d) > n*(m,d), 

K(m,d) > k*(m,d). 
Proof: 

for m ^ d 

= {(2 - 2I_m) d - m] 

k*{m,d) = 2d — m 

k*im — l,d) ~ 2d — + 1 

for m £ d < 2m 1, 

for ni — 1 ^ d < 2m~2 
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but 

K(m,d) S Kim — l,d), 

K(m — \,d) ^ fc*(m — l,d), 

k*(m - I,d) > k*(m,d) for m £ d < 2W"2, 

K(m,d) ^ K{m - l,d) ^ k*(m - l,d) > k*(m,d), 

so that 

K(m,d) > k*hn4) for in ^ d < 2"L-\ 

Since n = k + in, it follows that 

N{m,d) > n*{m,d) for m ^ d < 

Theorem 10: 

N(m,di + di) S N(m,di) + N(m,d->)t 

K(ni,di + d->) S K(in,di) -f K{m,d->) + m. 

Proof: Let z' = [zf z-l • ■ ■ z^-i\ be tlic values of z, corresponding to 
N{in,di) and z" = W zf ■ • • zv-i"] bo the values of z.; corresponding 
to N{1114.2). Thus, 

2™-l 
Y, a>jn z/ 4 d\ - €j{m) 

and 

Let 

and 

Then, 

2"»—L 
E«./' 2." a (h - €>(«»). j=1 

Zi = Zi -f Zi" + 1 for 1 ^ i £ m 

zi = z! + Zi" for in + 1 <i s 2'" - 1. 

om—i 2OT—1 2m—1 m 

Y = Y Oif'zi -r Y o.ij"z{" -r Y t=i 1=1 1=1 '"-1 

^ di — €j{m) T do — cjim) -}- ei(m) 

^ dy -\- do — (j{in). 
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Thus, Zi satisfy the conditions for a code of distance ck + di. Further- 
more, 

2 "i—l 2 "i-l 2'"-1 vi 
^ Zi = S V' + Xv (l)i 
1=1 i=l !=l i=l 

S"!—1 
L- = /v(w,di) + K{rn,di) + m, 

i=i 

so that 

K{vi,di + di) ^ K{in4i) + K{m,d2) + w. 

Corollary 8: 

N(m,di + ^ Ar(?«//i) + h{2m — 1), 

K{m,d\ T h2"'~l) ^ K{m,di) + /i{2"' — 1)- 

Definition: Let max(21, 22, • • •, 2,,,) equal the largest of the values of 
the Zi . 

Theorem 11: Let 21, 22, • • •, 22'»-i correspond to a code for which k = 
K(m,d). Then, if max(2i , • • •, 2,,,) = M, 

K(m — l,d) ft K{rn,d) — M. 

Proof. Let 2) , (1 ^ I T m) be one of the 2,- such that 2/ = M. Then, 
if the /th column is removed from the matrix P specified by (21 , 22, • • •, 
22"'—1), the resulting matrix must still correspond to a code of minimum 
distance d (Lemma 10). However, J\I of the rows of the reduced matrix 
consist of all zeros, since there are il/ rows which contain a one only in 
column /. Thus, these il/ rows can be removed without affecting the 
minimum distance d. Removal of il/ rows decreases k by il/, giving 

/v(?n — l,d) fS K{m,d) — il/. 

VIII. COMPARISON WITH PLOTKIN's BOUND 

The approach of this paper has been to search for codes which require 
the minimum number of cheek bits, k, for specified values of m and d. 
Another common approach to the study of error-correcting codes is to 
specify the total number of bits per code word, n, and the minimum 
distance, d, and then to try to construct codes which contain the largest 
number of messages. A bound on this maximum number of messages 
has been proved by Plotkin.7 

Theorem 12 (Plotkin): Let A(n,d) equal the maximum number of 
binary ?i-bit words in an error-correcting code (not necessarily a syste- 
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matic code), for which the distance between any two code words is at 
least equal to d. Then 

A (n,d) ^ 2d for 2d > n. 
Ad " Tt 

For a systematic code, the number of messages must be a power of 
two, and therefore this bound can be met exactly only when 2d/{2d — n) 
is a power of two. The following theorem shows that, whenever this is 
true, a systematic code exists which does meet the bound. 

Theorem 13: For values of n and d such that 2d/{2d — n) = 2m, for 
some m, a systematic code exists with m message bits and therefore 2m 

code words. For such values of n and d, no code of any type is possible 
with more code words. 
Proof: The equation 2d I {2d - n) = 2m can be written as 

Since d and 2m_1 are integers, and 2m — 1 does not divide 2"'_1, n/{2m — 1) 
must be an integer. Lot h = n/{2m — 1), then d — h2m 1. By Theorem 6, 
a code exists with d — h21 and 

n = A(2» - 1) = (2" - 1) = n 

and m message bits. 
By Plotkin's theorem, no code with more code words is possible. 
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APPENDIX 

Various proofs have been omitted in order not to disturb the con- 
tinuity of the paper. These proofs will be presented here. 

Lemma 4: The matrix Am can be partititioned into sub matrices as 
follows: 

Am = [pr j pf \ Pzm \ \ pm
m\. 

Proof: By definition, the first m columns of Am are identical with Pi"'. 
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The rows of Pm are ordered so that all rows with one one come first, 
then all rows with two ones, etc. The columns of Pm which must be 
summed to form the jth column of A 'n are determined by the j'th row 
of Pm. Because of the ordering of the rows of P'", all sums of pairs of 
columns of Pm will occur as columns of Am, then all sums of three col- 
umns of Pm, etc. Since P/' contains all sums of J columns of Pm, A"1 

can be partitioned as shown. 
Lemma 5: a,-,- = aactji ® © • • ■ ® a{ma;m , for j > m. 

Proof: The jth column of A (j > m) is formed by taking the sum mod- 
ulo 2 of the first m columns of Am which have a one entry in the jth 
row of Am. Thus, if the jth column of Ais denoted by A™, 

A™ ~ anAi"1 © a;2^42m © • • • © a}mAm
m forj > m, 

since the column Af" is to enter into the sum only if aji — 1, etc. It 
follows from this that the zth element of the jth column ( j > m) is 
given by 

O.j = anaji © O-i'iClj') © • * * @ flimttjm ■ 

Lemma 6: 

a<j = . 

Proof: It follows directly from Lemma 5 that o»i = a a for j > m or 
i > m. For j < m and i < m, the definition of A requires that an = 0 
unless i — j, so that a,-,- = ay,- = 0 for i ^ j and, for i = j, an is identi- 
cal with aji. 

Lemma 7: 
2m—1 2m—1 

aij / . a^j 2 

Proof: The fii'st m columns of Am contain each m-bit binary number, 
except the all-zero number, exactly once. Consider these rows which 
have a one entry in the first column. There must be 2"1-1 such rows, 
since there are 2m~l different (m — l)-bit binary numbers, and each of 
these must occur once in the remaining m — 1 columns. Thus, 

2m—1 
E a.r = 2m_I. »=1 

A similar argument shows that 
jm—I 
53 a.r = 2"' 1 for 1 ^ j ^ m. 
i=l 
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For j > m, each entry a,™ is the sum modulo 2 of the entries in s of the 
first m columns. Consider these columns. Each s-bit binary number 
must occur exactly 2m~s times (except the all-zero number, which oc- 
curs 2m~8 — 1 times), since there are exactly 2"'~B ways to choose the 
entries in the remaining m — s columns. There arc 2' different s-bit 
numbers and 2*-1 of these contain an odd number of one entries. Thus, 
there arc (2"'_s) (23~i) = 2"'_1 rows containing an odd number of one 
entries, and hence 2"' 1 of the a,/" arc equal to one. Thus, 

2m—1 
X = 2"' 1 > m- 

Since a,; = an , it follows that 

Y au = 2"'_1. 
3=1 

Lemma 8: 
m 
Z) = €j(m). i=l 

Proof: The definition of cfjn) is: 

ej(m) = 1 for I £ j S w, 

/ yji \ 
ej{m) = 2 for 1 + m ^ i ^ m + ( 2 j , 

limits tor gHsistH. 
v~q\p/ m=1 / 

Consider the first m columns of d.m. The first m rows contain a single 
one, since they are all the m-bit numbers containing one one. The next 

(2^} rows contain two ones, the next rows contain three ones, etc. 
Thus, 

m 
S O'O™ = ^(m). 
i=l 

Since «,-> = aj,, it follows from this that 

t, o.v" = i=l 

Lemma 9: If the elements of A "1 are represented by mf1, then 

Oij1 = 21~^, if an = 1 
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and 

a,-/-1 = —2!_m if 0,7 = o. 

Proof: The o,;-1 given above are the elements of the inverse of A if and 
only if 

2"'—1 
bij = 52 a/^r1 = 1 if i = j 

S=1 

and 
2m—1 

bij — 52 ai*aSj~
1 = 0 if f 5^ j. 

S=1 

If i = j, then 
2«1—1 2""—1 2m—1 
^ ^ QisQgj == 52 Qisftsi — ^ dgittii j 
5 = 1 3 = 1 3=1 

which equals 

21-2Z«8V. 
8=1 

But 
2m—I 
^ aSj = 2m_1 by Lemma 7, 
8 = 1 

so that 
2"'-l 
^ ' digClsi ~ 1. 
8=1 

If i ^ j, 
2m—1 2'"—1 

bij = f > Clisttaj ^ > OsiOsj . 
8=1 8 = 1 

Three cases will be considered: 
Case i: i < m and j < m. 
In this ease, bij = 2I~"' (number of 11 entries in columns i and j) 

minus 21~"' (number of 10 entries in columns % and j). By the argument 
used in proving Lemma 7, there are 2"'_2 11 entries and 2"'"'2 10 entries, 
so that bij = (S1-"*) (2",_2) - (21-"1) (2m_2) = 0. 

Case 2: i < m and j > m. 
In this case, the elements o,; are formed as the sum modulo 2 of the 

entries in v of the first m columns of A, so that ha = 21 iVo — 21 m 

Nc, where 
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iYo = the number of rows of A which have a 1 in the ith column and 
an odd number of 1's in the v columns from which aaj is formed. 

Ne — The number of rows of A which have a 1 in the fth column and 
an even number of Ts in the v columns from which ae}- is formed. 

Again, by the argument of Lemma 7, in the f + 1 columns consisting 
of column i and the v columns used to form aSJ-, each different binary 
number (except the all-zero number) must occur exactly times 
so that Ye = Yo and ha = 0. 

Cose 5: 
A similar argument shows that 6,7 = 0 for the case when \ > m and 

j > m. 
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The Analysis of Valve-Controlled 

Hydraulic Servomechanisms 

By R. G. RAUSCH 

(Manuscript received July 10, 1959) 

The nonlinear equations thai represent the behavior of valve-controlled 
hydraulic servomechanisms are derived, and the assumptions necessary for 
their linearization are discussed. Solutions of the nonlinear equations ob- 
tained by analog computation are compared with solutions of the linear equa- 
tions. Attention is directed to the influence of the hydraulic parameters on 
the nonlinear closed-loop system behavior. 

I. INTRODUCTION 

Since the development of hydraulic control valves such as that em- 
ployed in the Nike noissile,1 emphasis has been given to the analysis 
of hydraulic phenomena in valvod systems,2,3,4 with much of the litera- 
ture having been devoted to hydraulic component design. In this paper, 
the nonlinear closed-loop performance is given major emphasis; the effect 
of hydraulic parameter variations on the closed-loop frequency and 
transient responses is examined by linear and nonlinear methods. 

The basic servomechanism under consideration in this study, as shown 
in Fig. 1, consists of a summing device, an amplifier, a flow source and 
control system, a hydraulic actuator (or motor) and a load. In the 
following sections, the nonlinear differential equations which represent 
the behavior of this closed-loop system are derived, a linear and an 
incremental-linear representation are discussed and solutions of the 
nonlinear equations obtained by analog computation are compared with 
linear solutions. 

II. MOTOR AND LOAD ANALYSIS 

In this section, emphasis is on the derivation and validity of the 
equations used to represent the behavior of the actuator and load; the 
mechanization of the flow source and its method of control will be 
discussed in detail in the following section. 

1513 
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Fig. 1 — Basic hydraulic positional servomechaniam. 

In Fig. 2, a piston-type actuator is shown connected hydraulically 
to a flow source and mechanically to a load. The initial step in the 
analysis is to relate the flows Qi and Q* to the dependent variable x, 
the piston displacement from the center position. 

The instantaneous volumes between the piston and two arbitrary 
sections in the lines leading to the cylinder are designated Vti and 
Vto (in cubic inches), the numerical subscripts indicating a particular 
side of the piston. Qi and Qi (in cubic inches per second) represent the 
flows from the source and depend upon the source mechanization; they 
are considered positive in the directions indicated in the diagram. QL, 
the leakage flow past the piston, is also shown in the assumed positive 
direction. 

A control volume is chosen so that it coincides with the volume Vti 
(where Vti is a function of time) and the equation for the conservation 
of mass flow is written for this volume. This relationship states that the 
rate of mass accumulation in the control volume is equal to the net 
rate of mass flow into the volume. The net rate of mass flow into Fn is 
given by 

net rate of mass flow into Vti — p(Qi ~ Ql), (1) 

where p is the mass density (in pound-seconds2 per inch4) of the fluid 
and Ql is the flow out of Vti ■ 

LOAD 

Kf • 

W] 

FLOW 
SOURCE 

AND 
CONTROL 

LINE 1 
\ 

 — 

MOTION 

LINE 2 

IQl 

Fig. 2 - Variable displacement actuator. 
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In writing (1), it is assumed that the mass density, p, is uniform 
throughout the control volume; i.e., it is assumed that p is a function of 
time only, and not a function of position in the volume. Since p is de- 
pendent upon the instantaneous pressure, jh , existing in VTl, this 
assumes that p; is uniform throughout V-n ■ The justification for this 
assumption is based on the calculation of the velocity of propagation 
of a longitudinal compression wave in the fluid. In general, the velocity 
of propagation, for adiabatic conditions, is given by 

'r=]/§
p' ^ 

where 0 is the adiabatic bulk modulus of compression of the fluid. For 
a typical oil, Vp is approximately 50,000 inches per second. If the largest 
linear dimension of the volume Fn is small, the pressure wave will 
complete many cycles in a short time, and the perturbation will be 
rapidly attenuated. For valve-controlled high-performance systems, 
the volumes are small; under the assumption that the largest dimension 
is one inch, the time of travel is 0.02 millisecond. Since this value is 
small compared to system time constants of the order of five milliseconds 
or more, the pressure can be assumed uniform throughout the volume. 
A calculation of the frequency of oscillation at which nonuniform pres- 
sure distribution becomes important shows that it is much higher than 
the frequencies of interest: 10,000 cps versus 200 cps. 

The rate of mass accumulation in the volume Fn is given by 

rate of mass accumulation in Fn = = pFVi + Fnp- (3) at 

Equating (1) to (3) and solving for Qi yields 

Qi — Ql Fn H —p. (4) 
P 

The adiabatic bulk modulus of compression, 0, of the fluid is defined as 

(?)' 

where 0 is assumed constant. The elimination of p from (4) by use of 
(5) results in 

Qi = a,. + Vn + (0) 
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In the same manner, application of the equation for the conserva- 
tion of mass flow to the volume VT2 yields 

Q2 — — Qi + Vn + P2. (7) 

Experimental tests show that the leakage flow is proportional to the 
pressure differential across the motor (laminar flow), so that 

Qh = Lm{vx - P2), (8) 

where Lm is the leakage coefficient (in inches5 per pound-second) of 
the actuator. In addition, define 

Yt = 
Vn + (9) 

where E? is a constant, so that 

En — Er + Ax, 
(10) 

V tz — E t — Ax, 

where A is the cross-sectional area (in square inches) of the piston and 
x (in inches) is the piston displacement measured from the center 
position. Equations (6) and (7) are thus 

Qi = Lm(vi - pt) + Ax + ^ + Ax) p! (11) 

and 

Q2 = —Lnipi - Vi) — Ax +^T p P2 ■ (12) 

Those flow equations have been developed for the linear piston-type 
actuator, but the same equations are valid for vane motors. 

For a fixed-stroke axial-piston rotary motor, the control volume En 
is a discontinuous function of time, since, as the cylinder block rotates, 
the individual cylinders transfer from one side of the motor to the 
other. Since the volume of one cylinder is small compared to the total 
volume on one side of the motor, the volume variation due to this 
discontinuity may be neglected without serious error. Thus, the control 
volume En is essentially constant, so that 

En = Er2 = Vt, (13) 

where Er is constant and is equal to one-half of the volume in the 
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system. With this assumption, the flow equations for the fixed-stroke 
axial-piston motor can be written 

Ql = Lmipi — pz) + Vmdo + P1 (14) 

and 

Qi — — Lm{pi — pi) — Vm6opz, (15) 

where 6$ is the motor shaft angular rate and Vm (in cubic inches per 
radian) is the fluid displacement per unit rotation of the motor shaft. 
Since V? and /3 do not occur separately in (14) and (15), it will be 
convenient to define a "compliance coefficient" ivc as 

= (16) 

where Kc has the units of inches5 per pound. 
The remaining discussion will be concerned with a rotational system, 

for which (14) and (15) have been developed; the same relationships 
will be valid for a translational system having small displacement x, 
with appropriate changes in the definitions of the parameters. 

In addition to the flow equations, two torque equations can be derived. 
The first is an energy relationship that equates the work done by the 
forces on the motor during a rotational of Bo radians to the work output 
from the motor shaft. The work input is (pi — pi) VmQo and is the flow 
work commonly encountered in the Bernoulli equation. The corre- 
sponding work output is Tdn, where T is the opposing torque. Since 
these two expressions for work must be equal, there results 

T = (p!- po) Vm. (17) 

Another torque equation is obtained from Newton's Second Law of 
Motion. In general, the load may consist of inertia, damping and fric- 
tion ton (lies, and disturbing torques. Thus, the following equation may 
be written: 

r = Jdo + To, (18) 

where J (in pound-inch-seconds2) is the total inertia (including that 
of the motor and fluid) referred to the motor shaft, and To (in pound- 
inches) is the total friction and disturbing torque acting on the motor 
shaft. 
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The elimination of T from (17) and (18) results in 

(Pi — P'i) V™ = JOo + To. (19) 

A restriction must be placed on the values allowable for the pressures 
Pi and pz. If absolute pressure units are employed, these pressures 

<- must always be equal to or greater than zero. A more accurate repre- 
sentation would be obtained if the vaporization pressure were con- 
sidered as the limiting value, but, in view of the fact that the differential 
pressures in the system arc normally very large, this degree of refine- 
ment is not warranted. A good approximation is 

Pi S 0 and pa s? 0, (20) 

where it is understood that absolute pressure units are employed. 
In addition to the equations derived, the usual expression for the 

position error e in terms of the input angle S,- and the output angle do 
for a scrvomechanism having unity feedback (as in Fig. 1) is given by 

6 = 0* - 0o. (21) 

The equations which have been derived in this section and which 
apply to the axial-piston rotary motor are summarized below: 

Ql = Lm{pi - p-z) + VJo + Kepi, 

Qi = -Lm(pi - p-i) — VJo + Kcpi, 

(pi - P2) Vm = JOo + To, (22) 

Pi ^ 0 and p2 ^ 0, 

e — Qi — 0o - 

The units employed in these equations are given in Table I. 
The expressions for Qi and Qi, the flows from the controlled source, 

are discussed in the next section. 

III. CONTROL-VALVE ANALYSIS 

In Section II, the equations relating the flows (into the motor) to 
the dynamic state of the system were derived; the expressions for the 
flows Qi and Qi were not specified. In this section, these quantities are 
discussed for the particular case of a valve-controlled system and 
analytical expressions relating flow to error signal and pressure are 
obtained. 

The schematic diagram of a typical valve configuration is given in 
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Table I — Definitions of Symbols; Units 

Symbol Definition Units 

Q flow in3/sec 
I'm motor leakage coefficient inVlb-sec 
V pressure lb/in2 _ 
V m motor displacement inVradian 
di position angle input radians 
eo position angle output radians 
€ position angular error radians 
VT one-half total trapped volume in3 

13 bulk modulus of compression lb/in2 

J total inertia lb-in-sec2 

Kc compliance coefficient in6/lb 
Ta viscous, friction and disturbing torque Ib-in 
p fluid mass density lb-sec2/in4 

Fig. 3. The type of actuator is not important in this discussion and, for 
simplicity, it is pictured as a translational piston. 

A source having a pressure p, supplies fluid to the valve as shown 
and the main spool controls the direction and magnitude of this flow 
to the motor. Fluid is returned to a sump at pressure pa . As in Section 
II, the pressure on each side of the actuator piston is designated as p 
with the appropriate numerical subscript. 

The main spool controls the flow by means of four orifices Oi, O2, 
Ei and Ei, and the spool position, in turn, is controlled by a transducer. 
The configuration of the transducer varies considerably in current 
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Pig. B — Orifice flow* conventions. 
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production models and may have the form of either a torque motor or 
a hydraulic preamplifier preceded by a torque motor or solenoid. If a 
hydraulic preamplifier is employed, the entire valve is designated as a 
"two-stage" valve. In the analysis an ideal spool-positioning mechanism 
will be assumed; i.e., there will be only one position of the valve spool 
corresponding to a given error signal, e. 

The following nodal equations are obtained from Fig. 3: 

Qi — Qoi — Qm , 
(23; 

Qa ~ Qm — Qbz • 

Here, as in Section II, the flows are chosen positive in the directions 
indicated in the figure. 

It is necessary to express the flows through the orifices in terms of 
the pressures and the orifice openings. Consider first the general orifice 
equation; application of Bernoulli's equation to the case of flow through 
an orifice of area A results in the relation 

Q = 
ACcCv t /2Ap 

p (24) 

where: 
Q = flow, 
A = orifice area, 
Cc = orifice contraction coefficient, 
Cv — velocity coefficient, 
Ai = upstream line area, 
Ap = pressure differential across the orifice, 
p = mass density of the fluid. 

For application to a valve orifice, note that A/Ax is small compared to 
unity and that Cc is less than unity. It follows, therefore, that a good 
approximation is obtained by 

Q = ACcC0 • (25) 

The usual procedure in hydraulics is to define a discharge coefficient, 
C, as 

C=CcCV) (26) 

so that (25) becomes 

Q = ACa/2-^. (27) 
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This equation has been derived for the steady-state flow through an 
orifice; hi the analysis, it will be assumed that the same relationship is 
valid for the dynamic state. It is not necessary to assume a value for 
the discharge coefficient C, since it will be included in an over-all gain 
constant. 

In the present application, the orifice area, A, is proportional to the 
displacement of the valve spool (assuming rectangular orifices) and 
the displacement is proportional to the electrical activating signal, Ke, 
received by the positioning mechanism (see Fig. 3). It follows that A 
is proportional to Ke, and (27) may be written as 

Q = (Jle)Co -j/^F (28) 

where Co is a new coefficient that is proportional to the area of the 
orifice per radian of input signal. If the mass density, p, of the fluid is 
assumed constant in this expression, the following equation may be 
written: 

Q = (Kte) Vbp, (29) 

where 

K, = K
p$° Cj) 

is a constant for a given system. Kb has the units of inches'1 per pound1/2- 
second-radians. 

The relationship of (29) is indicated graphically in Fig. 4. In this 
figure, the equation has been normalized with respect to the three 
maximum values Q„mx , (/ut)™* and Apin!,x . Since there is a limit to 
the magnitude of the spool displacement, a spool-displacement satura- 
tion region is indicated. (Spool-displacement saturation occurs when 
the electrical error signal becomes greater than that corresponding to 
the maximum valve spool-displacement; i.e., the error signal demands 
a spool position that is physically impossible.) 

Equation (29) implies that the flow through the orifice is zero for 
zero error e. This is not generally true for the orifices in most valves, 
and in fact, this condition would be very difficult to obtain. Equation 
(29) must be specialized for each orifice. 

There are three general types of valves, which can be classified accord- 
ing to the flow conditions at zero signal input f; these are: (a) the open- 
center valve, (b) the critical-center valve and (c) the closed-center 
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Fig. 0 — Flow characteristics for the orifices in an open-center valve. 

valve. Fig. 5(a) indicates the zero error position of the spool for each 
of these types for the orifice Oi. In the open-center valve, flow passes 
through the orifice for the condition e = 0, i.e., for the spool in the 
neutral position. The critical-center valve allows no flow to pass in the 
neutral position; however, a slight positive displacement opens the 
orifice Cfi . The closed-center valve has a dead zone in that a relatively 
large displacement is required to open the orifice from the neutral 
position. 

Fig. 5(b) shows a typical differential isobar (corresponding to those 
of Fig. 4) for each type of valve. The origin is translated according to 
the neutral spool position. 

It is now possible to express the individual orifice flows as shown in 
Fig. 3 with the aid of Fig. 6 and (29). Fig. 6 shows a typical differential 
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isobar for each of the four orifices Oi, O2, #1 and E-,, the case shown 
representing the open-center type valve. (The equations to be derived 
will be applicable to all three valve types, depending upon the choice 
of the neutral position error-flow constants.) It should be noted that 
the direction of flow is dependent on the sign of Ap for each orifice. In 
general, the equations for the flows are as given by (31). In these equa- 
tions eoi, €02, Lei , tsi are positive for an open-center valve, emnN is 
taken as positive and sgn denotes the signum (sign) function: 

lu €mnx + foil V|ps 
_ Pil sgn (p, - Pi) f ^ Cmax 

Qo\ = Kb 

_0 

"0 

e + Col | Vl Pa — pi 1 sgn (p» — pi) — fOl C < Cmax 

€ <i Col j 

€ i> (02 

QO2 ~ Kb e — eozl V| ps — P2 sgn (ps - ps) - Cmax <C C ^ €02 

Kb Cmax — C02 [ V1 Ps — p2| sgn (ps - P2) ^ ^ ^max ) 
(31) 

e > €EI "0 

QBI ~ Kb e — V| Pi — Vd sgn (pi - pd) - Lnax ^ ^ €gl 

Kb Lnnx — €51 | V| Pi — pj | sgn (pi - pd) € ' Cmax j 

1 

fmax + | Vl P2 — Vd | sgn (p2 ~ Vd) C ^ £max 

Qsi — 

^
 

0 1 

[ 

V
 

+
 <41 Vd | sgn (p2 - Vd) ~ fjsi ^ Cmax 

e < €^2 j 

Simplification of (31) is obtained by assuming that the sump pressure 

Table II — Definitions of Symbols; Units 

Symbol Definition Units 

Q flow inVsec 
A orifice area in2 

A, upstream line area in2 

Cc orifice contraction coefficient — 
cv orifice velocity coefficient — 
c orifice discharge coefficient — 
Co area per radian input in2/rad 
€ angular actuating signal radians 
K dimensionless gain constant ■— 
Kb over-all gain constant in4/lb,/s-8ec-rad 
V pressure lb/in2 

Ap differential pressure lb/in2 

P fluid mass density lb-sec5/m4 
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Vd is zero psi absolute rather than atmospheric pressure; this is a good 
approximation since the pressure differentials are usually several hundred 
psi. This assumption eliminates consideration of the shaded regions in 
Fig. (5 for the orifices Ei and E*. Further simphfication is obtained if 
the valve is assumed to be perfectly symmetrical; i.e., 

f01 — C02 — fEl ~ *£2 ~ Co , 

and if it is assumed that the maximum spool position is never attained. 
With these assumptions, (31) simplify to (32): 

Kb I e + co | VI P* - Pi I sgn (P« " Pi) 

0 
Qoi — 

Qo2 — 

QeI — 

Qn-i — 

0 

_Kb I c - €o I Vfps - P2I Sgn (p« - P2) 

0 

Jvb 1 c — €0 I Vpi 

Kl,\t + Co j Vp2 

0 

e > — fo 

e < Co, 

e > co 

e < Co, 

e > co 

c < Co, 

c > — fo 

e < -co. 

(32) 

These equations, together with (23) and (22), complete the prelimi- 
nary analysis for the valve-controlled servo mechanism. Definitions of 
the symbols, together with a consistent set of units, are given in Table 11. 

IV. LINEAR AND INCREMENTAL-LINEAR ANALYSIS 

The linearization of the equations representing the motor as given 
by (22) results in (for a pure iuertial load): 

Qi = Lm(p1 — P2) + V Jo + /vcpi, 

Q2 = -/v«(pi - P2) - Vmen + Kepi, 
(33) 

(711 - po) F« = JBo, 

c — 6 i 00 . 
The restrictions on the values of p, and p? and their derivatives are 
not applicable to a linear theory and have been omitted; in addition, 
the friction and output disturbing torques have been assumed to be zero. 

For the case of a symmetrical valve having characteristics as given 
by (32), the flows through the orifices are functions of the gain constant, 
Kh, the error signal, e, the open-center constant, co, and the respective 
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orifice pressure drops. If the region of applicability is restricted to those 
cases in which p, > Pi and pa > pi (pressures not limited) and in which 
| e | < [ emnx |, (32) may be written: 

Qol — Kb( e + eo) s/p, — pi for e > — €o, 

Q02 = —/vfc(e — fu) VV* — p> for e < to, 

Qm = —Kb{<: — eojVpi f01' e < <0 , 

Qm = Kbit -b €O)'V/^2 for t Co • 

From (23) and (34) it can be seen that there are three distinct ranges 
of e that must be considered, the magnitude of the range depending 
upon the value of eo : 

Region d. (] e [ ^ eo): 

Ch = Kbit + to)Vp. — Pi + Kbit - €o)\/pi, 
(35) 

Qi — —Kbit — eo)v/p8 ■ Pa — Kbit + eo)vp2. 

Region B-f- (e ^ eo): 

Qy = Kbit + fo)Vp8 - Pi > /nn. 
(36) 

Ql = —Kbit + €o)VP2 • 

Region B— (e S to): 

Qy = Kbit - t0)\/^1, 
/  '37; Qi = —Ktie — eo)vps — Pi- 

Expanding vV* ' P and \/p about the steady-state value ps/2 
yields 

Region A: 

Qi - Q' = 2/U (2a - a. ^ 2) • (38) 

Region B-\~ - 

Qi - Q2 = Kb it + eo) ^2 - ^7=-^ ■ (39) 

Region B —: 

o. - ft =/u(e -«) (2E/|'+£bif)' (40) 

where the higher-order terms in [(ps/2) — p] have been neglected. This 
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furthei' restricts the region of validity of our analysis to those cases 
where the pressure differential across the load is not large. 

For the region A, combination of (33) and (38) results in 

4/u /j/l' £ = jr^ ^ + 'y- {L"' + ^ + 2Vm^' ^41') 

and the open-loop transfer function becomes 

4VmKb i /^s 

Ga{s) = e4^ = — , KJ Z 2
V —ts, (42) 

2/t , Kbe0\ 2Vj~\' 
s[s +irALm ++ /C7j 

or 

GAs) = 
e(s) 

COa 
0)n 

£) [t.)+ 2r° i£)+^ 

(43) 

wliere 

fa y ^ m 

2Kb 
co0= y- 

[L"+ V^V^Vr' (45) 

(46) 

Here, «„ is the undamped natural frequency of the system, fa is the 
damping ratio and w,, is the velocity gain constant. (The subscript "a" 
indicates the region A.) It is interesting to note that fa , the damping 
ratio, is the sum of the motor damping (motor leakage) and a term 
related to the steady-state flow through the valve. The term, A"6ei1/v

/2pa, 
contributes the major damping to the system. In the quiescent state, 
since e = 0 and pi — p> — p./-, it follows from (34) that 

(Qol)i — (Qo*)* — (Qei)8 = (f?B2)j = KbCQ /^/ (47) 

where the subscript "s" indicates quiescent values. Now designate 

0. = (Om). + (Qo*)*, (48) 

where Q* is the quiescent (i.e. e — 0 and 0 — 0) total flow from the 
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source, so that 

Q* — 2/vh€fl (49) 

An effective leakage coefficient is given by 

La - {Lm + V2p) {Lm + 2p) 
(50) 

and therefore (45) becomes and therefore (45) becomes 

f = — i/ U Vmy 2VT 
(51) 

Now consider the region B+, where e ^ «o • The combination of 
(33) and (39) results in 

An approximate "incremental linear" transfer function may be obtained 
for this region by making the substitutions 

where both the starred and the incremental symbols are considered as 
functions of time. The incremental variables are assumed small, so that 
their products may be neglected. In this manner, a linear equation in 
the incremental quantities can be obtained if the equation defining the 
starred variables [(52) with the symbols starred] is subtracted from 
that obtained by the substitutions indicated previously. Then, if the 
resultant equation, which is linear in the incremental variables, con- 
tains any starred quantities, these can be considered to be varying 
slowly with time — that is, essentially constant when compared with 
the incremental variations with time. Therefore, a quasilinear incre- 
mental transfer function can be obtained. In the present case, the 
incremental transfer function valid for a small constant-acceleration, 
ao , will be derived. This will be used to obtain the incremental transfer 
function for constant-velocity operation. 

Thus, the analysis is initiated by obtaining the linear equation in 
the incremental quantities as previously outlined; this equation is 

£ = e* + Ae, 

On ~ do* Ado, 
(53) 

(54) 
Kbit* + €o) 

2\/2p3 
J A$) T 2FmA$o • 
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Noting that a similar equation may be obtained for the region B—, 
and denoting both regions by B, the following transfer function is 
obtained for operation about a constant acceleration ao : 

/ \ A0o(s) 
Gb{s) — ~x TT\ ~ 7 \ r/ \2 7 \ H ' wo,) 

" (£)[(;) 

where 

Wn Vn (50) 
VrJ' 

Ub 
'v.M 

= rl f/t (1 _ 2i>!) • (58) 

For an inertia load (no viscous or coulomb friction), (58) can be written: 

(59) 

where Ap* is the constant-differential pressure acting on the motor. 
The preceding equations give an approximate solution for the case 

in which the acceleration o-o is small; i.e., e* varies slowly with time. 
For this case, the incremental damping ratio ft, is appreciably increased 
over that given by (45) for the region A. The incremental gain constant 
Wb is less than the gain constant in the A region as defined in (46); for 
Ap* equal to ps, the gain is down 12 db from that of the A region. 

For operation about a constant velocity w;, w,, and ft, remain as in 
(56) and (57), but the gain constant becomes 

(GO) 

In this case, the gain is down 6 db from that given for the A region. 
For constant-speed operation, 6* = out, the error is given by 

= (01) 

so that the effective leakage coefficient becomes: 

Lb = Lm -f- = Lm + (62) 
2v/2ps 

2P' 

Kb 
Olfc = 
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Thus, since the "displacement" motor flow is given by 

Q,n = 7 Jo = V,,^ , (63) 

the effective leakage coefficient is 

U = Lm + ^. (04) 
2?). 

In many cases, Lm is small compared to Qm so that the incremental 
damping is primarily a function of the motor speed. 

The velocity-lag error, (steady-state position error under the 
conditions $0 = w; where a).- is a constant rate input), is as follows for 
the two regions: 

Region .4: 

tn — 
Ui _ ' mm 
^ KW2p.- <c5) 

Region B : 

= wi^-(6G) 

where it is understood that i <=„ [ is greater than eo. The velocity lag 
error for the B region is thus approximately twice that predicted by 
(65) if to is small compared to the lag error. 

Some qualitative information on the nature of the system performance 
can be obtained by comparison of (43) and (55). In the region A (i.e., 
| £ | < eo), the system is essentially linear for small pressure differentials. 
In the region B (I e ) > eo), the system is nonlinear even though the 
pressure differentials are assumed small. In this region, the behavior 
is "amplitude sensitive"; as the error amplitude increases, the incre- 
mental gain decreases. The incremental damping increases with increas- 
ing error in the B region and is considerably greater than the damping 
in the A region; the incremental damping is proportional to the total 
flow through the valve. The velocity-lag error is, of course, greater in 
the B region. 

The transfer function GJs) as given by (43) was derived for a fully 
symmetrical valve; the analysis of an unsymmetrieal valve shows that 
the basic form of the transfer function is similar to that for the sym- 
metrical valve. For the unsymmetrieal valve, however, the damping 
ratio and gain expressions differ from those of (45) and (46). The damp- 
ing ratio is 
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8pS(7?3 - ?),;). 
QbV- (07) 

where is the quiescent value of the pressures pi and p* • For p9 = 
PV2, this expression is identical to that given by (45); for p„ greater or 
less than ps/2, the damping is greater than that given by (45) (assuming 
the same quiescent flow Qe). The gain constant is: 

and comparison with (46) shows that the two give the same solution 
for = pa/2. For pq greater or less than p,/2, the gain of the unsym- 
metrical valve is less than that of the symmetrical valve. 

V. SOLUTIONS OP THE LINEARIZED EQUATIONS 

The equations representing the valve-controlled servomechanism 
were linearized in the last section, and it was found that the open- 
loop transfer function had the following general form: 

where wo is the velocity gain constant, w„ the natural resonant frequency 
and sw the dimensionless damping ratio. If this is considered as a fre- 
quency function, the resulting open-loop attenuation and phase vary 
as shown in Figs. 7 and 8. In these figures, the damping ratio, has 
been taken as a parameter. 

Equation (69), when solved for the closed-loop function, results in 

The relationships for the closed-loop operation are exhibited graphi- 
cally in Figs. 9 through 12. In Fig. 9, the gain margin is shown as a 
function of the peak attenuation, Mv (the maximum value of ] 0o/0.-1), 
for the range of values of interest. In general, the gain margin decreases 
with increasing peak magnitude and is less for the lightly damped cases. 

(68) 

0o(s) 
eh) 

(70) 
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Fig. 7 — Open-loop attenuation of G{s). 

The phase margin variation with the peak magnitude is shown in Fig. 
10; the smnller values of f have the largest phase margins. 

Fig. 11 shows the variation of the peak frequency, o)p , with the peak 
attenuation, Mp, for the various damping ratios For f = 0.1, the 
peak frequency is approximately the undamped frequency of the system 
and is independent of the peak attenuation. As the damping is increased, 
the peak frequency decreases, and it is lower for the lower peak attenua- 
tions. In general, the lower the value of Wp , the lower will be the band- 
width of the closed-loop system. 

The relation between the velocity gain constant wo and the peak 
magnitude is shown in Fig. 12 as a function of the damping ratio, 
As the gain constant is increased, the peak magnitude increases; in 
most cases (for constant peak magnitude), wo is less for the lightly 
damped systems. This graph shows that, for f = 0.1, a change in wo of 
approximately 3 db is sufficient to cause Mp to increase 8 db, while, 
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Fig. 10 — Phase margin vs. closed-loop peak magnitude as a function of damp- 
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Fig. 12 - Gain ratio vs. closed-loop peak magnitude as a function of damping 
ratio. 

for f = 1.00, ton must change 9 db for the same increase in peak magni- 
tude. Since, in a practical system, fluctuations in the value of wo are to 
be expected, operation of the lightly damped system would be more 
erratic than that of a system having adequate damping. 

Equation (70), when solved for the transient response (0, a step 
function) yields solutions as given in Fig. 13. It is interesting to note 
that the transient response for a servoracchanism having a damping 
ratio of f = 0.1 and a closed-loop peak magnitude Mp = 3 db shows 
little overshoot. Examination of the frequency response shows that 
this is a result of a large attenuation in the frequency region below 
resonance. The superimposed oscillation is caused by the gain in the 
resonant frequency region. 

The results of the transient solutions for f = 0.5 are summarized in 
graphical form in Fig. 14, in which the delay time, 2'd, rise time, 7% , 
peak time, Tp , and per cent overshoot are given as functions of the 
gain, W(i/wn . (The defmitions of the various time values are given in 
Fig. 15.) The response times decrease rapidly with increasing gain for 
the lower gain values and, as the gain increases, become relatively 
insensitive to gain variations. The per cent overshoot is a linear function 
of gain for values of gain above the limiting case in which there is no 
overshoot (uoA>« — 0.310). 
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Fig. 13 — Variation of step response of linear system with damping ratio for 
constant closed-loop peak attenuation Jlfp = 3 db. 

The relationships developed in this section can be used to estimate 
design parameters. For example, from Fig. 9, assume that a gain margin 
of 6 db is desired for a servomechanism having a damping ratio f = 0.5. 
This fixes the peak magnitude Mp to be 4.15 db and, from Fig. 10, the 
phase margin is found to be 50 degrees. From Fig. 11, the peak frequency 
is o}p = 0.8 and, from Fig. 12, the gain ratio ojo/w- is —6 db; i.e., 
wo = 0.5 wn . Fig. 14 then predicts an overshoot of 24 per cent; a delay 
time, Td — 2.3/wn ; a rise time, Tr = 2.1/wn ; and a peak time, Tv = 
5.0/wn. 

VI. ANALOG SOLUTIONS OF THE NONLINEAR EQUATIONS 

The equations representing the behavior of a valve-controlled servo- 
mechanism were derived in Sections 11 and III, and the approximate 
linear theory was discussed in Sections IV and V. In this section, repre- 
sentative analog computer solutions of the nonlinear equations (which 
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Fig. 14 — Transient response data for a damping ratio of 0.5. 

fire summarized in Table III) are given for particular values of the 
parameters, and the results are correlated with the linear solutions. 

The valve-controlled servomechanism is assumed to have the numeri- 
cal constants listed in Table IV. During the course of the discussion, 
the effects of changes in these parameters will be considered, but, unless 
otherwise stated, the values will be assumed to be as given in the table. 
In this manner, a reference system is obtained and the discussion of 
the effects of parameter variations is facilitated by comparison with 
the reference behavior. 

The first eight constants listed in the Table IV are considered to be 
the independent variables while the remaining five are dependent. The 
compliance coefficient, Kc, is given by (1G) as the ratio of Vr to /3. 
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Fig. 15 -— Definitions of transient symbols. 

The effective leakage coefficient, La, is given by (60) as 

Ki>to 
Ija — Lm + 

\/l2ps 

and the undamped natural frequency is given by (44) as 

(71) 

(72) 

Table III — Equations Solved by Analog Computation 

Ql ~ Lm(pi Pi) + VmOa + Kcpl 
Qi = —{pi — Pi) — VmOi, + KcPi 

iV\ - P!)Fm = Jda 
€ — Of — da 

pi ^ 0 and ?>2 ^ 0 
Qt = Qoi — Qbi 
Qz ~ Qoi — Qm 

-^6 I « + «o I VI - Pi Fsgn {p, - pi) 
0 Qo\ — 

Qoi — 

Qsi = 

Qb2 - 

0 
_Ki, | e — eo 
"0 
_Kb j £ — to 
Ki 
0 

e + «o | VPs 

V| ps— P2 | Sgn (p, - Pi) 

Vpi 

e > — £o 
« < — £0 
e > to 
£ < €0 
« > to 
t < to 
« > — to 
e < — to 
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Table IV — Reference Values of Parameters 

Definition Symbol Value Units 

total inertia J 2.73 X 10-3 lb-in-sec2 

motor displacement vm 0.0151 in3 

trapped volume 
bulk modulus 

VT 
8 

0.125 
2.22 X 105 

in3 

lb/in2 

motor leakage coefficient Ln 0.039 X lO-3 in5/lb-sec 
supply pressure 
gain constant 

P' 
Kb 

1000 
0.0912 

lb/in2 

in4/lb1/2-sec-rad 
open-center constant <0 0.0561 radians 

3.21 degrees 
compliance coefficient Kc 0.0563 X 10-s inB/lb 
effective leakage coefficient La 0.1533 X 10-3 in6/lb-scc 
resonant frequency OJn 544.7 rad/sec 

86.6 cps 
damping ratio 0.5 

gain ratio 
Ola 
01 a 0.496 

Tho dimensionless damping ratio To [from (51)] is 

La 

Vm 

'M. 
2Vt 

and the velocity gain constant is obtained from (46); 

Wo 
2Kb 
Vm 

(73) 

(74) 

Fig. 16 shows the theoretical frequency response of the reference 
servomechanism as a function of the input amplitude. The linear 
prediction (based on small amplitudes and pressure differentials) is 
included for comparison. The amplitude sensitivity in the small signal 
region, as represented for example by a curve of 1° amplitude, is the 
result of the nonlinear flow characteristics of the valve. The operation 
is within tho region in which | e | < eo (A region) and pressure saturation 
has not occurred, f 

The response for an input of 2° shows more deviation from the linear 
response, primarily because of pressure saturation; operation is still 
within the A region. For greater input amplitudes, the response falls off 

t A —12 db per octave slope that passes through zero db at the frequency 

[/lim] 0 Jb = _1_ . /P*Vm 
2Jr/l/ JBc 

divides the graph into regions that represent the saturating and nonsaturating 
conditions. 
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Fig. 16 —• Theoretical frequency response of a hydraulic servomechanism as a 
function of input amplitude. 

rapidly and operation is primarily in the B region; pressure saturation 
effects become more pronounced. 

The closed-loop transient response of the reference system as a func- 
tion of step magnitude is given in Fig. 17, together with the linear 
solution. For small amplitudes (less than 3°), the linear and nonlinear 
solutions are essentially identical; as the amplitude is increased, the 
discrepancy becomes large. The per cent overshoot decreases with 
amplitude. 

It is evident that the transient response of the servomechanism is 
not as sensitive to amplitude as is the frequency response; for example, 
comparison of the 3° curves in Figs. 16 and 17 shows that the transient 
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Fig. 17 — Theoretical transient response of hydraulic eervomechanism as a 
function of amplitude. 

is much closer to the linear transient solution than the frequency re- 
sponse is to the linear frequency response. This difference is attributable 
mainly to pressure saturation. Fig. 18 shows the transient response of 
the system for the 3° step, together with the pressures pi and p*. Since 
the supply pressure is 1000 psi and the valve is symmetrical, both 
pressures are initially 500 psi in the quiescent condition. For the case 
shown, the applied step was in the positive direction, so that 0o was 
also positive; consequently, pi has an initial positive slope while p? has 
a negative slope. From 0 to 2 milliseconds, the oil is compressed and 
very little shaft rotation occurs; maximum acceleration (pi — p-i) 
occurs at 2 milliseconds, at which time the shaft has acquired an ap- 
preciable velocity. From 2 to 5 milliseconds, the acceleration decreases 
from maximum to zero, while the velocity continues to increase to its 
maximum value. From 5 to 6.8 milliseconds, the acceleration becomes 
negative, since pi is now greater than pi . The velocity is still positive 
for this period, and the error signal e decreases from a positive value 
to zero. The increase in p2 is due to the compression of the oil in line 2 
by the moving inertia, as the orifice area opening to the sump is gradu- 
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20 

30 

50 
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Fig. 18 — Output and pressure variation with time for a 3° step. 

ally reduced and the pump pressure is applied to this side of the motor. 
For the period from 6.8 to 9.5 milliseconds, the error e is negative and 
the velocity decreases to zero at the peak of the curve. 

The nature of the response after 9.5 milliseconds is very similar to 
that previously described, since the output starts from rest with an 
initial error. The major difference, aside from the fact that the error is 
now negative, is that the pressures have appreciable values at 9.5 
milliseconds, while at 0 milliseconds the pressures started from the 
quiescent state. 

It should be noticed that the pressures pi and p? did not limit for 
the 3° step and that, although the pressure differentials were appreciable, 
the linear theory still provided a good approximation to the output 
motion, as indicated in Fig. 17. The value of fo as given in Table IV is 
3.2°, so that operation was entirely within the A region. 

Fig. 19 shows the transient response and pressures for the 20° step. 
In this case, the pressures just limit at the start, and the pressure differ- 
entials are large. In Fig. 20, for the 30° step, the initial pressure satura- 
tion is more pronounced and, in addition, pi reaches zero and p* obtains 



VALVE-CONTROLLED HYDRAULIC SERVOMECHANISMS 1543 

P2 

10 12 14 16 16 20 22 24 26 28 30 
TIME IN MILLISECONDS 

Fig. 19 — Output and pressure variation with time for a 20° step. 
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Fig. 21 — Output iind pressure variation with time for a 50° step. 

a value above that of the supply pressure (p8 = 1000 psi). Examination 
of the curves shows that the maximum value of pz of 1080 psi occurs 
for e positive, the velocity positive and the acceleration negative. This 
indicates that the inertia of the motor and load combination is forcing 
oil to flow out of the exhaust orifice and that, as a result, the pressure 
p-i achieves a very high value. At the same time, oil is forced through 
the orifice connecting the pressure supply to line 1, but the velocity is 
so great that the rate of flow is not sufficient to maintain a pressure in 
this line. Thus, during the period from 14 to 17 milliseconds cavitation 
conditions exist on this side of the motor. 

In Fig. 21, for the 50° step, the situation is similar to that of Fig. 20, 
except that the saturation and cavitation periods are of longer duration. 
Here, the peak pressure is very nearly 1400 psi. 

From the preceding discussion, the desirability of including relief 
valves in each line is apparent. Dangerously high pressures can be 
generated, especially if a supply pressure of 3000 psi is used. The inclu- 
sion of relief valves in effect limits the line pressure, so that the oil 
cannot be 'Trapped" by the inertia. This, however, has the disadvantage 
of increasing the overshoot for large amplitudes and does not decrease 
the rise or delay times. In addition, the cavitation period is prolonged. 

The effect of the variation in gain, Kb, is shown in Figs. 22 and 23. 
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Fig. 22 —• Theoretical transient response as a function of amplitude for Kb — 0.12. 

In Fig. 22, Kb has a value of 0.12, so that the parameters listed on the 
figure change from those of the reference case; all other parameters 
remain constant as given in Table IV. Since the open-center constant 
eo is now only 2.44°, it is to be expected that the system exhibit more 
amplitude sensitivity. Comparison with Fig. 17 shows that this is the 
case; in the small-signal region, the curves for the higher-gain system 
differ somewhat more from the linear solution than do those in Fig. 17. 

i 
/ 
\ "V 
\ 

sy s y / 

/.o/ \ 

zoy / \ 

/ / 40* 
V / 

e0 = 1.59® 

7T5- ~ 100 
con V-/ 

6 8 3 
TIME IN MILLISECONDS 

Fig. 23 — Theoretical transient response as a function of amplitude for Kb = 0.184. 
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Fig. 24 — Transient response for a 10° step with K*, = 0.25. 

As the amplitude increases, this effect is lost, and the major difference 
is found in the per cent overshoot. 

In Fig. 23, the gain constant, Kb, is 0.184. For this value the dimcn- 
sionless gain ratio is unity and the linear theory predicts zero gain 
margin. There is a distinct difference in the nature of the response as the 
amplitude increases. For the 1° step, the operation is entirely within 
the A region (eo = 1.59°) and the oscillations are almost continuous. 
As the amplitude increases, the per cent overshoot decreases, since 
pressure saturation occurs. 

This effect on the stability is more pronounced at the higher gain 
values. In Fig, 24, a 10° step is shown for the case in which Kb = 0.25 
and the gain ratio is 1.30. From the linear theory, this system should 
be unstable. Examination of the response shows that, in the A region 
in which e is less than cq = 1.17°, the system is unstable, but that it is 
stable in the B region in which c is greater than €o. The response, there- 
fore, oscillates indefinitely, but only with the amplitude of «o. It is 
evident, therefore, that, if frictional forces are sufficient to overcome 
the small oscillations of d=€o amplitude, or if these oscillations are not 
detrimental to the performance in the particular application, the allow- 
able gain is much greater than that predicted by the linear theory. For 
a given valve, 7ueo is a constant, so that, as the gain Kb is increased, 
the magnitude eo of the sustained oscillations decrease. The incremental 
damping and gain constants for the B region are given by (57) and (59); 
these equations show that the operation in the B region is inherently 
more stable than that in the A region, since the incremental damping 
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Fig. 25 — Transient response as a function of supply pressure for a 20° step. 

is greater than in the A region and the incremental gain is less than the 
corresponding A region gain. Thus, in the absence of friction or viscous 
damping, the sustained oscillations are most pronounced in the A region. 

The effect of the supply pressure on the transient response is shown 
in Fig. 25 for a 20° step. The linear theory provides the best approxima- 
tion for the case in which the supply pressure is greatest. This is the 
result of two factors: (a) the system with the higher pressure is less 
susceptible to pressure saturation and (b) the value of fa increases with 
increasing supply pressure, so that operation is more completely in the 
A region. The solutions show that, whereas the system having a supply 
pressure of 1000 psi encounters saturation for a 20° step, the 3000-psi 
servo is not pressure-limited until subjected to a 60° step. The advantage 
of operating at higher pressures is thus primarily a question of pressure 
saturation. 

In all the previous solutions, the effective leakage coefficient, La, 
has been maintained constant at 0.1533 X 10 3 inches5 per pound- 
second, so that the damping ratio, fa, was 0.5. From (71), it is seen 
that the effective leakage coefficient is the sum of the motor leakage 
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Fig, 26 — Theoretical transient response as a function of Kheo for a 1° step. 

coefficient and a term proportional to AVo. It is interesting to observe 
the response of the system as affected by the nature of the damping. 
This is given in Fig. 26 for a 1° step. The three upper curves have a 
damping ratio of = 0.5; the difference in the curves results from the 
method used in obtaining the damping. For cases in which the open- 
center valve provides appreciable damping, the response does not differ 
from the linear prediction. This is the result of operation in the A region, 
where e is less than cq . As the valve damping decreases and the motor 
leakage is increased, the response is slower and falls below the linear 
curve; this occurs for the case in which AVo is 0.0005. Operation is 
partly in the B region, since eo is equal to 0.31°. 

When the damping is contributed entirely by the motor leakage, 
IQeo = 0 and the valve is of the critical-center type. In this case, Fig. 26 
shows that the response does not overshoot and that an increase in 
gain would be desirable. Computer results show that, for Kb = 0.20, 
the critical-center valve gives a transient response having about 25 per 
cent overshoot and adequate stability. However, it should be empha- 
sized that the damping ratio for this case was 0.5 and that the damping 
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was obtained by altering the motor leakage. Any attempt to reduce the 
valve-quiescent flow without compensating the system in some manner 
to provide additional damping results in an miderdamped servomecha- 
nism. 

The final curve, for which = -0.001 in Fig. 26, represents the 
response to be expected with a closed-center valve. This valve has a 
dead zone of 0.63° about which the output will wander, and is shown 
in a particularly poor case, since the step is only 1° and the gain is small. 
The only damping in this system is contributed by motor leakage, so 
that the system is underdamped. 

VII. CONCLUSIONS 

This study shows that the linear approximation to the nonlinear 
representation of valve-controlled hydraulic servomechanisms can be 
applied only with the sacrifice of considerable accuracy. However, since 
the linear theory is readily applied, it can be used in obtaining estimates 
for preliminary designs if the deviations from the nonlinear solutions 
arc understood. 
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Some Design Considerations for 

High-Frequency Transistor 

Amplifiers 

By D. E. THOMAS 

(Manuscript received July 10, 1959) 

The major problem in the design of high-frequency transistor amplifiers 
is the interaction between the output and the input of the amplifier caused hij 
the internal feedback of the transistor. This problem is illustrated and the 
two common design approaches to a solution of the problem are discussed. 
Nyquist's criterion of stability and Bode's feedback theory are then used to 
obtain an engineering evaluation of the relative merits of these two design 
approaches from a stability standpoint. The positive nature of the internal 
transistor feedback is established in this stability evaluation. Finally, Bode's 
feedback theory is used to consider the relative merits of some of the broad 
banding techniques used in transistor video amplifier design. The over-all 
analysis shows that many of the most practical and stable linear transistor 
amplifiers are very simple and can be built with a minimum of design effort. 

I. INTRODUCTION" 

A survey of the mass of available literature on high-frequency tran- 
sistor amplifier design discloses the constantly present problem of ampli- 
fier sensitivity and even instability, especially when so-called maximum 
available gain amplifier designs are attempted. This problem is the re- 
sult of the internal positive feedback inherent in all known transistors. 
This paper is particularly directed toward a better understanding of 
transistor internal feedback and its relationship to transistor amplifier 
design and performance, A fresh and practical engineering approach to 
the problem of transistor amplifier sensitivity and stability evaluation 
is presented. The presentation is largely concerned with basic design 
principles.* Specific amplifier design discussion is limited to that needed 

* The material in the paper covers the basic design principles presented in a 
talk on "The Design of RP and Video Amplifiers" given by the author as one of a 
series of six lectures on Transistors — Their Circuits and Applications, sponsored 
by the Dallas, Texas, Section of the Institute of Radio Engineers. 

1551 
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to provide engineering illustrations of these principles. References are 
then made to published material where more complete details on specific 
amplifiers can be found. 

11. HIGH-FREQUENCY TRANSISTOR CHARACTERIZATION 

Before considering amplifier design techniques, we must have some 
means of characterizing the transistor in terms of its performance as an 
electrical circuit element.* This paper will rely largely on a small-signal 
characterization in which the transistor is represented by the generalized 
equivalent T of Fig. 1 with a single internal generator in the branch 
corresponding to the collector of the transistor. The details of the im- 
pedances, each one of which can be written in terms of lumped constants 

Ze 

Le 

Zc 
-vw 

ate Zc 

Zb 

Fig. 1 — Transistor equivalent T. 

that arc directly relatable to the physical structure of the transistor, 
will be presented only when needed. 

For simplicity in writing circuit equations, the transistor collector 
current generator, aie, which would normally appear across the collector 
impedance Zc, has been replaced by the voltage generator, aieZc, in 
series with Zc, in accordance with Thevenin's theorem, (a is frequency- 
dependent.) Except for a small phase error, a is closely approximated 
at frequencies below fa by the expression 

GO 
a = 

i+d' (1) 

Ja 

where /„ is the frequency at which the amplitude of a is 3 db below its 
low frequency value, Go .2 For simplicity a, the short-circuit common 
base current gain will be used interchangeably with a in the discussion 
to follow. 

No parasitic capacitances are shown in Fig. 1, since these will be con- 

* For a resume of transistor equivalent circuits, see Pritehard.1 
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sidered as part of the terminating networks, except for the capacitance 
between output and input — that is, collector-to-emitter capacitance in 
the common base configuration and collector-to-base capacitance in the 
common emitter configuration. And, in order to simplify the considera- 
tion of the internal feedback effects, these latter capacitances will be 
neglected except in the discussion of the common emitter neutralized 
amplifier. However, input-to-output capacitance can be very trouble- 
some, especially in the common base configuration at very high fre- 
quencies. 

The equivalent T circuit representation illustrated in Fig. 1 is particu- 
larly useful in three respects. First, it represents the transistor with 
sufficient accuracy to be used in generalized circuit evaluation. Sec- 
ondly, it can be used in any of the three possible transistor connections 
without change. Finally, since the various components of the circuit are 
directly relatable to the physical structure of the transistor, the effect of 
the transistor structure on circuit performance can be better understood, 
and effects that might otherwise be obscured may be uncovered. 

When a precise amplifier circuit design in a particular frequency region 
is undertaken, a four-pole parameter circuit equivalence may be more 
accurate and more convenient * However, this paper will make only 
limited use of this type of characterization for two reasons. First, the 
examination of amplifier stability, which is one of the major objectives 
of the paper, is more easily accomplished with the equivalent T of Fig. 
1. In fact, the positive nature of the internal feedback of the transistor 
is not apparent in the hybrid parameter four-pole analysis of the com- 
mon emitter transistor configuration. This is because the positive feed- 
back is concealed in the forward transfer current ratio, hnc. Secondly, 
many electronic circuit engineers are more accustomed to the two- 
terminal design techniques of vacuum tube circuitry below the uhf re- 
gion. And this paper shows that those amplifiers that can be built on a 
two-terminal basis with limited impedance measurements and slide rule 
computations are often the better transistor amplifiers. 

III. RADIO FREQUENCY AMPLIFIER DESIGN 

In designing a radio frequency transistor amplifier, the immediate 
problem is to determine the proper choice of terminal networks for the 
transistor to obtain the greatest possible gain consistent with the other 
requirements on the amplifier. The first approach to a solution is given 
by linear network theory. A conjugatc-matched-impedance generator 

* For a presentation of the more common four-pole parameter equivalences, see 
Linvill and Schimpf.3 
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should bo connected to the input and a conjugate-matched-impedance 
load should be connected to the output. However, since the transistor 
itself is a network of complex impedances (''complex" is used here and 
hereafter in the sense of having real and imaginary parts) and contains 
an internal generator that is a complex function of frequency, and also 
has built-in internal feedback, the required generator and load im- 
pedances are themselves complex. To say that the determination of these 
required impedances is difficult is a gross understatement. Even the 
computation of the transistor gain between known complex impedances 
becomes unduly complicated. 

An alternate approach to the determination of suitable generator and 
load impedances is therefore used. The power dehvered to the load with 
either a constant-current or a constant-voltage input generator is deter- 
mined, and the input-matching problem is then considered separately. 
This approach will be illustrated by considering an elementary design of 
a 4-mc wide, 30-mc center-band frequency common base if amplifier, 
using a 30-mc alpha-cutoff-frequency germanium transistor. The simpli- 
fied equivalent T circuit of the transistor is shown in Fig. 2(a). The load 
impedance should be conjugately matched to the output impedance of 
the transistor with an open circuit input, since a current generator is 
being assumed at the input. This impedance is closely approximated by 
the reactance of the collector junction capacitance, Gc. A positive reac- 
tance equal to the negative reactance of Cc at the center-band frequency 
of 30 mc is therefore chosen as the reactance portion of the load. This is 
the 14-microhemy inductance of Fig. 2(b). Since the resistance com- 
ponent of the transistor output impedance is very small, bandwidth 
considerations rather than matching determine the resistance component 
of the load. A 4-mc bandwidth centered at 30 mc calls for a 19.9K 

Zc=j^cc 

Cc = 2//UF 

c 

c 

(a) (b) 

Fig. 2 — Transistor 30-me single-stage IF amplifier; (a) transistor equivalent 
circuit; (b) amplifier load impedance. 
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shunt resistance, as shown in Fig. 2(b). Now, in accordance with the 
design plan, an input generator conjugately matched to the transistor 
input impedance with the output terminated in the selected load 
should be provided to complete the single-stage amplifier design. 
This input impedance, ZiN, was computed, and its resistance and 
reactance components are plotted in Fig. 3(a) and 3(b) respectively. 
The resistance component is seen to vary by a factor of 5 to 1 through- 
out the desired band, and actually becomes negative at frequencies just 
below the bottom of the band. The reactance component likewise varies 
widely throughout the band, going from approximately 200 ohms at the 
bottom to zero at the top of the band. Anything but a conjugately 
matched generator at the input would distort the bandpass characteris- 
tic designed into the load impedance. Since this generator would have to 
incorporate the output impedance of the preceding transistor in a multi- 
stage amplifier, plus a suitable impedance transformation to obtain gain, 
its design would be at best very complicated. The design is therefore in 
serious trouble. An understanding of the source of the trouble is essential 
to a solution to the problem. 
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Fig. 3 — Input impedance for amplifier of Fig. 2: (a) resistance component; (b) 
reactance component. 
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Fig. 4 — Equivalent T for common base connection with load ZL . 

The difficult nature of this input impedance is a direct result of the 
internal feedback in the transistor. Fig. 4 shows the equivalent circuit 
of Fig. 1 in the common base connection terminated with a constant- 
current generator input, I in , and a load impedance, ZL . The input im- 
pedance Zin is given by 

ZiN = Ze + Zs /l — \. /q\ 

\ 1+rJ 

In the common emitter connection, the other of the two more commonly 
used transistor configurations, the corresponding input impedance is 
given by 

ZiN — Zb -jr Ze I 1 F 7 n) • /q^ 

Equations (2) and (3) show that, regardless of the common connection, 
the input impedance to the transistor is a function of the load impedance 
and the common base short-circuit current gain a, both of which are, 
as a rule, complex. And so the complicated complex input impedance 
that was uncovered in the amplifier example above follows naturally. 
Even if the design problem were not so complicated, and if physically 
realizable impedances with the proper impedance transformation for 
interstages of multistage amplifiers could be built, the alignment prob- 
lem of the multistage amplifier would be an extremely difficult one. This 
is verified in the large mass of technical literature discussing interstage 
alignment and band-skewing problems as a result of adjacent interstage 
interaction. It is therefore apparent that, before practical high-fre- 
quency transistor amplifiers can be built, it is necessary to reduce the 
effect of the load impedance on the input impedance to a point where it 
is no longer a serious problem. This can be done either by "neutraliza- 
tion"* or by output-to-load-impedance mismatch. 

* Neutralization is placed in quotation marks to call attention to the fact that 
it is quite different from neutralization as we know it in vacuum tubes. The char- 
acteristics of transistor neutralization will be discussed in more detail later. 
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IY. NEUTRALIZED AMPLIFIER DESIGN 

The neutralized solution to the input-output impedance interaction 
will be considered first. The common emitter connection will be used, 
since this is the more common neutralized configuration. This is because 
more gain is obtainable in this connection at frequencies below the com- 
mon base cutoff frequency of the transistor. Fig. 5 shows the transistor 
equivalent circuit of Fig. 1 in the common emitter connection, with a 
neutralizing impedance, Zm , connected between the collector output and 
the base input and with the base input open. An external generator, 
V0, is connected between the collector and the common emitter ter- 
minals. The following equations define the voltage and current relations 
of the circuit of Fig. 5: 

ii {Zc Zc — olZc) + iiZc — Vg) 

ii (Zc — aZc) + ii(Zb Zc Zn) = 0, 

h 
70A 9^11 

*2 = 
7dA 9^12 

(4) 

(5) 

where A is the circuit determinant of (4). Then 

Z^An — 
Ei — EZb ' tiZg — Vy i2 — EeAji j 

A J' 
(6) 

which gives the input voltage, , in terms of the output generator, V,,. 
If Ei is made zero regardless of the value of Vu, the input impedance is 
then independent of the load voltage and therefore of the load impedance 
when the amplifier is terminated at its output. Solving for the value of 
Z:V required to make = 0 gives 

-2^ = Zc + -Zed 
p «) -i- Zb ■ (7) 

The required neutralization impedance, Zjv , turns out to be negative, 
which indicates that a phase reversal is needed in the neutralization 

b 

e, 

AAAr 

2b 
■WV 

CD. 2c 
«Zct| 

Of 

0 
^ Vn 

Fig. 5 —• Equivalent T for common emitter connection with neutralization. 
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current feedback path in order to produce a positive neutralization im- 
pedance, Z'n , which is the negative of Zn. A phase-reversing transformer 
is therefore used, as shown in Fig. 6, which gives a generalized schematic 
diagram of a common emitter neutralized amplifier. A step-down is 
used between the collector and neutralizing windings of the phase-re- 
versing transformer in order to distribute the effect of the loading of the 
neutralization impedance between the collector and the emitter. The 
transformer is tuned to the desired center-band frequency, and the load 
is the input impedance to the following identical stage in a multistage 
amplifier. If the approximation of (1) for a and —j/uCe for Zc are substi- 
tuted in (7) for Zn, and if Zb and Ze are assumed to be real and constant, 
then (7) can be solved for Zn in terms of its real and imaginary parts: 

Zn — —Zn — Zb 
JaCcZe 

ao 
+ 11 / A2 

i+(£). 1 
i r ZH 

3 uCc 
1 + 1 - 

ceo 

I + 
(D'J 

(8) 

As given by (8), Z'n can be approximated by two resistances and a 
capacitance throughout a reasonably broad band of frequency, as shown 
in the network for Z'n in Fig. 6. The dotted capacitances, Ccb and nCA, 
of Fig. G, show how the input-to-output capacitance in the neutralized 
common emitter amplifier can be compensated for by a corresponding 
capacitance in the neutralizing impedance. Only this portion of the neu- 
tralization corresponds to the neutralization of the output-to-input 
capacitance feedback in vacuum tubes. The load impedance, ZL , of Fig. 
6 is given in terms of the input admittance to the following transistor 

cCcbi/ 

2'n/n —Z'n 
Wv 

Crb 
K 

z, - L Yng+~—+jain Ccb Zn 

n ; i : nL 

Fig. 6 — Schematic of single-stage common emitter neutralized amplifier. 
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with its output short-circuited designated as Fn(. and the neutralization 
impedance of the following transistor. 

Although (7) gives the neutralization impedance in terms of the tran- 
sistor equivalent T of Fig. 1 and is useful for qualitative understanding 
of the neutralization problem, it is not suffiicently accurate to determine 
the neutralization impedance required for an actual amplifier. A more 
accurate determination can bo made from a four-pole parameter solu- 
tion to the impedance Zn necessary to make F^e, the reverse transfer 
admittance of the circuit of Fig. 6, equal to zero. This was the technique 
used by Webster4 in determining an expression for Zn in connection with 
the design of one of the best examples of a maximum gain neutralized 
common emitter amplifier to be found in the literature. However, even 
the four-pole approach fails to give a satisfactory determination of Z,, for 
practical use, and so Z'n is usually obtained experimentally by adjusting 
Z'n until there is no appreciable change in the input impedance to the 
transistor across the bandwidth of the amplifier when the load is al- 
ternately normal and shorted. The input admittance is then given by 

Y" = „ _/ Z, +k+ iu"lC'1 ■ (9) 
Zb + Z    I — o: 11 

which is the common emitter input admittance of the transistor with 
the collector shorted to the emitter plus the admittance added across 
the input by the neutralization impedance. The input admittance given 
by (9) is seen to be independent of the load impedance, and therefore 
the objective of having input impedance independent of output im- 
pedance is achieved. 

The load impedance is then conjugately matched to the output im- 
pedance of the transistor with the input shorted. The generator is like- 
wise conjugately matched to the input impedance given by (9). The 
power gain of the transistor can then be easily shown to be given by4 

i Fa I2 

power gain = ±G*Que' (10) 

where F21 is the forward transfer admittance of the transistor with the 
output short circuited, GU is the real part of the output admittance with 
the input short circuited, and (?llf is the real part of the input admittance 
common emitter with the output short circuited. This is a straight- 
forward computation, since all the parameters are simple functions of 
the active device only and can be measured on a suitable impedance 
bridge as discussed by Webster.4 
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Fig. 7 — Transistor circuit, approximate. 

Webster has built a five-stage, 75-db gain, 25-mc center-band fre- 
quency if amplifier using the neutralization technique just discussed. 
The computed and measured amplifier checked to within 0.5 db in 75 
db in gain and to 0.07 mc in 1.6 mc in bandwidth. This is an excellent 
example of the accuracy of the neutralization amplifier design technique 
in the prediction of available gain and bandwidth. However, a maximum- 
gain neutralized amplifier is far from easy to design, since the amplifier 
represents a delicate balance of feedback effects, which make it difficult 
to adjust and even more difficult to maintain stable. This will be dis- 
cussed in greater detail later. 

V. MISMATCHED AMPLIFIER DESIGN 

The mismatch approach to making the input impedance independent 
of the output impedance will next be considered. Here we will use the 
common base connection for our discussion, since this connection has 
been most frequently used for mismatched rf amplifiers. However, mis- 
matched common emitter rf amplifiers are becoming more frequent, 
due to the high-cutoff-frequency diffusion transistors currently available. 
The same principles apply to both types. A reexamination of (2) shows 
that the common base input impedance can be made substantially in- 
dependent of load impedance if the load impedance, ZL , is made small 
compared to the collector impedance, Zc. This, of course, involves a loss 
of gain, but a considerable mismatch can be taken with a relatively 
small loss of gain. For instance, a 5-to-l mismatch results in a gain re- 
duction of less than 3 db, and a 10-to-l mismatch results in a reduction 
of only 5 db. 

With sufficient mismatch to make the input impedance essentially 
independent of the output impedance, the common base equivalent cir- 
cuit of the transistor with a constant current generator is given in Fig. 
7.* In this circuit, hub is the impedance looking into the input of the com- 

* The equivalent circuit of Fig, 7 has been referred to by Linvill3 as a "circuit 
approximate". 
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Fig. S — Single-tuned reaetanee-notwork transformer. 

mon base transistor with output short circuited, km is the ratio of the 
common base short-circuit output current to the input current and h^b 
is the admittance looking into the common base output with the input 
open. 

Even if the degree of mismatch is not great, the circuit of Fig. 7 gives 
a fair approximation to the true circuit. The approximation is sufficiently 
good to rough out interstage coupling networks, which can then be ad- 
justed on the bench in the laboratory. Since there is little interaction of 
the output load circuit on the input impedance, the gain for a given load 
and generator impedance can be easily computed, in the same manner 
in which the gain is computed for a neutralized amplifier. It will be some- 
what simpler, since no neutralization impedance is present. It must be 
remembered, however, that the output is no longer matched when the 
output power is computed. 

Since a reversing transformer is not needed for neutralization purposes, 
simple impedance transformation between the high-impedance collector 
output of one stage and the low-impedance emitter input of the follow- 
ing stage can be used. The simplest type of impedance transformation 
corresponding to a single-tuned transformer is shown in Fig. 8. If R* is 
the resistance component of the impedance looking into the emitter of 
the following stage, and if the reactance component of the impedance is 
combined with the reactance of C, the load impedance Ej facing the 
collector of the preceding stage at center frequency is increased to Q R?, 
where Q is the ratio of the band center frequency reactance of either C 
or L to R-i. This simple circuit has the disadvantage that the circuit Q, 
and consequently the transmission bandwidth, and the transformation 
ratio are not independent. Therefore, a double-tuned reactance trans- 
formation network equivalent to a double-tuned transformer is usually 
used in the interstage. 

Fig. 9 gives the schematic circuit of a single stage of a 70-mc ger- 
manium tetrode mismatched amplifier designed by Schimpf3 using a 
double-tuned reactance transformation network. The short-circuited in- 
put impedance to the transistor was of the order of 75 ohms. This im- 
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pedanee also had a reactance component which varied somewhat 
throughout the transmitted band, but the variation was not sufficient to 
seriously complicate the band-width adjustment of the interstage net- 
work. The high-side impedance looking into the coupling network was 
approximately 1500 ohms, which gave sufficient impedance transforma- 
tion ratio to provide substantial stage gain (approximately 9 db per 
stage) but presented sufficient mismatch to the collector of the preced- 
ing transistor to meet the requirements of making the input impedance 
substantially equal to the short-circuited input impedance — or, in 
other words, independent of the load. At the time this amplifier was de- 
signed, 70-mc impedance-measuring equipment was not available to the 
designer. Therefore, judicious extrapolations were made from meas- 
urements on a radio frequency bridge at frequencies of 30 mc and below. 
The interstage transformation network was then designed and built 
with the adjustable elements shown in Fig. 9. The circuit was then 
bench-adjusted in the laboratory with a sweep-frequency signal gen- 
erator and a high-frequency oscilloscope across the load. This is the 
technique that was referred to earlier when it was stated that excellent 
amplifiers can be built without complicated impedance measurements 
and a minimum of slide rule computations. 

The relative independence of this circuit design technique on transistor 
parameters was dramatically demonstrated when Schimpf placed one of 
the first research models of the germanium diffused-base transistor in a 
circuit that, except for the omission of the second base of the tetrode, 
was substantially identical with the circuit of Fig. 9. In spite of the wide 
difference in electrical characteristics of the diffused-base and tetrode 

H(—L 0.66- 7-45 

o 
IN 

0.22- 3^ o.aa^H/S 

OUT 

1 

O 

1 

-6VI 

Fig. 9— Single-stage 70-mc mismatched IF amplifier. 
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transistors, the circuit was alignable to give a 20-mc if band centered at 
70 mc. Because of the superior high-frequency performance of the dif- 
fused-base transistor, the stage gain was 14 db, as compared with 9 db 
for the tetrode, and the gain was flat to ±0.1 db across the 20-mc bund. 

VI. TRANSISTOR AMPLIFIER STABILITY 

Up to now nothing has been said about the stability of the two types 
of amplifiers which have been described. And since stability of broad- 
band transistor amplifiers is one of the most important design considera- 
tions, the relative stability of the two types of amplifiers that have just 
been described will now be considered. 

Bode5 has pointed out that the stability of any active network can be 
determined in terms of the positions of its poles and zeros in the complex 
frequency plane. However, if we have a known structure whose gain 
characteristics are satisfactory, it is a long and tedious process in general 
to determine whether the roots of the structure meet the stability re- 
quirement. Furthermore, if the structure is not stable this approach does 
not necessarily tell us what to do to make it stable. What is needed, 
therefore, is some means of transferring the restrictions on the poles and 
zeros into equivalent restrictions on the behavior of the circuit at real 
frequencies. This we have in the Nyquist criterion of stability,6 which is 
used so effectively in the design of negative feedback amplifiers and which 
it is proposed that we use in the evaluation of the stability of our tran- 
sistor amplifiers. 

The Nyquist criterion of stability is simply stated. The open-feedback 
loop gain of a feedback amplifier — usually referred to as ju# — is de- 
termined in magnitude and phase across a frequency band broad enough 
to include all frequencies at which the gain is greater than 0.1 in mag- 
nitude. The individual values of magnitude and phase are then plotted 
in polar coordinates and connected to form a closed loop terminating 
close to the origin. If this loop encloses the point (1,0), the amplifier is 
unstable; if it does not, it is stable.6 However, the external gain of the 
amplifier may be extremely sensitive to changes in amplifier components 
at frequencies where g/3 is in the close vicinity of the (1,0) point, nor- 
mally called the Nyquist point. In soundly designed negative feedback 
amplifiers the Nyquist plot approaches the Nyquist point only at fre- 
quencies well outside the useful frequency band of the amplifier. 

Suppose now that the Nyquist criterion of stability is used to examine 
critically the stability of our transistor amplifiers. It is generally known 
that the transistor has built-in feedback, due to its internal base resist- 
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Fig. 10 — Generalized transistor amplifier equivalent circuit. 

ance. Furthermore, the behavior of the common emitter transistor am- 
plifier is analogous to that of the common cathode vacuum tube amplifier, 
since there is a reversal of phase of signal from input to output. There- 
fore, a reduction in forward gain occurs when a portion of the output 
signal is fed back to the input through a nonphase-reversing external 
circuit. As a result, the common emitter configuration is usually consid- 
ered to be a negative feedback connection.* However, although the in- 
cremental feedback due to the external feedback path is negative, the 
residual or net feedback of the transistor considered as a single-stage 
amplifier is still positive. In fact, unless external feedback is applied 
through a suitably phased impedance-matching transformer or other 
active amplifying devices, a single-stage transistor amplifier—or a single 
stage of a multistage transistor amplifier—is always of itself a positive 
feedback amplifier, regardless of which of its elements is made the com- 
mon connection of the stage. 

The positive nature of the feedback is demonstrated in Fig. 10. Here 
the generalized equivalent circuit of a transistor is shown with generator 
impedances, Zc0 and Zta, in the emitter and base circuits respectively, 
and a load impedance, ZL , in the collector circuit. This load impedance 
could just as well have been made a generator impedance, thereby mak- 
ing the circuit completely general for any transistor connection. The 
equations relating the voltages and currents of Fig. 10 are 

i\{ZCT + Zbr) — izZbT — 0, 

—ii{oiZc -f- Zbr) + iziZhT + + ZL) = 0, 

where Zer — Zc -{■ Zeu , the total impedance in the emitter, and Zbr = 
Zb + Zbg , the total impedance in the base. The feedback loop gain vP 
for this circuit is given by 

(12) 

* This misconception has been strengthened by hybrid four-pole analysis of the 
common emitter transistor, since the positive feedback is concealed in the forward 
transfer parameter or common emitter short-circuit current gain. 
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where A is the circuit determinant of (11) and Ao is the circuit deter- 
minant when the active generator, a, is 0. If all the impedances except 
Zc are resistive and Zi is somewhat smaller than Zc, the feedback loop 
gain below the common base cutoff frequency will always fall in the right 
half of the Nyquist polar plot, indicating that the feedback is positive. 
Note that the choice of the common transistor connection does not in- 
fluence this result.* In the common emitter iterative amplifier, where the 
total impedance in the base is much greater than the total impedance in 
the emitter and the load impedance is small compared to the collector 
impedance, the feedback loop gain is given by 

or the common base short-circuit current gain of the transistor, f Since 
a has a frequency characteristic which for purposes of discussion can be 
approximated by an RC cutoff as shown in (13), the Nyquist diagram 
for this common emitter amplifier becomes a semicircle of diameter ao, 
with its center at ao/2 on the zero phase axis and situated below the zero 
phase axis as shown in the Nyquist plot (a) of Fig. 11.} As ao approaches 
unity, a desirable characteristic in a common emitter amplifier, the 
Nyquist diagram approaches the Nyquist point, (1,0). 

The high- and low-frequency cutoff portions of the Nyquist diagram 
for a soundly designed negative feedback amplifier are also shown in the 
Nyquist plot (b) of Fig. 11. Note that the negative feedback amplifier 
stays out of the shaded area bounded by the ±30° axes and gain magni- 
tude greater than 0.5. This shaded area represents the stability margins 
usually maintained for well-designed negative feedback amplifiers, and 
corresponds to a loop gain of less than 0.5, or —G db when the loop 
phase is between ±30°. This requirement is strictly for stability margins 
against oscillation in the frequency regions where positive feedback oc- 
curs and, these regions are well above or well below the operating ampli- 
fication band of the amplifier. In contrast, the useful amplification band 
of our common emitter amplifier falls on that portion of its diagram 

* The positive nature of the internal transistor feedback regardless of the 
common terminal of the transistor has been confirmed by R. B. Blackman of the 
mathematical research department of Bell Telephone Laboratories. 

t Equation (13) neglects a passive component of the feedback loop gain or re- 
turn ratio which is negligibly small. 

% The Nyquist plot should include nfi plotted with its imaginary part negatiye 
of normal as well as normal. This returns the loop to zero for amplifiers whose gain 
is not zero at dc as in the present case. However, since this type of plot merely 
gives a mirror image across its 0-180° axis with the imaginary part of having its 
normal sign, this half of the plot is not usually shown. 

fxfi = a = (13) 



1566 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1959 

Fig. 11 — Nyquist diagram for amplifier of Fig. 10 with Zi,T Zti and Zj, « 

that is in closest proximity to the Nyquist point. The only reason why 
this is tolerable is because ao is a function of the physical structure of the 
device and because a well-designed and well-behaved junction transistor 
can be counted upon to stay reasonably constant. In any event, if the 
dc biases are held reasonably constant, ao can be expected to remain less 
than unity where circuit oscillation will not occur. However, even though 
there is little danger of oscillation, the positive nature of the inband 
feedback of the transistor is the basis of the stability problem in high- 
frequency amplifier design, as will be shown. 

Fig. 12(a) shows the schematic diagram of a single-stage neutralized 
amplifier having a 4-mc bandwidth centered at 25 mc. This amplifier is 
similar to the amplifier designed by Webster.4 The feedback loop gain of 
the amplifier has been computed using a mathematical trick for opening 
the feedback loop suggested by Blackman.7 This trick consists of in- 
serting a generator current, ie, in the emitter and computing the cur- 
rent returned to the emitter, ie, through the two feedback paths — the 
internal feedback of the transistor and the feedback through the neu- 
tralization impedance, Zv/n. The significance of the is that the 
current so designated is not reamplified by the current gain a of the 
transistor or, in other words, that the loop transmission is mathemat- 
ically stopped at a single round trip. The feedback loop gain is then given 
by ie/ie, and can be written by inspection from the schematic circuit of 

120° 90° 60' 

0° 

240' 270° 300' 
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Fig. 12(a). This feedback loop gain is given to a close approximation 
by 

W3 = v = I vft ( 0^ 

aZ,. Zf, Z a _j_ aZc Zj, z. 

Zc + ZL Z6 + Zs + Ze Zc + zt Z.v Za + zg + Ze (14) 

ZLZa 
aZr 

Ze + Zi, 

- z. 
1 + Za T Zg T Zc_ 

The loop gain given by (14) was computed across a band of frequencies 
extending well above and well below the pass band of the amplifer. These 
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Fig. 12 —Stability evaluation of neutralized amplifier: (a) circuit schematic; 
(b) Nyquist diagram. 
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gains were plotted on a polar diagram to give the Nyquist diagram of 
Fig. 12(b). It will be noted that the Nyquist diagram does not include 
the Nyquist point (1,0), and therefore the amplifier would be expected 
to be stable in the sense of being free from oscillation. However, if the 
sensitivity of the amplifier to changes in transistor parameters caused 
by normal drift, battery changes or ambient conditions were examined, 
large changes in gain would be expected, in view of the fact that the 
feedback loop gain has real parts in excess of unity at angles of the order 
of 30° within the transmission band. A complete study of sensitivity 
can be made in accordance with the techniques described (Ref. 5, Chap- 
ters 4 through C). The fact that the transmission gain of this amplifier 
is sensitive to environmental and transistor parameter changes due to 
bias shifts has been confirmed experimentally. 

At this point, it is well to stop and consider the nature of the feedback 
through the neutralization impedance, ZN . The common emitter con- 
nection owes its high current gain to the internal positive feedback in 
the transistor, which was discussed above. The open input-short-cir- 
cuited output common emitter amplifier has a Nyquist diagram falling 
very close to the Nyquist critical point (1,0). [See (12) and (13) and 
Nyquist diagram (a) of Fig. 11.] When finite impedances are placed in 
the collector and base circuits, the real part of the positive feedback is 
reduced, or there is an increment of negative feedback introduced. This 
moves the Nyquist diagram away from the critical positive feedback 
area, or in the direction of greater amplifier stability. However, the in- 
ternal feedback residue is still positive. When the neutralization circuit 
is added for the purpose of removing the dependence of input impedance 
on load impedance, the direction of the current through the neutraliza- 
tion circuit is such as to cancel the negative increment of feedback men- 
tioned above. It therefore adds a positive increment to the internal posi- 
tive feedback residue, and moves the total feedback in the direction of 
the Nyquist critical point or in the direction of lessor amplifier stability. 
In the iterative common emitter amplifier, the Nyquist diagram was 
held within the stability requirement by oro holding less than unity. In 
the neutralized amplifier, a small shift in the critical balance between 
the positive feedback neutralization current and the negative increment 
of internal positive feedback caused by the finite impedance terminations 
can move the Nyquist diagram beyond the (1,0) critical point, and the 
amplifier will oscillate. Anyone who has built a "maximum available 
gain" neutralized amplifier is aware of the critiealness of this balance 
and the tendency toward oscillation.8 At best, the critical feedback 
balance results in a gain-sensitive amplifier, as pointed out above in the 
discussion of the Nyquist diagram of Fig. 12(b). 
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Fig. 13 — Stability evaluation of mismatched amplifier: (a) equivalent circuit; 
(b) Nyquist diagram. 

Now consider the stability of the mismatched typo of transistor rf 
amplifier. Fig. 13(a) shows the schematic circuit of a common base 
mismatched amplifier using single-tuned reactance coupling of the type 
referred to above. This amplifier has a transmission bandwidth of 6 mc 
centered at 70 mc, and a stage gain of approximately 10 db. Looking 
from the collector into the emitter of the following stage, one sees an 
effective moderate-^ parallel-resonant circuit whereas, looking from the 
emitter back toward the collector, one sees a rather high-Q series-reso- 
nant tuned circuit, as is shown in the schematic. The feedback loop gain 
of this amplifier was obtained by the technique used for the amplifier of 
Fig. 12(a). This gain is given by 

rtS = ^ = 1 m/3 I » 
le 

aZc Zb 
Zc -{■ Zl Zb + Ze + Z» 
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or 

+ (15) 

when ZL is appreciably less than Zc, the condition for mismatch design. 
Using (15), the loop gain was computed at a sufficient number of points 
to give the Nyquist diagram shown in Fig. 13(b). The center-band and 
band-edge frequency points are indicated on the Nyquist diagram. Note 
the inevitable positive feedback in the transmission band. However, 
the feedback though positive is fractional (i.e., there is a net loss around 
the feedback loop) and well below the critical unity value. Furthermore, 
the loop feedback gain decreases and rapidly goes to zero both above 
and below the center-band frequencies. An examination of the circuit 
and the feedback loop gain given by (15) shows the reason for this. 
Since the load impedance, ZL } is a moderately high-Q parallel-resonant 
circuit, it rapidly approaches zero at frequencies outside the transmis- 
sion band, thereby increasing the degree of mismatch away from the 
center-band frequency. At the same time, Z,, the source or generator 
impedance, is an even greater-Q series-resonant circuit , so that it reaches 
a high impedance very rapidly away from the center-band frequency. 
Since Z3 appears only in the denominator of the expression of (15) for 
feedback loop gain, this means that rapidly goes to zero, due to the 
high outband impedance of the generator, Zs . The same behavior would 
be experienced with a double-tuned interstage circuit, except that the 
fx(3 diagram would consist of two loops, due to the added pole and zero in 
the reactance interstage. These two loops would both pull away from 
the Nyquist point area towards the origin in the same manner as does 
the loop gain of Fig. 13(b). Because of the avoidance of positive feed- 
backs having real parts approaching unity, it would be expected that 
the mismatch amplifiers would be not only more stable, but also less 
sensitive to changes than are the neutralized amplifiers, and this is 
confirmed by experimental results. The price paid for this improved 
stability and reduction in gain sensitivity is lower stage gain. In return 
for the gain sacrifice, we also obtain greater ease of design, greater ease 
of interstage alignment and less complicated circuitry. 

How then does one decide on the choice of the neutralized or mis- 
matched techniques? The answer to this question is largely dependent 
upon economic and system requirement considerations. If a consumer 
product is being designed where competition demands maximum gain 
to keep down cost factors and where the failure of an amplifier means 
only an occasional service call, then the maximum-gain neutralized 
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amplifier might be selected. However, if a system is being designed where 
amplifier failure would cause malfunctioning of a large and costly system, 
reliability considerations would favor the more conservative mismatch 
approach, in spite of the lower stage gains obtained. Intermediate situa- 
tions might suggest a combination of neutralization and mismatch, with 
higher gains than could be obtained with the straight mismatched amplifier 
and with feedback loop diagrams midway between the extremes of Figs. 
12 and 13. It is interesting to note that, with the great reduction in the 
collector capacitances of viif transistors, the mismatch that auto- 
matically occurs from the impracticability of simultaneously obtaining 
output matching and very broadband interstages results in a com- 
promise mismatch-neutralized circuit of the type just mentioned. Ac- 
tually, the experience with these circuits has shown that the neutraliza- 
tion is not critical when the degree of mismatch is fairly high, and may be 
omitted. 

VII. VIDEO AMPLIFIER DESIGN 

In the design of video amplifiers, the mismatch approach is practically 
dictated by the broadband requirements and the limitation on the maxi- 
mum impedance available with a given irreducible circuit capacitance, 
in accordance with the Bode resistance integral theorem (Ref, 5, Chap- 
ters 4 through (3). And so wo can use the high common emitter current 
gain without danger of circuit oscillation. However, the gain sensitivity 
problem still exists, as will be shown. 

With the now high-frequency-cutoff diffusion transistors, common 
emitter short-circuit current gains of 12 db and higher at 100 mc arc now 
commercially available. These make possible common emitter iterative 
amplifiers with the collector of one transistor coupled directly into the 
base of the following transistor — except for a blocking condenser when 
simple bins circuits are required. Such an amplifier was built by C. E. 
Paul of Boll Telephone Laboratories with early models of the germanium 
diffused-base transistor. A picture of this amplifier is shown in Fig. 14, 
The amplifier has three common emitter iterative stages, a gain of 70 
db and a bandwidth of close to 10 mc using the simplest possible re- 
sistance-capacitance coupled interstages. The amplifier requires a total 
power of less than 100 milliwatts and occupies a volume of less than 2 
cubic inches. This amplifier demonstrates the great potential of the com- 
mon emitter transistor connection in video circuits. 

With the simple iterative common emitter amplifier, the single-stage 
bandwidth is determined by (1 — a(l)fa , where fa is the common base 
cutoff frequency. This bandwidth will vary widely from transistor to 
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transistor, due to variations in ao and /„ . If bandwidths narrower than 
(1 — ao)fa are needed, they can be obtained most easily by choosing 
transistors with higher ao or lower fa . However, for today's broadband 
video and baseband amplifiers, bandwidths greater than the normal com- 
mon emitter bandwidths are frequently required, and some means of 
trading gain for bandwidth is needed. This can be accomplished by 
feeding back a portion of the output signal to the input, in accordance 
with the technique illustrated in Fig. 15. Fig. 15(a) shows a single-stage 
common emitter amplifier in which the load impedance is small compared 
to the collector impedance, a situation which exists in the iterative com- 
mon emitter amplifier. The current gain of the amplifier is given by 

42 
ii 

a 
I — a 

(16) 

The current gain given by (16) is plotted as curve a of Fig. 15(b) for a 
transistor having an ao of 0.97 and a common emitter cutoff frequency 

.m 

/'/, 

/'/, 
7 

Fig. 14 •— Three-stage common emitter video amplifier. 
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Fig. 15 — Single-stage common emitter amplifier with and without shunt feed- 
back: (a) amplifier without feedback; (b) current gain of amplifier; (c) amplifier 
with shunt feedback. 

of 14 mc — the frequency at which the common emitter current gain is 
3 db below its low frequency value of ao/(l — "o)- If a broader band- 
width is desired, this can be obtained by feeding back a portion of the 
output to the input through a feedback impedance, Z/, connected be- 
tween the collector and base, as shown in Fig. 15(c). The current gain 
of this transistor is given by 

i -i- 1 "a+z; 
(17) 

If the simplified expression of (1) for a or a is placed in (17), the current 
gain as a function of frequency for Zl/Z/ real is given by 

*2 ao 

/n-4i + z-^y} 
(18) 
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so that, except for the ratio 

1 -( -l-  
Zfjl- a,) 

1 -4- 
Z/ (1 - ao) 

which is normally close to unity, the low frequency gain is decreased and 
the cutoff frequency is increased by the same amount, namely 

i -j- ?£— 
^ z,(l - «o)- 

This is shown in curve b of Fig. 15(b), where the common emitter cur- 
rent gain is plotted for the transistor assumed for curve a, with a re- 
sistance, Rj , connected between its collector and base such that 

Ri/Rf = 0.07. 

Note that the low-frequency gain of curve b is down 10 db, or a factor 
of about one to three in magnitude, from that of curve a, and that the 
cutoff frequency has been increased by about the same factor. The 
asymptotic current gains of curves a and b at very high frequencies 
differ only slightly in magnitude, so they are shown identical in Fig. 
15(b). By opening up the feedback path between the collector and base 
at high frequencies, curve b can be made to move into curve a before 
the asymptotic region is reached as is illustrated in the dotted curve, 
curve c. This can be accomplished most simply by making Z/ a resistance 
and inductance in series. In this way, approximately an extra octave 
of bandwidth can be obtained with no additional in-band gain sacrifice. 
However, there will be somewhat greater delay distortion when the 
amplifier is used for the amplification of narrow pulses than there would 
be if the cutoff were allowed to proceed in normal RC fashion, as in curve 
b of Fig, 15(b). 

The simplicity of the above technique of trading gain for bandwidth 
is illustrated in the two-stage diffused-base common emitter video am- 
plifier shown schematically in Fig. 16.* The transistors used in this 
amplifier have a normal common emitter short-circuit gain given by 
curve a of Fig. 15, and Ri/R/ is made 0.07 to make (1 — a,)) -f- Rt/R; 
equal to 0.1 and give a low-frequency current gain of magnitude 10 or a 

* This amplifier was devised by 1.he_author and presented at the June 1956 
Semiconductor Device conference in Philadelphia, Pa., to demonstrate the broad- 
band capabilities of the original research models of diffused base germanium 
transistors. For a description of these transistors see Lee.9 For more complete in- 
formation on this type of video amplifier see Ballentinc and Blecher.10 
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SUM — 0.10 

CURRENT GAIN =10 

Fig. 16 — Two-stage common emitter amplifier with shunt feedback on each stage. 

current gain of 20 db. The feedback path is opened at the high-fre- 
quency end of the band by the 45-miGrohenry coil in series with the 
feedback resistance of each stage. The dotted capacitances are the dis- 
tributed capacitances of the coils, which produce a parallel resonance 
and essentially open-circuit impedance at the top end of the band. There- 
fore, the feedback path is effectively opened, and the normal common 
emitter current gain without feedback is obtained. 

The current gain of the two-stage amplifier of Fig, 10 is plotted as a 
function of frequency in Fig. 17. The amplifier has a two-stage gain of 40 
db flat to ±0.5 db up to 20 mc. 
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Fig. 17 — Current gain for amplifier of Fig. 16. 
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Although the technique described above is an easy way to trade gain 
for bandwidth, it is also an inefficient way. This is a result of the fact 
that, although a single stage of the amplifier of Fig. 16 behaves like a 
negative feedback amplifier, in that the forward gain is reduced as the 
feedback is increased, it is in fact still a positive feedback amplifier in 
accordance with our earlier analysis of transistor internal feedback. This 
is shown from Fig. 18, where the generalized T schematic of the transistor 
is given in the common emitter connection with a load resistance, RL , 
and a feedback resistance, Rf . The various currents resulting from an 
injected emitter current, ic, are also shown. Using Blackmail's technique 
for determining feedback loop gain, ju/3, or the return ratio of the amplifier 
of Fig. 18, can be written by inspection as follows: 

... . Rl le = ate — Cito tv , 
Kf 

(19) 

or, for the amplifier of Fig. 16, 

iu/3 — a (1 — 0.07) = 0.93 a. (20) 

Equation (19) shows that, even though the magnitude of the feedback 
has been reduced by the factor (1 — RL/Rf), /xfS is still positive and close 
to unity. In other words, even though the incremental feedback through 
the feedback resistance, R/, is negative, the residual or net feedback is 

Rf 
Wv 

ale RL/Rf 
ocipZ 

2b 
Wv Wv 

CKLe 

"Wl fb 

Fig. 18 — Equivalent circuit for common emitter amplifier with shunt feedback. 
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still positive. This can be practically verified by examining the variation 
in external gain with change in a. 

The current gain of the circuit of Fig. 18 can be obtained from (17) 
and is given by; 

i-< % a 

ii /, n , RL' (21) (1 - a) + ^ 

If we compute the variation in current gain expressed as a fraction of 
the initial current gain in terms of the variation in a expressed as a 
fraction of the original value of a we get, 

ii 
ii 

which, from (19), gives 

ch 
a 

dl4 

i 

_! - « (i - |)_ 
(22) 

= (23) 
ii a VI - rf/ 
ti 

Since vfi from (20) is positive and only slightly less than unity, (23) 
shows that the terminal current gain changes much more rapidly than 
does the current generator gain, a, of the active device. This is the re- 
verse of a negative feedback effect and is characteristic of the residual 
positive feedback which has been shown to exist. The variation in cur- 
rent gain due to a given change in a is less than it was before the Ay 
feedback path was added, which is in accordance with our statement 
that R/ represents a negative increment, of feedback, but that the feed- 
back loop gain residue is still positive. 

In many instances, the decrease in external gain change for a given 
change in active-element gain obtained by the simple circuit of Fig. 16 is 
sufficient. However, where lower external gain change is required — and 
somewhat greater circuit complexity is therefore justified — gain can be 
more effectively traded for bandwidth by feedback around a minimum of 
two common emitter stages, as shown in the schematic of Fig. 19. The 
first stage only is shown in generalized equivalent T form, since it is here 
that the feedback path is mathematically broken to compute the main 
feedback gain (i.e. the feedback gain through the R/ feedback path). 
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Again using the Blackmail technique, the feedback loop gain ij.0 can be 
obtained by inspection of Fig. 19 as follows: 

- ail 
Zb 

le2 — 

Zb Ze Rgf 

oiiaa Rl 

< 0.5 Oiie, 

Ref 
— a* RL -\- Rj Zh -\- Ze + Re/ 

aiaz i?r. 
1 - a* RL + Rf " 

le — lc\ — le-1 — — 
Rl 

to 

1 — Q!2 Rl Rj 

0:10:2 Ri 

(24) 

(25) 

(26) 

(27) 
1 — ai Rl Rf 

If Rl i? Rj and aj and otz are close to unity, then ^/3 I. When the 
loop gain is much larger than unity, the feedback voltage, Vf, will 
be approximately equal to the applied generator voltage, Vff, when a 
steady state signal is applied to the input. Therefore, since 

V — ^ V V J — » out 
Rj 

and Vf ^ v0, 

amplifier voltage gain = = ^L) 
' ff Re/ 

(28) 

(29) 

and the voltage gain of the amplifier is substantially independent of 
change in gain of the active elements — in this case, the transistors. This 

WV 
<x,oc2 . 
-oez RL+Rf 

Zb a,o(2le 
Wv I -Wp 

01 le Zc 

Cl, L i -e 
I Vf Ref 

Fig. 19— Equivalent circuit for two-stage common emitter amplifier with 
shunt-to-series feedback. 
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is the anticipated result for a true negative feedback amplifier with 
feedback loop gain much greater than unity. It is important to notice 
that the approximation of (29) to the feedback loop gain is good only for 

S if/ , so that this circuit is essentially a voltage feedback amplifier. 
Since the circuit of Fig. 19 contains basically only two 6-db-per-octave 
asymptotic cutoffs, it is an intrinsically stable circuit requiring only sim- 
ple if any feedback loop equalization. The amplifier of Fig. 19 is a voltage 
amplifier with a high input impedance and a low output impedance, since 
it has series feedback at the input and shunt feedback at the output. It 
can be made a current amplifier with low input impedance and high out- 
put impedance by feeding back from a resistance in the emitter circuit 
of the second transistor through a feedback resistance Rj to the base of 
the first transistor. The approximate design formulae for this configura- 
tion can bo obtained in the same manner as were those for the voltage 
amplifier shown schematically in Fig. 19. 

If high linearity as well as high stability, or if unusually high stability 
is required in an amplifier, either of the broadband video or relatively 
narrowband linear type, then the two-stage amplifier of Fig. 19 is still 
inefficient from the standpoint of trading gain for bandwidth. In this 
case, the most efficient circuit is a three-common-emitter-stage single- 
loop feedback amplifier.11,12 This, of course, involves the complexity of 
interstage and feedback network design inherent to the stabilization of a 
three-stage negative feedback amplifier. This is a consequence of the 
potential instability associated with the minimum asymptotic cutoff of 
18 db per octave associated with three active stages. 

In conclusion, it may be stated that the requirements of u large per- 
centage of the radio frequency and video or baseband transistor am- 
plifiers can be met by the circuits of Figs. 9, 16 and 19. These circuits 
demonstrate the simplicity with which basically sound and stable tran- 
sistor amplifiers can be built, providing that the basic nature of the in- 
ternal feedback of the transistor is understood, and the fatal mistake of 
attempting to obtain so called "maximum available gain" is not made. 

Additional material which may be of interest to designers of rf and 
video amplifiers: neutralization—Cheng;13 stability — Stern;14 video 
amplifiers •— Brunn;16 alignable receivers — Gibbons.16 
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Effects of Tamping and Pavement 

Breaking on Round Conduit 

By G. F. WEISSMANN and DUNCAN M. MITCHEL 

(Manuscript received July 20, 1959) 

Underground conduits mat) he subjected to low-frequency dynamic loads 
caused primarily by the operation of mechanical tamping and, pavement- 
breaking machines. These external loads will produce circumferential bend- 
ing moments in the conduit wall. The magnitude of the bending moments has 
been determined by measurement of the circumferential fibre strains in thin- 
walled metal tubes subjected, to the external dynamic forces transmitted 
through various soil media. Finally, the bending moments are expressed in 
terms of the the equivalent crushing strength. 

I. INTRODUCTION 

An extensive investigation to establish the minimum strength re- 
quirements for round conduit, based upon the effect of static loads has 
been reported by one of the authors.1 It was shown that the mini- 
mum required strength depends on the magnitude of the load ap- 
plied at the surface of the fill, the properties of the backfill material, 
the height of the backfill over the conduit, the trench width and the 
bedding condition. 

The increasing use of heavy-duty power-activated equipment for 
tamping backfill in trenches and for breaking pavement has made it 
necessary to expand this investigation in order to determine the effect 
of dynamic forces on underground conduit and pipes. This study is in- 
tended to show the conditions under which tamping or pavement-break- 
ing equipment may be used without damaging underground conduit that 
has the minimum strength required to withstand static loads. 

External loads acting upon the conduit produce circumferential bend- 
ing moments in the conduit wall. The magnitude and distribution of 
these bending moments caused by the operation of tamping and pave- 
ment breaking machinery have been determined in tests conducted re- 
cently at the Outside Plant Development Laboratory, Chester, New 
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Jersey, and in Chicago, Illinois. These tests were made with gravel, 
sand and sandy clay as backfill and with various heights of cover over 
the conduit. Different energies were applied for both tamping and pave- 
ment breaking under conditions simulating as nearly as possible those 
encountered in the field. 

II. TEST APPARATUS AND PROCEDURE 

A test method, which was previously developed for the determination 
of the circumferential bending moments in thin-walled conduits under 
static loads,1 was modified for the recording of dynamic loads. 

The test device consisted of a thin-walled steel tube one foot in length 
having an outside diameter of 4 inches and a wall thickness of 0.062 inch. 
Four SR-4 strain gages (type A-5) were attached, at intervals of 90 
degrees, to the inside periphery of the tube at points equidistant from 
the tube ends. Fig. 1 shows the steel tube with the attached strain gages. 
The tube ends were sealed with sponge rubber discs to prevent the entry 
of dirt and moisture. Each strain gage served as the variable arm of a 
bridge circuit that was connected to an oscillograph (Minneapolis 
Honeywell Yisicorder). This recorder provided a continuous photo- 
graphic record of the strain readings. 

Fig. 1 — Thin-walled tube with SR-4 strain gages. 
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A Hydrahammer, manufactured by the Ottawa Steel Division of the 
L. A. Young Spring and Wire Corporation, Ottawa, Kansas, was used 
to provide the impact loads at the surface above the conduit. The Hydra- 
hammer consists essentially of a weight that is dropped from different 
heights and is capable of applying energies up to 7500 foot-pounds. Two 
different weights have been used during this investigation: (a) approxi- 
mately 1000 pounds using the tamper and (b) approximately 900 pounds 
using the demolition head. 

Fig. 2 shows the three test conditions considered during this investi- 
gation. 

2.1 Tamping 

The measuring tube was positioned lengthwise at the bottom of a 
24-inch-wide trench between two pieces of plastic conduit, as shown in 
Fig. 3. It was oriented so that one of the strain gages was at the top 
of the tube. The backfill material was then placed in the trench to the 
desired height of cover. Care was taken to insure that no stones were 
present at the bottom of the trench or in the fill close to the measuring 
tube. The tests were conducted with 18, 24, 30, 36 and 42 inches of cover, 
using gravel, sand and sandy clay as backfill materials. The mechanical 
tamper was positioned so that the tamping head struck the surface of 
the fill directly over the tube. For consistency in the test it was neces- 
sary to restore the fill at the striking point to its original height after 
each blow. 

TAMPING BREAKING OF CONCRETE PAVEMENT 
(PREVIOUSLY COMPACTED SLAB PLACED ON BREAKING 

BACKFILL OR TAMPED BACKFILL | once OArwi^n i 1 

HEIGHT 
OF 

COVER 

CONDUIT 

Fig. 2 — Test conditions. 
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Fig. 3 —Measuring device positioned in trench. 

Two procedures were used to apply the impact loads: 
i. The energy produced by the Hydrahummer was increased from 1125 

to a maximum of 6750 foot-pounds in increments of 1125 foot-pounds. 
A number of blows wore applied at each energy level until the readings 
did not change significantly. 

ii. The maximum energy of 6750 foot-pounds was delivered directly 
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to the loose backfill and repeated until the measurements remained con- 
stant. 

2.2 Breaking of Concrete Slob Placed on Tamped Backfill 

To simulate the effect of pavement breaking on round underground 
conduit, reinforced concrete slabs, three feet square and six inches thick, 
cast from a 1:2:3 mix and air-cured for 28 days prior to the tests were 
used. The measuring tube was placed at the bottom of a three-foot-deep 
pit and covered to a height of 12 or 24 inches with gravel or sandy clay. 
The fill was lightly compacted and the reinforced concrete slab was posi- 
tioned so that its center was directly over the measuring tube. Figs. 4 
and 5 show the Hydrahammer equipped with the demolition head break- 
ing the concrete slab. An energy of 6750 foot-pounds was used for this 
part of the investigation. 

2.3 Pavement Breaking 

Actual pavement-breaking tests were conducted at two locations in 
Chicago, Illinois. Horizontal holes slightly smaller than the outside di- 

Fig. 4 — Hydrahammer with demolition head breaking reinforced concrete slab. 
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Fig. 5 — Reinforced concrete slab after one blow of 0750 foot-pounds. 

aracter of the measuring tube were drilled beneath existing concrete 
roadways from pits dug beside the road. A hydraulic jack was used to 
press the measuring tube into the hole for a distance of four feet. A steel 
tube was inserted in advance of the measuring tube and a piece of four- 
inch conduit was used to fill the remaining length of the hole. The pit 
was then backfilled and tamped. Three tests were made, the height of 
cover consisting of: (a) 3 inches of sandy clay, 21 inches of a mixture of 
ashes and cinders and 7 inches of concrete; (b) 3 inches of sandy clay, 
21 inches of a mixture of ashes and cinders, 5 inches of concrete and 2 
inches of asphalt; and (c) 12 inches of crushed stone and 8 inches of con- 
crete. The tamper applied an energy of 6750 foot-pounds directly over 
the center of the measuring tube. Measurements were taken until the 
pavement above the conduit was completely broken up. 

Table I summarizes the test conditions. 

III. TEST RESULTS 

The circumferential bending moments in the walls of the test tubes 
were determined and recorded by means of the test apparatus and pro- 
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cedure described in Section II.1 A typical example of such a recording is 
shown in Fig. 6. The duration of the signal caused by the impact is 
about 0.1 second, and the bending moment at the bottom of the con- 
duit is about double that at the top or at the sides of the conduit. This 
relation, however, was not observed in all tests; it was more frequent in 
clay or wet sand than in gravel. The same phenomenon had been ob- 
served during an investigation of the effect of static loads on round 
conduits,1 when it was concluded that the bedding condition was re- 
sponsible. The same considerations apply for this investigation. Due to 
a change in bedding, the moment at the bottom may vary up to 235 
per cent, while the moments at the side points change only a maximum 
of 12 per cent. To compensate for wide variations in the test results at- 
tributable to bedding, the maximum bending moment at the bottom of 
the tube was considered to he double the average of the values measured 
at the side points. 

During mechanical tamping, the maximum bending moment at a 
given depth increased with the number of blows until it attained a limit- 
ing value. This value was generally obtained with the third blow of the 
tamper. For pavement breaking, the maximum bending moment was 
obtamed immediately after the concrete pavement cracked. 

In the remaining sections of this paper, the maximum bending moment 

Table I — List of Tests and Test Conditions 

Test Condition 

Tamping of previ- 
ously compacted 
backfill 

Type and Height of Cover and Thickness 
of Pavement 

24, 30, 36, 42 inches gravel 

18, 24, 30, 36 inches sand 

IS, 24, 30, 36 inches sandy clay 

Applied Energy 
(ft-lbs) 

1125, 2250, 3375, 
4500, 5625, 6750 

1125, 2250, 3375, 
4500, 5625, 6200 

1125, 2250, 3375, 
4500, 5625, 6750 

Tamping of loose 
backfill 

24, 30, 36, 42 inches gravel 
IS, 24, 30, 38 inches sand 
18, 24, 30, 36 inches sandy clay 

6750 
6760 
6750 

Breaking of con- 
crete slabs placed 
on tamped back- 
fill 

12 or 24 inches gravel, 6 inches con- 
crete 

18 or 24 inches sandy clay, 6 inches 
concrete 

6750 

6750 

Pavement breaking 3 inches clay, 21 inches ashes and 
cinder, 7 inches concrete 

3 inches clay, 21 inches ashes and 
cinder, 5 inches concrete, 2 inches 
asphalt 

12 inches crushed stone, S inches con- 
crete 

6750 

6750 

6750 
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CONDUIT BENDINS MOMENT AT THE 
BOTTOM OF THE CONDUIT (3) 50 —- BENDING MOMENT AT THE 
TOP OF THE CONDUIT (l) 
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Fig. 6 — Bending moments in round conduit caused by operation of heavy 
tamping equipment. 

will be expressed in terms of the "equivalent two-point load." The 
equivalent two-point load is the two-point (two-edge bearing) load that, 
in a compression test on a test tube held between two rigid flat plates, 
will cause the same maximum bending moment in the tube wall as the 
maximum bending moment obtained from field measurements such as 
shown in Fig. 6. The choice of this expression as a measure of the bend- 
ing moment has been discussed.1 

3.1 Tamping 

Figs. 7 and 8 show the equivalent two-point loads for four-inch-di- 
ameter round conduit covered with gravel and sandy clay, respectively. 
In each figure the abscissa represents the energy applied by the tamper 
and the ordinate the equivalent two-point load, with a logarithmic scale 
having been used for both coordinates. The data were obtained by 
tamping the initially loose fill over the conduit, the energy applied by 
the Hydrahammer being increased from 1125 foot-pounds in steps of 
1125 foot-pounds to a maximum of 6750-foot-poiinds. A linear relation- 
ship between the logarithm of the applied energy and the logarithm of 
the equivalent two-point load could be observed. For each case, this re- 
lationship was derived from the data, using the method of least squares. 
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The plotted lines wore extended beyond 6750 foot-pounds to obtain 
equivalent two-point load values for energies up to 20,000 foot-pounds. 

If a blow were delivered by the tamping equipment upon loose sandy 
clay or wet sand backfill, the equivalent two-point load values obtained 
were rather inconsistent: these values were up to three times higher than 
those obtained when the tamping energy was increased by increments to 
its maximum. This phenomenon was not observed with gravel or dry 
sand as backfill. 

3.2 Breaking of Reinforced Concrete Slab Placed on Tamped Backfill 

The equivalent two-point loads obtained when breaking reinforced 
concrete slabs placed on previously compacted backfill are shown in 
Table II. The values of Table II should be compared with the results 
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Fig. 7 — Equivalent two-point load vs. applied energy for gravel cover. 
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Fig. 8 — Equivalent two-point load vs. applied energy for sandy clay cover. 

shown in Figs. 7 and 8, which were obtained by tamping backfill previ- 
ously compacted at the same energy level. The height of cover is con- 
sidered to be the distance between the bottom surface of the concrete 
and the top of the conduit. For the same height of cover and applied 
energy, the results obtained when breaking the concrete slab are slightly 
smaller than the values obtained by tamping, since the broken concrete 
provides some additional protection to the conduit. However, this addi- 
tional protection is comparatively small and variable, dependent upon 
the thickness of the concrete, and will be neglected. Energies insufficient 
to break the slab will produce relatively small forces acting on the con- 
duit. 

3.3 Pavement Breaking 

The equivalent two-point loads obtained by pavement breaking are 
also shown in Table II. A comparison of the equivalent two-point load 
values obtained by tamping (Figs. 7 and 8) with those obtained by pave- 
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Table II •— Equivalent Two-Point Load Obtained by Breaking 
Concrete Slabs and Pavements 

Test Condition Type and Height of Cover and 
Thickness of Pavement 

Applied 
Energy 
(ft-lbs) 

Equivalent 
Two-Point 

Load 
(lbs/ft) 

Breaking of con- 12 inches gravel, 6 inches concrete 6750 2200 
crete slabs 24 inches gravel, 6 inches concrete 6750 720 
placed on 18 inches sandy clav, 6 inches con- 6750 1300 
tamped backfill crete 

24 inches sandy clay, 6 inches con- 6750 560 
crete 

Pavement break- 
ing 

3 inches clay, 21 inches ashes and 
cinder, 7 inches concrete 

3 inches clay, 21 inches ashes and 
cinder, 5 inches concrete, 2 inches 
asphalt 

12 inches crushed stone, 8 inches con- 
crete 

6750 

6750 

6750 

600 

600 

2000 

nienfc breaking shows the same relationship as that obtained for the 
breaking of the reinforced concrete slab. For the same ^height of cover 
and applied energy, the equivalent two-point loads obtained by pave- 
ment breaking are slightly smaller than those obtained by tamping.* 
As in the case of breaking the slabs, this difference will be neglected. 

IV. DISCUSSION OF TEST RESULTS 

The test results show that tamping well-compacted fill produces about 
the same loads acting on the conduit walls as are obtained by pavement 
breaking, provided the heights of cover, the types of cover and the ap- 
plied energies are the same. 

Figs. 7 and 8 show the effects of the applied energy, the height of cover 
and the type of cover on the equivalent two-point loads. Results obtained 
with sand cover were not as consistent as were the values for gravel and 
sandy clay. This may have been clue to a change in moisture content: 
because of weather conditions, the sand used as backfill material varied 
from dry to rather wet. 

The strength requirements for round underground structures, previ- 
ously determined on the basis of static loading conditions,1 showed the 
highest strength to lie required when wet clay was used as backfill ma- 
terial. Fig. 0 shows the required equivalent two-point load as a function 
of the height of cover for static loads, with the diiTerent curves represent- 

* The values listed in Table II are maximum values obtained after the pave- 
ment failed. Prior to this failure, the measurements were very small. 
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Fig. 9 — Equivalent two-point load caused hy static load vs. height of cover. 

ing various wheel loads. It is desirable that underground eonduit be 
capable of withstanding a maximum wheel load of 15,000 pounds. 

Fig. 10 gives the equivalent two-point load of four-ineh-diameter 
round conduits obtained by tamping well-compacted backfill or by pave- 
ment breaking as a function of the height of cover for gravel as the back- 
fill material. Gravel has been chosen because the highest equivalent two- 
point load values were obtained with this material. Since the type of the 

BACKFILL 
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Fig. 10 — Equivalent two-point load caused by pavement breaking vs. height 
of cover. 
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subsoil is generally unknown when a pavement breaker is used, the worst 
conditions should be considered. The different curves in Fig. 10 repre- 
sent the energies applied by the pavement breaker. 

A comparison of Figs, 9 and 10 shows that a conduit having the de- 
sired minimum strength requirements based on static considerations 
should withstand without damage the effects of pavement breaking if 
equipment of 7500 foot-pounds capacity is employed and the height of 
cover is at least 24 inches. It appears that the equivalent two-point load 
due to pavement breaking increases more rapidly with a decrease of the 
height of cover than does the equivalent two-point load caused by static 
loads. 

Fig. 11 shows the equivalent two-point loads obtained by tamping 
loose sandy clay backfill. These curves wore derived from Fig. 8. To con- 
sider the effect of tamping loose fill, the values obtained by tamping 
compacted sandy clay fill were multiplied by throe, in accordance with 
the experimental data. A comparison of Figs. 9 and 11 shows that tamp- 
ing loose sandy clay fill with an applied energy of more than 1500 foot- 
pounds at a height of cover of 24 inches would exceed the assumed mini- 
mum crushing strength of the conduit (two-edge bearing load of 1200 
pounds per foot) and could cause breakage. The effect of tamping loose 
backfill is much more severe than that of pavement breaking because the 
loose backfill in the trench acts like a piston in a cylinder and drives down 
on the ducts when it is subjected to the blows of the tamper. Further- 
more, the tamping head penetrates farther into the loose fill and thus 
reduces the effective height of cover. 

Additional tests were conducted tamping various types of backfill 
in trenches containing different conduits of known crushing strengths 
and conduit formations. The results of these tests support the findings of 
this investigation. 

V. SUMMARY AND CONCLUSIONS 

Field tests have been conducted to investigate the effect of the use of 
heavy tamping and pavement breaking equipment on round under- 
ground conduits. The results show that conduit may be damaged when 
heavy-duty equipment with a capacity of 7500 foot-pounds is used as 
a pavement breaker unless the height of cover over the conduit is at 
least 24 inches. This is valid for conduits having a crushing strength of 
1200 pounds per foot. For stronger conduits the height of cover can be 
reduced. 

The unrestricted use of power-activated machines for tamping loose 
fill, at a height of cover of 36 inches or less, may cause failure of conduit 
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Fig. 11 — Equivalent two-point load caused by tamping on loose fill vs. height 
of cover. 

having a crushing strength of 1200 pounds per foot in two-edge bearing. 
Compaction of the fill by hand tamping, prior to use of the mechanical 
tamper, would contribute some improvement. However, this is only of 
academic interest because, judging from the test results, the height of 
the hand-tamped cover should be at least 24 inches if a 7500-foot-poimd 
machine is to be used safely at full capacity as a tamper. 
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