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Theoretical questions concerning the possibilities of proving theorems by
machines are considered here from the viewpoint that emphasizes the under-
lying logic. A proof procedure for the predicate calculus is given that con-
tains a few minor peculiar features. A fairly extensive discussion of the
decision problem is given, including a partial solution of the (x)(Ey)(z)
satisfiability case, an alternative procedure for the (x) (y) (Ez) case, and a
rather detailed treatment of Skolem's case. In connection with the (x)(Ey)(z)
case, an amusing combinatorial problem is suggested in Section 4.1. Some
simple mathematic -al examples are considered in Section VI.

Editor's Note. This is in form the second and concluding part of this paper'
Part I having appeared in another journal.1 However, an expansion of the author's
original plan for Part II has made it a complete paper in its own right.

I. A SURVEY OF THE DECISION PROBLEM

1.1 The Decision Problem and the Reduction Problem

With regard to any formula of the predicate calculus, we are interested
in knowing whether it is a theorem (the problem of provability), or
equivalently, whether its negation has any model at all (the problem of
satisfiability). Originally this decision problem was directed to the search
for one finite procedure which is applicable to all formulae of the predi-
cate calculus. Since it is known that there can be no such omnipotent
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procedure, the main problem is to devise procedures effective for classes
of formulae which satisfy suitable conditions.

The complementary problem of reduction is to give effective proce-
dures which reduce broader classes to narrower ones while preserving
provability or satisfiability. In this way, a decision procedure for a
smaller class can be made to apply to a larger one. Thus far, most work
on the reduction problem has been directed to the special case of finding
procedures which reduce all formulae of the predicate calculus to mem-
bers of some special class (e.g., those in the Skolem normal form). Each
such class is called a reduction class relative to satisfiability or provabil-
ity according to whether satisfiability or provability is preserved by the
transformations (Ref. 2, p. 32). It follows automatically that the corre-
sponding decision problem for each reduction class is unsolvable.

The reduction classes and the procedures employed to obtain them
are, being concerned with undecidable cases, only of indirect use for the
problem of discovering positive results on the decision problem. More
directly relevant are reduction procedures which are applicable when the
reduced class is not a reduction class and may in particular be a decid-
able class. Some very preliminary results on this more general aspect
of the reduction problem will be described in Section V.

For both the decision problem and the reduction problem, there is,
beyond the "yes or no" as to satisfiability, a further question of deter-
mining all models and devising transformation procedures which preserve
all models. Such questions have been studied to a certain extent (Ref.
3, p. 23), but will be disregarded in what follows.

It is customary to characterize reduction classes and decidable classes
in terms of formulae in the prenex normal form, i.e., with all quantifiers
at the beginning. Sometimes, with regard to satisfiability (or provabil-
ity), conjunctions (or disjunctions) of formulae in the prenex normal
form are considered. We shall call this the extended prenex form.

In Section V, a procedure will be given for reducing any formula to
a finite set of generally simpler formulae in the extended prenex form
such that the original formula is provable if and only if all formulae in
the reduced set are. In this and the next few sections, we shall only be
concerned with formulae in the extended prenex form. Furthermore,
we shall give in Section V a proof -decision procedure for the quantifier -
free logic, obtained from the propositional calculus by adding equality,
function symbols and individual constants. Any theorem in it is called
a quantifier -free tautology, as an extension of the notion of a propositional
tautology. We shall make use of the fact that we can always decide
whether a given formula is a quantifier -free tautology.
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1.2 A Brief Formulation of the Predicate Calculus

1.2.1 Primitive Symbols

1.2.1.1 Variables x, y, z, etc. (an infinite set).
1.2.1.2 Individual constants (a finite or infinite set).
1.2.1.3 Propositional (Boolean) operations: v
1.2.1.4 Predicate letters (a finite or infinite set).
1.2.1.5 Function letters (a finite or infinite set).
1.2.1.6 Equality: = (a special predicate symbol).
1.2.1.7 Quantification symbols: ( ), (E ).

1.2.1.8 Parentheses.

1.2.2 Inductive Definition of Terms and Formulae

1.2.2.1 A variable or an individual constant is a term.
1.2.2.2 A function symbol followed by a suitable number of terms is

a term.
1.2.2.3 A predicate followed by a suitable number of terms is a for-

mula (and an atomic formula); in particular, if a, /3 are terms = (a,13)
or a = 13 is a formula (and an atomic formula).

1.2.2.4 If co, 1,G are formulae and a is a variable, then (a)o, (Ea)cc,
co, co v co & are formulae.

1.2.3 Inductive Definition of Theorems

1.2.3.1 A quantifier -free tautology is a theorem.
1.2.3.2 If a disjunction D of n alternatives is a theorem, coa is one of

the alternatives and /3 is a variable, then:
(a) If a is a term, then the result of replacing spa by (E/3)0 iii D is

a theorem;
(b) if a is a variable free in cca but not free in the other alternatives

and /3 is a or does not occur in (pa, then the result of replacing va by
(fi)col3 in D is a theorem.

1.2.3.3 If v  v yr) is theorem, so is also
The above formulation is complete only with respect to formulae in

the extended prenex form.

1.3 The Fundamental Theorem of Logic

The main purpose of the next few sections is to study the decision
problem on the theoretical foundation of the fundamental theorem of



4 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1961

logic, an approach initiated by Skolem4 and Herbrand,5 and recently
revived by Church,6'7 and by Klaua8 and Dreben.9'1°

Suppose Mxyz is a quantifier -free matrix:

1.3.1 (x)(Ey)(z)Mxyz,

1.3.2 (Ex)(y)(Ez) ti Mxyz.

Let now D. be M1 v v Mn and Mi be M1ii', i' being an abbre-
viation for i 1. The fundamental theorem, when applied to 1.3.1,
states:

1.3.3 The following three conditions are equivalent:
(a) 1.3.1 is a theorem of the predicate calculus; (b) for some n, D. is
a quantifier -free tautology; (c) 1.3.2 is not satisfiable.

If D is a quantifier -free tautology, then, by 1.2.3.1, both it and the
result of substituting distinct variables for distinct numbers in it are
theorems. For example, suppose the result is:

1.3.4 Maab v Mabc v Macd.

We have: by 1.2.3.2(b),

Maab v Mabe v (z)Macz;

by 1.2.3.2(a),

Similarly,

by 1.2.3.3,

by 1.2.3.2(b),

Maab v iVlabc v (Ey)(z)Mayz.

Maab v (Ey)(z)Mayz v (Ey)(z)Mayz,
(Ey)(z)Mayz v (Ey)(z)Mayz v (Ey)(z)Mayz,

(Ey)(z)Mayz;

(x) (Ey) (z)Mxyz.

Hence, condition (b) implies conditions (a) and (c) in 1.3.3.
On the other hand, if no D is a quantifier -free tautology, then there

is, for each D. , some interpretation of the function and predicate sym-
bols on the set {1, , n'} which satisfies ,---/D . By a well-known argu-
ment, there is then an interpretation on the domain of all positive in-
tegers which satisfies ,--/D1 , , etc. simultaneously. This, however,
means that under the interpretation each finite segment of the infinite
conj unction
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1.3.5 & r -,M123 & & 

is true. But then there is an integer x, viz. 1, such that for every integer
y, there is an integer z, viz. y', such that ,---,Mxyz. In other words, 1.3.2,
the negation of 1.3.1, is true under the interpretation. Hence, the nega-
tion of condition (b) implies the negations of conditions (a) and (c).

If we take 1.3.5 as a model of 1.3.2, it seems natural to regard y as
an independent variable, z as a dependent variable and x as an initial
variable (the limiting case of a dependent variable, a function of zero
arguments). The general principle of constructing M from 1.3.1 may
be summarized by saying that each initial variable gets a constant
number, the independent variables taking on all possible positive in-
tegers as values and the dependent variables always taking on numbers
not used before.

In the general case, we must consider a disjunction (for provability)
or conjunction (for satisfiability) of formulae with arbitrary strings of
quantifiers. Then we can again construct the related quantifier -free
formulae in the same way, with the numbers in each clause proceeding
independently.

Thus, if we wish to study the satisfiability problem, we consider any
formula of the form:

1.3.6 col & & ,, (n 1),

where each 'pi is of the form, with d1 > 0, ec > 0, c > 1, el, d2 , e2

, de > 1:

1.3.7 (Eyii) (Eydi (s ii) . . (re11) (Eyie)

(EYd,c)(X1C) . . . (Xecc)111Yil :re:.

One familiar way of obtaining M1 , M2 , etc. for the formula 1.3.7
begins by replacing the dependent variables (those with the letter y)
each with a function (sometimes called a "Skolem function") of all the
preceding independent variables (those with the letter x), and then
dropping all the quantifiers. Let the result be M*. In particular, the
initial (dependent) variables are replaced by distinct constants which
may be viewed as trivial functions. Suppose el -I-  + ee = p, dl +

 + cl, = q in 1.3.7.
The Skolem functions are any functions gi, , g, which, taken

together, satisfy the following conditions:

1.3.8 (a) For each g, , gi(ui, , u,) i 26j , j = 1, m,
i= 1, , q.
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(b) For each gi , gi(ui , , um) = gi(vi , , v,) only when 261 =
, , =

(c) For any gi , gi , j, Mu' , , um) , , v,1), for all
?I1,  " Um V1 V n

Then we can take the smallest domain which contains the constants
for the initial (dependent) variables (or an arbitrary constant when
there is no such initial variable) and is closed with respect to the Skolem
functions. Once such an (enumerable) domain is available, we can some-
how enumerate all the p-tuples of members of the domain. Then, for
each i, Mi is simply the result obtained from M* when the independent
variables are replaced respectively by members of the ith p-tuple.

The satisfiability problem of 1.3.7 is then reduced to that of the infinite
conjunction :

1.3.9 M1 &M2 & 

Similarly, the satisfiability problem of 1.3.6 can be handled by reducing
each coi separately and then taking the conjunction of the n infinite
conjunctions of the form 1.3.9.

It is customary to use the positive integers as the domain, fix some
enumeration of the p-tuples, and specify the Skolem functions in a
natural manner. One familiar enumeration of the p-tuples is the follow-
ing:

1.3.10 (a1 , , a,,) precedes (b1, , b,,). if either

(a) they are permutations of each other but (a1
(b1, , bp) in the lexicographic order; or

(b) max(al , , a,,) = max(b1, , bi,), Zai = Zbi , but (a1 , ,

a), rearranged according to nondecreasing magnitude, precedes (b1,
, bi,), similarly rearranged, in the lexicographic order; or

(c) max(ai , , a,,) = max(b1 , , b,,), but Za 1 < Zbi ; or

(d) max(ai , , ap) < max(b1 , , bp).

The Skolem functions are usually chosen by going through the infi-
nite conjunction 1.3.9 from left to right and using each time the smallest
unused integer for the next functional expression not yet evaluated.
Thus, e.g., , yd,' in 1.3.7 get the constant values 1, - , d1 , and
M1 is :

, ai,) precedes

M1 d111 1d1' (di + d2) (q - + 1)  q1 1.
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Each time a functional expression gets a value, the value is substituted
in all later occurrences of the same expression.

In this way we arrive at a form of the fundamental theorem of logic
as a generalization of 1.3.3.

It is natural to observe that the infinite conjunction 1.3.9 can be
divided into sections (Ref. 4, p. 138):

1.3.11 The first section is the set of those Mi's in which the p-tuples
replacing the independent variables are made up of integers in the set
{1, , di}, or the set {1 } if d1 = 0; the (n 1)th section is the set of
those M,'s not belonging to the nth section in which the p-tuples are
made up of integers which occur in the union of the first n sections.

This notion has been used by Skolem in explaining some decision
procedures (see Section II below).

1.4 Special Cases of the Decision Problem

The principal known decidable classes are, with regard to satisfiability
the following:

I. The monadic case. The class of all formulae which contain only
monadic predicate letters and no function symbols.

II. The EA satisfiability case (the AE provability case). The class of
all formulae in the prenex form with prefixes of the form (Ey1)
(Ey,n)(xi) (x.), m, n > 0, and no function symbols [or the form
(y1) (y,n)(Exi) (Exn) for provability].

III. The conjunctive satisfiability case. Every formula in the prenex
form with a matrix which is a conjunction of atomic formulae and their
negations. (Equivalently, the disjunctive provability case.)

IV. The Skolem case. Every formula in the prenex form with no func-
tion symbols such that it has a prefix ending with (Eyi) (Ey.), n > 0,
and every atomic formula occurring in the matrix contains either one
of the variables yi , , y. , or all the independent variables. [For
provability, (y') (y.) at the end.]

V. The EA2E satisfiability case (the AE2A provability case). Every
formula containing no function symbols in the prenex form with a prefix
(Ey11) (Ey,n1)(x1)(x2)(EY7.2) (EYn2).

VI. The Ackermann case. For satisfiability, every formula which con-
tains no function symbols, no equality sign, only a single dyadic predi-
cate (G say), and has the form (x)(Ey)Gxy & (x1) (x,n)Mxi xn, ,

m < 4, M quantifier -free.
In addition to these, two other cases may be mentioned :
VII. The AiElAi satisfiability case. Every formula with the prefix

(xi)(Ey)(x2) and with no function symbols.
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VIII. The Surdnyi normal form case. For satisfiability, every formula
which has no equality sign, no function symbols, only dyadic predicate
symbols, and has the form (x1)(x0(x3)Mx1s2x3 & (si)(x2)(EY3)Nxix2Y3,
M, N quantifier -free.

It may be noted that in all the cases, with the single exception of III,
no function symbols are permitted. Indeed, very little is known about
the decision problem of formulae containing function symbols (compare
Ref. 3, pp. 98-107). Unless otherwise stated, we shall always assume
that no function symbols occur.

In what follows, cases I and VI will not be considered. So far as the
monadic case without equality (a subcase of I) is concerned, it is possible
to obtain a decision procedure from one for case II. Some of the prob-
lems suggested by the Ackermann case are also encountered by the
A 1E1AI case, while other implications of this case seem to call for a
closer examination of certain arithmetic predicates.

Formulae under case VIII form a reduction class in the sense that
there is an effective procedure by which every formula, possibly con-
taining = and function symbols, can be reduced to one in the class with
satisfiability preserved (Ref. 2, p. 60). It follows that there exists no
decision procedure for this case. It is, however, desirable to find some
"semidecision procedure" for the class which is a decision procedure for
some subclass of it that is not specified explicitly in advance. It is thought
that such semidecision procedures are a useful way of extending the
range of formulae decidable by a predetermined finite set of procedures.
A brief discussion is included in Section IV to point to the sort of thing
which can be done along this line. It should be of interest to design semi -
decision procedures for case VIII, as well as for other reduction classes.

The case VII is perhaps the best known unsettled case; it has been
mentioned in various connections (see, e.g., Ref. 11, p. 576 and Ref. 12,
p. 420). In Section IV a procedure will be given which may be a decision
procedure for the whole case but has only been shown to terminate for
certain special cases. A proof of finiteness of the procedure is wanting.
It is thought that, incomplete as the solution is, it is quite suggestive
for further works on the decision problem. Some rather amusing com-
binatorial problems are also related to the considerations on this case.

An alternative decision procedure for the much -studied case V will
be given in Section III in the equivalent form A2E (for satisfiability).

The Skolem case will be examined in considerable detail in Section II,
using ideas proposed by Skolem4 (p. 138) and Church6 (p. 264). Remarks
relevant to machine realizations of the procedure will also be included.

The Skolem case includes the following special cases:
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IVa. The 211E satisfiability case. Because every atomic formula has
to include some variable and there is only one independent variable.

IVb. For satisfiability, every formula whose prefix ends with (Eyi)
(Eyn), and in which every atomic formula contains at least one of

the variables yl , , y..
IVc. For satisfiability, every formula whose prefix is

(Eyil) . . (Ey.9(x1) (x,) (Ey12)  (Ey k2)

and in which every atomic formula contains either all of x1 , , x or
at least one of y12, , yk2-

IVd. For satisfiability, every formula in the Skolem normal form,
i.e., with prefix (x1) (x.) (EN) (Ey.), such that every atomic
formula contains at least m distinct variables.

For the extensive literature on the decision problem, the reader is
referred to the bibliographies in Refs. 2 and 3. The writer has not been
able to study carefully much of the relevant literature, and is not certain
that the procedures described in Sections II and III may not turn out
to be inferior to existing ones. Recently, the writer noticed that ideas
along the line of the solution of the E1A provability case given in Section
3 of Part I' are contained in Skolem's writings (e.g., Ref. 4, p. 135).

Of the two remaining cases, II and III, some brief comments will
suffice.

1.5 Two Simple Cases

The EA satisfiability case II has agreeable decision procedures not
dependent on the fundamental theorem of logic (see Ref. 13, p. 13). It
is also easy to devise a decision procedure on the basis of the fundamen-
tal theorem. Consider

1.5.1 (Ey') (Ey,)(L1) (s)Myi  x.

This is in fact equivalent to:

1.5.2 M1 & & Mk, k = ?re, or 1 when m = 0.

In fact, this is a limiting case of the fundamental theorem because no
Skolem functions are needed, so that the m constants for the initial
variables are all we need for fabricating a model. In other words, either
the negation of 1.5.2 is a quantifier -free tautology, and the negation of
1.5.1 is a theorem; or 1.5.2 has a model, and 1.5.1 has a model too. The
presence of the equal sign is permitted, but the presence of function
symbols in 1.5.1 would invalidate the procedure.
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The conjunctive satisfiability case III was originally solved by Her -
brand (Ref. 5, pp. 44-45). Suppose the matrix is:

1.5.3 Al &  & A m & &  & ,

or, in a different notation:

1.5.4 Ai , , A m --E* B1 , Bn

Assume first that neither equality nor function symbols occur. If no
predicate letter occurs both on the left side and on the right side, then
we can simply choose to make all predicates occurring on the left side
true of all numbers and those on the right false for all numbers, and then
the infinite conjunction corresponding to the given formula is true under
the interpretation.

Whenever there is one clause on the left and one on the right which
contain the same predicate letter, e.g., Ai is Gabc and B; is Guvw, we
compare them and ask whether it is possible to assign the same integers
to their arguments in some M8 and Mt respectively. If the answer is
yes, the original formula can have no model, because the infinite con-
junction must be always false. If the answer is no for every such pair,
then the original formula has a model.

To compare A i and B; , we examine the three pairs of corresponding
variables. If both variables in some pair are distinct dependent vari-
ables, then the two clauses Ai and B; can never get the same numbers.
When this is the case for none of the pairs, we can decide the question
by asking whether there are positive integers s, t such that a(s) = u(t),
b(s) = v(t) and c(s) = w(t), where, for each variable a in the original
formula, a(n) is a function giving the number which replaces a in M.
It is possible to give a scheme to generate such function for each given
formula. When there are solutions for some pair of clauses, the original
formula is not satisfiable.

If the formula 1.5.4 contains function symbols but not =, then the
comparison of Ai and B; has to take functions into considerations some-
times. We may have to ask whether f(a(s)) = g(u(t)), instead of a(s) =
u(t), has a solution. In such cases, there is a solution only when f and g
are the same function, because otherwise we can always give different
values to f(a(s)) and g(u(t)) to avoid the incompatibility of M8 and Mt

When the equals sign also occurs, we have to list all the equations
among A1 , , A m , if there is any, and complete the list by using
transitivity. If there are none, we need only to proceed as before, except
that we can also reject satisfiability on the ground of, e.g., having an
equation u = v among B1 , , B , and u(p) = v(p) has a solution in
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p. In the general case, we must compare A i and B5 , which have the
same predicate letter, in a more complicated manner. One way to do
this is to give an effective survey of all the equalities obtainable in
1111 , , M, , for every t. And then the question of comparing Gabc
and Guvw is reduced to the following: whether there are p, q, t such
that, with the help of the equalities obtainable from M1, , Mr , we
have a(p) = u(q), b(p) = v(q), c(p) = w(q). Since these considerations
are only subsidiary for the main purpose of the paper, details for this
and other steps sketched above will not be supplied.

II. THE SKOLEM CASE

2.1 Outline of a General Method

The subcase IVb, where every atomic formula contains at least one
of the last string of dependent variables, is particularly simple. Thus,
in every Mk , each such variable always gets replaced by some new
number so that no atomic formula in Mk can have occurred in any of
1111 , , Mk_1. Hence, a formula of such a form is satisfiable if and
only if -,M1 is not a quantifier -free tautology.

In the general Skolem case, we make use of the definition of sections
given above in 1.3.11. Let (aik, , a') be the p-tuple which replaces
the dependent variables in M to get Mk 

Given any member Mi of the nth section, the only related instances
in the nth section are those Mk for which (aik, , apk) is a permutation
of (al', , a;), and the only related instances in the (n 1)th section
are those Mi for which (a15, , ai,i) include only numbers occurring
in Mi and at least one number not in the set { chi, , api}.

Hence, it is possible to get, a decision procedure by determining
whether there exists any set of possibilities which includes models for
the instances of the first section, as well as models for all related in-
stances Mk and 315 for every model for Mi in the set.

When the formula is in the Skolem normal form or the form of IVc,
somewhat more is true:

2.1.1 If M5 belongs to the (n 1)th section, then it can have common
atomic formulae with only at most one 1121 in the nth section.

This is so because each atomic formula in M5 either contains a new
number not occurring in any member of the nth section, or otherwise
contains all of I chi, , apil with at least one number (say as') which
appeared for the first time in one specific member (say Mi) of the_nth
section. In the first case the atomic formula in M5 does not occur in any
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member of the nth section. In the second case, Mif can contain no com-
mon atomic formula with any member of the nth section except possibly
Mi , since ati does not occur in any of the other members of the nth
section.

Detailed considerations will be confined to the treatment of a simple
special case.

2.2 An Explicit Procedure for a Special Case

We consider a very simple special case in which the matrix contains
no equals sign (and of course no function symbols), and a single dyadic
predicate G:

2.2.1 (x)(y)(Ez)Mxyz.

As an illustration, we use the negation of Example (2) of Part I

2.2.2 (s)(y)(Ez)[(Gxy & Gyx &

v (Gxz & Gzy & Gzz & &

In an alternative notation, the matrix is:

2.2.3 Gxy,Gyx -14 Gxz,Gzy,Gzz;
Gxz,Gzy,Gzz ± Gxy,Gyx.

We construct a truth table of all the possibilities which can satisfy
the above matrix :

2.2.4 Gxy Gyx Gxz Gzx Gyz Gzy Gzz

t t f f f
f f t t t

The blanks may take either t or f as values. Hence, there are eight rows
in all.

For the prefix (x)(y)(Ez), the numbers to substitute for (x,y,z) in
Ml , M2 M3 M4 , etc., are (1,1,2), (1,2,3), (2,1,4), (2,2,5), etc. In order
to decide whether a formula of the form 2.2.1 has a model, we ask whether
it is possible to make M112, M123, M214, etc., simultaneously true, or,
in other words, whether we can find for each Mi one row from the above
table according to which Mi is true, such that these infinitely many rows
are all compatible in the sense that the same atomic formula always
gets the same truth value (t or f).

Among the number triples we can distinguish two classes, those in
which x and y get the same numbers, such as (1,1,2), and those in which
they get different numbers, such as (2,1,4). The conditions under which
a model is possible are roughly: (i) to satisfy Maab, a row in the truth
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table has to behave in a way that x and y are interchangeable; (ii) for
each row satisfying Mabc, there must be a related row satisfying Mbac;
(iii) for the two types of row, two corresponding patterns of continua-
tion must be possible, e.g.,

M123

M112-
-M225

M136

M123- -M238

-M33(10)
These conditions can be formalized more exactly and applied, in par-

ticular, to show that 2.2.2 has a model, and therefore its negation is not
a theorem. For this purpose, we assume a formula of the form 2.2.1 for
which a truth table T like 2.2.4 is constructed. When, for example, Gxy
in a row R of T gets the same value as Gzz in a row S of T, we shall use
the brief notation R, = Sz, .

2.2.5 A row S in the table T is a uniform row if Si,, = Sy. , Sxz = Syz ,

Szx = Szu .

Clearly, for a row to satisfy /11112, it is necessary that it be uniform.
If there is no uniform row, then there is no model for the original for-
mula.

2.2.6 A row S in the table T is an heir of a row 1? in T if S is a uniform
row and Rzz = Sxy .

2.2.7 A row in T is trivial if it has no heir.

Since a row having no heir cannot be continued, we may cross out all
trivial rows and be concerned only with nontrivial rows. This is not
theoretically necessary because further requirements would cross out
trivial rows anyhow, but it makes for efficiency.

2.2.8 A row R in the table T is an ordinary row if there is a row S such
that Rxy = Su. , R,,x = Sry , R., = Syz , Rz. = Szy Ryz = Sxz , Rzy =
Sz. . R and S are said to be mates of each other.

This is the condition under which R and S can satisfy (M123, M214)
or (M214, M123) respectively.

In the table 2.2.4 for the formula 2.2.2, it is easily verified that only
the two following rows are uniform rows or ordinary rows:

Gxy Gyx Gxz Gzx Gyz Gzy Gzzat t f f f f f

f3 f f t t t t t
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In fact, a and /3 are the only uniform rows, as well as the only ordinary
rows. Each of a and /3 is only a mate of itself.

2.2.9 A uniform row R is permanent if (i) it has an heir which is per-
manent, and (ii) there is a permanent ordinary row S such that Ryz =
S, , R = S is said to be a subordinate of R.

2.2.10 An ordinary row R is permanent if (i) it has an heir which is a
permanent (uniform) row, (ii) it has a mate that is a permanent ordinary
row, and (iii) there are two permanent ordinary rows P and S such that
Rx, Rzx = Py. Ryz = S.y Rzy . P and S are said to be
a pair of subordinates of R.

The two definitions 2.2.9 and 2.2.10 embody a simultaneous recursion.
Condition (ii) in 2.2.9 is necessary, if, e.g., /? is to satisfy M112 and S
is to satisfy M123. Condition (iii) in 2.2.10 is necessary if, e.g., R is to
satisfy M123, P is to satisfy M136 and S is to satisfy M238.

2.2.11 The formula 2.2.1 has a model if and only if its truth table T
contains a permanent uniform row.

This assertion will be justified in 2.3. We observe first that both a
and 13 are permanent uniform rows for the example 2.2.2. In fact, we
have various models for the formula, which are determined, in outline,
by the following patterns of continuation :

a - 13-

a

a

13-

a

a-
-13

More exactly, choose, e.g., a as a model of M112. As a continuation
of this, 13 satisfies M123 and M225; since ,8 is its own mate in the sense
of 2.2.8, (3 also satisfies M214. Similarly, since a is its own mate, as a
continuation of satisfying M123, a satisfies M136, M317, M238, M329,
and M33(10). In this particular case, the model 13 of M214 can be con-
tinued in the same way. Moreover, the model 13 of M225 can be contin-
ued by the row a, and, e.g., the model a of M136 can be continued by
the row (3, and so on.

In the general case, a symmetry argument is needed to show that if
a model of, e.g., M123 can be continued, then a model of M214 can also
be continued. For example, if (R, 5) satisfy (M123, M214) respectively,
and (A, B, C, D) satisfy respectively the continuation (21//136, M317,
M238, M329) of 111123, then it is easy to see that (B, A, D, C) satisfy
the corresponding extension of M214. This means that condition (ii)
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of 2.2.10 can be weakened to require a mate that is an ordinary row with
a permanent heir.

The decision procedure implicit in the above definitions may be de-
scribed explicitly thus:

2.2.12 The decision procedure:

1. Construct a truth table T.
2. Find all uniform rows.
3. Cross out all trivial rows.
Let U0 be the set of remaining uniform rows, V0 be the set of remain-

ing ordinary rows. Each time, assume U. and V are given and continue
the following four steps:

4. Eliminate every uniform row from U. which has no subordinate
row in V , thus obtaining U.+1 from U. and V,. .

5. Eliminate from V. every ordinary row which has no mate or no
pair of subordinate rows in V , thus obtaining V4.1 from V .

6. Eliminate every uniform row from U.4.1 which has no heir in U4.1 ,
thus obtaining U+2 from Un+1

7. Eliminate every ordinary row from V.4.1 which has no heir in
U-1-2 thus obtaining Vn+2 from V+1 and U.+2 .

8. The steps 4 through 7 are repeated until one of two things hap-
pens: either at some stage we obtain an empty Ui and an empty Vi ,
then we stop and conclude that the original formula 2.2.1 has no model;
or else, after a whole round of the steps 4 and 7, we find U.+2 and V.+2
remain the same as U and V , then we stop and conclude that the
original formula 2.2.1 has a model.

In practice, it is more efficient to perform, if possible, each of the steps
4 through 8 repeatedly, before going to the next step.

The procedure is clearly finite, since U0 and V0 are finite, and each
round of steps 4 through 8 must reduce the size of U. or V. if the proce-
dure has not come to a stop yet. Moreover, the final sets Ui and Vi must
be both empty or both nonempty.

2.3 Justification of the Procedure

As a Skolem case, the formula 2.2.1 must not contain Gxx and Gyy.
It is, however, not obvious that we are justified in not including two
columns Gxx and Gyy in the truth tables such as 2.2.4. For a model
constructed on the basis of such reduced tables, it is not evident that,
for some positive integer a, Gaa might not be compelled to take on the
value t at one place, and the value f at another. However, we can prove
the following:
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2.3.1 In every model obtained on the basis of a truth table not includ-
ing columns for Gxx and Gyy, for every number a, Gaa is never compelled
to take on two different values.

Take, for example, G22. If Gzz occurs in the original formula, G22 is
compelled to take a fixed value in a model with a row R for M112. In
the same model, if S is the row for M225, then R = S.,, = S.. Hence,
it is harmless that S. and AS are compelled to take the same value as
both Rzz and (or Sy.). In all other cases, the values for G22 can al-
ways be given the value of Rz, because there is no other place where G22
is independently compelled to take a certain truth value.

For the same reason, if neither an atomic formula nor any one ob-
tainable from it by permuting the variables occurs, we may leave out
the columns for them. For example, if Gzz does not occur, we can leave
it out. If neither Gxy nor Gyx occurs, we can leave both of them out.

On the other hand, if, e.g., Gxy and Gzy occur but Gyx does not, we
still must include a column for Gyx. Otherwise, since we do not record
the value of Gyx, it may happen that R satisfies M112, with Rzy = t,
and S satisfies M214 with S, = f. Then no row P can satisfy M123,
because Px is compelled to take both the value t and the value f, and
this is not recorded without a column for Gyx.

To prove 2.2.11, we remark first that there are three types of instances
illustrated by M112, M123, M214. For the first kind, an Mi of the form
Maab, the only M, , j > i, which have common atomic formulae with
Mi are Mbbc, Mabd, Mbae, because these are the only ways in which
both the independent variables x and y can be replaced by numbers
occurring in Mi , and having only one of the two arguments from Mi
yields no common atomic formula. Similarly, if Mi is Mabc, a < b, there
are only five M1 , j > i which have common atomic formula with Mi .
By the symmetry argument preceding 2.2.12, the mate Mbae is also
taken care of.

Hence, if there is any permanent uniform row, we can find a model
for all instances M1 , M2 , etc., such that each has some common atomic
formula with an earlier one, or, in other words, all those occurring on an
infinite tree beginning at M1 . This does not exhaust all the instances.
For example, M14 and M15 [i.e., M34(15) and M43(16)] are not included.
Since, however, they contain no common atomic formulae with the in-
stances already interpreted, we can take two permanent ordinary rows
which are mates and get a model for another sequence of instances. In
this way, it is seen that, if there is a permanent uniform row in the table
T, then one can so interpret the predicate G in the domain of the positive
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integers that the whole sequence M1, M2 etc., are simultaneously
satisfied.

The converse is quite obvious. If there is no permanent uniform row,
then no interpretation of M112 can be continued indefinitely, and there
is an i. such that M1 &  & Mi is true under no interpretation.

2.4 Questions of Efficiency

When doing an example by hand, there are shortcuts we find natural
to use. These may be viewed as more refined methods which can be
mechanized by additional efforts. We give some informal illustration of
the type of quick method we tend to use.

Consider the negation of Example (3) given in Part I:1

2.4.1 (X)(y)(Ez){[Gxy & v Gzz)]
v [(Gxy & Hxy) & v ti Hzz)]}.

In the alternative notation, the matrix of the above formula is:

2.4.2 Gxy -14 Gyz; Gxy -44 Gzz; Gxy,Hxy Hxz; Gxy,Hxy -14 fizz.

The truth table for this is:

2.4.3 Gxy Hxy Gyx Hy.r Hxz Hzx Gyz Gzy Gzz Hzz

a
t
t

a t
Although the formula contains two predicates instead of just one, it

is easy to see that the procedure described above can be extended to
cover the case in a very straight -forward manner.

Since there are many blanks in the table, it is essential for efficiency
that we do not expand the table by filling in the blanks (there would
be 224 rows), until we are compelled to do so. In other words, we try
to carry out the decision procedure by treating each row containing
blanks as a single row and make expansion only when we are not able
to eliminate them as single rows.

We observe that for every row, in particular, every uniform row, Gxy
gets the value t. It follows that row $, or more exactly, all the 27 rows
obtainable from 13 are trivial by 2.2.7, since an heir of /3 must have Gxy
take the value of Gzz in 13, which is f. Hence we may delete row 3 alto-
gether.

In order that row a, or any specification R of a, be permanent (uni-
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form or ordinary), it is necessary, by 2.2.9 and 2.2.10, that there is a
subordinate row S, such that Gary gets the same value in S as Gyz in R,
or RG = Spxy . But this is impossible because R,;, is f in every row
obtainable from a, but Saab is t in every row. Hence, we can delete row a
altogether, and be concerned only with the rows ry and S.

Since Hxy gets t in all the remaining rows and Hzz gets the value f in
5, every row obtainable from S has no heir, and the whole row 5 can be
deleted.

However, no permanent ordinary row can be obtained from 7 alone
because, by 2.2.10, for any such row I? there must be a subordinate row
P such that RHxz = PHxy , but in row -y, Hxz is always f and Hxy is
always t. Hence, there can also be no permanent uniform row, and, by
2.2.11, the formula 2.4.1 has no model. Therefore, Example (3) in Part
I,' the negation of 2.4.1, is a theorem.

Another method of deciding 2.4.1 is the following. We begin with
M1, which is a disjunction of conjunctions, and choose Mi , M.; , etc.,
which contain common atomic formula with M1 , in the hoge that
M1 Sr Mi & M1 & as multiplied out into a disjunction of conjunc-
tions will include in each conjunction some atomic formula and its
negation. The process may have to be continued.

As we observed before, only M2 M3 M4 can have common at(lic
formulae with M1. Of these three, on account of the special structure
of 2.4.1, M3 has no common part with M1 . Hence, we need to consider,
to begin with, only M1 , M2 , M4

(i) (ii) (iii) (iv)

M112 Gll -14 G12; G11 G22; G11, H11 H12; G11, H11 -14 H22
M123 G12 -1-> G23; G12 -1-> G33; G12, H12 -i-> H13; G12, H12 -4-+ H33
M225 G22 -44 G25; G22 --1-* G55; G22, H22 44 H25; G22, H22 -14 H55

By the row for M123, (i) of M112 can be deleted because (i) contains
P%.,G12 (i.e., after -14), while each clause in the row for M123 contains
G12. It can be seen then that every row in column (i) can be deleted
in the same way. Similarly, (ii) of the row for M112 can be deleted
because it contains 7-,G22, while each clause in the row for M225 con-
tains G22; therefore, the whole column (ii) can be deleted eventually,
and we need only consider the columns (iii) and (iv). But then (iii) of
the row for M112 can also be deleted because it contains ''H12, and
all the remaining columns of the row for M123 contain H12. Finally,
we have only column (iv) left. Now, however ''H22 occurs in the row
for M112 and H22 occurs in the row for M225. Hence, the conjunction
of the three rows of column (iv) is a contradiction, and 2.4.1 has no model.
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2.5. The Inclusion of Equality

The decision procedure in 2.2 can be extended to deal with cases where
the equal sign occurs in the given formula:

2.5.1 (x)(y)(Ez)Mxyz, with = occurring.

Additional considerations are needed to take care of the special
properties of = . First we bring Mxyz into a disjunction of conjunctions
of atomic formulae and their negations, in the usual manner. Then we
modify the resulting matrix to take care of the properties of = . (a)
Each conjunction that contains an inequality of the form v v, v being
x or y or z, is deleted. (b) In each conjunction, a clause of the form
v = v is deleted. (c) Within each conjunction, if u = v is a clause with
distinct variables u and v, we add also, as new clauses (if not occurring
already), v = u and the result of replacing any number of occurrences
of u by v (or v by u) in each clause of the conjunction; this is repeated
for every equality until no new clause is generated. (d) Repeat the steps
(a) and (b) on the result obtained by step (c); in addition, any conjunc-
tion which contains both an atomic formula and its negation is deleted.

We now construct the truth table on the basis of the new matrix (in
a disjunctive normal form). Uniform rows, ordinary rows and per-
manence can be defined in a similar manner as before, except that a
uniform row has to satisfy the additional condition that x = y and y = x
both get the truth value t (not only that they just get a same value).
In this way, we can obtain a decision procedure for all formulae of the
form 2.5.1.

It is believed that the same type of consideration can be used to
extend all the cases considered in this paper to include also the equal
sign. In the next two sections, equality will be left out and attention
will be confined to formulae not containing the equals sign (nor, of
course, function symbols).

III. THE A 2E SATISFIABILITY CASE

We give an alternative treatment of this case which, it is conjectured,
is in general more efficient than the method of Schiitte" as reformulated
by Klaua.8 The method will be explained with the special case when only
one dependent variable and only one dyadic predicate G occur:

3.1 (x)(y)(Ez)Mxyz.

The main difference between this case and the case solved in 212
above is that Gxx and Gyy are permitted to occur in Mxyz. As a result,
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for example, M123 may contain common atomic formula with any
Mabc in which a or b is one of 1, 2, 3.

As an example, we choose arbitrarily the following:

3.2 (x)(y)(Ez)fr%.,Gxx & (Gxy D & Gxz & (Gzy D G.ry)].

The matrix may be rewritten as:

3.3 Gxz -44 Gxx,Gxy,Gzy; Gxz,Gxy -14 Gsx,Gyx;
Gxz -'-f Gxx,Gyz,Gzy.

The truth table is:

3.4 Gxx Gxy Gyx Gyy Gxz Gyz Gzx Gzy Gzz
f f t f
f f t f
f t f t

The problem is, as before, to decide whether there is a model that
satisfies M1, M2 etc., simultaneously. The conditions are rather similar
to those in 2.2 except that for any two rows R and S which, say, satisfy
Mabc and Mdef in a model, there must be two rows which satisfy Mcfg
and Mfch in the model. There is also a related requirement for a row
satisfying M1, because the number 1 is never used to replace a depend-
ent variable. The various conditions may be stated:,

3.5 A row R is uniform if R.. = Rxy = Ryx = Ryy ,Rxz = Ryz yRzx = R..

3.6 A row S is an heir of a row R if S is uniform and R. = S.. .

3.7 Two rows R and S form a parallel pair if Rzz = Sy, , Rxy = Sz ,

Rys = Ssy , Rim = S.. , Rzz Syz , Ryz = Sxz Rzx = Szy Rzy S.
TWo rows of a parallel pair are said to be mates of each other.

If R and S are to satisfy Mabc and Mbae, it is necessary that they form
a parallel pair. In general, for a row satisfying Mabc, there must also
be two parallel pairs of related rows satisfying Macd, Mcae, Mbcf,
Mcbg. When a = b, the two parallel pairs become one. This, plus the
requirement that every row in a model must have an heir may be sum-
marized in the following condition.

3.8 A row R is normal if the following conditions are all satisfied:

3.8.1 It has a normal row as a mate;

3.8.2 It has an heir which is a normal row;
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3.8.3 There are two normal rows P and S such that Rz. = RSZ =

Pxy I RIX = PI/X RZZ = Pyy , and R = 8. , 142 = ReY = Syx
Rzz = 8 . Such rows P and S are said to be subordinates of R.

A uniform row is its own mate, although a self -mated row is not al-
ways a uniform row. For a uniform row, 3.8.1 is a redundant condition,
and P and S coincide in 3.8.3. The definition 3.8 of normality is clearly
recursive.

In the table 3.4, we observe that, because Gxx always takes the value
f, Gzz can only take the value fin order that the row has an heir. More-
over, since Gxx always gets the value f and Gxz always gets the value t,
in order that a row has a mate, Gyy must always take the value f and
Gyz always t. Hence, we need consider only the following eight rows
which result from filling the remaining gaps:

3.9 Gxx Gxy Gyx Gyy Gxz Gyz Gzx Gzy

a f f f f t t f f

01 f f t f t t f f

02 f t f f t t f f

a f f t f t t t f

b f t f f t t f t
c f f f f t t t f

d f t f f t t t f
e f t f f t t t t f

Gzz

f

f

f

f
f
f

f

Row e has no mate, beacuse of the columns 5 to 8. Rows c and d have
no mate, because b, the only row satisfying the condition on Gzx and
Gzy, does not satisfy the condition on Gxy and Gyx. Neither row a nor
row b has subordinates as required by 3.8.3. Hence, we have only the
remaining rows a, , 132 to consider.

a is the only uniform row, (th , $2) form a parallel pair, and 02 is both
P and S in 3.8.3 for all the three rows a, X81 , 132 . Hence, we have, for
example:

-(M225, a)

(M112, a)- -(M123, 02)-

L(3/214,130

(M33(10), a)

1-(M135, i32)

L (M316, "31)

L- (1237, 02)

-(M328, 01)
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In particular, (M214,131) can be continued in the same way as (M123,
132). Indeed, continuation in every branch can be made similarly. In
other words, a, /31 , 132 are all normal by 3.8. This, however, does not yet
secure a model for the formula 3.2. There are, for  example, those in-
stances in which (1,5), (5,1), (3,4), (4,3), etc., replace (x,y) of Mxyz; they
also have common atomic formulae with the instances shown in the
above graph.

3.10 A formula 3.1 has a model if and only if (a) it has a nonempty table
of normal rows, (b) this table has a nonempty subtable T' such that:

3.10.1 For every pair (R,S) in T', there is a parallel pair (P,Q) in T'
such that P.. = Rzz , Qz. = S..

3.10.2 There is a uniform row R in T' such that for every row S in T',
there is a parallel pair (P,Q) in T', for which P.. = R.., Qs. = .

These are the additional requirements mentioned after 3.4. In the
example under consideration, the table consisting of all the three normal
rows a, 131, fl2 satisfies the requirements on T'. Hence, 3.2 does have
models. One model for the predicate G is the relation < among positive
integers. That is, however, not the only model, because the model of G
does not have to be transitive. For example, G15 and G51 can be (t,f) or
(f,t) or (f,f).

It can be verified that the conditions in 3.10 are indeed necessary and
sufficient.

IV. THE A1E1A1 SATISFIABILITY CASE

4.1 A Generalized Game of Dominoes

The study of the decision problem of the present case has suggested a
related abstract mathematical problem which can easily be stated in
everyday language. The problem appears to be of interest even to those
who are not concerned with questions in mathematical logic.

Assume we are given a finite set of square plates of the same size with
edges colored, each in a different manner. Suppose further there are
infinitely many copies of each plate (plate type). We are not permitted
to rotate or reflect a plate. The question is to find an effective procedure
by which we can decide, for each given finite set of plates, whether we
can cover up the whole plane (or, equivalently, an infinite quadrant
thereof) with copies of the plates subject to the restriction that adjoining
edges must have the same color.

For example, suppose a set consists of the three plates:
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1

3

A

5

2 2 B 3 3

4

C

4 3 5

1

93

Then we can easily find an infinite solution by the following argument.
The following configuration satisfies the constraint on the edges:

A B C
C A B
B C A

Now the colors on the periphery of the above block are seen to be the
following:

3 5 4
1 1

3 3

2 2

3 5 4

In other words, the bottom edge repeats the top edge, and the right
edge repeats the left edge. Hence, if we repeat the 3 X 3 block in every
direction, we obtain a solution of the given set of three plates. In gen-
eral, we define a "cyclic rectangle."

4.1.1 Given any finite set of plates, a cyclic rectangle of the plates is a
rectangle consisting of copies of some or all plates of the set such that:
(a) adjoining edges always have the same color; (b) the bottom edge of
the rectangle repeats the top edge; (c) the right edge repeats the left
edge.

Clearly, a sufficient condition for a set of plates to have a solution is
that there exists a cyclic rectangle of the plates.

What appears to be a reasonable conjecture, which has resisted proof
or disproof so far, is:

4.1.2 The fundamental conjecture: A finite set of plates is solvable (has at
least one solution) if and only if there exists a cyclic rectangle of the
plates; or, in other words, a finite set of plates is solvable if and only if
it has at least one periodic solution.

It is easy to prove the following:

4.1.3 If 4.1.2 is true, we can decide effectively whether any given finite
set of plates is solvable.

Thus, we proceed to build all possible rectangles from copies of the
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plates of different sizes, using smaller ones first. If 4.1.2 is true, the
process will always terminate in one of two ways : either at some stage
we arrive at a cyclic rectangle and, therefore, the original set is solvable;
or else we arrive at a size such that there is no rectangle of that size in
which adjoining edges always have the same colors. The latter alterna-
tive is in fact a necessary and sufficient condition under which the
original set is not solvable. However, if 4.1.2 is not true, it would be
possible that a set has a solution, but we can never see this fact by the
latter criterion at any finite stage: there would always be the possibility
that for the next size there exist no rectangles with same -colored ad-
joining edges.

There is a naturally uneasy feeling about the effectiveness of such a
procedure. The argument is essentially the familiar one that if a set and
its complement are both recursively enumerable, then the set is recursive.
It shows that the procedure always terminates (provided 4.1.2 is true)
but gives no indication in advance as to how long it might take in each
case.

If 4.1.2 is proved, it seems likely that it would be proved in a stronger
form by exhibiting some simple recursive function f with the following
property. For any set of plates with m distinct colors and n distinct
plates, if the set is solvable, there is a cyclic square of the size k X k,
where k = f(m,n). If that happens, or even if we have not exhibited such
a function f but 4.1.2 can be proved by fairly elementary arguments, we
would have some estimate in advance of how long the procedure takes in
each case.

As it is, we can make the testing procedure quite systematic even
though we do not know whether 4.1.2 is true. The procedure would be a
decision procedure and presumably quite an efficient one, if 4.1.2 is true.
If 4.1.2 should turn out to be false, then the procedure would only be a
semidecision procedure. In fact, it is possible to show that the procedure
does work in several classes of cases, e.g., when a set has unique solution
apart from translations, or whenever either horizontally or vertically no
color can be followed by different colors. But we shall not delay over
such partial results.

If 4.1.2 should be false, then there would be two possibilities: either
the set of all solvable finite sets of plates is not recursive, or it is recursive
but requires a more complex decision procedure.

The problem can clearly be generalized to higher dimensions: for
example, to cubes with colored surfaces instead of squares with colored
edges.

We return now to the A IEV1 1 satisfiability case.
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4.2 Preliminary Definitions and an Example

The general form of the case is:

4.2.1 (X)(Ey)(z)Mxyz,

where M is a quantifier -free matrix containing neither function symbols
nor the equality sign. From the fundamental theorem, it follows that
4.2.1 is satisfiable (solvable) if and only if each finite subset of the infinite
set of matrices Mii'j (i,j = 1, 2,  ) is solvable (not contradictory).
Since the second number is always the successor of the first, we shall
write Mij for Mii'j.

We illustrate the general case by considering the special case where
Mxyz contains only a single dyadic predicate G. The negation of Example
(4) given in the introduction of Part will be the concrete example:

4.2.2 (x)(Ey)(z)[Gxx & Gxy & (Gyz Gxz)].

In the alternative notation, the matrix is

4.2.3 Gxy,Gxz Gxx; Gxy Gyz,Gxx.

The truth table is:

4.2.4 Gxx Gxy Gyx Gyy Gxz Gzx Gyz Gzy Gzz

f t
f t
f t

Since there are five blank columns, there are altogether 3 X 25 or 96
rows. The problem now is to decide whether we can choose one row for
each matrix Mij(i,j = 1, 2,  ) such that, taken together, all the
matrices come out true. This really involves both the problem of finding
the pieces and the problem of putting them together. Thus, if j is dis-
tinct from i and i', any row can satisfy Mij alone, if we substitute i,

j for x, y, z in the truth table; but a row can satisfy Mij when j is i
or i' only in case certain related columns get the same truth values. This
is the problem of finding the pieces. When there are such pieces, there is
the harder problem of putting them together. For example, if there are
rows satisfying M11 and M12 separately, there may yet be no pair of
rows which satisfy M11 and M12 simultaneously because the common
atomic formulae in both matrices must get identical values.

Since the putting -together part is quite complex, it seems natural to
combine small pieces into blocks first. For this purpose, we consider row
pairs and row quadruples (i.e., pairs of pairs).
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D4.1 Two rows P,Q in the truth table T form a basic row pair (P,Q)
if, for some i, they can simultaneously satisfy and Mii respec-
tively. More explicitly, the conditions are:

i. Plly = Pyz = Pzy = Pzz , Pxy = P xz ,Pyx = P zx;
ii. Qxx = Qxz = Qzx = Qzz , Q., = Qzy , Qyz = Qyz ;

iii. Pxx = (4= ; Pxt, = QxY ) Ptix = Qms I PM/ = (2111/
In the table 4.2.4, it is easy to verify that there are only two basic

row pairs (a,/!?) and (7,6):

4.2.5 Gxx Gxy Gyx Gyy Gxz Gza: Gyz Gzy Gzz
a f t f f t f f f f

i3 f t f f f f f t f
.y f t f t t f t t t
(5 f t f t f f f t f

Obviously basic row pairs are necessary for building a model of 4.2.1.
In fact, given any formula 4.2.1, if its truth table T contains no basic
row pairs, then it has no model and, indeed, the conjunction of M11 and
M12 is a contradiction.

We shall consider pairs of row pairs, called row quadruples, which are
useful in chaining row pairs together.

D4.2. Given any two row quadruples (A,B; C,D) and (P,Q; R,S), if
C = P, D = Q, then the former is a predecessor of the latter and the
latter is a successor of the former.

D4.3. Four rows P, Q, R, S form a basic row quadruple (P,Q; R,S) if,
for some i, they satisfy simultaneously Mi'i', respec-
tively, or, more explicitly, if:

i. (P,Q) and (R,S) are basic row pairs;
ii. P = Rr. ;

iii. (P,Q; R,S) has a successor which is a basic row quadruple.
In the table 4.2.4, there is only one basic row quadruple, viz., (a,13,

«,0). The quadruple (a,13; 7,(5) satisfies i and ii, but not iii. It is easy to
see that, given any formula 4.2.1, if its truth table T contains no basic
row quadruples, then it has no solution and, indeed, the conjunction of
M12, M11, M23, M22, M34, M33 is a contradiction.

Clearly, if a row R satisfies Mij' in a model, then there must be one
row S which satisfies Mji, one basic row quadruple (A,B; C,D) which
satisfies Mi'i", Mi'i', and one basic quadruple which satisfies
Mjj', Mjj, Mj'j", Mj'j'. In particular, when j is i, we get the basic row
pairs which occur in some basic quadruple.
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D4.4 Two rows R,S form an ordinary row pair (R,S) if

i. Rxx = Szz Ryz = Szy Rzx = Syz Rzz = Syy ;
ii. There is a basic quadruple (A,B; C,D) such that 'Ix. = Rxx ,

A xi, = Rxy Ayx = Ryx Ayy = Ryy ;
iii. There is a basic quadruple (P,Q; K,L) such that Pzz = Szz ,

P zy =SxyPyx Syx Pyy = Syy 
In the table 4.2.4, since the only basic quadruple is (a,j9; «A, it is

relatively simple to find all the rows which do occur in ordinary row
pairs. Since every row which is to satisfy some Mij in any solution must
occur as one row in some ordinary row pair, we tabulate all such rows
together and, from now on, confine our attention to them. It happens in
this example that all these rows have in common five columns:

Gxx Gxy Gyx Gyy Gzz
f t f f f

Therefore, we only have to list the remaining columns:

4.2.6 Gxz Gzx Gyz Gzy ordinary
pairs

a t f f f (a,f3)

0 f f f t (3,a)

51 t t t t (51 Si)

6 2 f f f I (62 62)

(5,, t f f t (53 53)

5, t I t f (51 55)

(55 f t f t (65 64)

66 t f t t (56 57)

67 t t f t (57 56)

In fact, if only the four columns have to be considered, there are 12
rows in the original table 4.2.4, and the two rows (R,S) in each ordinary
row pair satisfy the condition: Rx. = SZy , R.. = S,, . Hence, it is easy
to get the above table. Briefly, the relevant information for the example
is the nine ordinary pairs given above and the basic quadruple (a,ti; a,0).

Thus far we have been concerned only with rather elementary proper-
ties of the rows in the truth table. The more involved part is to design a
scheme of extending recursively the construction of models. In order to
explain how this is done, we introduce a chart.
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4.2.7 Chart for (x)(Ey)(z)Mxyz:

Basic Pairs Cyclic Pairs Common Row Pairs

Mii) (Mii",Mi'i) (Mi(i" k), M(i' k)i)

(12, 11) --> (13, 21) (14, 31) (15, 41) (16, 51)

1

(23, 22) > (24, 32)

I

(34, 33) > (35, 43)

I /it(45, 44) (46, 51)

I ///
(56, 55) :

I

(25, 42)--> --+

(36,

:

53)->
/

--)

(26, 52) ---t i
  

In the chart, the ordinary row pairs satisfying (Mij', Mil) are divided
into three classes: basic when i = j, cyclic when i' = j, common other-
wise. The general plan of the procedure is as follows. The existence of
basic row quadruples assures that we can find a model for all the matrices
M12, M11, M23, M22, etc. in the first column. Similarly, we can define
cyclic quadruples to give an effective condition for the existence of a
model for all matrices appearing in the second column of the chart, and
so on. But in order that these models can be combined to give a model
for all the matrices and therewith for a given formula 4.2.1, each column
must be related to the column on its left in a suitable manner. This
situation with two infinite dimensions seems to be the chief cause of the
complexity of the A 21,41 case.

In the chart of 4.2.7, each row pair (R,S) that is not basic is subor-
dinate to a quadruple (A,B; C,D) made up of the two row pairs (A,B),
(C,D) on its left with arrows leading to it. The quadruple is said to be
superior to the pair (R,S).

D4.5 An ordinary row pair (R,S) is a subordinate of a quadruple
(A,B; C,D) if

i. R,, Az. , Rzy = Ax , Rx = A yx Ryy = A,,, Ryz = C rz.
Rzy = Cxx Rzz = CzZ ;

ii. Sxx = Dxx , Sxy = Dxy S,, = Dyx Sxz = AZX SZX = XZ

A quadruple (R,S; P,Q) is subordinate to a row sextuple (A,B; C,D;
K,L) if (R,S) is subordinate to (A,B; C,D), and (P,Q) to (C,D; K,L).

D4.6 Two rows R,S form a cyclic row pair (R,S) if
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i. (R,S) is an ordinary row pair;
ii. Rxy = Szx , Ryx = S.z , Ryy = SX2 R,, Sxy Rzy = Syx 
Obviously, given 4.1, if its table contains no two rows forming a cyclic

pair, then the conjunction, briefly Ce of M12, M11, M23, M22, M13,
M21 is a contradiction.

In the table 4.2.6, there are, among the nine ordinary row pairs, only
one that is cyclic, (84 , 36). Since there are only one basic quadruple,
each has only one superior. This is of course not always the case, it is
only due to special features of the example 4.2.2.

In order to find out whether there is any succession of cyclic pairs
which will satisfy all rows of the column for cyclic pairs in the chart, we
study cyclic quadruples.

D4.7 Four rows P,Q,R,S form a cyclic quadruple (P,Q; R,S) if
i. (P,Q) and (R,S) are cyclic row pairs;
ii. Q.. = R.. , Q,, = Rry Qyx = Ryx Qyy = Ryy ;
iii. There is a basic sextuple (A ,B; C,D; K,L); which is respectively

superior to (P,Q; R,S);
iv. (P,Q; R,S) has a successor which is also a cyclic quadruple.
Obviously, given a formula 4.2.1, if its table contains no rows that

form a cyclic quadruple, then the conjunction of Cs M34, M33, M24,
M32 is a contradiction.

The existence of a cyclic quadruple certainly siRsures that we can
satisfy all the rows of the second column of the chart simultaneously. It
assures a bit more : the two pairs (P,Q), (R,S) of a cyclic quadruple are
always compatible with any three pairs (A,B), (C,D), (K,L) which form
two basic quadruples, respectively superior to them. This is, however,
insufficient to secure that all the rows in the first two columns of the
chart can be simultaneously satisfied, because it is possible that no
cyclic quadruple beginning with (R,S) is subordinate to any quadruple
beginning with (K,L). In other words, the blocks might not fit together.

As it happens, this problem does not arise with the example 4.2.2. Since
there is only one cyclic pair (84 , 85), there can be at most one cyclic
quadruple, viz, (84 , 85 ; 84 , Q. It can be verified by D4.7 that this is
indeed a cyclic row quadruple. Since there is only one basic quadruple
(a,i3; a,#), we see immediately that by using (a,#) for (MU', MU)
(i = 1, 2,  ) and (84 , 4) for (Mii",Mi'i) (i = 1, 2,  ), all these
matrices (of the first two columns of the chart) are simultaneously satis-
fied. Moreover, this is the only possible model for the two initial infinite
columns of matrices.

We shall first define common row quadruples, settle 4.2.2, and then
come back to the more general question.



30 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1961

D4.8 Two ordinary row pairs (R,S), (P,Q) form a common quadruple
(R,S; P,Q) of order k [i.e., in the (2 -I- k)th column of the chart] if

i. When k = 1, there is a cyclic row sextuple which is superior to
(R,S; P,Q); or when k = n 1, for some positive integer n, there is a
common row sextuple of order n which is superior to (R,S; P,Q).

ii. (R,S; P,Q) has a successor which is a common quadruple of order k.
By this definition, we can successively find the common row quad-

ruples of orders 1, 2, etc. In the actual procedure, we examine each time
to determine whether we have already enough information to decide the
original formula. Only when this is not the case do we find the common
quadruples of the next order.

In the case of 4.2.2, since (34 , S6 ; 64 , 66) is the only cyclic quadruple,
it is easy to verify, by 4.2.6 and D4.5 that (34 , 86 ; 84 , 85) is the only
common quadruple of order 1. Thus, by D4.5, if (R,S) is subordinate to
the cyclic quadruple (84 , 86 84 65), Ryz = (84)zz = t, Rzy = (84)z. =
and AS.z = = f, S.. = (34).z = t. By 4.2.6, (R,S) must be (84 66).

From this, it follows that, for every n, there is exactly one common
quadruple of order n, viz. (84 , 84 , 85). This is an immediate conse-
quence of D4.8 and the above transition from the cyclic column to the
first common column in the chart. Hence, we have obtained a model for
4.2.2. It is easy to verify that the model for G is just the usual ordering
relation < among positive integers.

This completes the solution of the example 4.2.2, which, however, is
not a sufficient illustration of the general case. We have to discuss a
procedure by considering more complex situations.

4.3 The Procedure

One possible procedure is to add one infinite column at a time. Thus,
it is possible to represent all possible solutions of each column by a
graph, and to represent the solutions satisfying all the initial n' columns
by a finite set of graphs if it is possible so to represent all solutions satis-
fying the initial n columns. Since the common columns enjoy a measure
of uniformity, simultaneous solutions for all the columns would be as-
sured if suitable repetitions occur. An exact explanation of such a pro-
cedure would be quite lengthy. In any case, a successful choice of pat-
terns of repetition has not been found to assure that for every solvable
table, such repetition always occurs.

Instead of elaborating the above procedure, we transform the problem
to something similar to the abstract question of 4.1. Thus, given any
formula of the form 4.2.1, we can, as in 4.2, construct its truth table and
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find all the common row pairs in the table. Among the common row
pairs, some are also cyclic row pairs and some are also basic row pairs.

If now we take the common row pairs a, b, c, d, etc., as elementary
units which are to fill up the infinite quadrant as shown in the chart
given under 4.2.7, then the following scheme appears to be feasible. Sup-
pose the points in the infinite quadrant are to be filled by aii , i,j =
1, 5, , then we may consider instead all the 2 X 2 matrices:

for all i,j = 1,2, 

In other words, given the common row pairs, we can form all possible
2 X 2 matrices of them which satisfy the relations of subordination.
These 2 X 2 matrices are then the basic pieces from which we are to
obtain an infinite solution subject to the conditions: (a) consecutive
rows or columns from two matrices are the same; (b) only basic and
cyclic row pairs are permitted in the first two columns.

It can be verified that the problem of finding a model for the original
formula is equivalent to that of finding a way to fill up the infinite
quadrant by such derived 2 X 2 blocks of row pairs.

The abstract problem is: given any finite set of 2 X 2 matrices of the
form

(a c\

b cll'
to decide whether it is possible to fill up the infinite quadrant with copies
of these pieces. This is not quite the same as the problem of colored
plates described in 4.1, because here what is done amounts to coloring
the corners, or imposing connections between neighboring sides within a
same square.

Any set of such 2 X 2 matrices can also be construed as a set of colored
plates. Conversely, given any set of colored plates, we can also find in a
systematic manner a corresponding set of such matrices such that the
solvability problems for them are equivalent. For example, we may
replace a colored plate by a block of nine 2 X 2 matrices so that the
restriction on neighboring sides no longer operates.

It is possible to use a procedure similar to the one described roughly
in 4.1. Some change is needed to take care of the additional conditions
on the first two columns. Thus, a sufficient condition is to get a cyclic
rectangle m X n on which we can attach a frill of two columns on the
left to obtain a rectangle m X (2 + n) such that: (a) the tops of the
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first two columns are the same as the bottoms; (b) the additional re-
quirements of being basic or cyclic are satisfied by the frills.

4.4 Further Problems

The discussions so far seem to have barely scratched the surface of a
group of rather difficult problems, among which the basic one is probably
that of measuring the complexity of formulae in the predicate calculus.

One may measure the complexity of a formula in many different ways.
The "simplest" model of a formula may be taken as a semantic measure.
The quantifier prefix or graph of a formula may be taken as a syntactic
measure. In addition, for formulae with a same prefix, we may also
classify the possible matrices by the truth tables. Our knowledge on
using these criteria to give detailed classifications seems very limited.
One example of the ignorance is the following open problem (Ref. 2, p.
177) : whether there is any class of formulae which is neither decidable,
nor a reduction class. It appears reasonable to conjecture that there
must be such classes, although the first examples which one will get are
likely to be artificial ones.

Some of the reduction classes are, formally speaking, surprisingly
simple. For example, from the Suranyi normal form given above as case
VIII, it follows that, for satisfiability, one reduction class is:

4.4.1 Formulae with prefix (x)(y)(Ez)(w)Mxyzw, where M contains
neither function symbols, nor =, nor predicate letters which are not
dyadic.

Since each matrix M is effectively determined by a truth table on the
atomic formulae in M, the class may be viewed as a union of a simple
sequence of finite classes C1, C2 , etc., where C,, is the subclass of formulae
each containing exactly n predicates (or, equivalently, the first n pred-
icates in some enumeration). There is a sense in which the decision
problem for each finite set of formulae is solvable, and yet usually we as a
matter of fact only solve the problem as a corollary to a solution for some
infinite class.

To obtain a semidecision procedure for the class VIII or 4.4.1, we
need more complicated arrangements of triples or quadruples of positive
integers than the case A.I.E11A . Take, for example, the class in case
VIII. We have to consider not only the triples (a,b,c) with b = a', but
all the triples for the first half of the formula, and among them those
for the A2E1 case are used simultaneously for the second half of the
formula.

An example is :
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4.4.2 (x) (y) (z) (f,}Gxy v v Gxz) & (x)(y)(Eu)(,-.}Gxx & Gyu).

If we use the Skolem function g of the A2E1 case, we can rewrite the
above as

4.4.3 v v Gxz) & & Gygxy).

In general, we are concerned with deciding the satisfiability of formu-
lae of the form

4.4.4 Mxyz & Nxygxy.

As (x,y,z) runs through all triples of positive integers, we get an infinite
sequence from 4.4.4, and a semidecision procedure is to decide, for
certain cases, whether such an infinite sequence can be simultaneously
satisfied.

For example, we may throw together all permutations of a given
triple, and confine ourselves to the triples (a,b,c) with a < b < c, as-
signing each of them a lattice point:

f(x,y,z) = (x - 1, z - x, z - y),
f-1(x,y,z) = (x + 1, x + y, x + y + z).

The correlation uses all lattice points (x,y,z) of nonnegative integers.
For instance, (1,3,5) gets the point (0,2,2).

We might try to create different types of cubes each with eight ver-
tices from (i,j,k) to (i',j',k') and piece them together. But it is not easy
to see how to find a procedure analogous to that described in 4.1 which
would at the same time take into consideration the second half of the
formula.

V. A PROOF PROCEDURE FOR THE PREDICATE CALCULUS

5.1 The Quantifier -Free Logic F

Given the definition of formulae in 1.2, we can define sequents, ante-
cedents, consequents, as in Ref. 13, p. 5. The sequents in F are those
containing no quantifiers and the rules for F are exactly the same as
those for P. (Ref. 13, p. 8), except for containing not only variables but
also functional expressions as terms.

Example 1.1 x', x = x + 1 1 x 1

By the rules P2a and P2b (Ref. 13, p. 5), this is a theorem if the
following is:

1 = x + 1, x' = x + 1 -4 1 =x'.
This is a theorem by P7 and P8 (Ref. 13, p. 8).
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Example 2. x y' = (x y)', y x y, y' = v' y = v, v =
x y ---> y' x y

By P2a, P2b, and P5b, this is a theorem if the following two sequents
are:

i. y' = y)', y v,v=x+y,y' =x-f-y-y=x+y;
x y' = (x , v = x y, y' = x y' - y' = v', y = x + y

i. is a theorem by P7 and P8 since we can replace y and x y by v.
ii. is also a theorem because we can replace v' by (x y)' and then

y' by x y' in the first clause of the consequent and the result is a
theorem by P1.

These rules in fact yield a decision procedure for all quantifier -free
sequents. In order to see this, we use a more efficient method to speed
up applications of P7 and P8.

Given an atomic sequent which contains equality but is not yet a
theorem by P1 or P7. List every pair (a,b) if a = b occurs in the ante-
cedent. Extend repeatedly the set of pairs by symmetry and transitivity.
Join each pair by the equals sign and add all of them to the antecedent.
Now compare each clause in the antecedent with each clause in the
consequent to see whether there is a pair of clauses which can be ob-
tained from each other by substituting equals for equals; moreover,
examine each equality in the consequent to see whether it can turn into
a = a by substituting equals for equals. If either case occurs, the
sequent is a theorem. If neither is the case, then we can find an interpre-
tation of the functions and predicates so that the antecedents are all
true but the consequents are all false.

5.2 The Rules for Quantifiers.

In the present formulation of the predicate calculus, one emphasis is
on separating out reversible rules of proof which serve to supply decision
procedures as well, because they have the property that not only the
premises imply the conclusion but also conversely.

The rules governing quantifiers were given in Part I.1*

* "S4. When the input problem contains quantifiers, the following preliminary
simplifications are made: (i) All free variables are replaced by numbers, distinct
numbers for distinct variables. (ii) Vacuous quantifiers, i.e., quantifiers whose
variables do not occur in their scopes, are deleted. (iii) Different quantifiers are
to get distinct variables; for example, if (x) occurs twice, one of its occurrences is
replaced by (z), z being a new variable. This last step of modification is specially
useful when occurrences of a same quantifier are eliminated more than once at
different stages.
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The justification of the reduction to subproblems (Part I, T2.1) is
obvious because all truth -functional rules are reversible and (x)(Gx &
Hx) is a theorem if and only if (x)Gx and (x)Hx both are.

Usually T2.2 (Part I) is true, but restrictions are necessary, as the
following example would show:

(x)(Ey)[(z)Gyz & Hxy].

Although x does not occur in the scope of (z), there is no way to bring
(z) out of the scope of (x) because the variable y ties up the two clauses
in the formula. There are several possible alternatives: one may make
exact the restrictions needed, or record the scope of each quantifier in
the usual manner, or use the easy simplification that when a quantifier
governs a formula with two halves joined by a logical connective but the
variable of the quantifier occurs only in one of the two halves, the
scope is just that half.

The test of connectedness of variables and functors (Part I, T2.3) is
meant as a device to simplify the interconnections between quantifiers.
In particular, the test gives a method for ascertaining that certain ap-
parently complex sequents fall under the AE provability case. In order,
however, actually to bring such a set of sequents into the AE form, we
need in general transformations similar to those used in reducing a
sequent to the miniscope form. Since the process can be tedious, one may
prefer an alternative method of not carrying out the transformation but
merely determining a bound k such that either the original sequent is a
theorem or has a counter -model with no more than k objects. If this
alternative is chosen, a method for calculating the bound k has to be
devised.

In any case, when we have a finite set of atomic sequents and a set of
governing relations among the variables and functors, we should further
simplify the matrix, i.e., the set of atomic sequents by the familiar
methods of dropping repetitions and immediate consequences.

"S5. After the above preliminary simplifications, each problem is reduced to as
many subproblems as possible in the following manner: (I) Eliminate in the usual
manner every truth -functional connective which is not governed by any quanti-
fiers. (ii) Drop every initial positive quantifier (i.e., universal in the consequent
or existential in the antecedent that is not in the scope of any other quantifier)
and treat its variable as free, i.e., replace all its occurrences by those of a new
number. (i) and (ii) are repeated for as long as possible. As a final result of this
step, each problem is reduced to a finite set of subproblems such that the problem
is a theorem if and only if all the subproblems are.

"T2.1 The original problem is a theorem if and only if all its subproblems (in
the above sense) are.

"T2.2 We can separate out Q and its scope from those quantifiers whose varia-
bles do not occur in the scope of Q.

"T2.3 If two symbols, each a functor or a variable, are not connected in the
final matrix, we can always so transform the original sequent as to separate the
two quantifiers which give way to them."
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If there are two subsets of the set of atomic sequents which contain
neither common variables nor common functors, then they can be
separated.

Moreover, each atomic formula that contains neither variables nor
functors can be eliminated by the familiar method of replacing F(p) by
F(t) & F(f). In other words, it can simply be dropped on the ground of
the following consideration. E.g., take

Guv,G11 Gvk.

This is equivalent to the conjunction of:

Guv,t Gvk;
Guv,f Gvk.

But the second sequent is always true and can be dropped; the t in the
first sequent can be dropped, so that we have

Guy Gvk.

After all the above steps, we arrive at a finite set of finite sets of
atomic sequents which, taken together, are equivalent to the original
problem. We may consider each finite set of atomic sequents separately
and proceed according to the governing relations between their vari-
ables and functors.

We can view the set as a formula in the prenex form with a matrix
in a conjunctive normal form. Or, if we prefer, we may replace -* by -14
and construe the variables as universal quantifiers, the functors as
existential quantifiers. Then we get a negation of the formula in prenex
form with a matrix in the disjunctive normal form.

In either case, the remaining problem is to be handled by considera-
tions such as those explained in Sections II through IV.

There is an easily mechanizable procedure by which we can, in theory,
not only prove all provable formulae, but also refute all formulae which
have finite countermodels. All we have to do is test, besides the sequence

312 313 etc., whether a formula is satisfiable in a domain with
one object, or two objects, or etc. For example, given

(x)(y)(Ez)111Xyz, (1)

if some of M112, M123, is contradictory, then the negation of (1)
is a theorem; if relative to some finite domain, (1) can be satisfied, then
the negation of (1) is not a theorem. For example, (1) is satisfiable in a
domain with one object if and only if M111 is satisfiable; with two objects,
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if and only if

or

(x)(y)(Mxyl v Mxy2)

(x)[(111x11 v Mx12) & (Mx21 v Mx22)]

Or

[(Mill v M112) & (M121 v M122)]
& [(M211 v M212) & (M221 v M222)]

is satisfiable.

VI. REMARKS ON MATHEMATICAL DISCIPLINES

Besides the contrast between proving and calculating, there is a con-
trast between symbol manipulation and number manipulation. There
are problems such as proving trigonometric identities, factorization,
differentiation and integration, which all appear to be mechanizable.
In numerical calculations, it appears likely that the process of choosing
one or another method of calculation can also be mechanized in many
cases.

There is the problem of applying the methods considered so far to
deal with concrete examples.

One example referred to in Part I1 (p. 231) is Hintikka's derivation
of a contradiction from his own formal system." Here, intuitive under-
standing is required to select from the set of all axioms suitable members
which are sufficient to produce contradictions. Experience, however,
shows that, even after a reasonable selection is made, to actually give an
exact derivation of a contradiction remains quite a dreary affair. In
such a case, the sort of procedure discussed in this paper can be useful.

In fact, Hintikka uses five axioms to derive a contradiction. Write
briefly:

Hayz for z aSczy&zE y&yE z.
The conjunction of the axioms is:

(Ex)(Ey)(x y) &
(Ea)(Eb)(Ec)(Ed)(y) [y a (y E a = (Ez)Hayz)] &

[y b (y E b = ,.,(Ez)Hbyz)] & (2)
[Y#cD(yE v y=b))]&

[y d (y E d y = c)]).
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The assertion is that (2) leads to a contradiction. In other words, (2)
has no model, and its negation is a theorem of the predicate calculus.
To decide whether this assertion is true, we only have to test (2) by
essentially the method of Section III because (2) can be transformed into
a formula with EA2E prefix. Such a method yields also a proof or a refu-
tation of the assertion that (2) gives a contradiction.

In a different direction, we may consider some simple examples in the
arithmetic of positive integers.

First, we consider the example, x' x. We wish, in other words, to
prove, with the help of induction, that this is a consequence of the
axioms:

x' 0 1,
x' 0 y' --> y.

As a general principle, we try to use induction. Since there is only one
variable, we reduce the problem to:

(x)x' 0 1, (x)(y)(x' = y' x = y) 1' 0 1, (3)

(x)x' 0 1, (x)(y)(x' = y' D x = y), x' x -f x" 0 x'. (4)

These can be dealt with by the program described in Part I, except
that, to avoid confusion, we use now a, b, c, etc., instead of numerals to
replace the positive variables. We have:

1' = 1, = v = 1,
1' = 1 -4 = 1, u,' = v',

u = v, a" = a' -÷ x' = 1, a' = a,
a" = a' --> s' = 1, a' = a, = v'.

These sequents are all true by substitution : 1 for x in the first two; a' for
u and a for v in the last two.

As a somewhat more complex example, we take the commutativity of
addition. In order to prove x y = y x, we may use induction
either on x or on y. We arbitrarily take the earliest variable:

1 ± y = y ± 1,

y = y a a7' +y= y

To prove 1 + y = y 1, we make induction on y:

(5)

(6)
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1 + 1 = 1 + 1,
1+a=a+1-)1+a'=a'+1.

The first is a theorem by the property of equality. To prove the
second, we use another general principle, viz., when a defined symbol
occurs, we make use of the definition. In this particular case, we make
use of the recursive definition of addition; and try to prove

u+1=u',u+v'=(u+v)',1+a=a+1-)1+a'=a'+1.
In order to derive the consequent from the antecedent, we start from

1 + a' and a' + 1, use the equalities in the antecedent to transform
them, and attempt to find a chain to join them. Thus, we may try to
make all possible applications of the three equalities in the antecedent:

(1 + a) + 1--(a + 1) + 1
1 + a'\ (1 + a)'/ (a + 1)' (a')' a' + 1

1 + (a + 1) 1 ± (1 + a)

a' + 1\--(a + 1) + 1-(1 + a) + 1
(a')'-(a + 1)' (1 + a)'-1 + a'

In general, we may begin two trees simultaneously from both sides of
the equality, do not write down any term which has already occurred in
the same tree, and stop when a common term appears on both trees.
When we get to the more complicated situations, we have to investigate
two additional things. First, it would take too long to search through
trees, so that it is desirable to organize available informations in forms
which are more quickly accessible. Second, we may exhaust two trees
and still fail to get a common term. Then we need to prove some lemma
which would join up the two trees.

For example, the above graphs give us a proof of (5). To prove the
other induction hypothesis, viz. (6), we may try to do the same with:

u+ 1 = u', u + v' = (u + v)',a+b=b+a-->a'-l-b=b+ a'

-F b -----(a d- 1) b

b a'\ (b -F a)'\ (a d- 0' a d- b' -a -p (b d- 1)

b + (a + 1) (b + + b) 1

In this way, we have exhausted the applicable cases of the equalities in
the antecedent. Since we have proved the first induction hypothesis (5),
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we can add it to the antecedent. Then we get some further extensions:

(a + 1) + b-(1 + (z) + b,
b + (a + 1)-b + (1 + a),
a + (b + 1)-a + (1 + b).

At this stage, we would ask whether any other given theorem can be
used to join up the two trees for a' + b and b + a', or, if not, what a
reasonable lemma would be. If the associative law has been proved, we
may observe that the missing link is supplied by:

(a + 1) + b = a + (1 + b). (7)

Otherwise we should try to make a "reasonable" selection of some
suitable lemma and prove it. If, for example, we have chosen (7), we
would try to establish it by induction on a or on b.

It is possible that the quantifier -free theory of positive integers, in-
cluding arbitrary simple recursive definitions, can be handled mechan-
ically with relative ease, and yield fairly interesting results. The re-
striction to quantifier -free methods means that we are concerned only
with quantifier -free theorems to be proved without using quantifiers in,
e.g., applying the principle of mathematical induction. It is clear from
works in the literature that this restricted domain of number theory is
rather rich in content. It goes beyond logic in an essential way because
of the availability of (quantifier -free) mathematical induction.

With regard to the general questions of using machines to assist
mathematical research, there is a fundamental contrast between problem
and method. While it seems natural to choose first the objective (e.g.,
number theory or geometry) and then look for methods, it is likely that
a more effective approach is to let the methods lead the way. For ex-
ample, since the known interesting decidable classes of formulae of the
predicate calculus either do not contain function symbols or do not
contain quantifiers, we are led to the simple examples above: quantifier -
free number theory or function -free set theory.

REFERENCES

1. Wang, H., Proving Theorems by Pattern Recognition - I, Comm. Assoc.
Comp. Mach., 3, 1960, p. 220.

2. Suranyi, J., Reduktionstheorie des Entscheidungsproblems, Budapest, 1959.
3. Ackermann, W., Solvable Cases of the Decision Problem, North -Holland, Am-

sterdam, 1954.
4. Skolem, T., tlber die mathematische Logik, Norsk Matematisk Tidsskrift,

10, 1928, p. 125.



PROVING THEOREMS BY PATTERN RECOGNITION - II 41

5. Herbrand, J., Sur le probleme fondemental de la logique mathematique,
Sprawozdania z posiedzen Towarzystwa Naukowego Warszawskiego, Wydz.
III, 24, 1931, p. 12.

6. Church, A., Introduction to Mathematical Logic, Vol. I, Princeton Univ. Press,
Princeton, N. J., 1956.

7. Church, A., Special Cases of the Decision Problem, Revue philosophique de
Louvain, 49, 1951, p. 203; 60, 1952, p. 270.

8. Klaua, D., Systematische Behandlung der losbaren Mille des Entscheidungs-
problems fur den Pradikatenkalkul der ersten Stufe, Zeitschrift fur mathe-
matische Logik and Grundlagen der Mathematik, 1, 1955, p. 264.

9. Dreben, B., On the Completeness of Quantification Theory, Proc. Nat. Acad.
Sci. U.S.A., 38, 1952, p. 1047.

10. Dreben, B., Systematic Treatment of the Decision Problem, Sumner Insti-
tute of Symbolic Logic, Cornell Univ., 1957, p. 363.

11. Schutte, K., Untersuchungen zum Entscheidungsproblem der mathemati-
schen Logik, Mathematische Annalen, 109, 1934, p. 572.

12. Ackermann, W., Beitrage zum Entscheidungsproblem der mathematischen
Logik, Mathematische Annalen, 112, 1936, p. 419.

13. Wang, H., Toward Mechanical Mathematics, IBM J. Res. Dev., 4, 1960, p. 2.
14. Hintikka, K. J. J., Vicious Circle Principle and the Paradoxes, J. Symb. Log.,

22, 1957, p. 245.





Prolate Spheroidal Wave Functions,
Fourier Analysis and Uncertainty

By D. SLEPIAN and H. 0. POLLAK
(Manuscript received August 1, 1960)

A complete set of bandlimited functions is described which possesses the
curious property of being orthogonal over a given finite interval as well as
over (- co , co). Properties of the functions are derived and several appli-
cations to the representation of signals are made.

I. INTRODUCTION

It is pointed out in this paper that the eigenfunctions of the finite
Fourier transform are certain prolate spheroidal wave functions. These
eigenfunctions properly extended possess properties that make them
ideally suited for the study of certain questions regarding the relation-
ship between functions and their Fourier transforms. Here we shall
study the functions in some detail and present some applications to the
representation of bandlimited functions. The property that we shall be
most concerned with is the orthogonality of the functions over two dif-
ferent intervals. The paper' by Landau and Pollak which follows draws
on this material, establishes other properties of the functions and pro-
vides further examples of their application.

After some definitions contained in the next section, we proceed to
state without proof in Section III our main results. Certain applications
of these results are then given in Section IV. The remaining sections of
the paper are devoted to establishing the results already stated.

II. NOTATION

In what follows, we denote by 2.2 the class of all complex valued func-
tions f(t) defined on the real line and integrable in absolute square.
We adopt the notation

A

f(t) II A2 = If(012 d t
A

43

(1)
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and refer to II f(t) II: as the total energy of f(t) and refer to II f(t) II A2

as the energy of f(t) in the interval (-A,A). In an analogous manner, we
denote by 2,12 the class of all complex valued functions f(t) defined for
-A < t < A and integrable in absolute square in the interval ( -A ,A).

Functions in 2: possess Fourier transforms. Upper and lower case
versions of a letter will always denote a Fourier pair. We write, for ex-
ample,

f(t) f (co)eiw` du), (2)

F(6.) = f(t)e-i'" dt. (3)

We refer to t as time, w as angular frequency and co/2r as frequency. The
functions F(w) are also integrable in absolute square. In this notation
Parseval's theorem is

ft*
1f(t)g(t) dt = to F(co)G(co) do). (4)

We denote by (B the subclass of A: consisting of those functions,
f(t), whose Fourier transforms, F(w), vanish if I w j > a Here 11
27W is a positive real number fixed throughout this paper. Every mem-
ber, f(t), of (B can be written as a finite Fourier transform of a func-
tion integrable in absolute square:,n

f(t) = f F(w)eic" dw.
2r -11 (5)

Functions in (B are called bandlimited and 43 will be referred to as the
class of bandlimited functions. It follows from (5) that members of (B
are entire functions of the complex variable t.

From any function f(t) in 2: we can obtain a function, Bf(t), con-
tained in (B by the rule

1nBf(t) = F(co)ei°' do.),
5.1

(6)

where F(w) is given by (3). We call Bf(t) the bandlimited version of
f(t). We regard B as an operator whose effect on a function in ee: is to
produce its bandlimited version. In electrical engineering terms, Bf(t)
results from passing f(t) through an ideal low-pass filter with angular
cutoff frequency fl.

We denote by 3) the subclass of functions, f(t), of ce.,2 each of which
vanishes for I t I > T/2. Here T is a positive real number fixed through-
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out this paper. Members of are called timelimited and 2, will be re-
ferred to as the class of timelimited functions.

From any function f (t) in cep: we can obtain a function Df(t) contained
in 21 by the rule

Df (t) = (7)
0, I t I> 172.

We call Df(t) the timelimited version of f(t). We regard D as an operator
whose effect on a function of Z.: is to produce its timelimited version.

We shall use the notation f(t) E 5 to mean that the function f(t)
belongs to the class F of functions.

III. RESULTS

The statements made below are proved in Sections V and VI.
Given any T > 0 and any Si > 0, we can find a countably infinite set

of real functions #0(t),11/1(0,02(t),  and a set of real positive numbers

Ao > Xi > X2 > (8)

with the following properties:
i. The Iiii(t) are bandlimited, orthonormal on the real line and com-

plete in CB:r , j
oiwc(t) dt =

i
j = 0, 1, 2, . (9)

1, i = j
ii. In the interval - T/2 LC. t < T/2, the 4/i (t) are orthogonal and

complete in 24:
T/2 {0, i

th(t)11,;(t) dt =f-T/2 Xi ,
j = 0, 1, 2, . (10)

iii. For all values of t, real or complex,

712 sin St(t - s)
)1/4,11/,(t) = ds, = 0, 1, 2, . (11)

IT/2 ?f(t - s)

Further properties of the O's are given in Sections V and VI.
The notation used above conceals the fact that both the 1/J's and the

X's are functions of the product 1T. When it is necessary to make this
dependence explicit, we write Xi = Xi(c), 1' (t) = i = 0,1,2, ,

where 2c = RT.
Some values of Xi(c) are given in Table I. It is to be noted that for a

fixed value of c the Xi fall off to zero rapidly with increasing i once i has
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TABLE I - VALUES OF Xn(C) = Ln(c) X 10-Pn(c)

n

c = 0.5 c = 1.0 c = 2.0 c = 4.0 c = 8.0

L p L p L p L p L p

0 3.0969 1 5.7258 1 8.8056 1 9.9589 1 1.0000 0
1 8.5811 3 6.2791 2 3.5564 1 9.1211 1 .9.9988 1

2 3.9175 5 1.2375 3 3.5868 2 5.1905 1 9.9700 1

3 7.2114 8 9.2010 6 1.1522 3 1.1021 1 9.6055 1

4 7.2714 11 3.7179 8 1.8882 5 8.8279 3 7.4790 1

5 4.6378 14 9.4914 11 1.9359 7 3.8129 4 3.2028 1

6 2.0413 17 1.6716 13 1.3661 9 1.0951 5 6.0784 2
7 6.5766 21 2.1544 16 7.0489 12 2.2786 7 6.1263 3

8 1.6183 24 2.1207 19 2.7768 14 3.6066 9 4.1825 4

exceeded (2/7-)c. (The significance of this will be discussed in detail in
a later paper.) Because of (9) and (10), namely II 'Pi

2

= 1, II T/22

= Xi , a small value of Xi implies that iki(t) will have most of its energy
outside the interval (-T/2,T/2) whereas a value of Xi near 1 implies
that ipi(t) will be concentrated largely in ( -T/2,T/2). This behavior
of the 1,/,'s can be clearly seen in Figs. 1 through 5. Figs. 1 through 4
show th(c,t), 4/1(c,t), 4/2(c,t) and th(c,t) for several different values of c.
For c = 0.5, or (2/7r)c = 0.3183, as shown on Fig. 1,02 and 4/3 are prac-
tically zero in the interval ( - 772,T/2). For c = 4, or (2/7r)c = 2.546,
as shown on Fig. 4, ,yo is largely concentrated in the interval ( - T/2,
T/2). Fig. 5 comparesih(c,t) for several different values of c.

IV. SOME APPLICATIONS

4.1 Extrapolation of a Bandlimited Function

It is sometimes desired to extrapolate a bandlimited function known
only on the interval ( -T/2,T/2) to values outside this interval. Since
any f E 63 is an entire function, this extrapolation can be done exactly
in principle. One could, for example, calculate successive derivatives of
f at'some point in ( -T/2,T/2) and form a Taylor series representation
which would converge everywhere. In practice, however, such a Taylor
series would necessarily be truncated and the resultant approximation
to f(t) would be a polynomial which for sufficiently large values of
I t I would give a very poor approximation to f. This approximation is
not, of course, bandlimited.

The functions %Pi provide an alternative approach. Since f E Cd, we
can write, from i., for all t

00

f(t) = E a0(t), (12)
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where

a = f_ f(t)Ik(t) dt,

E a2 = 1f(02 dt
0

and the convergence in (12) is in the mean square sense
2

liM f [f(t) - L aoku(t)1 dl = 0.

(13)

Multiply (12) by C(1), integrate and use (10). There results
712

a = -1 f(t)ik(t) dt. (14)
An -T/2'

The coefficients in (12) can be determined by (14) from values of f(t) in
the interval (-71/2,T/2).

The above result suggests approximating f(t) for all t by

N(t) a4(t) (15)

with the an given by (14). The approximation (15) is itself bandlimited.
The mean squared error is

f [f(t) - ./.(t)i2 dt = E a2 (16)
N4-1

and by (13) can be made as small as desired by making N sufficiently
large. In the sense of (16), the extrapolation remains good for all t.

The error in the fit of fN to f in ( - T/2,T/2) is given by
T/2 00

-T/22(1 fN)2 = aiz2x,,
N+1

( 17)

As the A approach zero rapidly for sufficiently large n, it may happen
that (17) is small for values of N for which (16) is still large. The fit of
fN inside the interval should not he taken as an indication of the fit else-
where.

4.2 Approximation in an Interval by a Bandlimited Function

Suppose now f(t) C .ev: is known in the interval (-T/2,T/2) but
:1 is not necessarily a piece of a bandlimited unction. From i. above it
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follows that f(t) may still be represented by (12) with a's given by (14),
but this representation is valid now only for I t I s T/2. If indeed f is
not a piece of a bandlimited function, the series (12) will certainly not
converge in mean square over the whole real line.

The foregoing suggests the utility of finite sums of the form (15) as
approximants to bandlimited functions having a prescribed form in the
interval ( -T/2,T/2). The conditions of bandlimitation and prescribed
form in ( - T/2,T/2) are, of course, in general incompatible (unless in-
deed, the prescribed form is a piece of a bandlimited function). How-
ever, finite sums of the form (15) taken for all t with a's computed by
(14) permit approximations by bandlimited functions to a prescribed
f E £7122. We are assured by ii. that the approximation can be made as
good as desired in the sense that the right side of (17) approaches zero
for large N. We have, however,

L. fN2(t) dt = a.2
0

and, if f is not a piece of a bandlimited function, E an2 grows without
bound for increasing N. Thus, in approximating a piece of a nonband-
limited function by a bandlimited function, we exchange goodness of
fit in ( - T/2,T/2) with wildness of behavior outside this interval.

We now impose an energy restriction. Given f E 27/22. What g E 63
with prescribed energy II g 11.2 = E minimizes II f - g II 7/22? Let

f= Eaok(t), T/2,

g= E -00 < t < 00

Then a simple argument gives

a Xn

+ X
where µ is the unique positive number which satisfies

an Xn
2 2

E = E(µ + x.)2
If the constraint on g is that the energy outside ( - T/2,T/2) is pre-
scribed,

II
2- II 9 II 7/22 = E', rather than the total energy, the

result is

b. -
1.1(1 - A) A'

aX
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where (again positive) is chosen to satisfy

an2Xn2

E [to - An) + x.12 

4.3 Some Extremal Properties of iko(t)

The Ili's possess a number of interesting extremal properties. The most
important of these, the fact that ,po has the largest energy in ( - T/2,T/2)
of all function in 63 of unit total energy, is discussed in detail by Landau
and Pollak.' We comment here on two other extremal properties of 1,1/0 .

Let f (t) E .C.2 have total energy E = II f The timelimited ver-
sion of f(t) has total energy ED = Df = II f II r122 5- E. Since Df
cannot be bandlimited, its Fourier transform has nonvanishing energy
in I co I > O. The bandlimited version of Df, namely BDf, will therefore
have total energy EBD < ED :5 E. The operation BD transforms a
member of ce: into a member of 63 with smaller total energy. Which
members of OC: lose the smallest fraction of their energy under such a
transformation? That is, for which f E 2: is II = II BDf 11.2/11 f a
maximum?

The answer to this question, unique except for an arbitrary multi-
plicative constant, is No(t). This may be seen as follows. From (3), (6)
and the definition (7) of D,

11 T/2

BDf(t) f dco eiwt f ds f(s) e-i`"r --Z T/2

712

=
--T/2

ps?(t - S).1 (s) ds,

where we have written

Ps1( 7)
sin UT 1

Si

dw eicor.
7T 2r fa

(18)

(19)

Note that pn(r) is an even function of T and that from (19) and Parse-
val's theorem (4) it follows that

L. pn(t - u)pa(u - s) du = pa(t - s). (20)

Therefore,
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(4
II

BDf(u)11.02 = f du [BDf(u)][BDf(u)]

12 1

= du
T T 2

di ds ps2(t - u) po(u - s)j. (t)f (s) (21)f0.
-T12

fT12

7'/2 T/2

=
-

dt ds - s) f(t) (s).
T12 -T/2

Here we have used (20) and the fact that pa is real and even.
Since from (21) we see that II BDf110: depends only on values off in

( - T/2,T/2), it follows thatµ is equal to the maximum of

T12 -
T/2

T12

T/2

II BDf 11.2
dt ds - s) f(t)f(s)

L
P

II f liT/22
1.7'12

f(c) 12 dt
LT/2

over all f E 22122. It is well known that the solution to this problem is
V = Ao where Ao is the largest eigenvalue of the integral equation

T/2

Xf(t) = f po(t - s) f(s) ds, t T/2, (22)
-T/2

and that v attains the value Ao for f equal to a corresponding eigenfunc-
tion. We shall see later that 44, is such an eigenfunction. Thus f agrees
with 11/0 in ( - T/2,T/2) and so No is a function in 2.2 for which 1.4,
attains ifs maximum value Ao 

We now ask which f E 63 as opposed to f E 2.2 maximizes A. That is,
which bandlimited function loses the least (fractional) energy when first
timelimited then bandlimited? The answer is 11,0 and the corresponding
value of At is Ao2.

To see this, introduce the representation (5) for f E (B into the nu-
merator [as given by (21)] of µ. There results

II BDf 112 =
4a2 f do.) 1:dco' F(c0F(01)K(ovii),

where we have set
T/2 T/2

K(co,d) = dt dt' pfi(t - t')eic" e-iw'
T/2 -T/2

To transform this expression further, introduce the representation (19)
to obtain
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a T/2 T/2

K((s),(,1
1) = j dw" f dt f der --ZT/2 -T/2

ft

=27r f ChepT/2(0) - CO" )PT/2(W" - (I)
-ft

271-PT/2(2)(W)(1)

By Parseval's theorem, (4), the denominator of /I can be written as

ff

II f 11.2 =
"

2r -a F(w) 12 dw.

Our task, then, is to maximize

-flf -ft
dw elco/p2,12(2)(W,01)F(CO)P(C0')

ftBDf 11.2

II f 11.2
1 F(W) 124)

over all F E 2112. The solution to this problem is µ = µo , where i.co is
the largest eigenvalue of the integral equation

XF( co) = f
a

pT12(2)(co,w1)F(d)

Now p TI2(2) (co ,w' ) is the first iterate of p T/2 (w - ) . Therefore, 1.10 is the
square of the largest eigenvalue of the integral equation

XF(w) = f pTi2(co - co')F(co')
-ft

A change of variables reduces this equation to the form of (22) whence
it is seen that 1.4 = X02 and that F(w) = 1P0(c071/22) for

I

co I < a From
(29), which will be established later, it follows that f(t) = 4/0(t).

4.4 Problems Concerning Bandlimited Noise

Much of the theory of detection, parameter estimation and predic-
tion of signals in noise when observations are made in a finite time is
based on the Karhunen-Loeve representation of the noise. (See Ref. 2
for such a treatment of these problems.) This representation involves
expansions in terms of the eigenfunction solutions of a certain integral
equation. When the noise in question is second order stationary and with
angular frequency spectral density uniform in ( -0,12) and zero else-
where (bandlimited white noise), the integral equation in question is
identical with (19), (22). The function i and eigenvalues Xi thus play
an important role in numerous questions concerning bandlimited white
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noise observed for a finite time. Their role in this connection has been
pointed out previously in Ref. 3.

V. THE PROLATE SPHEROIDAL WAVE FUNCTION

The functions lici(c,t) are scaled versions of certain of the angular
prolate spheroidal wave functions. A number of books4'5'6'7 treat the
prolate spheroidal wave functions in detail. We will draw freely from
this literature. We adopt the notation* of Flammer.4

When c is real, the differential equation

du du(1 - t2) - -2tdt (x - c2t2)u = 0 (23)
dt2

has continuous solutions in the closed t interval [-1,1] only for certain
discrete real positive values 0 < xo(c) < xi(c) < x2(c) < of the
parameter x. Corresponding to each eigenvalue xn(c), n = 0,1,2,
there is a unique solution Son(c,t) such that Son(c,0) = P(0) where
P (t) is the nth Legendre polynomial. The functions Son(c,t) are called
angular prolate spheroidal functions. They are real for real t, are continu-
ous functions of c for c > 0, and can be extended to be entire functions
of the complex variable t. They are orthogonal in ( -1,1) and are com-
plete in 212. Son(c,t) has exactly n zeros in ( -1,1), reduces to P (t) uni-
formly in [- 1,1] as c 0, and is even or odd according as n is even or
odd, n = 0,1,2, . The eigenvalues xn(c) are continuous functions
of c and x(0) = n(n + 1), n = 0,1,2, .

A second set of solutions Rum (c,t), n = 0, 1, , called radial prolate
spheroidal functions, -which differ from the angular functions only by a
real scale factor,

Ro")(c,t) = kn(c)Son(c,t),

are of use in many applications. These radial functions are normalized
so that

Ron("(c,t) -b -1 cos [ct - 1-(n + 1)7]
ct

aster co.
The equations

2c
[Ro

(1)(c,1)] 2Son(c,t) = (cs) ds'ri sin c(t - s)
S-r (24)r(t - 8)

tin Ron") (c,l)Son(c,t) = e"So(c,$) ds n = 0, 1, 2, (25)
-1

* The reader should be cautioned that various authors disagree not only on
notation for these functions, but also in their method of normalization.
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are both special cases of more general integral relations satisfied by
prolate spheroidal functions that can be found in the literature. They
are valid for all 1, real or complex.

Equation (24) shows that Son(c,t) is a solution of the integral equa-
tion

1

Xf(t) = f_lpe(t - s)f(s) ds,
I I

i < 1 (26)

corresponding to the eigenvalue

Xn(c) =
2c

iRon(1)(c,1)12, n = 0, 1, 2, . (27)

Here pc(r) is given by (19). Indeed, the completeness of the Son in ce12
assures us that the quantities (27) are the only eigenvalues of (26) and
that if these quantities are distinct, the Son are (apart from multipli-
cative constants) the unique £12 solutionsof (26). If several of the quan-
tities (27) are equal for different values of n, then linear combinations
of the corresponding Son will also satisfy (26). Within the sense of this
degeneracy, then, the Son are unique solutions of (26). In Section VI
we shall see, indeed, that this degeneracy does not occur.

Equation (19) and Bochner's theorem (Ref. 8, Theorem 23, p. 95)

show that the kernel of (26) is positive definite. The quantities (27)
are therefore strictly positive. Set

[2i(c)12 = f [80(c,012 dt.

We now finally define

1//(c,t) - V Xn(c) S (c 9t/7') (28)u(c)
Properties ii. of Section III now follow directly from definitions and

the orthonormality and completeness of the Son in ( -1,1).
A change of variables and the definitions (27) and (28) convert (24)

into (11). A change of variables converts (25) into

inS2Ron("(c,1)
(C,t = e"0(c,caT/2S2) do), (29)

27r -0

which shows 4' E 63. Indeed, since the function On(c,c077/2S2) are com-
plete in -2 Parseval's theorem shows that the 11,,,(t) are
complete in M. The remaining assertion of i. of Section III, namely (9),
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follows from a computation. From (11) we have

dt 11/J0CW

7,12 7.12

= 1 -f dt f (IS pdt - Oki(S) du pelt - u)1,1,;(u)
Mk; -ri2

Ti2 T/2

(I!4f ds Vii(s)4,;(u) f p(11,- 1)0!2(1'-t s)
?Oki f-TI2 TI2 ao

T/2 f T12
1 (is pc(it - 8)11/i(S)

f-TI2 TI2

1
T/2 fo, i L j.= -duc( =

__T/2 (1, i=j
Here we have used (20) and (10).

All properties of the Cs asserted in Section III have now been estab-
lished except for (8). To this end we devote the next section.*

VI. NONDEGENERACY AND ORDERING OF THE EIGENVALUES OF (26)

We have seen that the Son(c,t) are solutions of (26) with eigenvalues
given by (27). We show now that we cannot have two distinct Son
belonging to the same eigenvalue A if c > 0.

Let fl(t) and f2(t) be two linearly independent solutions of (26) for
the same A, c 0. Then

Ali(t) = f pc(t - s).fi(s) ds, (30)

A.fi(t) = f - s)fi(s) ds, (31)

xt,'(t) = f (t - s)fi(s) ds, (32)

Xf2(1) = pc(t - Of2(s) ds (33)

* Ville and Bouzitat9 recognized (independently of the earlier Ref. 3) that the
solutions of the integral equation (11) are prolate spheroidal functions. They
assert that the eigenvalues X. are ordered as in (8) when tkn is identified with So.
but no proof of this fact appears in their paper or apparently elsewhere in the
literature.
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and

Af2(t) = f (t SV2(S) EIS. (34)

Assume now that f1 is even and f2 is odd. Integrate (31) by parts to
obtain

Xf;(t) = fi(1)[Pc( -1 - t) - /3,0 - f Pc(t - Of(s) ds.

Multiply this equation by f2(t) and integrate to obtain

X f f2(t)Mt) dt = Xi1(1)tf2( -1) - A(1)]
(35)

+ dt cis pc(t - Of;(0,12(t).f
-1

Now multiply (33) by fi(t), integrate and subtract the result from (35).
One finds Xf1(t)[f2( -1) - f2(1)] = 0, or

fi(1)f2(1) = 0, fi even, f2 odd. (36)

Assume now that fi (t) and f2(t) are of the same parity, i.e., both even
or both odd. Multiply (32) by f2(t), multiply (34) by Mt), subtract
and integrate. There results

X f i dt(fc'h - f2.1.1) = A f :dt .7(1 fLi2 - 1.2/..11)

= 2Xtf;(1),f2(1) - .f2(1).R.(1)] = 0

or

MOM') = /2(1)8(1), fi and f2 of same parity. (37)

For any two linearly independent solutions of (26) belonging to the
same eigenvalue we must have either (36) or (37) hold. But we shall
show that both of these conditions are impossible for two different S
functions, say Son(c,t) and So,(c,t). From the differential equation (23),
we see that

2So'n(1) = (xn - c2)Son(1). (38)

If So (1) vanishes, then so does Soi(1). But differentiating (23) shows
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that if So (1) and Soin(1) vanish so does S'o'n (1). Repeated differentiation
(which is possible since the Son are entire) shows that if Son (1) = 0,
then Son(t) = 0. Therefore condition (36) cannot hold. On the other
hand, since So (1) 0 0, Som(1) 0 0, (37) can be written

SO,n(1) SL(1)
80,(1) Son(1)

or
2 2

Xm C Xn C

2 2
(39)

from (38). However,, it is known that the eigenvalues of the differential
equation (23) are nondegenerate if c is real, so that (39) cannot hold if
m 0 n. The eigenvalues (27) are thus seen to be distinct.

By their definition, the Son functions are indexed so that the eigen-
values of the differential equation (23) Xo < Xi < X2 < are mono-
tone increasing functions of their index. We have defined On in terms of
the Son by (28) and have labeled the corresponding eigenvalue of (26)

Xn by (27). There remains the task of proving that the Xn are ordered as
in (8).

Our argument makes use of the fact (just demonstrated) that for all
real c 0 the Xn(c) are nondegenerate and the fact (see for example
Ref. 10, vol. I, p. 128) that the eigenfunctions and eigenvalues of (26)

are continuous functions of its kernel. Thus if we can prove that for
some c > 0,

X0(c) > Xi(c) > X2(c)

then continuity and nondegeneracy of the X's allows us to assert this
ordering for all positive c.

We now establish this ordering for c sufficiently near zero. Let On and
O+1 be successive eigenfunctions of (26), c 0. Then

Xolln(1) = f p:(t - s)11/(s) ds,

4-1(t) = f pc(t - s)iii.+1(s) ds.

Multiply the first of these equations by X.+4.44(t), multiply the second
by ktk(t), add the results and integrate to obtain
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ri
Nx,i+1 4/44-1 + 4/,iik) dt

X1 -F1 f fdt ds p:(t - s)11/n-ri(t)ik(s)
-1 1

= - +1)

+ ds p,(t 011/(t)11/144 -1(S)
-1 -1

t tf (IS p:(1 - 01,1/,(01fra+1(S)
f-1

(An Xn+1)Xn+1 f Vin (tWn+1(t) dt
-1

or

f11/nlkn-1-1 dt\
- xn

di,

Now as c 0, ipn P(t), the nth Legendre polynomial, and
Pn (t). The denominator of the fraction in (40) approaches

r,
PiLni?n+1 = n. n+1

I d PP -f dt = 2
-1

since the integral on the right vanishes and Pn( 1 ) = 1. The numerator
approaches

,r

Li P.' P.+1. dt = 0.

By making c sufficiently small, therefore, the fraction on the right of
(40) is of absolute value less than unity and An Xn+1 =
X[1 0(1)] > 0. Since for c 0 the An are all distinct and positive,
the ordering (8) must hold. The limiting eigenvalues for e 0 are
0 = Xo = Xi = X2 =

VII. COMMENTS

It is worth pointing out that the basic importance of the 1,tin for the
study of the relation between functions and their Fourier transforms
stems from (25), which shows that the Son are eigenfunctions of the finite
Fourier transform kernel. Indeed, many of the important properties of
the (i. and ii. of Section III, for example) follow directly from (25)
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or its first iterate (24), without explicit use of (23) or recognition of the
Son as angular prolate spheroidal wave functions.

In the interests of simplicity of presentation, we have not put forth
the theme of this work in its most general form. We here make just one
comment in this direction and leave other generalizations to the in-
terested reader. The curious orthogonality over two different pointsets
of the analytically continued solution of (22) will hold whenever (20)
is true and the solutions are in 2.2. For example, if the kernel p(T) of
(22) is even and has a Fourier transform constant on intervals and zero
elsewhere, e.g., pi(r) = Mr) cos ar, a > 0, then the double ortho-
gonality maintains. The eigenfunctions for the bandpass kernel pi( r)
do not seem to be expressible in terms of well -studied functions. Com-
putations in this case indicate the existence of degenerate eigenvalues.
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Prolate Spheroidal Wave Functions,
Fourier Analysis and Uncertainty II

By II. J. LANDAU and H. 0. POLLAK
(Manuscript received July 6, 1960)

The theory developed in the preceding paper' is applied to a number of
questions about timelimited and bandlimited signals. In particular, if a
finite -energy signal is given, the possible proportions of its energy in a
finite time interval and a finite frequency band are found, as well as the
signals which do the best job of simultaneous time and frequency concen-
tration.

I. INTRODUCTION AND SUMMARY

It is a common experience in the communications field that one can-
not simultaneously confine a function f(t) and its Fourier transform
F(c0) too severely. The most familiar statement of this phenomenon is
the Heisenberg uncertainty principle: If we measure the time -spread T
of f (t) by

ice - to)2 f(t) dt
T2 =

L. f(t) 12 dt

and the frequency -spread 12 of F(co) by

(w - wo)2 1 F(co) 12 (1°)

F(co) 12 dw

then, for any choice of to and coo , 12T Thus T and 12 cannot, for
any Fourier transform pair, be both small. Equality will hold if f(t)
[and hence F(a))] are gaussian, and to and coo are chosen as the means
of I f(t) 12 and I F(o.)) 12 (in this case both zero). This result, while

65
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demonstrating that our experience with timelimiting and bandlimiting
is indeed related to mathematical truth, does not succeed in providing
a very good understanding of what is really happening. We should like
to know just how close one can come to simultaneous limiting in both
time and frequency, and what the price is that one has to pay. We need
a sharper measure of the concentrations of f(t) and F(w) than that
afforded by the above variances of I f(t) 12 and I F(co) 12, a measure
which, if possible, will depend on the behavior of f(t) in a given finite
time interval, and of F(w) in a given finite frequency band.

An early attempt to meet this need was made by L. A. MacColl,
who around 1940 proved the following previously unpublished form
of the uncertainty principle:

If

and

then

to+7,

I f(t) j2dt
to

fit, 12dt

= Oil

r. 0+2
f F( CO ) I dO)

o - a2,
fF(w) dw

StT > 27rala22. (1)

This theorem does indeed emphasize the behavior of f(t) and F(w) in
given finite intervals. The quantity al , representing the proportion
of the total energy of f(t) which is in the time -interval (to , to T), is
especially satisfying as a measure of the spread of f(t) ; on the other
hand, a2 has no immediate physical interpretation. A further difficulty
with (1) is that there are no functions for which equality can be
achieved, although in practice the estimate is quite good.

A more useful form of the uncertainty principle would replace the
above measure a2 by the proportion of energy of F(w) in a frequency
band, that is, by a definition similar to that of al . This is done in the
present paper. We shall see that if
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fto+T/2
1 At) 12 dt

Lo-T/2
Ce2

1 At) 12 dt

and

I F(w) 12 do)st

02

F(w) 12 dw

then

67

cia(cy,0),

where 4(a,(3) will be found explicitly, the inequality will be sharp and
functions yielding equality will be given. The optimal functions f(t)
will always be real if, as in the above statement, the frequency band
is centered at zero. The same inequality holds if the frequency band
under study is not centered at zero, but then the optimal functions are,
in general, complex -valued.

The simplest special case of our result arises if (3 = 1, so that all
of F(w) is contained in I co I < SZ, and F(co) = 0 for I co I > St. The
question "if a is given, what is the minimum UT?" can now be re-
phrased "if CZT is given, what is the maximum a?" Let us introduce
the following notation: The square norm of f is the total energy of f:

11 1 112 = 1: I f( t) 12 dt.

Timelimiting a function f produces a function Df which is f restricted
to I t I < T/2:

if if I t I $ T/2
10 if Itl > T/2.

Bandlimiting a function f produces a function Bf whose Fourier trans-
form agrees with the Fourier transform of f for I co I S SZ, and vanishes
for I co I >

F(w)eiwt dw.
-12
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By writing

F(0.) = f f(s)e-i`" ds,

we see that an alternative expression for Bf is given by

Bf = -1
le°

s)
sin S2(t - s)

7 -co t - 8
It was shown in the preceding paper' that if a function is band -

limited and then timelimited its energy must be reduced by at least a
factor X0 , where X0 it the largest eigenvalue of the integral equation

2,12 sin SZ(t - S)
7 T12

f(s)L s
Xf(t) = ds. (2)

If, in particular, a function is already bandlimited (f = Bf), then by
this result II Df 112 Xo . This, now, is just the special case of the
uncertainty principle which we have been seeking: If # = 1, then
a Xo 

In the sequel, we shall take a longer look at this formula and its
significance; let us, however, state the full result for all values of a
and #:

Theorem: There is a function f such that II f II = 1, II Df II = a and
II Bf II = #, under the following conditions, and only under the follow-
ing conditions:

1. If a = 0, when 0 # < 1.

2. If 0 < a < .00 , when 0 < f3 < 1.

3. If VT0 S a < 1, when cos-' a + cos -1 Q > cos-1

4. If a = 1, when 0 < # VXo

The body of the present paper will cover the following sequence of
topics: Section II will develop the properties of timelimited and band -
limited functions, and the geometric interpretation of these properties,
which we require. Section III contains the proof of the quoted theorem,
a discussion of the "best" functions, and a number of pertinent graphs
and numerical examples. Section IV indicates possible extensions of the
theory, and includes the interesting result that if a timelimited function
d and a bandlimited function b are given, it is always possible to find a
"smallest" function f so that Df = d and Bf = b. Finally, Section V
gives applications of the preceding theory to filter theory, data trans-
mission and antenna theory.
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II. SPACES OF TIMELIMITED FUNCTIONS AND BANDLIMITED FUNCTIONS

We are concerned, in the present paper, with the collection of func-
tions f(t) which are square -integrable on ( -co , co ). These form a
Hilbert space, denoted by .C2, in which the inner product (f,g) is de-
fined by

(f,g) = f(t)g(t) dt,

and II f II2 = (f,f) as usual.
The collection of timelimited functions forms a linear subspace 2,

of 22 so that if fl and 12 are timelimited, so is afi bf2 . Furthermore,
is complete, which means that if we have a sequence of functions {f},

E and if I I f n- f. 0, then there is a function f E 51) such that

f - II O.
Exactly the same statements may be made about bandlimited func-

tions; they form a complete linear subspace 63 of £2. The latter state-
ment follows from the earlier one through the Parseval relation for
Fourier transforms: If F and G are the Fourier transforms of f and g
respectively, then

ff(t)g(t) dt = 2r f F(co)G(co) do).

We shall call two functions f and g orthogonal if

(f,g) = 0.

Notice that Df and f - Df are orthogonal, since each one vanishes
where the other one does not; by the Parseval relation, Bf and f -Bf
are also orthogonal.

The inner product permits us to define the angle between two func-
tions f and g as follows: By the Schwarz inequality, we know that

(f,g) IIfII'IIgII,

since

Re(f,g)I (f,g) I,

we know that

Re(f g)-1 '< 1.-IIfII II g II -

We may thus define the angle 0(f,g) between the functions f and g by
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64(f,g) = cos-' Re(f,g)
f II II g II

The extreme values 0 and r for 0(f,g) can be reached only if f and g
are proportional (so that equality holds in the Schwarz inequality)
and (f,g) is real.

Suppose now that f E (R and g E 1:), and that neither function
vanishes identically. What can we say about the angle between them?
The angle can vanish only if for some constant k, f = kg. But since (B
and D are linear spaces, this would mean that f is both timelimited and
bandlimited, and this is known to be impossible.t If, then, the angle
cannot vanish, can it be arbitrarily small? This is the key question
which shall occupy us for some time. Let us consider, first of all, a
fixed function! E 63, and an arbitrary g E D. We know that 0(f,g) can-
not vanish; is 0(f,g) bounded away from zero? If there is a greatest
lower bound for 0(f,g), is it assumed for some particular functions
g E In this case, the answers are quite simple, and are given by the
following:

Lemma 1: If f E 63 is given, then

inf 0(f,g) > 0.
oED

This infimum equals

-1JIDfIIcos
f

and is assumed by g = kDf for any positive constant k.
Proof: If g is any function in D, then

Re(M) 5I (f,g) = I (Pf20)

since

f= f -Df Df and (f - Df,g) = O.

But

(Df,g) I IIDfIIIIgII,
For then

f(t) = f no)) e" do),
ft

since f E di, would be an analytic function of the complex variable t whose
vanishing for ItI> T would imply f 0.
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so that

Re( f,g) II Df II Re( f,Df)

IIfIIIIgII IIfIIf II II Df

Since cos 0 is monotone decreasing in (0,r), it follows that

0(f,g) >= 0(f,Df)

for any g E 20, with equality whenever g and Df are proportional. This
proves the lemma.

We proceed now to the case of arbitrary f E 63 and g E D. Let us
say, for convenience, if

inf e(f,g)
-(03
0 El)

is actually assumed by specific functions, that the spaces (la and D form
a least angle. We now have the following:

Theorem 1: There exists a least angle between 63 and D. This angle
equals cos-' .00 , and is assumed by 00 E (3 and No E D, where Xo
is the largest eigenvalue of (2), and Rio the corresponding eigenfunc-
tion.

Proof: By the preceding lemma,

miii el f,g) = cos -111 of lI

u ED f II

so that

inf 0(f,g) = inf cos-' Df
fEcii f

II

BE3

(3)

and the infimum on the left of (3) will actually be assumed if the in-
fimum on the right is. It was shown in the preceding paper' that any

E 63 may be expanded in a series, convergent in L2 mean, of the
eigenfunctions &,, of (2),

Then

f= E an 
n =0

! f = I an I2;
0
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since
CO

Df = E ,

n=0

it follows from the properties of {N} that

11 Df 112 = E 1 an 12An

Thus

cos-' II Df II co,-i (E 1 a. 12 XnY
II f II E I an 12

Since it was shown in the preceding paper' that X < Xo , if n > 1,
it follows that

max

(E I an 12 X)

E an 12

is achieved if an = 0 for n 1, so that the minimum possible value of

IIDflIcos
II! II '

namely cos.-' , is actually assumed if f = %to , and g = Duo . The
theorem is proved.

We have thus found that the two subspaces 63 and D of oe2, which
have no functions except 0 in common, actually have a minimum angle
between them, so that, in fact, a timelimited function and a band -
limited function cannot even be very close together. With the aid of
this result, as we shall see, the uncertainty principle which we are
seeking will follow.

In preparation for the coming theorems, we must consider one
further aspect of the spaces 63 and D. How close do 63 and O together
come to filling up all of £2? The two specific questions which concern
us are the following: (i) if IN , b d. is a Cauchy sequencet of
functions in 63 + E, what can the limiting function f look like; and (ii)
do there exist functions f E 22 orthogonal to both 63 and D (i.e., to
every function in 63 and D)? The answers to these questions are the
subjects of the subsequent two lemmas.

Lemma 2: If {f,,} is a Cauchy sequence of functions of the form f. =
t A Cauchy sequence of functions is a sequence such that II f. - 0, so

that, by the completeness of Hilbert space, there exists a limiting function f
such that II f - f. II --, 0.



PROLATE SPHEROIDAL WAVE FUNCTIONS - II 73

d b. where d E D and b. E 63 for each n, then the limiting function
f is itself of the form d b, where d E and b E (B.

Proof: For each fn = d. b , we may also write

f. = (b. - Db.) + (Db. + d.).
Here Db E D, while b. - Db. 1 D. It now follows from the
fact that the f form a Cauchy sequence that the functions b. - Db
do; for

- fin 112 =

b - Db, - (bm - Db,) 112 + II Db d Db, + dm 112,

so that

On - Db - (b., - Db.) -f II

But now, since { - Db.} forms a Cauchy sequence, so does I b.) itself.
For

II On - b,n II2 = D(b - b.,) 112 + II (b. - b.) - DO), - bm) 112)

and by Lemma 1,

D(b - b,) II -5._ N/To b - b,
so that

bn
bin 112 < II On - - (bm - Dbm) 112

1 - xo

Since lb) is now a Cauchy sequence, there is a function b E 63 such
that

bn 1->0.

Thus {f} and { b} both converge in norm, and hence so does {d}, and
to a limiting function d E for which

f = d.

We have thus shown that taking a limit of sums of functions from
63 and 5) gives us nothing new, but only, once again, a sum of functions
in 63 and D. We may abbreviate this by saying simply that (B D is
closed.

Lemma 8: There are infinitely many functions in 22 which are orthog-
onal to 63 +
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fn

Proof: The functions

{1 if T/2 + n I t I .6 T/2 + n + 1
0 elsewhere

n = 0, 1, 2,

are instances of functions not in 63 + D, since the portion of f, in
Itl> T/2 is not a piece of a bandlimited function. Lemma 2 permits
us to write the best approximation to f from 63 + D in the form
bn d , where b. E 63 and d E O; then

f.* = - b - d
are distinct functions in £2 which are orthogonal to 63 + D.

There are in fact, in some sense "many more" functions in 22 - 63 -
D than in (B D; we do not know, however, of any really convenient
representation for such functions.

III. THE UNCERTAINTY PRINCIPLE

We begin by restating the theorem announced in Section I.
Theorem 2: There is a function f E £2 such that II f II = 1, II Df II = a

and II Bf II = 3, under the following conditions, and only under the
following conditions:

1. If a = 0, when 0 <13 < 1.

2. If 0 < a < 1/X0 when 0 < f3 < 1.

3. If A/it-0 <= a < 1, when cos -1a + cos -1(3 > cos-1N/k-0 .

4. If a = 1, when 0 < 1/0 .

Proof: Let 9 be the family of functions f E £2 with II f II = 1 and
II Df II = a, and let us, for each ease of a, determine

sup )3 = sup II Bf l
fE9 fE9

We shall also show, in each case, that any value of )3 less than the
supremum can be realized by an appropriate function. Whether or
not the supremum itself can be realized will vary from case to case.

Case I. a = 0. If a = 0, the family 9 can contain no function with
= 1. For if f E 9 with /3 = 1 we must have f E 63, whence f is ana-

lytic and vanishes for I t I < T/2 only if f = 0. This is a contradiction.
To show that 9 contains functions with values of arbitrarily close

to 1 we set

1,b7, - 7,

f* -
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where X and 1,li are respectively an eigenvalue and corresponding eigen-
function of (2). We observe that f* E 9 and that 0 = II B.f* II =
1/1 - X . Since there exist eigenvalues X arbitrarily small, there
exist functions in 9 with values of 0 arbitrarily close to 1.

To find functions in 9 with values of 13 between those already covered,
we consider eiPlf*(t), which belongs to 9 since II ei'f* II = II f* II = 1
and 11 D eiPtf* II = it Df* II = a. For $ we find

-p+

= II B eiPtf* 1 F*(w) 12 dco}
f-p-st

where F* is the Fourier transform of f*. This quantity is continuous in
p and approaches zero as p 00, since F* E 22; thus 9 contains func-
tions with all smaller values of 0, except possibly 0 = 0.

A function f in 9 for which f3 = 0 must have the property that
Df = Bf = 0; the existence of such functions was demonstrated in
Lemma 3.

This completes the proof in Case 1; if we reverse B and D in the
preceding arguments, we find that 0 = 0 is possible if and only if
0 < a < 1; thus the minimum 13 in Cases 2 and 3 has also been estab-
lished.

Case 2. 0 < a < -0; . Since X 0 as n co, we can find an eigen-
value X,z < a. Let.'' be the corresponding eigenfunction, and consider

Vat Xn tko + -00
titanf* = . (5)

"\/Xo - An

We have f* E 63, and 111* II = II Bf* II = 1, while a simple computation
shows that II Df* II = a. This, then, covers the case = 1; by picking
eiPtf*, as in Case 1, we may obtain any 0 < f3 < 1, and 13 = 0 is covered
by the remark immediately preceding Case 2.

Cases 3 and 4. 1/A0 < a < 1. For a function f E 9, let us find the
closest point to f on the plane spanned by Df and Bf; we then can
write

f = XDf 1.413f g, (6)
with g orthogonal to both Df and Bf. Taking the inner product of (6)
successively with f, Df, Bf and g, and using the fact that f c 9, we
obtain

1 = XCY2 1202 (g,f),
a2 = Xa2 bt(B,f,D.f),

02 = X(Df,Bf) 12132,

(f,g) = (g,g).
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By eliminating (g,f), X andµ from the above equations we find, for
cy# 0 0,

)32 - 2 Re (Df,Bf) = -a2 (I

'We next set

(Df,Bf)Re
II Pi II II

(Df,B.n12)
a202

(7)

- g 112 (1 I (Df j3f)
a202

- cos 0.

The angle 0 is that formed between Df E 3) and Bf E 63 so that, by
Theorem 1,

Since

we have

cos -1 NAO. (8)

al3 cos 0 = Re(Df,Bf) I (Df,Bf) I

0 1
-1 (Df,13,i) 12 cos2

a -f3 -

Introducing 0 into (7), completing the square on the left-hand side,
and applying (9)we obtain

(Q- a cos 02 (1 - ce2) sin20, (10)

with equality if and only if g = 0 and (Df,Bf) is real. From (10) we
find immediately

whence by (8)

or

13 cos(0 - cos a),

(9)

13 < cos(cos VX0 - cos -la), (11)

cos -la + cos -'13 cos -1 1A0 .

Equality in (11) is attained for the function

with

- a2

p- 1 - A0

(12)
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and (13)

q = NA -0 -

since f* satisfies all the conditions for equality in the above sequence
of inequalities; the constants p and q are chosen so that f E 9. As in
Case 1, all smaller values of 13, except possibly for i3 = 0, are attainable
by the functions e"tf*(t) with suitable values of p, and, by the argu-
ment above, the family 9 contains functions with = 0 as well, except
when cos -la = 0. Thus, in Case 3, 9 is made up of functions for which
13 takes on all values for which

cos la + eos-' 1/)0 .

If, however, a = 1, we must exclude 13 = 0, so that we obtain in Case 4

0< < VT0 .

The result of Theorem 2 is illustrated in Fig. 1, which shows the
permissible region in the (4(32) plane for various values of c = 0172.
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Fig. 1 - Possible combinations of a2 and $2 for different QT.
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For each value of c, this region is bounded by the line segments

a2 = 0 for 0 (32 < 1,

for 0 a2 < 1,

a2= 1 for 0 < 132 Xo(c),

02 for 0 < a2 < Xo(c),

and the curve cos -la = cos-r1/Xo(c), which is labeled by
the appropriate value of c.

An interesting phenomenon is brought up by the line a2 g2 = 1,
which is labeled with c = 0. This labeling agrees with Theorem 2 in
the following way:

If a2 /32 < 1, then cos -la + cos -113 > 7/2, which automatically
exceeds cos -1 .00 for any c, no matter how small. In physical terms,
this observation states that if the proportions of energy of f(t) in

t 6 T/2, and of F( co) in I (.4 I < Si, add up to less than the total
energy of f(t), then we have really put no restraint on SZ and T, and
an arbitrarily small SZT product will still permit this distribution of
energy. It is only when «2 + /32 > 1, so that the energies in I t I <
T/2 and in I w I < S2 add up to more than the total energy, that a
nonzero lower bound on UT is implied.

Fig. 2 gives a detailed plot of what is essentially the top (or the
right) edge of -Fig. 1. We plot Xo(c), the maximum of a2 if 132 = 1,
against c. We note that Xo(c) 1 quite rapidly as c -+ 00 ; the approach
is exponential, but the exact rate has not been proved. Fig. 2 also gives,
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0.2
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ii

FOR f(t)=c SIN II t
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n T

Fig. 2 - Possible a2 if 02 = 1.
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for comparison, the proportion of energy in t < T/2 for the function
sin Sit

t

which has sometimes been "intuitively" considered as the bandlimited
function which is as concentrated in time as possible. For small Xo
it appears, f(t) is indeed essentially as good as the optimal function;
if, however, we wish to achieve a proportion of energy like 92 per cent,
we see that SZT = 4.5 suffices, while use of (sin WO would require
SIT = 8.5. For a proportion of 99 per cent, the minimal SIT is 6.25,
while (sin OOP would require a value of SIT of about 30.

Let us consider one more numerical example. If values of a2 = 0.977 and
02 = 0.96 are desired, what are the minimum UT, and the corresponding
optimal function? From co 'a+ cos -40 = eos-' -070 we find Xo =
0.88, so that UT = 4, or c = 2. If, now, 4,0(0 is the first eigenfunction
corresponding to c = 2, then, by (12) and (13), the optimal function
(see Fig. 3) is 0.578#o 0.465/40 . It is thus not a continuous function
of t but has jumps at t = ±T/2; this is characteristic of all of our
optimization problems except for the special case /32 = 1.

A note on previous work in the direction of Theorem 2. The con-
nection between the extremum problem for /32 = 1 and the largest
eigenvalue of (2) was noted by Chalk2 and Gurevich,3 both of whom
found the appearance of the optimal function without analytic solution
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Fig. 3 - Plot of optimal f (I) for a2 = 0.977, = 0.96, T/2 = 1.
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of the integral equation; the latter also plotted the largest eigenvalue.
The set of eigenfunctions was recognized in this context by Ville and
Bouzitat,4 who also performed a lot of numerical work. Finally Fuchs'
has stated, without proof, a theorem equivalent to Theorem 2. He
considers n -dimensional spaces and Fourier transforms, and two
arbitrary subsets of finite measure in the time- and frequency -spaces
respectively. His proof, however, which we have been privileged to see,
is quite different, and is not directed towards the properties of 63 and
3) which have been our chief concern. Our present method is capable
of broad generalization; some thoughts in this direction are given in
the next section.

IV. EXTENSIONS OF THE THEORY

It is quite natural for us to ask what the real essentials of the study
up to this point have been, and under what circumstances results
similar to Theorems 1 and 2 could be obtained. Such an investigation
will be reported in a separate paper; we should, however, note what
some of the results are. For the relevant language, we refer the reader
to Ref. 6.

We have a Hilbert space .C2, and two subspaces 63 and D. The key
property we require is that 63 and 5) form a nonzero minimum angle;
the latter property is equivalent to requiring that

11 BDBf II
sup < 1.
fEee2 II f II

It now follows that 63 + 3) is closed, and we can again study the region
of possible values of II Bf 11 and 11 Df 11 if 11 f 11 = 1. We do not, however,
obtain eigenfunctions analogous to {lk.} unless the operator BDB is
completely continuous. If, for example, 22 is the space of square -
integrable functions with respect to Lebesgue measure over n -dimen-
sional Euclidean space Rn, if D is the subspace of functions vanishing
outside of a bounded subset of R" of positive measure, and if 63 is the
subspace of functions whose Fourier transforms vanish outside of an-
other bounded subset of Rn of positive measure, then BDB is com-
pletely continuous, and the full theory applies.

As an example of a theorem which is again true in the general situa-
tion, but is of interest also for timelimited and bandlimited functions,
let us prove

Theorem 3: Let an arbitrary function d E 53, and another function
b E 63, be given. Then there exists an infinite collection S of functions
I E

£2 such that if f E S, then Df = d and Bf = b. There is a unique
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fo E S of least energy, and there is a unique fl E S fl ((B + D); fur-
thermore, fo =

Proof: Let us consider the function

f* = E (1 - B)(DB)md (1 - D)(BD)mb. (14)

The first sum, for example, means

d - Bd DBd - BDBd DBDBd - BDBDBd + .

Since, for any g, DBg II < g II and II BDg II 1/To g
we know that the two series defined on the right side of (14) con-
verge in norm, with their sum defined as the function f* E £2 .

Furthermore, since f* is defined as a limit of functions in (B 0, it is,
by Lemma 2, itself in (B + D. So we may write

f* = d* b* ,

where d* E 3114 and b* E (B.
Let us next compute DP and BP. We have

Df* = (1 - DB)(DB)md E (D - D)(BD)mb;

all of the second series, and all but the first half of the first term of the
first series, vanish. Hence Df* = d, and similarly Bf* = b. We have
thus shown that f* E S n ((B D); we can complete the proof that
f* = ft if we can show that S fl ((B + D) contains no other function.

Suppose thatf = di + bi , i = 1, 2 are both in S fl ((B + 1)). Then

d = Dfi = d1 + Db1 = d2 Db2 = Df2 (15)

and

so that

b = Bfi = Bdi bi = Bd2 b2 = Bf2

DBd1 Db1 = DBd2 Db2

Hence, by subtracting (16) from (15), we have
(1 - DB)d1 = (1 - DB)d2 ,

or

(di - d2) = DB(d1 - d2).
Since, however, II DBg 1/To II g II for any g, we must have
d1- d2 = 0, so that d1 = d2 . Similarly, b1 = b2 , so that fi = ,12 , and
thus f* is the unique member of S fl (63 + 21).

Now suppose x is any other member of S. We may write
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x = .1* +

and since Dx = Df* = d and Bx = go: = b, it follows that

Dsp=Bap=0.

But

and

Hence

and

11 a; 112 = 11 f* 112 + 11 so 112 + 2 Re(f*,(P),

f* = d* b* while co 1 21 +

(f,ho) = 0,

x 112 = II f* 112 ± II2 II f* 112,

with equality if and only if vanishes. Thus f* is also the unique mem-
ber of S of minimum norm. An infinite number of other members of S
may be formed by adding to f* any of the functions orthogonal to

+ 2, whose existence is guaranteed by Lemma 3.
Note: If d = E aiDlki and b = E I)* , then

f* =
ai - bi

D4/ E bi - aiXi
1 -xi 1 -

so that, in particular,

II f* II v11_ xo (II d + b ID.

V. APPLICATIONS

5.N.Filter Theory

Suppose we wish a filter to have an impulse response f(t) which
vanishes for t > T. Such a filter clearly cannot be strictly bandpass;
but how would we select the filter so that as much of the impulse re-
sponse as possible is contained in I w I < St for some given 0? Suppose,
by this, we mean to choose f(t) so that

1. F(0.) ,2

J.
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is as large as possible, where

F(w) = f f(t) e-iwt dt
0

is the Fourier transform of f(t). Then the best choice is

f(t) = ± 2 , c

where c = UT/2, and tko is the prolate spheroidal function of the
present and the preceding papers.

If, instead of requiring f(t) to vanish outside of (0,T), we ask that
both

and
110)1.ft

F(w) 12 do)

fo

+ Jr I f(t) 12 dt = a2

be small while the total energy of the impulse response is fixed at unity,
then Theorem 2 above gives the complete region of possible (a,13)
values.

5.2 Data Transmission

When we choose a combination of pulse shape and transmission
characteristic for a broadband data transmission system, we are in-
terested in minimizing both the tail of a pulse outside its time slot and
its spectrum outside of an assigned frequency band. Once again, it is
not possible to make both of these "spillovers" in time and frequency
arbitrarily small; the above theory gives some information on inter -
channel and intersymbol interference. For a theory which is more
nearly complete, however, the relation between timelimiting and pass-
bandlimiting (i.e., to Sti I co I

< 122) needs to be better understood;
while our general results apply, the identity of the optimal function

o is not known in the case that B is projection of the transform into
such a passband.

5.3 Antenna Theory

Let us consider a horizontal (s,t) plane from which the strip I t I <a
of width 2a, to be called the aperture, has been removed. If the illumi-
nation across the aperture is independent of s, then the amplitude of
the field across the aperture may be represented by a function f(t) of
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one variable, where I t < a. If we consider the resultant pattern of
radiation in a distant parallel horizontal plane, then the field at a large
distance from the aperture is proportional to

a

f(t)e,eudt = F(u),fa
where u = k sin 9, k = 27/X, 0 is an angle measured from the vertical
through the center of the aperture, and X is the wavelength. The Q of
the antenna is then defined (equivalent to the definition of Woodward
and Lawson;'' it is given explicitly by Kovacs and Solyman8) as

I, >k
F (u) 12 du

F (u) 12 du

This may be rewritten as

Q=
faLa I f(x) 12 dx

-1
fBf(x)12 dx

where B means limiting the Fourier transform of f to
by the previous theory,

u I < k. Thus

Q
- -
X0

where Xc, = Xo(ak/2) is the first eigenvalue of (2) as defined in this
and the preceding paper. We thus have an absolute lower bound on the
Q which can be obtained for given a and k.
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Considerations on the Solar Cell

By D. A. KLEINMAN

(Manuscript received September 1, 1960)

The collection efficiency in solar cells is treated by a new method in which
all the effects of the solar spectrum and the absorption curve are contained
in a single function readily obtained by numerical integration. The method
is illustrated by a detailed study of the effects of surface recombination, body
recombination and junction depth in silicon cells. The method is also gener-
alized to include built-in electric fields, and calculations are given for sili-
con. Sufficiently strong fields to improve the collection efficiency markedly

can be produced in some compound semiconductors from a gradient in the
energy gap. A discussion is given of the dependence of the collection effi-

ciency on the absorption curve of the semiconductor. It is shown that silicon
has a very favorable absorption curve in comparison with GaAs or InP .
Finally, a treatment is given of the minority carrier collection in a two -junc-
tion cell, and calculations are presented for silicon. It is concluded that this
structure may be important for cells with high energy gaps and short life-
times.

I. INTRODUCTION

The considerations reported in this paper have been stimulated by the
current interest in the solar battery as a power supply for instruments
and transmitters in satellite and space probe vehicles. A number of
space vehiclest have contained solar batteries with peak outputs rang-
ing from several watts to several hundred watts. It has been demon-
strated that solar battery power supplies are technically feasible, not
only in space vehicles but also in terrestrial telephone systems.2 For the
latter type of application, however, the solar battery has been found to
be not competitive economically with several other available power sup-
plies.2 However, it is highly advantageous for space vehicles because of
its advanced development and commercial availability, light weight,
reliability and long life. The long life is due not only to the ruggedness
and permanence of its structure and the absence of moving parts or

t For a review of the use of solar batteries in space see Daniels.'
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chemically unstable components, but also to its external and independent
source of energy, the sun. The belts of particle radiation' recently dis-
covered surrounding the earth may materially reduce the life of solar
batteries carried into space.4'' We shall proceed with our discussion,
however, on the assumption that the solar battery can survive the radia-
tion.

The solar battery is an array of hundreds or thousands of individual
cells called solar cells. Each cell is a semiconductor slab, typically 1 X 2
cm, containing a p -n junction within a very small distance, typically
2 X 10-4 cm, of the illuminated surface. The front and back surfaces are
fitted with "ohmic" contacts for making electrical connection, and the
front surface may be specially treated to reduce its reflectivity.' Com-
mercially available cells are made of silicon, and have efficiencies of up
to 14 per cent for converting the solar radiation incident upon them into
electric power.' Other methods now known for converting solar radiation
are far less efficient.f Thermoelectric converters,' for example, on which
considerable work has been done, can approach efficiencies of 1 per cent.

The solar cell was invented by Chapin, Fuller, and Pearson,'" who
briefly described its fabrication, its principles of operation, and the limi-
tations on its efficiency. Due to the work of the inventors and later au-
thors, notably Prince,11 Pfann and Van Roosbroeck,12 Cumerow,13 Ritt-
ner" and Loferski,15 the solar battery is well understood in terms of
concepts familiar in electrical circuits and semiconductor physics.

High efficiency in a solar battery would be desirable in any application,
but especially so in space vehicles. The value of the vehicle, launched at
considerable expense, depends in large measure on the instruments and
transmitters it carries and the power available for this equipment. At
the same time, the more equipment that is carried, the less space and
weight can be allowed for the power supply. Therefore, in the economy
of space vehicles the solar battery should have the maximum possible
efficiency irrespective of the costliness of the improvements.

The operation of the solar cell and the losses of efficiency can best be
described in five steps:

(a) Radiation is incident upon the surface and some is reflected with-
out entering the cell. This reflection can be a very important loss, since
the reflectivity" of clean silicon is about 30 per cent in the wavelength
range of interest (0.4 to 1 ii), and other materials that might be used
also have high reflectivities. In practice it is found that the processing
in the manufacture of silicon cells leaves the surface with quite a low
reflectivity.' A recent studyi" has shown that the best antireflection

t For a review of the utilization of solar energy, see Ref. 8, especially Vol. V.
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treatments can increase the short circuit current of silicon solar cells by
20 to 25 per cent compared with clean surface cells. It is reasonable to
expect that the reflection loss from any material that might be used in
the solar cell could be minimized in the same way.

(b) The light enters the cell and some is absorbed by the intrinsic
absorption process in which a hole -electron pair is created and a photon
is destroyed. f The light absorbed in this way is the useful light in the
solar cell. Light of wavelength longer than the intrinsic absorption edge
cannot produce hole -electron pairs and is wasted in the solar cell. There
is a further waste of energy when hole -electron pairs are produced by
photons with more than the minimum required energy, since the excess
energy is transferred in a very short time to the semiconductor lattice
in the form of heat. These losses may be ascribed to the spectrum of
solar radiation, since they would not occur if the radiation were mono-
chromatic at the wavelength of the absorption edge. For silicon the
losses due to the solar spectrum are about 53 per cent of the energy which
enters the cell!' By choosing a semiconductor with a somewhat higher
energy gap t this loss can be considerably reduced.13'14'15 The energy gap
is therefore very important in considering materials for the solar cell. §

(c) Some of the minority carriers produced by the light flow by dif-
fusion to the p -n junction. These are the carriers which contribute to the
output current of the cell. Other carriers diffuse away from the junction
and recombine at the surface or deep inside the cell. The percentage of
minority carriers which contribute to the current is called the collection
efficiency. In a typical commercial silicon solar cell of 9 per cent over-all
efficiency the collection efficiency is about 60 per cent!' Minority carrier
recombination is, therefore, a serious loss of efficiency in the solar battery
at the present time. From the spectral response64°'18 of silicon solar cells
we can infer that the surface recombination velocity is very high, proba-
bly greater than 105 cm/second. From the analysis to be presented we
can also infer that the body lifetime is about 10 microseconds, the dif-
fusion lengthil about 10-2 cm. In high -purity silicon the lifetime can be
several milliseconds2°'21 and with certain surface treatments the recom-

f For a review of the optical properties of semiconductors, see Hrostowski.17
For the purposes of this paper the energy gap and the intrinsic absorption

edge are essentially the same thing, except that the former is expressed as an
energy while the latter is the equivalent photon wavelength.

§ We shall not consider in this paper composite cells such as those suggested
by E. Jackson (Ref. 8, Vol. V), in which one attempts to reduce spectrum losses
by stacking several thin cells of different energy gaps. Cells of this type appear
to be somewhat impractical from the standpoints of mechanical construction and
of providing a suitably matched electrical load.

11 Recently a measured value of X 10-3 cm for the diffusion length has been
reported by Vavilov, Smirnov and Patskevitch."
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bination velocity22 can be as low as 40 cm/second. The recombination,
therefore, is due almost entirely to the degradation2° of surface and body
lifetime that occurs in the manufacturing process. In compound semi-
conductors the recombination losses are likely to be considerably greater
than in silicon. In gallium arsenide, for example, the lifetime seems at
present to be of the order of a millimicrosecond." In general, it appears
difficult to obtain lifetimes greater than 0.01 or 0.1 microsecond in the
compound semiconductors. t

(d) The diffusion maintains an excess concentration of minority car-
riers on both sides of the junction. The voltage developed by the solar
cell is due to these excess concentrations of minority carriers. This volt-
age, however, is considerably less than the energy (in units of electron -
volts) of a hole -electron pair in the semiconductor. The latter, for our
purposes, may be taken to be the energy gap, which in silicon is 1.2
volts." The voltage of a silicon solar cell in full sunlight under maximum
power conditions is about 0.4 volts.10'18 Therefore, the cell is able to con-
vert only a portion of the energy stored as hole -electron pairs into elec-
trical work. The loss may be referred to as the junction loss. The junction
loss should vanish and the voltage should approach the energy gap when
the minority carrier density approaches the majority carrier density, a
limit corresponding to infinite light intensity. In the other limit of zero
light intensity, the junction loss causes the efficiency of the solar cell to
approach zero. According to the equivalent circuit point of view of Pfann
and Van Roosbroeck,12 the short-circuit current of the cell flows partly
through the load and partly through the junction in the forward direc-
tion. The voltage and the junction loss therefore depend upon the for-
ward current -voltage characteristic of the junction. The theory of p -n
junctions"'" predicts that the forward current should decrease exponen-
tially with increasing energy gap. Therefore, insofar as actual junctions
obey the ideal junction theory, the junction loss can be reduced by in-
creasing the energy gap. A number of authors13.14'15 have considered the
spectrum loss and junction loss as a function of energy gap. If all other
losses are neglected, the maximum efficiency is obtained for an energy
gap of about 1.6 volts!' It is now possible with mixed semiconductors24'28
to obtain nearly any desired energy gap from 0.7 volt (germanium) to
2.4 volts (GaP), which completely covers the range of interest. It should
be kept in mind that silicon p -n junctions show a large contribution to
the current from thermal generation and recombination through traps
in the junction region." The short lifetimes in the compound semicon-
ductors suggest that trap effects may be even more important in those

t Ref. 24, p. 58.
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materials. Therefore, it may not be possible to obtain large reductions
in the junction loss by increasing the energy gap.

(e) Finally there is the loss due to resistance of the very thin side of
the junction next to the surface and of the contact to the surface. This
resistance places a lower limit on the depth of the junction. Prince" has
considered the optimum depth for silicon solar cells taking into account
the resistance loss and the collection loss. In practice, the internal re-
sistance of silicon cells" is between one and two ohms and the junction
depth is between 1 X 10-4 and 2 X 10-4 cm. The elimination of resist-
ance loss would increase the efficiency of a 9 per cent cell to about 11 or
12 per cent.18 Unlike the other losses considered here, the resistance loss
is not characteristic of the material used in the solar cell, and the methods
for reducing it will be similar for any material.

It has been mentioned that the solar spectrum loss and the junction
loss have been considered at some length. It is also well understood what
to do about reflection and resistance. But the collection loss has not been
thoroughly treated in the literature. Several calculations' have been
made using the approach of Pfann and Van Roosbroeck.12 This may be
called the monochromatic method. Light of a certain wavelength, and
therefore having a certain absorption coefficient in the material, enters
the solar cell. Solutions are obtained in terms of elementary functions
for the minority carrier density, taking into account diffusion, surface
and body recombination, the generation of carriers by the light and the
boundary conditions at the junction and at infinite depth. The solution
gives a certain diffusion current into the junction which is the short-
circuit current of the cell. This current must then be averaged over the
wavelengths in the solar spectrum to obtain the collection efficiency. The
averaging requires a tedious numerical integration, because the mono-
chromatic current is a complicated function of the absorption coefficient,
which is in turn a rapidly varying (measured) function of wavelength.
The method is sound and can account in a satisfactory way for the col-
lection efficiencies observed in solar cells.' The method is not well suited,
however, for a systematic discussion of collection efficiency and no such
discussion has been given. Several authors''" have even argued that
the collection efficiency can be considered unity in fundamental con-
siderations on the solar battery, since lifetimes can be expected to in-
crease as technology improves. A review of the history of the photovoltaic
effect and its utilization has recently been given by Rappaport!'

In this paper we consider the collection efficiency more systematically
by a more powerful method than the monochromatic method. This
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method is based upon obtaining a function, called the photodensity func-
tion, which includes all the effects of the solar spectrum and the wave-
length dependent absorption coefficient. This function is obtained by a
relatively easy numerical integration over the solar spectrum. In terms
of the photodensity function the solution can be obtained almost im-
mediately to any solar cell collection problem in the approximation in
which a single diffusion length describes the minority carriers. Illustra-
tive calculations are presented for silicon solar cells showing how the
collection efficiency depends on surface recombination velocity, junc-
tion depth and diffusion length. The method is readily generalized to in-
clude cases in which different diffusion lengths must be used for electrons
and holes. Another generalization is presented which takes into account
a "built-in" electric field in the region between the junction and the
surface. It is shown that by the use of mixed semiconductors it should be
possible to obtain sufficiently large built-in fields to increase the collec-
tion efficiency significantly. In ordinary silicon cells, however, one would
not expect the field to be large enough to have much effect. The im-
portant question of which semiconductors should be best for solar bat-
tery applications, already much discussed'1,13,14,15,30 with respect to spec-
trum and junction losses, is taken up again from the point of view of the
collection efficiency. It is pointed out that the absorption coefficient as a
function of wavelength is very important in determining the collection
efficiency. Silicon has an absorption curve of favorable shape, which in
part accounts for its present superiority over other materials of more
favorable energy gap. It is possible that for room -temperature use silicon
will remain the best material, although higher -gap materials will cer-
tainly be needed for use at temperatures above 200°C. Finally, there is
presented a discussion of cells containing two junctions to improve the
collection efficiency. It is shown that in cells of comparatively low col-
lection efficiency ( <50 per cent), considerable improvement can be ob-
tained by the use of a second junction. This construction may prove im-
portant in high gap cells which might otherwise have rather low
collection efficiencies.

II. FORMULATION OF THE PROBLEM

If the concentration of minority carriers is small compared to the con-
centration of majority carriers, the equation describing the production,
diffusion, and recombination of minority carriers is

D
den - n ix'

r
N(X)a(X)e-ax dX = 0. (1)
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In (1), n(x) is the excess minority carrier concentration over the equi-
librium concentration. In a typical case the maximum value of n(x) is
of the order 1012 cm -3, so that the validity of (1) is assured. The diffu-
sion constant D and lifetime r will be assumed to apply to all minority
carriers whether holes on the n -side or electrons on the p -side of the
junction. This assumption should lead to no serious error in silicon, but
might have to be modified for some of the III -V semiconductors because
of the relatively low mobility of the holes. f The integral term in (1)
represents the production of minority carriers by light with a photon
distribution N(X) in a material with absorption coefficient a( X ) and
intrinsic absorption edge X G . The total flux of photons capable of pro-
ducing hole -electron pairs is

N =
fNG

N(X) dX. (2)
0

We shall neglect reflection completely and identify N(X) with the solar
photon spectrum with respect to wavelength.$ The total effective photon
flux is N = 3.3 X 10" cm -3 sec -1 for silicon.§ The boundary conditions
to be imposed on n(x) are

n(00) = 0, n'(0) = (s/D)n(0), (3)

where s is the recombination velocity of the surface. A solution of (1)
and (3) over the whole domain 0 x < 00 represents the minority
carrier density in a homogeneous illuminated semiconductor.

If we now locate a junction at depth x = a, additional boundary con-
ditions must be satisfied at the junction. In general, these will relate the
minority carrier densities on each side of the junction to the operating
voltage of the cell. The simplest case is the short-circuit condition, in
which the voltage is zero.II For this case the excess carrier densities must
vanish on each side of the junction."'" The boundary conditions for the
short-circuit condition are therefore

n(a) = 0. (4)

t Ref. 24, p. 12.
$ Details on the solar spectrum are given by Ref. 31. See also Ref. 15.
§ This number, obtained from Ref. 31, is in substantial agreement with the

plot of g N(X)A in Ref. 15. We are considering the solar radiation in space just
outside the earth's atmosphere.

II We neglect voltage drops due to internal resistance. This causes no loss of
generality, since an arbitrary resistance can be included in the equivalent circuit.
In the presence of resistance, (4) corresponds to a small forward bias externally
applied to the cell. The statement following (4) remains valid, and one identifies
this maximum diffusion current, not the short-circuit current, with the current
generator.
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This corresponds to the maximum current which can be drawn from the
cell; smaller currents correspond to nonvanishing values of n(a) on both
sides of the junction. However, we may regard any solution of (1) cor-
responding to arbitrary operating conditions as the superposition of the
short-circuit solution and an appropriate solution of the homogeneous
equation

den n
D - -= 0.

axe T
(5)

According to p -n junction theory,26.27 these solutions are just those asso-
ciated with forward currents in an unilluminated p -n junction. The super-
position of solutions for the minority carrier density is therefore equiva-
lent to superposing the short-circuit current with an appropriate for-
ward current in the junction. If 4 is the short-circuit current and If the
forward current, the current in the external circuit is 4 - If, in ac-
cordance with the equivalent circuit of Pfann and Van Roosbroeck.0

The collection problem, therefore, is to calculate the short-circuit solu-
tion from (1) and (4) and from this the diffusion current density at the
junction, taking into account the contributions from each side. The col-
lection efficiency then is given by

(21 = D1V-1( n' (a- ) I + I n' (a+) I ), (6)

with the subscript "1" indicating that the expression applies to cells
with a single junction. In a many junction cell Q,, would be a sum of
terms of the form (6).

The equivalent circuit for a solar cell with load therefore consists of a
current generator 4 connected to a junction and a load in parallel, with
the currents If flowing in the junction (forward) and If - Ig in the
load. Pfann and Van Roosbroeck12 obtained the following condition for
maximum power delivered to the load:

where

G = z in z z - 1,

cZ = e VIkT

(7)

(8)

V is the voltage, and G is a dimensionless reduced current proportional
to 4 . It is assumed that /f obeys an ideal junction characteristic26'27

= eAmeevik7 - 1), (9)
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where A is the junction area and Jo is a characteristic particle current
density. The reduced current G is then defined by the relation

G = Ig/eAJo = (N/J0)Q. (10)

The over-all efficiency can be written12

kT (ln z)2
6 = G

(11)

where z is the solution of (7), and

W = fN(X)(hc/X) dX. (12)

Clearly W is the radiant energy asborbed on the average to produce one
hole -electron pair. For large G, (7) becomes

G z ln z G >> 1, (13)

and (11) becomes

e pr:_: (eV /W)Q. (14)

Here eV is the work done on the load and W/Qi is the energy absorbed
per carrier flowing in the load. The approximation of large G is fully
justified, since in full sunlight G will be of the order 107. The efficiency
for large G can also be written

el (kT/W)Qi In G, (15)

which exhibits the logarithmic dependence of the efficiency on the light
intensity. It will be noted that the over-all efficiency el depends upon
the collection efficiency (21 through the factor Qi and also through G.

III. THE PHOTODENSITY METHOD

The collection problem consists in solving (1) subject to (3) and (4).
We begin by observing that the function

a

L2

ax
fo N(X)T 1 - a2x

a() (16)

where L = (1)7)1 is the diffusion length, is a particular solution of (1).
It satisfies the boundary condition at infinity but none of the other
boundary conditions. If ambiguity arises due to the pole aL = 1 oc-
curring in the range of integration, the integral can be taken as a prin-
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cipal value. The pole is removed if we combine (16) with an appropriate
solution of the homogeneous equation (5), and write

AG a(X)n(x), = N (X)r
( ca.

dX. (17)1 _ a2L2

This function is a solution of (1) and satisfies

n( co ) = n(0) = 0, (18)

which is the form taken by (3) when the recombination velocity s is
very large. Therefore, n(x), represents the density of excess minority
carriers in a semiconductor without junctions illuminated on a surface
with fast recombination. The derivative of n(x)5 at the surface is

ao

n'(0), = f N(X) 1 ±a(X)L dX. (19)
a

We call n(x), the photodensity. It can be readily evaluated by numerical
integration (see Appendix), since the integrand is a simple expression
with no poles.

It is convenient now to introduce dimensionless quantities

= x/L, = aL, 7 = a /

v(X) = N(X)/N, w = D/sL,

and define the function

(20)

io(z) = (ez - 1)/z. (21)

Then the photodensity can be written

Ws), = (Nr/ L)F(r,L),

where F(r,L) is the photodensity function
XG 0FQ-,L) = f v(X) 1 + ccft(1 - dX. (22)

This function is shown in Fig. 1 as a continuous function of I- for three
values of L (10-4, 10-3, 10-2 cm) based on the solar spectrum and the
absorption curve for silicon.32f The calculation of F q.,L) is discussed
in the Appendix. For small the photodensity function has the ex-
pansion

Fq,L) =
fay

13(X)
X0

11(X) dX - f p(X)0(X) dX + . (23)
1 +

Values of a > 106 cm -1 required as discussed in the Appendix for the cal-
culation of Fig. 5 are from Pfestorf.33
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Fig. 1- The photodensity function (22) for silicon as a function of r for L =
10- , 10-2 and 10-2 cm.

Once F(',L) has been obtained, the solution n(x) satisfying (1), (3)
and (4) is readily constructed from F (i-,L) and the functions ear, which
satisfy the homogeneous equation (5). The solution may be written

n(x) = (NT/ L)[Aei. Be -r F(,L)], (24)

where for 0 x < a

A - 1 F(X)(1 co) we "F'(0)
2 sinh -y + w cosh 7 '

1 F(7)(1 - co) + coe'F' (0)B -
2 sinh y+ co cosh 7

and for a < x <

A = 0,

B = -0F(7),
where F' = dF/dg- and for brevity L has been omitted as an argument
of F. The solution in the region a < x < 00 is, of course, independent of
co. In the region 0 x < a the solutions in the limiting cases w -> 0
and co -> 00 are

(25)

NT sinh
(n(x)- F 7)1,.-o L mu -1h -y

(26)

(27)

sinh (-y -n(x) -> - [Fq) - (-y) F'(0) . (28)-. L cosh -y
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The boundary conditions satisfied by these solutions at x = 0 are
n(0) = 0 and n' (0) = 0 respectively.

The collection efficiency for single junction cells can now be obtained
from (6) in the following form:

Qi
F(7)(1 + co) e + (.0F' (0)- (29)

sinh 7 co cosh 7

In the limits co -+ 0 and co co this reduces to

Q1

QI

- F (7)(1 + coth
w -o

-' F (7)(1 tanh -y) F' (0) sech 7,
-

(30)

which refer to fast and slow surface recombination respectively.
Much of the simplicity of (29) and (30) results from the assumption

of "effective" values for D and r which apply to both sides of the junc-
tion. The difficulty of measuring these parameters in an actual cell, es-
pecially as a function of depth, justifies this simplification for most con-
siderations. The most conspicuous case where this assumption may lead
to serious error is in some of the compound semiconductors where the
mobility and diffusion constant may be an order of magnitude less for
holes than for electrons.t When different L obtain on the two sides of the
junction (24), (25) and (26) are still formally valid but (29) is no longer
valid. The collection efficiency can then be written Q1 = Q+ ,
where

2- - F(7)(cosh -y + co sinh 7) + (0) ,

sinh -y + co cosh 7
le (7),

Q+ = F(7) + F'(7)

are the contributions from 0 -x-aanda.. 00 respectively. If
the same L is used for both sides of the junction Q_ Q+ reduces to
(29).

The fast surface recombination limit co = 0 is valid if CO satisfies the
two conditions co << 1, co << 7. In sillicon solar cells the junction depth is
considerably less than the diffusion length (7 << 1) so that the second
condition implies the first. Therefore the criterion for high surface re-
combination velocity is

(31)

s>> Dia. (32)

The diffusion constant D can be obtained from measured mobilities µ by

f Ref. 24, p. 12.
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means of the Einstein relation,34 which in conventional laboratory units
is

D (in cm2/second) = 0.026 ( µ (in cm2/volt-second), (33)
300°K

with T the absolute temperature in °K. The mobility in highly doped
silicon has been studied by Backenstoss,35 who finds that for impurity
concentrations greater than 1019 cm -3 the mobilities of electrons and
holes approach the limiting values of 80 and 40 cm2/volt-second respec-
tively. Since a r., 10-4 cm, the criterion (32) gives s > 105 cm/second in
silicon. Although surface treatments are known21 which can reduce s in
pure silicon to below 102 cm/second, Prince and Wolf' point out that
these treatments tend to increase significantly the reflectivity of the
surface. If this occurred the treatment might well reduce rather than
increase the over-all efficiency of the cell. On the other hand, Malovet-
skaya, et al." have reported antireflection films that greatly reduce re-
flection losses without increasing the surface recombination. The effect
of surface recombination on Qi is shown in Fig. 2 for a silicon solar cell
having the typical parameters

o.so
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41
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103

D = 5 cm2/second,

T = 2 X 10-5 second,

L = 10-2 cm,

a = 10-4 cm.

2 10 2 5 105 2 5 106 2 5 107

S IN CM/SEC

(34)

Fig. 2 - The collection efficiency as a function of surface recombination ve-
locity for a silicon cell having the parameters (34).
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For this cell (21 increases from 63 to 87 per cent as s decreases from 10'
to 103 cm/second. This example shows that considerable improvement in
Qi would result from the elimination (s < 103 cm/second) of surface
recombination. The presence of surface recombination in commercial
silicon cells is indicated by the rapid fall -off in the spectral response'°"8
at short wavelength X < 6 it. Little is known about surface recombina-
tion in the compound semiconductors. The fact that body lifetimes tend
to be shore' (7- 10-8 second) suggests that surface recombination is
probably very fast (s ti 107 cm/second). On the basis of these considera-
tions, the most reliable guess is to set w = 0 except where specific infor-
mation to the contrary is available.

The dependence of Q1 upon the junction depth is shown in Fig. 3 for
a silicon cell with D, T and L as given in (34). The curves shown for
w = 0 and w --> co are envelopes for the entire family Qi(y,w). Although
the limiting curves have quite different forms they approach the same
form for small and large depths:

as
Qi F'(0) = V(X)13(X) (1 ± 13)-1 dA,

7-0 0

Qi -4

The monotonic decrease of (21(7,0) with increasing 7 is typical of silicon
cells. In semiconductors of considerably higher energy gap the condition
P(0) IF"(0) > 0 may be satisfied, in which case (21(7,0) will at first

(35)
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Fig. 3 - The collection efficiency as a function of junction depth for a silicon
cell with parameters D,T,L given by (34). The abscissa is y = a/L, where a is the
junction depth and L the diffusion length. The curve Qi(7,00) refers to zero and
Q,(7,0) to infinite surface recombination velocity.
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increase with 7 to reach a maximum and then fall to zero as -y is increased
further. A very broad maximum in Qi(y, 00) is seen in Fig. 3 near -y =
0.2. The shape of the curve shows that relatively deep junctions (y ,---,
0.5) could be used if surface recombination were absent, which would
permit the internal resistance of the cell to be greatly reduced. On the
other hand, deep junctions cannot be used if the surface recombination
is important. This calculation also shows that in a cell with surface re-
combination reducing a from 10-4 (7 = 0.01) to 5 X 10-5 cm = 0.005)
would improve the collection efficiency only slightly. Therefore, one may
regard a = 10-4 cm as close to the optimum junction depth for silicon
solar cells.

The dependence of (21 on diffusion length is shown in Fig. 4 for a sili-
con cell with a junction depth a = 10-4 cm. The curves Qi(L,G0 ) and
QI(L,O) are envelopes for the family Qi(L,co) considered as continuous
functions of L. These calculations show that L > 0.1 cm may be con-
sidered essentially infinite. The limiting values as 00 are

QI(L, 00) 1,
L.ao

01(
XGp(X)1 -

dX,L,O)
JO cxa

(36)

which are indicated in the figure. It will be observed that Q1 increases
relatively little as L increases beyond 10-2 cm. On the other hand con-
siderable improvement results from increasing L from 10-3 to 10-2 cm.
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Fig. 4 - The collection efficiency as a function of diffusion length for a silicon
cell with the junction depth 10-4 cm. The curve Q1(L,00) refers to zero and (21(L,0)
to infinite surface recombination velocity.
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IV. THE EFFECT OF AN ELECTRIC FIELD

In his review, Rappaport" has suggested that a "built-in" electric
field may exist near the surface of solar cells causing minority carriers
to drift toward the junction. If sufficiently strong this electric field would
in effect eliminate surface recombination. One would expect that to re-
duce surface recombination significantly the field would have to be of
the order E ti s/µ 103 volts/cm, assuming the typical values s 2 X
105 cm/second, µ r., 200 cm2/volt-second. The built-in electric field could
arise in two ways, from a gradient in the impurity concentration, and
from a gradient in the energy gap. In the first case the field is given by36

E (0.026/a) In (No/Na) volts/cm, (37)

where No ,N0 are the carrier concentrations at x = 0 and x = a respec-
tively, and 0.026 = kT/e at room temperature. This is just the field
required to cancel the diffusion current in equilibrium according to the
Einstein relation (33). Actually (37) is an approximation giving an
average effective field over the region 0 < x < a. Consider as an example
a cell made by the diffusion of boron from the vapor phase into n -type
silicon.6,10,11 The surface concentration of boron is about" No ti 1813cm-3
and Na ti 10" cm -3. If a 10-4 cm, the built-in field is E ti 500 volts/
cm, which is probably much less than s/A and therefore not large enough
to cause much reduction in surface recombination. We may conclude
that in commercial solar cells the built-in field can be neglected, as in
the treatment of the last section and in the previous literature. On the
other hand, the possibility remains that much larger built-in fields could
be obtained, since No might be made to approach the solid solubility,"
which for boron exceeds 1020 cm -3. The built-in field would then be
about E t--, 1800 volts/cm, which might cause a significant improvement
in collection efficiency.

It appears that really large fields E >> VIA might be obtained from
gradients in the energy gap. Such a gradient could be obtained in GaAs
by diffusing in phosphorous from the surface. Mixed crystalet GaAs-
GaP can exist in all proportions, and the energy gap varies as a function
of composition from 1.4 (GaAs) to 2.4 (GaP). If the impurity concen-
tration is approximately constant, the band edge corresponding to the
majority carriers must also be approximately constant. The gradient of
the energy gap therefore appears almost entirely in the band edge for
the minority carriers, and is equivalent to a built-in electric field acting

t See also Ref. 24, p. 52.
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on the minority carriers. It seems quite feasible that the field may be of
order E 104 volts/cm in GaAs -P. In addition to producing the field,
the gradient in energy gap causes the absorption coefficient to become a
function of position a(X,x). To make the analysis more tractable we may
regard a(X) as an "effective" absorption coefficient independent of posi-
tion.

To take into account a constant electric field it is only necessary to
add to the left side of (1) the term -AE(dn/dx), giving

d2n- - -n - 1.L.D -
dn,

dX2 T dx fOX
N(X)a(X)e-ax dX = 0. (38)

This is conveniently written in the reduced form

where

d2y dy- - y 28 - f xo
vi9e-4 dX = 0,

(4. o

8 - 2D/µ/,

Y AWL'

(39)

(40)

and 13,vS are defined in (20). The boundary conditions on y(0 are

V(0) = Sy(0), Y(7) = 0, y(c) = 0, (41)

where

S = 28 + (.0 1 (42)

depends on the electric field as well as the surface recombination ve-
locity. If the last term in (39) is dropped the resulting homogeneous
equation has the solution CPI., ear, where

p = (1 + 82)1 - 8 < 1,

= + &2)1 + & 1, (43)

po- = 1.

The general solution can be written

y(-) = Ae4 (44)



102 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1961

where

a e -fir - ePCFQ-,L,6) = .10 v
pa aA (45)

For the region 0

F'(0) (S - o-)F(-y)e-"B -
p cre-(P+')7 + S(1 - e -(P+')7)

F/(0)e-(P+°)7 (S p)F(7)e°7A -
p cre-(P±')7 +S(1 - e -(P+')7)

As 8 approaches zero, F(r,L,g) approaches F(r,L) defined by (22) and
A,B of (46) go over into A,B of (25). It will be assumed that the elec-
tric field exists only in the region 0 y. Thus the solution in the
region r 7 is

(46)

y(r) = - F(y,L)e-r. (47)

Since y vanishes at the junction, the current is just the diffusion current
and the collection efficiency is Qi = Q_ Q+ , where

Q+ = 1/(7+),

Q- =

From (47),

Q+ = F(7+) + F'(7+)

as in (31). From (44) and (46),

F(7)[1 - e-(1)+`" S(a pe-(Pr")] (0)e -"(p + 0-)
Q- =

p cre--(P+c)7 + 5(1 - e-(P±a)7)

(48)

(49)

(50)

- P(74,
where P -"(r) = (d/CF(r,L,8). In the 0 this goes over into
Q_ given in (31). If 26 > fl, 28 >> 1/13 and 26 > y, (50) becomes

xo 1 x

Qi v(1 - e -P7) dX - vi3e-P7 ( 51 )
g.ao 0 26 0

Since the first term of (51) is the probability of absorbing a photon in
the layer 0 5 r S 7, the limit 00 corresponds to complete collec-
tion of minority carriers produced in this layer.
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A plot of Q_. as a function of 8 is shown in Fig. 5 for a silicon cell
with the parameters

D = 5 cm2/second,

= 190 cm2/volt-second,

T = 2 X 10-5 second,

L = 10-2 cm,

a = 10-4 cm,

s = 2 X 105 cm/second,

2D/AL = 5.3 volts/cm,

= 1050 volts/cm.

The electric field is therefore E = 5.38 volts/cm. The value of Q+ cor-
responding to these parameters is 0.52, so that the collection efficiency

= Q_ Q+ varies from 0.67 at zero field to 0.87 at infinite field. It will
be observed that these values correspond in Fig. 2 to s = 2 X 105 cm/
second and s -÷ 0 respectively, as one would expect. The critical field
s/i.i indicated in the figure is the field at which about half the surface

0.38

0.34

0.30

0.26
Q-

0.22

0.18

0.14

0.10
1 2 5 10 2 5 102 2 5 103 2 5 104

(52)

Fig. 5 - The collection efficiency as a function of built-in electric field for a
silicon cell with parameters (52). The abscissa is 8 = EAL/2D and 2D/ ILL = 5.3
volts/cm. The critical field 6/12 and the asymptotic limits of Q, are indicated by
dotted lines.



104 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1961

recombination has been eliminated. Although it would be difficult to
obtain built-in fields much larger than this in silicon, the high -field por-
tion of the curve shows qualitatively the results to be expected from a
gradient in the energy gap in a solar cell made of a compound semicon-
ductor such as GaAs -P. The asymptotic formula (51) holds only for
much higher fields than & = 104 because of the extremely high values"
of a near X ti 0.3 A. The asymptotic limits at low and high fields are
indicated by dotted lines. For estimating the effects of a given field it is
convenient to regard the field as effectively lowering the surface recom-
bination velocity. For estimating the effective velocity s* one may use
the recipe

s* = s[1 (El/s)(1 sa/D)]-'. (53)

The collection efficiency can then be estimated from (29) by using an
effective surface parameter w* = D/Ls* with considerably less labor
than by evaluating (50) exactly.

V. THE EFFECT OF THE ABSORPTION CURVE

The absorption curve is the curve obtained by plotting the absorption
coefficient a(X) as a function of wavelength X. Different semiconductors
have quite different absorption curves as well as different energy gaps.
In the several studies that have been made on the effect of the energy
gap no consideration has been given to the absorption curve.8,11,13,14,15,30
All of these studies have been concerned with spectrum and junction
losses rather than collection losses. From the standpoint of collection
efficiency, however, the absorption curve is of essential importance if
there is any considerable surface recombination in the cell. Although the
elimination of surface recombination may be in prospect, it is still of
interest to consider the effect of the absorption curve in a cell with es-
sentially infinite surface recombination velocity. This provides another
standpoint from which to discuss the advantages of different semicon-
ductors.

In Fig. 6 are shown the absorption curves for silicon," GaAs and
InP," in the range 102 < a < 105 ern-'. It will be observed that the curve
for silicon differs from the other two in its gradual drop off with increas-
ing wavelength. For a < 102 crn-1 it falls off more steeply, although not
as steeply as GaAs or InP. The reciprocal a(X)-1 of the absorption coeffi-

f The solid curve for GaAs is based on unpublished transmission measurements
by W. G. Spitzer. The dashed part of the curve is an extrapolation based on a
single additional reflection measurement by R. J. Archer giving a E.-, (1 ± 0.3) X
105 cra-' at 0.546 A.
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Fig. 6 - The absorption curves for silicon, GaAs and InP.
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cient is a measure of the penetration distance of light of wavelength X.
There is some wavelength Xi , for which

a(Xi)-1 a, (54)

which is the shortest wavelength of light useful in the cell. Light of
shorter wavelength that Xi is absorbed too close to the surface to be col-
lected at the junction. Similarly, there is a wavelength X2 for which

a(X2)-1 L, (55)

which is the longest wavelength of useful light. If L = 10-2 cm or larger
X. is nearly equal to the intrinsic absorption edge X0 corresponding to
the energy gap. Light of longer wavelength than X2 is absorbed too far
from the junction to be collected, or else is not absorbed at all. Since
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the effective light lies in the range X1 X < X2 an effective photon flux
can be defined:

x2

Neff =
J

N(X) dA. (56)

The collection efficiency may be written

Ql = Neff/N, (57)

where the flux N is defined by (2). The limits X1 , X2 , and hence Q, evi-
dently depend in an essential way on the absorption curve.

The first equation (30) gives Qi for the present case in terms of the
photodensity function Fa -,L) defined by (22). Therefore, the qualita-
tive considerations given above enter into determining the value of
F(y,L). According to (22), F(y,L) contains an integral over X of the
product of two functions /3/(1 ,3) and (p[ -y (1 - On The weighting
function v(X) representing the solar spectrum is slowly varying and not
relevant to the present discussion. Fig. 7 shows plots of the two functions
for a silicon cell with the parameters (34). It is clear from this figure
that X1 and A2 correspond to cutoffs in so and '3/(1 + 13) respectively. The
integrand in (22) is evidently small except in the region between the
vertical lines in the figure corresponding to as = 1 and aL = 1.

1.2

1.0

0.8

0.6

0.4

0.2

0

/3
1+13 sa

(X L = 1

0 3 0 4 05

aa=1

06 07 08 09 1.0 11 12

Fig. 7 - The functions OM + /3) and co entering into the integrand of (22)
defining the photodensity function. Calculation refers to a silicon cell with a =
10-4, L = 10-2 cm. Dashed lines show cutoffs Ai , X2 corresponding to (54) and (55).
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It is now clear that when Al lies very close to X2 the collection efficiency
will be relatively low. This is the case with very steep absorption curves
like that of InP. On the other hand, a gradual absorption curve like that
of silicon leads to relatively high collection efficiency. If Xi , X2 are de-
fined by a(Xi) = 104 and a(X2) = 102 cm-i, (57) predicts the collection
efficiencies 0.70, 0.21 and 0.045 for silicon, GaAs and InP respectively.
The value for GaAs is subject to considerable uncertainty because it is
based on a little-known part of the absorption curve. In any case, all of
these numbers are qualitative, and mainly of interest to show that if
surface recombination is high silicon is much superior to GaAs or InP.
It is important to notice that this should be true in spite of the higher
energy gap of the other two materials, because the differences in effi-
ciency predicted for these materials on the basis of their energy gaps
are much smaller than the differences in collection efficiency obtained
here. For example, Loferski'5 finds that silicon and GaAs have relative
efficiencies of 0.21 and 0.24 respectively, whereas silicon may have three
times the collection efficiency of GaAs and 15 times that of InP.

Several investigators have studied GaAs photocells. Gremmelmaier4°
obtained an over-all efficiency of about 4 per cent and a collection effi-
diency of about 0.2, in agreement with the estimates given above. An
over-all efficiency of 6.5 per cent for a cell of very small area (0.007
cm2) has been reported by Jenny, Loferski and Rappaport.° These au-
thors give current and voltage information for a somewhat larger cell
(0.059 cm2) having an over-all efficiency of 3.2 per cent, from which it
can be deduced that the collection efficiency was about 0.26. It may be
significant that the efficiency of 6.5 per cent was apparently obtained
using a very low level of illumination (0.0057 watt/cm2). Also, very low
collection efficiencies have been reported for InP cells by Rappaport,20
although he attributes this to poor ohmic contacts to the cell. According
to the present argument GaAs and InP will always give low collection
efficiencies unless surface recombination can be eliminated, either by
reducing the surface recombination velocity to below 104 cm/second, or
by means of a built-in electric field of order 104 volts/cm.

It should be mentioned that the spectral response for a GaAs cell re-
ported by Jenny et al.41 is not at all in agreement with the assumption
of fast surface recombination. These authors observe an almost constant
quantum efficiency from 5 to 9 µ. This differs radically from an earlier
measurement by Seraphin, f which showed a pronounced fall -off at short
wavelengths characteristic of surface recombination. No explanation has
been advanced for this result nor can any be offered here. It may mean

t Ref. 24, p. 65.
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that surface recombination can be effectively eliminated in GaAs cells
by treatments not yet defined, understood or controlled.

VI. THE TWO -JUNCTION CELL

In the typical silicon solar cell having the parameters (52), about 20
per cent of the minority carriers produced are lost to surface recombina-
tion and 13 per cent to body recombination. Therefore large reductions in
surface recombination will be more rewarding in terms of over-all effi-
ciency improvement than will proportionate reductions in body recom-
bination. The two preceding secitons have been concerned primarily
with surface recombination. It is also worthwhile to consider body re-
combination in some detail, particularly since high -temperature applica-
tions may be in prospect which will require high energy gap material!'
As discussed in the introduction, body lifetimes tend to be short in these
materials. From Fig. 4 one may estimate that Q1 is likely to be no larger
than 0.2 in a cell with short lifetime. How this low collection efficiency
may be improved by means of a second junction is discussed in this sec-
tion.

The collection efficiency for a two -junction cell will be denoted Q2 .

If the second junction is located at depth b below the surface, and
n = b/L, the solution n(x) in the region a < x is

NTn(x) = [
L

which satisfies (1) and the boundary conditions n(a) = n(b) = 0. In
the region x b the solution is

n(x) = NT[F(r)
- e,--11-e(n)]. (59)

si.nh(n - F(7) sinh(r -- 17(n) , (58)sinh(n - sinh(n - -y)

The solution in the region 0 < x < a is the same as that obtained in
Section III and given by (24) and (25). For the case of fast surface re-
combination w = 0, this is

sinhn(x) = NrLF(r)
sinh A F(7)1 (60)

satisfying n(0) = n(a) = 0. From (6), the total collection efficiency is

Q2 = F(7)[coth-y tanh - ,y)] F(n)[1+ tanh 1-(n - -y)]. (61)

As n 'Y1 Q2 -> Q1 for the case w = 0 given by (30). The effectiveness
of the second junction may he measured by the quantiy

6 = (Q2 - Qi)/(21, (62)
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where Q1 is the collection efficiency for a cell with a single junction at
depth a. From (61),

a(ocr,L)
F(n) 1 tanh i(n - -y) 1 - tanh 1(n -
F(Y) 1 + coth -y 1 coth -y

Fig. 8 shows (5(77,-y,L) plotted as a function of n for a silicon cell with
a = 10-4 cm and L = 10-4, 10-3 and 10-2 cm. These calculations show
that b(n) has a well-defined maximum which defines the optimum depth
for the second junction for given a,L.

Due to the loading effect of the second junction the relative improve-
ment in over-all efficiency will be somewhat less than 6. This effect may
be taken into account by use of the Pfann-Van Roosbroeckn efficiency
expression (15). For the two -junction cell the reduced current may be
written

G2 = 2 (22/(21)G1 (64)

where G1 = I fie = (N / Jo)Q1 is the reduced current for the single -
junction cell. Thus the efficiency expression for the two -junction cell is

E2

kT
u2 . (65)

The relative improvement in over-all efficiency can be measured by

= (E2 - El)/ (66)

0.5
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7)

Fig. 8 - The improvement of collection efficiency (defined by (62)) as a func-
tion of the depth of the second junction for a silicon cell with first junction at
depth 10-4 and L = 10-4, 10-' and 10-2 cm.
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where el given by (15) is the efficiency of the single -junction cell with
the junction at depth a. Finally, the over-all improvement 5' can be
written as a function of the collection improvement 5:

5'= a ± (1 ± a) 111 /ln
G

(67)

For practical purposes one may set In G = 18 in (67). The second term
gives the effect of the loading due to the second junction. Two extreme
cases may be noted: if S > 1, the second junction is a more effective
collector than the first function and 5' > 5; if 5 < In ifin G 0.04, the
second junction acts mainly as a load on the first junction and 5' < 0.
A summary of calculations for silicon two -junction cells is presented in
Table I. In each case it is assumed that the first junction is at a = 10-4
cm and the second junction at the optimum depth given in the third
column. The collection improvement 5 and over-all improvement 8' are
given in the fourth and fifth columns. In the second column is given the
single junction collection efficiency in agreement with Qi(L,O) of Fig. 4.
The last row with L = 10-2 cm is the most typical of good silicon solar
cells. For this case the improvement in collection efficiency is only

= 0.092. On the other hand, for L = 10-4 cm, 5 = 0.44 and 5' = 0.42.
This case applies qualitatively to any short -lifetime cell, and shows that
the two -junction structure may be useful for improving the efficiency of
high energy gap cells.

VII. SUMMARY

In this paper the present status of solar cell theory has been reviewed,
with emphasis on clearly defining the various mechanisms causing losses
of efficiency. This review leads to the conclusion that the problem of the
collection of minority carriers has not received attention in the literature
commensurate with its importance.

The collection problem is formulated and then solved by a new method
in which all the effects of the solar spectrum and absorption curve are
contained in a single function, the photodensity function. The method is
convenient for most solar cell collection problems and especially so when
a single diffusion length can be used.

TABLE I

L (in cm) Q1 b (in cm) d (max) e

10-4 0.186 0.032 0.443 0.417
10-3 0.420 0.013 0.258 0.226
10-2 0.634 0.008 0.092 0.055
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The familiar single -junction silicon cell is considered first and calcula-
tions are presented to show how the collection efficiency varies with sur-
face recombination velocity, junction depth and diffusion length. It is
found that the elimination of surface recombination would not only im-
prove collection efficiency but also permit the internal resistance to be
greatly reduced. Little or no improvement in silicon cells is to be expected
from making the junction depth less than 10-4 cm or the diffusion length
longer than 10-2 cm.

The theory is extended to include a constant built-in electric field, and
calculations are presented for silicon. It is concluded that commercial
silicon cells do not have large enough built-in fields to affect the collec-
tion efficiency significantly. Sufficiently large fields should be obtainable
in some compound semiconductors from gradients in the energy gap. An
approximate relation is given for an effective surface recombination
velocity less than the true velocity, which takes into account the effect
of the built-in field in reducing surface recombination.

A discussion is given of the dependence of the collection efficiency on
the absorption curve of the semiconductor. This discussion provides an-
other basis beside the energy gap on which to compare different semi-
conductors for solar battery use. It is shown that silicon has a very favor-
able absorption curve in comparison with GaAs and InP. It is suggested
that this accounts to a large extent for the continuing superiority of
silicon over other materials with larger energy gaps. The theoretical
superiority of GaAs and several other higher gap materials over silicon
can only be realized if surface recombination can be drastically reduced;
specifically, it is necessary that the effective surface recombination ve-
locity be reduced to 104 cm/second or lower.

Finally, a two -junction cell is considered in connection with the prob-
lem of reducing body recombination. Although body recombination is
considerably less important than surface recombination in good silicon
cells, it will be probably much more important in high energy gap cells.
The illustrative calculations presented for silicon also have qualitative
significance for other cells. It is shown that an improvement of about 42
per cent in over-all efficiency may be expected from the two junction
structure in material with a diffusion length of 10-4 cm. The improvement
in a good silicon cell with a diffusion length of 10-2 cm would only be 6
per cent.
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Note. Since the completion of this work a review paper by Wolf43 has
appeared which discusses some of the topics taken up here.

APPENDIX

In this section some comments are given which may be helpful for the
evaluation of the photodensity function (22). A very accurate and con-
venient method is the Gauss quadrature," which approximates the in-
tegral by a summation over the values of the integrand at certain specific
(not equidistant) points. The limits 0,X G in (22) can be replaced by
Xi , X2 so chosen that the contributions from the regions 0 < X < Al and
X2 < X < X G are negligible. The approximation is to represent the integral

Xa

F( -,L) =
0

g(X) dX

fx2

g(X) dX
x,

10

= i-(x2 - XI) E Rig(XJ).
j =1

(68)

The choice of a 10 -point Gauss quadrature here is arbitrary, but has
proved to be a satisfactory compromise between convenience and ac-
curacy. For silicon one can choose Xi = 0.42 tc, X2 = 1.08 /A, and (68)
becomes

fg(X) dX = E (0.33R;)g(m. (69)

The wavelengths X; and corresponding absorption coefficients32 a(X;) and
solar spectrumn weights v(X;) for this case are given in Table II, along
with the quadrature weights 0.33R; . The integrand g(X) can be readily
evaluated with a slide rule for each X; .

TABLE II

x(A) 0.33R a (in cm-) v(11-1)

0.429 0.0220 3.7 X 104 1.22
0.465 0.0492 2.0(4) 1.50

0.526 0.0723 9.0(3) 1.57

0.607 0.0888 4.3(3) 1.62

0.701 0.0977 2.2(3) 1.51

0.799 0.0977 1.03(3) 1.36

0.893 0.0888 4.5(2) 1.26

0.974 0.0723 1.56(2) 1.12

1.035 0.0492 42. 1.05

1.071 0.0220 17. 1.02
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The accuracy of (69) may be tested with an elementary integral hav-
ing a qualitative behavior similar to g(X) in the range of integration.
Such an integral is

1.08

(1.08 - X)I(X - 0.42)4 dX = 0.17106.
J0.42

The quardature (69) with X; and 0.33R; from Table II gives 0.17111.
The derivative F'(r,L) is defined by the integral

rxa

F'(t-,L) = P(X)113ft
1 13

1 - dX-
x

= e f (X)
1 -FS #

{1 - /3i-io[r(1 - ft)] 1 dX.

This integral may be accurately evaluated by (69), providing 13(X1)r >> 1
to insure that the truncation error at Al is small. The photodensity func-
tion for a constant electric field defined by (45) can be written

x0

F (gji)g) = pie Pt
fo P +13 poW[Pffi- dX, (71)

(70)

and its derivative is defined by
x,

= pi -14 fo 11 - /.3",,o[pW - 0-#)ll dX. (72)

These expressions are in the form of (22) and (70) respectively, and
can be evaluated by (69) in most cases.

Some of the integrals occurring in the theory cannot be evaluated
with sufficient accuracy by (69) because of large contributions from the
short wavelengths A < Al = 0.42 IL As an example of this difficulty con-
sider

foxa v(A) dX = 1, (73)

which follows from the definition of v(X) in (20) and of N in (2). The
quadrature (69) gives 0.905 for this integral, which shows that

f0.42

v dX = 0.095.

This result can be used to correct (69) for the evaluation of
as

F' (OP = v odX (74)
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occurring in (31). If 13(X1) > 1 it is only necessary to add 0.095 to the
right side of (69); thus for silicon

to

F'(0,L) = 0.095 + (0.33./ )v; . (75)

The evaluation of F'(0,L,8) occurring in (50) is more difficult and re-
quires a numerical integration over the larger region 0 < A < AG . To
carry out the integration the absorption curve must be known for very
high absorption" a r., 10° cm-'. There may also be a significant correc-
tion to be added to (69) in the evaluation of F(1',L,8) for very high fields
& > 100. These corrections can be readily calculated by integrating
from 0.22 to 0.42 µ by the trapezoid rule. The necessary data for silicon
is listed in Table III. For large fields (72) becomes

1 fx°
1."

g
->(g',L,g) vt3 Car dX, (76)
-,.ao GO 0

which can be evaluated by (69) if #(A1)i' >> 1. For silicon with a = 10-4
cm the following values were found for the integrals appearing in (23),
(36), (51) and (76):

fva dA = 3.7 X 104 cm -1,

f 1 - e'
dX = 0.754,

act

fv(1 - C") dX = 0.351,

fva dA = 1490 cm-'.

TABLE III

(77)

Me) a (cm 1)

0.22 0.00477 1.2 X 106
0.24 0.0148 1.4
0,26 0.0506 1.5
0.28 0.0625 1.6
0.30 0.178 1.5
0.32 0.306 1.3
0.34 0.448 0.9
0.36 0.538 0.4
0.38 0.654 0.1
0.40 0.801 0.06
0.42 1.14 0.04
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The Covariance Function of a Simple
Trunk Group, with Applications

to Traffic Measurement*

By V. E. BENES
(Manuscript received July 6, 1960)

Erlang's classical model for telephone traffic in a loss system is con-
sidered: N trunks, calls arriving in a Poisson process and negative expo-
nential holding times; calls which cannot be served at once are dismissed
without retrials. Let N(t) be the number of trunks in use at t. An explicit
formula for the covariance R() of N() in terms of the characteristic
values of the transition matrix of the Markov process N(  ) is obtained.
Also, R(  ) is expressed purely in terms of constants and the "recovery"
function, i.e. the transition probability PrfN (t) = N I N(0) = AT); R( )

is accurately approximated by R(0)erit, with rl the largest negative char-

acteristic value, itself well approximated (underestimated) by -.MN(  ))/
R(0). Exact and approximate formulas for sampling error in traffic meas-
urement are deduced from these results.

I. INTRODUCTION

A theoretical study of sampling fluctuations in telephone traffic meas-
urements is useful both in designing procedures for measuring traffic

loads and in interpreting field observations. Hayward' and Palm2 have
given an approximate formula for the sampling error incurred when
observations of the numbers of calls in existence are made at fixed in-
tervals of time. Their formula has the disadvantage that it is derived
for a probabilistic model (of the traffic) in which there is an infinite
number of available trunks. Thus there is no limit to the number of
calls which can he in progress at one time, and no congestion. Two im-
portant parameters, the number N of trunks in the group, and the prob-
ability pig of loss, are left out of account. For this reason the practical

* This work was completed in part while the author was visiting lecturer at
Dartmouth College, Fall -Winter, 1959-60.
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application of this model is usually restricted to large groups of trunks
which are lightly loaded.

In this paper we derive and study the covariance function of the sim-
plest stochastic model of a finite group of N trunks. The sampling error
in traffic measurements can be calculated exactly from the covariance.
We find formulas for the magnitudes of fluctuations of observed traffic
for both periodic and continuous observation. The exact formulas lead
to simple approximations similar to Hayward's, which take account of
the number of trunks. Our results are summarized and discussed in
Section II.

We shall use A. K. Erlang's classical probabilistic model for a group
of trunks, described as follows:

i. Holding times of trunks are mutually independent, each with a
negative exponential distribution. Time is measured in units of mean
holding time.

ii. Epochs at which calls arrive form a Poisson process of intensity
a > 0, independently of the holding times. The offered load is then a
erlangs.

iii. There are N < 00 trunks; calls which find all N of these trunks
busy are "lost," and are cleared from the system.

These assumptions determine a Markov stochastic process N(t),
-cc < t < 00, the number of trunks in use at time t. N() is a random
step -function fluctuating in unit steps between 0 and N. As is well known,
N( ) has stationary probabilities IN , n = 0,1, , N} given by the
(first) Erlang distribution

an

Pn N k

k-0

= equilibrium probability that n trunks are busy.

(1)

With this choice of absolute probabilities, N( ) is a strictly stationary
process, whose mean and variance are respectively

= a(1 - pN),

0-2 = m1:- apN(N - m1).

The probability pN of loss is shown in Fig. 1, the fractional occupancy
Ar-'m1 in Fig. 2, and the variance 0-2 in Fig. 3.
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II. DISCUSSION, SUMMARY AND CONCLUSIONS

The covariance R(t,$) between samples N(t),N(s) of the stochastic
process N() is the average of the product of N(t) and N(s), minus
the product of the averages:

R(t,$) = MAT (ON (s)) - (WEIN (s)).

Since N (  ) is a stationary real process, we have R(t,$) = R( it - s
I )*

The function R(  ) is called the covariance function of the process N (  ).
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It can be written as

R(t) = lira EIN(t u)N(u)} - EIN(t u)}E{N( t)}

N N 2 (2)
= E mp,n E n Pr{N(t) = n I N(0) = m} - (i mp,) ,

m..0 n=0 nt=0

where {pn,} are the stationary (or equilibrium) probabilities given by

(1), and

PrIN(t) = n I N(0) = m}

denotes the transition probability that n trunks are busy at time / if m
were busy at time 0. The function R() expresses the average depend-
ence or correlation between samples of N() taken at times t apart.

The principal practical use of the covariance function R() in the
theory of telephone traffic is in computing theoretical estimates of sam-
pling error incurred in traffic load measurements. Two methods of meas-
uring traffic, the switch -count and the time -average, are considered in
this paper. In the switch -count, n observations {xi , , x.,x; = N(jT),
j = 1,  , n} of the random process are made at intervals T apart; the
average

1 " ''

_ E ArciT) = 1 N:- x, = n -'s.
it j=i n 1=1

is then used as an estimate of the carried load m1 = a - apg . This
method is important economically because it is cheaper to scan trunk
groups periodically than to observe them continuously. The number T
is the scan interval, and the number Sn = x1 +  + xn is called the
(total) number of paths in service, in n observations. Table I lists actual
mean holding times, scan intervals used and resulting values of r for

TABLE I - HOLDING TIMES, SCAN INTERVALS AND VALUES OF T

Type of Call
Typical

Holding Time
(seconds)

Scan Interval
(seconds)

Ratio r of Scan
Interval to Holding

Time

U.S.A. Europe U.S.A. Europe

Local Call 100-200 100 36 1 tO to fi

Long Distance Call 200-600 100 36 to to 11r,

Originating Register Holding 10-15 10 or 100 36 Ito; 4 to 2

Time Or
10 tO 7

No. 5 Marker Holding Time 0.25-1.0 10
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various types of call. The variance of n-lkS is expressible in terms of
the covariance I?( ) as

Vail/L-18} = n-2 E (n - I19R( jr). (3a)

In the time -average, the continuously recorded sample average

111(71) = f N(t) dt,

is used to estimate the carried load. The variance of this estimate is
.T

Vail/1/(T)) = 2T-2 j (T - t)R(t) dt. (3b)
0

Thus the mean square error of both these methods of traffic measure-
ment can be calculated theoretically if the covariance R( ) is known.

In formula (2) the covariance function is expressed in terms of the
stationary probabilities {N} given by the Erlang distribution, and the
transition probabilities

p,(t) = PIO (t) = n I N(0) = ml
In the theory of telephone traffic, the particular transition probability

pNN(t) = Pr{N(t) = N N(0) =

has been singled out (in Refs. 3 and 4, for example) as a suitable "re-
covery" or "relaxation" function that is characteristic of the dynamic
behavior of the Markov process N ( ) in point of the undesirable "all
trunks busy" condition.

We shall show that a much more cogent reason than this can be ad-
duced to support the importance of the recovery function to traffic
theory: the covariance function R(  ) can be expressed entirely in terms
of the recovery function and the offered load a. In other words, a single
one of the (N + 1)2 transition probabilities appearing in formula (2)
suffices for determining the covariance function, and this one is the
recovery function pNN( ). This fact is a theoretical justification of the
intuitive view that the recovery function is important, for now the vari-
ances of n-lAS and of 111(T) are expressible using only the recovery
function.

We next give a summary of the contents of the remaining sections;
this is followed by an account of specific results and conclusions.

An exact formula for the covariance R(  ) is stated and discussed in
Section III, and derived in Section VII. The formula readily yields a
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rigorous upper bound which appears to give a close approximation to
R() itself. In Section IV the recovery function pNN() is given, and it
is shown how the covariance may be expressed in terms of the recovery
function by a convolution integral. The variance of n-iSn is studied in
Section V; an exact formula, and an approximating upper bound [based
on the upper bound for R( )], are both obtained. The variance of the
time -average M(T) is considered in Section VI; again, an exact formula
and an approximating upper bound are found.

The covariance function R() is bounded from above and closely
approximated by a single exponential function

R(t) 0-2e"`, 0-2 = R(0), r1 < 0.

Here
(7.2

= equilibrium variance of N()
= (load carried) - (load lost)(average number of idle trunks),

and the reciprocal time constant r1 in the exponent is the dominant*
characteristic value of the "rate" or "transition" matrix of the differ-
ential equations satisfied by the transition probabilities. Alternately,
r1 is the root of least magnitude of a Poisson-Charlier polynomial. The
root r1 is shown as a function of offered traffic a for N = 1,  , 8 in Fig.
4, and is tabulated in Table II.

A lower bound for r1 , depending only on the mean and variance of N(),
is derived in Section VIII by making use of the fact that the matrix of
the differential equations for the transition probabilities is symmetriza-
ble. For low values of offered traffic per trunk, i.e., a/N < 1, this bound
can be used to approximate r1 . In any case, the bound is a convenient
starting place for the use of Newton's method. The bound is the ratio
- m1/0-2, which satisfies the inequality

- ml < r1 < -1,
0.2

with

m1 = equilibrium mean of N()
= load carried = a(1' - p4,

(r2 = equilibrium variance of N()
= (load carried) - (load lost)(average number of idle trunks)

The approximation r1 - ml/Q2 is illustrated in Fig. 5.

* I.e., that of least magnitude (among the nonzero characteristic values).
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Fig. 4 - Negative of the root ri of smallest magnitude as a function of load a
for N = 1,  , 8.

TABLE II - NEGATIVE OF DOMINANT CHARACTERISTIC VALUE r1

a N = 4 N = 5 N = 6 N = 7 N = 8

1 1.043967 1.011448 1.002421 1.000421 1.000062
2 1.249464 1.112166 1.045044 1.015806 1.004800
3 1.582363 1.326321 1.172257 1.084025 1.037229
4 2.000000 1.629624 1.383389 1.222707 1.121762
5 2.477548 2.000000 1.663799 1.427870 1.265214
6 3.000000 2.422137 2.000000 1.689991 1.463798
7 3.557618 2.885474 2.381627 2.000000 1.710891
8 4.143703 3.382497 2.800900 2.350437 2.000000
9 4.753426 3.907677 3.251918 2.735363 2.325514
10 5.383178 4.456828 3.730121 3.150052 2.682770
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By the "infinite trunk" model we shall henceforth mean the stochas-
tic model for telephone traffic determined by all the same assumptions
that we made in the Introduction, except that N = co; i.e., an unlimited
number of trunks is postulated. Riordanb and BeneA8'7 have considered
this model; Hayward' based his sampling error formula on it.

It is widely believed that the "infinite trunk" model is applicable to
large groups of lightly loaded trunks. Such a belief is gratuitous until
comparisons with a model having a finite number of trunks are made.
Studying the covariance function of the simple finite trunk group en-
ables us to make some of the needed comparisons; e.g., the variances of
71-18 and M(T) in the two models are of particular interest. Knowledge
of the covariance R(  ), however, is also relevant to the other three cases
to which engineers are loath to apply the "infinite trunk" model, viz.:

i. large groups of heavily loaded trunks,
ii. small groups of lightly loaded trunks,
iii. small groups of heavily loaded trunks.
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The variance of n -1S is bounded from above and approximated by
the formula

Varin-12.1 < t-10-2 {ctiih X

1 - e-2nk

where n is the number of observations, and

}csch2 X ,

2n
(4)

A
Tn.= - = (scan interval) (dominant characteristic value).

The exact formula for the variance of n-1Sn in the "infinite trunk" model
is

1 - e-7ITn ctnh T
2n

csch2 Z T} . (5)

The upper bound (4) for the finite group is compared with the exact
formula (5) for the "infinite trunk" model in Fig. 6, which shows each
formula as a function of the scan interval 7- for various n, for a = 20
erlangs offered to 20 trunks. The curves suggest that the upper bound
for Vail/1-1Sn) for N < 00 is consistently less than the corresponding
variance in the "infinite trunk" model. As might be expected, increasing
the scan interval T improves accuracy for the same number of observa-
tions. This is because the covariance function is positive, and monotone
in

The variance of M(T) is bounded from above and approximated by

VariM(T)1 < 20-2 eriT
1 - riT

T27.12

where T is the length of the time -interval of continuous observation,
and cr2 and r1 are, as before, the variance of N() and the dominant
characteristic value, respectively. The exact formula for the variance
of M(T) in the "infinite trunk" model is

2ae-T 1 +11
T2

Since r1 < -1, and 0-2 is always less than a if N < 00, the "infinite
trunk" model overestimates the variance of M(T) if applied to a finite
group. This conclusion is illustrated in Fig. 7, which shows the formulas
(6) and (7) for a load of 20 erlangs offered to 20 trunks. For an observa-
tion time of 10 mean holding times the "infinite trunk" formula (7)
applied here would overestimate the variance by about 500 per cent.
This is about as extreme a case as would occur in practice. Fig. 7 also

(6)

(7)
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Ǹ N.,

%%

N
\

N,
20

`N
%,

N %\ %
S.

S.
%

50

\
\ \%

% %
N

%

, ......

1002%
..... UPPER BOUND -a-- r%

n

(ctnh X i-e2n2nX
X)

%%

%,
N.

,....
n=iso

csch2 %- Ns,
.%TO VAR {Sn/r1},WITH

%rr, .
X. -=----=---1z (SCAN INTERVAL)
(DOMINANT CHARACTERISTIC VALUE)

, ......

VAR {Sn/11} FOR

"INFINITE TRUNK" MODEL, GIVEN BY

1-enrT-n (ctnh -L2 CSCh2 -I- r2n 2
1 i i 1 I I I I

0.01 0.02 0.04 0.06 0.1 0.2 0.4 0.6 1.0 2
SCAN INTERVAL, 7, IN MEAN HOLDING-TIMES

4 6 6 10

Fig. 6 - Comparison of variance of &In for finite and infinite trunk models.

depicts a "mixed" formula obtained by replacing a by o.2 in the "infinite
trunk" formula (6); for 10 mean holding times the "mixed" formula
only overestimates the variance by about 100 per cent. Thus most of
the discrepancy is due to the difference between a-2 and a.

Our conclusions are set down in the following list:
1. The average dynamic behavior of the process N(), as described

by the covariance function R(), can be adequately determined from
the dominant characteristic value r1 and the variance (1.2 of N().

2. The same parameters, r1 and 0, suffice to give simple approximat-
ing upper bounds for the sampling error incurred in both periodic and
continuous observation of N(). These bounds depend on the size N of
the trunk group.
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3. In terms of r1 and a2 it is possible to check the applicability, for
theoretical estimates of sampling error, of the "infinite trunk" model
which assumes N = co .

4. The "infinite trunk" model, applied to finite trunk groups, con-
sistently and often grossly overestimates the sampling error. The over-
estimation occurs largely because o2 is always less, and for heavy traffic
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is much less, than a, the (Poisson) variance of N() in the "infinite
trunk" model.

5. In terms of r1 and o2 it is possible to design sampling procedures for
traffic measurement that depend explicitly on the number N of trunks
in the group. By these methods, a given accuracy can be obtained with
less observation, and thus at lower cost, than the "infinite trunk" model
would require.

6. Hence for finite groups of trunks traffic sampling procedures which
are based on the "infinite trunk" model tend to be wasteful, particularly
for heavy traffic. The parameters r1 and o2 provide a systematic way of
tailoring the measurement procedure to the number of trunks in the
group.

HI. THE COVARIANCE FUNCTION

To state the formula for R() we need the "sigma" functions* de-
fined (see Riordan) as

am
ao(m) = -in!

- 1
am'

crk(m) = \
J=0 .1 ) (m - j)!'

with m (but not k) a nonnegative integer. These functions are connected
with the Poisson-Charlier polynomials

n

Pn(X) = a"I2 (n!)1 E j(n.),Pa-i(1
j-o

by the relation
ok(m) = ( -ai)m(m! )-Ipm( -k).

(See Ref. 10, p. 33.)
For fixed N and a, let r1 , r2 , , rx be (in order of increasing magni-

tude) the N zeros in the variable s of the polynomial cr,±i(N). In Sec-
tion VII the covariance is shown to be given by (the exact formula)

rt
EN e 1-1 [1 - (r1 riri] (8)R(t) = -a2pN
J-1 ri(1 ri)2 i0i

where pN is the probability of loss. It has been shownt that the zeros
r are all real, negative, and distinct; all are less than -1, and consecu-

* The ff notation is copied from unpublished work of H. Nyquist . The functions
themselves were introduced into traffic theory by Palm.*

t The earliest reference appear to be Haantjes" in 1938. See also Ledermann
and Reuter."
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tive pairs are separated by at least unity. Fig. 8 shows these roots for
N = 1, 2, 3 as functions of a.

Now 9.5 is always negative, and the terms of the product satisfy

1
1 > 0; (9)rj - ri

hence the sum in (8) has all terms negative, so that

R(t) > 0, all t.

The correlation between successive samples is thus always positive. It
is obvious from (8) that

- --a2pNrj(1 rj)2rjrj - ri
R(0). (10)
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Since r1 is the root closest to zero, the value of (8) is only increased
if the ri in the exponents of (8) are replaced by r1 . Using (9) and (10),
we conclude that

0 < (r2eril - R(t) = E(t). (11)

where
N .t

E(1) = a2 pNE erl - eno ri - -
i=2 r; (1 r, )2 -

and

E(t) a2pNet (j ± 1)-2 _< a2pN 472 - 30 e -t
...2 24

(0.3933)a2pNe-t.

The approximation R(t) cr2erit is illustrated in Figs. 9 and 10. It ap-
pears to be fairly accurate, especially for light loads.

The upper bound 0.2er'' for R(t) should be compared with the rigorous
formula (see Riordan' and Bend')

R(t) = ae-g,

which holds for the "infinite trunk" model. In this model the equilibrium
distribution of occupancy is Poisson, so that

R(0) = (72 = VartN(t)1 = E{N(0) = a,

and the "time constant" of the exponential is unity, since time is meas-
ured in units of mean holding time.

The difference between the "infinite trunk" model and the "finite
trunk" model in point of the covariance can be understood by con-
sidering the effect of congestion, which is present in the latter. Conges-
tion affects the upper bound formula most directly through the value
of the variance cr2. It is obvious intuitively, and borne out in Fig. 3,
that as a increases 0.2 must eventually decrease to zero. This behavior is
not mimicked by the "infinite trunk" model, for which o.2 = a.

The finitude of N, i.e., congestion, affects the bound 0.2e1"11 in two ways:
(a) the "time constant" is not unity but the smaller number -
so that the rate at which dependence between samples of N() de-
creases (as a function of the interval between samples) is larger than
in the "infinite trunk" model; this "time constant" decreases as the
traffic a increases, because, as illustrated by Fig. 4, r1 is a monotone
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Fig. 9 - The covariance R(t) for N = 5 trunks, a = 10 erlangs, with the ap-

proximate formula R(t) ,-,-, (720'.

decreasing function of a; (b) the value of R(0) ( = (72) is not a but the
generally much smaller number

a-2 = a(i - pN) [1 - apN N - 1 'G )]
= a[1 - pN(1 + N - a -I- apN)].

The last form shows that 0-2 < a for all a and N. In fact, it is obvious
intuitively that

cr2 = m1 - apN(N - m1) < m1 < a.

A simple approximation for the dominant root r1 can sometimes be
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used to make the approximation R(t) a2e(ri :} more useful. It is shown
in Section VIII that

m1 carried load
2 load variance = 1.1

i.e., -mi/0-2 is a rigorous lower bound to r1 . Fig. 5 suggests this bound
gives a fairly good approximation to r1 if a/N < 1. Hence a simple
approximate formula for R(.), valid for a/N < 1, is given by

R(t) N o.2e(-m,ticr2)

{ carried load
r->2 (load variance) exp load variance

(12)

We know that R(t) < ("et" and that -milo-2 < rl ; hence replacing
r1 by -7n1/0-2 tends to correct the error in the upper bound formula.
The formula (12) is illustrated in Fig. 11.
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IV. THE COVARIANCE IN TERMS OF THE RECOVERY FUNCTION

It has been shown' that the Laplace transform of pNN() is

scrs+i(N)

By expansion in partial fractions we find that

N erit

PNN(t) = PN E -H r;-r) .

1 (13)

The sum assumes only negative values, and so pNN(  ) decreases mono-
tonically to the loss probability pN . The recovery function is illustrated
in Fig. 12.
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0.04 0.08 012 016 0 20 024 0 25 0.32

Fig. 12 - Recovery function for N = 5 trunks, a = 10 erlangs.
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We now observe that for each j = 1, - , N,

J.
er - t e -t(t - u) e-u-u)-Friu du =
(ri + 1)2 r; + 1 (14)

By comparison of formulas (8) and (13), and use of (14), one finds that

R(t) = a2PN fQ 0 - u)e-(1-u)IPNN(u) -P Ni du + 0-2 C t , (15)

where ll1.C = -a2pN 1 (E
=i no.; + ri -

This formula expresses R(  ) in terms of pNN(  ) by a simple convolution.
To evaluate C explicitly we note that

C pN
r 0.8+1(N 1) a_1

L(1 8)0' 8+1(N ) 1 + sis=o

where is the first coefficient in the power series expansion of the left-
hand term in the bracket. One finds

ao(N - 1) N-
0-0(N) a

C = a2pN (.111..a -1 + Pp,r)

= apN(N - m1)

= (load lost) (average number of idle trunks).

V. THE VARIANCE OF THE NUMBER OF PATHS IN SERVICE

We assume that n observations { x; , j = 1, , n} of N() are made
during an interval of equilibrium, so that

Covfxi , xj) = R(1 -j r),

where r is the scan interval. Then with

37, = xl +x2+ +xn

= number of paths found in service,
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we find that
n n

8} = E EExix;} - E2 Lxi}
n n

= E E covtx, , sA

= > (n - I j DR(iT).
j=-n

To give an exact formula for Var{ S} we note that

e
ix-%-2 miu = ctnh u,

111=-00

E Iml e-2Imiu = -
00

-2niu = csch2 u
au m=1oo

and

=-2mu -2n is E I e-2imiuc

In= 71 773= --Do

-2"" CSC112 qt.

Then also

E (n - iii) 2171e
E e-2 I mitt E

I

e2Ind re

j=n n=-.o
CO

(16)

+ 2 E (in - n) e 2- 7,1 ti (17)
773= ll

e-2.)
= n ctnh u. - csch2 u.*

Since the covariance R() is a symmetric function given by (8), it can
be seen that

Var n-lSn ) =

-1 2

// a pN

N
1

enrri.

[ct iih( -Tr)
2n 2

csch2(- T-11
2

r; (1 7..02

' (1
1

ix r; - r

(18)

* Use of this identity was suggested by unpublished work of J. IV. Tukey to
which the author had access.
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This formula is exact, given the assumptions. It is easily shown from
formula (17) that the exact formula for the variance of n-18 in the
"infinite trunk" model is

1 -
ne-nr

n a ctnh -
2

csch2 17"

illustrated in Fig. 6.13
Returning to the case of finitely many trunks, we can obtain ap-

proximating upper bounds to formula (18) for Var{n-187,} by using the
results of Section III on the covariance function. It can be seen from
the arguments leading to (17) that replacing the roots 7.5 by r1 in the
hyperbolic functions in (18) increases the values of the expressions in
square brackets; this replacement is equivalent to using the upper
bound

cf2eri t

for R(t) in formula (16). Hence

n---10_2 1 - - X

V ar 1S ctnh X - csch2 X} , (19)
2n

where

TriA = -
1

- --1(scan interval)(dominant characteristic value).

Since U'erh
t is close to R(t), we may expect that the overestimate (19)

gives a good approximation to the actual variance. This approximation
is conveniently plotted as a function of A for various n in Fig. 13.

VI. THE VARIANCE OF TIME AVERAGES

It follows from formulas (3b) and (8) that

Var{f N(t) dt} = co + o(e-T)

as T -> co, where

Nn( )
r; -Co = 2a-pN

;"(1 + 7 .5)2r

(20)
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is a negative constant, and

c1 = f R(u) du = 2a2PN

2 4

)
N ll (1 - 1

E ri - ri
1=-1 rj2(1 ri)2

6 8

Note that co and c1 differ only in the power of r; that occurs in the
denominators. The third term of (20) is positive; is given by

N T
e 1o(e-T) = -2a2 p, E
+ rJ)2 ri -

equals - co at T = 0; and is of smaller order than e -T because r1 < -1.
To evaluate c1 explicitly, we note that

c1= -2a2pN[ 0-84-1(N - 1) 1 - PN a_1 a_2
(21)

_s(1 s)20-8_,I(N) s 1 s (1 + s)21=0'
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where a_2 , a_1 are respectively the first and second coefficients in the
power series expansion of the leftmost term in the bracket of (21); these
are given by

ao(N - 1) N
a_2 -

cro(N) a

d crx+i(N - 1)1
dx xcrz+i(N) jx=-1

= N 1 - pN
a apN

To find c1 we must compute

lim
F 0-9±1(N - 1) 1 - pivi _ d ar+i(N - 1)

s -o Ls(1 + 8)2o -8+1(N) s dx (1 + x)2o-r+1(N) ..--o 

This equals

or

d crx±i(N - 1)-1
2(1 - PN) dx axi-i(N) -Ix=°

(1 - pN) [2 - d.dxlog
x+a1(N - 1) + log azi_1(N)1

x=o

Now the generating function of the a -functions is

cF(s,z) = eas(n) = (1 - z)-8eaz

so that

n=o

a
5,;(1)(8,z) = Cs,z) i zn

n_-_]. n

(-1s cr.(n) -Gc8(0)+ 68(1) 0-8(n - 1)
n ,

d n-1
= dx

log 0-x+i(nd = E 0-i( i)
x-0 ;_,, (n - Do -1(n)

It follows that

cl = 2a2pN[a_2 a_1 + (1 - pN) (2 - c,Ar-1 /.1)]

= 20-2 + 2a2pN(1 - pN)(1 + EN) + 2aNPN 

The constant co can be evaluated in a similar fashion.
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From the bounds (11) for R() we conclude that
rtT

20.2 (e- 1
T2r12

rig) Vartill(T))

-T -
(0.3933)a2pN (e

T2

+ T),1

and since R(t) (72e" `, we may expect that the overestimate

re

T - 1
2a2 (22)

rf2r12

is a good approximation to the variance of M(T). This approximation
has the same form as the exact formula (7) for the "infinite trunk"
model, because in both cases a single exponential is used for R() in
formula (8). The overestimate (22) is depicted graphically in Fig. 14.
It was convenient to plot the ratio

Var{M(T)}
0.2

as a function of the single parameter

= r1T = - (dominant characteristic value) (observation time).
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A simpler form of (22), valid for a/N < 1, results when we replace r1
by its lower bound

- carried load
.

load variance -

This replacement decreases the value obtained, i.e., moves the approx-
imation in the direction of Var{ill(T)}.

VII. DERIVATION OF THE COVARIANCE

The transition probabilities

p,(t) = PrIN(t) = n I N(0) =

of N( ) satisfy the Kolmogorov equations

P1,111(0) = 677171

dt prN
= aPm(N-1) NPmN

P = (n+1)p,,,(,i+i)+ apn,(7,--1) - (a +
dt

dt
pmo = p,nl - ap10 

0 <n <N,
(23)

Multiplying the nth equation by n, and summing on the index n, we
find

dt
{-- N(t) I N(0) = = -E{N(t) I N(0) = + a[1 - p,N(t)],

whence

E{N(t) N(0) = = m + a f e-(1-11 - p,/,,(71,)]
0

By formula (2), the covariance is then

R(t) = E mp,nE IN (t) I N(0) = m} - m12
m=0

= in2e-t -I- anti(1 - t) 2 f "- ml - a E mpn,p,,,N(u) du,
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N

mi = E nipn
n

for i = 1, 2 and {pn} are the stationary probabilities given by (1). In
particular,

m1 = a(1 - ps), (24)

0- = (m2 - mi2)1 = [mi - apN(N - 9n1)14. (25)

The Laplace transform of

PIOT( ) = N I N(0) = m}

has been determined3 to he

aN-mm!0-8(m)

N!scrs+i(N)

Therefore that of R(  ) is

R*(s) = ix' CaR(t) dt - m2 ± m12am'
0 1 + s s(1 + 8) s

Na aN-mm!era(m)

s(1 + s)cr84.1(N) m-1 MPm N!

By (1), the last term of (26) is

(26)

apN

s(1 + s)o-s+I(N) m-1

It has been shown9 that the "sigma" functions satisfy the recurrences

crs(m) = (7,,+1(m) - (584.1(ra - 1), (27)

mcrs(m) = aus(m - 1) + sas+i(m - 1), (28)

so that

and

N-1 N

E ma(m) = aE o- (k) sE +1(k)
m=1 k=0 k =0

= - 1) + sa84-2(N - 1),

er.+2(N - 1) N acral_1(N - 1)
S 1 (s + 1)0.84.1(N).
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The foregoing identities yield the following simplified formula for R*(s):

*
anti aNpNR (s) -

1 s s(1 + s) (1 ± s)2

a2pN 84_1(N - 1) nii2

1 s Ls(1 s)(78+1(N)] s

From (27) we find that the partial fraction expansion

cr8+1(N - 1) -E - a,1(N)N!
crs+i(N) i-1 (s - ri) II (r; - ri)

= E (s - r)-' r; - ri
is valid, where { ri} are the zeros of cre+i(N).

By a similar argument, since PN = cro(N)/01(N),

o -84.1(N - 1) 1 - pN
s(1 s)6,- _i(N) s a(1 s)

(29)

+E(rj)-1
1 1 Hr; - 1

=i 1 + r; r; - ri

Hence formula (29) can be inverted to give, for t 0,

R(t) = m2e-t ami[l - el - aNpNte-` - m12

where

and

t N r u
pN pN -

a
e ± E- a e

 0 J=1 r;(1 ± r1)

1T.; - 1 - ri
ii ri - Ti

= vie a2pNKe-1 - a2pN E
er,f r; - -

r;
ri

ri)2 - ri

mi2 equilibrium variance,

NK = Er, - - ri
.1.=1 r; (1 + I;)` - ri

(30)
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To evaluate K explicitly we observe that

as+I(N - 1) a_1 - a_2 (31)
(1 + 8)20'8+I(N) 1 + 8 (1 + 8)21=0'

where a_2 , a_1 are respectively the first and second coefficients in the
power series expansion of the leftmost term in the bracket of (31). Thus

K = a_1 a_2 - 1 pN

Now

0-8+1(N - 1) 1

( I + s)_2
0 0(AT - 1)

(1 8)2cr.+1(N)
+ (1 +

+
rd crx+i(N - 1) + (s rj)-1 TT rj - 1 -r;E
Lds Q.+1(N) J-1. (1 + 1..02 ;4A r; - ri

From the recurrence (28) for the a -functions we find that

s
cra+i(N - 1) cra(N - 1) - 0 ;

(r,(N) ,,(N )

differentiating with respect to s and setting s = 0, we obtain

Clearly,

and so

d o-s+i(N - 1)
=

ds r 84_1(N )

1 ( cr1(N - 1)) _1 -pN
a \ cro(N) ap N

0-0(N - N
a_2 -

0-0(N ) - a

1 - p v NK = - - 1 ± pN
apN`

,

a2PNK =

Thus the formula (30) for the covariance function R(-) simplifies to
N er,e H - 1 - ri

R(t) = a2PN E
;_1r;( 1-,-r3)ri)- -r;

VIII. APPROXIMATION TO THE DOMINANT CHARACTERISTIC VALUE

The differential equations (23) can be written in the form

dt
P = QP(t) ,

(32)
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where P(t) is the matrix of transition probabilities {p,(t)} and Q is
the matrix of the "transition rates":

-a 1 0 0 0 0'
a ( -a - 1) 2 0 0

0 a ( -a - 2) 3

Q= 0

N - 1 0

0 0 a ( - a - N 1) N

0 0 0 a -N

The characteristic values of Q are 0, r1 , r2 , , rs . We define

1
N j

= -= n!a-" E n = 0,1, , N,
J-0 3!

and we introduce an inner product for the space L2(11) of (N 1)-
tuples of complex numbers by the definition

(x,y) = E Xrigniin 
7/.1)

The matrix Q represents a symmetric operator on L2(1),

(Qx,y) = (x,Qy), x,y EL2(A).

It is easily seen that

n=0 An n=0

Qp = 0, for P = (Pa , pi , " , PN),

= Qi il1i 7 ifi = 071 7 7 N 

The last identity implies that

(Qx,y) = E (yiAi - yfiui

(Qx,x) 5._ 0,

so (as we already know) all characteristic values of Q are nonpositive,
being of the form (Qx,x) for some x E L2(i2)

(33)

(34)

(35)

Qji-
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From the extremal properties of the characteristic values of symmetric
operators (e.g., Zaanen,14 p. 383, Theorem 3) we conclude that

r1 = max( Qx,x),

the maximum being over all xE L2(2) which are not identically zero,
and satisfy (x,x) = 1, (x,p) = 0, p being the vector of stationary
probabilities, as in (34).

We can now estimate rl from below by choosing an appropriate
vector x. We choose

n -
xn = n = 0,1,  ,N,

072 n

where m1 and a are the mean and standard deviation of N(  ) in equi-
librium, given by formulas (24) and (25) respectively. Clearly, (x,x) =
1 and (x,p) = 0, and

N-1
(Qx,x) = -a s p

71 = 0

a(1 - pN)

9111= -
o --

- mi n 1 - mi)2

(See Kramer.'5)
This approximation is illustrated in Fig. 5.
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Mode -Conversion Filters

By E. A. MARCATILI
(Manuscript received July 11, 1960)

Resonance of higher -order modes in waveguides can be advantageously
used to make band -rejection filters of unusually low loss and simplicity.
The region where the resonance takes place can be obtained either by a local
change of cross section of the waveguide or by the inclusion of dielectrics.
Mode -conversion band -rejection filters can be combined to build channel -
dropping filters which are of particular interest in the millimeter wavelength
region to separate bands of TEN° into TENo.

In this paper the necessary design relationships for channel -dropping
filters using mode -conversion band -rejection filters are derived. It also con-
tains a theoretical derivation of the intrinsic Q of band -rejection filters in
round and rectangular waveguides. Finally, the experimental results ob-
tained with different mode -conversion band -rejection filters at 12 and 66
kmc, and with a channel -dropping filter from TEN° to T Elo° at 56 kmc, are
given.

I. INTRODUCTION

A large variety of channel -dropping filters operate through the use
of band -rejection filters, and since the microwave art is pushing the
usable spectrum to higher and higher frequencies, low heat loss and
easy -to -build band -rejection filters are important.

This statement is particularly true in the process of separating bands
in the long distance waveguide communication system' that operates
with circular -electric mode in the millimeter wavelength region. The in-
formation sent from repeater to repeater through the low -heat -loss
multimode circular waveguide must be separated into tens of bands for
the purposes of regeneration and amplification at each repeater. Since
each repeater operates in single -mode rectangular waveguide, one pos-
sible solution is to convert the circular -electric wave to fundamental
mode in rectangular waveguide and then to drop the different channels
with known techniques. This solution has several disadvantages: the
filters are relatively lossy because of the low intrinsic Q of parallelepi-

149
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ped-shaped cavities in the millimeter region, and they are difficult to
build. Furthermore, the channels to be dropped last are substantially
attenuated because they must travel in a high -loss rectangular wave -
guide. For instance, the theoretical attenuation in the standard silver
waveguide RG98U (50 to 75 kmc) is 0.53 to 0.39 db/foot.

Better solutions are filters that simultaneously drop the channels and
make the transfer from circular -electric wave in round waveguide to
dominant mode in rectangular waveguide.2.3

This paper describes a channel -dropping filter that combines all the
desirable features: it filters, it transfers TEce mode into TED P, it has
low insertion loss and it is extremely easy to build. All this is possible
because of the use of mode -conversion band -rejection filters.

II. DESCRIPTION OF THE MODE -CONVERSION BAND -REJECTION FILTER

Consider, for instance, a round waveguide carrying the TE01° mode
and barely cut off for the TE02. If for a length 1 the diameter of the wave -
guide is slightly larger, in such a way that TE02° is no longer cut off,
the region 1 becomes a multimode region4 where the TE02° generated at
both diameter discontinuities can resonate and introduce a large inser-
tion loss to the incident TEN°. The bandwidth depends essentially on
the amount of mode conversion (size of the discontinuity), and the
center frequency depends on the length 1. The filter can be made of slid-
ing coaxial tubes because the circumferential cracks do not interrupt
the conduction current of circular electric modes.

The intrinsic Q is very high, one order of magnitude better than a
TE,01° cavity, because: (a) the resonant mode is essentially a low -loss
one,' (b) the end walls do not absorb energy since they do not exist,*
(c) the tuning mechanism is lossless and (d) the coupling that is pro-
vided by the diameter change does not create high -density currents, such
as exist in the case of band -rejection cavities coupled through irises to
the main waveguide, or in the case of microwave band -rejection filters
made of lumped elements.

The reasoning used for circular -electric modes can be generalized, that
is, any waveguide that contains a low -loss, multimode region exhibits
rejection bands corresponding to the resonances of the confined modes:1'5,"
Thus, a rectangular waveguide cut off for TE20°, except for a length
1 of slightly larger width capable of generating and supporting TE2°,
becomes a mode -conversion band -rejection filter.

* The heat loss due to the penetration of the TE02° mode in the cutoff wave -
guides is calculated in Section IX.
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Another band -rejection filter in rectangular waveguide is obtained by
building the multimode region with a dielectric slab close to one of the
narrow walls, since the dielectric provides an apparent width increase
of the waveguide.

All these mode -conversion band -rejection filters have small return
loss out of resonance.

III. DESCRIPTION OF THE CHANNEL -DROPPING FILTER

The channel -dropping filter consists of a through waveguide with two
multimode regions, one of which is coupled to another waveguide (Fig.
1). For the purpose of fixing ideas, we imagine that the through wave -
guide is circular with two enlarged regions where the TE02° excited by
the incident TE01° can resonate; the dropping arm is a rectangular
waveguide. The enlarged regions where the TEof mode can resonate
will be referred to as cavities, even if they are not enclosed volumes.
The idealized filter must be such that the incident rm.° mode is matched
at all frequencies, and at midband all the power flows into the rectangu-
lar waveguide.

A low -frequency channel -dropping filter that will be demonstrated to
be the equivalent of the microwave one and that satisfies the previous
demands is shown in Fig. 2. The resonant circuits are equivalent to the
cavities, and the three resistances connected to the circuit through ade-
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Fig. 1 - Microwave mode -conversion channel -dropping filter.
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Fig. 2 - Low -frequency channel -dropping filter.

quate transformers (not indicated in the figure for simplicity) are equiv-
alent to the characteristic impedances of the three microwave ports.

In each resonant circuit fo is the midband frequency and the loaded
Q is defined QL = fo/(240), where 20f0 is the half power bandwidth of
the dropped channel. The normalized reactances are such that the im-
pedance seen toward the right of the plane AA is unity at all frequencies,
provided that i,t/d is an odd number of quarter wavelengths. At midband
frequency the maximum power available goes to Ra and far from reso-
nance it goes to 1:4 

Another microwave circuit equivalent to that of Fig. 1, which may
help the reader to understand the behavior of the mode -conversion
channel -dropping filter, is shown in Fig. 3. Here, the resonant cavities

INCIDENT
MODE

BRANCHING
ARM

I

RESONANT CAVITIES

It

xg0/4

Fig. 3 - Microwave channel -dropping filter; path difference = 00 .
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have been separated from the through waveguide. The incident mode
excites each cavity through two coupling holes; in an equivalent way,
in Fig. 1, the incident TE01° mode couples to the TEN° of each cavity
through two diameter discontinuities. Finally, in Fig. 3, only the reso-
nant mode of the first cavity is assumed to couple to the output load,
implying that the coupling between the incident and the branching mode
in Fig. 1 is negligible.

The reader who is not interested in the mathematical treatment of
the mode -conversion channel -dropping filter may now go directly to
the résumé of results in Section VII of this paper. The scattering matrix
of the branching cavity, Fig. 1, is studied in Section IV. In Section V,
the scattering matrix of the rejecting cavity is derived from that of the
branching cavity by reducing to zero the coupling between the round
and rectangular waveguides. Then, in Section VI, both cavities are con-
nected through a certain length of single -mode waveguide, and the math-
ematical description of the channel -dropping filter is completed.

The derivations have been made for single -resonance rejecting and
branching filters because these are the building blocks for the design of
more complicated filters such as those of the maximally flat type.'

IV. SCATTERING MATRIX OF THE BRANCHING CAVITY

Consider the branching cavity of Fig. 1, separated from the rejecting
cavity and with all terminals matched. This cavity is represented in
Fig. 4 with the elementary components separated. The symbol J1 repre-
sents the junction where port 1' carrying TEliP mode couples symmetri-
cally to TE01° and TEN° in the cavity. Since the TEN° mode is almost
at cut-off and close to resonance, the coupling to TEce can be neglected.
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V12 / 2
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2 2
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4.) FL

LTQf GUIDE

J2 '-r-4 TEos

Fig. 4 - Branching cavity with elementary components separated.
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B

Fig. 5 - Branching cavity.

The symbol J2 represents the junction at a diameter discontinuity;
ports 4 and P carry TE01° and port M carries TE02 . Ports M and 2 are
connected by a piece of waveguide whose ports are N and 5. This wave -
guide has a midband electrical length

4/20 /dB

2 Ape

where /13 is the distance between diameter discontinuities and A02 is
the midband TE02° mode guided wavelength. Likewise, ports P are con-
nected by two pieces of waveguide, each of midband electrical length

Co B=
2 Apt

where Xci is the midband TEoi° mode guided wavelength in the cavity.
Fig. 4 can be simplified by representing all the elements inside of each

of the dotted lines as a single junction J, and so the branching cavity is
reduced to the circuit shown in Fig. 5.

Since this three -port structure is symmetric with respect to the plane
BB, the scattering matrix can be derived from the scattering matrices
of two simpler structures, one derived by making the symmetry plane
BB a magnetic plane (open circuit), that is, a surface where the tangen-
tial magnetic field is zero, and another obtained by making the symmetry
plane an electric one (short circuit), that is, a surface where the electric
tangential field is zero.

4.1 Open -Circuited Half of Branching Cavity

Assume in Fig. 5 that BB is a magnetic plane. Port 1' as well as the
branching cavity is divided in two symmetrical portions, and each half
is shown in Fig. 6.
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a2

b2

a3

a3

- -
J
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Fig. 6 - Open -circuited half of branching cavity.

If a1 = 1 is the only wave incident in the structure, the outgoing
waves from the junctions J and J1 are

bl = F11 + a21'12 ,

b2 = 1112 + a2F22 ,

a2 = 621'56 + a3F36 ,

= b2r45 -4- a3r3.1 ,

a3 = a3f33 b21135

where Fmn represents the scattering coefficient between ports in and n.

From these five equations the scattered waves

(1 + 1'1221'66- r22r66
, i - F33) - , 2 I

-1-

i 2, 2

112 I 36
k 1 .22L'36

14 rn
1 11

=
( 1 - 11221'50 ( 1 - F33) - r22 F362

and

1'351'34

(6)

F45 (7)
b4 = 11121'45

1 F33+

- r22F66)( - 1133) - r22r362

are derived. These expressions can be simplified by assuming

11'12

r33
I

r36 I (8)
11.34)

I F45
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and

1 1'12 I

I r I << 1.

1 1'45 I

(9)

The first assumption means that the TE01° mode incident on the diam-
eter discontinuity has negligible reflection in the same mode. This is a
familiar approximation in multimode waveguide calculations, and it will
also be seen later that these reflections are indeed negligible. The second
assumption implies that the resonating mode TE02° is loosely coupled
to the other modes TER° and TEio°.

Substituting (8) and (9) in the conservation of energy relations'
applicable to junctions J and Jl of Fig. 6, and neglecting terms of higher
order than two, one obtains the following results:

r22r66 = eiv(1 - I r35 12 - 1.4
1 F12 12), (10)

r22r352 = - I r 12 Ci(O+cc), (11)

r,22r55 - 1
ri.2 12 el.'',

r 35r 34 is- C
r45

in which

and

0 = + 036 - 046 + 034

= - #2 + 022 + 056

where and 11/2 are the electrical distances between the branching cav-
ity discontinuities in terms of the nonresonating and resonating modes,
respectively, and 0,,,,, is the phase of the scattering coefficient between
ports m and n when the waveguides are reduced to zero length.

The physical meaning of 0 and (p will be given later.
Substituting (8), (10), (11), (12) and (13) in (6) and (7), leads to

the simplified scattered waves
2

1 - [1 - I F35 12 (1
ei8) r221

V1 =

2- [i - r 12 (1 + ) - 1 21]
(16)
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b4 =
1 - [1 - r:th ( 1 + el()) r,1)212] eio (17)

1 + ei°

The values of 0 and co given in (14) and (15) are frequency -sensitive,
so we define

0 = 00 + AO (18)

and

= (Po ± 6(P, (19)

where 00 and (po are the values taken by 0 and at midband frequency
fo , and AO and Ayo are their small departures when the frequency is

f = fo + Af

and

(20)

-41 << 1 (21)
fo

In this paper we choose to have the branching cavity resonating with
an odd number of half wavelengths. In order to have the branching
cavity resonating with an even number of half wavelengths it would be
necessary to make resonant the short-circuited half of the branching
cavity.

Resonance of the branching cavity (minimization of the reflected
wave b1) occurs at midband f = f0 when the following relation is satis-
fied:

(Po = I 1'3512 sin 00 - 2irS, (22)

in which s is an integer.
If one substitutes (18), (19) and (22) in (16) and (17), and again

neglects higher -order terms, the scattered waves of the branching cav-
ity become

r 12 (1 + cos 00) - 1112
12

= We"
2

b4 = 11121146

+ I r36 12 ( 1 + cos 00) + r; I"
2

1 + ei"

+ I r 12 (1 + cos 00) + 11212 12

(23)

(24)
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Several important results are deduced from the last three equations:
(a) The resonance condition, (22), as well as the scattered waves,

(23) and (24), depend on the angle 00, which, according to (14) and
(18), is the midband electrical length difference between the two possible
paths that the waves may follow. These two paths are shown in both
Figs. 3 and 7. The last figure is a reproduction of the branching cavity
from Fig. 1, and the two paths, as well as the modes with which they are
measured, have been indicated in it. If 0 is an odd multiple of r, the
two waves cancel each other and there is no transmission through the
cavity in spite of its resonance.

(b) The transmitted and reflected waves, (23) and (24), depend on
Aco, which is the change with frequency of the electrical length 11/2 of
the distance between diameter changes measured in the resonant mode
TEN°. But the same scattered waves are independent of AO, which is
the change with frequency of the electrical length 00.

Now it is possible to express the scattering coefficients of the open -
circuited half branching cavity matrix,

8 814
(25)

in terms of b1 and b4

814 844

From the definition of scattering coefficients it follows that

Su = bi , (26)

814 = b4 (27)

and from the conservation of energy relations' that

Sii*S14 S14*S44 = 0, (28)

where S* is the complex conjugate of S.
From (26), (27) and (28)

)S44 =
71*e12014-- 1112.

(29)

TEro

TEg,

TE° .1-E°02

TE01
! TE01..-

Fig. 7 - Branching cavity; path difference = 00
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-a-

a3
1 ELECTRIC WALL = SHORT CIRCUIT

Fig. 8 - Short-circuited half of branching cavity.

4.2 Short -Circuited Half of Branching Cavity

Consider again the branching cavity equivalent circuit in Fig. 5, and
let BB represent a perfectly conducting surface. One of the halves of the
bisected circuit is shown in Fig. 8. A unitary wave fed in port 4 yields,
because of the absence of resonance

b _e-foi +2 M3 4

is S = b.

(30)

4.3 Scattering Matrix of the Branching Cavity

Fig. 9 represents the branching cavity. Considering symmetry and
reciprocity, the scattering matrix is

866 867 568

S67 S77 S67 ( 31 )

868 867 S66

All the scattering coefficients in (31) are determined as follows:

AI-- 6
b6

b71

8
b6

Fig. 9 - Branching cavity with waves fed in phase.
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b4

Fig. 10 - Branching cavity with signal fed in branching arm.

Feed unit power into ports 6 and 8 such that the phases of the electric
fields are the same. The plane of symmetry becomes a magnetic plane,
and the scattered waves derived from (26), (27), (29) and (30) are

b6 =

b7 =

866 + 868 = _b1*ei2014-i#2,

2867 =

(32)

(33)

If unit power is fed into port 7, of Fig. 10, the reflection is

= S77 = bl . (34)

Finally, if port 6 and 8 'of Fig. 11 are fed 180° out of phase with unit
power, the plane of symmetry which has zero tangential electric field
becomes a short circuit, and the scattered wave is obtained from (30):

be' = S66 868 -41+i2034. (35)

Substituting the explicit values of b1 and b4 given in (23) and (24), in
(32), (33), (34) and (35), and, solving this set of equations for the

Fig. 11 - Branching cavity with waves fed in opposite phase.
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scattering coefficients of the branching cavity, one obtains

I T35 12 ( 1 ± COS Op)ei(2034-01)

I 1'12 12

2
+ I r 12 (1 + cos 00)

(36)

867 = ei(02-1-034-4,1/2+011/2)
r12 1 1

1'35
1 (1 + cos 00i

ri2 (37)
1 1'35 12 (1 ± COS 00)

1 12
-iAso

868 eic2O34-10

1 ri2 12
-iAco 1 r3, 12 ( 1 + cos 6)0)

ci011

2
- iA(p - r35 12 + COS 00)

2
I 11122 1

+ 1 x3512 (1 + cos 00)

MATRIX OF THE REJECTING CAVITY

The elements of the scattering matrix of the rejecting cavity

866 S68

S68 S66

can be deduced from those of the branching cavity (36) and (38) by
eliminating the coupling to the rectangular waveguide, that is, making

(38)

(39)

ri2 = 0.

(40)

(41)

The dash over the characters is to distinguish them from those of the
branching cavity:

1

iL

1 - P35 12 ( 1 + COS BO )

S68 = ei(2°."--41)
r3512 ( 1 + cos 00)

i6TO
1

(r35)2( + cos io)

At midband, Grp = 0 and

866 = _ei(2034_45).

(42)

(43)

(44)



162 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1961

This means that at resonance the cavity acts as a short circuit located
at half the length of the cavity. Again, as in the case of the branching
cavity, if

90 = (2n + 1)r (45)

there is no resonance.

VI. SCATTERING COEFFICIENTS OF THE CHANNEL -DROPPING FILTER

Knowing the scattering matrices of the branching and rejecting cavi-
ties, we will find the scattering elements of the circuit obtained by join-
ing a branching cavity and a rejecting cavity with a piece of waveguide
of electrical length IV From the block diagram representation of the
branching filter in Fig. 12,

= S66 + A S68 y (46)

B2 = 867 ( 1 + A ), (47)

B3 = -Be"',:S68 (48)

B = S68 + A 866 (49)

A = BS66e-i2' (50)

First it will be demonstrated that, if certain conditions are satisfied,
port 1 of the filter (Fig. 12) is matched at all frequencies; then the val-
ues of B2 and B3 will be ascertained.

From (46), (49) and (50)

1 - (86466 - S66 8682 -i4
S66 ( 51 )

B1 = S66 1 - s4,e-i*
Replacing S66 y S68 and S-66 in the numerator with the values given in
(36), (38) and (42), one obtains

B1 = 566

1

ei2(034+034-4'-,h/2-,7,1/2) 1 r36 12 (1 -I- cos 00)
ii4 (52)

1 r30 12(1+ cos 60)

I Ian 12 jai,
2

1 - 866A366

In order to have port 1 of the channel -dropping filter matched at all
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Pie.

Fig. 12 - Block diagram of the channel -dropping filter.
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frequencies, the reflected wave B1 must vanish. The conditions to be
satisfied are

1135 = I 45 ,

6 = oil ,

= ,

Aco = A(P,

1h.
034 ± 034 -tk01.- - 75. - 2(1± 2p)

where p is an arbitrary integer, and

1 1'12 12 = 4 1 1'3512(1 + cos 0)

(53)

(54)

(55)

(56)

(57)

(58)

Conditions (53), (54), (55) and (56) state that, except for a small -
length correction due to the effect of the coupling to the dropping wave -
guide, both resonating cavities must be equal. Condition (57) estab-
lishes that the distance between the centers of the resonating cavities
must be an odd number of quarters of guided wavelength of the non -
resonant mode. Since this condition is fulfilled rigorously only at dis-
crete frequencies, the length of the cavities and the distance between
them must be selected as short as possible. Finally, condition (58) states
that in the branching cavity, Fig. 7, the power coupled from the reso-
nating mode TE02° to the dropped mode TEIP, must be equal to four
times the power coupled to each one of the TE01° ports.

Substituting (53) through (58) in the expressions of the branched
and through waves (47) and (48), one finds that

B2 = ei(V/2-1-834-01/2+01112)
1

iaso (59)1 -
2 I 1135 12 (1 + cos Op)

B3 = -ei(-4-14934-20,) 9

1

F:35 12 ( 1 -1- cos 00)

/Ago

2 F35 12 ( 1 + COS 00)

(60)
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At resonance, zl(p = 0 and B2 and B3 become

= ei(v0/2+034-h/2+en/2), (61)

= 0. (62)

Far from resonance,

I I

>>1 (63)
2 I F35 12 ( 1 + COS 00)

and

B2 = 0, (64)
ea(-,P+4034-2,PI ). (65)

In order to introduce the concept of loaded Q or QL of the channel -
dropping filter, the value of Opp will be expressed as a function of fre-
quency. is the difference between the electrical length of the resonat-
ing cavity at midband Jo and at any other frequency fo Of. From (15),

Acoo Af X 22 + ,d in +u,Aso= fa - -fo20 (-1-X02 La/d-fo 22 U55)

provided that

(66)

(X0)2 I 2,6,f I (67)
A92 f0

in which A0 and A02 are the free -space wavelength and guided wavelength
of the resonating mode at midband fo , and 1G20 is the midband electrical
distance between the diameter discontinuities of the branching cavity
measured in terms of the resonating TE02° mode.

Substituting (66) in (59) and (60) leads to

B2 ei(50/ 2+034-41i/2+On/ 2) 1

A
1 i2QL

f (68)

where

i2QL
f

133

1 i2QL

24,25
no a.1

(+2) fo (022 + 055)

QL 4 r35 12 + cos eo)

(69)

(70)
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The loaded Q is, as expected, inversely proportional to the power cou-
pled into the resonant mode, but that coupling is not enough to insure
a finite QL . If 00, the electrical path difference discussed above and
shown in Figs. 3 and 7, is an odd multiple of 1r, then QL becomes infi-
nitely large. Also, as expected, at the frequency at which the resonating
mode passes through cutoff, X02 becomes infinite and QL diverges.

It can be shown that (68) and (69) are the transfer coefficients of
the low -frequency circuit in Fig. 2, and consequently this circuit is the
equivalent to that in Fig. 1.

For the purpose of testing the cavities independently of each other
it is important to know their scattering coefficients. They are obtained
by substituting (66) and (70) in (36), (37), (38), (39), (42) and (43):

S66 = -ei(2°3a-41)
1

3 i4 f- QL,
o

12+011/2)
2

S07 = i (V/ 2+03 4

Af.+ Q
jo

2 + i4 -Af
QL

= ei (2o3 4 )

3 + i4 fQL
.fo

f-1 + i4 QL

877 = e'°" fo
A f3 + i4f0 QL

866

S68

- -ei(2034-4/1)
1

1 + i4 f
QL

= e
i4 -Af

QL
.fo

1 +i4 .17;f QL,

(71)

(72)

(73)

(74)

(75)

(76)

Considering first the branching cavity, from (71) to (74), it is con-
cluded that at midband the amplitude of the reflection at any port is
one-third and the amplitude of the transmission to any other port is
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two-thirds. Furthermore, the half power hand of the reflection charac-
teristic, (71), is

3 fo
2 QL 

For the rejecting cavity, the loaded Q, (75) or (76), is twice the loaded
Q of design of the channel -dropping filter.

VII. RtSUMg OF FORMULAS FOR THE DIMENSIONING OF A CHANNEL -
DROPPING FILTER

The information given is the midband frequency fo and the half power
bandwidth of the dropped channel 2Af0 , defined in terms of the loaded

Q:

Q = fo

L ago (77)

The unknowns are:
420 midband electrical distance between diameter discontinuities of

the branching cavity measured in terms of the resonating mode,
1T20 midband electrical distance between diameter discontinuities of

the rejecting cavity measured in terms of the resonating mode,
, midband electrical distance between centers of cavities in terms

of the nonresonating mode,
2r35(1 + cos 00)4, coupling coefficient between the resonating mode

and the through waveguide,
N/5r12 , coupling coefficient between the resonating mode and the

dropping mode.
From (15) and (22),

420 = 022 + 055 - I ras 12 Sill 00 27rs =
271B

Xg2

where 0 reproduced from (14) is

00 = -Ow + 031 + 035 - 045

(78)

(79)

and iho is the midband electrical distance between diameter discontinui-
ties of the branching cavity measured in terms of the nonresonating
mode; 0mn is the phase of the scattering coefficients between ports m
and n, Fig. 4, with waveguide lengths reduced to zero; /8 is the length
of the branching cavity and X02 is the midband resonant mode guided
wavelength.
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For the rejecting cavity 025 = 0; then, from (78),

27r1
17/20 = 055 - 1 1'35 12 sin 00 + 2irs =

Xo2

1R being the length of the rejecting cavity, and

00 = -1111() + 034 035 - 015

From (57),

4/10 1/10
1,1 + -2 + -2 - 2034 =

2
(1 + 2p),

167

where 4/0 is the midband electrical distance between cavities and p is an
arbitrary integer. From (58) and (70),

\ 2d
11/20 (1;(12) -fo

Cl
(022 + 055)

AO o

r3512(1 + cos 00) = I
r12 12
4 4QL

(83)

From the theory of diffraction by small holes,'°

4.7rc AI H02., = ( 84 )
- no

3

117 e P222

ires /Vii Hi 1 112 I

1 11', = (85)
- AO E VPIP2

where c is the radius of the round hole that couples the resonating to
the branching mode, andµ and E are the permeability and permittivity
of free space. If one considers that the standing resonating field is made
of two waves propagating in opposite directions, I H21 is the absolute
value of the magnetic field of one of those waves at the hole and P2 is
the average power carried by such a wave; I Hi I is the absolute value
of the magnetic field at the hole of a wave in the branching waveguide
and P1 is the average power carried by such a wave.

The values of 022 , 034 , 055 , 00 , I135 I, H1 , H2 , P1, P2 depend on the
particular structure selected for the filter.

7.1 Channel -Dropping Filter from Mode TENT in Circular Waveguide to
TE10° in Rectangular Waveguide

In Fig. 1 let us call a and b the radii of the double- and single -mode
regions respectively, and IV and d the width and height of the rectangu-
lar waveguide.
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From Ref. 11,

055 = -2 caret Y2a Ji[v2(1 - 8)]
I Y2b I [6(1 10U2tiO(L/2)

and

035 - 045 = 2

I:35

where

/725

Yla

034=0

±7r,

r 26v22 4(U2) - on' 1 +
= Lu22 - u12 JO( V1) JAV2(1 - 6 )il 1 +

Ymb

na

= 1 -b.
a

(undtoV
271-1)

(vAN
271-a

(86)

(87)

(88)

Y2b

Ylb (89)
Y25

2 ,

Yea

(90)

(91)

(92)

in is the Bessel function of the first kind and order n, vp is the pth
root of the J1 function.

From Ref. 12, pp. 58-59,

H22

2

V2 x2

P2
2/r3 (v2Ao)2 424 

2.7r -a/

(93)

From Ref. 12, p. 55, if the round hole is at the center of the rectangu-
lar waveguide cross section,

I Hi =9 (94)



MODE -CONVERSION FILTERS 169

Substituting (93) and (94) in (84) and (85) results in

2v22 Xoc3
022 =

37r2 1// 1
(v2X0y '

27ra)

81P,
1112 -

3r-1

1

2[17
C3

1

xo

(v2Ao y ( Wd)ia2
27ra)

(95)

(96)

Expressions (78), (79), (80), (81), (82), (83), (86), (89), (95) and
(96) are the general relations necessary to determine the dimensions of
the filter. As an aid in their solution it is convenient to have the approxi-
mate results obtained when the expressions are drastically simplified by
the following assumptions: all corrective terms due to coupling effects
are neglected; the cutoff radius for TE02° at midband is selected at
a(1 - (3/2); and

v25 << 1. (97)

These approximate results are

11/20 = 055 + =
271-/B-VO 27r/RV6 (98)

Xo Xo

00 60 _ 27r/B (99)
Xo th 7'

= = (1 + 2p), (100)

r 12 (1 + cos wr o) = r: 12 - 4/(22:5 (101)

055 "=" (102)

I
r35 I2 = 261 ( (103)

,22

2

II r12 =
8v2

1 2W
(

C3\/ (104)
S

(Wd)fa2 '



170 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1961

and explicitly,

a = u2)" (1 +S = 1.117 A0

b = ,v_Xo

2r = 1.117 A0

= in
X()

48) ,

6 (1

/ = (1 ± 2p - + 48)

9u Wd(1 + 4s)
2c =

7r R

COS 2v/-)
a

AO

±
,$))

2

32r2
xo-(262 [1 - )212IV

1.4 1rd( 1 + 4s)
vm

X0'(.203 - `.2.-1°17)

( 2RO' [1.)2' -

0.639
(1 + 4s).

QL

(105)

(106)

(107)

(108)

(109)

(110)

Since QL and Ao are given, the dimensions of the filter can be obtained
by calculating S from (110) by successive approximations and substitut-
ing this value in the relations (105) through (108).

Far from resonance, the amplitude of the reflection of the TE01° mode
at each diameter change, derived from Ref. 11, is

I ril I =
1

r331 =
v2 2

= 0.15 a

7.2 Channel -Dropping Filter from Mode TEN° in Rectangular Wave -
guide to TEN° in Rectangular Waveguide

Calling a and b the widths of the through waveguide in the double
and single mode regions, respectively, W the width of the branching
rectangular waveguide and d the height of all of them, one obtains from
Ref. 11

(si17

2n

2r055 = -2 arctg 20 ± ,
2b (7ra

o )2
7

)
(112)
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I 172b I
036 - 046 = 2 v. ± 7)

lh

034 = 0,

Yja (8/3 sin T6 \ 2
1

-1'

2

lb

172a 3 sin 271-6
-

1 -I- 172b2
Yca

(115)

Ymb = V1 - (MX25 1 (116)

Y. = 4/1 - InAA2 (117)
k 2a )

6 = 1 - - . (118)
a

From Ref. 9, p. 55, if the round hole is at the center of the branching
rectangular waveguide cross section,

H22
4 4/6-

P2

/1/1 - a3(1'a,

H1

VP;

\
E- /1/ X°=2 1 2Fij .

Wd

Substituting (119) and (120) in (84) and (85) yields

16r A0C3
022 =

3 4/ 1 - (-- dad

(4
2

2;ir 1 ) c3

I 1'12 I = -3-
[

1 - (X2a)2 (a3d2W)4.

(119)

(120)

(121)

(122)

Again, expressions (78), (79), (80), (81), (82), (83), (86), (89), (95)
and (96) can be simplified under the following assumptions: All correc-
tive terms due to coupling effects are neglected; the cutoff width for
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TEN° at midband is a(1 - 6/2); and
2T6 << 1.

Then

r, 12 + cos

and explicitly

020 = 055 =
AO AO '

(123)

(124)

7r

On = ± 71- =- (125)

= ± lbw = (1 ± 2p), (126)

I 1'12 12 I #281

NAV 4 4QL6 

065 = 72): + 2S7r,

F35 12 -
s

JS77

- COS
7

(127)

(128)

(129)

-
/

7.)2-14 Ca (130)
6 (aaW)I d

a = X0 (I + , (131)

b = Ao (1 - (132)

, x0(1 ± 4s)
113 = " = 4-0

Ao (1

P

1 + 4s\ (134)4 k
Wd2(1 48)9c = N I 9

87 Q 6 4 [1 - (24 7')2 1 xfi

= AO
Wd2(1 4s) 110358

QL31 [1 - (19 21 21
W °

Pir(1 48)1 (1
Q+L

48V
L 64QL k /

(133)

(135)

(136)
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Given QL and Xo , the dimensioning of the filter is obtained by calculating
3 from (136) and replacing this value in the explicit dimensions (131)
through (1:35).

Far from resonance, the amplitude of the reflection of the TEio° mode
at each width change, derived from Ref. 11, is

F11 I F13 I = 0.125o.

VIII. DESIGN OF MODE -CONVERSION BAND -REJECTION FILTERS

In order to build multipole mode -conversion band -rejection filters, it
is necessary to know explicitly the scattering coefficients of a single cav-
ity. These coefficients, given in (42) and (43), can be rewritten with
the help of (66) as

866 =

S68

where

QL-

-e t('-'034- 1)
1

1 + i2(21,
fo

22QL

ei(2.034-ik
.10

-1 + i2QLAf
fo

i/20
di)66

XO dfo

2 1 T13512(1 + cos A))

Comparing this equation with (70), we conclude that the band rejected
by the band -rejection filter has half the width of the band dropped by
a channel -dropping filter using the same rejection cavity. This coincides
with the final remark of Section VI. The formulas that yield the dimen-
sions of the rejecting cavity in Section VII can be used, replacing -OZ.

by C2L/2.

(137)

(138)

(139)

IX. INTRINSIC Q OF MODE -CONVERSION BAND -REJECTION FILTERS

By definition, the intrinsic Q of a resonating cavity is

energy stored
Q = (power dissipated as heat)

(140)

where co is the angular frequency.
Let E be the electric field of the resonating mode at any point at the
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instant when it passes through a maximum, H the magnetic field at the
metallic boundary at the instant when it passes through a maximum,
0- the conductivity of the metallic wall, the skin depth and µ and e
the permeability and permittivity of free space; then

E2clu

Q = watt
f

(141)
jH2ds

where v and s are the volume and surface of the waveguide.
For the case of the circular electric filter, the fields inside the cavity

are

I i i iii = J1 (v2 -7 cos -,27 z, (142))
a A92

V2 r 1 \ 27Hio = - Jo( v2) cos .,- Z (143)awl Ag2

Outside the cavity, because of the boundary conditions of continuity of
the tangential field components, they are

r 7/ -(27rixo out)(Izi-i/2)( (144)Emit _.'--d J 1 02 - cos - e ,
b Xu2

V2
(71-27,-/Xu2out)(1z I -1/2) (145 )//out f=j-. 7-- JO( V2) cos - e .

OCOIL Xg2

The axial coordinate z has its origin in the center of the cavity; the
length of the cavity is 1; and

A02 out =
A0

Substituting (142) through (145) in (141) leads to

fob Jig v2 6) rdr( r

QT.020 = cocrte
2(v2 )jo2(v2)a

acoli

f1/2 227z a .) 71 f (47.7x02.tiocizi-//2)dzcos2 dz + 2 (r) cos ,-
oL-2/2 Ag2 Ag2 1/2

a 2 7r1 -(47r/X,72. m10(1:1-7/2)dz2 27Z
LCOS dz + 2 - cos - C

1/2

in Ag2 h A92 7/2

(146)

(147)
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fb J (v2 r dr = -b2 02(v 2) ,
2

a
1

and

(147) becomes

where the skin depth, is

"A° ^" 1
27a

a
QTE02°

2

wilcr

The result (151) coincides with the intrinsic Q of an infinitely long cy-
lindrical cavity resonating with 17E02° at cutoff (Ref. 12, p. 59). Similar
reasoning for a mode -conversion band -rejection filter in rectangular
waveguide yields for the intrinsic Q of the resonating TEN° mode:

(148)

(149)

(150)

(151)

QTE2o 0 =
d

(152)

(153)

where a and d are the width and height of the rectangular waveguide.
Typical theoretical values in copper waveguides are the following:
For TE02° mode at 5.4 millimeters, a -ft-) v2(5.4/27) = 6.04 millime-

ters, and

QTE0 2° = 21,400. (154)

This theoretical intrinsic Q is very large compared to the intrinsic Q
obtainable in a parallelepiped -shaped cavity. For comparison we calcu-
late the intrinsic Q of a half -wavelength cavity at 5.4 millimeters in the
standard RG98U waveguide (0.074 X 0.0148 inches) that we assume
to be made out of copper. Using the expression for intrinsic Q given on
Ref. 12, p. 55,

QTE,00 = 3460. (155)
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For TE20° mode, assuming a X0 = 1.2 inches and d = 0.4 inches,
expression (153) yields

QTE20D = 9000. (156)

The intrinsic Q of a half -wavelength resonator in RG52U waveguide
(0.4 X 0.9 inch) that we assume made of copper is

QTE100 = 7990. (157)

X. EXPERIMENTAL RESULTS FOR CHANNEL -DROPPING FILTER FROM TEoi°
TO TEND

We shall go first through the detailed design procedure of a channel -
dropping filter for which the bandwidth is relatively large in order to
show the limiting possibilities of these mode conversion filters; the ex-
perimental results are quoted later.

The selected center frequency and bandwidth of the dropped channel
are 55.5 kmc, (X0 = 5.4 millimeters) and 500 mc. The loaded Q is there-
fore

QL = 110. (158)

To dimension the filter roughly, we use (105) through (110). We shall
use primes to distinguish the approximate sizes from those that are final.
From (110), adopting s = 0,

a' 0.1

and from (105) through (108), adopting p = 3, we find

a' = 0.249 inch,

b' = 0.226 inch,

4 = 4 = 0.168 inch,

1' = 0.204 inch.

If the branching rectangular waveguide is RG98U, W = 0.148 inch,
d = 0.074 inch and the diameter of the coupling hole to the branching
arm results, from (109)

2c = 0.105 inch.

Since this value is bigger than the 0.074 -inch height of the rectangular
guide, a round coupling hole can not provide enough coupling. There
are many ways to increase the coupling. One is to build the rectangular
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waveguide with its axis not perpendicular to the axis of the round
waveguide but parallel to it, providing the coupling through a hole in
the narrow wall. One of the ends of the rectangular waveguide must be
short-circuited at an odd number of quarters of guide wavelength from
the center of the coupling hole. For a fixed size of the hole, the amount
of coupling can be increased by decreasing the width of the waveguide
W, because the waveguide gets closer to cutoff. Another solution con-
sists in wrapping around the TEN° cavity a rectangular waveguide and
providing the necessary mode selective coupling between them by means
of several holes. The details are given in Ref. 2.

The obvious third solution, and the one we adopt, is to increase the
size of the coupling hole to the total cross section of the rectangular
waveguide. If the coupling is too large, it can be decreased by displac-
ing the hole to one side of the cavity.

The strong perturbation of the field in the branching cavity due to
such a large coupling hole modifies the scattering coefficients calculated
in previous paragraphs, and the final length of this cavity, as well as
the distance to the rejecting one, must be selected experimentally. The
discrepancy between theoretical and experimental values is not large.

10.1 Design of the Rejecting Cavity

The design of the rejecting cavity requires the simultaneous solution
of (80) and (83) for the determination of the three quantities a, b and
n . Thus, one of those quantities can be selected arbitrarily.
A good criterion for this selection consists in demanding that at mid -

band frequency the cutoff radius for TEN° is

v2X0

27 -
b (1

(159)

because with this selection midband is equally separated from the two
extreme frequencies that limit the proper operation of the filter. These
are a lower frequency that cuts off the TEN° in the large waveguide,
invalidating the inequality (67), and an upper one that cuts off TEN°
in the smaller waveguide and above which propagation of TEN° in that
waveguide starts.

Incidentally, it is interesting to notice that, for the frequency f =
h + Of,

1 L'" X0
-2 (1 2,6,f)

2ra (1 + 'Af)] f()
A

(160)
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becomes, through the use of (159),

xo A
(161)

and the inequality (67) can be written

T
S. (162)

This implies that the approximations hold as long as the relative fre-
quency departure from midband is small compared to the relative diam-
eter change.

Another criterion for the selection of a, b or /R may arise from the
advantage of using standard -size waveguides already available, as long
as the limiting frequencies discussed previously are not approached.
Following this procedure for a standard laboratory waveguide with

22 = inch,

the simultaneous solution of (80) and (83) yields

21) = 0.5 inch and

/R = 0.234 inch.

(163)

(164)

(165)

The measured performance of this band -rejection filter is shown in Fig.
13. The agreement between theoretical and experimental values is excel-
lent.

10.2 Design of the Branching Cavity

Ignoring the effect of the coupling hole between the branching wave -
guide and cavity, the dimensions should be those of the rejecting cavity
given in (163), (164) and (165).

The distance between centers of the resonating cavities, according to
(82) with p = 4, should be

la = 0.572 inch.

The number of quarters of wavelength between centers of cavities is
nine. Experimentally it was found impossible to reduce la because the
TE02° mode, being close to cutoff in the small waveguide, couples to
the other cavity. The final dimensions, as well as the performance of the
assembled channel -dropping filter, are shown in Fig. 14.

The relatively high insertion loss for the dropped channel cannot be
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Fig. 13 - Performance of circular -electric band -rejection filter.

accounted for by heat losses because of the good performance of the
band -rejection filter. Thus, mode conversion due to the asymmetry of

the coupling to the rectangular waveguide must be its cause. Loss should
be reduced using distributed coupling to the rectangular waveguide, as

in Ref. 2.
Pictures of the filter are shown in Figs. 15 and 16.
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Fig. 14 - Performance of mode -conversion channel -dropping filter.
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Fig. 15 - Mode -conversion channel -dropping filter.

10.3 Band Rejection Filters in Different Waveguides

Figs. 17, 18 and 19 show the geometry and experimental results for
different band -rejection filters in round and rectangular waveguide.
Those filters that have constant metallic cross section have generation
and resonance of a higher -order mode in the region where the dielectric
is located. For the case of Fig. 19, it has been shown in Ref. 11 that a
rectangular waveguide with a dielectric slab is equivalent to a rectangu-
lar waveguide that has a width increase for a length equal to that of the
slab. Calling d the width of the slab, r the distance to the near narrow
wall and ed the permittivity of the dielectric, the relative apparent in-

Fig. 16 - Exploded view of mode -conversion channel -dropping filter.
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With this value known, all the design formulas in Section VII can be
used.

In the round waveguide in which only circular -electric modes are of
interest, tuning is available by changing the physical length of the reso-
nating cavity. For that purpose a telescopic type of junction is ideal,
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Fig. 18 - Band -rejection filter of TE,0D mode.
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Fig. 19 - Band -rejection filter of TE,0D mode (polystyrene ring; ed = 2.5).
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since the cracks do not interrupt the conduction current and since it is
very easy to manufacture. One tube of inner diameter 2a, inside of which
two tubes of outer diameter 2a and inner diameter 2b can slide, will
suffice.

The tuning in the case of Fig. 17 can be achieved by trimming the
dielectric. For the filters in rectangular waveguide, Figs. 18 and 19, one
tuning screw at each one of the electric -field maxima of the resonating
mode provide the tuning.

XI. CONCLUSIONS

Resonance of higher -order modes in waveguides has been advantage-
ously used to make very simple band -rejection filters of unusually low
loss. In particular, the filter operating with circular -electric modes has
an intrinsic Q that is one order of magnitude better than the intrinsic
Q of conventional (cavity or lumped) band -rejection filters operating
at the same frequency.

Mode -conversion band -rejection filters have been used as building
blocks for the construction of channel -dropping filters that simultane-
ously produce the band separation and the transfer from TER ° mode
to TERP required in the long distance waveguide communication sys-
tem.' One model operating at 56.3 kmc has a bandwidth of 490 mc, and
the insertion loss for the dropped channel is 1 db.

Although the emphasis in this paper has been on filters operating
mainly with circular -electric modes in round waveguides and TE modes
in rectangular waveguides, the calculations are quite general and can
be applied in any scheme in which mode -conversion filters are used.

XII. ACKNOWLEDGMENT

The author is indebted to D. L. Bisbee for performing the measure-
ments.

XIII. LIST OF SYMBOLS

a = radius of the resonant cylindrical cavity or width of the
resonant rectangular waveguide.

b = radius of the through cylindrical waveguide or width of the
through rectangular waveguide.

c = radius of the coupling hole between resonant cavity and
branching arm.

d = height of any rectangular Nv aveguide.
f = frequency.



MODE -CONVERSION FILTERS 183

fo = midband frequency.
/ = distance between cavities.

lB = length of branching cavity.
id = distance between centers of cavities.
lB = length of rejecting cavity.

2p + 1 = number of nonresonant mode quarter -wavelengths between
centers of branching and rejecting cavities (p is an arbitrary
integer).

2s + 1 = number of resonant mode half wavelengths in each cavity
(s is an arbitrary integer).

Q = intrinsic Q.
QL = loaded Q.

Smn = scattering coefficient of a half cavity or a more complicated
circuit.

W = width of the branching rectangular waveguide.
Y = admittance.

r,,, = scattering coefficient of elementary structures.
5 = relative diameter change or width change of through wave -

guide.
= permittivity of free space.

E,/ = permittivity of dielectric.
= electrical difference between two energy paths.

00 = midband electrical difference between two energy paths.
0, = phase of the scattering coefficients of junctions with wave

guides reduced to zero length.
A = midband free -space wavelength.

N,,, = midband guided wavelength of the nonresonant mode.
= midband guided wavelength of the resonant mode.

A = permeability.
Pn = nth root of the ./1 function.

= conductivity of metal.
coo = midband electrical length of the resonating cavity in terms

of the resonating mode.
= midband electrical distance between cavities in terms of the

through mode.
= midband electrical distance between centers of cavities in

terms of the through mode.
1/1 = electrical distance between the branching cavity discontinui-

ties in terms of the non -resonating mode.
11,10 = midband electrical distance between the branching cavity

discontinuities in terms of the non -resonating mode.
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th = electrical distance between the branching cavity discontinui-
ties in terms of the resonating mode.

1I'20 = midband electrical distance between the branching cavity
discontinuities in terms of the resonating mode.

= electrical distance between the rejecting cavity discontinui-
ties in terms of the nonresonating mode.

ITN = midband electrical distance between the rejecting cavity dis-
continuities in terms of the nonresonating mode.

= electrical distance between the rejecting cavity discontinui-
ties in terms of the resonating mode.

4/20 = midband electrical distance between the rejecting cavity dis-
continuities in terms of the resonating mode.
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A Circular -Electric Hybrid Junction and
Some Channel -Dropping Filters

By E. A. MARCATILI
(Manuscript received July 11, 1960)

A T En° hybrid junction that operates similarly to the Riblet short -slot
hybrid is described, but because the modes involved are circular -electric, the
hybrid can be telescopically mounted, allowing for adjustment to almost
any power division. The experimental results show that, centered at 55.6
kmc, the frequency range is larger than 20 per cent. Adjusted for equal
power division, the balance is better than 0.5 db and the unwanted reflec-
tions in the driven and balanced (isolation) arms are at least 23 db below
the input signal.

Using the hybrid together with band -reflection, band -transmission or
high-pass filters, it is possible to build low -loss channel -dropping filters.
In particular, the use of simple cutoff waveguides permits the design of
filters with almost rectangular transfer characteristics.

I. INTRODUCTION

The importance of hybrid junctions for many purposes - measuring,
filtering, balancing, equalizing, etc. - need hardly be emphasized. The
long distance waveguide communication system' operating with the
low -loss circular -electric TEce mode has only two hybrids available:
the directional coupler, which has a fixed power division, and the optical
hybrid,2 which requires multimode waveguides. This paper describes a
third hybrid, which operates like Riblet's coupler' and which adds to
the well-known advantages of that coupler the unique property of ad-
justable power division.

Adjusted for 3-db power division, the hybrid, together with mode -
conversion band -rejection filters," band transmission filters or cutoff
waveguides,2 can be used as low -loss components of constant -resistance
channel -dropping filters.' The scheme that uses high-pass filters (cut-
off waveguides) deserves special attention because the amplitude trans-
fer characteristic of the dropped channel can be made to approach a

185
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PORT a,
TEg,

Fig. 1 - Circular -electric hybrid.

PORT C,
TEgi

rectangular shape of arbitrary bandwidth. This permits not only re-
laxing the demands on the guard bands between neighboring channels,
but also the multiplexing of bands too broad (extremely short pulses)6
to be handled by mode -conversion filters.

II. DESCRIPTION OF THE HYBRID

The hybrid consists of two coaxial circular metallic tubes, of which
the inner one has a gap 1, as shown in Fig. 1. The ratio of diameters
selected is equal to the ratio of the second to the first roots of the Bessel
function J1 :

D 7.016 - 1.831 . (1)
d 3.832

The outer diameter D is chosen so that it cuts off the TEN° mode at
the highest frequency of design of the hybrid.

The hybrid is made of two four -port junctions like the one of Fig. 2.
It will be shown that power entering in any port is almost equally di-
vided between the two forward modes. Consequently, going back to

Fig. 2 - Four -port junction.
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Fig. 1, power entering in any port is almost equally divided between
TE01° and TE02° in the gap region. Each one of these modes repeats the
power division at the end of the gap, so the power collected in each
output depends on the relative phases of the modes at the end of the
gap. Since the velocities of these modes are different, the relative phase,
and consequently the power division, can be selected arbitrarily by
changing the length of the gap.

III. PROPERTIES OF THE FOUR -PORT JUNCTION AND THE HYBRID

The most general scattering matrix for the reciprocal four -port device
of Fig. 2 is

811 812 S13 814

=
812 S22 523 524

(2)
813 S23 S33 834

S14 S24 834 844

Entering port 4 with mode TE02°, since the metallic inner tube has
its surface where the electric field is zero (first zero of the J1 function),
the boundary conditions are automatically satisfied, the TE02° mode is
unperturbed, and consequently the back -scattering

834 = 844 = 0. (3)

Furthermore, the forward -scattering coefficients at the plane where
the coaxial waveguide starts are

3.832

814 =

S24 -

10
J12(a)ada

13.832

7.016

J12(a)ada

J12(a)ada

10

7.016

J12(a)ada

4

= 0.733, (4)

- -0.68. (5)

Assuming the junction to be nondissipative, (2) must satisfy, because
of conservation of energy, the following unitary relations'

4
1 if m n

if in nE isis,n* =

in which the asterisk means "complex conjugate of."

(6)
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From (3) and (6),

S *14
812 =

A3

y

0
11

24

822

813

(s1,*)2 s
s24*i

= I S24 1 (1
ig2A2

823 = -
S24*

1824 I (1
S14*

S *11 i2013833 -
I ..-S2412 e

where On is the phase of 813
Since S14 and S24 are known from (4) and (5), the five previous ex-

pressions become

( 7 )

(8)

2ye013, (9)

811
ei013 (10)s242

S12 = 1.078 Su , (12)

S22 = 1.163 Su. , (13)

813 = 0.68(1 - 4.68 I 0%112)1e", (14)

S23 = 0.733(1 - 4.68 1811 12)V13, (15)

S33 = -2.163 Sii*ei26" . (16)

In the experimental hybrid to be described later on, the modulus of
the reflection coefficient is

I Sll I < 0.05

and consequently powers of Su bigger than one can be neglected. With
this simplification, the forward transfer elements of the scattering ma-
trix of the hybrid (Fig. 1) are

sac = s142ei2r1/X2 1[ S13

814

2

ei2013+i21r1/ A (17)

Sab = ASHS212r1IX°2{1
ei20134-i2r11 Al, (18)

where

A - X°1Xg2 (19)
,%g2 Xg1
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is the beating wavelength between TE01° and TEN° in the gap;

X

Xgi
3.832XV

1
7D

and

(20)

X
(21)

-
(7.016Xy

7D )
are the TE01° and TEN° guided wavelengths; and X is the free -space
wavelength.

For a given gap 1, the power division of. the hybrid K, and the phase
shift between the two outputs are derived from (4), (5), (14), (15), (17)
and (18):

K = Sa,

2:1
2 1.011 + cos (201s +

)
(22)) ,

1 - cos (2013
71

AS'ab

Sac Oab 7r + tg-113.15 - 0.0055 . (23)

The possible range of power division K obtained from (22) is

0.0055 < K < co . (24)

For K = 0.0055, the power flowing in the inner guide is a minimum
and specifically 26 db below the input. For K = Go , the power flowing
in the coaxial guide is zero.

Since the beating wavelength A, as well as the argument 013 , are fre-
quency -sensitive, the power division K given in (22) also varies with
frequency. We have not calculated 013 , but it is known' that the fre-
quency dependence of On and of A tend to cancel each other's effect,
allowing the power division K to be constant over a relatively broad
band. Furthermore, it is very easy to adjust experimentally the gap 1
for any allowable power division K because the hybrid can be built with
sliding tubes. The modes involved are circular electric and consequently
the cracks do not interrupt conduction current lines.

IV. EXPERIMENTAL RESULTS

In order to make available the power from the hybrid a four -port
transducer has been electroformed capable of transferring TE01° to
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(a)

(b)

Pirirr '7M.'""71174111r9r71- T

Fig. 3 - (a) Circular -electric hybrid assembled with TEoie to TE100 trans-
ducers; (b) exploded view.

TER° and TE01° to TE10° (Fig. 3). The last change of modes is obtained
by smoothly deforming a rectangular waveguide into a coaxial wave -
guide. The transducer generates small amounts of unwanted higher
order modes, which can resonate8 and ruin the behavior of the hybrid.
The resonances can be damped by using for the external tube of the
hybrid a lossy-jacket helix waveguide,9 which substantially attenuates
any mode with axial conduction currents.

Fig. 4 shows the electrical behavior of the hybrid adjusted for equal
power division. From 50 to 61.2 kmc the balance is better than 0.5 db
and the isolation better than 23 db.

At 55.6 kmc the power lost in the hybrid and transducer is 0.83 db.
In order to prove that most of this loss occurs in the TE01° to TEN°
transducer, the gap was enlarged until, at 55.5 kmc, most of the power
was recovered in the inner waveguide (K = co ; 1 = 0.906 inch). The
measured insertion loss was then reduced to 0.3 db.

5

4

0 3
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w

w2

0

S.- : '.. .......0
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P ;

1 I I

>23 DB -

50 51 52 53 54 55 56 57 58 59
FREQUENCY IN KILOMEGACYCLES PER SECOND

60 61 62

Fig. 4 - Performance of circular -electric hybrid and TE010 to TE100 transducers.
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No efforts have been made to improve either the hybrid or the trans-
ducers. The possible changes for the hybrid are of an experimental nature
and consist in varying the diameter of the gap region and including cir-
cular symmetric lumped discontinuities to improve the balance and
decrease the unwanted reflections. The possible improvement of the
transducer consists in passing from the relatively simple -to -build linear
taper used in these experiments to more sophisticated designs'° that
reduce mode conversion.

V. CONSTANT -RESISTANCE CHANNEL -DROPPING FILTERS

It is known that a constant -resistance channel -dropping filter' (in-
put matched at all frequencies) can be made using two hybrids connected
by two filtering paths. The hybrid described in Section III lends itself
to use with filters that operate with low -loss circular -electric modes, and
is consequently attractive for use in the long distance waveguide com-
munication system.

The filters that most naturally suit the hybrid are those that possess
circular symmetry. For example, filters made with inductive irises,
mode -conversion filters' and cutoff filters. In Fig. 5, two such filters
with identical transfer characteristics are located symbolically in the
inner and outer waveguides connecting two circular -electric hybrids.
TE01° power that enters port 1, and is rejected by the filters, recombines
as TEN° in port 2. The power transmitted through the filters can be
made to recombine either in port 3 or in port 4. On one hand, as-
suming the gaps of both hybrids to be identical, power recombines in
port 3 if the inner and outer electrical paths between planes a and b
are identical, and power recombines in port 4 if those paths differ by 77 -
radians. On the other hand, assuming the two paths to be identical,

a
FILTERS

b

0,1-Eg

0,TEg,

CD,TE

AXIS OF,TEg, REVOLUTION

Fig. 5 - Channel -dropping filter using circular -electric hybrids.
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power recombines in port 3 if the hybrids are identical and recombines
in port 4 if both gaps differ by half a beating wavelength between the
TER° and TEN° modes.

Probably the most interesting of the channel -dropping filters is ob-
tained by using cutoff waveguides (high-pass filters) in the connecting
paths. The interest comes from the fact that the transfer characteristic
of the dropped channel can be made to approximate a rectangular shape.

Before considering the actual geometry of these filters we analyze
the behavior of a chain of constant resistance filters represented sym-
bolically in Fig. 6(a). The first link consists of two hybrids H connected
by two paths of identical transfer and reflection coefficients. Each path
includes a high pass filter that cuts off at frequency fi . The only differ-
ence between the successive constant resistance filters is the cutoff
frequency of the high-pass filters. Because of the phase -shifts between
the different arms of the hybrids, and the similitude of the connecting
paths, power entering in port 0 can be recovered only in ports 1, 2, 3

(n 1). The power transfers between input and output ports are
given in Fig. 6(b); n 1 channels can be dropped out of n constant
resistance filters.

The actual geometry of one of the units of the chain is very simple

(a)

Poi Pot P03e-
te-

"Ni
Pon Pon+i

FREQUENCY

(b)

Fig. 6 - (a) Chain of constant -resistance filters; (b) power transfer between
ports 0 and 1, 2, 3, , (n + 1).
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CUTOFF
WAVEGUIDES

afi-"/

1;
P

-ANV

Fig. 7 - Constant -resistance filter.

AXIS OF
REVOLUTION

when circular -electric hybrids and cutoff waveguides are used as shown
in Fig. 7. The ports 0, 1, P and Q correspond to those of the first unit
in Fig. 6(a). The two hybrids in Fig. 7 are different, in order to recombine
the power transmitted through the cutoff sections in the inner wave -
guide.

Without cavities we have achieved an almost rectangular transfer
characteristic of arbitrary width. The guard band between successive
channels can be made, at least in principle, arbitrarily small. A working
model of cutoff filters has been demonstrated in Ref. 2.

There is another channel -dropping filter worth considering because of

brid. [The reader can check that the scattering coefficients of this junc-
tion given in (4), (5), (12), (13), (14), (15) and (16) are very close to
those of a hybrid when Su is negligibly small.]

Before considering the actual channel -dropping filter we shall de-
scribe a microwave equivalent circuit, Fig. 8. It consists of two hybrids,
indicated as Riblet couplers, which are connected by two waveguides
of equal electrical lengths. These waveguides are also coupled through
two identical resonating cavities. The electrical distance between cou-
pling holes in the upper waveguide is an odd multiple of 7 and in the
lower waveguide is an even multiple of r.

Out of resonant frequency of the cavities power entering port 1 splits
in equal parts in the first hybrid and recombines in port 5 of the second

4

77

a

L 277

5

Fig. 8 - Microwave equivalent circuit of channel -dropping filter of Fig. 9.
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hybrid. At resonance, power entering port 1 splits in equal parts and
each one excites the cavities in different ways. Let us follow the power
in the upper path. Because of the distance between coupling holes, the
cavities are excited in opposite phase and the reradiation from the cavi-
ties is such that all the power flows back toward port 2 as if reflected
from an equivalent short circuit located in plane of symmetry a. Mean-
while, the power flowing in the lower path from port 3 excites the cavi-
ties in phase and again, because of the adequate distance between holes,
all the power goes back toward port 3 as if reflected by a short circuit
iii plane a. Recombination of the two waves reflected in plane a takes
place in port 4 of the first hybrid.

The actual microwave circuit for circular electric waves is shown in
Fig. 9. The two hybrids are like those of Fig. 2. Waves flowing in ports
2 and 3 of Fig. 8 are equivalent to the TE01° and TE02° waves in the gap
of Fig. 9. The length of the gap region is one beating wavelength between
the TE01° and the TE02° modes; the diameter is selected in such a way
that the TE03° is cut off except for two enlarged regions where resonance
of this mode takes place.4 These mode -conversion resonant "cavities"
couple to both TEof and TE02° modes and are separated by half a guided
wavelength measured in TE02° mode and one guided wavelength meas-
ured in TE01° mode. The mode conversion "cavities" are therefore
equivalent to the resonant cavities of Fig. 8.

If the coupling between TEN° and TE01° is different from the coupling
between TE03° and TE02°, the channel -dropping filter no longer has
constant resistance. This can be deduced from Fig. 8 by making the
coupling holes in the upper waveguide different from those in the lower
one.

N No.1
2A=XO

-X
- BEATING WAVELENGTH BETWEEN TE AND TE02 WAVES

92 91

Fig. 9 - Channel -dropping filter with TE03° mode -conversion filter.
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Fig. 10 - Rings to equalize coupling between TEN() and TEN', and between
TE030 and TEe2°.

To equalize the couplings in Fig. 9, rings like those shown in Fig. 10
can be used.

In all the filters described in this section, the dropped channel appears
as TE01° mode. It may be necessary to transduce this mode into TEloci.
There are essentially two techniques. One consists in using a broadband
transducer like the one described in Fig. 3 of Section IV; another con-
sists in using a transmission cavity that resonates with coaxial circular
electric mode and that couples to the coaxial waveguide and to a rec-
tangular waveguide." The second approach yields a much shorter trans-
ducer but it is not broadband.

VI. CONCLUSIONS

A hybrid capable of dividing TE01° mode into TE01° and TER° has
been described. It operates similarly to the Riblet short -slot hybrid,
but because the modes involved are circular electric, the hybrid can be
made of sliding coaxial tubes that allow adjustment to almost any power
division.

The experimental results show that, centered at 55.6 kmc, the fre-
quency range is larger than 20 per cent. Adjusted for 3 db division with
the transducers from TEN° to TEN° included, the balance is better than
0.5 db and the unwanted reflections in the driven and balanced (isola-
tion) arms are at least 23 db below the input signal.

No efforts have been made to improve either the hybrid or the trans-
ducers. The possible changes for the hybrid are of an experimental na-
ture and consist in varying the diameter of the gap region and including
circular symmetric lumped discontinuities to improve the balance and
decrease the unwanted reflections. The possible improvement of the
transducer consists in passing from the relatively simple -to -build linear
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taper used in these experiments to more sophisticated designs" that
reduce mode conversion.

Using the hybrid together with band -reflection, band -transmission or
cutoff waveguides, it is possible to build low -loss constant -resistance
channel -dropping filters. In particular, the use of cutoff waveguides
permits us to design filters with almost rectangular transfer character-
istics.

Hybrids and filters described in this paper operate with circular -
electric modes, but their equivalents operating with TE modes in rec-
tangular waveguides can be easily derived by the reader. The design
of TEEP mode conversion filters is given in an accompanying paper.4
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Band -Splitting Filter

By E. A. MARCATILI and D. L. BISBEE
(Manuscript received July 11, 1960)

A constant -resistance filter capable of dividing a very wide band into
two subbands is described. It can handle one octave in the millimeter region
with only 1.5 db insertion loss for each subband. The splitting transition
takes place in a very narrow band (160 mc). Two of its components are
important devices: an elbow and a hybrid junction. Both are quasi -optical
and work with TE01° mode in 2 inch diameter waveguide.

I. INTRODUCTION

The long-distance waveguide communication system will handle an
extremely broad band extending perhaps from 40 to 80 kmc.1 For re-
generation and amplification this band must be divided into channels
around 400 mc apart. Promising filters capable of performing this
channel separation have been described elsewhere,2'3'' but it is im-
probable that satisfactory filtering can be obtained if approximately 100
channel -dropping filters are to be stacked one after another. The main
reasons for possible trouble are:

(a) Resonance of unwanted modes. This occurs because some of the
filters are required to operate over a range of frequencies covering more
than one octave.

(b) Multiple reflections. Although the reflection from each filter is
small, the combined reflection of as many as 100 may become pro-
hibitively large at discrete frequencies.

Troubles from these sources can be reduced by dividing the broad
40-kmc band into several subbands. The width of the subbands can be
adjusted to accommodate a suitable number of channel -dropping filters.

This paper describes a filter capable of dividing a band in two parts.
It can easily handle one octave in the millimeter region with low inser-
tion loss because it operates with low loss mode TE01° mostly in 2 inch
diameter waveguide.

The splitting process can be repeated as many times as necessary by
cascading similar filters.

197
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PORT 1

900

00 a

00

PORT 2

900

PORT 3 - PORT 4

Fig. I - Band -splitting filter.

A band -splitting filter has been built and tested. The results are quite
promising.

II. BAND -SPLITTING FILTER

The band -splitting filter is a constant -resistance filter, Fig. 1, made
essentially of two identical hybrid junctions H1 and H5 and two identical
high-pass filters F. The phase -shifts between arms of the hybrids are
shown in the figure. Power entering in port 1 is divided by the hybrid
Hi into two equal parts that paths toward
the high pass filters. Frequencies above that of cutoff of the filters keep
on traveling and recombine with the same phase in port 4, and the
opposite phase in port 3. Frequencies below that of cutoff of the filters
are rejected and add in port 2 and subtract in port 1. Consequently, all
the power entering in port 1 is recovered in ports 2 and 4.

What happens at frequencies where the hybrids are identical but do
not divide power in equal parts? The unitary power entering in port 1
is divided by the hybrid Hi in two parts, r and 1 - r, that travel toward
the filters. Due to conservation of energy the phase -shifts in the hybrids
are independent of the value r, and the powers appearing in ports 3 and
4 (above cutoff) are

P3 = 1 - 4r(1 - r), (1)

P4 = 41'(1 - r). (2)

Power recovered in the first hybrid (below cutoff) is

P1 = 1 - 4r(1 - r),
P2 = 41'(1 - 1').

(3)
(4)

We check immediately that if the hybrids operate ideally splitting
power in halves, F = 2 and

= P3 = 0,
P2 = P4 = 1.



BAND -SPLITTING FILTER 199

P2 and P4 given in (2) and (4) measure the recoverable power
when the hybrids are not ideal. Let us plug some numbers into these
expressions. For r = 0.333  or F = 0.666 , P2 = P4 = In
words, even at frequencies where the power division of the hybrids is as
bad as two to one, the recoverable power of the band -splitting filter is as
high as eight -ninths of the input power (0.5 db loss). This good be-
havior of the band -splitting filter, even with unequal power division in
the hybrid, assures satisfactory operation over an extremely broad band.

An experimental model of a band -splitting filter operating with
circular -electric mode is shown in Fig. 2, and its schematic appears in
Fig. 3. It is interesting to note that we have used two elbows between
the generator and the actual band -splitting filter just for "compact-
ness."

We describe now the experimental technique used to evaluate the
band -splitting filter and the results.

Most of the experimental data is presented in oscillographs that carry
frequencies in abscissas and power in ordinates. The insertion loss of a
device, for example, can be calculated from two oscillographs which
show the transmitted powers with and without the device included in
the microwave circuitry.

The wide band -sweep displayed in each oscillograph has been achieved
through the use of backward wave oscillators, but we had to pay a price
in that the output power of these tubes varies rapidly with frequency,
and therefore the oscillographs exhibit a fine structure that makes
measurement a little cumbersome.

Fig. 2 - Band -splitting filter for TE01°.
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Fig. 3 - Schematic of a band -splitting filter connected to a generator.

There are several sources of errors in our measurements. One stems
from the assumption that we have a square -law detector; this is not
strictly so, and consequently only the comparison of similar ordinates
gives reliable quantitative results. Furthermore, small ordinates yield
only qualitative data, because it is for small signals that the detector
departs strongly from the square law. The other sources of errors are
the multiple reflections of the through mode and the damped resonances
of spurious modes. Both exist only because of the measuring technique,
and consequently do not represent electrical properties of the devices
under measurement. In effect, it is known that discontinuities in a
multimode waveguide excite practically no reflections except forward
conversion. Now, in order for measurements to be made, the multimode
waveguide must be connected to a generator and receiver that operate
in single mode rectangular waveguides. It is in the connecting transducers
where most of the reflections of the through mode take place and also
where the converted modes are cut off and reflected.

Multiple reflections and damped resonances show their presence in
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the oscillographs as very fine periodic oscillations superimposed on the
already jagged backward wave oscillator output [see, for example, Fig.
8(d)]. In transmission, where is the correct reading, at the top of this
fine structure, at the bottom, or someplace in between? On one hand,
admitting that the fine structure is due exclusively to multiple reflec-
tions between the input and output transducers, the correct reading is
at the top because the discontinuities in the transducers act like irises
located outside of the nonreflecting device being measured, and con-
sequently these irises can only reduce the transmission, never increase
it. On the other hand, admitting that the fine structure is due exclusively
to resonance of spurious modes, the correct reading is half -way between
the top and the bottom since the transmission can be increased or de-
creased with resonances.' A fair compromise between the two extreme
readings is the average.

Now we can look at the results. The outputs of the band -splitting
filter of Fig. 3 are shown in Figs. 4(a), (h) and (c), together with the
reference output of the generator, Fig. 4(d).

(a)

(b)

(C)

(d)

59.5 KMC 49.8 KMC

59.5 KMC

59.5 KMC

49.8 KMC

49.8 KMC

59. 5 KMC 49.8 KMC

PORT 4

REFERENCE
OUTPUT

Fig. 4 - (a) Output of port 4; (b) output of port 2; (c) output of port 3 [taken
with 6.0 db greater sensitivity than (a), (b) and (d)]; (d) reference output.
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Far from cutoff the band -splitting filter has 1.5 ± 0.1 db insertion
loss for each subband [compare Figs. 4(a), (b) and (d)]; but even as
close to cutoff as 75 me the insertion loss is increased by only 1 db. The
band lost because of the splitting filter is very narrow.

It will be shown in Sections III and V that, of the 1.5 ± 0.1 db inser-
tion loss for either subband, X0.5 db is lost in each hybrid and ,%,0.2 db
in each elbow. This accounts for r%,1.2 db; the remaining 0.3 db must
be attributed to losses in the rest of the circuitry. Any substantial re-
duction of losses will have to come from improvements of the hybrids.

How do we adjust the band -splitting filter? The requirement is that
the power recombining at each hybrid must follow equal electrical
paths. Frequencies below cutoff require path Li in Fig. 3 to be identical
to Li', and frequencies above cutoff must have Li + L2 identical to
Li -I- L21. The fact that the adjustment for frequencies below cutoff
is independent of L2 and L2' suggests a two-step procedure in which the
second does not alter the first:

(a) trim Li and Li for minimum power in port 1 (maximum in
port 2);

(b) trim L2 and L2I for minimum power in port 3 (maximum in
port 4).

We describe next each one of the band -splitting filter components.

III. HYBRID JUNCTION

Consider an infinite volume of metal in which two infinitely long
cylindrical holes of equal diameter are bored in such a way that the
axes are coplanar and normal to each other, as in Fig. 5. We thus have
two cylindrical waveguides making a cross. TEN ° mode fed in one of
the arms passes straight through the junction almost unperturbed
provided the diameter of the waveguide is much larger than the free -
space wavelength. The reason is that we are dealing with an almost
optical problem.

Now let us include in the junction a thin plane sheet of a material
to be described later. The sheet passes through the intersection of the
axes of the waveguides and makes an angle of 45° with each of them.
This thin layer acts as a semitransparent mirror, and TENT mode fed
in one of the arms is partially transmitted straight through and partially
reflected to one of the side arms. If the power division is half and half,
the junction becomes a hybrid. If all the power is reflected (sheet of
metal) the junction becomes an elbow, as in Fig. 6.

The semitransparent mirror can be obtained with sheets of dielectric,
wire mesh, evaporated film, etc.



(a)

(b)

BAND -SPLITTING FILTER

Fig. 5 - (a) Thoi° hybrid in 2 -inch waveguide; (b) exploded view.
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Fig. 6 - (a) rm.° elbow in 2 -inch waveguide; (b) exploded view.
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Part of the power sent through one of these hybrids is converted to
unwanted modes, a good part of which could be recovered by modifying
the mirror slightly. In effect, the incident mode can be considered as the
superposition of an infinite number of plane wavelets all traveling almost
parallel to the axis of the waveguide and each one impinging with dif-
ferent polarization on the semitransparent mirror. As a consequence of
the polarization each wavelet has its own reflection coefficient. Mode
conversion can be avoided by making the local reflection coefficients
identical; this can be achieved with a nonuniform semitransparent
mirror - for example, if the sheet is dielectric or wire mesh, the thick-
ness of the dielectric or the density of the holes must be a function of
the azimuth.

Let us see the experimental results. Two hybrids were assembled
using glass for the semitransparent mirrors. The thicknesses were de-
termined experimentally to provide 3 db power division in the 50 to 60
kmc band. Three sheets of glass with a total thickness of 0.018 inch
were assembled into Hybrid No. 1. The other, Hybrid No. 2, was as-
sembled with four sheets of glass with a total thickness of 0.021 inch.
The power division did not change rapidly with thickness, and the two
mirrors appeared to be the best combinations obtainable with the
available glass sheets.

Similar measurements were made to determine the performances of
both hybrids and, since the results were very similar, Fig. 7 shows only
those for Hybrid No. 1. The outputs from arms 3 and 4, Figs. 7(a) and
7(b), are nearly equal, showing close to 3 db power division.

A method to check the insertion loss and the balance of the hybrid
is described next. The four port hybrid is reduced to a two port structure
by placing reflecting pistons in arms 3 and 4, Fig. 7(c). By adjusting
the relative position of the pistons, the power transmission is maximized.
With this scheme the transmitted power crosses the hybrid twice, once
going toward the pistons and second, bouncing from them. Figs. 7(c)
and (d) show the transmitted and reflected levels. The reference level is
shown in Fig. 7(e). The two-way loss of the hybrid is approximately
1 db ± 0.1 db. The reflected power from the hybrid with the pistons is
very small [see Fig. 7(d)] because it is quite similar to the power re-
flected in the internal mismatches of the measuring set, Fig. 7(f). This
indicates first that the 1 db insertion loss is not due to reflections but,
rather to mode conversion; second, that over the range from 51.0 to
60.8 kmc the power division in the hybrid is frequency -insensitive, since
otherwise the pistons could not tune out the reflections over this band.

The responses of Hybrids Nos. 1 and 2 from 60 to 68.4 kmc and from
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(a)

(b)

(c)

(d)
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1
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)

Fig. 7 - Hybrid No. 1: (a) output of port 3; (b) output of port 4; (c) output
of port 2 with pistons on ports 3 and 4; (d) output of port 1 with pistons on ports
3 and 4; (e) reference output; (f) reflection from measuring set.
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65.9 to 76.4 kmc are shown in Fig. 8. The outputs of arms 3 and 4, which
should be equal in the ideal case of 3 db power division, have been super-
posed for comparison. Figs. 8(a) and 8(b) show that those outputs are
very similar in Hybrid No. 1, and consequently power division has little
frequency dependence. On the other hand, Figs. 8(c) and 8(d) indicate
that power division in Hybrid No. 2 gets worse as the frequency in-
creases. At the highest frequency, 76.4 kmc, the output ratio is close to
two to one.

Why the dissimilar frequency behavior? The answer may be that,
because of the difference in thickness of the semitransparent mirrors, the
hybrids achieve the ideal 3 db power division at different frequencies,
and consequently one of them is bound to behave better than the other
in the range of our measurements. These hybrids are so broadband that
when they were assembled to provide 3 db division in the range from 50
to 60 kmc they looked very similar, and only when they were measured
at higher frequencies did the different behavior become apparent.

For the purpose of showing that other semitransparent mirrors dif-
ferent from glass could be adequate to build a hybrid, a copper screen
was used. The copper screen is an electroformed mesh 0.0005 inch thick

(a)

(c)

60.0 KMC

60.0 KMC

68.4 KMC

68.4 KMC

x

(b)

(d)

65.9 KMC

65.9 KMC

PORT 4

PORT

PORT 2

76.4 KMC

76.4 KMC

PORT 3

Fig. 8 - Superimposed outputs of ports 3 and 4: (a) Hybrid No. 1, 60.0 through
68.4 kmc; (b) Hybrid No. 1, 65.9 through 76.4 kmc; (c) Hybrid No. 2, 60.0 through
68.4 kmc; (d) Hybrid No. 2, 65.9 through 76.4 kmc.
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with 400 square holes per square inch, with the copper separating the
holes being 0.0175 inch wide.

The power division of the hybrid is 1.8 to 1, and, with more screen
reflectivity, 3 db power division should be achieved. No effort was made
in this direction, but a semitransparent mirror of this kind should be
weighed carefully against a glass one.

IV. HIGH-PASS FILTER

A TEili° high-pass filter is obtained by reducing the diameter of a
circular waveguide. The minimum radius essentially fixes the cutoff
frequency and the slope of the tapers determines the steepness of the
transfer characteristics.

The high-pass filter, Fig. 9, is made of electroformed round copper
pipes. Two relatively smooth tapers connect the cutoff section to 16
inch -diameter waveguide. The cutoff section has a constant diameter of
0.260 inch and is 1 inch long. The over-all length of the filter is 3.8 inches.

Fig. 9 - (a) TE01° high-pass filter; (b) exploded view.
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The end size of the high-pass filter was selected because we already
had on hand tapers from ,A to 2 inches in diameter.6 In a final design
of a band -splitting filter it is not necessary to pass through the inter-
mediate size of --,76 inch, and consequently the filter can he more compact
than the one shown in Fig. 2.

In order to appreciate the high-pass filter behavior at frequencies
close to cutoff, transmission and reflection were measured point by point,
as shown in Fig. 10. In an ideal high-pass filter, power at frequencies
above cutoff should be transmitted completely, but this implies that
the taper should match a waveguide of a certain admittance to another
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of admittance close to zero, which requires extremely long tapers. Our
tapers are short, and Fig. 10 shows that the maximum unwanted re-
flection above cutoff is 6.6 db. This reflection can be reduced by using
polyethylene tuning screws. The transmission and reflection of the taper
with tuning screws, as seen in Fig. 11, show that the maximum unwanted
reflection has been reduced to 16.8 db without changing substantially
the transmission characteristic. The difference between the frequencies
at which transmission and reflection losses are below 1 db is 160 mc.
This is a very sharp cutoff.
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REPEATER FOR f<fc

REPEATER FOR f>fc --{

f < fc

f>fc

Fig. 12 12 - Two-way transmission on a single waveguide using two band -split-
ting filters.

V. ELBOW

The elbow, as mentioned earlier, is derived from the hybrid by replac-
ing the semitransparent mirror with a metal plate. The insertion loss is
0.2 ± 0.05 db.

VI. ANOTHER POSSIBLE USE FOR A BAND -SPLITTING FILTER

This filter allows using a single waveguide to transmit in both direc-
tions. Fig. 12 shows one of the possible arrangements. Two identical
band splitting filters are used. Calling fe the cutoff frequencies of the
filters F, the reader can check that frequencies f < f, can travel towards
the right and frequencies f > fc can travel towards the left.

Power leaving the repeater for f < f, can leak into the repeater for
f > fc only by passing through cutoff filters, and consequently that
leakage can be made arbitrarily small. On the other hand, power leaving
the repeater for .1' > fe can leak into the repeater for ,1 < ft. because of
unbalance in the hybrids H1 and H2. This leakage can be reduced if
necessary by including between hybrid H1 and the repeater a filter like
the one shown in Fig. 13. It consists of a hybrid and two high-pass
filters like those described previously.

Fig. 13 - Filter to eliminate high frequencies.
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VII. CONCLUSIONS

A constant -resistance filter capable of dividing a wide band in two
has been described. It can easily handle one octave in the millimeter
region with only 1.5 db insertion loss for each subband. The splitting
transition takes place in a very narrow band (160 mc). Another use of
the filter: it allows using a single waveguide to transmit in both direc-
tions.

Two of the components of the filter are important devices: an elbow
and a hybrid. Both are quasi -optical and operate easily over one octave
in the millimeter region. The elbows allow sudden 90° turns of a 2 inch -
diameter multimode waveguide with relatively low insertion loss 0.2 ±
0.05 db. Without them the band -splitting filter would be very bulky.
The importance and uses of the hybrid need hardly any comment.
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Margin Considerations for an Esaki
Diode -Resistor OR Gate*

By H. K. GUMMEL and F. M. SMITS

(Manuscript received July 21, 1960)

An Esaki diode -resistor logic, powered from a three-phase supply and
involving OR gates, is analyzed. Practical switching times are of the order
of 101R -1C. The voltages at which the current maximum and the current
minimum occur set an upper limit on the achievable logical gain. For a
sum of fan -in plus fan -out of 3, the margins on key diode and circuit pa-
rameters must be better than per cent, with all margins assumed equal.
The margins can be ±3.5 per cent for a fan -in plus fan -out of 2, which,
however, restricts the applications to shift registers, flip-flops, and the like.

I. INTRODUCTION

Esaki diodes are being considered for high-speed logic due to their
potentially high switching speeds. Several papers have already ap-
peared on the use of Esaki diodes in logic systems.1.2.3.4.6 In such sys-
tems the bistable V -I characteristic of the diodes is utilized to define
two logical states ("zero" and "one"). The bias current of the diode,
together with a trigger current derived from a previous stage, deter-
mines which of the two states will be attained. If the trigger current
can be kept small with respect to the output current, logical gain can
be achieved. This generally requires that the characteristics of the
diodes be well controlled, since the logical gain will primarily depend
on the margins of the diodes and of the circuit parameters. Conse-
quently, the considerations of margins become of prime importance in
the design of logical systems.

In this paper, worst -case margin considerations are given for one of

the simplest types of Esaki diode logic, a diode -resistor logic powered
from a three-phase supply.6 In particular, the discussion is restricted
to the least complicated logical element - an OR gate.

* This work was supported in part by the U.S. Army Signal Corps under con-
tract DA -36-039 sc-64618.
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BIAS

INPUTS OUTPUTS

V ->

Fig. 1 - Esaki diode -resistor logic.

First, a general description of the system will be given (Section II),
followed by a qualitative margin analysis (Section III).* In Section IV
it is shown that the present system permits only a finite logical gain,
even for zero margins and infinite switching time. The switching speed
is analyzed in Section V, followed by the quantitative margin analysis
(Section VI). The final result of the quantitative margin analysis is
brought into a form corresponding to the qualitative analysis, which
permits the reader to follow the discussion (Section VII) and the con-
clusion (Section VIII) without studying in detail the reasoning in Sec-
tions V and VI.

II. ESAKI DIODE -RESISTOR LOGIC

The basic stage in an Esaki diode -resistor logic consists of a series
arrangement of a diode and a resistor, Rb with input and output cou-
pling resistors as shown in Fig. 1. The bias voltage is chosen such that,
without any voltage at the far ends of the coupling resistors, it gives
rise to a current through the diode which is below the peak current.
Consequently, the diode will remain in its low -voltage state. With addi-
tional current supplied to the center node through one or more input
(or output) resistors, the diode can be made to switch into the high -
voltage state. With the bias current only slightly smaller than the peak
current, very small "trigger" currents are necessary.

Once the diode is in its high -voltage state it will remain there even
if current is now withdrawn at the node. It is only necessary that the
current through the diode remain above the valley current I, . The
maximum current that can be withdrawn is, therefore, the difference
between the bias current and the valley current. The ratio of this out-
put current to the trigger current constitutes the logical gain.

* The authors are indebted to J. H. Vogelsong, whose unpublished margin
studies are incorporated in this section.
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By proper choice of the bias current, the current of at least one input
or the combined current of several inputs is necessary to trigger the
diode. The diode accordingly can act as an OR gate, as an AND gate or
as a THRESHOLD gate. The output resistors can be connected to the
node of a subsequent stage. Similarly, the input resistors are powered
from nodes at previous stages. The extension of this principle leads to a
logical network.

In such a network it is, however, necessary to determine the direc-
tion in which information will be propagated. One elegant method
utilizes a three-phase bias supply' as depicted in Fig. 2. Adjacent diode
stages are powered from different phases. Thus a diode on phase A, for
example, is triggered from a diode on phase c, and it will trigger a di-
ode on phase B.

Even in such a multiphase system "backswitching" can occur? To
illustrate this, consider the arrangement of Fig. 3. If the stages repre-
sent OR gates, one stage in a high -voltage ("one") condition will trigger
a following stage. Stages 1 and 2 are powered from phase A, while
stages 3 and 4 are powered from phase B. Assume that stage 1 is in the
"one" condition and stage 2 is in the "zero" condition. As soon as
phase B is applied, stage 3 will assume the "one" condition. Since stage
3 is coupled to stage 2, it will trigger stage 2 into the "one" condition,
resulting in an erroneous "one" in stage 4.

To avoid such backswitching, a system of OR gates must be arranged
in such a way that no multiple input is fed from any stage having a
multiple output. Logical design then forces the use of "booster" stages,
e.g., stages with one output driving stages with one input.

PHASE A

PHASE B

PHASE C

TIME

Fig. 2 - Three-phase bias supply.
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PHASE C PHASE A PHASE C

Fig. 3 - Logic network of OR gates leading to backswitching.

III. QUALITATIVE MARGIN ANALYSIS

As pointed out before, the magnitude of the trigger current depends
on the difference between peak current and bias current. This differ-
ence can be made small (and therewith the logical gain large) if both
parameters are tightly controlled. For an OR gate the qualitative effect
of a spread in the parameters on the logical gain can be readily demon-
strated.

Assume that the peak currents of the devices fall in a range be-
tween IL and ./. , and that the bias currents fall in a range between
1-1) min and /b One can then introduce such relative variations as:

and

Iu - IL (1)

1-1) max -Ib min (2)

With a maximum valley current I, max for all devices one can define
a "valley -to -peak" ratio

Iv max
(3)V

/L

As pointed out before, for triggering a device, the total current through
the device must exceed the peak current. It is plausible (and will be
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discussed in detail in the next section) that an overdrive A/ is necessary
to ensure switching with the required speed. We thus introduce a rela-
tive overdrive

/
S =

A- (4)
//,

In a worst -case analysis, it must be ascertained that a stage giving a
minimum total output current is capable of delivering into each out-
put stage a trigger current which is at least as big as the trigger current
required in the worst -case. The logical gain, e.g., the number of stages
(n) that can be connected to one output can be found by equating the
minimum current that can be delivered into an output stage (lout min)
to the worst -case trigger current (Itr). Due to the bilateral nature of
the Esaki diode (output and input are identical), this number is the
sum of inputs plus outputs ("fan -in" plus "fan -out").

For these currents the following normalizations are introduced:

and

Itr=
IL

Lout min

IL

For a qualitative analysis the magnitude of these currents is found
readily by graphical considerations.

Fig. 4 shows a voltage -current characteristic of an Esaki diode in-
cluding variations. Since the maximum bias current must equal the

/34

P

VOLTAGE

Fig. 4 - Qualitative margin analysis.
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minimum peak current, the entire spread in bias currents (i3) must lie
below the spread in peak currents (r). Since for a unit with the highest
peak current a minimum overdrive must be assured, 8 must be added to
the maximum peak current. From Fig. 4 one obtains for the normalized
trigger current

= 7 # 5, (7)

and for the total minimum output current

n77 = 1 - - /3.
Equating T and n gives the logical gain as

1 - v -13
± + n.

An evaluation of this equation will give a first -order estimate of the
required margins. This analysis, however, neglects the effects of the
peak and valley voltages, which even for zero margins will limit the
logical gain under certain conditions as will be shown in the next sec-
tion. For a full evaluation of the margin equations, the relation be-
tween relative overdrive 8 and the switching speed must be known. This
analysis will be given in Section V. The detailed margin analysis in
Section VI will not only include the variables considered in (9) and the
effect of the peak and valley voltages, but it also will include the varia-
tions of these voltages and the variations in the coupling resistors.

IV. LIMITATIONS DUE TO FINITE VOLTAGE LEVELS

(8)

(9)

The diode -resistor logic discussed here has an upper limit in the logi-
cal gain if stages that are to be driven have a fan -out larger than their
fan -in. This limitation is determined by the magnitude of the voltages
for the current peak and for the current minimum, and exists even if
all error margins and the valley current are zero.

To demonstrate this effect, consider the extreme case of a stage hav-
ing one input and (n - 1) outputs. Assume a device characteristic as
shown in Fig. 5. The magnitude of the bias current is determined by
the condition that the stage under consideration is not permitted to be
triggered into the high -voltage condition if none of the stages connected
to either the input or the output resistor is in the high -voltage condi-
tion. Due to the bias pulse overlap with the previous and the following
stages respectively, the far ends of the coupling resistors can vary in
voltage between zero and V, the voltage at which the current maxi-
mum is reached. The coupling resistors whose far ends are at V will
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Fig. 5 - Germanium Esaki diode characteristic with load line.

not shunt any current, and it has to be ascertained that the bias cur-
rent under no condition will supply a current greater than I, to the
diode. With only one coupling resistor acting as a shunt, the maximum
bias current becomes

Ib = l VG, (10)

where G is the conductance of each coupling resistor.
A stage is to be triggered into the high -voltage condition at a time

when the output resistors are at ground potential, and the trigger cur-
rent must increase the current through the diode above the peak cur-
rent. Since, for the case of one input resistor, (n - 1) resistors act as
shunts, one obtains for the trigger current

Itr= I, (n - 1)GV - = (n - 2)GV . (11)

It must be possible to supply this trigger current from the output of
one previous stage which is in the high -voltage condition. The far end
of this particular coupling resistor thus is at the "valley" voltage V. ,
with the near end at vi, . One thus obtains for the output current

/out = (V. - V)G. (12)

Equating hut and /t,. yields

Vn=+1. (13)

This demonstrates that the sum of fan -in and fan -out for such an
asymmetrical stage remains finite, even in the case of zero tolerances.
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V. SWITCHING SPEED

The speed considerations are based on a diode characteristic as shown
in Fig. 5, which shows a good but still practical characteristic for a
germanium diode. The combined conductances of the input and output
resistors are shown as the load line. It is chosen in such a way that
while touching the peak point it intercepts the valley. This choice of
the load line will allow obtaining a maximum current output.

Assume now that a current of magnitude /0 (> /7,) is applied to the
parallel combination of diode and load resistance as shown in Fig. 6.
The capacity represents the diode capacity (plus any shunt capacitors
in parallel with the diode). Any series inductances have been neglected.

During a transition from a low -voltage state into a high -voltage state,
the capacity shunting the diode must be charged. The charging current
at a given voltage is the difference between the supplied current /0 and
the sum of the load current and the conductive current through the
diode at any given voltage. In Fig. 6 this charging current I, can be
read off as a function of voltage, since it is just the difference between
the load line and the static characteristic. The time required to go from
voltage V. to voltage Vb is given by

vb C(V) dVt=
fvo Ic(V)

(14)

A numerical integration of this equation thus can give the switching
time between two arbitrary points. For the problem on hand, the

CONDUCTION CURRENT
THROUGH LOAD

CHARGING
CURRENT

VOLTAGE

Fig. 6 - Capacitance charging current.
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switching time from a low -voltage state to a high -voltage state is of
interest.

Prior to switching, the diode voltage corresponds to the stable point
(Fig. 5) at low voltage. After switching, the diode voltage corresponds
to the stable point at high voltage. Switching is accomplished by the
application of a trigger current which lifts the load line above the di-
ode characteristic as depicted in Fig. 6. This lifting of the load line
moves the high -voltage intercept to the right, and the diode voltage
will approach the voltage corresponding to this intercept. After removal
of the overdrive, the voltage would then decrease again. Thus, switch-
ing can be considered as completed when, with applied overdrive, the
voltage of the stable point prior to the application of the trigger cur-
rent is reached.

For the analysis to be independent of the particular bias current, it
is convenient to consider, as final voltage, the intercept of a load line
which just touches the peak. For an analytical treatment the following
two simplifying assumptions will be made:

i. The voltage dependent capacity C(V) will be replaced by a con-
stant average capacity C.

ii. The diode characteristic will be approximated by two parabolic
sections and a straight section.

Let A and B (Fig. 7) be the points on the diode characteristic at which
the slope is equal to that of the load line, and let /A and 1.13 be the charg-
ing currents at these points. Let c be the point at which one parabolic

VOLTAGE

Fig. 7 - Analysis of the switching time.
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approximation joins the second approximation and let D be the point
where the straight section commences. Then the time needed to switch
from an arbitrary point E in the low -voltage part to the final point F is
given by

I
rc dV D dV

=C
[VB IA ± I (T7 -T'"12

±
C IB I(v - .17.)2

T"2
p) \ T72

Vg
(15)

VF 17± ].
D IA (ID IA) T,V p - VD

Here the constants describing the curvature of the parabolas are ex-
pressed in terms of the peak current, and in terms of constants V1 and
V2 having the dimension of voltages. Such a presentation is convenient
since the constant Vi is equal to the peak voltage and the constant V2
is of the order of magnitude of the difference between valley voltage and
peak voltage. Note that V1 and V2 depend on the diode characteristic
only and are independent of the load line. Performing the integration of
(15) yields

Te = tan - tanCV]. i/./ IB
IAIp IA IA

C T7 2 (tanh-1 tanh--1 C VTF VT

ID

In (1:27.
IB IR 1B

(16)

The constants in this equation are defined in Fig. 7. It should be noted
that IA corresponds to the overdrive (IA = AI) and that 14//, =
5 as defined in (4). For an evaluation of this equation, the value of the
capacity C must be known. This capacity, however, can be expressed
through the characteristic time To = I R- I C, which time is usually con-
sidered as the figure of merit for an Esaki diode. It is therefore possible
to express the switching time in terms of the time To . With such a nor-
malization, the results of the analysis will be fairly general.

Fig. 8 shows an evaluation of (16) giving the switching times in terms
of the characteristic time To for switching from zero to the final voltage.
The assumed value of the load line permits a maximum output current
while conforming with the margin considerations. Using zero instead of
a finite voltage as the starting point lengthens T8 only insignificantly.

As can be seen in Fig. 8, the switching behavior can be fairly well
approximated by

T8/To = 2.25 VIP//A = 2.25/1/i. (17)
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VI. QUANTITATIVE MARGIN ANALYSIS

8 10 20 40

The qualitative margin analysis of Section III neglected variations of
the coupling resistors, the effect of the peak and valley voltage, and the
variations of these voltages. As a simplification in the complete analysis
it will be assumed that the bias is supplied from a constant current
source. Under this assumption the total load line of the diode is given
by the sum of the conductances of the input and output resistors. These
resistors will terminate at the nodes of adjacent units, and it is necessary
to include the voltage of these nodes in the analysis.

As in the qualitative analysis one has to find the current which in the
worst case will trigger a stage within a desired time. This current must
equal the minimum current that under worst conditions will be delivered
into an output resistor.

6.1 Trigger Current Needed

The lower the bias current, the larger will be the necessary trigger
current. The maximum bias current, however, must be low enough that
the stage under consideration will not assume the high -voltage condition
unless one driving stage is in such a high -voltage condition. The margin
of the bias current then determines the difference between the maximum
and the minimum bias current.

The characteristics of all diodes in a system will show a spread, and
will fall between two extreme characteristics, which represent the ac-
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Fig. 9 - Spread in characteristics.

ceptance limits. Such extremes are indicated in Fig. 9. The conductance
of the ni input resistors and the no output resistors will fall between an
upper bound of value G. and a lower bound of value GL

For the following analysis one determines the point L (Fig. 9) where
a load line of the lowest total conductance (ni ± no) GL is tangent to
the lower characteristic, and the point u where the load line of largest
conductance (ni + no) GU is tangent to the upper curve. The voltages
and currents corresponding to these points are Vu , IU and IL re-
spectively.

In a three-phase system as considered here, only two adjacent units
will be powered at the same time. Thus one has two extreme conditions
under which the unit under consideration should not be triggered :

i. The unit under consideration and the previous unit are powered,
in which case the far ends of the input resistors may be as high in voltage
as VL while the output resistors are at ground potential and

ii. The unit under consideration and the following unit are powered,
in which case the far ends of the output resistors may be as high as VL
in voltage while the input resistors are at ground.

The maximum permissible bias current should not switch a unit if it
has the lowest peak current and if the smallest current is shunted by the
coupling resistors. This current is given by

/b max = IL nminG LV L (18)

where main represents the minimum of n i or no . The minimum bias
current is below the maximum bias current by the spread in bias currents
Alb
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(19)

In order to trigger a diode it is necessary that a current of at least
/u plus necessary overdrive for speed is delivered to the diode. This
current will be the sum of the minimum bias current plus the trigger
current minus the current drained through the input and output re-
sistors. However, since at least one stage has to supply the trigger cur-
rent, only n - 1 input stages can act as a load. Thus one obtains under
worst -case conditions

/u + A/ = Itr /b min - GuVuno - (ni - 1) GU (Vu - Voff min)L (20)

In this equation Voff min is the minimum off -voltage a unit can assume.
(It should be realized that the voltage VL discussed previously can be
considered as Voff ma. .)

To bring (20) into normalized form the following quantities are in-
troduced

GU-GL
p GL

Vu - VL
VL,

sP-

-

Vu Voff In in

VL

GLVL

With these definitions and with the definitions (1), (2), (3), (4) and (5),
equation (20) combined with (18) and (19) gives for the normalized
trigger current

T = + + y[(1 +P)(1 (7)no - nmin + (1 + P)c(ni - 1)]. (25)

The term multiplied by -y involves the additional terms not present in
the equivalent equation (7) of the qualitative analysis.

6.2 Output Current Available

In a three-phase diode system as discussed here, the output current
must be available while the stage under consideration and the output
stages are powered. The nodes of the input stages accordingly are at
zero potential while the output stages are at the peak voltage. Certainly
the driving stage is in the high -voltage condition and its voltage corre-
sponds to a voltage in the "valley" of the characteristic.

One thus can represent the situation by a circuit as shown in Fig. 10.
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Fig. 10 - Derivation of output current.

The conductances Gk represent the coupling resistors and the voltages
Vk fall in the range of the peak voltages. For the analysis it is more con-
venient to represent the voltages Vk and their associated conductances
as current sources feeding the node. This leads to the representation as
shown in Fig. 11. Here it must be remembered that Vk = 0 for the input
conductances. From this representation the valley voltage V. is readily
obtained as

ZVk
Vv

Gk (26)
IGk

If Gi represents one particular coupling resistor to an output stage the
current into this stage is readily obtained:

/out = = (V. - Vi)G; (27)

Substituting V from (26) gives

/b Z VkGk - - 17,2',Gk
/out = Gj . (28)

2,'Gk

This current has a minimum if

G=EGK

d,-

II=Ib +EGKVK

-Vv

Fig. 11 - Circuit equivalent to Fig. 10.
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/b = //, min

G; = GL and all other Gk=GU)

and if for the output stages

V = V. and all other Vk=VL.

Introducing these conditions into (28) and substituting, one obtains
in normalized form:

n[n+(n- 1)p] = 1 - - - -yR1 p) (1 + isr)ni - ninin

+ (1 + p)o-(110 - 1)]

Again, this expression has additional terms which are absent in the
equivalent equation (8) of the qualitative analysis.

(29)

(30)

6.3 Logical Gain

To determine the sum of fan -in plus fan -out, the normalized trigger
current, (25), must be set equal to the normalized output current, (30).
For this it is necessary to consider the particular configuration in which
stages are interconnected.

For a given n , the trigger current, (25), will have a maximum if ni =
1 and no = n - 1. Similarly, the output current, (30), will have a mini-
mum if ni = n - 1 and no = 1. Thus the worst combination of two
stages is the case in which a stage with a multiple input and a single
output drives a stage with a single input and a multiple output. Such a
combination represents a "booster" stage, which is an important con-
figuration to avoid backswitching. In the following, the analysis will
therefore be given for such a combination. At this point it is convenient
to introduce

n* = n + (n - 1)p. (31)

For the worst -case combination of stages, (25) and (30) take then the
form

T=7+0+6+ 7[(n* - 1)(1 + - 1],
n*n = 1 - v -a - -y[(n* - 1)(1 + cr) - 1].

(25a)

(30a)

Besides the variations of all parameters, these equations involve the
value of the coupling resistors in the term -y. Since the load impedance
determines the operating point in the high -voltage condition, one can
express 7 by this point, i.e., by the valley voltage and the valley current.
Due to the variations in the load conductances and the bias current,
this operating point must be defined for a particular combination of
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these parameters. The combination to be chosen is the one leading to
the minimum output current. One thus can use (26) to express y in
terms of the valley voltage V, and the valley current I. . Introducing
the condition (29) into (26) (and assuming the particular configuration
under discussion) gives:

/1, min + VUGL - IvV, - (32)(n - 1)Gu GL

It is plausible (and can be proven readily) that a device characteristic
leading to an operating point with a higher voltage V, or a lower cur-
rent I,, results in a higher output current. Thus the operating point as
defined by (28) is a worst -case condition; such an operating point is
schematically indicated in Fig. 12. It specifies an area (shaded) which
must be cleared by the high -voltage branch of all diode characteristics.

Introducing a normalized valley voltage

V,
Y=

VL

and using all previous normalizations permits one to use (32) for the
elimination of 7:

(33)

1 - v -
(34)

7 n*y - (a + 2) 
Equating 7 and t as given in (25a) and (30a) and using the above

expression for y leads to the final result:

1 - v - fit + - 1)PlY - (0- + 2)
7 + Q + b Y [n + (n 1)P](cr + 1) +

CC

CC

(35)

111111111\11111111

VOLTAGE vv

Fig. 12 - Significance of valley voltage and valley current.



MARGINS FOR ESAKI DIODE -RESISTOR OR GATE 229

VII. DISCUSSION

The final expression of the quantitative margin analysis, (35), differs
from the qualitative result obtained in Section III, (9), in the right-
hand side only. While in the qualitative expression the right-hand side
is the sum of fan -in plus fan -out (n); in the quantitative expression the
right-hand side is a function of n and these additional variables: the
relative variation in the conductances of the coupling resistors p, (21);
the relative variation in the voltage for the current peak a, (22); and
the minimum ratio of valley voltage to peak voltage 1,, (33).

On account of the similarity in the results it is convenient to introduce
a generalized ii defined as

n_[ (n - 1)p]y - (a + 2)n - (36)y -[n (n - 1)fid(a ± 1) ± 1.

Even for a and p equal to zero the generalized n becomes infinite for

n = y 1. (37)

An infinite n implies zero margins for all variables and zero overdrive.
Thus the result of Section IV is recovered.

In considering the effects of finite margins, specific assumptions as to
the relative magnitude of the margins on the various variables must be
made. For the primary variables in the left-hand side of (9) or (35), the
maximum ratio v of valley current to peak current is assumed as 0.1,
since this corresponds to a good ratio achievable in germanium units.
The relative overdrive 5 will be expressed in terms of the switching speed
using the calculated relation obtained in Section V. The result is shown
in Fig. 8, which gives the switching time T, in terms of the characteristic
time ro = I R- I C as a function of the relative overdrive 5.

The other quantities of the left-hand side will be treated as inde-
pendent variables. To keep the discussion fairly general, we assume that
all significant parameters are kept within the same relative variation.

In general, the bias current will be determined by a voltage and a
resistor. Thus the spread in bias current J3 is the result of an uncertainty
in a voltage and in a resistor. In worst -case analysis the two margins
have to be added. Assuming the two margins to be equal and introduc-
ing a relative maximum variation, x, from the center value, one can
express /51 as:

= 4x. (38)

In the analysis, no mention has been made of noise; in particular, the
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possibility of undesirable crosscoupling between stages. Such "noise"
most conveniently can be expressed in an equivalent relative variation
of the peak currents. The parameter 7 accordingly contains noise as a
second variable besides the actual variation in peak currents. Equating
these variations to the variations in the bias current results in:

r = 4x. (39)

Fig. 13 shows a plot of (9) with 0 and 7 expressed by (38) and (39) re-
spectively and with v = 0.1. It can be seen from the figure that even for
small logical gain fairly tight margins are required. It also becomes
apparent that switching speeds below 10 To are impractical.

To evaluate the importance of the margins of the additional variables,
which enter in n, the relation (36) between actual n and generalized ii,
has to be evaluated. Fig. 14, as an example, shows this relation for an
actual n = 3, which corresponds to the minimum sum of fan -in plus
fan -out required in a logical network. It can be seen that with an in-
creasing ratio of valley voltage to peak voltage (y) the limiting value of

= n (n - 1)p is rapidly approached. It also becomes apparent that,
for sufficiently large values of the valley voltage, the spread in peak
voltage and in the values of the coupling resistors are only of minor
importance.

Since for good germanium Esaki diodes y > 8 for v < 0.1, these
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Fig. 13 - Permissible variations from nominal value of the important parame-
ter as a function of generalized n.
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Fig. 14 - Generalized n as a function of y = V/V,, .

13

values have been assumed in the construction of Fig. 15, which shows
the dependence of the sum of fan -in plus fan -out (n) on the percentage
variations x from the correct value of the bias voltage, the bias resistor
and the peak current, and a noise equivalent current expressed as a
percentage of peak current. Because the effects of the coupling resistors
and the peak voltage are relatively small, a fixed relative variation of
±2.5 per cent has been assumed for these quantities.

VIII. CONCLUSIONS

An Esaki diode resistor logic with three-phase power supply shows
several basic limitations even if it only involves OR gates.

The possibility of backswitching limits the design of logical networks,
requiring the incorporation of "booster" stages in which a device with
one output drives a device with one input.

Switching times shorter than 10 I R- I C are not practical; however,
this is not, a very severe limitation.

The finite ratio of the voltage for the current minimum to the voltage
for the current maximum limits the logical gain even for the case of zero
margins.

From Fig. 15 it is apparent that, even for a sum of fan -in plus fan -out
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Fig. 15 - Permissible variations from nominal value of the important parame-
ter as a function of fan -in plus fan -out for a specific example.

(n) equal to 3, worst -case margins of less than ±2.5 per cent are required.
For an AND gate, a two-sided limit on the trigger current is required,
making the margins even tighter. It thus appears questionable that an
Esaki diode resistor logic with n 3 is practical, if operation under
worst -case conditions is to be guaranteed.

Only for n = 2 do the margins appear tolerable under worst -case
conditions. However, such a value of n does not permit the construction
of a complete logic network, and implies a restriction to applications such
as memories, flip-flops, shift register and the like.
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Noncylindrical Helix Waveguide

By H. G. UNGER

(Manuscript received August 9, 1960)

Small uniform deformations of the cross section of helix waveguide perturb
the circular electric waves slightly. From these perturbations the added
circular electric wave loss is found in a uniformly deformed helix wave -
guide. For a nonuniformly deformed helix waveguide Maxwell's equations
are converted into generalized telegraphist's equations. By an approximate
solution for small deformations, mode conversion and circular electric wave
loss are found.

Random imperfections with small correlation distance cause an average
circular electric wave loss that is nearly independent of the wall impedance
which the helix jacket presents to the waveguide interior. It is therefore nearly
the same as in metallic waveguide. Near 50 kmc, the rms value of elliptical
diameter differences should not be more than 0.0015 inch in order that on
the average not more than 10 per cent of TE, loss in a perfect 2 -inch inside
diameter copper pipe is added to the TEN loss in a helix waveguide of the
same inside diameter.

I. INTRODUCTION

Helix waveguide composed of closely wound insulated copper wire
covered with a jacket of dielectric material and surrounded by a coaxial
metallic shield is a good transmission medium for circular electric waves.'
In long distance communication with these waves helix waveguide is
useful as a mode filter, for negotiating bends and particularly as a trans-
mission line proper. The different applications of helix waveguide require
different properties of jacket and shield. Corresponding design rules
have been worked out.2

The loss of circular electric waves in a metallic waveguide decreases
steadily with increasing frequency only if the guide is perfectly round.
The same is true for the helix waveguide. To maintain the low -loss
properties of the circular electric wave, the helix waveguide must be
manufactured to a high degree of roundness and uniformity.

233
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As long as the guide is cylindrical, i.e., any deviation from roundness
is independent of distance along the guide, increased circular electric
wave loss is the only effect of such deviation from roundness. But if at
the same time this deviation changes with length, the transmission char-
acteristics of the guide will be further degraded by mode conversion -
reconversion effects. At any change of cross-sectional shape of the guide,
power of the circular electric wave will be scattered into unwanted
modes, and vice versa. The amount of power scattered depends not only
on the magnitude of change but also on the rate of change with length
of these deviations from roundness.

Two cases, that of the uniform noncircular helix waveguide and that
of the nonuniform helix waveguide, will be analyzed separately. In the
first case, a perturbation of the normal modes of the round waveguide
will give a simple answer. In the second case, however, Maxwell's equa-
tions will be converted into generalized telegraphist's equations,' and
the results appear to be much more involved.

This paper partly represents an extension of an analysis of non -
cylindrical metallic waveguide4 to helix waveguide, and partly uses the
results of a mode -conversion analysis which was made more recently."

II. THE UNIFORM NONCIRCULAR HELIX WAVEGUIDE

The mathematical model with which helix and surrounding jacket
structure is represented in this analysis is an anisotropically .conducting
sheath. The sheath conducts perfectly in circumferential direction and
has a surface impedance Z in longitudinal direction. A cylindrical co-
ordinate system (r,co,z) will be used, in which r = 0 coincides with the
axis of the guide. At present the inner radius of the guide is a function of
co only:

a = ao[1. gio)]. (1)

The anisotropic sheath imposes the following boundary conditions at
r = a:

E, Erd3(Tv = 0,

Ey

-Z (la
= IIr (40).V1 + (2)-



NONCYLINDRICAL HELIX WAVEGUIDE 235

The deviation from the nominal radius ao is assumed to be small and
smooth:

<< 1 and d<<

Then the electromagnetic field can conveniently be represented as a
perturbation of the field in the round guide of radius ao :

E = E0

H = Ho + h.

Furthermore the fields at r = a can be written in terms of the fields at

(4)

r = ao :

E0(a,r) = Eo(ao , co) + aoo(v)
aEo(ao , v)

ar

(5)

(6)

If the unperturbed field is of circular electric form with Eoz = Eor =
Ho, = 0, then, upon substituting from (5) into the boundary condition
(2), the Taylor series (6) can be used. The perturbation field can then
be written in terms of the unperturbed field of the circular electric wave:

ew = -aoa(io)
aEo(ao)

(7)ar

The boundary condition (3) imposes an additional requirement on the
perturbation field

ez = -Z4(ao). (8)

Conditions (7) and (8) suffice to calculate the complete perturbation
field.

A circular electric wave that carries unit power in positive z direction
has an electric field:

2coit Ji(Xor) 0-00Eoc = -
71-190 aJo(ko)'

where

ko = xoao , Ji(ko) = 0

and

(9)

= w2µe - Xo2.

Here, ti and e are permeability and permittivity of the waveguide interior;
w is the angular frequency.
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The perturbation (5 of the nominal radius is a periodic function of co.
A Fourier expansion is therefore in order:

S(co) = E Bp cos pip. (10)

Terms with sin pp have been omitted from (10). They would only add
identical perturbations with different polarization. Substituting from (9)
and (10) into (7) :

2,.v., _00ze,(ao) =
irflo

xo e Sp cos N. (11)

The expression suggests an expansion of the perturbation fields into
terms which individually satisfy Maxwell's equations and have the co
and z dependence of the terms in (11). Such a field is obtained from wave
functions

() = E a(p)Jp(xor) sin pve-"°z,

T[p] = E a[idp(x.r) cos psoe-fthiz
p

and the following formulae:

er
coe or rase)

e
aT() aT[pi, -

WE rO(p Or

(3, aT() aTrp,_

2

XOez = (p)
3 COE

hcz

hz

3T() 3T[p]

rag) COI1 ar

aT(p, 130 aT,p,= -
ar wµ rasp '

2

Xo
Tj(41.4 [p] 

(12)

(13)

Equating egao) from (13) with e,(ao) from (11) and comparing in this
equation the coefficients of cos pip, a relation between a() , a[pj and Bp is
obtained:

aGoE

IC

P 4/2 coil- - 7 JP(k0)a() J7) (kO)a[P] = oap
(14)

CO O i3
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Another relation between a() and abq is obtained by substituting for
ez and h, from (13) into (8):

2

XO

oe
Jp(k0)a(p) = Z [X04' (k0)a(p)

cop.
-72 Jp(ko)arpd. (15)

jc ao

Equations (14) and (15) can be solved for a() and am . For example:

a(p) =

2tto ZO p (16)
Jp(ko) ko2 Jp(ko)

koZ
[42(ko) P2

Poe

jwEao Jp (ko) .1,2 (leo) 102 Ow

With a() and a1,,1 the perturbation fields of circular electric waves are
known as functions of the Sp's. Thus the quasi -circular electric waves
in any slightly deformed round waveguide can be written in terms of the
normal wave and perturbation fields.

The propagation constant remains unchanged and equal to j$o in this
first -order approximation. Now it is just the effect of a deformation on
the propagation constant and especially on its real part, the attenua-
tion constant, which is most important. Ordinarily a higher order of
approximation would be necessary to determine this attenuation. But
here, as in all electromagnetic problems where the dissipated energy is
small compared to the stored or propagated energy, the losses may be
calculated from a lower order of approximation.' The attenuation con-
stant is the ratio of power Pd dissipated per unit length to the power
carried by the wave:

Paa =
2P

Power is dissipated by the perturbation field through the anisotropic
shield into the wall impedance Z:

Pd = Re (-1 f ezez* ds 1,aZs
This integral along the actual inner radius of the guide is to first order
equal to the integral along the nominal radius ao :

Pd - Re (Z) f 2'
ezez*aoclio. (17)2Z 0

In (9) the power flow of the circular electric wave was assumed to be
unity. Substituting for ez from (13) into (17) and using (16), it is found
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that each Fourier component of the mechanical deformation contributes
a, to the total loss a:

where

ap =z Re (Z) 13°

a = E ap ,

J (ko)12
P3p

Jp(ko)

1 + jZ wEa° 13°2 P2 JP (ko) 4(ko)-1
ko co2lie ko2 J;(ko) J p(ko)

2. (18)

This expression for the added circular electric wave attenuation in a
deformed helix waveguide agrees with some obvious facts: Any deforma-
tion of a purely reactive wall does not cause any circular electric wave
attenuation. So and 61 represent changes in diameter and transverse dis-
placement, respectively, of an otherwise round guide. The circular
electric wave configuration is not changed by them. Consequently ao =
al = 0.

Equation (18) is valid for but one special case. The absolute value in
the denominator is zero whenever the characteristic equation (61) (of
Appendix A) for helix waveguide modes of pth azimuthal order is satis-
fied by ko . Whenever a mode of pth azimuthal order has the same
propagation constant as the circular electric wave, 8, , however small
it may be, causes a substantial change of the normal circular electric
mode that can no longer be described by the perturbation expression of
(18).

The propagation constant of any of the asymmetric modes, to be equal
to j130 , requires a purely reactive wall impedance. Because of finite loss,
practical wall impedance values will always be at least slightly resistive;
(18) will therefore be valid for all practical cases.

For some typical cross-sectional deviations, (18) can be simplified:

152 represents an elliptical deformation:

a2ao = i Re (Z) 13°
cop

63 represents a deformation:

'a3ao = Re (Z) 0

k02622

1 + 3.
2Z

wpao

k02632

2;

2 2

24 ,02.\/6 e/2, a)
ko - 1 i -1-Zweao (1 -

2

(19)

; (20)



NONCYLINDRICAL HELIX WAVEGUIDE 239

54 represents a quadrufoil deformation:

a4ao =

:1- Re (Z) (3°
ko2542 . (21)

cog I ko2 - 12 coat° r 1302 002 - 12)112'
24 - ko2 J ko2 L4o.)2µe \24 -ko2J I

etc., for any multifoil deformation.

III. NONUNIFORM HELIX WAVEGUIDE

Here the relative deformation 5 of the guide radius will not only be a
function of co but it will also change with z. In Appendix A Maxwell's
equations are converted into generalized telegraphist's for this structure.

The deformation 5 is first assumed to be independent of z. The fields
in the deformed but cylindrical waveguide are represented in terms of
normal modes of the perfectly round helix waveguide. This series
representation for the field components is then substituted into Max-
well's equations. With the boundary conditions (2) and (3) and an
orthogonality relation between normal modes of the helix waveguide,
set of simultaneous first -order differential equations is obtained, which
determines the z -dependence of the coefficients of this series expansion.
If the coefficients are chosen so that they represent amplitudes A and B
of forward and backward traveling waves of the round guide modes,
then the system of equations for the A's and B's can be written as

dA , + = -j E Cnrn(An Be),
dz

(22)
dBni = +j E cn,,,(An +
dz

If the perturbation (3 of the nominal radius is expanded into a Fourier
series (10), then the coupling coefficients are determined by the co-
efficients of this Fourier expansion:

N hpn kOmkpn p2(kpn)
p 0: comi[pn] = 2 n Vho, kao2 PJp (kpn)

(23)
komkonp = 0: Bo C[Om][0n)

The metallic waveguide is the limiting case of the helix waveguide with
zero wall impedance. The normal modes of the helix waveguide de-
generate into TEp and TM . The separation constant: kp = xpao is
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the root of 1 (1c,) = 0 for TE, modes and the root of J p(k) = 0 for
TMi, modes. The coupling coefficients (23) reduce to c = 0 for inter-
action between TER, and TM modes. For interaction between TED.
and TE, modes the coupling coefficients are:

komkp. kp
C[Ont][pn] = 2V2homhp. 1/icp2 p2

SP (24)

In a nonuniform helix waveguide the coupling coefficients c in (22)
are functions of z. Then (22) is a system of first -order linear differential
equations with varying coefficients. For small deformations and con-
sequently small coupling coefficients, solutions of (22) can be found by
successive approximations. To simplify the representation, the B's of
(22) are included in the A's. There are then always pairs of A's associated
with propagation constants jh, and -Ain and coupling coefficients jc,im
and -jc, . Thus the two equations of (22) can be replaced by the first
alone. The transformation

c jhmz

eliminates a common propagation factor:

dEm - -j E c,,,,c)"-m):E
dz 71,

(25)

(26)

The only initial conditions of practical interest are

El(0) = 1,

E(0) =0 for n 1.

A TE01 wave of unit amplitude is launched into a nonuniformly deformed
helix waveguide. A first -order solution of (26) under these initial condi-
tions is:

El(z) = 1,

E o(z) = f z e-Ji-hos
j 0

(27)

The first -order solution is substituted into (26) for a second -order solu-
tion:

El(z) = 1 -E f z c, j(hn-h 1)s
JO

cine -"hi -11/4 at as, (28)
n

and so on.
As a typical example, a TE01 wave will be launched into a waveguide
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that has a constant deformation S between z = 0 1 and is round
everywhere else. The waveguide is thus uniform except for two dis-
continuities at z = 0 and z = 1. The wave amplitudes at any point z > 1
are, from (27) and (28),

2Ei(z) = 1 - E cin [(h1 - hn)/ j(el(h'-h")z - 1)], (29)

E (z) -cln
hn

(e-Joi-hoi - (30)-
The converted wave amplitudes En may be regarded as being generated
from the TE01 wave at the two discontinuities z = 0 and z = 1. Then the
conversion at one such discontinuity is:

E Cln

li,- hn (31)

From (23) and (31), with S = 50 , a formula for mode conversion be-
tween circular electric waves at diameter changes is obtained:

Eon konikon

Eon, a02 Vhomhon (horn - lion) a°

Likewise, a formula for mode conversion in offsets of helix waveguide
with S = Si cos ie can be written down. In the case of Z = 0, the formula
describes mode conversion at offsets of a metallic guide:

(32)

komkin k1n
51. (33)

Eom ao2V2homhin (h0, - h1n) Vk1.2 - 1

Thus, from (31), mode conversion at an arbitrary discontinuity in helix
waveguide can be calculated.

Mode conversion at an arbitrary nonuniform deformation of the helix
waveguide, however, is found from (27).

IV. TOLERANCES OF HELIX WAVEGUIDE FOR CIRCULAR ELECTRIC WAVE

TRANSMISSION

The all-important question may be asked now: What deformations
can be tolerated in a helix waveguide without any excessive degradation
of the TE01 transmission characteristics? There are two factors which
degrade the TE01 transmission: (a) Additional normal mode loss in a
deformed helix waveguide, as calculated in Section II and described by
(18), increases the overall TE01 transmission loss. (b) Mode conversion
and reconversion in nonuniform sections of helix waveguide, as cal-
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culated in Section III and described by (27) and (28), cause mode con-
version loss and reconversion distortion of the TE01 characteristic.

4.1 Normal Mode Loss

The normal mode loss of a uniformly deformed waveguide will be
considered first. Helix waveguide in current experimental use at the
Bell Telephone Laboratories has a nominal inner radius of a0 = 1 inch.
A median frequency of the planned operating range is 55.5 kmc. To
optimize various transmission characteristics, the surrounding jacket
has been made to present a real wall impedance to the interior that is
half of free space impedance Z = 1\4/e. For these values, expres-
sions (19), (20), (21) for the added circular electric wave loss have been
evaluated:

a2a0 = 3.64 622,

a3a0 = 0.458 632, (34)

cy4a() = 0.516 342.

By far the largest losses are caused by an elliptical deformation. The
theoretical loss of TEol in a perfect copper waveguide of 2 -inch inside
diameter at 55.5 kmc is

aoao = 2.77 X 10-6.

In order that the increase of attenuation be not more than 10 per cent
of this theoretical loss, the elliptical deformation should be

52 < 0.276 X 10-3.

The elliptical diameter differences in a 2 -inch helix waveguide should
not exceed 1 mil. This is quite a strict requirement.

It is interesting to compare these figures with losses in a deformed
metallic waveguide:

2 2
a2 po a() 2

02 ,

ao 2

10(302a02632,

ao

a4 1.5002aci342

ao

(35)

In a metallic waveguide it is the trifoil deformation which causes most
loss. In order that such a trifoil deformation not cause more than 10
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per cent of the theoretical TE01 loss in a 2 -inch metallic waveguide at
55.5 kmc, this deformation should be:

63 < 3.42 X 10-3.

4.2 Mode Conversion Loss

Equations (34) and (35) describe the added TE01 loss correctly only
in a waveguide with uniform, z -independent deformation 6. When the
deformation is a function of z, as is the case in an imperfect waveguide,
the general expression (28) describes the transmission. Changing the
order of integration in (28), a more suitable form is obtained:

s-- u

El(z) = 1 _ E f Z ej(111-hOu du eiu(s)ci(s u) ds. (36)
n 0 0

The loss can be expressed in terms of the geometrical imperfections 6
with c1 = CuS. For sufficiently small 5,

Ei = 1 - A,
with the loss

A = f c""(/) cos Ai3u - (2 sin Mot) du
n 0

fz -u
6(s)6(s u) ds,

0

where
cn2 = pn iQn

and

(37)

j(hi - hn) = Aan jai3n 

In general, the geometric imperfections will not be known, only their
statistical properties. Rowe and Warters5 have determined with a rela-
tion like (36) the statistics of the loss in terms of the statistics of the
guide imperfections. Use of their analysis is made here.

The deformation is assumed to be a stationary random process with
covariance R(u) and spectral distribution S(r)

R(u) = <S(z)8(z u)>, (38)

+.2

S(r) = f R(u)e -firru du. (39)

In (38), <x> is the expected value of x.
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Taking the expected value on both sides of (37), the average added
loss is obtained in terms of the covariance R(u) is

<A> = E f eAauR(u)(z - u) (P. cos Atinu - Q sin Aftnu) du. (40)
n o

For the following analysis, a special form for the covariance must be
assumed. Since existing experimental information is rather vague,
Rowe6 assumes R(u) to be exponential as reasonable physically and to
simplify the calculation

R(u) 780
e-2n-rul/Lo (41)

Lo

Then the spectral distribution of 8 becomes

SS(r) = 1 ± (LO002
(42)

where S(r) is nearly flat with spectral density So for mechanical fre-
quencies in distance smaller than

1
= Lo.

(43)

At ro the spectral distribution is down 3 db and falls very rapidly above
; Lo may be regarded as the cutoff mechanical wavelength.
Substituting (41) for the covariance in (40) and performing the in-

tegration over a length z >> Lo , the average added loss is:

Pn(2r - AcrLo) - Q.643nLo<A> = irSoz L.,. (44)

For ActLo>> 2r, (44) reduces to

or with

<A> =
rSoz E - P4 a - Qn6kOn
Lo n Aa2 AO'

v80 - R(0) = <62(z)>
L

the added average loss is for this special case:

2
-<A> = <62> E Re -c"

(45)
j(h1 h.)

As seen from (29), a long waveguide with a uniform deformation 8 =
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V<P> would have the same added loss. Equation (45) then is the added
normal mode loss. It is also much simpler than that described by (18).
But only when the differential loss A« of every single coupled mode is
very large in the cutoff mechanical wavelength Lo will the added loss be
described by (18) with S = <V>.

The Lo for waveguide deformation is probably small, certainly not
much larger than 1 foot. Certain coupled modes might have a very high
differential loss per foot, but then there would always be coupled modes
with low differential loss.

Consequently, the condition leading to (45) is not satisfied for cross-
sectional deformation in helix waveguide. Expressions (34) cannot be
used to determine cross-sectional tolerances. As shown by Rowe,' this
conclusion is true for a wide class of covariance functions.

The correct expression for mode conversion in helix waveguide is (44).
Written as added loss per wavelength, it reads:

<A> <32>L0 P. (27r - AanLo) - Q.643.Lo
6,13.2L02 (2r - AanLo)2

For real coupling coefficients in a lossless structure, (46) reduces to

<A>
= <(1. > 0

to T E 2n.C.2 (47)472 ± A13.21,02

and for very small Lo from (46)

<A> Lo= <0-> - E P ,t1. (48)
- 7 11

(46)

For a very short correlation distance, however, a more general ex-
pression than (48) for the average added loss can be found. In this case
R(u), whatever function it may be, has substantial values only in the
immediate vicinity of u = 0. Then, instead of (40),

<A> = z f R(u) du E Pn
0

and, with (39),

-<A> = is(o) E (49)

for any spectral distribution S(1-) of geometric imperfections with small
correlation distance.

Equation (47) has been evaluated in Appendix B for cross-sectional
deformations in a helix waveguide with an infinitely high wall impedance.
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Fig. 1 - TE01 loss in round waveguide with random ellipticity; 2 inch inside
diameter, at 55.5 kmc.

This particular helix waveguide design minimizes circular electric wave
loss and mode conversion in bends.2 In Fig. 1 is plotted the average
ellipticity Va22> as a function of the correlation distance Lo for an
additional average loss equal to 10 per cent of the TE01 loss in a perfect
copper pipe. For comparison, the same curve is plotted for Z = 0 repre-
senting metallic waveguide.

Both curves coincide for small values of the correlation distance and
differ only slighly over the practical range of L0 . Though Fig. 1 is only
drawn for a particular helix waveguide and a particular set of covariance
functions, it is fairly safe to generalize: Random ellipticity of the cross
section causes nearly as much average circular electric wave loss in helix
waveguide as it does in metallic waveguide.

A more exact statement has been made for the case of vanishing cor-
relation.8 When Lo is small enough for (48) to be valid, the average
added TE01 loss is independent of the wall impedance and the same as in
metallic waveguide.

Manufacturing imperfections usually have a small correlation distance.
Therefore helix waveguide has to be manufactured to as close cross-
sectional tolerances as metallic waveguide for circular electric wave
transmission.

V. CONCLUSIONS

Cross-sectional deformations of the helix waveguide perturb circular
electric wave propagation. In a slightly but uniformly deformed helix
waveguide circular electric waves propagate with slightly changed field
pattern. Power is dissipated into the helix jacket. Consequently, the
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added circular electric wave loss in a uniformly deformed helix wave -
guide is considerably larger than it is in a copper waveguide of the same
uniform deformation.

Nonuniform deformations cause mode conversion and added TE01
loss. Manufacturing imperfections are expected to be random deforma-
tions with small correlation distance. Such imperfections increase the
average circular electric wave loss nearly independently of the wall
impedance which the helix jacket presents to the waveguide interior.
The average added loss is therefore nearly the same as it is in metallic
waveguide with the same imperfections. For example, ellipticity was
assumed to be a stationary random process along the guide with ex-
ponential covariance. Then, even at a correlation distance of 1 foot, the
added average TEoi loss at 55.5 kmc in a 2 -inch inside diameter helix
waveguide of infinite wall impedance is only 16 per cent smaller than it
is in metallic waveguide.
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APPENDIX A

Generalized Telegraphist's Equations for Deformed Helix-Waveguide

Maxwell's equations in cylindrical coordinates (r,v,z) are:

1 aE z
-

aE,
r ap az

aEr aE,_
az ar

=

1 a(rE,) 1 aE).

r ar r acp

1 aHz aH,_ =
r az az

a_Hr_9HZ_
az Or -

1 O(rH,) 1 aH,
r Or r (1p -

-jcop.Hr ,

jomEr

jwE, ,

jweE, .

,

(50)

(51)

(52)

(53)

(54)

(55)
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The electromagnetic field in the helix waveguide can be derived from
two sets of wave functions T and T given by

= N p(Xnr) sin pso,
(56)

= N J p(xr) cos pc.

The T and T n satisfy the wave equation

_1

r
[ a_ (7. aT) a (1311

ar aco r aco
-x2T, (51)

where x is a separation constant which takes on discrete values for the
various normal modes. The transverse field components are written in
terms of these functions:

Er
v.( aTa OT:,\

k (9r n raco

E, = E v 01In - d" aT)
vo(p '

(aT h2 a7':t)
racy aran

(aaTr, h7,'2 aT
n. k2 race,

Substituting from (58) into (55) and taking advantage of (57), an ex-
pression for the longitudinal electric field is obtained:

2

jcop, E T (59)
k2 7."

where k is the intrinsic propagation constant of the waveguide interior;
d and the propagation constant h are chosen so that the boundary
conditions of the round helix waveguide

= 0,

Ez(a0) = -ZH,p(cto)

are satisfied by the individual terms of (58). Only then do the individual
terms of (58) represent normal modes of the helix waveguide.

From E,(ao) = 0:

(58)

aT,,
rapd, =

ao

pJ,(1c,,,)
(60)an kJ(k.)

ar
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where kn = Xnao . The prime at the Bessel function denotes differentia-
tion with respect to the argument. The remaining boundary condition
between Ez and H4, leads to the following (characteristic) equation :

I JP' (kit) P2h.2 Jp(kn) -j
kn Jp(kn) kn3k2 J;(kn) waioZ 

The characteristic equation, together with
kn2 = (k2 - hn2)(102,

determines the separation constant kn . The transverse field components
of any two different modes are orthogonal to each other in that:

(61)

(Ei X Hi.) dS =

E

E0 L\ ar
d d, -0T,',)(aT,

Js rac, ar k,'2

aTi (62)
raso

h

+ - d aT 2 aT:
ds =(-n

rasp ar ) Vag) k2 ar

where (1,n is the Kronecker symbol. The integration is to be extended
over the cross section of the waveguide. For n = m equation (62) de-
termines the normalization factor:

Nn - _
1/7r Jp(kn)

with

p2(kn2 p2)Yn2 yl

n

k
k2a022

(1 - P 2 ( 2y
P )1

(63)

(k.)Y. -
knel;(kn)

All quantities in (56) and (58) have now been determined except the
current and voltage coefficients. To find relations for them the field
components from (58) are substituted into Maxwell's equations and
these then are converted to generalized telegraphist's equations.

Add

times (50) and

-
dnih,2 aT,')

(rah k2 ar

aT 2 aT'
+ dm

Or
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times (51) and integrate over the cross section. The result is:

dV , 3 - im =
dz GJE

18

2

s
(grad E,) (grad T,) dS dmh (grad Ez) (flux T,') dS

,

iC0/1 1.1, Lis (grad TO (grad Tm) dS

± htn: (grad T) (flux T:n) ds],

where the gradient and flux of a scalar are defined by:

T 1 aTagrad,. T = grad, T = -- ,
r aso

flux,. T= 1 a T flux, T = - aT
r aco ' Or

After partial integration on the right-hand side of (64),

dVm
j12.1dz we

27

E, a° + x(i)T, (Lk,: arr,)
ar ao k2 aco

,2 f E,T,dS
 3

- E xn T (arm ±c1,1!h.2
L.0 .0 ar ao k2

aodco

(64)

(65)

(66)

xm2 f T.Tm dd.

In special cases when the helix waveguide degenerates into a perfectly
conducting metallic waveguide, the individual terms for Ez in (59) are
zero for r = ao , while Ez itself, because of the boundary condition (3),
is different from zero. Then (59) is a nonuniformly convergent series,
which describes Ez only in the open interval 0 < r < ao . Term -by -term
differentiation will make the series diverge. Therefore the series had
not been substituted for Ez in (64). In (66), (59) may now be substituted
in the integral over the cross section. In the line integral, Ez from the
boundary condition (3) may be substituted. The fields at r = a can by
a Taylor series be written in terms of fields at r = ao . Neglecting higher-
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order terms:

Et(ao) = -Z [14(a°) aHao r(a°) ao5 'Mao) -21

a.E.(ao)
(to&ar

Thus, instead of (66):

dV +
 h ,2 T

m =
dz WE

2x a dbi [aT. dmhm2--a0 f EaNO (E,± ZHcz) ZHr - -
0 Ordco or ao k2 aco

For the other of the two sets of generalized telegraphist's equations, add

CT. dn, aT:n\
ar r Oco

(67)

times (53) and

- aT
a

, aT,,L)
r ,0 al'

times (54) and integrate over the cross section. The result is:

dlL .

dz 3wEl. "1 =

-f (grad HZ) (fluxn,) dS dm f (grad H2) (grad T,) dS

2

jcoe E VdnaLl
Ice

f [(grad Tn) (flux T,) - d, (gradT:,) (grad T,)] dS.
 s

After partial integration on the right-hand side of (69),

dI .
co- 3e , = dna,.2

rlz
11,7, dS

2- jcoe E vn dd.Xn1eX2m2 is T:31,,, (18.
n

To replace Hz , substitute Er from (58), in (52), multiply (52) by Tc
and integrate over the cross section. The series (58) for is nonuni-

(68)

(69)

(70)
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formly convergent and cannot be used in (52). After partial integration,
2a

f 11,71 ,'dS = EvT',a04, E Vndnxn2 f T,'dS. (71)

With the boundary condition (2) as Taylor series at r = ao :

v(E
do aEaao)

a00.p(ao) = -Er(ao) - - r

Equation (70) can be written as:

dim d. x.2 f2w (- do aE
dz

jc.oeV. = -j ao Er - .

ar
- a00) T. thp. (72)

co,u o dio

Partial integration on the right-hand side,
2 7r aEf Er dc, =

21r aT+ Er m) dco,
o aso

and substitution of the series expressions (58),

-aEr--r- ao
aE = E dnxn2aoTn2
Or

reduces (72) to

dim ao2
2 r

jomVm = - E v. dn dm xn2xn! T n' T. die,
dz 041n 0

2a
ao 2 aT'+ j- XinE 0,i0.

COAL CI thp

(73)

The interest is limited here to the propagation characteristics of
circular electric waves. Therefore, only terms that describe direct inter-
action between circular electric and other waves need to be retained in
(68) and (73). When V. and /in are voltae and current amplitudes of
circular electric waves, then T. and aT,/ai,, and consequently the
right-hand side of (68) and the last term on the right-hand side of (73),
are zero. When V, and /,,, are amplitudes of other modes, then the same
terms in (68) and (73) are zero, since E, , H,, , Er and Hr(ao) are zero for
circular electric waves. Thus (68) and (73) reduce to:

, .162
dz

1- -
WE

m = 0,

di. 2 2 r

joJEV. = -j E dn. d. k n2km T.' T.' (5 dv.
dz ao2 0

(74)
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The generalized telegraphist's equations represent an infinite set of
coupled transmission lines. It is convenient to write transmission line
equations not in terms of currents and voltages but in terms of the
amplitudes of forward and backward traveling waves. Thus, let A and
B be the amplitudes of the forward and backward waves of a typical
mode at a certain cross section. The mode current and voltage are
related to the mode amplitudes by

V = Vrf-(A B),

I = 1(A - B),

where K is the wave impedance

hr.Km = - 
WE

(75)

(76)

If the currents and voltages in the generalized telegraphist's equations
(74) are represented in terms of the traveling -wave amplitudes, after
some obvious additions and subtractions the following equations for
coupled waves are obtained:

dA,
dz

mA m = -j Cnni(An Bn),

dB, - jh ,B,,, = +j E c,(A + B).
dz

The c's are coupling coefficients defined by:

k 2Ic 2 f2r -7/ -7 /
Cnns = hnit. d.d. n m 7 ,,7 ,6 dco.

k2a2 0

(77)

(78)

To replace the d's and T's in (78), the customary double -subscript
notation for the various modes in round helix waveguide is used. Then
from (66), (70) and (73) the interaction between circular electric waves
and other waves in deformed helix waveguide is described by the cou-
pling coefficients:

p 0: C[Om][pn] =

hpn ko,,,k p ./2(k) 1.2"

horn kao2 2V7 (kl,n) J o

p
2T

= 0: 2komkon 1 f
dv.

ao Vhomhon °

6 cos pio duo,

(79)
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APPENDIX B

Nonuniform Helix Waveguide with Infinite Wall Impedance

For Z 00 the characteristic equation (61) reduces to

kYn = -ph.
or the two equations:

k Jp+i(k) -
P p(k.)

kn p_i(kn) 1

P p(k.)

kn2- / 1 Pete

- 1/1 kn2

k2ao2 

For lc. < ka, an approximation for the roots of (81) is furnished by

Jp4-1(k) = 0,

Jp_i(k) = 0.
Equation (81) can be expanded about the roots of (82) to improve the
approximations for k .

Substituting (80) for Y in (63) reduces the normalization factor to:

1 P2

V7r knJp(kn) (1 k2a02 khnao2 (83)N. =

Hence the coupling coefficient is, from (23),
2 r

C[Oniffpn] = Pn (1 - k2a02 kha02 ao

1 komk up. (84)
" v homhp.a0

(80)

(81)

(82)

In (84) all the subscripts have been included to identify the coupling
coefficient properly.
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Normal Modes and Mode Conversion
in Helix Waveguide

By H. G. UNGER
(Manuscript received August 9, 1960)

Helix waveguide, composed of closely wound insulated copper wire cov-
ered with an absorptive or reactive jacket, transmits circular electric waves
with low loss. Mechanical imperfections, such as curvature and deforma-
tion, cause coupling between the. circular electric waves and unwanted modes
and degrade the transmission. In designing a helix waveguide for a partic-
ular application, a jacket must be found that minimizes the transmission
degradation. Unwanted mode characteristics and their coupling coefficients
must be known; these quantities are given by the roots of a transcendental
equation involving complex Bessel functions.

A program has been set up for automatically finding the complex roots
by iterative approximation. Starting from the known roots at infinite jacket
conductivity, the characteristic equation is solved for all practical values of
wall impedance of the jacket and all modes of interest. The representation
of the mode characteristics as a function of wall impedance leads to a definite
designation of modes in heterogeneous waveguide. The T E modes of helix
waveguide with n r 1 can have only a limited attenuation. These limits
determine the design of mode filters. Manufacturing imperfections in-
crease the average TEN loss independently of the wall impedance. Random
curvature with large correlation distance is produced by laying tolerances,
but its contribution to the average loss is minimized in a helix waveguide

with very large wall impedance.

I. INTRODUCTION

Helix waveguide, closely wound from insulated copper wire and cov-
ered with an absorptive or reactive jacket, is a good transmission me-
dium for circular electric waves.' In long distance communication, wave -
guide can be designed to act as a mode filter, to negotiate bends or,
particularly, to serve as the transmission line proper?

As in metallic waveguide, the loss of circular electric waves decreases
steadily with frequency only in a perfect helix waveguide. Any curva-
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ture of the guide axis, deformation of the cross section or deviation of
the winding from a low and uniform pitch adds to the loss and degrades
the transmission characteristics.3,4

In a perfect helix waveguide circular electric waves propagate un-
disturbed. Imperfections cause coupling between circular electric waves
and other modes. Power is lost by conversion to unwanted modes and
reconversion distorts any smooth transmission characteristics.

In order to control mode conversion and reconversion in helix wave -
guide with practical imperfections, and also to design helix waveguides
for mode filters and intentional bends, the unwanted mode character-
istics and unwanted mode coupling must be investigated. Earlier calcu-
lations have resulted in a characteristic equation which implicitly de-
termines the properties of helix waveguide-modes,' and also in explicit
expressions for various coupling coefficients.2,3,4 Numerical evaluations
of these equations have been very informative. They were, however,
not complete enough to reveal all the unwanted mode properties and
could not serve as a basis for helix waveguide design in every applica-
tion.

The results of a more exhaustive numerical evaluation of helix wave -
guide equations will be presented here. In a few typical examples these
results will be applied to helix waveguide design problems. First the
equations which describe wave propagation in perfect and imperfect
helix waveguide will be listed.

II. PERFECT HELIX WAVEGUIDE

A helix waveguide (Fig. 1) will be called perfect when the helix forms
a straight circular cylinder and is wound with a low and uniform pitch.
The mathematical model which then replaces it is an anisotropic im-
pedance sheet at radius a conducting perfectly in circumferential direc-
tion but with a wall impedance Z in axial direction. The Z replaces the
jacket surrounding the helix and takes into account the finite size of
helix wires. The electromagnetic field components in a cylindrical co-
ordinate system (r,cc,z) are then subject at r = a to the boundary con-
ditions

E, = 0,

Ez = -Z.H,

(1)

(2)

Solutions of Maxwell's equations in cylindrical coordinates are Bessel
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Fig. 1 - Helix waveguide and boundary conditions.
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functions .I, of the radius, trigonometric functiths of the azimuth and
exponential functions of the axial distance:

r)
a

4' (-Lk r)

where p is the azimuthal order of the wave. Th axial propagation con-
stant y and radial propagation constant k/a a e related with the in-
trinsic propagation constant or /µe of the materi 1 filling the waveguide:

a

sin pp

cos 7.),,o

(0212 72.
2

(3)

(4)

When the boundary conditions (1) and (2) are imposed on the solutions
(3) of Maxwell's equations the following characteristic equation results:

kJ(k)J,'(k)
jweaZ 2 2 - 0.

kP2W
j

P2(
k) + 4/24) (5)

Values of y that satisfy the characteristic equation (5) are the propaga-
tion constants of normal modes of the perfect helix waveguide. They
describe wave propagation in a perfect helix waveguide completely.
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III. IMPERFECT HELIX WAVEGUIDE

Wave propagation in imperfect helix waveguide has been described
by generalized telegraphist's equations.2.3.4 In a perfect helix waveguide
a normal mode n of amplitude I E I propagates independently from all
other modes m:

dE
dz = 7nEn 

Imperfections cause interaction between modes so that the wave ampli-
tudes are mutually coupled:

dE
dz = "nEn E c,nnE,

(6)

(7)

The coupling coefficients are determined by the kind and size of the im-
perfection, but they are also strongly dependent on the wall impedance.

For circular electric wave applications, only coupling between these
and other waves is of interest. Coupling coefficients of typical imper-
fections in helix waveguide will now be listed. The subscript m will refer
to the /*Tom wave; n will refer to any of the coupled modes. A normali-
zation factor

N = _
Ar .1 p(k)
(p

kn2) 1 k:(
co-pE Yn2

j_

with

(8)

- P2 YE 9 ( 1CO2gea2 Y

(kn)

is used to render the coupling coefficients symmetric, i.e.,

Cnm = Cm), 

3.1 Curvature2

There is only coupling between circular electric modes and modes of
first azimuthal order in a curved helix waveguide:

/- k k 2v 7r d iktun, n m n [1 in + 7n lc] (11)
2C0 a 7m km2 - 'Im -'Y n

where R is the radius of curvature.
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3.2 Deformation of the Cross Section'

The radius al of a deformed guide of nominal radius a can be written

al = a (1 -I- E 6p cos pco) (12)

Each component 6 will cause coupling between circular electric modes
and modes of azimuthal order p:

7.

even n
Vi k,k,2

2
vt7e- a2 P4( kn)YnSp (13)

3.3 Irregular Helix Winding'

In a perfect helix waveguide the angle between a helix wire and the
cross section is small enough to be regarded as zero. In an irregular
winding this angle can be written

= E ev sin pit). (14)

Each component Op causes coupling to modes of azimuthal order p:

V7- kink:N.7,4( kn )
Clint - 3 Up

2W -\//-LE

IV. NUMERICAL EVALUATION

(15)

The propagation constant of normal modes in helix waveguide is, by
(4) and (5), only implicitly given as a function of frequency and wave -
guide parameters. The problem is to find the complex roots of a tran-
scendental and complex equation.

With (4), 7 can be eliminated from (5). Then, for a given frequency
and guide radius, the characteristic equation determines k as a function
of Z:

F(k,Z) = 0. (16)

For Z = 0 the characteristic equation degenerates into

J p(k) = 0, .1 (k) = 0, (17)

the roots of which correspond to TM and TE waves respectively of
metallic waveguide.

Starting from the known roots of (17) for Z = 0, the solutions of (16)
for helix waveguide can be traced by gradually increasing the wall im-
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pedance. If ko and Zo are a known solution of (5), then an approximate
value for the solution at Zi = Zo AZ is given by:

ZF[ (ko, Z0)]
kl = ko OZ. (18)

-a [F(ko , Zo)]
ak

A better approximation is found by Newton's formula:

F(ki ,

k2 =
a [1+1 Zr)]

(19)

For further improvement, the process (19) can be repeated to any de-
sired accuracy.

The final result is the starting point for the next root at the neighbor-
ing value of wall impedance. For the numerical evaluation, the wall
impedance was related to the impedance of free space Zo = VA/E:

pe

The solutions were traced along lines of constant phase 1 of Z. The
increment Op was varied and kept sufficiently small to insure continuity
of the process.

The evaluation was programmed by Mrs. C. L. Beattie for automatic
execution on an IBM 704 Data Processing System.

The characteristic equation was evaluated for all wall impedances
with passive phases and amplitudes up to 5000 ohms. All those solu-
tions were traced which for zero wall impedance start as the following
metallic waveguide modes:

TED. , TMII , TE12 , TM12 , TE13 , TM13 

TE21 , TM21 , TE22 , TM22 , TE23 

TE31 , TM31 , TE32 , TM32 

For some special wall impedance phases the evaluations were extended
over many more modes. A value of a/X = 4.7 was assumed correspond-
ing to a center frequency of the proposed 35 to 75 kmc frequency band
for the 2 -inch inside diameter waveguide system.

The numerical results were also used to calculate from the separation
constant k, the propagation constant 7 in its real and imaginary parts.
Figs. 2 through 6 are plotted from these results. These diagrams show

(20)
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Fig. 2 - Propagation constant y = as Men + 013)a in helix waveguide of
wall impedance Z; contours in 7 -plane of constant magnitude p and phase angle
4, of Z/Zo ; a/X = 4.7, p = 1.

contour lines of constant phase 4) and constant amplitude p of the wall
impedance drawn in the complex plane of propagation constant y. The
scale on the $a -axis has been shifted by the TEN phase Ana = 29.305
and represents the difference in phase constant between TEN and the
plotted mode.

Each diagram is for a particular value of p, specifying the respective
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Curves for wall impedances with complex phase fan out into the
7 -plane. Some return to the imaginary axis; others continue more and
more out to ever increasing values of the attenuation constant.

The propagation constant is a multivalued function of the wall im-
pedance. For any one wall impedance value there are as many different
values of the propagation constant as there are points of zero wall im-
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pedanee on the a -axis. Each value of propagation constant corresponds
to a normal mode. The designation of these modes is not as simple as in
metallic waveguide. The modes of helix waveguide are, in general, neither
transverse with respect to any field component nor is their radial order
well defined. Therefore, the simple designation of metallic waveguide
TE, or TM, loses its significance. Nevertheless, the mode designation
of metallic waveguide can he extended to helix waveguide or, for that
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matter, to any heterogeneous waveguide, when the 7 -plane is divided
up so that in each region the propagation constant is a single -valued
function of the critical guide parameter. In the present case the wall
impedance is the critical parameter.

The dividing lines in the 7 -plane will be branch cuts of -y in the Z -plane.
They separate the infinite set of branches of -y from each other, each
branch corresponding to a helix waveguide mode. The branch cuts of
7 should connect the branch points in the Z -plane. The branch points
of -y in the Z -plane are saddle points of Z in the 7 -plane. Branch cuts
of y should therefore go through the saddle points of Z in the 7 -plane.
As many branches will be in contact at the saddle point as is the order
of the saddle point. From inspection of the diagrams all saddle points
are found to be of second order; therefore, only two branches of 7 are
in contact at these saddle points and only one dividing line or branch
cut must be made through each.

The remaining path of the branch cuts is arbitrary. They should
conveniently follow a course that never cuts contour lines of constant
phase of the wall impedance and ends either in infinity or on the 13 -axis
at the points of infinite wall impedance.

For example, the branch cut between TEn and TMII starts in Fig. 2
at the corresponding point of infinite wall impedance and separates the
contour line (c13 = 40°) coming from TEn from the contour line (4, --
45°) coming from TMII . Somewhere in the 7 -plane the dividing line
hits a saddle point of Z = f(7). Beyond this saddle point the branch
cut is continued according to the same rule, always separating contour
lines of constant phase which originated at different points of zero wall
impedance.

Each such region, bounded by the /3 -axis and the branch cuts (broken
lines in the diagrams) is now designated by the metallic waveguide mode
located within it. The normal modes of helix waveguide are then defined
uniquely, and any further discussions can be made in terms of these
modes.

This mode designation in helix waveguide can be defined in fewer
words as follows: A mode in helix waveguide of finite wall impedance is
identified with the metallic waveguide mode into which it degenerates
when the wall impedance phase is kept constant and the wall impedance
amplitude made zero.

Modes in any heterogeneous waveguide can correspondingly be iden-
tified with metallic waveguide modes when the critical parameters are
subjected to the proper limiting process. All critical parameters should
be kept constant except that one which in its limit changes the particular
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heterogeneous waveguide into a metallic waveguide. Requiring the
procedure to be most direct will in general eliminate any further am-
biguity.

Quite generally it is found that in the 7 -plane the regions of all TEpi
and TM, modes in helix waveguide are unbounded while all TE
modes with n > 1 have a bounded region. Thus, the attenuation of all
TE modes with n > 1 is limited and cannot exceed a certain maxi-
mum value for any wall impedance. The attenuation constant of any
of the other modes can be made arbitrarily high simply by choosing
the proper wall impedance.

In most helix waveguide applications unwanted mode loss should
be as high as possible. A more detailed discussion of those modes which
cannot exceed a certain value of attenuation is therefore in order. A
typical mode with limited attenuation is TE12 . Fig. 4 shows an enlarged
portion of the 7 -plane that contains the TE12 area. Besides being bounded
by the 13 -axis this area is also bounded by an approximate semicircle as
branch cut. The maximum loss of aa = 0.0363 for TE12 is realized when
the wall impedance is chosen

Zo

where 7 lies on the branch cut at the point of highest a. There is, how-
ever, another -y value for this wall impedance on the other side of the
branch cut, a 7 value that represents a TM11 wave. Its real part is «a =
0.0350.

For all practical purposes it does not matter which of these points is
called TE12 and which TMii . The point with lower attenuation a is
therefore the decisive one. To render the attenuation of this point as
high as possible, it is moved along the branch cut into the saddle point
at aa = 0.0360. The wall impedance for this condition is

z
zo

= 0.495 arc (Z) = 4.5°, (21)

= 0.487 arc (Z) = 4.5°. (22)

At the same time, the other point moves also into the saddle point,
and both modes degenerate into identity.

All other modes with limited attenuation behave similarly.
Using the results for the separation constant k and the propagation

constant of helix waveguide modes, the coefficient of curvature coupling
between TE01 and unwanted modes was computed for modes with first -
order (p = 1) azimuthal dependence. For the modes of higher order in
p the coupling coefficient to TER in a deformed cross section was com-
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puted. For p = 2 these coefficients describe coupling in an elliptical
pipe. For p = 3 it is coupling in a trifoil deformation.

Of greater practical importance are the coefficients of curvature
coupling. In Figs. 7 through 12 plots of these coupling -coefficients have
been made for the modes TEn , TNIn , TE12 , TIVIn . Again, the contour
lines of constant phase and the contour lines of constant amplitude of
the wall impedance have been plotted as an orthogonal network in the
plane of complex coupling coefficient c. Some of the lines of constant
phase run out of the diagrams to very large values of c, indicating that
the particular coupling coefficient has a pole in their vicinity. Compari-
son with the propagation constant of the respective modes shows that
these poles occur at the saddle points of the Z = fey) plot. Indeed in-
spection of (8) and

aa7- [F(7,z)]

from (16) shows that where aF/a-y is zero and Z = f(y) has a saddle
point the normalization factor N. has a pole.

Poles of the coupling coefficients might cause concern; after all, they
represent very strong coupling to unwanted modes. But since the poles
coincide with saddle points of Z = f(y) there is always strong coupling
to the two degenerate modes at the saddle point. Coupling to each one
of these modes is of opposite sign from the other. The total mode con-
version stays in quite normal bounds.

It should be recalled on occasions like this that the normal modes of
helix waveguide, like modes in any lossy structure, are not orthogonal
with respect to power. Suppose, for example, that Ao is the amplitude
normalized with respect to power of a circular electric wave. Then A ot
is the power carried by this wave. Let the helix waveguide have a wall
impedance near (22). Then the two modes TE12 and TAIn are nearly
degenerate with respect to each other. Curvature will cause coupling as
described by (11). Since the coupling coefficients are very large, even a
short section of small curvature will generate large amplitudes A1 of
TMn and A2 of TEn . One of these amplitudes alone, for example AI ,

would mean seriously high mode conversion. Since TM11 and TE12 are
not orthogonal with respect to power, both of the amplitudes Al and A2
together compensate each other to a small total effect.

In the plots of Figs. 7 and 9 for TE11 and TE12 the wall impedance is
always a single -valued function of the coupling coefficient. In Figs. 8
and 10 for T1VIn and T1VI12 , Z = f(c) is multivalued. This observation
can be generalized to the following statement: Any coupling coefficient
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c between circular electric modes and TM modes in helix waveguide of
wall impedance Z is a function of Z such that its inversion Z = f (c) is
a multivalued function. A sufficient condition for this statement is that
c = g(Z) should have more than one pole, for then each of these poles
gives a different value Z = f (c) for the same argument c = cc . Inspec-
tion of Figs. 2 through 6 shows that the area of every TM mode is ad-
jacent to more than one saddle point of Z = fey). As stated earlier, a
saddle point of Z = f (7) corresponds to a pole of c = g (Z) . All TM modes
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therefore have more than one pole of c = g(Z) and Z = f(c) is multi -
valued.

Actually the plots of Figs. 7 and 9 for TE11 and TE12 might be multi -
valued too. But when limiting the representation to wall impedance
values with positive real part, the plots are single -valued.

To facilitate the representation of the multivalued function Z = f(c)
for TM11 and TIV112 , branch cuts have been made in the c -plane and
the different branches of c have been plotted in separate planes.

The broken lines indicate the border of a particular mode in the c -
plane. They correspond to the branch cuts of y in Figs. 2 through 6.
The adjoining modes are always listed in the corresponding area.

V. APPLICATION

The results of the numerical evaluations have been applied to several
problems of helix waveguide design:
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5.1 Mode Filter

Sections of helix waveguide are inserted at intervals into plain metallic
waveguide to absorb unwanted modes. For best absorption of a metallic
waveguide mode the attenuation of the corresponding helix waveguide
mode should be as high as possible. The most unwanted mode in metallic
waveguide is TE12 it most strongly degrades TE01 characteristics
through mode -conversion effects. A good helix waveguide mode filter
should therefore have a wall impedance that makes the attenuation
constant of the corresponding TE12 mode a maximum. For the present
case (a/X = 4.70) this wall impedance value is given by (22). As high
as the attenuation is for TE12 mode for this design, TE11 has quite low
an attenuation constant

T E 12

T Eii

«a = 0.0360,

«a = 0.00686.

In metallic waveguide, TEn , although not as objectionable as TE12 ,
is still a serious offender. A mode filter should at least represent moder-
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ate absorption to TEn . The wall impedance for which the TE11 and
TE12 attenuation are equal and a maximum is

YoZ =
0.2975 arc (Z) = 12.0°, (23)

and the corresponding attenuation is:

as = 0.01158.

These two wall impedance values are the limits for mode filters. Any
practical design will be in between.

5.2 Random Curvature

Wave propagation in curved helix waveguide is described by gen-
eralized telegraphist's equations as coupling between the modes of the
straight guide. For arbitrary but small coupling these equations can be
solved approximately. An expression for the added TEoi loss can be
written in terms of the coupling coefficients and the coupled mode char-
acteristics.

Let the curvature distribution K(z) along the waveguide be a stationary
random process with covariance

Q(u) = <K(z)K(z + u) >. (24)

According to Rowe6 (see also Ref. 3), the average added TER loss can
then be expressed in terms of the covariance of the coupling coefficient:

L

<a> = -.T. _, f e " a(z)(L - z)(P cos AOz + Q sin 4,13z) dz, (25)1 v--, -Art z

Li 71 0

where L is the length of the line; (c.R)2 = P. + jQ., the square of the
coupling coefficient with c. from (11); and Dan + pon = l'n - To, the
difference in propagation constant of a coupled mode n to the TEol
mode. The summation has to be extended over all coupled modes n.

For a mere estimate of the effects of random curvature the covariance
is assumed to be exponential:

u(z) e-2.(1.1/Lo),

where Lo may be regarded as a correlation distance.
When the correlation distance Lo is small compared to the total length

L of the waveguide, the average added loss is determined by the rms
curvature V <K2> and Lo :

x-, P(27- + AanLo) ± QnAILL0
<a> = <K2>L0 2_,

n Ai3n2L02 + (2ir + AanL0)2 .

(26)

(27)
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Equation (27) has been evaluated for a helix waveguide, the TE12
attenuation of which is an absolute maximum and for a helix waveguide
with equal and maximum attenuation for TE11 and TE12 . The results
are plotted in Fig. 13. Also plotted in this figure are the corresponding
curves for plain metallic waveguide and for helix waveguide with infinite
wall impedance. The latter design of helix waveguide minimizes TEol
losses in intentional bends.

Shown in Fig. 13 are curves of the rms radius of curvature as a func-
tion of correlation distance Lo . This rms value would add 10 per cent
of the TE01 loss in a perfect copper pipe to the average TE01 loss in the
respective waveguide.

In calculating the curves of Fig. 13, coupling to the following modes
of helix waveguide and metallic waveguide has been taken into account:

TEn , T1\111 , TE12 , T1VII2 , TE13 , TM13

Contributions from higher -order modes are small enough to be neglected.
One important conclusion can be drawn from Fig. 13. When the

correlation distance of random curvature is small enough - smaller
than 10 feet in the present case - the added average loss is nearly
independent of the wall impedance and nearly the same as in plain
metallic waveguide. This independence is not only true for random
curvature with exponential covariance but for any random curvature
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with sufficiently flat spectral distribution.6 The curves of Fig. 13 for
exponential covariance demonstrate, as a typical example, over what
range of correlation distance the average added loss is independent of
the particular jacket structure.

Random curvature with a correlation distance smaller than 10 feet
can be classified as a manufacturing imperfection. After all, the in-
dividual pipe sections which make up the line are usually only 15 feet
long. Any particular choice of wall impedance therefore does not relieve
the straightness tolerances which should be met in the manufacturing
process.

For correlation distances larger than 10 feet the average added loss
becomes more and more dependent on the wall impedance. For a speci-
fied average loss helix waveguide with infinite wall impedance - for
intentional bends - may be bent most strongly. But even a helix wave -
guide designed optimally as a mode filter -aTE11= aTE12 or aTE12 =
maximum - may be bent much more than plain metallic waveguide.

Random curvature with a correlation distance larger than 10 feet
may be classified as a laying imperfection. Its spectral distribution con-
tains mainly mechanical frequencies which correspond to sine waves of
10 feet and more. Such curvature distribution arises from following
right of ways or the contour of the landscape or just from not installing
the pipe very carefully.

The curves in Fig. 13 have been drawn for a specified average loss.
For very large correlation distance they approach asymptotically a
constant value. This value corresponds to the normal circular electric
mode in the particular helix waveguide with constant curvature. Helix
waveguide for intentional bends, since with Z = co it is assumed to be
lossless, within the limits of the present calculation, may have an
arbitrarily small radius of curvature. Uniform curvature causes no loss
in this lossless structure. The curve for metallic waveguide goes to
infinity. The circular electric mode is not a normal mode of the curved
metallic guide.

5.3 Random Ellipticity

Wave propagation in elliptical helix waveguide is analyzed in a
similar manner to propagation in curved helix waveguide.

Instead of (21) the covariance of the cross sectional deformation

u(u) = < 8(z)6(z u) >

is introduced and, for (ca/(5,)2 = Pn j(2 , the coupling coefficients
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en =e n1 from (13) of a deformed helix waveguide are substituted. Then
the average added TEol loss is given by (25), and for an exponential
covariance by (27).

Equation (27) has been evaluated for elliptical deformations of the
same waveguides which were analyzed for random curvature before. The
result is shown in Fig. 14. The rms of elliptical diameter differences
4(V <612>)a, which would add 10 per cent of the TE01 loss in a perfect
copper pipe to the average TE01 loss in the respective waveguide is
plotted over the correlation distance L0. Coupling to all modes which
are propagating in the metallic waveguide has been taken into account.
For a/X = 4.70 there are 17 modes of azimuthal order p = 2 propagating.
Contributions from higher -order modes are small enough to be neglected.

When the correlation distance is smaller than one foot the average
loss is independent of the wall impedance. For larger values of correla-
tion distance the average loss will depend on the wall impedance, but
this is hardly of any practical significance. Ellipticity is a typical manu-
facturing imperfection, and will always have a small correlation dis-
tance. For all practical purposes, cross-sectional tolerances in helix
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waveguide are independent of the wall impedance and the same as in

metallic waveguide.
The curves in Fig. 14 have been drawn for a specified average loss.

For very large correlation distance they approach asymptotically a
constant value, which corresponds to the normal circular electric mode
in the particular helix waveguide with uniform ellipticity.

Metallic waveguide (Z = 0) and helix waveguide (Z = 00) - since
they are assumed to be lossless - have curves which have a never -
leveling slope. Uniform ellipticity causes no loss in these lossless struc-
tures.

VI. CONCLUSION

The characteristics of normal modes in helix waveguide can be repre-
sented as a function of the wall impedance Z. The propagation constant
-y is a multivalued function of the wall impedance, with each value
corresponding to a normal mode. But for a specified order of azimuthal
dependence the wall impedance is a single -valued function of the prop-
agation constant. The most suitable representation of propagation char-
acteristics of modes in helix waveguide is therefore of contour lines of Z
in the 7 -plane.

Appropriate branch cuts make y a single -valued function of Z and
lead to a unique mode definition: Any mode of helix waveguide is identi-
fied by the mode of metallic waveguide into which it degenerates when
the wall impedance phase is kept constant and its amplitude made

zero.
The attenuation constant of all TE modes with n 1 is limited.

The attenuation constant of any other mode in helix waveguide can be
made arbitrarily high with a proper choice of wall impedance.

Helix waveguide for mode filters should be designed between two ex-
treme rules. One makes the TEL., attenuation an absolute maximum and
leads to low TE11 loss; the other makes TE12 and TE11 attenuation equal
and as high as possible.

Mode conversion between circular electric and other modes in curved
or deformed helix waveguide can be calculated from the propagation
constants and coupling coefficients of the coupled modes. For random
imperfections the added average TE01 loss is independent of the wall

impedance as long as the correlation distance is small. Manufacturing
tolerances for helix waveguide are therefore independent of the particu-
lar design.
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Laying tolerances produce random curvature of large correlation
distance. They depend strongly on the wall impedance. An infinite wall
impedance minimizes the average TEN loss in helix waveguide curved
randomly in this manner.
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Error -Correcting Codes for
Multiple -Level Transmission

By JESSIE MacWILLIAMS

(Manuscript received August 2, 1960)

A q -level alphabet is defined as a row vector space over a finite field with
q elements. The letters of the alphabet are the rows of the vector space, each
consisting of n symbols from the ground field. The weight of a letter is the
number of nonzero symbols it contains. The minimum weight of the letters
of the alphabet, excluding zero, is denoted by d. A relationship is established
between the alphabet and a set of points S in a finite projective space. There
is a many -one correspondence between the letters of the alphabet and the
hyperplanes of the space. The weight of a letter is simply related to the
incidence of the set S with the corresponding hyperplane.

Two sets of points in a finite projective space are called equivalent if they
are related by a collineation of the space. Two alphabets are called equivalent
if there exists between them, as vector spaces, a weight -preserving semi -
isomorphism. It is shown that these definitions mean the same thing and
reduce to the usual definition when q = 2.

An inequality is established between the dimension of the alphabet and
the parameters d, q, n. This gives a lower bound for n in terms of the other
parameters. It is shown that this bound cannot be achieved by alphabets
with repeated columns. A method is given for constructing a class of alpha-
bets which attain this bound. It is shown that for the case q = 2 these are
the only alphabets (in the sense of equivalence) for which the bound is at-
tained.

I. INTRODUCTION

A great deal of work has been done on error -correcting codes for the
binary channel. In this paper we consider codes for a channel that can
transmit more than two levels. Multiple -level transmission is practical
if the channel is sufficiently quiet, as, for example, the submarine voice
cable. It results in a substantial increase in bit rate and in added flex-
ibility in choosing a code. One now has four parameters to adjust - the
number of levels of transmission, the number of information symbols,

281
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the number of redundant symbols, and the number of errors it is desir-
able to detect and/or correct. Of course it cannot be decided without
detailed analysis whether these advantages will more than compensate
for the added complexity of the terminal equipment.

In the binary case, systematic error -correcting codes have certain ad-
vantages;' in particular, they are amenable to known mathematical tech-
niques. It has been shown by Slepian2 that the words of a systematic
code form a group under place -by -place addition mod 2. The natural
generalization of a group code over the field (0,1) appears to be a vector
space over a finite field of q elements. We call such vector spaces alpha-
bets, and their individual elements are called letters. In the general case,
a "code" becomes an "alphabet" and a word (unfortunately!) becomes
a "letter." Each letter is a row of n symbols picked from the ground
field; the alphabet is a space of row vectors of length n. The q different
symbols of the ground field correspond to q different transmission levels.

Because only a restricted type of code is considered, some assumptions
must be made about the nature of the channel and of the information
being transmitted. These are as follows:

(a) The number of transmission levels is a power of a prime number,
since the number of elements in a finite field is a power of a prime. In
practice this is not a severe restriction; between one and nine we have
excluded only the number six.

(b) The channel is "symmetric" in the sense that every symbol has
the same chance of getting through correctly, and that the probability
of one symbol being changed into another is the same for every pair of
symbols.

(c) All errors are equally bad. This might be the case, for example, if
one were ordering merchandise from a mail order house by catalog num-
ber only.

With these assumptions the principles of error correction by a q -level
alphabet are exactly the same as those described by Slepian2 for a group
code (i.e., a two -level alphabet). For convenience, the pertinent results
from Slepian's paper are summarized in the Appendix. The parameters
of an alphabet, besides n and q are

1. Its dimension as a vector space, denoted by k. The alphabet con-
tains qk letters; k is also the number of symbols in each letter which can
be regarded as carrying information. The remaining n - k symbols are
added for the purpose of error detection and/or correction.

2. The minimum weight, d, of the letters of the alphabet other than
(00  0). ( The weight of a letter is the number of nonzero symbols it
contains.) The quantity d is closely related to the error -correcting prop-
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erties of the alphabet; if an alphabet is to be capable of correcting all
occurrences of 1, 2, , e errors in each letter it must have d = 2e + 1.

The purpose of this paper is to investigate the properties of vector
spaces over finite fields, particularly those properties which are related
to the parameter d. The weight of a letter exists only in relation to a
particular base of the vector space, which is an awkward situation in
modern algebra. Hence our chief mathematical tool is not algebra but
finite projective geometry. The connection between binary group codes
and finite geometries was pointed out by Bose,' and is easily extended
to the general case.

We first establish several new definitions of equivalence between alpha-
bets. (Two equivalent alphabets have the same error -correcting proper-
ties.) A lower bound for n is found in terms of k, q and d. Clearly it is
desirable to have n - k (the number of check symbols) as small as
possible. It is shown that this lower bound can be attained, but only by
a restricted class of alphabets. These alphabets are, on the whole, not
practical for communication purposes unless the expected error rate is
extremely high. However, the geometric methods used in the construc-
tion of these alphabets can be applied to find useful alphabets for specific
cases. The theorems derived for q -level alphabets apply equally well to
the case q = 2 and contribute to the theory of binary group codes.

II. NOTATION

In this section we define the notation to be used in this paper and
introduce Bose's theorem on the relation between alphabets and
projective geometries. t

Let F(q) be a finite field with q elements and characteristic p, and let
F* (q) denote the nonzero elements of F(q). We consider a vector space
of dimension n over F(q). Let Gn(q) denote the "row space," i.e., that
particular representation of the vector space consisting of all possible
n-tuples of elements of F(q). For example, G2(4) consists of the 2-tuples

(00) (10) (01) (11) (1w) (1w2)

(wO) (Ow) (WW) (ww2) (W1 )

(w20) (011,2) (w2w2)
(w21)

(w2w)

where w is a primitive cube root of unity.
Clearly G (q)has qn members. The qn - 1 nonzero elements of Gn(q)

can be divided, in many ways, into (q - 1) sets G1, , Gq_i such
that G, = AG; , X E F*(q). For our purposes it is usually enough to

For finite projective geometry, see Carmichael,' Ch. 2; for Galois fields, see
van der Waerden,' Ch. 5, Sect. 37.
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examine only one of these sets, for example the first line in the table
above.

A subspace of G(q) is called an alphabet over F(q) and its members
are called letters. The length of a letter is n and the number of nonzero
coordinates in a letter is its weight. Every alphabet contains the letter
(00 0). The minimum weight of its other letters is denoted by d, and
d is also called the weight of the alphabet. The dimension of the alphabet
as a vector space over F(q) is k. By a(k,d,n) we mean an alphabet a
with dimension k, weight d and length (of each letter) n. For example,
G(q) is a(n,1,n).

An alphabet a(k,d,n) contains qk letters, from which we pick any k
independent vectors as generators. We write these as the rows of a
k X n matrix a), the generator matrix of a. For example,

(0 1 1

is the generator matrix of an a(2,2,3). We may assume that no column
of a generator matrix consists entirely of zeros, for then the alphabet is
isomorphic to a subspace of Gn_1(q).

An ordered set of k elements of F(q), not all zero (for example, a
column of a generator matrix), may be regarded as the coordinates of a
point of a projective space Tk_1(q), of projective dimension (k - 1),
over F(q). We shall adopt the convention that a k-tuple which refers to
a point of Tk_1(q) is to be written as a column vector, e.g.,

1 0 1

q11

q21

=

qk1

Tk_1(q) contains (qk - 1)/(q - 1) points; if X E F*(q), Q and XQ are
the same point. The points of Tk_1(q) are in one-to-one correspondence
with one-dimensional subspaces through the origin in Gk(q).

Let us now write the generator matrix of a(k,d,n):

Q1 Q2  Q.

q11 q12 qin

q21 q22 q2n

R1

M( a) = R2

R1; qkl qk2qk
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and call the rows R1 , R2 , , Rk and the columns Qi , Q2 , , Q. .
Regard the columns as a set of points in Tk_1(q). There are exactly k
independent columns, so this set of points spans the space Tk_1(q). Let
Pi be the number of times which some multiple of the column Qt [the
multiplier being an element of F* (q)] appears in M(a). The correspond-
ing point in Tk_1(q) shall then have multiplicity vi . We can now intro-
duce Bose's theorem. t

Theorem 1: Let

=

Jk

be a general point of Tk_1(q). Let S denote the set of points Qi , Q2
Q each counted with proper multiplicity. Then the weight of the letter

R(X) = X1R1 X2R2 +  + XkRk , X E F(q)
of a is equal to the number of points of the set S which do not lie on the
hyperplane

11( X ) = X1111 X2Y2 +  + Xkyk = 0

of Tk_1(q).
Proof: If, for example,

Xiqn X2q21 + ' Xkqkl = 0,

the point Qi lies on H(X). The zeros in the letter R(X) arise from the
points of S which lie on H(X), and the number of zeros will be the
number of such points counted with proper multiplicity. The weight of
R(X) is the number of its nonzero coordinates, which is the number of
points of S (again counted with proper multiplicity) not lying on H(X).
This proves the theorem.

In Fig. 1, the projective plane T2(2) is over the field (0,1). Note that
Q 1Q5Q6 are also collinear:

(1Q1 = 0

0

(25

/0\ 0\

y Q2 = 1 Q3 - 0 , Q.,= 1

\0/ 1/

/1\\ / /1\

= 0 Q6 - Q7 - 1

\ 1 / \0/ \ I /

t A different proof of this theorem for the field (01) is given in Ref. 3.
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Fig. I - Illustration of Theorem 1.

Taking points Qi ,Q2 in Fig. 1 as the set N we obtain a generator
matrix

(1 0 0 1\

0 1 0 1

\o 0 1 1/

of an alphabet a(3,2,4). It is clear from the figure that there are at
least two points of N not on any line of T2(2).

III. EQUIVALENT ALPHABETS

In this section we take up the question of equivalent alphabets, and
show how Slepian's definition of equivalence may be extended to the
more general case. First we discuss what properties one would intuitively
hope for from such a definition.

We may consider an alphabet as an array of letters arranged one under
another in such a way that we can speak of its columns. We know that
the operations of permuting the columns, multiplying any column by an
element of F*(q), and interchanging the names of the nonzero symbols
will not change the error -correcting properties of the alphabet. The defi-
nition of equivalence between alphabets should allow us to do as many
of these things as possible.

From Bose's theorem we recall that the weight of every letter of an
alphabet is determined by the properties of a set of points in Tk_1(q).
First we wish that all alphabets derived from the same set of points
should be equivalent; secondly, if two sets of points 2,2' have, in some
sense, the same incidence relations with the hyperplanes of Tk_1(q) they
should give rise to equivalent alphabets.
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Given a set of points S in Tk_1(q), we derive an alphabet from them
by means of a generator matrix. We obtain the generator matrix by the
following steps:

1. Fix a coordinate system in Tk_i(q).t
2. Write the coordinates of the points of S as columns of a matrix

repeating each column (not necessarily consecutively) with the proper
multiplicity.

The order in which we write the columns is immaterial ; also if Xi is
such a column, we have the option of using XXi , A E F*(q), instead. Thus
it is apparent that a great many different generator matrices may arise
from the same set of points.

We shall presently give separate intrinsic definitions of equivalence
between two sets of points, two matrices and two alphabets, and show
how they are interrelated. First we give a brief description of the col -
lineation group of T k-i(q).$

A collineation is a mapping of the set of points of Tk_1(q) onto itself
which preserves all incidence properties; that is, it sends lines into lines,
planes into planes, lines through a point into lines through a point, and
so on. The collineations of Tk_1(q) form a group, denoted by C(k,q).
A nonsingular linear projective transformation of coordinates is a
collineation; so is the (nonlinear) transformation of coordinates induced
by an automorphism of the ground field F (q). Let P(k,q) be the group
of linear projective transformations, and A (k,q) the group of trans-
formations induced by automorphisms of the ground field. Then any
collineation of C(k,q) can be expressed as the product of a member of
P(k,q) and a member of A(k,q). [Although an element of P(k,q) does
not in general commute with an element of A (k ,q) , the two groups
commute as subgroups of C(k,q).] We recall that an automorphism of a
finite field of q = pm elements is always of the form 0 0", where 0
is a primitive element; and, for a nontrivial automorphism, 0 < v < m.
The integers of the field (the elements of the prime subfield) are not
changed by such a mapping; hence a prime field has no nontrivial auto-
morphisms, and in this case C(k,p) = P(k,p).

We now make the following definitions of equivalence:
Definition 1: The (unordered) sets of points 5,5' are equivalent if

there exists a collineation of Tk_1(q) which sends S into 5'. We write
S' = C(S).

t By a fixed coordinate system we mean that the coordinates of every point are
fixed, except possibly for multiplication by an element of F*(q). In the case of
finite projective geometries, this involves more than choosing the base points of
the system.

t The subject is treated in great detail in Carmichael ,4 pp. 355-372.
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Definition 2: Two (k X n) generator matrices M,M' over F(q) are
equivalent if

= OM*, M* = Mr A.

Here cl) is an automorphism of the ground field applied to the entries in
M*, g an invertible (k X k) matrix over F (q), r an (n X n) permutation
matrix, A a (nonsingular) diagonal (n X n) matrix over F*(q).

Since 7 has only one nonzero entry in each row and column we can
always choose A' so that

A'ir = irA.

Definition 3: Two alphabets a and a' are equivalent if there exists
between them a weight -preserving semi -isomorphism.

A semi -isomorphism f between two vector spaces a, a' is uniquely
specified by describing what happens to the base vectors R1 , , Rk
of a, and choosing an automorphism of the ground field. The mapping

f(Ri) = Ri, i = 1, , k,

k

kf (E aiRi) = E 43(ai)fei
i=1

is a semi -isomorphism provided that Ri , , Rkl are linearly independ-
ent; any semi -isomorphism can be described in this way.

We note also that a weight -preserving mapping of an alphabet a onto
an alphabet a' is necessarily one-to-one; for only letters of zero weight
in a can map onto the zero (00  0) of a'.

In all of these definitions, equivalence has its usual properties; i.e., it
is symmetric, reflexive and transitive.

We now show that the three definitions are compatible; that is, in a
sense to be made precise,

Definition 1 Definition 2,

Definition 2 --* Definition 3,

Definition 3 -4 Definition 1.

Theorem 2: If S,S' are equivalent in the sense of Definition 1, then the
matrices 111,111', to which they give rise in a fixed coordinate system, are
equivalent in the sense of Definition 2.

Proof: Let S be an ordering of the set S, and the ordering of S'
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into which S is sent by a collineation g(1) of Tk_1(q). If Xi are cor-
responding points of 8,2' their coordinates are given by

x, =
.r2

xn

= g

Let M (kg), M(S') denote the matrices with columns

X , X , xi, , , M(S') = gcl3M(S).

Then there exist permutation matrices such that

= M(S') = gc13M(S'), M(S) =

Hence

M' = g(1)111*, M* = My*,

where 7* is a permutation matrix.
Theorem 3: If the generator matrices M,M' are equivalent in the sense

of Definition 2, then the alphabets a,a' derived from them are equiva-
lent in the sense of Definition 3.

Proof: We have

= OM*, M* = 2117A.

Let a* be the alphabet derived from M*. We set up a weight -preserving
isomorphism h between a and a*, and a weight -preserving semi -iso-
morphism f between a* and a'. We define h as follows: If R is a letter
of a then

h(R) = RirA.

This is clearly a weight -preserving mapping, since its effect is to permute
the entries in R and multiply each entry by an element of F*(q). It is
also linear, for if R1 , , Rk are the rows of M, and R1*, , Rk* the
rows of M* we have

h(Ri) = RirA = Ri*,

kh (E «JO E aiRirA = E aiRi*.
i-1

We define f as follows: If R* = (r1 , 1.2 , , r) is a letter of a*, then
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f(R*) = [4)(r1), (1'(/.2), , 4) (r,,)]; f is weight -preserving, since cla.(r) = 0
implies r = 0.

To show that f is a semi -isomorphism,

a* a',

we observe that g-1.3(' is also a generator matrix of a'. Let Ri , ,

be the rows of and let R: = , lin). Let R1*, , Rk*
be the rows of M*, with Ri* = (ril ,*ri2 ,* ,rin*). Since g -1M' = (1)111*
we have

(rd. ,r i2 , , = [4(rii.*),c1)(ri2*), - cl"(rin*)],

or

f(Ri*) = .

Then

f aiRi*) (E air 0.'4) , (1) E air,*) , (i) air in*

Since 4 is a field automorphism this becomes

k k k

=
[E 4(004)(rii*), E 4.(ai)Cra*),  , > c1(ai)4)(ri*]

i=i

We then have

Ri 1?,* f ) , zaiRi ZotiRi* IVai)14,

and is a weight -preserving semi -isomorphism between a and a'.
Theorem 4: Let a,a' be equivalent alphabets in the sense of Definition

:3, and M,M' be any generator matrices of a,a'. Fix the coordinate sys-
tem in Tk_1(q), and let S,S' be the sets of points whose coordinates are
the columns of M and M'. Then S and S' are equivalent in the sense of
Definition 1.

Lemma: Let the alphabets a,Ct* be related by a weight -preserving
isomorphism w; M,M* are generator matrices of a and a* such that
M* = w(M). Then in any coordinate system in Tk_1(q) the columns of
M and M* give rise to the same (unordered) set of points S.
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Proof of Lemma: If Ri , , R A ; R1*, , RA* are the rows of 3/
and M* we have

W(Ri) = Ri*, w (E aiRi) = E aiR,*.
i=i

Let (y1  Yk) be the coordinates of the general point of Tk_1(q). Map
the letters of a onto the hyperplanes of Tk_1(q) as follows: Ri maps onto
yi = 0, E aiRi maps onto E = 0. Because of the isomorphism be-
tween a and a* we have a similar mapping of the letters of a* onto
the hyperplanes of Tk_1(q): Ri* maps onto yi = 0, E aiRi* maps
onto E aiyi = 0.

Let I = (Si;) be the incidence matrix of points and hyperplanes in
Tk_1(q), where Si; = 1 if the ith point lies on the jth hyperplane and is
zero otherwise. Each row (column) of I contains (qk-1 - 1)/(q - 1)
ones and qk-1 zeros. The matrix I for the projective plane T2(2) is il-
lustrated in Table I.

The matrix I is nonsingular. This is easily seen by considering the
product 1  I. In this, all terms on the main diagonal are equal to the
number of points, a = (qk-1 1 )/(q - 1), on a hyperplane. All other
terms are equal to the number of points, b = (qk-2 - 1)/(q - 1), on
the intersection of two hyperplanes. The determinant of the matrix is
then

[a -I- - 1)/qa -
When we substitute the values for a,b, the first factor becomes

(qk-1 - 1)2.
q - 1 '

hence the determinant is not zero. (We assume k > 1. )
Let P1 , P2 , P , µ = (qk - 1)/(q - 1), be the ordering of the

points of Tk_1(q) as they appear as columns of I. Let S,S* be the sets

TABLE I -I = INCIDENCE MATRIX FOR POINTS AND LINES IN T2(2)

100 010 001 110 101 011 111

yi = 0
7/2 = 0
f3= 0

yi + y2 = 0
yi + y3 = 0
Y2 + y3 = 0

Yi + Y2 + Y3 = 0

0 1 1 0 0 1 0
1 0 1 0 1 0 0
1 1 0 1 0 0 0
0 0 1 1 0 0 1

0 1 0 0 1 0 1

1 0 0 0 0 1 1

0 0 0 1 1 1 0
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of points whose coordinates are columns of M,M* respectively. Assign
to Pi the multiplicity ni(ni*) with which it appears in the set S(S*).
If Pi does not appear in S(S*), ni = 0 (n1* = 0). Form the column
vectors

nl

n2
n = n* =

ni*

n2*

The ith term of the matrix product In is the sum of the multiplicities
of the points of S which lie on the ith hyperplane. By Theorem 1, this
is the number of zeros in the corresponding letters of a.

Since the isomorphism between a and a* is weight -preserving we have

In = In*,

or, since I is invertible,

n = n*.

Hence the set of points S* is at most a rearrangement of the set S.
Proof of Theorem 4: a, and a' are related by a weight -preserving semi -

isomorphism f. Let R1 , , Rk be the rows of the generator matrix M
of a. R1 = f (RI), , Rk = f (Rk) are k linearly independent letters
of a', which we may take as the rows of a generator matrix M" of a'.
We can describe f as follows:

kf (I? i) = Rid, f (E aiRi) = E 4(ai)R7,

where 4) is an automorphism of the ground field which is uniquely deter-
mined by f once we have chosen M.

Let Ri* = = 1, , k; Ri*, , Rk* are linearly inde-
pendent. Let M* be the generator matrix formed of these rows and a*
the alphabet derived from M*. The mapping h of a' onto a* induced
by -1 is clearly a weight -preserving semi -isomorphism.

Consider the mapping fh between a and a*. We have

Ri Ri*,

ZaiRi Zcl)(ai)RT (13-1[2,13(ai)Rn = ZaiRi*.

Since f is weight -preserving by hypothesis, fh is a weight -preserving
isomorphism between a and $2,*; M and M* are corresponding generator
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matrices under fh, hence by the Lemma they arise from the same set of
points S in T k -1(q) 

Let S" be the points of T k -1(q) corresponding to the columns of M". If

Xi =

x,k"

, Xi* =

are the ith columns of M" and M* respectively, we have

Hence the set S" is obtained from the set 5* by a collineation C1 of
Tk-1(q)

Let M' be any generator matrix of a,'; then M' = gM" . Let S' he the
points of T k_1(q) corresponding to the columns of M'. 8' arises from S"
by a linear projective transformation, i.e., by a collineation C2 

We have then

S' = C2(S") = C2C1(S),

which proves the theorem.
It can be shown from Theorems 2, 3 and 4 that a complete equivalence

class of sets of points gives rise to a complete equivalence class of
matrices; a complete equivalence class of matrices gives rise to a com-
plete equivalence class of alphabets; and this in turn gives rise to a
complete equivalence class of sets of points. The details of these cor-
respondences are quite complicated, since an unordered set of points can
give rise to many matrices, and different generator matrices can produce
the same alphabet.

Theorems 2, 3 and 4 are, of course, true over the field (0,1). We rewrite
our definitions for this field, since they take a simpler form. 43 is the
identity, and the only possible choice for A is the unit matrix.

Definition 1' : Two sets of points S, S' in Tk_1(2) are equivalent if
they are related by a linear projective transformation of coordinates.

Definition 2' : Two (k X n) matrices M,M' over F(2) are equivalent if

M =

where r is an (n X n) permutation matrix, and g an invertible (k X k)
matrix over F(2).
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Definition 3' : Two alphabets a, a' over P(2) are equivalent if they
are isomorphic as groups in such a way that corresponding elements
have the same weight.

It will be recognized that this is, in fact, the familiar definition of
equivalence for alphabets over (0,1).

IV. RELATIONS BETWEEN k, d, n

In this section we establish certain relations between the parameters
k,d,n, which are necessary conditions for the existence of an alphabet
sa(k,d,n). We assume, as before, that the alphabet has no column con-
sisting entirely of zeros.

Define Z[x] to mean the least integer greater than or equal to the
rational number x.

Theorem 5: t A necessary condition for the existence of a(k,d,n) is that

n >.= Z (9: - 11) .

Proof: As before, let I be the incidence matrix of points and hyper -
planes in T k -1(q)

Let J be the complement of I obtained by replacing zeros by ones and
ones by zeros. J is symmetric; each row (column) contains qk-1 ones and
1 + q + qk-2 zeros.

The matrix J for the projective plane T2(2) over the field (0,1) is
illustrated in Table II.

Let

911

n2
n =

n,

where µ = 1 q +  + qk-' and n1 stands for the multiplicity of the
point Pi of Tk_1(q).

Consider the expression Jn. The product of the ith row of J with
the column of ni is the sum of the multiplicities of the points Pi which
do not lie on the ith hyperplane. By Bose's theorem, this is the weight
of the letters of the alphabet corresponding to the ith hyperplane. Now

t This theorem has been obtained for the field (0,1) by many authors in as many
ways. See for example, Ref. 6, Theorem 5; Ref. 3, Eq. (52), and other authors
quoted in Ref. 3.
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TABLE II -J = COMPLEMENT OF I

100 010 001 110 101 011 111

yi = 0 1 0 0 1 1 0 1

y2 = 0 0 1 0 1 0 1 1

1/3 = () 0 0 1 0 1 1 1

1/1 + y2 = 0 1 1 0 0 1 1 0

Y1 + y3 = o 1 0 1 1 0 1 0
y2 + y3 = 0 0 1 1 1 1 0 0

yi + I/2 + Y3 = 0 1 1 1 0 0 0 1

define a column vector

d

Since our alphabet is assumed to have minimum weight d, we have the
inequalities

d =

Jn d.

Since we may assume d 1, these inequalities imply that there must be
at least one point of nonzero multiplicity not lying on any given hyper -
plane - that is, the points of nonzero multiplicity span the space
Tk--1(q).

Hence, given k and d, the least value of n for which there exists an
alphabet a(k,d,n) is the minimum value of

E ni ,
i=1

where ni , i = 1, , IA are nonnegative integers which satisfy Jn d.

By adding all the inequalities of Jn > d, we obtain

qk-1 ni a (1 r)
i=1

or, setting

n = Ear;,
,==1

n Z [1
qk 1\

- 1 )
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In the case that d = qk-1, for any value of k the lower hound becomes

qk - 1n - 1 + q -I- -I- qk-1.q - 1
In this case the lower bound is the largest possible lower bound, as it is
achieved by the alphabet which corresponds to n1 = n2 =  = n, = 1,
that is, the alphabet which results from taking every point of T k_1(q)
with multiplicity one.

One has an intuitive feeling that alphabets with the least n for a given
k,d are likely to have no repeated columns if this is possible. This is
partly justified by the following theorem.

Theorem 6: If a generator matrix of a(k,d,n) contains a repeated
column [in the sense that Q t = XQ, for some A of F*(q)], then

> z [ (q" - 1) d] + 2.n

For the purposes of this proof and the succeeding lemma we write the
above inequality as

n Z [ q (1 --1 ) + 2.qk-1.

Proof: Let P be the point of Tk_1(q) which corresponds to the re-
peated column. Choose a coordinate system in which P is one of the
base points, say P = e1. We then have an equivalent alphabet a'
which may he written

M(a') =

1 1 0  0

0 0 1 0

0 0 0 1

The letters of a' to which the first two columns contribute zeros form
a vector space Ft; a is generated by the rows 2, , k of M(a'). The
minimum weight of the letters of a is at least as great as the minimum
weight of the letters of a'. Hence the alphabet rt has parameters k - 1,
d', n - 2, with d' >= d. By Theorem 3 we get

)n - 2 Z [q q (1 -qk-1 d]
or

n> Z [q (1- -L)d].+2.q - 1 qk-1
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It is clear that, if d 5 2qk-1

1-( A d ± 2
q 1

q (1 - -1) d.

We need a little more, namely:
Lemma: If d qk- -1 , then

q
1(1 - d + 2 1) d ± 1.q- 1 - q - 1(1

Hence

Z [ 1 (1 - 1 I + 21 > Z[ q 1- ) dq- 1 qk-1 q- 1 qk

Proof:

q 1(1 - d + 2 - [ q
1

1-k( q

+ q

q
1

(1.
qk- 1)1 d + 2

k

q 1) d - d +21 -q - 1 qk

q (1 - -1) (I -1- 1.
q- - qk

Theorem 7: If d 5 q1-1 the bound given in Theorem 3 cannot be at-
tained by an alphabet with repeated columns.

This result is not surprising in view of the remark at the end of the
proof of Theorem 3. If d > qk-', the inequality of Theorem 5 gives
n > (qk - 1)/(q - 1); i.e., n is larger than the total number of points
in the space Tk_1(q). Thus we must have repeated columns in the
generator matrix.

By repeated applications of the procedure of Theorem 6 we can write
down lower bounds for the n of alphabets having a given number of
columns with given multiplicities. However, this does not seem very
interesting; we will first say what we can about alphabets with no re-
peated columns. We assume from now on that we are dealing with such
alphabets.

V. A CLASS OF ALPHABETS

In this section we describe a class of alphabets for which the bound of
Theorem 5 is attained, and show how other alphabets which attain this
bound may be derived from them.
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We can immediately write down the class of alphabets.t Choose a
fixed k, and consider the following sets of points in Tk_1(q) :

(0) - The set So of all points of Tk-1(q):

no = 1 + q -1-  + qk-1, qk-1

Every letter of this alphabet has weight do .

(1) - The set Si of all points but one of Tk_1(q):

ni = q + q ,

-r qk-i = qk-1 - 1.

The (1 + q +  + qk-2) hyperplanes through the omitted point
correspond to letters of weight e-1, other hyperplanes to letters of
weight qk-' - 1.

(2) - S2 = all points of Tk_1(q) except for the (1 + q) points of a
line L1.

n2 = q2 +  + qk-1, d2 = qk-1 q.

The (1 + q +  + q") hyperplanes through L1 correspond to letters
of weight qk-1 , others to letters of weight qk-1 q.

(3) - S3 = all points of Tk_1(q) except for the (1 + q2) points
of a plane P2

n3 = q3 +  +qk-1, d3 = - q2.

The (1 + q +  + qk-4) hyperplanes through P2 correspond to letters
of weight qk-1, other hyperplanes to letters of weight q2.

(k - 1) - 8k_1 = all points of 171_1(q) except for the points of a
hyperplane

k-1= q ,
k-1 k-2dk-1 = q - q

The omitted hyperplane corresponds to letters of weight q4-1, all others
to letters of weight e-1 - qk-2.

It is easy to verify that for these alphabets the bound of Theorem 3 is
attained. Consider

For the case of q = 2 some, or all, of these alphabets have been found by other
authors by different methods. See, for example, Refs. 3 and 6. They are, of course,
picked up by any systematic search, such as linear programming. ak_, is the Reed -
Muller code for in = n, r = 1.



ni -

MULTIPLE -LEVEL ERROR -CORRECTING CODES 299

1 (qk _1)d
qk--'kq - 1

= qi

qk-1 1 (qk - 1) , k_,

qk-1
(q

(q)- - 1 1 (qk - 1\
- 1 qk-1q 1

1)(11

qk-i - 1
q - 1

qk-1q -
q'

1 (qk-i - 1)
qk-i q - 1

Since q 2, this quantity is less than one; i.e.,

1 (qk - > O.1 > -
It will appear presently that for q = 2 these are the only alphabets

which attain the bound of Theorem 5. The case q > 2 is more compli-
cated.

Suppose that a(k,d,n) is an alphabet (with no repeated columns) for
which

Write

1 ekq

q

Let

=% [ I (qk - 1) di.-1

I) = 1 ,

n [(1 Qilqk-1

sqk-1

qk-2 k-1 + + 1 - q
- 1

0 < r qk - 1 , 0 < s 5 Q , (1)

where r and s are integers; s cannot be zero since d is positive; s 5 Q
since d qk-1 Then

n = Z [d s - = d s.

If we remove n columns from the generator matrix of a, in such a way
that the remaining matrix is of rank k (this is always possible for

n - k), we obtain an alphabet of length n - n and minimum
weight d - n. Let us consider the worst case, i.e., a = d - n.
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Lemma: If

then

provided that

Proof :

-n= z[q14(qqk
11)

 = z (qqk 11) (d n))1

< (q - 1) - q-1 (r - 1 ) .qk-1 1

Z [(1Q (d - ?i) =Z[d + s

=Z [(d + s -

r ?IQ]
qk-1 qk-1

0/ -I- r
qk-1

This is equal to d s - n if and only if (Qn + r)/ qk-1 < 1; i.e.,
k-1

n < (qk-1 - r) = (q - 1) q (q - 1) r
qk-1 - 1 qk-1 1

or

(2)

n < (q - 1) - (q - 1) kr - 1

q -
Now suppose that. a > d - n, and n satisfies (2) :

Z 1+1 cd Z [(1 ( d - .1)1 = n - n.

By Theorem 3 applied to the alphabet a(k,d,n - n), we have

n - n [(1 + q(4. -1d] .

Hence only equality is possible.
Theorem 8: If a(k,d,n) attains the bound of Theorem 5 and

a(k,d,n - n) is obtained from it by removing n columns from a gen-
erator matrix of a, where n satisfies (2) in such a way that the remaining
matrix is of rank k, then the new alphabet also attains the bound of
Theorem 5.
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We remark that if we select the columns with proper care, it is possible
to remove more than the number given by (2) and still obtain an alpha-
bet which attains the bound of Theorem 5. The alphabets a2 ax -1
listed at the beginning of this section are examples.

We now reformulate (2) in a more convenient form. We observe,
from (1), that, since d is an integer, so is (se -1 - r)/Q. Subtract from
it the integer

and we find that

s(q - 1)
Q

s - r S - 1
Q qk -2 ±

is also an integer. We have two cases:

i. s = Q, r /.1Q

Then (2) becomes

q + 1

[1.1 q- 1. from (1 )].

n < (q - 1) A +
Q

or, since all these symbols represent integers,

n (q- - (3)

ii. s < Q, r = s u < 1 - qk-1 ( q - 1) from (1)] .

Then (2) becomes

< ( q - 1) -

or

s - 1
Q

n ._._q -1-A -1=q- 2 - (4)

In case i we have, from ( 1 ),

d = qA - iz, 0 - 1.

The alphabet ao corresponds to the case µ = 0, and the alphabet al to
= 1. From the alphabet ao we can subtract any number n < q - 1

of columns and obtain an alphabet which attains the bound of Theorem
5. (The alphabet a1 is obtained by subtracting one arbitrary column.)
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In case ii we have, from (1),
k-i

d = sq - s(q - 1) - 14.

For the alphabets al , , we have 1.1 = 0. This is readily verified
by direct calculation:

qi-1 (qk qi-1

Thus
(qk-2 qt-i), 0.

We shall show that these are the only alphabets besides ao for which
12 = 0.

The generator matrix of an alphabet a(k,d,n) with no repeated col-
umns consists of a subset of the columns of the generator matrix M(Cto).
Let S be the generating points of a(k,d,n) in Tk_1(q), and denote by
C(S) the points of Tk_1(q) which are not in S.

Let v be the number of points in C(S) and 6 the maximum number of
points of C(S) which do not lie on a hyperplane of Tk_1(q). The alphabet
a then has v 5, where - 1)/
(q - 1), do = ti are the parameters of ao. Using Theorem 5 on these
numbers, we obtain

k
qk

1- 11) ((/ - 1) > qk\q
or

v(q - 1) :5 _ (q - 1-1) 6.

Since v(q - 1) is an integer we may replace this by

v(q - 1) < qa - 1. (5)

This is the best we can do, since a < qk-1.
By some further manipulation we find that for the alphabet a, gen-

erated by do - C(S), to attain the bound of Theorem 5 we must have
(q6 - 1) - (q - 2) 5 v(q - 1) q6 - 1. (6)

We also wish to have an alphabet with µ = 0; for such an alphabet

d= 8 - s(q - 1),

= do - d = qk-1 s( 1),

- 1 = (qk - 1) - sq( q - 1);
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i.e., q8 - 1 is divisible by (q - 1). From (6), the only possibility is

v(q - 1) = qrS - 1. (7)

We also observe from (6) that if q = 2 we have v(q - 1) = q5 - 1
without any other considerations.

To justify our statement that a2 ak_1 are the only alphabets
besides ao for which it = 0, we prove the following theorem.

Theorem 9: If C(S) is a set of v points in Tk_1(q), with 5 defined as
above, and v(q - 1) = q45 - 1, then C(S) is the set of all points of a
linear space in Tk_1(q). This, of course, implies that

v = 1 ± q +  ± q8, S = q8 1 5 s < k - 2.
Conversely, if C(S) is the set of all points of a linear space, then the

alphabet a has µ = 0 and attains the bound of Theorem 5. This we have
already verified.

Proof: We have v - S = (v - 1)/q, so that (v - 1) must be a multiple
of q. If v = 1 the corresponding alphabet is a1, for which µ = 1.

The proof is by induction on 5; we start by proving the theorem for the
case ( v - 1 )/q = 1; i.e., 5 = q, v = q+ 1.

Lemma: If v = 1 + q and 5 = q, the (1 + q) points Xo , XI , , X,
are collinear, however large the containing space.

An equivalent statement, which is the one we prove, is: If every
hyperplane of Tk_1(q) contains at least one of the points Xo , X1 , ,

X, , then Xo , X1 , , X, are the points of a line.
We may assume that there is one hyperplane, say 371 = 0, which con-

tains exactly one point X1, which we may call X1. Pick another point
for Xo and let the coordinates of these two points be el , e2 . We assume
the coordinate system normalized so that the first nonzero coordinate of
every point is unity. Write the coordinates of the Xi as columns of a
matrix as follows:

X0 Xi X2 X3 ' Xq

Yi 1 0 I. 1  1

Y, 0 1 a, a3 a ,

0 0 b., b3 b,

Yk 0 0 fl f3 f q

By Theorem 1, every letter of the form a Yi + 13Y2 must contain at least
one zero coordinate. For a = 0 = 0) we always have a zero in the
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second (first) place of such a letter. In the (q - 1) letters of the form
aYl + Y2 , a E F*(q), the zero must occur in one of the places 2, 3, , q.

Hence the a2 , a3 , , a, above must denote some arrangement of all
the elements of F*(q).

Consider now letters of the form

aYi 0Y2 + 7173 .

Again, the first two coordinate places take care of those letters for which
one of a,13,7 is zero. Hence we restrict ourselves to letters

aYi $Y2 + Y3 E F*(q)

Each such letter must have a zero in one of the places 2, 3, , q.

We note that there are (q - 1)2 such letters, and (q - 1) coordinate
places.

Suppose now that b2 0. We shall count the number of letters to which
the X2 column contributes a zero. We may choose any a in F*(q) such
that a b2 . f3( 1:)) is then uniquely determined by the equation
[in P(q)]

Oa, = - (a b2).

Hence if b2 0 the X2 column contributes a zero to only (q - 2) letters.
If b2 = 0 we have (q - 1) choices for a, and 13 is determined by

/3a2 = -a.

In this case the X2 column contributes a zero to (q - 1) letters.
Hence the only possible choice for bi is bi = 0 for all i.
The same argument shows that all rows Yi , i > 3, consist entirely of

zeros. The coordinates of X2 , X, are linearly dependent on those
of X0,X1 ; that is, the points X2 , , X, all lie on the line joining
X0,X1

Returning now to the main theorem we make the following induction
hypothesis:

Let C( S) be a set of v points in T k_1(q) , with (5 defined as before, and
such that

(q - 1.)v = qo - 1. (7)

Let qr-2 < S < qr-', and assume that Theorem 9 is true for values of
qr-2. We wish to prove that

qr-1, V = 1 + q +  + qr-1.
ii. C(S) consists of all points of a linear space of projective dimension

(r - 1).
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From (7), V - 3 = ( v - 1 )/q = h, where h is an integer greater than
1. h = 1 is the case already considered in the Lemma. Also

S= v - h = hq ± 1 - h.

An arbitrary space of dimension (k - 3), say Dk_3 , in Tk_1(q) will
contain a number a of points of C(S). We wish to find a lower bound
a for a.

There are (q + 1) hyperplanes of T k_1(q) which pass through D k-3 
Denote by 130 , the number of points of C(S), outside of
Dk_3 , contained by these hyperplanes. The hyperplanes through Dk_3
contain among them all points of Tk_1(q), so certainly all of C(S). We
have then

a+Ef3 =v=hq+1,
i-o

a + Qi > p - S = h.
(8)

A lower bound for a is obtained by making all the #i equal, Ni =
and replacing " " by " = " in (8). Then,

a+ 13 = h,

(q 1)13 = hq + 1.

Solving these equations,

a
h - 1

q

h - 1 8

q q

Let a' be the least integer containing a. We note that a' > 0.
We may assume that some hyperplane, say Hk_2 , of Tk_1(q) contains

exactly v - S = h points of C(S). Call this set of points C(S'). Each
hyperplane of H k-2 is a (k - 3) -dimensional subspace of Tk_1(q), and so
by the previous result it contains at least a' points of C(S').

For C(S') we have

Therefore,

-
= h, S' h - a' h -h 1

q

q8'- 1 .5 qh - h + 1 - 1 = (q- 1)h,
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or

(g - 1) go' - 1.

Comparing this with (5), only equality is possible; i.e.,

qb' - 1 = (q - 1)h.
This implies that (h - 1) / q is an integer, and

= h h - 1 (5

q q

C(S') is thus a set of points with

= h,s'=8 and ( q - 1)v/ = - 1.
q

Since (-3 < / q gr-2 we can apply the induction hypothesis, which
gives us

or

3, qr-2, v' = 1 ± q +  + qr

- Y = qvi + 1 = 1 + q + +

and the points C(S') are all the points of a linear space Br_2 in H k-2 
We can always find in f/-4-2 a (k - 3) -dimensional subspace, say

D which intersects 13,_2 in a space of dimension (r - 3), and thus
contains exactly

1 + q +  ± ,_3 -//, - 1 -
points of C(S).

Consider the hyperplanes of 71k_1(q) which pass through Dk_3. From
(8), we have for these

h - 1= 5 = h -

so that the total number of points of C(S) in each hyperplane is

+ = h.

By the previous argument the intersection of C(S) with each hyper -
plane is a linear space of dimension (r - 2). These spaces have in com-
mon a linear space of dimension (r - 3), the intersection of Br_2 and
Dk_.3. Hence the set of all their points is a linear space of dimension
(r - 1) . This proves the theorem.
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We will now summarize the results of the last section. For q = 2, the
alphabets ao , al , ,ak_i introduced at the beginning of the section
are the only alphabets which attain the bound of Theorem 5. For q > 2
these alphabets attain this bound, and have the further property that
any k -dimensional alphabet obtained from them by removing up to
(q - 2) arbitrary columns of the generator matrix (q - 1 for ao) also
attains this bound. They are the only alphabets with this property.
Clearly the alphabets CU , al , ,a.k.-1 are completely determined, up
to equivalence, by the values of the parameters k,d,n. For a given k,
d and n are restricted to a certain set of values defined at the beginning
of this section.

VI. ACKNOWLEDGMENTS

The author would like to thank D. Slepian and J. B. Kruskal of Bell
Telephone Laboratories and Professor A. J. Gleason of Harvard Uni-
versity for their careful and critical reading of the manuscript and for
several suggestions which resulted in substantial improvements
throughout. Previous work in the field of nonbinary error correction,
not referred to in the paper, is described in Refs. 7 through 10.

APPENDIX

Slepian's Error -Correction Procedure

Let F(q) denote a finite field, and G(q) the group, of order q", of
all possible rows of n symbols picked from F(q). The group operation
is place -by -place addition under the rules prevailing in F(q). Let A be
a subgroup of G. . [For the present purposes A need not be a vector
space over F(q); the two concepts are the same if and only if F(q) is
a prime field.]

Partition G into cosets with respect to A, with an element of least
weight in each coset being picked as "coset leader." The element (00

0) is, of course, the coset leader of A itself. The cosets are formed
into a table as illustrated in Table III. The group A is the first row of
the coset table. The first column of the table contains the coset leaders.
In the case of Table III these are, besides (0000), all the elements of
weight 1 in G3(3).

The element in the sth row and the tth column of the coset table is
obtained by adding the sth coset leader to the element (of A) in the
first row and the tth column. The sth row is exactly the coset deter-
mined by the sth coset leader, and every element of G (q) appears ex-
actly once in the table.
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TABLE III - COSETS WITH RESPECT TO A FOR Gn(q) = G3(3)

1 2 3 4 5 6 7 8 9

1 0000 1011 0112 1120 1202 2022 0221 2210 2101
2 1000 2011 1112 2120 2202 0022 1221 0210 0101
3 2000 0011 2112 0120 0202 1022 2221 1210 1101
4 0100 1111 0212 1220 1002 2122 0021 2010 2201
5 0200 1211 0012 1020 1102 2222 0121 2110 2001
6 0010 1021 0122 1100 1212 2002 0201 2220 2111
7 0020 1001 0102 1110 1222 2012 0211 2200 2121
8 0001 1012 0110 1121 1200 2020 0222 2211 2102
9 0002 1010 0111 1122 1201 2021 0220 2212 2100

The error -correction procedure is as follows: If the received element
is a letter of A it is accepted as correct. If not, it is located in the coset
table, say in row s, column t, and the letter of A in row 1, column t is
substituted.

It is clear that the example of Table III will correct all single errors.
Column 2 contains, besides (1011) which belongs to A, all the elements
of G3(3) which differ from (1011) in exactly one place.

In general, if it is required to correct all single, double, etc., errors it
is necessary that all elements of G (q) of weights 1, 2, etc., appear as
coset leaders in the coset table formed by A. Let d he the minimum
weight of the letters of A, other than zero. The coset formed by a leader
of weight 1 will consist of elements of weight at least (d - 1). Hence
all elements of G (q)of weight 1 appear as coset leaders if and only if
d L- 3. Similarly, all elements of weight 2 appear as coset leaders if
and only if d 5. If it is required to correct all e -fold errors, the al-
phabet A must have d >= 2e + 1.
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Short -Term Memory in Vision

By E. AVERBACH and A. S. CORIELL

(Manuscript received August 8, 1960)

Experiments are performed that demonstrate some of the functional prop-
erties of short-term storage in the visual system, its decay, readout and
erasure. Results indicate that the visual process involves a buffer storage
which includes an erasure mechanism that is local in character and tends to
erase stored information when new information is put in. Storage time ap-
pears to be of the order of one -quarter second; storage capacity is more diffi-
cult to assess.

I. INTRODUCTION

There can be little doubt that eye movements play an important role
in the perception of form, and that perceptions of complicated visual
fields are built up from information gathered during many fixations of
the eyes. But eye movements over a complicated visual field are unpre-
dictable from subject to subject and from time to time with the same
subject. They may therefore be an annoying source of variability in
perceptual experiments, and experimenters frequently find it desirable
to eliminate them. This is usually done by using a tachistoscope, a de-
vice for presenting brief exposures of visual material. The position of
the eyes is kept fixed at the crucial time by having the subject fix his
eyes before exposure of the material, and by ,using exposures sufficiently
brief that the subject cannot change his fixation during the exposure.
To accomplish this, exposure times must be less than the reaction time
of the eye for a change of fixation (150-200 milliseconds). Actual meas-
urement in a tachistoscopic situation has shown that exposures of 100
milliseconds or shorter satisfy this purpose.'

At first thought, it may seem unreasonable to study visual perception
under the peculiar condition of tachistoscopic experiments. Some ques-
tion might be raised about whether data obtained in this way can be
generalized to natural perceptual situations. It can be argued, however,
that in a very real sense the tachistoscopic situation is not an unnatural
one. For it is well established that, in scanning pictorial or printed mate -

309
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rial, the eyes do not take in information continuously (Ref. 2, p. 493).
They fixate first on one point and then move rapidly to another. The
fixations are relatively long, but the movements between fixations are
so quick that they smear the image drastically during the motion. Thus,
normal vision involves the processing of discrete exposures very much
like those presented in a tachistoscope. It has been shown, in fact, that
reading performance is better if the necessity of moving the eyes is elim-
inated by presenting reading material serially by means of a tachisto-
scope.3

To anyone who has ever seen objects illuminated briefly by a spark
or other kind of brief flash it is evident that the visual impression of the
illumination lasts longer than the flash. Even a millisecond flash seems
to last a noticeably long time. Because of this persistence, writers on
perception, particularly tachistoscopic perception, have assumed the
existence of some kind of short-term storage in the visual system. This
is implied in their use of such terms as positive afterimage, retinal per-
sistence, persistence of vision, etc., in interpreting tachistoscopic per-
formance. But little work has been done to characterize the functional
properties of the storage, its decay, readout and erasure. In this paper
we will discuss some of the older studies that bear on these matters and
report a few experiments that demonstrate some properties of this vis-
ual short-term storage.

II. MEMORY EXPERIMENT

A very old tachistoscopic experiment is the span -of -perception ex-
periment. Its aim is to determine the maximum number of objects a
person can take in at a glance, the objects being dots, letters, digits,
words, etc. Typically, the experimenter makes up cards having different
numbers of items on them. Starting with cards having one item, he
keeps increasing the number of items presented until the subject begins
to make errors. The perceptual span may be taken to be the maximum
number of items that the subject can report perfectly. More usually,
the criterion used is the number of objects reported correctly 50 per
cent above chance.

Spans of perception measured by different investigators are surpris-
ingly consistent considering the wide range of conditions under which
these spans have been measured. The span for letters or words4,5 is 41 to
5 and for dots6,6 about 8. What limits the span of perception? Of course,
anything that affects legibility - brightness, contrast, sharpness, etc.
- will under some conditions affect the span. But once reasonable legi-
bility is obtained, increasing the brightness and contrast and sharpness
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does not improve performance. Under conditions of good legibility the
limitation is elsewhere.

Two possibilities suggest themselves. First, the span may be limited
by the capacity of the visual storage. It may be that, as the number of
items put into the storage is increased, resolution of the individual items
is destroyed. The other possibility is that resolution of the storage is
perfectly adequate for numbers of items of the order used in span of
perception experiments, but that the storage time is too short; i.e., the
subject does not have enough time to read more than a few items into
his more permanent memory before the decay of the short-term storage.

Selecting between these alternatives presents something of a problem.
How does the experimenter determine how many items a subject can
store visually if the subject, as shown by span of perception experiments,
can report correctly only a limited number (4 or 5) items? This difficulty
was circumvented by Sperling' who, instead of requiring that his sub-
jects report on the whole of a complicated tachistoscopic presentation,
had them report on only a part. He exposed briefly three rows of four
randomly chosen letters each. Then, after a variable delay, he presented
a tone signal of either high, middle or low pitch which indicated to the
subject that he was to report on the upper, middle or lower row of let-
ters - whichever was indicated by the tone. Since the subject was not
familiar with the arrays of letters and was not given the instruction tone
until the visual stimulus was turned off, he had, in effect, to store the
whole array. By this method Sperling was able to show that subjects
can store as many as 9 letters of a 12 -letter array - and even more
when arrays having more letters are used.

The experiment to be described, although conceived independently of
Sperling, is of essentially the same form as his. The essential difference
lies in the use of a visual signal to designate the part of the array to be
reported by the subject. This has the virtue that it assures that the
array and signal are transmitted to wherever they are processed in the
brain at approximately the same rate. It is known that the reaction
time to a light is significantly longer than the reaction time to a tone
(Ref. 2, p. 16).

A 2 X 8 array of randomly chosen letters is exposed for 50 millisec-
onds. Then, after a variable delay, a black bar marker is presented for
50 milliseconds either above one of the letter positions of the upper row
or below one of the letter positions of the lower row. The subject's task
is to name the letter designated by the marker. A typical array and bar
marker are shown in Fig. 1. A black circle that is used as a marker in a
second experiment to be described later is also shown. The subject, of
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,BAR MARKER

CIRCLE INDICATOR

CFPY AXN
LFTJMYNV

Fig. 1 - Typical array of letters, bar marker and circle indicator.

course, never knows before a given trial which letters will appear in the
array, and which of the 16 letter locations will be called for by the
marker. Thus, in order to perform well, he is required to store the array
until the appearance of the marker. The sequence is illustrated in Fig. 2.

A uniform field of 70 foot -lamberts was maintained constantly
throughout the experiment, and the letters and marker appeared black
against this background. This test field subtended a visual angle of 4
degrees vertically by 5 degrees horizontally at the viewing distance of 5
feet. It had a small dark fixation point in the center. Surrounding this
field was a larger field, 12 degrees on a side, having a luminance of 30
foot -lamberts. Each letter subtended one degree vertically by one-half
degree horizontally. The black of the letters had a brightness of less
than one foot-lambert.

2.1 Procedure

At the beginning of each session subjects were given two or three
minutes to adapt to the bright screen. They were then given two warm-up
trials with arrays that were not used in the experiment proper. On each
trial the subject was given a ready signal and enough time to fix his eyes
on the fixation point at the center of the screen. When fixated, he would
signal the experimenter and the array and marker were then exposed.
The subject was given as much time as he needed to make his response,
but was encouraged to use his first guess if he was in doubt. He was
given the correct answer after each trial.

During each session 128 array -marker pairs were exposed, covering
each of the 16 positions at each of 8 time intervals between array
and marker. The same order of presentation of the 128 arrays was used
in each session of the experiment, but the time interval and marker posi-
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Fig. 2 - Sequence presented in a typical trial.
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tions were varied randomly, with the restriction that successive groups
of 16 arrays each contained a marker in each of the 16 positions. Three
sessions were run with each of the three subjects.

2.2 Apparatus

The tachistoscope used is that designed by Nielsen,8 which uses multi-
channel television generating equipment and a set of gates controlled
by timers for presenting a sequential display of three pictures on a single
picture monitor. Each picture can be displayed for a preset time inter-
val of N/60 seconds, where N is a number of television fields from 1 to
99. Since all parts of a picture are not exposed simultaneously and a
particular point on the monitor is illuminated for only 20 microseconds,
exposure times are taken from the time a particular point is first scanned
to the time the same point is scanned in a new picture. An exposure of

50 milliseconds, preceded and followed by a white field, is illustrated in
Fig. 3, which also shows the brightness of a point near one of the letters.
Interlace is ignored since the center -to -center separation of the scanning
lines subtended less than one-half minute of arc at the observer's eye.

The time between the onset of an array and the onset of a marker is
never an integral number of fields, owing to the fact that the marker
does not appear in the same part of the vertical scan as the letter it
designates. This small error has been ignored, since it is only -3 milli-
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BRIGHTNESS
OF SURROUND

-I-
60

SEC

BRIGHTNESS
OF LETTERS

1 I j
SEC

60

14E - 50 MILLISECOND
EXPOSURE

Fig. 3 - Brightness of letter and surround for exposure of 50 milliseconds pre-
ceded and followed by a white field.

seconds if the marker falls above the array and +3 milliseconds if the
marker falls below.

2.3 Results

The results for the three subjects are shown in Fig. 4. The abscissa
is the time in milliseconds between the onsets of array and marker. The
ordinate is the per cent correct, corrected for chance on the assumption
that the subject perceives correctly a certain percentage of the time
P and guesses randomly from the 26 possible letters when he does not
perceive correctly. On this assumption, the measured per cent correct
PM = P, -I- (1 - Pp) (1/26), which yields the plotted Pr's. Estimates
of the standard error of these points, which are a function of the num-
ber of trials (48) and the per cent correct, range from 0.07 at 50 per
cent to 0.06 at 20 and 80 per cent correct.

The vertical lines through zero and 50 milliseconds represent the
onset and offset of the arrays. Negative time means that the marker
came before the array. The point at zero time was taken after the rest
of the experiment was completed because it required modification of the
apparatus.

2.4 Discussion

Although it might be assumed that this experiment yields a reason-
ably good description of the time -decay of the short-term visual storage,
the curves obtained cannot be said to represent this decay for two rea-
sons. First, the true storage would be expected to decay to zero for long
enough time intervals. But these results decay to a final level of
about 35 per cent for two of the subjects and 25 per cent for the third.
Second, because the process of detecting a marker and reading a letter
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Fig. 4 - Results of memory experiment; "R.P.," "V.V." and "G.M." identify
the three subjects participating.

undoubtedly takes time, the measured performance suggests a storage
time that is shorter than the true storage time.

The fact that the measured decay curves do not fall to zero suggests
thg the measured performance contains components of a more per-
mapent memory, as well as the short-term memory component that we
would like to measure. In this context, the 25 to 35 per cent final per-
formance level (which represents 4 to 5.6 letters) is attributed to what
the subject has read into his more permanent memory.

Maximum performance measured when the marker preceded the
array is 65 to 80 per cent. It is obvious, of course, that, if the marker
preceded the array by a long enough time, performance would reach 100
per cent. Why, then, doesn't performance reach 100 per cent? The rea-
son is not that some letters are outside the fovea, since individual letters
exposed in any of the 16 positions of the array are clearly legible. The
explanation seems to lie, rather, in the fact that letters in some positions,
although perfectly legible by themselves, are not legible in the context
of the array. This finding is illustrated by the plot of performance as a
function of position shown in Fig. 5. The numbers 1 to 8 represent, from
left to right, the positions on the upper line of the array, and 9 to 16
the positions on the lower line. The percentage is based on the pooled
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Fig. 5 - Performance by position in array, three -subject average.

data of the three subjects, each point being based on 72 trials taken
across all time intervals. All subjects show the same distribution, in
which performance is better at the center and ends, and poorer in be-
tween. Performance on the upper line is consistently better than per-
formance on the lower.

2.5 Summary

In summary, the following can be stated :
1. The visual system can store information for longer than 130 to 200

milliseconds.
2. This storage can be tapped selectively on a signal given by the

experimenter.
3. Resolution of the storage - or ease of reading -out - is disturbed

when too much data is put in. Sixteen letters in a 2 X 8 matrix is enough
to demonstrate this effect.

4. This disturbance does not affect all items of such a stored array
equally. It disturbs the center and end items least and those in between
most.

5. As an exercise, we estimated the amount of information in the
store when the bar marker follows immediately after the array, and ob-
tained the figure of 37 hits for the poorest subject and 54 bits for the
other two subjects.

III. ERASURE

If persistence were the only property of the visual storage, it would
be difficult to understand how we see at all in our normal, continually
changing environment. A storage process normally also involves erasure,
to assure that old information is out of the store before ngw lafgrifigjon
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is put in. Otherwise, new information and old would be inextricably
merged in the store. The experiment to be described deals with the
erasure properties of the visual storage.

The procedure in this erasing experiment was almost identical to that
of the memory experiment just described. The same subjects were used,
and the same arrays of letters were presented in the same sequence. The
essential difference between the two experiments was in the form of the
marker used. In the first experiment the marker consisted of a vertical
bar pointing to the letter; in this experiment it consisted of a black circle
surrounding the letter, as was illustrated in Fig. 1. Such a circle pro-
duces a curious effect upon the letter if the time delay between array
and circle is chosen properly. This effect we call erasure.

3.1 Results

Fig. 6 permits a comparison of the performance by each of our sub-
jects in the bar marker experiment with his performance in the circle
experiment. The curves of all three subjects start at a relatively high
level, ranging from 70 to 80 per cent, drop sharply to a minimum, rang-
ing from 10 to 20 per cent and rise slowly to an intermediate level of
25 to 40 per cent.

When the circle precedes the array or follows immediately after, per-
formance in the erasure experiment is not greatly different from per-
formance in the first experiment. However, when the circle is delayed
by 100 milliseconds, the difference between the curves is quite large.
Then, with still longer time delays, performance in the circle experiment
rises slowly until it reaches approximately the values obtained in the
first experiment. Thus, the curves begin together and end together,
with performance in the "circle" experiment significantly poorer be-
tween.

3.2 Discussion

This experiment shows how a later visual stimulus can drastically
affect the perception of an earlier one. This backward -in -time action of
the circle implies that the first stimulus is delayed with respect to the
second, or, more precisely, that the first stimulus is stored. The process
involves more than simple delay, since, as shown by the first experiment,
the subject has access to the information during the delay.

The question arises as to why the circle has such a damaging effect
on the letters and why the bar does not. The answer lies in their relative
distance from the letter. In preliminary experiments it was found that,
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when the bar was close to the letters, those parts of the letter near the
bar were strongly disturbed. The bar was therefore placed far enough
away from the letters to avoid this effect. All parts of the circle, however,
are close to the letter.

One can conceive of the observed action of the circle on a preceding
letter in many different ways. It is possible, for example, that the main
effect on the letter is a "stopping in time", i.e., a quick substitution of
the circle for the stored letter. Such a process could function as an erasure
mechanism, since it would assure that new and old information are not
confused in the store. It is conceivable, on the other hand, that the effect
of the circle on the letter is of a different kind. Perhaps the disturbance
is a result of the kind of mixing or averaging process that an erasure
mechanism seeks to avoid, or perhaps the effect of the circle is primarily
to reduce the brightness or contrast of the letter.

We are inclined to reject the latter alternatives. The observed effect
is clearly not due to averaging in time, for if the circle and the letter it
surrounds are presented simultaneously, the legibility of the letter is
hardly affected at all. Yet this is just the condition for which averaging
should produce the most damaging effect. With regard to the possibility
that the circle affects the brightness or contrast of the letters we can say
nothing conclusive. Introspectively, however, a change in brightness or
contrast does not appear to be the primary effect.

The view that the second stimulus limits the time available for read-
ing -out is more attractive than the other possibilities for several reasons.
First, the rise found in the erasure curve with increasing delay of the
circle after 100 milliseconds is consistent with the idea that increased
delay of the circle allows more time for readout. A second reason for
believing that the effect of the circle is primarily to limit readout time
stems from our observation that the lowered performance obtained
when the circle follows the letter is not independent of the number of
letters involved. If a single letter is exposed in any one of the sixteen
positions of the array and a circle is presented with a 100 -millisecond
delay - this is the delay that yields the poorest performance on our
curves - this letter will be read correctly by our subjects 100 per cent
of the time. On the other hand, if we expose four letters - which can
ordinarily he reported perfectly - followed by the circle with this same
100 -millisecond delay, performance is disturbed dramatically. Thus, we
believe that the effectiveness of the circle in disturbing performance is
related to how much reading has to be done before the circle appears.
If only one letter must be read, the circle does not affect performance
measurably because, according to this interpretation, the subject has
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enough time to read the letter before the circle appears; if many letters
must be read, the subject will not have enough time to read all of the
letters before the circle appears. It is then likely that the circle will erase
the letter it follows before it is read. Our final reason for thinking that
the circle limits the time available is an introspective one. We find that
a briefly exposed letter followed by a circle - even when it is seen as
perfectly as it is when a single letter is exposed - seems to persist for a
much shorter time than it does when it is not followed by a circle.

We are therefore inclined to say that the effect of the circle is to re-
move previously stored information. On this interpretation, the observed
increase in performance with increasing delay is attributed, not to loss
of erasing effectiveness of the circle, but to the increased time available
for readout.

In the light of the above, the shape of the erasure curve may be inter-
preted as follows:

1. High performance when the circle follows immediately after the
array is due to simple temporal averaging in the visual system. This
results in array and circle being effectively superimposed, which does
not significantly affect legibility.

2. Decreased performance at slightly longer delays can be attributed
to the change from the superposition condition to the erasure condition.

3. The slow rise from the minimum with further increases in delay of
the circle is attributable to the increased time available for the subject
to read the letter before it is erased. At still longer times, when perform-
ance is about the same as in the bar experiment, the circle no longer
erases but acts as a marker. This suggests, as outlined in the discussion
of the first experiment, that performance at times longer than 200 milli-
seconds depends not on the contents of the short-term storage at that
time, but on the number of letters that had been read into the permanent
memory before that time.

The suggestion that two closely timed stimuli are perceived as being
superposed is testable. In what was essentially a repeat of the experiment
just described, we substituted a circle filled with grid lines for the un-
filled erasing circle. When simple superposition holds, such an "eraser"
should be much more interfering than a simple circle. The results are
shown in Fig. 7.

The dashed lines are plots of the results obtained using an unfilled
circle. The solid lines give the results obtained with the filled circle. It
is seen that for delays longer than 100 milliseconds the difference be-
tween the two curves is small; while for delays of less than 100 milli-
seconds, the difference is large. This confirms that the disturbing effect
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of a later stimulus on a preceding one may be of at least two varieties:
the superposition type, which is understandable in terms of averaging;
and the other effect, which we have called erasure.

It should be mentioned that preliminary work has been done in which
an array of eight letters is presented to one eye and the circle delivered
to the other. It is found that erasure occurs under these conditions al-
though it has not yet been determined how this binocular erasure com-
pares with monocular erasure.

1V. READOUT

As we have already pointed out in discussing the bar -marker experi-
ment, the process of detecting the presence of a marker and reading the
marked letter undoubtedly takes some time. If the time required for
this process could be measured, we would be able to correct the decay
characteristic obtained in the bar marker experiment for this time and
have a more accurate idea of the duration of the storage. A method for
measuring this time is available provided that our conclusions about the
action of the circle in erasing a letter are correct. Suppose we present
simultaneously an array and a bar marker pointing to one of the letters
in the array. Then, a short time afterwards, suppose we present an
erasing circle around the marked letter. If the circle indeed removes the
marked letter from the subject's storage, his performance under these
conditions will measure how well he can detect the marker and read the
letter when given only the time interval between the onset of the array
and marker, and the onset of the circle. Such an experiment was per-
formed, in fact, using the same subjects and experimental conditions as
before.

4.1 Results

The results appear in Fig. 8. The abscissa is the time between the
onset of the array-bar-marker combination and the onset of the circle.
The three curves are similar in form. It is seen that when the circle
follows by more than 100 milliseconds performance rises rapidly as a func-
tion of the time between array and circle. This is true up to 200 milli-
seconds for subject "V.V." and 270 milliseconds for the other two sub-
jects, later presentations seeming to have no further effect. Performance
when the circle follows by less than 100 milliseconds is very much like
that obtained ill the erasure experiment using a circle without a bar
marker.
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4.2 Discussion

Results of this experiment indicate that it takes a significant time for
subjects to detect a marker and read the designated letter, the level of
performance being a function of the time available for detection and
reading. Maximum performance requires times of the order of 200 to
270 milliseconds. Thus, the decay curves from the first experiment in-
corporate two effects: (a) storage time and (b) readout time. As we shall
see in the next section, it is possible by means of the readout time meas-
urement to correct for the latter factor and solve for the storage time
alone.

V. STORAGE TIME

We indicated in Section III that performance in the bar -marker ex-
periment is probably the result of two different types of performance
on the part of the subject. First, there is a nonselective readout, which
is independent of appearance of the marker; second, there is a selective
process, which occurs only after the marker appears, when the subject
has been cued to direct his attention to the single desired letter. The
nonselective process is indicated by the finding that the subject's per-
formance does not fall to zero even when the bar marker appears at
relatively long times (450 milliseconds) after appearance of the array,
at times when, presumably, the short-term storage has already decayed.
It was separated out and measured in the erasure experiment, in which
it is apparent that, if the subject has not read the designated letter from
his short-term storage before the circle appears, he cannot read it later
because the letter is erased by the circle.

We have no direct measure of the selective readout component. The
effect of this component can be derived from the original bar -marker
curves by subtracting out the nonselective component from the whole.
Fig. 9 shows the result obtained by subtracting percentages obtained
in the erasure experiment from those obtained in the bar -marker experi-
ment. The subtraction is not a simple algebraic one. It is clear that if
the subject reads out the correct letter by chance before the marker ap-
pears, designation by the marker cannot improve his performance. It
therefore seems reasonable to treat the probabilities of reading letters
before and after appearance of the marker as independent.

Designating these probabilities as PB and PA respectively, the total
probability of reading the letter is PT = PB + (1 - PB)PA PT is the
per cent correct in the first experiment, PB that in the erasing experiment
and PA the per cent in Fig. 9, is calculated from PA = PT - PB/(1
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s---0 R.P.
c -c) V. v.
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Fig. 9 - Derived "selective readout" performance curves.

PR). The initial drop in the erasure curve is ignored because, as shown,
it involves superposition and not simple erasure.

The derived curves for subjects "V.V." and "R.P." are quite similar.
They start at their maxima and drop to zero as would be expected. That
of subject "G.M." has the peculiar shape it does because the slope of
his circle erasure curve between zero and 100 milliseconds is indetermi-
nate. If this slope is estimated from the "filled circle" erasure curve, the
the characteristic shown in Fig. 10 is obtained. This decay is quite similar
to that of the other subjects.

Using these derived curves, it is possible to estimate the duration of
the short term visual storage. Note that the curves in Figs. 9 and 10
represent that component of the subject's performance accomplished
after appearance of the marker. We will assume that this component of
performance is limited by the time available to detect the marker and
read the letter before decay of the storage. We have already determined
experimentally (see Fig. 8) the times required to detect a marker and
read a letter to various levels of performance. By adding these readout
times at each level of performance to the appropriate times in Figs. 9
and 10, estimates of the storage time are obtained. This process and the
result are illustrated in Fig. 11.

The solid lines represent the selective readout components taken from
Fig. 9 and, for subject "G.M.," from Fig. 10. The empty points were
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Fig. 10 -"Selective readout" performance curve for subject, "G.M." derived
from grid experiment.

obtained by adding times at various levels of performance taken from
Fig. 8 to the points at the same levels of performance on the solid curve.
Each point is therefore an independent estimate of storage time. It is
seen that these points approximate vertical lines surprisingly well.
The estimated storage times are 300 milliseconds. for "R.P." and 250
milliseconds for the other two subjects.

VI. CONCLUSIONS

In the light of the experiments reported here, the following interpreta-
tion seems plausible: The visual process involves a buffer storage whose
read -in is very fast and readout relatively slow. The storage includes an
erasure mechanism whereby new information put into the storage tends
to erase what was previously there. This erasure is local in character,
since erasure of a given detail depends on its distance from the areas
where new detail is being put in. The storage time is of the order of
one -quarter second. The storage capacity is more difficult to assess. A
lower bound on the storage capacity, computed from performance ob-
tained when bar marker follows immediately after array, yields a figure
of 37 bits for the poorest subject and 54 bits for the other two subjects.
This figure seems quite high, considering that the letter arrangement
used in the experiment and the sharpness and contrast of the letters
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were not such as to maximize performance. The highest figure, obtained
in span -of -perception experiments is 25.36 bits. Sperling,' using a tech-
nique similar to ours, also not involving complete report, obtained a
value of 64 bits.

The interpretation above, of course, is a tentative one. These experi-
ments have raised many more questions about short-term storage than
they have answered. Particularly compelling are the questions of how
the storage is scanned, and the stimulus factors involved in erasure. It
is hoped that further application of the techniques used here will shed
more light on these matters.
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Synthesis of N -Port Active RC Networks

By I. W. SANDBERG

(Manuscript received August 16, 1960)

The following basic theorem concerning active RC networks is proved:
Theorem: An arbitrary N X N matrix of real rational functions in

the complex frequency variable (a) can be realized as the short-circuit ad-
mittance matrix of a transformerless active RC N -port network containing
N real -coefficient controlled sources, and (b) cannot, in general, be realized
as the short-circuit admittance matrix of an active RC network containing
less than N controlled sources.

I. INTRODUCTION

It is often desirable to avoid the use of magnetic elements in synthesis
procedures, since resistors and capacitors are more nearly ideal elements
and are usually cheaper, lighter and smaller. This is especially true in
control systems in which, typically, exacting performance is required
at very low frequencies. The rapid development of the transistor has
provided the network synthesist with an efficient low-cost active ele-
ment and has stimulated considerable interest in active RC network
theory during the past decade.

Several techniques have been proposed for the active RC realization
of transfer and driving -point functions.1-13 It has been established that
any real rational fraction can be realized as the transfer or driving -
point function of a transformerless active RC network containing one
active element. In particular, Linvill's technique3 has been the basis
for much of the later work.

Recently, Sipress18 has shown that any two of the four short-circuit
admittance parameters of a two -port network can be chosen arbitrarily
and realized with a structure requiring only one active element. It fol-
lows that all four parameters can be realized with three active elements.

The problem of determining the minimum number of controlled
sources required to realize all N2 parameters of an arbitrary N -port
immittance matrix is of considerable theoretical importance and has
been of interest to network theorists for several years. The solution to

329



330 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1961

this problem is stated in the abstract; its proof is the subject of this
paper.

In Section II we derive some fundamental properties of N -port net-
works containing less than N controlled sources. The results are
formulated in terms of inequalities involving the ranks of certain
matrices. It follows from this study that at least N controlled sources
are required for the realization of an arbitrary N X N immittance
matrix. In Section III we make use of our previous results to establish
an approach to the realization problem. This approach leads to a con-
structive proof that N controlled sources are in fact sufficient. A nu-
merical example illustrating the essential points in the synthesis tech-
nique is presented in the Appendix.

II. N -PORT NETWORKS CONTAINING CONTROLLED SOURCES

A controlled source is ordinarily understood to be an ideal two -port
network -representation of a single branch -branch constraint. The four
types of elementary controlled sources are shown in Fig. 1. Note that
the two "hybrid sources" [Fig. 1(a) and (b)] form a complete set, since
they can be appropriately connected in cascade to realize each of the
other two.

For our purposes it is convenient to generalize the definition of a
controlled source to refer to any voltage or current source whose value
is a weighted sum of certain prescribed voltages and currents. Specifi-
cally, if the value of a controlled voltage or current source is denoted
by a, ,

J+k

ap = E cpibi (1)

where b1 , b2 ,  , bi are controlling currents and ba+1 , /4+2 , , b2+k are
controlling voltages. It is assumed that the a, , c,i and bi are Laplace -

I

I

0

RI E !GE

(a) (b) (c)

0

AI E BE

(d)

Fig. 1 - The four elementary controlled sources.
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transformed quantities and that the cpi are real rational functions of
the complex frequency variable s.

2.1 The Short -Circuit Admittance Matrix of an N -Port Network Contain-
ing Controlled Sources

Consider the evaluation of the short-circuit admittance matrix of
an N -port network containing a controlled source subnetwork as shown
in Fig. 2. Denote by E and I respectively the column matrices of voltages
and currents at the N accessible ports:

El /1

E2 2

E = (2)

_EN.

Let A be the column matrix of all / controlled current sources and m
controlled voltage sources, and let B be the column matrix of all j cur -

2

2'

No

N'o

Fig. 2 -N -port network containing a controlled -source subnetwork.
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rents and k voltages influencing the controlled sources:

A=

a2

al (3)

bi

b2

-

g

B= I);

bj+1

(4)

[:;:]
The relationship between A and B is assumed to be given by

A = CB, (5)

where C is a (1 m) X (j k) matrix of real rational functions in
the complex frequency variable.

With E and A treated as independent variables, we apply the super-
position theorem to obtain

I = Y0E DA, (6)

where Yo and D are defined by the equation. In particular, Yo is the
N X N short-circuit admittance matrix of the N -port network with
the value of all controlled sources set equal to zero.

Similarly, we can express B as

B = FE + GA, (7)

where the matrices F and G are defined by the equation. From (5)
and (7),

A = [U - CG] 1CFE, (8)
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where U is the identity matrix of order 1 m. Using (6),

[Y - Yo] = D[U - CG]-1CF, (9)

where Y and Yo are the short-circuit admittance matrices of the N -port
network with all controlled sources respectively operative and set equal
to zero. In certain degenerate cases, Yo and/or the right-hand side of
(9) will not exist. In such instances the network can be treated as a
limiting case of a structure for which this difficulty does not occur.

2.2 The Rank of [Y - Yo]

Consider the maximum rank of the N X N matrix [Y - Yo]. Since
the rank of a matrix product cannot exceed the rank of any of its
constituent factors,19

rank [Y - Yo] 5 rank [C] = Rc (10)

The elements of [Y - Yo] are real rational functions in the complex
frequency variable. Assuming that this matrix has finite poles at s =
Si , s2 , , 8m of multiplicity n1 , n2 , , nm respectively, it can be ex-
pressed as

- = E Ai, + B-k(I) (s -1 si)4 '
(11)

k=0 1=1k=1

where the Ak and B_(12 are coefficient matrices and in particular, the
B-.(12 are residue matrices.

From (11), the matrix of coefficients of the first term in the Laurent
expansion at the pole s = si is

B (1) --n -
In view of (10), we have

(s - I)" LY -

rank [B < Rc

(12)

(13)

Similarly, the leading coefficient of the matric polynomial in (11) is
given by

A = lim - [Y - Yo]P

1

sp

and hence

(14)

rank [Ap] < Re . (15)

Consequently, when R, < N, all k -rowed minors of the matrices
B.L121 and A vanish, where k = Re + 1, R, 2, , N.
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Inequalities (13) and (15) shed considerable light on the fundamental
properties of an N -port network containing a controlled source sub-
network. In fact, at poles of Y which are not poles of Yo , these condi-
tions yield explicit restrictions on the Y matrix. For example, let Y be
the admittance matrix of an active RC network and take Yo to be the
corresponding passive RC matrix obtained from Y by setting all con-
trolled source coefficients equal to zero. It is well known that Yo must
be regular everywhere in the complex plane except at infinity and at
points on the negative -real axis where only simple poles may occur.
Hence Yo cannot influence the coefficient matrices B41 at any mul-
tiple -order pole or at any pole not on the negative -real axis. In par-
ticular, the rank of the residue matrix at any simple complex pole can-
not exceed R, , the rank of the matrix C.

The rank of C, of course, cannot exceed the number of its rows or
columns, whichever is smaller. That is,

Rc 5 min [j k,1 m]. (16)

This means that Rc cannot exceed the number of controlled sources or
the total number of controlling voltages and currents, whichever is
smaller. Consequently, if any of the prescribed B -"I are to have full
rank at a pole of Y which is not a pole of Yo , the controlled source
subnetwork must include at least N controlled sources and at least N
distinct control ports. t

A similar development, of course, can be carried out in terms of the
open -circuit impedance matrices Z and Zo . Note that these results are
valid for controlled source coefficients c7 which may be any set of real
rational functions in the complex -frequency variable. Note also that a
driving -point immittance can be regarded as a controlled source, since
such immittances impose a constraint which is merely a special case
of (1).

III. N -PORT ACTIVE RC REALIZATION

We begin the study of the N -port realization problem by considering
an active RC network containing one controlled source. Specifically,
consider an (N 2) -port passive RC network characterized by the
(N + 2) X (N 2) short-circuit admittance matrix Y, and suppose

t The realization of an arbitrary NX N matrix of constants as the short-circuit
admittance matrix of an N -port network containing positive resistors, ideal trans-
formers and controlled sources also requires, in general, at least N controlled
sources. This follows from the fact that, in this case, Yo is the matrix of a non -
negative quadratic form, and hence it is possible to prescribe constant matrices
Y such that, for the entire class of matrices Yo , [Y - Yo] is of rank N.
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1'

2

2'

N

(NJ

(N+2)'

RI

335

Fig. 3 - Active RC network containing one controlled source-canonical
subnetwork.

that a current -controlled voltage source is connected between ports
N + 1 and N + 2 as shown in Fig. 3. Denote by Yo and Y the N X N

admittance matrices relating the column vectors

E =
E2

N

and I = (17)

when the cont rolled source coefficient respectively vanishes and is equal
to R.

The mat rix Y is given, as a special case of (9), by

Y - Yu = - + RyN+1,N+2 [

gN, N1-2

R
 .g.N+LNI, (18)

where Y0 is the matrix of elements in the first N rows and columns of
Y. It is convenient to express (18) as

R
Y - Yo = -

q(q + RPN+1.N+2
[PN+1,1  PN+1,N] ( 19 )
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where q and the pig are polynomials, and

gik = - (20)

It is evident from (18) or (19) that, as anticipated, [Y - Yo1 has
unit rank.

3.1 N -Port Synthesis

Our objective is to obtain an expression involving Y similar to (9)
with a right-hand side of rank N. We know that a network character-
ized by such a relationship will require at least N controlled sources.

It is well known that a rank N matrix can be expressed as a sum of
N rank 1 matrices.19 This suggests that the realization of Y can be ac-
complished with N networks connected in parallel. We shall specifically
consider the parallel connection of N networks of the type shown in
Fig. 3.

Assuming that the scalar coefficient on the right-hand side of (19)
is the same function of s for each of the N subnetworks, we obtain

P1,N+2

Y->Yoi r-(i)
PN-I-1,N J (21)- E

=1 L,iq(qP LDA N-1-1, N+2 i =1 -(i)

where

_PN,N+2

and

Y(i) =
1 r -col
- LPik J (22)

(i)
PN+1,N-1-2 = PN+1,N+2 i = 1,2, , N. (23)

The sum of matrix products in (21) can be written as a single matrix
with the element in the jth row and kth column given by

N

E 73(3+273W1, (24)
i=1

This matrix can therefore be written as the product of the following
two matrices:

t The networks are assumed to be such that admittance matrices add without
the use of ideal transformers. This is justified later by employing balanced struc-
tures.
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-(1) -(N) -(1) (1)
P1,N+2.  P1,N+2 'PN+1,N

PiP2 = (25)
(1) (N)

PN,N+2  pN,N+2 _PN+1,1  PN+1,N

From (21) and (25),

Y - Yor = R P1P2 (26)
q(q itpN-E1,N+2)

where

Yor = Yoi
i=1

Let the prescribed short-circuit admittance matrix Y be given as

Y = -1 [Nil" (27)

where D is the common denominator polynomial of the elements in Y
and [Ni;] is a matrix of polynomials. Similarly, write Yor as

1 N
YOT = [Pii1 [psi)] .

(28)
q k=1

From (26), (27) and (28),

1

[Dp=i -
qD

qNii] -
ilpN+1,N+2) P1132

(29)

In (29) let terms be identified as follows:

1 I n
PN+1,N+2 kif - q) ,

1 rn
Pir-n R2 = - q2V11l

(30)

(31)

At this point we have reduced the synthesis of the N -port admittance
matrix Y to the determination of N realizable (N + 2) X (N + 2) RC
network matrices y(') whose elements satisfy (30) and (31).

3.2 Sufficient Conditions for the Realization of Y

The matrices Y(i) can be expressed as
deg q

Y(i) = sic.") + K0(r) + E K.")
s +8 cri'

(32)
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where "deg q" means the degree of the polynomial q, and where the
U; are real and satisfy

0 < CT' < 0'2  " < Udell q

If the coefficient matrices Ko. , Ko and KJ are "dominant -diagonal"
matrices,t (32) can be realized as a transformerless balanced RC(N -}-

2)-port network."
Assume that YoT has been chosen so that
(a) its coefficient matrices satisfy the dominant -diagonal condition

with the inequality sign;t
(b) the matrix (1/R)[Dpi; - qNij] can be expressed as the product

of two polynomial matrices P1 and P2 with the property that (1/q)Pi
and (1/q)P2 are matrices of realizable RC transfer admittances (these
admittances are assumed to have poles at infinity only when YOT has a
pole at infinity); and

(c) the function fiN 4-1,N +2 satisfies the realizability and regularity
constraints stated in (b).

If (a) is satisfied, we can write YOT as the sum of N matrices Y01
each of which has coefficient matrices that satisfy the dominant -diag-
onal condition with the inequality sign. Recall that Yoi is the matrix of
elements in the first N rows and columns of the (N + 2) X (N + 2)
matrix I'm. To obtain V'', we border Yoi with two additional rows and
columns of elements. All but three of the required numerator poly-
nomials are determined by the entries in the polynomial matrices P1
and P2 which satisfy (b). Of the remaining three polynomials, 73N+1,N-1-2
is given by (30) and is assumed to satisfy (c), while (;-11,N+1 and
-c

PN-I-i) 2.N+2 may be chosen freely to assist realizability, since they are
unrestricted by (30) or (31).

The realizability of i(') can be ensured by having it exhibit the
dominance characteristic, and this can always be done by choosing the
scale factors of the polynomials 231:.11,N+1 and 0-12.N+2 as well as the
value of R, the controlled source coefficient, to be sufficiently large.

Hence (a), (b) and (c) are sufficient for the realization of Y. To
make further progress, we next establish conditions that permit P =
(1/R)[Dpii - qNii] to be written as the product of two matrices with
polynomial elements of lower degree.

f A dominant -diagonal matrix M has elements mik which satisfy

mai E mil, I.
kOl
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3.3 Factorization of the Matric Polynomial P

Let L be the degree of the highest degree polynomial in P = (1/R) 
[Dpi; -qN ii], and suppose that the zeros of

N L

det P = E ass"
k=0

include K distinct real zeros at s = si, (i = 1, 2, , N,  ,K).
Consider the result of determining a nonsingular matrix Q with real

constant elements such that every element in the ith column of PQ
has a zero at s = si, (i = I, 2, , N). If indeed this can be done, P
can be written as

P = (PQ)Q-1 = 1Y(DQ-1), (33)

where D is the diagonal matrix diag [s - s - s2 ,  , s - sp], and
the degree of the highest degree polynomial in P' is L - 1. This is
equivalent to removing a linear factor of the matric polynomial P:

L L-1

P = E elk, = [E 8)A] DQ
J.---1 .J=1

= E s'A)Q-11 QDQ-1
1

..= E sjikil (sU - B) ,
J---1

(34)

where U is the identity matrix of order N and

B = Q diag [s, , s2 , , sN]Q-1. (35)

If (N - 1)L < K, a matrix Q having the required properties exists
and can be constructed as follows. First, note that at any zero of det P,
say at s = st , the column rank of P is necessarily less than N, and hence
there exists a relationship of the form

0 = E aii[P;(si)], (36)

where [P;(s/)] is the jth column vector of P evaluated at s = st , and
the aji are not all zero. Note also that at no more than (N - 1)L of
the zeros of det P is it possible to determine alphas, not all zero, which
satisfy

iv

o = E «,-/[13;(si)], (37)
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where k is any one of the integers [1,2, , NJ. This follows at once from
the fact that all nonidentically vanishing determinants, formed from
det P by replacing the kth column of det P with a column of constants,
vanish at most at (N - 1)L points. Therefore, if (N - 1)L < K,
there must exist at least one equation of the type (36) for a real zero
and with akt 0 0. In other words, there exists a nonsingular matrix of
real elements

1

Qk =

1
qik

.

qkk

1

qNk ]

(38)

such that every element in the kth column of PQk has a real zero at
s = sk . Note that the elements in all columns except the kth remain
unchanged. Hence the matrix Q can be constructed as a product of N
matrices Q; chosen so that every element in the ith column of

M.

P 11 Q., , i = 1,2, , m.
i=1

has a real zero at s = si .
To summarize, if (N - 1)L < K, N distinct real zeros of det P can

be removed as a linear factor of the matric polynomial P. The remain-
ing polynomial is of degree L - 1 and all coefficient matrices are real. t

To simplify the discussion, we have not considered certain extensions
of the factorization technique. It is possible, for example, to carry out a
similar development with respect to the rows of P. This permits the
removal of a linear factor that premultiplies the remaining matric poly-
nomial.

3.4 Consideration of Conditions (a), (b) and (c)

The admittance matrix IT or can be made to have dominant -diagonal
coefficient matrices by choosing any N X N realizable RC admittance

f This implies that the matric polynomial P can be written as
L

P= C II (sEr - BO
i=1

when det P has NL distinct zeros. When these zeros are all real the coefficient
matrices C and Bi are also real.
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matrix, with elements of suitable degree as determined subsequently,
and multiplying each diagonal entry by a sufficiently large positive
real constant p. Hence condition (a) is easily satisfied. Denote the
matrix determined in this way by

011 PI2

1 P7)22
YOT

q

P1 . IN

P N1 PPNN

The polynomial det P can be written as

(39)

N N

det P = det -1 [Dpi;- qN 3-- AT II= () {D  + R()} (40)
R i=i PN

where R(s)/ pw is a polynomial with degree not exceeding NL and with
all coefficients that approach zero as p approaches infinity. We shall
assume that the degree of pii , deg pii , has been chosen to be inde-
pendent of the index i. Note that, as p approaches infinity, N deg phi
zeros of det P approach the zeros of

ph

The zeros of this product can be chosen to be distinct and different from
those of D. Hence, for a sufficiently large value of p, (a) is satisfied and
det P has at least N deg pii distinct real zeros.

Next, consider condition (b). The degree of the highest degree
polynomial in P is given by

L = max [max deg pi; + deg D, max deg N1; + deg q]

= max [deg phi + deg D, max deg N1; + deg q]. (41)

Hence,

L = deg phi + max [max deg N;; - E, deg D]

= deg L (42)

where

E = 0, deg pii = deg q
(43)

E= 1, deg pii = deg q + 1.

To remove k linear factors of the matric polynomial P as described
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in Section 3.3, it is sufficient, after removal of the (k - 1)th factor,
that

(N - 1)[deg pii L, - (k - 1)] < N deg pii - N(k - 1). (44)

If k = L, factors are removed, P could be written as the product of
two matrices, one of degree L, and the other of degree deg pii . Sub-
stituting this value of k into (44) gives the required relationship be-
tween L, and deg pii :

NL, - 1 < deg pii (45)

Hence conditions (a) and (b) are satisfied t with deg pii = NLE . Finally,
it is evident that condition (c) can be satisfied simultaneously, since
13N+1,141-1-2 can be chosen to have any degree not exceeding deg pii

This proves the theorem stated in the abstract.

IV. CONCLUSION

We have proven that N is the sufficient and, in general, minimum
number of controlled sources required to realize an arbitrary N X N
matrix of real rational functions as a transformerless active RC N -port
network. A canonical structure is a parallel combination of N networks,
each containing a single controlled source. The type of controlled source
employed is one of the two basic elementary controlled sources. Similar
developments can be carried out for other types of controlled sources.

Further work is indicated in several directions. It is desirable to avoid
the use of balanced networks. A detailed investigation of matric poly-
nomial factorization may shed some light on this possibility. A major
difficulty stems from the fact that relatively little is known about the
realization of transformerless passive RC networks. Even so, it is almost
certain that more practical canonical structures will be discovered.

It is noteworthy that the analytical machinery employed here pro-
vides insight into other fundamental questions. For example, it is easy
to show that all N resistors in Oono's passive N -port realizationn are in
fact necessary. Similarly all N -negative and N -positive resistors in Car-
lin's active N -port realization22 are necessary.
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APPENDIX

Synthesis of a Two -Port Network -A Numerical Example

To illustrate the main points in the synthesis technique presented in
Section III, we consider in detail the synthesis of a two -port network.
This example demonstrates also that (45) is not a necessary condition.

Let the prescribed 2 X 2 matrix be

1Y = [Nd

1 I- .32 s + 2 82 + s + 31
s2 + s + 1 LS2 ± S + 4 s2 + s + 5

We choose Y or as the following matrix that obviously satisfies the domi-
nance condition with the inequality sign:

Yor = -1

(47)

(s + 2)(s + 4) L 0 5(s + 1)(s + 3)1'
1 r5 8 + 1)(s + .3) 0

From (30), (31), (46) and (47),

P3,4 =
1

(5s + 7), (48)

PiP2 = P =
1

R

4s4 + 18s3 24s2 + 15s - 1 -s4 - 7 - 17s2 - 26s - 24
_84_ 7s3_ 1882 32s - 32 4.34 ± 18,33 ± 21s2 - 3s - 25

(46)

(49)

Consider the factorization of P into two matric polynomials of the
second degree. The factors of

R" det P = 15.38 + 13087 + 42086 + 55585 - 15284

- 1629s3 - 247482 - 1972s - 743,

determined with a digital computer, are

(s + 1.0707018)(s - 1.6223931)(s + 3.0014915)(s + 2.6871002)
(50)

 (s + 1.3191886 ± j1.2215876) (s + 0.4456939 ± j0.9460882).
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Denote by si , 82, s3 and 84 respectively the zeros of the first four factors
in (50).

First, we determine a matrix Q1 such that both elements in the first
column of PQ1 have a zero at s = sl . At s = sl ,

an[Pi(si)] «21[P2(81)] = 0. (51)

By evaluating the pair of polynomials in either row of (49) at s = s1 we
obtain:

0.76249 all + «21 = 0.
Hence,

1 0
Q1 = (52)

-0.76249 1

From (49) and (52),
1

PQ1 = R
[a-],

"
(53)

where

all = (4.76252 18.238282 17.4347s -I- 16.1575)(s + 1.0707),

a21 = - (4.04992 + 16.388682 + 16.46518 + 12.0835)(s + 1.0707),

a12 = - (s4 783 + 1782 + 26s + 24),

a22 = (42 + 182 + 2182 - 3s - 25).

Next we find a matrix Q2 such that the first column of PQ1Q2 is iden-
tical to that of PQ1, and both elements in the second column of PQ1Q2
have a zero at s = 82. The evaluation of polynomials as before leads to

rl 0.48643

LO 1
Q2 =

At this point, P can be expressed as

(54)

P = [kJ] diag [s + 1.0707, s - 1.6223]Q-', (55)

where Q-1 = (Q1Q2)-1, and

bli = 4.76252 + 18.2382s2 + 17.4347s + 16.1575,

= - (4.04992 + 16.388682 + 16.46518 + 12.0835),

b12 = 1.3166s3 + 6.4881s2 + 11.5058s + 9.6064,

b22 = 2.0300s3 + 11.212482 + 22.6465s + 19.2894.
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A second linear factor of P can be removed by repeating this process.
Specifically, if the zeros at s = 83 and s = s4 are removed respectively
from the first and second columns of [bi1], P can be expressed as

with

Pl =

0

P = PiP2

[4.356082+3.16058+4.3961

- (4.676682+5.81363+6.0077) 2.030082+5.75768+7.1753

P2 =
(56)

1 0.629282+2.56223+2.0221 -0.486382-1.98038-1.5629

311) 0.956882+1.5419s-2.7648 0.849982+0.5007s -4.7910

where /3 is an arbitrary nonzero real parameter.
To determine Y(1) and Y(2), first write Yin, as the sum of two matrices,

Yot and Y02 7 that satisfy the dominance condition with the inequality
sign. The following choice is clearly acceptable:

Yo1 = YO2 = 1YOT .

Hence, "t(1) and 1.(2) are given by

Y(i)Y(i) 1

q

where

- -(0pil 0 ,...-(0
-lin

,;(0
p14

0 ,,,,-22(i)p p_
-23(i)

P24)

'
( 57)

p31) P) p33) P34'

(i) -(i) -(i) -(i)
P41 P42 P43 P44

_

Paa' = = -(08 + 7),

(1)pll = = = = T(s + 1)(s + 3).

The polynomials fa, pT, a, and 73(424) are unrestricted by (31) and
hence, for simplicity, can be chosen to be -8-(8 + 1)(s + 3). The remain-
ing polynomials are obtained from (25) with PI and P2 given explicitly
in (56). It is evident that finite, nonzero parameters /3 and R can be
determined so that the matrices y(1) and Y(2) satisfy the dominance con-
dition. The realization of each of these matrices takes the form shown
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0

(1)

0

o

(2)

0

RI(

Fig. 4 - Realization of Y°') or ii(2) for two -port network example.

in Fig. 4, where the rectangles enclose transformerless passive balanced
RC structures."
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